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Abstract 

Usually patent data does not contain any unique identifiers for the patenting assignees or the 
inventors, as the main tasks of patent authorities is the examination of applications and the 
administration of the patent documents as public contracts and not the support of the empirical 
analysis of their data. An inventor in a patent document is identified by his or her name. 
Depending on the patent authority the full address or parts of it may be included to further 
identify this inventor. The goal is to define an inventor mobility index that traces the career of 
an inventor as an individual with all the job switches and relocations approximated by the 
patents as potential milestones. The inventor name is the main criteria for this identifier. The 
inventor address information on the other hand is only of limited use for the definition of a 
mobility index. The name alone can work for exotic name variants, but for more common names 
the problem of namesakes gets in the way of identifying individuals. The solution discussed here 
consists in the construction of a relationship network between inventors with the same name. 
This network will be created by using all the other information available in the patent data. 
These could be simple connections like the same applicant or just the same home address, up to 
more complex connections that are created by the overlapping of colleagues and co-inventors, 
similar technology fields or shared citations. Traversal of these heuristically weighted networks 
by using methods of the graph theory leads to clusters representing a person. The applied 
methodology will give uncommon names a higher degree of freedom regarding the heuristic 
limitations than the more common names will get.  
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1. Introduction 

This paper uses specific terminology from the field of computer science which sometimes 

collides with similar terms from other scientific fields with slightly different meanings. The main 

offender here is the term “cluster”. Although it has its appearance in many other research areas 

and its overarching theme is always the same, exactly this fact may lead to misunderstandings. 

Even in this paper the term cluster will be used on two different occasions: the clustering of 

groups of similar content within the patent documents (i.e., similar addresses or applicants) and 

the clustering of patent documents that are connected by mutual traits, like similar inventor 

names, similar addresses or applicants, common technology classes or cited documents, which 

are partially the results of the former definition. Mutual traits describe the edges and the 

patents are the nodes of a virtual network. A cluster should contain all patents that share a 

specific inventor name and have a high probability of being from the same individual. The 

procedure to identify these clusters is called “traversal” of the network. Traversal is a recursive 

process of moving through the network along the edges and collecting all touched 

nodes/patents into a cluster. Traversal stops when all nodes that should belong into a cluster 

were touched. Because patents are highly interconnected documents, the edges need to be 

evaluated before the traversal collects too many documents into a cluster. To simplify the 

heuristic for the evaluation, the algorithm uses a hierarchy based on the local latency and 

trustworthiness of the different traits. It starts with the addresses of the inventors as valid 

edges. Every cluster the traversal returns contains patents that share a similar inventor name at 

a similar home address. Of course this will not suffice to observe inventor mobility as every 

cluster is just a small time bubble of an immobile phase in the life of an inventor. As these 

bubbles lump together the information of several patents, they are referred as “hypernodes”, a 

kind of super patent. Applicant addresses are the next step in this hierarchy. The edges are 

similar applicants between these hypernodes. The traversal procedure watches the size of the 

resulting cluster. If it exceeds a pre-defined threshold, it rewinds the traversal to the starting 

node and increases the quality requirements of the edges for another run. This process can be 

repeated several times and is called “cascaded traversal”, preventing clusters with an 

unbelievable high number of relocations for an inventor, which usually are a sign for common 
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names in combination with a large applicant. The methodology is also applied for the following 

hierarchies: co-inventors, citations and technology classifications. The variation for the quality 

of the edges stems from meta-analysis of the original data, counting frequencies of inventor 

names per applicant, documents per technology classification and so on. The higher the meta 

ranking, the lower the frequencies and therefore the lower the risk of connecting hypernodes of 

namesakes. The disambiguation procedure will be discussed in the last chapter as the 

complexity of the data needs to be reduced to confine the more fuzzy traits of a patent. The 

following two chapters explain how this can be done.  

The term “similar” was used quite often in the previous paragraph. The concept of “similarity” is 

trivial if it actually means “identity”. This is the case for classifications or citations as these 

operate with codes or keys assigned by the patent offices. For these, similarity is a binary 

choice. Identifying similar addresses, applicants or names is a much more involved endeavor. To 

integrate these into a system of binary choices, it is inevitable to define keys that cluster groups 

of similar entities together, i.e. all different ways a university appears in the data or all 

variations of a name including misspellings. As it is a fundamental requirement for this 

disambiguation method to reduce the complexity in the relations between the patents, the 

second chapter takes its time to explain the method of identifying these similarity clusters. The 

algorithm returns a weighted Jaccard index for the comparison of two terms, which is the 

weighted sum of the intersection of the words these terms consist of, divided by the weighted 

sum of the union. The weights for the words also stem from a meta-analysis, counting the 

frequency of every word in the data. The weight is the inverse of this frequency, giving less 

common words a higher value. The algorithm separates this meta information by the fields used 

for matching to prevent the blending of weights with a different context: a common street 

name may also appear in the applicant name field as an uncommon company name. 

