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“In God we trust; everyone else must bring data.”

–
William Edwards Deming
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1 General Introduction

Standing on the brink of the fourth industrial revolution, the whole business landscape is

rapidly transforming, and companies are trying to adapt to a new state of the world in which

value chains are becoming progressively digitized. This not only allows agile companies to

realize competitive advantages against digital laggards, but also brings into being a whole new

range of business opportunities. The unprecedented speed of current innovations is fueled

by the increasing connectedness of markets, declining technology prices, and the ubiquity

of data – where especially the latter has opened up vast new research opportunities in the

social sciences.

Marketing in particular benefits from an increasing volume and variety of data, to a large

extent based on the emergence of social networking platforms that map social systems all

around the world and, by their construction, reveal behavior and preferences on an individual

level. In fact, individuals use such platforms to serve a multitude of purposes in their daily

lives. On the one hand, as consumers, they compare, purchase, and then review products

online. On the other hand, social networking platforms allow individuals to act as producers

in marketing and distributing their own products, services, content, or ideas. These con-

trasting functions generate granular and encompassing data about individuals acting as both

consumers as well as producers, which enables marketing researchers to study behaviors, test

predictions, and derive better-informed managerial insights. Thus far, however, predictions

do not play a dominant role in the marketing domain, as most research focuses on disen-

tangling specific e↵ects without putting them in relationship. Research should not only be

geared towards understanding individuals and aggregate behavior, but it also should aim at

predicting the respective phenomenon. Even more importantly, the generalizability of the

developed methods and generated insights imply on managerial relevance in addition to the

reputation of marketing within social sciences, notably economics, information systems, and

psychology. Accordingly, the two scientific essays embedded in this dissertation represent an

attempt to live up to these postulations, which are also highlighted in the current Marketing
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Science Institute’s (MSI) Research Priorities summary (2016-2018).

Nowadays, most companies are struggling to cope with the di↵erent aspects of data –

in particular, its increasing volume, variety, and velocity. To capitalize on such data and

to create sustainable competitive advantages, companies need to heavily invest in the latest

technologies, an e�cient infrastructure, and in highly skilled human resources (Skiera 2016).

Outstanding business intelligence capabilities also require marketers to adapt to the chang-

ing landscape, namely by embracing complexity and acquiring in-depth knowledge about

theories and frameworks, constantly improving and re-evaluating the applied methods and

metrics, further developing integrative skills, and thinking holistically as well as out of the

box (Lemon 2016). Quantitative marketers and researchers alike mostly use experiments

and observational studies for analytics. The former uncovers causal relationships, whereas

the latter depends strongly on theory to derive valuable insights. In the context of social

networking platforms, a per se highly endogenous environment, establishing causal relation-

ships is challenging since the connectivity among users can make an experimental control

group prone to contamination (for an overview about randomized trial designs, see Walker

and Muchnik 2014). Moreover, experiments in the context of social networking platforms

have been less frequently published due to the extremely di�cult data acquisition, although

enjoying increasing popularity amongst researchers (e.g., Aral and Walker 2012, 2014; Much-

nik, Aral, and Taylor 2013). However, decades of building and empirically validating (social)

network theory serves as a solid foundation for observational studies to derive insights, and

has thus led to extensive research on underlying drivers of information dissemination (e.g.,

Ansari et al. 2016; Ansari, Koenigsberg, and Stahl 2011), along with optimal seeding poli-

cies (e.g., Aral, Muchnik, and Sundararajan 2009; Hinz et al. 2011). Despite the huge buzz

around Big Data, larger datasets are not necessarily better, above all with respect to rep-

resentativeness. Instead, marketing researchers predominantly rely on rich representative

samples of data for analysis.

The focus of this dissertation is on user-generated content networks, which constitute a

unique type of social networking platform (e.g., Goldenberg, Oestreicher-Singer, and Reich-
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man 2012; Mayzlin and Yoganarasimhan 2012; Trusov, Bodapati, and Bucklin 2010). On

user-generated content networks – the most prominent ones being Youtube (videos), Sound-

Cloud (music), Instagram (pictures), and Twitter (tweets) – users upload their content (e.g.,

videos, music, pictures, and tweets) that in turn can be consumed by other users of the

network. Therefore, user-generated content networks are essentially platforms for creators of

content and their fan communities. These platforms o↵er various functionalities to exchange

information between users, which allows creators to actively engage with fans and to acquire

new ones. Some creators become social media celebrities like Casey Neistat, who over the

course of around 700 daily vlogs received more than a billion views on Youtube, earning a

considerable amount of money through paid-for social media endorsements (Bond 2016). On

SoundCloud, there are similar success stories, where certain artists quickly accumulated fol-

lowers as a result of their chosen seeding policy and uploaded content (Lilly 2014). Based on

unique datasets of SoundCloud, this dissertation sets out (1) to investigate optimal seeding

policies (e.g., as a creator of music) and (2) to create a managerial framework for early-stage

investments in creators (e.g., as a record label). Each of the two essays embedded in this

dissertation covers one of these topics, and as such they are two sides of the same coin. More

precisely, the former takes the perspective of the creator – i.e., how to quickly accumulate

followers after signing up to a user-generated content network – and the latter takes the

perspective of the investor – i.e., how to invest in these recent sign-ups. This dissertation is

based on unique datasets provided within the scope of a research collaboration with Sound-

Cloud, a platform that shares the same basic functionalities as Youtube, Instagram, and

Twitter. Hence, the derived insights can potentially be generalized to other user-generated

content networks.

The first essay, co-authored with Jacob Goldenberg, Daniel Shapira, and Florian Stahl,

is entitled “Climb or Jump – Status-Based Seeding in User-Generated Content Networks”

and challenges the role of individuals with a high network status. This generally belongs

to influencer marketing, a topic currently attracting a great deal of attention in business

practice (Maheshwari 2016). The academic literature on seeding shares the common view
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that the higher the network status is of the target, the more e↵ective the seeding or buzz

program (Gladwell 2000; Iyengar, Van den Bulte, and Valente 2011; Katz and Lazarsfeld

1955; Rogers 1995; Valente 1995; Van den Bulte and Joshi 2007). Moreover, the predominant

view on dissemination dynamics is built on a strong assumption that the responsiveness

of individuals with a high network status, i.e., the probability of responding to targeted

promotional actions, is equal or similar to any other individual on the social networking

platform (e.g., Hinz et al. 2011; Yoganarasimhan 2012). In user-generated content networks,

it is not clear whether this assumption holds: Why should someone with high status treat

endorsement requests by individuals with high and low status equally? Using data from

SoundCloud, we study creators of music who seek to build and increase their follower base

by directing promotional actions to other users of the networking platform. Along these

lines, the two focal research questions are as follows:

(1) Considering an unknown creator of content who seeks to build and increase his or

her follower base on a user-generated content network, what measures should be taken to

reach this goal? (2) What is the optimal policy to attract followers and, thus, who on the

social networking platform should a creator of content target in order to propagate relevant

information or content into the network?

Focusing on the network status of both creator and seeding targets, we find that, in

particular, unknown creators of music do not benefit from seeding high-status users or influ-

encers. In fact, it appears that unknown creators should ignore predominant seeding policies

and slowly “climb” across status levels of seeding targets, rather than attempt to “jump”

towards those with the highest status. Our research extends the existing seeding literature

by introducing the concept of risk to dissemination dynamics in online communications.

We show evidence that unknown creators of music do not seed specific status levels, but

rather choose a portfolio of seeding targets while solving risk versus return trade-o↵s. From

this, we derive managerial implications for information dissemination and optimal seeding

in user-generated content networks.
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The second essay, also co-authored with Jacob Goldenberg, Daniel Shapira, and Florian

Stahl, is entitled “Allocation of Marketing Budget When Success Is a Rare Event” and

addresses the managerial decision problem of allocating marketing resources to a set of

creators (e.g., creators of music) who recently signed up on a user-generated content network

(e.g., SoundCloud). Considering that the success of a creator is a rare event, only few

creators ultimately become best-selling. Consequently, managers (e.g., of a record label) face

a complex allocation problem of how to invest and allocate their marketing budgets among

multiple creators. If they decide to invest in all creators, each future best-selling creator

received initial support. However, from an economic perspective, this policy is associated

with considerable wasted investments due to the extensive resources allocated to the many

creators that ultimately turn out to be failures. At the other extreme, managers could

decide to invest in a single creator. In this case, they face high lost returns since it is almost

certain that such a focused investment of marketing resources will not capture all the future

best-selling creators. This trade-o↵ leads to the following question:

In how many and, more precisely, in which creators of content should a manager invest

in an early stage of the life cycle?

We propose a novel managerial framework for maximizing profits when deciding on how

many as well as which creators to select for investment in an early stage of their life cycle,

by solving the economic trade-o↵ between wasted investments and lost returns. We test

our proposed framework for creators of music and generate investment recommendations for

record labels on the SoundCloud platform. Our analyses demonstrate that managers’ invest-

ment decisions in the context of rare events are mostly ine�cient, as the profit realization

of our proposed framework is up to four times greater than currently used selection policies.

The remainder of this dissertation is organized as follows. Chapters 2 and 3 present

scientific working papers and contain the above-introduced essays, followed by a general

conclusion in Chapter 4 that summarizes and discusses the insights and implications of this

dissertation.
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2 Climb or Jump – Status-Based Seeding in User-

Generated Content Networks

2.1 Introduction

In the last decade, user-generated content networks and social networking platforms like

YouTube, SoundCloud, and Instagram have become ubiquitous and now capture a sub-

stantial part of the social media sphere. On these platforms, the content is generated and

o↵ered by individuals, small groups, and firms that are interested in promoting their own

creations as well as their own network status, and in some cases, their career (e.g., Gold-

enberg, Oestreicher-Singer, and Reichman 2012; Mayzlin and Yoganarasimhan 2012; Netzer

et al. 2012; Trusov, Bodapati, and Bucklin 2010). A well-known example is the Dutch elec-

tronic music artist San Holo, who focused all his self-promotion e↵orts on SoundCloud, a

user-generated content network in the music domain with 175 million users (Pierce 2016).

His e↵orts paid o↵, resulting in more than 2,000,000 plays and growth in his follower base

from 4,000 to over 40,000 SoundCloud users (Voogt 2015).

Considering an unknown creator of content (e.g., San Halo) who seeks to build and

increase his or her follower base on a user-generated content network, what measures should

be taken to reach this goal? What is the optimal policy to attract followers and, thus, who

on the social networking platform should a creator of content target in order to propagate

relevant information or content into the network?

This problem generally belongs to influencer marketing, a topic currently attracting a

great deal of attention in business practice (Maheshwari 2016). Influencer marketing and the

academic literature on seeding share the common view that the higher the network status is of

the target, the more e↵ective the seeding or buzz program (Gladwell 2000; Iyengar, Van den

Bulte, and Valente 2011; Katz and Lazarsfeld 1955; Rogers 1995; Valente 1995; Van den

Bulte and Joshi 2007). Hence, a creator of content who seeks to build and increase his or
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her follower base on a user-generated content platform should direct promotional actions to

individuals with a high indegree, a common yet basic operationalization of network status

(Ball et al. 2001; Hu and Van den Bulte 2014; Sauder, Lynn, and Podolny 2012). However, in

this paper, we show that high-indegree seeding is in fact often ine�cient, and we demonstrate

and recommend a more e↵ective policy, which is somewhat counterintuitive: Optimal seeding

in user-generated content networks is achieved by approaching users with low status.

The predominant view on dissemination dynamics is built on a strong assumption that the

responsiveness of individuals with a high network status, i.e., the probability of responding

to targeted promotional actions, is equal or similar to any other individual on the social

networking platform (e.g., Hinz et al. 2011; Yoganarasimhan 2012). In user-generated content

platforms, it is not clear whether this assumption holds: Why should someone with high

status equally treat endorsement requests by individuals with high and low status? If we

take into account that the probability of responding to an endorsement request is dependent

on the network status, optimal seeding policies in user-generated content networks may

completely change. Indeed, we show that (1) in almost all cases, responsiveness is a function

of the status di↵erences between the sender and receiver of endorsement requests, and (2) due

to this di↵erence, targeting high-status individuals is a significantly inferior seeding policy

compared to targeting low-status individuals.

In this paper, we study commonly used endorsement requests in user-generated content

networks – promotional actions including follows, private messages, reposts, comments, and

likes. In the context of SoundCloud, we first analyze the responsiveness of seeding targets,

namely, when creators of music send promotional actions to other users of SoundCloud in

order to get follow-backs. We find that the higher the di↵erence of network status between

the creator and the seeding target, the lower is the a priori probability of a response. Fur-

thermore, we analyze the creator’s return on a targeted promotional action and find that

the return scheme is composed of two sources: the direct return (the follow-back from the

seeding target) and the indirect return (the number of followers from the seeding target’s

follower base). Moreover, we find that the higher the network status of the seeding target,
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the higher the indirect return. Hence, the return on high-status individuals is higher than on

low-status individuals, which is in line with common social network literature in marketing.

However, the return scheme changes once we consider returns based on di↵erent levels of

responsiveness. For unknown creators who seek to build and increase their follower base,

high-status individuals are therefore associated with very low responsiveness but potentially

high return, whereas low-status individuals are associated with much higher responsiveness

but relatively low return.

In addition, we analyze how creators of music on SoundCloud distribute promotional

actions over seeding targets with di↵erent network status by taking into account that the in-

dividual “budget” of promotional actions is constrained (first, the time during which creators

consider and exert promotional actions to build and increase their follower base is limited;

second, creators face search costs to find seeding targets as well as anti-spam policies, which

limit their self-promotion e↵orts). In this sense, our research further extends existing seed-

ing literature. Contrary to a common assumption that the limit on seeding resources is not

confined, we account for this constraint and show how budget considerations a↵ect the se-

lection of seeding targets. Drawing on the von Neumann–Morgenstern utility function (e.g.,

Archak, Ghose, and Ipeirotis 2011; Eliashberg 1980; Von Neumann and Morgenstern 1947),

we show evidence that creators of music on SoundCloud make their seeding decisions while

taking into account a risk versus return trade-o↵. Considering their portfolios of seeding

targets in a given time period, we find that a fraction is “invested” in SoundCloud users

with a high status di↵erence compared to the creator of music under consideration, which

is associated with high risks (due to low responsiveness) but potentially high returns. The

remaining fraction of the portfolio is “invested” in SoundCloud users with a lower status

di↵erence, which is associated with lower risks (due to higher responsiveness) but relatively

low returns.

Finally, we analyze the creators’ aversion to risk, which a↵ects the individual portfolio

choice of seeding targets. We find that creators’ portfolio choices of seeding targets are

predominantly risky: Instead of slowly “climbing” the ladder of status levels of seeding
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targets, they attempt to “jump” towards those with the highest status – and keep failing to

e↵ectively accumulate followers to build and increase their fan communities.

The remainder of the paper is organized as follows. An overview of the relevant literature

is presented in the subsequent section followed by the data description, theoretical reasoning,

and empirical findings, as well as a simulation study about optimal seeding policies. We

conclude our paper with a discussion of our findings and implications for marketing and

online communications practice.

2.2 Background

This paper is related to three broad streams of literature. One stream focuses on information

dissemination within social networking platforms. Another studies optimal seeding policies

and their implications on viral marketing, and a third stream of literature concentrates on

the domain of social psychology, which investigates status di↵erences and the resulting inter-

and intragroup behaviors. We discuss the related literature with a focus on user-generated

content networks, which constitute a unique type of social networking platform.

2.2.1 Information Dissemination

User-generated content networks o↵er companies as well as individuals new opportunities

to increase their follower base and, hence, brand awareness. On one hand, they can build

and increase their follower base by means of paid advertisements. On the other hand,

promotional actions in the form of follows, messages, comments, and likes allow companies

and individuals to directly engage with targeted users in order to get a follow-back, i.e., to

form a reciprocal tie (Wasserman and Faust 1994). A follow-back can further trigger cascades

(Chae et al. 2016; Kozinets et al. 2010), which result in additional followers. Information

dissemination and, therefore, the success of seeding decisions are dependent on the structure

of the respective social networking platform, e.g., indegree distribution and density (for an

overview see Jackson (2010)). It is possible to infer from the indegree distribution and, more
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specifically, the prevalence of users with a large follower base not only the speed but also

the spread of the information dissemination (Goldenberg et al. 2009). The same applies to

the density or degree of connectedness among users of a social networking platform (Katona,

Zubcsek, and Sarvary 2011; Stephen and Toubia 2010).

We consider each creator in user-generated content networks to be a separate brand, also

referred to as a human brand (Thomson 2006). Such human brands vary heavily in their

network status, ranging from unknown to extremely popular. In social network literature, the

level of status (Katz 1953; Moreno 1934) is also referred to as rank, deference, or popularity

(Wasserman and Faust 1994), with the most basic operationalization being indegree (e.g.,

Van den Bulte and Wuyts 2007), that is, the number of social ties a node has (Shaw 1954).

Hence, some researchers use the terms status and indegree interchangeably (e.g., Iyengar,

Van den Bulte, and Valente 2011). Status can be further measured by means of closeness and

betweenness centrality (Freeman1978), but unlike indegree centrality, these are not clearly

visible to all nodes in online social networks. The limited availability of information in user-

generated content networks forces unknown creators to assess the status of seeding targets

only by their indegrees. The closeness and betweenness centrality, on the other hand, can

be observed exclusively by the social networking platform itself. This stands in contrast to

various studies in which it is assumed that all network information is accessible (e.g., Katona,

Zubcsek, and Sarvary 2011; Stephen and Toubia 2010). Nodes that are extremely popular

and have a high indegree are referred to as hubs (Goldenberg et al. 2009), opinion leaders

(e.g., Iyengar, Van den Bulte, and Valente 2011; Weimann 1991), connectors (Gladwell 2000),

and influentials (e.g., Lionberger 1953; Merton 1968; Watts and Dodds 2007), with each term

di↵ering slightly in meaning.

2.2.2 Optimal Seeding

A large body of literature exists on high-status individuals, or influencers (Kirby and Mars-

den 2006; Rosen 2010), and it is widely agreed that they play a pivotal role due to their
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ability to either accelerate or block the dissemination process. The two-step flow model

described by Katz and Lazarsfeld (1955) characterizes opinion leaders as disseminators of

information and, therefore, as the link between mass media and the public. Hence, influ-

encers are regarded as powerful seeding targets. Apart from high-indegree seeding, there

are two other policies based on sociometric measures: low-indegree seeding (or fringes) and

high-betweenness seeding (or bridges) (Granovetter 1973). Social network literature sug-

gests almost entirely that self-promotion e↵orts should seek to seed individuals with a high

indegree (e.g., Easley and Kleinberg 2010; Hanaki et al. 2007; Hinz et al. 2011; Iyengar,

Van den Bulte, and Valente 2011; Van den Bulte and Joshi 2007; Yoganarasimhan 2012).

On the contrary, in a computer simulation, Watts and Dodds (2007) find that for most cases,

high-indegree seeding does not have a major impact on cascades of influence, which agrees

with studies showing that high-status individuals are not influential per se (Aral and Walker

2012; Trusov, Bodapati, and Bucklin 2010).

Since marketing managers decide upon a set of seeding targets for viral marketing cam-

paigns (e.g., Bampo et al. 2008; Libai, Muller, and Peres 2005), the assessment regarding

the value of such influencers is essential. In this context, Haenlein and Libai (2013) suggest

to shift the focus toward the customer lifetime value of seeding targets. However, marketing

managers along with creators of content who seek to build and increase their follower base

usually make seeding decisions with very little information, the key factors being the status

and indegree. Hinz et al. (2011) compare three di↵erent policies based on sociometric data.

