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Abstract

In psychology, multinomial processing tree (MPT) models explain how qualita-
tively different processes determine observed response behavior. Even though they
have successfully been used in many applications, MPT models are inherently limited
to discrete data such as choice frequencies. In my thesis, I therefore propose two new
approaches that extend MPT models to continuous variables such as response times
(RTs), fine-grained response scales, or process-tracing measures. Both approaches
assume that continuous variables follow a finite mixture distribution with mixture
weights determined by the processing tree structure and state-specific, continuous
component distributions.

In the first approach, RT-extended versions of MPT models are obtained by
categorizing continuous observations into a finite number of intervals. Thereby, the
RT component distributions can be estimated by histograms, allowing researchers
to test the relative speed of different latent processes as demonstrated for the two-
high-threshold model of recognition memory. In a theoretical paper, the new method
is used to develop an RT-extended MPT model of recognition-based decisions and
test competing process models. Even though the two theoretical accounts under
consideration differ strongly and assume serial and parallel information integration,
respectively, empirical tests have proved to be difficult without the new measurement
model.

As a second approach, I developed the class of generalized processing tree (GPT)
models that assume parametric families instead of histograms for the continuous
component distributions. The main advantages of GPT models are that they reduce
the flexibility of the component distributions, can result in more precise estimates for
the processing-tree parameters compared to MPT models, and allow for modeling
one or more continuous variables jointly. In a first empirical application, a GPT
model provided a good account of mouse-tracking data in a semantic-categorization
paradigm. In sum, my thesis lays the foundations for new empirical tests of discrete-
state theories of cognition by jointly modeling discrete and continuous variables.
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1 Articles

This cumulative thesis is based on two published articles and one manuscript submit-
ted for publication that will be discussed in the chronological order of development.
The main text provides an overview and an encompassing theoretical framework for
these three papers, whereas statistical and empirical details are found in the original
articles appended to this thesis.

Heck, D. W. & Erdfelder, E. (2016). Extending multinomial processing tree models
to measure the relative speed of cognitive processes. Psychonomic Bulletin &
Review, 23, 1440–1465. doi:10.3758/s13423-016-1025-6

Heck, D. W. & Erdfelder, E. (in press). Linking process and measurement models of
recognition-based decisions. Psychological Review. doi:10.1037/rev0000063

Heck, D. W., Erdfelder, E., & Kieslich, P. J. (2017). Generalized processing tree mod-
els: Jointly modeling discrete and continuous variables. Manuscript submitted for
publication.

During my dissertation, I have also worked on other topics related to multinomial
processing tree models and statistical modeling in general. These articles are not
included in the thesis, because they focus either on practical applications or on statisti-
cal aspects such as model selection, Bayesian inference, or software implementations.
Nonetheless, several of these papers are referred to in the main text, since they laid
the foundations for the novel developments presented in my thesis.

Heck, D. W., Moshagen, M., & Erdfelder, E. (2014). Model selection by minimum
description length: Lower-bound sample sizes for the Fisher information ap-
proximation. Journal of Mathematical Psychology, 60, 29–34. doi:10.1016/j.jmp.
2014.06.002

Erdfelder, E., Castela, M., Michalkiewicz, M., & Heck, D. W. (2015). The advantages
of model fitting compared to model simulation in research on preference con-
struction. Frontiers in Psychology, 6, 140. doi:10.3389/fpsyg.2015.00140

Heck, D. W., Wagenmakers, E.-J., & Morey, R. D. (2015). Testing order constraints:
Qualitative differences between Bayes factors and normalized maximum likeli-
hood. Statistics & Probability Letters, 105, 157–162. doi:10.1016/j.spl.2015.06.014

Heck, D. W. & Wagenmakers, E.-J. (2016). Adjusted priors for Bayes factors involving
reparameterized order constraints. Journal of Mathematical Psychology, 73, 110–
116. doi:10.1016/j.jmp.2016.05.004

https://dx.doi.org/10.3758/s13423-016-1025-6
https://dx.doi.org/10.1037/rev0000063
https://dx.doi.org/10.1016/j.jmp.2014.06.002
https://dx.doi.org/10.1016/j.jmp.2014.06.002
https://dx.doi.org/10.3389/fpsyg.2015.00140
https://dx.doi.org/10.1016/j.spl.2015.06.014
https://dx.doi.org/10.1016/j.jmp.2016.05.004
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Thielmann, I., Heck, D. W., & Hilbig, B. E. (2016). Anonymity and incentives: An
investigation of techniques to reduce socially desirable responding in the Trust
Game. Judgment and Decision Making, 11, 527–536. Retrieved from http://journal.
sjdm.org/16/16613/jdm16613.html

Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to
decisions: Formalizing and comparing probabilistic choice models. Cognitive
Psychology, 96, 26–40. doi:10.1016/j.cogpsych.2017.05.003

Heck, D. W., Hoffmann, A., & Moshagen, M. (2017). Detecting nonadherence without
loss in efficiency: A simple extension of the crosswise model. Manuscript submitted
for publication.

Heck, D. W., Overstall, A., Gronau, Q. F., & Wagenmakers, E.-J. (2017). Quantifying
uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov
models. Manuscript submitted for publication.

Heck, D. W., Arnold, N. R., & Arnold, D. (in press). TreeBUGS: An R package for
hierarchical multinomial-processing-tree modeling. Behavior Research Methods.
doi:10.3758/s13428-017-0869-7

Heck, D. W. & Moshagen, M. (in press). RRreg: An R package for correlation and
regression analyses of randomized response data. Journal of Statistical Software.

Klein, S. A., Hilbig, B. E., & Heck, D. W. (in press). Which is the greater good? A social
dilemma paradigm disentangling environmentalism and cooperation. Journal of
Environmental Psychology. doi:10.1016/j.jenvp.2017.06.001

Miller, R., Scherbaum, S., Heck, D. W., Goschke, T., & Enge, S. (in press). On the
relation between the (censored) shifted Wald and the Wiener distribution as
measurement models for choice response times. Applied Psychological Measure-
ment.

http://journal.sjdm.org/16/16613/jdm16613.html
http://journal.sjdm.org/16/16613/jdm16613.html
https://dx.doi.org/10.1016/j.cogpsych.2017.05.003
https://dx.doi.org/10.3758/s13428-017-0869-7
https://dx.doi.org/10.1016/j.jenvp.2017.06.001
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2 Introduction

2.1 Multinomial Processing Tree Models

Many theories in psychology state that human behavior, cognition, and emotion are
each determined by qualitatively distinct processes. For instance, theories of memory
distinguish between storage and retrieval of information (e.g., Batchelder & Riefer,
1986), theories of judgment and decision making assume that people rely on distinct,
ecologically adaptive strategies (e.g., Gigerenzer, Todd, & the ABC Research Group,
1999), and dual-process theories of categorization and reasoning distinguish between
similarity-based and rule-based processes (e.g., Sloman, 1996). Despite their success
and popularity, testing such theories empirically is often difficult, because observable
behavior can in principle emerge from more than one of the hypothesized processes.
Therefore, it is rarely warranted to treat observed responses as one-to-one indicators
of latent processes.

As a remedy, psychological measurement models define how latent cognitive
processes determine observable behavior. Compared to verbal theories, such mathe-
matical models are more precise, and thereby allow for stronger tests of theoretical
predictions (Erdfelder, Castela, Michalkiewicz, & Heck, 2015). After establishing the
validity of a measurement model, its parameter estimates can be used as process-pure
measures of the hypothesized processes to test psychological theories and predictions
(Erdfelder, 2000). The present thesis is concerned with a specific modeling framework,
multinomial processing tree (MPT) models (Batchelder & Riefer, 1999; Erdfelder et al.,
2009; Riefer & Batchelder, 1988), that accounts for frequencies of discrete responses
by assuming a finite number of latent cognitive states. More specifically, MPT mod-
els assume that observed response frequencies follow multinomial distributions, in
which the expected category probabilities are modeled by a processing tree. In such
a psychologically motivated probability tree, conditional probabilities describe the
prevalence of the hypothesized latent processes.

In the following, I will rely on the two-high-threshold (2HT) model of recognition
memory (Snodgrass & Corwin, 1988) as a running example to outline the definition
and structure of MPT models. Note that this model also serves as an example in
my first and third paper (Heck & Erdfelder, 2016; Heck, Erdfelder, & Kieslich, 2017)
to illustrate the new approaches of extending MPT models in general to continu-
ous variables. The 2HT model shown in Figure 2.1 is one of the most simple and
prominent instances of the MPT model class and represents the building block of
many more complex memory models (e.g., the source-monitoring model; Batchelder
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Target

1− do
1− g NEW

g OLD

do OLD

Lure

1− dn
1− g NEW

g OLD

dn NEW

FIGURE 2.1: The two-high threshold (2HT) model of recognition mem-
ory (Snodgrass & Corwin, 1988).

& Riefer, 1990; Bayen, Murnane, & Erdfelder, 1996). In standard recognition-memory
paradigms, participants first have to learn a list of words or pictures, and later have to
judge studied and new stimuli (often called targets and lures) as OLD or NEW, respec-
tively. Without an explicit model, it is unclear how memory performance relates to
the frequencies of correct OLD responses to targets (hits) and incorrect OLD responses
to lures (false alarms). The 2HT addresses this issue by making explicit assumptions
about the underlying memory and response processes that can be evaluated for
theoretical plausibility and, in turn, tested empirically.

The 2HT model assumes that hits are due to two qualitatively distinct processes:
With probability do, participants recognize the item as being old with certainty and
thus respond OLD. Alternatively, with probability 1 − do, participants are in an
uncertainty state and do not have any memory of the presented item. In this case, the
2HT model assumes that an OLD response is given with guessing probability g based
on a general preference for one of the two options. Overall, since the two processing
paths are disjoint, the probability of OLD responses is thus given by the sum of both
branches

P (OLD | target) = do + (1− do)g. (2.1)

Similarly, the 2HT model assumes that lures are detected with probability dn and that
the guessing probability g is identical to the guessing probability for targets, resulting
in the probability (1− dn)g for false alarms. Statistically, the observed frequencies of
hits and false alarms follow independent binomial distributions with rate parameters
defined by these model probabilities (for a formal definition, see Hu & Batchelder,
1994).

Many advantages of MPT models can be illustrated for the case of the 2HT model.
First, goodness-of-fit tests allow for testing whether a model fits empirical data in
absolute terms — which is the case for the 2HT model (Bröder & Schütz, 2009). Second,
the validity of MPT models can be established by demonstrating that experimental
manipulations selectively influence specific parameters (Erdfelder & Buchner, 1998;
Klauer & Wegener, 1998): In case of the 2HT model, memory-strength manipulations
(e.g., presentation duration or frequency) affect only the memory parameters do and
dn, whereas base-rate manipulations (i.e., changing the proportion of targets in the
test list) affect only the guessing parameter g. Selective influence is an important
prerequisite for the validity of MPT models, since it ensures that parameters can
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be interpreted in terms of the hypothesized latent processes. Once the validity of
an MPT model has been established, it can be used as a measurement tool to test
how experimental manipulations affect different cognitive processes. Moreover, the
framework of cognitive psychometrics (Batchelder, 1998) relies on MPT models to test
whether specific populations of participants differ in information processing. For
instance, Riefer, Knapp, Batchelder, Bamber, and Manifold (2002) applied the MPT
model developed by Batchelder and Riefer (1980) to disentangle storage and retrieval
in free recall to isolate cognitive processes that cause lower memory performance in
schizophrenics and alcoholics.

During the last decades, MPT models have gained increasing popularity and
provided new insights in many fields of psychology, a success that can be attributed
to several factors (for reviews, see Batchelder & Riefer, 1999; Erdfelder et al., 2009;
Hütter & Klauer, 2016). Most importantly, the processing-tree structure establishes
a formal link between psychological theory and observable responses and thereby
provides better explanations of observed behavior compared to ad hoc measures
(Bröder & Meiser, 2007; Hilbig, 2010a). Second, MPT models are mathematically
tractable, which facilitates model development and conceptual understanding by
substantive researchers. Third, statistical inference is well developed and understood.
Besides standard maximum-likelihood estimation algorithms (Hu & Batchelder, 1994)
and software (e.g., Moshagen, 2010; Singmann & Kellen, 2013), Bayesian hierarchical
approaches have been developed (Klauer, 2010; Matzke, Dolan, Batchelder, & Wagen-
makers, 2015; Smith & Batchelder, 2010) and implemented in user-friendly software
(Heck, Arnold, & Arnold, in press). Finally, the scope and usefulness of MPT models
has continually been increased by new methodological developments. For instance,
order constraints of the form θ1 > θ2 are easily implemented by reparameterizations
resulting in a new, less flexible MPT model (Klauer, Singmann, & Kellen, 2015; Knapp
& Batchelder, 2004) that can be compared statistically to the original model (Heck,
Wagenmakers, and Morey, 2015; Wu, Myung, and Batchelder, 2010a, 2010b; but see
Heck, Moshagen, and Erdfelder, 2014 for limitations). Another new area of applica-
tions concerns individual differences, where core concepts of MPT models have been
combined with item response theory (Klauer, 2010; Matzke et al., 2015), for instance,
to measure participants’ response styles (Plieninger & Heck, 2017). In my thesis, I
further expand the toolbox of MPT methods by developing novel approaches for
modeling discrete and continuous variables jointly.

2.2 Jointly Modeling Continuous and Discrete Variables

MPT models gain much of their power from their flexibility, since they can easily
be adapted to more complex experimental paradigms. For instance, the 2HT model
can be generalized from binary response data to confidence ratings (Bröder, Kellen,
Schütz, & Rohrmeier, 2013) or ranking tasks (Malejka, Heck, & Erdfelder, 2017) while
retaining the core assumption that discrete memory states determine participants’
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accuracy. Nevertheless, MPT models are inherently limited in scope, because they
can only account for discrete data such as choice frequencies. This is apparent from
the statistical structure of the underlying multinomial distribution, which models
the probabilities of counts falling into a finite number of categories. In principle, this
is not a limitation as long as psychological theories merely make predictions about
choice frequencies and other discrete outcome variables.

However, the objective of theories in cognitive psychology is to explain general
mechanisms underlying human information processing. A good theory should have
a large scope and predict a wide range of aspects of observable human behavior
(Glöckner & Betsch, 2011). Hence, theories should generalize beyond response
frequencies and also allow for testable predictions concerning continuous variables.
For instance, much theorizing in psychology has focused on response times (RTs;
Luce, 1986; Townsend & Ashby, 1983). By measuring the speed of participants’
responses to various stimuli under different conditions, researchers aim to explain
basic information processing of visual or acoustic stimuli (Donders, 1868), describe
the retrieval of information from memory (Ratcliff & Murdock, 1976), or test serial
versus parallel processing architectures (Townsend, 1990).

Since statistical methods should not constrain theory building, the question arises
how to extend MPT models to continuous variables. Concerning the 2HT model
for recognition memory, for instance, additional assumptions are required to derive
testable predictions for RTs (Dube, Starns, Rotello, & Ratcliff, 2012; Heck & Erdfelder,
2016). An important question is whether the processing tree in Figure 2.1 is inter-
preted literally as a sequence of underlying processing steps as proposed by Hu
(2001). According to this view, guessing responses must be stochastically slower than
detection responses (Heck & Erdfelder, 2016). In general, however, the processing tree
structure of the 2HT model can also be maintained merely as a structure of expected
probabilities for response frequencies while assuming that guessing responses can
actually be faster than detection responses (similar to the fast-guess model by Ollman,
1966). Besides these issues of the relative speed of memory and decision processes, the
question arises whether researchers want to commit to parametric constraints when
modeling RT distributions (e.g., assuming that RTs follow a log-normal distribution).
Moreover, statistical problems of model identifiability, parameter estimation, and
model comparison need to be addressed before testing whether any RT-extended
version of the 2HT model can explain recognition judgments and speed. Obviously,
these issues are not limited to the 2HT model but apply to MPT models in general.

Similar questions also arise when modeling other continuous variables than RTs.
With the increasing availability of computers and electronic devices in general, data
collection and preprocessing of various types of continuous variables has been greatly
facilitated. For instance, software packages for creating experiments allow researchers
to implement continuous response scales such as fine-graded sliders for confidence
ratings (Province & Rouder, 2012) or circular scales measuring spatial memory for
the location or color of presented items (Harlow & Donaldson, 2013; Oberauer & Lin,
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2017). Moreover, in many paradigms such as the classical anchoring task (Tversky
& Kahneman, 1974) or hindsight-bias paradigm (Pohl, 2007), participants are asked
to directly estimate magnitudes instead of choosing between a limited number of
predefined response options.

Besides more fine-grained response scales, behavioral or physiological variables
are often recorded during the time course of each trial (Schulte-Mecklenbeck, Küh-
berger, & Ranyard, 2011). For instance, eye tracking is a prominent process-tracing
method that is used to measure cognitive processes such as information search or
attention allocation (e.g., Just & Carpenter, 1976). More recently, researchers have
also started to analyze movements of participants during experimental tasks, for
instance, by recording the trajectories of the computer mouse when choosing one
of two options (Kieslich & Henninger, in press; Spivey, Grosjean, & Knoblich, 2005).
Finally, continuous variables are recorded in many neuropsychological studies that
measure electro-related potentials or use functional magnetic resonance imaging. The
relevance of jointly modeling continuous neurophysiological and discrete behavioral
variables was recently highlighted in a special issue of the Journal of Mathematical
Psychology (Palmeri, Love, & Turner, 2017).

Overall, continuous variables are widely used in psychology and provide a rich
source of information for our understanding of cognitive processes. Currently, how-
ever, no general-purpose methods exist to test psychological theories that assume
qualitatively distinct states and make predictions for both discrete and continuous
data. In my thesis, I address this gap by developing novel methods that extend the
scope of MPT models to continuous variables. In the first paper (Heck & Erdfelder,
2016), I present a simple approach of extending MPT models to RTs and provide
solutions to statistical issues such as model identifiability. In the second paper (Heck
& Erdfelder, in press), I focus on the theoretical derivation of a new, RT-extended MPT
model for recognition-based decisions, thereby linking process and measurement
models that have previously been applied in isolation. Finally, in the third paper
(Heck, Erdfelder, & Kieslich, 2017), I define the new class of generalized processing
tree models which provide an alternative approach for modeling continuous variables
in a discrete-state framework.

Besides these theoretical, methodological, and statistical contributions, I also ad-
dress the pragmatic issue that new methods are often not used unless corresponding
software is available. In cognitive modeling, user-friendly software needs to facilitate
the specification, estimation, and testing of models. For instance, the R package
TreeBUGS (Heck et al., in press) facilitates the analysis of Bayesian hierarchical MPT
models that take heterogeneity across participants into account (Klauer, 2010; Smith
& Batchelder, 2010). Similarly, the third paper of my thesis does not only define
generalized processing tree models but also provides an implementation in the R
package gpt using a simple modeling syntax. In the following, I summarize the core
ideas and developments presented in these three papers. For technical details and
empirical results, the reader is referred to the original articles in Appendix D.
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3 Extending MPT Models

3.1 Measuring the Relative Speed of Cognitive Processes

Heck, D. W. & Erdfelder, E. (2016). Extending multinomial processing tree models
to measure the relative speed of cognitive processes. Psychonomic Bulletin &
Review, 23, 1440–1465. doi:10.3758/s13423-016-1025-6

At their core, discrete-state theories of cognition predict that behavior depends
on a finite number of latent states, and that in each trial of a study, one of these
states determines observable outcomes independent of the other states (Luce, 1986;
Townsend & Ashby, 1983; Yantis, Meyer, & Smith, 1991). Since people can be in
different cognitive states across multiple observations, discrete-state theories predict
a mixture distribution of state-specific outcomes for the observed data. For instance,
dual-process models distinguish two systems of information processing: An auto-
matic, associative System I and a deliberative, rule-based System II (e.g., Evans, 2008;
Sloman, 1996). Predictions for observable behavior depend on the system used in
a specific situation. Among other qualitative differences, System I responses are
predicted to be rather fast, whereas System II responses are predicted to be rather
slow.

Statistically, this dual-process account implies that observed RTs t follow a mixture
distribution with probability density function

f(t) = αg1(t) + (1− α) g2(t), (3.1)

where α is the proportion of System I responses, and g1(t) and g2(t) are the prob-
ability density functions of RTs from System I and II, respectively. The statistical
representation of dual-process theories as mixture models has several advantages.
First, a mathematical model is more exact than a verbal theory and thus enables
a stronger test of the core assumption of two systems of processing (Dixon, 2012;
Falmagne, 1968; Miller, 2006; Province & Rouder, 2012; Yantis et al., 1991). Second,
the model in Eq. 3.1 can be used as a measurement tool to estimate the proportion α
of System I responses and the state-specific component distributions gi(t). Thereby,
one can assess how these parameters change across experimental manipulations or
between different populations of participants.1

1 Without additional constraints, the model in Eq. 3.1 is not identifiable. Thus, additional constraints
as those discussed in Heck, Erdfelder, and Kieslich (2017) are necessary to ensure unique parameter
estimates, which is a prerequisite for its use as a measurement model.

https://dx.doi.org/10.3758/s13423-016-1025-6
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Similar to dual-process theories, MPT models assume that observable behavior
is governed by a finite number of cognitive states. For instance, the 2HT model of
recognition memory assumes three distinct states (target detection, lure detection, and
uncertainty) to explain old-new judgments. Correspondingly, the model predicts that
observed RT distributions follow a finite mixture distribution similar to that in Eq. 3.1
(Province & Rouder, 2012). However, the 2HT also places strong constraints on the
mixture weights (e.g., the parameter α in Eq. 3.1), because the expected probabilities
that OLD and NEW responses are due to detection or guessing are defined by the
processing tree structure in Figure 2.1. Based on these theoretical considerations,
the question arises how to combine both assumptions — a mixture distribution for
RTs and a processing-tree structure for choice frequencies — into a single statistical
model.

As a solution, Heck and Erdfelder (2016) proposed to extend the processing tree
structure of MPT models by adding latent component distributions to all processing
paths. This approach is illustrated graphically in Figure 3.1 for the 2HT model.
Overall, the model assumes six distinct processing paths that are mapped to four
observable response categories. Each of these paths represents one possible way of
processing a presented test item and is thus associated with a separate RT distribution.
For instance, the illustration in Figure 3.1 shows that hits due to target detection are
relatively fast as indicated by the first component distribution that is reached with
probability do. In contrast, hits due to guessing are slower as indicated by component
distributions in the uncertainty state that are shifted towards slower RTs, in line with
the assumption of serial processing (Hu, 2001).

Formally, the extension of the 2HT model in Figure 3.1 results in a probability
density function for hits that is defined by the mixture

f(t | hit) =
do

do + (1− do)g
g1(t) +

(1− do)g
do + (1− do)g

g2(t), (3.2)

where g1 and g2 are the state-specific component densities for target detection and
guessing OLD, respectively. Importantly, the mixture weights are constrained by
the MPT structure and not estimated freely as in standard finite-mixture models. In
a similar way, the RT distribution of correct rejections is modeled as a mixture of
lure detection and guessing NEW. Note that the 2HT model assumes that incorrect
responses (i.e., false alarms and misses) only emerge from incorrect guessing in the
uncertainty state. Therefore, the observed RT distributions of false alarms and misses
are identical to the corresponding component distributions.

In general, RT-extended MPT models define a joint likelihood of discrete choices
and continuous RTs by making predictions similar to those in Eq. 3.2. Thereby, they
improve upon two-step procedures, in which MPT parameters are first estimated and
then used to test predictions about RTs (e.g., Hu, 2001; Province & Rouder, 2012). By
modeling choices and RTs jointly, a single statistical model is obtained that can be
fitted, tested, and compared against competing models within a coherent statistical
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FIGURE 3.1: The 2HT model implies that observed RTs follow a mix-
ture distribution, in which the mixture weights are constrained by the

branch probabilities of the MPT structure.

framework (e.g., using maximum likelihood or Bayesian inference). However, before
fitting such an RT-extended MPT model, it is necessary to decide how to model the
component distributions gi(t). In the present section, I will outline the method pro-
posed in Heck and Erdfelder (2016) that models the component distributions without
assuming specific parametric shapes. In Section 3.3, I present an alternative approach
that models the component densities by specific parametric families (e.g., Gaussian
distributions). However, both approaches are built on the same core structure: The
processing tree of an MPT model is expanded by assuming separate component
distributions for each processing path (cf. Figure 3.1).

To model the component distributions gi(t) without parametric assumptions, the
continuous distributions in Figure 3.1 can be approximated by histograms of the RTs
(Yantis et al., 1991). Thereby, instead of estimating the component density functions
gi(t), the method estimates the bin probabilities of the corresponding histograms.
Formally, the component distributions are modeled by parameters Ljb defined as the
probabilities that responses from processing branch j fall into the b-th RT interval
as illustrated in Figure 3.2. This flexible approach allows researchers to model RT
distributions more or less fine-grained by adjusting the number of RT intervals B.
For instance, if the number of observations is small, responses can be categorized
merely as “fast” or “slow” using B = 2 RT bins. In this case, the parameters Lj1 are
defined as the probabilities that responses from process j are “fast” and thus provide
direct estimates of the relative speed of the latent processes.

The use of histograms has the benefit that the RT-extended MPT model is also
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Target

1− do

1− g NEW

L3B TB−1 ≤ t
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L32 T1 ≤ t < T2
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FIGURE 3.2: In the RT-extended 2HT model, the latent component
distribution of branch j are modeled by the parameters Ljb, defined

as the probabilities that RTs t are in the b-th interval.

included in the class of MPT models (Heck & Erdfelder, 2016). This is illustrated
in Figure 3.2 for the 2HT model: Essentially, the original response categories OLD

and NEW are split into more fine-grained categories depending on the observed RTs
t per trial. In such a discretization of the RT distributions, the RT boundaries Tb
define the intervals of the histograms and are identical across all response categories
of a tree model. For instance, the parameter L11 gives the probability that target-
detection responses are faster than the lowest RT boundary (i.e., t < T1). Since the
new model is an MPT model, its parameters can be estimated with existing software
for MPT modeling (Heck et al., in press; Moshagen, 2010; Singmann & Kellen, 2013).
Similarly, sophisticated model-selection methods originally implemented for standard
MPT models can be directly used for any RT-extended MPT model (e.g., minimum
description length or the Bayes factor; Heck et al., 2014; Heck & Wagenmakers, 2016;
Vandekerckhove, Matzke, & Wagenmakers, 2015; Wu et al., 2010a).

Even though the reliance on histograms solves the issue of how to estimate the
component distributions, it directly leads to a new question, namely, how to select
the RT boundaries Tb. In the first paper of my thesis (Heck & Erdfelder, 2016),
several strategies and their advantages and disadvantages are discussed. According
to the most promising approach that is used for the empirical analyses in Heck and
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Erdfelder (2016) and Heck and Erdfelder (in press), RT boundaries are computed
separately for each participant as a function of the observed RTs. Thereby, inter-
individual differences in absolute speed of the hypothesized cognitive processes are
accounted for, whereas the relative speed can still be estimated. For instance, when
using B = 2 RT intervals, the boundary T1 is defined as the geometric mean RT per
participant. Correspondingly, the parameters Lj1 are interpreted as the probability
that responses from processing path j are faster than the geometric mean RT per
participant. Note that different strategies of defining RT boundaries (e.g., using the
arithmetic mean or the median per person) lead to identical substantive conclusions
in the empirical analysis, which shows that the method is robust with respect to this
choice.

An important statistical issue that has to be solved before fitting and evaluat-
ing specific RT-extended MPT models concerns their identifiability, that is, whether
unique parameter estimates can be obtained. Technically, an MPT model is identifi-
able, if the function that maps the parameters θ to the predicted category probabilities
p(θ) is one-to-one (i.e., p(θ) = p(θ′) implies θ = θ′; Bamber & van Santen, 2000). In
general, proving the identifiability of MPT models is difficult. Whereas analytical
solutions are available for some models (e.g., Batchelder & Riefer, 1990; Meiser, 2005),
heuristics and numerical strategies are often used to check identifiability for more
complex models (Moshagen, 2010; Schmittmann, Dolan, Raijmakers, & Batchelder,
2010). However, given an identifiable MPT model, we proved that a simple counting
rule or a more general matrix approach can be used to check whether a corresponding
RT-extended MPT model is identifiable (see Appendix A in Heck & Erdfelder, 2016).

In a first application of the novel method, we proposed an identifiable, RT-
extended version of the 2HT model (Heck & Erdfelder, 2016). In addition to the
core structure illustrated in Figure 3.2, the model constrains the RT distribution
of guessing OLD to be identical for targets and lures (the same constraint holds
for the RT distribution of guessing NEW). The new model provided a good fit to
recognition-memory data and allows researchers to test which component distribu-
tions are affected by experimental manipulations of memory strength and response
bias. Note that this model applies to responses with an emphasis on accuracy (and
not on speed) and thus needs to be adapted to account for speed-accuracy trade-offs,
for instance, by adding an additional process of fast guessing that increases the speed
and simultaneously decreases the accuracy of responses (Ollman, 1966; Yellott, 1971).

A major strength of the new RT-extended 2HT model is its ability to estimate
and compare the relative speed of detection and guessing. According to a serial
interpretation of the 2HT model, guesses are only made conditional on unsuccessful
detection attempts and thus must be stochastically slower than responses due to item
detection (Dube et al., 2012; Erdfelder, Küpper-Tetzel, & Mattern, 2011). Formally,
this prediction implies that the cumulative density of detection RTs is above that of
guessing RTs,

Fdetect(t) > Fguess(t) for all t ∈ R+, (3.3)
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a condition termed stochastic dominance. Note that stochastic dominance is stronger
than the corresponding inequality on mean RTs (Heathcote, Brown, Wagenmakers,
& Eidels, 2010). To test the assumption of serial detection and guessing states, Heck
and Erdfelder (2016) fitted the RT-extended 2HT model in a Bayesian framework
using B = 8 RT bins. Thereby, the Bayes factor can be computed to quantify the
evidence in favor of stochastic dominance based on the method of Heathcote et al.
(2010). The empirical results showed that target detection was stochastically faster
than guessing, whereas results were ambiguous concerning the relative speed of lure
detection. Note that the formal definition of stochastic dominance is relevant for
all psychological theories that make predictions about the relative speed of latent
processes. This includes dual-process theories that assume faster System I than
System II responses (Evans, 2008; Sloman, 1996), but also “fast and frugal heuristics”
(Gigerenzer et al., 1999; Gigerenzer & Gaissmaier, 2011) that assume a strictly serial
sequence of processing steps and are the topic of the second paper of my thesis
discussed in the next section.

3.2 Linking Process and Measurement Models

Heck, D. W. & Erdfelder, E. (in press). Linking process and measurement models of
recognition-based decisions. Psychological Review. doi:10.1037/rev0000063

Often, people have to make decisions based on incomplete knowledge. For
instance, when being asked which of two cities is more populous, people might
not know the exact city populations. In such cases, one has to draw inferences
based on probabilistic cues, which are features of the choice alternatives that are
informative with respect to the criterion of interest (Brunswik, 1955). Regarding
population size, one might know that a city has an airport, a metro, and a university
and therefore conclude that the city is larger than cities that do not have these cues
(Gigerenzer, Hoffrage, & Kleinbölting, 1991). The accuracy of judgments depends
on the cue validities defined as the probability that an option having the cue has a
higher criterion value than an option not having it. However, theories of judgment
and decision making differ in their assumptions how multiple probabilistic cues are
integrated to arrive at an overall judgment.

The recognition heuristic (RH; Gigerenzer & Goldstein, 1996; Goldstein & Gigeren-
zer, 2002) is a process model of memory-based decisions that applies in the above
scenario when one of the presented objects is recognized and the other is not. In such
cases, the RH states that the recognized object is chosen without consideration of any
further knowledge. Since larger cities are more likely to be recognized, this heuristic
will often result in the correct answer while requiring only the recognition status of
the presented objects (Pachur, 2010). Therefore, the RH adheres to the principle of
ecological rationality (Gigerenzer & Gaissmaier, 2011), because it exploits an existing
correlation in the environment (i.e., larger cities are recognized with higher likeli-
hood) to draw accurate inferences while reducing the effort of integrating available

https://dx.doi.org/10.1037/rev0000063
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knowledge. In the following, I outline how the novel method presented in Section 3.1
(Heck & Erdfelder, 2016) provides a strong test of the RH as a process model of
recognition-based decisions (Heck & Erdfelder, in press). Essentially, the critical test
concerns the relative speed of relying on the RH, which is estimated by extending an
MPT model for the standard RH paradigm to RTs.

A consensus has been reached that recognition is a very valid cue in many natural
environments and domains (e.g., when judging city size; Pachur, 2010) and that it
affects decision making to a substantial degree (i.e., recognized cities are usually
chosen more often than unrecognized cities; Glöckner & Bröder, 2014; Goldstein
& Gigerenzer, 2011). However, a controversy has evolved concerning the question
whether the RH is a good process model of the underlying cognitive mechanism of
how people integrate recognition information with further knowledge. As one of
its core properties, the RH is noncompensatory, because it assumes that judgments
rely only on recognition and are not affected by any further knowledge that might
be available (Pachur, Bröder, & Marewski, 2008). In contrast, competing theories
assume that recognition is integrated with further knowledge in a compensatory way
where recognition only serves as one probabilistic cue among many others (Glöckner
& Bröder, 2011; Hilbig & Pohl, 2009; Newell & Shanks, 2004). Whereas compensatory
theories differ slightly how multiple cues representing recognition and knowledge are
weighted and combined, they all assume that several less valid cues can in principle
overrule one highly valid cue (whether this is possible depends on the environmental
cue structure; Glöckner, Hilbig, & Jekel, 2014). Thereby, compensatory theories
directly explain why the unrecognized option is sometimes chosen in memory-based
decisions (Hilbig & Richter, 2011). If a participant has cue knowledge indicating that
the recognized city has a small population (e.g., the city has no airport and no metro),
these cues can overrule the recognition cue (which indicates that the recognized city
is larger). Overall, a trade-off of this conflicting information can therefore result in the
judgment that the unrecognized option is the larger city (Heck & Erdfelder, in press).

To test whether recognition information is integrated in a noncompensatory
or compensatory way, researchers have manipulated both recognition and further
knowledge to test how both factors influence judgments (e.g., Glöckner & Bröder,
2011; Hilbig, 2010b; Hochman, Ayal, & Glöckner, 2010; Oppenheimer, 2003; Richter &
Späth, 2006). Many of these studies showed that further knowledge about the objects
under consideration does indeed influence choices, decision times, and confidence
ratings. However, much of this evidence has been disregarded by proponents of the
RH arguing that the heuristic applies only to judgments in natural environments
and domains — a requirement that is violated when recognition or further knowl-
edge is experimentally manipulated (Gigerenzer & Goldstein, 2011; Pachur, Todd,
Gigerenzer, Schooler, & Goldstein, 2011).

To measure RH use in natural domains (e.g., for existing cities without presenta-
tion of further cues), Hilbig, Erdfelder, and Pohl (2010) proposed the r-model, an MPT
model for estimating the probability r that choices are due to noncompensatory use
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of recognition. Essentially, the r-model requires information from two experimental
phases. In the recognition phase, participants judge cities as being recognized or
unknown; and in the decision phase, participants are presented with all pairwise
combinations of cities and have to decide which one is larger. Based on this paradigm,
the parameters of the r-model have been validated experimentally (Hilbig et al., 2010)
and then used to estimate the probability of using recognition in a noncompensatory
way across experimental manipulations (e.g., time pressure or availability of further
information; Hilbig, Erdfelder, & Pohl, 2012; Hilbig, Michalkiewicz, Castela, Pohl, &
Erdfelder, 2015; Pohl, Michalkiewicz, Erdfelder, & Hilbig, in press) or specific popula-
tions (e.g., older and younger adults; Horn, Pachur, & Mata, 2015; Michalkiewicz &
Erdfelder, 2016).

Despite its usefulness as a measurement model, the r-model cannot distinguish
between process models that assume different mechanisms of how information is
integrated (Heck & Erdfelder, in press). This is due to the fact that process models of
compensatory information integration make the same predictions as the RH when no
further knowledge is available, in which case the core question about the integration
of multiple cues becomes inconsequential. However, if experimental manipulations
of the two factors of interest (i.e., recognition and further knowledge) violate the
principle of ecological validity, and if the r-model cannot distinguish between different
process models, the question arises whether the RH still has empirical content and
makes predictions that can in principle be falsified (Glöckner & Betsch, 2011; Pohl,
2011).

To test competing process models underlying recognition-based decisions, an
RT-extended r-model is proposed in the second paper of my thesis (Heck & Erdfelder,
in press) using the novel method outlined in Section 3.1 (Heck & Erdfelder, 2016).
Essentially, the new model allows researchers to estimate the relative speed of infor-
mation integration when (a) recognition is used in isolation (R-only), (b) recognition
is integrated with further knowledge indicating that the recognized city is larger
(R-congruent), and (c) recognition is integrated with conflicting knowledge indicating
that the recognized city is smaller (R-incongruent). Conditional on these three latent
states, a serial-process interpretation of the RH implies that decisions are stochasti-
cally faster when relying only on recognition (R-only) compared to decisions in which
recognition is integrated with further knowledge (R-congruent or R-incongruent).
This prediction directly follows from the fact that serial information integration re-
quires additional elementary processing steps to evaluate available knowledge and
combine it with recognition (Heck & Erdfelder, in press; Hilbig & Pohl, 2009; Payne,
Bettman, & Johnson, 1993).

In contrast to the serial RH, competing theories assume that information from
multiple cues is integrated automatically and in parallel (Betsch & Glöckner, 2010;
Glöckner & Betsch, 2008) and predict that R-congruent responses are actually faster
than R-only responses. This follows directly from process models such as parallel
constraint satisfaction (PCS) theory (Glöckner & Betsch, 2008) that provide an exact
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mathematical description of information integration (i.e., by searching for state of
maximal coherence in a neural network). Correspondingly, judgments are predicted
to be faster and more confident when additional information also indicates that
the recognized city is larger (e.g., if one knows that it is a capital, has an airport
and a metro) compared to situations in which only recognition is available to draw
inferences (Betsch & Glöckner, 2010).

Importantly, data from the standard RH paradigm, which includes only a recog-
nition and a decision phase, are sufficient to fit and test the RT-extended r-model.
Hence, the new measurement model circumvents the necessity to manipulate recog-
nition or knowledge experimentally and thereby allows for testing the RH in natural
domains based on pre-experimental knowledge. Moreover, the RT-extended r-model
can be directly linked to process models of the RH by simulations (Heck & Erdfelder,
in press). First, recognition judgments and binary decisions are generated either
by the serial RH or by PCS. In a second step, the RT-extended r-model is fitted to
the simulated RTs and choices. In such simulations, both process models — the
serial RH and PCS — can generate similar choice frequencies resulting in equivalent
parameter estimates for the standard r-model of choice frequencies irrespective of
the data-generating model. However, the RT-extended r-model has the power to
discriminate data generated by the two process models by comparing the estimates
for the relative speed of the latent processes. When simulating data with the serial
RH model, R-only responses are estimated to be stochastically faster than those based
on integration of further knowledge (i.e., R-congruent or R-incongruent). In contrast,
when simulating data using PCS, R-only responses are estimated to be stochastically
slower than R-congruent responses for which further knowledge is coherent with the
recognition cue.

Based on these theoretical derivations and simulation results, we applied the RT-
extended r-model in an empirical reanalysis of 29 data sets including approximately
400,000 recognition-based decisions. To increase the validity and robustness of the
results, the new model was fitted and tested in three ways. First, a hierarchical
Bayesian MPT model was fitted using only two RT bins, thereby taking the nested
data structure into account (i.e., decisions nested in individuals, and individuals
nested in data sets; Heck et al., in press). Second, stochastic dominance of RTs was
tested on a more fine-grained scale using 40 RT bins and assuming independent and
identically distributed trials across participants and data sets. Finally, again using
two RT bins, each participant was classified as RH or PCS user based on model-
selection methods that take order constraints into account (i.e., minimum description
length; Heck, Hilbig, & Moshagen, 2017; Hilbig & Moshagen, 2014). All of these
analyses consistently showed that decisions based on further recognition-congruent
knowledge are stochastically faster compared to those based on recognition only.
Hence, the results clearly support theories of compensatory information integration
as implemented by the PCS model and falsify the serial RH account.

Overall, the second paper of my thesis (Heck & Erdfelder, in press) highlights the
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importance of including RTs in MPT models. By considering the relative speed of
cognitive processes, novel predictions can be derived to test competing theoretical ac-
counts. More generally, this approach shows how process and measurement models
can be linked to advance our understanding of cognitive mechanisms. Whereas pro-
cess models such as the serial RH or PCS provide exact predictions and describe the
underlying mechanisms in great detail, measurement models such as the RT-extended
r-model provide estimates of parameters of interest given limited information (e.g.,
without knowing exact cue patterns). Within such an integrative view, process and
measurement models that have been used in isolation can in principle be combined
to arrive at a deeper understanding of cognitive processes without the necessity of
experimental manipulations of the processes of interest.

3.3 Generalized Processing Tree Models

Heck, D. W., Erdfelder, E., & Kieslich, P. J. (2017). Generalized processing tree mod-
els: Jointly modeling discrete and continuous variables. Manuscript submitted for
publication.

The third paper of my thesis presents the new class of generalized processing tree
(GPT) models that account for discrete responses and continuous variables jointly and
thereby extend MPT models.2 Similar to the method presented in Section 3.1 (Heck &
Erdfelder, 2016), GPT models also define a processing tree that determines the proba-
bilities of observed responses and assume that each processing path is associated with
a separate component distribution of one or more continuous variables. However,
GPT models make the additional constraint that parameterized distributions instead
of unconstrained histograms are defined for the latent component distributions. For
instance, RTs may be modeled by ex-Gaussian distributions (defined as the sum of a
normal and an independent exponential random variable; Matzke & Wagenmakers,
2009), whereas other variables such as continuous confidence ratings may be better
described by normal or beta distributions. Note that some or all of the corresponding
parameters can be constrained across latent states to test theoretical predictions or
to reduce the number of nuisance parameters (e.g., by assuming that the variance of
confidence ratings is constant across latent states).

