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Abstract

In Part I of this thesis, we briefly summarize some theory of point processes which is
crucial for the subsequent parts.
We introduce a class of spatial stochastic processes in the max-domain of attraction
of familiar max-stable processes in Part II. The new class is based on Cox processes
instead of Poisson processes. We show that statistical inference is possible within the
given framework, at least under some reasonable restrictions.
The Matérn hard-core processes are classical examples for point process models ob-
tained from (marked) Poisson point processes. Points of the original Poisson process are
deleted according to a dependent thinning rule, resulting in a process whose points have
a prescribed hard-core distance. In Part III, we present a new model which generalizes
the underlying point process, the thinning rule and the marks attached to the original
process. The new model further reveals several connections to mixed moving maxima
processes, e.g. a process of visible storm centres.

Zusammenfassung

Im ersten Teil dieser Dissertation fassen wir einige grundlegende Resultate zu Punkt-
prozessen zusammen, diese sind für alle nachfolgenden Teile essentiell.
In Teil II stellen wir eine Klasse räumlicher stochastischer Prozesse vor, die sich im Max-
Anziehungsbereich bekannter max-stabiler Prozesse befindet. Diese neue Klasse basiert
auf Cox Prozessen anstatt von Poisson Punktprozessen. Wir zeigen, dass Inferenz zu-
mindest unter einigen sinnvollen Beschränkungen möglich ist.
Die Matérn hard-core Prozesse sind ein klassisches Beispiel für Punktprozesse, die von
markierten Poisson Punktprozessen abgeleitet sind. Punkte des ursprünglichen Pois-
son Prozesses werden gemäß eines Ausdünnungsalgorithmus entfernt, was zur Folge hat,
dass die verbliebenen Punkte einen vorgegebenen Mindestabstand haben. Im dritten
Teil präsentieren wir ein neues Modell, das den zu Grunde liegenden Punktprozess, den
Ausdünnungsalgorithmus und die Marken der Punkte verallgemeinert. Dieses Modell
ermöglicht eine Verbindung zu max-stabilen Prozessen.
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1. Introduction

Da steh ich nun, ich armer Tor!
Und bin so klug als wie zuvor
Heiße Magister, heiße Doktor gar
Und ziehe schon an die zehen Jahr
Herauf, herab und quer und krumm
Meine Schüler an der Nase herum
Und sehe, dass wir nichts wissen können!

(aus Faust I, Johann Wolfgang von
Goethe)

Spatial point patterns occur in many applications from different areas, such as environ-
mental sciences (Stoyan and Penttinen, 2000), finance (Chavez-Demoulin et al., 2005),
physics (Babu and Feigelson, 1996; Scargle and Babu, 2003) and information technology
(Ibrahim et al., 2013). Such point patterns are commonly modelled by so-called point
processes. Point processes are the fundamental building blocks of this thesis. In the
sequel, we give a short summary of the topics covered by this work. We try to give the
summary without introducing too much mathematical theory and postpone the rigorous
mathematics to the subsequent parts.

Part I: Point processes

Roughly speaking, a point process is a random variable whose realization is not a real
number but a point pattern. A simple but rather artificial example of a point process is
to roll a dice and interpret the resulting point pattern as realization – see Figure 1.1.

Figure 1.1.: All realizations of the point process ’roll an ordinary dice’ that occur with
positive probability.

In general, a point process has infinitely many possible outcomes, that is we may think
of rolling a dice with infinitely many sides and with different point patterns on each side
(Figure 1.2).
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1. Introduction

Figure 1.2.: Six arbitrary realizations of a point process on a bounded set.

These point patterns are not limited to be subsets of Rd as in the toy examples above.
Indeed the points might also be functions or even point processes themselves. This flex-
ibility is one reason for point processes being used in many different areas. Though it
comes with the price that the theoretical treatment of point processes is a rather difficult
task. We therefore give a brief introduction to point processes in Part I of this disserta-
tion and refer to Karr (1986); Stoyan and Stoyan (1992); Daley and Vere-Jones (2003);
Møller and Waagepetersen (2004); Daley and Vere-Jones (2008); Chiu et al. (2013) for
detailed descriptions of that topic.

Part II: Conditionally Max-stable Random Fields

Point processes are the building blocks for max-stable processes. A random field Z is
called max-stable if there exist an i.i.d. sequence of random fields Y1, Y2, Y3, · · · ∼ Y and
sequences of norming functions an(·) > 0, bn(·) ∈ R such that{∨n

i=1 Yi(t)− bn(t)

an(t)

}
t∈Rd

D→ {Z(t)}t∈Rd . (1.1)

Furthermore, we say Y lies in the max-domain of attraction (MDA) of the max-stable
random field Z.
Max-stable processes are commonly used to model spatial extremal events, for instance
maximum precipitation or maximum wind speed, on an annual scale. During the last
decades, many different models for max-stable processes have been proposed (Smith,
1990; Schlather, 2002; Stoev and Taqqu, 2005; Kabluchko et al., 2009). A well-known
and commonly used max-stable process is the mixed moving maxima process

Z(t) =
∨

(s,u,X)∈Φ

uX(t− s). (1.2)

Here, the final shape of the process is determined by the maxima of scaled and shifted
functions X where (s, u,X) are points of some point process Φ. In most cases, only
some of the points (s, u,X) of Φ contribute to the final process Z – we call these points
the contributing points or extremal functions (Dombry and Eyi-Minko, 2013). A special
case of the mixed moving maxima process is the Smith model (Smith, 1990), where X
equals the density function of a (multivariate) standard normal distribution - see also
right plot in Figure 1.3.
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1. Introduction

Figure 1.3.: The red curve in the left plot describes a realization of a mixed moving
maxima process on [0, 3]. Each curves corresponds to one point of the un-
derlying point process. Note that the grey curves do not contribute to the
final process. The right plot depicts a two-dimensional Smith model.

However, the task of describing processes in the MDA has been far less examined. Ob-
viously, each max-stable process lies in its own MDA – that is the trivial case. Our idea
is that, since max-stable processes are used to model extremes on an annual scale, a
process in the MDA might have the potential to model extremes on much smaller time
scale. The α-stable processes (Samorodnitsky and Taqqu, 1994; Stoev and Taqqu, 2005)
are known to lie in the MDA, but they are not suitable for modelling real data.
In Part II of this dissertation, we derive the new class of conditionally max-stable random
fields which are in the MDA of max-stable random fields, but which are not max-stable
themselves. The main contribution of this part is the proof that our new process is
indeed in the MDA of a familiar mixed moving maxima process. Besides, we show that
inference is still feasible under some usual and reasonable conditions. This part is based
on a joint work (Dirrler et al., 2016) with Martin Schlather and Kirstin Strokorb.

Part III: On a generalization of the Matérn hard-core process

The work on conditionally max-stable random fields inspired me to this last and most
theoretical part of the thesis. While working on estimation procedures for our newly
presented model, it turned out that it would simplify that task a lot if an explicit char-
acterization (e.g. in terms of an intensity function) of the contributing points of the
mixed moving maxima process (1.2) was known. This is a rather difficult problem on its
own, since the contributing points are highly correlated with each other. However, the
way the contributing points dominate the non-contributing points, is related to an early
approach of Matérn (1960). The Matérn hard-core processes encompass different models
for point processes where the original point pattern is thinned by a dependent thinning
algorithm, i.e. some of the points are deleted and the probability that an individual point
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1. Introduction

is removed, depends on the other points of the sample.
However, both the thinning algorithms in the classical Matérn model and those in more
recent generalizations (Månsson and Rudemo, 2002; Kuronen and Leskelä, 2013; Teich-
mann et al., 2013; Andersen and Hahn, 2016) are quite restrictive and not suitable for
our demand. Therefore, the original aim fades a bit from the spotlight – we first general-
ize these models but also establish some connections to mixed moving maxima processes.
Our model comprises the recent generalizations of the Matérn model mentioned above.
Still we are able to keep most of our proofs quite short due to the usage of Palm calculus.
First and second order statistics can be explicitly derived under rather mild conditions
and the results of this part can be used to improve the estimation procedures of Part
II. Most of the results in Part III have already been published in Dirrler and Schlather
(2017).
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Point processes





2. Preliminaries on point processes

In this chapter, we briefly summarize the mathematical fundamentals which will be nec-
essary in the subsequent parts. We hereby follow closely Møller and Waagepetersen
(2004), Daley and Vere-Jones (2008) and Chiu et al. (2013) in the first two sections.
The third section is loosely based on Møller and Waagepetersen (2004) but extended by
ideas of my own.

2.1. Basic properties and notation

Let S be a metric space and B = B(S) its Borel σ-field. We define the subset of
bounded Borel sets by

B0 = {B ∈ B : B is bounded}.

For a subset ϕ ⊂ S, we denote by n(x) the number of points in ϕ. We call ϕ ⊂ S locally
finite if

n(ϕ ∩B) <∞, ∀B ∈ B0.

We define the space of locally finite subsets of S by

Nlf = {ϕ ⊂ S : n(ϕ ∩B) <∞, for all bounded B ⊂ S}

and the corresponding σ-algebra

Nlf = σ({ϕ ∈ Nlf : n(ϕ ∩B) = m} : B ⊂ S bounded and m ∈ N).

A point process Φ is a measurable mapping from a probability space (Ω,A ,P) to
(Nlf ,Nlf). That is, we regard point processes as random countable subsets of S. The
distribution P of Φ is determined by

P(F ) = P(Φ ∈ F ), F ∈ Nlf .

We further define the count function as

N(B) = n(Φ ∩B). (2.1)

Definition 1. We define the nth-order moment measure µ(n) of Φ as

µ(n)(B) = E

 ∑
(ξ1,...,ξn)∈Φ

1B(ξ1, . . . , ξn)

 , B ⊂ Sn (2.2)
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2. Preliminaries on point processes

and the nth-order factorial moment measure as

α(n)(B) = E

 6=∑
(ξ1,...,ξn)∈Φ

1B(ξ1, . . . , ξn)

 , B ⊂ Sn. (2.3)

The first order moment measure µ(B) = µ(1)(B) is also called intensity measure and
can be interpreted as the mean number of points of Φ hitting the set B

µ(B) = E
∑
ξ∈Φ

1B(ξ) = EN(B).

If the nth-order factorial moment measure can be written as

α(n)(B) =

∫
· · ·
∫
1B(ξ1, . . . , ξn)ρ(n)(ξ1, . . . , ξn)dξ1 · · · dξn, B ⊂ Sn, (2.4)

with some non-negative function ρ(n), then ρ(n) is called nth-order intensity function.

Definition 2. The pair correlation function of a point process Φ, with existing first and
second order density functions, is defined as

g(ξ1, ξ2) =
ρ(2)(ξ1, ξ2)

ρ(ξ1)ρ(ξ2)
. (2.5)

Definition 3. Consider a (possibly random) function p : S → [0, 1]. The point process
pΦ obtained from Φ by independently deleting every point ξ ∈ Φ with probability 1− p(ξ)
is called p-thinning of Φ.

The p-thinning is an important tool to transform point processes. Since the points are
independently deleted, p-thinning is sometimes also called independent thinning.

Definition 4. Let Φ be a point process. A marked point process ΦM is defined by
randomly attaching marks mξ from some Polish space M to each point ξ ∈ Φ. That is

ΦM = {(ξ,mξ), ξ ∈ Φ}

is a mapping into (Mlf ,Mlf), with the set of point configurations

Mlf =
{
ϕ ⊂ S ×M : {ξ ∈ S, (ξ,mξ) ∈ ϕ} ∈ Nlf and (ξ,mξ), (ξ,m

′
ξ) ∈ ϕ⇒ mξ = m′ξ

}
and its σ-algebra Mlf which is defined analogous to Nlf .

2.2. Campbell measure and Palm distribution

Definition 5. Let h be a non-negative and measurable function on S×Nlf . The reduced
Campbell measure C ! is a measure on (S ×Nlf , S ×Nlf) defined by∫ ∑

ξ∈ϕ
h(ξ, ϕ \ ξ) P(dϕ) =

∫
h(ξ, ϕ)C !(d(ξ, ϕ)).

9



2. Preliminaries on point processes

By choosing h(ξ, ϕ) = 1(ξ,ϕ)∈D it is an immediate consequence of this definition, that

C !(D) = E
∑
ξ∈Φ

1(ξ,Φ\ξ)∈D, D ⊂ S ×Nlf .

We henceforth assume that the intensity measure µ is σ-finite. Then the Campbell
measure is also σ-finite and, in its first component, absolutely continuous with respect
to µ. Its Radon-Nikodym density P !

ξ is called reduced Palm distribution. Therefore, the
Campbell measure can be decomposed to

C !(B × F ) =

∫
B
P !
ξ(F )dµ(ξ), B ⊂ S, F ∈ Nlf

and we obtain that for non-negative functions h : S ×Nlf → [0,∞)

E
∑
ξ∈Φ

h(ξ,Φ \ {ξ}) =

∫ ∫
h(ξ, η)dP !

ξ(η)dµ(η).

Hence P !
ξ can be interpreted as the conditional distribution of Φ \ {ξ} given ξ ∈ Φ.

2.3. Special point processes

Definition 6. Let f be a density function on B ∈ B(S). Consider a point process Φ
consisting of n ∈ N i.i.d. points ξ1, . . . , ξn distributed according to f in B. Then Φ is
called binomial point process and we write Φ ∼ BP (f, n).

The binomial process is quite restrictive and rarely used, but it is the starting point to
derive more complex point process models. A canonical extension is to allow n to be
random, which leads to the following definition.

Definition 7. Let λ(B) =
∫
B ψ(s) ds for a non-negative function ψ. A point process Φ

is called Poisson point process with intensity (function) ψ if

(i) N(B) ∼ poi(λ(B)) for all B ⊂ S with λ(B) <∞,

(ii) for all n ∈ N and B ⊂ S with µ(B) ∈ (0,∞) it holds true that

Φ ∩B|N(B)=n ∼ BP (ψ/λ(B), n).

We write Φ ∼ PP (ψ) for short.

