
Web-Scale Web Table to Knowledge Base
Matching

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Dominique Ritze
aus Heppenheim

Mannheim, 2017

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Professor Dr. Christian Bizer, Universität Mannheim
Korreferent: Professor Dr. Kai Eckert, Hochschule der Medien Stuttgart

Tag der mündlichen Prüfung: 06. November 2017

Abstract

Millions of relational HTML tables are found on the World Wide Web. In contrast
to unstructured text, relational web tables provide a compact representation of en-
tities described by attributes. The data within these tables covers a broad topical
range. Web table data is used for question answering, augmentation of search re-
sults, and knowledge base completion. Until a few years ago, only search engines
companies like Google and Microsoft owned large web crawls from which web
tables are extracted. Thus, researches outside the companies have not been able to
work with web tables.
In this thesis, the first publicly available web table corpus containing millions of
web tables is introduced. The corpus enables interested researchers to experiment
with web tables. A profile of the corpus is created to give insights to the character-
istics and topics. Further, the potential of web tables for augmenting cross-domain
knowledge bases is investigated. For the use case of knowledge base augmen-
tation, it is necessary to understand the web table content. For this reason, web
tables are matched to a knowledge base. The matching comprises three matching
tasks: instance, property, and class matching. Existing web table to knowledge
base matching systems either focus on a subset of these matching tasks or are eval-
uated using gold standards which also only cover a subset of the challenges that
arise when matching web tables to knowledge bases.
This thesis systematically evaluates the utility of a wide range of different features
for the web table to knowledge base matching task using a single gold standard.
The results of the evaluation are used afterwards to design a holistic matching
method which covers all matching tasks and outperforms state-of-the-art web ta-
ble to knowledge base matching systems. In order to achieve these goals, we first
propose the T2K Match algorithm which addresses all three matching tasks in an
integrated fashion. In addition, we introduce the T2D gold standard which covers
a wide variety of challenges. By evaluating T2K Match against the T2D gold stan-
dard, we identify that only considering the table content is insufficient. Hence, we
include features of three categories: features found in the table, in the table context
like the page title, and features that base on external resources like a synonym dic-
tionary. We analyze the utility of the features for each matching task. The analysis
shows that certain problems cannot be overcome by matching each table in isola-
tion to the knowledge base. In addition, relying on the features is not enough for the
property matching task. Based on these findings, we extend T2K Match into T2K
Match++ which exploits indirect matches to web tables about the same topic and
uses knowledge derived from the knowledge base. We show that T2K Match++
outperforms all state-of-the-art web table to knowledge base matching approaches
on the T2D and Limaye gold standard. Most systems show good results on one
matching task but T2K Match++ is the only system that achieves F-measure scores
above 0.8 for all tasks. Compared to results of the best performing system TableM-
iner+, the F-measure for the difficult property matching task is increased by 0.08,
for the class and instance matching task by 0.05 and 0.03, respectively.

Zusammenfassung

Millionen relationaler HTML Tabellen können im World Wide Web gefunden wer-
den. Im Gegensatz zu unstrukturiertem Text, bieten relationale Webtabellen eine
kompakte Repräsentation von Entitiäten, die durch Attribute beschrieben sind. Die
Tabellendaten umfassen ein breites thematisches Specktrum. Daten aus Webta-
bellen werden zum Beantworten von Fragen, zum Anreichern von Suchergebnis-
sen und zum Komplementieren von Wissensbasen benutzt. Bis vor ein paar Jahren
besaßen nur Suchmaschinenfirmen wie Google und Microsoft Webcrawldatensätze
von denen Webtabellen extrahiert werden. Forscher außerhalb dieser Firmen kon-
nten deshalb nicht mit Webtabellen arbeiten.
In dieser Arbeit wird der erste öffentlich verfügbare Webtabellenkorpus mit Millio-
nen von Webtabellen vorgestellt. Der Korpus ermöglicht es Forschern mit Webta-
bellen zu experimentieren. Ein Profil des Korpus gibt Einblicke in die Charakter-
istika und Thematiken. Zusätzlich wird das Potential von Webtabellen für das Ver-
vollständigen von domänenübergreifenden Wissensbasen untersucht. Für diesen
Anwendungsfall ist es nötig, den Inhalt der Tabelle zu verstehen. Dafür werden
Webtabellen mit einer Wissensbasis abgeglichen. Der Abgleich umfasst drei Auf-
gaben: das Abgleichen der Instanzen, Relationen und Klassen. Existierende Sys-
teme fokussieren sich auf eine Teilmenge der Aufgaben oder werden auf Goldstan-
dards evaluiert, die nur eine Teilmenge der Herausforderungen enthalten.
Diese Dissertation evaluiert systhematisch den Nutzen eines breiten Spektrums an
Merkmalen für den Abgleich von Webtabellen und Wissensbasen anhand eines
Goldstandards. Die Ergebnisse der Evaluation werden anschließend genutzt, um
eine holistische Abgleichsmethode zu entwerfen, die alle drei Aufgaben abdeckt,
und bestehende Methoden übertrifft. Um diese Ziele zu erreichen führen wir erst
den T2K Match Algorithmus ein, der alle drei Aufgaben integriert angeht. Zudem
stellen wir den T2D Goldstandard vor, der ein breites Spektrum an Herausforderun-
gen abdeckt. Beim Evaluieren von T2K Match anhand T2D stellen wir fest, dass
es nicht ausreicht den Tabelleninhalt zu betrachten. Deswegen fügen wir weitere
Merkmale aus drei Kategorien hinzu: Merkmale, die in den Tabellen gefunden wer-
den, die aus dem Kontext stammen und Merkmale aus externen Ressourcen. Wir
analysieren den Nutzen der Merkmale für jede Aufgabe und zeigen, dass gewisse
Probleme nicht überwunden werden können, wenn der Abgleich jeder Tabelle mit
der Wissensbasis einzeln stattfindet. Außerdem reichen die Merkmale nicht zum
Abgleich der Verknüpfungen aus. Basierend auf diesen Erkenntnissen erweitern
wir T2K Match zu T2K Match++, der indirekte Abgleiche zu anderen Webtabellen
über dasselbse Thema ausnutzt und Wissen verwendet, das aus der Wissensbasis
abgeleitet wird. Wir zeigen, dass T2K Match++ auf dem T2D und Limaye Gold-
standard alle bestehenden Abgleichsysteme übertrifft. Die meisten Systeme zeigen
gute Ergebnisse für eine der Aufgaben aber nur T2K Match++ erreicht F-measure
Werte von über 0.8 für alle Aufgaben. Verglichen mit den Ergebnissen des besten
System TableMiner+, kann der F-Measure Wert des schweren Relationsabgleichs
um 0.08, der des Klassen- und Instanzabgleichs um 0.05 bzw. 0.03 erhöht werden.

Contents

1 Introduction 1
1.1 Motivation . 5
1.2 Contributions . 8
1.3 Outline . 9
1.4 Published Work . 12

2 The Data Integration Process 13
2.1 Tasks . 14
2.2 Challenges . 16
2.3 Matching . 17

2.3.1 Process . 17
2.3.2 Similarity Measures . 20
2.3.3 Schema Matching . 24
2.3.4 Data Matching . 25
2.3.5 Evaluation Criteria . 27

3 Knowledge Bases 29
3.1 Preliminaries . 30

3.1.1 Resource Description Framework 30
3.1.2 Linked Data Principles 31

3.2 Common Knowledge Bases . 32
3.3 DBpedia . 33

4 Web Tables 37
4.1 Relational Web Table Extraction 38

4.1.1 Definitions . 38
4.1.2 Extraction Process . 39

4.2 Extraction of the WDC Web Table Corpora 43
4.2.1 Common Crawl . 43
4.2.2 Web Table Extraction . 44
4.2.3 Web Table Classification 45
4.2.4 Metadata Recovery . 47

4.3 Related Work . 50

iii

iv CONTENTS

4.3.1 Web Crawling & Table Extraction 50
4.3.2 Web Table Classification 51
4.3.3 Metadata Recovery . 53

4.4 WDC Web Table Corpora . 55
4.4.1 Statistical Analysis . 56
4.4.2 Comparison with other Corpora 58

4.5 Conclusion . 61

5 Profiling the WDC Web Table Corpus 63
5.1 Web Table Profiling . 64

5.1.1 Profiling Dimensions . 64
5.1.2 Profiling Process . 64
5.1.3 Representativity . 66

5.2 Statistical Analysis . 66
5.2.1 Table Size Distribution 67
5.2.2 Domain & Header Distribution 67
5.2.3 Correspondence Statistics 68
5.2.4 Group Statistics . 73

5.3 Related Work . 75
5.3.1 Web Data Profiling . 76
5.3.2 Profiling of Web Table Corpora 77
5.3.3 Knowledge Base Augmentation 78

5.4 Knowledge Base Augmentation Potential 79
5.4.1 Evaluation Methodology 80
5.4.2 Fusion Strategies . 80
5.4.3 Manual Evaluation . 82
5.4.4 Fusion Results . 83

5.5 Summary . 86

6 Web Table to Knowledge Base Matching 89
6.1 Introduction to Web Table Matching 90

6.1.1 Challenges . 91
6.1.2 Matching to Knowledge Bases 92

6.2 Methodology . 93
6.2.1 Workflow . 93
6.2.2 Candidate Selection . 96
6.2.3 Value-based Matcher . 98
6.2.4 Duplicate-based Matcher 99
6.2.5 Attribute-based Refinement Matcher 99

6.3 T2D Gold Standard . 101
6.3.1 Requirements . 101
6.3.2 Annotation Process . 102
6.3.3 Statistical Description 103

6.4 Related Work . 108

CONTENTS v

6.4.1 Information Extraction 108
6.4.2 Matching Databases and Ontologies 109
6.4.3 Table Augmentation . 110
6.4.4 Web Table to Knowledge Base Matching Gold Standards . 110
6.4.5 Web Table to Knowledge Base Matching 112

6.5 Evaluation . 115
6.5.1 Experimental Setup . 115
6.5.2 Overall Results . 116
6.5.3 Comparison with State-of-the-Art 121

6.6 Summary . 125

7 Feature Utility Analysis 127
7.1 Feature Review . 128

7.1.1 Feature Categorization 129
7.1.2 Table Features . 129
7.1.3 Context Features . 130
7.1.4 External Features . 132
7.1.5 Knowledge Base Features 132

7.2 Matching Components . 132
7.2.1 Adaptions of the Methodology 133
7.2.2 Matrix Prediction . 134
7.2.3 Instance Matchers . 137
7.2.4 Property Matchers . 139
7.2.5 Class Matchers . 140

7.3 Related Work . 141
7.3.1 Approaches Using Table Features 141
7.3.2 Approaches Using Context Features 143

7.4 Evaluation . 145
7.4.1 Experimental Setup . 145
7.4.2 Results of the Matrix Prediction 145
7.4.3 Results of the Instance Matching Task 148
7.4.4 Results of the Property Matching Task 150
7.4.5 Results of the Class Matching Task 152

7.5 Summary . 153

8 The T2K Match++ Method 155
8.1 Methodology . 157

8.1.1 Workflow . 157
8.1.2 Indirect Matching . 159
8.1.3 Classification . 161

8.2 Related Work . 166
8.2.1 Domain Knowledge . 166
8.2.2 Holistic Matching . 168

8.3 Evaluation . 170

vi CONTENTS

8.3.1 Experimental Setup . 170
8.3.2 Overall Results . 171
8.3.3 Detailed Evaluation . 173
8.3.4 Results of the Instance Matching Task 180
8.3.5 Results of the Property Matching Task 182
8.3.6 Results of the Class Matching Task 184
8.3.7 Comparison with State-of-the-Art 185

8.4 Summary . 187

9 Conclusion 189
9.1 Summary . 189

9.1.1 Improving the Matching Evaluability and Transparency . . 190
9.1.2 Improving the Matching Quality 191
9.1.3 Increasing the Data Availability and Applicability 192

9.2 Limitations and Future Work . 193
9.3 Research Impact . 194

List of Figures 197

List of Tables 201

Listings 202

Bibliography 205

Chapter 1

Introduction

With its massive amount of information, the World Wide Web presents the most
extensive collection of knowledge that has ever been accessible to humans. “Never
before has so much information from such a wide variety of sources and in so many
formats been available to the public” [Hartman and Ackermann, 2010]. One reason
is the availability of large encyclopedias like Wikipedia providing enormous com-
pilations of information. Another reason lies in the decentralized nature of the Web
allowing anyone to contribute websites. Since the information are mainly designed
for human readers, the automatic extraction of high quality structured knowledge
from the Web is challenging. The main reasons are the composition of the infor-
mation in natural language and the usage of arbitrary data structures.

To overcome those shortcomings, the vision of the Semantic Web as described
by [Berners-Lee et al., 2001] is to give information a well-defined meaning and
to enable computers and humans to work in cooperation. Thus, the data can be
automatically processed without the need to handle the ambiguity of language. To
create a Web of data, which is one part of the semantic web vision, Linked (Open)
Data (LOD) constitutes a paradigm of publishing and interlinking datasets on the
Web [Bizer et al., 2009a]. These datasets contain well-defined information that on
the one hand are prepared for human readers and on the other hand can be auto-
matically understood by machines. Among the datasets, cross-domain knowledge
bases like DBpedia or the Google Knowledge Graph can be found. They include
millions of facts describing things like persons, works or places. Compared to the
overall number of websites and the variety of existing topics, the amount of infor-
mation in LOD datasets is limited.

Web Tables are a source type of web content that provides large amounts of
data with a broad topical coverage. At the same time, web tables use a fixed struc-
ture to present their content [Cafarella et al., 2008a,Crestan and Pantel, 2011,Has-
sanzadeh et al., 2015, Ritze and Bizer, 2017]. Web tables provide a compact rep-
resentation of entities described by attributes whereby the structure reflects logical

1

2 CHAPTER 1. INTRODUCTION

relations. Compared to unstructured data, the effort to extract and interpret the
data is reduced. For this reason, web tables have gained increasing attention by the
research community. A number of use cases emerged that benefit from this rich
resource of structured data. The set of use cases includes question answering [Bal-
akrishnan et al., 2015] and knowledge base augmentation [Dong et al., 2014].

Figure 1.1, 1.2, and 1.3 depict web tables about different topics: NFL players,
videogames, and countries. They all share the same structure and provide a com-
pact representation of the domain. Each row describes one entity, e.g., NFL player,
videogame, or country, using attributes like the team, the publisher, or the capital.

Figure 1.1: Example web table table
about NFL players.1

Figure 1.2: Example web table about
videogames.2

Figure 1.3: Example web table about countries.3

For humans, understanding the web table content is often an easy task, as
they are made for human consumption. For machines, web tables present a two-
dimensional grid including characters and numbers without any meaning. As indi-
cated in Figure 1.4, the cell with the character sequence “USA” can refer to real-
world objects like a city in Japan, a music album, or a country.

To make use of the table data considering the scale of the Web, there is a need
for an automated table understanding. Traditional information extraction methods
which have been applied for other data sources like unstructured text are not well

1Source: http://www.foxsports.com/nfl/players
2Source: http://www.vgchartz.com/gamedb/
3Source: http://data.mongabay.com/igapo/world statistics by area.htm

http://www.foxsports.com/nfl/players
http://www.vgchartz.com/gamedb/
http://data.mongabay.com/igapo/world_statistics_by_area.htm

3

Figure 1.4: Real-world objects that are referred by the character sequence “USA”
that is given in the example web table.

suited for web tables. These methods are not aware that the structure reflects the
semantics of the content [Limaye et al., 2010]. Table understanding covers the
overall process starting with the extraction of a table from web pages to its se-
mantic interpretation [Hurst, 2001]. The goal of the table understanding process is
to recover the semantics of the table. This includes the identification of the table
topic, of the attributes meaning and of the real-world objects that are referred by
the entities. Concerning the example in Figure 1.3, it should be determined that the
table is about countries, the attribute “Capital city” states the capital of a country
and the entity with the name “USA” “United States of America”.

One way to recover the semantics is to match the web tables to a knowledge
base. A knowledge base is a combination of an ontology and instances of the
classes in the ontology [Staab and Studer, 2009]. Further, properties are used to
describe instances. Similarly, we find the same elements in web tables: the table
itself, the attributes represented in columns, and the entities represented in rows.
Accordingly, during the matching of web tables of a knowledge base, three match-
ing tasks need to be performed: matching the tables to knowledge base classes,
the attributes to knowledge base properties and table entities to knowledge base
instances. As matching result of each task, correspondences between the table
elements and the knowledge base elements are generated. The correspondences
indicate which table elements fit to which knowledge base elements. Since knowl-
edge bases follow the linked data principles, they provide a well-defined meaning
of the data which is transferred to the corresponding web table elements. Figure
1.5 shows all correspondences between a web table and a knowledge base. First,
the web table and the class country describe the same domain. Second, the attribute
“Capital city” corresponds to the property “Capital” in the knowledge base. Third,
three correspondences are found on the instance level. Hence, we know that the
web table entity “USA” does not refer the city in Japan but the country.

To generate the correspondences, each matching task performs a comparison
between the web table and knowledge base elements by applying matchers. These
matchers compare a pair of features using similarity measures. An exemplary in-

4 CHAPTER 1. INTRODUCTION

Figure 1.5: Correspondences between a web table and a knowledge base.

stance matcher takes an entity label and an instance label as feature and applies a
string similarity measure. The resulting similarity provides an estimate how sim-
ilar the labels and in turn the entity and the instance are. For example, the entity
label “Russia” and the instance label “Russia” will have a very high similarity. In
contrast, the labels “USA” and “United States of America” are not very similar,
although the same real-world object is mentioned. In consequence, only compar-
ing the labels might not be enough. This is the reason why usually a variety of
matchers is considered for each task. Since each of matcher computes a similarity
for a pair of features, the similarities are aggregated to get an estimation if a table
element corresponds to a knowledge base element.

The main challenges of matching web tables lie in their characteristics. As
stated by [Hernández and Stolfo, 1998], web data is considered as “dirty” based
on the large number of contributors and the diversified knowledge of the standard.
This leads to different kinds of heterogeneities: different namings of entities and
attributes including abbreviations and different choices in the design of the table.
In addition, there is no centralized quality control such that significant variations
in the quality of the table data occur. Other challenging characteristics are the size
of the tables and the amount of discriminative content [Cafarella et al., 2008b]. If a
table only contains a small set of entities described by few attributes, it is difficult
to generated the correct correspondences. Another challenge is posed by the large
amount of web tables which make them a valuable source. On the one hand, taking
as much web tables as possible into account enables to profit from the broad topical
coverage. On the other hand, the missing quality control and the sizes of the web
tables can lead to insufficient matching results. Hence, use cases like knowledge
base augmentation benefit most from large amounts of matched web tables so that
matching errors for particular tables can be compensated [Ritze et al., 2016]. As
consequence, web table to knowledge base matching approaches need to handle
millions of web tables [Cafarella et al., 2008b, Lehmberg et al., 2016].

1.1. MOTIVATION 5

The goal of this thesis is to systematically evaluate the utility of a wide range of
different features for the web table to knowledge base matching task using a single
gold standard. The results of the evaluation are used to design a holistic matching
method which covers all three matching tasks. To get there, we first propose the
T2K Match algorithm which addresses all three matching tasks in an integrated
fashion. In addition, we introduce the T2D gold standard covering a wide vari-
ety of challenges. By evaluating T2K Match against the T2D gold standard, we
identify that only considering the table content is insufficient due to the presented
challenges: the heterogeneities, the size of the tables and the amount of discrimina-
tive content. Thus, we include features found in the table, in the table context, and
features that base on external resources like a catalog with alternative names. We
analyze the utility of the features for each matching task. Still, not all problems can
be be overcome by matching each table in isolation to the knowledge base. Addi-
tionally, relying on the features is especially not enough for the property matching
task. Based on these findings, we extend T2K Match into T2K Match++ which
exploits indirect matches to web tables about the same topic and uses knowledge
derived from the knowledge base.

Beside the matching, we introduce the first publicly available web table cor-
pus containing millions of web tables. Until a few years, only big search engine
companies owned large web crawls from which web tables are extracted. Hence,
it has not been possible for researchers outside the companies to experiment with
web tables. Further, we create profile of the corpus to give insights to web table
characteristics and topics. Only the availability of the corpus together the profile
enabled us to generate the T2D gold standard which presents on of the basics of
the evaluation.

1.1 Motivation

With its large amounts and diverse topical coverage, web tables provide an interest-
ing source of information. In contrast to unstructured data, web tables have several
beneficial characteristics like the fixed structure that reflects logical relations. Thus,
gathering information from web tables has a plethora of use cases like table search,
table extension, or knowledge base augmentation that will be presented later in this
section. So far, the main consumers of web tables are companies like Google [Ca-
farella et al., 2008b] or Microsoft [Yakout et al., 2012] since they are in possession
of web crawls from which web tables can be extracted. Unfortunately, they do not
give public access to their data. This is not surprising as the data is part of their
business value. Thus, on the one hand, large corpora of web tables are not available
to other researchers and on the other hand the topical coverage of web tables is not
known, such that the benefit for certain use cases cannot be estimated.

As another result of the unavailability of public web table corpora, only a few

6 CHAPTER 1. INTRODUCTION

systems matching web tables to knowledge bases have been applied on web-scale
datasets. Besides the data, also the systems itself are not available such that the
reported matching results are not reproducible. These circumstances support the
low quality of the data extracted from web tables [Yin et al., 2011]. To be able
to improve the performance, it is necessary to have the possibility to evaluate and
compare the matching methods. However, before this thesis, there has been no
publicly available gold standard with tables from more than one website that cap-
tures all the matching tasks and thus provide a basis for the evaluation of strategies.
Since the table understanding which includes the matching presents the foundation
of the following use cases, these use cases can benefit from an increased matching
quality.

Table Search Search engines are focused on searching documents in the Web.
The relevant documents that are retrieved need to be processed by the user to sat-
isfy the information need. For fact seeking queries like “population of a country”,
the according information can often be detected in web tables in a comprised for-
mat. Searching for tables containing relevant information given a keyword query
is performed by [Cafarella et al., 2009], [Venetis et al., 2011], [Yin et al., 2011]
and [Pimplikar and Sarawagi, 2012]. Google uses web tables to answer queries by
displaying a tabular snippet as search result [Balakrishnan et al., 2015]. An exam-
ple of Google Tables, a search engine for web tables, is presented in Figure 1.6.
Hence, the information relevant for the user is directly displayed without the need
of considering any further document.

Figure 1.6: Search for the population of the country Germany in Google Tables.4

Table Extension For gathering information about a set of entities, e.g., the
population of all countries in the world, an individual search for each entity is nec-

4Source: https://research.google.com/tables

https://research.google.com/tables

1.1. MOTIVATION 7

essary. To avoid such labor-intensive tasks, table extension aims for automatically
finding the values of attributes of one or more entities given in a local table [Yak-
out et al., 2012, Bizer, 2014, Lehmberg et al., 2015]. For example, a local table
covers the name of all countries and the task is to find all values for the attribute
population. To receive the values, table extension methods search for the men-
tioned information in a corpus, for example in a web table corpus. Approaches
for table extension have been introduced by [Cafarella et al., 2009], [Yakout et al.,
2012], [Das Sarma et al., 2012], as well as by [Lehmberg et al., 2015].

Information included in tables cannot only be used to satisfy information needs
but can also help to create or improve data sources like knowledge bases. Over the
last years, there has been a growing trend to create, share, and use knowledge
bases for a better understanding of the data [Abadi et al., 2014]. Knowledge bases
are already used as background knowledge in an increasing range of applications
like web search, natural language understanding, data integration, and data min-
ing [Lehmann et al., 2015]. For example, Google’s Knowledge Graph is used to
improve Google’s search results [Singhal, 2012]. Both - the creation and the aug-
mentation can be facilitated using web table data.

Knowledge Base Augmentation The completeness and soundness of a knowl-
edge base is fundamental for all application relying on the knowledge base. To in-
crease the completness and soudness, an automated augmentation of large knowl-
edge bases is desirable [Dong et al., 2014]. To complete a knowledge base, either
missing values can be detected and filled (slot filling) or new entities and attributes
can be added (entity/attribute expansion). For both augmentation types, web tables
have been considered as data source [Wang et al., 2012,Sekhavat et al., 2014,Ritze
et al., 2016]. Among other data found in the Web like text documents or semantic
annotations, web tables have been used to generate Google’s Knowledge Vault, a
cross-domain knowledge base that is 38 times bigger than existing automatically
constructed knowledge bases [Dong et al., 2014].

8 CHAPTER 1. INTRODUCTION

1.2 Contributions

In this thesis, we provide the following contributions:

1. We offer the first publicly available web tables corpus containing 150 mil-
lion relational web tables originating from millions of different data providers.
Corpora of similar sizes have been generated for example by [Cafarella et al.,
2008a] but they are not available to the public.

2. We profile the introduced web table corpus to derive its characteristics and
give insights into its topical contents. Although web tables have been utilized
in a variety of use cases, it remains unclear for which use cases web tables
are most valuable. As one example, we demonstrate the potential of web
tables for augmenting a knowledge base.

3. We provide the publicly available gold standard T2D which enables the
evaluability of matching web tables to knowledge base approaches. In con-
trast to other gold standards, T2D is publicly available and covers tables
from more than one data provider. It contains correspondences for all three
matching tasks. Further, tables which do not overlap with the knowledge
base are included to test if a matching algorithm is feasible to distinguish
between overlapping and non-overlapping tables. Altogether, T2D covers a
wide range of challenges and reflects the matching task more realistically.

4. We analyze the utility of features that are used in state-of-the-art web table
matching systems. The set of features includes the web table context but also
external resources like a surface form catalog providing alternative names.
In previous works, only a subset of the tasks and a subset of the features is
considered, therefore a conclusion of the usefulness of individual features
cannot be drawn. We integrate all features into a single system, T2K Match,
and show the utility for each task on the T2D gold standard. Since both, the
system and the data is publicly available, we enable the reproducibility and
transparency of the results.

5. We propose the holistic matching method T2K Match++ which solves all
matcahing tasks by exploiting information gathered from web tables with
similar topics. To detect similar tables, the tables are matched among each
other. Existing correspondences between similar tables and the knowledge
base are propagated to either detect new correspondences or to review whether
correspondences should hold. Holistic matching has shown to improve the
results when matching other data sources like ontologies. Until now, it has
not been applied in this form in previous works to match web tables to knowl-
edge bases. As our experiments show, the holistic framework outperforms
all state-of-the-art web table to knowledge base matching systems on both,
the T2D gold standard providing a wide variety of challenges and on the
commonly used Limaye gold standard.

1.3. OUTLINE 9

1.3 Outline

In this section, the main topic of each chapter is summarized.

Chapter 2: Data Integration Process. Having introduced and motivated the
goal of the thesis, this chapter presents the foundations of data integration and
matching in particular. Besides general data integration tasks and challenges that
need to be addressed, we describe the matching process in which four steps are
performed: process the input, compute similarities by applying different matchers,
aggregate the matcher results and decide about the correspondences. Further, both
matching tasks that are part of the data integration process are presented: schema
and data matching.

Chapter 3: Knowledge Bases. Within this chapter, the concept of knowl-
edge bases is described. A knowledge base is a combination of an ontology and
instances of the classes in the ontology. Further, properties are defined to express
relations between instances. We introduce and compare the most commonly de-
ployed knowledge bases. For our experiments, we use the knowledge base DBpe-
dia. Thus, a detailed overview of DBpedia about its size, the class hierarchy, and
the covered topics is given.

Chapter 4: Web Tables. This chapter introduces the foundations of web ta-
bles. To create a corpus of web tables that can be used as input for the matching
tasks, the web tables need to undergo an extraction process. Further, we discuss
which types of web tables exist and how they are distributed among the Web.

Table Extraction Process: At first, the web tables need to be detected on a web
page and their content needs to be extracted. To distinguish between different table
types, i.e. to identify tables that are only used for layout purposes, different clas-
sification approaches have been introduced. A relational table is considered as a
compact representation of a topic that is presented by entities which are described
by attributes. To identify how the entities and attributes are named, the entity labels
and the attribute headers are determined during the metadata recovery. Besides the
overview of the extraction process, the methods that have been applied to create
the WDC Web Table Corpora are described.

Table Corpora: The resulting WDC Web Table Corpus 2012 is the first pub-
licly available web table corpus, comprising 150 million relational web tables
from millions of data providers. The corpus is analyzed regarding different char-
acteristics like the size of tables and it is compared to the statistics of other corpora.

Chapter 5: Profiling. The variety of use cases indicates web tables as a worth-
while data source. Since the existing web table corpora are not available to the
public, it is not clear which topics are covered by web tables. In this chapter, an in-

10 CHAPTER 1. INTRODUCTION

depth profiling of the publicly available WDC Web Table Corpus 2012 is provided,
giving insights into its topical contents. The profiling is performed by matching the
corpus of web tables to the knowledge base DBpedia. A profile is especially valu-
able to determine for which use cases web tables are most promising. For example,
if a company likes to extend their knowledge about cars but cars are rarely men-
tioned in the web tables, using another data source is more promising. As one
particular use case, we show the potential of web tables for augmenting DBpedia.

Chapter 6: Web Table to Knowledge Base Matching. In this chapter, the
foundations of matching web tables to knowledge bases are presented. Further, the
publicly available gold standard T2D is introduced together with the T2K Match
web table matching framework addressing all required tasks.

Matching of Web tables: The task of matching web tables to knowledge bases
poses challenges that are specific for the web tables as data source, e.g., the size
of the tables or the lack of a formal schema. Further, since neither information
about the schema nor about the data is available, both matching types need to be
performed. Hence, three matching subtasks can be defined: instance, property, and
class matching. Existing matching systems either consider only a subset of the
tasks or restrict the tasks.

T2D Gold Standard: The evaluation of existing web table to knowledge base
matching systems is performed on gold standards that are either not publicly avail-
able, focus on a specific topic and/or only cover tables from one data provider like
Wikipedia. To overcome the limitations of previously used gold standards, the
T2D gold standard is presented which covers manually generated correspondences
between web tables and DBpedia for all three matching tasks.

Web Table Matching Algorithm T2K Match: We introduce a matching system
called T2K Match that addresses the three matching tasks at the same time while
the tasks mutually influencing each other. We evaluate the performance of the sys-
tem by applying it on the T2D gold standard. The results indicate the difficulties of
matching web tables to a knowledge base: the lack of information that is available
for each table and different kinds of heterogeneities like various naming. A com-
parison to existing systems shows that the findings are in line with our results and
similar performances are achieved within a restricted scenario.

Chapter 7: Feature Utility Analysis. During the matching process, features
serve as input for the matchers. The matchers compute similarities by applying
a similarity measure on these features. This chapter gives an overview of features
that are proposed in literature and analyzes their utility for all three matching tasks.

Feature Review: A large number of features has been suggested in literature for
the matching of web tables. While some of the features rely on external resources,

1.3. OUTLINE 11

e.g., a surface form catalog covering alternative names, others represent for exam-
ple the context of a table. State-of-the-art systems only implement a limited set of
features and the various systems are evaluated on different gold standards. Thus, it
is difficult to decide how important a certain feature is and how much influence it
has on the overall performance.