Irrespective of the specific parametric distributions, the likelihood function of
GPT models depends on two sets of parameters. First, the parameters θ are defined as
conditional or unconditional probabilities of the latent processes and are thus equiv-
alent to parameters in standard MPT models. Second, η includes all parameters of
the latent component distributions (e.g., means and variances of one or more normal
distributions). Note that this decomposition into two sets of parameters assumes a
specific type of functional independence. Essentially, the parameters θ determine

2 Hu and Batchelder (1994) previously used the abbreviation GPT for general processing tree models
to emphasize the precise statistical and mathematical representation of MPT models. However, in the
recent literature, the latter abbreviation is used almost exclusively.
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only the probabilities of following one of the processing paths (i.e., the weights of
the finite mixture distribution). In contrast, the parameters η determine only the
density function of the continuous variables conditional on the latent states (i.e., the
component distributions of the mixture distribution). The assumption of functional
independence constrains the statistical model, is often substantively reasonable, and
facilitates the derivation of an expectation-maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977) for maximum-likelihood estimation of GPT models (Heck,
Erdfelder, & Kieslich, 2017).3

The use of parameterized component distributions instead of histograms as in
Heck and Erdfelder (2016) has several benefits. First, it does not require categoriza-
tion of continuous observations into intervals, an approach that results in a loss of
information and thus in a decrease of statistical efficiency. Second, the parameters θ
of a GPT model can be identifiable even if the corresponding MPT model for response
frequencies only is not identifiable. This is illustrated in the empirical example in
Heck, Erdfelder, and Kieslich (2017), where explicit assumptions about the parametric
component distributions allow to obtain unique parameter estimates for a GPT model
with more parameters θ than free categories. Third, the inclusion of continuous
variables can result in smaller standard errors of the GPT estimates compared to
those of an equivalent MPT model. This effect, shown in a simulation in the third
paper of my thesis, can be intuitively explained within the expectation-maximization
algorithm (EM; Dempster et al., 1977). To fit a model, the EM algorithm estimates the
latent states for all observations and maximizes the model parameters conditional on
these latent-state estimates in alternating order. If the continuous component distri-
butions strongly differ across states, the continuous variables are very informative
for estimating the latent states, which results in more precise parameter estimates.
For instance, in case of the 2HT model, detection and guessing responses can be
better discriminated if the corresponding RTs are very fast and very slow, respectively,
compared to the case that RTs are identically distributed.

Besides these statistical advantages, GPT models allow researchers to model
multiple continuous variables by using multivariate component distributions. For
instance, an extension of MPT models to RTs and confidence ratings is obtained
by assuming independence of the continuous variables conditional on the latent
states (Heck, Erdfelder, & Kieslich, 2017). Based in this assumption, it is sufficient
to define univariate component distributions for each of the variables in isolation
(e.g., ex-Gaussian and beta distributions for RTs and confidence ratings, respectively).
As a consequence, this assumption implies that correlations between two or more
continuous variables emerge only from aggregating across multiple latent states.
For instance, in recognition memory, observed RTs are often positively correlated
with confidence ratings (Ratcliff & Starns, 2013; Weidemann & Kahana, 2016). In a
corresponding GPT version of the 2HT model, both variables can be assumed to be

3 The MPT-RT approach (Heck & Erdfelder, 2016) also makes this assumption of functional indepen-
dence.
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FIGURE 3.3: In the mouse-tracking version of a semantic categoriza-
tion tasks, participants’ mouse movements are recorded during the
decision process. The maximum absolute deviation (MAD) is defined
as the maximum perpendicular distance between the observed and a

direct trajectory.

independent conditional on the detection and guessing state. However, if detection
responses are both faster and more confident, and guessing responses are both slower
and less confident, aggregation across these two latent states results in a positive
correlation of RTs and confidence ratings.

A major pragmatic advantage of GPT models is that they are easily adapted to
different experimental paradigms similar to MPT models. As a consequence of their
mathematical and conceptual simplicity, GPT models can be defined in a text file
by listing all of the processing paths and the parameterization of the corresponding
component distributions. Importantly, this intuitive modeling syntax developed
in Heck, Erdfelder, and Kieslich (2017) is sufficient to completely specify any GPT
model. This is due to the fact that the complexity of GPT models is constrained by
simplifying assumptions such as the separation into two disjoint sets of parameters
θ and η for discrete and continuous variables, respectively. Based on this syntax,
the R package gpt implements the EM algorithm proposed in Heck, Erdfelder, and
Kieslich (2017) and thereby facilitates model development, fitting, and assessment.

As a first empirical application of the new model class, Heck, Erdfelder, and
Kieslich (2017) tested a GPT model for semantic categorization. In the study by
Kieslich and Henninger (in press), participants had to judge the category membership
of animals (e.g., whether a bat is a bird or a mammal). In addition, the trajectory
of the mouse cursor was measured during the decision process. As illustrated in
Figure 3.3, the position of the mouse cursor from its start at the bottom center to its
end at the chosen alternative (either at the upper left or at the upper right corner) was
recorded with a constant sampling rate. The fundamental assumption underlying
this mouse-tracking methodology is that the underlying cognitive processes directly
affect the curvature of the observed trajectories (Dale, Kehoe, & Spivey, 2007). In
case of semantic categorization of animals, mouse movements should be attracted
more strongly towards the incorrect category when processing atypical compared to
typical animals even when the final choice is correct.
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Usually, data from mouse-tracking studies are analyzed by (a) summarizing each
trajectory by a descriptive statistic (e.g., the MAD, defined as the maximum absolute
deviation of a trajectory from a straight line connecting its start and end points)
and (b) comparing means of these statistics across experimental conditions (e.g.,
performing a t-test of the MADs of correct responses for typical vs. atypical animals;
Freeman & Ambady, 2010; Kieslich & Henninger, in press). However, such an
analysis ignores valuable information that is contained in the accuracy of judgments,
the MADs of incorrect responses, and the shape of the MAD distribution. As a
remedy, Heck, Erdfelder, and Kieslich (2017) proposed a GPT model that provides a
complete account of all data based on the feature comparison model (FCM; Smith,
Shoben, & Rips, 1974). Essentially, the FCM assumes that two qualitatively different
processes can be used for categorization. On some trials, a similarity-based overall
comparison process provides clear evidence in favor of category membership, and
thus responses are given relatively fast and direct, resulting in small MADs of the
mouse trajectories. In contrast, on trials where this process does not allow for a clear
judgment, only the defining features of animals and categories are compared, which
is a more time-consuming and less direct process, resulting in larger MADs.

The proposed GPT model for semantic categorization had a very good fit to the
accuracy of judgments and the MAD distributions. Importantly, the GPT model
also allowed for testing several theoretical predictions of the FCM. For instance, the
accuracy of the first, overall comparison process should be higher for typical than
for atypical animals, whereas accuracy of the second, defining-feature comparison
process should not be affected by typicality (Smith et al., 1974). Empirically, the
parameter estimates were in line with these predictions, thereby contributing to the
psychological validity of the proposed GPT model. Note that such process-specific
predictions cannot be directly tested using ad hoc measures (e.g., the mean difference
in MADs between typical and atypical animals). Therefore, this empirical application
of GPT models to the mouse-tracking paradigm highlights one direction of linking
psychological theory to observable outcomes (i.e., discrete responses and MADs).
Moreover, the new model may serve as a prototype for testing dual-process theories
(Evans, 2008; Sloman, 1996), which are related to the FCM both conceptually and
historically (Smith & Sloman, 1994).

In sum, GPT models extend MPT models to continuous variables and thereby
provide an alternative to the approach presented in Section 3.1 (Heck & Erdfelder,
2016). By specifying parametric distributions conditional on each processing path,
GPT models make more specific predictions, can provide more precise parameter
estimates than MPT models, and facilitate the inclusion of multiple continuous
variables. However, as for all statistical models, GPT models may provide biased
estimates and invalid conclusions if the model’s assumptions are violated. Besides
the core assumption of a finite number of cognitive states, GPT models add strong
constraints regarding the distributional shape of continuous variables conditional
on the latent states. Ideally, substantive conclusions should not be affected when
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fitting a GPT model with misspecified parametric distributions (e.g., assuming log-
normal instead of ex-Gaussian distributions). Therefore, future work should address
the question how strongly these parametric assumptions affect parameter estimates.
Similarly, more theoretical and empirical work is necessary to test whether GPT
models are useful and provide valid explanations of psychological phenomena. As a
first step, the formalization of GPT models in Heck, Erdfelder, and Kieslich (2017)
lays out the statistical foundations for future developments of this new model class.
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4 Discussion

4.1 Advantages, Limitations, and Open Questions

In my thesis, I developed and tested two new methods that extend the scope of multi-
nomial processing tree models to jointly account for discrete and continuous data.
In the first approach, RTs are categorized into a finite number of intervals, thereby
defining a new, RT-extended MPT model that allows for estimating histograms of
the latent component distributions (Heck & Erdfelder, 2016). As a first application,
we proposed an RT-extended version of the 2HT model of recognition memory to
assess the relative speed of target and lure detection and guessing. Based on this
method, an RT-extended version of the r-model (Hilbig et al., 2010) was used in the
second paper to test two competing process models of recognition-based decisions
(Heck & Erdfelder, in press). As an alternative, I defined the new class of generalized
processing tree (GPT) models that assume parametric component distributions in-
stead of histograms, and applied this approach to account for semantic categorization
in a mouse-tracking paradigm (Heck, Erdfelder, & Kieslich, 2017). Together, the
two new methods provide a novel theoretical and statistical framework for testing
discrete-state models of cognition.

Given the conceptual similarity of RT-extended MPT and GPT models, both
approaches share several advantages. First, they are mathematically tractable, can
easily be adapted to different paradigms, and are conceptually similar to MPT models,
thereby reducing the obstacles for researchers to extend existing multinomial models
to continuous variables. Second, both approaches define a joint likelihood function
of discrete and continuous variables. Therefore, statistical inference is based on a
single model instead of ad hoc methods such as separately fitting an MPT model
and analyzing the continuous variable (e.g., Hu, 2001; Province & Rouder, 2012).
Most importantly, the usefulness of RT-extended MPT and GPT models has already
been demonstrated in several empirical applications across different substantive
domains including recognition memory (Heck & Erdfelder, 2016), remember-know
judgments (Li, 2015), memory-based decisions (Heck & Erdfelder, in press), and
semantic categorization (Heck, Erdfelder, & Kieslich, 2017).

An open question concerns the statistical efficiency and power of RT-extended
MPT and GPT models, both in absolute terms and relative to each other. Some pre-
liminary simulations showed that the former class of models has sufficient power
to detect differences in latent component distributions using realistic sample sizes
(Heck & Erdfelder, 2016). To obtain a better understanding of the two frameworks,
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systematic simulations are required to provide guidelines for the number of trials
necessary to obtain sufficiently precise parameter estimates. For instance, simulated
data can be generated using a GPT model with specific parametric component distri-
butions (e.g., ex-Gaussians) and for different effect sizes (e.g., by manipulating the
means of the underlying distributions). By fitting RT-extended MPT and GPT models
to these data, the statistical power to detect differences in the latent distributions can
be estimated and compared for both approaches. However, it is very likely that the
statistical efficiency and power is idiosyncratic to specific MPT structures, parametric
assumptions, and parameter values. Therefore, the most promising solution is to
perform new simulations for each model and empirical scenario of interest taking
specific details of the model and the paradigm into account. Technically, the imple-
mentation of such simulations is straightforward because RT-extended MPT and GPT
models are easily specified and fitted by user-friendly software such as the R package
gpt (Heck, Erdfelder, & Kieslich, 2017).

Simulations also facilitate the assessment of the robustness of both methods
against misspecification. In the first and third papers of my thesis (Heck & Erdfelder,
2016; Heck, Erdfelder, & Kieslich, 2017), RT-extended MPT and GPT models were
fitted assuming independent and identically distributed observations. However, this
assumption is often violated in practice due to heterogeneity across participants,
stimuli, or data sets resulting in biased statistical inferences (Klauer, 2006). As a
remedy, Bayesian hierarchical models account for such differences explicitly (Lee,
2011). For RT-extended MPT models, hierarchical extensions can be directly fitted
using the R package TreeBUGS (Heck et al., in press) as demonstrated in Heck and
Erdfelder (in press). In principle, it is straightforward to develop similar hierarchical
extensions of GPT models by assuming a group-level distribution of the parameters θ
and η. Once a hierarchical structure and a set of prior distributions has been defined,
the GPT model can be implemented and fitted in software such as JAGS (Plummer,
2003). An important issue specific to GPT models is their robustness with respect
to misspecification of the latent component distributions. Ideally, the validity of
substantive conclusions (e.g., whether two component distributions are identical)
should not hinge on specific parametric distributions as long as they share some core
features (e.g., left-skeweness as for the ex-Gaussian, Wald, and other standard RT
distributions; Heathcote, 2004). Similarly, it is desirable that substantive conclusions
based on RT-extended MPT models are robust with respect to the number of RT bins
and the exact locations of the RT boundaries. Even though preliminary simulations
and robustness checks indicate that this is indeed the case (Heck & Erdfelder, 2016),
future work should address this question more systematically.

Besides considerations about statistical power and robustness, the psychologi-
cal research question should determine whether to use an RT-extended MPT or a
GPT model. If the focus is on testing the core assumption that RTs follow a mix-
ture distribution (Yantis et al., 1991) or on comparing the relative speed of latent
processes (Heck & Erdfelder, in press), RT-extended MPT models are advantageous,
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because they do not require auxiliary assumptions about the parametric shape of
the component distributions. This is especially important for MPT models, since
they may often include latent component distributions that cannot be observed in
isolation. For instance, in the 2HTM (cf. Figure 3.1), the latent RT distribution of
detection cannot be observed directly, because the observed RT distribution of correct
responses is contaminated by guessing RTs. In such cases, it is not possible to directly
test parametric assumptions by comparing the observed against the hypothesized
distribution. As a remedy, observed RT distributions can be compared against the
fitted mixture distribution of a GPT model, thereby testing parametric assumptions
and the mixture structure simultaneously. However, if psychological theory predicts
specific distributional shapes for one or more continuous variables, the GPT approach
allows to include this additional information in the model. A GPT model allows
for a stricter test of the theory, provides a more concise summery of the data, and
is likely to result in an increase of statistical efficiency. Moreover, GPT models can
provide unique parameter estimates in paradigms in which a corresponding MPT
or RT-extended MPT model would not be identifiable (Heck, Erdfelder, & Kieslich,
2017).

A possible limitation of both RT-extended MPT and GPT models concerns their
conceptualization as measurement models. Essentially, both approaches can be
interpreted as tools that allow researchers to estimate and compare component
distributions conditional on latent states. Put differently, Morey (2017) summarized
RT-extended MPT models as “mathematical tools they use for unmixing the response
time distributions.” This objective of the two modeling approaches differs from that
of process models which describe the exact mechanism of information processing.
In future work, GPT models can be extended in this direction by making stronger
assumptions about the underlying mechanisms.

For instance, Donkin, Nosofsky, Gold, and Shiffrin (2013) proposed a discrete-slots
model of visual working memory for responses and RTs that is closely related to the
2HT model. At its core, this model assumes that response behavior is determined
either by a detection or by a guessing process that are modeled by two separate
evidence accumulation processes. More precisely, the underlying linear-ballistic accu-
mulator model assumes that evidence for the two response options is accumulated
continuously in time, and that a choice is made once the corresponding accumulator
reaches a response threshold (e.g., participants respond OLD when the corresponding
accumulator is faster than that of the NEW response; Brown & Heathcote, 2008).
Thereby, evidence-accumulation models predict the joint distribution of a discrete
and a continuous variable based on a shared set of parameters. As a consequence,
a change in one parameter affects both observable variables simultaneously, for in-
stance, a lower response threshold results in less accurate responses and faster RTs
(Donkin et al., 2013). In contrast, GPT models assume discrete latent states and rely
on separate sets of parameters θ and η to model the discrete and continuous vari-
ables, respectively. In future work, evidence-accumulation and GPT models could
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be combined in a general framework similar to the model of Donkin et al. (2013)
or competitively tested against each other. Either way, such endeavors will add to
our understanding about the exact mathematical representation of latent cognitive
processes.

Alternatively, a serial interpretation of MPT models implies that the nodes in the
processing tree form a sequence of serial stages (Hu, 2001). In such a process model,
observed RTs emerge as the sum of the latent processing times of the traversed stages.
In case of the 2HT model in Figure 3.1, this approach assumes four stage-specific
parameters: In the first stage, these are the processing times for successful and failed
detection attempts and, conditional on being in the uncertainty state, the processing
times of guessing OLD and NEW. To obtain a fully specified statistical model, these
processing times can be assumed to be exponentially distributed (Klauer, 2015).
Interestingly, the resulting model will be a special case of a GPT model with specific
component distributions (i.e., general gamma distributions, defined as the sum of
independent random variables that are exponentially distributed with different rate
parameters; McGill, 1963).4 By explicitly defining the structure of the component
distributions, the resulting model makes more specific predictions (e.g., about the
stochastic dominance of the underlying distributions) compared to a model without
these constraints. However, if such a model is rejected by empirical data, it is not
clear whether this is due to the core assumption of serial processing stages or due to
auxiliary assumptions such as the parametric shapes or independence of the latent
processing times. In contrast, measurement models such as the RT-extended 2HT
model provide a distribution-free test of stochastic dominance of latent processes
(Heck & Erdfelder, 2016) that requires less assumptions and can thereby falsify
complete classes of process models (Malmberg, 2008), for instance, any process model
assuming a specific order of serial processing.

4.2 Future Directions

The extension of existing MPT models to continuous variables allows for new em-
pirical tests of discrete-state theories of cognition. The new methods are especially
relevant for modeling RTs, one of the most important variables in cognitive psychol-
ogy (Luce, 1986). In several previous applications of multinomial models, RTs were
left aside or analyzed separately, because the conceptual and statistical foundations
for jointly modeling discrete and continuous variables were missing. For instance,
several MPT models have been proposed for paradigms that usually focus on RTs
rather than choice frequencies as in the implicit association test (Conrey, Sherman,
Gawronski, Hugenberg, & Groom, 2005; Greenwald, McGhee, & Schwartz, 1998;

4 Similar to other RT models, an independent and additive nondecision time can be added to
the model (Luce, 1986). The corresponding GPT model will have component distributions that are
defined by the convolution of a Student’s t-distribution for nondecision time with the general gamma
distribution for the latent processing times (Klauer, 2015).
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Meissner & Rothermund, 2013). Based on the novel approaches presented in my
thesis, both accuracy and RTs can be modeled jointly in such paradigms.

Moreover, MPT models have been developed to examine how truth judgments of
true and false statements are affected by knowledge and processing fluency, defined
as the meta-cognitive experience of the ease of processing (e.g., Fazio, Brashier,
Payne, & Marsh, 2015; Hilbig, 2012; Unkelbach & Stahl, 2009). Whereas some models
assume that truth judgments only depend on fluency conditional on the absence of
conclusive knowledge (Hilbig, 2012; Unkelbach & Stahl, 2009), Fazio et al. (2015)
recently proposed that the opposite relation holds, that is, knowledge is only used
if truth judgments are not based on processing fluency. By now, these predictions
have only been tested by means of MPT models for choice frequencies. However,
when assuming that fluency and knowledge are used in a strictly serial manner, the
two opposite theories predict different orders of stochastic dominance for the latent
RT distributions of the two processes. Since the MPT models of Fazio et al. (2015)
and Hilbig (2012) closely resemble the 2HT model, the corresponding RT-extension
presented in Heck and Erdfelder (2016) can be adapted to test whether the use of
knowledge is stochastically faster than the use of fluency.

Besides RTs, other types of continuous variables such as fine-grained judgments
on circular scales can be included in GPT models. A promising candidate for fu-
ture developments is the two-high threshold model of source monitoring (2HTSM;
Batchelder & Riefer, 1990; Bayen et al., 1996). The model is shown in Figure 4.1 and
disentangles item memory (whether an item was studied or not), source memory
(e.g., whether studied words were presented in blue or red), and guessing. More
specifically, the parameters DA, DB , and DN are the probabilities of detecting targets
and lures, whereas dA and dB are the probabilities of correctly retrieving the source
conditional on item memory. Moreover, a is the probability of choosing Source A
conditional on item detection and source uncertainty, whereas the parameters b and
g jointly define the probabilities of guessing A, B, or N conditional on recognition
uncertainty.

Recently, Harlow and Donaldson (2013) tested participants’ memory for contin-
uous source information by presenting words jointly with a cross that was located
randomly on a circle. When cued with these words in the test phase, participants’
memory for the location was best described by a mixture model of a uniform guess-
ing distribution and a symmetric detection distribution concentrated at the correct
location. In a follow-up study, Harlow and Yonelinas (2016) further compared par-
ticipants’ confidence ratings for the probability of retrieving the source and for the
precision of the location judgments.

In both studies, however, only studied words were presented in the test phase.
Therefore, participants had to engage only in cued recall of continuous source infor-
mation and not in the recognition of the words themselves. To examine the relation
of item and source memory, lures have to be included in the test phase, in which
case location judgments are only made conditional on OLD responses. The resulting
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FIGURE 4.1: The two-high threshold model of source monitoring
(Bayen, Murnane, & Erdfelder, 1996).

joint distribution of old-new and location judgments can then be modeled by the
GPT model for continuous source monitoring (CSM) shown in Figure 4.2.5 In this
model, the continuous variable is defined as the angle between location judgment
and correct value measured in radians on the interval (−π, π]. Conditional on item
detection D and source recollection d, the CSM model replaces the certainty state for
recognizing Source A or B of the 2HTSM in Figure 4.1 by a symmetric distribution
with a peak at the correct location. For instance, as illustrated in Figure 4.2, the
von Mises distribution for a circular variable can be used with the free parameter
κ that determines the concentration around the mean µ = 0 (Oberauer, Stoneking,
Wabersich, & Lin, 2017). In contrast, source guessing results in a uniform distribution
of location judgments on the interval (−π, π], because any response biases (e.g., a
preference towards the right side of the circle) cancel out when locations are sampled
randomly from a uniform distribution.

The CSM model in Figure 4.2 defines the probabilities D for item memory, d
for source memory, and the parameter κ for the precision of source memory. If the
model holds in empirical validation studies, effects of different memory-strength
manipulations on these parameters can be examined. For instance, it can be tested
whether the inclusion of old-new judgments affects the probability d and precision κ
of source memory compared to the original cued-recall task of Harlow and Donaldson
(2013). Moreover, a similar model can be used if location judgments are also made
conditional on NEW responses to both targets and lures. In this case, the CSM model
predicts thats these judgments are uniformly distributed, because the observable

5 Technically, the CSM in Figure 4.2 is not a GPT model because continuous observations yk are miss-
ing if xk = NEW. However, an equivalent GPT model is obtained by assuming a uniform distribution
conditional on NEW responses and using dummy values yk = 0. This will only add a constant to the log
likelihood and thus not affect parameter estimation.
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FIGURE 4.2: The two-high threshold model of continuous source
monitoring (CSM). The angles between location judgments and correct
locations are modeled as a circular variable using the von Mises and
uniform distributions on the interval (−π, π]. The processing tree for
lures is similar to that in Figure 4.1 with a uniform distribution for

location judgments of OLD guesses.

NEW responses indicate non-detection of both the item and the source. This provides
a strong test of discrete-state theories, since above-chance source memory for NEW

responses is predicted by competing accounts that assume continuous memory
signals (Malejka & Bröder, 2016; Starns, Hicks, Brown, & Martin, 2008).

The CSM model can further be extended to examine feature binding across multi-
ple source dimensions (Boywitt & Meiser, 2013; Meiser & Bröder, 2002). For instance,
both color and location of studied words can be manipulated independently on
continuous scales. To model this task, the probabilities of recognizing the two sources
are defined similarly as in other multidimensional source-monitoring models (e.g.,
by disentangling joint and independent retrieval of color and location; Meiser, 2014).
Moreover, conditional on source detection and uncertainty, the two continuous distri-
butions are modeled by von Mises and uniform distributions, respectively, similar
to the CSM model in Figure 4.2. By appropriate constraints on the concentration
parameters κ for the two source dimensions, it may be possible to test whether feature
binding improves source memory for color and location. In sum, the example of
the CSM model highlights the usefulness of GPT models for modeling continuous
variables such as fine-grained judgments on circular scales.

4.3 Conclusion

In my thesis, I have proposed new methods to model the joint distribution of discrete
and continuous variables assuming a finite number of processing states. These RT-
extended MPT and GPT models provide the conceptual and statistical foundations
for novel empirical tests of discrete-state theories. Both approaches naturally extend
MPT models, and their application has already provided new insights into memory,
decision-making, and semantic-categorization processes. Given the popularity of



30 Chapter 4. Discussion

discrete-state theories in psychology, future applications of RT-extended MPT and
GPT models have the potential to contribute to our understanding of cognitive
processes.
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Abstract Multinomial processing tree (MPT) models
account for observed categorical responses by assuming a
finite number of underlying cognitive processes. We pro-
pose a general method that allows for the inclusion of
response times (RTs) into any kind of MPT model to
measure the relative speed of the hypothesized processes.
The approach relies on the fundamental assumption that
observed RT distributions emerge as mixtures of latent RT
distributions that correspond to different underlying pro-
cessing paths. To avoid auxiliary assumptions about the
shape of these latent RT distributions, we account for RTs
in a distribution-free way by splitting each observed cate-
gory into several bins from fast to slow responses, separately
for each individual. Given these data, latent RT distributions
are parameterized by probability parameters for these RT
bins, and an extended MPT model is obtained. Hence, all of
the statistical results and software available for MPT mod-
els can easily be used to fit, test, and compare RT-extended
MPT models. We demonstrate the proposed method by
applying it to the two-high-threshold model of recognition
memory.
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Many substantive psychological theories assume that
observed behavior results from one or more latent cognitive
processes. Because these hypothesized processes can often
not be observed directly, measurement models are impor-
tant tools to test the assumed cognitive structure and to
obtain parameters quantifying the probabilities that certain
underlying processing stages take place or not. Multino-
mial processing tree models (MPT models; Batchelder &
Riefer, 1990) provide such a means by modeling observed,
categorical responses as originating from a finite number
of discrete, latent processing paths. MPT models have been
successfully used to explain behavior in many areas such
as memory (Batchelder & Riefer, 1986, 1990), decision
making (Erdfelder, Castela, Michalkiewicz, & Heck, 2015;
Hilbig, Erdfelder, & Pohl, 2010), reasoning (Klauer, Voss,
Schmitz, & Teige-Mocigemba, 2007), perception (Ashby,
Prinzmetal, Ivry, & Maddox, 1996), implicit attitude mea-
surement (Conrey, Sherman, Gawronski, Hugenberg, &
Groom, 2005; Nadarevic & Erdfelder, 2011), and pro-
cessing fluency (Fazio, Brashier, Payne, & Marsh, 2015;
Unkelbach & Stahl, 2009). Batchelder & Riefer (1999) and
Erdfelder et al. (2009) reviewed the literature and showed
the usefulness and broad applicability of the MPT model
class. In the present paper, we introduce a simple but gen-
eral approach to include information about response times
(RTs) into any kind of MPT model.

As a running example, we will use one of the most simple
MPT models, the two-high-threshold model of recogni-
tion memory (2HTM; Bröder & Schütz, 2009; Snodgrass
& Corwin, 1988). The 2HTM accounts for responses in a
binary recognition paradigm. In such an experiment, partic-
ipants first learn a list of items and later are prompted to
categorize old and new items as such. Hence, one obtains
frequencies of hits (correct old), misses (incorrect new),
false alarms (incorrect old), and correct rejections (correct

http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13423-016-1025-6-x&domain=pdf
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Fig. 1 The two-high threshold model of recognition memory

new responses). The 2HTM, shown in Fig. 1, assumes that
hits emerge from two distinct processes: Either a memory
signal is sufficiently strong to exceed a high threshold and
the item is recognized as old, or the signal is too weak, an
uncertainty state is entered, and respondents only guess old.
The two processing stages of target detection and guessing
conditional on the absence of detection are parameterized by
the probabilities of their occurrence do and g, respectively.
Given that the two possible processing paths are disjoint,
the overall probability of an old response to an old item is
given by the sum do+(1−do)g. Similarly, correct rejections
can emerge either from lure detection with probability dn or
from guessing new conditional on nondetection with prob-
ability 1 − g. In contrast, incorrect old and new responses
always result from incorrect guessing.

The validity of the 2HTM has often been tested in experi-
ments by manipulating the base rate of learned items, which
should only affect response bias and thus the guessing
parameter g (Bröder & Schütz, 2009; Dube, Starns, Rotello,
& Ratcliff, 2012). If the memory strength remains constant,
the model predicts a linear relation between the probabili-
ties of hits and false alarms (i.e., a linear receiver-operating
characteristic, or ROC, curve; Bröder & Schütz, 2009;
Kellen, Klauer, & Bröder, 2013). The 2HTM is at the core
of many other MPT models that account for more complex
memory paradigms such as source memory (Bayen, Mur-
nane, & Erdfelder, 1996; Klauer & Wegener, 1998; Meiser
& Böder, 2002) or process dissociation (Buchner, Erdfelder,
Steffens, & Martensen, 1997; Jacoby, 1991; Steffens, Buch-
ner, Martensen, & Erdfelder, 2000). These more complex
models have a structure similar to the 2HTM because they
assume that correct responses either result from some mem-
ory processes of theoretical interest or from some kind of
guessing.

Whereas MPT models are valuable tools to disentangle
cognitive processes based on categorical data, they lack the
ability to account for response times (RTs). Hence, MPT
models cannot be used to test hypotheses about the speed
of the assumed cognitive processes, for example, whether
one underlying process is faster than another one. How-
ever, modeling RTs has a long tradition in experimental

psychology, for instance, in testing whether cognitive pro-
cesses occur serially or in parallel (Luce, 1986; Townsend
& Ashby, 1983). Given that many MPT models have been
developed for cognitive experiments that are conducted with
the help of computers under controlled conditions, record-
ing RTs in addition to categorical responses comes at a small
cost. Even more importantly, substantive theories imple-
mented as MPT models might readily provide predictions
about the relative speed of the hypothesized processes or
about the effect of experimental manipulations on process-
ing speeds. For instance, the 2HTM can be seen as a two-
stage serial process model in which guessing occurs only
after unsuccessful detection attempts (see, e.g., Dube et al.,
2012; Erdfelder, Küpper-Tetzel, & Mattern, 2011). Given
this assumption of serial processing stages, the 2HTM pre-
dicts that, for both target and lure items, responses based
on guessing are slower than responses based on detection
(Province & Rouder, 2012). This hypothesis, however, can-
not directly be tested because it concerns RT distributions
of unobservable processes instead of directly observable RT
distributions.

To our knowledge, there are mainly three general
approaches to use information about RTs in combination
with MPT models. First, Hu (2001) developed a method,
based on an approach of Link (1982), that decomposes the
mean RTs of the observed categories based on the esti-
mated parameters of an MPTmodel. This approach assumes
a strictly serial sequence of processing stages. Each tran-
sition from one latent stage to another is assigned with a
mean processing time that is assumed to be independent
of the original core parameters of the MPT model. Within
each branch, all of the traversed mean processing times
sum up to a mean observed RT. Despite its simplicity, this
approach has not been applied often in the literature. One
reason might be that the assumption of a strictly serial
sequence of processing stages is too restrictive for many
MPT models. Moreover, the method does not allow for
testing different structures on the latent processing times
because MPT parameters and mean processing speeds are
estimated separately in two steps and not jointly in a single
model.

The second approach of combining RTs with MPT mod-
els involves directly testing qualitative predictions for spe-
cific response categories (e.g., Dube et al., 2012; Erdfelder
et al., 2011; Hilbig & Pohl, 2009). For instance, Erdfelder
et al. (2011) and Dube et al. (2012) derived the predic-
tion for the 2HTM that the mean RT of guessing should
be slower than that of detection if guesses occur serially
after unsuccessful detection attempts.1 Moreover, a stronger

1Note that this order constraint on mean RTs of guessing and detec-
tion is implied by the stronger assumption of stochastic dominance
discussed below.
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response bias towards old items will result in a larger pro-
portion of slow old-guesses. Assuming that response bias
manipulations do not affect the speed of detection and the
speed of guessing itself, we would thus expect an increase of
the mean RT of hits with increasing guessing bias towards
old responses (Dube et al., 2012). Whereas such indirect,
qualitative tests may help clarify theoretical predictions,
they often rest on assumptions of unknown validity and
might require many paired comparisons for larger MPT
models.

A third approach was used by Province and Rouder
(2012) and Kellen et al. (2015). Similar to the two-step
method by Hu (2001), the standard MPT model is fitted to
the individual response frequencies to obtain parameter esti-
mates first. Next, each response and the corresponding RT is
assigned to the cognitive process from which it most likely
emerged. For example, if a participant with 2HTM parame-
ter estimates d̂o = .80 and ĝ = .50 produces a hit, then the
recruitment probability that this hit was due to detection is
estimated as .80/(.80 + .20 · .50) = .89 (cf. Fig. 1). Hence,
this response and its RT are assigned to the detection process
rather than to the guessing process for which the recruitment
probability estimate is only (.20·.50)/(.80+.20·.50) = .11.
Note that although assignments of responses to latent pro-
cesses may vary between participants with different MPT
parameter estimates, they are necessarily identical within
participants. Hence, all RTs of a participant corresponding
to a specific response type are always assigned to the same
process. Classification errors implied by this procedure are
likely to be negligible if recruitment probabilities are close
to 1 as in our example but may be substantial if the latter
are less informative (i.e., close to .50). Despite this problem,
the method provides an approximate test of how exper-
imental manipulations affect process-specific mean RTs.
For example, both Province and Rouder (2012) and Kellen
et al. (2015) found that the overall mean RTs across pro-
cesses decreased when the number of repetitions during the
learning phase increased. However, the mean RTs for the
subsets of responses that were assigned to detection and
guessing processes, respectively, were not affected by this
experimental manipulation. Instead, the faster overall mean
RTs for higher repetition rates could solely be explained
by a larger proportion of fast detection responses (i.e., an
increase of do with repetitions), or equivalently, by a smaller
proportion of slow guesses.

All of these three approaches rely on separate, two-
step analyses of categorical responses and RTs and do
not allow to account for response frequencies and RTs in
a single statistical model. Therefore, we propose a novel
method that directly includes information about RTs into
any MPT model. As explained in the following sections,
the method rests on the fundamental idea that MPT models
imply finite mixture distributions of RTs for each response

category because they assume a finite number of underly-
ing cognitive processes. Second, instead of modeling RTs
as continuous variables, each observed response category is
split into discrete bins representing fast to slow responses,
similar to a histogram. Based on these more fine-grained
categories, the relative speed of each processing branch is
represented by probability parameters for the discrete RT
bins, resulting in an RT-extended MPT model. Importantly,
the underlying, unobservable RT distributions are modeled
in a distribution-free way to avoid potentially misspecified
distributional assumptions. Third, we introduce a strategy
how to impose restrictions on the latent RT distributions in
order to ensure their identifiability. Moreover, we discuss
how to test hypotheses concerning the ordering of latent
processes. Note that the RT-extended MPT model can be fit-
ted and tested using the existing statistical tools for MPT
models. We demonstrate the approach using the 2HTM of
recognition memory.

MPT models imply mixtures of latent RT
distributions

One core property of MPT models is their explicit assump-
tion that a finite number of discrete processing sequences
determines response behavior. In other words, each branch
in an MPT model constitutes a different, independent cog-
nitive processing path. It is straightforward to assume that
each of these possible processes results in some (unknown)
distribution of RTs. Given a category that is reached only by
a single branch, the distribution of RTs for the correspond-
ing process is directly observable. In contrast, if at least two
branches lead to the same category, the observed distribu-
tion of RTs within this category will be a finite mixture
distribution (Luce, 1986; Hu, 2001; Townsend & Ashby,
1983). This means that each RT of any response category
of the MPT model originates from exactly one of the latent
RT distributions corresponding to the branches of the MPT
model, with mixture probabilities given by the core MPT
structure. Mathematically, an observed RT distribution is a
mixture of J latent RT distributions with mixture probabili-
ties αj if the observed density f (x) is a linear combination
of the latent densities fj (x),

f (x) =
J∑

j=1

αjfj (x). (1)

Because MPT models necessarily include more than a sin-
gle response category, separate mixture distributions are
assumed for the RT distributions corresponding to the dif-
ferent response categories, where the proportions αj are
defined by the branch probabilities of the core MPT model.
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This basic idea is illustrated in Fig. 2 for the 2HTM,
where the six branches — and thus the six processing
sequences — are assumed to have separate latent RT dis-
tributions. We use the term latent for these distributions
because they cannot directly be observed in general. Con-
sider, for instance, the RT distribution of hits: For a single
old response to a target and the corresponding RT, it is
impossible to decide whether it resulted from target detec-
tion (first branch) or guessing old in the uncertainty state
(second branch). However, we know that a single observed
RT must stem from one of two latent RT distributions, either
from target detection with probability do or from guessing
old with probability (1−do)g. Hence, the RTs for hits follow
a two-component mixture distribution where the mixture
probabilities are proportional to these two MPT branch
probabilities.2 In contrast to RTs of hits, the observed RT
distributions of misses and false alarms are identical to
the latent RT distributions of guessing new for targets and
guessing old for lures, respectively, because only a single
branch leads to each of these two categories. Note that, later
on, some of these latent RT distributions may be restricted
to be identical for theoretical reasons or in order to obtain a
model that provides unique parameter estimates.

2Note that in order to obtain proper mixture probabilities that sum
up to one, these path probabilities have to be normalized within each
response category (e.g., for hits in the 2HTM, P(detect old | hit) =
do/(do + (1 − do)g) and P(guess old | hit) = (1 − do)g/(do + (1 −
do)g)).

Whereas this mixture structure of latent RT distributions
emerges directly as a core property of the model class, MPT
models do not specify the temporal order of latent processes,
that is, whether processes occur in parallel, in partially over-
lapping order, or in a strictly serial order (Batchelder &
Riefer, 1999). In general, both parallel and serial processes
can be represented within an MPT structure (Brown, 1998).
Whereas the assumption of a serial order of latent pro-
cessing stages might be plausible for the 2HTM (guessing
occurs after unsuccessful detection attempts; cf. Dube et al.,
2012; Erdfelder et al., 2011), other MPT models represent
latent processes without the assumption of such a simple
time course. Moreover, many MPT models can be reparam-
eterized into equivalent versions with a different order of
latent processing stages (Batchelder & Riefer, 1999), which
prohibits simple tests of the processing order. In some cases,
however, factorial designs allow for such tests using only
response frequencies (Schweickert & Chen, 2008).

To avoid auxiliary assumptions about the serial or paral-
lel nature of processing stages, our approach is more general
and does not rely on an additive decomposition of RTs into
processing times for different stages as proposed by Hu
(2001). Instead, we directly estimate the latent RT distri-
butions shown in Fig. 2 separately for each process (i.e.,
for each branch of the MPT model). Nevertheless, once
the latent RT distributions are estimated for each branch,
the results can be useful to exclude some of the possible
processing sequences. For instance, we can test the assump-
tion that detection occurs strictly before guessing by testing
whether detection-responses are stochastically faster than
guessing-responses (see below).
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Another critical assumption concerns the exact shapes of
the hypothesized latent RT distributions. These unobserv-
able distributions could, for instance, be modeled by typical,
right-skewed distributions for RTs such as ex-Gaussian, log-
normal, or shifted Wald distributions (Luce, 1986; Matzke
& Wagenmakers, 2009; Van Zandt & Ratcliff, 1995).
However, instead of testing only the core structure of an
MPT model, the validity of such a parametric model will
also rest on its distributional assumptions. Since MPT mod-
els exist for a wide range of experimental paradigms, it
is unlikely that a single parameterization of RTs will be
appropriate for all applications. Moreover, many substantive
theories might only provide predictions about the relative
speed of cognitive processes instead of specific predic-
tions about the shape of RTs. Given that most MPT models
deal with RT distributions that are not directly observable,
it is difficult to test such auxiliary parametric assump-
tions. Therefore, to avoid restrictions on the exact shape
of latent RT distributions, we propose a distribution-free
RT model.

Categorizing RTs into bins

Any continuous RT distribution can be approximated in a
distribution-free way by a histogram (Van Zandt, 2000).
Given some fixed boundaries on the RT scale, the number of
responses within each bin is counted and displayed graph-
ically. Besides displaying empirical RT distributions, dis-
crete RT bins can also be used to test hypotheses about RT
distributions without parametric assumptions. For instance,
Yantis, Meyer, and Smith (1991) used discrete bins to test
whether observed RT distributions can be described as mix-
tures of a finite number of basis distributions corresponding
to different cognitive states (e.g., being in a prepared or
unprepared cognitive state, Meyer, Yantis, Osman, & Smith,
1985). Yantis et al.’s (1991) method is tailored to situations
in which all basis distributions can directly be observed
in different experimental conditions. Using discrete RT
bins, one can then test whether RT distributions in addi-
tional conditions are mixtures of these basis distributions.
The method is mathematically tractable because the fre-
quencies across RT bins follow multinomial distributions if
identically and independently distributed RTs are assumed.
Moreover, likelihood ratio tests allow for testing the mixture
structure without the requirement of specifying parametric
assumptions.

The model has two sets of parameters, the mixture prob-
abilities αij that responses in condition i emerge from the
cognitive state j , and the probabilities Ljb that responses
of the state j fall into the b-th RT bin. Importantly, the
latency parameters Lj1, . . . , LjB model the complete RT
distribution of the j -th state without any parametric assump-
tions. Using this discrete parametrization of the basis RT

distributions, the mixture density in Eq. 1 gives the proba-
bility that responses in the i-th condition fall into the b-th
RT bin,

pib =
J∑

j=1

αijLjb. (2)

Given a sufficient amount of experimental conditions and
bins, the model can be fitted and tested within the maximum
likelihood framework.

Besides the advantage of avoiding arbitrary distributional
assumptions, Yantis et al. (1991) showed that the method
has sufficient power to detect deviations from the assumed
mixture structure given realistic sample sizes between 40
to 90 responses per condition. However, the method is
restricted to RT distributions for a single type of response,
and it also requires experimental conditions in which the
basis distributions can directly be observed. MPT models,
however, usually account for at least two different types of
responses and do not necessary allow for direct observations
of the underlying component distributions. For instance, in
the 2HTM (Fig. 2), the latent RT distributions of target and
lure detection cannot directly be observed, because hits and
false alarms also contain guesses. Moreover, MPT models
pose strong theoretical constraints on the mixture probabili-
ties αij , which are assumed to be proportional to the branch
probabilities.

We retain the benefits of Yantis et al.’s (1991) method and
overcome its limitations regarding MPT models by using
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discrete RT bins and probability parameters Ljb to model
the latent RT distributions in Fig. 2. Thereby, instead of
assuming a specific distributional shape, we estimate each
latent RT distribution directly. This simple substitution pro-
duces a new, RT-extended MPT model. To illustrate this,
Fig. 3 shows the RT-extended 2HTM for old items. In this
example, each of the original categories is split into four
bins using some fixed boundaries on the observed RTs. In
the 2HTM, this results in a total of 4 · 4 = 16 categories
for the RT-extended MPT model. Once the RTs have been
used to obtain these more fine-grained category frequen-
cies, the new MPT model can easily be fitted, tested, and
compared to other models by means of existing software
for MPT models (e.g., Moshagen, 2010; Singmann &
Kellen, 2013).

Note that the number of RT bins can be adjusted to
account for different sample sizes. Whereas experiments
with many responses per participant allow for using many
RT bins, the method can also be applied with small samples
by using only two RT bins. The latter represents a special
case in which responses are categorized as either fast or slow
based on a single RT boundary. As a result, each latent RT
distribution j is described by one latency parameter Lj , the
probability that RTs of process j are below the individual
RT boundary, which is direct measure of the relative speed
of the corresponding process.