We call PP (ψ) homogeneous if ψ is constant – otherwise inhomogeneous. Note that a
single realization of a Poisson point process cannot be distinguished from a realization of
a binomial point process. This is a consequence of the second condition in the definition
above. The Poisson point process plays a fundamental role within the scope of point
processes – comparable with the importance of the normal distribution for probability
distributions.
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2. Preliminaries on point processes

Figure 2.1.: Two realizations of an inhomogeneous Poisson point process and the under-
lying intensity function (upper left and upper right). The lower plots depict
two realizations of a stationary Cox process and the underlying realizations
of the intensity function.

The Poisson point process is probably the most commonly used point process in practice,
but the assumption of a deterministic intensity function might be still too artificial for
certain applications. Therefore it is a quite natural extension to allow the intensity
function to be random itself.

11



2. Preliminaries on point processes

Figure 2.2.: Connections between binomial, Poisson and Cox process. A Poisson process
is derived from a binomial process by imposing a Poisson distribution on
n. A Cox process may be regarded as Poisson process with the additional
property that its intensity function is allowed to be random. On the contrary,
the n−1-thinning of n i.i.d. Cox processes converges to a Poisson process if
EΨ(·) = ψ(·). The n−1-thinning of Poisson processes remains a Poisson
process.

Definition 8. Consider an almost surely locally integrable random field Ψ. The point
process Φ is called Cox process with (random) intensity function Ψ (Φ ∼ CP (Ψ)), if
Φ|Ψ=ψ is a Poisson process with intensity function ψ.

For a Poisson process Φ ∼ PP (ψ) the intensity measure µ(B) equals λ(B). Note that
the measure Λ(B) =

∫
B Ψ(s) ds is random if Φ ∼ CP (Ψ). We call Λ the directing

measure of the Cox process Φ. The intensity measure of a Cox process is the mean of
its directing measure, µ(B) = E(Λ(B)).

By definition, a Poisson process is a Cox process with deterministic directing measure.
Still, a single realization of a Cox process cannot be distinguished from a single real-
ization of a Poisson point process (or even a binomial point process). The following
lemma underlines the importance of the Poisson point process and may be regarded as
a central limit theorem for point processes. The lemma is an immediate consequence of
Theorem 11.3.III in Daley and Vere-Jones (2008) and crucial for our work in Part II of
this thesis.

Lemma 9. Let Φi
i.i.d.∼ CP (Ψ), i = 1, . . . , n be an i.i.d. sequence of Cox processes with

directing measure Λ(A) =
∫
A Ψ(s) ds. Then, for n→∞

n−1
n⋃
i=1

Φi → PP (λ), where λ(A) = EΛ(A), ∀A ∈ B(S).

Proof. The point process on the left-hand side is the 1/n-thinning of
⋃n
i=1 Φi. Hence,

by Theorem 11.3.III in Daley and Vere-Jones (2008) the desired convergence holds true
if and only if n−1

∑n
i=1 Ψi converges to λ for i.i.d. copies Ψi of Ψ. This follows from

the multivariate law of large numbers and Theorem 11.1.VII in Daley and Vere-Jones
(2008).
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2. Preliminaries on point processes

Figure 2.3.: Superposition of 1 (left), 30 (centre) and 300 (right) thinned stationary Cox
processes.

2.4. Hard-core point processes

In this section, the independent p-thinning introduced in Definition 3 is generalized.
Matérn introduced point process models which are obtained from a homogeneous Poisson
process by a dependent thinning method (Matérn, 1960). Let Φ be a Poisson process on
S = Rd with intensity λ. In the Matérn I model, all points ξ ∈ Φ that have neighbours
within a deterministic hard-core distance R are deleted. The remaining points can be
described by

ΦMatI = {ξ ∈ Φ : Φ ∩BR(ξ) \ {ξ} = ∅}.

The Matérn II model considers a marked point process ΦM where each point ξ ∈ Φ is
independently endowed with a random mark mξ ∼ U [0, 1]. A point (ξ,mξ) ∈ ΦM is
retained in the thinned process if the sphere BR(ξ) contains no points ξ′ ∈ Φ \ {ξ} with
mξ′ < mξ. That is, the remaining points are

ΦMatII = {(ξ,mξ) ∈ ΦM : mξ < mξ′ , ∀ξ′ ∈ Φ ∩BR(ξ) \ {ξ}}.

We revisit the Matérn hard-core processes in Part III of this thesis.

Figure 2.4.: Matérn hard-core model I (left) and II (right) with hard-core distance R = 1
based on the same Poisson point process with intensity λ = 0.25.
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3. Cox extremal process

Probabilistic modelling of spatial extremal events is often based on the assumption that
daily observations lie in the max-domain of attraction of a max-stable random field which
justifies statistical inference by means of block maxima procedures. This methodology is
applied in various branches of environmental sciences, for instance, heavy precipitation
(Cooley, 2005), extreme wind speads (Engelke et al., 2015; Genton et al., 2015; Oesting
et al., 2015) and forest fire danger (Stephenson et al., 2015).
At the same time modelling extreme observations on a smaller time scale is a much more
intricate issue and to date only few non-trivial processes are known to lie in the max-
domain of attraction (MDA) of familiar max-stable processes. Among them α-stable
processes (Samorodnitsky and Taqqu, 1994) form a natural class which may be rich
enough to cover a wide range of environmental sample path behaviour (Stoev and Taqqu,
2005) and scale mixtures of Gaussian processes with regularly varying scale, are known
to lie in the domain of attraction of extremal t-processes (Opitz, 2013). However, stable
processes are themselves complicated objects whose statistical inference is a challenging
research topic (Nolan, 2016) and scale mixtures of Gaussian processes have an unnatural
degree of long-range dependence.
Our objective in this part of the thesis is to introduce another class of spatial processes
in the MDA of familiar max-stable models, which encompasses processes with short-
range dependence and to explore whether statistical inference on them is feasible, at
least under some reasonable restrictions.
It is well-understood that max-stable processes can be built from Poisson point processes
(de Haan, 1984; Giné et al., 1990; Stoev and Taqqu, 2006). In order to define our new
class of models, we modify the underlying Poisson point process such that its intensity
function is no longer fixed, but may depend on some spatial random effects. We pursue
this idea by introducing conditionally max-stable processes based on Cox processes (Cox,
1955) which naturally generalize the class of mixed moving maxima processes (Smith,
1990; Schlather, 2002; Zhang and Smith, 2004; Stoev, 2008). Section 3.1 contains the
definition of our proposed model. A functional convergence theorem shows that these
processes lie in the MDA of familiar mixed moving maxima processes (Section 3.2).
From a practical point of view, we choose to model the spatial random effects that
influence the intensity function by a log Gaussian random field which makes the theory
and application of log Gaussian Cox processes conveniently available for our setting, cf.
Møller et al. (1998); Møller and Waagepetersen (2004); Møller and Schoenberg (2010);
Diggle et al. (2013). We discuss in Section 3.3 how exact simulation of our proposed
model can be traced back to exact simulation of max-stable random fields as in Schlather
(2002). Inference on our new model is postponed to the subsequent chapter.
This chapter is based on the first part of Dirrler et al. (2016), where I am responsible
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3. Cox extremal process

for the main contribution – but particularly Lemma 10 is strongly influenced by my
co-authors.
Please note that we switch the notation of point processes within this part of the thesis
– here we regard point processes as special cases of random measures, see for instance
Daley and Vere-Jones (2008).

3.1. Model specification

Let X be a (possibly deterministic) non-negative stochastic process on Rd that we call
storm process or shape. We assume X to have continuous sample paths. Based on its law
PX (on the complete separable metric space X = C(Rd) with the usual Fréchet metric)
and another sample-continuous positive stochastic process Ψ on Rd, to be called spatial
intensity process, and a positive scaling constant µY , we define a random field Y on Rd
by

Y (t) =
∞∨
i=1

uiXi(t− si), t ∈ Rd, (3.1)

where N =
∑∞

i=1 δ(si,ui,Xi) is a Cox-process on S = Rd × (0,∞] × X, directed by the
random measure

dΛ(s, u,X) = µ−1
Y Ψ(s)ds u−2dudPX . (3.2)

The randomness of the measure Λ is due to the randomness of the spatial intensity
process Ψ. Similarly to the situation with mixed moving maxima processes (Smith,
1990; Zhang and Smith, 2004; Stoev, 2008) or, more generally, extremal shot noise
(Serra, 1984; Jourlin et al., 1988; Heinrich and Molchanov, 1994; Dombry, 2012), we will
think of the processes Xi as being random storms centred around si that will affect its
surroundings with severity ui. In case, the intensity process is almost surely identically
one (Ψ ≡ 1), the construction of Y is indeed the usual mixed moving maxima process

Z(t) =

∞∨
i=1

uiXi(t− si), t ∈ Rd, (3.3)

where
∑∞

i=1 δ(si,ui,X(i)) is the Poisson process on S with directing measure

dλ(s, u,X) = µZ
−1 ds u−2dudPX .

Note that, conditional on its intensity process Ψ, the extremal process Y is a (non-
stationary) max-stable mixed moving maxima process. In the sequel, we call Y a con-
ditionally max-stable random field or Cox extremal process.

17



3. Cox extremal process

3.2. Properties of Cox extremal processes

Continuity, Stationarity and Max-Domain of Attraction. Even though the Cox
extremal process Y in (3.1) itself is not max-stable, we show in this section that it
lies in the max-domain of attraction of an associated mixed moving maxima random
field Z under rather general conditions. To show this, we first clarify some technical
requirements that guarantee the finiteness and the continuity of sample paths of Y and
Z.

Lemma 10 (Finiteness and Sample-Continuity). Let K be a compact subset of Rd.

1. If the integrability condition

EΨ

(
EX
(∫

Rd
sup
t∈K

X(t− s)Ψ(s) ds

))
<∞ (3.4)

holds, then supt∈K Y (t) is almost surely finite.

2. If, additionally, the support of X contains some r-ball around the origin o ∈ Rd
with positive probability, that is

∃ r > 0 such that PX
(
Br(o) ⊂ supp(X)

)
> 0 (3.5)

with supp(X) = {s ∈ Rd : X(s) > 0}, then the sample paths of the process Y are
almost surely continuous on K.

3. If both (3.4) and (3.5) are satisfied for any compact K ⊂ Rd, then Y is almost
surely finite on compact sets and sample-continuous on Rd. In this case only finitely
many points of N contribute to Y on K.

Proof. We follow closely the arguments of (Kabluchko et al., 2009, Proposition 13). For
K ⊂ Rd and c > 0, set

Ic(K) =

{
i ∈ N : sup

t∈K
uiXi(t− si) > c

}
.

1. Conditional on the the process Ψ, the number of points in Ic(K) is Poisson dis-
tributed with parameter

Λ

({
(s, u,X) : sup

t∈K
uX(t− s) > c

})
= c−1 EX

∫
Rd

sup
t∈K

X(t− s)Ψ(s)ds,

which is PΨ-almost surely finite by the integrability condition (3.4). Hence, the
number of points in Ic(K) is almost surely finite, which entails that

sup
t∈K

Y (t) ≤
∨

i∈Ic(K)

sup
t∈K

uiXi(t− si) ∨ c

is almost surely finite.
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3. Cox extremal process

2. Due to its compactness, K can be split into finitely many (possibly overlapping)
compact pieces K1, . . . ,Kp of diameter less than r. Since the intensity process Ψ is
positive and continuous almost surely, we also know infs∈K Ψ(s) > 0 almost surely.
Hence, there are almost surely infinitely many elements in Ij := {i ∈ N : si ∈ Kj}
of the Cox process N (that underlies the construction of Y ) in each of these pieces
Kj , j = 1, . . . , p. Since there exists an r > 0 such that PX(Br(o) ⊂ supp(X)) > 0,
there exists almost surely an element (in fact, infinitely many elements) ij ∈ Ij
within the Cox process, such that Br(o) ⊂ supp(Xij ). Summarizing, K is almost
surely covered by

K ⊂
p⋃
j=1

Kj ⊂
p⋃
j=1

Br(sij ) ⊂
p⋃
j=1

supp(Xij (· − sij )).

Setting n := maxpj=1 ij and cj := infs∈Br(o)Xij (s) > 0, we deduce that

inf
t∈K

n∨
i=1

uiXi(t− si) ≥ inf
t∈K

p∨
j=1

uijXij (t− sij ) ≥ inf
t∈K

p∨
j=1

uijcj1Br(sij )(t) ≥
p∨
j=1

uijcj > 0

is strictly greater than zero. Hence, there exists n ∈ N, such that

Y (t) =
∨

i∈Ic(K)∪{1,...,n}

uiXi(t− si) ∀t ∈ K

almost surely. That is, the process Y can be represented on K as the maximum of
a finite number of continuous functions, which ensures the continuity of Y on K.

Remark 11. The Cox extremal process Y is in general not uniquely determined by the
choice of its shape X and intensity process Ψ. For instance, let X̃ be a process which
satisfies the same assumptions as X, and independently of X̃, let ξ be a random variable,
such that X can be decomposed into

X(t) = X̃(t)ξ, t ∈ Rd.

Then choosing X̃ as shape and Ψ · ξ as intensity process does not alter the finite dimen-
sional marginal distributions of the Cox extremal process Y , since

P(Y (t1) ≤ y1, . . . , Y (tn) ≤ yn)

= EΨ exp

(
−µ−1

Y EX
∫

max
i=1,...,n

X(ti − s)
yi

Ψ(s) ds

)
. (3.6)

In the sequel, we will always assume that the intensity process Ψ is strictly stationary
with

cΨ = EΨΨ(o) <∞. (3.7)
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3. Cox extremal process

This assumption simplifies some requirements of the preceding lemma. For instance, by
Tonelli’s theorem, condition (3.4) will be equivalent to

EX
(∫

Rd
sup
t∈K

X(t− s)ds
)
<∞. (3.8)

For K = {t}, we obtain that

EΨ

(
EX
∫
Rd
X(t− s)Ψ(s)ds

)
= cΨ · EX

(∫
Rd
X(s) ds

)
<∞ (3.9)

entails the finiteness of Y (t) as well as Z(t) for t ∈ Rd. In fact, the mixed moving
maxima field Z in (3.3) has standard Fréchet margins if its scaling constant µZ equals
(3.9) with Ψ ≡ 1, that is cΨ = 1. Condition (3.4) will be trivially satisfied for compact
subsets K of Rd if Ψ is stationary, cΨ ∈ (0,∞) and

X ≤ C1BR(o), PX -almost surely (3.10)

for some positive constants C,R > 0, where BR(o) ⊂ Rd denotes the closed ball of radius
R centred at o ∈ Rd. Finally, stationarity of Ψ ensures that also the Cox extremal process
Y built on the intensity process Ψ is stationary.