They show that high-indegree seeding outperforms two other policies focusing on fringes

and bridges, partially because well-connected nodes capitalize on their greater reach and not

entirely due to the fact that they exhibit a higher influence than others. In another study

based on sociometric measures, Yoganarasimhan (2012) investigates the seed’s follower base

and its e↵ect on macro-level dissemination using Youtube data. The conclusion that emerges

from this study corresponds to Hinz et al. (2011) because high-indegree seeding resulted in

far more clicks on videos in comparison to random seeding.
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2.2.3 The Role of Status

While research usually places the focus on dissemination processes of products, we move the

emphasis to the dissemination of unknown creators of content, i.e., human brands. Since

unknown creators of content seek to build and increase their follower base, all their e↵orts

are considered to be promotional actions. In this context, we argue that the e↵ectiveness

of these promotional actions and, therefore, the return opportunities depend jointly on the

status of the sender and the receiver, i.e., the creator of content and the seeding target. In

a recent paper, Hu and Van den Bulte (2014) show that status matters not only in terms of

one’s susceptibility to adopt and the adoption time, but also in the way that one’s behavior

a↵ects others in terms of adoption. The authors conclude that for commercial kits used in

genetic engineering, optimal seeding targets are individuals with high and middle status due

to inverse-U patterns regarding adoption susceptibility and time. However, a gap remains

in our knowledge since the focus of Hu and Van den Bulte (2014) is mainly on the status

of the seeding targets. We, on the other hand, take into account the status of both the

seeding targets and the creators of content who seek to build and increase their follower

base. Furthermore, we consider the confronted trade-o↵s in terms of risk versus return.

Risk (and hence the trade-o↵) occurs as a result of di↵erent responsiveness levels associ-

ated with di↵erent status levels of seeding targets. Status di↵erences and the corresponding

inter- and intragroup behaviors are investigated in the social psychology literature. In this

domain, the social identity theory (Tajfel and Turner 1979, 1986) reveals that high-status

individuals are characterized by self-focused and self-serving behavior because they exhibit

stronger in-group identification as well as favoritism (Bettencourt et al. 2001), and aim to

preserve group boundaries and members (Ellemers et al. 1992; Terry, Carey, and Callan 2001;

Van Knippenberg and Ellemers 1993). In contrast, low-status individuals want to disconnect

from the low-status category (Ellemers et al. 1988; Snyder, Lassegard, and Ford 1986) and

aim to be associated with the high-status one (Tajfel 1974, 1975; Tajfel and Turner 1979).

In fact, individuals aim to form ties with high-status individuals due to the status transfer,
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which has been studied in the context of researchers (Goode 1978; Latour 1987; Merton

1973) and can be interpreted as a form of endorsement (Stuart, Hoang, and Hybels 1999).

Although low-status individuals benefit from such endorsement, high-status individuals ex-

hibit a weaker attachment to low-status individuals than vice versa (Gould 2002) and risk

devaluing their high status (Podolny 2001, 2005). This becomes apparent in the context of

online dating, where individuals take into consideration the status (or “market worth”) of

others, as well as their own (Heino, Ellison, and Gibbs 2010; Taylor et al. 2011). Studies

reveal that individuals with a high value or physical attractiveness level are commonly tar-

geted (Buss and Barnes 1986; Feingold 1990; Lee et al. 2008; Walster et al. 1966), whereas

individuals with high physical attractiveness favor strong in-group preference (Buston and

Emlen 2003; Kowner 1995; Little et al. 2001; Todd et al. 2007). These phenomena that (1)

everyone tends to reach out to high-status individuals, and that (2) they, in turn, respond

preferably only to their own sort serve as a starting point for our paper.

We consider creators of music who seek to build and increase their follower base utilizing

user-generated content networks. Each creator exerts a number of promotional actions :

follows, messages, comments, and likes. Promotional actions are directed to seeding targets

– users who are not part of the creator’s follower base at the time of seeding. Hence, we

do not take retention e↵orts into consideration, that is, promotional actions directed to the

follower base. Prior research shows that high-status individuals are bombarded with a large

number of incoming actions (Buss and Barnes 1986; Feingold 1990; Lee et al. 2008; Walster

et al. 1966), whereas low-status individuals are not exposed to such competition for their

attention. In addition, high-status individuals tend to respond only to other high-status

individuals (Buston and Emlen 2003; Kowner 1995; Little et al. 2001; Todd et al. 2007).

Therefore, we expect that the higher the status di↵erence1 is between the creator of content

and the seeding target, the lower the responsiveness of the seeding target will be.

1We define status di↵erence as the indegree of the creator minus the indegree of the seeding target.
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2.3 Data

In our empirical analysis, we use data from SoundCloud, the world’s leading user-generated

content network in the domain of music. SoundCloud is home to 12 million creators of music

and attracts 170 million monthly listeners (Pierce 2016). The social networking platform

consists of two types of user profiles: creators of music and fans. Creators are individuals

who have uploaded at least one song and use the network for self-promotion purposes. They

engage with their fans and seek to expand their follower base. Fans, on the other hand,

receive updates from their favorite creators and listen to their songs, as well as connect with

their peers on the network. Hence, the social networking platform is composed of creators of

music and their fan communities and o↵ers users di↵erent possibilities to interact with each

other. As with Twitter or Instagram, users of SoundCloud can follow each other without

being followed back. Thus, the social networking platform at hand is directed. Users can

further listen to songs uploaded on the artists’ profiles; they can like these songs and leave

comments about them. If a user reposts a song, all followers of this user receive a notification

in their news feed. As a result, song reposts have a considerable impact on the popularity

of songs and, for this reason, on the creators of music. Finally, users can contact each other

by sending private messages. Consistent with Saboo, Kumar, and Ramani (2015), we study

creators of music who upload songs on their profiles that can be listened to by other network

users. In this context, unknown creators2 who seek to build and increase their follower base,

i.e., their brand communities, can reach out to users of the social networking platform by

following them, sending them private messages, reposting their songs, commenting on their

songs, or liking their songs.3

Our first data sample consists of 35,956 users (24,020 creators of music and 11,936 fans)

and their egocentric networks. These users represent all sign-ups in the first quarter of 2009.

This dataset contains all information about the formation of the users’ egocentric networks

2We define unknown creators of music as all users who have uploaded at least one song and whose indegree
has not crossed two orders of magnitude, i.e., a fan community of 100 followers.

3Regarding all creators sign-ups in the first quarter of 2009 with at least one follower, 95% did not cross
the mark of 100 followers at the end of the year. This statistic drops to 83% in the consecutive year.
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over a period of five years (January 2009–March 2014), as well as all data on all incoming and

outgoing activities of each user including follows, messages, plays, comments and likes over

the entire period. Moreover, we collected this information about their first degree alters, i.e.,

their followers. In late 2012, SoundCloud introduced the function and possibility for users

to repost songs, which appears in followers’ news feeds. As our first data sample does not

include returns on song reposts (indirect returns), in our empirical analysis we incorporate

a second data sample that consists of 35,000 users (4,978 creators of music and 30,022 fans)

who signed up in the first week of March 2013, and we tracked them over a period of two

years (until July 2015). The descriptive statistics of both data samples used in our empirical

analysis are provided in Table 8.

— Insert Table 8 about here —

To sum up, our two longitudinal datasets consist of 70,956 users along with their alters

(a total of 11,203,205 users). These datasets include complete information on (1) follows,

(2) messages, (3) song plays, (4) song reposts, (5) song comments, and (6) song likes.

2.4 Theoretical Reasoning and Empirical Findings

2.4.1 Status Di↵erence Matters

To study the dynamics of reciprocity with the aim of investigating the responsiveness of

seeding targets, we zoom in to the dyadic level and analyze all 4,964,174 promotional actions

sent to users of SoundCloud who were not part of the creators’ follower base at the time of

sending. These promotional actions consisting of follows, messages, song comments, and song

likes were sent by 18,005 creators of music over 1,959 days.4 We focus on the responsiveness of

seeding targets, a binary measure denoted as 1 if the seeding target followed the creator back

4Each promotional action is equally weighted, and we do not consider the content of the message or song
comment (and thus its e↵ect on virality; Berger and Milkman 2012).
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within a week, and 0 otherwise. We further take into consideration the di↵erence in indegree,

the most basic operationalization of network status (e.g., Van den Bulte and Wuyts 2007),

between the sender and receiver of promotional actions. The period in which we consider

reactions in the form of follow-backs was set to one week because this corresponds to the

average login frequency of users of SoundCloud. Figure 1 exhibits the a priori response

(follow-back) probabilities, given the order of magnitude of the seeding target to creator

status ratio. Each bar captures 2.5% of the distribution whereby, for example, the bar with

values between 2.5 and 2.9 includes each seeding target whose status is 2.5 to 2.9 times higher

in order of magnitude compared to the status of the creator (the status of the seeding target

is between 102.5 ⇡ 300 and 102.9 ⇡ 800 times greater than the status of the creator). We do

not measure the direct e↵ect of status di↵erence on the a priori response probabilities nor

do we claim that there are no other mediating factors. Hence, Figure 1 exhibits a model-free

representation of the probabilities. From the monotonicity of the curve, we conclude that

the higher the status di↵erence is between the creator and the seeding target, the lower

the a priori probability of a response. When extending the reaction period to two or three

weeks, the a priori probabilities increase by 13% and 20% on average, respectively. Yet, the

monotonicity of the curves remains.

— Insert Figure 1 about here —

To further investigate this phenomenon for low- and high-status creators, we segregate

these two groups and define the former as creators with status less than two orders of

magnitude, i.e., 100 followers, and the latter as creators with status more than three orders

of magnitude, i.e., 1,000 followers. Figure 2 exhibits the a priori response probabilities as a

result of promotional actions from low- and high-status creators. Since there is a clear right

shift of a priori response probabilities from low- to high-status creators, status matters when

directing promotional actions to seeding targets. Put di↵erently, high-status creators have

a higher a priori response probability in comparison to low-status creators for any status of
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a seeding target. The monotonicity of both curves is identical to Figure 1. This is also the

case when allowing for longer reaction periods.

— Insert Figure 2 about here —

Both Figures 1 and 2 provide evidence that the higher the status di↵erence between the

creator and the seeding target, the lower is responsiveness. Whereas Figure 2 distinguishes

between high- and low-status creators, Figure 1 generally exhibits the a priori response

probability, given the status di↵erence between the creator and the seeding target.

In a context where the probability to follow back varies, the optimal seed is not necessarily

the influencer. However, our analyses do not reveal which seeding targets a creator should

choose since di↵erent levels of responsiveness also correspond to di↵erent levels of return

(an influencer can create a higher exposure relative to an ordinary individual). In the next

subsection, we describe the individual portfolio of seeding targets, as well as associated

returns.

2.4.2 Risk Versus Return Trade-O↵s

Topical research assumes that seeding a target in online social networks is just a matter of

choice and does not involve any risk, either in the form of time constraints, search costs to

find seeding targets, anti-spam policies, or di↵erences in responsiveness (e.g., Hinz et al. 2011;

Yoganarasimhan 2012). Put di↵erently, in current research, a chosen seeding target subse-

quently promotes the advertised product or service with certainty. We relax this assumption

and consider the risk of getting a return when seeding a specific target. The previous subsec-

tion reveals that there is a di↵erence in responsiveness when seeding an unconnected node

compared to a highly connected one. Therefore, we again zoom into the relational mecha-

nisms on a dyadic level (Rivera, Soderstrom, and Uzzi 2010) and associate di↵erent levels

of responsiveness with di↵erent levels of returns. The return scheme, which results from

a seeding target who responds to a promotional action, is composed of two sources: (1) a
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direct return – the follow-back from the seeding target, which depends on the responsiveness;

and (2) an indirect return – one that results from the seeding target’s follower base, which

depends on whether the seeding target further reposts songs from the creator or not. Song

reposts trigger additional follows as they disseminate into the seeding target’s egocentric

network (e.g., Everett and Borgatti 2005; Wasserman and Faust 1994). Therefore, creators

make seeding decisions while accounting for the influence of status di↵erence on the a priori

probability of response, along with the associated potential returns.

Creators vary in their expenditure of time for self-promotion and seeding e↵orts. Along

these lines, we consider the number of promotional actions sent by a creator within a time

period as budget. On average, low-status creators (those with less than 100 followers) have

a weekly budget of 2.3 promotional actions. Due to the large size of user-generated content

networks such as SoundCloud, creators cannot reach out to all users, neither at once nor over

the entire lifetime. Moreover, due to time constraints, search costs to find seeding targets,

and anti-spam policies, the individual budget of promotional actions is not unlimited, as

is often (mostly implicitly) assumed. In line with Facebook and Twitter, SoundCloud’s

Community Guidelines do not allow users to “post identical or almost identical comments

or messages in large volumes; repeatedly follow large volumes of accounts in a short period

of time; repeatedly contribute your tracks to large volumes of groups in a short period of

time; repeatedly unfollow and refollow the same accounts, in order to draw attention to your

own profile; repeatedly repost or like tracks that you have reposted or liked in the past”

(SoundCloud 2016). Therefore, creators are forced to decide upon a set of seeding targets

and, thus, have to create a portfolio of individuals, namely SoundCloud users they want to

target with promotional actions to receive follow-backs.

According to common social network literature in marketing (e.g., Goldenberg et al. 2009;

Libai, Muller, and Peres 2013), the optimal portfolio choice of seeding targets is a corner

solution: to direct all promotional actions to individuals with a high indegree, because in the

case of response, the increase in the creator’s follower base is higher compared to a response

by a person with a low indegree. However, our analysis reveals that the probability of re-
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sponse by a target with a high indegree depends on the status of the creator. For unknown

creators who seek to build and increase their follower base, targeting influencers is associated

with high risk (due to their low responsiveness), while targeting ordinary individuals is asso-

ciated with lower risk (due to their higher responsiveness). The optimal composition of the

portfolio of seeding targets with di↵erent indegrees depends on the creator’s aversion to risk.

Consequently, we define the creator’s seeding problem for the purpose of self-promotion in

user-generated content networks as a risk versus return trade-o↵, depending on the individual

aversion to risk.

We define an optimal portfolio of seeding targets by drawing on the von Neumann–

Morgenstern utility framework (see Archak, Ghose, and Ipeirotis 2011; Eliashberg 1980;

Hauser and Urban 1977; Hauser 1978; Hauser and Urban 1979), which implies that the

creator selects a portfolio that maximizes expected utility. We assume that the creator can

choose between two investment tracks, namely influencers (individuals with a high status and

indegree) and ordinary individuals. We further assume that the creator gains utility from

the returns on a portfolio, where the utility is an increasing function of returns. Endowed

with a budget B, the creator is confronted with a portfolio choice under uncertainty and

has to invest a fraction X of budget B in low-status individuals and a fraction Y of budget

B in high-status individuals, where X + Y = B. Investments in targets with a low status

(ordinary individuals) are successful with probability pL and, subsequently, yield a low return

L. Investments in targets with a high status (influencers) are successful with probability pH

and yield a high return H. Following the risk versus return trade-o↵, the return on ordinary

individuals is lower than on influencers, i.e., L < H; however, the probability of success

when investing in low-status individuals is higher, i.e., pL > pH .5

We consider a static model with one time period and incorporate in the magnitude of H

5Although the response (follow-back) probability of high-status individuals is very low and the probability
that they repost a song is marginal, it is possible that a series of follows from high-status individuals is
triggered if one of them responds. In this case, the indirect return of the high-status individual that received
the promotional action, i.e., H, would just be rescaled. Moreover, as the global clustering coe�cient of
SoundCloud is very low, low-status individuals are usually not interrelated. Based on the above, we thus
assume independency of returns.
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all expected returns resulting from cascades initiated by a response from an influencer, as

well as the status increase of the creator due to the additional number of followers. Formally,

a creator directs a promotional action to seeding target R, where ZR is the return that the

creator gains as a result. Thus an investment in a low-status individual yields

ZR =

(
L with probability pL ,

0 with probability (1� pL) ,
(1)

whereas an investment in a high-status individual yields

ZR =

(
H with probability pH ,

0 with probability (1� pH) .
(2)

Based on the above return scheme, the creator invests his or her budget in low- and high-

status individuals, i.e., ordinary individuals and influencers. The expected utility of this

portfolio choice is given by

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) . (3)

While deciding upon a set of seeding targets, the creator solves the following optimization

problem:

Max
X,Y

EU(Z(X, Y )) s.t. X + Y = B , (4)

where Z(X, Y ) is a random variable that expresses the return, given an investment X and

Y in low- and high-status individuals, respectively, such that Z(X, Y ) = xL + yH with

probability
�
X
x

��
Y
y

�
pxL pyH (1� pL)

X�x (1� pH)
Y�y.

If we assume that the creator is risk neutral, then uncertainty does not influence the

portfolio choice. Therefore, the creator solely chooses the investment track that yields the

highest expected return.6 In case the expected return on high-status individuals is higher

6The expected return on each seeding target is the expected value of the return given the distribution of
returns.
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than on low-status individuals, the creator invests the whole budget in high-status individu-

als. Otherwise, the whole budget is invested in low-status individuals. Consequently, if the

creator invests the budget in both investment tracks, then he or she cannot be risk neutral.

Proposition 1. If a creator of content is risk neutral, then the whole budget is invested in

high-status individuals, i.e., Y ⇤ = B, in case the expected return on high-status individuals

is higher than on low-status individuals, i.e., pHH > pLL. Otherwise, the whole budget is

invested in low-status individuals, i.e., X⇤ = B (see Appendix A.1).

Corollary 1. If a creator of content invests in both low- and high-status individuals, i.e.

X⇤ 6= 0 and Y ⇤ 6= 0, then they cannot be risk neutral (see Appendix A.1).

From Corollary 1, it follows that a creator of music on SoundCloud cannot be risk neutral

if his or her individual portfolio choice of seeding targets includes both low- and high-status

individuals. If we assume that the status di↵erence between the creator and the seeding

target does not influence the response (follow-back) probability of seeding targets, that is, if

the creator believes that the response probability is the same across all status levels of seeding

targets, then the optimal choice are high-status individuals and influencers, respectively.

Proposition 2. If the response probability of high-status individuals equals the response

probability of low-status individuals, i.e., p = pL = pH , then the whole budget is invested in

high-status individuals, i.e., Y ⇤ = B (see Appendix A.1).

From Proposition 2, it follows that if a creator of music on SoundCloud does not take

di↵erent levels of responsiveness into account, then their individual portfolio choice of seeding

targets includes only high-status individuals, as these yield the highest return. However, if we

assume that high-status individuals are extremely unresponsive, namely, that their a priori

response probability is close to zero, then the optimal choice of seeding targets would be low-

status individuals. In this context, sending promotional actions to high-status individuals

and influencers, respectively is a waste of resources.
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Proposition 3. If the response probability of high-status individuals is extremely low, then

the whole budget is invested in low-status individuals, independent of the aversion to risk.

More precisely, for any utility function U there exists a large number K such that for any

pH < 1
K

the creator of content directs all promotional actions to low-status individuals, i.e.

X⇤ = B (see Appendix A.1).

From Proposition 3, it follows that if a creator of music on SoundCloud takes into ac-

count di↵erent levels of responsiveness and assuming that high-status individuals are ex-

tremely unresponsive, then the creator’s portfolio choice of seeding targets includes only

ordinary (low-status) individuals. Propositions 2 and 3 represent two extreme choices of

seeding targets and, hence, set the limits for all possible portfolio choices. In Proposition

2, the di↵erence between the responsiveness of low- and high-status individuals is marginal.

Therefore, the creator’s tendency is to invest in high-status individuals and influencers, re-

spectively. In proposition 3, however, the di↵erence in responsiveness between the status

levels is extremely high and, as a result, the creator tends to invest in ordinary (low-status)

individuals. All portfolios with investments in both status levels exhibit a risk versus re-

turn trade-o↵. Moreover, if the creator directs promotional actions to low- and high-status

individuals, then from Proposition 2, it follows that the creator cannot be risk neutral.

Along these lines, we assume that the higher the status of the creator, the higher the a

priori response probabilities. Furthermore, with increasing status of the creator, the relative

improvement of the a priori response probability regarding promotional actions directed to

high-status individuals is higher compared to low-status individuals (see Tables 2 and 3).

Thus, the higher the status of the creator, the more promotional actions are directed to

seeding targets with higher status.

Proposition 4. If the status of a creator of content, i.e. S, increases, then the more is

invested in high-status individuals, i.e., dX⇤

dS
< 0 and dY ⇤

dS
> 0 (see Appendix A.1).

From Proposition 4, it follows that if a creator of music on SoundCloud gains followers

and, hence, his or her status increases, then the creator reallocates promotional actions from

30



low- to high-status individuals. The allocation of promotional actions is influenced not only

by the creator’s status, but also by the number of promotional actions sent within a time

period, i.e., the budget size. If a creator is endowed with a low budget and few promotional

actions, respectively, then with increasing budget, he or she will not necessarily reallocate

promotional actions to seeding targets with higher status, as creators want to reach at least a

certain baseline growth of follow-backs. If this baseline growth is achieved, then the creator

is able to take higher risks and, consequently, can direct promotional actions to seeding

targets with higher status, i.e., “first bread then butter”.

