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1 Introduction

After maturing into standard tools for risk measurement, especially for setting capital

requirements and risk limits, Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) have

been increasingly adopted as decision tools for active risk management in financial institutions.

Focusing on the latter, the objective of this paper is to develop static futures hedging strategies

that minimize tail risk measured by VaR or CVaR.1 Such strategies might be of special interest

for institutional investors, who can lower the utilization of their risk budgets or reduce capital

requirements by basing their hedging decisions on the same measure which is used for risk

control. In addition, tail-risk-minimal strategies are of general interest if avoiding large losses2

is given preference over minimizing the overall variance of the position, which is the standard

paradigm for futures hedging following Johnson (1960) and Ederington (1979). Hence, tail-

risk-minimal hedging is useful for investors who are particularly concerned about performance

under extreme market circumstances such as financial crises.

Implementing VaR or CVaR as objectives in portfolio optimization is technically more

demanding than solving variance-based problems because these risk measures – in general –

depend on the full distribution of the portfolio return and not just on the first two moments.

In addition, as compared to pure risk measurement applications, portfolio and hedging de-

cisions require a multivariate model, which narrows down the range of applicable techniques

for the calculation of VaR or CVaR. A popular approach is to assume jointly elliptically dis-

tributed returns, which implies that the loss distribution – as opposed to the general case –

is fully characterized by the first two moments and the distribution type. Within this frame-

work, influential portfolio selection studies incorporating (C)VaR objectives or restrictions

include Alexander and Baptista (2002, 2004, 2008) as well as Bertsimas et al. (2004).3 From

a pure hedging perspective, this approach is less promising because for elliptical distributions,

(C)VaR-minimal hedging strategies deviate from minimum-variance hedges only due to the

1 We consider VaR due to its importance in regulation and industry applications although it is often criticized
for its lack of coherence and for not taking the severity of the highest losses into account.

2 Thereby, this approach relates to the literature on safety-first investors. See, for example, Arzac and Bawa
(1977).

3 These authors note that a mean-variance-based analysis of VaR and CVaR can be extended beyond the
elliptical setup using results like Chebyshev’s inequality, which provide upper bounds on these tail risk
measures.
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impact of expected returns. This is attributable to the following properties of elliptical mod-

els: They cannot capture i) univariate asymmetries, ii) differing tail behaviors of their margins

and iii) nonlinear dependence, in particular dependence asymmetries. We therefore believe

that going beyond the elliptical setup is crucial for hedging tail risk.

Avoiding restrictive modeling assumptions, a number of studies work with nonparametric

methods for the derivation of VaR- or CVaR-optimal portfolios or hedging rules (Rockafellar

and Uryasev, 2002; Harris and Shen, 2006). In addition, semiparametric (Cao et al., 2010; Hi-

lal et al., 2011; Barbi and Romagnoli, 2014) and very flexible multivariate parametric models

based on copulas (Patton, 2004) are applied in the risk and portfolio management literature,

focusing on non-normalities. However, such models usually do not allow for a tractable an-

alytic characterization of the resulting aggregated return distribution and therefore rely on

a combination of simulation and numerical optimization methods to derive tail-risk-optimal

policies. With VaR, this approach can cause numerical problems due to the nonconvexity

of this risk measure. Furthermore, purely nonparametric methods might suffer from high

estimation risk caused by a small number of tail observations. This problem can be adressed

by introducing worst-case modifications of VaR and CVaR and using techniques from robust

optimization, which are reviewed in Fabozzi et al. (2010).

In contrast to this literature, we propose a more flexible but still tractable parametric

modeling approach for the minimization of the original VaR or CVaR. In particular, we

analyze tail risk management with regime-switching (RS) models. This approach naturally

incorporates the presence of crash regimes into hedging decisions and, more generally, it allows

to account for the relevant nonelliptical features mentioned above.

RS models were first introduced by Hamilton (1989) in a univariate setting and applied to

portfolio choice by Ang and Bekaert (2002). Assuming normally or t-distributed components,

multivariate RS models allow for the analytic derivation of the aggregate return distribution

but can at the same time reproduce flexible univariate distribution shapes and asymmetric

dependence structures. Their capability for tail risk measurement has been emphasized by

Billio and Pelizzon (2000) as well as Guidolin and Timmermann (2006). The flexible shape

of RS models has also been utilized to solve portfolio selection problems with skewness and
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kurtosis preferences (Guidolin and Timmermann, 2008). Moreover, various studies exploit

the temporal dependencies implied by the models to construct conditional strategies within a

variance-based setup (Alizadeh et al., 2008). Chang (2010) analyzes univariate VaR-minimal

hedging using, however, a numerical search algorithm to determine the optimal policy. Related

to our work is also Buckley et al. (2008), who demonstrate the usefulness of multivariate

normal mixture distributions for lower-partial-moment-based portfolio optimization.

To the best of our knowledge, we are the first to present an analytical characterization

of VaR- and CVaR-minimal hedging rules that applies to RS models. Our theoretical con-

tribution is as follows: First, we use results on quantile derivatives from Hong (2009) and

Hong and Liu (2009) to derive first-order conditions for tail-risk-minimal hedging strategies

that cover general multivariate density models under relatively weak continuity and differ-

entiability assumptions. Second, we provide the specific form of these conditions for finite

mixture distributions with elliptical components. Third, we discuss the implementation of

our strategies for mixtures4 and RS processes with normally and t-distributed components.

Based on these analytical results, we provide a stylized example showing that crash regimes

can produce substantial differences between minimum-variance and tail-risk-optimal hedging

strategies. Furthermore, we provide an upper bound for these differences in the special case

of standard elliptical distributions.

In the empirical part of this paper, we present cross-hedging examples with well-known

market indices demonstrating the in- and out-of-sample benefits of tail-risk-minimal hedging

based on RS models. We estimate multivariate RS models with Gaussian conditional distri-

butions, and confirm that they produce reliable tail risk estimates in our examples. Then,

we compare hedging strategies derived from these models and some benchmark specifications.

First, we find that in- as well as out-of-sample non-negligible additional tail risk reductions

can be attained by switching from minimum-variance to VaR- and CVaR-based hedging in our

examples. The relative risk reductions over the minimum-variance benchmark reach 18% with

conditional as well as unconditional hedging strategies. Second, we compare the out-of-sample

performance of tail-risk-optimal hedges derived from different econometric specifications and

4 A technically similar result has recently been derived by Litzenberger and Modest (2010), who analyze a
mixture-based stress testing framework for portfolio selection with hedge funds.
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find promising results for the RS approach. In this context, we also provide a small simula-

tion study on the statistical significance and robustness of the reported benefits. Finally, we

illustrate our methodology with a composite hedging application and present a selection of ro-

bustness checks. The tail risk reductions in our examples can be confirmed – independent from

our model – by standard univariate nonparametric or extreme-value-theory-based estimators,

which is especially important if such procedures are used to set the capital requirements or

risk limits for the optimized positions.

The remainder of our paper is structured as follows: In Section 2, we give a formal prob-

lem statement and derive our most general characterization of tail-risk-minimal hedging rules.

Section 3 contains the derivation of first-order conditions for hedging with mixtures, the ap-

plication of these results to RS models and a stylized example for the differences between

tail-risk-minimal and minimum-variance hedging. In Section 4, we present our empirical find-

ings and robustness checks. Section 5 concludes. We provide omitted proofs in the Appendix.

2 Tail Risk Hedging with Quantile Derivatives

2.1 Problem Statement

We analyze a multivariate static hedging problem over a fixed investment horizon [t, t+ 1].

The portfolio we want to hedge consists of N positions – typically in the spot market. The

discrete returns of these positions over [t, t + 1] are denoted by RS,i, i = 1, . . . , N . The

corresponding portfolio weights are given by wi =
vS,i
vP

, i = 1, . . . , N , where vS,i is the value

of the ith position in t and vP =
∑N

i=1 vS,i.

Furthermore, we assume that M futures instruments are available to temporarily reduce

the risk of the spot positions. The relative price changes of these instruments will also be

described by their discrete returns RF,j , j = 1, . . . ,M .5 Abstracting from initial margins,

futures positions will have no effect on the portfolio value in t. We therefore define hedging

weights hj relative to vP , i.e., hj =
vF,j
vP

, j = 1, . . . ,M , where vF,j is the nominal value of a

short position in the jth futures contract. Collecting the returns and the weights in column

5 Denoting the price of the jth futures by Ft,j , we use the usual return definitionRF,j =
Ft+1,j−Ft,j

Ft,j
, although

futures do not require an initial investment of their nominal value. An alternative return definition for
futures uses the spot price in the denominator (Figlewski, 1984).
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vectors RS = (RS,i), RF = (RF,j), w = (wi) and h = (hj), we obtain for the return of the

hedged (net) position RH(h) := RH = w′ ·RS − h′ ·RF . Thus, the percentage loss of the

hedged position is given by

LH(h) := LH := −w′ ·RS + h′ ·RF . (1)

The standard approach following Johnson (1960) and Ederington (1979) to determine op-

timal hedging weights is to minimize the variance of this loss variable or, equivalently, the

variance of the return, i.e., to solve minh∈RM var[LH(h)] = minh∈RM var[RH(h)], which re-

quires that RS,i ∈ L2 and RF,j ∈ L2 for i = 1, . . . , N and j = 1, . . . ,M . It is easy to show

that the hedging policy h∗var solving this problem is given by

h∗var = (cov[RF ])−1 · cov[RF ,RS ] ·w. (2)

Much of the literature on futures hedging is centered around implementing dynamic specifica-

tions for the covariance terms in (2) that are conditional on the filtration Ft generated by the

return process. In fact, many studies investigate the performance of time-varying conditional

hedging strategies based on multivariate GARCH models following Baillie and Myers (1991).

In contrast, our focus lies on hedging strategies that minimize the tail risk or the corre-

sponding capital requirement, which are usually measured in terms of VaR and CVaR. For a

simple definition of these risk measures, we assume that LH ∈ L1 and that it has a positive

density. Then, VaRα and CVaRα at the confidence level 1− α with α ∈ (0, 1) satisfy

P(LH ≤ VaRα[LH ]) = 1− α and CVaRα[LH ] = E[LH | LH ≥ VaRα[LH ]] . (3)

Accordingly, VaRα can be understood as the loss value, which is not exceeded with a prob-

ability of 1− α. Formally, VaRα simply corresponds to the (1 − α)-quantile q1−α[LH ] of the

loss distribution.6 CVaRα is the expected loss in the worst 100 · α% of the cases. Comparing

both measures, VaRα is still dominant in industry applications, although CVaRα is preferable

6 More generally, VaRα is usually defined as the lower (1 − α)-quantile, i.e., VaRα[LH ] =
inf {l ∈ R|P(LH ≤ l) ≥ 1− α}. This definition will be used in Section 4 for the analysis of empirical
distributions.
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from an axiomatic point of view as a coherent risk measure in the sense of Artzner et al.