Lemma 12 (Stationarity). If the intensity process Ψ is stationary, then the Cox extremal
process Y is stationary.

Proof. The stationarity of Ψ and the invariance of the Lebesgue measure with respect
to translations, gives that

P
(
Y (t1 + h) ≤ y1, . . . , Y (tk + h) ≤ yk

)
= EΨ

[
exp

(
− µ−1

Y EX
∫
Rd

k∨
j=1

X(tj + h− s)
yj

Ψ(s) ds
)]

= EΨ

[
exp

(
− µ−1

Y EX
∫
Rd

k∨
j=1

X(tj − s)
yj

Ψ(s+ h) ds
)]

equals (3.6).

Remark 13. In the definition of the Cox extremal process Y it is also possible to work
with storm processes X that may attain negative values, such as Gaussian processes.
If at least (3.5) is satisfied, the resulting random field Y will be almost surely strictly
positive.

The following theorem is the main result of this section.
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3. Cox extremal process

Theorem 14 (Max-Domain of Attraction). Let the (sample-continuous) intensity pro-
cess Ψ be stationary and almost surely strictly positive satisfying (3.7) and let the
(sample-continuous) storm process X satisfy conditions (3.8) and (3.5). Then the ran-
dom fields Y and Z are finite on compact sets and sample-continuous, and the random
field Y lies in the max-domain of attraction of Z. More precisely, if the scaling con-
stant µY equals the integral (3.9) and µZ = µY /cΨ, then the following convergence holds
weakly in C(Rd)

n−1
n∨
i=1

Yi → Z,

where Yi are i.i.d. copies of Y .

We will now prepare to prove Theorem 14. To this end we set the left-hand-side Y (n) :=
n−1 (

∨n
i=1 Yi) which can be more conveniently represented as

Y (n)(t)
d
=

∞∨
i=1

uiXi(t− si), t ∈ Rd,

where Nn =
∑∞

i=1 δ(si,ui,Xi) is a Cox-process on Rd× (0,∞]×X, directed by the random
measure

dΛn(s, u,X) = µ−1
Y n−1

n∑
i=1

Ψi(s)ds u
−2dudPX ,

and Ψi, i = 1, . . . , n represent i.i.d. copies of Ψ. The random measure Λn is the directing
measure of the union of the underlying independent Cox-processes of the random fields
Yi, i = 1, . . . , n, scaled by n−1. By Lemma 9, the point process Nn converges weakly to
the Poisson-process with directing measure

dλ(s, u,X) = µZ
−1 ds u−2dudPX

that underlies the mixed moving maxima random field Z. The latter convergence indi-
cates already the result of Theorem 14. In order to prove Theorem 14, we show first the
convergence of the finite dimensional distributions and then the tightness of the sequence
Y (n), n = 1, 2, . . . .

Lemma 15 (Convergence of finite-dimensional distributions). Let the random fields Y
and Z be specified as in Theorem 14, then the finite dimensional distributions of Y (n)

converge to those of Z as n→∞.

Proof. We fix t1, . . . , tk ∈ Rd and show that the random vector (Y (t1), . . . , Y (tk)) lies in
the max-domain of attraction of the random vector (Z(t1), . . . , Z(tk)). It then automat-
ically follows that the finite dimensional distributions Y (n) converge to those of Z, since
the scaling constants for each individual t ∈ Rd are chosen appropriately.
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3. Cox extremal process

For y = (y1, . . . , yk) ∈ (0,∞)d, it follows from (3.9) that the non-negative random
variable

HΨ(y) := µ−1
Y EX

∫
max

1≤j≤k

X(tj − s)
yj

Ψ(s) ds

satisfies that its first moment EΨ(HΨ(y)) < ∞ is finite and can be gained from its
Laplace transform via

EΨ(HΨ(y)) = − lim
t↓0

d

dt
EΨ

(
e−tHΨ(y)

)
.

Hence, by l’Hôpital’s rule

lim
λ→∞

1− P(Y (t1) ≤ λy1, . . . , Y (tk) ≤ λyk)
1− P(Y (t1) ≤ λ, . . . , Y (tk) ≤ λ)

= lim
t→0

1− EΨ(e−tHΨ(y))

1− EΨ(e−tHΨ(1))

=
EΨ(HΨ(y))

EΨ(HΨ(1))
=: V (y)

with V (cy) = c−1y. Moreover, V (y) is a multiple of the exponent function of the max-
stable random vector (Z(t1), . . . , Z(tk))

− logP(Z(t1) ≤ y1, . . . , Z(tk) ≤ yk) = µ−1
Z EX

∫
max

1≤j≤k

X(tj − s)
yj

ds = EΨ(HΨ(y)).

Hence, by (Resnick, 2008, Corollary 5.18 (a)), the random vector (Y (t1), . . . , Y (tk)) lies
in its domain of attraction.

The following lemma will be useful to prove the tightness of the sequence Y (n).

Lemma 16. Let an and bn be bounded sequences of non-negative real numbers, then∣∣∣∣∣
∞∨
n=1

an −
∞∨
n=1

bn

∣∣∣∣∣ ≤
∞∨
n=1

|an − bn| .

Proof. The statement is the triangle inequality |‖a‖∞ − ‖b‖∞| ≤ ‖a − b‖∞ with ‖ · ‖∞
the `∞ norm in the space of bounded sequences.

Lemma 17 (Tightness). Let the random field Y be specified as in Theorem 14, then the
sequence of random fields Y (n) is tight.

Proof. Since the finiteness of Y does also ensure the finiteness of each Y (n), it suffices
to show that, for a compact set K ⊂ Rd, the modulus of continuity

ωK

(
Y (n), δ

)
:= sup

t1,t2∈K : ‖t1−t2‖≤δ

∣∣∣Y (n)(t1)− Y (n)(t2)
∣∣∣
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3. Cox extremal process

satisfies the convergence

lim
δ→0

lim sup
n→∞

P
(
ωK

(
Y (n), δ

)
> ε
)

= 0. (3.11)

To simplify the notation, we introduce

Kδ :=
{

(t1, t2) ∈ Rd × Rd : ‖t1 − t2‖ ≤ δ, t1, t2 ∈ K
}
.

By the definition of Y (n) and the preceding Lemma 16, we have

P
(
ωK

(
Y (n), δ

)
≤ ε
)

= P

(
sup

(t1,t2)∈Kδ

∣∣∣∣∣
∞∨
i=1

uiXi(t1 − si)−
∞∨
i=1

uiXi(t2 − si)

∣∣∣∣∣ ≤ ε
)

≥ P

(
sup

(t1,t2)∈Kδ

∞∨
i=1

ui |Xi(t1 − si)−Xi(t2 − si)| ≤ ε

)
.

As the tuples (si, ui, Xi), i ∈ N, are the points of the Cox process Nn, we can compute
the latter probability as expected void-probability. To this end, let us denote the joint
probability law of the i.i.d. intensity processes Ψi, i = 1, 2, . . . and its expectation by
PΨ and EΨ, respectively. Setting Ψ(n)(s) := n−1

∑n
i=1 Ψi(s), we obtain

lim inf
n→∞

P
(
ωK

(
Y (n), δ

)
≤ ε
)

≥ lim inf
n→∞

EΨ

[
exp

(
−ε−1µ−1

Y EX
∫
Rd

sup
(t1,t2)∈Kδ

|X(t1 − s)−X(t2 − s)|Ψ(n)(s)ds

)]

≥ EΨ

[
lim inf
n→∞

exp

(
−ε−1µ−1

Y EX
∫
Rd

sup
(t1,t2)∈Kδ

|X(t1 − s)−X(t2 − s)|Ψ(n)(s)ds

)]
,

where the last inequality follows from Fatou’s Lemma. Moreover, the strong law of large
numbers and condition (3.4) (which ensures the existence and finiteness of the following
right-hand side) yield that PΨ-almost surely

lim
n→∞

EX
∫
Rd

sup
(t1,t2)∈Kδ

|X(t1 − s)−X(t2 − s)|Ψ(n)(s)ds

= cΨ EX
∫
Rd

sup
(t1,t2)∈Kδ

|X(t1 − s)−X(t2 − s)|ds

≤ cΨ EX
∫
Rd

sup
t∈Bδ(o)

|X(s− t)−X(s)|ds,

which entails

lim inf
n→∞

P
(
ωK

(
Y (n), δ

)
≤ ε
)
≥ exp

(
−ε−1µ−1

Y cΨ EX
∫
Rd

sup
t∈Bδ(o)

|X(s− t)−X(s)|ds

)
.
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Finally, in order to establish (3.11), it remains to be shown that

lim
δ→0

EX
∫
Rd

sup
t∈Bδ(o)

|X(s− t)−X(s)| ds = 0.

This, however, follows from the dominated convergence theorem, since for any fixed
X ∈ C(Rd) and any fixed s ∈ Rd the convergence of the integrand to 0 holds true and
by

sup
t∈Bδ(o)

|X(s− t)−X(s)| ≤ sup
t∈Bδ(o)

X(s− t) +X(s)

and condition (3.8), there exists an integrable upper bound.

We are now in position to prove the main result of this section.

Proof of Theorem 14. The finiteness and sample-continuity of the random fields Y and
Z are an immediate consequence of Lemma 10. While Lemma 15 shows that the finite-
dimensional distributions of the random fields Y (n) converge to those of the process Z,
Lemma 17 establishes the tightness of the sequence Y (n). Collectively, this proves the
assertions.

Choices for the intensity process. For inference reasons we shall further assume
henceforth that the intensity process Ψ is a stationary log Gaussian random field, that
is,

Ψ(s) = exp(W (s)), s ∈ Rd,

where W is stationary and Gaussian. Thereby, all requirements for Ψ from the preceding
Theorem 14 are guaranteed as long as W has continuous sample paths. Moreover, the
latter also ensures that the distribution of the random measure Λ, cf. (3.2), is uniquely
determined by the distribution of W . By Møller et al. (1998) (see also Adler (1981),
page 60), a Gaussian process W is indeed sample-continuous if its correlation function C
satisfies 1−C(h) < M‖h‖α, h ∈ Rd, for some M > 0 and α > 0. This condition holds for
most common correlation functions, for instance, the stable model C(h) = exp(−‖h‖α),
α ∈ (0, 2], h ∈ Rd, and the Whittle-Matérn model

C(h) =
21−ν

Γ(ν)
(
√

2νh)νKν(
√

2νh), ν > 0, h ∈ Rd, (3.12)

see Guttorp and Gneiting (2006).

Choices for the storm profiles. For statistical inference, we rely on identifying at
least some of the centres of the storms Xi from observations of Y . As a starting point,
it is reasonable to assume that the paths of X satisfy a monotonicity condition, for
instance that for each path Xω there exist some monotonously decreasing functions fω
and gω such that

gω(‖t‖) ≤ Xω(t) ≤ fω(‖t‖) (3.13)
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and gω(0) = Xω(0) = fω(0). For the purpose of illustration, we will use in most of our
examples a deterministic shape X = ϕ, with ϕ being the density of the d-dimensional
standard normal distribution as in Smith (1990). See also Section 5 for a discussion of
this choice and the recovery of storm centres.

3.3. Simulation

In many cases, functionals of max-stable processes cannot be explicitly calculated, e.g.,
for most models only the bivariate marginal distributions are known while the higher
dimensional distributions do not have a closed-form expression. Therefore and in or-
der to test estimation procedures, efficient and sufficiently exact simulation algorithms
are desirable. However, exact simulation of (conditionally) max-stable random fields
can be challenging, since a priori, its series representation (3.1) involves taking maxima
over infinitely many storm processes. A first approach in order to simulate mixed mov-
ing maxima processes and some other max-stable processes was presented in Schlather
(2002). Meanwhile, several improvements with respect to exactness and efficiency have
been proposed in Engelke et al. (2011); Oesting et al. (2012, 2013); Dieker and Mikosch
(2015); Dombry et al. (2016) and Liu et al. (2016). Since our focus in this work is not
on the simulation algorithm, it will be sufficient for us to extend the straightforward
approach of Schlather (2002) in this article.
Under the (mild) conditions of Lemma 10 only finitely many of the storms in (3.1)
contribute to the maximum if we restrict the random field to a compact domain D ⊂ Rd,
see also de Haan and Ferreira (2006). Still, the centres of these contributing storms could
be located on the whole Rd. In order to define a feasible and exact algorithm we consider
bounded storm profiles X which satisfy condition (3.10). In such a situation only storms
with centres within the enlarged region

DR = D ⊕BR(o) =
⋃
s∈D

BR(s),

can contribute to the maximum (3.1).

Proposition 18 (Simple Simulation Algorithm). Let D ⊂ Rd be a compact subset and
assume that the conditions of Lemma 10 hold true and additionally the storm profile X
satisfies almost surely (3.10). Then the following construction leads to an exact simula-
tion algorithm on D for the associated Cox extremal process Y .

• Let ψ be a realization of the intensity process Ψ and νψ(·) =
∫
· ψ(s) ds the

associated measure on Rd.

• Let Si
i.i.d.∼ ψ/νψ(DR), i = 1, 2, . . . be an i.i.d. sequence of random variables from

the probability measure ψ/νψ(DR) on DR.

• Let Xi
i.i.d.∼ X, i = 1, 2, . . . be an i.i.d. sequence of storm profiles.
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• Let ξi, i = 1, 2, . . . be an i.i.d. sequence of standard exponentially distributed ran-
dom variables and set Γn =

∑n
i=1 ξi for n = 1, 2, . . . .