Feature Utility Study: A feature utility study is provided in which each feature
is analyzed. All features are included in T2K Match. Taking a set of features into
account requires an aggregation strategy that can properly combine the generated
similarities. The aggregation strategy is extended such that it adapts itself for each
table depending on the distinctiveness of a feature. Different combinations of fea-
tures are evaluated on the T2D gold standard to identify the essential features for
each matching task. Further, an analysis is given to show how much performance
gain is possible by exploiting the features.

Chapter 8: The T2K Match++ Method. This chapter starts with highlight-
ing the limitations of the previously described matching methods. None of the
existing systems tackles the matching of web tables to a knowledge base in a way
such that similarities of similar tables to the knowledge base are taken into account.
Thus, the holistic matching framework T2K Match++ that simultaneously matches
web tables to a knowledge base by exploiting that web tables can share the same
topics is presented. Therefore, the functionality of the T2K Match algorithm is ex-
tended with a component that includes indirect mappings. For each table, similar
tables are searched and matched among each other in an efficient way. Using both,
the correspondences between the tables and the correspondences to the knowledge
base, more evidence about the correctness of the correspondences can be gained.
Since the additional indirection can lead to errors, the classification step is extended
and takes domain knowledge into account. The chapter presents the evaluation of
T2K Match++ on the T2D gold standard which results in performance increases
for all three tasks, compared to T2K Match. Further, another evaluation on a sec-
ond gold standard (Limaye gold standard [Limaye et al., 2010]) demonstrates the
applicability of the algorithm on unknown datasets. Additionally, the results show
that the proposed approach outperforms the existing state-of-the-art web table to
knowledge base matching systems introduced by [Limaye et al., 2010], [Zhang,
2016], [Mulwad et al., 2013] and [Venetis et al., 2011].

Chapter 9: Conclusion. The final chapter summarizes the core contribu-
tions of this thesis, discusses limitations and directions for future work as well
as presents the research impact of this work.

12 CHAPTER 1. INTRODUCTION

1.4 Published Work

Parts of the work presented in this thesis have been published previously:

• The extraction of the WDC Web Table Corpus from the Common Crawl:

Oliver Lehmberg, Dominique Ritze, Robert Meusel, Christian Bizer:
A Large Public Corpus of Web Tables containing Time and Context
Metadata. In Proceedings of the 25th International World Wide Web
Conference (WWW), 2016.

• The profiling of the WDC Web Table Corpus:

Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, Christian Bizer:
Profiling the Potential of Web Tables for Augmenting Cross-domain
Knowledge Bases. In Proceedings of the 25th International World
Wide Web Conference (WWW), 2016.

• T2K web table matching:

Dominique Ritze, Oliver Lehmberg, Christian Bizer: Matching HTML
Tables to DBpedia. In Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics (WIMS), 2015.

• The feature utility study:

Dominique Ritze & Christian Bizer: Matching Web Tables To DBpe-
dia - A Feature Utility Study. In Proceedings of the 20th Extended
Database Technology Conference (EDBT), 2017.

• The T2K Match++ method:

Dominique Ritze & Christian Bizer: T2K Match++: Restricting Holis-
tic Matching with Domain Knowledge. Paper submitted to the 11th
ACM International Conference on Web Search and Data Mining (WSDM),
2018.

Chapter 2

The Data Integration Process

The increasing amount of data that is generated every day enables a variety of ap-
plications which require an efficient and accurate data integration. The goal of data
integration is to provide a unified access to data residing in multiple, autonomous
data sources [Dong and Srivastava, 2015]. Data integration is crucial for many use
cases, including application areas like business, science, government, or the Web.
Already in 2005, enterprise information integration has been estimated to yield
about half a billion revenue [Halevy et al., 2005]. For a business, information inte-
gration is required in a variety of sectors, including customer relation management,
supply chain management, business intelligence, or when companies are merged.
In science, especially within the biology domain, a large variety of databases exist,
i.e., about 180 databases in 2016 [Rigden et al., 2016]. Integrating data from vari-
ous databases enables the researcher to collect all information that are for example
necessary to perform experiments. Beside business and science, applications that
require data integration can also be found in the public sector, e.g., to identify sus-
pects by combining information about calls, online profiles, and credit card trans-
actions [Aggrawal, 2015]. Lastly, based on the plethora of available data source,
the Web itself presents a large application area. For example, data integration is
required for the search in the World Wide Web [Halevy et al., 2006] or to build
portals like Shopping.com where products with their prices from different retailers
are prepared for the user.

Example 2.1 Figure 2.1 pictures two data sources, i.e., databases, describing coun-
tries. Both sources contain information about overlapping countries for which par-
tially different aspects are described. Although the sources are useful in isolation,
the value is considerably enhanced when the sources are integrated. For example,
if someone likes to get the information about the capitals as well as the area, only
the combination of these two sources satisfies the information need. Combining
the information from both sources requires to come up with a variety of findings.
Among others, it needs to be detected that USA and United States of America refer
to the same country and Population and Pop. both state the population of a country.

13

14 CHAPTER 2. THE DATA INTEGRATION PROCESS

Figure 2.1: Example of two sources describing countries.

In this chapter, we give on overview of the data integration principles which
lays the foundations for the integration of web tables. We will start with an overview
of the data integration tasks schema matching, data matching, and fusion (Section
2.1) together with a description of the challenges (Section 2.2). As the thesis fo-
cuses on the matching of web tables, we subsequently explain the general matching
process as well as methods for both, schema and data matching (Section 2.3).

2.1 Tasks

Automatically integrating data introduces three tasks: schema matching, data match-
ing and fusion [Christen, 2012]. Only if all tasks are performed, a full integration
of the data across multiple autonomous sources can be achieved. In this section,
we give definitions of the tasks and show how the results of each task look like.

Schema Matching According to [Rahm and Bernstein, 2001], we define schema
matching as follows:

Definition 2.1 (Schema Matching) Given two schemata s and t, schema match-
ing produces a set of correspondences, called mapping, indicating which elements
semantically correspond to each other.

Example 2.2 Figure 2.2 depicts the corresponding schema elements in the country
sources. Both sources named Country and State describe the same concepts, indi-
cated by the orange arrow. Further, Country and Name state the names of countries
such that they can be considered as equivalent. In addition, Pop. and Population
provide the same meaning. Thus, the schema elements are said to be equal, recog-
nizable by the blue arrow. Neither the schema element Capital nor Area correspond
to any other schema elements.

As can be seen from the example, equivalent schema elements do not necessar-
ily have the same name. Thus, one of the challenge is to deal with different naming
conventions as we discuss in the next section. Further, we will introduce common
schema matching strategies in Section 2.3.3.

Data Matching According to [Köpcke and Rahm, 2010], we define data match-
ing, also called record linkage, deduplication, instance matching, as follows:

2.1. TASKS 15

Figure 2.2: Schema matching results of the country sources.

Definition 2.2 (Data Matching) Given two sets of entities A P SA and B P SB
of a particular semantic entity type from data sources SA and SB , data matching
finds out which entities in A�B represent the same real-world objects.

The data sources SA and SB do not need to be distinct. Especially the term
deduplication refers to the task of finding the same entities within one source.

Figure 2.3: Data matching results of the country sources.

Example 2.3 In Figure 2.3, the entities referring to the same real-world object are
shown. For example, both entities named Russia refer to the same country.

Similar to the schema matching, deviations in the names, e.g., USA and United
States of America, can be detected. The knowledge about equivalent schema ele-
ments, e.g., Country and Name, is an important indication to identify same real-
world objects. More information on commonly applied methods are depicted in
Section 2.3.4. In order to match web tables to knowledge bases, both tasks schema
as well as data matching need to be addressed.

Fusion The last step of the data integration process, the fusion, has the follow-
ing goal [Bleiholder and Naumann, 2009]:

Definition 2.3 (Fusion) Duplicate representations are combined and fused into a
single representation while inconsistencies in the data are resolved.

Example 2.4 Figure 2.4 shows how the sources have been fused. Based on the
results from the schema and data matching, we know that the schema elements
Population and Pop. have the same meaning as well as both sources include par-
tially the same countries. For the values marked by red color, a decision has been
taken which value to overtake since different values are found in the sources.

16 CHAPTER 2. THE DATA INTEGRATION PROCESS

Figure 2.4: Fusion results of the country sources.

As we can derive from the example, the fusion needs to decide for the best
suitable values. For example, the fusion chooses a value based on how reliable a
source is estimated. We will present different fusion strategies that we apply on the
results of the matching of web tables to knowledge bases in Chapter 5.

2.2 Challenges

Even for a small number of sources that provide structured data - the fully auto-
mated data integration scenario is notoriously hard [Doan et al., 2012]. This situa-
tion is deteriorated if not only a small amount of sources is taken into account. The
challenges of big data integration are classified into four dimensions, also referred
to as the “V” dimensions [Dong and Srivastava, 2015]:

• Volume Sources can have a huge volume and the number of sources grows.

• Velocity Sources are dynamic with continuous changes and updates.

• Variety Sources can be heterogeneous even if they describe the same topic.

• Veracity Sources differ in their quality, coverage, accuracy, and timeliness.

All three tasks need to tackle these challenges. Especially the variety poses one
of the main challenges for both matching tasks. The reason for varying sources are
different kinds of heterogeneities.

Heterogeneities occur on the schema as well as data level whenever data
is either described or structured differently. Many classification schemes have
been proposed to categorize different types of heterogeneities. We classify het-
erogeneities into three types as presented by [Euzenat and Shvaiko, 2007] for on-
tologies and [Busse et al., 1999] for databases:

• Syntactic Heterogeneity occurs when two sources are different on the syn-
tactic level, e.g., the use of different ontology languages or protocols for
databases.

• Terminological Heterogeneity arises due to variations in names when re-
ferring to the same real-world objects in different data sources. This can

2.3. MATCHING 17

mean that two things can either have the same name but a different meaning
(homonym) or other names but the same meaning (synonyms). Other rea-
sons are the usage of technical sublanguages or abbreviations. Another term
for terminological heterogeneity is semantic heterogeneity.

• Conceptual Heterogeneity describes differences in modeling the same do-
main. It can be divided into three subtypes: coverage, granularity, and per-
spective. Variations in the coverage mean that only partially overlapping
domains are described. Following, a different granularity refers to a descrip-
tion using a different level of detail. Another perspective, also called scope,
indicates that fully overlapping domains are expressed on the same granular-
ity level but the sources focus on different aspects, e.g., describing a political
map and a geological map of a country. Especially in the database commu-
nity, the expression schematic heterogeneity is used.

When integrating a set of sources, usually all kinds of heteoregeneties occur.
Thus, matching methods need to find ways to overcome these heteoregeneties.

2.3 Matching

Matching refers to the mission of finding semantically corresponding concepts.
This can either be on the schema or on the data level. In this section, we explain
how the matching process looks like and which similarity measures are commonly
applied to estimate the similarity of sources. Further, we describe schema and
data matching techniques which try to overcome the presented challenges. Finally,
we depict the evaluation criteria that are used to evaluate different matching ap-
proaches. Everything presented in this section provides the foundations we build
on for matching web tables to knowledge bases.

2.3.1 Process

Similar to [Euzenat and Shvaiko, 2007], we define the matching process as follows:

Definition 2.4 (Matching Process) A matching process can be seen as function f
that takes two inputs i1, i2 and returns a set of correspondences, called mapping
M , M � fpi1, i2q.

The input can either be a single source, e.g., a database, or a set of sources like
millions of web tables.

Definition 2.5 (Correspondence) A correspondence is a quadruple e1, e2, r, c ¡
that holds between the elements e1 and e2 from the input i1 resp. i2 given a relation
r and a confidence c.

Relations indicate how the elements are connected. The most common relation
is the equivalence relation stating that two elements have the same meaning. Other

18 CHAPTER 2. THE DATA INTEGRATION PROCESS

relations are subsumptions or complex ones relating more than two elements [Ritze
et al., 2010]. In this thesis, we only consider equivalent relations.
The confidence value specifies how likely the relation holds. It varies between 0
and 1 while 1 declares that the correspondence is most likely to hold. The more
evidence we obtain to support a correspondence, the more reliable the confidence
value becomes. For example, if a correspondence between two entities is gener-
ated only based on comparison of entity labels, a high similarity and in turn a high
confidence score does not necessarily lead to a correct correspondence. A mapping
is per se not restricted to only contain one correspondence per element. However,
we focus on so called one-to-one (1:1) mappings which specify that only one cor-
respondence for each element can exist [Euzenat and Shvaiko, 2007].

The general matching process as presented in Figure 2.5 consists of four steps:
preprocessing, matcher execution, aggregation, and classification [Do and Rahm,
2002,Christen, 2012]. In the following, we describe each step and present common
methods.

Figure 2.5: General matching process with two sources as input and a set of corre-
spondences as output.

Preprocessing During the preprocessing, everything is arranged to be able
to apply the matchers in a meaningful way. This includes the unification of the
data since it can vary in the format, structure and content. For both, schema and
data matching, a set of techniques has been proposed [Christen, 2012,Euzenat and
Shvaiko, 2007, Rahm and Do, 2000]. A first step is the standardization that trans-
poses values into a consistent representation by lower casing all values and apply-
ing specific normalization methods if possible, e.g., to unify addresses. Afterwards,
unwanted characters or words are removed. This can include punctuations but also
stop words that do not present relevant information. Additionally, abbreviations
can be expanded or misspellings corrected. Different structures are resolved by
structural transformation like the segmentation. For example, one database con-
tains two attributes covering the first and last name and another database contains
one attribute with combined first and last name. By splitting the content of the

2.3. MATCHING 19

attributes, both databases cover the information in the same way.

Matcher Execution One of the main matching challenges is to overcome het-
erogeneities. As introduced, heterogeneities arise due to different ways of express-
ing knowledge, e.g., by using other terminologies or considering different levels
of details. Therefore, a set of matchers is executed. Illustrated in Figure 2.6, a
matcher takes two features of two elements as input and applies a similarity mea-
sure. For example, to match databases about persons, the names of the persons
are useful features. As result, a matcher returns a similarity matrix including pair-
wise similarity scores to indicate how similar the features and in turn the elements
are. The reason for using more than one matcher is that a single feature is usually
not enough to overcome the heterogeneities. Further, the more features are used,
the more evidence can be gained. Evidence can either be positive or negative to
support or disapprove a possible correspondence. Gaining more evidence helps to
better decide if a correspondence is likely to be correct. Within the next sections,
we will go into more detail about similarity measures (Section 2.3.2) and matching
strategies for schema and data matching (Sections 2.3.3 & 2.3.4).

Figure 2.6: Functionality of a matcher with a similarity matrix as output.

Aggregation Each matcher generates a similarity matrix holding the pairwise
element similarities. To get an overall estimate whether two elements are simi-
lar, these matrices need to be combined, resulting in one similarity score per pair.
Figure 2.7 shows how the aggregation looks like. In this example, the two similar-
ity matrices are combined in an aggregated similarity matrix by summing up the
individual similarity scores. The most straightforward aggregation strategies are
to take the sum, minimum, maximum or the average of the matrix elements [Do
and Rahm, 2002]. However, these strategies do not consider whether one matrix
created by a particular matcher is more reliable or trustful.

Thus, weighted-based aggregation methods, also called combiners, have been
introduced. They assign weights to matchers to indicate their influence on the fi-
nal similarity score [Doan et al., 2012]. One way to define the weights is to use
hand-crafted rules. Since the manual creation of such rules is time-consuming and
knowledge about the topic is required, it is not feasible to create rules for cross-
domain sources. Another option is to learn weights in a supervised fashion. In-
dependent of the strategy, a combined similarity matrix is generated that serves as

20 CHAPTER 2. THE DATA INTEGRATION PROCESS

Figure 2.7: Aggregation of two similarity matrices.

input for the last step, the classification.

Classification During the classification, it is decided whether a correspondence
is likely to hold and in turn will be part of the mapping. A simple classifica-
tion method, called threshold-based classification, divides correspondences into
matches and non-matches by applying a threshold on the similarity score [Euzenat
and Shvaiko, 2007]. Other classification methods are supervised approaches that
train a binary classifier. Especially for data matching, supervised classifier using
decision trees have been shown as valuable [Verykios et al., 2000].

Independent of the input or whether the schema or data level is considered, the
matching process has to be performed. For each step, a variety of strategies have
been proposed while some of them are specific for schema or data matching. Espe-
cially the matcher execution, which is the most fundamental part of the matching
process, highly depends on the matching task and input. Thus, in the next sections,
we focus on the matcher execution and present commonly used similarity measures
as well as common methods for schema and data matching.

2.3.2 Similarity Measures

Due to different kinds of heterogeneities reviewing whether two features are equal
is usually not enough to decide whether the elements correspond. Therefore,
matchers utilize a similarity measure that allows deviations. We will focus on
general measures that can be used by matchers for schema as well as data match-
ing. Most similarity measures presented in this section are took up in subsequent
chapters for matching web tables to knowledge bases.

Definition 2.6 (Similarity Measure) A similarity measure is a real-valued function
identifying the similarity between features x, y: simpx, yq Ñ r0, 1s.

A similarity score of 1 states equality. The lower the similarity score is, the less
similarity is assumed. Similarity measures can be seen as the inverse of distance
metrics: if two features are not similar at all, the distance score is 1.

2.3. MATCHING 21

We will start with an introduction of string similarity measures, see [Cohen
et al., 2003] for an overview. In more detail, we discuss edit-based, token-based as
well as hybrid measures. Since similarity measures are rarely useful for numeric
or date values, we present how values of other data types can be compared.

Edit-based String Measures The idea behind edit-based string measures is
to determine how one string needs to be edited to present another string. Such
measures are especially useful to identify typos or character swaps. One edit-
based string measure has been introduced by [Levenshtein, 1966]. To compute the
Levenshtein distance, three edit operations are considered: insertion, deletion, and
replacement. All of them have the same costs of 1.

Definition 2.7 (Levenshtein Distance) Given two strings s1 and s2, the Leven-
shtein distance distlev is the minimum number of edit operations that are necessary
to transform s1 to s2.

Definition 2.8 (Levenshtein Similarity) The Levenshtein similarity distlev is de-
fined as the inverse normalized Levenshtein distance.

simlevps1, s2q � 1� distlevps1,s2q
maxp|s1|,|s2|q

Example 2.5 Let s1 = United States, s2 = United Stats

simlevps1, s2q � 1� 1
13 � 0.92

Other edit-based string measures vary in set of edit operations or the costs of
an operation: the Jaro-Winkler similarity adds a transposition operator while the
Smith-Waterman distance adapts the cost of an edit operation depending on the
position of the character. A weakness of edit-based string measures is that they
always consider a string as a whole regardless whether it consists of single terms.
For example, if two strings contain the first and last name but the order is inverted,
they will not be considered as similar at all.

Token-based String Measures To compensate the disadvantages of edit-based
string measures, token-based string measures focus on the comparison of the indi-
vidual terms or tokens a string consists of. Common measures are the Dice and the
Jaccard similarity. Here, we will focus on the Jaccard similarity [Jaccard, 2006].

Definition 2.9 (Jaccard Similarity)

simjaccps1, s2q � |tokenizeps1qXtokenizeps2q|
|tokenizeps1qYtokenizeps2q|

Example 2.6 Let s1 = United States of America and s2 = United States

tokenize(United States of America) = tUnited, States, of, Americau
tokenize(United States) = tUnited, Statesu

simjaccps1, s2q � 2
4 � 0.5

22 CHAPTER 2. THE DATA INTEGRATION PROCESS

The Jaccard measure weights each token independently of its relevance. Hence,
the string “Federated States of Micronesia” has the same similarity to “United
States of America” as “United States” because in both cases two tokens overlap.
However, the tokens “states” and “of” are less relevant. Therefore, the TF-IDF
concept has been introduced that considers if the overlapping terms are distinguish-
ing [Salton and McGill, 1983].

Definition 2.10 (Term Frequency) Let t be a term and d a document

tfpt, dq � |tt P d|u

Definition 2.11 (Inverse Document Frequency)

idfptq � log |D|
|tdPD:tPdu|

Document vectors are built for each document and cover the TF-IDF scores of
the terms in the document: vdptq � tfpt, dq � idfptq. These vectors serve as input
for the cosine similarity which computes the cosine of the angle between the two
document vectors in an n-dimensional space.

Definition 2.12 (Cosine Similarity)

simcosinepp, qq �
°

tPT vpptq�vqptq?°
tPT vpptq2�

?°
tPT vqptq2

In contrast to edit-based measures, token-based measures always assume that
the tokens are equal and do not allow any deviation. Thus, typos or slight variations
can result in a low similarity.

Hybrid Measures The introduced measure families show mutual disadvan-
tages. Thus, hybrid measures combine edit- and token-based measures by allow-
ing deviations within a token-based comparison. One hybrid measure is the hy-
brid Jaccard similarity which uses an inner edit-based similarity measure, e.g., the
Levenshtein similarity, and afterwards applies the Jaccard similarity [Herschel and
Naumann, 2010].

Definition 2.13 (Hybrid Jaccard Similarity) Let S be the set of shared tokens and
Upxq, Upyq the sets of unique tokens:

S � tpxi, yiq|xi P tokenizepxq ^ yi P tokenizepyq : simpxi, yiq ¥ θu
Upxq � txi|xi P tokenizepxq ^ yi P tokenizepyq ^ pxi, yiq R Su
Upyq � tyi|yi P tokenizepyq ^ xi P tokenizepxq ^ pxi, yiq R Su

simhybJaccpx, yq �
°

pxi,yiqPS
simpxi,yiq

°
pxi,yiqPS

simpxi,yiq�|Upxq|�|Upyq|

Example 2.7 Let s1 = nba wnba mcgrady and s2 = macgrady nba

2.3. MATCHING 23

tokenize(nba wnba mcgrady) = tnba,wnba,mcgradyu
tokenize(macgrady nba) = tmacgrady, nbau

simlevpnba, nbaq � 1 simlevpmcgrady,macgradyq � 0.83
simhybJaccps1, s2q � 1.83

1.83�0�1 � 0.65

Depending on the characteristics of the strings, a different similarity measure
can be more beneficial. All introduced measures are useful to compare strings
but they yield unsatisfactory results for other data types like numerical values,
e.g., comparing the years “1999” and “2000” as strings results in no similarity
at all [Herschel and Naumann, 2010]. Therefore, type-based similarity measures
have been developed. Following, we present a similarity measure for numeric val-
ues and one for dates.

Numeric Similarity Measure Most obvious, the similarity of two numeric val-
ues can be determined based on their deviation. The deviation similarity introduced
by [Rinser et al., 2013] is defined as follows:

Definition 2.14 (Deviation Similarity)

simnumpn1, n2q �
#

1 if n1 � n2

0.5 � mint|n1|,|n2|u
maxt|n1|,|n2|u

otherwise

Example 2.8 Let n1 � 19.3 and n2 � 20.0

simnumpn1, n2q � 0.5 � 19.320.0 � 0.48

Date Similarity Measure For dates, the deviation needs to be calculated in an-
other way. The weighted date part similarity bases on the idea that more emphasize
should be put on the year and less on the specific day.

Definition 2.15 (Weighted Date Part Similarity)

simdatepd1, d2q � simday �weightday�simmonth�weightmonth�simyear�weightyear
weightday�weightmonth�weightyear

simdaypd1, d2q � 31�|daypd1q�daypd2q|
31

simmonthpd1, d2q � 12�|monthpd1q�monthpd2q|
12

simyearpd1, d2q � 1� |yearpd1q�yearpd2q|
yearRange

The year range determines between which years the date values can be found.
If dates between 3000 BC and 2000 AD are compared, a difference of one year
might be tolerable. In contrast if only dates between the years 1986 and 1987 are
considered, one year makes a big difference.

Example 2.9 Let d1 = 24/10/1986 d2 = 1/11/1986,
weightday � 1, weightmonth � 3, weightyear � 5, yearRange � 100

24 CHAPTER 2. THE DATA INTEGRATION PROCESS

simdaypd1, d2q � |31�8|
31 � 23

31 simmonthpd1, d2q � 12�1
12 � 11

12
simyearpd1, d2q � 1� 1986�1986

100 � 1� 0
100 � 1

simdatepd1, d2q �
23
31
�1� 11

12
�3�1�5

1�3�5 � 0.74�2.75�5
9 � 0.94

In conclusion, a variety of similarity measures exists and each measure can
be more suitable depending on the characteristics of the features. Since similarity
measures are the core of the comparison and in turn of the matching, the choice of
the similarity measures has a strong influence on the matching result. Besides gen-
eral measures, more specific ones can be applied that are tailored to the particular
matching task or the input type.

2.3.3 Schema Matching

One of the major bottlenecks of the data integration is to get semantic mappings be-
tween the sources [Halevy et al., 2006]. Thus, plenty of schema matching methods
have been developed. A classification scheme for the approaches has been pro-
posed by [Rahm and Bernstein, 2001] and extended by [Bilke, 2006]. The scheme
is depicted in Figure 2.8 with the following division of matching approaches:

Figure 2.8: Schema matching approaches according to [Bilke, 2006].

• Individual vs. Combined: Matchers either rely on one or a set of features.

• Schema vs. Instance: Methods consider either only the meta data available
on schema-level or the data itself.

• Element vs. Structure: Schema-based approaches focus on features ex-
tracted from single elements, e.g., element name or data type, or exploit
complex schema structures, e.g., graph matching.

• Vertical vs. Horizontal: Instance-based strategies compute characteristics of
the data, e.g., average length of values of an element, or perform a duplicate-
based method that detects duplicated entities.

2.3. MATCHING 25

Each type of approaches is appropriate for sources with specific characteristics.
Within the country example, applying a schema-based method that only compares
the attribute name Country and Name will not find a similarity between the se-
mantically corresponding attributes. Contrary, a duplicate-based method is able to
detect the correspondence since it can rely on the knowledge that the values of the
entities representing the same countries are similar. To overcome different hetero-
geneities, schema matching systems usually include matchers from more than one
category. The most prominent systems to perform schema matching for databases
are COMA [Do and Rahm, 2002] and Cupid [Madhavan et al., 2001]. Both pro-
vide a selection of methods on the element as well as structure level. Exemplary
matchers compare attribute names under consideration of synonyms or abbrevia-
tions, exploit data types as well as use the tree that is spanned when representing
the database graphically. Similar to most systems, they do not consider the instance
level. Systems including instance-level matchers are LSD [Doan et al., 2001] with
its successor GLUE [Doan et al., 2004a], iMAP [Dhamankar et al., 2004] as well as
COMA’s successor COMA++ [Aumueller et al., 2005]. However, they all focus on
vertical instance-based strategies. Only the Dumas system [Bilke and Naumann,
2005] considers the entities in a duplicate-based method. For matching ontologies,
systems like RiMOM [Li et al., 2009] or LogMap [Jiménez-Ruiz and Cuenca Grau,
2011] include a variety of methods. Detailed overviews are provided by [Rahm and
Bernstein, 2001] and [Euzenat and Shvaiko, 2007].

To find out strengths and weaknesses of individual schema matching systems,
the Ontology Alignment Evaluation Initiative1 (OAEI) performs an annual evalu-
ation. For this purpose, a variety of ontologies together with correspondences has
been made publicly available, each test set focusing on a specific aspect. Hence, a
comparability of the results provided by the systems is enabled. Besides the bench-
mark provided by the OAEI, other commonly used datasets are Purchase Order or
Web Directory.2 To evaluate schema matching on large scale, systems are applied
to match knowledge bases like DBpedia and Freebase.

2.3.4 Data Matching

For data matching, it is assumed that at least some schema correspondences are
available. This is straightforward in case of deduplication where duplicates within
the same source are detected. Otherwise, the correspondences between the schemata
are known by a preceded schema matching. One of the main challenges for data
matching is the quadratic number of pairwise comparisons. With a native approach,
n�m comparisons are required with n and m entities in the sources, respectively.

Blocking To reduce the number of comparisons, blocking, also named index-
ing, is applied. It removes pairs of entities that are unlikely to correspond [Chris-

1http://oaei.ontologymatching.org/
2https://dbs.uni-leipzig.de/bdschemamatching

http://oaei.ontologymatching.org/
https://dbs.uni-leipzig.de/bdschemamatching

26 CHAPTER 2. THE DATA INTEGRATION PROCESS

ten, 2012]. For this, each entity is inserted into one or more blocks according to a
blocking/sorting key and only entities within the same blocks are compared. Com-
mon blocking keys rely on identifiers, if existing, or on the similarity of the entity
label sound determined by a phonetic encoding function. The standard blocking
approach puts each entity into exactly one block [Fellegi and Sunter, 1969]. Thus,
entities can be efficiently blocked but the quality heavily depends on the choice of
the blocking key. An alternative that tries to overcome this issue is the sorted neigh-
borhood method [Hernández and Stolfo, 1995]. It sorts the sources according to a
key and uses a sliding window to go through the sources. Whenever two entities
are in the same window, a candidate pair is generated. Independent of the blocking
strategy, all subsequent steps are only performed on the pairs that are worth com-
parable. An overview of blocking methods, including advanced approaches like
Q-Gram Indexing or Canopy Clustering is provided by [Christen, 2012].

As for schema matching, another challenge is the presence of heterogeneities.
This includes different naming of the entities, varying entity descriptions using
diverse attributes or the same attributes but with differing values due to mistyp-
ing, naming conventions, missing values, and so on. A variety of approaches try-
ing to solve the data matching problem has been proposed in literature [Christen,
2012, Christophides et al., 2015]. One set of methods create matching or linkage
rules that specify which conditions need to hold to consider entities as equivalent.
The condition is usually a linear weight of the similarities which are computed us-
ing attribute-specific similarity measures. A possible linkage rule for the country
example is to compare the entity labels as well as the values of the population at-
tributes using the Jaccard and deviation similarity and generate a correspondence
if the sum is above 0.5. Similar to the weighted aggregation, one possible way is
to use hand-crafted rules which is very time-consuming and knowledge about the
topic is required. Therefore, machine learning methods are commonly used: either
unsupervised methods that cluster entities or supervised ones which learn a rule.

Overviews of data matching systems are provided by [Elmagarmid et al., 2007,
Köpcke and Rahm, 2010]. Systems are either provided with matching rules by the
user like Limes [Ngomo and Auer, 2011] or learn the rules based on training data
like Active Alias (decision trees) [Tejada et al., 2001], MARLIN (SVM) [Bilenko
and Mooney, 2003] as well as the Silk framework [Isele and Bizer, 2012] and
RAVEN [Ngomo et al., 2011]. Silk and RAVEN both apply a genetic algorithm in
combination with active learning to optimize the training data generation. The TAI-
LOR [Elfeky et al., 2002] and FEBRL [Christen, 2008] frameworks provide a tool-
box including both, supervised and unsupervised strategies. All mentioned systems
focus on the comparison of attribute values and do not include any other features.
However, other systems consider so-called context features [Köpcke and Rahm,
2010]: contextual information, e.g., semantic relationships, in a graph structure
that allows the propagation of similarities to related entities. One system exploit-
ing contextual information is the Context Based Framework [Chen et al., 2009].

2.3. MATCHING 27

As for the schema matching, the OAEI also provides data sets for the evaluation
of data matching systems. Further, two common benchmarks to measure the qual-
ity and performance of data matching approaches are the Cora [McCallum et al.,
2000] and Restaurant dataset [Tejada et al., 2001]. While the Cora dataset covers
research papers, the Restaurant dataset describes restaurants with their addresses.
A larger and more complex dataset is the DBpediaDrugbank dataset in which the
knowledge base DBpedia and the DrugBank database3 are compared.