Superordinate weights can be put on the contexts, i.e. applicant name field gets a weight of 70% 

and the street address a weight of 30%, to reflect the importance of the different contexts for 

the search. The algorithm produces tuples of matched terms together with a percentage for the 

similarity that is above a high threshold. This result can be interpreted as the definition of a 

network consisting of terms as nodes linked with edges rated by the similarity, a situation that is 

quite analog to the inventor disambiguation problem. The method to identify clusters of similar 
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terms is the same as for identifying similar patents for a specific inventor name - cascaded 

traversal. 

The third chapter describes this central method with a main emphasis on the clustering of 

terms, like applicants, addresses and inventor names. Analog to the disambiguation traversal, 

the sizes for the cascades have to be defined a priori. “How many variants are common for a 

street address?” or “How many misspellings are thinkable for an inventor name?” are the 

questions whose answers, based on experience with the data and educated guesses, lead to 

these sizes. Cascaded traversal always injects exogenous assessment into the clustering. 

Sometimes it is impossible to give a decisive answer to the aforementioned questions because 

of highly heterogeneous structured terms. An applicant can be a university, a company, a 

person, a governmental organization and so on. Asian street names have much more variation 

than most western streets as they often include building names, floors and departments. It is 

quite cumbersome to have “one size fits all” for these different cases. The solution, called 

“nested cascades”, will also be introduced in this chapter. Cascaded traversal not only reduces 

the complexity in the data by eliminating the vagueness of similarity but is also a way to confine 

plausible inventor careers in the complex network of patents. 

2. The SearchEngine 

The patent offices do not administer special databases for assignees or inventors nor are they 

obliged to verify the names or addresses. Because of that there may exist multiple variants for a 

specific inventor or assignee, which can be explained by misspellings, different usage of 

abbreviations, name or address changes over time. If there is more than the data of one 

authority involved, this problem increases significantly because of different standards. The 

solution to this problem discussed here is to create an identifier for every group of variants that 

belong together with a high probability. This is a virtual cleaning process as the data itself will 

not be changed nor will there be a "preferred" variant that overwrites the other variants. The 

tool used for this task is simply called "SearchEngine" for further reference and is under 

continuous development by Thorsten Doherr, ZEW. It combines many ideas that have their 

origin in the field of computer science like word based heuristics, phonetic algorithms, fuzzy 

logic and network analysis.  
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2.1 The Preparer Gateway 

One typical problem the algorithm is designed for is to match two tables from different sources 

by a combination of fields that share the same - usually fuzzy - characteristics, like name, 

address, city, zip and so on. A direct SQL join by these fields is of limited use because of 

abbreviations, misspellings and typing errors, different positioning of words or 

additional/missing words. The extensive harmonization of both tables by transforming the data 

to uppercase, replacing special letters to their common (phonetic) representation (i.e.: the 

German "Ü" to "UE"), suppressing of special characters and the unification of abbreviations will 

improve the situation for a direct join. These cleaning steps are also a part of the SearchEngine 

implemented as the so called preparer gateway. The preparer gateway is responsible for the 

harmonization of all the data entering the deeper layers of the algorithm. Besides the more or 

less cosmetic modifications of the data, it can also implement more extreme phonetic methods, 

which destroy the readability of the data but improve the robustness against misspellings and 

typing errors. Every field can be connected to a different list of preparers, some of them 

specialized to reflect the context of the associated characteristic. It is even possible to associate 

more than one preparer list to a single field, creating new entities. These combinations of 

preparers and fields are further called search types. The outcome of the preparer gateway is a 

set of words without any specific order separated into subsets by the search types they origin 

from. From this point on the term "word" describes all the token the preparer gateway returns 

after applying the harmonizing and/or the more aggressive phonetic preparer like Soundex 

(RobertRussell, Margaret Odell, 1918), Metaphone (Lawrence Philips, 1990), Kölner Phonetic 

(Cologne Phonetic) (Hans Joachim Postel, 1969) and n-gramm.  

2.2 The Heuristic 

2.2.1 Identification Potential 

The heuristic is based on the assumption that the occurrence of a word is inverse proportional 

to the identification potential (IP) of this word. Using the internet as an analogy, a quite 

common word entered into a web search will result in a large list of results making it difficult to 

find the intended entry. The resulting list of potential hits for a seldom word is smaller and the 
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identification potential is higher. Because a search usually involves more than one word, the 

algorithm uses a relative identification potential (rIP). The following section describes the 

development of this measurement starting with a basic first version: 

𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) = 𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)−1
∑ 𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗)−1𝑗𝑗∈𝑆𝑆

 (1) 

with S being a set of words defined by the search term, 𝑖𝑖 ∈ 𝑆𝑆 and 𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖) returning the 

occurrence of the word i. 

To get the occurrences of the words the SearchEngine needs to be fed with the characteristics 

of one table, the so called base table. After passing the preparer gateway, the words of the 

search fields will be registered in a special table, the registry. An entry in the registry consists of 

a word and a counter for the occurrence of this word. The registry is further organized into 

chapters, one for every search type, to preserve the context of the words. Every single entry is 

also linked back to the containing records in the base table by supporting tables. The heuristic is 

extended by the possibility to put different weights on these search type chapters. These 

chapter weights are called priorities because they also influence the optimization of the 

implementation by giving the algorithm an order to work with. Another extension to the 

heuristic is the introduction of offsets that are added to the word occurrences. These offsets 

smooth out the relative differences between the words and can also be applied per chapter. 