Based on the stopping time

T = inf

{
n ≥ 1 : Γ−1

n+1C ≤ inf
t∈D

n∨
i=1

Γ−1
i Xi(t− Si)

}
,

we define the random field Ỹ on D via

Ỹ (t) =
νψ(DR)

µY

T∨
i=1

Γ−1
i Xi(t− Si), t ∈ D.

In this situation the following holds true.

1. The stopping time T is almost surely finite.

2. The law of the process Ỹ coincides with the law of the Cox extremal process Y
restricted to D.

Proof. First note that
∑∞

i=1 δΓi is a Poisson process on R+ with intensity 1. Hence∑∞
i=1 δΓ−1

i
is a Poisson process on (0,∞] with intensity u−2du. Attaching the indepen-

dent markings Xi and, for fixed Ψ = ψ, the markings Si ∼ ψ(s)/ν(DR) yields that, for
fixed Ψ = ψ, the point process

∑∞
i=1 δ(Si,νψ(DR)µ−1

Y Γ−1
i ,Xi)

is a Poisson process directed

by the measure µ−1
Y ψ(s) ds u−2 du dPX on DR × [0,∞)× X.

Since in the construction of Y only storms with center in DR can contribute to the
process Y on D, the law of Y on D and the law of

νψ(DR)

µY

∞∨
i=1

Γ−1
i Xi(t− Si), t ∈ D

coincide. By definition of the stopping time T and since X is uniformly bounded by C,
the latter has the same law as the process Ỹ on D. So, it remains to be shown that T
is almost surely finite. Similar to the proof of Lemma 10, it can be shown that

∃n ∈ N : inf
t∈D

n∨
i=1

Γ−1
i Xi(t− Si) > 0 almost surely. (3.14)

Together with the decrease of the sequence Γ−1
n+1 this implies the a.s.-finiteness of T .

Beyond this extension, we would like to point out that in fact all previous procedures
for simulation of non-stationary mixed moving maxima processes can be adapted for the
simulation of Cox extremal processes in a similar way. For instance, by using a trans-
formed representation of the original process Y , the efficiency improvement of Oesting
et al. (2013) can be transferred as well.
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Remark 19. When condition (3.10) is not satisfied, we choose R and C such that

P
(

sup
t∈Rd\BR(o)

X(t) > ε

)
≤ α and P

(
sup

t∈BR(o)
X(t) > C

)
≤ α (3.15)

hold true for some prescribed small ε > 0 and α > 0 and approximate X by its truncation
min(X1BR , C) in the preceding algorithm, whence simulation will be only approximately
exact. For example, let us consider a generalization of the Smith model in Rd, i.e.
X = ϕ with ϕ the d-variate standard normal density. Then for arbitrary ε > 0, (3.15) is
satisfied with α = 0, R =

√
−d log(2π)− 2 log(ε) and C = (2π)−d/2. Figure 3.1 depicts

two plots of a Cox extremal process Y and its underlying log Gaussian random field Ψ.

Figure 3.1.: Cox extremal processes Y (left) and underlying log Gaussian random fields
Ψ (right). The covariance of log Ψ is of Whittle-Matérn type with var = 1,
scale = 2 and ν =∞ (upper plots) and ν = 1 (lower plots) respectively. The
plots have been transformed to a logarithmic scale and the storm profiles
have deterministic shape X = ϕ.
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This chapter is based on the second part of Dirrler et al. (2016). We further examine
the Cox process N that underlies the Cox extremal process (3.1). More specifically, we
want to perform inference on the intensity process Ψ that influences the intensity of N .
The process Ψ is modelled by a log Gaussian random field – we take a closer look at two
important aspects in the recovery of the underlying Gaussian process.
In Section 4.1, we deal with non-parametric estimation of realizations of the random
intensity of the Cox process from observations of the conditionally max-stable processes
and their storm centres. Based on the outcome of this procedure, we consider paramet-
ric estimation of the covariance function of the Gaussian process in Section 4.2. The
performance of these procedures is examined in Section 4.3 in a simulation study.

4.1. Non-parametric inference on the realization ψ of the
intensity process Ψ

For practical purposes it is critical to understand how one can recover (i) the storm
profile X and (ii) the intensity process Ψ from i.i.d. replicates of the Cox extremal
process Y that they induce via (3.1).
For inference on X note that, by Theorem 14 the process Y as in (3.1) lies in the MDA
of the ordinary mixed moving maxima process Z as in (3.3) . Then m−1

∨m
j=1 Yj equals

approximately Z for sufficiently large m and the distribution of X can be estimated
using methods for estimating the shape of Z itself (note that Z does not depend on
Ψ). Among these are for instance madograms (see Matheron (1987) and Cooley (2005)),
censored likelihood (Nadarajah et al., 1998; Schlather and Tawn, 2003) or composite
likelihood (Castruccio et al., 2015). The recent article of Huser et al. (2016) gives an
overview over likelihood methods. We henceforth assume that the distribution of X is
known and focus on the second question (ii), the inference on the intensity process Ψ.
To understand the stochastic mechanism behind Ψ, we first need to understand how we
can recover a single realization ψ of Ψ from a corresponding single realization y of Y .
To this end, we assume the following general strategy.

1. Determination of the visible storm centres. If the storm profiles Xi assume
their global maximum at the origin and decay monotonously, then the local maxima
of y are the visible storm centres. They constitute approximately a sample of a
point process nyK whose intensity has a close link to the intensity ψ.

2. Estimation of the realization ψ. We use a kernel estimator to get a first
estimate for ψ. Such an estimator is necessarily biased.
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3. Correcting the bias. We will make an artificial assumption on the observations
to obtain a reasonable approximation of the spatially varying bias factor byK(s).
The original kernel estimator is divided by the bias factor to obtain the final
estimator for ψ.

We will show in a simulation study (Section 4.3) that our approach works reasonably
well. In this section we underpin it theoretically.
To this end, we consider the point process NY

K of locations whose corresponding shape
functions contribute to Y

NY
K =

∞∑
i=1

δsi1{supt∈K Xi(t−si)Y (t)−1≥u−1
i }

, (4.1)

on a compact setK ⊂ Rd, see also Figure 4.1. That is, NY
K equals the location component

of the process of extremal functions introduced by Dombry and Eyi-Minko (2013) and
Oesting and Schlather (2014). We call NY

K the contributing storm centres of Y on K
and denote a realization of NY

K by nyK . Note that ψ, y and nyK are directly related, that
is, ψ is the realization of the intensity process Ψ which leads to the realization y of the
Cox extremal process Y whose contributing storm centres are nyK .
What complicates statistical inference is that the process NY

K is not a Cox process
anymore and hence there is no straightforward way to derive, for instance, its intensity.
We circumvent this problem by considering the following modified process

NY ∗
K =

∞∑
i=1

δsi1{supt∈K Xi(t−si)Y ∗(t)−1≥u−1
i }

(4.2)

where Y ∗ is an almost surely positive random field. The following proposition states
conditions which enable us to derive some useful properties of NY ∗

K .

Proposition 20. Assume that the conditions (3.10) and (3.5) are satisfied. Let Y ∗|Ψ=ψ

be an independent copy of Y |Ψ=ψ which is independent of N |Ψ=ψ. Let K ⊂ Rd be a
compact set. Then NY ∗

K is a Cox process on Rd. More specifically

NY ∗
K |Ψ=ψ,Y ∗=y ∼ PP

(
byK(s)ψ(s)

)
is a Poisson point process, whose intensity function equals ψ(s) up to the correcting
factor

byK(s) = µ−1
Y EX

[
sup
t∈K

X(t− s)
y(t)

]
, s ∈ Rd. (4.3)

Proof. Since Y ∗|Ψ=ψ is independent of N |Ψ=ψ, the process NY ∗
K |Ψ=ψ,Y ∗=y is an indepen-

dent thinning of the Poisson process N |Ψ=ψ. The number of points in the set{
s ∈ KR : (s, u,X) ∈ N |Ψ=ψ, u

−1 ≤ sup
t∈K

X(t− s)
y(t)

}
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4. Inference on the underlying Cox process

Figure 4.1.: Left plot: Contributing storms (black), the grey ones do not contribute to
the final process on K = [2, 8]. Right plot: Storm centres (black dots) and
location of the storms (red). The red dots correspond to the point process
NY
K . Some points of NY

K are outside of K.

is Poisson distributed with parameter

µY
−1

∫
KR

EX sup
t∈K

X(t− s)
y(t)

ψ(s) ds.

This finishes the proof.

Remark 21. This result can be stated in a more general setting. Let f and f̃ be arbi-
trary functions which satisfy σ(f(Y ∗), f̃(Y ∗)) = σ(Y ∗). Suppose that

∑∞
i=1 δY ∗i is a Cox

process with intensity
∫

dPY ∗|f̃(Y ∗). Then

NY ∗
K ∼ CP

(
EY ∗

[
EX
(

sup
t∈K

X(t− s)(Y ∗(t))−1

) ∣∣∣∣f̃(Y ∗)

]
Ψ(s)

)
,

if additionally
Y ∗|f(Y ∗),Ψ |= N |f(Y ∗),Ψ.

This implies the statement of Proposition 20 by choosing f̃ = id.

The correcting factor byK(s) is in principle known if the distribution of the shape process
X is known and can be evaluated numerically. We henceforth use nyK as an estimate

of a realization of NY ∗
K |Ψ=ψ,Y ∗=y, assuming that Nψ,y

K := NY
K |Ψ=ψ,Y=y approximates

Nψ,y∗

K := NY ∗
K |Ψ=ψ,Y ∗=y sufficiently well in practice, even if the independence assumption

of Proposition 20 is violated. See Section 5 for a discussion of this assumption. In
particular, simulation results are promising that the error made is not too big compared
to other effects.
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4. Inference on the underlying Cox process

Figure 4.2.: Domain of observation D (big square) and domain of estimation KR. The
process NY

K takes value on KR and its points are marked by black circles.

As a consequence of our approach, we have that Nψ,y
K ≈ PP (byK(s)ψ(s)).

Note that a single observation of NY
K cannot be distinguished from a single observation

of Nψ,y
K or Ny

K := NY
K |Y=y. That is, nyK can be regarded as a realization of each of these

processes.
We assume now that a single realization of y is observed on a set D which fulfils the
equation K = D 	 BR(o) for a compact set K. We further assume that nyK can be
recovered from y. The conditions (3.10) and (3.5) imply that NY

K is almost surely a
finite point process. Furthermore, with KR = K ⊕ BR(o) we have supp

(
NY
K

)
⊂ KR

almost surely, that is, the support of the correction factor byK lies in KR.
We derive a non-parametric estimator of ψ on a set D ⊂ KR = K ⊕ BR(o), see Figure
4.2 for illustration. The distribution of the shape function X is assumed to be known.
Then ψyK(s) = byK(s)ψ(s) can be estimated non-parametrically by the kernel estimator
(Diggle, 1985)

ψ̂yD(s) = h−d
∑

t∈Nψ,y∗
K ∩D

cD(t)−1k

(
s− t
h

)
, s ∈ D, D ⊂ KR, (4.4)

with bandwidth h and the Epanechnikov kernel

k(s) =
d+ 2

2|B1(o)|
(1− ‖s‖2)1B1(o)(s).

To compensate edge effects, weights cD(t) = h−d
∫
D k

(
s−t
h

)
ds are included as proposed

in Ripley (1977). The impact of the bandwidth h is strong and several approaches of
figuring out a reasonable bandwidth can be found in Diggle (1985) and Stoyan and
Stoyan (1992).

Lemma 22. The estimator
∫
D ψ̂

y
D(s) ds is unbiased for

∫
D ψ

y(s) ds, that is

E
∫
D
ψ̂yD(s) ds =

∫
D
ψy(s) ds ∀h ∈ R+, ∀D ⊂ KR.
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4. Inference on the underlying Cox process

Figure 4.3.: True realization ψ of Ψ (left), associated Cox extremal process Y (centre)
and estimated intensity ψ̂ (right). The intensity process Ψ is log Gaussian
with Matérn covariance function with parameters ν = 2, scale = 3, var = 2.

Proof. The assertion follows from the straight forward computation

E
∫
D
ψ̂yh(s) ds = E

∫
D
h−d

∑
t∈Nψ,y∗

K ∩D

cD(t)−1k

(
s− t
h

)
ds

= E
∑

t∈Nψ,y∗
K ∩D

1 = ENψ,y∗

K (D).

Since the number of points in Nψ,y∗

K (D) is Poisson distributed with parameter

µ−1
Y

∫
D
EX sup

t∈K
X(t− s)y(t)−1ψ(s) ds,

we conclude

E
∫
D
ψ̂yh(s) ds = µ−1

Y

∫
D
EX

(
sup
t∈K

X(t− s)y(t)−1

)
ψ(s)ds =

∫
D
ψyK(s) ds.

Finally, we divide ψ̂yD by the correcting factor byK and use

ψ̂D(s) = byK(s)−1ψ̂yD(s) (4.5)

to estimate ψ - see Figure 4.3 for an illustration.

Remark 23. The integral of the estimator ψ̂yKR is unbiased for the integral of ψyK .

That said, ψyK and ψ̂yKR are rather small near the boundary ∂KR of KR. Condition

(3.13) implies that byK(s) is also small for s close to ∂KR. Since ψ̂KR is defined as

ψ̂KR = ψ̂yKR/b
y
K , the estimates are highly unstable in these regions. The severeness

of this effect depends mainly on the shape function X and can a priori be avoided by
restricting ψ̂D to D = K or using a smaller radius R̃ < R instead of the exact R, such
that E infs∈BR̃(o)X(s) > α for some sufficiently large α > 0.
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4. Inference on the underlying Cox process

4.2. Parametric estimation of the covariance function of the
intensity process Ψ

As described in Section 3.1, we model the intensity process Ψ that underlies our Cox
extremal process Y by a log Gaussian process Ψ = exp(W ). Let σ2Cβ be the covariance
function of the Gaussian random field W with correlation function Cβ and unknown
parameters σ2 > 0 and β ∈ Rp. To estimate σ2 and β from a realization y of Y that is
observed on D, the following steps are carried out.