2.3.5 Evaluation Criteria

Methods performing either schema or data matching are evaluated by stating their
quality together with additional performance measures, if desired. The quality of
a matching approach is usually specified using the standard measures precision,
recall, and its combination F-measure. These measures are computed based on a
manually determined perfect result, mostly provided by a gold standard containing
all correct correspondences that exist between the sources. The set of correspon-
dences generated by a matching method is comprised of True Positives (TP) and
False Positives (FP), i.e., correctly and falsely proposed correspondences.

Precision � TP

TP � FP
(2.1)

Recall � TP

TP � FN
(2.2)

F �measure � 2 � Precision �Recall
Precision�Recall

(2.3)

Instead of taking the harmonic mean of precision and recall, different weights
can be assigned to precision and recall for the F-measure computation. Two other
commonly F-measures are the F-measure2 and the F-measure0.5. While the F-
measure2 puts a higher weight on recall, the F-measure0.5 weighs recall lower than
precision. A higher weight for precision can for example be useful if an appli-
cation requires precise correspondences and at the same time a lower amount of
correspondences is acceptable. However, since most matching systems focus on
the harmonic mean between precision and recall, we will use it in the evaluations
of this thesis to ensure the comparability of the results.

In addition to the quality, performance measures like the execution time, mem-
ory consumption, scalability, or user-related measures like the level of user input
effort are applied [Euzenat and Shvaiko, 2007]. While performance measures are
less important for schema matching, it is an essential factor for the data match-
ing [Köpcke and Rahm, 2010] due to the large amounts of comparisons. For ex-
ample, the blocking performance is measured in terms of pair completeness and
reduction ratio.

3http://wifo5-04.informatik.uni-mannheim.de/drugbank/

http://wifo5-04.informatik.uni-mannheim.de/drugbank/

28 CHAPTER 2. THE DATA INTEGRATION PROCESS

Chapter 3

Knowledge Bases

The large amounts of data have become one of the greatest database research chal-
lenge of our time [Abadi et al., 2014]. To be able to handle the enormous volume
of data that is generated every day, automatic methods to analyze this data are
required. However, this is a knowledge-intensive task which can be facilitated
whenever knowledge about the domain is available. Knowledge can be captured in
knowledge bases, also called knowledge graphs. They contain information of the
subjects of one or more domains. Knowledge bases are already used as background
knowledge in an increasing range of applications like web search, natural language
understanding, data integration, and data mining [Lehmann et al., 2015].

A knowledge base is defined as the combination of an ontology and instances of
the classes in the ontology [Staab and Studer, 2009]. Usually, classes are arranged
in class hierarchies. Properties defined in the ontology are used to describe rela-
tionships that hold between the instances (object properties) as well as give details
about the instances (datatype properties). Knowledge bases follow the Semantic
Web vision to give information a well-defined meaning and to enable computers
and humans to work in cooperation [Berners-Lee et al., 2001]. This is realized by
the linked data principles including the recommendation to use standards.

In this chapter, we introduce knowledge bases which are one input of the web
table to knowledge base matching process. In Section 3.1, we describe the pre-
liminaries, including the Resource Description Framework (Section 3.1.1) and the
Linked Data principles (Section 3.1.2) which are utilized by knowledge bases.
Then, we characterize the most commonly applied knowledge bases in Section
3.2. The knowledge base we use in this thesis is DBpedia which is portrayed in
more detail in the last section of the chapter (Section 3.3).

29

30 CHAPTER 3. KNOWLEDGE BASES

3.1 Preliminaries

To enable the Semantic Web vision, a collection of recommendations have been
proposed. One of them is to use the Resource Description Framework to represent
data. In addition, the linked data principles provide a set of rules how to describe
the data. In this section, we provide an introduction to both since they build the
basis for knowledge bases.

3.1.1 Resource Description Framework

The Resource Description Framework (RDF) [Klyne and Carroll, 2004] is a stan-
dard introduced by the World Wide Web Consortium (W3C). It is the most com-
mon way to represent data in the Semantic Web. In general, the RDF framework
describes resources using a generic graph-based data model. Information about
resources are represented by triples having the following format:

 subject ¡ predicate ¡ object ¡ (3.1)

Each triple state a relationship between the subject and the object, represented
by the predicate. While the subject always refers to a resource, objects can ei-
ther point to resources or to literals like strings or numbers. Resources and pred-
icates are identified by a unique identifier, more precisely by an Internationalized
Resource Identifier (IRI). IRIs are an extension of Uniform Resource Identifiers
(URIs) to overcome the limitation that only ASCII characters can be used. The
only exception where resources do not have an IRI are blank nodes. Blank nodes,
also called anonymous resources, are resources without an identifier. They are
for example used to describe reification, e.g., to provide provenance information,
where it is not necessary to have an explicit identifier.

RDF itself only provides the model and does not define the format of the data.
To this end, several serialization formats have been introduced. Exemplary seri-
alization formats are RDF/XML, N-Triples or Turtle. Each format has been de-
veloped with another purpose in mind, e.g., Turtle focuses on the readability for
humans. Listing 3.1 shows a RDF description, serialized in Turtle, of the city
Mannheim in Germany. The first three rows specify the namespaces such that they
do not need to be repeated each time. While line five defines that the resource is
a city, line six states that the name of the resource is Mannheim. The meaning of
the predicates is defined by the predicate provider. Ideally, the IRI of a predicate
refers to its specification. The remaining part states the area code of Mannheim by
using a literal in the object position as well as indicates the relation of the city to
the country Germany.

Upon RDF, ontology languages like RDFS or OWL have been defined to ex-
press the ontology in more detail. For example, class hierarchies or characteristics
of the properties can be defined, like determining that a property is functional using

3.1. PRELIMINARIES 31

Listing 3.1: Example of triples about the city Mannheim in the Turtle syntax.
1 @prefix exr: <http://example.org/resource/> .
2 @prefix exo: <http://example.org/ontology/> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
4

5 exr:Mannheim rdfs:type exo:City .
6 exr:Mannheim rdfs:label "Mannheim"@en .
7 exr:Mannheim exo:areaCode "0621" .
8 exr:Mannheim exo:country exo:Germany .

owl:FunctionalProperty. The most common way to store RDF triples is to use a
triplestore. On top of the storage, triplestores often provide access to the data by
enabling queries, using the query language SPARQL. Altogether, an environment
is created in which data can be described in a uniform way.

3.1.2 Linked Data Principles

In order to achieve the goal of creating a Web of Data which is one part of the
Semantic Web vision, Linked Data constitutes a paradigm of publishing and inter-
linking datasets on the Web [Bizer et al., 2009a]. For that reason, Tim Berners-Lee
defined the four core principles of linked data [Berners-Lee, 2006]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-
dards (RDF(S), SPARQL).

4. Include links to other URIs so that more things can be discovered.

The first three principles are concerned with publishing sources on the Web
to provide a well-defined meaning and to enable humans to work in cooperation.
In addition, the forth principle gives attention to connecting sources among each
other. The success of the Linked Data idea becomes visible when having a look at
Linked Open Data (LOD) Cloud as depicted in Figure 3.1. It contains over 1 00
datasets covering different topics that are interlinked. Some datasets like DBpedia
stands out for being central and highly interconnected. In the next section, we will
present some of these datasets which are also referred to as knowledge bases.

1Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar,
Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

http://lod-cloud.net/

32 CHAPTER 3. KNOWLEDGE BASES

Figure 3.1: Linked Open Data Cloud as of June 2017.1

3.2 Common Knowledge Bases

Knowledge bases serve as background knowledge in various applications. For
example, the Google Knowledge Graph is used to improve the Google’s Web
search [Singhal, 2012]. While some knowledge bases focus on specific domains,
e.g., on food microbiology [Hignette et al., 2007], cross-domain knowledge bases
cover a wide range of topics. Some of the most common cross-domain knowledge
bases are DBpedia, Yago, Freebase, and Wikidata. Contrary to knowledge bases
owned by companies, these knowledge bases are publicly available. In the follow-
ing, we provide an overview of the knowledge bases and describe their individual
characteristics. A more detailed overview is given by [Färber et al., 2016].

DBpedia [Bizer et al., 2009b] has positioned itself as center of the LOD Cloud
as it is highly interconnected with many datasets. DBpedia is automatically ex-
tracted from Wikipedia by utilizing infoboxes, categorization information, geo-
coordinates and so on. To map the information extracted from the infoboxes to
the classes and properties of the ontology, templates are generated via a world-
wide crowd-sourcing effort. Altogether, the current version of DBpedia (version
2016-10) covers 6.6 million instances that contribute in over 1.7 billion facts. As a

3.3. DBPEDIA 33

specific characteristic, the ontology is very broad with 1 000 different properties.

YAGO, Yet Another Great Ontology, automatically extracts information from
Wikipedia, WordNet and Geonames. The latest version, YAGO 3 [Mahdisoltani
et al., 2015], covers about 10 million instances and 120 million facts. As the rel-
ative number of instances compared to facts indicates, the YAGO ontology cov-
ers only about 100 properties. In DBpedia, the quality of the mappings between
the attributes found in infoboxes and the properties depend on the quality of the
templates that are generated by humans. To generate YAGO, a fully automated
approach is applied which is correct in about 95% . A special feature of YAGO is
that its ontology is time and space aware. Thus, instances and facts are annotated
with temporal and special information. For example, the fact that Barack Obama
is the president of the United States is only valid for a certain duration.

Freebase [Bollacker et al., 2008] is a collaboratively created knowledge base.
It integrates data from Wikipedia, NNDB, FMD, and MusicBrainz. In contrast to
YAGO and DBpedia, an interface is provided such that users can edit the data.
With more than 1 billion facts described by 7 000 properties, Freebase is one of the
largest knowledge bases. However, the project has been shut down and superseded
by the Wikidata project in 2015.

Wikidata [Vrandečić and Krötzsch, 2014] is the successor of Freebase. The
data is added and maintained by thousands of users. About 25 million instances
are described in more than 350 languages. One important aspect of Wikidata is the
provenance of facts. Each fact is assigned with its source such that it is possible to
track where the information comes from.

Google, Yahoo!, and Microsoft Knowledge Graph Despite the publicly avail-
able knowledge bases, companies like Google [Singhal, 2012] or Yahoo! [Torzec,
2014] or Microsoft [Qian, 2013] own knowledge graphs. Details about the partic-
ular content or the size are hardly available.

3.3 DBpedia

DBpedia [Lehmann et al., 2015] has recently be titled as “one of the cornerstones
of Semantic Web and Linked Data research being the subject and center of a large
number of research papers over the past few years” [Neumaier et al., 2017]. The
extensive usage of DBpedia in the Semantic Web becomes apparent from the LOD
Cloud depicted in Figure 3.1. The DBpedia knowledge base is located in the cen-
ter of the cloud, highlighted by a black circle. Edges between the datasets indicate
their interlinking. All red lines show that links from a dataset to DBpedia ex-
ist, green lines symbolize connections from DBpedia to a dataset. In the LOD
Cloud, datasets from different topical domains provide links to DBpedia. Topical

34 CHAPTER 3. KNOWLEDGE BASES

domains are for example geography, government or publications. Thus, DBpedia
is perceived as cross-domain knowledge base. Beside the use of DBpedia by the
research community, it is also taken into account in commercial environments, e.g.,
by BBC [Kobilarov et al., 2009] and the New York Times [Sandhaus, 2010].

All facts in DBpedia are automatically extracted from Wikipedia articles. More
precisely, the infoboxes found on the top right of Wikipedia articles are used since
they provide a structured summary of the instance that is described in the article.
By using templates to map the infobox content to the DBpedia ontology, RDF
triples are generated. Templates contain instructions which attributes from the in-
foboxes correspond to which properties in the DBpedia ontology. In Figure 3.2,
the triple extraction for the city Mannheim is illustrated. On the left-hand side, the
infobox of the city Mannheim in Wikipedia is shown. It contains information like
the state or the area in a structured way. The template for German locations spec-
ifies that the attribute with the name area is mapped to the property areaTotal as
well as state to federalState. Based on the mappings, the information are extracted
and triples are generated. If additionally a unit is given, the values are converted
into the according unit. In the example, the area which has been given in square
kilometers is converted into square meters as required by the property.

Figure 3.2: DBpedia extraction process using the template for German locations.

Since Wikipedia infoboxes are generated by humans without compliance re-
view, various inconsistencies can occur. One inconsistency is given by the format
of a value. Although some attributes provide a recommendation, any arbitrary for-
mat can be inserted. In contrast, the templates strictly apply rules which can result
in incorrectly extracted triples. Another inconsistency concerns the naming of the
attributes. If the attribute name does not correspond to the name given in the tem-
plate, a correct assignment of the property is not possible. However, the triple is
nevertheless generated but inserted into the property namespace (dbprop:) instead
of the ontology namespace (dbo:). Since it is not clear how to interpret the data,
we will not include properties from the dbprop namespace. Altogether, the quality

3.3. DBPEDIA 35

of the triple extraction depends on whether the infobox is properly build and on the
quality of the template.

Knowledge bases usually organize their classes in class hierarchies. This means
that super- and subclass relations can be established. All instances belonging to a
subclass automatically belong to the superclass. Similarly, properties defined for
the superclass can also be used by the subclass. The most upper class in the DBpe-
dia class hierarchy is Thing, such that all instances are considered as things. Other
knowledge bases provide varying class hierarchies, e.g., YAGO’s class hierarchy
is much more fine-grained than the DBpedia hierarchy while Freebase only covers
a few classes.

Table 3.1: Frequent classes in DBpedia, version 2014.

DBpedia Class #Instances
Agent 1 974 653
+ Person 1 649 646
|- Athlete 336 091
+ Organisation 302 657
|- EducationalInstitution 51 943
Place 816 837
|- Country 3 831
Work 425 044
+ MusicalWork 193 205
+ Software 31 737
Species 261 435

The DBpedia knowledge base (English version 20142) describes 4 584 616 in-
stances using 2 795 different properties and 685 classes. Table 3.1 shows frequent
classes from the first three levels of the DBpedia class hierarchy (‘+’: second level,
‘}-’: third level). Almost half of all instances are of type Agent. Other frequent
first level classes are Place, Work, and Species. With about 75%, these four classes
cover most of the instances in DBpedia. The distribution of instances per class
provides an overview of the topics covered by the knowledge base.

In the following chapters, we will use DBpedia as knowledge base. Though,
it is as an example of any knowledge base that covers information in a similar
way. If not denoted otherwise, we will shorten the common namespace prefixes of
DBpedia with db: and use the prefix dbo: for the DBpedia ontology namespace.

2http://wiki.dbpedia.org/data-set-2014

http://wiki.dbpedia.org/data-set-2014

36 CHAPTER 3. KNOWLEDGE BASES

Chapter 4

Web Tables

Over the last years, web content in form of tables has gained an increasing at-
tention among researchers. Compared to unstructured text, web tables provide a
structured format which is beneficial for the interpretation of the data. Thus, web
tables have been taken into account for applications like query answering, table
search or knowledge base augmentation. At first, web tables have to be extracted
from web pages. Until 2009, only big search engine companies owned large col-
lections of web pages. With the introduction of publicly available web corpora like
the Common Crawl, also researchers outside these companies have the chance to
participate in the extraction of web tables.

In this chapter, we introduce web tables as a data source together with all nec-
essary extraction processing steps. More precisely, we are interested in relational
web tables that cover a set of entities described by attributes. Relational tables are
a type of so-called genuine tables: tables in which rows and columns are syntac-
tically and semantically coherent [Penn et al., 2001]. Since a majority of tables,
about 99% according to [Cafarella et al., 2008a], is used for layout purposes, a
distinction between genuine and non-genuine tables is required. This is followed
by the metadata recovery, in which necessary information about the table is col-
lected. The metadata recovery includes the task of determining in which column
the names of the entities are specified, to give an example. Altogether, the relational
web table extraction process consists of the crawling of web pages, the extraction
of tables from web pages, the classification into different categories of tables, and
the metadata recovery. By applying the relational web table extraction process to
the Common Crawl web corpus, we generate the WDC Web Table Corpus 2012. It
is the first publicly available relational web table corpus covering about 150 million
relational web tables. With such a corpus, it is possible to analyze the characteris-
tics of web tables and get an impression which topics are covered.

In Section 4.1, we describe the foundations of the relational web table extrac-
tion process, followed by the description of how we generated the WDC Web Table

37

38 CHAPTER 4. WEB TABLES

Corpus 2012 and its successor the WDC Web Table Corpus 2015 in Section 4.2.
Existing methods for all steps of the process are presented in Section 4.3. Finally,
the last section (Section 4.4) compares the characteristics of the WDC Web Table
corpora to other web table corpora.

The extraction of the WDC Web Table Corpus 2015 as well as parts of the
statistical description have been published in [Lehmberg et al., 2016]. I performed
the extraction of the WDC Web Table Corpus 2015, co-created the statistics, and
provided the description of the dataset.

4.1 Relational Web Table Extraction

In this section, we first provide the definition of web tables and especially of re-
lational web tables. Afterwards, we explain the relational extraction process that
needs to be performed to come from a web page to a relational table. It includes
steps like the detection of the table on the page or the table classification. At the
end of the extraction process, a corpus covering relational web tables annotated
with all information required for subsequent tasks like the matching is available.

4.1.1 Definitions

Tables provide a two-dimensional structure which enables a compact visualization
of data [Zanibbi et al., 2004]. They are used in relational databases and spread-
sheets or occur in documents like publications or on web pages. Each individual
table type poses its own characteristics and challenges. While tables in relational
databases are set up for automatic processing, tables in documents are designed for
human readers. Thus, document tables can give a more detailed view on a topic but
at the expense of a reduced automated understanding. In this thesis, we focus on a
specific type of document tables: web tables. According to [Lautert et al., 2013],
web tables are defined as follows:

Definition 4.1 (Web Table) A web table is a two-dimensional tabular structure
found on a web page that is composed of an ordered set of x rows and y columns.

Table 4.1 shows the structure of a table with x rows and y columns. Each
intersection between a row and a column determines a cell ci,j with the value vi,j
where 1 ¤ i ¤ x, 1 ¤ j ¤ y. A value can be a number or string but it can also be
empty, contain a set of values or even another table.

Not all tables found on web pages actually contain valuable content. Many of
them are only used for layout purposes, for example they serve as navigation on
web pages. The tables we are interested in are genuine web tables. In genuine web
tables, the values are simple structures, e.g., do not include other tables, and the
rows and columns are syntactically and semantically coherent [Penn et al., 2001].

4.1. RELATIONAL WEB TABLE EXTRACTION 39

v1,1 v1,2 ... v1,y
v2,1 v2,2 ... v2,y
...
vx,1 vx,2 ... vx,y

Table 4.1: Structure of a table.

One type of genuine tables are relational web tables, also referred to as hor-
izontal web tables [Lautert et al., 2013]. Relational tables base on the relational
model that has been introduced by [Codd, 1970]. Following the relational model
definition together with the terms given by [Abiteboul et al., 1995], we define a
relational web table as follows:

Definition 4.2 (Relational Web Table) A web table is relational if each row pro-
vides data about specific objects, called entities, and the columns represent at-
tributes that describe the entities.

attributes
v2,2 ... v2,y
...

en
tit

ie
s

vx,2 ... vx,y

Table 4.2: Structure of a rela-
tional table.

Figure 4.1: Example relational table
about cities.

According to the definition, we assume that exactly one concept is mentioned
per table, i.e., a table describes countries only rather than countries as well as
football clubs. Another assumption we make is that attributes are binary: they
relate a single entity to a value. Table 4.2 shows the structure of a relational web
table and Figure 4.1 depicts an example relational web table about cities which
follows this structure. While the first row contains the attribute names, also named
attribute label row, the first column covers the entity names (entity label column).
Both - the attribute label row and the entity label column - refer to exactly one
row and column. Further, as defined by the relational model, each row represents
exactly one entity which is described by a set of attributes. In the example, each
row covers one city with the attributes country and population.

4.1.2 Extraction Process

Extracting relational tables from the Web requires a series of steps as illustrated in
Figure 4.2: Crawling, Extraction, Classification, and Metadata Recovery.

Crawling We refer to the process of collecting web pages as crawling. A
common strategy is to use a list of seeds web pages which contain hyperlinks.

40 CHAPTER 4. WEB TABLES

Figure 4.2: Steps of the relational web table extraction process.

The crawler follows these links, and where it finds further links, the procedure
is repeated. There are different selection strategies that describe which links to
follow. Choosing the selection strategy has a strong influence on the resulting cor-
pus [Dhenakaran and Sambanthan, 2011].

Extraction During the extraction, the tables are detected and their content is
extracted. For tables embedded in HTML using markups, the extraction is straight-
forward: whenever an HTML table tag table¡ is detected, everything between
the opening and closing tag is considered as table. Further, the HTML tags for table
row tr¡ and table data td¡ indicate the beginning of the next row and value,
respectively. The HTML tag th¡ which defines the header of a table occurs too
rarely such that we are not considering this tag. An example of a table embedded
in HTML is depicted in Listing 4.1. Each line starts with the according tag for a
new row and each value is surrounded by the table data tag.

Listing 4.1: Example of a web table embedded in HTML.
1 <table>
2 <tr><td>Name</td><td>Country</td><td>Population</td></tr>
3 <tr><td>Adelanto</td><td>San Bernardino</td><td>31,765</td></tr>
4 <tr><td>Agoura Hills</td><td>Los Angeles</td><td>20,330</td></tr>
5 <tr><td>Alamenda</td><td>Alamenda</td><td>73,821</td></tr>
6 <tr><td>Albany</td><td>Alamenda</td><td>18,539</td></tr>
7 </table>

Tables which are not embedded in HTML require different extraction methods.
For example, a table in a PDF first needs to be identified and its boundaries need to
be specified. If tables are represented in a textual format, visual features like white
spaces or fonts are considered to separate rows and columns [Pinto et al., 2003].

Classification To distinguish between different types of web tables, various
classification schemes have been proposed. The schemes range from a binary clas-
sification [Cafarella et al., 2008a, Limaye et al., 2010, Yakout et al., 2012] to a
taxonomy with multiple types [Crestan and Pantel, 2011]. A scheme that extends
the binary classification but still restricts the complexity is shown in Figure 4.3 and
has been introduced by [Eberius et al., 2015]. The binary classification is indicated
by a different color, i.e., the binary classification decides whether a table is rela-
tional or non-relational. On the first level of the classification scheme, web tables
are divided into layout and genuine tables.

4.1. RELATIONAL WEB TABLE EXTRACTION 41

Figure 4.3: Web table classification scheme according to [Eberius et al., 2015].

• Layout tables are strictly used for layout purposes and do not contain any
relational content. Two examples of layout tables are shown in Figure 4.4.
Mostly, they are used to visually organize elements or present a navigation.

• Genuine tables are any kind of two dimensional tables that include simple
cells, e.g., they do not contain complex structures, and the rows and columns
are syntactically and semantically coherent [Penn et al., 2001].

• Relational tables include a set of entities described by attributes.

• Entity tables, also called attribute-value tables, cover information about one
entity but the entity itself is not mentioned in the table. An entity table
providing information about the city San Francisco is given in Figure 4.5.
Within the table, the name of the entity is not stated but it can be derived
from the context. A use case for entity tables is the extraction of information
about products [Petrovski et al., 2014].

• Matrix tables are mostly used to provide statistics. An example of a matrix
table is shown in Figure 4.6. The table indicates the demographic profile
of groups of people and how it changed over time. In the table itself, no
information is given about the content. On the one hand, it is not stated that
the table is about groups of people in California and on the other hand it is
not specified that the values represent the relative percentage of each group.
Analogously to entity tables where the entity name is not mentioned, matrix
tables often do not contain the name of the attribute(s).

• Other genuine tables contain valuable information but do not fit to the given
types. As example, a web table containing a list of all U.S. states covers use-
ful information but is not a relational table since no attributes are available.

In general, all genuine tables can be converted to relational tables, e.g., an en-
tity table can be transposed to represent a relational table with one entity. However,
a lot of effort is potentially necessary to transpose data into a relational format. In
the subsequent chapters, we strictly focus on relational tables.

42 CHAPTER 4. WEB TABLES

Figure 4.4: Example layout tables extracted from amazon.com.

Figure 4.5: Example entity table
about the city San Francisco.

Figure 4.6: Example matrix table about
the demographic changes in California.

Metadata Recovery In contrast to sources like databases, the tables lack any
formal metadata or explicit schema [Cafarella et al., 2008a]. Depending on the use
case, different metadata information is nevertheless required. To match web tables
to knowledge bases, the entity label column, the attribute label row, the column
data types, and language information are necessary metadata. Detecting the entity
label column and attribute label row is also referred to as functional analysis as
it describes the process where the function of the cells and their abstract logical
relationship is identified [Göbel et al., 2012]. Additional contextual metadata in-
cluding the URL of the web page, the page title, and the text surrounding the table
are extracted. As we will discuss in Chapter 7, the context can be valuable to match
web tables to a knowledge base.

Example 4.1 Figure 4.7 shows the recovered metadata. In this example, the entity
label column is the first column, covering the names of the cities. Analogously, the
first row contains the attribute labels. The remaining columns are of type string,
numeric and date. Further, the table covers content in English. The URL, page title
and text above the table are considered as contextual information.

Another type of metadata is the orientation of the table since a table can either
be vertically or horizontally arranged [Galkin et al., 2015]. However, as we found
out, only about 6% of the relational tables are vertically arranged such that we do
not consider vertically arranged tables.

For all steps of the extraction process, different methods and strategies have
been introduced. In the following section, we will show how the steps have been
implemented to extract the WDC Web Table Corpora. Afterwards, Section 4.3
presents a general overview of approaches proposed in literature.

4.2. EXTRACTION OF THE WDC WEB TABLE CORPORA 43

Figure 4.7: Web table with annotated metadata: entity label column, attribute label
row, column data types, language, and context.

4.2 Extraction of the WDC Web Table Corpora

In this section, we present the extraction of relational tables that results in the first
publicly available web table corpus, the WDC Web Table Corpus 2012. The focus
is not on inventing any new approaches but on reusing the methods that have been
proposed in previous works. Besides the 2012 corpus, we also generated another
version, the WDC Web Table Corpus 2015. Whenever changes to the extraction
steps have been performed, we will report on them.

4.2.1 Common Crawl

Web crawling is the process of collecting data that is found in the Web. For many
years, only the big search engine companies had access to large quantities of Web
data, as they were the only ones possessing large web crawls. However, the sit-
uation has changed with the advent of the Common Crawl Foundation in 2009.1

Common Crawl is a non-profit foundation that crawls the Web and regularly pub-
lishes the resulting web corpora for public usage. The crawler uses a list of seed
URLs that are ranked according to their PageRank [Page et al., 1999]. The seed
URLs for the 2012 Common Crawl Corpus have been gathered during previous
Web crawls. Since the end of 2012, another list of seeds is used which is provided
by the search engine company blekko [Lindahl, 2012]. With this changeover, the
crawling quality should be improved, e.g., by avoiding spam or porn. All Common
Crawl corpora are publicly available, provided as WARC files.2

1http://commoncrawl.org/
2https://www.iso.org/standard/44717.html

http://commoncrawl.org/
https://www.iso.org/standard/44717.html

44 CHAPTER 4. WEB TABLES

Table 4.3: Statistics of the 2012 and July 2015 Common Crawl corpora.

Dataset #HTML pages #PLDs Size
2012 Common Crawl 3.5B 40M 101TB
July 2015 Common Crawl 1.81B 15M 145TB

Table 4.3 shows the statistics on the two Common Crawl corpora we use to
extract web tables. The 2012 Common Crawl has been one of the largest corpora
regarding the number of crawled pages. About 3.5 billion pages from over 40
million pay-level domains (PLDs) have been gathered. All web pages for which
the same administrative authority is responsible for, belong to the same PLD. The
second corpus, released in July 2015, comprises about 1.8 billion pages from 15
million PLDs. As indicated, a main reason might be the seed list changeover.

Besides the extraction of web tables, the Common Crawl corpora have also
been used to gather other types of data. This includes Microdata and Microformats
but also an isA database including hypernymy relations from text.3 The Common
Crawl corpora can be seen as a sample of the known or public Web [Meusel, 2017].
A bias towards the known parts of the Web is always given as soon as a selection
strategy based on page rank is used. However, a representative subset of the whole
Web is anyway not realistic since it would require a random access to every web
page and even search engines are not able to index all pages in the Web.

4.2.2 Web Table Extraction

For our extraction, we assume that the web tables are embedded in HTML using
designated markups. As described in the previous section, such an extraction is
straightforward by using the HTML table tags. The web table extraction is inte-
grated into the Web Data Commons (WDC) Extraction Framework4 which focuses
on distributed processing of web crawls [Mühleisen and Bizer, 2012]. Besides web
tables, the framework is also used to gather web data like Microdata or web graphs.
The WDC extraction framework runs in the cloud infrastructure environment Ama-
zon Web Services (AWS).5 The main components are the EC2 cloud instances that
represent virtual servers and the S3 file system. Figure 4.8 shows the general work-
flow. The master node can either be a local server or a cloud instance. With WARC
files as input, the following six steps are performed [Seitner et al., 2016].

1. The queue, AWS simple service queue (SSQ), is filled with all the documents
from the corpus that should be processed.

2. A set of EC2 instances are launched by the master node.

3http://webdatacommons.org/
4http://webdatacommons.org/framework/
5https://aws.amazon.com

http://webdatacommons.org/
http://webdatacommons.org/framework/
https://aws.amazon.com

4.2. EXTRACTION OF THE WDC WEB TABLE CORPORA 45

3. Each instance requests a document from the queue.

4. The requested document is downloaded from the file system S3.

5. The extraction is performed and the resulting data is uploaded to S3.

6. If the queue is empty, the master collects the data from S3.

Figure 4.8: Overview of the web corpus extraction framework workflow.

Once the queue is filled and the instances are started, the extraction runs auto-
matically. Only the collection of the data needs to be triggered by the user. In order
to collect web tables, a web table extractor is integrated in step 5. The extractor
parses each page using the HTML parser jsoup6, detects the table tags and extracts
the content. If a table is not an innermost but covers tables as values, it is discarded.

Table 4.4 presents the corpora statistics. For the WDC WTC 2012, over 10
billion innermost tables have been detected. Slightly less tables are contained in
the 2015 corpus. Aggregated per PLD, this results in 3.4 and 5.75 innermost tables.

Table 4.4: Statistics of the WDC Web Table corpora.

Dataset #Innermost tables #Innermost tables per PLD
WDC WTC 2012 11.25B 3.4
WDC WTC 2015 10.24B 5.75

4.2.3 Web Table Classification

For the classification of the tables, two different methods have been applied: a bi-
nary classification for the 2012 corpus and a multiclass classification for the 2015
corpus. Thus, the WDC WTC 2015 also covers other types of genuine tables.

6http://jsoup.org/

http://jsoup.org/

46 CHAPTER 4. WEB TABLES

WDC WTC 2012 Classification A binary classification into relational and
non-relational tables has been applied. At first, all web tables that contain less than
5 cells or 3 rows are filtered out. The remaining tables serve as input for a classi-
fier that decides if a table is relational. Therefore, a mixture of layout and content
features is used that has been proposed by [Wang and Hu, 2002b].