The occurrence function now requires two parameters: the word and the search type the word 

belongs to. With 𝑠𝑠𝑠𝑠(𝑖𝑖) returning the search type of word i, 𝑝𝑝𝑟𝑟𝑖𝑖(𝑗𝑗) and 𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) returning the 

priority and the offset of search type j and n being the number of search types, the extended 

𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 can be defined as:  

𝑟𝑟𝑟𝑟(𝑖𝑖) =  max(𝑜𝑜𝑜𝑜𝑜𝑜�𝑖𝑖,𝑠𝑠𝑠𝑠(𝑖𝑖)� + 𝑜𝑜𝑜𝑜𝑜𝑜�𝑠𝑠𝑠𝑠(𝑖𝑖)�, 1)−1 (2) 

𝑠𝑠ℎ𝑎𝑎𝑟𝑟𝑎𝑎(𝑖𝑖) =  𝑝𝑝𝑟𝑟𝑖𝑖(𝑠𝑠𝑠𝑠(𝑖𝑖))
∑ 𝑝𝑝𝑟𝑟𝑖𝑖(𝑘𝑘)𝑛𝑛
𝑘𝑘=1

 (3) 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠(𝑖𝑖) =  𝑠𝑠ℎ𝑎𝑎𝑟𝑟𝑎𝑎(𝑖𝑖)
⎝

⎛ 𝑟𝑟𝑟𝑟(𝑖𝑖)
∑ �𝑟𝑟𝑟𝑟(𝑗𝑗)| 𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑠𝑠𝑠𝑠(𝑗𝑗)

0        | 𝑠𝑠𝑠𝑠(𝑖𝑖) ≠ 𝑠𝑠𝑠𝑠(𝑗𝑗)𝑗𝑗∈𝑆𝑆 ⎠

⎞ (4) 

 

The function 𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑠𝑠𝑠𝑠(𝑖𝑖)) returns the average occurrence within the search type 𝑠𝑠𝑠𝑠(𝑖𝑖), if word i 

is not found in the registry for search type 𝑠𝑠𝑠𝑠(𝑖𝑖). The function 𝑚𝑚𝑎𝑎𝑚𝑚 returns the numerical 

highest of the parameters. The function share(i) transforms the absolute priorities into relative 

shares that sum up to 1. 

Good values for the priorities and the offsets highly depend on the used preparer and the 

characteristics of the search types. In most cases a match has a clearly dominating characteristic 

like a company name that should get a higher priority as the supporting characteristics like 

address, city or zip. In conjunction with a customized cutoff limit, it is possible to focus the 

match and reduce the number of false positives. The usage of offsets is much more 

experimental. They can be used to like a slider between an occurrence based heuristic and a 

simple word based metric where every word has the same value. This is the case if the offset is 

negative and higher than the highest occurrence of a search type.  

For any search term the words of the records found in the base table are compared with the 

words of the search term. For every shared word the associated 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 is summarized to get a 

measurement for the identity ranging between 0 and 1. An identity of 1 means all words of the 

search term exists also in the found record. Missing words from the search term result in a 

lower identity according to their 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠. Only found records with an identity above a given limit 

are considered candidates.  

Until now all candidates with the same matching words are equal. In some cases it is desirable 

to rank these results according to the words of the candidates that are not part of the search 

term, thus preferring candidates with less additional clutter. The surplus words of the 

candidates generate a discount on the identity, called feedback. The extent of the discount can 

be adjusted with the feedback parameter 𝑜𝑜 which has a valid range from 0 to 1. With 𝐹𝐹 being 

the set of all the words of the found candidate record, the final definition of the 𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓 is 

available:  
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𝐽𝐽𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑟𝑟𝐽𝐽(𝑖𝑖) =  
∑ �𝑟𝑟𝑟𝑟(𝑗𝑗)| 𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑠𝑠𝑠𝑠(𝑗𝑗)

0        | 𝑠𝑠𝑠𝑠(𝑖𝑖) ≠ 𝑠𝑠𝑠𝑠(𝑗𝑗)𝑗𝑗∈𝑆𝑆

∑ �𝑟𝑟𝑟𝑟(𝑗𝑗)| 𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑠𝑠𝑠𝑠(𝑗𝑗)
0        | 𝑠𝑠𝑠𝑠(𝑖𝑖) ≠ 𝑠𝑠𝑠𝑠(𝑗𝑗)𝑗𝑗∈𝑆𝑆∪𝐹𝐹

 (5) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓(𝑖𝑖) =  𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠(𝑖𝑖)�(1 −𝑜𝑜) + 𝐽𝐽𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑟𝑟𝐽𝐽(𝑖𝑖)𝑜𝑜�  

 
(6) 

The function (5) is called Jaccard because it is the implementation of the Jaccard similarity 

coefficent (Paul Jaccard, 1901). It measures the similarity of two sets of properties by dividing 

the number of shared properties by the size of the union of both sets. With a feedback of 1, 

equal priorities and large enough negative offsets (equalizing all occurrences) for all search 

types, the identity transforms into a Jaccard index measuring the similarity between to sets of 

words. 