1. Estimate a sample of CP (Ψ).

a) Obtain the visible storm centres from y, see Section 4.1.

b) Modify the sample of storm centres such that its theoretical intensity equals
ψ. That is, points are deleted at areas where the original intensity is too high
and additional points are simulated at areas where the original intensity is
too low.

2. Estimate σ2 and β by applying the minimum contrast method (Møller
et al., 1998) to the (estimated) sample of CP (Ψ).

a) Estimate the pair correlation function of the modified sample of storm centres
by kernel methods.

b) Minimize the distance between the theoretical pair correlation function and

its estimate to obtain estimates σ̂2 and β̂ for σ2 and β.

In case of n observations y1, . . . , yn we define σ̂2
i and β̂i for each i = 1, . . . , n as described

above. Then, the final estimates of σ2 and β are σ̂2 = n−1
∑n

i=1 σ̂
2
i and β̂ = n−1

∑n
i=1 β̂i,

respectively. In the sequel we provide detailed descriptions of step 1 and 2 from above.
As in Section 4.1, let K = D 	 BR(o) where D is such that K is compact. We assume
again that the visible storm centres can be recovered from a realization y of Y and are
regarded as sample of the process Ny

K .

Estimate a sample of CP (Ψ) by modifying Ny
K . As a consequence of Proposi-

tion 20, the point process Ny
K is a Cox process with intensity function byKΨ. Compared

to the original point process N0 ∼ CP (Ψ) on which the Cox extremal process Y is based,
it is very likely that Ny

K possesses more points in the region {byK ≥ 1} and fewer points
in the region {byK < 1}.
To adjust for this discrepancy we delete some points of Ny

K when byK > 1 and add
points to Ny

K when byK < 1. The first adjustment on {byK ≥ 1} is done by independent
thinning. If p is a measurable function on Rd with p(s) ∈ [0, 1], then p ·Ny

K denotes the
point process where every point of Ny

K is independently deleted with probability 1−p(·)
(see (Daley and Vere-Jones, 2008) Chapter 11.3 for details). Figure 4.4 depicts a plot of
a sample of the original Ny

K , the thinning probabilities and the thinned sample Ny
K . We
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4. Inference on the underlying Cox process

Figure 4.4.: Realization ψ of Ψ and the original sample of Ny
K (left). The retaining

probabilities p are plotted in the middle. Thinned sample of Ny
K (circles),

the deleted points are marked with crosses (right).

Figure 4.5.: Realization ψ of Ψ and the thinned sample p ·Ny
K (left). Additional points

are simulated with intensity function (1 − byK)+Ψ (middle). Superposition
of p ·Ny

K with the additional points (filled circles) is plotted in the right.
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4. Inference on the underlying Cox process

choose p = 1/byK on {byK ≥ 1} such that the random intensity function of the thinned
process equals Ψ on {byK ≥ 1}. The second adjustment, adding points where byK < 1,
is achieved by simulating additional points in such way that the sum of the intensity
functions equals Ψ on {bYK < 1}, see also Figure 4.5. The following lemma summarizes
and justifies this procedure.

Proposition 24. Let CP (fΨ) be a finite Cox process on Rd and p = f−1 · 1{f≥1} +

1{f<1}. Then, p is a measurable function on Rd with p(s) ∈ [0, 1] for all s ∈ Rd and

p · CP (fΨ) + CP ((1− f)+Ψ)

= p · CP (fΨ)|{f≥1}︸ ︷︷ ︸
p-thinning of original CP (fΨ)

on {f≥1}

+ CP (fΨ)|{f<1}︸ ︷︷ ︸
original CP (fΨ)

on {f<1}

+ CP ((1− f)Ψ)|{f<1}︸ ︷︷ ︸
additional points

on {f<1}

∼ CP (Ψ). (4.6)

That is, the left-hand side is distributed like a Cox process with intensity process Ψ.

Proof. A simple calculation shows that p ·CP (fΨ) = p ·CP (fΨ)|{f≥1}+CP (fΨ)|{f<1}
and
(1− f)+Ψ = (1− f)Ψ|{f<1} which implies

p · CP (fΨ) + CP ((1− f)+Ψ)

= p · CP (fΨ)|{f≥1} + CP (fΨ)|{f<1} + CP ((1− f)Ψ)|{f<1}.

Since p = f−1 · 1{f≥1} + 1{f<1} we obtain

p · CP (fΨ)|{f≥1} = f−1 · CP (fΨ)|{f≥1} = CP (Ψ)1{f≥1}

for the first part of the sum on the set {f ≥ 1}. Furthermore, the remaining parts satisfy
CP (fΨ)|{f<1} + CP ((1 − f)Ψ)|{f<1} = CP (Ψ)|{f<1} on the set {f < 1} which entails
the assertion (4.6).

In our situation we apply Proposition 24 to Ny
K by choosing f = byK and restricting the

resulting process to K. That is,

(p ·Ny
K + CP ((1− byK)+Ψ))|K ∼ CP (Ψ)|K =: ΦK .

The first two components considered in (4.6) form the thinned point process p ·Ny
K . To

add the additional points on {byK < 1} we rely on our estimate of ψ from Section 4.1.

Minimum contrast method. The so-called pair correlation function (Stoyan and
Stoyan, 1992) of a Cox process on K ⊂ Rd with random intensity function Ψ = exp(W )
is given by

g(s1, s2) =
E [Ψ(s1)Ψ(s2)]

EΨ(s1)EΨ(s2)
, s1, s2 ∈ K.

A remarkable property of a log Gaussian Cox process is that its distribution is fully
characterized by its first and second order product density. We refer to Theorem 1 in
Møller et al. (1998), which also covers the following lemma.
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4. Inference on the underlying Cox process

Lemma 25 (Stationarity and second order properties). A log Gaussian Cox process is
stationary if and only if the corresponding Gaussian random field is stationary. Then,
its pair correlation function equals

g(s1 − s2) = exp(σ2C(s1 − s2)),

where σ2C(·) is the covariance function of the associated Gaussian random field.

Hence, a log Gaussian Cox process enables a one-to-one mapping between its pair cor-
relation function and the covariance function of the associated Gaussian random field.
Therefore, the spatial random effects influencing the random intensity function of the
Cox process can be studied by properties of the Cox process itself. The minimum con-
trast method (Diggle and Gratton, 1984; Møller et al., 1998) exploits this fact.

Proposition 26 (Minimum contrast method, (Møller et al., 1998)). Suppose that
Tσ2,β(h) = σ2Cβ(h) is the covariance function of a Gaussian random field W . Let g be
the pair correlation function of the log Gaussian Cox process associated to W . If ĝ is an
estimator for g and T̂ (h) = log ĝ(h), then the distance

d(Tσ2,β, T̂ ) =

∫ r0

ε

(
Tσ2,β(r)α − T̂ (r)α

)2

dr, (4.7)

with tuning parameters 0 ≤ ε < r0 and α > 0, is minimized by the minimum contrast
estimators

β̂ = arg max
β

A(β)2

B(β)
, σ̂2 =

(
A(β̂)

B(β̂)

)1/α

, (4.8)

with

A(β) =

∫ r0

ε

[
log
(
ĝ(r)

)
Cβ(r)

]α
dr, B(β) =

∫ r0

ε
Cβ(r)2αdr.

The minimum contrast method minimizes the distance of the pair correlation function
g and its estimator ĝ. Thus, the task of estimating the covariance parameters of W is
transformed to a non-parametric estimation of g.

Combined procedure for estimation of β and σ2. Proposition 24 justifies to
approximate a realization of ΦK by a realization of

Φ̂K = p ·Ny
K + PP ((1− byK)+ψ̂KR)|K .

We interpret the observed nyK as realization of Ny
K and simulate additional points from

the point process PP ((1− byK)+ψ̂KR)|K where ψ̂KR is the estimator described in Section
4.1.
Next, we estimate the pair correlation function g of ΦK by a non-parametric kernel
estimator based on the realization φ̂K of Φ̂K . Finally, the minimum contrast method
can be applied to ĝ to obtain estimates of the parameters σ2 and β of the log Gaussian
Cox process.
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4. Inference on the underlying Cox process

Remark 27. Besides using φ̂K to estimate g, it is also possible to simulate φ̃K ∼
PP (ψ̂KR(s) ds) on the whole set K and build estimators for g from samples of φ̃K .

However, this leads to a higher bias since the intensity of φ̂K is exactly equal to ψ on
{byK ≥ 1} if Ny

K is known. Additionally, computing the thinning of Ny
K on {byK ≥ 1} is

much faster than simulating PP (ψ̂KR(s) ds) on {byK ≥ 1}.

Figure 4.6.: The edge correction bij is the ratio of the whole circumference 2π and the
circle arcs γij = 2π − α1 − α2 within the square K.

Practical aspects of implementation. We propose to use a non-parametric kernel
estimator as discussed by Stoyan and Stoyan (1992) (Part III, Chapter 5.4.2). Consider
φ̂K =

∑n
i=1 δsi , then we estimate the pair correlation function g by

ĝ(r) =
|K|

2πn2r

n∑
i,j=1
i 6=j

kh(r − ‖si − sj‖)bij ,

with the Epanechnikov kernel kh(r) = 0.75h−1(1 − r2/h2)1|r|<h, and kernel weights
bij ≥ 0 for edge correction (see Ripley (1977)). These are defined as bij = 2π/γij which
is the ratio of the whole circumference of B‖si−sj‖(s) to the circumference within K,
i.e γij is the sum of all angles, for which the associated non-overlapping circle arcs are
within K, see Figure 4.6.

Remark 28. The estimates of σ2 and β obtained from ĝ by the minimum contrast
method, have a very high variance. Therefore, this procedure is only recommended if we
observe several i.i.d. realizations y1, . . . , yn of Y and the associated Ny1

K , . . . , N
yn
K . The

final estimates of σ2 and β may then be defined as the mean or median of the estimates
obtained from ĝ1, . . . , ĝn.

Plots of the estimated pair correlation functions via a sample of NY
K |Y=y and by points

of Φ̂K are compared in Figure 4.7. They are also compared to the true pair correlation
function and the natural benchmark which is obtained from a direct sample of ΦK

instead of Φ̂K . Numerical experiments such as reported in Figure 4.7 and Section 4.3
support that our proposed modification works surprisingly well.
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4. Inference on the underlying Cox process

Figure 4.7.: Estimated pair correlation functions via a sample of NY
K |Y=y (left) and by

points of the modified process Φ̂K (right). They are pointwise averages of
n = 50 experiments.

4.3. Simulation study

We survey the performance of our proposed non-parametric estimator ψ̂D (4.5) of the

realization ψ of Ψ and that of the estimators β̂ and σ̂2 (4.8) of the parameters of the
covariance function of Ψ = exp(W ) in a simulation study.

Setting. In our numerical experiments we choose the covariance of the underlying
Gaussian random field W to be the Whittle-Matérn model (3.12) with known smoothness
parameter ν ∈ {0.5, 1, 2,∞} and unknown variance σ2 and scale β. The scale β
will control the size of clusters in our point processes and the variance σ2 directs the
variability of the number of points within the local clusters. The performances of the
associated estimators are compared for different choices σ2 ∈ {1, 2} and β ∈ {1, 2}. As
shape mechanism we consider the fixed storm process X = ϕ where ϕ is the density of
the standard normal distribution. We simulate n = 1000 realizations y1, . . . , yn of the
corresponding Cox extremal process Y on an equidistant grid with 1012 grid points in
[−5, 5]2.
Henceforth, we simplify the notation from the previous section by writing ψ̂ instead
of ψ̂D for the estimated intensity function. A natural benchmark of our estimation
procedures from Sections 4.1 and 4.2 are such estimators which are derived from direct
samples of a Cox process N0 ∼ CP (Ψ) with spatial intensity process Ψ. We denote
the benchmark kernel estimator by

ψ̂0(s) = h−d
∑

t∈N0∩D
cD,h(t)−1k

(
s− t
h

)
, s ∈ D. (4.9)

Accordingly, let σ̂2
0 and β̂0 be the minimum contrast estimators obtained from direct

samples of N0.
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4. Inference on the underlying Cox process

Measures for evaluation. To assess the performance of our non-parametric estimates
we use the following mean relative variance

M̂RV(ψ̂, ψ) := n−1|D|−1
n∑
i=1

∑
s∈D

(ciψ̂i(s)/ψi(s)− 1)2, (4.10)

with c−1
i = |D|−1

∑
s∈D

ψ̂i(s)
ψi(s)

for i = 1, . . . , n. Up to a scaling constant, M̂RV(ψ̂, ψ) is

an empirical version of MISE(c · ψ̂/ψ, 1) with MISE(φ̂, φ) := E
∫

(φ̂(s) − φ(s))2 ds. We

compare the MRV of our estimated intensity ψ̂ with that of the benchmark ψ̂0. The
corresponding relative MRV of ψ̂0 and ψ̂ is defined as the ratio M̂RV(ψ̂)/M̂RV(ψ̂0).
The goodness of fit of the parametric estimates is measured in terms of the empirical

mean squared error M̂SE(θ̂) := n−1
∑n

i=1(θ̂i − θ)2. Again the MSE of σ̂2 and β̂ are

compared with those of the benchmark estimators σ̂2
0 and β̂0, respectively.