(1999).7 Moreover, VaRα might be questionable if the aim is to avoid large losses because

it does not consider the extent of losses in the very tail of the distribution. However, the

choice between VaRα and CVaRα remains a matter of debate in academia and industry.8 We

therefore consider both measures in our analysis. Writing these risk measures as functions of

the hedging weights, i.e., vα(h) := VaRα[LH(h)] and cα(h) := CVaRα[LH(h)], we analyze

min
h∈RM

vα(h) = min
h∈RM

VaRα[LH(h)], (4)

min
h∈RM

cα(h) = min
h∈RM

CVaRα[LH(h)]. (5)

Univariate versions of these problems have recently been analyzed by Harris and Shen

(2006) and Cao et al. (2010) in a non- and semiparametric framework. Furthermore, Barbi

and Romagnoli (2014) analyzed tail-risk-minimal hedging strategies with copula models. More

often, similar problems have been studied in a portfolio selection context. In particular, the

sample-based approach of Rockafellar and Uryasev (2002), which allows to solve problems of

the second type using LP techniques, has gained a lot of attention. Although these studies

focus on the unconditional distribution, we emphasize that (4) and (5) can of course also be

applied conditionally on Ft. For a general discussion of conditional quantile risk measurement,

we refer to McNeil and Frey (2000). Hilal et al. (2011) present an application to CVaRα

hedging using an elaborate combination of time series modeling and multivariate extreme

value theory. Although we do not systematically assess conditional versus unconditional risk

modeling here, some of the results presented in our empirical section might be of relevance

for this problem.

7 Without the assumption of a continuous loss distribution, this requires a CVaRα definition that takes the
possibility of a point mass at the VaRα into account (Rockafellar and Uryasev, 2002). We will adopt such
a definition when working with empirical distributions in Section 4, see (31).

8 See Kellner and Rösch (2016) for a recent contribution to this debate and for a brief review of the literature.
There has been a renewed interest in CVaRα, also known as Expected Shortfall, following the proposal
of the Basel Committee on Banking Supervision to use this measure instead of VaRα for market risk
measurement.
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2.2 A General Solution

Complementing the above-mentioned results on non- and semiparametric VaRα and CVaRα

hedging, we are interested in analytic characterizations of the solutions to (4) and (5). These

can be derived under the following regularity conditions on the distribution of (R′S ,R
′
F )′,

adapted from Hong (2009) and Hong and Liu (2009).9

(R1) RS,i ∈ L1 and RF,j ∈ L1 for i = 1, . . . , N and j = 1, . . . ,M .

(R2) For all h ∈ RM , LH(h) has a continuous and strictly positive density. Moreover, for all

hj , j = 1, . . . ,M , the partial derivative of FLH (l;h) = P(LH(h) ≤ l) with respect to hj

exists and is continuous in l and hj .

(R3) For all j = 1, . . . ,M , the conditional expectations E[RF,j | LH = l] are continuous as

functions of l.

Assumption (R1) is obviously weaker than the corresponding integrability requirements

needed for the variance-based approach. However, Assumptions (R2) and (R3) define some

additional continuity and differentiability conditions. Note that due to (R1) and (R2) the

requirements for using the simple VaRα and CVaRα representations from (3) are satisfied.

We are now ready to state a first analytic characterization of tail-risk-based hedging strate-

gies.

Proposition 1 Under (R1) - (R3), VaRα- and CVaRα-minimal hedging strategies h∗VaR and

h∗CVaR, i.e., solutions to (4) and (5), satisfy

E[RF | LH(h∗VaR) = vα(h∗VaR)] = 0M , (6)

E[RF | LH(h∗CVaR) ≥ vα(h∗CVaR)] = 0M . (7)

This characterization is an application of results on quantile derivatives to the hedging prob-

lem. In particular, (6) and (7) follow as FOCs of (4) and (5) from Theorem 2 in Hong (2009)

9 See the proof of Proposition 1 for the relation between the assumptions given here and the original
statements made in Hong (2009) and Hong and Liu (2009).
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and Theorem 3.1 in Hong and Liu (2009). Some technical details of this reasoning can be

found in the Appendix.10

Note that Proposition 1 makes no statement on the existence of optimal strategies. As

already observed in Alexander and Baptista (2004) for the case of portfolio selection strategies,

it is possible that VaRα and CVaRα minimizations have no solutions even with normally

distributed returns. Moreover, there is an important difference between using vα and cα as

objective functions. Whereas the cα-FOC (7) is only fulfilled by the global minimizer of (5),

the vα-FOC (6) might also be satisfied by other stationary points. This is due to the fact

that CVaRα is in general a coherent risk measure, which implies that (5) is always a convex

optimization problem. VaRα will, however, only be subadditive and convex under specific

combinations of distributional assumptions on (R′S ,R
′
F )′ and confidence levels. In such cases,

(6) will uniquely characterize the global VaRα-minimal hedging vector (if such a strategy

exists).

We note that it might be interesting to analyze the tail risk of the demeaned loss variables

instead of the losses themselves. Therefore, we define MVaRα[LH ] := VaRα[LH − E[LH ]] and

MCVaRα[LH ] := CVaRα[LH − E[LH ]]. By construction, MVaRα and MCVaRα do not allow

reducing the risk of the position by increasing its expected return. Under (R1) - (R3), FOCs

for the strategies that minimize these risk measures are obtained by subtracting E[RF ] from

the left hand side of (6) and (7).11

Proposition 1 applies to a wide range of continuous return distributions because the con-

ditions in (R1) - (R3) are rather weak. However, at this level of generality, we cannot provide

explicit representations for the conditional expectations in Equations (6) and (7). We therefore

analyze more specific distributional assumptions in the following section.

10 Earlier results on quantile derivatives, for example Gourieroux et al. (2000) or Scaillet (2004), could also
be applied to obtain (6) and (7).

11 This follows from ∂
∂h

E[LH(h)] = E[RF ] and the translation invariance property of VaRα and CVaRα.
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3 Tail Risk Hedging with Mixture Distributions

3.1 Mixtures of Elliptical Distributions

The main idea in this section is to combine the econometric flexibility of mixture modeling

with the analytic tractability of elliptical distributions. We will derive explicit forms of the

FOCs in Proposition 1 under the assumption that the joint distribution of R = (R′S ,R
′
F )′ is

a multivariate finite mixture with elliptical components.

First, we briefly recall a density-based definition of elliptical distributions, which largely

corresponds to definition c) in Owen and Rabinovitch (1983). Let µ be a real-valued P × 1

vector and let Σ denote a symmetric, positive definite P × P matrix for P ∈ N. A P × 1

random vector Y with a density fµ,Σ,g follows an elliptical distribution if this density is of

the form

fµ,Σ,g(y) = det(Σ)−
1
2 gP

(
(y − µ)′ ·Σ−1 · (y − µ)

)
, (8)

where gP is a non-negative scalar function on R. This function is referred to as density

generator. To define a distribution over several dimensions, a collection of generators g =

(gP )P∈N is needed because gP is parameterized by the dimension of Y . We use the notation

Y ∼ EP (µ,Σ, g) if Y has an elliptical distribution with parameters µ, Σ and the generator

(family) g. The widespread use of this model is partly explained by its favorable distributional

properties. An example being particularly relevant in a portfolio context is the behavior under

linear transformations (Owen and Rabinovitch, 1983, P.1).12

Second, we build on the following definition of finite mixture models. Y has a mixture

distribution with component densities fk, k = 1, . . . ,K and component weights πk, k =

1, . . . ,K,
∑K

k=1 πk = 1 if its density is of the form

fY (y) =

K∑
k=1

πkfk(y). (9)

As we will detail later, this structure allows for very flexible univariate and multivariate

distribution shapes even if relatively simple components like normal distributions are com-

12 For a full account of elliptical distributions, we refer to Fang et al. (1990).
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bined.13 Let us for the moment just note that the mixture framework can be motivated by

introducing an unobserved state variable S with values in {1, . . . ,K}, which is often assumed

to describe the state of the relevant market. If the distribution of S is given by P(S = k) = πk

and the component densities of the mixture correspond to the conditional distributions of Y

given S = k, the structure in (9) is obtained from the law of total probability.

Combining (8) with (9) and adding the requirement that the density is strictly positive,

we obtain the following assumption:

(M1) The vector R = (R′S ,R
′
F )′ follows a multivariate K-state mixture of elliptical distribu-

tions with continuous and strictly positive density generators gN+M,k, i.e., its density is

of the form

fR(r) =

K∑
k=1

πk det(Σk)
− 1

2 gN+M,k

(
(r − µk)′ ·Σ−1

k · (r − µk)
)

(10)

for πk ∈ (0, 1),
∑K

k=1 πk = 1, µk ∈ RN+M and positive definite (N + M) × (N + M)

covariance matrices Σk.

Using the state variable approach described above, we can give the following equivalent for-

mulation of (M1):

(M1’) R|S = k ∼ EN+M (µk,Σk, gk) for k = 1, . . . ,K with continuous, strictly positive density

generators gN+M,k and P(S = k) = πk.

This setting obviously includes popular modeling choices like mixtures of multivariate normals

or multivariate t-distributions.

We first provide the solution to the minimum-variance hedging problem for (M1) with

the additional assumption that all elements of R are in L2. Therefore, note that for Y ∼

EN (µ,Σ, g), it holds that E[Y ] = µ and cov[Y ] = cg ·Σ, which under (M1) implies

E[R] =

K∑
k=1

πk µk and cov[R] =

K∑
k=1

πk
[
cgk Σk + µk · µ′k

]
− E[R] · E

[
R′
]
. (11)

13 See, for example, McLachlan and Peel (2000) for a comprehensive discussion of the properties of this
modeling approach and illustrations of its flexibility.
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Using µk =

µS,k
µF,k

 and Σk =

 ΣS,k ΣSF,k

Σ′SF,k ΣF,k

, we obtain from (2) and (11) for the

traditional minimum-variance hedging weights14

h∗var =

[
K∑
k=1

πk
[
cgkΣF,k + µF,k · µ′F,k

]
−

K∑
k=1

πk µF,k ·
K∑
k=1

πk µ
′
F,k

]−1

·

[
K∑
k=1

πk ·
[
cgkΣ

′
SF,k + µF,k · µ′S,k

]
−

K∑
k=1

πk µF,k ·
K∑
k=1

πk µ
′
S,k

]
·w. (12)

For the analysis of tail risk hedging under (M1), we first observe that the distribution of

the portfolio loss is also a mixture with elliptical components, i.e.,

LH(h) | S = k ∼ E1(µL,k, σ
2
L,k, gk), (13)

where

µL,k := µL,k(h) = −w′ · µS,k + h′ · µF,k, (14)

σ2
L,k := σ2

L,k(h) = w′ ·ΣS,k ·w − 2 w′ ·ΣSF,k · h+ h′ ·ΣF,k · h, (15)

which follows from the behavior of elliptical distributions under linear transformations. We

write fL,k := fLH |S=k and FL,k := FLH |S=k for the corresponding component pdfs and cdfs.