2.2.2 Score 

The identity is the main result of the SearchEngine algorithm, but it is a relative measurement of 

similarity. Sometimes it is desirable to have additional information regarding the absolute 

quality of a match, especially if its identity is close to the cut off limit. Some search terms just 

have no word with a high identification potential, while other consist mainly of quite seldom 

words. The SearchEngine returns for every search term an absolute value called score, which is 

an arbitrary indicator for the identification potential with a straight forward design: 

 

𝑠𝑠𝑜𝑜𝑜𝑜𝑟𝑟𝑎𝑎 =  � 𝑠𝑠ℎ𝑎𝑎𝑟𝑟𝑎𝑎(𝑖𝑖)
𝑜𝑜𝑜𝑜𝑜𝑜�𝑖𝑖, 𝑠𝑠𝑠𝑠(𝑖𝑖)�𝑖𝑖∈𝑆𝑆

  

 

(7) 

The score increases with the share of the words and decreases with their occurrence.  A search 

term with a high score has a higher probability to yield proper results even when the identity is 

quite low. It is used to rank the results as the score only has a meaning if it is compared with 

other scores. This property is also quite useful to define further heuristic rankings of search 

terms, i.e. inventor names. 
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2.3 Implementation 

The 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 is used as the heuristic for the search process that collects the candidate records for a 

search term. Given that the resources for the algorithm are restricted by computing power it is 

more profitable to first look for words with a higher 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠, until the resources for one search step 

are exhausted. The maximum size of the candidate list is the main regulator for a healthy 

balance between performance and completeness. Is the so called search depth too high, the 

performance will significantly be decreased for little benefit consisting mostly of false positives. 

A too restrictive search depth can lead to a loss of valuable hits, because the word with the 

highest 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 may have a higher absolute occurence. The identity limit will also be considered to 

further reduce the candidate list for the following steps. A candidate within the list already has a 

preliminary identity consisting of the words used for filling the list, which are usually just a 

fraction of the whole search term. If the identity of the unused search words won't push a 

candidate above the limit, it will be dropped from the list. In the next step the used words of 

every candidate will be synchronized with the remaining words of the search term to complete 

the calculation of the identity on the base of the 𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓. It is this step that requires the majority of 

the computing power which explains the restrictive selection of the candidates beforehand.  

2.4 Handling Misspellings 

The SearchEngine is a word based algorithm. If a word can’t be found in the registry it will get a 

rIP based on the average occurrence for its search type. But the main problem is that there are 

no connected base table records making this word a dead weight. Another problem are 

misspelled common words that occur in the registry with a very low occurrence compared to 

the proper words. These words can misguide the search process in favor of the other misspelled 

entries. Phonetic preparer like Soundex and Metaphone reduce this problem by creating codes 

for similar sounding words. The n-gram method uses shifted tokenization (i.e.: 

3_gram("DOHERR") = ["DOH", "OHE", "HER", "ERR"]), creating multiple tokens for one word and 

thus reducing the impact of misspellings as they concern only a part of the tokens.  
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Method Soundex Metaphone Cologne 

Code T652 BRTN 3467 

Example 1 TARNOWSKI BARATON WAGNER 

Example 2 THORENZ BERTINI WUCHENAUER 

Example 3 TRUNK BORDIN WEGENER 

Table 1: Words represented by the same phonetic code 
 

There is a price to pay for the gained robustness. The algorithm will return much more false 

positives because the phonetic representations do not only include the misspellings but also 

similar "legal" words. In the case of n-grams all entries containing the same tokens have the 

same identity as the heuristic ignores positioning. The problem is, that phonetic methods are 

specially designed to retrieve false positives in the hope that the intended result will be within 

them. Usually these methods are used in an environment where an operator enters single 

requests into a terminal and examines the retrieved results. For the SearchEngine an additional 

layer has to be applied that fulfills this task. This layer simulates the operator by applying a 

string comparison function for every search type that implements phonetic preparer. This 

function returns a value between 0 and 1 for the similarity of strings. Because of this numeric 

property, it can easily be integrated as an equivalent to the identity of a search type. It 

compares every word of the search term with every word of the found term to identify the 

pairings with the highest similarities. The final result is the sum of these values divided by the 

highest possible score based on the term with the most words. An additional score will be 

calculated that compares the terms as whole strings. The maximum of both scores defines the 

identity. Both types of comparisons are necessary to guarantee a high flexibility of the 

measurement against different positioning of words and unclean separated words (i.e. by 

missing blanks). Because this flexibility requires a large number of comparisons the underlying 

algorithm has to be very efficient. The method used is called Least Relative Character Position 

Deltas (LRCPD). Every character in a string has a relative position between 0 for the first and 1 

for the last character. The algorithm searches for every character in the first string the matching 

character in the second string with the smallest difference between the relative positions. If a 
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character can’t be found a maximum delta of 1 is used. The sum of the deltas divided by the 

length of the first string returns a disparity measure between 0 and 1. 