Proposition 5. Assuming that the response probability of high-status individuals is extremely

low, i.e., pH ⌧ 1
B
, and the resulting return (in case the high-status individual responds) is

extremely high, i.e., BL ⌧ H, then the larger the budget of a creator of content, the more

is invested in high-status individuals, i.e., dY ⇤

dB
> 0 (see Appendix A.1).

From Proposition 5, it follows that if a creator of music on SoundCloud increases the

budget size, then the creator starts to reallocate promotional actions to seeding targets with

higher status. Propositions 1 to 5 lay the foundation to examine if and how creators of

music on SoundCloud are solving risk versus return trade-o↵s. For this purpose, we cluster

SoundCloud users by their status, i.e., indegree, and separate them according to order of

magnitude. This classification is appropriate as it follows a logarithmic scale and, thereby,

lives up to the dispersion of indegrees in well-established online social networks. As a result,

we consider four groups of users: type 1 users have fewer than or equal to 100 followers;

type 2 users have more than 100 but fewer than or equal to 1,000 followers; type 3 users

have more than 1,000 but fewer than or equal to 10,000 followers; and type 4 users have

more than 10,000 followers. In Figure 3, we contrast the choices of seeding targets of creator

types 1, 2, 3, and 4. Along these lines, we define unknown creators as type 1 – all users who

uploaded at least one song and whose indegree has not crossed two orders of magnitude, i.e.,

a fan community of 100 followers. Figure 3 illustrates that all creators of a specific type do

not direct all promotional actions to a specific type of seeding target; a corner solution does

not appear. In fact, they spread their budget of promotional actions over several orders of
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magnitude in terms of status of seeding targets. Moreover, in accordance with the insights

provided by Propositions 2 and 3, creators choose a portfolio of seeding targets because they

do not direct promotional actions just to low- or high-status individuals. These di↵erent

portfolios, in the form of four bell-shaped distributions over several orders of magnitude

in terms of status, are illustrated in Figure 3. Based on the insights from Proposition 1

and Corollary 1, creators are thus not risk neutral. They further consider the influence of

status di↵erence on the a priori probability of response; otherwise, they would, according

to Proposition 2, simply direct promotional actions to individuals with high status, i.e.,

influencers with a high indegree. Therefore, we find supplementary evidence in support of

our expectation regarding the e↵ect of status di↵erence on the a priori response probabilities.

Furthermore, Figure 3 shows that the four bell-shaped distributions shift more to the right

as the status of creators increases, providing evidence for Proposition 4, which states that

the higher the creator’s status, the higher the status of their seeding targets.

— Insert Figure 3 about here —

Could this allocation result from a random selection of targets? We analyze and compare

our findings with the seeding policy in which the creator of music on SoundCloud randomly

directs promotional actions to seeding targets. This random seeding policy is reflected by the

indegree distribution of SoundCloud and serves as a benchmark. For this reason, we assess

the status of all available users of SoundCloud, which amount to 394,262 creators of music and

fans. As we expect a right shift of the indegree distribution over time due to SoundCloud’s

growth, we calculate it at the end of the observation period – in the first week of 2014.

Since the di↵erent portfolios of seeding targets in the form of the four distribution curves are

di↵erent from the indegree distribution, we conclude that creators do not randomly direct

promotional actions to seeding targets. Moreover, Figure 3 reveals an increased tendency

to direct promotional actions to seeding targets with higher status because the distribution

curves lie on the right side of the indegree distribution, i.e., the random seeding policy. More

specifically, in addition to direct returns, creators aim for indirect returns to get follow-
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backs from the followers of the seeding targets. To sum up, Figure 3 provides evidence for

our expectation that unknown creators who seek to build and increase their follower base

solve a risk versus return trade-o↵.

With Proposition 5 in mind, we study the e↵ect of the number of promotional actions

sent within a time period (considering the creator’s budget size) on the choice of status levels

of seeding targets. More precisely, there is heterogeneity among creators of the same type

regarding their budget size: Some creators of music spend a larger fraction of their time on

SoundCloud and, as a result, exert more promotional actions within the time period. Recall

that our analyses focus on unknown creators who seek to build and increase their follower

base. Figure 4 exhibits, given their weekly budget, a type-1 creator’s relative investment in

seeding targets of types 1, 2, 3, and 4. The weekly budget size is split into one to ten actions

and more. For example, a type-1 creator with a budget of one promotional action per week

allots 38% to type 1, 30% to type 2, 22% to type 3, and 10% to type 4. On average, a type-1

creator has a weekly budget of 2.3 promotional actions. Figure 4 suggests that these creators

become less risk-averse with increasing budget. The probability to invest in type 1 seeding

targets decreases with increasing budget, from 38% to 28%, which is found to be highly

statistically significant, i.e., the Pearson’s chi-squared test with Yates’ continuity correction

gives a p-value of < 0.0001.

— Insert Figure 4 about here —

So far, we have found evidence for both our expectations regarding the e↵ect of status

di↵erence on the a priori response (follow-back) probabilities, as well as the risk versus return

trade-o↵s. Due to the monotonicity of the curve in Figure 1, we conclude that the higher

the status di↵erence between the creator and seeding target, the lower the responsiveness.

Furthermore, Figure 2 shows that for any status of a seeding target, high-status creators have

a higher a priori probability of getting a response or direct return in comparison to low-status

creators. In the absence of indirect returns – namely, follow-backs from the followers of the
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seeding targets – unknown (low-status) creators who seek to build and increase their follower

base would only consider response probabilities. In this case, they would not include high-

status individuals and influencers, respectively in their portfolio of seeding targets. However,

Figure 3 shows that creators spread their budgets of promotional actions over several orders

of magnitude in terms of status, meaning they choose a portfolio and do not send only

to a certain status. More specifically, the higher their own status, the more promotional

actions are sent to seeding targets with higher status. When comparing the portfolios with

the indegree distribution of SoundCloud, it becomes apparent that creators of music also

consider indirect returns in addition to direct returns, as they send promotional actions to

high-status seeding targets too. These findings support our expectation regarding the risk

versus return trade-o↵s. Thus, we conclude that unknown creators who seek to build and

increase their follower base solve a risk versus return trade-o↵ when choosing their portfolio.

Furthermore, with increasing budget, they have a lower tendency to allocate promotional

actions to low-status seeding targets, as Figure 4 shows.

Summing up, our empirical analysis of creators’ revealed preferences on SoundCloud in-

dicates that unknown creators of music are choosing a portfolio of seeding targets while

solving a risk versus return trade-o↵. Hence, they do not reach out exclusively to those

individuals with the highest status in the network in terms of centrality, as suggested by cur-

rent social network literature in marketing. In the following section, we investigate expected

total returns on seeding targets retrieved from the data and discuss these implications on

the individual aversion to risk.

2.4.3 Aversion to Risk

The creator’s choice of seeding a target with a specific status, i.e., the creator’s allocation

of budget to high- and low-status individuals, depends on the creator’s aversion to risk. To

develop deeper insights into creators’ seeding policies and how these are influenced by their

aversion to risk, we compute the expected total return on each seeding target (the expected
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value of the returns given their distribution), which accounts for (1) the expected direct

returns and (2) the expected (indirect) returns associated with a song repost.

We first measure the a priori response (follow-back) and song repost probabilities before

assessing the indirect return – the number of follows from the seeding target’s follower base

in the case of a song repost. Note that the direct return is a binary measure (equals 1 if

the seeding target responds to the promotional action from the creator, or 0 otherwise). In

our analysis, we classify users (creators and seeding targets) again by their indegree and

separate them according to the order of magnitude, resulting in four groups of creators and

seeding targets, respectively (same definition of types as before). Table 2 shows the a priori

response probabilities for all combinations of creator and seeding target types, and whether

the seeding target follows the creator back within a week after receiving a promotional

action. Recall that our analyses focus on low-status (unknown) creators, type 1, who seek to

build and increase their follower base. In the case of a type-1 creator, the a priori response

probabilities range between 7.41% (type-1 seeding target) and 0.03% (type 4-seeding target).

For a type-4 creator (with a fan community of more than 100,000 followers), these a priori

response probabilities range as high as 15.03% (type-1 seeding target) and 0.75% (type-4

seeding target).

— Insert Table 2 about here —

To compute the expected (indirect) returns associated with a song repost, for all com-

binations of creator and seeding target types, we further analyze the a priori song repost

probabilities – primarily, whether the seeding target reposts a song of the creator within

a week after receiving a promotional action from the creator. Compared to the a priori

response probabilities, as shown in Table 2, the a priori song repost probabilities are signif-

icantly lower. Table 3 shows that in the case of a type-1 creator, the a priori song repost

probabilities range between 0.109% (type-1 seeding target) and 0.001% (type-4 seeding tar-

get). For a type-4 creator, these a priori song repost probabilities increase to 0.372% (type-1
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seeding target) and 0.023% (type-4 seeding target).

— Insert Table 3 about here —

After measuring both the a priori response and song repost probabilities, we further

compute the expected (indirect) return associated with a song repost to finally calculate

the expected total return of a creator’s promotional action and self-promotion e↵ort. In our

analysis, we consider 1,501,051 song reposts from 9,402 creators on SoundCloud over 424

days. For all combinations of creator and seeding target types, Table 4 exhibits the expected

follows and song plays realized within a week after a song repost. The results reveal that

the expected indirect return for an unknown creator within a week, given a song repost from

a type-4 user, amounts to 7.6 follows and 281.6 plays on average. The reaction period was

set to one week, as this time span corresponds to the average login frequency of users of

SoundCloud and accounts for the short lifespan of published information in the user’s news

feed in which the song repost is shown. Doubling the reaction period to two weeks results

in only a marginal increase: on average in a total of 8.1 new follows and 304.4 song plays,

respectively. Both the conversion of plays to follows and the general level of the figures are

low. Qualitatively, our results show that the a priori song repost probabilities, as shown in

Table 3, as well as the expected indirect returns given a song repost, as shown in Table 4,

are extremely low for an unknown creator who sends promotional actions to high-status

individuals.

— Insert Table 4 about here —

Taking into account the a priori response (follow-back) and song repost probabilities, as

well as the expected indirect returns associated with a song repost, we are able to analyze

and compute the expected total return on a promotional action directed to a seeding target.

The expected total return on a seeding target consists of the expected direct return, which is
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determined by the a priori response probabilities, and the expected indirect return, which is

determined by the a priori song repost probabilities, as well as the expected indirect returns

given a song repost (see Appendix A.2 for a detailed description).

Analyzing 4,964,174 promotional actions that include follows, messages, song comments,

and song likes of 18,005 creators of music over 1,959 days, Table 5 shows the expected

total returns for all combinations of creator and seeding target types. Surprisingly, the

expected total return on high-status individuals is lower than the expected total return on

low-status individuals. In particular, an unknown creator who directs a promotional action

to a type-1 seeding target gets on average .0741 follow-backs with a standard deviation of

.2619. In contrast, directing a promotional action to a type-4 seeding target yields almost

no return with certainty because the expected total return is as low as .0003 follow-backs,

and the corresponding standard deviation amounts to .0446. In other words, the lower the

target’s status, the higher the expected total return, which implies that a creator of music on

SoundCloud should not direct promotional actions to high-status individuals and influencers,

respectively.

— Insert Table 5 about here —

Our analysis shows that for unknown creators who seek to build and increase their follower

base, influencers are associated not only with surprisingly low return but also with high risks

(due to their low responsiveness), while ordinary individuals are associated with relatively

lower return, but also lower risk (due to their higher responsiveness). However, we also find

that creators spread their budgets of promotional actions over several orders of magnitude

in terms of status, targeting even high-status individuals who feature a lower expected total

return than ordinary (low-status) individuals. This indicates that utility-maximizing creators

of music on SoundCloud are not completely risk-averse.

Proposition 6. If the return on high-status individuals is much higher than on low-status

individuals such that H > BL but the expected return on high-status individuals is lower
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than on low-status individuals, i.e., pHH < pLL, and there is an optimal solution such that

a creator invests in high-status individuals, i.e., Y ⇤ 6= 0, then the creator cannot be risk

averse (and the individual utility function U is not concave) (see Appendix A.1).

If it is common knowledge among creators of music that the value of high-status indi-

viduals on SoundCloud in terms of expected total returns is questionable, it follows from

Proposition 6 that high-indegree seeding indicates risk-seeking behavior: Risk-averse, utility-

maximizing creators of music on SoundCloud would never direct promotional actions to

high-status individuals based on this return scheme.

To conclude, our empirical analyses reveal that high-status individuals on SoundCloud

are associated with surprisingly low returns, apart from the high risks due to their low

responsiveness. Given that this return scheme is common knowledge, creators reveal a be-

havior in the context of SoundCloud that is associated with risk seeking because they spread

their budgets of promotional actions over several orders of magnitude in terms of status. In

the subsequent section, we investigate di↵erent seeding policies. In particular, we study the

consequences of the observed risk-seeking policy of creators of music on SoundCloud.

2.5 Comparing the E↵ectiveness of Seeding Policies

The previous sections suggest that if an unknown (low-status) creator of content seeks to

build and increase his or her follower base, then he or she should ignore predominant seeding

policies and slowly “climb” the ladder of status levels of seeding targets rather than attempt

to “jump” towards those with the highest status. More specifically, by directing promotional

actions to seeding targets with the lowest status, an unknown creator can generate the highest

possible continuous growth of his or her follower base, in addition to natural baseline follows.

The accumulation of follows (baseline plus return on seeding targets) increases the creator’s

status, which goes hand in hand with higher a priori probabilities and, thus, expected total

returns on each seeding target.
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By means of a randomized dissemination process using the example of a creator who has

just signed up on SoundCloud, we contrast three seeding policies. In the first, we simulate

unknown creators, initially with zero followers, who invest their budgets of promotional

actions in line with the status quo. More precisely, for each status we retrieve the average

portfolio choice from the data and simulate unknown creators who exert promotional actions

accordingly, where the return in the form of additional number of followers is drawn in

correspondence with the probabilities observed in the data. In the second policy, we simulate

unknown creators who invest in line with common social network literature in marketing by

exclusively seeding targets with the highest status. In the third policy, the simulation takes

into account unknown creators following the seeding policy suggested in this paper who

invest only in seeding targets with the lowest status.

2.5.1 Method

For each of the three seeding policies, we compute the median growth of a creator’s follower

base over a 24-month time period. We focus on creators of music who have just signed

up on SoundCloud and, thus, have zero followers in the beginning. During each of the 24

months, the simulated creator invests 40 promotional actions, which corresponds to a weekly

budget of 10 and an overall budget of 960 promotional actions, respectively. The simulated

creator invests according to one of the three policies over the whole time period, for a total

of 1,000 iterations. The mechanism is the same for any chosen policy: In each month, the

creator’s increase in follower base is determined by the status-dependent probability of a

non-zero return on a seeding target and, further, on the status-dependent probability of

either a direct or indirect return.

More specifically, if the return in a given month for a given seeding target is non-zero,

then there are two di↵erent scenarios. On one hand, the investment in this seeding target

can yield both a direct and indirect return – a follow-back from the seeding target and

follows from subsequent song reposts. We consider the average number of song reposts from
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a seeding target over a year to account for the long-term indirect return on a follow-back. On

the other hand, the investment in this seeding target can yield only an indirect return, i.e.,

follows from a (single) song repost. The monthly accumulation of baseline follows as well as

returns on seeding targets increases the creator’s status, which go hand in hand with higher

a priori probabilities and, thus, expected total returns on each seeding target. Both the

natural baseline follows and the a priori probabilities including the expected returns on each

seeding target are updated in multiples of 25 followers with regard to the growing follower

base, after a reaching a community size of � 25 followers, � 50 followers, and so forth. To

sum up, the randomized dissemination process first takes into account the status-dependent

probability of a non-zero return on a seeding target and, subsequently, considers whether the

non-zero return is realized directly or indirectly (see Appendix A.3 for a detailed description

of the simulation study).

2.5.2 Results

Figure 5 exhibits the median growth of a follower base of a creator endowed with zero

followers when signing up and reveals that di↵erent seeding policies vary greatly in their

outcomes. We find that investments in line with the current social network literature in

marketing – high-indegree seeding – amount to a median of 22 followers over 24 months.7

Such investments are not worthwhile, since an unknown creator who directs promotional

actions to high-status individuals faces extremely low a priori song repost probabilities, and

also very low expected indirect returns given a song repost. Even more striking, the expected

total return on individuals with a high indegree is lower than the expected total return on

individuals with a low indegree, as exhibited in Table 5. Hence, investments in high-status

individuals result in the accumulation of natural baseline follows.

Furthermore, we find that investments according to the actual portfolios observed in the

data result in a median of 72 followers.8 This seeding policy, which reflects the (status-

7After 24 months, the middle 50% have between 19 and 26 followers.
8After 24 months, the middle 50% have between 46 and 81 followers.
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dependent) status quo seeding policy of creators of music on SoundCloud, outperforms con-

stant investments in high-status individuals by more than threefold. Therefore, the choice of

seeding targets by creators of music on SoundCloud is more e↵ective than the one suggested

by current social network literature in marketing.

Finally, we find that investing only in seeding targets with the lowest status results in

a median of 127 followers within 24 months.9 As shown in Table 5, the expected total

return on high-status individuals is lower than the expected total return on low-status in-

dividuals; therefore, low-indegree seeding manages to accumulate followers more e↵ectively.

Specifically, by directing promotional actions to seeding targets with the lowest status, an

unknown creator generates the highest possible continuous growth of his or her follower

base, in addition to the natural baseline follows. This, in turn, increases the creator’s status,

which goes hand in hand with higher a priori probabilities and expected total returns on

each seeding target, hence the slightly convex curve. Our results show that investments only

in seeding targets with lowest status clearly dominate the other two policies. The seeding

policy suggested in this paper not only outperforms the chosen seeding policy of creators

of music on SoundCloud, it is superior to the one suggested by the common social network

literature, by close to sixfold after not more than two years.

— Insert Figure 5 about here —

In summary, patience pays o↵ very well: Unknown creators who seek to build and increase

their follower base should ignore predominant seeding policies and slowly “climb” across

status levels of seeding targets rather than attempting to “jump” towards those with the

highest status. Hence, unknown creators should invest in seeding targets with the lowest

status, instead of chasing indirect returns by directing promotional actions to high-status

individuals.
9After 24 months, the middle 50% have between 116 and 139 followers.
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2.6 Discussion

Topical research assumes that seeding a target on online social networking platforms is just

a matter of choice and does not involve risk in the form of time constraints, search costs

to find seeding targets, anti-spam policies, or di↵erences in responsiveness (e.g., Goldenberg

et al. 2009; Hinz et al. 2011; Libai, Muller, and Peres 2013; Yoganarasimhan 2012). In

the context of user-generated content networks, which constitute a unique type of social

networking platform (e.g., Goldenberg, Oestreicher-Singer, and Reichman 2012; Mayzlin and

Yoganarasimhan 2012; Netzer et al. 2012; Trusov, Bodapati, and Bucklin 2010), we relax

this assumption and consider the risk of getting a return when seeding a specific target.

Our research extends existing seeding literature by taking into consideration that on user-

generated content networks (1) the di↵erence of network status between the creator and

the seeding target matters, (2) the creator’s budget of promotional actions is constrained,

and (3) since di↵erent levels of returns are associated with di↵erent levels of responsiveness,

creators of content solve a risk versus return trade-o↵ when choosing their portfolios of

seeding targets.

Our analyses reveal that creators of music on SoundCloud, the world’s leading user-

generated content network in the domain of music, do not direct promotional actions only to

influencers, i.e., users with a high indegree. In fact, they spread their budgets of promotional

actions and create a portfolio of seeding targets over several orders of magnitude in terms of

their network status. Moreover, the higher the creator’s status, the greater are the number

of promotional actions sent to seeding targets with higher status. When comparing the

portfolios with the indegree distribution of SoundCloud, it becomes apparent that creators

of music also consider indirect returns in addition to direct returns, as they send promotional

actions to high-status seeding targets too. Our analyses show that unknown creators who

seek to build and increase their follower base solve a risk versus return trade-o↵ when deciding

upon a set of seeding targets: A fraction is “invested” in SoundCloud users with a high status

di↵erence compared to the creator of music under consideration, which is associated with
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high risk (due to low responsiveness) but potentially high return. The remaining fraction

of the portfolio is “invested” in SoundCloud users with a lower status di↵erence, which is

associated with lower risk (due to higher responsiveness) but relatively low return.