According to (8) and (9), the component densities and the unconditional density fL := fLH

satisfy

fL,k(l) = σ−1
L,k · g1,k

(
(l − µL,k)2

σ2
L,k

)
and fL(l) =

K∑
k=1

πk fL,k(l). (16)

The tail risk measures that we analyze are given by

1− α =
K∑
k=1

πkFL,k(vα(h)), (17)

cα(h) =
1

α

K∑
k=1

πk E[LH 1(LH ≥ vα(h)) | S = k] . (18)

14 This corresponds to the strategy analyzed by Alizadeh et al. (2008) in a univariate, two-state setting.
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The simple VaRα characterization in (17) is sufficient due to the positivity of the density

generators. Note that by introducing Zk ∼ E1(0, 1, gk) for k = 1, . . . ,K and setting

zk(h) :=
vα(h)− µL,k(h)

σL,k(h)
, λk(h) := E[Zk | Zk ≥ zk(h)] , (19)

we can rewrite (18) in terms of the location and scale parameters of the mixture as

cα(h) =
1

α

K∑
k=1

πk (1− FL,k(vα(h))) [µL,k(h) + σL,k(h) λk(h)] . (20)

Given vα(h), (20) can usually be evaluated explicitly for specific density generators k =

1, . . . ,K. In contrast, the implicit VaRα definition in (17) can, even in basic cases like normally

distributed components, not be written explicitly. Therefore, the derivation of FOCs that

characterize minimum-VaRα and minimum-CVaRα hedging vectors is not straightforward.15

However, applying Proposition 1, we are able to obtain such conditions, which we present in

the following Theorem.

Theorem 1 If (R1) and (M1) hold, the VaRα-minimal hedging strategy h∗VaR solves

K∑
k=1

πkfL,k(vα(h∗VaR))

fL(vα(h∗VaR))

[
µF,k +

ΣFL,k(h
∗
VaR)

σL,k(h
∗
VaR)

zk(h
∗
VaR)

]
= 0M , (21)

where ΣFL,k(h) = −Σ′SF,k · w + ΣF,k · h. Under the same conditions, the CVaRα-minimal

hedging strategy h∗CVaRα satisfies

K∑
k=1

πk(1− FL,k(vα(h∗CVaR)))

α

[
µF,k +

ΣFL,k(h
∗
CVaRα)

σL,k(h
∗
CVaRα)

λk(h
∗
CVaRα)

]
= 0M . (22)

See the Appendix for a proof of Theorem 1. Note that the conditions in (21) and (22)

could be multiplied by fL(vα(h∗VaR)) and α, respectively. We omitted this simplification

to emphasize that the weights of the summands correspond to modified state probabilities

implied by Bayes’ Theorem. For the case of the VaRα-minimal strategy it, for example, holds

15 Litzenberger and Modest (2010) present an alternative reasoning for mixtures of normal distributions that
relies on differentiating the implicit VaRα definition in (17).
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that

P(S = k|LH = vα(h∗VaR)) =
P(S = k) fL,k(vα(h∗VaR))∑K
j=1 P(S = j) fL,j(vα(h∗VaR))

=
πk fL,k(vα(h∗VaR))

fL(vα(h∗VaR))
. (23)

The corresponding MVaRα- and MCVaRα-minimal strategies are obtained by subtracting

E[RF ] =
∑K

k=1 πk µF,k.

Of course, Theorem 1 can also be used to derive VaRα- and CVaRα-minimal hedging

strategies for the special case K = 1, i.e. for simple multivariate elliptical distributions. We

provide a Corollary with the corresponding FOCs in the online appendix.16 In particular,

these results imply that tail-risk-minimal strategies are identical to the minimum-variance ap-

proach if either E[RF ] = 0M or the demeaned risk measures MVaRα and MCVaRα are used

as objective functions. This parallels a well known result from portfolio selection (Embrechts

et al., 2002, Theorem 1) and emphasizes that tail-risk-minimal and minimum-variance strate-

gies only differ due to the impact of expected returns in the elliptical case. We, moreover,

provide a formal analysis of K = N = M = 1, for which tail-risk-minimal hedging strategies

and the resulting tail risk values can be characterized fully explicitly. For this case, we show

that VaRα(h∗var)−VaRα(h∗VaR) ≤ b and CVaRα(h∗var)− CVaRα(h∗CVaR) ≤ b with17

b = |E[RF ]| ·

√
var [RS ]

var [RF ]
· (1− corr[RF , RS ]2). (24)

This confirms the importance of the mean return for tail risk hedging to be beneficial in an

elliptical framework and furthermore shows that a non-negligible level of basis risk is required.

These results are not surprising given that elliptical return models cannot capture asymme-

tries, which might be important sources of differences between tail-risk-minimal and variance-

based hedging. Equally important is that – although elliptical models allow for heavy tailed

marginals – the heaviness of tails is determined by the density generator, for example by the

degree of freedom parameter, and is therefore not influenced by the hedging weights. At this

point, there is a crucial difference between this simple, restricted model on the one hand and

16 In contrast to the mixture case, these results could also be derived from the explicit VaRα and CVaRα

expressions available in this case, without relying on Proposition 1.
17 In contrast to this upper bound, the exact differences, which are provided in the online appendix, addi-

tionally depend on the significance level and the choice of the tail risk measure.
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the full mixture approach on the other hand, which we will illustrate with the examples at

the end of this section and in the empirical part of this paper.

3.2 Regime-Switching Models

In this subsection, we discuss the application of Theorem 1 for the regime-switching ap-

proach introduced by Hamilton (1989). Therefore, we extend the setting provided at the

beginning of Section 2 to a time series context by introducing a discrete-time return pro-

cess (Rt)t∈N and a state process (St)t∈N. The latter is assumed to be a time-homogeneous

Markov chain with state space {1, . . . ,K} and transition matrix Q = (qij)i,j=1,...,K , i.e.

P(St+1 = j|St = i) = qij for i, j = 1, . . . ,K and t ∈ N. Under the additional assumptions

that the Markov chain is aperiodic and irreducible, it has a unique invariant (ergodic) distri-

bution πe = (πek)k=1,...,K . Finally, assuming that (St)t∈N starts from this distribution implies

that the model is stationary with P(St = k) = πek for all t ∈ N. The (conditional) distribution

of the return vector Rt+1 is assumed to be given by (M1), replacing the state variable S by

St+1, i.e., Rt+1|St+1 = k ∼ EN+M (µk, Σk, gk).

Maintaining the assumption that (St)t∈N is unobservable, our hedging decisions must rely

on the (marginal) distribution of Rt+1, which according to (M1) exhibits a mixture structure.

Due to the temporal dependence introduced by (St)t∈N, we have to distinguish two important

cases for the component weights. An unconditional hedging strategy would rely on the sta-

tionary distribution of (St)t∈N. It would thus use πe to weight the distribution components. A

conditional approach would infer predictive weights P(St+1 = k|Rt, . . . ,R1) from the history

of the return process, which can be recursively obtained using the Hamilton filter (Hamil-

ton, 1989). In both cases, Theorem 1 can be applied to obtain VaRα- and CVaRα-minimal

strategies.

A standard approach in mixture and RS modeling is to assume Gaussian component den-

sities. Then, all components have the same density generator g(s) = (2π)−P/2 exp(−1/2 s)

and the Zk in (19) are all standard normally distributed. This comparatively simple setup

already allows for very flexible univariate distribution shapes (Timmermann, 2000), and it can

reproduce asymmetric exceedance correlations as shown, for example, by Ang and Bekaert
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(2002). For this setup, tail risk measures and the corresponding FOCs from Theorem 1 can

be implemented with FL,k(vα(h)) = Φ(zk(h)) and

λk(h) = E[Z | Z ≥ zk] =
ϕ(zk(h))

1− Φ(zk(h))
, (25)

where ϕ is the pdf and Φ is the cdf of a standard normally distributed random variable Z.

Although the mixture of normals approach already allows for a high level of econometric

flexibility, it might have two weaknesses in the scope of tail risk modeling. First, the marginal

distributions show exponentially decaying tails. Second, the dependence structure implied by

a finite mixture of multivariate normals is not capable of describing asymptotic tail dependence

(Garcia and Tsafack, 2011). To overcome these problems, tail risk hedging can be implemented

with mixtures of multivariate t-distributions. The density generator of the standardized t-

distribution is

gP,k(s; νk) =
Γ( (P+νk)

2 )

((νk − 2) π)
P
2 Γ(νk2 )

(
1 +

s

νk − 2

)−P+νk
2

for νk > 2. (26)

The degrees of freedom parameter νk determines the heaviness of the tails of the mixture

components. It corresponds to the tail index of the distribution, so that we need νk > 2 for

the standardized version of the distribution to be well defined. Denoting the resulting pdf

and cdf by f∗t and F ∗t , we obtain FL,k(vα(h)) = F ∗t (zk(h); νk) and

λk(h) =
f∗t (zk(h); νk)

1− F ∗t (zk(h); νk)

νk − 2 + (zk(h))2

νk − 1
(27)

for the implementation of VaRα and CVaRα and the corresponding FOCs. This model can

be calibrated with equal degrees of freedom parameters for all components or with individual

νk, k = 1, . . . ,K.

Although basic regime-switching models, as defined above, can already capture persistence

in (all) conditional moments of (Rt)t∈N, in particular autocorrelation of the returns and volatil-

ity clustering, the temporal dependence introduced by the Markov chain is often augmented

with traditional time series filters (Alizadeh et al., 2008). As our focus is on the distribu-
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tional and tail characteristics of the return model, we will not consider such extensions. We,

however, note that Theorem 1 also applies to these extensions by replacing µk and Σk with

the conditional moments predicted by the time series filters for state k. Furthermore, Theo-

rem 1 applies to conditional mixture distributions derived from RS models with time-varying

transition probabilities, which have for example been used in Perez-Quiros and Timmermann

(2000). Finally, there are also a number of finance applications that work within the simpler

setting of mixture distributions, in which (St)t∈N is an i.i.d. sequence (Buckley et al., 2008).

3.3 A Stylized Example

Concluding the theoretical section, we illustrate differences between (C)VaRα-minimal

hedging strategies and minimum-variance hedging in the case of nonelliptical distributions.

In particular, we compare the optimal strategies, the remaining tail risk and the moments of

the hedged portfolio return for a stylized model with a crash regime.