Results. The results of our simulation study are reported in the tables of Figures 4.8
and 4.9. The best performance we can hope for is to be as good as the benchmark
estimators that are applied to samples of the original point process N0 ∼ CP (Ψ). Hence,
in the case of our non-parametric estimation of the realisations of the intensity processes
we can expect the ratios M̂RV(ψ̂)/M̂RV(ψ̂0) to be always greater or equal to 1 and
at best even close to 1. Indeed, this is confirmed by the simulation study as can be
seen from Figure 4.8. All ratios (except one) lie slightly above 1. The exceptional case

occurs when the standard error of M̂RV(ψ̂0) is relatively high, where we even outperform
the benchmark. This is quite remarkable given that we infer the intensity under an
independence assumption that is not necessarily satisfied (cf. Section 5 for a discussion)
and secondly, we correct it by a data driven quotient as in (4.3).
Likewise we observe that the standard errors for the MRV are close to the benchmark
when β = 1 and much smaller – sometimes even half the size – in the case β = 2.
This indicates that our estimation procedure for ψ is relatively stable compared to the
benchmark. In general, both estimators perform better for the larger value of the scale
parameter β, that is for larger cluster sizes in the point processes, whereas a higher
variance σ2 naturally leads to a worse performance. The influence of the smoothness
parameter is not entirely clear. Looking at the values ν ∈ {0.5, 1, 2} one might conclude
that the estimation improves for a smoother intensity. But in case of the smoothest field
(ν = ∞) the MRVs get larger again. However, what is more important is that both
procedures, the one that we proposed for inference on ψ for Cox extremal processes and
the benchmark ψ̂0, behave coherently as the parameters vary across different smoothness
classes, cluster sizes and variability of number of points within local clusters.
The non-parametric estimates are further used to obtain the parametric estimates of σ2

and β. Here, estimation of the pair correlation function is very sensitive to the choice
of the scale. Our maximal scale β = 2 is large in relation to the size of the observation
window [−5, 5]2 which causes a bias in the estimation of all pair correlation functions.

Therefore, all parametric estimates – the benchmarks σ̂2
0, β̂0 as well as our estimates

σ̂2, β̂ – are also biased when β = 2. The estimation of σ2 is volatile if σ2 = 2, this applies
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4. Inference on the underlying Cox process

in particular to our σ̂2 which fails when both β = 1 and σ2 = 2. Still, in all other cases
the MSE of our multi-stage estimators is close to that of the benchmark. There are even
some cases when we outperform the benchmark, which is not surprising as the standard
errors are very high in general.

Figure 4.8.: Results of the simulation study for the non-parametric estimators. The
estimator ψ̂ is compared with its benchmark estimator ψ̂0. The standard
errors are reported in brackets.
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4. Inference on the underlying Cox process

Figure 4.9.: Results of the simulation study for the parametric estimators. The estima-

tors β̂ and σ̂2 are compared with their benchmark estimators β̂0 and σ̂2
0.

The standard errors are reported in brackets.
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5. Discussion

In Part II of this thesis, we present the new class of conditionally max-stable random
fields based on Cox processes, which we therefore also call Cox extremal processes. We
prove in Theorem 14 that these processes are in the MDA of familiar max-stable models.
Hence, they have the potential to model spatial extremes on a smaller time scale.
An objective of practical importance is to identify the random effects influencing the
underlying Cox process from the centres of the contributing storms. In order to make
inference feasible, we impose an additional independence assumption on our observed
data (see Proposition 20) that allows to derive a non-parametric kernel estimator (4.5)
for the realization ψ of the intensity process Ψ. Imposing such an independence assump-
tion can be seen in a similar manner to the composite likelihood method that ignores
dependence among higher order tupels. We believe that our condition is sufficiently well
satisfied in most situations, since only a small number of large storms from the Cox
process N approximate the Cox extremal process Y already quite well.
For parametric estimation the non-parametric estimator (4.5) can be used to correct the

observed point process Ny,ψ
K of contributing storm centres in order to obtain a sample

of CP (Ψ) (Proposition 24). If Ψ is log Gaussian, the minimum contrast method can be
applied subsequently to obtain estimates for the parameters of the covariance function
of log Ψ. The performance of our proposed estimation procedures is addressed in a
simulation study (Section 4.3). Here, the best we can hope for is that our estimators can
compete with the benchmark estimators applied to the original point process CP (Ψ).
Indeed, our non-parametric procedure is usually relatively close to the benchmark which
is quite remarkable in view of the necessary adjustments we have to make. Also, looking
at different kinds of smoothness, cluster sizes and variances we find evidence for the
stability of our proposed estimation procedure when compared to the benchmark. Both
(our procedure and the benchmark) behave coherently across different choices of these
properties. Similar behaviour can be observed for the parametric estimates, even though
they are more volatile and the estimation of the pair correlation function is generally
very sensitive to the choice of scale.
Within our simulation study and all other illustrations, we consider deterministic storm
processes X = ϕ where ϕ is the density of the standard normal distribution. This re-
striction is only done to reduce the computing time. Indeed, all estimators presented
in Chapter 4 are valid for much more general X and simulations showed that the spec-
ification of X only slightly influences the inference on Ψ as long as enough centres of
contributing storms can be identified. For instance, if we impose the monotonicity as-
sumption (3.13) on the storm process X, the majority can be recovered as local maxima
of the realization y of Y . Computational methods for identification of such points are
left for further research.
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Part III.

Generalization of the Matérn
hard-core process





6. Generalized Matérn model

Point process models obtained by dependent thinning of homogeneous Poisson point pro-
cesses have been extensively examined during the last decades. The Matérn hard-core
processes (Matérn, 1960) are classical examples for such processes, where the thinning
probability of an individual point depends on the other points of the original point pat-
tern. The Matérn models and slight modifications of them are applied to real data in
various branches, for instance ecological science (Stoyan, 1987; Picard, 2005), geograph-
ical analysis (Stoyan, 1988) and computer science (Ibrahim et al., 2013).
There already exist several extensions of Matérns models (Kuronen and Leskelä, 2013),
concerning the hard-core distance (Stoyan and Stoyan, 1985; Månsson and Rudemo,
2002), the thinning rule (Teichmann et al., 2013) or the generalization the underlying
Poisson process (Andersen and Hahn, 2016). We present a new model which encompasses
all these approaches and further generalizes the underlying point process, the thinning
rule and the marks attached to the original process.
This chapter is based on the first part of Dirrler and Schlather (2017). In Section 6.1, we
shortly review the Matérn hard-core processes from a different point of view and state
more details on Palm calculus which will be used throughout this part of the thesis. Our
general model is defined in Section 6.2. We restrict the underlying ground process to a
log Gaussian Cox process in Section 6.3 and calculate first and second order properties
for this model. In Chapter 7, we establish a connection between our model and mixed
moving maxima (M3) processes.

6.1. Matérn hard-core processes and Palm calculus

In Section 2.4 we gave a brief summary of the Matérn hard-core processes I and II. We
now present a different kind of representation of these processes.
Let Φ be a homogeneous Poisson process on S = Rd with intensity λ. Consider the
function fMatI(Φ; ξ) =

∏
ξ′∈Φ\{ξ}(1− 1ξ′∈BR(ξ)), then

ΦMatI = {ξ ∈ Φ : fMatI(Φ; ξ) = 1}.

We now regard the marked point process ΦM where each point ξ ∈ Φ is independently
endowed with a random mark mξ ∼ U [0, 1]. Let

fMatII(ΦM ; ξ,mξ) =
∏

(ξ′,mξ′ )∈ΦM\{(ξ,mξ)}

(1− 1ξ′∈BR(ξ)1mξ′<mξ),

then
ΦMatII = {(ξ,mξ) ∈ ΦM : fMatII(ΦM ; ξ,mξ) = 1}.
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6. Generalized Matérn model

It is often of particular interest to compute the probability that a given point (ξ,mξ) ∈
ΦM is retained in the thinned process ΦMatII. This probability can be calculated using
Palm calculus (Mecke, 1967; Møller and Waagepetersen, 2004; Daley and Vere-Jones,
2008; Chiu et al., 2013), we summarize the basic results in Section 2.2.
The Palm distribution P !

ξ can be interpreted as the conditional distribution of Φ \ {ξ}
given ξ ∈ Φ. Thereby the retaining probability of a point (ξ,mξ) ∈ ΦM equals

r(ξ,mξ) =

∫
Mlf

fMatII(ϕ; ξ,mξ) P
!
ξ,mξ

(dϕ)

where Mlf is the suitably defined space of point configurations of the marked process
ΦM , for details see Definition 4 in Section 2.1. The generating functional of a point
process Φ is defined as

GΦ(u) = E
∏
ξ∈Φ

u(ξ) (6.1)

for functions u : S → [0, 1], see (Westcott, 1972). The Palm distribution P !
ξ,mξ

equals
the distribution of ΦM since ΦM is a Poisson process - see Example 4.3 in Chiu et al.
(2013). As a consequence of this, r(ξ,mξ) is the generating functional of ΦM evaluated
at fMatII. Therefore

r(ξ,mξ) = exp(−λ|BR(o)| ·mξ)

and the intensity of the thinned process equals

λMatII = λ

∫ 1

0
r(mξ) dmξ = |BR(o)|−1(1− exp(−λ|BR(o)|)).

The Palm distribution of a general point process is more difficult to handle, however
it can be explicitly calculated for many Cox process models (Møller, 2003; Coeurjolly
et al., 2015). Besides, Mecke (1967) indicates how to calculate the Palm distribution of
an infinitely divisible point process. A point process Φ is called infinitely divisible if, for

all n ∈ N there exist iid. processes Φ1, . . . ,Φn such that Φ
d
= Φ1 + · · ·+ Φn.

6.2. Generalizing the Matérn hard-core processes

We present a new point process model, obtained by dependent thinning of a ground
process Φ, which generalizes the Matérn model in several ways. We therefore call the
new model generalized Matérn model.
Suppose that Φ is a locally finite point process on S. Each point ξ of Φ is independently
attached with a random mark mξ. We allow these marks to be continuous functions
from S to R, i.e. an element of the space of continuous functions M = C(S,R) with law
ν. Then,

ΦM = {(ξ,mξ) : ξ ∈ Φ}
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6. Generalized Matérn model

p mξ ζ

Matérn I 1 - 1ξ′∈BR(ξ)

Generalized Matérn I (1− ‖ξ − ξ′‖/R)+ - 1ξ′∈BR(ξ)

Matérn II 1 U [0, 1] 1ξ′∈BR(ξ)1m′ξ<mξ

Generalized Matérn II (1− ‖ξ − ξ′‖/R)+ U [0, 1] 1ξ′∈BR(ξ)1m′ξ<mξ

Table 6.1.: Let S = Rd. The classical Matérn models are obtained as special case of
our general model. We call the models resulting from Matérn I or II by in-
cluding an additional stochastic thinning, generalized Matérn I and II model
respectively.

is a marked point process, i.e. a mapping into (Mlf ,Mlf). The Bernoulli random variable
τΦM ;ξ,mξ shall indicate whether a point of ΦM is retained in the thinned process. We
define the thinned marked process

Φth = {(ξ,mξ) ∈ ΦM : (ξ,mξ) ∈ ΦM , τΦM ;ξ,mξ = 1}, (6.2)

which we call generalized Matérn process, and the thinned ground process

Φ0
th = {ξ : (ξ,mξ) ∈ Φth}. (6.3)

The success probability of τΦM ;ξ,mξ equals the thinning function

fth(ΦM ; ξ,mξ) =
∏

(ξ′,m′ξ)∈ΦM

(1− ζ(ξ,mξ, ξ
′,mξ′)p(ξ,mξ, ξ

′,mξ′)).

Here, ζ : (S,M)2 → {0, 1} is a measurable function which we call competition function
and which specifies the inferior points which are endangered to be deleted. We call
a point ξ inferior if ζ(ξ,mξ, ξ

′,m′ξ) = 1 for some (ξ′,m′ξ) ∈ ΦM \ {ξ,mξ}. Likewise,

p : (S,M)2 → [0, 1] is a measurable function determining the probability that an inferior
point is deleted. We henceforth fix

ζ(ξ,mξ, ξ,mξ) = 1, p(ξ,mξ, ξ,mξ) = 1− p0 ∈ [0, 1]

and thereby include independent p0-thinning in our model. In order to simplify notation,
we will henceforth use abbreviations like ξ = (ξ,mξ) and ζ(ξ, ξ′) = ζ(ξ,mξ, ξ

′,mξ′).

Example 29. The Matérn hard-core models I and II can be easily derived from our
model, see Table 6.1. There, we also give generalizations where p 6= 1.
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6. Generalized Matérn model

Figure 6.1.: Plot of the original Poisson process Φ and the underlying intensity function
(upper left). Thinned points Φ0

th of a generalized Matérn I model (up-
per right) and a generalized Matérn II model (lower left) with R = 1 and
p(ξ, ξ′) = max(0, 1 − ‖ξ − ξ′‖). The last plot shows the thinned points
of a generalized hard-core process with competition function ζ(ξ, ξ′) =
1mξ′ (ξ−ξ′)>mξ(o), random mark functions mξ(·) = u · ϕ(·), u ∼ U [0, 1] with
the two-dimensional standard-normal density ϕ and thinning probability
p(ξ, ξ′) = max(0, 1− ‖ξ − ξ′‖).
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6. Generalized Matérn model

Example 30. A further generalization of the Matérn I model in S = Rd was presented
in Teichmann et al. (2013). According to their thinning rule, a point ξ of the ground
process Φ is retained with probability

p0

∏
ξ′∈ΦM\{ξ}

(1− f(‖ξ − ξ′‖)),

with p0 ∈ (0, 1] and some deterministic function f : [0,∞) → [0, 1]. This equals our
model with the choice ζ ≡ 1 and p(ξ,mξ, ξ

′,m′ξ) = f(‖ξ − ξ′‖).

Example 31. Consider now S = Rd, marks mξ in M = R{0,1} with mξ(0) ∼ µ and
mξ(1) ∼ ν for probability measures µ and ν. Let ζ(ξ,mξ, ξ

′,mξ′) = 1mξ(0)≥mξ′ (0) and

p(ξ,mξ, ξ
′,mξ′) = f(‖ξ − ξ′‖,mξ(1),mξ′(1)). Then

fth(ΦM ; ξ,mξ) = p0

∏
ξ′∈ΦM\{ξ}

[
1− 1mξ(0)≥mξ′ (0)f

(
‖ξ − ξ′‖,mξ(1),mξ′(1)

)]
.

This model was presented by Teichmann et al. (2013) as an extension of the Matérn II
model.