We analyze data from a user-generated content network, which might limit our results to

this type of platform. But let us revisit the assumption that the probability of an individual

to endorse a person, small group, or firm that requested such an action is constant. This

assumption is a very strong one and calls for new examination. It might be that the same

monotonicity we discovered in this paper exists in other cases or platforms. In fact, any small-

or medium-sized business faces a similar risk versus return trade-o↵ when reaching out to

seeding targets. Trying to activate high-status individuals might be the appropriate policy

for large corporations with the financial power to compensate influencers who promote their

products and services. However, this seeding policy may not apply for small- and medium-

sized businesses. With increasing size and thus status of such businesses, the probability

of response as well as the associated expected total return when reaching out to influencers

improves continuously. The insights for e↵ective seeding policies may be of high importance

because, according to the recent analyses of federal statistical o�ces, most businesses are

small- and medium-sized (e.g., 99.7% in the U.S. and 99.3% in Germany), and they engage

a large proportion of labor (e.g., 48.4% in the U.S. and 60% in Germany).

In the context of SoundCloud, our empirical analyses reveal that the expected total return

on individuals with a high indegree is lower than the expected total return on individuals

with a low indegree. Put di↵erently, high-status individuals are associated not only with

low responsiveness but also with surprisingly low return. As a result, an unknown creator of

content who seeks to build and increase his or her follower base should ignore predominant

seeding policies and slowly “climb” in the ladder of status levels of seeding targets rather than

attempt to “jump” towards those with the highest status. By directing promotional actions

to seeding targets with lowest status, an unknown creator can generate the highest possible

continuous growth of the follower base. Future research should investigate this phenomenon

in other networks, e.g., in the context of telecommunication, and disentangle the underlying
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psychological processes, especially the individual aversion to risk, which is beyond the scope

of this paper. We hope this paper encourages work in these and other related directions.

3 Allocation of Marketing Budget When Success Is a

Rare Event

3.1 Introduction

For eight consecutive years after its inception in 2002, American Idol was the most popu-

lar television show in the US, attracting over 30 million viewers during its most successful

episode (Koblin 2015). The American Idol format revolves around the early discovery of

talent and the promise of substantial economic value. One of the reasons for the show’s

popularity is that a panel of judges as well as the audience make selection decisions based on

the contestants’ stage performances, and eventually determine who will receive the record

deal with a major label. Some marketing practices are similar, in principle, to the American

Idol format: Managers select product and service ideas based on (limited) preliminary infor-

mation and then invest in some development and later allocate marketing resources, while

considering the profit potential of each new product or service (e.g., Fischer et al. 2011).

One of the puzzles managers have in each stage of the process is the focal question: Will it

ever fly? (Golder and Tellis 1997). This fundamental question has not changed for decades,

nor has the fact that success is a rare event. In e↵ect, most products or services will never

fly: For example, 97% of new consumer packaged goods fail to breach sales thresholds to be

considered a big success (Schneider and Hall 2011).

Marketing researchers have developed a wide range of prediction models in the context

of innovation growth (e.g., Garber et al. 2004; Markovitch and Golder 2008; Peres, Muller,

and Mahajan 2010; Foster, Golder, and Tellis 2004; Van Everdingen, Fok, and Stremersch

2009), many of which are used by managers to make better-informed investment decisions.

In companies with broad and deep product pipelines, managers face an even more complex
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allocation problem of how to invest and allocate their marketing budgets among multiple

products. If they decide to further invest in all products, each future best-selling product

received initial support. However, from an economic perspective, this policy is associated

with considerable wasted investments due to the extensive resources allocated to the many

products that ultimately turn out to be failures. At the other extreme, managers could

decide to invest in a single product. In this case, managers face high lost returns, since it

is almost certain that such a focused investment of marketing resources will not capture all

the company’s future best-selling products. This trade-o↵ leads to the following question:

In how many and, more precisely, in which products should a manager invest in an early

stage of the life cycle?

If managers have a perfect prediction model at hand, then the selection size (the number

of products selected for further investment) would simply equal the prevalence of success,

with no wasted investments or lost returns. However, it is impossible to perfectly predict

product success. Various types of discrete choice models (e.g., logit or probit models) are

used to calculate the a posteriori probability of success for each product, given the available

information, but they are far from being perfect predictors, and a real success, even these

days, is still a rare event. The common procedure with probability models is to apply

the maximum a posteriori probability principle (MAP; for an overview see Gallager 2013).

However, if managers follow this näıve approach, then they should, in principle, reject all

products because the a posteriori probabilities likely indicate non-success for each product. In

e↵ect, popular statistical procedures can generate heavy underestimations of the probability

of rare events (King and Zeng 2001b).

We propose a novel managerial framework for maximizing profits when deciding on how

many as well as which products to select. More precisely, our proposed framework recom-

mends a selection along decreasing a posteriori probabilities by solving the economic trade-o↵

between wasted investments and lost returns. Please note that our proposed framework does

not depend on a specific prediction model. Instead, it uses the model that is shown to have

the best predictive power in terms of probability of detection and probability of false discov-
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ery. These two measures are inspired by signal detection theory and allow us to distinguish

between information-bearing patterns and noise (see for details Schonho↵ and Giordano

2006; Wickens 2001; Peterson, Birdsall, and Fox 1954). The prediction model’s probability

of detection and probability of false discovery serve as a starting point, which we link to

wasted investments and lost returns, and subsequently include in the profit maximization.

Given the level of return on investment (ROI) of the relevant product category, the profit

maximization determines the optimal selection size along decreasing a posteriori probabilities

of success, independent of the MAP. Hence, the profit maximization draws on the available

information as well as the chosen prediction model and only requires the product category

ROI as an input.

We test our proposed framework in the context of user-generated content networks (e.g.,

Goldenberg, Oestreicher-Singer, and Reichman 2012; Mayzlin and Yoganarasimhan 2012;

Netzer et al. 2012; Trusov, Bodapati, and Bucklin 2010). In our empirical application, we

use a unique dataset from SoundCloud, the largest user-generated content network in the

music domain with more than 175 million users (Pierce 2016). SoundCloud provides a plat-

form used by music artists around the world to market their songs. User-generated content

networks such as SoundCloud generate rich individual-level data that record labels can use,

for example, to better assess a music artist’s prospects and thus to increase the e↵ectiveness

of their marketing investments. Furthermore, user-generated content networks also reveal

that most artists will remain unknown (following the power-law degree distribution that is

common in social networks, e.g., Barabási 2003; Goldenberg et al. 2009; Rivera, Soderstrom,

and Uzzi 2010), and shared content on such networks mainly triggers only short cascades

(Watts 2002; Watts and Dodds 2007). The richness of the SoundCloud dataset we use allows

us to mimic and analyze the decision problem of record labels that evaluate in how many

and, more precisely, in which music artists from a new wave of sign-ups to invest, often by

observing them over several months after sign-up. Drawing on artist-specific characteristics,

we identify a set of e↵ective early predictors of success (defined in our application as whether

a music artist will cross a certain threshold of song-plays in a period of several years after
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sign-up). An important finding is that the managers’ investment decisions in the context of

rare events are mostly ine�cient, as the profit realization of our proposed framework is up

to four times greater than their current selection policies.

The proposed framework can be built on the model with the best predictive power in

terms of probability of detection and probability of false discovery. Our framework recom-

mends an optimal selection size of products or, in our empirical application music artists,

independent of whether the MAP indicates success or non-success. More precisely, the op-

timal selection size represents the number of artists worthy of investment along decreasing

a posteriori probabilities of success, which resolves the economic trade-o↵ between wasted

investments and lost returns.

The remainder of the paper is organized as follows. In the subsequent section we present

an overview of related literature followed by a description of our proposed framework and an

empirical application as well as a simulation study. We conclude the paper with a discussion

of our findings and implications for marketing practice.

3.2 Background

A large body of literature about the early stages of product growth focuses on the takeo↵

and its timing, which is driven by multiple factors including price (Golder and Tellis 1997;

Foster, Golder, and Tellis 2004) and network externalities (Goldenberg, Libai, and Muller

2010). In the context of online social networks, other drivers of dissemination have been

researched, such as word of mouth (Libai, Muller, and Peres 2013; Trusov, Bucklin, and

Pauwels 2009), connectedness (Katona, Zubcsek, and Sarvary 2011; Stephen and Toubia

2010), embeddedness (Aral and Walker 2014; Aral and Van Alstyne 2011), and the number

of adopters with a high indegree (Goldenberg et al. 2009; Hinz et al. 2011; Yoganarasimhan

2012), which is, however, a point of contention (Aral and Walker 2012; Trusov, Bodapati,

and Bucklin 2010; Watts and Dodds 2007). Other research has focused on forecasting and

predictions based on these insights (Dover, Goldenberg, and Shapira 2012; Garber et al.
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2004; Goldenberg et al. 2009; Goldenberg, Lowengart, and Shapira 2009).

In marketing, forecasting and predictions are not only made with respect to dissemi-

nation, but to a host of outcomes that range from predicting a person’s product or brand

choice (e.g., Chung and Rao 2003; Guadagni and Little 1983; Jacobs, Donkers, and Fok

2016) to predicting their churn decision (e.g., Bolton, Kannan, and Bramlett 2000; Ganesh,

Arnold, and Reynolds 2000). In these predictions, the prevalence of all possible future out-

comes is typically of the same order of magnitude. However, this is not the case when

outcomes include rare events, such as when managers aim to predict the future success of

recently launched products. By definition, rare events occur at a very low probability and

are therefore heavily underrepresented among all possible future outcomes. As a result, ap-

plying a logistic regression or binary probit to predict future successful products leads to

an underestimation of the probability of occurrence. King and Zeng (2001b) show that this

underestimation is particularly severe if both the mean of the binary variable (the relative

frequency of events in the data) and the number of observations is small, and consequently

biases the constant term of the regression. Another source of the underestimated probability

is the inflexible nature of parametric link functions used for logistic regressions and binary

probits (Blattberg, Kim, and Neslin 2010; Kamakura et al. 2005).

Firth (1993) addresses these concerns – especially the associated biased maximum like-

lihood estimates – and suggests a correction of the logistic likelihood by means of Je↵reys

invariant prior, specifically during the maximization procedure. Another and widely used

approach, predominantly for the binary logit model, is to oversample the rare event in the

training set and then to correct the resulting overestimation with respect to the rare event

(e.g., Cosslett 1993; Imbens and Lancaster 1996; Scott and Wild 1997). King and Zeng

(2001a,b) suggest applying either a weighting or intercept correction approach when using

the logit model. The former refers to maximizing the weighted log-likelihood, a more el-

egant technique with similar performance compared to the “weighted exogenous sampling

maximum-likelihood” method (Manski and Lerman 1977; Singh 2005), which corrects the es-

timates of the maximum likelihood estimation with the known probability of the rare event.
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The e↵ectiveness is highest for sample sizes with several thousands of observations, in which

the rare event occurs with a probability less than 5%. King and Zeng (2001a,b) assume that

this probability is common knowledge, which is a fair assumption in their application using

international conflict data. A third approach is to improve the flexibility of parametric link

functions, which still has to assert itself for rare events (Bult and Wansbeek 1995; Naik and

Tsai 2004). By applying the bias correction approach to the logit models after balancing the

training set (King and Zeng 2001a,b), Donkers, Franses, and Verhoef (2003) achieve better

results when predicting defection rates in the insurance domain. This is also true for exten-

sive data sets, as Lemmens and Croux (2006) show in the context of bagging and boosting

classification techniques when predicting churn in telecommunications.

In this paper, we are indi↵erent to the specific prediction model and introduce a man-

agerial framework designed to help managers who make investment decisions in the early

stage of product life cycles involving rare success events. In e↵ect, our framework fits any

prediction model that is preferred or more suitable for the case at hand. Based on the

ranking procedure of Morrison (1969), we propose to rank-order all products according to

their a posteriori probabilities of success and then to decide in which ones to invest. Un-

like Chatterjee, Ho↵man, and Novak (2003) who build on the procedure of Morrison (1969)

and propose to select an amount in the prediction set that equals the prevalence of success

known from historic data, we acknowledge that any selection size comes at a cost (creating a

trade-o↵ between wasted investments and lost returns). Moreover, our proposed managerial

framework does not depend on a specific prediction model but can be built on the model

with the best predictive power, or any model that the firm uses.

To assess di↵erent prediction models as well as predictors, signal detection theory o↵ers a

concept to measure the resulting prediction accuracy. Radar researchers initially developed

signal detection theory as a tool to distinguish meaningful information from noise (Peterson,

Birdsall, and Fox 1954), but the concept quickly gained traction in psychology, where de-

tection theory was combined with statistical decision theory (Green and Swets 1966; Krantz

1969; Swets 1961; Tanner Jr. and Swets 1954; Wickens 2001). Signal detection theory’s pop-
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ularity in the field of psychophysics (for an overview see Macmillan and Creelman 2004) and

memory recognition (e.g., Yonelinas and Parks 2007; Wixted 2007) has inspired applications

in marketing that investigate advertising recognition and response (e.g., Cradit, Tashchian,

and Hofacker 1994; Mercurio and Forehand 2011; Nielsen, Shapiro, and Mason 2010). The

popularity of this theory can be attributed to its potential use to separately measure de-

tectability and response bias. More specifically, it allows for the comparison of respondents

with similar detection rates of stimuli presented during an experiment by taking into con-

sideration their false alarms. Similarly, we aim to di↵erentiate between future best-selling

products (signal) and failures (noise) based on early-stage data. To this end, we try to find

a threshold rule such that the noise is removed. By setting this threshold rule, we consider

the probability of detection and the probability of false discovery (for an overview see Kay

2013) before linking these measures to the economic trade-o↵ introduced in this paper. The

former probability refers to the ratio of detected future successful products to the number

of all market launches, whereas the latter probability refers to the ratio of detected future

successful products that turn out to be failures to the number of detections by the threshold

rule.

If false discoveries entail high costs – such as in the context of rare events of success

following extensive investments – the evaluation of prediction models as well as predictors

should specifically include considerations concerning the probability of false discovery (Mc-

Morrow 2009; Pinker 2007). This is the case in resource allocation problems of, for example,

multinational companies, venture capital funds, and record labels when deciding on how

many as well as which products, start-ups, or music artists to select in an early stage of the

life cycle: Each selection is associated with a high investment and thus a failed investment

carries a high monetary consequence. Therefore, in this paper, we assess the prediction

accuracy of models in terms of probability of detection as well as false discovery, and sub-

sequently link these measures to the trade-o↵ between wasted investments and lost returns,

which we describe in greater detail below.
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3.3 Balancing Lost Returns and Wasted Investments

3.3.1 Probability of Detection and False Discovery

This paper addresses the manager’s allocation problem when deciding in how many as well

as in which recently launched products to further invest marketing resources. Although

success is a rare event, and only few products will eventually become best-sellers in the

long term, in most cases a manager can access information about similar products that were

launched on the market in the recent past, along with information on their performance

over time. This historic data can be used as the training set to identify the model with the

best predictive power in terms of probability of detection and probability of false discovery,

among a set of alternative models. A moving window, for example of two years, allows

the manager to monitor and re-evaluate the chosen prediction model. When faced with an

investment allocation decision, the manager can then build on this prediction model and

apply it to early-stage sales data (which serves as the prediction set) to select S products

for further investment. Based on the training set, the fraction of successful products r is

common knowledge. Hence, it is also common knowledge that the approximated number of

future successful products among N recent market launches in the prediction set is n = rN .

Since success in such a context is a rare event, we assume that n ⌧ N . Naturally, use of

the prediction model should assist the manager in generating significantly better detections

of these n products in the prediction set, compared to a random selection.10

The model’s predictive power – as a function of the selection size – is assessed in the

training set based on simulated out-of-sample predictions, e.g., using historic data in a mov-

ing two-year window. In each iteration of the simulation, we use two measures to assess the

out-of-sample predictions: First, we set the number of successful products in the respective

selection, nS, in relation to the total number of successful products in the training set, n.

In line with signal detection theory (e.g., Peterson, Birdsall, and Fox 1954), we term this

10The proportion of successful products in a random selection would be approximately n

N

.
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goodness measure probability of detection (PD), also known as the true positive rate:

PD(S) =
nS

n
, (5)

where the manager’s prediction model should, of course, outperform the random selection,

PD(S) � PDRandom(S)11, assuming a small selection size, S ⌧ N . Increasing the se-

lection size results in a higher probability of detection, which eventually converges to one,

limS!N PD(S) = 1.

Second, the predictive power of the model is further assessed in terms of the proportion

of unsuccessful products, S�nS, in the respective selection, S. In line with signal detection

theory (e.g., Peterson, Birdsall, and Fox 1954), we term this goodness measure probability of

false discovery (PF ), also known as false discovery rate:

PF (S) = 1� nS

S
, (6)

where the prediction model should outperform the random selection, PF (S) ⌧ PF (S)random.

Increasing the selection size results in a lower probability of false discovery, which eventually

converges to the proportion of unsuccessful products in the product set, limS!N PD(S) =

1� n
N
. Since nS = n · PD(S) (see Equation 5), Equation 6 can be rewritten as

PF (S) = 1� n

S
· PD(S) . (7)

Please note that since n = rN , where r and N is common knowledge for any market launch,

Equation 7 holds for any selection size S given N products in a recent market launch – based

on the probability of detection and probability of false discovery of the chosen prediction

model (calculated in the training set).

3.3.2 Wasted Investments Versus Lost Returns

We assume that a manager has a budget B and selects products from a large set of recently

launched products, each of which associated with an investment C. The manager allocates

11PD(S)
Random

=
P

n

nS=0
nS
n

Prob
Random

(n
S

|S), where Prob
Random

(n
S

|S) is the probability to get n
S

successful products when making a random selection of S products, i.e.,
( n
nS
)( N�n

S�nS
)

(NS)
.
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his or her budget among the selected products: Hence, the manager can invest in B
C
products

at most. If a selected product turns out to be a success, then we assume that the manager

receives an expected revenue R, otherwise the investment C is lost and no expected revenue is

generated, R = 0. Recall that based on the training set, the fraction of successful products

r is common knowledge. Therefore, it is also common knowledge that the approximated

number of future successful products among N recent market launches in the prediction

set is n = rN . As new product success is a rare event, n ⌧ N , and since the manager’s

budget is limited, B ⌧ NC, the manager is unable to invest in all products from the recent

market launches, B
C
⌧ N , and thus must decide on a selection of products when making an

investment.

As outlined above, a manager can apply the chosen prediction model – which is trained

and evaluated on historic data (the training set) – to early-stage dissemination data (the

prediction set) to select S products from a large set of N recently launched products, where

S  B
C
. For the sake of brevity we also assume that B � n · C, namely that the manager’s

budget is su�ciently large. Every selection size involves a trade-o↵. On the one hand,

investments in an early stage of the product life cycle are associated with the significant risk

that many of the selected products will be failures, which means that certain investments

are lost. We term the proportion of the allocated budget that does not generate any revenue

as wasted investments (WI). The expected value of wasted investments if S products are

selected from a large set of recently launched products is given by

WI(S) = PF (S) · S · C . (8)

On the other hand, not selecting a future successful product detracts from the entire return

potential, i.e., the manager fails to skim n · (R�C). We term this foregone return potential

as lost returns (LR). The expected value of such lost returns is given by

LR(S) = (1� PD(S)) · n · (R� C) . (9)

The decision problem of selecting S products by means of an imperfect prediction model

involves considerations about profits ⇧(S). In fact, the manager resolves a trade-o↵ between
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wasted investments and lost returns in order to maximize the profit potential of new products,

which is given by

⇧(S) = ⇧� LR(S)�WI(S) s.t. S � 0 , (10)

where ⇧ is the maximum profit potential, ⇧ = n · (R�C). In case the selection size is zero,

S = 0, then profits are also zero, ⇧(S = 0) = 0 (for details on the derivation and further

elaborations see Appendix A.4).