Choosing RT boundaries for categorization

If the latent RT distributions are modeled by discrete RT
bins, the question remains how to obtain RT boundaries
to categorize responses into bins. In the following, we
discuss the benefits and limitations of three different strate-
gies. One can use (1) fixed RT boundaries, (2) collect
a calibration data set, or (3) rely on data-dependent RT
boundaries. We used the last of these strategies in the
present paper for reasons that will become clear in the
following.

Most obviously, one can use fixed RT boundaries that are
chosen independently from the observed data. For instance,
to get eight RT bins, we can use seven equally-spaced points
on a range typical for the paradigm under consideration,
for example, from 500 ms to 2,000 ms in steps of 250 ms.
Obviously, however, this strategy can easily result in many
zero-count cells if the RTs fall in a different range than
expected. This is problematic, because a minimum expected
frequency count of five per category is a necessary condition
to make use of the asymptotic χ2 test for the likelihood ratio
statistic, which is used to test the proposed mixture struc-
ture. For category counts smaller than five, the asymptotic
test may produce misleading results (Agresti, 2013). Even
more importantly, the resulting frequencies are not com-
parable across participants because of natural differences

in the speed of responding (Luce, 1986). Hence, frequen-
cies cannot simply be summed up across participants, which
further complicates the analysis.

As a remedy, it is necessary to obtain RT boundaries that
result in comparable bins across participants. If comparable
RT bins are defined for all participants on a-priori grounds,
it is in general possible to analyze the RT-extended MPT
model for the whole sample at once, either by summing
individual frequencies or by using hierarchical MPT exten-
sions (Klauer, 2010; Smith & Batchelder, 2010). Hence,
as a second strategy, one could use an independent set of
data to calibrate the RT boundaries separately for each par-
ticipant. Often, participants have to perform a learning task
similar to the task of interest. We can then use any sum-
mary statistics of the resulting RT distribution to define
the RT boundaries for the subsequent MPT analysis. For
instance, the empirical 25 %-, 50 %-, and 75 %-quantiles
ensure that the resulting four RT bins are a-priori equally
likely (for B RT bins, one would use the b/B-quantiles with
b = 1, . . . , B−1). Given that the RT boundaries are defined
for each participant following this rule, the resulting RT bins
share the same interpretation and can be analyzed jointly.
Besides minimizing zero-count frequencies, the adjusted
RT boundaries for each participant eliminate individual RT
differences in the RT-extended MPT model.

Often, a separate calibration data set might not be avail-
able or costly to obtain. In such a situation, it is possible
to use the available data twice: First, to obtain some RT
boundaries according to a principled strategy, and second,
to analyze the same, categorized data with an RT-extended
MPT model. For instance, Yantis et al. (1991) proposed to
vary the location and scale of equal-width RT intervals to
ensure a minimum of five observations per category. At first
view, however, choosing RT boundaries as a function of the
same data is statistically problematic. If the boundaries for
categorization are fixed as in our first strategy, the multino-
mial sampling theory is correct and the standard MPT anal-
ysis is valid. In contrast, if the RT boundaries are stochastic
and depend on the same data, it is not clear whether the
resulting statistical inferences are still correct. However, the
practical advantages of obtaining RT boundaries from the
same data are obviously very large. Therefore, to justify this
approach, we provide simulation studies in the Supplemen-
tary Material showing that the following strategy results in
correct statistical inferences with respect to point estimates,
standard errors, and goodness-of-fit tests.

According to the third strategy, RT boundaries are
obtained from the overall RT distribution across all response
categories as shown in Fig. 4. For each person, the distribu-
tion of RTs across all response categories is approximated
by a right-skewed distribution, for instance, a log-normal
distribution (Fig. 4a). This approximation serves as a refer-
ence distribution to choose reasonable boundaries that result
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Fig. 4 A principled strategy to obtain comparable RT bins across individuals. a Computation of quantiles from a log-normal approximation to
the RT distribution across all response categories. b Categorization of hits, misses, false alarms, and correct rejections from fast to slow

in RT bins with a precise interpretation, for example, the
b/B-quantiles (the 25 %-, 50 %-, 75 %-quantiles for four
RT bins). These individual RT boundaries are then used
to categorize responses into B subcategories from fast to
slow (Fig. 4b). By applying the same approximation strat-
egy separately for each individual, the new category system
has an identical interpretation across individuals. Moreover,
the right-skewed approximation results in a-priori approxi-
mately equally likely RT bins. Importantly, this approxima-
tion is only used to define the RT boundaries. Hence, it is
neither necessary that it fits the RT distribution, nor does
it constrain the shape of the latent RT distributions because
the latency parameters Ljb of the RT-extended MPT model
can still capture any distribution.

We decided to use a log-normal approximation because
it is easy to apply and uses less parameters than other
right-skewed distributions such as the ex-Gaussian or the
shifted Wald distribution (Van Zandt, 2000). However,
in our empirical example below, using these alternative
distributions resulted in similar RT boundaries, and hence,
in the same substantive conclusions. The detailed steps
to derive individual RT boundaries are (1) log-transform
all RTs of a person, (2) compute mean and variance of
these log-RTs, (3) get b/B-quantiles of a normal distribu-
tion with mean and variance of Step 2, (4) re-transform
these log-quantiles tb back to the standard RT scale to

get the boundaries required for categorization (i.e., RTb =
exp(tb)).3

Note that there is an alternative, completely different
approach of using RT boundaries based on the overall RT
distribution. For instance, with two RT bins, we can catego-
rize a response as fast or slow if the observed RT is below or
above the overall median RT, respectively. However, instead
of using an MPT model with latent RT distributions as
in Fig. 3, it is possible to use the standard MPT tree in
Fig. 1 twice but with separate parameters for fast and slow
responses. Hence, this approach allows for testing whether
the core parameters (do, dn, and g in case of the 2HTM)
are invariant across fast and slow responses. Since our inter-
est here is in direct estimates of the relative speed of the
hypothesized processes, we did not pursue this direction any
further.

Identifiability: constraints on the maximum number
of latent RT distributions

Up to this point, we assumed that each processing path is
associated with its own latent RT distribution. However,

3Mathematically more concise, RTb = exp
[
SDlogRT · (�−1(b/B)

+logRT)
]
, where �−1 is the inverse cumulative density function of

the standard-normal distribution.
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assuming a separate latent RT distribution for each process-
ing path will in general cause identifiability problems. For
example, Fig. 2 suggests that it is not possible to obtain
unique estimates for six latent RT distributions based on
only four observed RT distributions (for hits, misses, false
alarms, and correct rejections, respectively). Hence, it will
usually be necessary to restrict some of these latent dis-
tributions in one way or another to obtain an identifiable
model (Hu, 2001). For instance, in the 2HTM, one could
assume that any type of guessing response is equally fast,
thereby reducing the number of latent RT distributions to
three. In practice, these restrictions should of course rep-
resent predictions based on psychological theory. However,
before discussing restrictions on RTs in case of the 2HTM,
we will first present a simple strategy how to check that a
chosen set of restricted latent RT distributions can actually
be estimated.

Before using any statistical model in practice, it has to be
shown that fitting the model to data results in unique param-
eter estimates. A sufficient condition for unique parameter
estimates is the global identifiability of the model, that is,
identical category probabilities p(θ) = p(θ ′) imply identi-
cal parameter values θ = θ ′ for all θ , θ ′ in the parameter
space � (Bamber & van Santen, 2000). For larger, more
complex MPT models, it can be difficult to proof this
one-to-one mapping of parameters to category probabilities
analytically (but see Batchelder & Riefer, 1990; Meiser,
2005 for examples of analytical solutions). Therefore,
numerical methods based on simulated model identifiability
(Moshagen, 2010) or the rank of the Jacobian matrix
Schmittmann, Dolan, Raijmakers, & Batchelder, (2010) have
been developed to check the local identifiability of MPT
models, which ensures the one-to-one relation only in the
proximity of a specific set of parameters. All of these meth-
ods can readily be applied to RT-extended MPT models.

However, when checking the identifiability of an RT-
extended MPT model, the problem can be split into two
parts: (1) the identifiability of the core parameters θ from
the original MPT model and (2) the identifiability of the
additional latency parameters L of the RT-extension given
that the original MPT model is identifiable. The first issue
has a simple solution. If the original MPT model is globally
identifiable, then, by definition, the core parameters θ of
the extended MPT model are also globally identifiable. This
holds irrespective of the hypothesized structure of latent RT
distributions. This simple result emerges from the fact that
the original category frequencies are easily recovered by
summing up the frequencies across all RT bins within each
category (see Appendix A).

Given a globally identifiable original MPT model, the
identifiability of the latency parameters L in the RT-

extended model can be checked using a simple strategy.
First, all categories are listed that are reached by a sin-
gle branch. The latency parameters of the respective latent
RT distributions of these categories are directly identifiable.
Intuitively, the RTs in such a category can be interpreted
as process-pure measures of the latencies corresponding to
the processing path (similar to the basis distributions of
Yantis et al., 1991). Second, for each of the remaining cat-
egories, their associated latent RT distributions are listed.
If for one of these categories, all but one of the latent RT
distributions are identifiable (from the first step), then the
remaining latent RT distribution of this category is also
identifiable. This second step can be applied repeatedly
using the identifiability of RT distributions from previous
steps. If all of the hypothesized latent RT distributions are
rendered identifiable by this procedure, the whole model is
identifiable. Note, however, that this simple strategy might
not always provide a definite result. For instance, if one or
more latent RT distributions might not be rendered iden-
tifiable by this strategy, it is still possible that the model
is identifiable. Therefore, the successful application of this
simple strategy provides a sufficient but not a necessary
condition for the identifiability of an RT-extended MPT
model.

In case this simple strategy does not ensure the identi-
fiability of all of the latency parameters, a different, more
complex approach can be used. For this purpose, a matrix
P(θ) is defined which has as many rows as categories and
as many columns as latent RT distributions. A matrix entry
P(θ)kj is defined as the branch probability pki(θ) if the i-th
branch of category k is assumed to generate RTs according
to the j -th latent RT distribution; otherwise, it is zero (see
Appendix A for details). The extended MPT model will be
globally identifiable if and only if the rank of this matrix
P(θ) is equal to or larger than the number of latent RT
distributions. This general strategy directly implies that an
identifiable RT-extended model cannot have more latent RT
distributions than observed categories. Otherwise, the rank
of the matrix P(θ) will necessarily be smaller than the
number of latent RT distributions. For example, consider
the 2HTM as shown in Fig. 2. For this model, the matrix
P(θ) has four rows for the four types of responses and six
columns for the latent RT distributions. Hence, this model
is not identifiable. Below, we discuss theoretical constraints
to solve this issue.

Note that these results about the identifiability of the
latency parameters only hold if the core parameters are in
the interior of the parameter space, that is, θ ∈ (0, 1)S ,
where S is the number of parameters. In other words, if
one of the processing paths can never be reached because
some of the core parameters are zero or one, it will be
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Fig. 5 a The continuous RT distribution Fj stochastically dominates Fi . b In an RT-extended MPT model, the latent RT distribution of process j

is slower (i.e., RTs are larger) than that of process i

impossible to estimate the corresponding RT distribution if
it does not occur in another part of the MPT model. There-
fore, in experiments, it is important to ensure that all of the
hypothesized cognitive processes actually occur. Otherwise,
it is possible that some of the latent RT distributions are
empirically not identified (Schmittmann et al., 2010). One
solution to this issue is the analysis of the group frequencies
aggregated across participants. Summing the individual fre-
quencies of RT-extended MPT models is in general possible
because only the relative speed of processing is represented
in the data due to the individual log-normal approxima-
tion. However, despite the comparable data structure, the
assumption of participant homogeneity is questionable in
general (Smith & Batchelder, 2008) and might require the
use of hierarchical MPT models (e.g., Klauer, 2010; Smith
& Batchelder, 2010).

Testing the ordering of latent processes

There are two main types of hypotheses that are of interest
with regard to RT-extended MPT models. On the one hand,
psychological theory might predict which of the latent RT
distributions corresponding to cognitive processes are iden-
tical or different. Substantive hypotheses of interest could
be, for instance, whether RTs due to target and lure detec-
tion follow the same distribution, or whether the speed of
detection is affected by response-bias manipulations. These
hypotheses about the equality of latent RT distributions i

and j can easily be tested by comparing an RT-extended
MPT model against a restricted version with equality con-
straints on the corresponding latency parameters, that is,
Lib = Ljb for all RT bins b = 1, .., B − 1. In other words,
testing such a hypothesis is similar to the common approach
in MPT modeling to test whether an experimental manip-
ulation affects the parameters (Batchelder & Riefer, 1999;
Erdfelder et al., 2009).

On the other hand, psychological theory might pre-
dict that RTs from one cognitive process are faster than
those from another one (Heathcote, Brown, Wagenmak-
ers, & Eidels, 2010). For instance, if guesses occur strictly
after unsuccessful detection attempts in the 2HTM (Erd-
felder et al., 2011), RTs resulting from detection should be
faster than RTs resulting from guessing.4 Such a substantive
hypothesis about the ordering of cognitive processes trans-
lates into the statistical property of stochastic dominance of
RT distributions (Luce, 1986; Townsend & Ashby, 1983).
The RT distribution of process j stochastically dominates
the RT distribution of process i if their cumulative density
functions fulfill the inequality

Fj (t) ≤ Fi(t) for all t ∈ R, (3)

which is illustrated in Fig. 5a. Note that a serial interpreta-
tion of the 2HTM directly implies the stochastic dominance
of guessing RTs over detection RTs. If the RTs correspond-
ing to the cognitive processes i and j are directly observ-
able, this property can be tested using the empirical cumu-
lative density functions. Note that several nonparametric
statistical tests for stochastic dominance use a finite number
of RT bins to test Eq. 3 based on the empirical cumulative
histograms (see Heathcote et al., 2010, for details).

In RT-extended MPT models, substantive hypotheses
concern the ordering of latent RT distributions. Moreover,
the continuous RTs t are replaced by a finite number of RT
bins. However, Eq. 3 can directly be translated to an RT-
extended MPT model considering that the term

∑b
k=1 Ljk

gives the probability of responses from process j falling
into an RT bin between 1 and b. In other words, it gives the
underlying cumulative density function for RTs of process

4In terms of serial stage models (Roberts & Sternberg, 1993), we are
comparing the random variable of observed detection RTs Td against
the random variable of observed guessing RTs Tg = Td + T ′, where
T ′ is a positive random variable resembling pure guessing duration.
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j . Hence, the statistical property of stochastic dominance of
process j over process i results in the following constraint
on the latency parameters of an RT-extended MPT model:

b∑

k=1

Ljk ≤
b∑

k=1

Lik for all b = 1, . . . , B − 1. (4)

This constraint is illustrated in Fig. 5b, where process i is
faster than process j .

When using only two RT bins, this relation directly sim-
plifies to the linear order restriction Lj1 ≤ Li1 because
each latent RT distribution has a single latency param-
eter only. In MPT models, such linear order constraints
can be reparameterized using auxiliary parameters η, for
example, Lj1 = ηLi1 (Klauer & Kellen, 2015; Knapp &
Batchelder, 2004). To test this kind of restrictions, model
selection techniques that take the diminished flexibility of
order-constrained MPT models into account have become
available (e.g., Klauer & Kellen, 2015; Vandekerckhove,
Matzke, &Wagenmakers, 2015; Wu, Myung, & Batchelder,
2010). Hence, the ordering of latent processes can directly
be tested using existing software and methods as shown in
the empirical example below.

Even though the use of only two RT bins is attractive in
terms of simplicity, it will also limit the sensitivity to detect
violations of stochastic dominance. Specifically, the cumu-
lative densities might intersect at the tails of distributions.
In such a case, an analysis based on two RT bins might
still find support for stochastic dominance even with large
sample sizes (Heathcote et al., 2010). Therefore, it might
be desirable to use more than two RT bins if the sample
size is sufficiently large. However, when using more than
two RT bins, a statistical test of Eq. 4 becomes more com-
plex because the sum on both sides of the inequality allows
for trade-offs in the parameter values. Importantly, a test
of the set of simple linear order constraints Ljb ≤ Lib

for all bins b captures only a sufficient but not a neces-
sary condition for stochastic dominance. In other words,
the set of restrictions Ljb ≤ Lib can be violated even
though two latent RT distributions meet the requirement for
stochastic dominance. Note that this problem transfers to
any binary reparameterization of an extended MPT model
with more than two RT bins (see Appendix B). As a conse-
quence, standard software for MPT models that relies on a
binary representations (e.g., Moshagen, 2010; Singmann &
Kellen, 2013) can in general not be used to test stochastic
dominance of latent RT distributions using more than two
bins.

As a solution, Eq. 4 can be tested using Bayes factors
based on the encompassing prior approach (Klugkist, Laudy,
& Hoijtink, 2005), similarly as in Heathcote et al. (2010).

Essentially, this approach quantifies the evidence in favor
of a restriction by the ratio of prior and posterior probabil-
ity mass over a set of order-constraints on the parameters.
To test stochastic dominance of latent RT distribution, the
RT-extended MPT model is fitted without any order con-
straints. Next, the posterior samples are used to estimate the
prior and posterior probabilities that Eq. 4 holds. The ratio
of these two probabilities is the Bayes factor in favor of
stochastic dominance (Klugkist et al., 2005). We show how
to apply this approach in the second part of our empirical
example below.

The RT-extended two-high-threshold model

In this section, we discuss theoretical constraints on the
number of latent RT distributions for the 2HTM. Moreover,
we demonstrate how the proposed model can be applied to
test hypotheses about latent RT distributions using data on
recognition memory.

Theoretical constraints on the latent RT distributions
of the 2HTM

As discussed above, the 2HTM with six latent RT distri-
butions in Fig. 2 is not identifiable. However, assuming
complete-information loss of the latent RT distributions of
guessing, the model becomes identifiable. Here, complete-
information loss refers to the assumption that guessing,
conditional on unsuccessful detection, is independent of
item type. In other words, the guessing probability g is iden-
tical for lures and targets because no information about the
item type is available in the uncertainty state (Kellen &
Klauer, 2015). This core property of discrete-state mod-
els should also hold for RTs: Given that an item was not
recognized as a target or a lure, the RT distributions for
guessing old and new should not differ between targets
and lures. Based on a serial-processing interpretation of the
2HTM (Erdfelder et al., 2011), this actually includes two
assumptions: Not only the time required for actual guessing
but also the preceding time period from test item presenta-
tion until any detection attempts are stopped are identically
distributed for targets and lures.5 Both assumptions are rea-
sonable. They are in line with the idea that participants
do not have additional information about the item type
that might affect their motivation to detect a test item. In

5As noted by a reviewer, this assumption is mandatory for the 2HTM
when applied to yes-no recognition tasks. However, it might be dis-
pensable in other models (e.g. the one-high threshold model) or when
using other memory tasks (e.g. the two-alternative forced choice task).
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sum, complete-information loss implies that RT distribu-
tions involving guessing are indistinguishable for targets
and lures.

The assumption of complete-information loss restricts
the six latent RT distributions in Fig. 2 to only four latent RT
distributions; those of target and lure detection, and those
of guessing old and new, respectively. This restriction ren-
ders the RT-extended 2HTM identifiable given that the core
parameters do, dn, and g are identified. Identification of the
core parameters can be achieved, for example, by imposing
the equality constraint do = dn (e.g., Bayen et al., 1996;
Klauer & Wegener, 1998). To check the identifiability of
the RT-extended model, we apply the simple strategy intro-
duced above. First, we observe that misses and false alarms
both result from single branches. Hence, the corresponding
RT distributions for guessing new and old are identifiable.
Second, because RTs for hits either emerge from the iden-
tifiable distribution of guessing old or from the process of
target detection, the latter RT distribution is also identifi-
able. The same logic holds for correct rejections and lure
detection.

In sum, all of the four latent RT distributions are iden-
tifiable within a single experimental condition. Therefore,
we can estimate four separate latent RT distributions for
several experimental manipulations. Here, we want to test
whether the assumptions of complete-information loss and
fast detection hold across different memory-strength and
base-rate conditions, and whether the speed of detection is
affected by the base-rate manipulation.

Sensitivity simulations

Before applying the proposed method to actual data, we
show that the approach is sufficiently sensitive to decom-
pose observed mixture distributions. First, we estimate the
statistical power to detect a discrepancy between the latent
RT distributions of detection and guessing using only two
RT bins, and second, we show that our distribution-free
approach can recover even atypical RT distributions using
eight RT bins.

To assess the statistical power, we simulated data for a
single experimental condition with true, underlying detec-
tion probabilities of do = dn = .7 and a symmetric guessing
probability of g = .5. To generate RTs from the latent
RT distributions of detection and guessing, we used two
ex-Gaussian distributions (i.e., RTs were sampled from
the sum of a normal and an independent exponential ran-
dom variable). Both of these distributions shared the stan-
dard deviation σ = 100 ms of the normal component
and the mean ν = 300 ms of the exponential com-
ponent. Differences between the two distributions were
induced by manipulating the mean of the normal com-
ponent. Whereas the normal component for the guess-
ing RTs had a constant mean of μg = 1, 000 ms, we
manipulated this mean in the range of μd = 1, 000
ms, . . . , 700 ms in steps of 50 ms for the detection RTs.
Note that the resulting mean RT differences correspond to
effect sizes in terms of Cohen’s d between d = 0 and
d = 0.95.
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Fig. 6 a The theoretically expected mixture distributions for observed
RTs of hits and correct rejections, depending on the (standardized)
difference in means of the latent RT distributions of detection and

guessing. b Power of the RT-extended 2HTM to detect the discrepancy
between the latent RT distributions of detection and guessing
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Figure 6a shows the theoretically expected mixture
distributions for the observed RTs of hits and correct
rejections for the five simulated conditions. Note that
these mixture distributions are all unimodal and are thus
statistically more difficult to discriminate than bimodal
mixtures. For each of the five conditions, we generated
1,000 data sets, categorized RTs into two bins based on
the log-normal approximation explained above, and fit-
ted two RT-extended MPT models. The more general
model had two latency parameters Ld and Lg for the
relative speed of detection and guessing, respectively.
The nested MPT model restricted these two parameters
to be identical and was compared to the more general
model by a likelihood-ratio test using a significance level
of α = .05.

Figure 6b shows the results of this simulation. When
the latent RT distributions for detection and guessing were
identical (d = 0), that is, the null hypothesis did hold, the
test adhered to the nominal α-level of 5 % for all sample
sizes. In this simple setting, medium and large effects were
detected with sufficient power using realistic sample sizes.
For instance, the power was 85.9 % to detect an effect of
d = 0.71 based on a sample size of 100 learned items. As
can be expected for a model that does not rely on distribu-
tional assumptions, the statistical power to detect a small
difference in mean RTs (d = 0.24) was quite low even for
200 learned items.

In principle, the distribution-free approach allows for
modeling nonstandard RT distributions, for instance, those

emerging in experimental paradigms with a fixed time-
window for responding. In such a scenario, latent RT dis-
tributions could potentially be right-skewed (fast detection),
left-skewed (truncation by the response deadline), or even
uniform (guessing). To test the sensitivity of the proposed
method in such a scenario, we therefore sampled RT values
in the fixed interval [0, 1] from beta distributions with these
different shapes.

In contrast to the power study, we used a slightly
more complex setting with different parameters for target
and lure detection (do = .65, dn = .4), two response
bias conditions and parameters (gA = .3, gB = .7),
and separate beta distributions to generate RTs for tar-
get detection (right-skewed), lure detection (left-skewed),
and guessing in condition A and B (uniform and bimodal,
respectively). Figure 7 shows the latent, data-generating
RT distributions (black curves) along with the mean esti-
mates (black histogram) across 500 replications (light gray),
each based on 150 responses per item type and condition.
The results clearly indicate a good recovery of all four
distributions.

Overall, we conclude that our distribution-free approach
is sufficiently sensitive to estimate latent RT distributions
even if the observed mixture distributions are unimodal or
if the latent distributions differ markedly in shape. Note
that, as in all simulation studies, these results depend on the
specific model and the scenarios under consideration. They
do not necessarily generalize to more complex situations.
Nevertheless, our simulations show that, in principle, the

Fig. 7 Latent, data-generating beta distributions are shown by solid curves, whereas individual and mean estimates of the RT-extended 2HTM
are shown as light gray and black histograms, respectively
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categorization of RTs into bins allows for a distribution-free
estimation of latent RT distributions.

Methods

As in previous work introducing novel RT models (e.g.,
Ollman, 1966; Yantis et al., 1991), we use a small sam-
ple with many responses per participant to illustrate the
application of the proposed method. The data are from four
students of the University of Mannheim (3 female, mean
age = 24) who responded to 1,200 test items each. The
study followed a 2 (proportion of old items: 30 % vs. 70
%) × 2 (stimulus presentation time: 1.0 vs. 2.2 seconds)
within-subjects design. To obtain a sufficient number of
responses while also maintaining a short testing duration
per session, the study was split into three sessions that took
place on different days at similar times. The four conditions
were completed block-wise in a randomized order in each
of the three sessions. We selected stimuli from a word list
with German nouns by Lahl, Gritz, Pietrowsky, & Rosen-
berg, (2009). From this list, words shorter than three letters
and longer than ten letters were removed. The remaining
items were ordered by concreteness to select the 1464 most
concrete words for the experiment. From this pool, words
were randomly assigned to sessions, conditions, and item
types without replacement.

The learning list contained 72 words in each of the four
conditions including one word in the beginning and the end
of the list to avoid primacy and recency effects, respec-
tively. Each word was presented either for one second in
the low memory strength condition or for 2.2 seconds in the
high memory strength condition with a blank inter-stimulus
interval of 200 ms. After the learning phase, participants
worked on a brief distractor task (i.e., two minutes for find-
ing differences in pairs of pictures). In the testing phase, 100
words were presented including either 30 % or 70 % learned
items. Participants were told to respond either old or new as
accurate and as fast as possible by pressing the keys ‘A’ or
‘K.’ Directly after each response, a blank screen appeared
for a random duration drawn from a uniform distribution
between 400 ms and 800 ms. This random inter-test interval
was added to prevent the participants from responding in a
rhythmic manner that might result in statistically dependent
RTs (Luce, 1986). After each block of ten responses, par-
ticipants received feedback about their current performance
to induce base-rate-conform response behavior. The exper-
iment was programmed using the open-source software
OpenSesame (Mathôt, Schreij, & Theeuwes, 2012).

Analyses based on two RT bins

We first tested our three hypotheses (complete-information
loss, fast detection, and effects of base-rates on detection

RTs) based on only two RT bins using standard software
and methods. In the next step, we reexamined our conclu-
sions regarding stochastic dominance of detection RTs over
guessing RTs using more RT bins.

Competing models

We compared six RT-extended MPT models to test our
hypotheses about the latent RT distributions. All of these
models share the same six core parameters of the basic
2HTM. In line with previous applications of the 2HTM
(e.g., Bayen et al., 1996; Bröder & Schütz, 2009; Klauer
& Wegener, 1998), we restricted the probability of detect-
ing targets and lures to be identical, do = dn, separately for
the two memory strength conditions to obtain a testable ver-
sion of the standard 2HTM. In addition to the two detection
parameters, we used four parameters for the guessing prob-
abilities, separately for all four experimental conditions.
Note that we included separate response bias parameters
for the memory strength conditions because this factor was
manipulated between blocks, which can result in different
response criteria (Stretch & Wixted, 1998). Whereas all
of the six RT-extended MPT models shared these six core
parameters, the models differed in their assumptions about
the latent RT distributions.

The most complex substantive model (‘CI loss’) assumes
four separate latent RT distributions for each of the four
experimental conditions. This model allows for any effects
of experimental manipulations on the relative speed of
the underlying processes. The core assumptions of this
model are (a) two-component mixtures for RTs of cor-
rect responses to targets and lures and (b) complete-
information loss in the uncertainty state. Specifically, the
latter assumption implies that guesses are equally fast for
targets and lures. This holds for both old and new guesses,
respectively.

The second substantive model (‘Fast detection’) is a sub-
model of the ‘CI loss’ model. It tests a necessary condition
for a serial interpretation of the 2HTM (Dube et al., 2012;
Erdfelder et al., 2011). According to the hypothesis that
guesses occur strictly after unsuccessful detection attempts,
responses due to detection must be faster than responses
due to guessing. Specifically, we assumed that this hypoth-
esis of stochastic dominance holds within each response
category, that is, within old-responses (Ldo ≥ Lgo) and
within new-responses (Ldn ≥ Lgn). Imposing these two
constraints in all four experimental conditions results in
a total of eight order constraints. Note that adding the
corresponding constraints across response categories (i.e.,
Ldo ≥ Lgn and Ldn ≥ Lgo) would result in the overall
constraint

min(Ldo, Ldn) ≥ max(Lgo, Lgn) (5)
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within each condition. However, this constraint requires the
additional assumption that there is no difference in the over-
all speed of old and new responses. Since our interest is
only in the core assumptions of the RT-extended 2HTM,
we tested stochastic dominance only within response cate-
gories.

The third substantive model (‘Invariant Ldo’) is nested
in the ‘Fast detection’ model. It tests the hypothesis that
the speed of the actual recognition process is not affected
by response bias, or in other words, the restriction that tar-
get detection is similarly fast across base rate conditions,
L30 %

do = L70 %
do . Since the constraint applies in both memory

strength conditions, this reduces the number of free param-
eters by two. The fourth substantive model (‘Invariant Ld ’)
adds the corresponding constraint for lure detection to the
model ‘Invariant Ldo,’ thus implying invariance of both Ldo

and Ldn against base-rate manipulations.
These four substantive RT-extended MPT models are

tested against two reference models that should be rejected
if the theoretical assumptions underlying the RT-extended
2HT model hold. The first of these models (‘No mix’) does
not assume RT-mixture distributions for correct responses.
Instead, it estimates 4·4 = 16 separate RT distributions, one
for each response category of all experimental conditions.
This model has no additional restrictions in comparison to
the standard 2HTM without RTs because the categorization
of responses from fast to slow is perfectly fitted within each
response category. The second reference model (‘Null’)
tests whether the proposed method is sufficiently sensitive
to detect any differences in latent RT distributions at all. For
this purpose, it assumes that all observed RTs stem from a
single RT distribution by constraining all latency parameters
to be equal, Lj = Li for all i, j .

Model selection results

Before testing any RT-extended MPT model, it is nec-
essary to ensure that the basic MPT model fits the
observed responses. Otherwise, model misfit cannot clearly
be attributed either to the assumed structure of latent RT
distributions or to the MPT model itself. In our case, the
standard 2HTM with the restriction of identical detection
probabilities for targets and lures (dstrong

o = d
strong
n , dweak

o =
dweak
n ) fitted the individual data of all participants well

(all G2(2) ≤ 3.6, p ≥ .16, with a statistical power of
1 − β = 88.3 % to detect a small deviation of w = 0.1).
Figure 8 shows the fitted ROC curves (gray solid lines)
and indicates that both experimental manipulations selec-
tively influenced the core parameters as expected.6 This
visual impression was confirmed by likelihood-ratio tests

6The same pattern of selective influence tests also emerged if do and
dn were not constrained to be identical (see Supplementary Material).

showing that the d-parameters differed between memory
strength conditions (all 
G2(1) > 21.1, p < .001) and
that the g-parameters differed between the base-rate condi-
tions (all 
G2(2) > 11.3, p < .004). Note that we did
not constrain the guessing parameters to be identical across
memory strength conditions because of possibly different
response criteria per block (Stretch & Wixted, 1998). Both
Fig. 8 and a likelihood-ratio test showed that this was indeed
the case for Participant 3 (G2(2) = 15.7, p < .001).

In addition to a good model fit, it is important that the
core parameters of the MPT model are not at the bound-
ary of the parameter space. If one of the core parameters
is close to zero, the corresponding cognitive process is
assumed not to occur, and thus, the corresponding latent
RT distribution can neither be observed nor estimated if
it does not occur in another part of the tree. Hence, if
some of the core parameters are at the boundaries, it is
possible that some of the latent RT distributions are empir-
ically not identified. This issue did not arise in our data
because all core parameter estimates varied between .10 and
.81. Note that core parameter estimates and standard errors
were stable across the different RT-extended 2HT models
below with mean absolute differences of .013 and .001,
respectively (maximum absolute differences of .079 and
.008, respectively).

To select between the six competing RT-extended 2HT
models, we used the Fisher information approximation
(FIA; Rissanen, 1996), an information criterion based on
the minimum description length principle (Grünwald, 2007;
Rissanen, 1978). Compared to standard goodness-of-fit tests
and other model section measures, FIA has a number
of advantages. Resembling the Akaike information crite-
rion (AIC; Akaike, 1973) and the Bayesian information
criterion (BIC; Schwarz, 1978), FIA minimizes errors in
predicting new data by making a trade-off between good-
ness of fit and model complexity. However, whereas AIC
and BIC penalize the complexity of a model only by the
number of free parameters, FIA takes additional informa-
tion into account such as order constraints on parameters
and the functional form of the competing models (Klauer
& Kellen, 2011). This is important in the present case,
because three of the models do not differ in the num-
ber of parameters. Whereas the substantive model ‘CI
loss’ has the same number of parameters as the refer-
ence model ‘No mix’, it has a smaller complexity because
of the structural assumption of conditional independence
of RTs. The model ‘Fast detection’ is even less complex
since it adds eight order constraints that decrease the flex-
ibility even more without affecting the number of free
parameters.

Besides accounting for such differences in functional
flexibility, FIA has the benefits that it is consistent (i.e.,
it asymptotically selects the true model if it is in the set
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Fig. 8 Fit of the standard 2HTM (solid gray lines) to the observed frequencies (shown with standard errors). ML parameter estimates (and
standard errors) are displayed for each participant

of competing models) and that it can efficiently be com-
puted for MPT models (Wu et al., 2010). Despite these
advantages, FIA can be biased in small samples and should
therefore only be used if the empirical sample size exceeds
a lower bound (Heck, Moshagen, & Erdfelder, 2014). In the
present case, we can use FIA for model selection on the indi-
vidual level because the lower bound of N ′ = 190 is clearly
below 1,200, the number of responses per participant.

Table 1 shows the 
FIA values for all participants and
models, that is, the difference in FIA values to the preferred
model. Moreover, the likelihood-ratio tests for all models
are shown to assess their absolute goodness of fit. For all
participants, both reference models were rejected. Despite
its larger complexity, the model ‘No mix’ did not outper-
form the substantive models. Concerning the other extreme,
the null model which assumes no RT differences at all

Table 1 Model selection for the RT-extended 2HTM models using two RT bins

Participant 1 Participant 2 Participant 3 Participant 4

Model df G2 p 
FIA G2 p 
FIA G2 p 
FIA G2 p 
FIA

No mix 2 3.6 .16 13.2 0.3 .88 14.5 2.6 .27 13.0 2.0 .37 12.5

CI loss 2 3.6 .16 6.2 0.3 .88 7.4 2.6 .27 5.9 2.0 .37 5.5

Fast detection 2 3.6 .16 0.7 0.3 .88 1.9 2.6 .27 0.4 2.0 .37 0.0

Invariant Ldo 4 6.7 .15 0.0 0.8 .93 0.0 8.1 .09 0.9 27.5 <.01 10.5

Invariant Ld 6 23.4 <.01 6.5 6.4 .38 0.9 10.0 .13 0.0 37.3 <.01 13.5

Null 17 128.7 <.01 45.0 111.3 <.01 39.2 90.0 <.01 25.8 103.1 <.01 32.3

Note. 1,200 responses per participant, which exceeds the lower-bound N ′ = 190 for the application of FIA (Heck et al., 2014)
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performed worst as indicated by the large 
FIA val-
ues. Hence, the categorization of RTs into two bins pre-
served information about the relative speed of the under-
lying processes, which can be used to test our substantive
hypotheses.

Concerning the substantive model, detection responses
were faster than guessing responses for all participants as
indicated by the low 
FIA values of the model ‘Fast detec-
tion.’ Note that this model fitted just as well as the two more
complex models ‘No mix’ and ‘CI loss’ and is therefore
preferred by FIA due to its lower complexity. Regarding
the effect of different base rates on the speed of detection,
the results were mixed. For Participant 4, this manipulation
clearly affected the detection speed as indicated by the large
FIA and G2 values for the ‘Invariant Ldo’ and ‘Invariant
Ld ’ models. In contrast, different base rates did not affect
the speed of target detection for the other three participants.
Moreover, the model ‘Invariant Ld ,’ which additionally
restricts the speed of lure detection to be identical across
base rates, was selected only for Participant 3.7

Overall, our results support the hypotheses of complete-
information loss and fast detection. The results were
ambiguous with respect to effects of the base-rate manipu-
lation on detection speed. For some participants, the speed
of target detection was invariant with respect to different
base rates, for others (Participant 4, in particular) detection
tended to be faster when the correct response was congruent
with the base-rate conditions.

Plotting the relative speed of latent processes

To facilitate comparisons of the relative speed of the
assumed cognitive processes, the parameter estimates L̂j

can directly be compared in a single graph for several
processes and participants. Since Lj is defined as the prob-
ability that responses of process j are faster than the RT
boundary, larger estimates directly correspond to faster cog-
nitive processes. Therefore, the latency estimates in Fig. 9,
based on the model ‘CI loss,’ represent a parsimonious
and efficient way of comparing the relative speed of the
hypothesized processes across experimental conditions and
participants.

In line with the model-selection results, target and lure
detection were always estimated to be faster than guess-
ing, with the exception of Participant 2 in the base-rate
conditions with 70 % targets. Note that many of the differ-
ences are quite substantial, especially when comparing the
relative speed of target detection, which was clearly faster

7However, without the constraint do = dn, the model ‘Fast detection’
was selected for Participant 3 (see Supplementary Material).

than guessing across all of our four experimental condi-
tions. Moreover, for Participants 1 and 4, the time required
to detect an item and give the correct response was not
invariant under different base rates, in line with the rejec-
tion of the model ‘Invariant Ld’: These two participants
were faster at detecting old items when base rates of tar-
gets were high (i.e., 70 % targets), and they were faster
at rejecting new items when base rates of lures were high
(i.e., 30 % targets). However, based on the present exper-
iment, we cannot disentangle whether this effect resulted
from actual differences in the speed of memory retrieval or
from a generally increased preparedness towards the more
prevalent response.

Testing stochastic dominance using more than two RT
bins

In the following, we compute the Bayes factor based on the
encompassing-prior approach (Hoijtink, Klugkist, & Boe-
len, 2008; Klugkist et al., 2005 to quantify the evidence in
favor of the hypothesis that responses due to detection are
stochastically faster than those due to guessing. The Bayes
factor is defined as the odds of the conditional probabili-
ties of the data y given the models M0 and M1 (Kass &
Raftery, 1995),

B01 = p(y | M0)

p(y | M1)
, (6)

and represents the factor by which the prior odds are
multiplied to obtain posterior odds. Moreover, the Bayes
factor has a direct interpretation of the evidence in favor
of model M0 compared to model M1 and can be under-
stood as a weighted average likelihood ratio (Wagenmak-
ers et al., 2015). Note that model selection based on the
Bayes factor takes the reduced functional complexity of
order-constrained models into account and is asymptotically
identical to model selection by FIA under some conditions
(Heck, Wagenmakers, & Morey, 2015). In the present case,
the model M0 is the order-constrained RT-extended 2HTM
that assumes stochastic dominance within each response
category (the model ‘Fast detection’ above). Moreover, the
model M1 is the unconstrained model that only assumes
complete-information loss (‘CI loss’). Hence, in the present
case, observed Bayes factors substantially larger than one
provide evidence in favor of the hypothesis that detection is
faster than guessing.

To compute the Bayes factor, we rely on a theo-
retical result showing that the Bayes factor for order-
constrained models is identical to a simple ratio of pos-
terior to prior probability if the prior distributions of the
parameters are proportional on the constrained subspace
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Fig. 9 Estimated probabilities L̂j1 that responses generated by each of four processes are faster than the individual RT boundaries, based on the
model ‘CI loss,’ including 95 % confidence intervals

(Klugkist et al., 2005). For instance, the Bayes factor in
favor of the simple order constraint θ1 ≤ θ2 is identical to

B01 = p(θ1 ≤ θ2 | y,M1)

p(θ1 ≤ θ2 | M1)
, (7)

where the numerator and the denominator are the posterior
and prior probabilities, respectively, that the constraint holds
within the unconstrained modelM1. In our case, the simple
order constraint θ1 ≤ θ2 is replaced by the order constraint
representing stochastic dominance in Eq. 4. In practice,
this result facilitates the computation of the Bayes factor

because one only needs to fit the unconstrained model using
standard Markov chain Monte Carlo (MCMC) sampling.

In detail, computing the Bayes factor for the present pur-
pose requires the following steps: (1) obtain RT-extended
frequencies using the log-normal approximation or any
other strategy as explained above, (2) estimate the full
model ‘CI loss’ by sampling from the posterior distribu-
tion using MCMC (e.g., using the software JAGS, Plummer,
2003), (3) count the MCMC samples that fulfill the con-
straint of stochastic dominance in Eq. 4, (4) compute
the Bayes factor as the ratio of this posterior proba-
bility vs. the prior probability that the constraint holds

Table 2 Bayesian factors in favor of stochastic dominance

4 RT bins 8 RT bins

Participant BLdo BLdn pT1 BLdo BFLdn pT1

1 179.22 50.00 0.29 696.52 2.48 0.12

2 17.45 1.99 0.42 33.34 0.65 0.18

3 201.52 43.85 0.39 1269.57 94.65 0.22

4 174.79 44.81 0.37 288.45 51.88 0.23

The Bayes factors BLdo and BLdn quantify the evidence that target detection is faster than guessing old and that lure detection is faster than
guessing new, respectively. The posterior predictive p-value pT1 provides an absolute measure of fit for the encompassing model ‘CI Loss’
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Fig. 10 Estimated cumulative density functions of the latent RT distributions of target detection and guessing old (including 80 % credibility
intervals) for Participant 3

(Klugkist et al., 2005). In the present case, we esti-
mated the prior probability that the constraint holds
based on parameters directly sampled from the prior
distribution. Note that we used uniform priors on the
core parameters of the 2HTM and symmetric, unin-
formative Dirichlet priors on each set of the multi-
nomial latency parameters, that is, (Lj1, . . . , LjB) ∼
Dir(α, . . . , α) with parameters α = 1/B, similarly as
in Heathcote et al. (2010). Note that the core parameter
estimates for d and g differed by less than .02 compared to
fitting the RT-extended 2HTM using maximum likelihood.

For testing stochastic dominance, we differentiated
between the hypotheses that target detection is faster than gues-
sing old and that lure detection is faster than guessing new.
Table 2 shows the resultingBayes factors using four and eight
RT bins based on 50 million MCMC samples. The table also
includes posterior predictive p-values pT1 that represent an
absolute measure of fit similar to p-values associated with
the χ2 test (Klauer, 2010). The large pT1-values imply that
the model did not show substantial misfit for any partic-
ipant and or number of RT bins. More interestingly, the
large Bayes factors BLdo in Table 2 represent substantial
evidence that target detection was faster than guessing old.
In contrast, the corresponding hypothesis that lure detec-
tion was faster than guessing new was only supported for

Participants 3 and 4. For the other two participants, the
Bayes factors BLdn was close to one and does therefore nei-
ther provide evidence for nor against stochastic dominance.