𝑙𝑙𝑟𝑟𝑜𝑜𝑝𝑝𝐽𝐽(𝑤𝑤𝑜𝑜𝑟𝑟𝐽𝐽1,𝑤𝑤𝑜𝑜𝑟𝑟𝐽𝐽2) = 1 − ∆(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤2)
𝑙𝑙𝑙𝑙𝑛𝑛(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1) = 1 − 1.875

10 = 0.8125 

Fig. 1: Two different spellings of a complicate name compared by the LRCPD method 
 

The LRCPD heavily depends on the direction of the comparison. For a symmetric behavior the 

comparison has to be done in both directions using the lower result. Another problem is the 

reduction of the deltas with increased string lengths. The limes of the average delta approaches 

zero for the comparison of infinite strings. For this reason the LRCPD implements a search scope 

around the relative position of the searched character. Starting from this position the search will 

be carried out in both directions until the character is found or the absolute distance to the start 

position exceeds the scope. The delta of a found character will be adjusted as if the string length 

equals this limit, always resulting in deltas between 0 and 1. The SearchEngine uses an arbitrary 

default scope of 12 characters in both directions (not including the start position). A higher limit 

is only recommended for results that will be manually checked. 

Search types that implement phonetic preparer somehow distort the idea behind the original 

heuristic. The codes or fragments returned by the phonetic methods have a different 

distribution of occurrences than the original words. Through fragmentation or aggregation the 

number of words stored in the registry is reduced, the average occurrence is increased which 
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leads to more candidate records. This effect is subdued by the LRCPD layer but the main 

advantage of the original heuristic, finding candidates by the most identifying words, is watered 

down. Because of that, the SearchEngine supports incremental search steps. Multiple runs with 

different settings can be merged into one result set. Pairings of previous runs will not be 

overwritten by following search steps. It is advised to use phonetic preparer for later runs to 

fetch the candidates that actual have misspellings and to keep the main bulk of the results 

according to the heuristic. 

2.5 Reducing Complexity is a Complex Business 

Now that there are all tools and methods in place, the actual task of creating identifiers for 

variant groups of applicants and inventors can be put into the focus. The only difference to a 

common match of two different data sources is that one data source is matched with itself. 

There exist many different approaches to disambiguate or match this kind of data. Trajtenberg 

et al. (2006) used the Soundex method and introduced a frequency based heuristic. Raffo and 

Lhuillery (2009) analyzed different cleaning methods for a simple string based algorithm and 

compared them to n-gram methods in respect to recall rate and false positives. Schoen, 

Heinisch und Buensdorf (2013) combined simple string matching, n-gram and a Jaccard 

similarity coefficient for their “name game”. All these approaches have in common that the 

matching results are transitive, be it by the method used or enforced by subsequent cleaning 

procedures. The latter is seen problematic but imposed nevertheless as “the only plausible 

course of action” (Trajtenberg et.al., 2006). The results of the SearchEngine can also be forced 

into transitivity by applying a feedback of 1 transforming the identity into a weighted Jaccard 

index. The advantage of transitive matching in respect to disambiguation is the consistent 

mapping of entities into groups. Intransitive matching means that the identity of the reversed 

match can differ from the original identity. The reverse match can even return a value below the 

identity threshold. If transitive pairs define a network consisting of easy to identity clusters of 

fully connected subgraphs, intransitive links between nodes create complex directed subgraphs. 

The connection strength between two nodes can be defined as a tuple consisting of the 

maximum and the minimum of both identities eliminating the direction of the edges, but the 

graphs are still not complete. 
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Fig. 2: Undirected graph 
 

It is obvious that a network analysis is required to identity the clusters in such a network. This 

requires a lot more effort than simply collecting the clusters in the network of complete 

subgraphs defined by the transitive match. But this effort is justified by the additional freedom 

of the intransitive match. Intransitive matching allows pairs consisting of overspecified and 

relatively underspecified search terms to exist as connected nodes. An overspecified search 

term has additional clutter that distracts from the actual target, i.e. mentioning subdivisions 

that obfuscate the firm name. As long as the actual target exists in the data in a proper specified 

form it will collect all the overspecified entries even if these are not able to find the actual target 

on their turn. 

A high identity threshold provides that the single connections in the network are believable. But 

the size and the structure of a graph can lead to initially unexpected composition of a cluster. 