Equation 10 implies that wasted investments and lost returns both reduce profits. In

addition, the more new products a manager invests in, the higher the wasted investments

and the lower the lost returns. Hence, the optimal selection size S⇤ resolves the trade-o↵

between these two measures. Moreover, Equation 10 reveals that a perfect model would

skim the entire profit potential, ⇧ = ⇧, since in a perfect model wasted investments and lost

returns are zero, WI(S) = 0 and LR(S) = 0. In fact, if wasted investments are zero, then

the probability of false discovery is also zero, PF (S) = 0, since in this case, the manager

allocates his or her entire budget to future successful products, S⇤  n. Furthermore, if lost

returns are zero, then the probability of detection is one, PD(S) = 1, as all future successful

products are detected, S⇤ � n. Hence, no wasted investments or lost returns implies that

the selection size equals the prevalence of future successful products, S⇤ = n = nS.

To guarantee that S is non-negative, we apply the Kuhn and Tucker (1951) condition

and maximize profits by applying the method of Lagrange multipliers. The optimal selection

size S⇤ that resolves the following first order condition (FOC) equation (for the derivation

and further elaborations see Appendix A.4) is:

����
dLR(S)

dS

���� =
dWI(S)

dS
, (11)

or equivalently
@PF (S)

@S
· S + PF (S) =

ROI

1 +ROI
, (12)

where the return on investment (ROI) is the proportion of profits generated by an investment

in a successful product, ROI = R�C
C

. The FOC equation holds – and hence there exists an
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internal solution – if and only if ⇧(S⇤) > 0, namely

PF (S⇤) <
ROI

ROI + 1
. (13)

There exists an internal solution to Equation 13 if the ROI in a given product category is

su�ciently high. Otherwise, there exists a corner solution, where the selection size is zero,

S⇤ = 0, as it is not worthwhile for a manager to make any investment. Note that PF (S) is

known from the training set based on out-of-sample predictions, for example using historic

data in a moving two-year window. Therefore, S⇤ can be derived numerically by resolving

Equation 12, which takes into account the constraint given by Equation 13. If the ROI gives

a non-zero selection size, S⇤ > 0, then we propose to rank-order all products according to

their a posteriori probabilities of success in the prediction set (Chatterjee, Ho↵man, and

Novak 2003; Morrison 1969) and to subsequently select S⇤ products along these decreasing

probabilities, which then determines (1) in how many and, more precisely, (2) in which

products a manager should invest in an early stage of their life cycle.

In contrast, most popular statistical procedures lead to a selection size that is close to or

even zero, a direct consequence of applying the maximum a posteriori probability principle

(MAP) in the context of rare events, which are by definition not likely to occur. Unlike

existing methodological approaches for addressing rare events (e.g., Firth 1993; King and

Zeng 2001a,b), our proposed managerial framework does not depend on a specific prediction

model but can simply be built on the model with the best predictive power in terms of

probability of detection and probability of false discovery. Moreover, our proposed frame-

work does not consider the MAP and suggests an optimal selection size along decreasing a

posteriori probabilities of success while taking into account the economic trade-o↵ between

wasted investments and lost returns – whether or not these probabilities indicate success or

non-success according to the MAP.

In the following section, we report two studies conducted to test our proposed framework.

We first introduce the data and the early-stage predictors of success before describing the

modeling approach. We then conduct a preliminary study to assess several model specifica-
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tions according to their predictive power, measured in terms of probability of detection and

probability of false discovery. Based on the specification with the best predictive power, we

conduct a second study to test how e�cient managers’ current selection policies are, and

further explore the benefits that our proposed framework o↵ers.

3.4 Empirical Test and Application

3.4.1 Data

We empirically test and illustrate our proposed managerial framework in the context of music

artists on SoundCloud, the largest user-generated content network in the domain of music

with more than 175 million music artists and fans (Pierce 2016). Hence, the products to

which we apply our managerial framework are human brands (Thomson 2006). Users on

SoundCloud have various objectives: Music artists market their music by developing their

follower base to generate more song-plays, whereas fans follow their favorite artists, listen

to their songs, and connect with other fans. We consider 534 artists that signed up to

SoundCloud in March 2013 and track them over 123 weeks until July 2015. In empirically

testing and illustrating our proposed managerial framework, our objective is to find predictors

that e↵ectively detect future successful music artists on SoundCloud several weeks after their

sign-up. More specifically, our early-stage observation period for prediction is four, eight, and

twelve weeks after an artist’s sign-up, and we aim to predict his or her success two years later.

We define an artist to be successful if he or she achieves to exceed more than three orders

of magnitude in regard to his or her average received monthly song-plays (i.e., > 1, 000).

In the target time period for prediction (May to July 2015), 55 artists in our sample (10%)

are successful according to this criterion, while 479 (90%) are not. Of this group, 135 have

between 100 and 1,000 average monthly song-plays while 344 artists have fewer than 100

average monthly song-plays. For a detailed description of the data, see Appendix A.5.

To trigger follow-backs (and thus increase their follower base and generate more song-
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plays), music artists can reach out to other users by following them, sending them private

messages, reposting their songs, commenting on their songs, and liking their songs. In line

with Ansari et al. (2016) and Saboo, Kumar, and Ramani (2015), we assume that promo-

tional outgoing activities directly a↵ect success (i.e., song-plays), and indirectly through the

artist’s egocentric network. The value embedded in an individual’s egocentric network is

known as social capital (e.g., Coleman 1988, 1990; Putnam 2001) and takes an inside-out

view, focusing on the music artist (ego) as well as on the di↵erent layers of the artist’s fol-

lower base (egocentric network). In line with social capital measures (Borgatti, Jones, and

Everett 1998; Burt 1983), these layers are most commonly characterized by the structure or

density of the egocentric network and, furthermore, by centrality measures (degree, between-

ness, and closeness centrality) that represent the artist’s position within the entire network

(Freeman 1978; Wasserman and Faust 1994). Hence, as predictors for success we consider

(1) artists’ activities and (2) artists’ social capital on SoundCloud. For a detailed description

of the theoretical foundation, see Appendix A.5.

3.4.2 Assessing the Predictive Power of Model Specifications – A Preliminary

Study

The purpose of this preliminary study is to assess various model specifications according to

their predictive power, which we measure in terms of probability of detection and probability

of false discovery. More precisely, we make out-of-sample predictions over 1,000 iterations,

and in each iteration randomly divide our dataset of 534 unknown music artists into two

halves, where one half is treated as the training set and the second half is treated as the pre-

diction set. This allows for the calculation of the probability of detection and the probability

of false discovery as a function of the selection size (see Equation 5 and Equation 6), which

we use to evaluate the predictive power of the alternative model specifications. To incorpo-

rate the di↵erent orders of magnitude of average monthly song-plays, we use an ordered-logit

model with the following early-stage predictors of success: the average monthly song-plays,

the average monthly promotional activities, the total number of uploaded songs, and one
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of the following four social capital measures: (1) first-degree followers, (2) second-degree

followers, (3) first-degree clustering, and (4) reciprocity. For a detailed description of the

modeling approach, see Appendix A.5.

For each of the four specifications of the ordered-logit model along with the three early-

stage observation periods, Table 6 exhibits the average probability of detection and proba-

bility of false discovery, where averaging is performed over selection sizes of 10, 20, and 30

music artists.12 Table 6 indicates that even the näıve model, which incorporates only the

average monthly song-plays in the early-stage observation period, has some predictive power.

However, especially in weeks four and eight, the predictive power of the full model is greater

by several percentage points. Specifically, using the model that includes reciprocity increases

the average probability of detection by around 5 percentage points and decreases the average

probability of false discovery by around 10 percentage points. In this model including reci-

procity, Table 6 further shows that the later the prediction is made, the higher the average

probability of detection (probability increases from 10.2% in week four to 19.8% in week

twelve). Moreover, the later the prediction, the lower the average probability of false dis-

covery (probability declines from 72.1% in week four to 45.9% in week twelve). Nonetheless,

even at the end of the twelve-week prediction period, the music artist is still at a very early

stage of establishing his or her follower base. Although a cohesive follower base is pivotal for

long-term success (Ansari et al. 2016), first-degree clustering presumably plays a stronger

role as the artist’s career progresses: First, the artist triggers follow-backs by reaching out to

other SoundCloud users through promotional activities. By strengthening ties to users that

followed back and establishing bi-directional connections (increasing reciprocity), an artist

can build trust (Coleman 1988). Only then does the connectivity within the follower base

potentially come into play, when an artist’s followers start building a cohesive fan community

by following each other.

12These selection sizes are equivalent to around 33%, 66%, and 100% of the prevalence of future successful
products in the prediction set. Note that there are 27 future successful artists in the prediction set on
average.
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— Insert Table 6 about here —

Focusing now solely on the model specification that includes reciprocity, we compare

the ordered-logit model to three benchmarks models that are widely used in the context of

rare events: (1) logit, (2) Firth (Firth 1993; Heinze 2006; Heinze and Schemper 2002), and

(3) ReLogit (Imai, King, and Lau 2008; King and Zeng 2001a,b). For each of the three

early-stage observation periods, we compare the models’ predictive power by calculating

the average probability of detection and average probability of false discovery following the

same simulated out-of-sample predictions as for the above evaluation of the best early-stage

predictors of success.

Table 7 shows that in week 4, the benchmark models collapse as a result of the insu�cient

information contained in the data due to the lack of variation when only a binary success

variable is employed. In terms of the average probability of false discovery, the ordered-

logit model dominates the benchmark models by more than 15 percentage points. However,

the logit and Firth benchmark models’ average probabilities of detection in week eight and

week twelve outperform the ordered-logit model by around 2 percentage points, while the

ReLogit model generates lower values for the average probability of detection. Yet, the

economic impact of a higher probability of false discovery is more severe, especially if the

single investment in a music artist is high. Hence, every investment that turns out to be a

failure has significant monetary consequences, strongly reducing profits. Along these lines,

Equation A.97 shows that given an ROI and a selection size, expected profits decline as the

probability of false discovery increases. We therefore conclude that the ordered-logit model

outperforms the benchmark models.

— Insert Table 7 about here —

Figure 6 presents for the ordered-logit model – and at a higher resolution – the prob-

ability of detection and probability of false discovery (as a function of the selection size)
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for predictions four (panels A and B), eight (panels C and D), and twelve weeks (panels E

and F) after the music artists’ sign-up. Congruent to the findings in Table 6 and Table 7,

Figure 6 reveals that the probabilities of detection increase and the probabilities of false

discovery decline the later the prediction is made. Furthermore, Figure 6 again reveals that

the full model outperforms the näıve model, which only incorporates the average monthly

song-plays. Naturally, the results of both models remain within the boundaries given by the

perfect model and the random selection (see discussion of Equation 10).

— Insert Figure 6 about here —

3.4.3 The E↵ectiveness of Current Selection Policies: Assessing Managers’ Per-

formance

After assessing the predictive power of several model specifications in terms of probability

of detection and probability of false discovery, it remains to explore whether the proposed

managerial framework outperforms managers’ current selection policies. The purpose of this

study is to test the e↵ectiveness of conventional managerial selection policies and demon-

strate the benefits of the proposed framework. Therefore, we compare the monetary outcome

of the selection of music artists recommended by our proposed framework against selections

based on the following popular policies currently used by managers: (1) the näıve selection,

namely to choose the amount of music artists along decreasing a posteriori probabilities that

equals the prevalence of success known from historic data13 (Chatterjee, Ho↵man, and No-

vak 2003; Morrison 1969), (2) the MAP, namely to select all artists that feature a posteriori

probabilities indicating success rather than non-success (Gallager 2013), and (3) the ran-

dom selection, where the selection size equals the prevalence of success as in the rare event

selection.
13Note that the fraction of successful music artists r is common knowledge based on the training set.

Hence, it is also common knowledge that the approximated number of future successful artists among N

recent sign-ups in the prediction set is n = r ·N .
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We conduct a simulation of the steps a manager at a record label would have to undertake

in practice when following our proposed managerial framework and the three commonly used

policies noted above: the näıve selection, the MAP, and the random selection. Hence, we

distinguish between historic data and early-stage data. According to our proposed frame-

work, a manager uses historic data to identify the model with the best predictive power

in terms of probability of detection and probability of false discovery, and calculates the

optimal selection size. Then, the manager can build on the trained and evaluated prediction

model and apply it to early-stage dissemination data. Therefore, in each iteration of our

simulation study, we randomly divide the sample into thirds, where two thirds are treated

as historic data and one third is treated as early-stage dissemination data up to four, eight,

and twelve weeks. Specifically, we calculate profit realizations in 1,000 iterations, where the

mechanism in each iteration is based on the following five sequential steps.

First, the mechanism randomly divides the sample of 534 unknown music artists into

thirds, where two thirds are treated as historic data (which serves as the training set) and

one third is treated as early-stage dissemination data up to four, eight, and twelve weeks

(which serves as the prediction set). Crucial for the profit calculation, the prediction set

also contains information on the final outcome (whether or not the artist’s average monthly

song-plays exceeded three orders of magnitude). Note that in our simulation we use the final

outcome only for the sake of validation.

Second, in each of the 1,000 iterations, 1,000 out-of-sample predictions are made based

solely on the training set (determined in step 1) by randomly dividing this training set

into two halves. This allows for assessment of the predictive power of the chosen model

(in terms of probability of detection and probability of false discovery) as a function of the

selection size (see Equation 5 and Equation 6), which are averaged over the 1,000 out-of-

sample predictions. These two goodness measures thus become common knowledge on the

basis of the training set.

Third, based on the resulting average probability of false discovery, the optimal selec-
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tion size is calculated to maximize expected profits given the ROI (see Equation 10 and

Equation A.97). More specifically, the mechanism resolves the optimal selection size S⇤ nu-

merically since the probability of false discovery PF (S) allows for the direct calculation of

expected profits,

⇧

C
= S · (ROI � PF (S)�ROI · PF (S)) , (14)

where the units are given by C, which denotes the investment associated with selecting one

music artist from a new wave of sign-ups, and ROI = R�C
C

. The optimal selection size S⇤ is

given by the selection size that maximizes expected profits, ⇧
C
(S⇤|ROI), such that S⇤ is non-

negative and thus the expected profits are non-negative. Hence, the training set generates

the average probability of detection and average probability of false discovery, along with

the optimal selection size.

Fourth, the mechanism uses the entire training set (determined in step 1), calibrates the

model parameters, and applies the model to the prediction set (determined in step 1) to

generate a posteriori probabilities of success for predictions four, eight, and twelve weeks

after the artists’ sign-up.

Fifth, all music artists are rank-ordered according to their a posteriori probabilities of

success in the prediction set, and the optimal selection size, which depends on the respective

ROI, is calculated. In each iteration, the profit realization is calculated for each selection

size S⇤, to allow a comparison of our proposed managerial framework against the managers’

commonly used selection policies. In the näıve as well as the random selection policy, the

selection size equals the prevalence of success in the training set, where the former suggests

choosing these music artists not randomly but along decreasing a posteriori probabilities of

success. In comparison to the näıve selection, our proposed framework takes into account the

economic trade-o↵ between wasted investments and lost returns along decreasing a posteriori

probabilities of success and suggests a selection size S⇤ that maximizes expected profits. The

selection policy based on the MAP only suggests selecting music artists whose a posteriori

probabilities indicate success, namely if they are greater than 50%. The profit realization of
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a selection is the ratio between the total realized profits, ⇧ = nSR�S⇤C, and the maximum

profit potential, ⇧ = n · (R� C), and is calculated as follows:

⇧

⇧
=

nS · (ROI + 1)� S⇤

n ·ROI
, (15)

where nS is the proportion of eventually successful music artists in the selection S⇤, R is the

expected revenue if a selected artist turns out to be a success, C is the associated investment

in a selected artist, and ROI = R�C
C

. Equation 10 reveals that a perfect prediction model

would skim the entire profit potential, ⇧ = ⇧, since in a perfect model, wasted investments

and lost returns are zero and the selection size equals the prevalence of future successful

products, S⇤ = n = nS. Therefore, it follows that in a perfect prediction model, the profit

realization is maximal, ⇧
⇧
= 1.

Based on the above-described simulation study mimicking the steps a manager at a record

label would have to undertake in practice, Figure 7 exhibits the average profit realization

– as a function of the ROI – for predictions four (panel A), eight (panel B), and twelve

weeks (panel C) after the music artists’ sign-up. Interestingly, the random selection policy

outperforms the MAP, especially for higher levels of ROI. While the selection size is close

to or even zero for the MAP, the future successful artists detected by the random selection

by chance alone compensate, at higher levels of ROI, for the monetary consequences of the

loss of investments in unsuccessful artists. The later the prediction is made and thus the

weaker the noise compared to the signal incorporated in the model, the greater the chance

that the MAP-based selection indicates success, which then results in a non-zero selection

size. Therefore, the later the prediction is made, the greater the profit realization generated

by the MAP, although it increases only marginally from 0% (week 4) to 7.6% (week 12).

On the other hand, the näıve selection policy suggests choosing the same number of artists

as the random selection policy, but does so along decreasing a posteriori probabilities of

success. Indeed, the realized profits triple, but this selection fails to take into account the

trade-o↵ between wasted investments and lost returns. Our proposed managerial framework

addresses this trade-o↵ and, based on expected profits, recommends a selection size for each

ROI, whereas the benchmark approaches choose the same selection size independent of the
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ROI. Hence, in all early-stage observation periods for prediction and especially at higher

levels of ROI, profit realization of our proposed framework is up to four times greater than

the benchmark approaches (see Figure 7).

— Insert Figure 7 about here —

The incorporation of the economic trade-o↵ along decreasing a posteriori probabilities

enhances decision-making, and highlights the gross ine�ciency of managers’ current selection

policies in the context of rare events. Based on the probability of detection and probability

of false discovery as a function of selection size (see Figure 6), which we link to wasted

investments and lost returns, our proposed framework calculates the optimal selection size

S⇤ as a function of ROI. The later the prediction is made, the richer the available information,

and the better the prediction model, the lower is the threshold for ROI to select at least one

music artist among a new wave of sign-ups. In other words, there is a threshold below which

it is not worthwhile to make any investment. Figure 8 exhibits the optimal selection size S⇤

as a function of ROI and reveals that this minimum threshold for a non-zero selection size

is 184%, 77%, and 13% for predictions four, eight, and twelve weeks after the music artists’

sign-up. Hence, an investment of $100,000 dollars in a successful music artist has to result

in at least a total return of $284,000, $177,000, and $113,000 dollars. If the ROI is above

the minimum threshold and amounts to for example 500%, then the optimal selection size

increases to 16, 27, and 35 music artists four, eight, and twelve weeks after sign-up.

— Insert Figure 8 about here —

3.5 Discussion

Our paper o↵ers managers a quantitative framework for allocating marketing resources to

products shortly after their market launch. The commonly used procedure to choose an
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optimal selection of products for further investment is to employ a probability model, which

predicts success based on the MAP. Hence, a product is selected if it is more likely to be

a success than a non-success. However, this approach is not e↵ective in the context of

rare events, because success is determined by various factors – most of them may be even

unobserved – where in practical models many of these factors are considered as noise. A

typical feature of early-stage prediction is that this noise is much stronger than the signal

incorporated by the model. Hence, applying the MAP when predicting success of products

results in an optimal selection size of close to or even zero because in reality most if not all

products are more likely to be a failure.

When investing in only a single new product, managers face enormous lost returns since

it is almost certain that at least several future successful products are excluded from invest-

ments of marketing resources. At the other extreme, when investing in all new products,

managers will waste extensive resources on the many products that later turn out to be

failures. Along these lines, we propose and test a framework to extend current literature

by (1) evaluating the predictive power of models in terms of probability of detection and

probability of false discovery (Peterson, Birdsall, and Fox 1954), (2) rank-ordering all prod-

ucts according to their a posteriori probabilities of success (Chatterjee, Ho↵man, and Novak

2003; Morrison 1969), and (3) resolving the economic trade-o↵ between wasted investments

and lost returns along decreasing a posteriori probabilities of success, which subsequently

determines in how many and, more precisely, in which products a manager should invest in

an early stage of their life cycle.