In addition to computing the Bayes factor, the Bayesian
approach allows to directly compute point estimates and
posterior credibility intervals for the cumulative den-
sity functions of the latent RT distributions sketched
in Fig. 5b. To illustrate the substantive meaning of large
Bayes factors in favor of stochastic dominance, Fig. 10
shows the mean of the estimated cumulative densities for
Participant 3 including 80 % credibility intervals. To facil-
itate the comparison, the cumulative densities are shown
separately for old and new responses (rows) and for the four
experimental conditions (columns). Note that the latency
estimates are based on the full model ‘CI loss’ and are
therefore not constrained to fulfill stochastic dominance
necessarily. However, across all experimental conditions,
the cumulative densities of RTs due to detection (dark gray
area) are clearly above the cumulative densities of RTs due
to guessing (light gray). Moreover, stochastic dominance
is more pronounced for target detection and guessing old
(first row) than for lure detection and guessing new (second
row). Note that this larger discrepancy for target detec-
tion contributes to the larger Bayes factors BLdo compared
to BLdn.
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Conclusion

In sum, the empirical example showed (1) how to test
hypotheses about the relative speed of cognitive processes
using two RT bins and standard MPT software and (2) how
to test stronger hypotheses about the ordering of latent pro-
cesses in a Bayesian framework using more than two RT
bins. With respect to the 2HTM, we found support for the
hypothesis that RTs of correct responses emerge as two-
component mixtures of underlying detection and guessing
processes. Moreover, both modeling approaches supported
the hypothesis of slow guesses that occur strictly after
unsuccessful detection attempts (Erdfelder et al., 2011).
However, the latent RT distributions of detecting targets and
lures differed across base-rate conditions for two partici-
pants, whereas those of the other two participants were not
affected by this manipulation. Hence, further studies are
necessary to assess the effects of base-rate manipulations
on the speed of detecting targets and lures in recognition
memory.

Discussion

We proposed a new method to measure the relative speed of
cognitive processes by including information about RTs into
MPT models. Basically, the original response categories
are split into more fine-grained subcategories from fast to
slow. To obtain inter-individually comparable categories,
the individual RT boundaries for the categorization into
bins are based on a log-normal approximation of the dis-
tribution of RTs across all response categories. Using these
more informative frequencies that capture both response-
type and response-speed information, an RT-extended MPT
model accounts for the latent RT distributions of the under-
lying processes using the latency parameters Ljb defined
as the probability that a response from the j -th pro-
cessing path falls into the b-th RT bin. Importantly, this
approach does not pose any a-priori restrictions on the
unknown shape of the latent RT distributions. Our approach
allows for testing whether two or more of the latent RT
distributions are identical and whether some latent pro-
cesses are faster than others. Such hypotheses concerning
the ordering of latent processes can be tested by simple
order constraints of the form Li < Lj in the standard
maximum-likelihood MPT framework when using two RT
bins and within a Bayesian framework when using more
RT bins.

Substantively, our empirical example supported the
hypothesis of complete-information loss, that is, responses
due to guessing are similarly fast for targets and lures.

Moreover, we found strong evidence that responses due to
target detection are faster than those due to guessing old, but
weaker evidence that the same relation holds for the speed of
lure detection and guessing new. Moreover, RTs due to tar-
get detection were less affected by base rates than those due
to lure detection. Both of these results indicate an important
distinction. Whereas target detection seems to occur rela-
tively fast and largely independent of response bias, lure
detection seems to be a slower and response-bias dependent
process.

Advantages of RT-extended MPT models

The proposed framework provides simple and robust meth-
ods to gain new insights. It allows for estimating and
comparing the relative speed of cognitive processes based
only on the core assumption of MPT models, that is, a
finite number of latent processes can account for observed
responses. Most importantly, we showed that using discrete
RT bins preserves important information in the data that can
be used to test substantive hypotheses. Both the power sim-
ulation and the empirical example showed that the approach
is sufficiently sensitive to detect differences in latent RT
distributions. Importantly, this indicates that categoriz-
ing RTs into bins does preserve structural information in
the data.

The proposed approach also has several practical ben-
efits. Its application is straightforward and based on a
principled strategy to categorize RTs, in which the number
of RT bins can be adjusted to account for different sam-
ple sizes. In practice, the choice of the number of RT bins
will typically depend on the substantive question. If the
interest is only in a coarse measure of the relative speed
of cognitive processes, two RT bins might suffice. How-
ever, if sufficient sample sizes are available, using more
than two RT bins might be beneficial to obtain more pow-
erful tests that are more sensitive to violations of stochastic
dominance.

An additional advantage of the proposed distribution-free
framework is that modeling histograms of RTs reduces the
sensitivity of the method towards outliers. Moreover, RT-
extended MPT models can be fitted using existing software
such as multiTree (Moshagen, 2010) or MPTinR (Singmann
& Kellen, 2013). Alternatively, inter-individual differ-
ences can directly be modeled by adopting one of the
Bayesian hierarchal extensions for MPT models proposed
in recent years (Klauer, 2010; Matzke, Dolan, Batchelder, &
Wagenmakers, 2015; Smith & Batchelder, 2010). Especially
in cases with only a small to medium number of responses
per participant, these methods are preferable to fitting the
model to individual data separately. Last but not least, MPT



Psychon Bull Rev (2016) 23:1440–1465 1459

models can easily be reparameterized to test order con-
straints (Klauer et al., 2015; Knapp & Batchelder, 2004),
thereby facilitating tests of stochastic dominance.

Parametric modeling of latent RT distributions

Our approach aims at providing a general method to include
RTs in any kind of MPT model in a distribution-free man-
ner. However, for some substantive questions, more specific
models that predict exact parametric shapes for RTs might
be preferable. For instance, Donkin, Nosofsky, Gold, and
Shiffrin (2013) extended the discrete-slots model for visual
working memory, which closely resembles the 2HTM of
recognition memory, to RTs by assuming a mixture of two
evidence-accumulation processes. The discrete-slots model
assumes that in each trial of a change-detection task, a probe
either occupies one of the discrete memory slots or it does
not. Depending on this true, latent state, RTs either emerge
from a memory-based evidence-accumulation process or
from a guessing-based accumulation process. Specifically,
the time course of both accumulation processes is modeled
by separate linear ballistic accumulators, which assume a
race between two independent linear processes reaching a
boundary (see Brown & Heathcote, 2008 for details).8 Note
that the resulting predicted RT distributions resemble spe-
cific instantiations of the latent RT distributions sketched in
Fig. 2.

The model by Donkin et al. (2013) makes precise predic-
tions how RT distributions change across different experi-
mental conditions. For instance, the model predicts that the
RT distribution of false alarms (i.e., change-responses in
no-change trials) is invariant with respect to set-size manip-
ulations, that is, how many stimuli are presented. Moreover,
the model establishes a functional relationship between the
guessing parameter g and the corresponding RT distribution
for guessing responses. Given that the response threshold
for change-guessing is much lower than that for no-change-
guessing, the linear ballistic accumulator predicts both more
and faster change-responses. Similarly, the model con-
straints the structure of RTs across different levels of set size
and base rates. Donkin et al. (2013) showed that the rele-
vant patterns in the data followed these predictions of the
discrete-slots model. Moreover, the model performed bet-
ter than competitor models assuming continuous memory
strength.

Overall, this example illustrates the advantages of pro-
cess models that directly transfer psychological theory
into precise predictions for responses and RTs. Given

8Note that this model allows for incorrect responses in the detection
state (Donkin et al., 2013, p. 895) and thus differs from the model
shown in Fig. 2. However, the corresponding predicted probability of
incorrect responses in the detection state appeared to be very small due
to a large drift rate towards the correct response.

such hypotheses about the mechanisms how RTs emerge
from the underlying processes, these hypotheses should
of course be included in the corresponding statistical
model in the form of exact parametric constraints as in
Donkin et al. (2013). If the data are in line with such
a precise model for a broad range of context conditions,
this provides strong support for the theory and clearly
more evidence than fitting a less precise, distribution-free
model. Compared to such computational models, our focus
on measurement models is more general and useful for
other types of applications. For instance, if the substantive
questions concern only the relative speed or the order-
ing of latent processes irrespective of the precise nature
of the underlying processes, the proposed distribution-
free approach allows inclusion of RTs in any MPT
model without the necessity to make auxiliary parametric
assumptions.

In sum, this shows that both approaches — paramet-
ric computational models and measurement models such
as RT-extended MPT models — have their advantages and
disadvantages, many of which are typical for parametric
and nonparametric models in general. Most importantly, the
substantive conclusions concerning the underlying cogni-
tive processes should eventually converge irrespective of the
approach used.

RT extensions of more complex MPT models

The 2HTM used as an example in the present paper is one
of the most simple MPT models. Of course, more com-
plex MPTmodels might directly benefit from including RTs
as well. For instance, in the field of judgment and deci-
sion making, the inclusion of RTs in MPT models might
be useful in testing between different theoretical accounts.
For instance, Hilbig et al. (2010) proposed and validated
the r-model, which disentangles use of the recognition
heuristic from decisions based on integration of further
knowledge. According to the heuristic account, a recog-
nized option is chosen in a noncompensatory manner, that
is, further information does not influence the decision at all
(Goldstein & Gigerenzer, 1999). As a consequence, deci-
sions based on such a process should be faster compared
to responses based on integration of further knowledge.
In contrast, global information-integration models assume
that a single, underlying process integrates all of the avail-
able information in order to make a decision (Glöckner &
Betsch, 2008). If further congruent knowledge is used in
addition to the actual recognition cue, decisions are pre-
dicted to be faster compared to decisions solely based
on the recognition cue (Glöckner & Bröder, 2011). This
prediction directly contradicts the hypothesis that choice
of the recognized option is always faster than informa-
tion integration. Obviously, an RT-extension of the r-model
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could help in discriminating between these two theoretical
accounts.

Social psychology is another field in which MPT mod-
els are often used, for instance, to measure implicit atti-
tudes (e.g., Conrey et al., 2005; Nadarevic & Erdfelder,
2011) or effects of processing fluency (e.g., Fazio et al.,
2015; Unkelbach & Stahl, 2009). Concerning measures of
implicit attitudes, several authors proposed to rely on MPT
models to analyze response frequencies instead of analyz-
ing mean RTs in the implicit association test (IAT) and
the go/no-go association task (e.g., Conrey et al., 2005;
Meissner & Rothermund, 2013; Nadarevic & Erdfelder,
2011). These MPT models disentangle cognitive processes
such as activation of associations and stimulus discrimi-
nation (Conrey et al., 2005) or recoding of response cat-
egories (Meissner & Rothermund, 2013). However, to do
so, these models sacrifice information about the speed of
processes and only rely on response frequencies. Obvi-
ously, the inclusion of RTs would allow for assessing
the selective speed of and testing the temporal order of
the hypothesized processes. For instance, one could test
whether responses due to implicit associations are actually
faster than those due to stimulus discrimination as is often
assumed.

Conclusion

We proposed a novel and general method to estimate latent
RT distribution of the hypothesized processes in MPT
models in a distribution-free way. The approach enables
researchers to directly test hypotheses about the relative
speed of these processes. Thereby, it is possible to better
understand the nature of the cognitive processes accounted
for by MPT models. In sum, the proposed method fol-
lows the spirit of MPT modeling in general (Batchelder &
Riefer, 1999): It provides a simple way for psychologists
to test substantive hypotheses about the relative speed of
cognitive processes without the need to rely on many auxil-
iary assumptions.
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Appendix A: Identifiability of latent RT
distributions

In the following, we assume that an MPT model is given
with T trees, Kt categories in tree t , and Itk branches that
lead to a category Ctk . The model is parameterized by the

core parameter vector θ ∈ (0, 1)S to model the expected
branch probabilities ptki(θ) and the resulting category prob-
abilities ptk(θ) = ∑Itk

i=1 ptki(θ). For an exact definition of
the branch probabilities and other details of the MPT model
class, see Hu and Batchelder (1994).

To model latent RT distributions, each branch is further
split into B bins with branch probabilities qtkib(θ , L) =
ptki(θ)Ltkib, where Ltkib ∈ (0, 1) are the latency param-
eters of interest (collected in the vector L). Note that for
each branch one of these latency parameters is fixed since∑B

b=1 Ltkib = 1. For notational convenience, we will use
the abbreviation LtkiB = 1 − ∑B−1

b=1 Ltkib and thus list
B latency parameters for each branch, even though only
B − 1 of these are actually defined as free parameters.
The expected category probabilities of the extended MPT
model are then given by summing across the original Itk

branches of category Ctk separately for each RT bin, i.e.,
qtkb(θ , L) = ∑Itk

i=1 qtkib(θ , L).
Moreover, it is assumed that some of the latent RT dis-

tributions are restricted to be equal based on theoretical
arguments. In Observations 3 and 4, we therefore refer to
subsets of J RT distributions to facilitate notation. The j -
th of these RT distribution is then modeled by the vector of
latency parameters Lj = (Lj1, . . . , LjB)′, which replaces
the corresponding latency parameters (Ltki1, . . . , LtkiB)′ in
the appropriate branches.

Observations 1 to 4 assume that the basic MPT model is
globally identifiable and that the core parameters are in the
interior of the parameter space, θ ∈ (0, 1)S .

Observation 1 (Core Parameters) If all of the original
branches and categories of the basic identifiable MPT
model are split into B bins to model RT distributions,
the core parameters θ of this extended MPT model are
also globally identifiable. This holds independently of
the number or exact parameterization of the latent RT
distributions.

Proof We have to show that qtkb(θ , L) = qtkb(θ
′, L′) for

all t, k, and b implies θ = θ ′. From the definition of
qtkb(θ , L), it follows that

Itk∑

i=1

ptki(θ)Ltkib =
Itk∑

i=1

ptki(θ
′)L′

tkib. (8)

Summarizing across all RT bins from b = 1, . . . , B within
each category Ctk yields

Itk∑

i=1

(
ptki(θ)

B∑

b=1

Ltkib

)
=

Itk∑

i=1

(
ptki(θ

′)
B∑

b=1

L′
tkib

)
. (9)
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Since
∑B

b=1 Ltkib = 1 and ptk(θ) = ∑Itk

i=1 ptki(θ), it
follows that ptk(θ) = ptk(θ

′). The identifiability of the
original model directly implies θ = θ ′.

Observation 2 (Single-Branch Identifiability) If a category
Csm is only reached by a single branch in a globally identi-
fiable MPT model (i.e., Ism = 1), the corresponding latency
parameters Lsm1 = (Lsm11, . . . , Lsm1B)′ of this branch in
the RT-extended MPT model are globally identifiable.

Proof We have to show that qtkb(θ , L) = qtkb(θ
′, L′) for

all t, k, and b implies Lsm1 = L′
sm1. Because only one

branch leads to category Csm, the expected probability of
the b-th RT bin of this category is simply qsmb(θ , L) =
psm(θ)Lsm1b. Hence, one obtains

psm(θ)Lsm1 = psm(θ ′)L′
sm1. (10)

From Observation 1 and θ ∈ (0, 1)S , it follows that
psm(θ) = psm(θ ′) �= 0 and hence Lsm1 = L′

sm1.

Observation 3 (Recursive Identifiability) Assume that the
RT bins of category Csm with Ism > 1 branches are mod-
eled by J ≤ Ism latent RT distributions. If J − 1 of these
J latent RT distributions are identifiable from other parts
of the extended MPT Model (i.e., from Observation 2 and
repeated application of Observation 3), the latency param-
eters LsmJ = (LsmJ1, . . . , LsmJB)′ of the remaining J -th
RT distribution are globally identifiable.

Proof We have to show that qtkb(θ , L) = qtkb(θ
′, L′) for

all t, k, and b implies LsmJ = L′
smJ . The category prob-

abilities for the RT bins of category Csm can be split into
two parts, the one containing the first J − 1 identifiable RT
distributions and the remaining one using only the J -th RT
distribution:

qsmb(θ , L) =
∑

i∈A

psmi(θ)Lsmib +
∑

i∈B

psmi(θ)Lsmib, (11)

with the disjunct indexing sets

A := {i : Ltki = Ltkj for anyj = 1, . . . , J − 1} (12)

B := {i : Ltki = LtkJ }. (13)

Hence, since θ = θ ′ from Observation 1 and Lsmi =
L′

smi∀i ∈ A, the equation qsmb(θ , L) = qsmb(θ
′, L′) can be

written as
∑
i∈A

psmi(θ)Lsmib + ∑
i∈B

psmi(θ)Lsmib

= ∑
i∈A

psmi(θ)Lsmib + ∑
i∈B

psmi(θ)L′
smib. (14)

Since Lsmi = LsmJ for all i ∈ B, one obtains

LsmJb

∑

i∈B

psmi(θ) = L′
smJb

∑

i∈B

psmi(θ). (15)

Because of θ ∈ (0, 1)S , it follows that psmi(θ) �= 0 for all i
and hence that LsmJ = L′

smJ .

Assume that the recursive application of Observa-
tions 2 and 3 did not ensure the identifiability of at
least one of the hypothesized latent RT distributions. In
such a case, the identifiability of the extended MPT
model can be shown as follows. Note that this is the
most general observation and that it implies Observations
2 and 3.

Observation 4 (General Identifiability) The extendedMPT
model is globally identifiable if and only if the rank of the
following (

∑T
t=1 Kt) × J matrix exceeds J , the total num-

ber of hypothesized latent RT distributions parameterized
by L1b, . . . , LJb:

P(θ) = [ptkj (θ)]tk=11,...,1K1,21,...,T KT

j=1,...,J
. (16)

The rows of this matrix contain all observable categories
across all trees. The entries of P(θ) are defined as the
branch probabilities of the original MPT model if a cate-
gory Ctk includes a branch associated with the latent RT
distribution j and are zero otherwise,

ptkj (θ) =
{

ptki(θ), if Ltkib = Ljb for all b = 1, . . . , B
0, otherwise.

(17)

Proof First, we have to show that qtkb(θ , L) = qtkb(θ
′, L′)

for all t, k, and b implies L = L′. Using the definition of
the matrix P(θ) and qtkb(θ , L) = ∑Itk

i=1 ptki(θ)Ltkib, the
system of equations qtkb(θ , L) = qtkb(θ

′, L′) ∀t, k, b can
be written in matrix notation as

P(θ)Lb = P(θ ′)L′
b ∀b = 1, . . . , B, (18)

where Lb = (L1b, . . . , LJb)
′ (note that this is a vector for

the b-th bin across all distributions in contrast to the pre-
vious notation). Observation 1 implies θ = θ ′ and hence
P(θ) = P(θ ′). If the rank of P(θ) is equal or larger than J ,
the null space of P(θ) is trivial (i.e., only contains the null
vector 0). Hence,

P(θ)(Lb − L′
b) = 0 ∀b = 1, . . . , B (19)

implies Lb − L′
b = 0, or equivalently Lb = L′

b for all bins
b = 1, . . . , B.

Second, we have to show that the models’ identifia-
bility implies that P(θ) has full rank. We proof this by



1462 Psychon Bull Rev (2016) 23:1440–1465

contradiction and assume that P(θ) does not have full rank.
As before, the definition of P(θ) and the identifiability of θ

implies

P(θ)(Lb − L′
b) = 0 ∀b = 1, . . . , B. (20)

However, because the rank of P(θ) is smaller than the
dimensionality of the vector L, its null space is not trivial.
Hence, a solution a �= 0 ∈ R

J exists with Lb − L′
b =

a. This implies Lb �= L′
b and contradicts the models’

identifiability.

Note that computing the rank of the matrix P(θ) in
Observation 4 is less complex than examining the rank
of the whole system of model equations of the extended
MPT model. Moreover, computer algebra software is avail-
able facilitating the search for a set of restrictions on
the latent RT distributions that ensures identifiability (cf.
Schmittmann et al., 2010).

As an example for the application of Observation 4, the
2HTM with the assumption of conditional independence of
latent RTs for guessing results in the matrix

which has full rank if do, dn, g ∈ (0, 1) and thus ensures the
identifiability of the model (given that the core parameters
do, dn, and g are identified). In contrast, the following (non-
theoretical) assignment of four latent RT distributions is not
identifiable if do = dn and g = .5, because the first and last
row are then linearly dependent,

Appendix B: Testing stochastic dominance
of latent RT distributions

In the following, we illustrate why stochastic dominance
cannot be tested directly by linear inequality constraints
in a binary MPT representation if more than two RT bins
are used. Consider the binary reparameterization for four

0.
0

0.
5

1.
0

1.
5

2.
0

f1 f2 f3 f4

L'3 1-L'3

L'2

L'1

1-L'2

1-L'1

Binary MPT Using 4 RT Bins

Fig. 11 A possible reparameterization of an RT-extended MPT model
with 4 RT bins into a binary MPT model

RT bins in Fig. 11. In this model, the new parameters L′
ib

of the binary MPT represent the conditional probabilities
that a response from process i falls into one of the bins
{1, . . . , b}, given that it is not in a bin {b+2, . . . , B}. Using
this reparameterization, the L′

jb are mapped to the original
parameters Lib by

b∑

k=1

Ljk =
B−1∏

k=b

L′
ik (21)

Hence, testing stochastic dominance (Eq. 4) is equivalent to
testing

B−1∏

k=b

L′
jk ≤

B−1∏

k=b

L′
ik ∀b = 1, . . . , B − 1 (22)

in the binary MPT model. Note that this is a set of non-
linear order constraints, which cannot directly implemented
with the standard MPT methods for linear order constraints
(Klauer et al., 2015; Knapp & Batchelder, 2004). Impor-
tantly, testing the order of the binary latency parameters
directly (i.e., testing L′

jb ≤ L′
ib for all b) will result in an

overly conservative test. More precisely, it tests only a suf-
ficient but not a necessary condition for Eq. 22. In other
words, the property of stochastic dominance in Eq. 22 can
perfectly hold, whereas the order restrictions on the individ-
ual binary parameters are violated. For instance, with three
RT bins, if L′

j2 = .2 ≤ L′
i2 = .8 (Eq. 22 for b = 2),

stochastic dominance still holds if .2L′
j1 ≤ .8L′

i1 (Eq. 22
for b = 1), for example, for L′

j1 = .8 > L′
i1 = .4.

The binary model in Fig. 11 can be reparameterized into
statistically equivalent binary MPT models that differ in the
definition of the L′ parameters. However, it can be expected
that the set of nonlinear order restrictions in Eq. 22 will also
constrain the parameters of the new binary MPT model in a
nonlinear way.
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To assess the robustness of our results, we also fitted the standard and RT-extended

2HTM without constraining the detection probabilities do and dn to be identical.

First, we tested whether the core parameters where selectively influenced by the exper-

imental manipulations as expected. This was indeed the case, as indicated by significant

model misfit when constraining the detection parameters to be identical across memory

strength conditions (all G2(2) > 21.3, p < .001) or constraining the guessing parameters

to be identical across base-rate conditions (all G2(2) > 11.6, p < .003). In contrast,

guessing parameters did not differ significantly across memory-strength conditions (all

G2(2) < 3.8, p > .15).

Table 1 shows that the same models are selected for all participants except for Par-

ticipant 3. Whereas the more constrained model ‘Invariant Ld’ was preferred for this

participant in the main text including the constraint do = dn, the more complex model

‘Fast detection’ is preferred without the constraint. Thus, the notion of stochastic dom-

inance of detection RTs over guessing RTs is supported, contrary to the hypothesis of

identical detection speeds across base rate manipulations.

Figure 1 shows the latency estimates based on the unconstrained version of the model

‘CI loss,’ which do not substantially differ from those reported in the main text.
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Participant 1 Participant 2 Participant 3 Participant 4

Model df G2 p ∆FIA G2 p ∆FIA G2 p ∆FIA G2 p ∆FIA

No mix 0 0.0 – 12.3 0.0 – 13.2 0.0 – 11.8 0.0 – 12.1

CI loss 0 0.2 – 5.9 0.0 – 6.7 0.5 – 5.5 0.0 – 5.5

Fast detection 0 0.3 – 0.4 0.0 – 1.1 0.5 – 0.0 0.0 – 0.0

Invariant Ldo 2 2.3 0.32 0.0 0.4 0.80 0.0 5.4 0.07 1.1 12.7 < 0.01 5.0

Invariant Ld 4 11.6 0.02 2.9 5.3 0.26 0.6 7.5 0.11 0.4 22.2 < 0.01 8.0

Null 15 125.1 < 0.01 45.3 111.1 < 0.01 39.2 87.3 < 0.01 25.9 101.1 < 0.01 33.1

Table 1: Model selection for the RT-extended 2HTM models without constraining do
and dn to be identical (for two RT bins). The 1,200 responses per participant
exceed the lower-bound N ′ = 312 for the application of FIA (Heck, Moshagen,
& Erdfelder, 2014).

4 RT bins 8 RT bins

Participant BLdo BLdn pT1 BLdo BFLdn pT1

1 168.00 29.35 0.40 728.15 0.90 0.15

2 16.86 10.12 0.40 14.65 14.28 0.27

3 199.32 33.54 0.32 1345.20 39.38 0.25

4 172.01 38.49 0.36 239.11 16.36 0.22

Table 2: The Bayes factors BFLdo and BFLdn quantify the evidence that target detection
is faster than guessing old and that lure detection is faster than guessing new,
respectively. The model contains separate parameters do and dn for detection
of old and new items, respectively.

Table 2 shows the Bayes factors in favor of stochastic dominance of detection RT

distributions over the corresponding guessing RT distributions when estimating separate

parameters do and dn for target and lure detection, respectively (based on eight MCMC

chains with one million samples each).
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Figure 1: Estimated probabilities L̂j1 that responses generated by each of four processes
are faster than the individual RT boundaries, based on the model ‘CI loss,’
without constraining the different detection probabilities do and dn to be iden-
tical (including 95% confidence intervals).
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In the following, we provide simulation results showing that the data-dependent choice

of RT boundaries does not bias the statistical inferences, both with regard to goodness-

of-fit tests and standard errors of the latency parameters. Specifically, we compare two

strategies to obtain RT boundaries that are both based on the overall RT distribution

across all response categories. Whereas the first strategy uses the exact empirical b/B-

quantiles (where B is the number of bins and b = 1, ..., B − 1; e.g., 25%-, 50%-, and

75%-quantiles for B = 4), the second strategy uses b/B-quantiles of a log-normal ap-

proximation as explained in the main text. Note that the log-normal strategy requires

only two statistics of the RT data (mean and variance of log(RT)) and is therefore ex-

pected to perform better than the empirical strategy, which requires B−1 statistics. For

comparison, we also included fixed RT boundaries fixed a-priori for which the asymptotic

theory for multinomial models necessarily holds.

As outlined in detail below, RT boundaries based on empirical quantiles resulted in

slightly worse results compared to the other two strategies. Given the advantages of data-

dependent RT boundaries specifically tailored to each participant, we thus recommend

log-normal quantiles as the default for practical applications.
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1 Method: Simulation Details

The setting of the simulations is identical to the power simulation in the main text. Data

are generated based on the RT-extended 2HTM for a single experimental condition. For

the core parameters, we used the true values d = do = dn = .7 and g = .5. We generated

RTs from only two latent RT distributions (detection and guessing), that is, we did not

differentiate between target and lure detection and between guessing old and new. The

ex-Gaussian parameters of the guessing latency distribution were chosen as µg = 1, 000

ms, σ = 100 ms, and λ = 300 ms. In the first simulation, the detection and guessing

distribution were identical to ensure that the null hypotheses of both goodness-of-fit

tests were true, that is, that the model generated the data (tested by the absolute G2-

value) and that the two RT distributions for detection and guessing were identical, H0:

Ldb = Lgb for all bins b = 1, ..., B − 1 (tested by the log-likelihood difference ∆G2). In

contrast, in the second simulation, we used a different mean µd = 800 ms for the detection

RT distribution to test the consistency of the L-parameters in the more interesting case

of different underlying RT distributions.

Note that our setting for the simulation was deliberately chosen as a worst-case sce-

nario. First, we included only two MPT trees and only two latent RT distributions. In

such a case, the data-dependent choice of RT-boundaries restricts the frequencies within

RT-bins to a greater extent compared to a model with many trees and several latent RT

distributions. To see this, consider Table 1. If RT boundaries are chosen based on em-

pirical RT quantiles of the overall RT distribution, the column sums are fixed to N/B.1

If more trees are added to the model, this restriction affects the frequencies in each tree

to a smaller extent and hence the relative dependency across trees is reduced. For each

set of latency parameters {L1b, ..., LJb}, there exists an unknown functional relationship

ensuring that the predicted column sums are equal to N/B. This constraint must be

fulfilled by design and thus reduces the variability of the L-parameters, because it is not

taken into account by the estimated standard errors as shown in the simulations below.

However, if the number of latent RT distributions J and thus the number of parameters

Ljb increases, this constraint will have a smaller impact on the L-parameters compared

to the present model with only two RT distributions.

In addition to using only two MPT trees and two latent RT distributions, we included

1Note that quantiles based on a log-normal approximation will pose a similar, but more complex
constraint on the RT-extended frequencies. However, since the approximation uses only the mean
and variance of the overall log(RT) distribution, this constraint will have less impact than that
shown in the table. This is also indicated by the simulations below.
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Table 1: Comparison of the frequencies used to analyze standard vs. RT-extended MPT
models based on empirical quantiles as RT boundaries. Note that the RT bins
and the original categories are orthogonal, each with fixed marginal sums.

RT-extended Standard MPT

Tree Category Fast ... Slow Frequencies N per tree

T1

C11 n111 ... n11B n11

N1... ... ... ... ...

C1I1 n1I11 ... n1I1B n1I1

T2

C21 n211 ... n21B n21

N2... ... ... ... ...

C2I2 n2I21 ... n2I2B n2I2

Sum N
B

... N
B

N

small sample sizes in our simulation that are below a reasonable threshold in some cases.

For instance, when modeling 100 responses using eight RT bins, these responses must

be distributed across 2 · 2 · 8 = 32 categories in the RT-extended 2HTM. As a conse-

quence, one of the conditions for the asymptotic χ2 approximation, namely, expected

cell frequencies larger than or equal to five, will necessarily be violated. Similarly, such

small samples do not ensure that the asymptotic approximation of the standard errors

by the observed Fisher information matrix is valid. For all scenarios, the simulation

results based on fixed RT boundaries serve as a baseline that differs only in one critical

detail, that is, how the RT boundaries where chosen.2 The results for fixed RT bound-

aries enable us to assess the differential robustness of multinomial modeling procedures

against data-dependent choices of RT boundaries. If the statistical inferences are robust

even under such adverse conditions, data-dependent RT boundaries can be assumed to

have only negligible effects.

2 Robustness of the Goodness-of-Fit Test

The distributions of simulated G2-values of the goodness-of-fit tests are compared to

the expected χ2 distribution under the null hypothesis using QQ-plots and Kolmogorov-

2The exact RT boundaries were: 1,300 ms using two RT bins; 1,100 ms, 1,300 ms, and 1500 ms using
four RT bins; and seven equally-spaced points between 900 ms and 1,700 ms using eight RT bins.
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Smirnov tests. Figures 1, 2, and 3 show the QQ-plots of the absolute goodness-of-fit

test for fixed boundaries, empirical quantiles, and log-normal quantiles, respectively. In

each of these plots, separate QQ-plots are shown for sample sizes of N = 100, 200, and

400 (columns) when using B = 2, 4, and 8 RT bins (rows) based on 5,000 simulated

data sets. For comparison, the diagonal through the origin indicates the optimal result,

that is, that the simulated G2-values follow the asymptotic χ2 distribution. Moreover,

the vertical dashed line indicates the critical χ2 value for the α = 5% significance level,

and the values α̂ show the relative frequency of G2 values larger than this critical value

(i.e., the actual Type I error rate).

As expected, for all three RT-boundary strategies, the simulated G2 distribution was

closer to the asymptotic χ2 distribution for larger sample sizes. Similarly, the approx-

imation was more adequate when using only two compared to four or even eight RT

bins. Note that these results simply emerge from the fact that a sufficiently large ex-

pected sample size per cell is required to ensure the asymptotic χ2 distribution of the

G2-statistic. In all but one case (using eight RT bins and N = 50), the actual Type I

error rate is slightly too large. Note that this is less critical for the absolute goodness-of-

fit test since we aim at not finding a significant p-value. Besides these issues regarding

sample size, the distribution of absolute G2 values does not show a systematic deviation

when using data-dependent RT boundaries instead of fixed RT boundaries.

Figures 4, 5, and 6 show the QQ-plots for the simulated ∆G2 of the nested-model

test for the restriction Ldb = Lgb for all bins b = 1, ..., B − 1. Resembling the results

for the absolute goodness-of-fit test, the approximation of the ∆G2-distribution by a

χ2-distribution seemed to be sufficiently adequate given large sample sizes. Most impor-

tantly, the results are comparable for different strategies of choosing RT boundaries.

To corroborate these visual inspections, we also computed p-values of the Kolgomorov-

Smirnov (KS) test, which tests whether the discrepancy between the observed G2 and

the expected χ2 distribution significantly deviates from chance. We ran this test for a

wide range of samples sizes from 300 to 1,000. In each of these conditions, we generated

300 data sets, fitted the RT-extended MPT model, and computed the p-value of an

KS test. Figure 7 shows the resulting p-values of the absolute goodness-of-fit test as a

function of sample size, separately for the number of bins (rows) and the RT-boundary

strategy (columns). The results clearly show that, as predicted by asymptotic theory,

less p-values are significant when sample size increases. As shown by the QQ-plots, the

χ2 approximation is more adequate for two RT bins compared to four or eight. Both of

these trends emerged for all strategies and number of RT bins. Most importantly, the
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pattern of p-values does not show a systematic bias when using data-dependent strategies

compared to using fixed RT boundaries. The same pattern did again emerge for the

nested-model test (Figure 8). Hence, we conclude that the asymptotic χ2 approximation

still holds in our case, provided that the sample size is sufficiently large.

Note that our simulation results are in line with analytical work in statistics con-

cerning χ2 goodness-of-fit tests based on data-dependent cells (Andrews, 1988a, 1988b;

Moore & Spruill, 1975; Pollard, 1979). In many areas, data-dependent cells (also called

random cells) are often used for testing whether some continuous data follow a specific

distribution, for example, a multivariate Gaussian distribution. Often, such an assump-

tion is tested by partitioning the continuous space into disjoint areas and computing the

squared norm of the normalized difference between observed vs. expected frequencies of

observations in each bin (a generalized version of Pearson’s X2). This yields a statistic

that asymptotically follows the distribution of a sum of χ2 random variables (Andrews,

1988a, 1988b; Moore & Spruill, 1975). Even though these analytical solutions do not

directly apply to the present approach, they hint at the possibility that the asymptotic

χ2 distribution is indeed robust with respect to random cell boundaries.

3 Point Estimates and Standard Errors of Latency

Parameters

To check the consistency of the latency parameters, we set the means of the normal

component to µd = 800ms and µg = 1000ms as mentioned above. We derived the

expected, ‘true’ values for the latency parameters Ljb by applying the RT-boundary

strategies to the full likelihood function of the data generating model.

The results are shown in Figures 9, 10, and 11 when using two, four, and eight bins,

respectively. The mean point estimates and standard errors are shown by solid and

dashed lines, respectively, whereas the actual distributions of L̂jb are shown by gray

areas. A comparison of the point estimates with the true values (i.e., the black points at

the right of each panel) indicates that the method is unbiased even with small sample

sizes. Given that the empirically determined RT boundaries converge to some fixed

values when using a precisely specified strategy, this is to be expected.

The standard errors of these estimates are in line with the standard deviation of the

point estimates when using fixed RT boundaries (first row) for sufficiently large sam-

ples (e.g., around 100 to 150 when using eight RT bins). When RT boundaries were

chosen based on the empirical quantiles of the overall RT distribution (second row),
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the estimated standard errors of the L-parameters for detection were slightly too large.

This result is in line with the fact that the empirical quantiles constrain a whole set of

L-parameters as mentioned above, which is not considered by the standard statistical

theory for multinomial models. Most importantly, the use of log-normal quantiles (third

row) results in valid estimates of the standard errors with a similar precision than those

of fixed RT boundaries. Hence, we recommend to rely on this last strategy to achieve an

optimal trade-off of statistical accuracy and practical considerations (nonzero frequen-

cies, comparable interpretation of bins across participants).

Note that standard errors can in principle be bootstrapped as in the present simulation

(Efron & Tibshirani, 1997). However, when doing so, it is necessary to first sample from

a model with continuous RTs and then fit the RT-MPT using the categorization strategy

of interest (e.g., based on empirical or log-normal quantiles). If data are generated from

the multinomial distribution directly, the constraints of RT-bin frequencies across trees

are obviously absent in the data.
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â=0.066

5 10 20 30

5
10

20
30

8 RT Bins  ; N = 100

Theoretical c2
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â=0.063

0 5 10 15 20 25

0
5

10
15

20
25

30
35

4 RT Bins  ; N = 200
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Figure 1: QQ-plot for the G2-values of the absolute goodness-of-fit test using RT bound-
aries based on fixed RT boundaries. The solid line indicates perfect agreement
of the theoretical χ2 and the observed G2 distributions. Actual simulation
results are indicated by gray dots.
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â=0.07

0 5 10 15 20 25

0
5

10
15

20
25

4 RT Bins  ; N = 50

S
im

ul
at

ed
 G

2
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â=0.072

0 5 10 15

0
5

10
15

2 RT Bins  ; N = 200

â=0.056

0 5 10 15 20 25

0
5

10
15

20
25

30

4 RT Bins  ; N = 200
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Figure 8: p-values of Kolmogorov-Smirnov tests, each based on the simulated ∆G2 dis-
tribution using 300 simulated data sets. The horizontal, solid line indicates
the standard α-level of 5%.
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Linking Process and Measurement Models of Recognition-Based Decisions

Daniel W. Heck and Edgar Erdfelder
University of Mannheim

When making inferences about pairs of objects, one of which is recognized and the other is not, the
recognition heuristic states that participants choose the recognized object in a noncompensatory way
without considering any further knowledge. In contrast, information-integration theories such as parallel
constraint satisfaction (PCS) assume that recognition is merely one of many cues that is integrated with
further knowledge in a compensatory way. To test both process models against each other without
manipulating recognition or further knowledge, we include response times into the r-model, a popular
multinomial processing tree model for memory-based decisions. Essentially, this response-time-extended
r-model allows to test a crucial prediction of PCS, namely, that the integration of recognition-congruent
knowledge leads to faster decisions compared to the consideration of recognition only—even though
more information is processed. In contrast, decisions due to recognition-heuristic use are predicted to be
faster than decisions affected by any further knowledge. Using the classical German-cities example,
simulations show that the novel measurement model discriminates between both process models based
on choices, decision times, and recognition judgments only. In a reanalysis of 29 data sets including more
than 400,000 individual trials, noncompensatory choices of the recognized option were estimated to be
slower than choices due to recognition-congruent knowledge. This corroborates the parallel information-
integration account of memory-based decisions, according to which decisions become faster when the
coherence of the available information increases.

Keywords: decision making, recognition heuristic, adaptive toolbox, response times, information
integration

Supplemental materials: http://dx.doi.org/10.1037/rev0000063.supp

When faced with the decision which of two cities is larger,
which river is longer, or which musician is more successful, people
often choose the recognized over the unrecognized option (Gold-

stein & Gigerenzer, 1999). In many natural environments, choos-
ing the recognized option often results in accurate decisions be-
cause recognition is highly correlated with the criterion (i.e., larger
cities are usually better known; Goldstein & Gigerenzer, 2002).
The result that people rely on recognition to make inferences has
often been replicated and stimulated a lot of research to shed light
on the underlying cognitive processes of memory-based decisions.

Whereas some researchers developed computational process
models that allow precise predictions of future behavior (e.g.,
Goldstein & Gigerenzer, 2002), others used measurement models
that decompose observed behavior to obtain process-pure param-
eter estimates of the latent processes of interest (e.g., Hilbig,
Erdfelder, & Pohl, 2010). Even though both lines of research
enhanced understanding of how recognition is used in memory-
based decisions, they have largely been applied as separate and
distinct methods to investigate decision behavior. However, to
integrate knowledge from both streams of research, it is necessary
to derive strong theoretical links between process and measure-
ment models, as called for by Marewski, Pohl, and Vitouch
(2011a, p. 359). “Future research on recognition-based inferences
should (a) converge on overcoming past controversies, taking an
integrative approach to theory building, and [. . .] (b) test existing
models of such strategies competitively [. . .].”

To integrate existing theories and directly test two competing
accounts, we develop a unifying approach in which a specific
measurement model (an extended version of the r-model; Hilbig,
Erdfelder, & Pohl, 2010) serves as an encompassing framework to
test opposing predictions of two process models—the serial rec-
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ognition heuristic on the one hand (RH; Goldstein & Gigerenzer,
1999, 2002) against the parallel constraint satisfaction theory of
decision making on the other hand (PCS; Glöckner & Betsch,
2008; Glöckner, Hilbig, & Jekel, 2014). Whereas the former is one
of the fast and frugal heuristics proposed within the theoretical
framework of the adaptive toolbox of decision making (Gigerenzer
& Selten, 2001), the latter is a single-process, neural-network
model that explains how information from probabilistic cues is
holistically and intuitively integrated to form a coherent judgment.

Importantly, the two accounts differ with respect to the effect of
additional recognition-congruent information on response times
(RT). The serial heuristic account predicts that knowledge-based
choices are necessarily slower than choices due to recognition
only. In contrast, the parallel model predicts that recognition-
congruent information leads to faster choices even though more
information is processed (Glöckner & Bröder, 2011). However,
these opposing predictions cannot directly be tested in the standard
experimental paradigm, since it only includes a recognition phase,
in which participants judge cities as “recognized” or “unrecog-
nized,” and a decision phase, in which participants have to decide
which of two cities is larger. In such a design, the researcher does
not know whether and what kind of further knowledge participants
have about the presented cities.

As a remedy, previous studies experimentally manipulated rec-
ognition, cue knowledge, or both to test the noncompensatory
nature of the RH (e.g., Newell & Shanks, 2004; Richter & Späth,
2006). However, evidence based on experimentally induced rec-
ognition or knowledge has been challenged by the objection that
such artificial scenarios are not within the domain of the recogni-
tion heuristic (i.e., the context of natural, memory-based decisions;
Goldstein & Gigerenzer, 2011; Pachur, Bröder, & Marewski,
2008). Summarizing the debate, Pohl (2011) already concluded
that “if knowledge may not be learned in the lab, how can the
nature of additional cue knowledge be controlled?” As a remedy,
we propose to link the two process models of interest to a mea-
surement model that allows to disentangle use of knowledge and
recognition in the standard paradigm without requiring artificially
induced knowledge (the r-model; Hilbig, Erdfelder, & Pohl, 2010).