Two meta structures can be identified as the main perpetrators in this regard: black holes and 

thickets. A black hole is a node that has a suspicious number of connections. These are caused 

by underspecified data artefacts, i.e. a company name consisting only of a legal state or a city 

name. Luckily these can easily be detected and mitigated before the traversal of the network by 

cutting all weak connections of a node whose number of connections exceeds an artifact 

threshold. 
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Fig. 3: A black hole and a thicket 
 

A thicket can’t be identified pre traversal. Its structure is chaotic and only discernable from a 

healthy cluster during traversal. It is the direct result of under- and overspecified terms that 

build upon each other. An overspecified term can link to several underspecified terms which 

open the way to subgraphs containing overspecifed terms and so on. In this context 

“overspecifed” does not automatically mean “clutter”, but also proper specified terms of 

common words. To solve this problem suspicious large clusters can be traversed again, but now 

with a limit on the connection strength. A more efficient method to this approach is the 

cascaded traversal. 

3. Cascaded Traversal 

3.1 Definition of a Cascade 

Originally introduced to cut down thickets, cascaded traversal has some additional benefits. The 

basic idea was to identify thickets during traversal and not after the complete network analysis 

to save computing time. Every time a cluster reaches a defined node limit the traversal has to 

start again with a more limiting threshold for the connection strengths. The cluster size limit is a 

discrete value that can be determined by answering questions like: “How many misspellings are 

imaginable for a name?” or “How many different variants of a company name seem to be 
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plausible?”. The answers may be arbitrary but as there are usually multiple cascades with 

increasingly restrictive conditions in place, the whole process can be adjusted for adaptability. 

To define a cascade following conditions and steps have to be considered: 

• Define a set of rules with increasingly restrictive conditions for the validity of a 

connection. Any rule has to include the restrictions of the previous rule. 

• Attach an activation size to every rule, i.e.: unrestricted, min > 90 @ 4, min > 92 @ 6, min 

> 95 @ 6, min > 97 @ 11 

• The rules will be exclusively activated in order of definition. The active rule will be 

replaced if the cluster size of the following rule is reached during traversal. 

• Every time a new rule is activated, the traversal of the network starts again for a given 

start node with the new rule in place. 

• A valid start node is any node that does not already belong to a cluster created by the 

cascaded traversal of a previous start node. 

Any rule creates a new virtual network that is a thinned out version of the network defined by 

the previous rule. As the propagation of this thinning out process is independent from the start 

node, there is no overlapping of the resulting clusters. As the cluster size limit can grow from 

rule to rule to reflect the increase of the connection quality of the remaining network, the 

cascade adjusts itself by being easy on smaller groups and even letting larger groups survive, as 

long as the connections are strong (see figure 4).  

As manual checking is out of the question for large numbers of observations the identity 

threshold for the disambiguation of the applicants and inventor names is quite high to 

guarantee that the connections in the resulting graph already have a good quality. The 

maximum value for a connection is always equal or higher than the identity threshold. The 

minimum value for a connection can be zero if the search in the reversed direction returned an 

identity below the threshold. For this reason only the minimum is used for the rules. The rule 

set for the inventor names should be more restricting than the rules defined for the applicants, 

because the inventor name index is the base for the next step to identify individual inventor 

careers. The applicant variant index is only used as an instrument to identity these careers in 

conjunction with the inventor name index. The probability that two inventors with the same 

name index have patents for two different applicants that are by mistake in the same variant 
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group is quite miniscule. Given the quality of the patent data an additional variant index can be 

created for the home addresses of the inventors. 

 

 

Fig. 4: A cascade with incremental cluster limits is thinning out a thicket 
 

3.2 Nested Cascades 

Compared to inventor names, the structure of applicants or addresses naturally shows much 

more variation. The variance of the term lengths is also much higher. Long applicant names or 

complicated addresses are more prone to create a high amount of quite similar variants than 

their shorter - less complicated – counterparts, because there are more opportunities for 

abbreviations, different positioning of words, misspellings and so on. It is difficult to define 

cluster sizes for cascades, if there is a high degree of heterogeneity in the data in regard of valid 

variants. This problem can be solved by applying a two-step approach consisting of a first 

cascade harmonizing the data by defining preliminary clusters of very similar variants and the 

main cascade to encompass major variants. The preliminary cascade always has at least one rule 
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that is active from the start. This rule enforces the identification threshold of the search or a 

higher limit on the connections, i.e. min >= 90 @ 0. Further rules can be included to control for 

extreme cluster sizes. The resulting network consists off connected hypernodes containing 

variants of comparable similarity.  The cluster sizes of the second cascade are based on these 

hypernodes. The cascade syntax is extended by a semicolon separating the steps, i.e.: min >= 90 

@ 0, min >= 95 @ 100; min >= 90 @ 5, min >= 95 @ 9, min >= 97.5 @ 21. Theoretically more 

than two cascades can be nested using this method but the practical use is questionable. 

3.3 Rough and Fine Inventor Cascades 

Inventor names typically don’t have many different variants, but still, some names are more 

prone to different spellings or underlie specific cultural habits. In the US, the middle initial is 

more important than in Europe, where it often is left out. The same inventor can appear with 

her middle initial, the full middle name or completely without it. Some inventor have names 

containing special characters that somehow got lost in the administrative process and are 

replaced with more common characters without specific replacement rules. These 

circumstances produce different spelling schemes that extend the expected variations of simple 

misspellings. A fine cascade that yields perfect variant groups for the majority of inventor names 

may put the variants for the more problematic cases into different groups. A rough cascade with 

more generous activation limits and softer restrictions on the connection strength is able to 

look over these shortcomings and properly put all variants of the difficult cases into one group 

but also many names that should not belong together. To get the best of both cascades the 

rough cascades also takes the address of the inventor into account. The rough classification 

groups all subordinate fine variant keys at the same address together. The rough variant index 

defines the namespace but the fine variant index defines the links for the following step, the 

Inventor Mobility Index. 