We use a simple two-state mixture of normals for the joint distribution of spot and futures

returns.18 The first state is assumed to be a low probability crash scenario with negative

means, high standard deviations and a high correlation. In particular, we assume π1 = 10%

for the state probability and

µS,1 = µF,1 = −5%, σS,1 = σF,1 = 10%, ρSF,1 = 95%, (28)

where σS,k, σF,k and ρSF,k denote the state specific standard deviations and the correlation

of spot and futures returns in state k. The second state describes a normal market envi-

ronment with positive means, lower standard deviations and a somewhat lower correlation.19

Specifically, we set π2 = 90% for its probability and assume

µS,2 = µF,2 = 0.5%, σS,2 = 3%, σF,2 = 6% and ρSF,2 = 75%. (29)

18 As discussed before, this can be the unconditional or the relevant conditional distribution of an RS model.
19 This setup can be motivated by the importance of basis risk found under the assumption of elliptical

distributions. More generally, the focus on cross-hedging can be motivated by recent empirical evidence
showing that also variance-based strategies only have relevant advantages over the naive benchmark if
there is a non-negligible amount of basis risk (Alexander and Barbosa, 2007).
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Table 1: Hedging Strategies, Risk Measures and Moments – Mixture Example

strategy uh naive var VaR1% CVaR1%

h 0.00 100.00 51.07 67.51 70.79

VaR1%(h) 15.25 9.70 7.98 6.74 6.78
CVaR1%(h) 19.04 11.16 10.02 7.95 7.87

mean RH 0.40 0.00 0.20 0.13 0.12
std RH 4.21 4.10 2.60 2.81 2.90
skew RH -1.40 0.00 -0.73 -0.12 -0.06
kurt RH 8.48 3.13 5.35 3.18 3.06

Optimal hedging strategies and characteristics of the hedged portfolio return. Optimal hedging weights, strate-
gies, moments and risk measures are calculated analytically under the assumption of the two-state mixture
presented in this section. The columns describe different strategies: uh is the unhedged spot portfolio, var
is the minimum-variance hedge, VaR1% and CVaR1% are tail-risk-minimal strategies with the corresponding
objective functions. h is the hedging weight of each strategy. VaR1%(h) and CVaR1%(h) are the resulting tail
risk measures for the strategies. mean, std, skew and kurt correspond to the expected value, the standard
deviation, the skewness and the kurtosis of the hedged return. h, mean, std, VaR1% and CVaR1% in percent.

Due to the differences in standard deviations and correlations, larger hedge ratios are more

effective in the crash state than in the normal state. This intuitively explains why the pres-

ence of such a crash regime drives a wedge between minimum-variance and tail-risk-optimal

hedging.

We document the characteristics of these strategies in Table 1. In particular, we compare

the naive hedge with a minimum-variance strategy and VaRα- as well as CVaRα-minimal

policies for α = 1%. The hedging weight h∗var that minimizes the variance is obtained from

(12) and the tail-risk-optimal policies h∗VaR and h∗CVaR are calculated by applying Theorem

1. First, we observe that the hedging weight is increased by switching from a minimum-

variance to a tail-risk-optimal strategy. Second, this increase creates sizable additional tail risk

reductions measured by VaRα or CVaRα, whose magnitudes are comparable to the reduction

obtained by adopting the minimum-variance strategy instead of the naive hedge. Third, the

example quantifies the negative effect of moving away from the minimum-variance strategy on

the standard deviation and it shows a negative effect on the expected portfolio return under

the chosen parameterization. However, the higher moments improve when switching to the

tail-risk-optimal policies, i. e., the amount of negative skewness and the level of kurtosis are

reduced. This makes the left tail of the return distribution less dangerous and explains the

additional tail risk reduction mentioned before.
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Figure 1: Hedging Strategies – Mixture Example. The two graphs in the first row show the optimal
hedging weights under different objective functions and the attainable tail risk reductions by applying
(C)VaRα-minimal policies. These reductions are calculated according to (30). The remaining four
graphs illustrate the moments of the hedged portfolio return RH for different strategies. All results
are derived from the multivariate mixture model presented in this section. Hedging weights, risk
reductions, means, standard deviations and α in percent.
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In Figure 1, we illustrate how the hedging weights and the characteristics of the hedged

return distribution change with the (C)VaRα-parameter α. First, we observe that for typical

parameter values (α ≤ 5%) the hedging weights increase with the confidence level 1 − α.

Furthermore, we plot relative tail risk reductions over the minimum-variance strategy, i. e.,

∆%VaR = 1− VaRα(h∗VaR)

VaRα(h∗var)
and ∆%CVaR = 1− CVaRα(h∗CVaR)

CVaRα(h∗var)
. (30)

These reductions are also increasing in the confidence level, which means that the difference

between minimum-variance and tail-risk-optimal hedging becomes more important further out

in the tails. This is an interesting finding as compared to the elliptical setup studied before, in

which VaRα- and CVaRα-minimal strategies converge to minimum-variance rules for α → 0.

Looking at the curves of return skewness and kurtosis, we can see that these differences are

related to changes in higher moments.

4 Empirical Examples

In this section, we analyze differences between tail risk hedging derived from RS models and

minimum-variance hedging in applications with standard financial time series. In addition, we

show that the benefits of the proposed method can be verified by nonparametric estimators

both in- and out-of-sample. As laid out before, our focus is again on cross-hedging examples.

We compare futures-based hedging strategies that are used to temporarily minimize the tail

risk of diversified investment portfolios on an asset allocation level. Such hedging problems

may be caused by risk limits, capital requirements or tactical considerations. In line with an

investment perspective, we use a monthly hedging horizon, which, in addition, allows us to

keep the time series structure of the models relatively simple.

4.1 Data

In our baseline analysis, we consider two portfolios representing the risky part of a broad

asset allocation. The first example portfolio (P1) is invested in stocks and bonds represented

by the MSCI World Index and the Bank of America Merrill Lynch U.S. High Yield 100 Index.

For the second example portfolio (P2), we add the FTSE/NAREIT U.S. All REITs Index. In
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Table 2: Descriptive Statistics

Spot indexes Futures Portfolios

MSCI HY REITs S&P (P1) (P2)

mean [%] 0.83 0.75 0.77 0.50 0.80 0.81
(0.23) (0.11) (0.26) (0.23) (0.15) (0.17)

median [%] 1.33 0.96 1.14 0.88 1.17 1.06
std [%] 4.44 2.23 4.95 4.42 2.99 3.26
min [%] -20.99 -15.42 -35.99 -22.83 -18.17 -23.76
max [%] 11.13 7.15 24.67 12.41 8.43 14.14
skewness -0.91 -1.41 -1.71 -0.97 -1.35 -1.72
kurtosis 5.49 11.71 15.00 6.01 8.38 13.31
JB 148.76 1310.77 2433.56 200.15 565.53 1848.11
pJB [%] 0.10 0.10 0.10 0.10 0.10 0.10
corr(·, F ) 0.88 0.58 0.57 1.00 0.87 0.81
ex-corr(·, F ; q0.2) 0.86 0.57 0.62 1.00 0.83 0.77
ex-corr(·, F ; q0.8) 0.70 0.16 0.26 1.00 0.50 0.47

Descriptive statistics of spot and futures time series. Monthly log-returns from April 1983 to June 2014, T = 375
return observations. MSCI: MSCI World Total Return Index, HY: BofA Merrill Lynch US High Yield 100 Total
Return Index, REIT: FTSE/NAREIT All REITs Total Return Index, S&P: Chicago Mercantile Exchange S&P
500 Index futures. Equally weighted multi-asset spot portfolios: (P1): MSCI/HY, (P2): MSCI/HY/REITs.
JB refers to the Jarque-Bera test statistic for normality and pJB denotes the corresponding p-value. ex-
corr(·, F ; qα) measures the correlation of spot and S&P futures returns, given that both returns fall below
(α = 0.2) or exceed (α = 0.8) their α-quantile.

both portfolios, the investments are equally weighted. As a liquid hedging instrument, we use

S&P 500 Index futures traded on the Chicago Mercantile Exchange. This choice is motivated

by the importance of the S&P 500 as an indicator for the overall U.S. market and a relatively

high correlation with the spot indexes used.20 Total return indexes for the spot investments

and a perpetual price index21 for the futures contract were obtained from Datastream.

Our sample spans from March 1983 to June 2014, which corresponds to 376 monthly price

observations. Following common practice in the literature on RS models, we use continuously

compounded returns.22 Descriptive statistics of the return series are presented in Table 2.

The returns on all individual assets as well as on our portfolios exhibit pronounced skewness

and excess kurtosis so that the normality assumption is formally rejected by Jarque-Bera tests

for all series. Comparing the spot portfolios, the returns of (P2) exhibit stronger asymmetries

and fatter tails than those of (P1). The kurtosis of the former is twice as high as that of

20 We also considered using U.S. T-Bond futures to improve the hedging quality for the bond component,
but we found that these have a very low or even negative correlation with our high yield bond index.

21 This index is computed from returns of the nearest futures with switch over following the last trading day.
For days when contracts are rolled forward, calculating spurious returns with prices of different futures is
avoided by considering the prices of two successive securities.

22 The usage of log-returns is a standard approximation for the exact approach based on discrete returns
discussed in Section 2. In Section 4.4, we present an example for hedging with discrete returns, obtaining
very similar results.
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the futures returns. According to nonparametric estimates of exceedance correlations, we

find evidence for dependence asymmetries in the bivariate distributions of spot and futures

returns.

4.2 Parameter Estimates and Model Fit

To hedge long positions in (P1) and (P2), we fit RS models with two and three23 normal

components to the bivariate distributions of portfolio and futures returns.24 The parame-

ters that attained the highest likelihood in repeated maximum-likelihood estimations from

randomly chosen initial values are displayed in Table 3.25

To ensure the irreducibility and aperiodicity of the state process, we restrict the elements

of the transition matrix to be positive. Label switching is applied to obtain a state ordering

according to q11 < q22 < q33. The structure of the two-state models is very similar: There

is a joint bearish state with a low probability of occurrence, negative means, high standard

deviations and high correlations. Allowing for a third component, the first state becomes a

severe crash scenario in both cases.

In Panel A of Table 4, we provide some evidence on the fit of these models and simple

elliptical distributions for the bivariate return samples.26 According to AIC and BIC, at least

one of the RS models is favored over nonswitching specifications. While AIC prefers three-state

models, BIC favors two-state models. We also perform Jarque-Bera tests on the distribution

fit after transforming the sample data to normality with the Berkowitz (2001) approach. In

contrast to the more restrictive specifications, the fit of the predictive distributions derived

from the three-state RS models cannot be rejected at conventional significance levels.

23 The restriction on two or three regimes will be shown to be adequate given the results of risk measurement
backtests in this section. Furthermore, it enables us to run out-of-sample analyses with relatively small
estimation samples.