Layout Features:

• Average number of columns and its standard deviation

• Average number of rows and its standard deviation

• Average cell length (number of characters) and its standard deviation

• Average cumulative length consistency which measures the degree of cell
length consistency in the column

Layout features try to capture the structure of a table. Usually, relational ta-
bles cover at least a certain amount of rows and columns and show a consistency
regarding the cell length. Further, the length of the cells in one column should
be consistent, e.g., the cells of a column representing the capital of countries will
roughly have a similar length with respect to the number of characters.

Content Features:

• Percentage of links, form, image, empty, digital, and text cells

• Cumulative type consistency

Content features do not consider the structure but the content of a table. Since
relational tables are assumed to cover relational information, the cells are more
likely to contain digits and text than links or images. Further, we expect columns
in relational tables to mostly contain cells of the same type.

In order not to miss relational tables, we tuned the classifier, a decision tree,
for recall at the cost of precision. An evaluation on a test set of about 10 000 tables
results in a precision of 0.58 with a recall of 0.62.

WDC Web Table Corpus 2015 Classification The classification of the web
tables from the 2015 Common Crawl is based on the classification that has been
used to create the Dresden Web Table corpus (DWTC).7 In contrast to the previ-
ously described classification, a multiclass classification is applied. As defined by
the classification scheme, other genuine tables like entity tables are detected. First,
a set of heuristics is applied to discard most of the tables that are considered as
non-genuine, e.g., all tables with less than 2 columns or 3 rows. The classification
itself uses a mixture of global and local features [Eberius et al., 2015]. The global

7https://wwwdb.inf.tu-dresden.de/misc/dwtc/

https://wwwdb.inf.tu-dresden.de/misc/dwtc/

4.2. EXTRACTION OF THE WDC WEB TABLE CORPORA 47

features are layout and content features of the binary classification. In addition, lo-
cal features are considered which operate on a subset of the table. More precisely,
local features are computed for the first two rows and columns as well as the last
row and column of a table since the first rows and columns usually cover the entity
and attribute labels. Knowing where the entity and attribute labels are located pro-
vides an important indication for the table type.

Depending on the classifier, 81 � 87% of the tables classified as genuine are
actually genuine. The distribution of table types is as follows: 60% entity tables,
39% relational tables and 1% matrix tables. These numbers are in coincide with
the ones reported by [Eberius et al., 2015].

Table 4.5 reveals the statistics about the two corpora after the classification.
While the 2012 corpus covers 147 million relational tables, the 2015 corpus in-
cludes 90 million. The amount of relational tables among all tables in both corpora
is about 1% which is in line with the results reported by [Cafarella et al., 2008b].
For the next step, the metadata recovery, only relational tables are considered.

Table 4.5: Statistics of the relational WDC Web Table corpora.

Corpus #Relational Tables %of all Tables
WDC Relational WTC 2012 147M 1.3
WDC Relational WTC 2015 90M 0.88

4.2.4 Metadata Recovery

During the metadata recovery, the formal schema of the web table is recreated.
This includes the attribute label row, the column data type, the entity label column
as well as the language detection. All methods have been manually evaluated on a
set of 1 000 randomly chosen web tables. Practicing the same methodology as [Ca-
farella et al., 2008a], non-relational tables in the evaluation set are not considered.
The evaluation provides a lower bound for the metadata recovery performance that
we expect during the matching of web tables to a knowledge base.

Attribute Label Row Detection, also called header detection, determines in
which row the names of the attributes are stated. To identify the attribute label row,
we apply a simple-rule based header detection as it has been introduced by [Pinto
et al., 2002]. Based on the assumption that web tables are made for human readers,
we always chose the first row as header if it contains at least 80% non-empty cells.
The precision of the attribute label row detection is estimated with 0.82, using the
random sample of 1 000 tables.

Column Data Type Detection assigns a data type to each column. We dis-
tinguish between three different types: date, string, and numeric. Other types like

48 CHAPTER 4. WEB TABLES

Listing 4.2: Pseudocode for the data type detection given the set of values V of a
column C.

1 dateCount <- 0
2 numericCount <- 0
3 stringCount <- 0
4 for(value v in V) {
5 if(v is date) {dateCount++}
6 else if(v is numeric){numericCount++}
7 else {stringCount++}
8 }
9 dataType(C) = max(dateCount, numericCount, stringCount)

boolean or coordinates occur too rarely. Listing 4.2 depicts the method. For each
value in a column, the individual data type is guessed. Since all values can be rep-
resented as strings, we employ a cascading strategy that tries to parse each value
into the most specific type and if it fails, it continues with the next type. First, it
tries to parse the value into a date, then into a numeric and in case of fail, the data
type string will be assigned. Finally, the data type with the highest frequency is
chosen. If a value is represented as list, all values are considered.

• Date To detect whether a value is of type date, we apply a set of patterns,
expressed as regular expressions, that describe different date representations.
As basis, we use a set of existing patterns8 and extend it, resulting in 66
patterns. Besides the patterns, restrictions are included, e.g., a year needs to
be between 0 and 2020. Temporal expressions like “last Wednesday” are, in
contrast to other works [Schilder and Habel, 2001], not detected as dates.

• Numeric Numerical values in web tables do not only cover numbers but also
decode units of measurement. To know whether a number is represented in
a unit is important for two reasons: first, a value like “5sqmi” should be
detected as numerical value and second, knowing that the value is given in
square miles is necessary to properly compare values. Thus, before pars-
ing the numeric value itself, a unit detection is performed. We generated
a catalog of 23 quantity types with 164 different units. An example of a
quantity type is “area”, covering units like “square kilometer” or “acre”.
Each quantity type comes with a canonical unit and according conversion
factors. Further, for each unit a set of alternative names, abbreviations, and
symbols is available. For example, for the unit “square miles”, the abbrevi-
ation “sqmi” and the symbol “mi2” is listed. Additionally, the catalog also
includes dimensionless quantities like billions and currency names. Using
the abbreviations and symbols in the catalog, we check whether a unit is
mentioned either in the attribute label or in a cell. If a unit is detected in the
attribute label, we assume that all values in the column are represented by the

8http://balusc.omnifaces.org/2007/09/dateutil.html

4.2. EXTRACTION OF THE WDC WEB TABLE CORPORA 49

unit. All values belonging to a unit are converted into the according canon-
ical unit. As example, the value “5sqmi” will be turned into “12.95” which
is the value given in square kilometers. After the unit detection, we use the
Java Double parser9 to see whether the value is representable as a floating-
point number. The parser also considers representations with exponent parts
and hexadecimal digits.

Table 4.6: Results of the column data type detection method.

String Numeric Date All
Precision 0.87 0.94 0.74 0.89
Proportion 0.64 0.36 0.02 1.00

Table 4.6 shows the results of the data type detection. The overall precision
on the set of 1 000 randomly chosen web tables is 0.89, varying between 0.74 for
dates and 0.94 for numerics. Since only three data types are recognized, the types
of some columns cannot be detected correctly. This includes telephone numbers or
periods of time. For date detection, the performance is the lowest but has only a
slight effect since only 2% of all columns are of type date. In contrast 64% are of
type string and 36% of type numeric.

Entity Label Column Detection The entity label column, also called subject
column or key column, contains the names of the entities and in turn serves as
natural key. In contrast to keys as they are defined in databases, the entity label
column can contain duplicate labels. Although it does not necessarily reflect the
reality, we assume each relational web table to have exactly one entity label col-
umn. Listing 4.3 illustrates the algorithm to determine the entity label column. The
column needs to be of data type string and its values are required to be not too long
and not too short. If the according attribute label contains either the term “name”
or “title” and the uniqueness rank, see Equation 4.1, is high enough, the column is
chosen. Since the header is not always available and arbitrary terms can be used,
only relying on the header results in insufficient performance.

Although the entity label column can cover duplicates, the uniqueness of the
values is a strong indicator whether a column contains entity labels. The computa-
tion of the uniqueness rank is shown in Equation 4.1. For each column, the amount
of unique values is taken into account under consideration of empty values.

uniquenessRankpcq � #uniqueV alues

#values
� #emptyV alue

#values
(4.1)

The presented detection results in a precision of 0.84 and a recall of 0.76 on
the random sample of 1 000 tables.

9https://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#v
alueOf%28java.lang.String%29

https://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#valueOf%28java.lang.String%29
https://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#valueOf%28java.lang.String%29

50 CHAPTER 4. WEB TABLES

Listing 4.3: Pseudocode to find the entity label column given the set of columns C
of a table.

1 for(column c in C) {
2 if(data type(c) == string) {
3 if(I value size ¥ 3.5 && I value size ¤ 200) {
4 if(header(c) contains ‘‘name’’ or ‘‘title’’) {
5 if(uniquenessRank(c) ¥ 0.3) { return c }
6 }
7 else {
8 if(uniquenessRank(c) == max(uniquenessRank(C)) {
9 if(uniquenessRank(c) ¥ 0.3) { return c }

10 }
11 }
12 }}}

Language Detection Depending on the use case, only tables of a certain lan-
guage need to be considered. For example, if we match the tables to the English
version of a knowledge base, it does not make sense to keep tables covering non-
English content. To determine English tables, we apply a simple heuristic: we only
keep web tables that have been extracted from web pages of the following top-level
domains (TLDs): com, org, net, eu, and uk. By using the language detection, about
10% of the web tables do actually not cover content in English.

Beside the web table itself, the web page on which the table has been found
is stored during the extraction. Thus, additional information like the URL of the
web page, the page title or the words surrounding the table are provided. After
the metadata recovery, a relational web table corpus annotated with metadata is
available. Together with a knowledge base, it serves as input for the matching.

4.3 Related Work

In this section, we present the related work for all steps of the relational web table
extraction process. The main focus lies on the classification and metadata recovery
since they pose the main challenges.

4.3.1 Web Crawling & Table Extraction

For many years, only search engine companies had access to large web crawls.
Due to its sheer size, the Web provides challenges regarding its scalability and
efficiency [Cambazoglu and Baeza-Yates, 2015]. Due to efforts of initiatives like
the Common Crawl or the Lemur project10, web crawls are now publicly available.

10http://www.lemurproject.org/

http://www.lemurproject.org/

4.3. RELATED WORK 51

The Lemur project released two large web corpora, one in 2009 and one in
2012. The ClueWeb09 corpus covers over one billion pages in ten languages with
a compressed size of 5 tera-byte. In contrast, the ClueWeb12 corpus focuses on En-
glish web pages resulting in 700 million pages. Thus, both corpora cover less pages
than the web corpora provided by the Common Crawl. The Altavista dataset11

published by Yahoo! contains URLs and hyperlinks for over 1.4 billion public web
pages indexed by the Yahoo! AltaVista search engine in 2002. However, not much
is known about the strategy how the pages have been crawled and only the URLs
and not the pages themselves are available. In contrast to crawl a corpus by one-
self, we have to rely on the provider that publishes the corpus.

Extracting tables from the Web can be very challenging if not only HTML
tables but also tables represented in a textual format are considered. In this case,
the first step is to detect the table. Common features for the table detection are
separators like white spaces or text associated with tables, see [Zanibbi et al., 2004]
for an overview. By uniquely considering tables embedded in HTML, the table
detection is straightforward by searching for the HTML table tag. This strategy
is applied by most approaches, starting from the first introduction given into this
topic by [Hurst, 1999]. One exception is the work of [Gatterbauer et al., 2007]
who use a model of the visual representation of web tables as they are rendered by
a web browser. However, since billions of web tables can be extracted by using the
HTML tags, we consider this strategy as sufficient.

4.3.2 Web Table Classification

Classifying web tables into table types, e.g., relational and non-relational or gen-
uine and layout depending on the classification scheme, is essential since the pres-
ence of a HTML table tag does not necessarily indicate the presence of a table
covering information [Hurst, 2001].

As one of the first, [Chen et al., 2000] propose a set of heuristics and cell sim-
ilarity measures to distinguish between genuine and layout tables. The heuristics
are straightforward: all tables with less than two cells and tables with too many
hyperlinks, forms, and images are considered as layout tables. To evaluate the
performance of the approach, a test set with about 3 000 tables including airline
information gathered from the Chinese Yahoo! website has been created. In this
test set, about 29% of the tables are genuine which is far more than expected for
a random sample of tables found on the Web. Applying the simple filtering rules,
98.9% of the genuine tables are classified as such. However, about 20% of the lay-
out tables cannot be excluded by the rules. For the remaining tables, a set of cell
similarity metrics is introduced. Depending on the data type, a similarity metric
is applied to measure if neighboring cells are similar. If the percentage of simi-

11https://webscope.sandbox.yahoo.com/catalog.php?datatype�g

https://webscope.sandbox.yahoo.com/catalog.php?datatype=g

52 CHAPTER 4. WEB TABLES

lar neighboring cells is above a threshold, the table is considered as genuine. The
method results in an F-measure of 0.87. Altogether, the simple approach achieves
reasonable results although the test set is restricted on one topic and does not rep-
resent the distribution between genuine and layout tables in the Web.

Another set of heuristics has been suggested by [Penn et al., 2001]. A web
table is considered as genuine if it fulfills the following requirements: it is an in-
nermost table, has more than one row and more than one column, the cells do not
cover lists, frames, forms or images but have at least one non-text-level formatting
tag and the length of the cells is less than a certain threshold. The method has been
evaluated on a set of 75 tables originating from news provider, radio, and corporate
sites. Overall, an F-measure of 0.88 is measured. Similarly to [Chen et al., 2000],
the approach is evaluated on a domain dependent set of web tables.

Machine Learning-based Methods [Wang and Hu, 2002a] are one of the first
to introduce a method that relies on machine learning techniques. It uses the same
set of layout features that we consider with additional word group features. Word
group features follow the idea that similar words are mentioned in genuine tables
which in contrast do not occur in layout tables. The computed features serve as
input for decision trees and support vector machines (SVM). A test set with 1 383
web tables has been generated by querying Google with key words like “table” or
“weather”. As result, an F-measure of 0.99 is reached where only slight differences
regarding the learning algorithm can be determined. Moreover, it is concluded that
the word group features have only a small influence on the result. To enable com-
parison to previous work, the method by [Penn et al., 2001] has been applied on
the same data, resulting in an F-measure of 0.87. Thus, the machine learning ap-
proach outperforms the heuristics on a set of cross-domain web tables but the data
is biased towards the used key words.

[Cafarella et al., 2008a] combine the ideas of previous works: First, heuris-
tics are applied to filter out the most obvious layout tables: tables with less than
two rows or columns, tables embedded in HTML forms, and tables presenting cal-
endars. As analyzed on a web table corpus covering more than 14 billion tables,
these obvious layout tables account for 90% of all tables. After excluding these
layout tables, a rule-based classifier is learned with features that are similar to the
layout and content features proposed by [Wang and Hu, 2002a]. Tuning the system
towards recall results in an F-measure of 0.76 on a set of thousands of randomly
chosen web tables. On the one hand, they are the first to apply the classification on
millions of web tables and on the other hand, they evaluate the performance on a
random set of tables providing a more realistic view on the classification task.

The WDC WTC 2012 classification uses the idea of [Cafarella et al., 2008a] to
first filter out all obvious layout tables and afterwards to apply a machine learning
approach taking the features proposed by [Wang and Hu, 2002a] as input.

4.3. RELATED WORK 53

Multiclass Classification Methods Besides the binary decision, [Crestan and
Pantel, 2011] introduce a multiclass classification consisting of 12 table types.
Thus, a classification approach needs to be able to distinguish between the dif-
ferent types. However, the decision if a table is genuine or not is similar to the
binary classification. First, a filtering is applied which discards all tables with less
than two rows, less than two columns, and tables with cells including more than
100 characters. On a random sample of 200 tables from their web table corpus,
93% of the excluded tables are indeed layout tables. For the more fine-grained
classification into the different genuine types, gradient boosted decision trees are
used. As input, global and local layout features, content features as well as lexical
features are provided. For tables we consider as relational, an F-measure of 0.72 is
stated. [Lautert et al., 2013] extended the classification scheme such that it covers
tables that have not been considered before, e.g., nested tables.

[Eberius et al., 2015] also introduce a multiclass classification strategy with
global and local layout and content features. While the classification into genuine
and non-genuine tables achieves about 0.9 F-measure, the F-Measure regarding
the individual genuine table types varies between 0.22 for matrix tables and 0.9 for
relational tables. The evaluation has been performed on about 25 000 tables includ-
ing 2 000 genuine tables. For WDC WTC 2015 corpus, the multiclass classification
by [Eberius et al., 2015] is reused.

4.3.3 Metadata Recovery

For each type of metadata to be recovered, a set of methods has been proposed.

Attribute Label Row Detection One of the first and simplest techniques has
been introduced by [Pinto et al., 2002]: take the first row of the table as header
row. As we are dealing with web tables embedded in HTML, another method is to
consider the HTML table header tag. However, only about 36% [Jung and Kwon,
2006] or 20% [Pimplikar and Sarawagi, 2012] of the tables actually contain a ta-
ble header tag which is too less to rely on. Thus, approaches consider features
coming from the HTML formatting but they do not rely on the table header tag,
instead they take visual features like fonts, colors or spans into account [Limaye
et al., 2010, Jung and Kwon, 2006]. Together with features that are computed on
the table itself like the fraction of text cells, [Jung and Kwon, 2006] achieve an
F-measure of 0.82. Other methods determine the header by learning how header
rows look like. This can for example be accomplished with a context free gram-
mar [Seth et al., 2010] or with rules that consider the amount of non-string data
in the first row [Cafarella et al., 2008a]. Besides the features computed within the
table, [Cafarella et al., 2008a] use an attribute co-occurrence statistical database to
know whether the terms in a potential header row often occur together. Without
the co-occurrence database, an F-measure of 0.81 and with the additional knowl-
edge of 0.87 can be reached. An alternative approach by [Yoshida and Torisawa,

54 CHAPTER 4. WEB TABLES

2001] learns from a set of examples which terms encountered in tables can be
used to distinguish between header and non-header rows. As another background
knowledge, [Wang et al., 2012] use the knowledge base Probase. Thus, the possi-
ble header row is queried and if suitable concepts are returned, it is said to be the
header. With this strategy, they correctly identify 91% of the headers.

As already mentioned, our header detection heuristic is one of the most simple
ones as described by [Pinto et al., 2002]. By using more sophisticated approaches
that require external knowledge like co-occurrence databases, the results of the
header detection can be improved. However, the increase in performance is rather
small. On our evaluation set, a precision of 0.82 is achieved which is only a few
percentage less as reported by more sophisticated methods. Further, the simple
heuristic has the advantage that it can be efficiently applied on a web-scale corpus.

Data Type Detection Most commonly, regular expressions or patterns are ap-
plied to detect different data types. [Mulwad et al., 2013] use regular expressions to
decide if values refer to objects or literals. A more detailed classification into data
types like number, date or long text is introduced by [Zhang, 2016] where syntactic
features such as the number of words in a cell or mentions of months or days are
taken into account. [Kim and Lee, 2005] apply a set of patterns that results in more
fine-grained data types like postal code or weight.

Regarding unit detection, [Sarawagi and Chakrabarti, 2014] build a quantity
catalog called QuTree covering about 750 units. Besides the catalog, they use co-
occurrence statistics between quantity types and mine units and phrases from head-
ers in a table corpus. [Zhang and Chakrabarti, 2013] also uses information found
in the header and a set of conversion rules that has been created by domain experts.
For specific domains, ontologies of units have been generated using vocabularies
like the ontology of units of measure.12 While [Buche et al., 2013] provide a unit
ontology for chemical risks, [Hignette et al., 2007] uses an ontology to detect units
in tables from the microbiology domain, resulting in a precision of 0.98.

Our data type detection only includes the basic data types which cover most of
the values. Since the checking of each value of a column is expensive when tak-
ing millions of web tables into account, we focus on patterns which are especially
easy to verify. Similarly to [Sarawagi and Chakrabarti, 2014], we use a quantity
catalog to be able to convert units. A qualitative comparison to previous work is
difficult since other data types are used and/or the performances are not mentioned.

Entity Label Column Detection A simple heuristic for determining the en-
tity label column is to assume that the left-most column contains the entity names
[Pinto et al., 2002, Cafarella et al., 2008b]. [Venetis et al., 2011] extended the

12http://www.wurvoc.org/vocabularies/om-1.8/

http://www.wurvoc.org/vocabularies/om-1.8/

4.4. WDC WEB TABLE CORPORA 55

heuristic by taking the left-most column that does neither contain numbers nor
dates. With this rule, an accuracy of 0.83 can be achieved. Besides the simple rule,
a classification approach is introduced that uses SVMs with 25 features like the
fraction of unique cells, the average number of words but also the column index
as input. This more sophisticated classification method results in an accuracy of
0.94. A related strategy has been presented by [Zhang, 2016]. In addition to fea-
tures like the fraction of unique content in the cells, the header of the attribute is
searched on the web page and a web search is performed for the values in each row.
Both strategies help to find indications if a column might contain names of entities.
An approach that considers the values itself instead of the column characteristics is
described by [Yoshida and Torisawa, 2001]. From a set of example tables, the algo-
rithm learns which terms are likely to appear as labels. Based on this classification,
the most likely position for the entity label attribute is inferred. [Wang et al., 2012]
queries the knowledge base Probase for the values of each attribute and checks if
entities with the according labels are returned. An accuracy of 0.87 is reported on
tables gathered from Wikipedia. Such methods are tied to the coverage of external
source, in contrast to the methods relying on characteristics of the columns.

Similarly to the other entity label column detection methods, we use a set of
simple heuristics as introduced by [Venetis et al., 2011]. Applying such heuristics
results in a performance that is comparable to the results we obtain, around 85%
correct assignments.

4.4 WDC Web Table Corpora

Many use cases can benefit from web tables but the main users have been com-
panies like Google, Microsoft or IBM since they are in possession of web crawls
from which web tables can be extracted. Unfortunately, they do not give public ac-
cess to their data since the data is part of their business value. Thus, large amounts
of web tables are not available to other researchers which on the one hand makes
it impossible to perform web-scale experiments and on the other hand, the results
reported by companies are not reproducible. Further, the characteristics and the
topical coverage of web tables are also unknown such that the benefit for a partic-
ular use case cannot be estimated. For example, if the task is to collect information
about schools but schools are rarely represented in web tables, it does not make
sense to focus on web tables as primary data source.

To overcome this situation, we present the first publicly available web table
corpus: the WDC WTC 2012 with its successor the WDC WTC 2015. All web
tables mentioned in this thesis originate from the WDC WTC 2012 corpus. First,
we provide statistics about the corpus, e.g., about the size of the tables. Further, we
compare the corpus to existing corpora as far as possible. A topical analysis of the
corpus will be provided subsequently in Chapter 5.

56 CHAPTER 4. WEB TABLES

4.4.1 Statistical Analysis

In general, the WDC WTC 2012 & 2015 contain all web tables that have been
extracted from the Common Crawl 2012 and July 2015, respectively. Since rela-
tional web tables are most valuable for the use cases we consider, the web tables in
the WTC 2012 have been classified into relational and non-relational tables. The
resulting set of relational web tables is a subset of the WDC WTC 2012, named
Relational WDC WTC 2012. For these tables, the metadata has been recovered
which means the attribute names and data types as well as the entity label col-
umn has been determined. For the matching, we require a web table to cover an
entity label column and at least five rows and three columns. Further, since we
are only considering the English version of a knowledge base, we expect the ta-
ble content to be English. Thus, besides the relational subset, a second subset of
web tables, called Relational Mappable WDC WTC 2012 has been generated that
contains all English relational web tables with an entity label column. While the
statistical analysis of the Relational WTC 2012 provides general information about
the characteristics of web tables, analyzing the subset indicates the characteristics
of web tables expected for the matching. As introduced in the previous section, a
multiclass classification into different types of genuine can be performed. Such a
multiclass classification has been applied to the WDC WTC 2015, resulting in the
Genuine WDC WTC 2015. The analysis of this corpus focuses on the distribution
of genuine table types.

Relational WDC WTC 2012 All relational tables make up 147 million which
corresponds to 1.1% of the tables found on pages from the Common Crawl 2012.
Table 4.7 shows the basic statistics. About half of the tables are found on web
pages belonging to the .com top-level domain. All other TLDs play a subordinate
role. This is in line with the amount of web pages from the .com TLD in the
corpus as shown by [Spiegler, 2013]. Due to the requirements defined for relational
web tables, all tables cover at least 2 columns and 1 row. The maximum amount
of columns found in tables is 2 368 with a maximum number of rows of 70 068.
On average, a web table in the corpus contains 3.49 columns with 12.41 rows.
However, most of the tables tend to contain less rows since the median of rows is
only 6. While 15% of the tables only contain two rows, 48% of the tables only
comprise two columns. In summary, the tables tend to be small and narrow.

After recovering the metadata, we can derive statements about the names of
the attributes, headers, as well as about their data type. In Table 4.8, the top 10
headers are depicted. For almost 50% of the tables, we do not detect a header at
all. According to our attribute label row detection, this means that the first row
mostly contains empty cells. About 3% of all relational tables include at least once
the header “name”. This is a typical name assignment for entity label columns
but it does not provide any information about the described entities. Other com-
monly used headers like “price” or “5 star”, indicate that the corpus contains a
large amount of tables about products.

4.4. WDC WEB TABLE CORPORA 57

Table 4.7: Table characteristics of the Relational WDC WTC 2012.

#Tables per Top 5 TLD
com de org net co.uk
75M 8.6M 7.7M 7.3M 4.1M

#Columns & #Rows
Minimum Maximum Average Median

Columns 2 2 368 3.49 3
Rows 1 70 068 12.41 6

Table 4.8: Most frequent attribute labels
in the Relational WDC WTC 2012.

Header #Tables
NULL 45 691 861
name 4 653 155
1 3 755 432
price 3 706 006
date 2 728 291
5 star 2 505 161
title 2 121 028
artist 2 105 497
description 1 979 639
my price 1 689 805

Table 4.9: Distribution of the data types
in the Relational WDC WTC 2012.

Column Data Type %Columns
String 69.5%
Numeric 27.4%
Date 3.1%

The data type of a column determines which content can be expected. Table 4.9
presents the distribution of the data types. More than 69% of all attributes contain
string values. The second most common data type is numeric with 27.4%. Dates
are covered by only about 3% of all attributes.

Relational Mappable WDC WTC 2012 Altogether, 33 403 411 tables fulfill
the requirements for matching: they are English relational web tables with an entity
label column. The amount of relational mappable tables corresponds to one third
of all relational tables from the WDC WTC 2012.

Table 4.10 shows statistics about the distribution of TLDs as well as the table
sizes. Around 81% of all tables come from web pages of the com domain. By
excluding TLDs on which we do not expect English content, the percentage of the
tables coming from the com domain even raises from about 50% to 81%. Regarding
the sizes of the tables, the average amount of rows is 21.5 with 4.1 columns while
the median of rows is lower, only 10. In contrast to all relational tables, the tables
of this subset tend to be wider and larger. One reason is of course the additional
size restriction. Another reason is the entity label detection. If a table consists only

58 CHAPTER 4. WEB TABLES

of a few rows, it is more difficult to decide whether the table has an entity label
column and if so which of the columns represent the entity labels.

Table 4.10: Characteristics of the Relational Mappable WDC WTC 2012.

#Tables per TLD
com org net eu uk

26.7M 3M 3M 216K 6K

#Columns & #Rows
Minimum Maximum Average Median

Columns 1 713 4.12 4
Rows 3 35 641 21.50 10

Compared to the relational corpus, the distribution of attribute headers only
slightly changes. Similarly, only small deviations in the distribution of data types
are visible. While the amount of columns of data type string is decreased by a
few percentage, the number of numeric columns increases. Chapter 5 provides an
in-depth analysis on this subset of the relational WDC WTC 2012.

Genuine WDC WTC 2015 With a more fine-grained classification, we can
determine which type of genuine tables can be found most often. In Table 4.11,
the distribution of the genuine table types of the WDC WTC 2015 is shown. Entity
tables present the largest proportion of genuine tables, followed by relational ta-
bles. Contrary, matrix tables occur rarely which has also been reported by [Eberius
et al., 2015]. Thus, besides relational tables, entity tables propose a source type
with large amounts of information, expected to cover a broad topical coverage.

Table 4.11: Distribution of genuine table types of the WDC WTC 2015.

Type #Tables %Tables
Entity 139 687 207 1.40
Relational 90 266 223 0.90
Matrix 3 086 430 0.03
Sum 233 039 860 2.25

4.4.2 Comparison with other Corpora

A set of corpora covering relational web tables have been introduced but are mostly
not publicly available. Table 4.12 provides an overview of the corpora with their
sizes, the underlying web crawl, the amount of relational web tables, and the infor-
mation about the public availability.

13approximated, 2.5% of 8.2 billion tables

4.4. WDC WEB TABLE CORPORA 59

Table 4.12: Overview of existing relational web table corpora.

Corpus #Tables Crawl %Rel Available
[Yakout et al., 2012] 573M Bing n/a �
[Crestan and Pantel, 2011] 205M13 Yahoo 2% �
WebTables [Cafarella et al., 2008a] 154M Google 1.1% �
WDC Relational WTC 2012 147M CC 2012 1.3% X
WDC Relational WTC 2015 90M CC 2015 0.9% X
DWTC [Eberius et al., 2015] 59M CC 2014 2% X
[Pimplikar and Sarawagi, 2012] 25M n/a 10% �

The sizes of the corpora vary between 573 and 25 million tables. Except for
the corpus provided by [Pimplikar and Sarawagi, 2012], the amount of relational
tables among all extracted tables is about 1 � 2%. Regarding both, the absolute
and relative amount of relational tables, the Relational WDC WTC 2012 is in the
middle range indicating that the relational extraction methods are comparable. The
largest corpora by [Yakout et al., 2012] and [Crestan and Pantel, 2011] as well as
the smallest one by [Pimplikar and Sarawagi, 2012] are not publicly available and
do not provide any further insights about the characteristics of the tables.

Among the other corpora, only the WebTables corpus introduced by [Cafarella
et al., 2008a] performs a binary classification into relational and non-relational
tables. Thus, it is the corpus that is closest to the Relational WDC WTC 2012.
Figure 4.9 compares the sizes of tables in both corpora using the metrics that have
been used to describe the WebTables corpus.

Figure 4.9: Comparison of table characteristics of the Relational WDC WTC 2012
and the WebTables [Cafarella et al., 2008a] corpus.

The number of columns and rows is divided into four categories: 2�9, 10�19,
20�29 and 30�. Most tables of both corpora cover between two and nine columns.
Regarding the rows, 64% of the tables in the WebTables corpus include between
two and nine rows which is a bit less than the 64% we can determine for the WDC

60 CHAPTER 4. WEB TABLES

corpus. For both categories in the middle, the amounts are alike. Tables with more
than 30 rows can be found for 12% of tables in the WebTables corpus but only for
6% of the WDC tables. Despite of some fluctuations, the distributions of rows and
columns are comparable.