In the following, we develop such a unifying framework of the
existing process and measurement models by (a) formally deriving
RT predictions from the serial RH and the PCS information
integration account; (b) extending the multinomial r-model to
include response times; (c) showing in simulations that the RT-
extended measurement model provides an encompassing frame-
work to test between the two process models; and (d) using the
RT-extended model to reanalyze 29 data sets from our and other
researchers’ labs that include approximately 400,000 individual
decisions. This reanalysis clearly shows that choices based on
recognition-congruent knowledge are faster than those based on
recognition only, thus corroborating the parallel information-
integration account of memory-based decisions. More generally,
our approach might serve as a case study of how measurement and
process models can be linked to allow for novel empirical tests of
psychological theories.

Process Models of Recognition-Based Decisions

In the following, we derive opposing RT predictions from two
prominent process models that aim to explain recognition-based

decisions—the serial heuristic (RH) and the parallel information-
integration account (PCS). Whereas the former predicts that re-
sponses based only on recognition are necessarily faster than
responses based on further knowledge, the latter predicts that
recognition-congruent knowledge facilitates faster responding.

The Recognition Heuristic:
A Serial-Processing Account

As a general framework for judgment and decision making
under uncertainty, Gigerenzer and Goldstein (1996) proposed the
metaphor of the adaptive toolbox—a set of fast and frugal strate-
gies that allow people to make accurate decisions with a minimal
amount of effort (Payne, Bettman, & Johnson, 1988; Payne, Bet-
tman, & Johnson, 1993). These heuristics are assumed to have
evolved over the history of mankind through a natural selection of
strategies optimally adapted to the structure of existing environ-
ments (Gigerenzer & Brighton, 2009). Crucially, these heuristics
are defined as precise process models by a set of search, stopping,
and decision rules. When making decisions, people are assumed to
adaptively choose an appropriate heuristic from the adaptive tool-
box depending on the context and structure of the environment
(Marewski & Schooler, 2011).

In the context of natural, memory-based decisions, one or more
of the choice options might not be known and thus decision makers
sometimes have to choose between recognized (R) and unrecog-
nized (U) options. In such cases, where not all of the alternatives
are recognized, the adaptive toolbox states that people rely on the
recognition heuristic (RH; Goldstein & Gigerenzer, 1999), which
is defined as a precise, formal model (Goldstein & Gigerenzer,
2002, p. 76) as follows: “If one of two objects is recognized and
the other is not, then infer that the recognized object has the higher
value with respect to the criterion.” The RH is one of the core
heuristics of the adaptive toolbox and has been the subject of three
special issues in Judgment and Decision Making (Marewski, Pohl,
& Vitouch, 2010, Marewski et al., 2011a, 2011b).

Like all heuristics in the adaptive toolbox, the RH is precisely
defined as a formal model in terms of a sequence of underlying
processing steps (Gigerenzer & Gaissmaier, 2011). Specifically,
the RH consists of the following three rules (Goldstein & Giger-
enzer, 2002):

1. Search Rule. Try to recognize both options.

2. Stopping Rule. Stop if exactly one of the two options is
recognized.

3. Decision Rule. Choose the recognized option.

Note that additional knowledge about the choice options does
not enter the process at any stage, which makes this a noncom-
pensatory heuristic.

The noncompensatory nature of the RH has been at the core of
many heated discussions (Marewski et al., 2010). Due to its precise
definition as a serial process that immediately results in a decision
if only one of the two options is recognized, the RH implies that
any further knowledge cannot affect the decision process. For
instance, in the city-size task, participants might know whether the
recognized city has an airport, a university, or a metro. Despite the
availability and possible validity of such additional cues, the RH
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states that further knowledge is not considered and does not affect
the decision process. Note that this does not imply that decisions
based only on recognition are necessarily less accurate—quite to
the contrary, Davis-Stober, Dana, and Budescu (2010) showed that
mere reliance on the recognition cue can result in better predictive
performance than optimal cue weighting, which is prone to over-
fitting due to increased model complexity.

Despite its exact definition in terms of processing rules, the
formal model of the RH does not make precise predictions about
RTs. However, testable predictions about the relative speed of
different strategies within the adaptive toolbox can directly be
derived by comparing the number of required elementary infor-
mation processes (EIPs; Glöckner, 2009; Payne et al., 1988).
Given a set of different decision strategies, ordinal predictions for
their relative speed follow directly by comparing the numbers of
required EIPs per strategy. However, before deriving such predic-
tions, it is necessary to consider alternative strategies that people
might use when deciding between a recognized and an unrecog-
nized option.

Alternative, Knowledge-Based Heuristics

In most studies, not all participants always choose the recog-
nized option in all trials. Even though the recognized option is
chosen very often as indicated by high adherence rates (Goldstein
& Gigerenzer, 2002), the unrecognized option is nevertheless
systematically chosen at least in some trials by some participants
(Hilbig & Richter, 2011). To explain why and when further infor-
mation influences memory-based decisions, even in environments
that are ideally suited for the application of the RH (Hilbig,
2010b), it is necessary to assume that decision makers use an
alternative strategy from the adaptive toolbox at least in some trials
(Gigerenzer & Goldstein, 2011). The idea that participants adap-
tively select a strategy in each trial has been advocated, for
instance, by Pachur (2011, p. 418): “the decision of whether to use
the recognition heuristic or not is made for each individual pair of
objects rather than for an entire environment.”

What kind of strategy might people use instead of the RH? As
a first hypothesis, one could simply attribute all choices of the
unrecognized option to guessing or errors in applying the RH.
However, both of these strategies can clearly be rejected (Hilbig,
Erdfelder, & Pohl, 2010), which calls for an alternative heuristic
that integrates further knowledge to systematically decide between
the unrecognized or the recognized option. Moreover, within the
adaptive toolbox, the existence of such an alternative heuristic is
necessary to explain adaptive decision behavior in environments
with low recognition validity, in which people often correctly
choose the unrecognized option (e.g., in case of infectious dis-
eases; Horn, Pachur, & Mata, 2015).

However, most strategies of the adaptive toolbox that consider
cue knowledge (e.g., weighted-additive; Gigerenzer & Goldstein,
1996) are not applicable if only one of the two options is recog-
nized because a full set of cue values is required for both choice
options. Given that an option is not recognized in the first place, it
is assumed that the decision maker does not have any cue knowl-
edge about that option (Gigerenzer & Goldstein, 1996; Goldstein
& Gigerenzer, 2011). Note that this reasoning is based on the
assumption that the stimuli are sufficiently homogeneous and do
not contain superficial information (e.g., city names that sound

Chinese, which would be a valid cue to judge the city size;
Marewski et al., 2011a). In the following, we assume that surface
features of the material are reasonably homogeneous, thus result-
ing in a complete lack of information for the unrecognized option.
However, our modeling approach and predictions can directly be
generalized to the case where some cue knowledge is available for
the unrecognized option.

Marewski, Gaissmaier, Schooler, Goldstein, and Gigerenzer
(2010) proposed several decision strategies for recognized-
unrecognized (RU) pairs as competitors to the RH. All of these
strategies rely on the evaluation and comparison of further cues
that are available for the recognized option. Here, we focus on RT
predictions of such alternative strategies that might be used instead
of the RH in some trials. Given that the RH only requires a single
cue to make a decision (recognized vs. unrecognized), any alter-
native strategy that considers at least one additional cue necessar-
ily requires more processing steps (EIPs) irrespective of how they
are compared (Bröder & Gaissmaier, 2007; Glöckner & Bröder,
2011). In addition, Pachur and Hertwig (2006, p. 986) derived the
prediction that “recognition is first on the mental stage and ready
to enter inferential processes when other probabilistic cues still
await retrieval.” Even if further cues were already available simul-
taneously with recognition, the integration of these cues required
some additional processing time compared to simply choosing the
recognized option.

Figure 1 illustrates the prediction that the integration of any
further cues requires at least one additional processing step com-
pared to the RH (cf. Gigerenzer & Goldstein, 1996; Pohl, 2011,
and their Figure 2 and 1, respectively). First, attempts are being
made to recognize both options. Based on the outcome of this
process, an evaluation or strategy selection stage is required to
adaptively choose between using the RH or a different strategy
(Gigerenzer & Goldstein, 2011). Even though such a stage could
already evaluate further information about available cues, this
would render any subsequent decisions compensatory by defini-
tion—given specific cue configurations, use of the RH could be
suspended, thus overruling the recognition cue (Söllner, Bröder,
Glöckner, & Betsch, 2014). Hence, such a stage can only consider
information about recognition, that is, whether and how fast the
options were recognized. Once the appropriate strategy is chosen,
either the RH or another strategy is used. Importantly, such an
alternative strategy requires the comparison and integration of
further cues and thus must be slower. Note that this is in line with
the original idea of Goldstein and Gigerenzer (2002) that the RH
provides a frugal shortcut to make fast and accurate decisions.

Figure 1. The RH requires less processing stages than alternative strat-
egies that integrate further knowledge (cf. Gigerenzer & Goldstein, 1996).
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Stochastic Dominance

To elaborate and formalize the above prediction, we focus on a
specific, tallying-like strategy in the following, which is similar to
“tallying of positive and negative cues” by Marewski et al. (2010,
p. 289). As mentioned above, we assume that no knowledge about
the unrecognized option is available but that some additional cues
of the recognized option are known due to prior knowledge (Gig-
erenzer & Goldstein, 1996). Given such partial cue knowledge, the
tallying strategy (TALL) simply counts the number of available
positive and negative cues for the recognized option:

1. Search rule. Count the positive and negative cue values
of the recognized option (including the recognition cue).

2. Stopping Rule. Stop, if all available cues of the recog-
nized option have been considered.

3. Decision rule. Choose the recognized option if the num-
ber of positive cue values exceeds the number of negative
cue values.

For instance, if city A is recognized and has two positive and
three negative cue values, then it is not chosen.

Despite its increased complexity in comparison to the RH, the
TALL strategy mainly requires counting positive and negative
cues, a process that can be assumed to be relatively frugal (Gig-
erenzer & Gaissmaier, 2011). However, as discussed above, this
strategy requires more EIPs than the RH due to the consideration
of further cues. Note that this ordinal prediction is not based on an
exact count of the required EIPs. Moreover, due to the serial nature
of the elementary processes, the increase in processing time is a
monotonic function of the number of available cues considered,
irrespective whether cues are positive or negative. For the simu-
lation below, we set the number of required EIPs to the number of
available cues that have to be assessed and compared (including
the recognition cue).

Note that both strategies, the RH and TALL, may result in the
same outcome, that is, choosing the recognized option. However,
responses due to RH use (with RTs denoted by the random
variable TRH) are necessarily faster than responses due to TALL
use (TTALL), assuming that the additional processing steps require
some positive, unobservable time Tadd � 0:

TTALL � TRH � Tadd. (1)

This equation of random variables1 implies a stochastic ordering of
the observed RTs, that is, TTALL � TRH. Such an inequality of
random variables is called stochastic dominance in the RT literature
(Heathcote, Brown, Wagenmakers, & Eidels, 2010; Townsend, 1990)
and constitutes a stronger statement than the corresponding ordinal
constraint on the mean RTs. In practice, stochastic dominance can be
tested by assessing the following inequality constraint on the cumu-
lative distribution functions F(t):

FRH(t) � FTALL(t) for all t � ��. (2)

When plotting the cumulative density functions, Equation 2
simply states that the cumulative density of RTs associated with
the RH is always larger than that associated with TALL.

The strong prediction of stochastic dominance also follows if some
kind of independent strategy-selection stage is assumed that deter-

mines whether the RH or TALL is used based on cost-benefit trade-
offs, reinforcement learning, or natural environmental constraints
(e.g., Goldstein & Gigerenzer, 2011; Marewski & Schooler, 2011;
Payne et al., 1993; Rieskamp & Otto, 2006). In a serial-processing
model, an independent selection stage adds the same amount of
random processing time TSS � 0 irrespective whether the RH or some
other strategy such as TALL is used subsequently. Importantly, the
prediction of stochastic dominance, as expressed by an ordering of
random variables, is not affected by this additional stage:

TSS � TRH � TSS � TTALL. (3)

Equation 3 implies that the cumulative density functions of the
corresponding RTs are shifted to the right (i.e., RTs are slower)
compared to those in Equation 2 but still do not cross.

Note that Equation 3 is even valid without requiring an inde-
pendent evaluation stage. First, the prediction also follows if we
assume that the time for strategy selection (TSS) is correlated with
the time for strategy execution (TRH and TTALL). This is the case,
for instance, if a strategy that has been selected faster can also be
applied faster. Second, the prediction is still valid if the time of
selecting the RH is systematically faster than that of selecting
TALL. In such a case, the single random variable TSS in Equation
3 is replaced by two separate strategy-selection times TSSR � TSST

(and hence, observed RH responses are still predicted to be faster).
In order to violate the prediction that RH-responses are stochasti-
cally faster, it would be necessary that selection of TALL is
actually faster than that of the RH (i.e., TSSR � TSST). However,
we are not aware of a strategy-selection account that predicts faster
selection times for more complex strategies. Hence, the prediction
of stochastically faster RH responses holds under rather general
conditions (and also for other serial strategies as derived by Glöck-
ner & Betsch, 2012). In fact, a process model that predicts slower
RH responses than knowledge-based responses would compromise
the core assumption that the RH is a “fast and frugal” strategy.

In line with the prediction that RH responses are faster than
knowledge-based responses, previous studies showed that people
choose the recognized option faster than the unrecognized option
(Hilbig & Pohl, 2009). However, without experimentally manipulat-
ing further knowledge, it is not possible to directly test whether
Equation 2 also holds for all choices of the recognized object, that is,
whether choices of the recognized option due to the RH are actually
faster than those due to consideration of further knowledge (TALL).
Below, we will test this prediction without the need to experimentally
manipulate cue or recognition knowledge by using an appropriate
measurement model. However, before doing so, we discuss an alter-
native theoretical account of decision making in the next section.

Parallel Information Integration in
Recognition-Based Decisions

The hypothesis that decisions are made in a noncompensatory
way as implied by the RH and by other heuristics of the adaptive
toolbox such as take-the-best (Gigerenzer & Goldstein, 1996) has
often been questioned by evidence showing the impact of further
knowledge on various measures such as choices, RTs, confidence

1 Since TTALL, TRH, and Tadd are random variables, the equation does
only hold P-almost surely, that is, with probability one and not for each
random element � � � in the probability space (�, A, P).
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ratings, and process-tracing measures (e.g., Hilbig, 2010b; Lee &
Cummins, 2004; Newell & Shanks, 2004; Richter & Späth, 2006).
In contrast to the adaptive toolbox, according to which people
adaptively select one of several qualitatively different heuristics
depending on the environmental context, single-process mecha-
nisms assume that information about probabilistic cues is inte-
grated in a weighted, compensatory fashion to make a decision
(Lee & Cummins, 2004; Söllner et al., 2014). Whereas various
implementations of this general idea such as the adjustable spanner
(Newell & Bröder, 2008), decision field theory (Busemeyer &
Townsend, 1993), MINERVA-DM (Dougherty, Gettys, & Ogden,
1999), magnitude comparison under uncertainty (Schweickart &
Brown, 2014), or parallel constraint satisfaction theory (Glöckner
& Betsch, 2008) differ with respect to the conceptual and mathe-
matical details of the integration process, they all assume that
decisions are driven by a single process in a holistic, compensatory
manner.

What do these information-integration accounts predict in case
of memory-based decisions? In contrast to the RH, single-process
models treat recognition as merely one of many probabilistic cues
(Glöckner & Bröder, 2011; Newell & Shanks, 2004; Richter &
Späth, 2006). Despite the metacognitive nature of this recognition
cue, it is integrated and weighted just as any other cue representing
knowledge about the domain of interest. Given an environment
with a high subjective recognition validity, recognition will likely
be a very valid and thus influential cue, but nevertheless, further
available information will affect the probability of choosing the
recognized option.

Information-integration theories do not only predict that further
information influences choice probabilities; they also specify
whether decisions in favor of the recognized option become faster
or more confident depending on the type of further knowledge. On
the one hand, if further knowledge is congruent with recognition
(e.g., one knows that the recognized city has an airport, a metro,
and a cathedral), the recognized option will be chosen more often,
faster, and with higher confidence (Glöckner & Bröder, 2011;
Hilbig & Pohl, 2009). On the other hand, if further knowledge is
incongruent with recognition, the recognized option will be chosen
less often and decisions become slower and less confident.

Parallel Constraint Satisfaction Theory

In the present article, we rely on the parallel constraint satisfaction
theory (PCS; Glöckner & Betsch, 2008; Holyoak & Simon, 1999;
Thagard, 1989) to derive predictions and simulate data for the class of
single-process information-integration models. PCS assumes that
available information is integrated automatically and intuitively by a
parallel spreading of activation in a network, where options and cues
are represented by nodes as shown in Figure 2A. Essentially, this
process is conceptualized as an automatic search for a coherent
representation of the available information. Based on a state of max-
imal coherence, the option with the highest activation is chosen
(Glöckner & Betsch, 2008). Importantly, the network is fully deter-
mined by the given cue structure and does not account for noise or
errors, which makes PCS a deterministic process model (Glöckner et
al., 2014). In the following, we explain the conceptual and psycho-
logical rationale of the theory; the mathematical details of the model
are presented below in the section “Implementation of the Parallel
Information-Integration Account.”

As shown in Figure 2A, the number of nodes in the network is
determined by the number of choice options and probabilistic cues.
During the integration process, these nodes are activated differen-
tially, thereby representing their relative importance for the judgment
process. The links between cues and options are determined by the
available cue structure. A connection is excitatory or inhibitory, if the
option has a positive or negative value on the corresponding cue,
respectively. Hence, an option will receive a stronger activation when
it is supported by many positive cues. In addition, the choice options
mutually inhibit each other as shown by the inhibitory link between
the option nodes (Glöckner & Betsch, 2008).

Whereas the number of option and cue nodes and their reciprocal
links are defined by the context, the “general validity” node is always
present and keeps the network activated by constantly spreading
activation to the cue nodes. The strength of the corresponding links to
the cue nodes is determined by a monotonic function of the cue
validities. For instance, a subjectively very valid cue is represented by
a strong excitatory link from the general validity to the corresponding
cue node (represented by a large weight wi in Figure 2A) and will thus
have a stronger influence compared to less valid cues and their
corresponding nodes.

Figure 2. The parallel constraint satisfaction (PCS) model for (A) inferences from given information and (B)
memory-based decisions. Information about positive and negative cue values is represented by excitatory (solid)
and inhibitory (dashed) links between cue and option nodes, respectively (Glöckner & Betsch, 2008). In
memory-based decisions, the lack of further knowledge about the unrecognized option is represented by
nonexisting links to the cue nodes (with the exception of the recognition cue).
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Once the network structure (i.e., the type and strength of the
links) is determined by the task and context, activation spreads
between all nodes simultaneously. For instance, a very valid and
thus highly activated cue node will increase the activation of all
options that have a positive value on this cue. Simultaneously, the
option nodes fire back and activate relevant cue nodes. This
process of spreading activation is assumed to stop when a state of
coherence is reached at which the system stabilizes, that is, when
the activation levels of all nodes do not change anymore. The
option with the highest final activation is chosen, with a confi-
dence level determined by the relative difference between the
choice options. In addition, the number of iterations required to
reach stability predict the observed decision times up to an interval
scale. Note that the search for a coherent representation of the
available information is thought of as an intuitive, automatic
process (Glöckner & Betsch, 2008). This is an important feature of
the PCS theory, since other frameworks such as the adaptive
toolbox conceptualize the compensatory integration of information
as a deliberate, cognitively demanding, and time consuming pro-
cess (Gigerenzer & Goldstein, 1996).

Concerning inferences from given information—that is, when
participants are presented with the complete pattern of cue values
in each trial—PCS was found to account better for decisions, RTs,
and confidence judgments than prominent heuristic strategies such
as take-the-best (e.g., Glöckner & Betsch, 2012; Glöckner et al.,
2014). In these empirical studies, the researcher usually needs to
know the complete structure of positive and negative cue values to
derive precise predictions for PCS and the competing strategies
(Glöckner, 2009). In the case of recognition-based decisions with
natural stimulus material (e.g., German cities), this requirement is
usually not met, an issue discussed in the next section.

PCS Predictions for Memory-Based Decisions

To generalize PCS to memory-based decisions, recognition can
be included as an additional cue node in the network similar to the
nodes representing cue knowledge (Glöckner & Bröder, 2011;
Hilbig, Erdfelder, & Pohl, 2010). For each option, this recognition
cue (shown as the first node in the cue layer of Figure 2B) is
positive for recognized options and negative for unrecognized
options, resulting in excitatory and inhibitory links, respectively.
Moreover, the weight wR of this recognition cue is determined by
the subjective recognition validity, which decision makers may
learn from previous experience or infer from the current context.
Computationally, PCS thereby treats the recognition cue as one of
many available knowledge cues that are integrated to form a
coherent judgment, with the conceptual and psychological differ-
ence that the recognition information is of a metacognitive nature.

Even though recognition itself can simply be treated as an
additional cue in the PCS framework, memory-based decisions
require a special consideration of how to model incomplete cue
knowledge (Gigerenzer, Hoffrage, & Goldstein, 2008; Jekel,
Glöckner, Bröder, & Maydych, 2014). Given that an option is not
recognized, a decision maker will not have further knowledge
about it and hence the corresponding cue values for this unrecog-
nized option are necessarily unknown as shown in the first column
of Table 1 (Gigerenzer & Goldstein, 2011). Moreover, it is very
likely that participants only have partial cue knowledge about the
recognized options when making memory-based decisions in nat-

ural environments (Gigerenzer & Goldstein, 1996). For instance,
one might recall that a city has an airport and a university, but does
not know whether it is a state capital. Previous approaches of
modeling memory-based decisions using PCS (e.g., Glöckner &
Bröder, 2011) have been criticized for ignoring the fact that
decision makers have no access to any further information about
the unrecognized option because “recognition can be seen as a
prior condition for being able to recall further cue values from
memory” (Gigerenzer & Goldstein, 2011, p. 107).

To address this criticism, we model missing and partial cue
knowledge within PCS explicitly by distinguishing positive, neg-
ative, and missing cue values (Gigerenzer et al., 2008). More
specifically, within the network structure of PCS in Figure 2B, we
encode missing cue values by deleting the links between the
corresponding cue and option nodes. Together with the assumption
that recognition is a precondition for further knowledge, this
results in a spreading-activation network without direct links be-
tween the unrecognized option node and the knowledge cues.
Substantively, this leads to the psychologically plausible predic-
tion that the unrecognized option is chosen only if sufficient
evidence is available against the recognized option due to the
inhibitory link between the two choice options. For instance, if a
city is recognized as not being state capital or having an airport,
PCS predicts that the unrecognized alternative is more likely to be
chosen.

This conceptualization of partial cue knowledge by the nonex-
istence of excitatory and inhibitory links implies that PCS mimics
the RH in making noncompensatory decisions if only the recog-
nition cue is known. To illustrate this, Table 1 shows different cue
configurations for the recognized option. If only recognition is
available (R-only; Column 2), all other cue values are unknown
and hence the network in Figure 2B essentially has a single cue
node (i.e., recognition) that solely determines the decision. Obvi-
ously, such cases are by definition noncompensatory, since only
recognition determines the decision process (Hilbig, Scholl, &
Pohl, 2010). To derive opposing predictions for both models, it is
necessary to consider recognized options for which further cue
knowledge is available to the decision maker (Pohl, 2011).

Whereas the serial heuristic account predicts that processing of
further cues requires additional time, PCS predicts the opposite if
further knowledge is congruent with recognition (Glöckner &
Bröder, 2011). For instance, if the recognized city is known to
have an airport, a university, and is a state capital, then all cue
values are positive and thus congruent with the recognition cue as
shown in the third column of Table 1 (R-congruent). In a neural
network, congruent information facilitates and speeds up the

Table 1
Possible Cue Structures for Recognized and Unrecognized
Choice Options in Memory-Based Decisions

Cue Unrecognized R-only R-congruent R-incongruent

R � � � �
1 ? ? � �
2 ? ? � �
3 ? ? � �

Note. The values �, �, and ? represent positive, negative, and missing
cue knowledge, respectively.
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search for a coherent representation of the available information
and thus leads to faster and more confident choices compared to
trials without further knowledge (Glöckner & Betsch, 2012).

In contrast, if additional information is incongruent with recog-
nition as shown in the fourth column of Table 1 (R-incongruent),
PCS predicts slower choices because this incoherence needs to be
resolved (Glöckner & Bröder, 2011, 2014). For instance, if one
knows that the recognized city has neither an airport nor a metro,
the recognition cue contradicts the negative cue values represent-
ing further knowledge. Hence, more processing time is required to
make an intuitive decision, that is, to arrive at a coherent repre-
sentation of the available information.

Obviously, these three types of recognized options—R-only,
R-congruent, and R-incongruent—represent only special cases of
possible cue configurations. For some of the recognized options,
further knowledge is likely to be partially incomplete or incoher-
ent, as represented by a combination of positive, negative, and
missing cue values for the recognized option. However, since PCS
is precisely defined as a computational model, it directly predicts
choices and RTs for these more ambiguous cases.

Figure 3 shows these predictions for a recognition validity of
� 	 .80 and five knowledge cues with validities of .85, .80, .70,
.65, and .60. Each point represents a prediction for a specific
configuration of the five cue values for the recognized option.
Given that each cue can be positive, negative, or missing, there are
35 	 243 possible configurations. Along the x-axis, these config-
urations are ordered by the sum of the cue values for the recog-
nized option (excluding recognition), whereas the y-axis shows the
required number of iterations as predicted by PCS. Moreover, red
(light gray) triangles and blue (dark gray) circles indicate whether
PCS predicts the choice of the unrecognized or recognized option,
respectively. The three special cases of R-only, R-congruent, and
R-incongruent pairs (see Table 1) are highlighted by filled, black
dots.

Figure 3 illustrates several implications of a core feature of PCS,
namely, that choices and decision times depend more on internal
coherence than on the amount of available information (Betsch &

Glöckner, 2010). If most of the cues are negative, the unrecognized
option is chosen; if most of the cues are positive, the recognized
option is chosen. In both directions, decisions become faster as the
coherence between cue values increases. For instance, as more and
more cues are positive as indicated by larger sums on the x-axis, the
number of iterations decreases and decisions become faster. Similarly,
the unrecognized option is chosen faster if more and more cues are
negative. Overall, however, choices of the recognized option are more
frequent and faster due to the presence of the positive recognition cue.

Note that our PCS modeling account of memory-based decisions
addresses several points that have been criticized previously. First, we
present a precise, mathematical implementation that depends on the
cue validities and the cue structure only and does not require free
parameters. However, since the exact cue values are usually not
known in natural, memory-based decisions, we need to test predic-
tions of the model within the framework of the encompassing mea-
surement model introduced below. Second, we directly model partial
knowledge in PCS by missing links in the network (cf. Figure 2B) and
do not assume that all cues are available when making inferences
from memory (Gigerenzer & Goldstein, 2011). Given that the set of
valid cues is possibly very large in natural environments, it is very
likely that people have only partial cue knowledge leading to sparse
cue structures.

Valid Tests of the Noncompensatory
Nature of Recognition

To test compensatory versus noncompensatory accounts of
recognition-based decisions, previous studies often manipulated
recognition or cue knowledge. In one of the earliest studies,
Oppenheimer (2003) found that fictional (and thus unrecognized)
cities were often chosen over existing, recognized cities. By in-
ducing both recognition and cue knowledge, Newell and Shanks
(2004) showed that participants relied on further knowledge in a
stock market prediction game. Similarly, Richter and Späth (2006)
manipulated cue knowledge using existing material from natural
environments to show that the influence of further knowledge in

Figure 3. Choice and RT predictions of PCS for recognized-unrecognized (RU) pairs based on a recognition validity of
� 	 .80 and cue validities of .85, .80, .70, .65, and .60. Each point represents one of the 35 	 243 possible configurations
of cue values for the recognized option (i.e., a combination of positive, negative, and missing cue values). Dashed red and
solid blue lines show the mean number of iterations when choosing the unrecognized and the recognized option,
respectively. The dashed horizontal line serves as a reference for the number of iterations if only the recognition cue is
available. See the online article for the color version of this figure.
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decisions about the population of animal species, the safeness of
airlines, or the size of cities.

More recently, Glöckner and Bröder (2011) manipulated cue
knowledge for existing cities by presenting three cue values to the
participants in the decision phase. Based on the completely known
cue structure, they used choices, confidence ratings, and RTs to
classify participants as users of the recognition heuristic or users of
PCS. Many participants responded faster if further knowledge was
congruent with recognition, which corroborated the compensatory
PCS account. In a second study, Glöckner and Bröder (2014)
replicated their previous finding using memory-based instead of
screen-based cue knowledge in the decision phase and found only
slightly higher rates of RH users. In addition to behavioral mea-
sures, Hochman, Ayal, and Glöckner (2010) found that an addi-
tional, recognition-congruent cue reduced physiological arousal as
measured by a change in blood volume in the fingertips. This result
is in line with PCS and opposes the special status attributed to
recognition by the RH.

A potentially severe limitation of these studies concerns the
experimental manipulation of either recognition, cue knowledge,
or both. Originally, the RH was proposed to be an adaptive
strategy for decision making in natural environments, where any
information needs to be retrieved from memory (Goldstein &
Gigerenzer, 2002). Moreover, recognition itself is conceptualized
as knowledge that is obtained naturally prior to an experiment as
opposed to knowledge that is experimentally induced (Gigerenzer
& Goldstein, 2011). Hence Gigerenzer, and Goldstein (2011)
questioned whether studies relying on experimental manipulations
of knowledge represent a fair test of the RH. Specifically, partic-
ipants might overly rely on further knowledge due to demand
characteristics and an increased accessibility of further cue knowl-
edge (Pachur et al., 2008).

Given that some scholars argue that the manipulation of cue or
recognition knowledge jeopardizes a fair test of the RH, the
question arises whether it is possible at all to test the effect of
further knowledge in the standard RH paradigm, which only con-
sists of a decision and a recognition phase. Indeed, some studies
tested the noncompensatory nature of the RH under such condi-
tions. For instance, Pachur et al. (2008) simply asked participants
about their knowledge with respect to cues that were judged to be
relevant and valid by other participants. Compared to experimen-
tally induced knowledge, the natural knowledge had a smaller but
still reliable effect on decisions. Similarly, Pohl (2006) proposed to
ask participants whether a city is merely recognized (mR) or
recognized with further knowledge (R�). Whereas this distinction
should be irrelevant if recognition is used in a noncompensatory
way as stated by the RH (but see Marewski & Schooler, 2011),
compensatory theories predict differences in choice probabilities
and response latencies for both types of stimuli. For instance,
information-integration theories predict that mean RTs are faster in
pairs including additional knowledge (R�/U) compared to pairs
including merely recognition (mR/U; Hilbig & Pohl, 2009).

However, these alternative methods come with their own draw-
backs. First, these approaches are not directly connected to the two
process models discussed above. Second, the introspective method
of asking participants directly about further knowledge can be
questioned. If asked for specific cues as in Pachur et al. (2008),
important information that is available to the participants might be
missed; if asked more generally about the distinction of “merely

recognized” and “recognized with further knowledge,” it is still not
clear whether the additional knowledge is congruent or incongru-
ent with recognition (i.e., whether the cue values are mostly
positive or negative). To overcome these problems of both ap-
proaches—experimental manipulations of knowledge on the one
hand and introspective judgments on the other hand—we rely on a
new measurement model as an encompassing framework to test
whether and how further knowledge affects recognition-based
decisions.

Toward an Encompassing Measurement Model

In this section, we first introduce the r-model, a multinomial
processing tree model for recognition-based decisions. Second, we
show how to extend this model to account for choices and response
times simultaneously. Third, we show that the extended model can
serve as an encompassing framework to test the two process
models of interest against each other.

The r-Model: Measuring Noncompensatory
Use of Recognition

Hilbig, Erdfelder, and Pohl (2010) proposed a multinomial
measurement model to disentangle the noncompensatory use of
recognition from the use of further knowledge. The r-model be-
longs to the family of multinomial processing tree (MPT) models
that explain observed response frequencies by a finite number of
latent cognitive states (Batchelder & Riefer, 1999; Erdfelder et al.,
2009). The r-model is tailored to the standard RH paradigm, which
includes a recognition and a decision phase, and does not require
an experimental manipulation of recognition or cue knowledge.

The r-model as shown in Figure 4 (Hilbig, Erdfelder, & Pohl,
2010) accounts for responses in all three types of trials in the
decision phase. Given the binary recognition judgments for all
options, each trial in the decision phase is categorized either as
knowledge case (both objects recognized; RR pair), recognition
case (exactly one object recognized; RU pair), or guessing case
(neither object recognized; UU pair).

If both alternatives are recognized (RR pairs), participants are
assumed to rely on prior knowledge, which leads to a correct
decision with probability b, an estimate of knowledge validity. If
exactly one of the two alternatives is recognized (RU pairs),
several underlying cognitive processes can lead to identical re-
sponses. With probability r, the recognition cue is used in a
noncompensatory manner, thus always resulting in the choice of
the recognized option irrespective of further knowledge. Note that
this core parameter r has often been used as a process-pure
measure for the probability of RH use (e.g., Horn et al., 2015;
Michalkiewicz & Erdfelder, 2016). Depending on the recognition
validity a, reliance on recognition either results in a correct or
incorrect choice.

With probability 1 � r, further knowledge determines the de-
cision and either leads to a correct or incorrect response with
probability b and 1 � b, respectively. In the first case, the condi-
tional probability of choosing the recognized option is given by the
recognition validity a, in the latter case, it is given by its comple-
ment 1 � a. Note that the r-model explicitly assumes that two
types of processes can lead to a decision in favor of the recognized
option: Either only the recognition cue determines the decision in
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a noncompensatory fashion (RH use) or further knowledge results
in choosing the recognized option. Finally, if both of the alterna-
tives are not recognized (UU pair), participants are assumed to
merely guess and give a correct response with probability g. The
g-parameter can be used to test whether participants performed
better than chance (g � .5) and hence may serve as a validity check
whether people have knowledge despite categorizing the options
as unrecognized.

As a necessary condition for the validity of a model, Hilbig,
Erdfelder, and Pohl (2010) showed that the parameters of the
r-model are selectively influenced by experimental manipula-
tions as predicted by their theoretical interpretation. In contrast
to measures such as the adherence rate (i.e., the observed
proportion of R-choices; Goldstein & Gigerenzer, 2002) or the
discrimination index (the difference in the proportions of cor-
rect vs. incorrect R-choices; Hilbig & Pohl, 2008), the r-model
results in an unbiased estimate of the probability to rely solely
on the recognition cue (Hilbig, 2010a). Moreover, the r-model
has been used in many studies to test the influence of experi-
mental manipulations on the probability of RH use. For in-
stance, the probability of RH use decreased when raising the
availability of further information (Hilbig, Michalkiewicz, Cas-
tela, Pohl, & Erdfelder, 2015). Concerning individual differ-
ences, Michalkiewicz and Erdfelder (2016) demonstrated the
stability of the parameter r within participants across time and
different contexts. Moreover, RH use increases in old compared
to young adults (Horn et al., 2015).

Overall, previous studies clearly showed that the parameter r mea-
sures the adaptive, noncompensatory use of recognition. However,
given that information-integration models such as PCS can mimic
noncompensatory decision strategies, the r parameter cannot directly
be interpreted as the probability to rely on a qualitatively distinct
heuristic. Instead, the parameter r might merely represent a measure
of the dominance of the recognition cue compared to other cues
within a compensatory framework (Hilbig, Scholl, & Pohl, 2010).
Importantly, the standard r-model does not allow to discriminate these
two opposing explanations, since it relies on choice frequencies only,
where both models make similar predictions. However, by incorpo-
rating information about RTs into the model, it is possible to disen-
tangle the two process models and shed light on the speed of non-
compensatory use of recognition.

Modeling RTs Within the MPT Framework

To account for the speed of responding, we rely on a general
method for including RTs in MPT models (Heck & Erdfelder,
2016). This method is based on the fundamental assumption of
MPT models that a finite number of cognitive processes deter-
mines the observed responses. This assumption has a direct impli-
cation for the observed RT distribution, which must necessarily be
a mixture of a finite number of latent RT distributions associated
with the different cognitive processing paths of the MPT model.
Figure 5 illustrates this idea of assigning a separate latent RT
distribution to each of the six hypothesized processing paths of the
r-model. Whereas some of these distributions are directly observ-
able (e.g., the RT distribution of correct choices of the unrecog-
nized option), others are not (e.g., the RT distribution of correct
choices of the recognized option due to RH use). However, the
model directly predicts a mixture structure for the observed RT
distributions with the mixing probabilities given by the MPT path
probabilities.

To illustrate this, consider correct choices of the recognized
option, which either emerge from RH use with probability r · a or
from further knowledge with probability (1 � r) · b · a. The
corresponding RTs also emerge from one of two latent RT distri-
butions, correct RH use (with density fRHc) or correct use of further
knowledge (fKc). It follows that the density of the observed RTs of
correctly choosing the recognized option is given by the mixture

fRc(t) � r · a
r · a � (1 � r) · b · a fRHc(t) � (1 � r) · b · a

r · a � (1 � r) · b · a fKc(t).

(4)

The objective of the RT-extended measurement model is to
estimate the latent RT distributions (e.g., fRHc) based on the choice
proportions and the observed RT distributions (e.g., fRc).

Whereas the assumption that observed RT distributions are
mixtures follows directly from the basic structure of any MPT
model, it is less obvious how to model the latent RT distributions.
To avoid any auxiliary parametric assumptions about the exact
shape of the underlying, unobservable RT distributions, we instead
rely on a distribution-free approach (Heck & Erdfelder, 2016).
Essentially, we replace the continuous distribution in Figure 5 by
histograms and estimate the resulting bin probabilities, which does

Figure 4. The r-model disentangles observed responses to pairs of recognized (R) and/or unrecognized (U)
options to obtain estimates for r, the probability of noncompensatory use of recognition, the recognition validity
a, and the knowledge validity b (Hilbig, Erdfelder, & Pohl, 2010).
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not restrict the estimated shape of the latent RT distributions in any
way.

Even though this approach induces a loss of information (ratio-
scaled RTs are categorized into discrete bins), it provides some
crucial advantages besides not requiring parametric assumptions
(Heck & Erdfelder, 2016; Yantis, Meyer, & Smith, 1991). First,
the RT-extended model belongs to the class of MPT models itself
and merely has more observed categories (i.e., each response
category is split into B more fine-grained categories, where B is the
number of RT bins). Thus, existing methods and software for this
model class can readily be used (e.g., Heck, Arnold, & Arnold, in
press; Moshagen, 2010; Singmann & Kellen, 2013). Second, the
approach allows for a direct estimation of the latent cumulative
density functions and thus for a test of stochastic dominance.
Moreover, we use a principled strategy to choose individual
boundaries for the categorization of RTs into bins, thereby ensur-
ing that the more fine-grained RT-frequencies are comparable
across participants. For instance, when using only two RT bins, we
rely on the mean of the log RTs across all responses per participant
(i.e., the geometric mean: Tbnd 	 exp�log T��) to ensure that fast
and slow responses are approximately equally likely a priori. In
contrast to fixed RT boundaries, this strategy allows to compare
and aggregate the individual RT-frequencies because the RT bins
are precisely and identically defined per participant (Heck &
Erdfelder, 2016).

Linking Latent RT Distributions to Both
Process Models

Before applying the RT-extended r-model, it is important to
ensure that the new model parameters that measure the relative
speed of responses can be uniquely estimated, or in other words,
that the model is identifiable. Without further constraints, it is not
possible to uniquely estimate the six latent RT distributions shown
on the right side of Figure 5 in a distribution-free way based on
only four observed RT distributions (for details, see Heck &
Erdfelder, 2016). As a remedy, we derive suitable theoretical

constraints on the latent RT distributions of the RT-extended
r-model that allow for a test between the two competing process
models. Even though we constrain the latent RT distributions in a
way that is compatible with both process models, the two theoret-
ical accounts predict distinct orderings of the latent RT distribu-
tions. Hence, a single encompassing measurement model will
allow for an empirical test between the serial heuristic and the
parallel information-integration account.

First, we assume that the speed of noncompensatory use of
recognition is invariant with respect to the outcome, that is,
whether the choice is correct or incorrect. In other words, we
assume a single latent RT distribution called “R-only” that deter-
mines the speed of responses emerging from the first two process-
ing paths in Figure 5. This assumption is compatible with both
process accounts: The serial heuristic account directly predicts that
responses due to recognition are always similarly fast, since the
same search, stopping, and decision rules are used irrespective
whether the resulting response is correct or not. The same is true
for PCS—if only the recognition cue is available to make a
decision, the choice probabilities and the speed of responding do
not depend on the correctness of the recognition cue in a specific
trial. In sum, the latent RT distribution “R-only” measures the
relative speed of relying on recognition only in both theoretical
accounts.

Concerning the RT distributions of relying on additional avail-
able information, we differentiate between R-congruent and
R-incongruent further knowledge, which results in choosing the
recognized or unrecognized option, respectively. Similarly, as for
noncompensatory responses, we assume that the speed of correct
and incorrect responses is identical conditional on the type of
further knowledge. In other words, the speed of responding de-
pends on the coherence of further cues with recognition but not on
the validity of the cues in a specific trial. This distinction between
R-congruent and R-incongruent further knowledge is shown graphi-
cally using different colors/shades in the lower four processing paths
in Figure 5.

Figure 5. The RT-extended r-model. Observed RTs are assumed to follow a mixture distribution of the three
latent RT distributions of interest (R-only, R-congruent, and R-incongruent). In this illustration, the indicated
latent RT distributions correspond to predictions of the serial RH theory. See the online article for the color
version of this figure.
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Importantly, the distinction between R-congruent and R-incongruent
further knowledge allows us to derive distinct predictions for both process
models. The serial heuristic account predicts that use of further informa-
tion requires additional processing time (Equation 1), which results in
slower responses compared to noncompensatory RH responses—irre-
spective of the type of further knowledge (Pachur & Hertwig, 2006).
Within the encompassing framework of the RT-extended r-model, this
stochastic dominance hypothesis is formalized by two inequalities on
latent RT distribution functions:

Hserial : FR-only(t) � FR-congruent(t)

FR-only(t) � FR-incongruent(t) ∀ t � ��.
(5)

Hence, the RT-extended r-model allows to test the predicted
ordering of RT distributions as derived from the serial-processing
account in Equation 2.

In contrast to the serial heuristic account, PCS makes distinct
predictions depending on the coherence of further cues with the
recognition cue. If further knowledge is R-congruent, the decision
maker perceives a state of increased coherence and hence makes
faster decisions compared to the case that no further cues are
available (Glöckner & Bröder, 2011, 2014). If further knowledge
is R-incongruent, the incoherence of the available information
must be resolved and hence decisions require more time. The PCS
hypothesis of stochastic dominance is given by the inequalities

Hparallel: FR-congruent(t) � FR-only(t) � FR-incongruent(t) ∀ t � ��.