24 Although our approach allows for a full asset-level description of the joint distribution of spot and futures
returns, we prefer aggregating the spot returns into portfolio returns first to keep the dimension of the
model as low as possible.

25 As described in Section 3.2, we assume that the state process starts from its stationary distribution, which
excludes the use of the standard analytic EM algorithm (Hamilton, 1990). Results obtained with this
algorithm are, however, similar, as shown in the online appendix to this paper. The online appendix also
contains further omitted estimation results.

26 The degrees of freedom parameters estimated for the multivariate distributions correspond to 4.5 and 4.1
for (P1) and (P2), respectively. The other model parameters can be found in the online appendix.
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Table 3: In-Sample Parameter Estimates

(P1) (P2)

RS2 RS3 RS2 RS3

par s.e. par s.e. par s.e. par s.e.

State 1
µS,1 -0.57 (1.01) -3.79 (4.20) -2.61 (1.58) -4.00 (2.33)
µF,1 -1.61 (1.40) -6.33 (6.72) -4.19 (1.76) -6.13 (2.51)
σS,1 4.90 (0.59) 4.85 (1.00) 6.61 (1.63) 7.86 (1.86)
σF,1 6.96 (0.68) 6.24 (2.77) 7.44 (1.19) 8.12 (1.49)
ρSF,1 87.31 (2.64) 82.45 (16.02) 83.13 (4.25) 82.27 (5.74)

State 2
µS,2 1.18 (0.14) 1.46 (0.32) 1.24 (0.17) 1.05 (0.38)
µF,2 1.08 (0.20) 1.37 (0.44) 1.10 (0.26) 0.69 (0.46)
σS,2 2.03 (0.12) 2.49 (0.35) 2.18 (0.16) 3.13 (0.30)
σF,2 3.17 (0.17) 4.02 (0.39) 3.43 (0.25) 3.57 (0.37)
ρSF,2 83.50 (2.18) 81.04 (3.27) 76.33 (2.60) 92.11 (2.09)

State 3
µS,3 0.97 (0.19) 1.14 (0.16)
µF,3 0.92 (0.29) 1.01 (0.29)
σS,3 1.80 (0.15) 2.08 (0.14)
σF,3 2.54 (0.26) 3.73 (0.28)
ρSF,3 88.36 (2.24) 73.99 (3.45)

Transition matrix
q11 83.0 (7.7) 61.2 (30.0) 63.0 (11.7) 61.1 (14.2)
q12 38.7 (46.6) 10.2 (9.5)
q21 4.5 (1.7) 4.6 (3.8) 4.7 (2.4) 1.5 (1.3)
q22 92.8 (3.0) 97.2 (2.1)
q31 2.8 (2.8) 2.8 (1.6)
q32 0.8 (1.2) 0.1 (0.1)

Stationary distribution
π1 21.1 9.1 11.2 5.9
π2 78.9 53.2 88.8 22.8
π3 37.7 71.3

Parameter estimates for bivariate two-state and three-state RS models with normal components. The models
describe the bivariate distributions of the portfolio returns and the returns of the S&P futures. (P1) and (P2)
are defined in Table 2. The parameters are obtained by MLE using the Hamilton filter, assuming that the
state process started from its stationary distribution. For each model the estimation was repeated several times
from randomly chosen initial values to avoid local maxima. We report robust standard errors derived from the
Hessian of the log-likelihood and the outer product of the scores. For (P2) and K = 3, a boundary solution
was found due to the low value of q32. All parameter values in percent.

Before analyzing the hedging performance of the RS models, we assess their risk measure-

ment quality and compare it to multivariate elliptical distributions. We focus on the 99%

confidence level, which will also be considered in the hedging analysis. In particular, we an-

alyze risk forecasts for an unhedged long position in both portfolios and a short position in

the S&P futures derived from each of the bivariate return models. For the RS models, we dis-

tinguish between unconditional forecasts V̂aR
RS,u

α and ĈVaR
RS,u

α derived from the stationary
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Table 4: Model Fit and Risk Backtesting

Panel A Panel B

Statistical fit Risk spot long Risk futures short

LL AIC BIC pberk puc pcc pCVaR puc pcc pCVaR

(P1)
np - - - - 69.0 90.2 33.1 69.0 90.2 22.6
evt - - - - 89.4 8.6 53.3 89.4 94.9 49.0
mv-n 1681.9 -3353.7 -3334.1 0.1 0.2 0.0 1.1 9.1 23.8 8.2
mv-t 1726.1 -3440.2 -3416.7 5.2 5.5 0.0 28.9 - - -
RS2 stat 1749.2 -3474.4 -3427.3 9.7 89.4 8.6 16.1 9.1 23.8 91.3
RS2 pred - - - - 28.0 11.5 43.5 69.0 90.2 99.1
RS3 stat 1769.4 -3496.8 -3414.3 50.0 69.0 90.2 27.2 69.0 90.2 66.3
RS3 pred - - - - 69.0 90.2 35.1 32.1 60.5 65.7

(P2)
np - - - - 69.0 4.1 27.9 69.0 90.2 22.7
evt - - - - 53.3 11.6 77.9 89.4 94.9 48.7
mv-n 1593.5 -3177.0 -3157.4 0.1 0.7 0.2 1.1 9.1 23.8 8.1
mv-t 1660.3 -3308.6 -3285.1 3.6 0.7 0.2 31.3 - - -
RS2 stat 1679.5 -3335.0 -3287.9 50.0 69.0 4.1 24.0 69.0 90.2 65.9
RS2 pred - - - - 69.0 90.2 70.0 69.0 90.2 53.1
RS3 stat 1701.3 -3360.5 -3278.1 50.0 69.0 4.1 37.8 69.0 90.2 54.8
RS3 pred - - - - 89.4 94.9 81.9 69.0 90.2 51.6

Panel A refers to the statistical fit of the models for the bivariate processes of portfolio and futures returns.
LL is the log-likelihood of the models. AIC and BIC refer to the Akaike information criterion and the Bayesian
information criterion. pberk is the p-value of a Jarque-Bera test applied to the sample data transformed with
its predictive cdf and the inverse cdf of the normal distribution. (P1) and (P2) are defined in Table 2. The
tests in Panel B are applied to model-based risk estimates for a long position in the spot portfolio and a short
position in the S&P futures. puc and pcc are p-values of Christoffersen (1998) tests on correct unconditional and
conditional coverage. pCVaR refers to p-values of one-sided CVaRα tests according to McNeil et al. (2005, p.
163). np and evt are nonparametric and EVT-based risk estimates for the corresponding loss series. mv-n and
mv-t refer to multivariate normal and multivariate standardized t-distributions. RS2/3 denote RS models with
K = 2 and K = 3 normal components. stat refers to backtesting results for the unconditional risk estimates,
and pred contains the corresponding results for conditional risk forecasts.

distribution and series of conditional forecasts V̂aR
RS,c

α and ĈVaR
RS,c

α based on the predictive

distribution. Both are calculated using (17) and (18) with (25).

Furthermore, we also consider nonparametric risk estimators derived from the empirical

distribution and semiparametric estimators relying on extreme value theory (EVT). These are

calculated from the relevant univariate loss sample (lt)t=1,...,T . As nonparametric estimators

we apply the lower quantile of the empirical distribution, i.e., V̂aR
np

α = l(dT (1−α)e), and the

CVaRα estimator from Rockafellar and Uryasev (2002, Proposition 8), which can be written

as

ĈVaR
np

α =
1

α

 1

T

T∑
i=d(1−α)T e+1

l(i) +

(
dT (1− α)e

T
− (1− α)

)
l(dT (1−α)e)

 , (31)
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where l(i) is the ith rank statistic of the loss sample. The EVT-based estimates are calculated

from the subsample of losses exceeding a threshold u.27 We fit a generalized Pareto distribution

(GPD) to the corresponding loss exceedances lt − u. From the estimated shape and scale

parameters ξ̂ and β̂ and the number of exceedances nu, the risk estimators (McNeil and Frey,

2000)

V̂aR
evt

α = u+
β̂

ξ̂

[(
α
T

nu

)−ξ̂
− 1

]
, (32)

ĈVaR
evt

α = V̂aR
evt

α +
β̂ + ξ̂(V̂aR

evt

α − u)

1− ξ̂
(33)

are determined.

We apply the conditional and unconditional coverage tests proposed by Christoffersen

(1998) and the CVaRα test introduced in McNeil et al. (2005, p. 163) for the formal evalua-

tion of our tail risk estimators. Corresponding test results can be found in Panel B of Table 4.

The VaRα estimates derived from the predictive distributions of the RS models, the nonpara-

metric and the EVT-based techniques are never rejected according to unconditional coverage

tests at standard significance levels, whereas the risk forecasts derived from the elliptical spec-

ifications can be rejected at the 10% level. Furthermore, the predictive VaRα-series of the

RS models pass all conditional coverage tests in contrast to the unconditional specifications

considered here. However, at the 1% significance level, there is no rejection of the correct

conditional coverage hypothesis for V̂aR
RS,u

α . Hence, the evidence in favor of dynamic risk

forecasting is not very strong for our monthly data. The CVaRα tests do not seem to have

much discriminatory power between the models. They only reject the multivariate normal

specifications in our examples.

4.3 Tail Risk Hedging Results

Turning to the core of our empirical analysis, we investigate tail-risk-minimal hedging

strategies derived from RS models using Theorem 1 and compare their performance to

minimum-variance hedges according to (12). We provide in- and out-of-sample results. The

27 We set the threshold to the 0.9-quantile of the empirical distribution.
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former are based on the models presented above and for the latter we use a growing estimation

window. In particular, we reserve 175 observations for the first estimation and re-estimate

the parameters monthly.28

We analyze VaRα- and CVaRα-minimal strategies for α = 1%. Motivated by the recent

proposals of the Basel Committee29, we also consider the CVaRα with α = 2.5%, which, in

addition, allows for a more accurate evaluation of the hedging performance. This performance

is measured by the standard nonparametric risk estimators V̂aR
np

α and ĈVaR
np

α applied to the

hedged returns of the strategies under consideration. Just as in (30), we calculate realized

relative tail risk reductions ∆%VaR and ∆%CVaR over the minimum-variance strategy based

on V̂aR
np

α and ĈVaR
np

α . The results for conditional hedging strategies based on the predictive

distributions of three-state RS models are presented in Table 5.30

First, note that the average hedging weights of tail-risk-minimal strategies are higher than

the corresponding values of the minimum-variance approach. The strategies minimizing the

CVaRα with α = 1% have the highest average hedging weights. The hedging weights of the

strategies minimizing the VaRα with α = 1% and the CVaRα with α = 2.5% are between the

minimum-variance hedge and the CVaRα hedge with α = 1%. The former two strategies are

almost identical for (P1) but show some differences for (P2), where the CVaRα hedge with

α = 2.5% is closer to the CVaRα-based strategy with α = 1%.