Both other available web table corpora, the DWTC and the WDC WTC 2015,
also base on Common Crawl datasets but use a multiclass classification scheme.
To create the DWTC corpus, our WDC Extraction framework has been evolved. In
turn, we build the extraction of the WDC WTC 2015 on the improved framework.
Thus, the code-cooperation enabled us to easily apply the implemented multiclass
classification for the WDC WTC 2015 corpus. Table 4.13 contrasts the minimum,
maximum and average number of columns and rows for tables classified as rela-
tional. In contrast to the Relational WDC WTC 2012, the tables of both other
corpora tend to be both, larger and broader. While an average table of the Rela-
tional WDC WTC 2012 covers 3.49 rows with 12.41 columns, an average table
contains more than 14 rows with 5 columns in the other two corpora. One possi-
ble reason for the differences is the misclassification of entity tables as relational
tables when applying a binary classification. As already indicated by [Crestan
and Pantel, 2011], a misclassification of entity tables into relational tables is a
common behavior which occurs in about 10% of the cases. Since entity tables
usually only describe one entity, the number of rows and columns is less than in
relational tables.14 The amount of misclassifications will be lower in a multiclass
approach since it explicitly includes features to distinguish between relational and
entity tables. Regarding the attribute labels, the same most common labels can be
detected, e.g., “date” or “name”. Similarly holds for the column data types, i.e.,
columns covering strings are most common. Hence, the three corpora extracted
from Common Crawl datasets show a compliant behavior. Regarding the distri-
bution of different table types, both the WDC WTC 2015 and the DWTC report
coincide statistics: more than 50% of all web tables are entity tables, followed by
relational tables (40%). The remaining table types are negligible.

Table 4.13: Characteristics of web table corpora extracted from web pages of the
Common Crawl.

Minimum Maximum Average Median

WDC WTC 2012
Columns 2 2 368 3.49 3
Rows 1 70 068 12.41 6

WDC WTC 2015
Columns 2 18 106 5.20 4
Rows 2 17 033 14.45 6

DWTC
Columns 2 7 291 5.79 -
Rows 2 28 891 17.17 -

14http://webdatacommons.org/webtables/2015/entityStatistics.html

http://webdatacommons.org/webtables/2015/entityStatistics.html

4.5. CONCLUSION 61

In summary, existing web table corpora show consistent characteristics regard-
ing the absolute and relative amount of relational web tables. Since most of the
corpora are not publicly available and no further statistics are stated, we cannot
compare to them in detail. However, the distribution of rows and columns is com-
pliant among the corpora for which these information are provided.

4.5 Conclusion

In this section, we gave a detailed overview of web tables as data source together
with their extraction process. First, a corpus of web pages needs to be available
to extract the web tables from the pages. Not all extracted tables contain useful
content. Classifiers are applied to distinguish between layout and genuine tables.
One type of the genuine tables are relational tables which describe a set of entities
by a set of attributes. As last step of the extraction process, we described the
metadata recovery. Its goal is to recover information like the entity label column,
the attribute label row, the datatypes, the language, and contextual information. The
metadata is required for subsequent steps like the matching. We further showed
how the process has been applied to two Common Crawl corpora, resulting in the
WDC WTC 2012 and its successor the WDC WTC 2015. The WDC 2012 has
been the first publicly available web table corpus and presents the first contribution
of this thesis. The following key statistics about our corpora are derived:

• From 3.5 billion web pages (Common Crawl 2012), 147 million relational
web tables originating from 1.01 million PLDs can be extracted.

• Around 99% of the tables do not contain relational content.

• A relational table has as median of 3 columns and 6 rows.

We compared the characteristics of our web table corpora to existing corpora.
The sizes of the tables and absolute as well as relative amount of relational tables
that can be extracted is in line with results reported for other web table corpora,
e.g., the WebTables corpus by [Cafarella et al., 2008a]. Further, we confirmed the
finding by [Eberius et al., 2015] that the largest amount of tables are entity tables,
followed by relational tables.

All web tables used for experiments in this thesis result from the WDC WTC
2012. A detailed topical profile of the WDC WTC 2012 will be provided in the
next chapter (Chapter 5).

62 CHAPTER 4. WEB TABLES

Chapter 5

Profiling the WDC Web Table
Corpus

The preceding chapter introduced the first publicly available web table corpus, the
WDC WTC 2012, and provided a statistical analysis. In this chapter, we analyze
the tables originating from this corpus in more detail and present a topical profile
with respect to the knowledge base DBpedia. Finally, we show the potential of web
tables for the use case of filling missing values in DBpedia.

Web tables have already been applied in a variety of use cases like fact search
[Yin et al., 2011] or knowledge base augmentation [Dong et al., 2014]. The used
methods are either evaluated on small and thus not representative web table datasets
or on corpora owned by search engine companies. For these corpora, information
about the content and the coverage is not published. This makes it impossible to
generalize and scientifically verify the research results. At the time we started with
profiling, none of the existing publications answers the question which topical ar-
eas of the knowledge bases can be complemented using web table data. With the
publicly available WDC WTC 2012, we are able to provide an in-depth profile of
its contents. This profile can greatly benefit the research community by getting an
impression for which use cases web tables are beneficial. The profile also serves as
a common ground for the evaluation of knowledge base augmentation methods. In
addition, we use the profile as foundation for the T2D gold standard (Section 6.3)
to know which tables are included in a web table corpus.

In Section 5.1, we present the dimensions of data profiling together with the
process we apply to create the profile of the web table corpus. The basic statistics
as well as the topical, schematic, and data overlap are depicted in Section 5.2. Sec-
tion 5.3 discusses both, profiles of other web data sources and existing works about
knowledge base augmentation. Finally, Section 5.4 presents the potential of web
tables for the use case of filling missing values in the knowledge base DBpedia.

63

64 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

The statistics of the WDC WTC 2012 as well as the profiling has been pub-
lished in [Ritze et al., 2016]. I contributed to the implementation, execution, and
analysis of the large-scale matching of the WDC WTC 2012, and to the evaluation
of the data fusion.

5.1 Web Table Profiling

In this section, we introduce data profiling with the dimensions described by [Nau-
mann, 2014]. These dimensions have been derived from the profiling of databases.
First, we describe data profiling in general and afterwards show how we profile
web tables with the use case of knowledge base augmentation in mind.

5.1.1 Profiling Dimensions

In general, data profiling is the process of examining the data and collecting statis-
tics and information about it. The most basic form of profiling is to provide statis-
tics about various counts like the number of values. The profile can either refer to
one source or to a set of multiple sources [Naumann, 2014]. According to [Doan
et al., 2012], especially when integrating multiple sources, profiling the overlap of
the sources is essential.

Profiling multiple sources is classified into three dimensions [Naumann, 2014]:

• Topical Overlap: The topic that is described by a source. For two sources, a
topical profile should be able to tell whether the sources topically overlap.

• Schematic Overlap: The degree to which source schemata complement each
other and the degree to which they overlap.

• Data Overlap: The number of overlapping real-world objects that are repre-
sented in the sources.

Often, the profiling of sources is driven by a use case. For example, if missing
values should be filled in a knowledge base, it is important that the sources share
a schematic and data overlap with the knowledge base but at the same time the
sources contain values for these schemata and real-world objects that the knowl-
edge base does not cover. For other use cases, sources with a different profile are
more promising.

5.1.2 Profiling Process

In this thesis, we focus on the profiling of web tables with the use case of fill-
ing missing values in a knowledge base. Thus, we are particularly interested in
the overlaps of web tables with the knowledge base. Since a web table corpus
covers millions of web tables from different domains, we face the profiling of

5.1. WEB TABLE PROFILING 65

multiple sources. The proposed dimensions of multiple source profiling are top-
ical, schematic, and data overlap. They exactly correspond to the three matching
tasks of matching web tables to a knowledge base: class, property, and instance
matching. While the class and property matching present the schema matching as
introduced in Chapter 2, the instance matching task refers to the data matching.
Assigning a class to a table within the class matching task defines the topic of the
table. Further, the property matching generates correspondences that present the
schematic overlap of the web tables with a knowledge base and similarly perform-
ing the instance matching provides information about data overlap.

Figure 5.1 illustrates how our profiling process looks like. The first step is the
matching of the web table corpus to the knowledge base. Therefore, we use T2K
Match as it will be described in Chapter 6 together with the prefiltering and the
most important features determined in Chapter 7. T2K Match performs all three
matching tasks in an integrated fashion. As we will describe later, we expect a
sufficient matching performance with an F-measure around 0.94 for the class, 0.7
for the property and 0.82 for the instance matching task, see Section 6.5 for details.
As data sources, we use the Relational Mappable WDC WTC 2012 (Section 4.4.1)
and the knowledge base DBpedia (Section 3.3). The Relational Mappable WDC
WTC 2012 contains all tables from the WDC that are relational, provide English
content and have an entity label column.

Figure 5.1: Profiling process of the WDC WTC 2012.

As result, the set of correspondences for all three matching tasks is created.
Based on the correspondences, the overlaps indicate which topics are covered in
the web tables as well as which data is described using which schemata. This can
be useful to estimate whether web tables provide the information required for a
certain use case. However, since more than one web table can contain the same
information, the overlaps do not present the amount of facts that can actually be
extracted from the tables. Hence, for use cases like knowledge base augmentation,
the potential is not yet clear. Therefore, the grouping is performed which groups
all triples describing the same fact. The groups can be generated based on the
correspondences according to their instance-property combination. For example,
all triples with db:Germany¡ as subject and dbo:populationTotal¡ as predicate
are located in the same group. In turn, each group represents one fact and in turn the
number of groups determines that amount of facts that can be extracted. Further,
the groups indicate to which extent the web tables overlap among each other. Since
the tables do not necessarily contain the identical values for the same instance-

66 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

property combination, the fusion tries to overcome uncertain and conflicting values
[Bleiholder and Naumann, 2009]. Thus, for each group the fusion strategy decides
which of the available values is the best choice. Hence, the fused triples present
the extracted facts and can in turn be used for slot filling if these facts are not yet
included in the knowledge base. Further, based on the fused triples that are actually
found in the knowledge base, we can estimate the quality of the generated triples.

The results of the profiling process until the fusion are presented in Section
5.2. These results are independent of the use case and provide a general overview
of the corpus content. The fusion together with the potential of web tables for
filling missing values in DBpedia is discussed in Section 5.4.

5.1.3 Representativity

By now, approaches using web tables as source have either been evaluated on small
and thus not representative datasets or on corpora that are not publicly available.
We state that the WDC WTC 2012 corpus is both, publicly available as well as
representative. In turn, we claim that the statistics are not only valid for the corpus
but can be seen as general statements about web tables. This assumption basis on
the the following findings.

The Common Crawl corpora can be seen as a sample of the known or pub-
lic Web [Meusel, 2017]. A bias towards the known parts of the Web is always
given as soon as a selection strategy based on the popularity of a web page, e.g.,
page rank, is used. However, a representative subset of the whole Web is anyway
not realistic since it would require a random access to every web page and even
search engines like Google are not able to index all pages that exist in the Web.
As shown by [Meusel, 2017] on the same Common Crawl corpora, since the crawl
covers billions of web pages, the sampling error is expected to be very low, e.g., for
the extraction of semantic annotations the sampling error is between 0.035% and
0.007% with a confidence level of 99%. Thus, we consider both WDC WTC as
representative for web tables found on the Web. However, in contrast to semantic
annotations, we cannot rely on the use of vocabularies to create the profile. As in-
dicated, by matching the web tables to a knowledge base we can only find topical,
schematic, and data overlap if the knowledge base covers the according classes,
properties and instances. Thus, the created profiles can only be representative re-
garding the considered knowledge base.

5.2 Statistical Analysis

Besides the profile that actually considers the content of a web table, basic statistics
about the web tables can already provide hints whether the data is suitable for a
certain use case. For example, if the task is to extract release dates of films but
dates are rarely covered in web tables, another source is more beneficial. In this

5.2. STATISTICAL ANALYSIS 67

section, we first provide statistics about the sizes of web tables in the corpus. To
get an impression about the covered topics independent of the knowledge base,
we depict from which web pages the tables have been extracted as well as present
common attribute header. Afterwards, we present the topical, schematic, and data
overlap as well as statistics about the generated groups that indicate the overlap
between the web tables.

5.2.1 Table Size Distribution

In Chapter 4, we already provided basic statistics about the number of rows and
columns of web tables in Relational Mappable WDC WTC 2012. In this part, we
deepen the analysis on the value level.

Table 5.1: Statistics of the Relational Mappable WDC WTC 2012.

#Columns, Rows, and Values
Numeric Date String Average Sum

Columns 46M 4M 86M 4.12 137M
Rows - - - 21.50 716.6M

Values 995M 101M 1.9B 88.61 2.95B

Table 5.1 presents the number of columns, rows, and values in total and per data
type. Columns without obvious data type are excluded. The number of values is
approximated based on the data type of the columns and the corresponding number
of rows. Most of the values are of data type string, followed by numeric values. On
average, a web table in the corpus has about 4 columns and 22 rows which roughly
results in 90 values per table. The total amount of values can be seen as upper
bound for the amount of facts that can be generated. For example, if the web tables
are used to construct a knowledge base, at most 3 billion facts can be generated,
assuming that all entities and attributes are distinct.

5.2.2 Domain & Header Distribution

As we will discuss in more detail later, the topical profiling depends on the knowl-
edge base to which the web tables are matched. If the knowledge base does not
cover a certain topic, this topic will not be found in the profile. Thus, we first
investigate from which PLDs the tables have been extracted and which attribute la-
bels occur frequently. Both, the PLD as well as the attribute label, provide insights
about the covered topics independent of a knowledge base.

The tables in our corpus originate from 97 932 different PLDs. Table 5.2
shows the most frequent PLDs and headers. The most prominent PLD is ap-
ple.com (iTunes Music) while the other PLDs often refer to sport websites, e.g.,
baseball-reference.com or retailers such as amazon.com. Besides the impressions
we get about the covered topics, the list of PLDs can also be useful to find websites

68 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

covering large amounts of tables about a certain topic. For example, if someone
is interested in baseball, the website baseball-reference.com presents a beneficial
source with thousands of tables. Frequently used headers are for example “5 star”
and “price”, indicating that the corpus contains a large amount of tables about prod-
ucts. Further, headers like “replies” or “latest post” imply that the corpus contains
data from blogs or forums. About 8.5% of all attributes do not provide a header.

Table 5.2: Most frequent PLDs and headers found in the Relational Mappable
WDC WTC 2012.

PLD #Tables Header #Tables
apple.com 50 910 no label 14 495 456
patrickoborn.com 45 500 5 star: 2 402 376
baseball-reference.com 25 647 name 1 813 064
latestf1news.com 17 726 price 1 771 361
nascar.com 17 465 date 1 603 938
amazon.com 16 551 amazon price 1 178 559
baseballprospectus.com 16 244 formats 1 066 836
wikipedia.org 13 993 title 9 132 60
inkjetsuperstore.com 12 282 time 856 401
flightmemory.com 8 044 description 773 883
sportfanatic.net 7 596 size 692 251
tennisguru.net 7 504 replies 605 075
windshieldguy.com 7 305 used from 589 278
donberg-electronique.com 6 734 new from 589 259
citytowninfo.com 6 293 year 579 726
juggle.com 5 752 location 546 856
deadline.com 5 274 album 526 375
blogspot.com 4 762 type 501 747
7digital.com 4 462 latest post 421 737
electronic-spare-parts.com 4 421 discussion 412 672

5.2.3 Correspondence Statistics

With the generated correspondences to DBpedia for all three matching tasks, we
identify the topical, schematic, and data overlap. Table 5.3 shows statistics about
the matched web tables with respect to their corresponding DBpedia class (not a
complete list). T0 is the set of tables for which at least one entity has been matched
to DBpedia. Tc covers all tables with at least one property correspondence. Vc
is the amount of cells (values) contained in tables of Tc. Thus, Vc expresses how
many triples can be generated. These numbers are further divided according to
their data type, depicted in the middle four columns. Lastly, the relative amount of
tables (T0) assigned per class and the according DBpedia distribution is depicted.

5.2. STATISTICAL ANALYSIS 69
Ta

bl
e

5.
3:

C
or

re
sp

on
de

nc
e

st
at

is
tic

s
of

th
e

R
el

at
io

na
lM

ap
pa

bl
e

W
D

C
W

T
C

20
12

.

D
B

pe
di

a
C

la
ss

N
um

be
ro

fT
ab

le
s/

V
al

ue
s

V
c

D
at

a
Ty

pe
R

el
at

iv
e

A
m

ou
nt

T
0

T
c

V
c

N
um

er
ic

D
at

e
St

ri
ng

R
ef

er
en

ce
T
0

D
B

pe
di

a
+

Pe
rs

on
26

5
68

5
10

3
80

1
4

17
6

37
0

2
11

7
79

3
1

58
8

47
5

26
6

62
8

20
3

47
4

27
.9

7
35

.7
2

|
-

A
th

le
te

24
3

32
2

95
91

6
3

86
1

64
1

2
08

4
01

7
1

43
5

77
5

16
3

77
1

17
8

07
8

25
.6

1
7.

28
|
-

A
rt

is
t

9
98

1
2

35
6

18
88

6
3

11
52

7
3

49
9

3
85

7
1.

05
2.

08
|
-

Po
lit

ic
ia

n
3

70
1

1
38

8
18

50
5

10
7

72
5

3
39

3
7

37
7

0.
39

0.
87

|
-

O
ffi

ce
H

ol
de

r
2

17
8

1
43

5
13

1
63

3
30

66
76

2
59

33
2

5
50

9
0.

23
1.

05
+

O
rg

an
is

at
io

n
19

4
31

7
36

40
2

57
3

63
3

99
71

4
18

7
37

0
10

0
71

0
18

5
83

9
20

.4
5

6.
55

|
-

C
om

pa
ny

97
89

1
6

94
3

20
3

89
9

58
62

1
83

00
1

34
66

5
27

61
2

10
.3

0
1.

85
|
-

Sp
or

ts
Te

am
50

04
3

2
72

2
31

86
6

2
20

6
22

36
8

43
7

24
9

5.
27

6.
04

|
-

E
du

ca
tio

na
l

25
73

7
14

41
5

23
8

36
5

38
05

6
64

57
8

13
33

4
12

2
39

7
2.

70
1.

12
|

In
st

itu
tio

n
|
-

B
ro

ad
ca

st
er

14
51

5
11

31
5

93
04

2
56

4
13

09
5

52
18

6
27

19
7

1.
53

0.
61

W
or

k
26

9
57

0
12

7
67

7
2

28
4

91
6

10
9

26
5

1
35

4
92

3
33

09
1

78
7

63
7

28
.3

8
9.

20
+

M
us

ic
al

W
or

k
13

8
67

6
80

88
0

1
13

1
16

7
64

54
5

39
6

94
0

7
61

0
66

2
07

2
14

.6
0

4.
18

+
Fi

lm
43

16
3

9
72

5
25

6
42

5
10

84
4

19
8

91
3

14
38

2
32

28
6

4.
54

1.
89

+
So

ft
w

ar
e

39
38

2
23

82
9

48
6

86
8

41
8

41
4

09
2

9
19

4
63

16
4

4.
15

0.
69

Pl
ac

e
13

3
14

1
24

34
1

85
9

99
5

41
3

37
5

27
3

51
0

84
11

1
88

99
9

14
.0

2
17

.6
8

+
Po

pu
la

te
dP

la
ce

11
9

36
1

21
48

6
78

7
85

4
40

5
40

6
25

7
78

0
57

06
4

67
60

4
12

.5
6

11
.8

6
|
-

C
ou

nt
ry

36
00

9
6

55
6

20
8

88
6

93
10

7
66

49
2

31
79

3
17

49
4

3.
79

0.
08

3
|
-

Se
ttl

em
en

t
17

38
8

2
67

2
17

58
5

4
49

2
6

66
2

2
44

4
3

98
7

1.
83

10
.1

5
|
-

R
eg

io
n

12
10

9
42

7
5

62
5

3
09

7
89

7
29

2
1

33
9

1.
27

0.
47

+
A

rc
hi

te
ct

ur
al

St
ru

ct
ur

e
10

13
6

1
81

5
46

06
7

3
97

6
7

38
7

23
11

0
11

59
4

1.
07

3.
26

+
N

at
ur

al
Pl

ac
e

1
70

4
25

4
2

56
8

86
6

69
6

34
0

66
6

0.
18

1.
36

Sp
ec

ie
s

14
24

7
4

89
3

83
35

9
-

7
90

2
38

68
2

36
77

5
1.

50
5.

66
Σ

94
9

97
0

30
1

45
0

8
03

7
56

2
2

75
1

10
5

3
43

7
42

0
53

6
52

6
1

31
2

51
1

10
0

10
0

70 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

Tables Altogether, 949 970 of 33.3 million web tables have a correspondence
to at least one DBpedia instances (T0q. These tables have correspondences to a to-
tal of 361 different classes from the DBpedia ontology which represent about 50%
of all DBpedia classes. Since all these tables contain real-world objects which
can also be found in the knowledge base, they are potentially useful for set expan-
sion [Wang and Cohen, 2008] which adds missing instances to the knowledge base.
If we additionally require at least one property correspondence, we find 301 450 ta-
bles (Tc) which match altogether 274 different DBpedia classes. These tables are
potentially useful for slot filling [Surdeanu and Ji, 2014] to add missing values to
the knowledge base. Altogether, the tables contain a total of 8 million values (Vc)
which either already exist in or might be new to the knowledge base. The obser-
vation that only 2.85% of all relational web tables in the corpus can be matched to
DBpedia indicates that the topical overlap between the tables and the knowledge
base is rather low, assuming that the matching step detected all correspondences.
However, this is consistent with the analysis of the PLDs and attribute headers
presented in the previous section: the web table corpus covers for example tables
describing products which cannot be matched to DBpedia since products are rarely
represented in DBpedia.

Classes To profile the topical overlap between web tables and DBpedia, we
picked the most frequently matched DBpedia classes from the first levels of the
DBpedia class hierarchy and provide detailed statistics in Table 5.3. Almost 50%
of the web tables describe Persons and Organisations, followed by tables covering
Works. It comes as no surprise that we find a large amount of correspondences for
the class Person, as it is, apart from Agent, the most frequent classes in DBpedia
(see the last two columns in Table 5.3). In contrast, about 28% of the web tables
cover Works but only about 9% of all instances in DBpedia are Works. Hence,
these classes are overrepresented in the web table corpus, compared to the topical
distribution in DBpedia. However, it can also be the other way around. The second
most frequent class in DBpedia, Place, is less frequent in the web tables, although
it is almost twice as large as Work in the knowledge base. This either indicates that
places are underrepresented in the web table corpus or that the matching frame-
work has trouble detecting this class. Hence, the used knowledge base defines
which topics can be detected, c.f., [Hassanzadeh et al., 2015], but depending on the
particular topic, a different distribution can be found in web tables.

With respect to tables that additionally cover at least one property correspon-
dence, we can further see that only 18% of the tables about Places have a property
correspondence. Thus, beside of being underrepresented, we also find signs for a
schema mismatch between the DBpedia ontology and the web tables.

Data Types In the web table corpus, the majority of values are of data type
string, followed by numeric and date. Among the values in the matched tables Tc,
the majority is now formed by date, followed by numeric, string, and reference.
Columns are of data type reference if their attribute corresponds to an object prop-

5.2. STATISTICAL ANALYSIS 71

erty. In this case, the generated triple will refer to a real-world object at the object
position instead of a string. As the reference type requires a matching step, these
values appear as string in the statistics about the corpus. Reasons for the change
in the distribution can be the following: Either the web tables have a tendency
towards factual data, like dates and numbers, or the schema overlap between the
tables and DBpedia consists mainly of properties with these data types. Another
reason could be that the matcher allows for more variation in the values with these
data types than for strings, resulting in more overall correspondences.

Instance Distribution In total, we find 13 726 582 instance correspondences
for 717 174 unique instances, which corresponds to 15.6% of all instances in DB-
pedia. Figure 5.2 shows the complementary cumulative distribution function, also
called tail distribution, of the fraction of instances (y-axis) that have correspon-
dences in a given number of web tables (x-axis). From this figure we can see that
around 70% of all instances are referred in more than one web table. 55% have
three or more sources and 25% have at least ten sources. Thus, for more than two
thirds of all instances, we find evidence in more than a single web table. Looking
at the other end of the distribution, about 3% of the instances are described within
more than 100 tables. In general, the more popular an instance is, the more sources
we expect to find it in.

Figure 5.2: Distribution of instance correspondences.

Property Distribution Aggregated over all tables, we find a total of 562 445
property correspondences for 721 unique properties, about 25% of all properties
in DBpedia. Figure 5.3 shows the tail distribution of the fraction of properties (y-
axis) that have correspondences in a given number of web tables (x-axis). 88%
of all properties have correspondences from at least two web tables. 81% can be
found in three or more web tables and 60% of all properties have correspondences
from at least ten web tables. About 30% of all properties have more than 100
correspondences.

72 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

Figure 5.3: Distribution of property correspondences.

Table 5.4 lists some examples for frequent instances and properties for selected
classes in order to give an impression of the detected correspondences. All of these
instances are more or less commonly known, which is in line with the intuitive
expectation that more popular instances are found more often. Nevertheless, also
tables including long-tail entities can be found. For example, at least 200 tables
describe racing horses, using the property sire to indicate the father of a horse.

Table 5.4: Examples for frequent instances and properties.

Class Instance #Corr. Property #Corr.
Athlete Jeff Gordon 15 826 team 7 982

Fernando Alonso 14 870 championships 4 464

Country China 13 515 capital 965
France 13 300 currency 508

Office John McCain 329 religion 74
Holder Barack Obama 328 vicePresident 66

Company Toshiba 59 112 formationDate 1 016
Nortel 45 573 iataAirlineCode 714

Musical Can’t Help Falling in Love 1 403 releaseDate 60 473
Hold It Against Me 1 801 musicalBand 27 832

Educational University of Phoenix 2 486 state 998
Institution Purdue University 2 325 numberOfStudents 707

Species Great Egret 541 genus 3 706
Rainbow trout 329 sire 207

5.2. STATISTICAL ANALYSIS 73

Figure 5.4: Distribution of group sizes.

5.2.4 Group Statistics

In addition to the overlap with DBpedia, we present statistics about the internal
topical, schematic, and data overlap within the web table corpus. These statistics
can be derived by creating groups as described in Section 5.1.2.

Group Size Distribution Out of the 8 million triples that we can generate from
the web tables, 929 170 groups of triples can be formed. Figure 5.4 shows the tail
distribution of group sizes. 58% of all groups contain triples from at least two
sources, 39% from at least three sources. Triples from ten or more sources can
be found for 13% of all groups. Very frequent groups, which are supported by at
least 100 sources, constitute 1% of all groups. Assuming that the matching step
found all correspondences, this distribution in combination with the low overlap
between the web tables and DBpedia, which we observed earlier, shows that the
web tables contain a wide range of different triples, but most of these triples are
only provided by a small number of sources. Such triples are more likely to be new
to the knowledge base, as we expect frequently stated triples to be already existing.
However, these new triples come with a drawback: As they are only supported by
few sources, it will be difficult for a fusion strategy to find the correct values in
the groups. For 42% of the instance-property combinations only a single value is
present (group size� 1), such that a fusion strategy can just decide to accept or
discard the value.

Classes Table 5.5 depicts the distribution of groups per selected class. The sec-
ond column indicates the number of groups G that were formed for the respective
class and the third column states the ratio of this number to the total number of
triples (column Vc in Table 5.3). This ratio is high if we cannot group many triples
for a class. If it is low, this means that most of the triples have been grouped. This
can be the case if there is only a small number of instances belonging to a certain
class. An example is the class Country. We can assume that the majority of the

74 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

web tables with correspondences to Country are about the 200 countries that are
commonly acknowledged today and not to all the historic countries which are also
contained in DBpedia.

Table 5.5: Distribution of groups per class.

DBpedia Class G G/Vc
+ Person 366 048 0.09
|- Athlete 284 213 0.07
|- Artist 6 842 0.36
|- OfficeHolder 6 559 0.35
|- Politician 11 362 0.09
+ Organisation 87 527 0.15
|- Company 25 164 0.12
|- SportsTeam 2 453 0.08
|- EducationalInstitution 35 736 0.15
|- Broadcaster 21 687 0.23
Work 331 071 0.15
+ MusicalWork 201 186 0.18
+ Film 56 610 0.22
+ Software 33 552 0.07
Place 100 673 0.12
+ PopulatedPlace 71 981 0.09
|- Country 5 709 0.03
|- Settlement 1 879 0.11
|- Region 1 193 0.21
+ ArchitecturalStructure 17 697 0.38
+ NaturalPlace 12 037 0.47
Species 23 809 0.29
Σ 929 170 0.01

Data Types Figure 5.5 and Table 5.6 show the data type distribution at dif-
ferent stages of our data integration process. At first, we have the full web table
corpus (Corpus). Afterward, we match the corpus (Matched) and finally group the
generated triples (Grouped). As we already discussed the change in the distribution
between the full corpus and the correspondences, we now focus on the transition
from correspondences to groups, where all triples with the same instance-property
combination are put together. The last column in Table 5.6 shows the ratio of this
grouping process. We see that, on average, each group contains 8.46 triples. The
largest group sizes can be observed for numeric triples, where on average 13.59
triples form a group. Date groups are also larger with about 9 triples per group.
String and reference groups, however, are quite small with only about 4 to 5 triples
per group. Figure 5.5 shows the number of triples per data type as proportions in

5.3. RELATED WORK 75

each step. Here it becomes obvious how the large fraction of string values in the
complete corpus is replaced by date and numeric when only considering tables that
overlap with DBpedia. In the grouped stage, we see how the relative size of string
and reference increases again, as many date and numeric values are grouped.

Table 5.6: Distribution of data types per step.

Data Type Corpus Matched Grouped Ratio
Numeric 995M 2 751 105 202 362 0.14
Date 101M 3 437 420 379 240 0.09
String 19 000M 536 526 86 330 0.04
Reference 0M 1 312 511 261 238 0.05
Σ 20 096M 8 037 562 929 170 0.08

Figure 5.5: Distribution of data types aggregated by their steps.

5.3 Related Work

As one of the first, the database community started with profiling their data. Basic
statistics like the distribution of values have been computed in order to estimate the
costs of individual database operations [Mannino et al., 1988]. [Naumann, 2014]
provides an extended classification scheme that includes the profiling of multi-
ple sources. The classification scheme introduces the topical, schematic, and data
overlap which are worth to consider especially for integrating data from various
sources. All these dimensions are important to estimate the utility of sources for a
certain use case. In this section, we describe the profiling of other web data sources
like LOD or semantic annotations. Further, we introduce other profiles that have
been generated for web table corpora. In the end, we present approaches that also
focus on the use case of knowledge base augmentation.

76 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

5.3.1 Web Data Profiling

Since the Web provides an enormous amount of data, automatic methods are re-
quired to know which sources cover which content. Thus, the profiling of different
web sources has been addressed in literature. This includes methods to determine
topics of websites but also the schematic overlap of structured data sources like
Linked Open Data or semantic annotations.

Web Page Profiling To get an estimate of the topical distribution of web-
sites, [Chakrabarti et al., 2002] annotate websites with a topic taxonomy by ap-
plying a classifier that determines the topic based on the words that are found on
the sites. Their findings show that most of the sites talk about computers, e.g., soft-
ware manuals, followed by sites assigned with the topics society and businesses.
For websites, the topical overlap is the only meaningful profiling dimension. In
contrast, for structured data extracted from the Web, profiles that go beyond the
topic overview have been generated.