We empirically test and illustrate our proposed framework in the context of user-generated

content networks. We use a dataset of SoundCloud, the largest user-generated content net-

work in the music domain, and recommend in how many as well as which music artists from

a new wave of sign-ups to invest, a common decision problem of record labels. We find that

the managers’ investment decisions in the context of rare events are mostly ine�cient, as the

profit realization of our proposed framework is up to four times greater than their current

selection policies.
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Our framework is not only geared towards improving resource allocation at companies

with broad and deep product pipelines (e.g., Nestlé) or social networking platforms with

millions of users (e.g., SoundCloud). On the contrary, our proposed framework can also

assist venture capitalists to make better-informed investment decisions when evaluating start-

ups. Based on historic data, the venture capitalist would first identify the model with the

best predictive power in terms of probability of detection and probability of false discovery,

before applying it to early-stage dissemination data of new investment opportunities, such

as sales figures, market size projections, or qualitative information about the founding team.

Although managers may be tempted to eschew quantitative decision-making methods in

early stages of the start-ups’ life cycles, when signals are weak and seem to have limited

value, our proposed framework o↵ers a practical tool to handle the available information in

such noisy environments. We even argue that our framework applies to instances where the

sample is balanced – unlike in the case of rare events – as the major contribution of this

paper lies on the trade-o↵ between wasted investments and lost returns that is associated

with any selection size. Our proposed framework does not consider the MAP and suggests

an optimal selection size along decreasing a posteriori probabilities of success while taking

into account this economic trade-o↵ – whether or not these probabilities indicate success or

non-success according to the MAP.

The universal applicability of our proposed framework may be a↵ected by several limita-

tions: First, it relies exclusively on quantitative measures and does not integrate qualitative

ones, which, in some cases, such as the assessment of start-ups, may be significant in pre-

dicting future success. Second, our proposed framework depends on historic data covering

successful cases as well as failures when identifying the model with the best predictive power.

Absence of such data can limit the e↵ectiveness of this approach. Third, our proposed frame-

work also depends on early-stage dissemination data and thus focuses on post-launch resource

allocation. Future research should therefore be geared towards the empirical validation of

our framework’s generalizability to other industries, other stages in the product life cycle,

and the incorporation of qualitative measures. We hope this paper encourages work in these

66



and related directions.

4 General Conclusion

This dissertation sets out (1) to investigate optimal seeding policies (e.g., as a creator of

music), and (2) to create a managerial framework for early-stage investments in creators

(e.g., as a record label). In the context of user-generated content networks, which consti-

tute a unique type of social networking platform (e.g., Goldenberg, Oestreicher-Singer, and

Reichman 2012; Mayzlin and Yoganarasimhan 2012; Trusov, Bodapati, and Bucklin 2010),

each of the two embedded essays covers one of these topics. More precisely, the former takes

the perspective of the creator – i.e., how to quickly accumulate followers after signing up to

a user-generated content network – and the latter takes the perspective of the investor – i.e.,

how to invest in such recent sign-ups.

The first essay, co-authored with Jacob Goldenberg, Daniel Shapira, and Florian Stahl,

entitled “Climb or Jump – Status-Based Seeding in User-Generated Content Networks” chal-

lenges the role of influencers or high status individuals. Based on unique datasets of Sound-

Cloud and by means of empirical as well as analytical analyses, we study creators of music

who seek to build and increase their follower base by directing promotional actions to other

users of the networking platform. Current social network literature in marketing suggests

that such creators should reach out exclusively to individuals with the highest status in the

network in terms of centrality (e.g., Goldenberg et al. 2009; Hinz et al. 2011; Libai, Muller,

and Peres 2013; Yoganarasimhan 2012). In fact, topical research treats seeding as a mat-

ter of choice, which does not involve risk in the form of time constraints, search costs to

find seeding targets, anti-spam policies, or di↵erences in responsiveness. However, if the

di↵erence of network status between the creator and the seeding target matters, the cre-

ator’s budget of promotional actions is constrained, and since di↵erent levels of returns are

associated with di↵erent levels of responsiveness, it follows that creators must solve a risk

versus return trade-o↵ when choosing their portfolios of seeding targets. Hence, the optimal
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seed is not necessarily the individual with the highest status, especially if the probability to

follow back varies. As a consequence, unknown creators who seek to build and increase their

follower base, targeting high-status individuals is associated with high risk (due to their low

responsiveness), while targeting low-status individuals is associated with lower risk (due to

their higher responsiveness). Indeed, our empirical analysis of creators’ revealed preferences

on SoundCloud indicates that the higher the status di↵erence is between the creator and

the seeding target, the lower the a priori probability of a follow back. Further analyses also

reveal that creators of music spread their budgets of promotional actions over several orders

of magnitude in terms of status, meaning they choose a portfolio and do not send only to

a certain status – and definitely not exclusively to individuals with the highest status in

the network. Finally, our simulations show that unknown creators who seek to build and

increase their follower base should ignore predominant seeding policies and slowly “climb”

across status levels of seeding targets rather than attempting to “jump” towards those with

the highest status. Hence, unknown creators should invest in seeding targets with the lowest

status, instead of chasing indirect returns by directing promotional actions to high-status

individuals.

The second essay, with the same co-authors, entitled “Allocation of Marketing Budget

When Success Is a Rare Event” addresses the managerial decision problem of allocating

marketing resources to a set of unknown creators of content, recently launched products, or

start-ups. We propose and test a framework to extend the current literature by evaluating

the predictive power of models in terms of probability of detection and probability of false

discovery (Peterson, Birdsall, and Fox 1954), rank-ordering all creators, products, and start-

ups according to their a posteriori probabilities of success (Chatterjee, Ho↵man, and Novak

2003; Morrison 1969), and resolving the economic trade-o↵ between wasted investments

and lost returns along decreasing a posteriori probabilities of success, which subsequently

determines in how many and, more precisely, in which creators, products, and start-ups a

manager should invest in an early stage of their life cycle. We empirically test and illustrate

our proposed framework in the context of SoundCloud and recommend in how many as
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well as which music artists from a new wave of sign-ups to invest in – a common decision

problem of record labels. We find that the managers’ investment decisions in the context of

rare events are mostly ine�cient, as the profit realization of our proposed framework is up

to four times greater than their current selection policies.
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Tables and Figures

Table 1: Descriptive Statistics

Sample 2009-20141 Sample 2012-2015

Descriptives Mean Median Std Mean Median Std

Indegree
Aug. 2011 134.77 19.00 532.88 - - -
Mar. 2014 1254.81 59.00 31730.52 53.07 5.00 12.10
Jun. 2015 - - - 20.01 8.00 102.10

Follows
sent 204.94 56.00 381.10 35.21 10.00 91.57
received 1254.81 59.00 31730.52 20.01 8.00 102.10

Song Comments
sent 69.12 12.00 290.67 5.52 2.00 19.84
received 132.31 14.00 711.46 12.33 3.00 97.49

Song Likes
sent 75.28 13.00 274.63 32.74 4.00 101.84
received 552.34 20.00 7108.54 89.07 6.00 1014.00

Messages
sent 65.34 9.00 767.03 10.00 2.00 67.55
received 54.24 9.00 149.68 5.25 1.00 68.72

Song Plays
sent 1703.26 390.00 3876.24 771.25 37.00 2885.87
received 14378.87 380.00 222609.50 4785.35 176.00 59770.22

Song Reposts
sent - - - 0.04 0.00 0.70
received - - - 0.02 0.00 1.17

Tracks uploaded 31.12 9.00 108.10 10.13 3.00 37.85

Weekly Follows
sent 0.55 0.00 10.18 0.19 0.00 4.37
received 4.12 0.00 362.48 0.10 0.00 1.13

Weekly Song Comments
sent 0.14 0.00 2.00 0.01 0.00 0.28
received 0.32 0.00 4.84 0.01 0.00 0.32

Weekly Song Likes
sent 0.17 0.00 2.01 0.12 0.00 1.28
received 1.50 0.00 49.93 0.07 0.00 3.19

Weekly Messages
sent 0.13 0.00 8.36 0.003 0.00 0.21
received 0.15 0.00 1.01 0.004 0.00 0.25

Weekly Song Plays
sent 5.68 0.00 84.37 5.20 0.00 34.13
received 50.29 0.00 1658.29 5.98 0.00 266.50

Weekly Song Reposts
sent - - - 0.003 0.00 0.21
received - - - 0.004 0.00 0.25

Weekly Tracks uploaded 0.12 0.00 1.66 0.01 0.00 0.35

1
We consider only the 24,020 creators of music and omit the 11,936 non-creators that signed up in the first quarter 2009.
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Table 2: Response Probabilities

Seeding Target Types

Creator Types Type 1 Type 2 Type 3 Type 4

Type 1 Seeding Target 7.41% 3.31% 0.37% 0.03%
Type 2 Seeding Target 8.61% 4.97% 0.86% 0.05%
Type 3 Seeding Target 9.07% 7.30% 2.11% 0.22%
Type 4 Seeding Target 15.03% 16.46% 5.86% 0.75%

N = 4,964,174 follows, messages, song comments, and song likes of

18,005 creators of music over 1,959 days / Reaction period = 1 week

Table 3: Song Repost Probabilities

Seeding Target Types

Creator Types Type 1 Type 2 Type 3 Type 4

Type 1 Seeding Target 0.109% 0.050% 0.007% 0.001%
Type 2 Seeding Target 0.174% 0.075% 0.025% 0.014%
Type 3 Seeding Target 0.457% 0.152% 0.078% 0.022%
Type 4 Seeding Target 0.372% 0.554% 0.123% 0.023%

N = 1,377,838 follows, messages, song comments, and song likes of

13,469 creators of music over 498 days / Reaction period = 1 week
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Table 4: Expected Indirect Returns (and Standard Deviations) Given a Song Repost

Follows Plays

Type 1 Creator Reposted by

Type 1 Seeding Target 0.01 (0.13) 0.48 (1.18)
Type 2 Seeding Target 0.41 (1.67) 6.51 (10.95)
Type 3 Seeding Target 2.22 (4.15) 43.19 (70.94)
Type 4 Seeding Target 7.60 (9.82) 281.60 (335.03)

Type 2 Creator Reposted by

Type 1 Seeding Target 0.03 (0.19) 0.75 (1.55)
Type 2 Seeding Target 0.45 (1.14) 7.87 (12.68)
Type 3 Seeding Target 2.99 (5.95) 62.10 (112.72)
Type 4 Seeding Target 17.52 (26.94) 779.03 (1104.14)

Type 3 Creator Reposted by

Type 1 Seeding Target 0.03 (0.20) 0.80 (1.55)
Type 2 Seeding Target 0.34 (0.91) 7.09 (12.96)
Type 3 Seeding Target 4.24 (10.32) 100.42 (194.90)
Type 4 Seeding Target 32.84 (42.81) 1144.18 (1719.02)

Type 4 Creator Reposted by

Type 1 Seeding Target 0.03 (0.19) 1.13 (1.95)
Type 2 Seeding Target 0.26 (0.70) 7.66 (13.32)
Type 3 Seeding Target 3.15 (6.44) 113.13 (237.84)
Type 4 Seeding Target 55.86 (67.68) 2397.01 (3063.42)

N = 1,501,051 reposts of songs from 9,402 creators of music over 424 days / Reaction period = 1 week
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Table 5: Expected Total Returns (and Standard Deviations)

Seeding Target Types

Creator Types Type 1 Type 2 Type 3 Type 4

Type 1 Seeding Target .0741 (.2619) .0333 (.1828) .0039 (.0721) .0003 (.0446)
Type 2 Seeding Target .0862 (.2807) .0500 (.2199) .0093 (.1401) .0029 (.3757)
Type 3 Seeding Target .0909 (.2876) .0735 (.2629) .0244 (.3421) .0095 (.8038)
Type 4 Seeding Target .1505 (.3576) .1660 (.3749) .0625 (.3443) .0205 (.3390)

N = 4,964,174 follows, messages, song comments, and song likes of 18,005 creators of music over 1,959 days /

Reaction period = 1 week

Table 6: Predictive Power of Alternative Model Specifications

Social Capital Measures

t Näıve Model
First-Degree
Followers

Second-Degree
Followers

First-Degree
Clustering Reciprocity

Average PD(S)

4 4.6% 3.7% 5.0% 6.4% 10.2%

8 9.6% 10.1% 10.8% 13.0% 14.0%

12 18.7% 18.2% 18.7% 19.7% 19.8%

Average PF (S)

4 87.3% 89.6% 86.3% 82.4% 72.1%

8 73.6% 72.2% 70.5% 64.5% 61.7%

12 49.1% 50.3% 49.2% 46.3% 45.9%
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Table 7: Predictive Power of Benchmark Models

Benchmark Models

t Näıve Model Ordered Logit Logit Firth ReLogit

Average PD(S)

4 4.6% 10.2% – – –

8 9.6% 14.0% 16.1% 16.7% 7.5%

12 18.7% 19.8% 25.4% 25.3% 7.1%

Average PF (S)

4 87.3% 72.1% – – –

8 73.6% 61.7% 77.4% 76.5% 89.8%

12 49.1% 45.9% 61.5% 61.3% 90.2%
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Figure 1: A Priori Response Probabilities
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Figure 2: A Priori Response Probabilities: Low- and High-Status Creators
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Figure 3: Portfolios of Creators
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Figure 4: Portfolio of Type-1 Creators as a Function of the Budget
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Figure 5: The Median Growth of the Follower Base: A Comparison of Three Seeding Policies
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Figure 6: Probability of Detection and False Discovery as a Function of the Selection Size
Four (Panels A and B), Eight (Panels C and D), and Twelve Weeks (Panels E and F) After
Sign-Up
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Figure 7: Profit Realization as a Function of the Return on Investment Four (Panel A),
Eight (Panel B), and Twelve Weeks (Panel C) After Sign-Up
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Figure 8: Optimal Selection Size of Music Artists as a Function of the Return on Investment
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Appendix

A.1 Proofs of Propositions 1 – 6

Proof of Proposition 1. We follow the expected utility given by (3), i.e.,

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) ,

and the optimization problem given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B .

Since a risk neutral creator does not di↵erentiate between the expected utility and the

expected return, i.e., U(xL+ yH) = xL+ yH, the optimization problem is as a result given

by

Max
X,Y

EU =

 
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x x

! 
YX

y=0

✓
Y

y

◆
pyH (1� pH)

Y�y

!
L

+

 
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x

! 
YX

y=0

✓
Y

y

◆
pyH (1� pH)

Y�y y

!
H (A.1)

=XpL + Y pH . (A.2)

Resolving the above optimization problem results in

@EU

@X
= pLL , (A.3)

@EU

@Y
= pHH . (A.4)

Therefore, the optimal solution is a corner solution, namely if pHH > pLL, then
@EU
@Y

> @EU
@X

,

hence Y ⇤ = B and X⇤ = 0; otherwise, if pHH < pLL, then
@EU
@Y

< @EU
@X

, hence Y ⇤ = 0 and

X⇤ = B. We conclude that if a creator is risk neutral, then the whole budget is invested in

high-status individuals in case pHH > pLL; otherwise (if pHH < pLL) the whole budget is

invested in low-status individuals.
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Proof of Proposition 2. Since pL = pH = p, B = X + Y , and z = x + y for each pair (x, y),

we can rewrite the expected utility given by (3) as follows:

EU(X, Y ) =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pz (1� p)B�z U(xL+ yH) , (A.5)

where the optimization problem is given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B . (A.6)

To contrast the above case where the creator invests a fraction of her budget in low-status

individuals and a fraction of her budget in high-status individuals, i.e., X 6= 0 an Y 6= 0,

we now look at the case where the whole budget is invested in high-status individuals, i.e.,

X = 0 and Y = B. Then the expected utility is given by

EUH =
BX

z=0

✓
B

z

◆
pz (1� p)B�z U(zH) , (A.7)

where z is the number of cases, which yield a return H when investing B promotional actions

in high-status individuals. Since z = x+ y, 0  z  B, and 0  x  z, the expected utility

can be rewritten as

EUH =
BX

z=0

zX

x=0

✓
X

x

◆✓
Y

y

◆
pz(1� p)B�zU(zH) . (A.8)

As y = z � x and B = X + Y , according to Vandermonde’s Convolution

zX

x=0

✓
X

x

◆✓
Y

y

◆
=

zX

x=0

✓
X

x

◆✓
Y

z � x

◆
=

✓
X + Y

z

◆
=

✓
B

z

◆
. (A.9)

Moreover, because the return on low-status individuals is lower than on high-status individ-

uals, i.e., L < H, it follows that

U(xL+ yH)  U(zH) , (A.10)
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Then, based on (A.5), (A.8), and (A.10), we conclude that the expected utility is lower when

investing in both high- and low-status individuals, i.e.,

EU  EUH . (A.11)

To generalize (A.11), we look again at a creator who gets in x cases a return L when

investing X promotional actions in low-status individuals and in y cases a return H when

investing Y promotional actions in high-status individuals. In this context, the creator gains

return R(x, y) from her investment, i.e., X 6= 0 an Y 6= 0. However, if the creator directs

promotional actions only to high-status individuals, i.e., X = 0 and Y = B, then she gains

return R(0, z) from her investment, where z = x+ y. For any return r,

Prob(R(x, y)  r) � Prob(R(0, x+ y)  r) , (A.12)

where Prob(R(x, y)  r) is the probability to get a return R less than r, given that there

are x and y cases that yield a return from low- and high-status individuals, respectively.

Prob(R(0, z)  r) is the probability to get a return R less than r, given that there are no

cases that yield a return from low-status individuals and z cases that yield a return from

high-status individuals. Following Hadar and Russell (1969), Prob(R(0, x + y)  r) has

second-order stochastic dominance over Prob(R(x, y)  r). Hence, for all nondecreasing

and concave utility functions, the expected utility is lower when investing in both high- and

low-status individuals, i.e.,

EU  EUH . (A.13)

Thus, we conclude that if the response probability of high-status individuals equals the

response probability of low-status individuals, i.e., p = pL = pH , then the whole budget is

invested in high-status individuals, i.e., Y ⇤ = B.

Proof of Proposition 3. We follow the expected utility given by (3), i.e.,

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) ,
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and the optimization problem given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B .

Let us define K such that

K � max(B,
1

pL min
0xB

( U(xL+L)
U(xL+H))

) , (A.14)

where U(0) = 0. Thus, for any pH < 1
K

it holds that

pH ⌧ 1

B
, (A.15)

pH ⌧ pL min
0xB

(
U(xL+ L)

U(xL+H)
) . (A.16)

Since pH ⌧ 1
B
, an investment in high-status individuals behaves like a Bernoulli coin with

probability Y pH . Thus, the expected utility given by (3) has the following form:

EU =
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x

⇢✓
Y

0

◆
p0H(1� Y pH)U(xL) +

✓
Y

1

◆
pHU(xL+H) + 0(p2H)

�
(A.17)

=
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x ((1� Y pH)U(xL) + Y pHU(xL+H)) . (A.18)

To contrast the above case where the creator invests a fraction of her budget in low-status

individuals and a fraction of her budget in high-status individuals, i.e., X 6= 0 and Y 6= 0,

we now look at the case where the whole budget is invested in high-status individuals, i.e.,

X = B and Y = 0. By applying Vandermonde’s Convolution, the expected utility can be
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rewritten as

EUL =
BX

x=0

✓
B

x

◆
pxL (1� pL)

B�x U(xL) (A.19)

=
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x
YX

y=0

✓
Y

y

◆
pyL (1� pL)

Y�y U((x+ y)L) (A.20)

>
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x (U(xL) + Y pLU(xL+ L)) . (A.21)

As pH ⌧ pL min
0xB

( U(x+1)L
U(xL+H)), it follows that

pHU(xL+H) < pLU(xL+ L) , (A.22)

and therefore

XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x (U(xL) + Y pLU(xL+ L))

�
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x (U(xL) + Y pHU(xL+ L)) (A.23)

�
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x ((1� Y pH)U(xL) + Y pHU(xL+ L)) . (A.24)

Thus, we conclude that if the response probability of high-status individuals is extremely

low, i.e., pH ⌧ 1
B
, then the whole budget is invested in low-status individuals, i.e., X⇤ = B,

independent of the individual aversion to risk.