Second, we compare the risk of the hedged portfolios. We find that minimum-variance

cross-hedges already successfully remove a large fraction of tail risk. However, the increase

in the hedging amount implied by the tail-risk-optimal strategies leads to additional tail risk

reductions in- and out-of-sample in all but one of the cases31. These additional reductions

range between 2% and 18% for our data sets. Similar to the theoretical example discussed

earlier, the differences are higher for the CVaRα than for the VaRα when looking at α = 1%

and they are higher for α = 1% than for α = 2.5% when comparing the CVaRα objectives.

28 To get stable results in the first estimations with a limited number of observations, we include a parameter
constraint on the transition matrix ensuring that the stationary regime probabilities are at least equal to
five percent. This avoids problems with regimes describing a very small number of observations.

29 For normally distributed risks, the CVaRα with α = 2.5% and the VaRα with α = 1% are almost equal.
30 A selection of results for two-state models is provided in the context of the model comparison in Table 7.
31 In-sample, there is a slightly negative effect for (P2) when using the CVaRα as objective function with

α = 2.5%.
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Table 5: Conditional Tail Risk Hedging

(P1) MSCI+HY (P2) MSCI+HY+REIT

strategy uh var VaRα CVaRα CVaRα uh var VaRα CVaRα CVaRα
α 1% 2.5% 1% 1% 2.5% 1%

Panel A: In-Sample Results
mean h 0.00 58.17 63.30 64.91 68.76 0.00 58.78 63.88 68.32 75.84
std h 0.00 3.36 5.64 5.19 4.56 0.00 12.02 12.29 10.10 7.14

V̂aR
np

1% 9.44 3.62 3.39 10.98 5.20 4.69
∆% 6.47 9.84

ĈVaR
np

2.5% 9.39 3.60 3.37 10.90 4.56 4.63
∆% 6.40 -1.53

ĈVaR
np

1% 12.38 4.37 3.99 15.13 6.60 5.64
∆% 8.80 14.58

mean RH 0.80 0.52 0.50 0.49 0.47 0.81 0.53 0.51 0.48 0.44
std RH 2.99 1.49 1.54 1.54 1.58 3.26 1.77 1.83 1.87 1.99
skew RH -1.35 -0.06 0.45 0.46 0.48 -1.72 -0.16 0.23 0.23 0.21
kurt RH 8.38 5.34 6.46 6.35 6.15 13.31 8.03 7.75 7.28 6.04

Panel B: Out-of-Sample
mean h 0.00 54.31 56.60 57.07 58.67 0.00 56.49 60.57 61.18 62.54
std h 0.00 5.31 8.80 9.11 9.92 0.00 12.88 13.21 14.26 16.12

V̂aR
np

1% 9.44 4.28 3.80 10.98 5.39 5.27
∆% 11.20 2.21

ĈVaR
np

2.5% 10.66 4.29 3.99 13.03 6.73 6.06
∆% 7.00 9.95

ĈVaR
np

1% 14.18 6.03 5.01 18.03 10.53 8.59
∆% 17.00 18.40

mean RH 0.54 0.38 0.38 0.37 0.36 0.62 0.41 0.42 0.41 0.38
std RH 3.31 1.41 1.41 1.40 1.40 3.84 2.12 1.99 1.99 1.98
skew RH -1.42 -1.02 -0.34 -0.33 -0.28 -1.61 -1.34 -0.95 -1.01 -1.12
kurt RH 8.08 8.68 6.68 6.68 7.00 11.57 14.67 10.35 10.49 10.74

Hedging weights, tail risk measures and moments of selected conditional hedging strategies for (P1) and (P2)
as defined in Table 2. The strategies in this table are derived from the predictive distribution of three-state
RS models. The columns describe different strategies: uh is the unhedged spot portfolio, var is the minimum-
variance hedge, VaR1%, CVaR2.5% and CVaR1% are tail-risk-minimal strategies with the corresponding objec-

tive functions. h is the hedging weight of the S&P futures. V̂aR
np

α and ĈVaR
np

α refer to nonparametric tail risk
estimates. The emphasized values denoted by ∆% are the relative tail risk reductions of the optimal strategy
over the minimum-variance strategy defined in (30). mean, std, skewness and kurtosis are the moments of the
hedged portfolio return RH . Panel A contains in-sample results derived from the full sample and the three-state
RS models presented in the Table 3. Panel B contains out-of-sample results based on a growing estimation
window, using 175 observations for the first estimation and updating the strategies monthly. Hedge ratios, risk
estimates, means and standard deviations in percent.

Third, we analyze the moments of the return distributions of the net positions to gain

insight into the sources of the risk reduction. In line with our theoretical example, we find

that the returns of strategies with tail risk objectives typically have a less negative skewness

and a lower kurtosis. An exception is the in-sample hedging of (P1), for which only the

skewness is increased but the kurtosis of the tail-risk-based strategies is somewhat higher

than for the minimum-variance hedge.
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Figure 2: Hedged Portfolio Returns During the Financial Crisis: These graphs show the hedged
returns of the two example portfolios under different hedging strategies during the financial crises in
2008/2009. var denotes minimum-variance strategies. VaR1%, CVaR2.5% and CVaR1% are tail-risk-
based strategies which minimize the corresponding objective function. All strategies are derived from
the predictive distributions of three-state RS models which were estimated out-of-sample. See Table 2
for the definitions of (P1) and (P2) and see Table 5 for further details on the strategies and their
estimation.

In addition to the formal VaRα and CVaRα analyses, Figure 2 shows the returns of the

proposed strategies during the subprime crisis. These returns are obtained with out-of-sample

hedging weights. It can be seen that the tail-risk-based hedges limit the largest losses more

effectively than the minimum-variance strategy. This comes at the cost of slightly increased

losses under less extreme circumstances and sometimes reduced gains. For (P2) the largest

losses are more extreme and the differences between the strategies are more pronounced.

We next investigate simpler unconditional hedging strategies derived from the stationary

distribution of the RS models. For this case, an unconditional minimum-variance hedge is

used as the reference strategy.32 We focus on CVaRα-optimal strategies with α = 1% and

extend the range of tail risk estimation methods. In particular, we include the EVT-based

risk estimator ĈVaR
evt

α and model-based risk estimates33 to evaluate the performance of the

strategies. The corresponding results are presented in Table 6.

32 We implement this strategy with a sample estimator of the covariance matrix. Minimum-variance strate-
gies derived from the stationary distribution of the RS models are very similar.

33 This is possible for in-sample analyses based on the stationary distribution, for which a single model and
a single set of state probabilities are used.
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Table 6: Unconditional Tail Risk Hedging

(P1) MSCI+HY (P2) MSCI+HY+REIT

strategy uh var CVaR1% uh var CVaR1%

Panel A: In-Sample Results
h 0.00 58.43 70.20 0.00 60.05 80.46

ĈVaR
RS,u

1% 12.08 4.88 4.48 15.74 7.41 6.31
∆% 8.07 14.81

ĈVaR
np

1% 12.38 4.59 4.16 15.13 7.55 6.39
∆% 9.48 15.37

ĈVaR
evt

1% 12.58 4.84 4.17 16.02 7.28 6.41
∆% 13.92 11.98

mean RH 0.80 0.51 0.45 0.81 0.51 0.40
std RH 2.99 1.50 1.59 3.26 1.89 2.10
skew RH -1.35 -0.23 0.29 -1.72 -0.79 -0.01
kurt RH 8.38 5.55 5.09 13.31 10.29 5.08

Q0.9[−RH ] 2.45 1.37 1.52 2.65 1.78 2.12
ξ 0.05 0.19 -0.06 0.26 0.33 -0.07
β 2.78 0.73 0.90 2.40 0.84 1.48

Panel B: Out-of-Sample Results
mean h 0.00 53.33 61.63 0.00 50.62 61.79
std h 0.00 3.68 6.97 0.00 6.22 14.10

ĈVaR
np

1% 14.18 6.12 5.17 18.03 11.27 9.43
∆% 15.54 16.32

ĈVaR
evt

1% 13.95 6.47 5.26 17.50 10.31 9.45
∆% 18.59 8.32

mean RH 0.54 0.36 0.35 0.62 0.43 0.36
std RH 3.31 1.42 1.34 3.84 2.20 1.99
skew RH -1.42 -1.13 -0.46 -1.61 -1.60 -1.35
kurt RH 8.08 8.94 7.30 11.57 14.61 12.23

Q0.9[−RH ] 3.19 1.28 1.22 3.25 1.89 1.93
ξ -0.04 0.34 0.30 0.08 0.30 0.44
β 3.51 0.75 0.65 3.71 1.35 0.85

Hedging weights, tail risk measures and moments of selected unconditional hedging strategies for (P1) and (P2)
as defined in Table 2. The strategies are derived from the stationary distribution of three-state RS models.
The columns describe different strategies. See Table 5 for definitions of these strategies and for the return
characteristics that we provide. In addition, we report analytic risk estimates CVaRRS,u

α and EVT-based

estimates ĈVaR
evt

α . Q0.9[−RH ], ξ and β describe the GPD models fitted to the upper tail of the corresponding
loss distributions. Panel A contains in-sample results derived from the full sample and the three-state RS
models presented in Table 3. Panel B contains out-of-sample results based on a growing estimation window,
using 175 observations for the first estimation and updating the strategies monthly. Hedging weights, risk
estimates, risk reductions, means, standard deviations, Q0.9[−RH ] and β in percent.

The constant in-sample hedge ratios are again higher for tail-risk-based strategies than for

the minimum-variance approach. This also applies to the out-of-sample analyses, which show

some variation due to the re-estimation of the models. Moreover, we again find non-negligible

reductions in tail risk as compared to the benchmark strategy. The magnitude of the realized

tail risk reductions according to ĈVaR
np

α is between 9% and 16%. Similar reductions are
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confirmed by the EVT-estimates and, for the in-sample analysis, also by model-based tail risk

figures. Furthermore, we again observe that these reductions are related to changes in the

higher moments of the return distributions, which decrease the probability mass in the left

tail. This observation is confirmed by the GPD models calibrated to the upper tails of the

loss distributions. In particular, these results show that tail risk hedging lowers the shape

parameter and thus reduces the heaviness of the relevant tail in three out of four cases. This

reduction can come at the cost of increasing the 90%-quantile or the scale parameter of the

GPD, but it overcompensates for these effects according to ĈVaR
evt

α estimates.