LOD Profiling [Schmachtenberg et al., 2014] analyzed the topical and schematic
overlap of datasets belonging to the LOD Cloud. Altogether, the LOD Cloud cov-
ers about 1 000 well-defined datasets containing descriptions of various entities.
The topic of these datasets is either provided by the datahub catalog in which the
datasets are registered or are manually assigned. Due the size of the LOD Cloud,
a manual topic annotation is feasible but recently introduced approaches like the
Roomba framework try to automate this process [Assaf et al., 2015]. The analy-
sis shows that almost 50% of the datasets are about social networking describing
people and their relations. Other common topics are publication, government, and
life science. Since vocabularies are used to describe the data, the schematic over-
lap can be computed by counting how often a property of a vocabulary is referred
to. The most frequently applied properties are “owl:sameAs” and “rdfs:seeAlso”
which underlines the focus of linked data to link datasets among each other.

Semantic Annotation Profiling Semantic annotations include the meaning of
information directly in the underlying code of the HTML page. The HTML markup
is extended by semantic markup languages providing an additional set of attributes
which can automatically be read by machines. One of the most observed semantic
markup language is Microdata. The data itself is described using a vocabulary like
schema.org.1 Schema.org characterizes entities and relationships that hold between
them. [Meusel et al., 2016] analyzed to which classes of the vocabulary the entities
belong to and which properties are used. Most commonly, the unspecific class
thing has been detected, followed by creative work and intangible. Concerning the
schematic overlap, properties like name, image, and url are frequently used. In
addition, several properties describing addresses can be found which indicates that
websites about businesses are frequently annotated with Microdata.

1http://schema.org/

http://schema.org/

5.3. RELATED WORK 77

None of the topical profiles of other web data sources is in line with the top-
ics we detected for web tables which is plausible since other sources are used for
other purposes. For example, on websites about computers, we do not expect a lot
of relational tables and even if tables are found, the according entities are rarely
covered by DBpedia. The LOD cloud only covers about a thousand datasets which
results in a rather limited topical coverage. Semantic annotations focus on improv-
ing the machine-readability which is mostly exploited by search engines to enrich
the presentation of search results. Thus, semantic annotations will mainly be found
on websites that benefit from providing information to the search engines. For both
structured sources, vocabularies are applied which facilitates the determination of
the topical and schematic overlap. Since the meaning of the vocabularies is well-
defined, a matching to a knowledge base is not required to recover the semantics.
The data overlap is not taken into account by all profiles.

5.3.2 Profiling of Web Table Corpora

In Section 4.4 we already introduced the set of existing web table corpora. As most
of them are not publicly available, little is known about their content. The only in-
dications about the covered topics can be derived by considering which tables they
use for the evaluation of their methods. For example, the corpus created by [Yak-
out et al., 2012] is used to augment tables. Within the evaluation, tables with the
following topics have been augmented: cameras, movies, uk-pm, baseball, albums,
us-gov. Thus, we can infer that these topics are covered in the corpus.

The work of [Hassanzadeh et al., 2015] extends parts of our work and identifies
the topical overlap of web tables to the cross-domain knowledge bases DBpedia,
Wikidata, YAGO, and Freebase. For their study, they use the Relational Mappable
WDC WTC 2012 corpus. Slightly different to our strategy, their goal is to assign
classes to any column covering named entities. The matching between columns
and classes is performed by first normalizing the values and computing the overlap
with labels of instances belonging to the classes. The comparison with the labels
only checks for equality and does not allow any deviations or alternative names.

Due to the different goals and annotation strategies, the resulting topic distribu-
tions are not entirely comparable but allow to derive tendencies. In Table 5.7 the 10
most frequently annotated DBpedia classes of the profiling approaches are shown.
In both profiles, the most commonly detected class is Agent. Further, classes like
Person or Place can be found to the same frequent extent. In contrast, our approach
discovers much more works but no chemical substances or compounds. One pos-
sible reason are the different matching strategies.

By creating profiles to more than one knowledge base, the differences in the
topical coverage can be obtained. According to [Hassanzadeh et al., 2015], DBpe-
dia has a good coverage for persons and places while YAGO covers more abstract
classes. Freebase clearly includes more media-related classes. Summarizing, the

78 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

Table 5.7: Comparison with the annotated DBpedia classes found by [Hassanzadeh
et al., 2015].

T2K Match Approach by [Hassanzadeh et al., 2015]
Class #Tables Class #Columns
Agent 460 002 Agent 242 410
Work 269 570 Person 186 332
Person 265 685 Place 120 361
Athlete 243 322 PopulatedPlace 112 647
Organisation 194 317 Athlete 85 427
MusicalWork 138 676 Settlement 60 219
Place 133 141 ChemicalSubstance 57 519
PopulatedPlace 119 361 ChemicalCompound 57 227
Company 97 891 Work 53 959
Sportsteam 50 043 Organisation 50 509

choice of the knowledge base that is used for topical profiling has a strong influence
since only classes of the knowledge base can be assigned. Although [Hassanzadeh
et al., 2015] provide a broader picture of the topics, the schematic, and data overlap
with the knowledge bases are not taken into account.

Going beyond the topical overlap, [Barbosa et al., 2014] analyze the schematic
overlap among web tables encoding urban data. They profile a set of web tables to
enable an easier and better search. For example, based on the schematic overlap,
the subset of tables can be determined that includes information about populations.
Since the method only takes web tables of a specific topic into account, a general
overview about the schemata cannot be drawn.

5.3.3 Knowledge Base Augmentation

Some works propose to augment knowledge bases with internal knowledge base
data, e.g., to find new properties based on existing data [Bühmann and Lehmann,
2013]. Considering external data, a notable set of works focuses on Wikipedia as a
text corpus annotated with entities. By seeking for patterns based on existing prop-
erties, [Aprosio et al., 2013] finds additional properties for DBpedia. [Paulheim
and Ponzetto, 2013] propose to identify common patterns in Wikipedia list pages
using a combination of statistical methods and textual evidence. These patterns are
applied to extract additional classes as well as new facts. For example, from the
Wikipedia list with African-American writers it can be derived that all mentioned
instances are writers, have an African ethnicity and their nationality is American.
The approach has only been evaluated on the mentioned list.

Besides finding new properties and instances, other approaches focus on slot
filling. One set of approaches focuses on extraction information from unstructured

5.4. KNOWLEDGE BASE AUGMENTATION POTENTIAL 79

text, called open information extraction. We will go into more detail about open
information extraction in the related work part of Section 6.4. [Dutta et al., 2015]
match facts extracted by two open information extraction frameworks, NELL and
REVERB, to DBpedia. Further, they analyze how many facts overlap and how
many new facts can be generated. From the REVERB ClueWeb text corpus2, about
15 million facts have been extracted. After filtering out all phrases occurring too
rarely, facts with low confidence and facts with numeric expressions (literals), a
set of about 1 million facts remains. With the best strategy, 78 085 new facts for
altogether 41 properties with an expected precision of 0.78 can be generated.

[Sekhavat et al., 2014] propose a strategy that augments an existing knowledge
base with facts from web tables by levering a web text corpus and natural language
patterns associated with properties in the knowledge base. Within each row of the
table, pairs of strings are extracted and the corpus is searched for all sentences con-
taining both strings. All words in between the mentions are extracted and matched
against a set of patterns. An inference model is applied to compute the probabili-
ties of each relation given the patterns. This method is performed for all rows of a
table to generate an overall ranking of the relations. For the experiments, the set of
PATTY patterns3 extracted from the New York Times together with 25 Wikipedia
patterns are used with YAGO as knowledge base and the ClueWeb text corpus.
Applied on two tables about songs and NBA players, 17 of 48 creation facts and 8
of 100 is-affiliated-to facts can be newly extracted.

[Dong et al., 2015] proposed “Knowledge Vault”, a framework for extract-
ing triples from web sources and aims at constructing a knowledge base, using
Freebase as source of prior data. Beside web tables, text documents, HTML trees
and human annotated pages are taken into account as sources. Altogether, 1.6
billion fused triples are extracted, about 75% originating from HTML trees and
only 0.59% from web tables. Requiring a confidence of at least 0.9, 100 million
triples can be found, including 0.59 million triples from web tables. Compared to
the other sources, triples extracted from web tables only contribute little. With an
improved method, 271 million triples are generated out of which 33% (� 90 mil-
lion) are new facts that were not yet in Freebase. Information about the augmented
instances, properties, or classes are not provided.

5.4 Knowledge Base Augmentation Potential

In this section, we analyze the potential of the web tables for the use case of filling
missing values in a knowledge base. First, we establish our evaluation methodol-
ogy which uses generated triples that overlap with the knowledge base as ground
truth (local closed world assumption). Second, we compare the performance of
three different data fusion strategies: a voting-based baseline approach, one strat-

2http://lemurproject.org/clueweb09.php/
3https://d5gate.ag5.mpi-sb.mpg.de/pattyweb/

80 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

egy with a knowledge-based quality measure and one that uses PageRank as an
external quality indicator. Finally, we show how many new triples with which
quality can be generated and in turn where the largest potential for augmenting
knowledge bases with data from web tables lies.

5.4.1 Evaluation Methodology

We evaluate the correctness of the generated triples by comparing them to triples
which already exist in DBpedia (overlapping triples). For this comparison, we
apply the Local Closed World Assumption (LCWA) [Dong et al., 2014]:

Definition 5.1 (Local Closed World Assumption) For triples with subject s, pred-
icate p and object o, let Ops, pq be the set of objects for s,p in a knowledge base
(overlapping triples). If a triple ps,p,oq P Ops, pq, we assume the triple to be
true. Otherwise, if ps,p,oq R Ops, pq and Ops, pq � H the triple is incorrect. If
Ops, pq � H, we exclude the triple from the evaluation (non-overlapping triples).

We use the LCWA to enable a large-scale automatic evaluation of the fusion re-
sults (which we double-check with a manual evaluation described in Section 5.4.3).
As we cannot expect data from web tables to be perfectly clean, we allow for minor
deviations when comparing generated triples to triples from the knowledge base.
We use a deviation similarity for numeric values, a weighted date similarity for
dates, a hybrid Jaccard similarity for strings and equality for references.

By checking which groups contain correct triples that already exist in the knowl-
edge base, we can estimate the upper bound of the data fusion performance, mean-
ing that we can estimate the maximal number of correct triples that could be pro-
duced by a hypothetical, ideal fusion strategy. For 691 622 of the 929 170 groups,
the set of objects Ops, pq for s,p is not empty, meaning that they overlap with DB-
pedia. On these groups, we apply the similarity measures described above and find
that the number of groups containing the correct triple is correctmax � 310 284.
We use this number to compute the recall since it is the upper bound of the fusion
performance. Thus, only 45% of all groups G with non-empty sets of objects con-
tain the correct triple at least once. The main reason is that generating a correct
triple requires correct matching decisions for the class, property, and instance and,
in the case of a reference data type, also a correct transformation of the string into
an instance. Multiplying the errors happening during all matching tasks and taking
into account that information in the web tables might also be incorrect or outdated
explains the low percentage.

5.4.2 Fusion Strategies

The goal of the fusion step is to decide which triple of a group with the same
instance-property combination will be selected as output and used by subsequent
steps such as slot filling. We compare the following three data fusion strategies:

5.4. KNOWLEDGE BASE AUGMENTATION POTENTIAL 81

1. Majority/Median (MM) The majority/median fusion strategy selects the
most frequent value in the group as output (simple voting). For groups of
data type string and reference the majority is taken and for groups of data
type numeric and date the median.4 The MM strategy is a simple baseline
which does not take any quality indicators into account. Thus, each value has
the same weight during the voting independent of the table it origins from.

2. Knowledge-based Trust (KBT) We extend the MM strategy by assigning
a trust score to each attribute. For string and reference, we then apply a
weighted vote and for numeric and date a weighted median. The trust score
is calculated for each attribute as the number of correct overlapping triples,
normalized by the total number of overlapping triples. In addition to weight-
ing the values, we completely filter out all attributes and in turn triples with a
trust score below 0.35. By calculating the score from the overlapping triples,
we create a measure of correctness for the attribute that is the source of
the respective triples. This corresponds to the concept of knowledge-based
trust [Dong et al., 2015, Yin and Tan, 2011]: we weight each triple by the
correctness of the other information provided by same source with respect to
information that is considered to be trustworthy (the knowledge base).5

3. PageRank-based Trust (PRT) This strategy works like the KBT strategy,
with the difference that the score assigned to each triple is the normalized
PageRank [Page et al., 1999] of the website that is the source of the web
table. Over the last decade, PageRank has been widely used to assess the
quality of web content and has also previously been used for fusion [Paster-
nack and Roth, 2010]. The PageRank scores are calculated on the host-level
using the 128 billion hyperlinks contained in the Common Crawl 2012.6 Fil-
tering does not improve the results for the PageRank scores. In contrast to
KBT, PRT relies on hyperlinks as quality indicators while KBT relies on
comparing web data to previously trusted data.

In the following, we report the performance of the fusion strategies. First, we
determine which strategy works best for fusing web tables. This strategy is then
used to report about the potential of web tables for slot filling. Second, we examine
the claim by [Dong et al., 2015] that knowledge-based trust outperforms a strategy
with PageRank as quality indicator [Dong et al., 2014].

Table 5.8 shows the number of overlapping fused triplesFo and non-overlapping
fused triples Fno that are generated by the fusion strategies. Note that the non-
overlapping triples are the triples which could be added to the knowledge base.

4Note that we do not take the modal value since the groups tend to be small such that outliers
could be determined as output.

5Note that as we use the same methods for the calculation of the trust score and the evaluation,
we apply a 5-fold cross-validation for this strategy.

6These scores and the corresponding web graph are available for download at http://webd
atacommons.org/hyperlinkgraph/2012-08/download.html#toc4

http://webdatacommons.org/hyperlinkgraph/2012-08/download.html#toc4
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html#toc4

82 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

The last three columns present the performance in terms of precision, recall, and
F-measure. The performance values are calculated using the LCWA.

Table 5.8: Number of (non-)overlapping triples and evaluation results per fusion
strategy.

Strategy Fo Fno Precision Recall F-measure
MM 691 622 237 548 0.37 0.82 0.51
KBT 378 892 64 237 0.64 0.79 0.71
PRT 691 622 237 548 0.37 0.81 0.50

The baseline approach, MM, does not apply any filtering, hence the precision
can maximally be 45% (correctmax divided by Fo). Taking this into account, the
achieved precision of 0.37 is at an acceptable level for a simple approach. The
MM fusion is able to identify the correct value for 82.3% of all groups. This
also includes all groups of size one, where the fusion cannot choose from multiple
triples and just forwards the received input as output. The second approach, KBT,
filters out attributes with a low trust score and can hence decide to not create a
triple for a given group. This results in a 0.27 increase in precision and only has
a very small trade-off in recall, which decreases by 3.8. The third strategy, PRT,
does not result in any improvement over the MM baseline. Thus, we can confirm
the finding of [Dong et al., 2015] that the quality of a web source is not necessarily
determined by its popularity. For example, gossip pages are frequently interlinked
but do not necessarily provide high-quality web tables. As KBT performs best, we
choose this fusion strategy for further investigations.

5.4.3 Manual Evaluation

[Dong et al., 2014] show that the LCWA assumption is a valid approximation to
estimate the quality of non-overlapping triples. We perform two manual evalua-
tions in order to verify the results. First, we test the LCWA by manually evaluating
a sample of overlapping fused triples. Second, we manually evaluate a sample of
non-overlapping fused triples to determine whether the performance can be trans-
ferred to non-overlapping fused triples.

To test the LCWA, we manually evaluate a set of 1 000 overlapping fused
triples. The automatic evaluation of this sample according to Section 5.4.1 re-
sults in a precision of 0.68, while three human annotators determine a precision of
0.72. Overall 958 out of 1 000 triples were evaluated correctly by the automatic
evaluation, which results in an error rate of 4.2%. This result is a signal for the
validity of the LCWA and justifies its application for our experiments. However,
during the manual evaluation we spot some error categories, which shed light on
possible shortcomings of this method:

• Changes Over Time Facts can be outdated in the knowledge base, leading
to an incorrect evaluation of more up-to-date web tables.

5.4. KNOWLEDGE BASE AUGMENTATION POTENTIAL 83

• Different Granularity Facts can have different levels of granularity, e.g.,
the city of the Emroy university is Druid Hills Georgia in DBpedia. In the
web tables, we find the object “Atlanta” which does not have a similar label.
But knowing that Druid Hills Georgia is a community in the metropolitan
area of Atlanta, this triple can be regarded as correct.

• Missing Objects in Lists If a list is incomplete in the knowledge base, the
evaluation fails if the web table contains a correct, but missing value.

The second question we want to investigate is whether the performance esti-
mated for overlapping fused triples can be transferred to the non-overlapping fused
triples. As the non-overlapping fused triples are the candidates for slot filling, an
evaluation that cannot be transferred would not be suitable for the use case. Hence,
we manually evaluate another sample of 500 randomly selected, non-overlapping
fused triples. On this sample, the KBT strategy achieves a precision of 0.62.7 The
determined precision is very close to the one that was estimated using the LCWA
on the overlapping fused triples (0.64), which we take as an indication for the va-
lidity of transferring the performance to non-overlapping fused triples.

5.4.4 Fusion Results

In this section, we show the potential of web tables for slot filling. We present
performance statistics for data types, classes, and properties.

Data Types Table 5.9 shows the fusion performance by data type. Fo presents
the number of overlapping fused triples, Fno the non-overlapping ones. While the
date, reference, and string data types have a comparable performance, the recall of
data type numeric is significantly lower. Some numeric attributes tend to be more
noisy due to conflicting objects, changes over time or different interpretations of
certain properties. Thus, even correct triples are filtered out by the KBT fusion, as
the trust score is not high enough.

Table 5.9: Knowledge-based trust fusion results per data type.

Data Type Fo Fno Precision Recall F-measure
Numeric 28 364 10 613 0.64 0.45 0.53
Date 171 653 23 301 0.63 0.81 0.71
String 34 260 14 285 0.76 0.81 0.78
Reference 144 615 16 038 0.63 0.87 0.73

We further identified the following frequent causes of incorrect fusion results:

• Conversion Issues Some conversions are not performed correctly. As an
example, the birthDate of Jeff Zatkoff is “6/9/1987” according to DBpedia

719 triples were excluded as the human annotators could not determine the correct object. This
happened for example in the case of rare properties like bSide of a record or upperAge of colleges.

84 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

but we find the date “9/6/1987” in the web tables. Without knowing which
date format is used within the web table, it is not possible to parse it correctly.
This problem constitutes the largest part of the errors for the data type date.

• Ambiguous Entities The instance matching can make mistakes, especially
if the label of the entity is ambiguous. This occurs with very common names
of people or with musical works like cover versions of albums. A wrongly
identified entity can lead to incorrect results for all data types.

• Multiple correct values for the same property. If the property is not well-
defined or too broad, many values could be a correct match for that property.
Unfortunately, if DBpedia only includes some of all the possible values, cor-
rect fused triples will be marked as incorrect. This problem constitutes about
55% of all errors for the string data type.

Classes Table 5.10 shows the fusion results for the classes. The second col-
umn contains the number of overlapping triples Fo per class while the third column
shows the set of non-overlapping triples Fno. All performance measures in the last
three columns are computed on Fo. We find the highest amount of non-overlapping
fused triples for Work, especially Film, and for Person, especially Athlete. Hence,
these classes are beneficial candidates for slot filling based on web tables. Con-
cerning precision and recall, the best results are achieved for Species, and Place.

Properties Similarly to the classes, we expect the amount of overlapping and
non-overlapping triples as well as the estimated quality to depend on the particular
property. Table 5.11 shows the properties with the highest number of overlapping
fused triples. The column “ratio” presents the ratio between the number of overlap-
ping triples and the total number of triples using this property in DBpedia. Almost
all properties with the most overlapping triples refer to properties describing works
(releaseDate, artist, director) or persons (birthDate, activeYearStartDate). This re-
inforces the previous findings that the largest topical overlap between DBpedia and
the web tables can be found for Work and Person. Concerning the precision, most
properties are close to the average precision, with exceptions being musicalArtist
and number with a lower precision. Supposedly, this is caused by number (e.g., the
number of a baseball player in a certain team) being a time-varying property and
musicalArtist potentially describing ambiguous entities.

In addition to the analysis of the overlapping triples, Table 5.12 depicts the
properties with the largest amount of non-overlapping triples. The precision is
approximated with the precision that was achieved on the overlapping fused triples
for the same property. The ratio column indicates the potential for slot filling for
a particular property. We can almost double the number of publicationDate triples
and increase the amount of releaseDate triples in DBpedia by 11%.

Further, a selection of properties with a high precision and at least 50 non-
overlapping fused triples can be found in Table 5.13. For triples of these properties,
a slot filling approach results in very high-quality data. While the properties with

5.4. KNOWLEDGE BASE AUGMENTATION POTENTIAL 85

Table 5.10: Knowledge-based trust fusion results per class.

DBpedia Class Fo Fno Precision Recall F-measure
Agent 138 100 0.64 0.72 0.68 23 062
+ Person 117 522 15 050 0.64 0.72 0.68
|- Athlete 84 562 9 067 0.65 0.68 0.66
|- Artist 2 019 427 0.71 0.83 0.77
|- OfficeHolder 3 465 510 0.70 0.85 0.77
|- Politician 3 124 1 167 0.53 0.77 0.63
+ Organisation 20 522 7 903 0.65 0.69 0.67
|- Company 6 376 2 547 0.70 0.83 0.76
|- SportsTeam 790 132 0.67 0.89 0.77
|- Educational 8 844 3 132 0.64 0.71 0.67
| Institution
|- Broadcaster 4 004 1 924 0.56 0.459 0.50
Work 189 131 27 867 0.61 .83 0.71
+ MusicalWork 118 511 8 427 0.60 0.83 0.70
+ Film 29 903 12 143 0.57 0.80 0.67
+ Software 17 554 2 766 0.59 0.76 0.67
Place 32 855 9 871 0.77 .858 0.81
+ PopulatedPlace 16 604 6 704 0.71 0.78 0.7
|- Country 2 084 433 0.74 0.69 0.71
|- Settlement 540 224 0.58 0.67 0.62
|- Region 362 70 0.59 0.78 0.67
+ Architectural 10 441 1 775 0.83 0.94 0.88

Structure
+ NaturalPlace 743 64 0.84 0.94 0.89
Species 9 016 1 429 0.78 0.89 0.83

Table 5.11: Properties with most overlapping triples.

Property Fo Precision Ratio
releaseDate 92 383 0.63 0.07
birthDate 61 636 0.77 0.06
artist 25 563 0.65 0.27
musicalArtist 20 663 0.29 0.53
musicalBand 18 160 0.50 0.46
director 8 082 0.62 0.10
activeYears StartDate 7 934 0.66 0.12
activeYears EndDate 7 861 0.71 0.14
deathDate 7 448 0.63 0.02
number 6 160 0.38 0.10

86 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

Table 5.12: Properties with most non-overlapping triples.

Property Fno Precision Ratio
releaseDate 15 836 0.63 0.12
number 3 557 0.38 0.06
publicationDate 2 693 0.69 0.96
alias 1 471 0.44 0.01
locationCountry 1 304 0.56 0.09
country 1 242 0.67 0.00
synonym 1 240 0.56 0.01
status 1 116 0.42 0.04
birthDate 1 000 0.77 0.00
artist 971 0.65 0.01

the highest precision can only add a rather small number of triples, the properties
throwingSide (for BaseballPlayer), icaoLocationIdentifier (for Place), and family
(for Species) add thousands of triples with an above average precision.

Table 5.13: Properties with the highest precision results.

Property Fno Precision
numberOfIslands 157 1.00
province 67 1.00
seniority 60 1.00
sire 366 0.99
games 247 0.97
illustrator 81 0.97
iso6391Code 236 0.97
throwingSide 2 500 0.96
icaoLocationIdentifier 5 459 0.94
family 4 760 0.85

Due to the amount of instances, it does not make sense to provide any statistics
about slot filling potential for particular instances.

5.5 Summary

In this chapter, we generated a profile of the WDC WTC 2012. The profile con-
tains basic statistics, e.g., 3 billion values are included in the corpus. Further, we
presented insights about the topical, schematic, and data overlap by matching the
tables to DBpedia. The key findings are the following:

• The majority of relational web tables (97%) does not contain data that can
be related to DBpedia, e.g., tables about products.

5.5. SUMMARY 87

• Among the overlapping tables, the distribution of classes is mostly in line
with the topical distribution in DBpedia.

• About 25% of all DBpedia properties are referred in web tables, this holds
for 15.6% of the instances.

• 88% of the matching DBpedia properties and 70% of the instances are de-
scribed within at least two web tables, indicating a large inter-table overlap.

• Grouping the triples results in about 1 million groups of alternative values
(average group size of 8.5) which presents the amount of facts that is ex-
tracted from the corpus using the presented methodology.

Based on this profile, we know the characteristics of web tables and the topical
coverage in the web table corpus. Thus, the profile provides a realistic view on the
web table to knowledge base matching task which will be used during the creation
of the T2D gold standard in Chapter 6. Further, the potential for an individual use
case can be derived by the profile. However, since the profile strongly depends on
the content of the knowledge base as shown by [Hassanzadeh et al., 2015], tables
that do not overlap with DBpedia do not occur in the presented profile.

To estimate the potential for the particular use case of filling missing values
in DBpedia, we evaluated three different fusion strategies using the LCWA. As
result, the knowledge-based trust fusion outperforms a PageRank-based fusion as
well as a voting-based baseline strategy. In addition, we confirmed the applicability
of the LCWA and showed that the performance approximation for overlapping
fused triples is transferable to fused triples with no overlap in the target knowledge
base. By applying the knowledge-based trust fusion, about 65 000 triples can be
generated that are not contained in DBpedia. Comparing the overlapping triples
with the triples in DBpedia, a precision of 0.64 for the new triples is determined.
Altogether, the potential for slot filling is greatly dependent on the particular class
and property. As example, we can almost double the number of publicationDate
triples in DBpedia.

88 CHAPTER 5. PROFILING THE WDC WEB TABLE CORPUS

Chapter 6

Web Table to Knowledge Base
Matching

In the previous chapters, we introduced web tables as well as knowledge bases
which serve as input for the matching. Further, we have already presented the foun-
dations of the data integration process and more particularly of matching. Within
this chapter, everything gets combined: how does the matching of web tables to
knowledge bases looks like and which challenges need to be addressed.

To match web tables to a knowledge base, both the schema and data match-
ing needs to be performed since correspondences are not known beforehand. Al-
together, three matching tasks need to be conducted: firstly, the assignment of
classes from the knowledge base to tables, secondly of properties to attributes,
and lastly of instances to entities. Existing systems [Limaye et al., 2010, Mulwad
et al., 2013, Venetis et al., 2011, Zhang, 2016] for matching web tables to knowl-
edge bases address the three tasks in an integral fashion which makes it possible to
take advantage of the findings gathered within other tasks. On the one hand, most
existing approaches restrict themselves to attributes covering named entities with-
out considering attributes including literals [Limaye et al., 2010, Mulwad et al.,
2013, Venetis et al., 2011] . On the other hand, they have not been applied to
large corpora covering millions of web tables such that the applicability for real-
world scenarios has not been demonstrated [Limaye et al., 2010, Mulwad et al.,
2013,Venetis et al., 2011,Zhang, 2016]. To overcome this situation, we developed
the T2K Match algorithm, a method that tackles all three matching task in a com-
bined way and is not restricted to attributes covering entities. The algorithm has
been implemented to be able to handle millions of web tables and in turn to pro-
vide a web-scale applicability as already demonstrated for the profiling (Chapter
5). Most important for this thesis, T2K Match provides us with the possibility to
analyze the matching results for all tasks.

The gold standards on which state-of-the-art approaches have been evaluated
suffer from similar drawbacks as the systems. First, they do not cover correspon-

89

90 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

dences of attributes to datatype properties. Second, they are restricted regarding
the representativity of large scale web table corpora since they either focus on a
specific topic or on tables from one website. Finally, the proposed gold standards
exclusively cover tables that overlap with the knowledge base. With the T2D gold
standard, we present a gold standard covering a wide range of challenges, reflect-
ing the matching task more realistically. Together with T2K Match, we are able to
perform a systematic evaluation on a single gold standard that provides a variety
of challenges that need to be addressed by web table to knowledge base matching
systems.

In this chapter, we first introduce the challenges that arise when matching web
tables to knowledge bases and provide an overview of the matching tasks (Section
6.1). In Section 6.2, we provide a description of the algorithm, followed by an
introduction to the T2D gold standard in Section 6.3. While Section 6.4 discusses
related works, Section 6.5 presents the evaluation of T2K Match applied to the
T2D gold standard. In the last section, the chapter is summarized and issues that
cannot be overcome by T2K Match are discussed.

A description of T2K Match together with parts of the evaluation on the T2D
gold standard has been published by [Ritze et al., 2015]. I performed the table
selection and parts of the annotation of the T2D gold standard, co-developed the
T2K method and have co-authored most of the sections.

6.1 Introduction to Web Table Matching

Before web tables can be used for applications like knowledge base augmentation,
the semantics of the web table need to be recovered: the table topic, the attribute
meanings and the real-world objects that are referred by entities. In this section,
we first describe challenges that occur when matching by web tables. Further, we
introduce the matching tasks that need to be addressed in order to create a semantic
table interpretation. The matching tasks comprise both, schema and data matching.

Terminology According to the definitions given in Section 4.1.1, web tables
are composed of rows and columns. For relational tables, we use the terms entity
and attribute since each row represents one entity and each column represents an
attribute describing the entity. Thus, for relational tables the terms row and entity
as well as column and attribute are interchangeable. To distinguish between web
table and knowledge base elements, we employ the terms instance, property, and
class for the according knowledge base elements as introduced in Chapter 3.

6.1. INTRODUCTION TO WEB TABLE MATCHING 91

6.1.1 Challenges

By integrating web tables, all four data integration challenges as mentioned in
Section 2.2 are posed: volume, velocity, variety, and veracity [Dong and Srivastava,
2015]. In the following, we discuss why these challenges are raised by web tables
and which other aspects complicate the matching of web tables.

• Volume According to the statistics presented in Chapter 4, existing web table
corpora cover millions of relational web tables. When matching these cor-
pora, huge volumes need to be handled which especially requires a sufficient
performance. In addition, while the variety of domains turns web tables into
a rich source, this variety renders domain-specific techniques insufficient.

• Velocity Every day, web pages are added and updated. Thus, the information
about the same topic presented in two tables do not need to refer to the same
point in time. Hence, if values of time-dependent attributes are compared,
similarities might not be detected.

• Variety As introduced in Chapter 2, different kinds of heterogeneities ex-
ist, varying from syntactical over terminological to conceptual heterogene-
ity. We are only using web tables of the same format such that syntactical
heterogeneity does not need to be considered. In contrast, terminological
heterogeneity can be discovered very frequently due to the fact that web
tables do not adhere to controlled schemata which results in a linguistic di-
versity [Venetis et al., 2011]. Rather than databases or ontologies that are
usually generated by domain experts who are aware of the common terms
in a domain, web tables can be created by everybody. Another aspect is the
natural space restriction which is given by the rendering of the web page.
Thus, abbreviating terms is a popular solution. Besides the terminological
heterogeneity, conceptual heterogeneities need to be overcome. As deter-
mined by [Lautert et al., 2013], web tables show a considerable structural
variety. Only 18% of the tables are akin to traditional databases. The main
reasons are values that cover lists and tables with spanning rows or columns.
In addition to these characteristics, many different modeling styles naturally
occur since web tables are generated by different humans.