Example 32. Let Φ be an inhomogeneous Poisson process in Rd, attached with random
mark functions mξ(·) = u · ϕ(·), u ∼ U [0, 1] with the d-dimensional standard-normal
density ϕ. Consider the competition function ζ(ξ, ξ′) = 1mξ′ (ξ−ξ′)>mξ(o) and p(ξ, ξ′) =

max(0, 1− ‖ξ − ξ′‖). This leads to a soft-core model where inferior points are the more
likely to be thinned the closer they are to superior points. See Figure 6.1 for a plot of
this model in d = 2 and Figure 6.2 for a plot of arbitrary points (ξ,mξ) and (η,mη) with
d = 1.

Figure 6.2.: Arbitrary points (ξ,mξ) and (η,mη) of ΦM from Example 32 with d = 1.
Since mη(ξ − η) > mξ(0), the point (ξ,mξ) is inferior to (η,mη) and hence
endangered to be thinned with probability p(ξ,mξ, η,mη) = max(0, 1− |ξ−
η|).
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6. Generalized Matérn model

6.3. Generalized Matérn model based on log Gaussian Cox
processes

Let P !
ξ(·) be the reduced Palm distribution of ΦM , that is P !

ξ(·) is a probability measure
on (Mlf ,Mlf) for each ξ ∈ S×M. The retaining probability of a point ξ ∈ Φ with mark
function mξ can then be calculated by

r(ξ,mξ) =

∫
Mlf

fth(ϕ ∪ (ξ,mξ); ξ,mξ) P
!
ξ(dϕ).

Since our new model is defined in a rather general setting, reasonable restrictions are
needed in order to calculate the reduced Palm distribution of ΦM and thereby first and
seconder order properties of Φth. We henceforth assume that Φ is a log Gaussian Cox
process, though all results may be derived in a similar way for other Cox processes or
infinitely divisible point processes (Mecke, 1967), when P !

ξ is known.
Let Ψ = exp(W ) be the random intensity function of Φ where W is a Gaussian random
field with mean function µ and covariance function C. We write Φ ∼ LGCP(µ,C) for
short.

Proposition 33. Let Φ ∼ LGCP(µ,C) and h(ξ, ξ′) = 1 − ζ(ξ, ξ′)p(ξ, ξ′), then the
retaining probability is

r(ξ,mξ) = E
∏

ξ′∈Φ̃M

h(ξ, ξ′),

with Φ̃ ∼ LGCP(µ̃, C) and µ̃(·) = µ(·) + C(·, ξ). Furthermore, if Ψ̃ is the random
intensity function of Φ̃, the first order intensity of Φ0

th is given by

ρth(ξ) = p0ρΦ(ξ)

∫
M
E

Ψ̃
exp

(
−
∫
S

∫
M
ζ(ξ, ξ′)p(ξ, ξ′)Ψ̃(ξ′)ν(dmξ′)dξ

′
)
ν(dmξ), (6.4)

where ρΦ is the intensity of Φ.

Proof. The reduced Palm distribution P !
ξ of Φ equals the distribution of Φ̃ ∼ LGCP(µ̃, C)

since Φ ∼ LGCP(µ,C) - see Proposition 1 in Coeurjolly et al. (2015). Therefore

r(ξ,mξ) =

∫
Mlf

fth(ϕ ∪ {ξ}; ξ) P !
ξ(dϕ)

= E
∏

ξ′∈Φ̃M∪{ξ}

[1− ζ(ξ, ξ′)p(ξ, ξ′)]

= (1− ζ(ξ, ξ)p(ξ, ξ))E
∏

ξ′∈Φ̃M

[1− ζ(ξ, ξ′)p(ξ, ξ′)]

= p0 E
∏

ξ′∈Φ̃M

h(ξ, ξ′)

= p0 E
Ψ̃

exp

(
−
∫
S×M

(
1− h(ξ, ξ′)

)
Ψ̃(ξ′)dξ′ν(dmξ′)

)
,
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6. Generalized Matérn model

where the last equality follows from calculating the generating functional of Φ̃M .

Proposition 34. Consider Φ̃ ∼ LGCP(µ̃, C) with µ̃(·) = µ(·) +C(·, ξ) +C(·, η) and let

ρ
(2)
Φ be the second order intensity of Φ. Then, the second order intensity of the thinned

process Φ0
th equals

ρ
(2)
th (ξ, η) =ρ

(2)
Φ (ξ, η)p2

0

∫
M

∫
M

[
h(ξ,η)h(η, ξ)

E
Ψ̃

exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dm′ξ)

)]
ν(dmξ)ν(dmη).

Proof. The probability that none of the two arbitrary points (ξ,mξ) and (η,mη) is
deleted by any point of the point configuration ϕ ∈Mlf is

f
(2)
th (ϕ; ξ,η) =

∏
ξ′∈ϕ

(1− ζ(ξ, ξ′)p(ξ, ξ′))(1− ζ(η, ξ′)p(η, ξ′)).

Thus, the probability that (ξ,mξ), (η,mη) ∈ ΦM are retained in Φth equals

r(ξ,η) =

∫
Mlf

f
(2)
th (ϕ ∪ {ξ,η}; ξ,η)P !

ξ,η(dϕ),

where P !
ξ,η is the two-point reduced Palm distribution of ΦM , which is also the distribu-

tion of a log Gaussian Cox process Φ̃ ∼ LGCP(µ̃, C) with µ̃(·) = µ(·) + C(·, ξ) + C(·, η)
- see again Proposition 1 in Coeurjolly et al. (2015). Therefore∫

Mlf

f
(2)
th (ϕ ∪ {ξ,η}; ξ,η)P !

ξ,η(dϕ)

= E
∏

ξ′∈Φ̃M∪{ξ,η}

(
1− ζ(ξ, ξ′)p(ξ, ξ′)

)(
1− ζ(η, ξ′)p(η, ξ′)

)
= p2

0h(ξ,η)h(η, ξ) E
∏

ξ′∈Φ̃M

h(ξ, ξ′)h(η, ξ′)

= p2
0h(ξ,η)h(η, ξ) E

Ψ̃
exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dmξ)

)
.
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7. Application to mixed moving maxima
processes

This chapter is based on the second part of Dirrler and Schlather (2017). We establish a
connection between the generalized Matérn model and mixed moving maxima processes
in this section. In the first section, we choose a specific thinning function and prove
that a process based on the corresponding generalized Matérn process (6.2) converges to
known (conditional) mixed moving maxima processes. We slightly modify this thinning
function in the second section to obtain a process whose first and second order proper-
ties can be derived and whose points can be recovered from observations of the mixed
moving maxima process itself under rather mild assumptions.

General framework. Let S = Rd, K ⊂ S be compact and let X be a stochastic
process whose paths are almost surely in X = C(S,R) and which fulfils the condition

EX
∫
S

sup
t∈K

X(t− ξ) dξ <∞. (7.1)

Then a mixed moving maxima process (Smith, 1990) is defined by

Z(t) =
∨

(s,u,X)∈Θ

uX(t− s), t ∈ S, (7.2)

where Θ is a Poisson process on S × (0,∞]× X with directing measure

dλ(s, u,X) = ds u−2dudPX .

Further, we assume that Ψ is a non-negative process with

EΨEX
∫
S

sup
t∈K

X(t− ξ)Ψ(ξ)dξ <∞. (7.3)

Then the Cox extremal process (3.1) is defined in an analogous way

Y (t) =
∨

(s,u,X)∈Θ̃

uX(t− s), (7.4)

where Θ̃ is a Cox process directed by the random measure

dΛ(s, u,X) = Ψ(s)dsu−2dudPX .
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7. Application to mixed moving maxima processes

We henceforth consider Φ ∼ LGCP(µ− log(τ), C) with random intensity function τ−1Ψ
and deterministic τ > 0. Each point ξ of Φ is independently attached with a random
mark function mξ(·) = UξXξ(·), where U ∼ τu−2

1(τ,∞)du and X ∼ dPX . We assume
that for each path X(ω, ·) of X(·) there exist monotonously decreasing functions fω and
gω such that

gω(‖t‖) ≤ X(ω, t) ≤ fω(‖t‖), ∀t ∈ S, (7.5)

and gω(0) = X(ω, 0) = fω(0).

7.1. Matérn extremal process

We choose the competition function ζ such that a point ξ ∈ Φ is deleted if its corre-
sponding mark function mξ is - at each point - strictly smaller than the mark function
mξ′ of some other point ξ′ ∈ Φ. That is, the thinning function can be written as

fth(ΦM ; ξ,mξ) =
∏

ξ′∈ΦM

[
1− 1uξ′>supt∈S uξXξ(t−ξ)Xξ′ (t−ξ′)−1

]
(7.6)

and the process resulting from dependent thinning is

Φth = {(ξ,mξ) ∈ ΦM : fth(ΦM ; ξ,mξ) = 1}.

We introduce the Matérn extremal process defined by

Π(t) =
∨

(ξ,mξ)∈Φth

mξ(t− ξ). (7.7)

Let ex(ΦM ) be the set of extremal functions of ΦM as introduced by Dombry and Eyi-
Minko (2013), that is

ex(ΦM ) = {(ξ,mξ) ∈ ΦM : ∃t ∈ S,mξ(t− ξ) ≥ Π(t)}. (7.8)

The (ξ,mξ) in Φth are closely related to the extremal functions of ΦM , though the set
Φth is usually much larger than the set of extremal functions. The intensity of Φth is
finite, this is a fundamental difference compared to the Cox extremal process Y whose
underlying point process Θ̃ is infinite. Still, the following lemma shows that the two
processes coincide in the limiting case τ → 0.

Lemma 35. Let the conditions (7.1), (7.3) and (7.5) hold true and assume that Φ ∼
LGCP(µ− log τ, C). If τ → 0, the convergence

Π→ Y

holds weakly in C(S,R).
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7. Application to mixed moving maxima processes

Proof. The sample paths of the extremal hard-core process Π are continuous, since the
marks mξ are continuous and Φ is locally finite. The finite-dimensional distributions of
Π are given by

P(Π(t1) ≤ y1, . . . ,Π(tn) ≤ yn)

= P(UξXξ(t1 − ξ) ≤ y1, . . . , UξXξ(tn − ξ) ≤ yn,∀(ξ,mξ) ∈ Φth)

= P
(
Uξ ≤ min

1≤i≤n
(yiXξ(ti − ξ)−1), ∀(ξ,mξ) ∈ Φth

)
= P

(
Uξ ≤ min

1≤i≤n
(yiXξ(ti − ξ)−1),∀(ξ,mξ) ∈ ΦM

)
= EΨ exp

[
−
∫
X

∫
S

∫
min1≤i≤n(yiXξ(ti−ξ)−1)

u−2
1(τ,∞)(u) duΨ(ξ)dξdPX

]

= EΨ exp

[
−
∫
X

∫
S

max

(
τ, min

1≤i≤n
(yiXξ(ti − ξ)−1)

)−1

Ψ(ξ) dξ dPX

]

= EΨ exp

[
−
∫
X

∫
S

min

(
1/τ, max

1≤i≤n
(yi
−1Xξ(ti − ξ))

)
Ψ(ξ) dξ dPX

]
Hence, with condition (7.3)

lim
τ→0

P(Π(t1) ≤ y1, . . . ,Π(tn) ≤ yn)

= EΨ exp

[
−
∫
X

∫
S

max
1≤i≤n

(
yi
−1Xξ(ti − ξ)

)
Ψ(ξ) dξ dPX

]
which equals the finite-dimensional distribution of Y , see Remark 3 in Dirrler et al.
(2016). It remains to prove the tightness of Π, that is

lim
δ→0

lim sup
τ→0

P(ωK(Π, δ) > ε) = 0

with an arbitrary compact set K ⊂ S and

ωK(Π, δ) = sup
t1,t2∈K:‖t1−t2‖≤δ

|Π(t1)−Π(t2)| .

This can be proven in the same way as in Theorem 7 of Dirrler et al. (2016).

We have just proven the convergence of Π to the Cox extremal process Y in the limiting
case τ → 0. Since Y is in the MDA of Z, it seems natural to check whether Π is also in
the MDA of Z for fixed τ > 0.
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7. Application to mixed moving maxima processes

Theorem 36. Let the assumptions of Lemma 35 hold true and let Ψ be stationary with
EΨ(o) = 1. The Matérn extremal process Π is in the max-domain of attraction of the
mixed moving maxima process Z given by Equation (7.2). That is, if Πi are iid. copies
of Π, the convergence

n−1
n∨
i=1

Πi → Z,

holds weakly in C(S,R).

Proof. Consider the sequence Π(n) = n−1
∨n
i=1 Πi. We have to prove that Π(n) is tight,

and that its marginal distributions converge to that of Z which are given by

P(Z(t1) ≤ z1, . . . , Z(tm) ≤ zm) = exp

[
−
∫
X

∫
S

max
1≤i≤n

(
yi
−1Xξ(ti − ξ)

)
dξ dPX

]
.

The tightness can be derived by similar arguments as in the proof of Theorem 7 in Dirrler
et al. (2016). The finite-dimensional distributions of Π(n) are given by

P(Π(n)(t1) ≤ z1, . . . ,Π
(n)(tm) ≤ zm)

=
n∏
i=1

EΨ exp

(
−
∫
X

∫
S

min

(
1

τ
, max

1≤j≤m

Xξ(tj − ξ)
nzj

)
Ψi(ξ) dξdPXξ

)

= EΨ exp

(
−
∫
X

∫
S

min

(
n

τ
, max

1≤j≤m

Xξ(tj − ξ)
zj

)
n−1

n∑
i=1

Ψi(ξ) dξdPXξ

)
.

Since

lim
n→∞

min

(
n

τ
, max

1≤j≤m

Xξ(tj − ξ)
zj

)
n−1

n∑
i=1

Ψi(ξ) = max
1≤j≤m

Xξ(tj − ξ)
zj

,

we obtain

lim
n→∞

P(Π(n)(t1) ≤ z1, . . . ,Π
(n)(tm) ≤ zm)

= exp

[
−
∫
X

∫
S

max
1≤i≤n

(
zj
−1Xξ(tj − ξ)

)
dξ dPX

]
.
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7. Application to mixed moving maxima processes

Figure 7.1.: The black solid lines form the final processes Π∗ (left) and Π (right). The
shape with centre ξ = 2 does not contribute to Π∗, since its centre is covered
by an other shape.