Concluding the presentation of our baseline results, we provide a complementary view on

the observed differences between hedging strategies based on the unconditional dependence

structure of the spot and futures returns. For the returns of (P2) and the S&P futures, we

present sample estimates of exceedance correlations and model-implied values in Figure 3. We

observe higher correlations in joint crash states than in states with large positive returns in

both assets. This explains the reduction in CVaRα by increasing the hedging weight. A three-

state RS model can capture this dependence structure closely matching the nonparametric

correlation estimates. Similar evidence for an increased dependence between spot and futures

returns in bear markets is obtained by comparing the nonparametric estimate of the lower

tail dependence function (Garcia and Tsafack, 2011) with the corresponding values implied

by a normal distribution, which are also provided in Figure 3. Again, the values of the RS

model34 are close to the nonparametric estimates, which fluctuate quite strongly due to the

small sample size.

The results presented so far show that tail risk hedging based on RS models can be beneficial

in- and out-of-sample with conditional as well as unconditional hedging strategies. Moreover,

we observed that the differences can be attributed to nonelliptical features of the data.

4.4 Model Comparisons

In this section, we compare the out-of-sample performance of the proposed tail-risk-minimal

hedging approach based on RS models with alternative implementations. We focus on (P2)

34 Interestingly, we find that over the plotted range, these values are even higher than those of the t-model
(copula).
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Figure 3: Dependence Structure of (P2) and the S&P Futures. The left graph shows exceedance
correlations between the portfolio and futures returns for a quantile-based threshold (Patton, 2004).
The right graph depicts lower tail dependence functions (Garcia and Tsafack, 2011) for these returns.
emp, mv-n and mv-t refer to values calculated based on the empirical, the multivariate normal and
the multivariate t-distribution. RS3 refers to values implied by a three-state RS model with normal
components.

and again consider unconditional CVaRα hedging. This setting allows for a fair comparison

with solely unconditional techniques such as strategies derived from nonswitching specifica-

tions and nonparametric CVaRα minimizations (Rockafellar and Uryasev, 2002).35

In our first comparison, we consider four parametric specifications: a Gaussian return

model, the multivariate t-distribution and RS models with two as well as three normally dis-

tributed components.36 Furthermore, we include the numerical minimization of the nonpara-

metric CVaRα estimate corresponding to the approach by Rockafellar and Uryasev (2002).

Tail risk reductions are measured over a standard minimum-variance hedge. We analyze

CVaRα-minimal strategies with α = 2.5% as well as α = 1% and use the same risk measures

for performance evaluation. The corresponding results are presented in Table 7.

We find that the CVaRα strategies based on elliptical models perform worse than the

minimum-variance benchmark. This is not surprising given that these models cannot capture

relevant features of the data, which was confirmed by the relatively weak risk backtesting

results for these models. In contrast, the two-state RS model clearly attains additional tail

35 Note that the linear programming techniques presented in Rockafellar and Uryasev (2002) only apply to
CVaRα in contrast to the methods proposed here.

36 RS models with t-distributed components will be briefly analyzed at the end of this section.
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Table 7: Unconditional Tail Risk Hedging – Model Comparison

strategy/model uh var mv-n mv-t RS2 RS3 np

Panel A: CVaRα-hedging with α = 2.5%
mean h 0.00 50.62 48.65 43.34 62.46 59.83 57.04
std h 0.00 6.22 6.45 4.84 10.03 9.88 8.24

ĈVaR
np

2.5% 13.03 7.25 7.36 7.91 6.54 6.53 6.69
∆% -1.46 -9.01 9.84 10.05 7.83

ĈVaR
evt

2.5% 13.20 7.19 7.38 8.08 6.72 6.38 6.54
∆% -2.75 -12.45 6.50 11.17 8.95

Panel B: CVaRα-hedging with α = 1%
mean h 0.00 50.62 48.89 43.73 66.77 61.79 69.98
std h 0.00 6.22 6.42 4.80 11.47 14.10 15.60

ĈVaR
np

1% 18.03 11.27 11.44 11.98 9.56 9.43 9.78
∆% -1.56 -6.34 15.10 16.32 13.19

ĈVaR
evt

1% 17.50 10.31 10.53 11.76 9.33 9.45 9.80
∆% -2.10 -14.09 9.54 8.32 4.96

Out-of-sample hedging weights, tail risk measures and sample moments of CVaRα-minimal strategies for (P2)
as defined in Table 2. Panel A contains results for α = 2.5% and Panel B shows results for α = 1%. The first two
columns describe the reference strategies: the unhedged portfolio (uh) and a minimum-variance hedge (var).
mv-n and mv-t are CVaRα-minimal hedges derived from a multivariate normal and a multivariate t-model.
RS2 and RS3 correspond to hedging strategies based on RS models with two and three states. np corresponds
to the nonparametric benchmark technique proposed by Rockafellar and Uryasev (2002). mean h and std h

are the average hedging weight and its standard deviation. ĈVaR
np

α and ĈVaR
evt

α are nonparameteric and
EVT-based risk estimates. The emphasized values denoted by ∆% are the corresponding tail risk reductions
over the minimum-variance strategy. All models and strategies are calculated out-of-sample based on a growing
estimation window, using 175 observations for the first estimation and updating the strategies monthly. All
values in percent.

risk reductions and performs nearly as good as the three-state model discussed in the previous

section. Moreover, we find that the RS model with three states outperforms the nonparametric

CVaRα-minimal benchmark in this example. This might indicate a lack of robustness of the

latter technique. In line with our theoretical example, risk reductions are higher for α = 1%

than for α = 2.5%.

We next provide the results of simulation experiments to confirm the out-of-sample perfor-

mance of our hedging policies with larger sample sizes. We again focus on (P2) and adopt the

unconditional hedging strategy derived from the corresponding three-state RS model. Further-

more, we include the nonparametric CVaRα-minimal strategy to gain a better understanding

of the differences between our approach and this benchmark. We consider three different sim-

ulations: First, we assume that the fitted RS model is the true data-generating process and

simulate random paths starting from its stationary distribution. Second, we sample from the

empirical distribution (with replacement). Third, we simulate from a meta model, consisting
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of a t-copula and skewed-t margins. This choice combines an elliptical dependence structure

allowing for (symmetric) tail dependence and nonelliptical marginal distributions. We gener-

ate 10, 000 return samples with T = 1, 000 observations. This sample size allows us to focus

on α = 1%. We do not re-estimate the models but apply the hedging weights estimated from

the original data for all strategies.

The results of this simulation study are reported in Table 8. Simulating from the estimated

model, the average CVaRα reduction confirms our analytic results from Panel A of Table 6.

Looking at the quantiles of the reduction series obtained from the simulations, we find that

the tail risk reduction of RS CVaRα hedging as compared to the minimum-variance strategy

is positive in 90% of the cases under sampling from the model and the empirical distribution.

This implies a statistical significance of this reduction at the 10% level. The same quantiles

are negative for the nonparametric CVaRα minimization, even under sampling from the em-

pirical distribution, which reveals a strong reliance of this technique on specific realizations

in the given sample and shows an interesting advantage of the model-based approach for this

example. Remarkably, the parametric RS CVaRα hedging strategy also attains a reduction

in 75% of the samples simulated from the copula model, which indicates a certain robustness

against model misspecification. At the same time, we observe that the extent of the reduc-

tion decreases, confirming a positive contribution of dependence asymmetries to the reported

effects.

4.5 Model Extensions and Robustness Checks

In this section, we focus again on tail risk hedging with RS models and investigate whether

the documented benefits of this approach can be confirmed for composite hedging with two

futures contracts. Furthermore, we analyze the performance of tail risk hedging based on RS

models with t-distributed components and provide some robustness checks.

In the remaining examples, we analyze CVaRα hedging with α = 1% and provide in-

sample results for unconditional strategies, which allows us to calculate analytic risk reductions

according to (30) in addition to nonparametric and EVT-based tail risk measurements.
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Table 8: Unconditional Tail Risk Hedging – Simulation

RS3 Bootstrap t-copula, skewed-t margins

strategy uh var RS3-
CVaR

np-
CVaR

uh var RS3-
CVaR

np-
CVaR

uh var RS3-
CVaR

np-
CVaR

h 0.00 60.05 80.46 91.54 0.00 60.05 80.46 91.54 0.00 60.05 80.46 91.54

mean ĈVaR
np

1% 15.38 7.24 6.25 6.53 14.92 7.46 6.30 6.03 14.00 7.99 7.43 7.62
mean ∆% 12.89 8.37 14.08 16.62 6.32 3.23
q0.5[∆%] 13.86 9.92 15.26 18.70 6.67 3.89
q0.25[∆%] 8.47 1.77 8.98 7.94 2.02 -3.55
q0.1[∆%] 2.53 -7.57 2.78 -3.04 -2.3 -10.61
q0.05[∆%] -1.81 -13.33 -1.50 -10.47 -5.28 -15.03
q0.01[∆%] -10.54 -26.50 -9.78 -24.66 -10.99 -23.82

mean RH 0.81 0.50 0.40 0.34 0.81 0.51 0.40 0.35 0.81 0.51 0.40 0.35
std RH 3.22 1.89 2.11 2.37 3.25 1.89 2.09 2.35 3.24 1.98 2.21 2.47
skewness RH -1.58 -0.43 0.13 0.24 -1.66 -0.75 -0.01 0.20 -1.50 -1.18 -0.22 0.13
kurtosis RH 11.77 8.31 5.44 4.88 12.72 9.92 5.04 4.50 21.06 24.16 14.43 10.97

Out-of-sample simulations of hedging portfolio (P2) with the S&P futures. RS3 denotes the simulation from
the estimated three-state RS model with normal components, bootstrap refers to sampling from the empirical
distribution. The results in the last panel are based on simulations from a model that combines a t-copula with
skewed-t margins. The columns uh and var describe the unhedged spot portfolio and the minimum-variance
hedge. RS3-CVaR and np-CVaR correspond to CVaRα-minimal strategies with α = 1% derived from the RS

model and the nonparametric benchmark approach. h is the hedging weight of the S&P futures. mean ĈVaR
np

1%

is the average CVaRα across simulations, mean ∆% is the average risk reduction over the minimum-variance
hedge across simulations. qu[∆%] refers to the u-quantile of the additional risk reductions obtained across
simulations. The last rows correspond to the moments of the hedged portfolio return across all simulated
samples. Hedging weights, risk estimates, risk reductions, means and standard deviations in percent.

To assess the performance of composite CVaRα hedging, we consider a third portfolio (P3),

which consists of equally weighted investments into stocks, bonds and the S&P GSCI Total

Return Commodity Index. In addition to the S&P futures, we include an oil futures contract,

i.e., the NYMEX Light Crude Oil futures, as a second hedging instrument. We fit a three-

state RS model to the joint return distribution of the spot portfolio and the two futures due

to the promising results of these models in Section 4.3. The corresponding hedging weights

and resulting risk estimates can be found in Table 9. Although the hedging amount in the oil

futures does not differ much between the hedging strategies, we can again observe a reduction

in tail risk by switching from the minimum-variance hedge to a CVaRα-based approach, which

ranges between 10% and 13% depending on the measurement technique. As in the univariate

examples discussed before, this improvement is attained by increasing the hedging weight of

the S&P futures. For comparison, we also include results of univariate hedging strategies using

the S&P futures only. In this case, we again observe a large additional tail risk reduction by
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switching to the CVaRα-optimal strategy. As expected, the remaining tail risk is higher than

for the composite hedge.