• Veracity All data sources coming from the Web have to face differences
in quality. Often, web data tends to be “dirty” in contrast to data that is
maintained and updated by domain experts. Typical quality issues are the
correctness and completeness of the data as well as the timeliness. Web
tables are no exceptions regarding the quality. Often, the presentation of a
complete view on a domain covering all entities is not the goal of a web table.
Instead, a web table usually focuses on a specific topic giving a particular
view on the data. As stated by [Cafarella et al., 2008a], there are very few
tables with large numbers of attributes that provide a full picture of a topic.

In addition to the general challenges, some characteristics are quite specific for

92 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

web tables and are of hardly any importance for other data sources: the absence of
a formal schema, the source size, and missing names. These issues do not need to
be tackled when matching databases or ontologies.

• No schema Web tables do not provide a formal schema. Information about
the data types, the entity labels, and attribute headers need to be guessed.
All mistakes that are made during the metadata recovery can have a strong
influence on the matching result.

• Small size Web tables tend to be small and narrow regarding the number of
entities and attributes [Cafarella et al., 2008b]. Thus, matching algorithms
are required to rely only on a restricted set of available information and in
turn less evidence can be gathered.

• Missing headers Web tables attributes often either lack headers or the head-
ers are ambiguous and non-informative [Wang et al., 2012, Embley et al.,
2006]. Within the WDC WTC 2012, 50% of the attributes do not have
a header and the most common headers are very generic, e.g., “name” or
“date”. All in all, the completeness and the descriptiveness of headers di-
rectly impacts the matching efforts [Pimplikar and Sarawagi, 2012].

6.1.2 Matching to Knowledge Bases

To match web tables to a knowledge base, three tasks need to be addressed: the in-
stance, the property, and the class matching. While instance matching refers to the
data matching, the property and class matching are schema matching subtasks. As
result of the matching process, each web table is assigned to a class, each attribute
to a property, and each entity to an instance, if a knowledge base element exists.

Example 6.1 An example web table about countries matched to a knowledge base
is depicted in Figure 6.1. The table has been annotated with the class Country.
The attributes have been associated with the properties Capital and Population.
The instance matching task generated correspondences between the entities named
Russia and China to the according instances representing the countries. Note that
not all table elements have counterparts in the knowledge base.

Over the last years, a set of systems for matching web tables to knowledge
bases has been developed. Some of the systems focus on a certain task, e.g., [Bha-
gavatula et al., 2013,Quercini and Reynaud-Delaı̂tre, 2013] on the instance match-
ing, the approaches of [Pham et al., 2016,Ermilov and Ngomo, 2016] on the prop-
erty and the method introduced by [Zwicklbauer et al., 2013] on the class match-
ing task. Since none of the tasks can rely on available correspondences, existing
web table to knowledge base matching systems address all three matching tasks
in an integrated fashion [Limaye et al., 2010, Mulwad et al., 2013, Venetis et al.,
2011, Zhang, 2014b]. Common strategies are probabilistic models [Limaye et al.,
2010, Mulwad et al., 2013, Venetis et al., 2011] and iterative approaches [Zhang,

6.2. METHODOLOGY 93

Figure 6.1: Correspondences generated by the three matching tasks for an example
table about countries.

2014b]. We discuss them in more detail in Section 6.4.

The mentioned approaches, e.g., by [Limaye et al., 2010, Mulwad et al., 2013,
Venetis et al., 2011], have a different definition of the matching tasks. Classes are
assigned to all named entity columns instead of the table. Further and most im-
portant, the systems annotate pairs of named entity columns with object properties,
also referred to as relations or relationships. Thus, columns covering literals are not
taken into account and in turn, datatype properties are not considered. One excep-
tion is the TableMiner+ system [Zhang, 2016] which considers datatype properties.
Depending on the use case, focusing on the matching of named entity columns is
only partly sufficient. As determined during the web table profiling in Chapter
5, about 75% of the triples that can be used for slot filling are actually datatype
properties, see Section 5.4.4, Table 5.9.

6.2 Methodology

In this section, we introduce the matching algorithm T2K Match.1 T2K Match
addresses all three matching tasks without restrictions like the non-compliance of
literal columns. The three matching tasks mutually influence each other, relying
on the findings of the other tasks. We first explain the general workflow, followed
by descriptions of the matchers that build the core of the matching. The evaluation
of T2K Match will be presented in Section 6.5. The analysis of the results serves
as foundations for all following chapters.

6.2.1 Workflow

Within this section, the T2K Match workflow is described, as illustrated in Figure
6.2. All web tables are assumed to be relational with recovered metadata. Hence,
the entity label column, the attribute label row, and the column data types have
been determined as described in Section 4.2.4. In a knowledge base, the metadata

1https://github.com/T2KFramework/T2K

https://github.com/T2KFramework/T2K

94 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

is automatically available. All steps that are expected by a matching process, see
Section 2.3, are included: preprocessing, execution of matchers, aggregation, and
classification. Since the instance, property, and class matching are addressed, each
task needs to perform these four steps. During the matcher execution, the tasks
mutually influence each other and rely on information provided by the other tasks.
After the aggregation and classification, a set of correspondence for each matching
task is returned. In the following, we describe each step in more detail.

Figure 6.2: Workflow of the T2K Match algorithm.

Preprocessing The motivation for preprocessing is to normalize the data such
that errors can be avoided during the matching. For example, the inconsistent use of
separation characters like hyphens can decrease the similarity of two string which
is calculated by a similarity measure. Hence, prior to matching of web tables to a
knowledge base, we try to make sure that all values are available in an established
standard format. During the metadata recovery, the data types have been deter-

6.2. METHODOLOGY 95

mined and in turn, numeric and date values have already been transformed into
a standardized format, including the unit transformation. Thus, the preprocessing
focuses on the string values. In order to achieve a standard format for all string val-
ues, they first need to be cleaned. Since we are using data from the Web, the values
can include HTML artifacts like HTML character entities, e.g., the non-breaking
space “ ”. Beside the HTML artifacts, we remove special characters like
parentheses, punctuations or slashes. Further, any additional whitespaces are ex-
cluded. After the cleaning, the values are converted to lower case and a set of
hand-crafted transformation rules is applied to resolve abbreviations, e.g., “co.” is
transformed into “company”. Figure 6.3 presents an example how two string are
cleaned and normalized. Details can be found in the T2K normalization project.2

Figure 6.3: Normalization of two strings.

Further normalizations or structural transformations are not performed since
we are not aware of the table’s topic and the attribute’s meaning. The values in the
knowledge base are processed the same way. For object properties, we get the in-
stance that is referred to by the URI and take it’s name as defined by the rdfs:label
property. As mentioned in Chapter 2, one main challenge of data matching is the
number of comparisons. To enable efficient comparison, a Lucene Index3 is built
that contains the labels of all knowledge base instances. With this index, a fast
look-up is possible which provides the foundation of a web-scale applicability.

Matcher Execution For each matching task, a set of matchers comparing dif-
ferent features is applied. At first, candidates are identified for the entities, at-
tributes, and the table that serve as blocking keys in all following steps. A more
detailed description of the candidate selection, including the candidate refinement,
will be provided in Section 6.2.2. After the candidates have been determined,
the similarities of the values are computed within the value-based matcher (Sec-
tion 6.2.3). Using the instance candidates together with the value similarities, a
duplicate-based matcher is applied to estimate which properties fit to the attributes
(Section 6.2.4). Finally, an attribute-based refinement matcher is used for the in-
stance and class matching task. It exploits the findings of the property matching
task and in turn updates the similarities to the instance and class candidates (Sec-
tion 6.2.5). Altogether, each task has an influence on the other two tasks.

Aggregation The goal of the aggregation is to combine the similarity matri-
ces holding the similarities that have been computed by the matchers. We use
a weighted aggregation for each task. As any other parameter, the weights are

2https://github.com/T2KFramework/T2K/tree/EDBT/de.dwslab.T2K.Norma
lisation

3https://lucene.apache.org/core/

https://github.com/T2KFramework/T2K/tree/EDBT/de.dwslab.T2K.Normalisation
https://github.com/T2KFramework/T2K/tree/EDBT/de.dwslab.T2K.Normalisation
https://lucene.apache.org/core/

96 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

determined using a genetic algorithm which will be described subsequent to the
classification.

Classification Since we are requiring an one-to-one mapping (Chapter 2), we
only create a correspondence to the knowledge base element with the highest sim-
ilarity resulting from the aggregation. To identify whether a correspondence is
likely to hold, we apply a threshold-based classification that filters out all corre-
spondences with a confidence score below a given threshold. The threshold is
determined during the parameter section.

Parameter Selection The parameters like the aggregation weights or the thresh-
old for the classification are determined by a genetic algorithm. Genetic algorithms
have been shown as promising for both schema and data matching [Ritze and Paul-
heim, 2011, Isele and Bizer, 2012]. For each parameter, a set of possible values is
defined, at most 10 values are allowed. The genetic algorithm tests the parameter
values in order to find the best possible combination according to an evaluation
criterion. In our case, we define the best possible combination as the combination
achieving the highest precision. We terminate the genetic algorithm as soon as we
do not find a better combination. The specific parameters we used for the experi-
ments are stated in the experimental setup of the evaluation, Section 6.5.1.

The following example presents the workflow applied on an example table.

Example 6.2 In Figure 6.4, an excerpt of a table about airlines and the correspond-
ing DBpedia class is depicted.4 To detect instance correspondences, the entities and
the instances in DBpedia are compared by applying a label-based and a value-based
matcher. Neglecting the concrete functioning which will be described in the subse-
quent sections, both matchers generate a similarity matrix. During the aggregation,
these matrices are combined using the weights, 0.83 for the label and 0.17 for the
value matrix, determined by the genetic algorithm. The resulting similarity matrix
contains the aggregated scores e.g., a similarity of 1.0 between the entity “Oman
Air” and the according instance “Oman Air”. During the classification, a threshold
of 0.7 is applied to only generate correspondences that are likely to hold. As result,
correspondences for the entities “Oman Air” and “Wizz Air” are generated with a
confidence score of 1.0.

After introducing the overall workflow of the algorithm, we will continue in
subsequent sections with a more detailed explanation of the matcher execution
which forms the core of the matching.

6.2.2 Candidate Selection

With the goal to matching millions of web tables, we need to find a way to deal
with massive amounts of comparisons especially for the instance matching task.

4The table originates from the T2D gold standard: 5873256 0 7795190905731964989.

6.2. METHODOLOGY 97

Figure 6.4: T2K Match Workflow applied on an example table about airlines.

The candidate selection presents a blocking step to determine initial sets of in-
stances, properties, and classes that fit to the according table elements. All further
comparisons and similarity computations are only performed between a table ele-
ment and its candidates, such that the number of comparisons drastically decreases.
In the workflow, we start with the identification of candidates for entities, followed
by candidates for the table and for the attributes.

At first, the instance candidates are detected by searching for each entity la-
bel in the already generated Lucene index. The index returns a list of instances,
ordered by the internal Lucene ranking. In more detail, the order depends on the
TF-IDF similarity of the instance labels to an entity label. To restrict the possi-
bly large amount of candidates, only the top k candidates are kept if the similarity
score is above a threshold. Thus, T2K Match will identify an instance as candidate
if its label is similar to the entity label.

To find class candidates, we take the best candidate for each entity and deter-
mine the classes to which this candidate belongs. If an instance belongs to more
than one class, the instance counts for all of them. In the end, we choose the most
frequent classes (top k) as candidates for the table. Such a majority-based class de-
cision is commonly used to find correspondences between tables and classes since
it is straightforward but achieves a similar performance compared to more complex
strategies, as analyzed by [Zwicklbauer et al., 2013]. In turn, the selected classes
serve as basis for the property candidates: only properties that belong to one of the
candidate classes are considered. Belonging to a class does not require the property
to have the class as domain. Instead, a property belongs to the class if it is used
by instances of that class in the knowledge base. By not relying on the domain
restriction given by a knowledge base, we overcome difficulties that result from

98 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

inconsistencies between domain definition and property usage.

At this point, candidates for all three matching tasks have been discovered.
Since we started with the instance candidates, this task did not yet benefit from
information that has been gathered during the candidate identification of the other
tasks. Hence, we perform a second candidate selection for the instance matching
task, called candidate refinement, that again queries the index. This time, only
instances belonging to one of the candidate classes are allowed to be returned. In
addition, a lower threshold is applied to allow large deviation of the labels. At
the same time, all candidates that do not belong to a candidate class are removed.
Hence, implausible instance candidates are discarded while more likely instance
candidates are added. As we show in the evaluation, Section 6.5.2, on average 1.6
additional instance candidates are added for each entity in the table.
Since the candidate selections presents a blocking, a table element will never be
compared with any other element of the knowledge base except for its candidates.
We will analyze the performance of the blocking strategy in Section 6.5.2.

6.2.3 Value-based Matcher

After identifying candidates, we focus on the values found in cells. This is possible
due to the blocking since we no longer need to compare each cell with each value
of the knowledge base. We compute similarities between the values of an entity
and all values of the instance candidates, regardless of which candidate property
the values belong to. Usually, data matching approaches do not need to address
this issue since at least a few schema correspondences are known. Additionally,
we restrict the number of required comparisons by only comparing values of the
same data type which has been determined as part of the metadata recovery, see
Section 4.2.4. In case of multi-values contained in a cell, we calculate the similar-
ity of all combinations of values and choose the maximum.

For each data type, a type-specific similarity measure is applied. For strings, a
hybrid Jaccard with Levenshtein as inner measure, for numeric values the deviation
measure and for dates the weighted date similarity measure is used. An overview
of the similarity measures is given in Section 2.3.2. Note that similarities below a
certain threshold, see experimental setup in Section 6.5.1, are set to 0.

Example 6.3 Figure 6.5 depicts the value comparison between values of an en-
tity to the values of one instance candidate. Since only the attribute A is of type
string, it’s values are only compared to values covered by the string property A1.
Apparently, the strings are equal such that a similarity score of 1.0 is specified.
The attributes B and D have been determined as numeric attributes as well as the
property B1. While the value of B is similar to the value of B1, this does not hold
for D. Lastly, the date contained in C is compared to the dates in C 1 and D1.
Since nothing more than the years are stated in the web table, only the years can

6.2. METHODOLOGY 99

be taken into account. The resulting similarity of values in C to values in C 1 is 1.0,
in contrast the similarity between the date of C and D1 is 0.0. In addition to the
functioning of the value-based matcher, we can see the difficulties that arise in the
data type detection. By only considering the value of attribute C, we cannot state
whether C is of data type date or numeric.

Figure 6.5: Value-based matching of an entity with one of its candidates.

The similarities that have been determined by the value-based matcher serve as
basis for the duplicate-based matching which will be explained in the next section.

6.2.4 Duplicate-based Matcher

As introduced in Chapter 2, the duplicate-based schema matching exploits dupli-
cated entities in order to estimate whether two schema elements have the same
meaning [Bilke and Naumann, 2005]. The value-based similarities serve as basis
to get an impression which entity-instance pairs are duplicates. The pseudocode
for the duplicate-based matcher is given in Listing 6.1. For each web table en-
tity, the best instance candidates according to their similarity are determined. Each
value vip of the top k instances has an entity value vea which fits best accord-
ing to the computed value similarities. The similarity of the attribute a and the
property p, to which the values belong to, is increased by the similarity of the val-
ues simpvea, vipq and weighted with the similarity of the entity to its candidate
simpe, iq. In summary, each value votes for an attribute-property pair.

The intuition is that an attribute including the same data as a property is ex-
pected to share many similar values on similar entity-instance pairs. After we ap-
plied the duplicate-based matcher, we know the similarities between attributes and
properties that again serve as basis for the attribute-based refinement matcher. Note
that we do not include any similarity between the attribute label and the property
name since the headers are often missing or non-informative, see Section 6.1.

6.2.5 Attribute-based Refinement Matcher

Similarities between attributes and properties can be exploited in two ways: to im-
prove the class and the instance candidates. For each class candidate, the similarity

100 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

Listing 6.1: Pseudocode to perform the duplicate-based property matching be-
tween attribute a and property p.

1 sim(a,p) <- 0
2 for(entity e in E) {
3 valuese <- all values of e
4 topCandidates <- best candidate instances for e
5 for(instance i in topCandidates) {
6 valuesi <- all values of i
7 for(value vip in valuesi) {
8 vea = argmax(sim(vip,valuese))
9 sim(a,p) += sim(e,i) � sim(vea,vipq

10 }}}

scores of its properties are summed up. Thus, the more properties of a class are sim-
ilar to attributes of a table, the more likely the class fits to the table. Since classes
in a knowledge base are usually organized in a class hierarchy and all instances
of a subclass also belong to its superclass, the similarities between the table and
the knowledge base class computed on the data-level will not help to distinguish
whether a sub- or the superclass is most suitable. Using the similarities between
the attributes and the properties especially helps to overcome this issue. Assum-
ing a web table about baseball players: based on the similarities to the instances,
both classes dbo:BaseballPlayer and its superclass dbo:Athlete are suitable for the
table. However, if we know that an attribute stating the batting side corresponds
to the property dbo:battingSide and this property is exclusively used by baseball
players, we can decide for the more suitable class dbo:BaseballPlayer.

For the instance matching task, similarity scores are computed analogously to
the similarities of attributes to properties. To compute the similarity of an entity e
with an instance i, the following formula is applied:

simpe, iq �
¸

veaPvaluespeq

¸
vipPvaluespiq

simpvea, vipq � simpa, pq (6.1)

In the formula, vea presents the value of the entity e for the attribute a. The
used similarities have been computed by the value- and duplicate-based matcher.

Afterwards, all three matching tasks could be further iterated as for example
proposed by [Suchanek et al., 2011] for matching ontologies. Applied to our al-
gorithm, the updated similarity scores between entities and instances would serve
as basis for the value-based matcher which builds the foundation of the duplicate-
based matcher and so on. However, these iterations only very slightly improve the
performance, as we verify in the evaluation (Section 6.5.2). This finding is consis-
tent with the results of [Zhao and Ram, 2007] for matching databases. Hence, we
do not include iterations but stop after the attribute-based refinement.

6.3. T2D GOLD STANDARD 101

6.3 T2D Gold Standard

In this chapter, we introduce the publicly available T2D gold standard.5 It’s goal is
two-fold: enabling the evaluation of web table matching systems considering literal
columns and providing a foundation for the comparability of methods. Existing
gold standards either focus on tables extracted from a particular web site, e.g., the
Limaye gold standard [Limaye et al., 2010], or on tables about one topic [Hignette
et al., 2007, Buche et al., 2013, Zhang, 2016]. Further, none of the gold standards
contains tables that do not overlap with a knowledge base. The T2D gold standard
includes cross-domain tables from more than one web site to cover a wide range
of challenges, including the matching to datatype properties. By additionally com-
prising non-overlapping tables, the gold standard reflects the matching task more
realistically.

To create the T2D gold standard, web tables from the WDC WTC 2012 have
been manually annotated with correspondences to DBpedia. First, we present the
requirements we demanded from the gold standard. Second, we introduce how we
annotated the tables whereby the selection of the web tables is an important step.
Further, the characteristics of the T2D gold standard are depicted and discussed.

6.3.1 Requirements

A gold standard to evaluate matching systems covers two data sources together
with the correspondences between them [Duchateau and Bellahsene, 2014]. For
the task of matching web tables to knowledge bases, gold standards provide a set of
web tables, a knowledge base and the according correspondences for one or more
matching tasks. One important step during the generation of a gold standard is the
selection of the web tables. As stated by [Bailey et al., 2006] “Collections with
highly varied data are valuable since they provide opportunities for investigation
across a number of interesting axes and may reflect real-world data.” Thus, we
defined the following requirements:

1. the set of overlapping tables in the gold standard should present a balanced
sample with respect to the

• the number of rows and columns per table
• the covered topics
• the number of instance and property correspondences per table,

2. it should present a realistic set regarding tables that do not overlap with the
knowledge base and

3. it should contain high precision correspondences.

The annotation process is described in the subsequent section, taking the re-
quirements into consideration.

5http://webdatacommons.org/webtables/goldstandardV2.html

http://webdatacommons.org/webtables/goldstandardV2.html

102 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

6.3.2 Annotation Process

Before the tables can be annotated, the set of according tables needs to be selected.
Since we want to provide a realistic subset of web tables regarding the expected
amount of web tables that overlap with the knowledge base, we need to get both:
overlapping and non-overlapping tables. All tables in the gold standard have been
selected from the WDC WTC 2012 (Chapter 4). As knowledge base, we use DBpe-
dia (version 2014) since it is one of the most common knowledge bases (Section 3).

Overlapping Tables We define an overlapping table as a table for which at
least one instance correspondence can be found and in turn, a class can be assigned.
As detected during the profiling (Chapter 5) only about 3% of the relational tables
actually overlap with DBpedia. The most realistic strategy is to randomly sample
tables from the corpus. We decided against a random sampling strategy due to the
increased annotating time which would be required:

• For each overlapping table, 32 non-overlapping tables need to be considered.

• With on average 22 rows per table, at most 22 instance correspondences are
generated per overlapping table.

• To create 26 000 instance correspondences (amount of correspondences in
T2D), 40 000 tables with 840 000 rows need to be annotated.

• With 10 seconds per row, additional 291 days (8 hours per day) are necessary
to only annotate the non-overlapping tables.

Although a minority of tables can be annotated with correspondences, a lot of
additional time is spent on tables that anyway do not overlap with a knowledge
base. Further, a random sample is not suitable to get a balanced set of tables re-
garding the number of rows and columns as well as the topic [Wang et al., 2012].

Hence, we decided for a selection strategy that relies on initial entity seeds.
In more detail, we query the Mannheim Search Join Engine (MSJE) [Lehmberg
et al., 2015] with entity names for which we are certain that at least some of them
overlap with DBpedia. We extracted these entity seeds based on the query tables
used to evaluate the MSJE, e.g., the list of the 500 greatest films of all time6. To
cover additional topics, we extract seeds from tables found on Wikipedia pages.
For each query table, the MSJE returns a list of tables from the WDC WTC 2012
in which the according entity labels have been found. We annotated both, tables
containing only a few seed entities and tables with many of them to get a mixture of
tables with different characteristics. The annotations have been assigned manually
by a team of two human annotators, requiring altogether about six person weeks.
In total, the set of overlapping tables consists of 233 tables with 26 124 instance,

6http://www.listchallenges.com/empire-magazines-500-greatest-fil
ms-of-all-time

http://www.listchallenges.com/empire-magazines-500-greatest-films-of-all-time
http://www.listchallenges.com/empire-magazines-500-greatest-films-of-all-time

6.3. T2D GOLD STANDARD 103

658 property, and 233 class correspondences. For each table element, at most one
correspondence is created to be compliant with the one-to-one mapping.

Non-Overlapping Tables As stated by [Cafarella et al., 2008a] and confirmed
by our findings, only about 1% of all web tables are relational. For all non-
relational tables, we automatically assume that they do not share correspondences
with a knowledge base. However, the classification into relational and non-relational
tables is not perfect and about one-third of the decisions are misclassifications, cf.
Section 4.2. Further, not all relational tables contain an entity label column which
is in our definition required to match the table to a knowledge base. In a set of 1 000
randomly chosen tables that have been classified as relational, only about 30% of
the tables contain an entity label column. Thus, when matching tables from a rela-
tional web table corpus, we have to be aware that about two-third of the tables are
actually not mappable, independent of whether their topic is covered by the knowl-
edge base. To address this issue in the T2D gold standard, we added 546 randomly
chosen tables that have been determined as relational but are not useful for the
matching task. This roughly corresponds to the expected amount of tables that are
not valuable for this task. By adding the non-overlapping tables, the gold standard
reflects the matching task more realistically compared to the existing gold standard.

Altogether, the gold standard contains 779 tables including both, overlapping
and non-overlapping tables. The set of overlapping tables is also referred to as first
version of the gold standard.7 In return, the set of overlapping and non-overlapping
tables is second version of the T2D gold standard.

6.3.3 Statistical Description

In this section, we provide the statistical description of the T2D gold standard. It
includes basic characteristics about the table. Further, the sets of instance, property
and class correspondences are depicted and analyzed.

Table Characteristics Table 6.1 provides basic statistics about the size of the
tables that are contained in the T2D gold standard. The number of rows varies be-
tween 3 and 5 000 while the number of columns is between 2 and 30. Thus, small
as well as large tables are included in the gold standard. For small and narrow
tables, it is more difficult to decide whether a table can be matched to a knowledge
base since only little evidence is available. If large and broad tables are incorrectly
matched, it has a larger influence on the resulting performance of the matching
system. Further, since only about one-third of the tables are overlapping, a match-
ing method needs to find a way to not assign correspondences to non-overlapping
tables to obtain acceptable results.

7http://webdatacommons.orgwebtables/goldstandard.html

http://webdatacommons.orgwebtables/goldstandard.html

104 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

Table 6.1: Statistics about row and column distributions in the T2D gold standard.

Minimum Maximum Median Average
Rows 3 5 000 17 84
Columns 2 30 4 5

For the matching itself, the characteristics of the overlapping tables are more
interesting. Hence, Table 6.2 provides statistics about the set of overlapping tables.
Altogether, almost 29 000 rows and 1 100 columns are covered within the tables.
The average and median number of rows is about 150, for columns it is close to 5.
Thus, the tables cover a larger amount of rows than arbitrary tables in WDC WTC
2012 where the average amount of rows is about 10. One reason is that overlapping
tables actually contain relational information that in turn is often covered in larger
tables. For example, a table about countries does usually not include just a few
countries but at least the countries of a certain continent or even all countries of the
world. Regarding the requirement of a balanced sample with respect to the number
of rows and columns per table, we can see that with a standard deviation of 128
rows and almost 2 columns, also the set of overlapping tables shows variations
in their sizes. Another interesting characteristic is that almost all rows, i.e., 92%,
can be mapped to a DBpedia instance while this only holds for about half of the
columns. Thus, a method needs to be more careful whether or not to create a
correspondence for an attribute.

Table 6.2: Statistics about the set of overlapping tables in T2D.

Average Median SD #Corr. Mapped Ratio
Rows 28 595 157.13 137 128.01 26 162 0.92
Columns 1 163 4.95 5 1.79 658 0.57

Figure 6.6 and Figure 6.7 present the associated row and column distributions.
Altogether, about half of the tables cover less than 100 rows and the other half
more than 100 rows. About 5% of the tables include at most 10 rows, at the same
time only 6% of the tables have more than 300 rows. Regarding the distribution
of columns, 97% of all columns contain less than 10 columns, almost one forth
comprise exactly 4 columns.

Instance Correspondences In total, 26 124 rows cover entities that correspond
to instances in DBpedia. To give an overview of the corresponding instances, we
determine the DBpedia class to which an instance belongs and group them by their
superclass, resulting in seven categories. For example, the category Organisation
contains instances about companies, universities, and political parties. Figure 6.8
shows the distribution per category. About one-fourth of the entities link to pop-
ulated places, followed by works. The remaining correspondences are distributed
among various classes including Organisation or Species.

6.3. T2D GOLD STANDARD 105

Figure 6.6: Distribution of rows in overlapping tables in T2D.

Figure 6.7: Distribution of columns in overlapping tables in T2D.

Figure 6.8: Number of instance correspondences per category in T2D.

Depending on the use case, especially the rather unknown, so called long tail
entities, can be interesting. For example, to augment a knowledge base, nearly
all facts for popular instances will be available in contrast to the facts of long tail

106 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

ones. Further, we assume that popular instances are described in more detail in a
knowledge base, thus they pose less challenges to matching systems. To provide
a balanced sample, the gold standard should include both, head and tail entities.
Figure 6.9 indicates how popular the instances in T2D are. The popularity is calcu-
lated based on the Wikipedia inlinks8 of the according Wikipedia article describing
the particular instance. If an article has many inlinks, we assume the instance to
be a head entity. In contrast, a low amount of inlinks indicates that the instance
can be found in the long tail. 50% of the instances have at least 177 inlinks in
Wikipedia. In comparison, the instance with the highest score in the gold standard
is United States with 388 129 inlinks which is even not depicted in the figure due
space constraints. While the most popular instances are countries, smaller places
like airports or mountains as well as video games can be found among the less
popular instances. Altogether, T2D covers a mixture of head and tail entities.

Figure 6.9: Popularity of the linked instance in T2D.

Property Correspondences Among the 658 property correspondences, 233
refer to the rdfs:label property since they link the entity label column. The re-
maining correspondences are spread over 188 tables. This implies that 20% of
the tables do not have an overlapping property such that a method cannot rely on
any property matching results. In total, 112 distinct properties are included in the
correspondences. The most commonly referred properties are listed in Table 6.3.
Most often, the release date of a work and the elevation of a place are linked. This
is in line with the finding that many instances point to works and places (Chapter
5). However, only 6% of the correspondences link to the most common property
dbo:releaseDate which indicates the variety of properties that can be found in T2D.

One aspect that influences the matching ability of the columns is its data type.
In the web table corpus, about 68% of the columns are of data type string, 27% of
data type numeric, and 3% of data type date. A similar distribution can be found
in T2D: 63% strings, 25% numeric, 12% date. The larger amount of date columns
is explainable due to the amount of tables about works since they often include at

8The DBpedia spotlight URI count has been used https://github.com/dbpedia-spo
tlight/dbpedia-spotlight/wiki/Internationalization-%28DB-backed-c
ore%29

https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Internationalization-%28DB-backed-core%29
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Internationalization-%28DB-backed-core%29
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Internationalization-%28DB-backed-core%29

6.3. T2D GOLD STANDARD 107

Table 6.3: Top 5 linked DBpedia properties in T2D.

Property #Correspondences
dbo:releaseDate 6%
dbo:elevation 6%
dbo:populationTotal 5%
dbo:location 5%
dbo:industry 4%

least one column with a date. The average number of property correspondences
ranges from 1.5 (person) to 4.1 (populated place). Hence, for tables about persons
a matching algorithm cannot rely on large overlaps on the schema level.

Class Correspondences Figure 6.10 shows the number of tables per super-
class. Although the picture is similar to the distribution of instances, some more
characteristics can be derived. The average number of instance correspondences
for tables ranges from 65 (organizations) to 250 (species) per table. Thus, when
matching tables about species usually more information is provided based on the
number of instances than for tables about organizations.

Figure 6.10: Number of class correspondences per superclass in T2D.

With the T2D gold standard, we see all requirements as fulfilled so a wide
range of challenges is covered. T2D provides a balanced sample regarding the
overlapping tables and presents a more realistic scenario by including a set of
non-overlapping tables. Further, matching systems that include correspondences
to datatype properties can now be evaluated. An overview of other gold standards
together with a comparison will be presented in Section 6.4.4.

108 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

6.4 Related Work

Previously, we introduced an algorithm to match web tables to knowledge bases
that tackles all matching tasks. In this section, we present strategies proposed by
others for interactively handling schema and data matching. Further, we introduce
existing gold standards for matching web tables to knowledge bases. The results of
the matching systems are compared to T2K Match in the evaluation (Section 6.5).