  



17 
 

 

4. The Inventor Mobility Index 

The rough inventor name variant index defines a namespace into which all patents of inventors 

with this name belong. There are two extreme positions imaginable: all patents are from one 

person only or all patents are from different namesakes. The truth most probably lies in 

between. By investigating the data available for the patents of this namespace it becomes clear 

that these patents have different types of connections between them. This could be two 

patents being invented at the same employer (applicant) or inventor home address, sharing 

some co-inventors, citing each other or are about a similar technology. These pairwise 

connections span a network with heterogeneous definitions of connection strength. One way to 

solve this problem is a network analysis of the whole graph using patents as nodes. Because of 

the high interconnectivity and the disparity of the connection quality the high probability of 

thickets could be countered with cascaded traversal. But as the criteria for the cluster size limit 

is the number of patents it becomes obvious that the definition of a rule set will be 

uncomfortably arbitrary. The number of patents per inventor is very heterogeneous and the 

connection restrictions require some kind of ranking or weighting of the different connection 

types. The better solution is to define a hierarchical order of the connection types. First, only 

the types are used for traversal which are defined for all patents and have a good 

disambiguation potential. Common sense suggests the usage of the inventor address and the 

applicant as opposed to the patent classification. Resulting clusters are the basic milestones of 

the inventor career. These clusters are also called hypernodes as they become new nodes of a 

nested-graph model (Alexandra Poulovassilis and Mark Levene, 1990, 1994) as the following 

layers of connection types are applied in order of reliability. This approach has two major 

advantages: it is possible to aggregate the data of the patents within a hypernode to create 

additional information a single patent could not provide and it is more comfortable to define a 

cascade using career milestones. Also, the cascaded traversal partially solves the common name 

problem. One symptom of a common name can be a huge name space occupied by dense 

thickets. Cascaded traversal keeps the number of milestones within a tolerable limit for an 

inventor career without the explicit knowledge about the commonness of a name. 
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4.1 Meta Data 

Not all common names may produce large thickets and the cascades that effectively cut down 

common name thickets may be too restrictive for some very active inventors. For example, 

under the name of the iconic “JOHN SMITH” are only 52 patents filed at the US Patent Office 

(2014), resulting in an unobtrusive network. The cascaded traversal can’t solve these problems 

based only on the information of the patents within a namespace, but it is also required to 

include meta information that ranks this information in the context of the whole patent data. 

The most important meta data in this regard is the score the SearchEngine returns for every 

inventor name (see 1.2.2). It can be used to rank the names by their identification potential, 

which is another term for commonness. Names with the same score get the same rank. Ranks 

are distributed without gaps and normalized to values between 0 (high commonness) and 1 

(unique). These ranks can be used like percentiles to further refine the cascades by injecting 

global context, i.e. accepting any connection as long the percentile rank for the identification 

potential of a name is greater equal 75%. Other meta information is constructed by counting 

the number of disambiguated names appearing for an applicant or inventor address, by 

counting the forward and backward citations of a patent or how often a patent classification is 

used. Additional flexibility is gained by not only reporting the count but also constructing a  

percentile rank that can be interacted (multiplied) with the percentile rank of the inventor 

name.  

4.2 Traversal 

4.2.1 Home Address 

Having the home address on the inventors is the ideal case. After defining a variant key for the 

different existing addresses using the SearchEngine it is possible to define the first layer of 

hypernodes within a name space. A hypernode contains all the patents a person invented at a 

specific home address. As the nested graph is complete no traversal is required to collect the 

patents of a hypernode. Some patent offices do not collect the street address. In these cases it 

is required to constrain the assignment by interacting the meta information of the address and 

the inventor. The rough inventor name variant index has higher restrictions in regard of these 
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meta information than the fine classification (see 1.7). Although the namespace is defined by 

the rough inventor name index, the connections between the nodes always require the same 

fine index. The address nodes containing more the one fine variant are the gateways between 

different spelling schemes from now on. The home address should always be the first 

connection type as it lays the ground work for the following network cascades. It is much easier 

to interpret activation limits of cascades as relocations between home addresses than, for 

example, the number of transitions between citation clusters.  

4.2.2 Applicant 

Usually the applicant is the employer of the inventor. In cases where the inventor address is 

missing or did not lead to an assignment due to heuristic restrictions, the applicant is the 

substitute for the home address to define a career milestone. The fact, that not only a patent 

can have multiple applicants, but also a hypernode defined by the address may contain patents 

from different applicants, results in a potentially incomplete graph. The traversal follows the 

links defined by the applicant variant keys that are shared between the hypernodes. Cascades 

rely on the meta information of the applicants in conjunction with meta data about the inventor 

name. The activation limit is based on an acceptable number of relocations of an inventor 

working for one applicant. 