Proof of Proposition 4. We follow the expected utility given by (3), i.e.,

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) ,

and the optimization problem given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B .
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Since we assume that the response probability of high-status individuals is extremely low,

i.e., pH ⌧ 1
B
, an investment in high-status individuals behaves like a Bernoulli coin with

probability Y pH . Thus, the expected utility given by (3) has the following form:

EU =
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x ((1� Y pH)U(xL) + Y pHU(xL+H)) . (A.25)

Let us assume that the return on low-status individuals is much lower than on high-status

individuals such that BL ⌧ H. Since
PX

x=0

�
X
x

�
pxL (1� pL)

X�x = 1 and U(xL+H) ⇡ U(H),

the expected utility is thus given by

EU = V (X, pL) + Y pH(U(H)� V (X|pL)) , (A.26)

where V (X, pL) =
PX

x=0

�
X
x

�
pxL (1� pL)

X�x U(xL). Naturally, an increase in the status of

the creator leads to an increase in the expected utility. Along these lines, we aim to show that

the order of magnitude of the change in the expected utility due to an increase in the response

probability of low-status individuals, i.e., O(�EUpL), is lower than the order of magnitude

of the change in the expected utility due to an increase in the response probability of high-

status individuals, i.e., O(�EUpH ). We assume that the return on low-status individuals,

i.e., L, is not changing much as it is typically close to 1 since the indirect return is marginal.

The changes in the expected utility, i.e., �EUpL and �EUpH , have the following forms:

�EUpL = �V (X, pL)(1� Y pH) , (A.27)

�EUpH = Y pH(U(H)� V (X, pL))
�pH
pH

. (A.28)

Let us look at the e↵ect of an increase in the response probability of low-status individuals,

i.e.,

pL ! pL +�pL , (A.29)

V (X, pL) ! V (X, pL +�pL) . (A.30)

We define qL = 1� pL and �qL = ��pL. Since
�pL
pL

⌧ 1 and further (1 + �)X ⇡ 1 +X� as
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well as (1 + �1)(1 + �2) ⇡ 1 + �1 + �2 if the �’s are small, then

V (X, pL +�pL) =
XX

x=0

✓
X

x

◆
pL

✓
1 +

�pL
pL

◆�X 
qL

✓
1 +

�qL
qL

◆�X�x

U(xL) (A.31)

⇡
XX

x=0

✓
X

x

◆
pxL

✓
1 + x

�pL
pL

◆
qX�x
L

✓
1 + (X � x)

�qL
qL

◆
U(xL) (A.32)

⇡
XX

x=0

✓
X

x

◆
pxLq

X�x
L U(xL)

⇢
1 +

x�pL
pL(1� pL)

�X
�pL
1� pL

�
(A.33)

=V (X, pL) +
�pL

pL(1� pL)

XX

x=0

✓
X

x

◆
pxLq

X�x
L U(xL)(x�XpL) . (A.34)

Recall that �pL
pL

� �qL
qL

= �pL
pL

+ �pL
1�pL

= �pL
pL(1�pL)

and �qL
qL

= � �pL
1�pL

. To evaluate the order of

magnitude of the change in the above component of the expected utility, i.e., O(�V (X, pL)),

we approximate the binomial distribution
�
X
x

�
pxLq

X�x
L by a rectangular, which is concentrated

around the average, i.e., XpL, has a width of two standard deviations, i.e., 2�, and is

normalized:

O

✓✓
X

x

◆
pxLq

X�x
L

◆
⇡
(

1
4� �2� < x < 2� ,

0 otherwise ,
(A.35)

namely we rely on the fact that the distribution is centered around the average. It follows

that

XX

x=0

✓
X

x

◆
pxLq

X�x
L U(xL)(x�XpL) (A.36)

=
XpLX

x=XpL�2�

✓
X

x

◆
pxLq

X�x
L U(xL)(x�XpL) (A.37)

+
XpL+2�X

x=XpL

✓
X

x

◆
pxLq

X�x
L U(xL)(x�XpL) (A.38)
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⇡2�

⇢
1

4�
U((XpL � �)L)(��)

�
+ 2�

⇢
1

4�
U((XpL + �)L)�

�
(A.39)

=
�

2
{U((XpL + �)L)� U((XpL � �)L)} (A.40)

=�2L

⇢
U((XpL + �)L)� U((XpL � �)L)

2�L

�
⇡ �2L

@U

@Z

���
Z=XpLL

. (A.41)

Note that x�XpL = ±O(�). Hence, note that if x  XpL, then U(xL) = U((XpL � �)L)

and (x�XpL) ⇡ ��. If x � XpL, then U(xL) = U((XpL + �)L) and (x�XpL) ⇡ �. On

the other hand, V (X, pL) =
PX

x=0

�
X
x

�
pxLq

X�x
L U(xL) ⇡

PXpL+2�
x=XpL�2�

1
4�U(XpLL) = U(XpLL)

and therefore @V
@X

⇡ pLL
@U
@Z

���
Z=XpLL

. Thus,

O(�V (X, pL)) =
�pL

pL(1� pL)

XX

x=0

✓
X

x

◆
pxLq

X�x
L U(xL)(x�XpL) (A.42)

=
�pL

pL(1� pL)
�2 1

pL

@V

@X
(A.43)

=X
�pL
pL

@V

@X
, (A.44)

where we assume that O(�2) = XpL(1� pL) as the distribution is approximately binomial.

Hence, the order of magnitude of the change in the expected utility due to an increase in the

response probability of low-status individuals, i.e., O(�EUpL), and the order of magnitude of

the change in the expected utility due to an increase in the response probability of high-status

individuals, i.e., O(�EUpH ), are given by

O(�EUpL) = �pLX
@V

@X
(1� Y pH) , (A.45)

O(�EUpH ) = Y pH(U(H)� V (X, pL))
�pH
pH

. (A.46)

Following the expected utility given by (A.26), the marginal-rate-of-substitution-equation
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has the following form:

@EU

@X
=

@EU

@Y
(A.47)

)@V

@X
(1� Y pH) = pH(U(H)� V (X, pL)) (A.48)

)O

✓
@V

@X
(1� Y pH)

◆
= O(pH(U(H)� V (X, pL))) ⌘ M (A.49)

Therefore, the order of magnitude of the change in the expected utility due to an increase

in the response probability of low-status individuals, i.e., O(�EUpL), and the order of mag-

nitude of the change in the expected utility due to an increase in the response probability

of high-status individuals, i.e., O(�EUpH ), given by (A.45) and (A.46), respectively, can be

rewritten as

O(�EUpL) = X
�pL
pL

@V

@X
(1� Y pH) = XM

�pL
pL

, (A.50)

O(�EUpH ) = Y pH(U(H)� V (X, pL))
�pH
pH

= YM
�pH
pH

, (A.51)

and since �pL
pL

⌧ �pH
pH

, it follows that

O(�EUPL
) ⌧ O(�EUPH

) . (A.52)

As a result, we assume that an increase in the status of the creator leads to an increase in

the response probability of high-status individuals, i.e., pH , whereas the response probability

of low-status individuals, i.e., pL, stays approximately constant. In the data we observe that

an increase in the status of the creator increases both pL and pH but �pL
pL

⌧ �pH
pH

, e.g., if

the status of the creator increases from type 1 to type 2, then the increase in the response

probability of a type 1 seeding target, i.e., �pL
pL

, is 16% and the increase in the response

probability of a type 3 seeding target, i.e., �pL
pL

, is 132%.

Lemma 1. If the response probability of high-status individuals and low-status individuals,

i.e., pH and pL, increases such that �pL
pL

⌧ �pH
pH

, then the expected utility increases in the

manner that the order of magnitude of the increase in pL, i.e., O(�EUPL
), is lower than the

order of magnitude of the increase in pH , i.e., O(�EUpH ).
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Corollary 2. Based on the finding that �pL
pL

⌧ �pH
pH

, if the status of a creator increases,

then we can assure that the response probability of high-status individuals, i.e., pH , increases

whereas the response probability of low-status individuals, i.e., pL, stays approximately con-

stant.

Thus, we conclude that if the status of a creator, i.e., S, increases, then the more is

invested in high-status individuals, i.e., dX⇤

dS
< 0 and dY ⇤

dS
> 0.

Proof of Proposition 5. We follow the expected utility given by (3), i.e.,

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) ,

and the optimization problem given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B .

Since we assume that the response probability of high-status individuals is extremely low,

i.e., pH ⌧ 1
B
, an investment in high-status individuals behaves like a Bernoulli coin with

probability Y pH . Thus, the expected utility given by (3) has the following form:

EU =
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x

⇢✓
Y

0

◆
p0H(1� Y pH)U(xL) +

✓
Y

1

◆
pHU(xL+H) + 0(p2H)

�
(A.53)

=
XX

x=0

✓
X

x

◆
pxL (1� pL)

X�x ((1� Y pH)U(xL) + Y pHU(xL+H)) . (A.54)

Let us assume that the return on low-status individuals is much lower than on high-status

individuals such that BL ⌧ H. Since
PX

x=0

�
X
x

�
pxL (1� pL)

X�x = 1 and U(xL+H) ⇡ U(H),

then

EU = V (X|pL) + Y pH(U(H)� V (X|pL)) , (A.55)
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where V (X|pL) ⌘
PX

x=0

�
X
x

�
pxL (1� pL)

X�x U(xL). The first-order condition is given by the

marginal rate of substitution, i.e.,

@EU

@X

���
X⇤,Y ⇤

=
@EU

@Y

���
X⇤,Y ⇤

(A.56)

) @V

@X

���
X⇤

(1� Y ⇤pH) = pH(U(H)� V (X⇤|pH)) . (A.57)

Let us look at the e↵ect of an increase in the budget, i.e., B ! B + �B, and apply

comparative statics. In case of an internal solution, (A.57) has the following form:

@EU

@X
+

@2EU

@X2

dX⇤

dB
�B +

@2EU

@X@Y

dY ⇤

dB
�B

=
@EU

@Y
+

@2EU

@X@Y

dX⇤

dB
�B +

@2EU

@Y 2

dY ⇤

dB
�B (A.58)

) @2EU

@X2

dX⇤

dB
+

@2EU

@X@Y

dY 2

dB
=

@2EU

@X@Y

dX⇤

dB
+

@2EU

@Y 2

dY ⇤

dB
, (A.59)

and the budget constraint, i.e., X + Y = B, is given by

X⇤ +
dX⇤

dB
�B + Y ⇤ +

dY ⇤

dB
�B = B +�B (A.60)

) dX⇤

dB
+

dY ⇤

dB
= 1 (A.61)

) pH
@V

@X

✓
dX⇤

dB
+

dY ⇤

dB

◆
= pH

@V

@X
. (A.62)

On one hand, @2EU
@Y 2 = 0 because

@EU

@Y
= pH(U(H)� V (X|pL)) = const. in y , (A.63)

and, on the other hand, @2V
@X@Y

< 0 because

@2EU

@X@Y
=

@

@Y

⇢
@EU

@X

�
=

@

@Y

⇢
(1� Y pH)

@V

@X

�
= �pH

@V

@X
< 0 . (A.64)

From (A.55) we further find that

@2EU

@X2
=

@2V

@X2
(1� Y pH) , (A.65)
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and thus plugging (A.61) and (A.62) into (A.59) (recall that @2EU
@Y 2 = 0) gives

(1� Y pH)
@2V

@X2

dX⇤

dB
+ pH

@V

@X

✓
dX⇤

dB
� dY ⇤

dB

◆
= 0 . (A.66)

From (A.62) it follows that

(1� Y pH)
@2V

@X2

dX⇤

dB
+ pH

@V

@X

✓
dX⇤

dB
� dY ⇤

dB

◆

+ pH
@V

@X

✓
dX⇤

dB
+

dY ⇤

dB

◆
= pH

@V

@X
(A.67)

) (1� Y pH)
@2V

@X2

dX⇤

dB
+ 2pH

@V

@X

dX⇤

dB
= pH

@V

@X
, (A.68)

and hence the change of investments in low- and high-status individuals, respectively, have

the following forms:

dX⇤

dB
=

pH
@V
@X

(1� Y pH)
@2V
@X2 + 2pH

@V
@X

<���!
pH!0

0 , (A.69)

dY ⇤

dB
! 1 > 0 . (A.70)

Note that if at the beginning @EU
@X

> @EU
@Y

(since dV
dX

(1�Y pH) > pH(U(H)�V (x)) and as the

response probability of high-status individuals, i.e., pH , is very low), then there is a corner

solution in which the whole budget is invested in low-status individuals, i.e., X⇤ = B and

Y ⇤ = 0. An increase in the budget is followed by an increase of investments in low-status

individuals, which in turn leads to a decrease in @EU
@X

(decreasing marginal returns) to the

point where @EU
@X

= @EU
@Y

. From this point on, all additional budget is invested in high-status

individuals, i.e., Y . Thus, we conclude that if a creator is endowed with a larger budget,

then the more is invested in high-status individuals, i.e., dY ⇤

dB
> 0.

Proof of Proposition 6. We follow the expected utility given by (3), i.e.,

EU =
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL pyH (1� pL)

X�x (1� pH)
Y�y U(xL+ yH) ,
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and the optimization problem given by (10), i.e.,

Max
X,Y

EU(X, Y ) s.t. X + Y = B .

To contrast the above case where the creator invests a fraction of her budget in low-status

individuals and a fraction of her budget in high-status individuals, i.e., X 6= 0 an Y 6= 0,

we now look at the case where the whole budget is invested in low-status individuals, i.e.,

X = B and Y = 0. Then, according to Vandermonde’s Convolution, the expected utility is

given by

EU =
XX

x=0

✓
X

x

◆
pxL(1� pL)

X�x

YX

y=0

✓
Y

y

◆
pyL(1� pL)

Y�yU(xL+ yL) (A.71)

=
BX

z=0

✓
B

z

◆
pzL(1� pzL)

B�zU(zL) , (A.72)

where z is the number of cases, which yield a return L when investing B promotional actions

in low-status individuals. Note that z = x + y. The entire budget, i.e., B, is invested in

low-status individuals, if the expected return on high-status individuals is lower than on

low-status individuals, i.e., pHH < pLL. Along these lines, we aim to show that for each

portfolio, i.e., X and Y , it exists that

BX

z=0

✓
B

z

◆
pzL(1� pL)

B�zU(zL) (A.73)

�
XX

x=0

YX

y=0

✓
X

x

◆✓
Y

y

◆
pxL(1� pL)

X�xpyH(1� pH)
Y�yU(xL+ yH) (A.74)

=
XX

x=0

✓
X

x

◆
pxL(1� pL)

X�x

YX

y=0

✓
Y

y

◆
pyH(1� pH)

Y�yU(xL+ yH) . (A.75)

More specifically, we aim to show that for any x (namely for each inequality separately) it

exists that

YX

y=0

✓
Y

y

◆
pyL(1� pL)

Y�yU(xL+ yL) >
YX

y=0

✓
Y

y

◆
pyH(1� pH)

Y�yU(xL+ yH) . (A.76)
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Let us assume that the creator gains with certainty at least the return of investments in

low-status individuals, i.e., xL. As a result, the extra utility is given by

V (R) ⌘ U(xL+R)� U(xL) , (A.77)

where U(xL) is constant and V is concave as U is invariant to translations. Hence, the

inequality given by (A.76) can be rewritten as

YX

y=0

✓
Y

y

◆
pyL(1� pL)

Y�yV (yL) >
YX

y=0

✓
Y

y

◆
pyH(1� pH)

Y�yV (yH) , (A.78)

where V (0) = 0. By elimination, if we assume that V is concave, it holds that V (R)
R

is

decreasing because d
dR

V (R)
R

= RV 0�V
R2 < 0. Furthermore, since R > 0 it follows that R0 < V

R
.

Moreover, let us assume that high-status individuals are more powerful than low-status

individuals, i.e., H > BL � Y L, and that V (Y L)
Y L

< V (yL)
yL

< V (L)
L

. As V (R)
R

is decreasing

and yH > Y L, it follows that V (yH)
yH

< V (Y L)
Y L

for any 1  y  Y . Since V (0) = 0 and

V V (Y L)
Y L

< V (yL)
yL

holds for any y, it follows that

YX

y=0

✓
Y

y

◆
pyL(1� pL)

Y�yV (yL) =
YX

y=1

✓
Y

y

◆
pyL(1� pL)

Y�yV (yL)

yL
yL (A.79)

�V (Y L)

Y L

YX

y=1

✓
Y

y

◆
pyL(1� pL)

Y�yyL (A.80)

=
V (Y L)

Y L
Y pLL (A.81)

>
V (Y L)

Y L
Y pHH (A.82)

=
V (Y L)

Y L

YX

y=1

✓
Y

y

◆
pyH(1� pH)

Y�yyH . (A.83)

As pHH < pLL and since for any y it holds that Y L < yH, and hence V (Y L)
Y L

> V (yH)
yH

, we

conclude that

V (Y L)

Y L

YX

y=1

✓
Y

y

◆
pyH(1� pH)

Y�yyH >
YX

y=1

✓
Y

y

◆
pyH(1� pH)

Y�yV (yH) , (A.84)
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and further

YX

y=0

✓
Y

y

◆
pyL(1� pL)

Y�yV (yL) >
YX

y=0

✓
Y

y

◆
pyH(1� pH)

Y�yV (yH) . (A.85)

Thus, we conclude that if the return on high-status individuals is much higher than on low-

status individuals such that H > BL but the expected return on high-status individuals is

lower than on low-status individuals, i.e., pHH < pLL, and there is an optimal solution such

that a creator invests in high-status individuals, i.e., Y ⇤ 6= 0, then the creator cannot be risk

averse (and the individual utility function U is not concave).
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A.2 Expected Total Return on a Seeding Target

On one hand, let PST be the a priori probability that the seeding target follows the creator

within a week, where S stands for the creator type and T for the seeding target type. The

creator and the seeding target can take any of the four di↵erent user types, i.e., S = {1, 2, 3, 4}

and T = {1, 2, 3, 4}. On the other hand, let RST be the a priori probability that the seeding

target reposts a song of the creator within a week and fTS(z) be the a priori probability

distribution that the creator gets as a result z followers within a week. Finally, we combine

both the a priori response and song repost probabilities in order to calculate the expected

total return on each seeding target, given the status of the creator. So let PzST be the a

priori probability that the creator gets z followers when choosing a certain type of seeding

target. The a priori probabilities for all possible returns z are given by

P0ST = (1� PST ) [RSTfTS(0) + (1�RST )] , if z = 0 (A.86)

P1ST = PST (1�RST ) + (1� PST )RSTfTS(1) + PSTRSTfTS(0) , if z = 1 (A.87)

PzST = PSTRSTfTS (z � 1) + (1� PST )RSTfTS(z) , if z > 0 (A.88)

where
P

z fTS(z) = 1 and P0ST + P1ST +
P

z PzST = 1. Then, the expected total return µST

and the standard deviation sST are given by

µST =
X

z

ZPzST , (A.89)

sST =

sX

z

(z � µST )2PzST . (A.90)
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A.3 Simulation Study: Comparing the E↵ectiveness of Seeding

Policies

The randomized dissemination processes comparing the three seeding policies, i.e., invest-

ments (1) according to the actual portfolios observed in the data, (2) only in seeding targets

with the highest status, and (3) only in seeding targets with the lowest status, are based

on the status-dependent probability of a non-zero return on a seeding target and further on

the status-dependent probability of either a direct or indirect return. For this reason, let us

define the following probabilities:

• pD is the probability of a direct return in the form of a follow-back from the seeding

target,

• pR is the probability of a song repost from the seeding target,

• pD&R is the joint probability of a direct and indirect return,

• pD̄&R is the joint probability of no direct but an indirect return,

• pR|D is the probability of a song repost given a direct return,

• pR|D = pD&R

PD
is the probability of a song repost given a direct return,

• pR|D̄ = pD̄&R

pD̄
is the probability of a song repost given no direct return,

• pI|R is the probability of a non-zero indirect return in the form of follows from the

seeding target’s egocentric network given a song repost.