Table 9: Composite Hedging

(P3) univariate (P3) composite

strategy uh var CVaR1% uh var CVaR1%

h1 0.00 45.96 73.12 0.00 43.82 58.69
h2 0.00 15.56 14.85

ĈVaR
RS,u

1% 14.65 9.01 7.01 14.02 5.97 5.35
∆% 22.24 10.31

ĈVaR
np

1% 13.51 8.26 7.07 13.51 5.73 4.97
∆% 14.35 13.30

ĈVaR
evt

1% 20.20 8.38 6.95 20.20 5.50 4.83
∆% 17.13 12.09

In-sample results for composite hedging using two futures contracts. (P3): equally weighted investments into
stocks, bonds and the S&P GSCI Total Return Commodity Index. See Table 6 for definitions of the strategies
and the risk measures. h1 denotes the hedging weight of the S&P futures. h2 is the hedging weight of the oil
futures.

In Table 10, we provide results for univariate hedging strategies derived from RS models

with t-distributed components. For (P1) the findings are similar to the specification with

normal components. The hedging weight for (P2), however, is close to that of the minimum-

variance strategy. Looking at the parameters presented in the online appendix, we see that

the model does not identify a crash state in this case, emphasizing the importance of this

feature for our results.

Table 10: RS Models with t-Distributed Components

(P1) (P2)

strategy uh var CVaR1% uh var CVaR1%

h 0.00 58.43 70.04 0.00 60.05 58.56

ĈVaR
RS,u

1% 12.05 4.88 4.49 10.37 5.55 5.55
∆% 7.83 0.11

ĈVaR
np

1% 12.38 4.59 4.16 15.13 7.55 7.70
∆% 9.42 -1.95

ĈVaR
evt

1% 12.58 4.84 4.18 16.02 7.28 7.27
∆% 13.66 0.13

Hedging results for three-state RS models with standardized t-distributed components and equal degrees of
freedom across the components. (P1) and (P2) are defined in Table 2. h is the hedging weight of the S&P
futures. See Table 6 for the row and column definitions.

Table 11 provides four robustness checks. In Panel A, we show that the results remain

almost unchanged if discrete returns are used or if the MCVaRα is optimized instead of
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the CVaRα. In Panel B, we consider modifications of our data set. The results obtained

using different indexes for the assets in the spot portfolio are similar to those of the original

specification and we confirm that similar reductions can be attained without data from the

subprime crisis, using the first half of the sample.37

Table 11: Robustness Checks

Panel A (P2) MCVaRα (P2) Discrete returns

strategy uh var MCVaR1% uh var CVaR1%

h 0.00 60.05 81.49 0.00 59.58 78.81

̂(M)CVaR
RS,u

1% 16.55 7.92 6.71 15.00 7.15 6.18
∆% 15.23 13.67

̂(M)CVaR
np

1% 15.94 8.06 6.73 13.93 6.98 6.04
∆% 16.41 13.44

̂(M)CVaR
evt

1% 16.83 7.79 6.78 14.60 6.68 6.08
∆% 12.97 8.96

Panel B (P2) First sample half (P2) Different spot indexes

strategy uh var CVaR1% uh var CVaR1%

h 0.00 46.66 60.75 0.00 70.67 90.79

ĈVaR
RS,u

1% 11.61 4.88 4.27 17.36 8.19 7.05
∆% 12.43 13.99

ĈVaR
np

1% 11.51 3.92 3.53 17.33 8.72 7.39
∆% 10.12 15.17

ĈVaR
evt

1% 13.39 3.85 3.39 17.32 8.41 7.15
∆% 11.94 14.97

In Panel A, we provide results for using the MCVaRα instead of the CVaRα and for an analysis with discrete
returns. (P2) is defined in Table 2. Panel B shows results for (P2) with modified time series. We replace our
spot indexes with the MSCI All Country World Total Return Index, the BofA Merrill Lynch High Yield Master
II Total Return Index and the FTSE/EPRA NAREIT North America Total Return Index using 290 return
observations from May 1990 to June 2014. Finally, we report results for the first half of our original sample,
for which we estimated RS models with two states. See Table 6 for descriptions of the rows and the columns.

5 Conclusion

In this paper, we study the use of finite mixtures and, in particular, regime-switching mod-

els for tail risk management. We provide a general characterization of VaRα- and CVaRα-

minimal futures hedging strategies relying on results on quantile derivatives and show how to

implement these characterizations for mixtures of elliptical distributions. Based on these re-

sults, we theoretically and empirically demonstrate that VaRα and CVaRα minimizations can

change hedging strategies and tail risk characteristics as compared to variance minimizations

37 For this case, we fitted a two-state RS model due to the small sample size.
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in the presence of crash regimes. This observation might be especially relevant for institu-

tional investors who can benefit from a better utilization of risk budgets and reduced capital

requirements when hedging with such policies.

An interesting direction for future studies is the implementation of tail-risk-minimal hedg-

ing based on RS models with more elaborate time series structures, which could be particularly

relevant for the application of such strategies with daily and weekly data. Last but not least,

applications of the RS approach to other portfolio selection problems involving tail risk con-

straints or objectives seem to be an interesting area for further research.

Appendix

Proof of Proposition 1: First, we define the loss function lH : RN × RM × RM → R for a given vector of

portfolio weights w

lH(rS , rF ,h) = −w′ · rS + h′ · rF , (34)

such that LH(h) = lH(RS ,RF ,h). With this definition, the Assumptions (R1) - (R3) imply that the conditions

for Theorem 2 in Hong (2009) are satisfied. The conditions from Assumption 1 in Hong (2009), i.e., the partial

differentiability of the loss function and its Lipschitz continuity, are implied by the linear structure of the

function in (34) and the integrability constraints in (R1). (R2) is a global version of Assumption 2 in Hong

(2009) with the additional requirement that the density is positive, which ensures the uniqueness of the VaRα.

Since eventually, ∂lH
∂hj

= rF,j , (R3) corresponds to Assumption 3, such that we can invoke Theorem 2 from

Hong (2009) for the (1− α)-quantile q1−α[lH(RS ,RF ,h)] = vα(h) to obtain

∂vα(h)

∂hj
= E

[
∂lH
∂hj

(RS ,RF ,h) | lH(RS ,RF ,h) = vα(h)

]
. (35)

Again, with ∂lH
∂hj

= rF,j the componentwise application of this result for h implies that (6) contains the

FOCs for (4). These FOCs must be satisfied by the global minimizer of vα since the optimization problem is

unconstrained. However, due to h ∈ RM , the objective function may be unbounded, in which case (4) has no

solution. This is also true for (5). (7) follows as FOC for this problem from Theorem 3.1 in Hong and Liu

(2009), which may be applied since (R1) - (R3) imply that also the necessary conditions therein are satisfied.

In particular, the differentiability of vα follows from the first part of this proof. We thus obtain

∂cα(h)

∂hj
= E

[
∂lH
∂hj

(RS ,RF ,h) | lH(RS ,RF ,h) ≥ vα(h)

]
, (36)

which proves (7).
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Proof of Theorem 1: First, we note that it is not difficult to show that the joint distribution of RF and LH

is given by RF

LH

 | S = k ∼ EM+1(

µF,k
µL,k

 ,

 ΣF,k ΣFL,k

Σ′FL,k σ2
L,k

 , gk), (37)

where the parameters are calculated according to (14), (15) and ΣFL,k = −Σ′SF,k ·w+ΣF,k ·h. To derive the

FOCs for VaRα-minimal hedging we first rewrite the general expressions presented in Proposition 1 in terms of

conditional expectations for the component distributions and then use the properties of elliptical distributions

to give explicit representations of these expectations. Due to the positivity of the density generators in (M1),

we can write the expectation from (6) as E[RF | LH = l] = fL(l)−1 · E[RF 1(LH = l)], with fL given by (16).

Using (37), this expectation can be decomposed into

E[RF | LH = l] =

K∑
k=1

πk
fL(l)

E[RF 1(LH = l) | S = k] (38)

=

K∑
k=1

πk fL,k(l)

fL(l)
E[RF | LH = l, S = k] . (39)

We now exploit the fact that the component distributions are elliptical. In particular, we use the regression

property of elliptical distributions (Owen and Rabinovitch, 1983, P.2) and obtain

E[RF | LH = l] =

K∑
k=1

πk fL,k(l)

fL(l)

[
µF,k +

ΣFL,k

σ2
L,k

(l − µL,k)

]
. (40)

This proves (21) for l = vα(h) and zk(h) =
vα(h)−µL,k

σL,k
. Since we assumed the density generators to be

continuous, this also holds for the involved densities in (40) so that E[RF,j | LH = l] as a function of l is

continuous for all j = 1, . . . ,M , which implies that (R3) is valid under (M1).

For the derivation of the CVaRα-minimal hedging strategy, we conclude by the same reasoning that

E[RF | LH ≥ l] =

K∑
k=1

πk P(LH ≥ l|S = k)

P(LH ≥ l)
E[RF | LH ≥ l, S = k] . (41)

Denoting the density of LH conditional on LH ≥ l and S = k by fLH |LH≥l, S=k, we can rewrite the involved

conditional expectations as

E[RF | LH ≥ l, S = k] =

∫ ∞
l

E[RF | LH = x, S = k] · fLH |LH≥l,S=k(x) λ(dx). (42)

Again using the regression property of elliptical distributions and the linearity of the integration operator, it

follows that

E[RF | LH ≥ l, S = k] =µF,k +
ΣFL,k

σ2
L,k

[E[LH | LH ≥ l, S = k]− µL,k] . (43)
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We conclude that

E[RF | LH ≥ l]

=

K∑
k=1

πk (1− FL,k(l))

P(LH ≥ l)

[
µF,k +

ΣFL,k

σ2
L,k

(E[LH | LH ≥ l, S = k]− µL,k)

]
. (44)

With Zk ∼ E1(0, 1, gk), it holds that

E[LH | LH ≥ l, S = k] = µL,k + σL,k E
[
Zk | Zk ≥

l − µL,k
σL,k

]
. (45)

Again, for l = vα(h) and with the definitions of zk(h) and λk(h), we obtain (22) because P(LH ≥ vα(h)) =

α. It remains to verify that Assumption (R2) is satisfied in our setting. This follows from the assumed

continuity of the density generators and the observation that the cdf of LH can be written as FLH (l,h) =∑K
k=1 πk FZk

(
l−µL,k(h)

σL,k(h)

)
with Zk ∼ E1(0, 1, gk).
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