7.2. Process of visible storm centres

We now consider the thinning function

f∗th(ΦM ; ξ,mξ) =
∏

ξ′∈ΦM

[
1− 1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1

]
.

The process resulting from dependent thinning equals

Φ∗th = {(ξ,mξ) ∈ ΦM : f∗th(ΦM ; ξ,mξ) = 1}
= {(ξ,mξ) ∈ Φth : Π(ξ) = mξ(o)}.

That is, a point (ξ,mξ) is retained if mξ(o) ≥ mξ′(ξ−ξ′) for all other (ξ′,m′ξ) in ΦM . This
condition is sharper than (7.6) in the preceding section where points (ξ,mξ) are retained
if there is an arbitrary t such that mξ(t− ξ) ≥ mξ′(t− ξ′) for all other (ξ′,mξ′) and also
sharper than the condition for extremal functions (7.8) - therefore Φ∗th ⊂ ex(ΦM ) ⊂ Φth.

Remark 37. The set Φ∗th is a subset of the set of extremal functions of ΦM introduced
by Dombry and Eyi-Minko (2013). If mξ is an extremal function which is not included in
Φ∗th, then Π∗(ξ) > mξ(0), i.e. the centre of mξ is covered by other storms, see Figure 7.1.

We introduce the process of visible storm centres defined by

Π∗(t) =
∨

(ξ,mξ)∈Φ∗th

mξ(t− ξ). (7.9)

This process is closely related to the extremal hard-core process Π defined in (7.7), see
also Figure 7.1.
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7. Application to mixed moving maxima processes

We apply Proposition 33 and 34 from Section 6.3 to calculate first and second order
properties of the thinned process Φ∗0 = {ξ : (ξ,mξ) ∈ Φ∗th}.

Lemma 38. Let Φ ∼ LGCP(µ − log τ, C) with random intensity function τ−1Ψ. The
intensity of Φ∗0 is given by

ρΦ∗0
(ξ) = p0EΨ(ξ)

∫
X
Xξ(o)EΨ̃

[
1− exp(−τ−1Xξ(0)−1 · c

Ψ̃
)

c
Ψ̃

]
dPXξ ,

where

c
Ψ̃

=

∫
S
EXXξ′(ξ − ξ′)Ψ̃(ξ′)dξ′

and τ−1Ψ̃ is the random intensity function of Φ̃ ∼ LGCP(µ̃ − log τ, C) and µ̃(·) =
µ(·) + C(·, ξ).

Proof. The retaining probability can be calculated by

r(ξ,mξ) = E
Ψ̃

exp

(
−
∫
S

∫
M
ζ(ξ, ξ′)p(ξ, ξ′)τ−1Ψ̃(ξ′)µ(dmξ′)dξ

′
)

= E
Ψ̃

exp

(
−
∫
S

∫
M
1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1τ−1Ψ̃(ξ′)µ(dmξ′)dξ

′
)

= E
Ψ̃

exp

(
−
∫
S

∫
X

∫ ∞
τ

1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1Ψ̃(ξ′)u−2
ξ′ duξ′dPXξ′dξ

′
)
.

Due to the condition (7.5), uξXξ(0)Xξ′(ξ − ξ′)−1 ≥ τ and therefore

r(ξ,mξ) = E
Ψ̃

exp

(
−
∫
X

∫
S

∫ ∞
uξXξ(0)Xξ′ (ξ−ξ′)−1

u−2
ξ′ Ψ̃(ξ′)duξ′dPXξ′dξ

′

)

= E
Ψ̃

exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)
.

The intensity then equals

ρΦth
(ξ) = p0ρΦ(ξ)

∫
M
E

Ψ̃
exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)
µ(dmξ)

= p0EΨ(ξ)

∫
X

∫ ∞
τ

E
Ψ̃

exp
(
−u−1Xξ(0)−1c

Ψ̃,Xξ

)
u−2dudPXξ ,

with c
Ψ̃

=
∫
X
∫
S Xξ′(ξ − ξ′)Ψ̃(ξ′)dξ′dPXξ′ . By calculating the integral with respect to u

we finally obtain
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7. Application to mixed moving maxima processes

ρΦ∗0
(ξ) = p0EΨ(ξ)

∫
X
Xξ(0)E

Ψ̃

[
1− exp(−τ−1Xξ(0)−1 · c

Ψ̃
)

c
Ψ̃

]
dPXξ .

Lemma 39. Let Φ ∼ LGCP(µ − log τ−1, C) with random intensity function Ψ. The
second order intensity of Φ∗0 equals

ρ
(2)
Φ∗0

(ξ, η) = p2
0E[Ψ(ξ)Ψ(η)]

∫
X

∫
X

[ ∫ ∞
τ

∫ uηXη(0)

Xξ(η−ξ)

τ
r(ξ)r(η)r(ξ,η)u−2

ξ u−2
η duξ duη

−
∫ ∞
τ

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duη duξ

]
dPXξdPXη

with

r(ξ) = E
Ψ̃

exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)

and

r(ξ,η) = E
Ψ̃

exp

(∫
X

∫
S

min

(
Xξ′(ξ − ξ′)
uξXξ(0)

,
Xξ′(η − ξ′)
uηXη(0)

)
Ψ̃(ξ′)dξ′dPXξ′

)
.

Here τ−1Ψ̃ is the random intensity function of Φ̃ ∼ LGCP(µ̃ − log τ−1, C) and µ̃(·) =
µ(·) + C(·, ξ) + C(·, η).

Proof. Due to Proposition 34

ρ
(2)
Φ∗0

(ξ, η) = ρ
(2)
Φ (ξ, η)p2

0

∫
M

∫
M

[
h(ξ,η)h(η, ξ)

E
Ψ̃

exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dm′ξ)

)]
ν(dmξ)ν(dmη).

Then

E
Ψ̃

exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
τ−1Ψ̃(ξ′)dξ′ν(dm′ξ)

)
= E

Ψ̃
exp

(
−
∫
X

∫
S

∫ ∞
τ

[1u>uξXξ(0)(Xξ′ (ξ−ξ′))−1 + 1u>uηXη(0)(Xξ′ (η−ξ′))−1

− 1u>uξXξ(0)(Xξ′ (ξ−ξ′))−11u>uηXη(0)(Xξ′ (η−ξ′))−1 ]Ψ̃(ξ′)u−2 dudξ′dPXξ′
)

= r(ξ)r(η)E
Ψ̃

exp

(
−
∫
X

∫
S

∫ ∞
τ

[
1u>max[uξXξ(0)(Xξ′ (ξ−ξ′))−1,uηXη(0)(Xξ′ (η−ξ′))−1]

Ψ̃(ξ′)u−2
]

dudξ′dPXξ′
)

= r(ξ)r(η)E
Ψ̃

exp

(∫
X

∫
S

min

(
Xξ′(ξ − ξ′)
uξXξ(0)

,
Xξ′(η − ξ′)
uηXη(0)

)
Ψ̃(ξ′)dξ′dPXξ′

)
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7. Application to mixed moving maxima processes

with r(ξ) = E
Ψ̃

exp
(
−
∫
X
∫
S

Xξ′ (ξ−ξ′)
uξXξ(0) Ψ̃(ξ′)dξ′dPXξ′

)
. Furthermore

h(ξ,η)h(η, ξ) = 1− 1uη>uξXξ(0)Xη(ξ−η)−1 − 1uξ>uηXη(0)Xξ(η−ξ)−1

+ 1uη>uξXξ(0)Xη(ξ−η)−11uξ>uηXη(0)Xξ(η−ξ)−1

= 1− 1uη>uξXξ(0)Xη(ξ−η)−1 − 1uξ>uηXη(0)Xξ(η−ξ)−1

and

ρ
(2)
Φ∗0

(ξ, η) = p2
0E[Ψ(ξ)Ψ(η)]

[ ∫
X

∫ ∞
τ

∫
X

∫ ∞
τ

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξ duηdPXξdPXη

−
∫
X

∫ ∞
τ

∫
X

∫ ∞
uηXη(0)

Xξ(η−ξ)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξdPXξ duηdPXη

−
∫
X

∫ ∞
τ

∫
X

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duηdPXη duξdPXξ

]

= p2
0E[Ψ(ξ)Ψ(η)]

∫
X

∫
X

[ ∫ ∞
τ

∫ uηXη(0)

Xξ(η−ξ)

τ
r(ξ)r(η)r(ξ,η)u−2

ξ u−2
η duξ duη

−
∫ ∞
τ

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duη duξ

]
dPXξdPXη .

Remark 40. Let Z be the classical Smith model (Smith, 1990) in R2, that is X is the
density of the two-dimensional standard-normal distribution. Then, the intensity of the
process of visible storm centres of Z can be calculated as

lim
τ→0

ρΦ∗0
(ξ) = Xξ(o)

[∫
S
Xξ′(ξ − ξ′)dξ′

]−1

= (2π)−1.

In general, ρΦ∗0
and ρ

(2)
Φ∗0

cannot be explicitly calculated if Ψ is random. However, nu-

merical calculation of ρΦ∗0
is feasible in most cases. For certain choices of X, e.g.

X(t) = (1− t2)+ in R, even ρ
(2)
Φ∗0

is numerically tractable.
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8. Discussion

The initial motivation of Part III was to improve the estimation procedures from Chap-
ter 4, especially the non-parametric estimation presented in Section 4.1. The generalized
Matérn model occurred as side effect of these reflections and since - to our best knowledge
- nothing similar was known, we decided to spend some extra time in order to examine
the new model. In the first part of this chapter, we propose an alternative approach for
the non-parametric estimation in Section 4.1 by using the results of the previous chapter.
In the second part, we discuss the problem of modelling the contributing storms.

Alternative approach to the non-parametric estimation of ψ. In Section 4.1
we estimate the realization ψ of the intensity process Ψ. To this end we first extract
the visible storm centres from our observed data and pretend that those points are the
centres of all contributing storms. We approximate the intensity function ψyK of the true
centres of contributing points by ψyK ≈ ψ(s)byK(s) with

byK(s) = EX
[
sup
t∈K

X(t− s)
y(t)

]
.

Finally, we compute kernel estimators for ψyK and use ψ̂(s) = byK(s)−1ψ̂yK(s) as estima-
tor for ψ. This procedure has two big weaknesses. For one thing, our observed data is
misspecified, for another thing we also approximate the true intensity of the contribut-
ing storm centres. These problems can be substantially reduced by using an alternative
procedure which exploits the results of the previous section and which we sketch in the
following.

Let Y be the Cox extremal process (7.4) and let Ñ be the point process that encompasses
all visible storm centres of Y . We define the intensity function of Ñ as Ψ

Ñ
. Then Ñ

can be described in terms of the process Φ∗0 from Section 7.2, more specifically

lim
τ→0

Φ∗0 = Ñ ,

in terms of weak convergence. Therefore, the intensity function Ψ
Ñ

of Ñ can be calcu-
lated by

Ψ
Ñ

(ξ) = lim
τ→0

Ψ(ξ)

∫
X
Xξ(o)EΨ̃

[
1− exp(−τ−1Xξ(0)−1 · c

Ψ̃
)

c
Ψ̃

]
dPXξ

= Ψ(ξ)

∫
X
Xξ(o)EΨ̃

(c
Ψ̃
−1)dPXξ = Ψ(ξ)

EXX(o)

E
Ψ̃
c

Ψ̃

.
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8. Discussion

That is, a realization ψ of Ψ fulfils the equality

ψ(ξ) = ψ
Ñ

(ξ)
E

Ψ̃
c

Ψ̃

EXX(o)
,

where ψ
Ñ

is a realization of the intensity function of the process of visible storm cen-
tres of the Cox extremal process Y . Hence we can estimate ψ by computing a kernel
estimator for ψ

Ñ
and calculating EX(o) (which is assumed to be known) and Ec

Ψ̃
. So

the original problem is reduced to the calculation of Ec
Ψ̃

= E
Ψ̃

∫
S EXX(ξ − ξ′)Ψ̃(ξ′)dξ′.

Note that c
Ψ̃

does also depend on ξ – see Lemma 38 – therefore its handling is difficult
as well. Still, this procedure should be superior to the one proposed in Section 4.1.

Exact representation of the process of contributing storm centres. Our gen-
eralization of the Matérn model which we present in Chapter 6, is based on thinning
functions of type

fth(ΦM ; ξ,mξ) =
∏

(ξ′,m′ξ)∈ΦM

(1− ζ(ξ,mξ, ξ
′,mξ′)p(ξ,mξ, ξ

′,mξ′)).

This representation as product of functions over the points (ξ′,mξ′) ∈ ΦM is essential,
since it enables the use of the generating functional (6.1) and thereby the calculation
of first and second order properties of the thinned process. Unfortunately, the product
representation also entails that our thinning algorithm is only suitable to model pairwise
interaction between the points.
In order to model the contributing storms, we can modify our approach by choosing the
new thinning function

f̃th(ΦM ; ξ,mξ) = 1− ζ̃(ξ,mξ,ΦM )

with ζ̃ : (S,M)×Mlf → {0, 1} and

ζ̃(ξ,mξ,ΦM ) =

{
1, if ∀t ∈ S : mξ(t− ξ) <

∨
(ξ′,mξ′ )∈ΦM

m′ξ(t− ξ′)
0, else.

Then the thinned process

Φ̃th = {(ξ,mξ) ∈ ΦM : (ξ,mξ) ∈ ΦM , f̃th(ΦM ; ξ,mξ) = 1},

fulfils limτ→0 Φ̃th
D
= ex(ΦM ), as desired. Though, the retaining probability of an indi-

vidual point (ξ,mξ) ∈ ΦM is then given by

r(ξ,mξ) =

∫
Mlf

f̃th(ϕ; ξ,mξ)P
!
ξ(dϕ) = 1− Eζ̃(ξ, Φ̃M )

with Φ̃M as defined in Proposition 33. The expected value of ζ̃(ξ, Φ̃M ) cannot be further

simplified, that is we do not get any knowledge gain from Φ̃th compared to ex(ΦM ). This
is the reason we introduced the process of visible storm centres in Section 7.2 instead.
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