Hence, the probability of gaining only a direct return is pD(1 � pR|D) + pD pR|D(1 � pI|R),

whereas the probability of gaining only an indirect return is (1� pD)pR|D̄ pI|R. Finally, the

probability to gain a direct and indirect return is pD pR|D pI|R and thus the probability of a

zero return on a seeding target is

P0 = (1� pD)
⇥
pR|D̄(1� pI|R) + (1� pR|D̄)

⇤
. (A.91)

As a result, the probability of a non-zero return on a seeding target is

P = 1� P0 . (A.92)

The status-dependent probability of a non-zero return, given by (A.92), is applied in every
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time step of the randomized dissemination process and on each target that is seeded using

the monthly budget of promotional actions, i.e., 40 times in each of the 24 months. If the

return in a given month for a given seeding target is non-zero, then there are two di↵erent

scenarios. On one hand, the investment in this seeding target can yield both a direct and

indirect return, i.e., a follow-back from the seeding target and follows from subsequent song

reposts. On the other hand, the investment in this seeding target can yield only an indirect

return, i.e., follows from a song repost.

Given a non-zero return, let qD|P be the probability of only a direct return and qD&I|P

be the joint probability of a direct and (non-zero) indirect return. Then, the conditional

probability that given a non-zero return on a seeding target there is also an indirect return is

Q = qD|P + qD&I|P (A.93)

=
pD(1� pR|D) + pD pR|D(1� pI|R)

P
+

pD pR|D pI|R
P

=
pD
P

. (A.94)

It follows that given a non-zero return, with probability Q the investment in a seeding target

yields a direct return HD in the form of a follow-back from this seeding target. As there

might also be an additional indirect return associated with the direct return, we account for

the follows resulting from subsequent song reposts. Therefore, let H be the average number

of follows from the seeding target’s egocentric network resulting from a single song repost.

By further considering the average number of song reposts a over a time period ⌧ , we allow

for a longterm indirect return on a follow-back. Thus, the direct and indirect return within

a time period ⌧ is given by

HD = 1 + a⌧H . (A.95)

With probability 1�Q the investment in a seeding target yields only an indirect return H,

which is the average number of follows from the seeding target’s egocentric network resulting

from the single song repost. Hence, if an investment in a seeding target is successful, i.e.,

ci = 1, then let the conditional probability to gain return zi on a promotional action i be

Prob(zi|ci = 1)

(
Q HD = 1 + a⌧H

1�Q H
(A.96)
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Note that if an investment in a seeding target is not successful, i.e., ci = 0, then the return

is zero, i.e., zi = 0.

To sum up, the status-dependent probability of a non-zero return, given by (A.92), is

applied in every time step of the randomized dissemination process and on each target that

is seeded using the monthly budget of promotional actions, i.e., 40 times in each of the 24

months. If the return in a given month for a given seeding target is non-zero, then there are

two di↵erent scenarios. On one hand, the investment in this seeding target can yield both a

direct and indirect return, i.e., HD with probability Q. On the other hand, the investment in

this seeding target can yield only an indirect return, i.e., H with probability 1�Q. Note that

we consider the average number of song reposts from a seeding target over a year, i.e., ⌧ = 1

year. This scheme overestimates the return on high-status individuals, hence, overestimating

the power of influencers.

Furthermore, we account for the status-dependent natural baseline follows, which is on

average 0.93 follows per month for an unknown creator. This in turn increases the creator’s

status, which goes hand in hand with higher a priori probabilities and thus expected total

returns on each seeding target. Both the natural baseline follows and the a priori probabilities

including the expected returns on each seeding target are updated in multiples of 25 followers

with regard to the growing follower base, i.e., after a reaching a community size of � 25

followers, � 50 followers, and so forth. To sum up, the randomized dissemination process first

takes into account the status-dependent probability of a non-zero return on a seeding target

and subsequently considers whether the non-zero return is realized directly or indirectly.

A.4 Elaborations on Equations 6 – 9

The decision problem of selecting S products by means of a prediction model involves con-

siderations about profits ⇧. More specifically, the manager considers expectations about

revenues, (1� PF (S)) · S · R, as well as associated costs, S · C. While deciding on the size
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of the selection of products, the manager maximizes the profits given by

⇧ = (1� PF (S)) · S ·R� S · C s.t. S � 0 , (A.97)

which is in fact equivalent to the profits defined in Equation 10, i.e.,

⇧ = ⇧� LR(S)�WI(S) s.t. S � 0 , (A.98)

where ⇧ is the maximum profit potential given by

⇧ = n · (R� C) , (A.99)

LR(S) is the lost return given by Equation 9, i.e.,

LR(S) = (1� PD(S)) · n · (R� C) , (A.100)

and WI(S) is the wasted investment given by Equation 8, i.e.,

WI(S) = PF (S) · S · C . (A.101)

Since the probability of detection and probability of false discovery given by Equation 5 and

Equation 6, respectively, are two sides of the same coin and given by Equation 7, i.e.,

PD(S) =
S

n
· (1� PF (S)) , (A.102)

we can substitute Equation A.102 in Equation A.100, which gives

LR(S) = n · (R� C)� (1� PF (S)) · S · (R� C) . (A.103)

Then, the substitution of Equation A.99, Equation A.103, and Equation A.101 in Equa-

tion A.98 results in the optimization problem defined in Equation A.97.

To guarantee that S is non-negative, we apply the Kuhn-Tucker conditions and maximize

profits by applying the method of Lagrange multipliers, namely

Max
s,t,�

L = ⇧� �(S � t2) , (A.104)
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where the respective FOCs are

(1)
@L
@S

=
@⇧

@S
+ � = 0 , (A.105)

(2)
@L
@t

= �2�t = 0 , (A.106)

(3)
@L
@x

= s� t2 = 0 . (A.107)

From Equation A.106 we find that either � = 0 or t = 0. If � = 0, then from Equation A.97

and Equation A.105 we obtain that

@⇧

@S
= �@PF (S)

@S
· S ·R + (1� PF (S)) ·R� C = 0 , (A.108)

and hence

@PF (S)

@S
· S + PF (S) =

ROI

1 +ROI
, (A.109)

where ROI is the proportion of profits made with the investment in a successful product,

ROI = R�C
C

. If t = 0, then from Equation A.107 we obtain that S⇤ = 0 and in this case

⇧ = 0 (see Equation A.97). Namely, we choose S⇤ that resolves Equation A.109 if and only

if profits ⇧ are non-negative, i.e.,

⇧ = (1� PF (S)) · S ·R� S · C > 0 , (A.110)

which can be rewritten as

PF (S⇤) <
ROI

1 +ROI
, (A.111)

otherwise S⇤ = 0 and no selection is made at all.
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A.5 Elaborations on the Empirical Test and Application

We use unique longitudinal data from SoundCloud to study music artists’ success over several

years since their sign-up. Below, we o↵er a comprehensive description of the data and the

early-stage predictors for success, which is followed by a detailed description of the modeling

approach.

Data

We use unique data from SoundCloud, the biggest user-generated content network in the

domain of music with more than 175 million users (Pierce 2016). SoundCloud facilitates

the exchange of information among users and is specifically geared towards music artists

and their fan communities. Artists upload their latest songs to their user profiles, which

can then be listened to, commented on, reposted, and liked by other users. As on any

other directed user-generated content network such as Twitter, users can exchange private

messages and also follow each other to receive notifications about their latest activities.

Users on SoundCloud have di↵erent objectives: Music artists seek to build and increase

their follower base to generate more song-plays, whereas fans follow their favorite artists,

listen to their songs and connect with other fans. To trigger follow backs (and thus increase

their follower base and generate more song-plays), music artists can reach out to other users

by following them, sending them private messages, reposting their songs, commenting on

their songs, and liking their songs.

Our longitudinal dataset comprises 35,000 users (4,978 music artists and 30,022 fans) who

signed up in the first week of March 2013 and covers all incoming and outgoing activities of

each user, including follows, messages, song-plays, song-reposts, song-comments, and song-

likes, over a period of more than two years (March 2013 to July 2015). Table 8 presents

relevant descriptive statistics about the 35,000 users in our dataset.

— Insert Table 8 about here —
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To test our proposed managerial framework, our first goal is to identify predictors to

e↵ectively detect future successful music artists on SoundCloud several weeks after their

sign-up. We thus focus on artists who are initially unknown – with negligible popularity

before sign-up – and who invest time in self-promotion activities on SoundCloud. To achieve

a sample of artists with a high activity level and negligible popularity before sign-up in

March 2013, we define active but unknown music artists on SoundCloud as all users who (1)

uploaded at least one song within three months after sign-up, (2) received fewer than 100

song-plays in the first month, and (3) made at least one follow, private message, song-repost,

song-comment, or song-like in each quarter after sign-up. The resulting sample comprises

534 music artists. As predictors for success we consider (1) artists’ activities and (2) their

evolving social capital on SoundCloud.

Music Artists’ Activity Measures

Since music artists on SoundCloud use the social networking platform for self-promotion

purposes to generate more song-plays, they reach out to other users by following them,

sending them private messages, reposting their songs, commenting on their songs, and liking

their songs. In fact, they aim to trigger follow backs to increase their follower base, which in

turn generates more song-plays and makes them more successful. Saboo, Kumar, and Ramani

(2015), who study the influence of network activities on sales based on data from multiple

social networks in the music domain, find evidence that network activities drive sales directly

but also indirectly, by triggering cascades of further activities via newly acquired followers.

Similarly, Ansari et al. (2016) find that music artists can capitalize on network activities

to alter and shape their egocentric network structure, which subsequently influences the

number of song-plays on their profiles. They find that specifically increasing the clustering

within the egocentric network impacts long-term success. Hence, in our specification of the

prediction model, we assume that promotional outgoing activities directly a↵ect success (i.e.,

song-plays), and indirectly (through the artist’s egocentric network). We therefore include

activity measures as predictors of success and let promoit denote artist i’s average monthly
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outgoing promotional activities (i.e., follows, messages, etc.) in the period from sign-up to

present time t. Additionally, let songsit denote the number of artist i’s uploaded songs in

the period from sign-up to present time t.

Music Artists’ Social Capital Measures

Besides the direct influence of outgoing promotional activities on success, there exists an

indirect influence through the artist’s egocentric network as outlined above. The value of an

individual egocentric network is known as social capital (e.g., Coleman 1988, 1990; Putnam

2001) and encompasses all “[...] resources embedded in a social structure which are accessed

and/or mobilized in purposive actions” (Lin 1999, p. 35). Hence, social capital determines

the music artist’s constraints and opportunities (Wellman and Berkowitz 1988). The general

concept has emerged in a large field of research with applications in many disciplines of

social sciences (for an overview see Kwon and Adler 2014). Following network theorists

in sociology (e.g., Burt 1992), social capital takes an inside-out view, focusing on the music

artist (ego) as well as on the di↵erent layers of the artist’s follower base (egocentric network).

In line with social capital measures (Borgatti, Jones, and Everett 1998; Burt 1983), these

layers are most commonly characterized by the structure or density of the egocentric network

and, furthermore, by centrality measures (degree, betweenness, and closeness centrality) that

assess the music artist’s position within the entire network (Freeman 1978; Wasserman and

Faust 1994).

Although a comprehensive assessment of social capital, including computations of close-

ness and betweeness centralities, is rarely possible as it requires full information on the entire

network, we use several measures of artists’ social capital on SoundCloud. The focus of our

study is on the dissemination of information about the music artist itself, which spreads

exclusively through the artist’s indegree, the users who follow the artist. For example, all

followers of an artist receive a notification in their news feed if the artist uploads a new song.

Hence, especially indegree (first-degree followers) plays a potential crucial role for an artist’s
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future success. Moreover, the number of first-degree followers is the most common yet basic

operationalization of an artist’s network status (Hu and Van den Bulte 2014; Sauder, Lynn,

and Podolny 2012), which accounts for the adjacent network users (Gould 2002; Shaw 1954;

Stuart 1998; Wasserman and Faust 1994). Along these lines, let socapcit denote a social cap-

ital measure c at a certain present time t, where the first of four measures – the first-degree

followers of artist i at time t – is defined by

socap1it = FDit =
X

k

a(k, i, t) (First-Degree Followers), (A.112)

where a(k, i, t) is the adjacency matrix of the network at time t such that a(k, i, t) = 1 if

and only if a SoundCloud user k follows artist i at time t. By definition, no one can follow

him- or herself, a(i, i, t) = 0 for all i’s at all t’s.

According to Yoganarasimhan (2012), however, the number of first-degree followers given

by Equation A.112 is also a deceptive connectivity measure, because it fails to capture the

notion of potential: After uploading a song, the music artist’s first-degree followers can trigger

cascades (Watts 2002; Watts and Dodds 2007) by means of song-reposts, which then spread

and appear in the news feeds of their own followers (the artist’s second-degree follower base)

and further. The second-degree follower base thus represents the artist’s as-yet-unfulfilled

potential of follower base growth (Yoganarasimhan 2012), where the speed and magnitude of

growth depends on the number of hubs who follow the music artist (Goldenberg et al. 2009).

Hence, our second social capital measure is the indirect adjacency – the unique second-degree

followers of artist i at time t – given by

socap2it = SDit =
X

j

b(j, i, t) (Second-Degree Followers), (A.113)

where b(j, i, t) = 1 (SoundCloud user j is a second-degree follower of music artist i at time t)

if and only if a(j, i, t) = 0 (j does not follow i) but there exists at least one other SoundCloud

user k (k 6= i and k 6= j) such that a(j, k, t) = 1 (j follows k) and also a(k, i, t) = 1 (k follows

i).
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Future success is also a↵ected by the degree of connectivity within the artist’s follower

base. The clustering coe�cient, which determines the number of closed triangles (Watts

and Strogatz 1998), provides insight into the density within the direct adjacency. Accord-

ing to Ansari et al. (2016), high connectedness among the first-degree followers of a music

artist (first-degree clustering) impacts long-term success. Furthermore, higher first-degree

clustering also speeds up the spread of information (Jackson 2010) and goes hand in hand

with stronger network multiplier e↵ects (Watts and Dodds 2007). Therefore, our third social

capital measure – the first-degree clustering of artist i at time t – is defined by

socap3it = Cit =

P
j,k

a(j, i, t) · a(k, i, t) · a(k, j, t)

FDit · (FDit � 1)
(First-Degree Clustering). (A.114)

where a triangle is closed if and only if a(k, i, t) = 1 and a(j, i, t) = 1 (SoundCloud users k

and j follow artist i at time t) and at least a(k, j, t) = 1 or a(j, k, t) = 1 (at least one of

the SoundCloud users k and j follows the other). From Equation A.114 it follows that the

higher the first-degree clustering, the more connected the first-degree follower base.

Reciprocity – the artist’s share of reciprocal ties – is another form of density, with greater

focus on the music artist (Newman 2010). After receiving a follow, the artist can strengthen

this tie by following back and establishing a bi-directional connection (Granovetter 1973).

As a core component of exchange (Blau 1963), reciprocity potentially a↵ects future success

by fostering trust between the music artist and his or her followers (Coleman 1988). A follow

back may also be considered a favor or benefit that an artist grants to a fan, which might

then be reciprocated in the form of voluntary endorsement (Hargadon and Sutton 1997),

which represents a form of generalized reciprocity, which Putnam (2000, p. 134) sees as the

“touchstone of social capital”. Hence, the fourth social capital measure – the reciprocity of

artist i at time t – is defined by

socap4it = Rit =

P
k

a(k, i, t) · a(i, k, t)

FDit

(Reciprocity). (A.115)

where a follow is reciprocated if and only if a(k, i, t) = 1 (SoundCloud user k follows music

artist i at time t) and also a(i, k, t) = 1 (i follows k). Put di↵erently, this measure calculates
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the proportion of follows that are doubled through establishing a bi-directional connection.

Therefore, the more a music artist follows back if being followed, the stronger his or her

bonding with the first-degree follower base.

We use these four egocentric network measures (first-degree followers, second-degree fol-

lowers, first-degree clustering, and reciprocity) to assess di↵erent aspects of an artist’s evolv-

ing social capital on SoundCloud.

Modeling Approach

In our sample of 534 unknown music artists with a high activity level but negligible popularity

outside of SoundCloud when signing up, only 55 artists (10%) achieve to exceed more than

three orders of magnitude in regard to his or her average received monthly song-plays (i.e.,

more than 1,000 song-plays) – the highest being of order five (i.e., 100,000 song-plays). Of

the 534 artists, 479 (90%) were unsuccessful, based on this criteria. 135 manage to achieve

between 100 and 1,000 average monthly song-plays and 344 artists received fewer than 100

average monthly song-plays.

Our longitudinal dataset spans the 123-week period from March 2013 to July 2015. We

define the target period for prediction T as the final 12 weeks of our longitudinal dataset,

namely the period from week 111 to 123, i.e., T = [111, 123]. We further define an artist’s

success in the target period for prediction T by yiT , where yiT = {1, 2, 3}, depending on the

order of magnitude of the artist’s average monthly song-plays. In our application, artist i is

defined as successful if he or she achieves to exceed more than three orders of magnitude in

regard to his or her average received monthly song-plays (i.e., > 1, 000) in the target period

for prediction T , i.e., yiT = 3.

For each music artist in our sample, we define an early-stage observation period for

prediction t, which starts with his or her sign-up on SoundCloud. To identify early-stage

predictors for success at T , we focus on four, eight, and twelve weeks after an artist’s sign-
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up. Therefore, the early-stage observation period for prediction t may take three values,

t = {4, 8, 12}. As stated, songsit denotes the number of uploaded songs and promoit the

average monthly outgoing promotional activities to present time t. Also, socapcit denotes

the social capital measure c at time t, where c = {1, 2, 3, 4}, namely (1) first-degree followers

FDit, (2) second-degree followers SDit, (3) first-degree clustering Cit, and (4) reciprocity

Rit. The resulting ordered-logit model can thus be described as follows:

Pr(yiT = L) = Pr(L�1 < scoreit  L) , (A.116)

where scoreit = �1playsit+�2promoit+�3songsit+�4socapcit+ui. Note that playsit denotes

the artist’s i average received monthly song-plays to present time t, 0 is defined as �1 and

k as +1 , and ui is assumed to be logistically distributed.14

Firth (1993) penalized logit model and the oversampling technique including bias cor-

rection suggested by King and Zeng (2001a,b), are both widely used in the case of rare

events, where both aim to produce less biased a posteriori probabilities of success. Hence, to

assess the predictive power of alternative model specifications, we first evaluate early-stage

predictors for success using the above-described ordered-logit model. Given the most e↵ec-

tive predictors for success, we then compare the ordered-logit model to the following models

typically used for rare events: (1) logit, (2) Firth15 (Firth 1993; Heinze 2006; Heinze and

Schemper 2002), and (3) ReLogit16 (Imai, King, and Lau 2008; King and Zeng 2001a,b).

14Adding more than one social capital measure does not improve the predictive power of the model in
terms of probability of detection or false discovery, because variables are calibrated in the training set.

15Embedded in the logistf package of statistical software R, the Firth procedure is the bias reduction
method that penalizes the log-likelihood using the Je↵reys invariant prior.

16Embedded in the Zelig package of the statistical software R, the ReLogit procedure is the rare events
logistic regression for dichotomous dependent variables embedded in the Zelig package.
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Table 8: Descriptive Statistics

Sample 2012-2015

Descriptives Mean Median Std

Indegree
Mar. 2014 53.07 5.00 12.10
Jun. 2015 20.01 8.00 102.10

Follows
sent 35.21 10.00 91.57
received 20.01 8.00 102.10

Song-Comments
sent 5.52 2.00 19.84
received 12.33 3.00 97.49

Song-Likes
sent 32.74 4.00 101.84
received 89.07 6.00 1014.00

Messages
sent 10.00 2.00 67.55
received 5.25 1.00 68.72

Song-Plays
sent 771.25 37.00 2885.87
received 4785.35 176.00 59770.22

Song-Reposts
sent 0.04 0.00 0.70
received 0.02 0.00 1.17

Tracks uploaded 10.13 3.00 37.85

Weekly Follows
sent 0.19 0.00 4.37
received 0.10 0.00 1.13

Weekly Song-Comments
sent 0.01 0.00 0.28
received 0.01 0.00 0.32

Weekly Song-Likes
sent 0.12 0.00 1.28
received 0.07 0.00 3.19

Weekly Messages
sent 0.003 0.00 0.21
received 0.004 0.00 0.25

Weekly Song-Plays
sent 5.20 0.00 34.13
received 5.98 0.00 266.50

Weekly Song-Reposts
sent 0.003 0.00 0.21
received 0.004 0.00 0.25

Weekly Tracks uploaded 0.01 0.00 0.35
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