(6)

Again, the RT-extended r-model serves as an encompassing
framework to test whether congruent information actually leads to
faster decisions as predicted in Figure 3. Even though the new
measurement model does not allow to differentiate between dif-
ferent underlying configurations of cue values (i.e., which cue
values are positive, negative, or missing), it allows to estimate the
overall effect of R-congruent and R-incongruent information on
RTs.

The latent RT distributions of the remaining two multinomial
processing trees (either both options recognized or both unrecog-
nized) are not informative to test between the serial and parallel
accounts of recognition-based decisions. In these cases, the recog-
nition cue is either positive or negative for both options and hence
it cannot be tested whether recognition enters the decision process
in a noncompensatory fashion or not. These cases are also not
informative to test how several knowledge cues are integrated—to
answer such questions, paradigms with known cue matrices are
much better suited (e.g., Glöckner et al., 2014). Hence, the fol-
lowing constraints are only of minor interest.

If both options are unrecognized (UU pairs), we assume that
participants merely guess, assuming that the two underlying RT
distributions are independent of the outcome and thus identical. In
contrast, if both options are recognized (RR pairs), both theoretical
accounts do not allow clear-cut predictions; hence, we did not
impose constraints on the corresponding RT distributions. Appen-
dix A formally shows that this set of constraints on the latency
parameters renders the RT-extended r-model identifiable if the
core parameters r, a, b, and g are in the interior of the parameter
space (i.e., not equal to zero or one) and if b 
 .5. Note that the
latter constraint substantively means that the model is unidentifi-
able if further knowledge is invalid (i.e., at chance level). Given

that virtually all natural and experimental environments of interest
have recognition and knowledge validities above chance level
(a � .5, b � .5), this special case does not restrict the applicability
of the RT-extended r-model.

Overall, the RT-extended r-model allows to test between the two
competing process models by estimating the relative speed of
R-only, R-congruent, and R-incongruent responses. Note that the
predictions of both theoretical accounts refer to latent RT distri-
butions that need to be estimated within an encompassing mea-
surement model, since they cannot be observed directly (because
of the ambiguity whether R-choices were due to recognition-
congruent knowledge or due to recognition only).

Simulation Study

Before analyzing empirical data with the RT-extended r-model,
we show in a simulation study that the proposed measurement
model can indeed differentiate between data generated by the
serial heuristic and the parallel information-integration account. To
simulate a natural environment, we used a classical data set that
includes information about the largest German cities in the form of
nine probabilistic cues with validities ranging from .51 (East
Germany) to 1.00 (national capital; Gigerenzer & Goldstein, 1996;
Schooler & Hertwig, 2005). Note that the supplementary material
provides more technical details (including R code) and a second
simulation based on an updated database of cue and criterion
values that lead to identical conclusions.

Data Generation

Both cognitive process models, the serial RH and PCS, rely on
the same input. Besides the recognition and cue validities, two
vectors of cue values are required for the available options:

C1 � �R1, C11, . . .,C1K�
C2 � �R2, C21, . . .,C2K�.

Whereas the recognition status of both alternatives is necessarily
known (Ri � {�1, �1}), the other cue values may encode missing
information by Cic 	 0. Note that we do not simulate responses
and RTs for the case that both options are unrecognized, since
these cases cannot differentiate whether or how knowledge is
integrated. Moreover, it is sufficient to generate RTs up to an
interval scale because the RT-extended r-model relies on the
relative speed of the latent processes only. Hence, to generate RTs,
we simulated the number of required elementary information pro-
cesses (EIPs; Payne et al., 1988) in case of the serial account and
the number of required iterations in case of PCS (plus continuous
random noise in both cases).

Recognition Process

The probabilities to recognize a city were modeled by the
sigmoid function of the criterion values shown in Figure 6A (a
probit link; cf. Hilbig, 2010a; Schooler & Hertwig, 2005). Sub-
stantively, this function induces the ecological correlation that
people are more likely to recognize larger cities. In our simulation,
this resulted in a mean recognition validity of � � .80 and a mean
discrimination rate of d � .50.
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For each participant, a random vector of recognized (Ri 	 �1)
and unrecognized (Ri 	 �1) cities was drawn. For the unrecog-
nized cities, all cue values were set to zero, thereby modeling the
absence of knowledge (Cic 	 0). Within the subset of recognized
cities, we assumed that cue values were more likely known for
larger than for smaller cities. For this purpose, we generated
probabilities of knowing a cue value (Cic 	 1 or Cic 	 �1) based
on the sigmoid function in Figure 6B. This procedure resulted in
individual cue structures with partial knowledge about some cue
values of the recognized cities.

Since our focus is on the processing time required for the integra-
tion of recognition with further available information (i.e., in which
way and how fast the cue values Ri and Cic are combined), we did not
model the time required to recognize an option. However, we address
this possible issue in the Discussion below and also show in Appendix
B that partialing out the recognition times from the decision times
does not change the empirical results qualitatively.

Implementation of the Serial Heuristic Account

According to the serial heuristic account, the take-the-best strat-
egy is applied if both alternatives are recognized (Gigerenzer &
Goldstein, 1996). This heuristic evaluates the cues by decreasing

validity and stops if a cue favors one option (C1c 	 �1) but not the
other one (C2c � {�1, 0}; Gigerenzer & Goldstein, 1996, Figure
3) and results in random guessing if no discriminating cue is found.
The number M of EIPs of this strategy is given by the number of
cues compared (Bröder & Gaissmaier, 2007).

If one of the options is recognized and the other not, the RH is
used with probability r, whereas the TALL strategy is used with
probability 1 � r. Note that one of the two strategies is selected
randomly in each trial without considering any cost-benefit trade-
offs, reinforcement learning, or natural environmental constraints
(e.g., Marewski & Schooler, 2011; Payne et al., 1993; Rieskamp &
Otto, 2006). We did not model such mechanisms of strategy
selection to allow for a direct link of the two process accounts of
information integration to the parameters of the new measurement
model. Moreover, a preceding strategy-selection stage would add
some positive processing time to both strategies, RH and TALL,
but would not change the prediction of stochastic dominance (cf.
“Stochastic Dominance,” above).

If the RH is used, the R-option is always chosen and a single
processing step is required (M 	 1), since the RH relies on the
recognition cue only. If TALL is used, the unrecognized option is
chosen if the number of negative cue values is larger than or equal
to the number of available cues. This TALL strategy requires as
many EIPs as there are informative cues available for the recog-
nized option (i.e., the number of Cic � {�1, �1} plus one for Ri).

Implementation of the Parallel Information-
Integration Account

PCS uses the same input as the serial-processing model, but
relies on maximizing the coherence in the connectionist network
shown in Figure 2B. We obtained choice and RT predictions for
PCS based on the iterative updating algorithm described by Glöck-
ner and Betsch (2008) using the same set of fixed parameters as in
other applications of PCS (e.g., Glöckner et al., 2014). In the follow-
ing, we show how the available cue values determine the network
structure (i.e., the weights of the links) and how the spreading of
activation through the network is modeled mathematically (cf.
Glöckner & Betsch, 2008).

For each paired comparison, the available cue values C1 and C2

determine whether the links between cue and option nodes are inhib-
itory or excitatory. Specifically, the cue-option weight between cue
node c and option node i is fixed to wci 	 0.01 · Cic based on the cue
value Cic (and similarly for Ri). For instance, a negative cue value
manifests itself in the network as a bidirectional, inhibitory link with
weight wci 	 �0.01 between the corresponding cue and option node.
Moreover, missing cue information is simply modeled by nonexistent
links, or equivalently, wci 	 0.

Regarding the environmental structure, the cue validities v de-
termine the weights of the links between the general-validity and
the cue nodes. Mathematically, the validities v are transformed by
the weighting function wi 	 (vi � 0.5)P, where P � 0 is a
sensitivity parameter that determines how strongly large validities
are overweighted compared to small ones. The sensitivity param-
eter P directly determines whether decisions are rather compensa-
tory (P � 1) or noncompensatory (P � 1) compared to a model
that weighs the cue validities linearly (P 	 1). Based on previous
empirical and theoretical work (Glöckner et al., 2014), we used the
default P 	 1.9, which results in choice predictions of PCS that are

Figure 6. Probit-link functions used to model (A) recognition probabil-
ities and (B) partial cue knowledge. City sizes were first log-transformed
and then z-standardized. For illustration, the named cities are indicated by
red (gray) points. See the online article for the color version of this figure.
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similar (but not identical) to those of a rational Bayesian choice
rule (Jekel, Glöckner, Fiedler, & Bröder, 2012; Lee & Cummins,
2004). Finally, the weight of the links between both options is set
to the default w 	 �0.2, thus modeling strong inhibition between
the choice options. Psychologically, this implies that a strong
preference for an option decreases the preference for alternative
options (and vice versa).

Once the weights of the network are fixed, activation is assumed
to spread in parallel through the network. Mathematically, this is
modeled by an iterative algorithm that updates the activations of
all cues and option nodes in each iteration simultaneously (Glöck-
ner & Betsch, 2008). The network is initialized with the activations
of all cue and option nodes set to zero. Only the general validity
node has a constant activation of one from the beginning and
supplies the network with energy. To update the activation ai(t) of
a node i at time t, the weighted sum of the current activation values
of all nodes serves as the input value ii(t),

ii(t) � �
j�1

J

wij · aj(t). (7)

This input is passed to a piecewise-linear activation function to
update the current activation of node i,

ai(t � 1) � (1 � d) · ai(t) � �1 � sign(ii(t)) · ai(t)� · ii(t), (8)

where sign(x) is �1 if x � 0 and � 1 otherwise, and d a constant
decay factor (set to d 	 .1; Glöckner et al., 2014).2 As mentioned
above, all nodes are updated simultaneously in parallel until a state
of coherence is reached. This is the case if the overall change in
activation falls below some threshold, or more precisely, if the
energy e(t) of the network,

e(t) � ��
i

�
j

wij · ai(t) · aj(t), (9)

differs less than 10�6 across 10 consecutive iterations. Based on
the final state of the network, the option with the highest activation
is chosen. Moreover, interval-scaled RT predictions are provided
by the number of iterations until convergence is reached.

Results

We generated separate configurations of known cities and avail-
able cue values for N 	 500 participants. For each of these
individual cue patterns, we applied both process models to all

�83
2 � � 3,403 binary decisions. These simulated choices, RTs, and

recognition judgments served as input for the analysis using the
RT-extended r-model. Importantly, the measurement model does
not rely on any information regarding the simulated cue values,
which were hidden similar as in an empirical setting. In the
following, the simulated data are used to fit two versions of the
RT-extended r-model that differ in the number of bins used to
categorize RTs.

The Relative Speed of Processes

First, we fitted the RT-extended r-model using only two RT
bins. This allows to summarize each latent RT distribution i by a
single latency parameter Li defined as the probability of respond-
ing faster than the RT boundary. Hence, larger estimates of Li

indicate a faster cognitive process. To categorize responses as

“fast” or “slow,” we used geometric mean RTs per participant.
This allows to aggregate the frequencies across individuals, which
is not possible with arbitrary or fixed RT boundaries (Heck &
Erdfelder, 2016). Since the simulation did not induce heterogene-
ity between participants, we fitted the RT-extended r-model to the
summed frequencies across all 500 individual data sets.

Figure 7 shows the resulting maximum-likelihood estimates for
the core parameters of the r-model (r, a, b, and g) and the latency
parameters that measure the relative speed of the latent processes
(most importantly, LR-only, LR-con, and LR-inc). Both types of pro-
cess models, the serial heuristic and the parallel information-
integration account, resulted in similar estimates for r, the proba-
bility of relying on the recognition cue only, for the recognition
validity a, and for the knowledge validity b. This shows that the
standard r-model without RTs does in general not allow to dis-
criminate between both types of data-generating models. Even
though the parameter r has usually been interpreted as “the prob-
ability of RH use” (Hilbig, Erdfelder, & Pohl, 2010), it might as
well represent the probability of relying only on the recognition
cue within the PCS framework, without assuming a distinct, qual-
itatively different heuristic.

However, the latency parameters of the RT-extended r-model
allow to differentiate between both process accounts as shown in
the right part of Figure 7. Note that the latency parameters Li can
only be interpreted conditional on the RT boundaries, which are
differently defined for both data-generating models. Hence, the
latency estimates cannot be compared across process models.
Importantly, however, the relative speeds of latent processes can
be compared within each process model to infer which one gen-
erated the data. For the serial heuristic, RH responses (R-only)
were estimated to be faster than those based on further knowledge
regardless of coherence (cf. Equation 5). In contrast, for PCS,
R-congruent responses were clearly faster than those due to non-
compensatory use of recognition, whereas R-incongruent re-
sponses were even slower. This ordering reflects the crucial pre-
diction of PCS that the coherence of the available information
determines the speed of responding and not the amount of cues
entering the decision process (cf. Equation 6).

Testing Stochastic Dominance

For a more fine-grained test of stochastic dominance, it is
important to estimate the cumulative density functions across the
entire range of observable RTs (Heathcote et al., 2010). A suffi-
ciently high precision is important to detect intersections of the
cumulative densities at the tails (e.g., for very fast or slow re-
sponses). In RT-extended MPT models, such more fine-grained
tests can be implemented by using larger numbers of RT bins
(Heck & Erdfelder, 2016).

In general, the use of B RT bins requires the estimation of B �
1 latency parameters, each resembling the height of a bin in an RT
histogram. More precisely, each latent RT distribution is described
by a vector L 	 (L1 . . ., LB-1), where Lb is the probability that RTs
from the corresponding process fall into the b-th RT bin. We fitted
the RT-extended r-model in a Bayesian framework using the
software JAGS (Plummer, 2003), which provides posterior sam-

2 In Equation 8, we assume that the minimum and maximum activation
of a node is �1 and �1, respectively.
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ples using Markov chain Monte Carlo (MCMC) methods. Based
on the posterior samples, the cumulative density function is esti-
mated by the partial sums of the latency parameters, that is,
Lb

cum � �k�1
b Lk. Note that this is done for each MCMC replication

separately and thus provides posterior credibility intervals for the
cumulative densities.3 We used uniform priors on the substantive
core parameters of the r-model, assuming that all parameter values
are a priori equally likely. Moreover, we adopted a noninformative
Dirichlet prior for the latency vectors, L � Dir (1/B, . . ., 1/B). This
prior assigns equal probability to all RT bins and has an influence
similar to a single observation (Heathcote et al., 2010).

Based on 30 RT bins, Figure 8 shows posterior means and 95%
credibility intervals for the cumulative densities of the latent RT
distributions. Depending on the data-generating model, different pat-
terns emerged for the RT distributions of noncompensatory use of
recognition (R-only) compared to R-congruent and R-incongruent use
of further information. For the serial heuristic account, the RT-
extended r-model recovered the theoretically predicted order of latent
RT distributions: responses due to use of the RH were stochastically
faster than responses due to reliance on any further knowledge (Equa-
tion 5). In contrast, for PCS, the latent RT distributions were stochas-
tically faster for R-congruent responses compared to noncompensa-
tory R-responses, whereas R-incongruent responses were even slower
(Equation 6).

Generalizability of Simulation Results

The previous simulation showed that the RT-extended r-model
can in principle differentiate between data generated by both
process models. To ensure that this result generalizes to other
situations, for instance, involving different numbers of cues or
different recognition or knowledge validities, we replicated the
simulation using randomly chosen parameters to generate data.
This approach is similar to parameter space partitioning (Pitt,
Myung, & Zhang, 2002), which allows one to investigate qualita-
tive model predictions across the parameter space. Essentially, we
changed the cue structure by including different numbers of cues
and applying different recognition functions, thereby manipulating
the amount of knowledge available (see Supplementary Material
for details). As in the previous simulation, these cue structures

served as input for the two process models to generate responses
and RTs.

Based on 10,000 replications, each including N 	 50 hypothet-
ical participants, we fitted the RT-extended r-model using two RT
bins. Before summarizing the results, we excluded replications that
were not of theoretical interest. First, we excluded data sets with
parameter estimates r̂ at the boundary (r̂ � .05 or r̂ � .95) for
which latency parameters of R-only and R-congruent responses
were not empirically identified and could thus not be compared.
Substantively, these replications resembled cases in which further
knowledge was never or always used. Second, we excluded rep-
lications with recognition or knowledge validities smaller or equal
than chance (â � .50 or b̂ � .50).

For the 6,617 remaining, substantively interesting replications,
Table 2 shows summary statistics of the estimated relative speed of
R-congruent and R-only responses. As expected, the RT-extended

3 Maximum-likelihood software for MPT models such as multiTree
(Moshagen, 2010) requires a binary MPT model and hence a reparameter-
ization of each set of 30 latency parameters. To obtain confidence intervals
for the sums of the original latency parameters, which describe the esti-
mated cumulative density, a transformation of the standard errors is re-
quired (Rao, 1973, Ch. 6).

Figure 7. Parameter estimates for the RT-extended r-model with two RT
bins based on data generated by both process models, the serial heuristic
account and PCS. See the online article for the color version of this figure.

Figure 8. Estimated cumulative density functions of the latent RT dis-
tributions based on data simulated by the serial-heuristic account and PCS.
See the online article for the color version of this figure.
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r-model reliably discriminated between the two data-generating
process models. If data were generated by the serial RH process
model, responses due to R-congruent knowledge were estimated to
be slower than those due to RH use in all replications with a mean
difference of �.39 (SD 	 .10). In contrast, the opposite pattern
emerged for 99.3% of the replications if data were generated by the
PCS account of information integration (mean difference of .71,
SD 	 .19).

Overall, our simulations show that the RT-extended r-model
allows to test between the two process models without knowing
the actual underlying cue structures for a variety of data-generation
scenarios. As derived theoretically, the crucial difference between
the data-generating process models emerged in the latency param-
eters that measure the relative speed of the underlying processes.
When the serial-heuristic model generated the data, R-only choices
due to RH use were estimated to be faster than choices due to
further knowledge. This order reversed for PCS, according to
which increased coherence of the available information facilitates
faster responding (Betsch & Glöckner, 2010). Therefore, the RT-
extended model can be used as an encompassing measurement
model to differentiate between the serial RH and the PCS account
of information integration.

Empirical Reanalysis With the RT-Extended r-Model

In the following, we reanalyze 19 data sets by researchers
associated with the University of Mannheim. Table 3 lists these
studies, which include 1,074 individual data sets with 274,296
memory-based decisions in total.4 All of these studies used the
standard RH paradigm with two phases; a decision phase, in which
participants had to choose one of the two presented options, and a
recognition phase, in which the stimuli had to be judged as
recognized or unrecognized. Moreover, natural, realistic domains
such as city size, river length, or celebrity success were used, in
which both recognition and further knowledge provided valid
information about the criterion (i.e., � � .5,  � .5). We included
only studies in which neither recognition nor cue knowledge was
experimentally manipulated and in which participants were not
asked to respond within a fixed time limit.

In each data set, we removed individual data sets of participants
who recognized either all or none of the options. Note that RT
outliers were not removed, since our distribution-free approach
uses only relative information about the speed of responding and is
thus robust against outliers. Within-subject manipulations of the
stimulus material were included as separate data sets (e.g., celeb-
rity and movie success in the “Related” condition of Exp. 3 by
Michalkiewicz & Erdfelder, 2016). Moreover, many studies addi-
tionally asked whether an object was merely recognized (mR) or
recognized with further knowledge (R�; Pohl, 2006). In our main

analyses, we pooled these different types of items and used only
the distinction between recognized and unrecognized options. In
Appendix C, we show that the results were not affected when
differentiating between the recognized options based on the sub-
jective judgments concerning further knowledge.

To test the PCS against the RH account, we relied on three
different versions of the RT-extended r-model. First, we used only
two RT bins (“fast” and “slow”), leading to 8 � 2 	 16 observed
categories and 10 model parameters. Due to the moderate size of
this model, we accounted for the nested data structure (responses
nested in participants nested in data sets) in a hierarchical MPT
model (Klauer, 2010). Second, for a more fine-grained test of
stochastic dominance (Heck & Erdfelder, 2016), we used 40 RT
bins to summarize the latent RT distributions. With 8 � 40 	 320
observed categories, this model version requires much more ob-
served responses to obtain reliable estimates. Hence, we refrained
from modeling the hierarchical structure and aggregated individual
frequencies. Third, we adapted the outcome-based strategy classi-
fication approach by Bröder and Schiffer (2003) to analyze each
participant separately. As shown in the following sections, all three
approaches provide converging evidence that choices due to
recognition-congruent knowledge are faster than those due to
recognition only.

A Hierarchical Bayesian Model

In line with our simulation study, we used geometric mean RTs
to categorize responses as “fast” and “slow” on the individual
level, thereby ensuring comparable frequencies across participants.
To account for heterogeneity between participants and data sets,
we fitted a hierarchical latent-trait MPT model (Klauer, 2010;
Matzke, Dolan, Batchelder, & Wagenmakers, 2015). Specifically,
each of the MPT parameters � in the interval [0, 1] was modeled
additively on a latent probit-scale,

	�1�
sji� � �s � �sj � si, (10)

where ��1 is the inverse of the cumulative density function of the
standard normal distribution (the probit-link).

The transformed parameters were modeled by additive effects
similar to those in generalized linear mixed models (Bates,
Mächler, Bolker, & Walker, 2015). First, an overall group mean �s

with a standard-normal prior was included for each parameter s.
Second, the fixed effect sj accounted for mean differences across
data sets (e.g., different recognition validities). As a prior, we
adopted the weakly informative Cauchy-priors proposed by
Rouder, Morey, Speckman, and Province (2012) for ANOVAs of
directly measurable dependent variables. Note that the use of fixed
effects for the different data sets differs from fitting a hierarchical
model to each data set separately, since a single covariance matrix �
is assumed for the random effects �s. In other words, our model
accounts for mean differences of the MPT parameters across data
sets but assumes that the variances and correlations of the param-
eters are identical across data sets (Heck et al., in press). Third, the
random effect terms �si with mean zero and covariance matrix �
accounted for variation between participants. Following Klauer

4 The Supplementary Material provides data and R code for our reanal-
ysis.

Table 2
Relative Speed of R-Congruent and R-Only Responses Based on
the RT-Extended R-Model in the Robustness Simulation

Data-generating
model R-congruent R-only Difference � SD (�) P (� � 0)

Serial RH .401 .786 �.385 .099 0.0%
Parallel PCS .882 .174 .708 .186 99.3%
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(2010), we used a scaled inverse-Wishart prior on the covariance
matrix (with a diagonal matrix and S � 1 degrees of freedom,
where S is the number of MPT parameters).

The model was fitted with the R package TreeBUGS (Heck et
al., in press), which extends the hierarchical MPT implementation
by Matzke et al. (2015) and obtains posterior samples from JAGS
(Plummer, 2003). We used four MCMC chains with 100,000
iterations each, of which the 20,000 first samples were excluded as
burn-in to reduce the dependency on the starting values. The
remaining 80,000 posterior samples where thinned by a factor of
50. Convergence was checked graphically, and by ensuring small
Gelman-Rubin statistics (R2 � 1.1) and sufficiently large esti-
mated effective sample sizes.

Due to the large sample size of 274,296 observations, statistical
tests of the model fit have very high power to reject the model even
for minor discrepancies between observed and predicted frequen-
cies. Therefore, we assess model fit qualitatively as shown in
Figure 9. For each of the 8 � 2 categories, mean observed
frequencies are compared to box plots of the mean frequencies
sampled from the posterior-predictive distribution. As indicated by
the tiny ranges of the box plots (whiskers indicate the 1.5 inter-
quartile range), the large sample size resulted in a posterior-
predictive distribution with very small variance. Importantly, how-
ever, the predicted frequencies were very close to the observed
frequencies thus indicating a satisfactory model fit.

The left part of Table 4 shows the posterior estimates for the overall
mean parameters and the parameter heterogeneity between partici-
pants. Across all data sets, recognition and knowledge validity were
sufficiently high to render both sources of information useful for
decision makers. Recognition was frequently used in a noncompen-
satory way as indicated by a large r parameter. Nevertheless, r was
clearly smaller than one, thus showing that further knowledge affected
memory-based decisions.

Note that participant heterogeneity was much larger for the r
parameter compared to the validity and guessing parameters. This is

in line with the conceptualization of the r-model, according to which
the latter parameters refer to structural properties of the environment
whereas the r parameter refers to an individual style of decision
making (Hilbig, Erdfelder, & Pohl, 2010; Michalkiewicz & Erdfelder,
2016).

To assess the speed of the latent processes of interest, Figure 10
shows the overall, data-set, and individual estimates for the latency
parameters LR-only, LR-con, and LR-inc. Estimates close to one
resemble latent cognitive processes that resulted in fast choices
with a high probability. On all three levels, a clear ordering of the
speed of latent processes emerged. Whereas R-incongruent re-
sponses were estimated to be slightly slower than noncompensa-
tory R-responses, R-congruent responses were clearly estimated to
be faster than noncompensatory R-responses. This ordering sup-
ports the PCS account according to which R-congruent knowledge
fosters fast responding.

Testing Stochastic Dominance

To test stochastic dominance of latent RT distributions, we used
40 RT bins, thus increasing the resolution with respect to the
decision speed. Since this results in a model with 8 � 40 	 320
categories, we refrained from hierarchical modeling and treated
responses as being independently and identically distributed across
participants.5 Note that the analysis of averaged data has well-
known drawbacks (e.g., Gigerenzer & Goldstein, 2011; Klauer,
2006), but combined with hierarchical and individual analyses, the
present model allows for an additional, more fine-grained test of
stochastic dominance. To categorize choices into bins from “fast”
to “slow,” we used the same principled strategy as in the simula-
tion reported above. First, the individual RTs were approximated

5 In a Bayesian framework, the weaker assumption of exchangeability
suffices, that is, permutations of the observations do not change the joint
distribution of the data (Bernardo, 1996).

Table 3
Data Sets Included in the First Reanalysis

# Source Domain N Responses

1 Castela and Erdfelder (2017b) Exp. 1# Celebrity success 74 14,060
2 Castela and Erdfelder (2017b) Exp. 1# City size 73 13,870
3 Castela and Erdfelder (2017b) Exp. 1# River length 72 13,680
4 Castela and Erdfelder (2017a) Exp. 1 (Session 1) City size 44 10,560
5 Hilbig and Pohl (2009) Exp. 1 City size 24 4,560
6 Hilbig and Pohl (2009) Exp. 3 City size 62 5,642
7 Hilbig, Erdfelder, and Pohl (2010) Exp. 6a City size 16 2,176
8 Hilbig, Erdfelder, and Pohl (2010) Exp. 6b City size 18 2,448
9 Michalkiewicz and Erdfelder (2016) Exp. 1 (Session 1) City size 64 19,200

10 Michalkiewicz and Erdfelder (2016) Exp. 2 (Session 1) City size 83 24,900
11 Michalkiewicz and Erdfelder (2016) Exp. 3 (Different)† Island size 64 19,200
12 Michalkiewicz and Erdfelder (2016) Exp. 3 (Different)† Musician success 64 19,200
13 Michalkiewicz and Erdfelder (2016) Exp. 3 (Related)� Celebrity success 68 20,400
14 Michalkiewicz and Erdfelder (2016) Exp. 3 (Related)� Movie success 68 20,400
15 Michalkiewicz and Erdfelder (2016) Exp. 4 (Names) Celebrity success 43 12,900
16 Michalkiewicz and Erdfelder (2016) Exp. 4 (Pictures) Celebrity success 43 12,900
17 Michalkiewicz, Minich, and Erdfelder (2017) Neutral‡ River length 76 22,800
18 Michalkiewicz, Minich, and Erdfelder (2017) Standard‡ Musician success 74 22,200
19 Michalkiewicz, Arden, and Erdfelder (2017) Equal Celebrity success 44 13,200

Note. N refers to the number of participants after exclusion of those who recognized either all or none of the
items. Within-subject manipulations with different material across blocks are indicated by the symbols #, �, †,
‡ and hence refer to overlapping sets of participants.
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by a log-normal distribution, which was then used to obtain
equally spaced quantiles as RT boundaries (e.g., the 25%, 50%,
75% quantiles for four RT bins). As mentioned above, these
principled boundaries yield comparable frequencies across partic-
ipants and result in approximately equally likely RT bins. Impor-
tantly, it is not necessary that the log-normal approximation fits the
data well, since it only serves as a standardization to define
suitable RT boundaries.

The RT-extended MPT model was implemented in the same
way as in the simulation above (i.e., with uniform priors for the
core parameters and noninformative Dirichlet priors for the latency
parameters). Figure 11 shows that the posterior predictive distri-
butions (blue/gray box plots) matched the pattern of observed
frequencies (black circles) well, thus indicating a satisfactory
model fit. Moreover, the core parameter estimates were compara-
ble to the overall-mean estimates of the hierarchical model, r̂ 	
.669 [.692–.701], â 	 .653 [.651–656], and b̂ 	 .637 [.634–640].
Even though the 95% credibility intervals had a tendency to be
slightly too small (a well-known effect of aggregating nested data;
Klauer, 2010), the point estimates did not indicate a severe bias in
parameter estimation.

Figure 12 shows the estimated cumulative densities for the
speed of noncompensatory R-responses as well as R-congruent
and R-incongruent responses (i.e., posterior means and 95% cred-
ibility intervals). To obtain a meaningful scaling for the x-axis, we
computed the means of the individual RT boundaries initially used
for categorization. The results show that choices due to
R-congruent knowledge were stochastically faster than choices
due to other processes, as indicated by a clear order of the esti-
mated cumulative density functions. The credibility intervals were
sufficiently small to ensure that this difference was not due to
chance.6 Moreover, choices due to recognition only were esti-
mated to be slightly faster than those due to R-incongruent knowl-
edge (with a minor reversal for very fast decisions). Overall, the
estimated decision times of integrating recognition with further
knowledge closely matched the PCS prediction in the simulation

but clearly differed from the prediction of the serial-heuristic
account (cf. Figure 8).

Outcome-Based Strategy Classification

The two previous analyses assumed that the average perfor-
mance of the two competing process models across individuals is
of core interest. To address individual differences in decision-
strategy preferences, we adapted the method of outcome-based
strategy classification (Bröder & Schiffer, 2003; Glöckner, 2009;
Hilbig & Moshagen, 2014), which classifies each participant in-
dependently as a user of one of a set of decision strategies. Since
the competing strategies are precisely defined as statistical models,
model-selection methods can be used on the individual level.
Compared to the previous analyses, this approach has the advan-
tage that each participant is analyzed and classified independently,
which allows detecting qualitative differences in decision behavior
(Gigerenzer & Goldstein, 2011).

Based on the RT-extended r-model with two RT bins, we
classify participants as users of the RH or PCS. For this purpose,
we adapted the model in Figure 5 and imposed order constraints on
the latency parameters according to the predictions derived from
PCS and the serial-heuristic account (Equation 6 and 5, respec-
tively). Whereas the RH predicts noncompensatory use of recog-
nition to be faster than any knowledge-based strategy (LR-only �
LR-con and LR-only � LR-inc), PCS predicts a latency order accord-
ing to decreasing coherence of the available information (LR-con �
LR-only � LR-inc). Moreover, we included a second model for the
serial-heuristic account called “RH (strong)” that additionally as-

6 One can compute a Bayes factor as the ratio of posterior to prior
probability in line with the hypothesized order constraint (Hoijtink, Klug-
kist, & Boelen, 2008). However, since the posterior distributions do not
overlap much in the present case, this will result in a large, but also
imprecisely estimated Bayes factor, thus not adding any substantive value
to the conclusions.

Figure 9. Model fit of the hierarchical RT-extended r-model to the 8 � 2 data categories based on the 19
studies in Table 3. For each response category of the r-model, the observed and predicted frequencies of the
“fast” category are presented first, and those of the “slow” category second.
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sumes that R-congruent choices are faster than those due to
R-incongruent knowledge (LR-only � LR-con � LR-inc). This addi-
tional prediction only follows for some decision strategies people
might use instead of the RH. For instance, R-incongruent choices
were slower than R-congruent choices in our simulation using the
TALL model (cf. Figure 8), but different patterns might be pre-
dicted by other strategies. However, since the additional assump-
tion of slower R-incongruent choices is psychologically plausible
and in line with at least one strategy (i.e., TALL), we included the
“RH (strong)” model in the comparison, even though it gives the
serial-heuristic account an advantage because it is instantiated by
two model versions. Besides these three substantive models, we
included a baseline model that does not pose any order constraints
on the latency parameters LR-only, LR-con, and LR-inc and can
therefore account for data not predicted by any of the two process
models (Hilbig & Moshagen, 2014).

Since the three competing models have the same number of free
parameters, we relied on the Fisher information approximation
(FIA) for model selection (Rissanen, 1996; Wu, Myung, & Batch-
elder, 2010). FIA is based on the minimum description length
principle (Grünwald, 2007) and trades off goodness-of-fit against
complexity of a model (Myung, 2000). In contrast to information
criteria such as AIC or BIC, FIA takes the functional complexity
of a model into account, which provides a crucial advantage for
outcome-based classification of order-constrained strategies
(Heck, Hilbig, & Moshagen, 2017; Hilbig & Moshagen, 2014). In
the present case, the identical number of parameters per model
implies that FIA can be applied even in small samples (which is
not necessarily the case otherwise; Heck, Moshagen, & Erdfelder,
2014).

When applying this method, 87.5% of the 1,074 participants
were classified as PCS users, compared to 6.8% for RH and 4.5%
for RH (strong), whereas the baseline model was only selected for
1.2% of the participants. Figure 13 shows that the proportion of
PCS users was high across the 19 data sets listed in Table 3. The
lowest percentage of 65.8% PCS users was observed in a study by
Michalkiewicz, Minich, and Erdfelder (2017), in which recogni-
tion and knowledge validities regarding the length of rivers were
rather low (â 	 .58, b̂ 	 .58), which might have decreased the
coherence effect predicted by PCS. In sum, however, these results
clearly show that PCS was supported for a majority of participants
across data sets.

Replication Based on Data From Other Labs

All data sets reanalyzed above (cf. Table 3) were collected by
researchers associated with the University of Mannheim. To rep-
licate and test the robustness of our results, we also reanalyzed data
by other researchers and labs. For this purpose, we contacted
authors of articles with studies on the RH that met the necessary
conditions for reanalysis with the RT-extended r-model. As men-
tioned in the derivation of the model, these criteria require that (a)
both recognition and knowledge have a sufficiently high validity,
(b) neither cue knowledge nor recognition was manipulated, and
(c) choice RTs were collected and not manipulated via time

Table 4
Posterior Mean Estimates for the Hierarchical, RT-Extended r-Model (Including 95% Credibility Intervals)

19 Data sets in Table 3 10 Data sets in Table 5

� (�̂) [95% CI] �̂ [95% CI] � (�̂) [95% CI] �̂ [95% CI]

Core parameters
r .74 [.73–.76] 0.69 [0.66–0.73] .39 [.36–.43] 0.94 [0.88–1.01]
a .70 [.69–.71] 0.24 [0.23–0.25] .65 [.64–.66] 0.21 [0.19–0.23]
b .63 [.63–.64] 0.18 [0.17–0.19] .67 [.66–.68] 0.21 [0.19–0.23]
g .52 [.51–.53] 0.15 [0.13–0.16] .50 [.49–.51] 0.17 [0.14–0.19]

Latency parameters
Lguess .43 [.43–.44] 0.29 [0.27–0.31] .43 [.41–.44] 0.23 [0.20–0.26]
LRR correct .55 [.54–.55] 0.22 [0.20–0.24] .57 [.56–.58] 0.12 [0.10–0.14]
LRR false .50 [.49–.51] 0.25 [0.23–0.27] .48 [.47–.49] 0.16 [0.13–0.20]
LR-congruent .97 [.95–.99] 0.91 [0.77–1.08] .77 [.73–.81] 0.32 [0.25–0.39]
LR-only .59 [.58–.60] 0.38 [0.35–0.41] .54 [.50–.57] 0.28 [0.22–0.33]
LR-incongruent .44 [.42–.46] 0.37 [0.33–0.40] .45 [.44–.47] 0.20 [0.17–0.24]

Note. Estimated group means � (�̂) are reported on the probability scale, whereas group SDs �̂ are reported on the latent probit-scale (and can thus be
larger than one).

Figure 10. Estimated relative speed of latent processes based on the
RT-extended r-model across the 19 data sets in Table 3. Density functions
were fitted to the individual estimates to enhance the visual distinction
between the three histograms. See the online article for the color version of
this figure.
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pressure. Table 5 lists the 10 reanalyzed studies, overall including
121,324 decisions by 671 participants.7

We reanalyzed the studies in Table 5 independently of the data
from Mannheim (see Table 3) for two reasons. First, the data sets
by other labs were obtained after knowing the results of the first
reanalysis, which renders the second one an independent replica-
tion that allows testing the robustness of the findings by applying
exactly the same methods to novel data. Second, the two sets of
studies differed in the total number of trials (274,296 vs. 121,324
trials for the data collected by researchers associated with Mann-
heim and other researchers, respectively). Hence, any results from
a pooled reanalysis would have likely been dominated by the first
set of studies, thereby covering possible inconsistencies with the
new, independent data.

We performed the same three statistical analyses as above. First,
based on two RT bins, we fitted the hierarchical MPT version of
the RT-extended r-model, which accounted for the observed fre-
quencies well (the supplementary material provides a goodness-
of-fit plot closely resembling Figure 9). The estimated latency
parameters are shown in the right part of Table 4 and plotted in

Figure 14. As in the reanalysis above, R-congruent choices were
faster than choices due to recognition only, which in turn were
slightly faster than R-incongruent choices. This result again sup-
ports PCS, which predicts that memory-based decisions become
slower as the coherence of further knowledge with recognition
decreases.

Next, we aggregated frequencies across participants to fit the
RT-extended r-model with 30 RT bins.8 The estimates for the core
parameters were comparable to the group-level estimates in the
hierarchical model (but with smaller, possibly underestimated 95%
credibility intervals), r̂ 	 .408 [.400–.416], â 	 .646 [.642–.650],
and b̂ 	 .659 [.655–.662]. Figure 15 shows that R-congruent
choices were again stochastically faster than R-only and
R-incongruent choices (i.e., the cumulative density was larger
across the full RT range). However, the relative speed of the latter
two processes was estimated to be very similar, with a slight
tendency of R-incongruent choices being faster than choices due to
recognition only, a pattern neither predicted by the RH nor by
PCS. Given that aggregated analyses tend to underestimate cred-
ibility intervals, we doubt the reliability of this result. However,
the integration of R-congruent knowledge clearly lead to the
fastest choices, thereby supporting the PCS account.

Finally, the results of the outcome-based strategy classification
on the individual level are shown in Figure 16. Across data sets, a
majority of 83.0% of the 671 participants was best described by
PCS, compared to a minority of 15% best described by the serial-
heuristic account (4.6% and 10.9% for RH and RH-strong, respec-
tively), and only 1.5% were classified by the baseline model.

7 Unfortunately, despite making their raw data available, we could not
include Study 3 by Hertwig, Herzog, Schooler, and Reimer (2008) because
of the small number of individual trials for each of the three domains (52
trials per participant, whereas the other studies in Table 5 had between 120
and 276 trials). The three domains differed considerably with respect to
choice frequencies and RTs, thereby preventing an aggregation across
domains.

8 We only used 30 instead of 40 RT bins in the second reanalysis due to
the smaller number of observations available.

Figure 11. Model fit of the RT-extended r-model with 40 RT bins to the 40 � 8 data categories based on the
19 studies in Table 3. Within each type of response, frequencies from fast to slow RT bins are shown from left
to right. See the online article for the color version of this figure.

Figure 12. Estimated latent RT distributions for the 19 studies in
Table 3. See the online article for the color version of this figure.
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Similar as above, these proportions of strategy users were robust
across data sets.

Overall, the reanalysis of an independent set of studies by
researchers from other nine labs provided converging evidence in
favor of the PCS account. All analyses revealed that memory-
based decisions that take additional, R-congruent knowledge into
account were faster than those due to recognition only, in contrast
to the prediction of the serial RH. This result holds not just on
average, but also for the vast majority of participants investigated.

Discussion

Since its proposal, the RH theory (Gigerenzer & Goldstein,
1996; Goldstein & Gigerenzer, 2002) stimulated much research
investigating whether and how people rely on recognition in
memory-based decisions. Whereas researchers agree that recogni-
tion is used as a valid and influential metacognitive cue in the
decision process (e.g., Gigerenzer & Goldstein, 2011; Glöckner &
Bröder, 2014; Hilbig, Erdfelder, & Pohl, 2010; Pachur, Todd,
Gigerenzer, Schooler, & Goldstein, 2011), a controversy has
evolved concerning the noncompensatory nature of recognition
use as stated by the original RH theory (Hilbig & Richter, 2011;
Marewski et al., 2010, 2011a).

To test whether recognition is used in a noncompensatory way,
we derived opposing predictions from two major theoretical ac-

counts, both implemented as precise process models. On the one
hand, the serial heuristic account assumes that in each trial, either
the fast RH or a slower, knowledge-based strategy is used (Gold-
stein & Gigerenzer, 2002, 2011). Based on the formal definition of
this model, we derived the strong prediction of stochastic domi-
nance stating that RH responses are stochastically faster than
responses due to the use of further knowledge (Equation 2). On the
other hand, the information-integration account assumes that rec-
ognition is merely one of many cues that are integrated jointly
(e.g., Newell & Shanks, 2004). We implemented this account as a
process model based on the PCS theory, which assumes that
choices and RTs depend on the coherence of the available infor-
mation (Glöckner & Betsch, 2008; Glöckner et al., 2014). In
contrast to earlier PCS accounts of memory-based decisions (e.g.,
Glöckner & Bröder, 2011, 2014), we explicitly modeled nonexis-
tent cue knowledge for the unrecognized option and partial cue
knowledge for the recognized option by deleting links between cue
and option nodes in the PCS network. This compensatory account
predicts that choices due to recognition-congruent knowledge are
actually faster than choices due to recognition only (even though
more information is integrated; Betsch & Glöckner, 2010).

Importantly, the opposing predictions of both process models
refer to latent, unobservable RT distributions and can thus not be
tested directly. To allow for an empirical test between the two

Table 5
Data Sets Included in the Second Reanalysis

Data Set Citation Material N Responses

1 Hochman, Ayal, and Glöckner (2010) (Trials without additional cue) City size 24 3,354
2 Horn, Ruggeri, and Pachur (2016) (Cities)� City size 56 8,568
3 Horn, Ruggeri, and Pachur (2016) (Diseases, old adolescents)† Disease frequency 21 3,213
4 Pachur and Hertwig (2006) Study 1 Disease frequency 39 10,764
5 Pachur, Mata, and Schooler (2009) Study 1 (Cities)� City size 39 10,752
6 Pachur, Mata, and Schooler (2009) Study 1 (Diseases)� Disease frequency 39 10,742
7 Pachur, Mata, and Schooler (2009) Study 2 (Old adults) Disease frequency 59 16,284
8 Pachur, Mata, and Schooler (2009) Study 2 (Young adults) Disease frequency 60 16,560
9 Richter and Späth (2006) Exp. 1# Animal population 42 6,047

10 Schweickart and Brown (2014) Study 2 Country GDP 292 35,040

Note. N refers to the number of participants after exclusion of those who recognized either all or none of the items.
† We did not include data of children and young adolescents in the “Disease” condition, since the knowledge validity was at chance level (leading to an
empirically nonidentifiable model). # Since individual recognition judgments were not available, animals were categorized as “unrecognized” and
“recognized” for all participants identically, which is warranted by unambiguous average recognition rates of .97 and .05, respectively. � Includes data
by different age groups.