4.2.3 Fellows 

This connection type implements the advantages of the hierarchical approach. The distinct  co-

inventors of the patents within a hypernode are the research fellows of the inventor. 

Hypernodes are connected by similar fellow names. The strength of a connection is defined by 

the absolute number, the maximum and average percentile rank of the joint fellows including 

the inventor owning the namespace. Another element of the cascade is a modified Jaccard 

index based on the squared number of joint fellows compared to the union of all fellows of both 

hypernodes. This arbitrary index takes into account that the probability of drawing the same 

combination of names by chance is closer to a quadratic than a linear function of the 

unmodified Jaccard index, although the real shape is unknown. This connection layer often 
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identifies reorganized applicant entities that could not be joined by a variant id because of name 

and location changes.  

4.2.4 Direct Citations 

A direct citation creates a strong link between two patents. If the same inventor name appears 

in both documents the probability of them being the same person is very high. In spite of this 

excellent connecting property, this connection type is only at fourth position, as a patent not 

necessarily has citations that connects back to the same data source. The cascades use meta 

information about the number of citations made of a patent because some patent authorities, 

i.e. the USPTO, include all citations suggested by the applicant, which can lead to counts in the 

thousands. The counting data helps to enforce a higher threshold on the inventor name 

percentile rank for these extreme cases.  

4.2.5 Indirect Citations 

A link defined by an indirect citation is a third document cited by patents of different 

hypernodes within a namespace. The cited document itself does of course not belong to the 

namespace, otherwise it would have been a direct citation. This connection type is much 

weaker than a direct citation as the document may only state prior art and can be referenced by 

many other patents. As usual for weak connection types, a multitude of parameters need to be 

controlled for to minimize the risk of wrong assignments. As with the direct citations, a 

reference counter is required to filter extreme cases. A modified Jaccard index ensures that the 

joint citations are in a healthy relation to the overall citations of both hypernodes. A high 

inventor name percentile rank ignores all other restrictions. 

4.2.6 Expertise 

The international patent classification (IPC) codes describe the technologies that define the 

inventiveness of a patent and thus indirectly the expertise of its inventors. The codes follow a 

hierarchical system which allows for truncation at specific positions or separators to get a 

broader view on the involved technology respectively expertise. There are two cascades for the 

expertise based on the main group, defined by the characters before the oblique stroke 
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separator, followed by a run on the main classification defined by the first 4 characters. The 

expertise within a hypernode consists of a distinct list of these codes. Every code gets two 

different weights. The meta weight is defined by a meta table delivering a percentile rank for 

the inverse occurrence of a code. An uncommon code has a higher weight than a common code. 

The internal weight is based on the occurrence of the code within the hypernode. A code that 

appears more often has a higher weight. The cascade consults a modified Jaccard index based 

on the meta weights and another value based on the mean  shares of the internal weights of the 

matching codes. The expertise is a very weak connection type and should always be the last in 

the traversal order because larger hypernodes allow for a better assessment of the expertise of 

an inventor. 

4.3 Final Discussion 

A more extensive discussion of the exact definitions of the cascades is omitted, because they 

heavily rely on the quality of the original patent data and the way the patent system is 

organized. The EPO collects full address information, including street names, about the 

inventors and applicants. With such precise information about the location the usage of meta 

information for the inventor address is unnecessary. Its examiners define the required citations 

on their own without intervention of the applicants, leading to a much smaller average citation 

count per patent compared to the USPTO. This has a direct impact on the cascade specifications 

for the direct and indirect citations. If there is uncertainty in earlier cascades like the ones for 

addresses or applicants, the whole principle of the cascades is weakened. The activation limit of 

a cascade should be based on the real life context of the data, like relocations in regard of 

inventor addresses. If there is structural ambiguity in the address information, like missing 

street addresses, the cascades not only are about relocations but also have to take this 

uncertainty into account. A high level of uncertainty, especially in the early cascades, shifts the 

focus of the algorithm from the specification of the cascades to a more general approach using 

meta data as the central element for identifying the individual degree of ambiguousness. The 

cascades degenerate to a simple vehicle to activate the cascade conditions relying on this meta 

information. 

  



22 
 

References 

Manuel Trajtenberg, Gil Shiff, Ran Melamed (2006): The “Names Game”: Harnessing inventors’ 
patent data for economic research. Working Paper, National Bureau of Economic 
Research. 

Anja Schön, Dominik Heinisch, Guido Buenstorf (2013): Playing the ‘Name Game’ to identify 
university patents in germany. Working Paper, Social Science Research Network 

Alexandra Poulovassilis, Mark Levene (1994): A nested-graph model for the representation and 
manipulation of complex objects. ACM Transactions on Information Systems 12(1), 35-68 

Julio Raffo, Stephan Lhuillery (2009): How to play the “Names Game”: Patent retrieval 
comparing different heuristics. Research poliy 38(10), 1617-1627 