Figure 13. Estimated proportion of PCS and RH users for the 19 data sets in Table 3.
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competing process models, we developed an encompassing mea-
surement model. This RT-extended version of the r-model (Hilbig,
Erdfelder, & Pohl, 2010) can be fit to data collected in the standard
RH paradigm (which includes only a decision and a recognition
phase) and does not require an experimental manipulation of cue
or recognition knowledge. Without parametric assumptions on the
latent RT distributions (Heck & Erdfelder, 2016), this measure-
ment model allows to estimate the relative decision speed when
integrating R-congruent further knowledge and when relying on
recognition only.

Following the methodology of previous works regarding the RH
(e.g., Gigerenzer & Goldstein, 1996; Marewski & Mehlhorn, 2011;
Schooler & Hertwig, 2005), simulations showed that the encom-
passing measurement model indeed allows to differentiate between
the two process models. Next, we used the RT-extended r-model to
reanalyze 29 data sets including around 400,000 memory-based
decisions. The Bayesian hierarchical version with two RT bins
explicitly modeled the dependencies of parameters across partici-

pants and data sets, showing that choices due to R-congruent
knowledge were substantially faster than choices due to recogni-
tion only. This main result was replicated in a more fine-grained
test of stochastic dominance using 40 RT bins under the more
restrictive assumption of independently and identically distributed
observations across participants. It is well-known that an isolated
analysis of aggregated data has severe limitations (e.g., Gigerenzer
& Goldstein, 2011; Klauer, 2006). However, these problems are
mitigated in the present context by the cross-validation with the
hierarchical and individual analyses. Using the RT-extended
r-model with individual data, an outcome-based strategy classifi-
cation showed that choices and RTs of 85% of the participants
were better described by PCS than by the RH. Importantly, the
reanalysis of data by researchers from the University of Mannheim
led to substantively identical conclusions as that of data by other
labs.

Overall, our analyses provide converging evidence independent
of the source of the data (cf. Table 3 and 5) and independent of the
different statistical versions of the RT-extended r-model used
(hierarchical Bayesian, stochastic dominance on a finer RT scale,
and model selection on the individual level). All analyses corrob-
orated the compensatory information-integration account repre-
sented by the PCS model, which predicts that the coherence of the
integrated knowledge determines decision speed of memory-based
decisions. Note that our results thereby replicate previous studies
that demonstrated coherence effects by experimentally manipulat-
ing recognition or cue knowledge (e.g., Glöckner & Bröder, 2011,
2014; Hochman et al., 2010).

From a methodological perspective, our approach outlines a
novel approach of linking precise process models to empirically
testable measurement models. Moreover, RTs are only one of
many process-tracing measures that allow more powerful tests of
decision theories compared to relying on choice frequencies only.
Other popular methods include eye-tracking, mouse-tracking, ac-
tive information search, and thinking aloud (Schulte-Mecklenbeck,
Kühberger, & Ranyard, 2011), as well as confidence ratings,
neurophysiological data, and physiological arousal (e.g., Hochman
et al., 2010). In principle, some of these variables could be in-
cluded in our encompassing measurement approach similar to RTs.
For instance, PCS predicts that confidence in a choice increases
monotonically with the coherence of the available information,
operationalized by a larger difference in the final activation levels

Figure 14. Estimated relative speed of latent processes based on the
RT-extended r-model based on the 10 data sets in Table 5. Density
functions were fitted to the individual estimates to enhance the visual
distinction between the three histograms. See the online article for the color
version of this figure.

Figure 15. Estimated cumulative density functions of the latent RT
distributions for the 10 data sets in Table 5. See the online article for the
color version of this figure.

Figure 16. Estimated proportion of PCS and RH users for the 10 data sets
in Table 5.
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of the option nodes (e.g., Glöckner & Bröder, 2011; Hochman et
al., 2010). Assuming that each of the cognitive states of the
r-model results in a distinct distribution of confidence ratings, a
mixture emerges similar as in the case of RTs (cf. Figure 5). In
principle, such a “confidence-extended r-model” might allow to
obtain process-pure confidence estimates conditional on the latent
cognitive states. However, future work is required to test whether
other process-tracing measures can actually be modeled within the
proposed framework.

The Recognition Process

In all theoretical derivations and empirical tests so far, we have
focused on information integration and neglected the recognition
process itself. In the following, we discuss the generalizability and
implications of our results in light of a closer look at the recogni-
tion process (Erdfelder, Küpper-Tetzel, & Mattern, 2011; Pleskac,
2007).

Recognition Speed and Further Knowledge

Often, studies investigating memory-based decisions have also
examined the time required to recognize items as a proxy for
processing fluency (e.g., Hilbig & Pohl, 2009; Schooler &
Hertwig, 2005). The fluency heuristic states that the faster recog-
nized item is chosen in trials involving two recognized objects (RR
pairs; Hertwig et al., 2008; Schooler & Hertwig, 2005). Despite
empirical evidence against such an account (Hilbig, Erdfelder, &
Pohl, 2011; Pohl, Erdfelder, Michalkiewicz, Castela, & Hilbig,
2016), the recognition speed could still confound any analysis of
choice RTs. Specifically, memory-based decisions in trials with
further knowledge might not be faster because of the increased
coherence of further information with recognition (as stated by
PCS) but rather due to faster recognition itself (Gigerenzer &
Goldstein, 2011). Indeed, it is very plausible to assume that objects
for which a lot of knowledge is available are also retrieved faster.

Concerning the parallel information-integration account, the
assumption that items with additional knowledge are recognized
faster strengthens the prediction that R-congruent choices are
faster than R-only choices. However, it also weakens the predic-
tion that R-only choices are faster than R-incongruent choices.
Importantly, this matches our results in Figure 12 and 15 that the
discrepancies are larger between the estimated latent RT distribu-
tions of R-congruent and R-only choices than between those of
R-only and R-incongruent choices.

According to the serial heuristic account, recognition speed
determines the time of entering the evaluation or strategy-selection
stage (see Figure 1).9 To derive decision-time predictions, we
subsume recognition and strategy selection under a single preced-
ing stage. Then, as derived above, the prediction of stochastically
faster RH responses (Equation 3) holds for a variety of assump-
tions regarding this preceding stage (for instance, if recognition-
speed is correlated with the speed of executing the selected strat-
egy). However, as an important exception, stochastic dominance
does not follow anymore if the preceding stage requires more time
for selecting the RH than a knowledge-based strategy. If this
assumption is made, the serial-heuristic account would be com-
patible with our results. However, such an assumption would
imply that knowledge-based strategies are used for faster-

recognized items (i.e., items with further knowledge) whereas the
RH is used for slower-recognized items (i.e., items without or with
less further knowledge). Put differently, this implies that the RH is
only used in cases in which less or no further knowledge is
available, that is, in cases in which decisions are noncompensatory
by definition regardless of the theoretical framework. This reason-
ing narrows the scope of the RH to a trivial case and renders the
information-integration account the better theory due to its larger
scope and explanatory power (Glöckner & Betsch, 2011).

Taken together, these theoretical arguments show that the RH
prediction of fast R-only choices cannot be reversed by consider-
ing recognition speed without giving up a core feature of the
theory. Moreover, one can empirically test whether recognition
speed can account for our results. In Appendix B, we used the
approach by Hilbig and Pohl (2009) in which RT residuals from a
regression of decision times on recognition times are analyzed
(i.e., choice RTs are predicted in each trial by the recognition RTs
of the two presented items). It follows that the RT residuals are
statistically controlled for recognition speed and can be used as the
input for the RT-extended r-model. The analyses in Appendix B
clearly show that the R-congruent RT residuals are still faster than
R-only responses. Hence, our results are robust regarding possible
confounds by recognition speed.

Recognition as a Binary Variable

When proposing the RH, Gigerenzer and Goldstein (1996) con-
ceptualized recognition as an all-or-none, binary variable. Re-
cently, this simplifying assumption has been questioned (Gigeren-
zer & Goldstein, 2011; Hilbig & Pohl, 2009) and recognition
models from the memory literature have been combined with the
RH (Erdfelder et al., 2011; Pleskac, 2007). On the one hand,
Pleskac (2007) adapted signal detection theory, assuming a con-
tinuous memory-strength signal. On the other hand, based on the
two-high threshold model (Bröder & Schütz, 2009), Erdfelder et
al. (2011) proposed the memory-state heuristic (MSH) assuming
that the discrepancy between three latent recognition states deter-
mines choices (i.e., recognition certainty, uncertainty, and rejec-
tion certainty; see also Castela & Erdfelder, 2017a; Castela, Kel-
len, Erdfelder, & Hilbig, 2014). For instance, the MSH predicts
that the recognized object is more likely to be chosen if it is
recognized with certainty compared to being in an uncertainty
state, even if the recognition judgment is positive in either case.

Similarly as the RH, the parallel information-integration account
can be modified to take more fine-grained recognition information
into account. Since the PCS network is set up in each trial anew
depending on the available information, it is natural to assume that
the subjective recognition validity depends on the strength of the
recognition signal (cf. Figure 2B). For instance, recognition valid-
ity might subjectively be larger in trials involving a certainly
recognized and a certainly rejected item compared to trials involv-
ing an uncertain item. Similarly, subjective recognition validity
can be modeled as a function of a continuous memory strength
signal based on signal detection theory.

9 Note that in each trial, the second choice option also needs to be judged
as unrecognized, so the effect of memory strength on the time of entering
the evaluation stage will be diminished.
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Across trials, the assumption of varying subjective recognition
validities results in a mixture of PCS predictions. In other words,
the weight of the recognition cue (i.e., the link wR in Figure 2B) is
assumed to be smaller in some trials but larger in others. Crucially,
however, the prediction that R-congruent choices are faster than
R-only choices still holds within each of these cases for a given
subjective validity. If we assume that the recognition validities �
are identically distributed for R-only and R-congruent RT distri-
butions according to some density �(�) (which depends on the
distribution of memory-strength signals), the PCS prediction in
Equation 6 generalizes to the emerging mixture distributions of
RTs across trials. When marginalizing over the distribution of
subjective validities � (�), the prediction of stochastic dominance
of R-congruent choices still holds:

	0

1
FR-only(t � �)�(�)d� � 	0

1
FR-congruent(t � �)�(�)d� for all t � ��. (11)

Note that in case of discrete memory states as assumed by the
MSH, �(�) becomes a point measure that assigns all probability
mass to a finite number of possible values for �, thereby reducing
the integral to a finite sum. Irrespective whether the recognition
signal is assumed to be discrete or continuous, the predictions of
PCS with varying subjective recognition probabilities across trials
are hence perfectly in line with the observed ordering of RT
distributions.

Besides these theoretical considerations, the effect of memory
states on RTs can be empirically tested by adapting the r�-model
that was developed by Castela et al. (2014) to test the MSH. This
extended version of the r-model additionally differentiates be-
tween items that are subjectively judged as merely recognized
(mR) or recognized with further knowledge (R�). According to
the MSH, R� items are more likely to be in the recognition
certainty state. Based on this indicator, one can empirically test
whether R-congruent responses are faster irrespective of the un-
derlying memory states, that is, for both mR/U (lower discrepancy
in memory states) and R�/U pairs (higher discrepancy). In Ap-
pendix C we show that this is indeed the case: even though
recognition is more influential in R�/U pairs as indicated by a
larger estimate for r, R-congruent responses are faster than R-only
responses in both conditions.

Reinterpretation of the r-Model and Related Models

Given that our results clearly favor information-integration the-
ories, it appears unwarranted to interpret the r-model as measuring
the probability of using a fast and frugal heuristic, namely, the RH
(Hilbig, Erdfelder, & Pohl, 2010). By definition, the r parameter
represents the probability of relying solely on the recognition cue
such that this cue determines the judgment, irrespective of further
knowledge. However, although RH use implies reliance on recog-
nition only, the reverse does not necessarily hold. Noncompensa-
tory reliance on the recognition cue can occur as a special case of
a single, compensatory information-integration process, simply by
giving the recognition cue a very large weight (cf. Hilbig, Scholl,
& Pohl, 2010). Thus, although the definition of the r parameter is
unique, its theoretical interpretation is not. This difference in
theoretical interpretations becomes important when considering
the effect of experimental manipulations on r: Given our results,
instead of assuming an adaptive qualitative shift in decision strat-

egies (e.g., “temporarily suspending the recognition heuristic”;
Pachur & Hertwig, 2006, p. 992), an observed decrease in r rather
appears to indicate that recognition determines decisions less often
in a noncompensatory way because the relative weight of cues
based on further knowledge increases—or the relative weight of
the recognition cue decreases—during information integration
(Glöckner et al., 2014; Hilbig, Scholl, & Pohl, 2010).

This reinterpretation of the r parameter might change some but
not all conclusions of previous research that relied on the r-model.
On the one hand, validation studies that tested whether recognition
is used more often in a noncompensatory way under suitable
experimental manipulations remain valid, since the theoretical
assumption of a distinct heuristic is not required. In contrast,
interpretations in terms of a shift in the underlying strategies need
to be adjusted. For instance, the increase in r due to time pressure
(Hilbig, Erdfelder, & Pohl, 2012) can be explained by further
knowledge being available too late (this is in line with the de-
creased knowledge validity in the time-pressure condition). Ac-
cordingly, further knowledge can only overrule recognition if
knowledge cues enter the integration process sufficiently fast. A
different example concerns individual differences in r, which were
found to be stable across several weeks and domains (Michalkie-
wicz & Erdfelder, 2016). Instead of assuming a trait-like prefer-
ence for or against using the RH, these results might simply be due
to stable individual tendencies in the relative weight of the recog-
nition cue in the global information integration process. Similarly,
younger and older participants might assign different subjective
weights to recognition that results in different estimates of r for
different age groups (Horn et al., 2015).

Overall, these examples show the far-reaching consequences of
interpreting r either as a discrete switch in using the RH versus a
continuous shift of the relative influence of the recognition cue
(Hilbig, Scholl, & Pohl, 2010). Importantly, only the RT-extended
and not the standard r-model allows for differentiation between
both interpretations of the r parameter. Given the strong evidence
for the information-integration account, further applications of the
(standard) r-model should interpret r as the subjective weight
assigned to recognition such that it effectively becomes a noncom-
pensatory cue. Similar conclusions hold with respect to extensions
of the r-model based on the memory-state heuristic, that is, the
r�-model (Castela et al., 2014) or the latent-states MSH model
(Castela & Erdfelder, 2017a).

Conclusion

Given that memory-based decisions are very common in our
everyday life, it is important to know whether recognition is used
in a noncompensatory fashion as stated by the RH. To answer this
question, we developed an encompassing measurement model that
allows to test precise RT predictions of two competing process
models. A reanalysis of 29 data sets including approximately
400,000 memory-based decisions clearly showed that responses
due to R-congruent knowledge were actually faster than responses
due to recognition only. These results support the parallel con-
straint satisfaction account according to which different sources of
information are intuitively integrated in a compensatory way.
Accordingly, the coherence and not the amount of further knowl-
edge with recognition determines the speed of memory-based
decisions.
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Appendix A

Identifiability of the RT-Extended r-Model

Heck and Erdfelder (2016) proved that the substantive core parameters of an RT-extended MPT model are identifiable if the underlying
basic MPT model is identifiable. For the RT-extended r-model, this implies the identifiability of r, a, b, and g. Moreover, the identifiability
of the latency parameters is guaranteed if the following matrix has full rank (for details, see Heck & Erdfelder, 2016):

P(
) �

Lguess LRR correct LRR false LR-only LR-congruent LR-incongruent

g 0 0 0 0 0
1 � g 0 0 0 0 0

0 b 0 0 0 0
0 0 1 � b 0 0 0
0 0 0 ra (1 � r)ba 0
0 0 0 r(1 � a) (1 � r)(1 � b)(1 � a) 0
0 0 0 0 0 (1 � r)b(1 � a)
0 0 0 0 0 (1 � r)(1 � b)a

G�

G�

K�

K�

R�

R�

U�

U�

For parameters � 	 (r, a, b, g) � (0, 1)4, P (�) has full rank if and only if b 
 0.5. Note that this special case is not of substantive interest,
since it refers to scenarios where further knowledge is invalid and noninformative. Under such conditions, it is intuitively clear that we
cannot learn how further knowledge is integrated with the recognition cue. Hence, for scenarios of interest (i.e., a � .5, b � .5), the
RT-extended r-model is identifiable.

Appendix B

Analyzing RT Residuals

In the main text, we used the observed RTs of the decision phase
to test the relative speed of integrating the recognition cue with
further knowledge. However, this analysis might have been af-
fected by the recognition speed itself, which often serves as a
proxy for processing fluency (Hilbig et al., 2011; Schooler &
Hertwig, 2005). In other words, the analysis of choice RTs might
have confounded the speed of information integration with speed
of recognizing the objects. Hence, the main result that R-congruent
responses were estimated to be slower than R-only responses
might be explained by those items being recognized faster.

To test this alternative explanation, we repeated our analysis
using RT residuals, thereby accounting for recognition speed.
Specifically, we followed the method used by Hilbig and Pohl
(2009) and predicted the choice RTs in the decision phase by
the RTs of the recognition phase for both objects (which are

often used as a proxy for processing fluency; Schooler &
Hertwig, 2005) separately per person. The RT residuals of this
regression are then categorized and used as input for the RT-
extended r-model as explained in the main text. The following
analysis only differed with respect to the strategy of categoriz-
ing continuous RT residuals into discrete bins. Instead of a
lognormal approximation, we used a normal distribution to
approximate the RT residuals across all response categories per
person and obtain individual boundaries for categorizing re-
sponses from “fast” to “slow.” Specifically, we computed the
mean and SD of all RT residuals per person to compute equally-
spaced quantiles from a corresponding normal distribution. The
reason for using a normal instead of a lognormal approximation
lies in the nature of RT residuals, which assume both positive
and negative values.

(Appendices continue)
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Using this approach, we reanalyzed a subset of 15 data sets from
Mannheim (cf. Table 3) including 259,470 individual choices for
which recognition RTs were available. The results of this analysis
were very similar to those from the main text as shown by the
parameter estimates for the hierarchical model in Table B1. In line
with the prediction of PCS, R-congruent responses were estimated to
be faster than those based on recognition only. The same result

emerged in a test of stochastic dominance when using 40 RT bins as
shown in Figure B1 (the core estimates were r̂ 	 0.69, â 	 .65, and
b̂ 	 .63 with standard deviations of the posterior distributions �
.003).

Overall, this analysis shows that the main results cannot simply
be explained by retrieval fluency as operationalized by the recog-
nition speed of the objects. In other words, when taking into
account that some of the objects were recognized faster,
R-congruent responses were still estimated to be faster than re-
sponses based on recognition only, thus corroborating the parallel
information-integration account.

(Appendices continue)

Table B1
Posterior Mean Estimates for the Hierarchical, RT-Extended
r-Model Based on RT Residuals (Including 95% Credibility
Intervals)

� (�̂) 95% CI �̂ 95% CI

Core parameters
r .74 [.72–.75] 0.69 [0.66–0.73]
a .67 [.66–.68] 0.24 [0.22–0.25]
b .62 [.61–.62] 0.18 [0.17–0.19]
g .52 [.51–.52] 0.15 [0.13–0.16]

Latency parameters
Lg .56 [.56–.57] 0.18 [0.16–0.19]
LRR,false .64 [.63–.65] 0.15 [0.13–0.17]
LRR,correct .61 [.60–.61] 0.17 [0.15–0.19]
LR-congruent .93 [.89–.96] 0.64 [0.52–0.77]
LR-only .71 [.70–.72] 0.22 [0.20–0.25]
LR-incongruent .57 [.56–.58] 0.27 [0.24–0.30]

Note. Estimated group means � (�̂) are reported on the probability scale,
whereas group SDs �̂ are reported on the latent probit-scale (and can thus
be larger than one).

Figure B1. Estimated latent distributions of RT residuals. See the online
article for the color version of this figure.
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Appendix C

Subjective Knowledge Ratings (mR vs. R�)

Besides binary recognition judgments (R/U), several studies
also asked participants whether cities were either merely recog-
nized (mR) or recognized with further knowledge (R�) as pro-
posed by Pohl (2006). Under the assumption that these subjective,
introspective judgments are valid indicators for the availability of
further knowledge, they allow to test hypotheses concerning the
effect of cue knowledge (e.g., Hilbig & Pohl, 2009) and memory
states (Castela et al., 2014) on the probability and speed of recog-
nition use. In the following, we show that our main result—R-
congruent responses are faster than responses due to recognition
only—also emerged when estimating separate latent RT distribu-
tions for R� and mR items.

If the subjective knowledge ratings were perfectly valid, people
could only rely on the recognition cue and not on further knowl-
edge when deciding between a merely recognized and an unrec-
ognized option (mR/U pair). Accordingly, without any explicit or
implicit knowledge, the knowledge validity for trials involving
only merely recognized items (mR/mR pairs) must be at chance
level, that is, b 	 .50. However, previous studies showed that this
was not the case and that participants still had some kind of
implicit knowledge despite reporting to merely recognize an object
(e.g., Castela et al., 2014). Hence, the subjective knowledge ratings
cannot be interpreted as perfectly valid indicators of further knowl-
edge.

In deriving predictions from the PCS account, we did not
differentiate between explicit and implicit knowledge. Hence, we
assume that any type of relevant knowledge enters the information
integration process (Glöckner & Betsch, 2008). This implies that
the model predicts the same ordering of R-congruent, R-only, and
R-incongruent RT distributions within both mR/U and R�/U
pairs. However, assuming that the subjective ratings reflect the
amount of both explicit and implicit knowledge to some degree,
we expect a larger effect of knowledge on the RT distributions for
R�/U pairs compared to mR/U pairs (namely, larger discrepancies
between the three latent RT distributions).

To test our predictions, we fitted the r�-model by Castela et al.
(2014) that extends the standard r-model to all paired combinations
of R�, mR, and U item types, resulting in six MPT trees and 18
observed categories. We adapted the restrictions of the b param-
eters by Castela et al. (2014), namely, that knowledge validity may
differ for R� and mR item types but is identical for RR and RU
pairs (i.e., bR�,U 	 bR�,R� and bmR,U 	 bmR,mR). Moreover, we
modeled the latent RT distribution similarly as in the main text,

that is, we fitted three latent RT distributions (R-congruent,
R-only, and R-incongruent) separately for the R�/U and the mR/U
pairs.

Due to the large number of observed categories of the RT-
extended r�-model (18 · B instead of 8 · B when using B RT bins)
and the smaller sample size (only 13 data sets in Table 3 included
mR/R� judgments, resulting in a total of 165,786 responses), we
did not fit a hierarchical model. Instead, we relied on the assump-
tion of identically and independently distributed responses and
used 20 RT bins to test stochastic dominance.

Table C1 shows the core parameter estimates of the r�-model.
Both knowledge and recognition validity were higher for R�
compared to mR items. Note that participants’ accuracy was sub-
stantially above chance for merely recognized items (bmR 	 .598),
which indicates that introspective knowledge ratings were imper-
fect indicators for the availability of further knowledge. Moreover,
participants relied on the recognition cue more often for trials for
which further knowledge was available (rR� 	 .802 vs. rmR 	
.596). At first glance, this result seems to contradict the PCS
prediction, according to which the recognition cue should have less
impact when more knowledge becomes available. However, this
effect can in principle be overruled if the weight associated with
the recognition cue changes, that is, if participants assign a higher
recognition validity to the R cue for R� compared to mR items. In
other words, decision makers simply adjust the subjective weight
of the recognition cue (Hilbig, Scholl, & Pohl, 2010). Note that
this theoretical conceptualization of ‘adaptivity’ refers to the adap-
tive use of a cue within a single process instead of a qualitative
change of the processing strategy as assumed by the serial RH
account (Glöckner et al., 2014).

(Appendices continue)

Table C1
Core Parameter Estimates for the r�-Model (Castela, Kellen,
Erdfelder, & Hilbig, 2014)

Mean SD 95% CI

rR� .802 .003 [.797–.808]
rmR .596 .005 [.585–.607]
aR� .695 .002 [.691–.699]
amR .588 .003 [.581–.594]
bR� .650 .003 [.645–.655]
bmR .598 .004 [.590–.606]
bR�,mR .647 .003 [.640–.653]
g .519 .003 [.513–.524]

29MODELING RECOGNITION-BASED DECISIONS



Figure C1 shows the cumulative density estimates for the six
latent RT distributions of interest, that is, the R-congruent, R-only,

and R-incongruent distributions separately for R�/U and mR/U
trials. For both types of trials, the R-congruent responses were
estimated to be substantially faster than responses due to recogni-
tion only across the whole range of RTs. For merely recognized
objects, R-incongruent responses were similarly fast as those due
to recognition only, but slower for items that were recognized with
further knowledge.

Note that the speed of noncompensatory use of recognition
(R-only) was estimated to be slightly faster for R�/U pairs com-
pared to mR/U pairs. At first sight, this seems to contradict the
PCS prediction, according to which responses should be similarly
fast if the integration process is determined by the recognition cue
only. However, this prediction rests on the additional assumption
that the weight assigned to the recognition cue is identical in both
cases. However, given that the recognition validity is higher for
R� compared to mR objects, adaptive decision makers should
assign a higher weight to the recognition cue accordingly. For the
RT-extended r-model, this implies that both the r parameter and
the speed of R-only responses will increase for R�/U pairs com-
pared to mR/U pairs, exactly as observed.

Overall, this analysis of subjective knowledge ratings cor-
roborates our conclusion from the main text, that is, responses
due to R-congruent knowledge were faster than those due to
recognition only. Moreover, our analysis showed that some type
of implicit knowledge must be available even when participants
judge items as being “merely recognized without further knowl-
edge.” This strengthens the importance of using a measurement
model such as the r-model to decompose observed responses
that are due to further knowledge and responses that are due to
recognition only instead of relying on introspective judgments.

Received July 12, 2016
Revision received January 16, 2017

Accepted January 16, 2017 �

Figure C1. Estimated latent RT distributions for pairs including an un-
recognized and a merely recognized option (mR/U) or an unrecognized and
a recognized option with further knowledge (R�/U). See the online article
for the color version of this figure.
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1 Supplementary Material

In the following, we provide technical details regarding the simulation study based on the

classic German city data set by Gigerenzer and Goldstein (1996) and present an updated

data set of cue and criterion values for the German cities with population greater than

100,000. We repeated the simulation for this data set, which lead to identical conclusions

regarding the ability of the RT-extended r-model to differentiate between both process

models. Moreover, the supplementary material includes goodness-of-fit plots for the

second empirical reanalysis.
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2 Technical Details Regarding the Simulation Study

2.1 The 83 Largest German Cities

The data set by Gigerenzer and Goldstein (1996) contains information about the largest

German cities in form of the following cues, with validities provided in parentheses:

national capital (1.00), exposition site (0.91), soccer team (0.87), intercity train line

(0.78), state capital (0.77), license plate (0.75), university (0.71), industrial belt (0.56),

and East Germany (0.51). The correct cue values for option i and cue c are coded by

Cic ∈ {−1,+1}. Below, we encode unavailable cue values due to failed recognition or

partial knowledge by Cic = 0.

2.2 Recognition Process and Incomplete Knowledge

The recognition probabilities were modeled by a sigmoid function of the criterion values

(Hilbig, 2010; Schooler & Hertwig, 2005). First, we log-transformed and z-standardized

the city populations reported by Gigerenzer and Goldstein (1996, p. 668). Second, these

scaled city sizes zi served as input for a probit-link (i.e., the inverse of the cumulative

density function Φ of the standard normal distribution) to determine the probability

that city i is recognized,

P(Ri = +1) = Φ(α′ + α∗zi), (1)

where the intercept α′ and the slope α∗ jointly determine the recognition validity and

discrimination rate. We used values of α′ = 0 and α∗ = 0.8 to obtain the recognition

probabilities shown in Figure 1A that result in a mean recognition validity of α ≈ .80

(cf. Gigerenzer & Goldstein, 1996) and a mean discrimination rate of d ≈ .50.

Based on the recognition probabilities in Figure 1A, a random vector of recognized

(Ri = +1) and unrecognized (Ri = −1) cities was drawn separately for each participant.

Different participants were treated as random replications of the same stochastic pro-

cess. In other words, no systematic heterogeneity between participants was assumed. To

model incomplete knowledge represented by missing information regarding the unrecog-

nized options, all corresponding cue values were set to zero. In natural environments,

cue values are more likely to be known for larger cities. Hence, to account for partial

cue knowledge concerning the recognized cities, we generated probabilities of knowing a

cue value using the sigmoid function shown in Figure 1B (with intercept α′ = −1 and

slope α∗ = .1). Based on these probabilities, cue values were removed randomly for each

participant (i.e., setting Cic = 0). This procedure resulted in individual cue structures

with partial knowledge about some cue values of some options.
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Figure 1: Probit-link function used to model recognition and cue knowledge probabilities.

2.3 Process Model Implementations

For the serial heuristic account, the predicted number of EIPs in each trial is described

in the main text. Based on this number M of required EIPs, the observed RTs are

modeled by the sum of a uniform nondecision time T0 (with values in the interval [0, 1])

and M independent random variables Ei that represent the time required for each EIP,

T = T0 +

M∑
i=1

Ei, (2)

where each Ei is exponentially distributed with rate λ = 1.

As described in the main text, PCS chooses the option with the highest activation.
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Moreover, interval-scaled RT predictions are provided by the number of iterations until

convergence is reached. To simulate continuous RT values, we added independent, nor-

mally distributed nondecision times to the number of iterations. We chose a standard

deviation (SD = 10) for the nondecision times, which is in the range of the SD of the

raw iterations produced by PCS. However, values of SD = 1 and SD = 25 did not affect

the pattern of results qualitatively.

2.4 Details Regarding the Generalizability Simulation

Each replication was generated under the following conditions. A subset between two and

nine of the available cues was sampled with uniform probability (without replacement).

Regarding the probabilities to recognize a city, we used the probit function in Equation 1

with randomly chosen parameters. We sampled the intercept α′ and the slope α∗ from

truncated normal distributions with a standard deviation of .25 and means equal to the

previous simulation (µα′ = 0, µα∗ = 0.8). Similarly, the probability of a cue value being

known to a participant was determined by a probit-function with intercept and slope

drawn from truncated normal distributions with a standard deviation of .25 and means

µβ′ = −1 and µβ∗ = 0.1, respectively.

Based on 10,000 generated cue structures, the process models were applied as above,

that is, with the true cue validities and a subjective recognition validity of α = .80 in

case of PCS and a probability r = .80 of RH use in case of the serial RH. We simulated

responses for N = 50 hypothetical participants and we fitted the RT-extended r-model

using two RT bins for each process model.

3 Simulation Based on Updated Data Base

To check the robustness of our simulation, we updated the data base by Gigerenzer

and Goldstein (1996), which lists city sizes and cue values for German cities with a

population larger than 100,000. Cue validities were similar compared to the classic data

set (national capital = 1.00, exposition site = 0.92, license plate = 0.87, intercity train

line = 0.83, state capital = 0.81, university = 0.76, soccer team = 0.76, East Germany

= 0.58, industrial belt = 0.55). All parameters were identical to those reported in the

simulation in the main text. The resulting recognition probabilities for cities and cue

values are shown in Figure 3.

Figure 3 show the results of the simulation. Overall, the same conclusions can be

drawn. First, the core parameter estimates of the RT-extended r-model are very sim-

ilar between data-generating models and do not allow to distinguish both theoretical
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Figure 2: Recognition probabilities for the simulation based on the updated data base
of German cities.

accounts. In contrast, for PCS, the relative speed of R-congruent knowledge use is esti-

mated to be faster than reliance on recognition only (and vice versa for the RH). Hence,

we conclude that our simulation results also hold in a different, up-to-date ecological

environment.
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4 Goodness-of-Fit in the Second Reanalysis

Concerning the second reanalysis of 10 studies by researchers not associated with Mannheim,

Figure 4 shows that the hierarchical MPT model fitted the observed frequencies well.

Similarly, Figure 5 indicates a good model fit of the RT-extended r-model with 30 RT

bins to the observed data.
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Figure 4: Model fit of the hierarchical RT-extended r-model to the 8×2 data categories.
For each response category of the r-model, the observed and predicted frequen-
cies of the ‘fast’ category are presented first, and those of the ‘slow’ category
second.
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Figure 5: Model fit of the RT-extended r-model with 30 RT bins to the 30 × 8 data
categories. Within each type of response, frequencies from fast to slow RT
bins are shown from left to right.
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GENERALIZED PROCESSING TREE MODELS:

JOINTLY MODELING DISCRETE AND CONTINUOUS VARIABLES

Abstract

Multinomial processing tree models assume that discrete cognitive states

determine observed response frequencies. Generalized processing tree (GPT)

models extend this conceptual framework to continuous variables such as

response times, process-tracing measures, or neurophysiological variables. Es-

sentially, GPT models assume a finite mixture distribution, with weights deter-

mined by a processing-tree structure, and continuous components modeled by

parameterized distributions such as Gaussians with separate or shared param-

eters across states. We discuss identifiability issues, parameter estimation, and

propose a modeling syntax. A simulation shows the higher precision of GPT

estimates, and an empirical example tests a GPT model for computer-mouse

trajectories of semantic categorization.

Key words: multinomial processing tree model; discrete states; mixture

model; cognitive modeling; response times; mouse-tracking



GENERALIZED PROCESSING TREE MODELS 2

1. Introduction

In psychology, many theories comprise the assumption that identical observed

responses can emerge from qualitatively distinct cognitive processes. For instance, in

recognition memory, correct responses might not only be due to actual memory

performance, but can also be the result of lucky guessing (Batchelder & Riefer, 1990). As

a remedy, measurement models assume an explicit structure of latent processes and

thereby provide process-pure measures for psychological constructs. A particularly

successful class of such models are multinomial processing tree (MPT) models which

account for choice frequencies by assuming discrete cognitive states (Batchelder & Riefer,

1990, 1999; Erdfelder et al., 2009). Essentially, MPT models assume a finite number of

cognitive processes where the parameters are defined as the (unconditional or conditional)

probabilities of entering different latent states.

A prominent example is the two-high threshold model (2HTM) for old-new

recognition judgments shown in Figure 1 (Snodgrass & Corwin, 1988). Given a learned

item, correct old responses (hits) emerge either from recognition certainty with

probability do or from recognition uncertainty with the complementary probability

(1− do). Whereas recognition certainty determines an old response with probability 1,

recognition uncertainty results in guessing an old response with probability g. The two

processing branches are disjoint and thus the probability of hits is do + (1− do)g.

Similarly, the probability of correct rejections (new responses to lures) is

dn + (1− dn)(1− g). Besides a good quantitative fit to data, the psychological validity of

the parameters needs to be established by showing selective influence of experimental

factors as predicted, for example, memory-strength manipulations only affect do and dn

whereas response bias manipulations only affect g (e.g., Bröder & Schütz, 2009). Once

the validity of an MPT model such as the 2HT model has been established, it can be

used to test effects of experimental manipulations or population characteristics on specific

cognitive processes as represented by the parameters (an approach termed cognitive

psychometrics; Batchelder, 1998).

Despite their wide applicability, the scope of MPT models is inherently limited by
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Target

1− do
1− g Miss

g Hit

do Hit

Lure

1− dn
1− g Correct rejection

g False alarm

dn Correct rejection

Figure 1 . The two-high threshold model (2HTM) of recognition memory. The parameters

do and dn are the probabilities to detect old and new items (targets and lures),

respectively, whereas g is the probability to guess old conditional on non-detection.

the fact that only discrete data such as response frequencies can be analyzed (Batchelder

& Riefer, 1990). However, due to the availability of computerized testing, eye-tracking,

and neurophysiological methods, psychologists increasingly rely on continuous variables

to investigate cognitive functioning. Given the success of MPT models, we aim at

generalizing their underlying theoretical and statistical structure to continuous variables

by modeling observed behavior as an outcome of discrete cognitive states. For instance,

theories of memory retrieval might not only predict the probability of recognizing items

with certainty, but also that responses due to detection states are faster and given with

higher confidence relative to guessing responses (Heck & Erdfelder, 2016; Province &

Rouder, 2012).

Conceptually, the proposed generalized processing tree (GPT) framework formalizes

this line of reasoning and assumes that latent cognitive processes affect discrete responses

and continuous variables jointly. The GPT approach focuses on data in which one or

more discrete and one or more continuous variables are observed in each trial. In case of

binary recognition judgments, old and new responses could be recorded jointly with

variables such as response times (Dube, Starns, Rotello, & Ratcliff, 2012), confidence

ratings (Bröder, Kellen, Schütz, & Rohrmeier, 2013), or process-tracing measures (e.g.,

computer-mouse trajectories as modeled in the empirical example in Section 4; Koop &

Criss, 2016). Assuming that different latent processes may result in the same vector of

observed variables (e.g., Province & Rouder, 2012), an indeterminacy problem arises

because observations cannot directly be assigned to the underlying latent processes. In
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other words, each observed vector with one discrete and one or more continuous

observations can in principle emerge from more than one of the cognitive states. GPT

models solve this indeterminacy problem by explicitly assuming a finite mixture

distribution for discrete and continuous variables jointly.

In psychology, mixture models have often been used to account for response times

(e.g., Dixon, 2012; Heck & Erdfelder, in press; Miller, 2006; Ollman, 1966; Province &

Rouder, 2012; Yantis, Meyer, & Smith, 1991). The proposed GPT framework generalizes

both mixture models, which are usually applied to response times, and MPT models,

which are usually applied to discrete data, and provides some crucial advantages: (a) the

mixture weights are modeled by a theoretically motivated and psychologically

interpretable processing tree (similar to MPT modeling, see Section 2.1), (b) the simple

model structure facilitates the development of GPT models for specific theories and

experimental paradigms (following the philosophy of the MPT approach, an easy-to-use

modeling syntax is developed in Section 2.4), (c) the MPT parameters, which are defined

as probabilities of entering different cognitive states, can be estimated with higher

precision than in equivalent MPT models (as shown in the simulation in Section 3), and

(d) mixture assumptions can be tested for continuous variables other than response times

(e.g., curvature of mouse-movement trajectories, as in Section 4; Dale, Kehoe, & Spivey,

2007). Before highlighting these advantages in a simulation and an empirical example, we

first define GPT models formally, derive an expectation-maximization algorithm for

parameter estimation, discuss issues of identifiability and model testing, and propose an

easy-to-use modeling language implemented in the R package gpt.

2. Generalized Processing Tree Models

2.1. Jointly Modeling Discrete and Continuous Variables

The following notation for GPT models extends that of Hu and Batchelder (1994)

for MPT models in order to include one or more continuous variables. In each trial, a

vector (x,y) is observed, where x ∈ {C1, . . . , CJ} denotes the discrete choice of one of the

response categories C1, . . . , CJ , and y ∈ RD is a vector of D continuous observations.
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The discrete and continuous data across k = 1, . . . , K independent trials are collected in

a vector x ∈ {C1, . . . , CJ}K and a matrix Y ∈ RK×D, respectively. Discrete observations

are summarized by the observed response frequencies n1, ..., nJ that sum to K and are

defined as nj = ∑
k δCj

({xk}), where δCj
(A) is the Dirac measure, which is one if Cj is in

the set A ⊂ {C1, . . . , CJ} and zero otherwise.

The hypothesized cognitive states are modeled by I processing branches, which are

indexed by i = 1, . . . , Ij within category j (with I = ∑
j Ij). Similar to MPT models, the

category probabilities pj(θ) are modeled by a binary tree structure, conditional on the

parameter vector θ = (θ1, . . . , θS1)T ∈ Θ = [0, 1]S1 . The category probabilities are thus

given by summing the corresponding branch probabilities pij(θ) (Hu & Batchelder, 1994),

which are polynomial functions of θ,

pij(θ) = cij
S∏
s=1

θaijs
s (1− θs)bijs , (1)

where the variables aijs ∈ N and bijs ∈ N indicate how often θs and (1− θs) occur in the

j-th branch leading to category Ci, respectively (with N including zero). Moreover, all

fixed parameter values in this branch are collected in a single constant cij ≥ 0.

The continuous observations y are modeled conditional on the cognitive states, that

is, separately for each of the processing branches. More specifically, GPT models assign

the continuous probability density function gij(y | η) to branch i leading to category Cj,

which is parameterized by η = (η1, . . . , ηS2)T ∈ Λ ⊂ RS2 . For the univariate case D = 1,

Gaussian, gamma, beta, Wald, ex-Gaussian (Luce, 1986), or other commonly used

continuous distributions can be defined for the component densities gij(y) in order to

match theoretical assumptions and the type of variable (e.g., response times or continuous

confidence judgments). For the multivariate case D > 1, the continuous variables y may

be assumed to be independent conditional on the latent states. To this end, univariate

distributions g(d)
ij are defined separately for each of the continuous variables y(d),

gij(y | η) =
D∏
d=1

g
(d)
ij (y(d) | η). (2)

Alternatively, multivariate continuous distributions can be defined for gij to model

dependencies conditional on the latent states.
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Depending on the choice of the component densities gij, the parameters in η refer

to means, standard deviations, shapes, rates, or other parameters of the these continuous

distributions. Theoretical predictions are implemented by constraining some of these

parameters to be identical across cognitive states (e.g., by assuming a constant variance

for all components gij). Note that some dimensions of the parameter space Λ may be

constrained to be positive or within a specific range (e.g., variance and rate parameters

must be nonnegative). Such constraints render Λ a proper subset of RS2 and need to be

considered in parameter estimation (Section 2.3).

Based on the core assumption that discrete and continuous responses emerge from a

finite number of latent cognitive states, a mixture distribution is predicted for the vector

of observations (x,y). However, in contrast to standard mixture models, the GPT

framework uses the branch probabilities pij(θ) to assume an explicit structure for the

mixture weights. More specifically, a GPT model accounts for the data by the

parameterized probability density function

f(x,y | θ,η) =
J∑
j=1

δCj
({x})

Ij∑
i=1

pij(θ)gij(y | η). (3)

Note that only one term of the sum across categories C1, . . . , CJ differs from zero (i.e.,

the term for which x = Cj), and thus the inner sum across branches i = 1, . . . , Ij gives

the defective density function for continuous observations y in category Cj. Taken

together, a generalized processing tree (GPT) model is defined as a set of parameterized

probability density functions,

MGPT(Θ = [0, 1]S1 ,Λ ⊂ RS2) = {f(x,y | θ,η) | θ ∈ Θ,η ∈ Λ} (4)

with the mixture density f defined by Equations (1) and (3). Assuming independently

and identically distributed responses across trials, the likelihood of the model is given as

a function of the parameters (θ,η) by the product

L(θ,η | x,Y ) =
K∏
k=1

f(xk,yk | θ,η). (5)

Often, MPT models include T > 1 independent category systems, usually called

‘trees’, that refer to different item types or experimental manipulations and are modeled
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by separate processing tree structures. Based on the independence assumption, the

resulting product-multinomial model can be analyzed similarly as a multinomial model

(Hu & Batchelder, 1994, p. 31). For GPT models, it is also desirable to define different

tree structures for disjoint sets of trials. For instance, in recognition memory, learned and

new items could be represented by T = 2 disjoint sets M1 ⊂ {1, . . . , K} and

M2 = {1, . . . , K} \M1, respectively. For these different types of trials, separate GPT

structures f1 and f2 can be assumed that have a distribution as defined in Equation (3).

In general, there are T subsets of trials M1, . . . , Mt, . . . , MT corresponding to tree

structures f1, . . . , ft, . . . , fT with Jt categories, parameter counts atijs, btijs, ctij, and

components gtij(y | η), but shared parameters θ and η. Since the conditions are

independent, the overall likelihood becomes

L(θ,η | x,Y ) =
T∏
t=1

∏
k∈Mt

ft(xk,yk | θ,η). (6)

This more general form is required for the analysis of factorial designs and implemented

in the R package gpt. However, for readability, the index t = 1, . . . , T is omitted in the

following without loss of generality.

Figure 2 illustrates the GPT approach when including one continuous variable (i.e.,

D = 1) in the 2HTM (Heck & Erdfelder, 2016; Province & Rouder, 2012). Hits can either

emerge from recognition certainty with probability do or from guessing old with

probability (1− do)g. Accordingly, values on the continuous variable y follow either the

component distribution gdo or ggo, respectively. Then, the joint density of a hit and an

observation y is given by the mixture

f(hit, y | θ,η) = do · gdo(y | η) + (1− do) · g · ggo(y | η). (7)

Note that this is a defective density function with respect to the argument y because

integrating over y gives the probability of hits, do + (1− do)g ≤ 1. The joint density for a

false alarm and an observation y of the continuous variable can be derived accordingly.

What is gained by making parametric assumptions about the gij instead of

adopting a distribution-free approach for the component densities that avoids restrictive

assumptions about their shapes (see, e.g., Yantis et al., 1991)? In fact, based on the
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mixture assumption, Heck and Erdfelder (2016) recently estimated the component

distributions gij by categorizing response times from fast to slow into several bins.

Thereby, component distributions could be estimated by histograms without requiring

specific parametric assumptions for gij(y | η) as in GPT modeling. However, often

researchers have a-priori knowledge about the approximate shape of these component

distributions conditional on the cognitive states. For instance, response-time distributions

are known to be nonnegative and right-skewed (Luce, 1986), and confidence judgments

are usually bounded and unimodal. Incorporating these assumptions explicitly within the

GPT framework constrains the statistical model and reduces model complexity.

Moreover, compared to parametric approaches, categorization of continuous variables is

not feasible for multivariate outcomes (i.e., D > 1), often requires larger sample sizes

(Van Zandt, 2000), and might not provide unique parameter estimates if the core MPT

structure is not identifiable (Heck & Erdfelder, 2016).

Figure 2 . The two-high threshold model (2HTM) of recognition memory extended to one

continuous variable. The component densities gij (Gaussian distributions in our example)

are defined conditional on the processing branches, such that their observable

distributions for separate response categories are, in general, finite mixture distributions.

2.2. Identifiability

To ensure unique parameter estimates, a statistical model must be identifiable, that

is, the prediction function

h : Θ× Λ −→ Pθ,η, (8)
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which assigns the probability measure Pθ,η to the parameters (θ,η), must be one-to-one

(Lehmann & Casella, 1998, Definition 5.2). For GPT models, the measure Pθ,η is defined

as

Pθ,η : P ({C1, . . . , CJ})× B
(
RD

)
−→ [0, 1] (9)

(A,B) 7−→
J∑
j=1

δCj
(A)

∫
y∈B

f(Cj,y | θ,η) dy,

where P denotes the power set and B the Borel σ-algebra. If T independent conditions

are modeled, Equation (9) needs to be expanded to the Cartesian product space

Ω =
T×
t=1

(
{C1, . . . , CJt} × RD

)
. (10)

To prove identifiability of the parameters, it is necessary to show that Pθ,η = Pθ′,η′

implies (θ,η) = (θ′,η′). However, proving the identifiability for such complex models

analytically is often infeasible, even for the more simple special case of MPT models (but

see Batchelder & Riefer, 1990; Meiser & Bröder, 2002).

As a remedy, a heuristic approach facilitates assessing the identifiability of a given

GPT model. In the following, it is assumed that each component distribution gij is

identifiable with respect to its ‘relevant’ parameters η∗ij that affect the predicted

probability. Formally, the relevant parameters are defined as the shortest subvector

η∗ij = (ηs1 , . . . , ηsS
) ∈ RS, S ≤ S2, for which gij(y | η) = gij(y | η∗ij) almost surely.

In a first step, the continuous variables y can be ignored to assess the identifiability

of θ ∈ (0, 1)S1 in isolation by using standard methods for MPT models. A necessary (but

not sufficient) condition for the identifiability of an MPT model is that the number of

free parameters must not be larger than (a) the number of free categories and (b) the

rank of the Jacobian matrix for any observed frequencies n1, . . . , nJ (Bamber &

van Santen, 2000). Moreover, computer algebra software (Schmittmann, Dolan,

Raijmakers, & Batchelder, 2010) and simulations (Moshagen, 2010; Rouder & Batchelder,

1998) are useful to assess the identifiability of the MPT structure.

If the MPT part of a GPT model is identifiable, it follows that the GPT parameters

θ are identifiable, because unique parameter estimates for θ are obtained even when the

continuous variables are ignored (Heck & Erdfelder, 2016, Observation 1). Therefore, only
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the identifiability of the parameters η needs to be shown, which can be done using the

iterative approach proposed in Heck and Erdfelder (2016, Appendix A). Originally, this

heuristic was developed for the distribution-free MPT extension, but it generalizes to

GPT models. First, categories Cj are considered that are reached by a single processing

branch i. For such categories, the corresponding component distributions gij are directly

observable because

f(Cj,y | θ,η) = pj(θ)gij(y | η∗ij), (11)

and hence, the relevant parameters η∗ij, which determine the component density gij, are

also identifiable (because pj and gij are one-to-one). Next, categories are considered that

are reached by two processing branches i and i′, where the parameters η∗ij are identifiable

due to the first step. Since

f(Cj,y | θ,η) = pij(θ)gij(y | η∗ij) + pi′j(θ)gi′j(y | η∗i′j), (12)

the parameters η∗i′j relevant for the component i′ become identifiable.

This iterative scheme can be applied until the identifiability of the full vector η has

been shown. Note that for some GPT models, this recursive approach might not be

sufficient to determine the identifiability of all parameters η. In such cases, identifiability

can be assessed with the more general method of computing the rank of a matrix that

summarizes the assignment of component distributions to processing branches (Heck &

Erdfelder, 2016, Observation 4).

If the core MPT structure of a GPT model is not identifiable, it is in principle still

possible to construct a GPT model with identifiable parameters (θ,η) by appropriately

constraining the parameters η. As an example, consider a simple GPT model with two

processing branches (I = 2) with two Gaussian component distributions N (µi, σ2
i ), where

both branches collapse within a single response category (J = 1). This special case is a

standard two-component mixture model, which is faced with an issue called label

switching (Frühwirth-Schnatter, 2001): within the vector η = (µ1, σ1, µ2, σ2), the

parameters η∗11 = (µ1, σ1) and η∗21 = (µ2, σ2) can be switched (i.e., the indices in η can be
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permuted) without changing the predicted model density

f(C1,y | θ,η) = p11(θ) g11(y | η∗11) + [1− p11(θ)] g21(y | η∗21), (13)

because the branch probabilities p11(θ) and 1− p11(θ) can be switched as well. Intuitively,

the GPT model does not ‘know’ which of the two processing branches belongs to which of

the two component distributions. As a remedy, the model can be rendered identifiable by

constraining the component densities gij(y | η) (Frühwirth-Schnatter, 2001). For

instance, in Section 4, an identifiable GPT model is obtained by constraining the order of

the mean parameters µ1 ≤ µ2 of the Gaussian component distributions. Importantly,

such strategies for constraining the components gij(y | η) of general mixture models

ensure the identifiability of the branch probabilities pij(θ). Thereby, GPT parameters θ

can be rendered identifiable that would not be identifiable in an equivalent MPT model.

2.3. Parameter Estimation

In the following, an expectation-maximization (EM) algorithm (Dempster, Laird, &

Rubin, 1977) is developed to obtain maximum-likelihood estimates for θ and η. For this

purpose, the latent state indicators zijk represent which of the processing branches ij

caused the observation (xk,yk) in trial k (i.e., zijk = 1 if branch ij is the data-generating

cognitive state and zijk = 0 otherwise). In the EM algorithm, two estimation steps

(computing the expectation of zijk and maximizing the complete data likelihood) are

repeated until the discrepancy of two successive parameter estimates falls below a desired

precision ε > 0.

2.3.1. Complete-Data Likelihood. For each trial k, the vector

zk = (z11k, . . . , zijk, . . . , zIJJk) indicates the unobservable cognitive state and is filled with

zeros except for the data-generating process zijk = 1. The latent state indicators zk are

missing by design, and are modeled by the complete-data likelihood

f(xk,yk, zk | θ,η) = f(yk, zk | θ,η). (14)

Note that the observable discrete responses xk are a deterministic function of the latent

states zk (since zijk = 1 implies xk = Cj) and can therefore be omitted from the
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complete-data likelihood. To simplify this function, the probability density function in

(14) is factorized as

f(yk, zk | θ,η) = f(zk | θ,η)f(yk|zk,θ,η). (15)

This expression can further be simplified because the GPT framework assumes separate

sets of parameters θ and η for modeling the discrete and continuous variables,

respectively. Accordingly, the distribution of latent states zk in (15) is independent of η

and reduces to the branch probabilities,

f(zk | θ,η) = f(zk | θ) =
J∏
j=1

Ij∏
i=1

[
pij(θ)

]zijk
. (16)

Essentially, this function simply selects the branch probability pij(θ) for which zijk = 1.

Similarly, conditional on being in the latent state zijk, the second term in Equation (15)

simplifies to the data-generating component density

f(yk|zk,θ,η) = f(yk|zk,η) =
J∏
j=1

Ij∏
i=1

[
gij(yk | η)

]zijk
. (17)

2.3.2. E-Step. In the first step, the EM algorithm computes the expectation of the

latent state indicators zk (Dempster et al., 1977) conditional on the current parameter

values (θ,η) and on the observed data (xk,yk),

ẑijk = E[zijk | θ,η, xk,yk] = P (zijk = 1 | θ,η, xk,yk). (18)

In standard MPT models (Hu & Batchelder, 1994), the expected value of zijk is

P (zijk = 1 | θ, xk) =


pij(θ)/∑i pij(θ) if xk = Cj

0 else.
(19)

However, in GPT models, additional information from the continuous variables is

used to compute the expected value of the state indicator zijk. More precisely, Bayes’

theorem and the functional independence of θ and η results in

P (zijk = 1 | θ,η, xk,yk) = P (zijk = 1 | θ,η, xk)f(yk | zijk = 1,θ,η, xk)
f(zijk = 1,yk | θ,η, xk) + f(zijk = 0,yk | θ,η, xk)

(20)

= P (zijk = 1 | θ, xk)gij(yk | η)∑
i P (zijk = 1 | θ, xk)gij(yk | η) , (21)

= pij(θ)gij(yk | η)∑
i pij(θ)gij(yk | η) , (22)
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if xk = Cj, and P (zijk = 1 | θ,η, xk,yk) = 0 otherwise. Note that the normalizing

constant in the denominator in Equation 21 is derived as

f(zijk = 1,yk | θ,η, xk) + f(zijk = 0,yk | θ,η, xk) (23)

=f(zijk = 1,yk | θ,η, xk) +
∑
i′ 6=i

f(zi′jk = 1,yk | θ,η, xk) (24)

=
I∑
i=1

P (zijk = 1 | θ, xk)gij(yk | η) (25)

because exactly one of the indicators z1jk, . . . , zIjjk is equal to one if xk = Cj. Intuitively,

Equation (22) provides refined estimates ẑijk for the latent states that weigh the branch

probabilities pij by the corresponding component densities gij (in contrast to

Equation (19) for standard MPT models which is obtained from (22) by assuming unit

weights gij(yk | η) = 1 for all i, j.).

2.3.3. M-Step. In the second step, the EM algorithm maximizes the complete-data

likelihood in (15) conditional on the current estimates ẑk in (22). Due to the

decomposition assumption of GPT models, this function can be maximized separately for

θ and η. First, the parameters θ are estimated essentially in the same way as in standard

MPT models (Hu & Batchelder, 1994),

θ̂s =
∑
j

∑
i aijsm̂ij∑

j

∑
i(aijs + bijs)m̂ij

, (26)

where m̂ij = ∑K
k=1 ẑijk is the expected frequency for the processing branch ij. To obtain

estimates η̂, the log likelihood in (17) needs to be maximized, with the estimated latent

states ẑk serving as weights,

log f(Y | ẑ1, . . . , ẑK ,η) =
K∑
k=1

J∑
j=1

Ij∑
i=1

ẑijk log gij(yk | η) (27)

An analytical solution for η̂ can be obtained for some component distributions (e.g., for

Gaussian distributions). In general, however, it will be necessary to use numerical

optimization methods such as gradient descent to maximize (27).

2.3.4. Implementation and Standard Errors. A few iterations of the standard EM

algorithm for MPT models can be used to obtain sensible starting values for θ̂ and ẑijk

before estimating all parameters (θ̂, η̂). This is simply achieved by using Equation (19)

instead of (22) when computing the expectation of the latent state indicators.
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To estimate the standard errors of ξ̂ = (θ̂, η̂), the observed Fisher information

matrix

[
I(ξ̂)

]
sr

= −∂
2 logL(ξ | x,Y )

∂ξs ∂ξr

∣∣∣∣∣
ξ=ξ̂

(28)

is computed numerically using the observed-data likelihood in (5). Then, the inverse of

the observed Fisher information V = I(ξ̂)−1 provides the asymptotic covariance of the

normally distributed estimate ξ̂. Accordingly, confidence intervals are obtained as

ξ̂s ± z1−α/2 (Vss)1/2.

2.3.5. Model Testing and Model Selection. To test the goodness of fit of MPT models,

fitted category probabilities can be compared against the saturated model by means of

power-divergence statistics such as the likelihood-ratio statistic G2 or Pearson’s X2,

which are asymptotically χ2 distributed (Read & Cressie, 1988). However, it is more

difficult to derive tests of absolute goodness of fit for continuous data for which a

saturated model does not exist. If a GPT model includes only one continuous variable,

its goodness of fit can be assessed by categorizing the continuous observations into a

finite number of intervals (Klauer, 2001). Thereby, the predicted probabilities of

observations falling into these intervals can be compared against the corresponding

observed proportions using any power-divergence statistic. However, the resulting test

statistic follows a standard χ2 distribution only if the likelihood of the parameters ξ is

maximized based on the binned data, but not if the original data are used for

optimization as in the EM algorithm in Section 2.3 (Chernoff & Lehmann, 1954). As a

remedy, analytical solutions such as the Rao-Robson statistic (Rao & Robson, 1974) or

computational strategies such as the parametric bootstrap (Efron & Tibshirani, 1997)

can be used. Moreover, goodness of fit can be assessed graphically by comparing the

empirical against the fitted probability or cumulative density function as in Section 4.

Often, it will be necessary to test between several nested or nonnested GPT models.

For instance, psychologists might be interested in testing whether experimental

manipulations affect the parameters θ of entering different cognitive states or the

parameters η which summarize the continuous component distributions. If a GPT model



GENERALIZED PROCESSING TREE MODELS 15

M0 is nested inM1, the likelihood-ratio statistic

G2(ν) = −2
[
logL0(ξ̂0 | x,Y )− logL1(ξ̂1 | x,Y )

]
(29)

is asymptotically χ2 distributed with degrees of freedom ν given by the difference in the

dimensionality of the parameter vectors ξ1 and ξ0 (Casella & Berger, 2002, Chapter 10.3).

In contrast to statistical tests, model-selection criteria such as AIC or BIC trade-off

model fit and complexity to select the model that best generalizes to new data (Myung,

Pitt, & Kim, 2005). Note that these methods can be applied to both nested and

nonnested GPT models.

2.4. A Modeling Syntax for GPT Models

MPT models are more specific than general-purpose methods such as ANOVA and

need to be adapted to different psychological theories and experimental paradigms

(Erdfelder et al., 2009). However, the availability of software for MPT modeling (e.g.,

Heck, Arnold, & Arnold, in press; Moshagen, 2010; Singmann & Kellen, 2013) greatly

facilitates standard tasks such as model development, fitting, and evaluation, which has

contributed to the wide popularity and success of MPT models. Similarly, the GPT

framework requires the development and testing of specific models for each application.

Therefore, it is important to design a modeling syntax for GPT models that uniquely

defines a specific model structure (i.e., the MPT part and the component densities).

In the following, a syntax for GPT models is developed based on the .eqn-standard

for MPT models (Hu, 1999; Moshagen, 2010) that simply lists the equations for the

processing-branch probabilities pij(θ) in a text file. In each row, a processing branch is

defined by (a) the label (or number) of the corresponding tree, (b) the label (or number)

of the response category Cj, and (c) the MPT equation. GPT models can be specified in

a similar way by defining each branch probability pij(θ). In addition to the standard

.eqn-syntax for MPT models, it is necessary to define the type and parameterization of

the component distributions gij. For this purpose, an additional column lists the

parameters η∗ij that are relevant for the component density gij(y | η∗ij) (e.g., mean and

SD of a normal distribution). Note that the distributional family is not defined within
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the model file but needs to be provided when fitting a GPT model. For instance, the R

package gpt requires the argument latent = "normal" to define Gaussian component

distributions for one continuous variable, or the argument latent = c("normal",

"exgauss") to define Gaussian and ex-Gaussian component distributions for the first

and second of two continuous variables, respectively.

As an example, a GPT extension of the 2HTM to both confidence ratings and

response times could be defined as follows (model equations for lures are omitted):
# tree ; category ; MPT equation ; confidence ; response time
Target ; hit ; do ; CR_d, sd ; RT_d, sig, nu
Target ; hit ; (1-do)*g ; CR_g, sd ; RT_g, sig, nu
Target ; miss ; (1-do)*(1-g) ; CR_g, sd ; RT_g, sig, nu

Each line first lists the tree, category, and MPT equation, separated by a semicolon.

Next, the latent continuous distributions are defined by distinct parameter labels for (a)

mean and SD parameters of the Gaussian component distributions for confidence ratings

and (b) three parameters of the ex-Gaussian component distributions for response times

(i.e., mean and SD of a Gaussian random variable, and mean of an independent

exponential random variable). Note that this GPT model assumes that confidence ratings

and response times are independent conditional on the latent states (see Section 2.1).

The proposed syntax has the advantage that a-priori constraints on the parameters

η can easily be specified across component distributions. For instance, the Gaussian

components for modeling confidence ratings are assumed to have the same standard

deviation (because a single parameter sd is used). Such constraints are important to

obtain a parsimonious model (Myung, 2000) and to test theoretical predictions about the

effect of cognitive processes on continuous variables (e.g., by comparing a GPT model

with a nested special case).

In addition to using identical parameter labels in the model file, the package gpt

also allows to put equality constraints on the parameters θ and η within R when fitting a

model. Moreover, the package uses sensible parameter boundaries for the estimation of η

(which is important for parameters such as variances that must be nonnegative). However,

the range of admissible values can also be defined for each parameter ηs separately. The

latter feature is useful to obtain an identifiable GPT model, for instance, by constraining
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the mean parameters to be on separate sides of a constant C, that is, µ1 ≤ C and µ2 ≥ C

(see Section 4). Currently, the gpt package features various continuous distributions (e.g.,

Gaussian, lognormal, Wald, gamma, beta; Heathcote, 2004) and implements functions for

model fitting evaluation, plotting, and generating simulated data. Note that details about

the implementation and use of the gpt package will be provided in a separate article.

3. Simulation: Increased Precision of GPT Estimates

By modeling discrete and continuous variables jointly, GPT models can provide

more precise parameter estimates θ̂ (as indicated by smaller standard errors) relative to

equivalent MPT models. Essentially, the additional information due to inclusion of

continuous variables results in better estimates for the latent state indicators ẑijk (as

shown in the E-step of the EM algorithm in (22)). For instance, Figure 2 shows an

example in which detection responses in the 2HTM are associated with smaller values on

the continuous variable y, whereas guessing-responses are associated with larger values.

In such a case, an old responses xk with a small value yk did more likely emerge from

being in the detection state, whereas an old response xk′ with a large value yk′ did more

likely emerge from being in the uncertainty state. GPT models utilize this information to

estimate the latent state in each trial, thereby increasing the precision of the estimates θ̂.

The following simulation shows that the increase in precision depends on the

discrepancy between the latent component distributions. More precisely, the continuous

variables provide most information when the component distributions differ strongly

across cognitive states (e.g., in terms of mean, variance, or higher moments). In contrast,

the continuous variables provide no additional information if the component distributions

are identical across cognitive states. In this case, GPT parameter estimates θ̂ are as

precise as the equivalent MPT estimates.

3.1. Methods

The GPT version of the 2HTM in Figure 2 was used to generate 3,000 data sets

with K = 100 responses each (i.e., 50 targets and 50 lures). For the data-generating

parameters θ, the detection probabilities were set to do = dn = .60 with a guessing
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probability of g = .50. To model the effect of item detection and guessing on the

continuous variable, two normal distributions with a standard deviation of σ = 1 were

assumed. The discrepancy between these two component distributions was manipulated

by varying the mean µg of the guessing distribution between zero and five, whereas the

mean µd of the detection distribution was held constant at zero (Figure 2).

In each replication, the GPT version of the 2HTM was fitted to the simulated data.

The detection probabilities were constrained to be identical, do = dn, to ensure the

identifiability of the MPT part of the model. Moreover, three free parameters were fitted

for the component distributions: A common standard deviation σ, and two means µd and

µg for detection and guessing, respectively. Overall, this resulted in a model with five free

parameters, θ = (d, g) and η = (µd, µg, σ). For comparison, the corresponding MPT

model with the parameters d and g (i.e., the standard 2HTM) was fitted to the response

frequencies only.

3.2. Results

Figure 3 shows the means of the estimated standard errors across replications for

varying levels of the data-generating mean µd. Whereas the precision of the MPT

estimates remains constant, the GPT estimates become more precise as the difference in

the means µd and µg increases. Note that the precision of the GPT estimates is identical

to that of the MPT estimates if the component distributions are identical (i.e., if

µd = µg). Hence, the standard error of the MPT estimates provides an upper bound for

the standard error of the GPT estimates.

Moreover, Figure 3 also shows the theoretical boundary for an increase in precision

by GPT modeling that is obtained by treating the latent state indicators zijk as

observable variables. If the data-generating states zijk were known, the MPT parameters

θ can directly be estimated using the M-step of the EM algorithm in (26), with the

corresponding standard error for binomial-rate parameters,

SE(θ̂s) =
 θ̂s (1− θ̂s)

Ms

1/2

, (30)

where Ms is the denominator of the estimator in (26) based on the observable states zijk
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Figure 3 . Mean standard error for the estimates θ̂ = (d̂, ĝ) of the 2HTM obtained by the

GPT model, the MPT model, and conditional on observable processing branches.

instead of the latent-state estimates ẑijk. This standard error only depends on the

frequencies ∑k zijk of being in state ij and on the specific processing tree structure which

is represented by aijs and bijs. As shown in Figure 3, Equation (30) serves as a lower

bound for the standard error of the GPT estimates θ̂.

In sum, the simulation shows that GPT models utilize information provided by the

continuous variables to obtain more precise estimates of the latent states zijk. If the

hypothesized cognitive processes affect the component distributions, this information

results in more precise estimates for θ. Note that the increase in precision will result in

higher statistical power to detect differences in the parameters θ.

4. Application: GPT Modeling of Mouse-Tracking Trajectories

In the following, a GPT model for semantic categorization is developed and

empirically tested that follows the spirit of the feature comparison model (Smith, Shoben,

& Rips, 1974). In the experimental paradigm of interest (Dale et al., 2007), participants

assign animals to one of two categories (e.g., categorize bat as a mammal or bird).

Importantly, the trials differ in how typical the presented animal is for its category:

whereas some animals are typical members of their class (e.g., hawk for bird) and do not

share many features with the distractor category (e.g., reptile), some are atypical

members (e.g., bat) and share features with both the correct (mammal) and the
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distractor category (bird).

Often, participants are very good at classifying animals, and thus the proportion of

correct responses is usually high for both typical and atypical animals. Therefore, Dale

et al. (2007) also recorded the computer-mouse movements of participants during each

trial. For this purpose, the two response options (i.e., the categories) are presented at the

upper left and the upper right of the screen, while the mouse cursor is placed at the lower

center in the beginning of each trial as illustrated in Figure 4. Over the course of each

trial, the coordinates of the mouse cursor are recorded with a constant sampling rate.

Using mouse-tracking, Dale et al. (2007) showed that, relative to typical items, responses

to atypical items resulted in less direct mouse trajectories that were curved toward the

alternative option. They concluded that atypical items triggered a conflict between the

two response options as reflected by the mouse movements.

Figure 4 . In the mouse-tracking paradigm, movements of the mouse cursor are recorded

over the course of each trial. The maximum absolute deviation (MAD) is defined as the

maximum perpendicular distance of the trajectory from a straight line connecting its

start and end points.

The mouse-tracking methodology provides one set of time series data for each trial

(i.e., a sequence of x-y coordinates of the mouse cursor from start to end point). Usually,

these data are preprocessed for further analysis by computing summary statistics per

trial (Freeman & Ambady, 2010). In the following, we focus on the maximum absolute

deviation (MAD) that assesses the curvature of mouse-tracking trajectories and is defined

as the maximum perpendicular discrepancy between the observed trajectory and a direct
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trajectory as shown in Figure 4 (i.e., a straight line from start to end position; see

Kieslich, Wulff, Henninger, & Haslbeck, 2017, for alternative statistics). This

preprocessing results in a single continuous observation per trial that is jointly observed

with the discrete response (correct versus incorrect).

In most mouse-tracking studies, the MAD (and similar) summary statistics are

analyzed only for correct responses, whereas incorrect trials are simply discarded.

However, when using such an approach, subsequent statistical tests will not take

classification uncertainty into account, even though the same responses can be due to

different cognitive processes. As a remedy, a GPT model is proposed that accounts for

this ambiguity by explicitly modeling how different hypothesized processes affect discrete

responses and process-tracing measures jointly. This theoretical conceptualization

contrasts with the use of observed eye- or mouse-tracking data as one-to-one indicators of

hypothesized latent processes.

4.1. A GPT Version of the Feature Comparison Model

The feature comparison model (FCM; Smith et al., 1974) provides a theoretical

account of the cognitive processes underlying semantic categorization. Essentially, the

model assumes that features of objects and categories fall into two disjoint sets. Whereas

defining features determine whether an object belongs to a category (e.g., birds breed

eggs), characteristic features are shared among many members of a category, but are not

strictly necessary (e.g., many, but not all birds can fly). On the basis of these two sets of

features, the FCM assumes that semantic categorization proceeds in two steps. First, an

overall-comparison process determines the similarity of an object to a category on the

basis of all features, without discriminating between defining and characteristic ones. If

the outcome of this first step provides sufficient evidence in favor for or against category

membership, a corresponding response is made. In contrast, if the outcome is ambiguous,

only the defining features are compared in detail in a second step.

The first process is assumed to be relatively fast and to have a higher accuracy for

categorizing typical relative to atypical animals, because the overall comparison will more
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often be valid for typical items. In contrast, the second process is assumed to be relatively

slow and to have identical accuracy for categorizing typical and atypical animals, because

characteristic features become irrelevant. Note that, according to dual-process theories

(Sloman, 1996), the second comparison step can also be conceptualized as a rule-based

process, in which lay theories about animal classes are used for categorization. In the

present context, however, this rule-based mechanism for the second-stage process results

in identical predictions as the defining-feature comparison process of the FCM.

Originally, the FCM was tested in response-time experiments (Smith et al., 1974).

However, the model is very general and directly suggests a corresponding GPT model for

the mouse-tracking version of the semantic categorization task (Dale et al., 2007).

Figure 5 illustrates the model predictions for discrete responses and the mouse-tracking

measure MAD for typical items. With probability ft, the overall-comparison process

provides clear evidence for judging category membership, which in turn results in a

correct response with probability c1,t. In contrast, if the outcome of the first-stage

comparison is ambiguous with probability (1− ft), the defining-feature comparison

provides a correct response with probability c2,t. The same processing structure is

assumed for atypical items with a separate set of parameters fa, c1,a, and c2,a (not shown

in Figure 5).

Besides defining the processing tree for discrete responses, the proposed GPT model

in Figure 5 also assumes that the mouse-tracking measure MAD is normally distributed

conditional on the type of comparison process. If the overall comparison of all features

provides unambiguous evidence for responding, MADs are assumed to follow a normal

distribution with mean µ1 and SD σ1 irrespective of the correctness of responses. If this

is not the case, the defining-feature process determines response behavior, and MADs are

assumed to follow a normal distribution with mean µ2 and SD σ2. Importantly, the FCM

entails that responses are relatively fast when the overall-comparison process provides

unambiguous evidence for category membership (Smith et al., 1974). In this case, the

comparison leads to less conflict between the two response options, and thus to rather

direct mouse trajectories. In contrast, the defining-feature comparison process is assumed
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Response MAD

Typical

1− ft
1− c2,t incorrect

c2,t correct

ft

1− c1,t incorrect

c1,t correct N (µ1, σ1)

N (µ1, σ1)

N (µ2, σ2)

N (µ2, σ2)

Figure 5 . A GPT version of the feature comparison model (FCM; Smith, Shoben, &

Rips, 1974) for the mouse-tracking version of a semantic classification task. Given a

typical item, the overall-comparison processing provides clear evidence for category

membership with probability ft, which in turn results in a correct response with

probability c1,t. This first stage does not result in a response with probability 1− ft, and

in a second stage, a comparison of the defining features leads to a correct response with

probability c2,t. Moreover, the maximum absolute deviation (MAD) of a mouse trajectory

in each trial follows a normal distribution, with mean and SD determined by the type of

comparison process. The same processing structure is assumed for atypical items with a

different set of probability parameters fa, c1,a, and c2,a (not shown).

to be slower and accompanied by more indirect trajectories due to ambiguity and conflict

between the two choice options. Hence, the FCM implies the order constraint µ1 ≤ µ2

which also ensures that all model parameters are identifiable. Note that the package gpt

currently does not support such order constraints between parameters. As a technical

trick, the mean parameters were instead restricted to fall into different ranges (i.e.,

µ1 ≤ 500 and µ2 ≥ 500). Thereby, the resulting model becomes equivalent to the

theoretical model with the constraint µ1 ≤ µ2 as long as the parameter estimates are not

at the boundaries of the order constraints (which was not the case in the following

analysis). In principle, this technical limitation can also be overcome by a

reparameterization µ2 = µ1 + α using an additive parameter α ∈ R+.

If the FCM provides a valid account of semantic categorization, the most general

GPT version in Figure 5 with 10 parameters (i.e., three probability parameters for typical
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and atypical animals each, and four parameters for the two component distributions)

should describe the observed distribution of responses and MADs well. In contrast, a

nested model version with a single component distribution (i.e., µ1 = µ2 and σ1 = σ2)

should result in considerable misfit, because the two feature comparison processes are

assumed to influence mouse trajectories (i.e., the distribution of MADs). Moreover, the

FCM implies three hypotheses concerning the probability parameters θ (Smith et al.,

1974). First, the overall-comparison process is more likely to determine responses for

typical than for atypical items (i.e., ft > fa), because characteristic features of atypical

animals conflict with defining features resulting in increased discrepancy (and lower

similarity). Second, the overall-comparison process is expected to be more accurate for

typical than for atypical items (i.e., c1,t > c1,a), because characteristic features of typical

animals are more valid than those of atypical ones. Finally, the defining-feature

comparison process is expected to have the same accuracy for typical and atypical

animals (i.e., c2,t = c2,a), because both classes mainly differ with respect to the

characteristic features. These substantive hypotheses can be tested using likelihood-ratio

tests of nested models with the corresponding parameter constraints.

4.2. Methods

The proposed model is tested by reanalyzing data of Kieslich and Henninger (in

press), in which N = 60 participants had to categorize 13 typical and 6 atypical animals

each (taken from Dale et al., 2007, Experiment 1) that were presented in random order.

In each trial, the two response categories were presented first (in the top left and top

right corners of the screen), after which participants had to click on a start button in

lower middle of the screen. Following the button click, the name of the animal was

presented, and participants had to click on the button of the response category to which

the animal belonged. Mouse trajectories were recorded using the mousetrap plugin

(Kieslich & Henninger, in press) for OpenSesame (Mathôt, Schreij, & Theeuwes, 2012),

and the data were processed and analyzed using the mousetrap R package (Kieslich et al.,

2017). MADs were calculated as the maximum perpendicular deviation between the start
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Figure 6 . Observed (gray histograms) and fitted (black curves) MAD frequencies based

on the general GPT version of the FCM with 10 parameters. Note that the scaling of the

ordinate differs across panels.

and end point of each trajectory, with units referring to the absolute distance in pixels.

Note that MADs were positive (negative) when the maximum absolute deviation from a

direct trajectory was in the direction of the non-chosen (chosen) category and that, by

taking the absolute value, MADs close to zero were rarely observed.

4.3. Results

Figure 6 shows separate histograms of the observed MADs for correct and incorrect

categorizations of typical and atypical animals. Overall, participants had a high accuracy

to select the correct category for typical (95.4%) and atypical (88.9%) animals. Note,

however, that performance clearly was not error-free which underscores the necessity to

analyze both correct and incorrect responses. Moreover, mouse trajectories exhibited

considerable variability and the MAD distribution appeared to be bimodal.
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As outlined in Section 2.3.5, when modeling continuous data, the definition and

derivation of absolute goodness-of-fit tests is not as straightforward as for MPT models,

where a natural saturated model exists. As a remedy, Figure 6 provides a graphical

assessment of model fit by plotting gray histograms of observed MADs against black

curves for the distributions predicted by the GPT model with 10 parameters. Overall,

the model captured all salient features of the observed distributions well. Most

importantly, the two Gaussian component distributions reflected the bimodality of MADs,

one describing the overall-comparison process with direct trajectories (i.e., small MADs;

µ̂1 = 48.9, SE = 5.1; σ̂1 = 125.1, SE = 4.2), and the second one describing the

defining-feature comparison process with less direct and more variable trajectories (i.e.,

large MADs; µ̂2 = 796.0, SE = 19.0; σ̂2 = 211.3, SE = 15.6). Note that constraining both

distributions to be identical increased misfit significantly (G2(2) = 976.1, p < .001).

The model also described the relative contribution of the two mixture components

in each response category very well, and provided estimates for the probability

parameters θ that were in line with the psychologically motivated hypotheses. First, the

overall-comparison process determined responses more often for typical than for atypical

animals (f̂t = .824, SE = .015; f̂a = .615, SE = .028; G2(1) = 81.8, p < .001). This result

was predicted by the FCM, because defining and characteristic features are less consistent

for atypical than for typical items, resulting in more ambiguous similarity signals. Second,

the overall-comparison process resulted in a higher accuracy for typical than for atypical

animals (ĉ1,t = .970, SE = .007; ĉ1,a = .891, SE = .021; G2(1) = 26.8, p < .001) in line

with the expectation that characteristic features of typical stimuli provide more valid

information. Third, the defining-feature comparison had the same accuracy for both

typical and atypical animals (ĉ2,t = .880, SE = .028; ĉ2,a = .885, SE = .028; G2(1) < 0.1,

p = .864), supporting the hypothesis that characteristic features do not affect the

accuracy of the second-stage comparison. Figure 7 shows that this constrained model

(i.e., c2,t = c2,a) had an excellent fit, as indicated by the empirical (gray) and the fitted

(black) cumulative density functions (note that minor discrepancies close to zero are due

to the fact that MADs are determined based on absolute deviations). This model was
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Figure 7 . Empirical (gray) and fitted (black) cumulative density functions per response

category, on the basis of the GPT version of the FCM with 9 parameters (i.e., with the

constraint c2,t = c2,a).

also selected by the model-selection index BIC, with a posterior probability of .97 (and

an AIC weight of .73) when assuming equal prior probabilities for the five competing

GPT models (i.e., the general model, a single-component model, and the three

constrained models ft = fa, c1,t = c1,a, and c2,t = c2,a).

In sum, the proposed GPT model provided a good account of the distribution of

discrete responses and MADs. On the one hand, the model fitted the observed

distributions of mouse trajectories very well, and on the other hand, the pattern of

parameter estimates was in line with substantive hypotheses implied by the FCM (Smith

et al., 1974).
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5. Discussion

Generalized processing tree (GPT) models assume that discrete cognitive states

affect discrete and continuous variables jointly, and thus predict a mixture distribution

with weights determined by a processing tree structure. Similar to MPT models, the new

model class is motivated by psychological theories that assume qualitatively distinct

cognitive processes (Erdfelder et al., 2009). Moreover, GPT models are mathematically

tractable, easy to apply using a flexible modeling syntax, and can increase the precision

of parameter estimates relative to MPT models. In an empirical example, a theoretically

motivated GPT model provided a good account of responses and the curvature of mouse

trajectories in a semantic categorization task. Importantly, the hypothesized processing

structure on the mixture weights allowed for a test of psychologically motivated

predictions (e.g., concerning the accuracy of the two comparison processes for

categorizing typical and atypical animals; Smith et al., 1974). Note that standard

analyses of mouse-tracking data often discard faulty trials and do not account for the

inherent ambiguity of responses (e.g., Dale et al., 2007), thereby incorrectly assuming a

one-to-one mapping of cognitive processes to observed responses. Moreover, GPT models

provide a conceptual and statistical framework to account for bimodality, a phenomenon

that has been addressed in many mouse-tracking studies (Freeman & Dale, 2013).

Conceptually, the GPT framework differs from previous approaches to including

continuous covariates in MPT modeling (Coolin, Erdfelder, Bernstein, Thornton, &

Thornton, 2015; Heck et al., in press; Klauer, 2010; Michalkiewicz & Erdfelder, 2016).

These alternative methods include external covariates to predict MPT parameters in a

(logistic or probit) regression model. For instance, memory performance in the 2HTM

could be modeled as a function of general intelligence. In contrast, GPT models assume

that continuous variables are affected by the hypothesized cognitive states across trials,

and thereby reverse the underlying causal reasoning for the psychological constructs.

Overall, regression approaches are more often of interest when modeling inter-individual

differences, whereas the proposed GPT framework primarily aims at testing effects of

experimental manipulations or population characteristics on continuous and discrete
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variables. In principle, however, both approaches can be merged to investigate the two

types of research questions jointly.

The proposed model classMGPT makes a strong decomposition assumption, that is,

category probabilities and continuous variables are modeled by separate parameters θ

and η, respectively. More precisely, the component distributions are assumed to be

conditionally independent of the probabilities θ of entering any of the cognitive states,

gij(yk | θ,η) = gij(yk | η). (31)

In principle, the assumption of conditional independence can be relaxed, for instance, by

assuming an evidence accumulation process that determines response probabilities and

component distributions jointly (e.g., Donkin, Nosofsky, Gold, & Shiffrin, 2013).

However, such generalizations of GPT models are not useful for the present purpose of

developing a flexible, but mathematically tractable model class. First, the conditional

independence assumption is at the core of threshold models that assume discrete

processing states for recognition memory (Province & Rouder, 2012), source memory,

(Batchelder & Riefer, 1990), visual working memory (Donkin et al., 2013), and word

perception (Swagman, Province, & Rouder, 2015). Second, the substantive development

and interpretation of complex functional relationships will in general be more difficult

conceptually and mathematically. In contrast, when defining the GPT class as in the

present paper, model development is separated into (a) theorizing about latent cognitive

processes (i.e., developing an MPT-like structure based on the parameters θ), and (b)

theorizing how these processes might affect continuous variables (i.e., choosing the

distributions gij and constraining the parameters η).

Despite its advantages, the GPT framework also has theoretical and practical

limitations. Concerning the former, GPT models make the strong assumption that

discrete states determine behavior. This assumption fits well with psychological theories

that assume qualitatively distinct states such as dual-process theories (Sloman, 1996) or

the FCM (Smith et al., 1974). However, the adaptation of GPT models for theories

assuming graded signals within the cognitive system (e.g., familiarity, preference, or

similarity) requires the assumption (a) that this fine-grained information is mediated by
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discrete states (Rouder & Morey, 2009), or alternatively, (b) that the GPT approach

provides a sufficiently good approximation as a measurement model, even though the

underlying process is assumed to be continuous (Batchelder & Alexander, 2013).

However, the success of MPT models indicates that these are not very severe limitations.

A rather practical limitation concerns the assumption that trials are identically and

independently distributed (Equations (5) and (6)), which is violated if participants or

items are heterogeneous. As a remedy, Bayesian hierarchical modeling (Lee, 2011) could

be adopted for GPT models, similar as for MPT models (e.g., Klauer, 2010; Matzke,

Dolan, Batchelder, & Wagenmakers, 2015; Smith & Batchelder, 2010). According to such

approaches, the core model structure in (3) is assumed to hold within each participant p

conditional on the individual parameters (θp,ηp), which in turn follow a hierarchical

distribution on the group level. Whereas this model structure is conceptually simple, it

requires a sensible choice of priors and the development of an estimation algorithm (e.g.,

a Markov chain Monte Carlo sampler). Moreover, in the Bayesian analysis of mixture

models, special consideration has to be given to the issue of label switching when

sampling from the posterior if the component distributions of continuous variables are not

sufficiently constrained (Frühwirth-Schnatter, 2001).

From a larger perspective, GPT models provide a conceptual framework to

formalize how discrete psychological states affect observed behavior, irrespective of

whether behavior is measured in terms of categorical or continuous variables or both. In

the present paper, GPT models were applied successfully to a process-tracing measure

that summarizes mouse trajectories. Similarly, GPT models can be applied to

neurophysiological variables that have gained increasing interest in cognitive modeling

recently (e.g., Forstmann & Wagenmakers, 2015). In principle, GPT models provide a

framework for formalizing the idea that discrete cognitive states are associated with

specific patterns of neural activation. On the basis of such an assumption, GPT models

can be used to formalize this theoretical link, and to model behavioral and

neuropsychological outcomes jointly (Turner, Forstmann, Love, Palmeri, & Van Maanen,

2017).
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In sum, the GPT framework provides a tractable approach for fitting

psychologically motivated models to discrete and continuous data jointly. The model

class follows the MPT philosophy according to which measurement models should provide

a trade-off between flexibility and ease-of-use. Most importantly, however, GPT models

show new directions for testing psychological theories that assume qualitatively distinct

cognitive processes.
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