6.4.1 Information Extraction

One field of research with similar objectives is information extraction which gath-
ers information usually from unstructured text. The underlying idea is that in a
sentence, entities as well as relations between the entities are mentioned. While
information extraction (IE) usually focus on a specific domain, open information
extraction (OIE) extracts information independent of the topic. Open information
extraction system like NELL [Carlson et al., 2010] or REVERB [Fader et al., 2011]
gather triples from unstructured text. Therefore, sentences found on web pages are
disassembled: nouns represent entities and verbs the relations between the entities.

Since neither correspondences for the subject and object, nor for the predicate
are known, both - the schema and data matching - needs to be addressed when in-
tegrating triples into a knowledge base. [Dutta et al., 2015] match triples generated
by NELL and REVERB to DBpedia with the goal of knowledge base augmenta-
tion. The matching workflow starts with a data matching module that looks for
instance candidates to both subject and object. Using anchor-texts of Wikipedia
articles, a candidate ranking is generated for each entity and the best candidate is
chosen using a Markov logic network. Afterwards, the look up module searches
for properties which connect the instances that have been assigned to the subject
and object. Within an optional clustering module, relational phrases having a sim-
ilar meaning are clustered such that a property can be assigned to a cluster. In the
property mapping module, association rule mining is applied to find frequent rule
patterns. Further, the module exploits the OIE triples that overlap with the knowl-
edge base as evidence. Altogether, the system addresses schema and data matching
by first generating instance correspondences which are used to find property corre-
spondences. In contrast to our approach, the detected property correspondences do
not influence the instance matching. With the best workflow, a precision of 0.95
for the instance and 0.86 for the property matching is reported. A system with
similar goals in presented by [Fossati et al., 2017] without relying on an existing
OIE system. However, open information extraction systems are not able to model
the interdependence among the table elements [Lu et al., 2013] which provides
essential information for matching web tables.

6.4. RELATED WORK 109

6.4.2 Matching Databases and Ontologies

In the past, schema and data matching have often been considered as two separate
problems. A first step towards connecting schema and data matching has been done
by introducing the duplicate-based schema matching [Bilke and Naumann, 2005].
Thus, the data itself is taken into account and not only characteristics of the data
are considered. However, the duplicate-based schema matching does not address
the data matching, it solely uses duplicates for the schema matching.

As one of the first, [Zhao, 2007] presented the idea of solving schema and data
matching in an integral fashion. In another paper, [Zhao and Ram, 2007] deploy
an approach that actually tackles combined schema and data matching. They use
two catalogs of books and two university databases as data sources, both covering
partially overlapping entities and attributes. At first, the attributes are clustered
using features like the attribute labels, data patterns, and statistics. Afterwards, a
classifier is learned to match the entities which uses the distances on the attributes
identified during the clustering together with the according values. During the clas-
sification, again insights are gained about the attribute correspondences and then
used to adapt the candidates. Finally, additional iterations can be triggered but they
have not shown to improve the results. In contrast to our approach, they start with
the schema matching that does initially not rely on the entities but on characteris-
tics of the attributes. These characteristics are difficult to exploit if the sources are
not of the same input type as in our case. The evaluation of the method is restricted
to databases from two domains. Deploying it on data sources from unknown do-
mains would require adaptions.

The domain-independent system PARIS - Probabilistic Alignment of Rela-
tions, Instances and Schema - performs simultaneous schema and data matching
focusing on ontologies as input sources [Suchanek et al., 2011]. Aligning relations
represents the task of matching properties while the term schema alignment is used
for the class matching. To perform the three matching tasks, a probabilistic model
is applied. Logical rules are used to model equalities and subsumptions. For ex-
ample, the probability of an equivalence between two classes is proportional to the
number of instances that belong to both classes according to the already established
instance correspondences. The algorithm starts by computing the probabilities of
equivalences of instances, continues with the probabilities for relations and iter-
ates the two steps until a fixpoint is reached. Relying on the correspondences of
instances and relations, the class matching task is performed which in turn does
not have an influence on the other tasks. PARIS has been evaluated on large-scale
ontologies, i.e., YAGO and DBpedia, which is not the case for the only two other
systems Rimom [Li et al., 2009] and Iliads [Udrea et al., 2007] that perform an
integrated schema and data matching for ontologies. As result, F-measure scores
of 0.81 for the instance, 0.92 for property, and 0.84 � 0.91 (depending on the di-
rection) for class matching task are stated. In contrast to our approach, PARIS is

110 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

designed for matching ontologies with a rich class and property structure. This
is a difference to web tables which can be very noisy and usually cover only a
few entities and attributes. We will discuss the results of PARIS and the different
challenges in more detail in Section 6.5.3.

6.4.3 Table Augmentation

Table augmentation aims at extending a query table. This can either mean to find
values for a given set of entities and an attribute or to detect attributes that make
relevant additions to the query table. For example, given a query table with country
names, the according capitals should be added. Therefore, the entities described
by the given attribute are searched in a web table corpus.
[Yakout et al., 2012] propose the InfoGather system that augments a query table
using a corpus with 573 million tables. To find related entities, the query table is
matched to all tables in the corpus. Due to the large amount of comparisons, the
matching is restricted: only tables with overlapping entity labels having exactly the
required attribute label are considered. Using the computed similarities between
the tables as basis, a holistic matching is applied to also find indirect matches. We
will go into detail about this step is Chapter 8.
[Bhagavatula et al., 2013] introduce WikiTables which identifies attributes that are
relevant additions to the query table. As web table corpus, they focus on tables
extracted from Wikipedia.
The Mannheim Search Join Engine introduced by [Lehmberg et al., 2015] can do
both: finding values of a particular attribute and adding relevant attributes to a
query table. Besides web tables, also semantic annotations and LOD sources are
taken into account. The matching between the query table and the corpus mainly
bases on the label similarity of the entities. To consolidate values, a duplicate-
based schema matching is used.

Augmenting tables shares the task of matching web tables but for a different
goal. Thus, similar challenges have to be overcome like finding out which entities
are similar to the query table entities. The main difference between table augmen-
tation and the matching of web tables to knowledge bases is that the augmenta-
tion focuses on the integration rather than the interpretation such that the meaning
of the augmented attributes in unknown. To combine both ideas, the correspon-
dences between web tables and knowledge bases could be used as an intermediate
schema [Lehmberg et al., 2015].

6.4.4 Web Table to Knowledge Base Matching Gold Standards

Since the matching of sources like databases and ontologies has been performed
for years, various gold standards exist for these tasks. Examples are the gold stan-
dards within the Ontology Alignment Evaluation Initiative. Once a year, ontology
matching systems are evaluated using the gold standards to compare their perfor-

6.4. RELATED WORK 111

mances and to assess the strengths and weaknesses of matching techniques. Since
web tables have just recently gained attention, such initiatives do not exist yet.

One of the first gold standard has been introduced by [Hignette et al., 2007].
In this gold standard, 60 tables have been extracted from scientific publications
found on the Web. The attributes of the tables have been manually annotated with
properties of a food microbiology domain ontology. [Buche et al., 2013] extended
the gold standard by adding tables about chemical risks and aeronautics. [Zhang,
2016] propose two gold standards created from well-known sources: IMDB and
MusicBrainz. From IMDB, 7 000 tables describing films are considered, from Mu-
sicBrainz 1 400 tables about songs. All these gold standards have in common that
they cover tables about exactly one topic.

Already knowing the topic of the tables is a great advantage but does not
present a realistic scenario. The first gold standards covering multiple topics have
been proposed by [Syed et al., 2010] and [Mulwad et al., 2010b] but only include 5
and 15 tables, respectively. A larger gold standard has been developed by [Limaye
et al., 2010]. The Limaye gold standard consists of four subsets: WikiManual
(36), WebManual (317), WebRel (30) and WikiLink (6 085), altogether resulting
in 6 522 tables annotated with elements from the YAGO knowledge base. Wiki-
Manual and WikiLink cover tables from Wikipedia articles. The other two sets
consist of tables from a web table corpus that has been queried with the tables
from Wikipedia as seeds. While the tables of WikiLink are only annotated with
instances, the WebRelations set contains solely property annotations.

The gold standard introduced by Limaye et al. has been adapted by other re-
searchers. [Venetis et al., 2011] use a random sample of 168 tables from Wiki-
Manual and WebManual. [Mulwad et al., 2013] use a few hundreds of tables from
all four subsets and annotated them with both, correspondences to DBpedia and
YAGO. Recently, [Zhang, 2014a, Zhang, 2016] presented two additional subsets,
Limaye112 and Limaye200 that contains 112 and 200 randomly chosen tables from
the four subsets, annotated with correspondences to Freebase. The Limaye gold
standard and its adaptions suffer from the following facts:

• Variety of Sources The majority of tables originates from Wikipedia, so
characteristic variations are restricted, e.g., most tables have attribute labels.

• Datatype Properties Partly except for the Limaye200 gold standard, anno-
tations to datatype properties are not included.

• Non-Overlapping Tables Only tables that actually overlap with the knowl-
edge base are considered which does not reflect the distribution realistically.

In contrast to other gold standards, the Limaye gold standard covers a com-
prehensive amount of cross-domain tables. However, due to the mentioned restric-
tions, the range of challenges for web table to knowledge base matching systems is

112 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

limited. The T2D gold standard provides a wider range of challenges by focusing
on a larger amount of sources and including correspondences to datatype properties
as well as non-overlapping tables.

6.4.5 Web Table to Knowledge Base Matching

A set of systems matching web tables to knowledge bases has been proposed over
the last years. In this section, we will introduce them by focusing on how the
matching is performed, which matching tasks are addressed and to which extent
they influence each other. Within subsequent chapters, we concentrate on different
aspects like the choice of features in Section 7.3. In Table 6.4, an overview of
all methods matching web tables to knowledge bases is depicted, stating which
matching tasks they consider.

Table 6.4: Overview of the tasks addressed by approaches matching web tables to
knowledge bases.

Approach Instance Property Class
[Hignette et al., 2007] � X X
[Buche et al., 2013] � X X
[Zwicklbauer et al., 2013] � � X

DSL [Pham et al., 2016] � X �
TAIPAN [Ermilov and Ngomo, 2016] � X �
[Quercini and Reynaud-Delaı̂tre, 2013] X � �
[Bhagavatula et al., 2015] X � �
[Efthymiou et al., 2017] X � �
[Venetis et al., 2011] � X X
[Fan et al., 2014] � X X
[Chu et al., 2015] � X X
[Muñoz et al., 2013] X X �
[Syed et al., 2010] X X X
[Mulwad et al., 2010b] X X X
[Limaye et al., 2010] X X X
[Mulwad et al., 2013] X X X

TableMiner+ [Zhang, 2016] X X X

Methods focusing on a particular domain As one of the first, [Hignette et al.,
2007] and later [Buche et al., 2013] propose methods to perform the property and
class matching task. Therefore, they used a domain-specific biological ontology.
Since the approaches focus on a particular topic, specific knowledge encoded in
the domain ontology can be exploited, e.g., the property expressing the pH value
can only cover discrete values between 0 and 14. Such knowledge cannot be con-
sidering when matching web tables to cross-domain knowledge bases not focusing
on a particular topic.

6.4. RELATED WORK 113

Methods focusing on a subset of tasks A set of approaches matches web ta-
bles to cross-domain knowledge bases but only considers a subset of matching
tasks. [Zwicklbauer et al., 2013] solely performs the class matching task by apply-
ing a simple majority vote as we also include it in the algorithm: instance candi-
dates are gathered for each entity and the instances vote for the class they belong
to. Conversely [Pham et al., 2016, Ermilov and Ngomo, 2016] only consider the
property matching task while [Quercini and Reynaud-Delaı̂tre, 2013, Bhagavatula
et al., 2015, Efthymiou et al., 2017] take the instance matching task into account.
For the property and class matching task, [Venetis et al., 2011] use an isA database
that has been extracted from the Web using lexical patterns. The database contains
statistics of co-occurrences like how many times does “animal such as dog” occur
where “such as” presents the extracted pattern. Using the database, a maximum
likelihood inference model predicts the best class for an attribute to be the one
maximizing the probability of seeing all the values in the attribute given that class.
Similarly, [Wang et al., 2012] utilize the probabilistic database Probase that is con-
structed by Hearst patterns. For each table, the set of entity labels and attribute
labels is used as query for Probase to get a list with the most probable classes.
Both methods heavily rely on the probabilistic statistics of the database that are not
available in knowledge bases like DBpedia or YAGO. Further, [Fan et al., 2014]
and [Chu et al., 2015] use crowd-sourcing for the property and class matching.

Methods focusing on a set of web tables Besides the restrictions on a partic-
ular topic, a subset of tasks and/or the usage of knowledge that is not available in
all knowledge bases, also constraints to the web tables itself can be posed. [Muñoz
et al., 2013] extract RDF triples from tables found in Wikipedia articles. For the
instance matching task it is assumed that the cells contain internal links to other
Wikipedia articles which in turn can be transferred to URIs identifying DBpedia
instances. Afterwards, DBpedia is queried with the mapped instances to get all
possible properties relating those instances. The work is later extended by adding
a machine learning process to filter triples that are likely to be incorrect [Muñoz
et al., 2014]. Having internal links simplifies the instance matching task but the
method is not universally applicable.

Domain-independent methods addressing all tasks Only a few systems ad-
dress all three matching tasks. Their results are depicted in Table 6.5. As men-
tioned during the definition of the matching tasks, all listed approaches focus on
named entity attributes and do not consider datatype properties.

[Syed et al., 2010] and [Mulwad et al., 2010b] use Wikitology, a hybrid knowl-
edge base of structured and unstructured information extracted from Wikipedia in-
cluding classes from DBpedia, YAGO, WordNet, and Freebase. The method first
queries the Wikitology to get instance candidates. Similar to our approach, the
class is then derived based on the initial instance candidates and in turn under con-
sideration of the class, an instance candidate refinement is performed. In the end,

114 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

the same strategy as utilized by Muñoz et al. is applied which queries the knowl-
edge base for properties that relate two entities found in the same row. Wikitology
provides knowledge that is not available in other knowledge bases.

[Limaye et al., 2010] use a probabilistic graphical model with interrelated
random variables. The goal is to provide an assignment for all three tasks that
maximizes the joint probability. First, a model is learned that determines the best
aggregation weights for a variety of features including the similarity of entity and
attribute labels. These features and weights are used to define potential functions
over subsets of variables, and the product of these potential provide the joint dis-
tribution over all variables. Thus, the three tasks influence each other all the time.

[Mulwad et al., 2013] extend Limaye’s work by using a more lightweight
algorithm since computing the joint probability distribution is expensive. Further,
the Wikitology is used to get instance candidates so that the initial selection does
not only rely on a label comparison.

Table 6.5: Overview of the results achieved by matching approaches addressing all
three matching tasks.

F-measure
System Gold Standard Instance Property Class
[Mulwad et al., 2010b] 15 tables 0.66 0.25 0.77
[Syed et al., 2010] 5 tables 0.77 1.00 0.90
TableMiner+ [Zhang, 2016] Limaye 0.84 0.76 0.75
[Limaye et al., 2010] Limaye 0.84 0.58 0.45
[Mulwad et al., 2013] Limaye 0.76 0.84 0.55

According to [Zhang, 2014b], the inference used by a probabilistic graphical
model is exhaustive but unnecessary. Therefore, Zhang presents TableMiner, a
system with a two-phased bootstrapping strategy instead of an inference model.
During the first phase, it learns an initial interpretation using partial data from the
table whereas the second phase uses the initial interpretation as constraint to inter-
pret the rest of the table. In more detail, a sample of entities is disambiguated by
comparing entities to instances represented as bag-of-words. Based on the candi-
date instances, a majority vote decides which classes are candidates for columns.
Afterwards, in the update phase, the initial candidates for instances and classes are
improved by considering not only a sample of rows. As soon as no changes in the
similarities are observed, TableMiner continues with the property matching task.
For pairs of attributes, the knowledge base is queried for properties relating the
assigned instances. Since the property matching task is applied after the other two
tasks are finished, it does not have any influence on them. An extended version,
TableMiner+ [Zhang, 2016], has recently been introduced and is the only systems
that additionally considers literal columns. However, only string comparison meth-

6.5. EVALUATION 115

ods are used such that the applicability for columns of data type numeric or date is
restricted. All in all, TableMiner+ is the system closest to T2K Match.

Altogether, only a few approaches actually consider all three matching task.
Further, except for TableMiner+ only columns including named entities are matched
at all. Some methods heavily rely on background knowledge, e.g., the Wikitology
or probabilistic databases, which is not available in every knowledge base. Other
approaches apply an inference model that tries to optimize the results of the three
matching tasks simultaneously. In Section 6.5, we will compare the results of the
introduced matching systems with the T2K Match method.

6.5 Evaluation

In this section, we will evaluate T2K Match experimentally. First, we present the
outcomes of all three tasks when applying the algorithm to tables of the T2D gold
standard. We further analyze the results in more detail by considering for which
table the algorithm achieves the highest results. Hence, we get an idea of the
drawbacks and the improvement potential of the algorithm. Second, the results
are compared to the findings for systems that also address the schema and data
matching in an integrated fashion. This includes the ontology matching system
PARIS and existing approaches that match web tables to knowledge bases.

6.5.1 Experimental Setup

The code of T2K Match has been released in the T2K github repository.9 The
parameters that are used during the matching process have been determined using
a genetic algorithm that focuses on high precision results. Table 6.6 lists the most
important parameters that have been used in all following experiments.10

For our experiments, we use the set of overlapping tables from the T2D gold
standard (first version) and a subset of DBpedia as reference knowledge base. The
DBpedia subset consists of all classes, properties, and instances from DBpedia
(English version 2014) that are frequently used and hence are promising candi-
dates to be detected in the web tables. We use all classes as long as they cover
at least 1 000 instances. To exclude too specific classes, we only consider classes
up to the fourth level of the class hierarchy where the class Thing represents the
first level. All properties are discarded unless they are frequently used by instances
in the subset, i.e., if at least 5% of the instances belonging to the class for which
the property has been defined. The result of this selection process is a DBpedia
subset covering 94 classes, 1 393 properties, and about 3 million instances. This
corresponds to two third of all DBpedia instances although only about 14% of the

9https://github.com/T2KFramework/T2K/tree/master
10Full list of parameters: http://web.informatik.uni-mannheim.de/T2K/paramte

rsT2KMatch.csv

https://github.com/T2KFramework/T2K/tree/master
http://web.informatik.uni-mannheim.de/T2K/paramtersT2KMatch.csv
http://web.informatik.uni-mannheim.de/T2K/paramtersT2KMatch.csv

116 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

classes are taken into account. Regarding the properties, about 50% of all proper-
ties are included in the subset.

The use of a subset is reasonable since all knowledge base elements referenced
in correspondences of the T2D gold standard are covered. With the evaluation on
the DBpedia subset, we are able to identify which challenges cannot be overcome
with the presented method without focusing on too many details like the full class
hierarchy. The same holds for the set of tables: we only consider the overlapping
tables from the T2D gold standard for the experiments with the T2K Match algo-
rithm. All existing systems that match web tables to knowledge bases are evaluated
in the same way since other gold standards do not include tables that do not overlap
with the knowledge base.

6.5.2 Overall Results

In this section, we evaluate the overall performance of T2K Match. Table 6.7, de-
picts the results of matching the overlapping tables of T2D to the DBpedia subset
using T2K Match. Most important, our algorithm is able to match web tables to a
knowledge base without the restrictions of only considering named entity columns
and achieves acceptable results. For the class matching task, the highest F-measure
of 0.94 can be attained, followed by the performance for instances with 0.82 and
properties with 0.70. As indicated, we favor a high precision over a high recall be-
cause the more precise our correspondences are, the less incorrect data we have to
deal with during the fusion. Thus, especially for the instance and property match-
ing tasks, the precision is at least 0.1 higher than the recall.

Error Analysis To find explanations for the results of all tasks, we analyze dif-
ferent steps of the process in more detail. First, we discuss the performance of the
metadata recovery to know whether especially the lower outcomes of the property

Table 6.6: T2K Match parameters.

Parameter Value
Instance Final Threshold 0.5
Property Final Threshold 0.0
Instance Candidate Selection Top K 50
Instance Candidate Refinement Top K 100
Class Candidate Selection Top K 5
Instance Candidate Selection Threshold 0.2
Instance Candidate Refinement Threshold 0.7
Instance Label Weight 5
Instance Value Weight 1
Value Threshold 0.5

6.5. EVALUATION 117

matching task stem from an insufficient metadata recovery. Second, we examine
the candidate selection in more detail since it presents the basis for following steps.

Metadata Recovery Starting from the beginning of the overall process, one
possible source of errors are incorrectly recognized metadata like the entity label
column as well as the column data type. To estimate the extent of the influence,
we analyze the entity label column and the data type detection. For the entity label
detection, an F-measure of 0.94 is observed which means that for almost all tables
the correct entity label column is found. This is an important finding since an in-
correct entity label column mostly results in incorrect correspondence for all three
tasks. Similarly, the F-measure of the attribute label detection is 0.97.

Another metadata is the data type of each column which plays an essential role
for the property matching task. With an incorrect data type, the values of a column
will not be compared to the values of the correct property. With the following
analysis we check to which extent the data type detection is responsible for the
lower property matching task performance. Table 6.8 shows the confusion matrix
of the data type detection. The most common misclassification is that a numeric
attribute is considered to be of data type string. This error is responsible for 58%
incorrectly assigned data types.

One reason why numeric columns are classified as type string is the prepro-
cessing. The according values cover additional words like “overall” or use differ-
ent terms to indicate a missing value, e.g., “nil”. Mainly, this happens if units are
missed. An example is a column stating the height of a person, e.g., a value is 6’9”.
In this case, the metadata recovery is not able to detect that the value is a length
specification given in feet and inches. The misclassification of numeric columns as
dates results from the fact that numeric values are in the same range as year spec-
ifications. Example are “1946” or “7.93”. The most common incorrectly detected
data type is date. The reason is that dates are not recognized as such since the set
of date patterns does not cover the specific format. This includes for example ab-
breviated dates like “oct 6 08”. Further, we expect that at least the year is specified,
such that values like “June 25” or “Monday” are not considered as dates.

Overall, the quality of the metadata recovery on the tables from T2D is quite
high, especially higher than expected based on a random sample as described in

Table 6.7: Results of T2K Match for matching the overlapping tables of T2D to
the DBpedia subset.

Task Precision Recall F-measure
Instance 0.90 0.76 0.82
Property 0.77 0.65 0.70
Class 0.94 0.94 0.94

118 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

Table 6.8: Confusion matrix for results of the data type detection.

Actual string numeric date

Pr
ed

ic
te

d string 646 19 4
numeric 0 270 5
date 0 5 70

Chapter 4. Thus, we assume the performance of the metatdata recovery to only
negligibly influence the matching results.

Candidate Selection Within the candidate selection, the candidates for each
table element are determined and serve as blocking keys for all subsequent steps.
Hence, if the according knowledge base element is not among the candidates, the
correct correspondence will not be generated. Regarding the instance matching
task, for 82% of the entities in the tables, the instance it corresponds to is found
among the candidates. This can also be expressed as a pair completeness of 0.82
which presents a typical measure to evaluate blocking techniques. In turn, we know
that we miss 18% of the instance correspondences. One reason is the focus on the
label similarity that does not necessarily hold, e.g., due to abbreviations or alter-
native terms. Therefore, a great potential to increase the instance performance lies
in the improvement of the instance candidate selection. Regarding the candidate
selections for the other two tasks, for both a pair completeness of 0.96 is deter-
mined. The only case in which the correct class is not a candidate is if the entity
label column is determined incorrectly and in turn the majority of instances does
not belong to the correct class. The same holds for the property matching task since
all properties are excluded that are not referred to by the instance candidates.

Performing the candidate refinement helps to get more instance candidates per
entity. Figure 6.11 shows the average amount of candidates for each table from the
T2D gold standard. Compared to the amount of candidates created by the candi-
date selection, on average 1.6 additional candidates can be found for each entity.
Depending on the individual table, up to 12 ancillary candidates per entity are de-
tected. Although an increased amount of candidates does not necessarily lead to
better results, with the candidate refinement an F-measure increase of 0.08 for the
instance matching task is determined.

Iterative Matching After the attribute-based refinement, iterations between
the instance and property matching can be performed. As we stated in the de-
scription of the algorithm, we do not apply such an iterative approach since the
results hardly change. Figure 6.12 presents the differences in F-measure for the
instance and property matching task when performing further iterations. The last
step in the algorithm, the attribute-based refinement refers to the second iteration
since the instance candidates scores are once adapted using the weights computed

6.5. EVALUATION 119

Figure 6.11: Average amount of instance candidates per entity in each table.

by the attribute scores. Altogether, the changes in F-measure are marginal, be-
low 0.01. Hence, to dispense with iterations does not lead to deteriorated results.
This is consistent with the results of [Zhao and Ram, 2007] for matching databases.

Figure 6.12: F-measure changes by applying additional iterations.

Detailed Results per Category To better discover potential issues, we analyze
the results in a more fine-grained way. The achieved performance is not the same
for tables describing different topics due to their individual characteristics. We an-
alyze the differences by assigning each table to the superclass within the DBpedia
class hierarchy, also referred to as category, to which the mapped class belongs.
Figure 6.13 provides the overview of the achieved precision grouped by category.

The reasons for different results per category can be very specific. We present
some examples which are helpful to draw general conclusions. The low prop-

120 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

Figure 6.13: Precision of the three matching tasks according to their category.

erty precision for the person category stems from varying attribute values, e.g., the
weight of an athlete might change during his/her career and the birth or death dates
of historic persons are often different from source to source. Another reason which
especially holds for the tables describing species is that value-based similarities
can be misleading. For example, the Latin name and the genus of an animal can be
similar but they do not have the same meaning, e.g., the name of the genus “melop-
sittacus undulatus” versus the animal name “melopsittacus” for budgerigars.
The better performance for the instance correspondences has also different reasons.
In some cases, a high label similarity in combination with the restricted set of pos-
sible classes provides sufficient evidence to decide for the correct correspondences.
But, for example, for companies, the precision for tables with no attribute overlap is
only 0.45. For tables having one property correspondence, the precision increases
to 0.97. Hence, without an overlapping property it is often not possible to assign the
correct instances. Using the terminology of [Doan et al., 2004b], a schema-related
evidence is not available. If only one attribute corresponds to a property, the re-
sults can be drastically improved since the schema-related evidence can be taken
into account. However, for entities with ambiguous names, even an overlapping
attribute might not be sufficient since it is not discriminative enough. As example,
the entity “lake geneva” is mapped to the DBpedia instance “Geneva Lake” instead
of “Lake Geneva” due to missing or insufficient schema-related evidence. Another
problem is related to our concept of entity label columns: tables about species of-
ten use inconsistent entity naming, sometimes the Latin name and sometimes the
English name is used as entity label, e.g., “tufted titmouse” and “baeolophus bi-
color” are the English and Latin name for the same bird species. Thus, the instance
index will only in some cases return the corresponding instances.
Incorrectly detected classes are due to incorrect entity label columns and discrep-
ancies regarding the class hierarchy. For example, a table about soccer players is
mapped to the more general class Person since for every entity in the table a person
but not necessarily a soccer player can be detected. Since persons are one of the
largest classes in DBpedia with many subclasses, the assignment of too general or
too specific classes occur most often for tables with this topical category.

6.5. EVALUATION 121

Conclusions from the error analysis With the T2D gold standard that covers
tables with different characteristics, we are able to identify which challenges can
only partly overcome with the T2K Match algorithm. Moreover, using a subset of
DBpedia and solely overlapping tables provides a restricted, not realistic setting
but helps to concentrate on the most important issues. The following conclusions
can be drawn from the error analysis:

• Metadata Recovery & Iterative Matching Errors made during the mata-
data recovery and additional iterations only slightly influence the results.

• Candidate Selection For the schema matching tasks, property and class
matching, the correct element in DBpedia is almost always among the can-
didates. For the instance matching task, the candidate selection is a potential
for improvement but nevertheless for over 80% of all entities the according
instance is a candidate.

• Deciding for the correct correspondence Since the correct knowledge base
elements are mostly among the candidates, the main challenge is to de-
cide for the correct candidate. Within the results per category we deter-
mined that mostly the lack of sufficient evidence leads to incorrect corre-
spondences since terminological but also conceptual heterogeneities cannot
be overcome. For example, if only evidence based on the label compari-
son can be used and no schema-related evidence can be gathered due to the
missing attribute overlap, taking the correct decision is difficult.

All errors are aggravated if the table covers only a few entities since all steps
rely in the first place on the instance candidates. Depending on the individual table
characteristics, the mentioned issues have a larger influence. We use these findings
to enhance the matching in the subsequent chapters.

6.5.3 Comparison with State-of-the-Art

In order to estimate the performance of T2K Match, we compare the results to the
results of state-of-the-art approaches. We start with the comparison of methods
for the instance matching task to see whether addressing the data matching in an
integrated fashion is beneficial. Further, we highlight differences to the results of
the PARIS system which has been developed for matching ontologies. Finally, we
examine whether our results are in line with the reported performances of compar-
ative systems that match web tables to knowledge bases.

Comparison with individual schema and data matching methods At first,
we compare the achieved results to the results of methods that focus on either
schema or data matching. Through this, we want to find out whether addressing
the schema matching together with the data matching in a combined way is useful.
We apply the following methods:

122 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

• Candidate Selection uses the best candidate for each entity that is returned
by the index. As described, the similarity only relies on the labels according
to the internal Lucene ranking. The results serve as a reference value for the
improvements achieved by the subsequent steps of the algorithm.

• DBpedia Lookup We query the DBpedia Lookup service11 for each entity
label and choose the first result as correspondence. In addition to the string
comparison, it considers the link in-degrees of the Wikipedia pages that de-
scribe the instances. Thus, it emulates the strategy of always choosing the
most common sense of a label.

• LogMap is an ontology matching tool that uses lexical and structural heuris-
tics.12 For matching ontologies, it has been evaluated as one of the best and
most efficient systems [Dragisic et al., 2014].

Table 6.9: Results of methods focusing on the instance matching task.

Method Precision Recall F-measure
Candidate Selection 0.53 0.53 0.53
DBpedia Lookup 0.79 0.73 0.76
LogMap 0.57 0.89 0.70
T2K Match 0.90 0.76 0.82

Other data matching approaches like the SILK framework are more difficult to
apply on the web tables since they rely on schema correspondences that are not
known. Table 6.9 presents the comparison of the three methods. T2K Match out-
performs all techniques concerning precision and F-measure. The candidate selec-
tion only achieves an F-measure of 0.53 which indicates that purely relying on sim-
ilarities between the labels does not lead to sufficient evidence.Additionally taking
the popularity of an instance into account performs better. The DBpedia Lookup
achieves even better F-measure scores than LogMap. Mainly, ontology matching
tools are designed to match sources with rich structures that are not given by web
tables. Altogether, acceptable results are obtained if the most common sense of a
label is assigned but considering values and accordingly schema-related evidence
is required to achieve F-measures scores above 0.8. We will analyze the utility of
different features in more detail in Chapter 7.

For the schema matching, i.e., property and class matching task, it is more diffi-
cult to receive comparable results of other methods. As most of the schema match-
ing tools put a large emphasis on the attribute label, we tested how much correct
correspondences can be detected by a method that purely relies on the comparison
between the attribute and the property label. Therefore, we apply the Jaccard sim-
ilarity. With the best possible threshold of 0.3, a precision of 0.14 with a recall of

11http://wiki.dbpedia.org/projects/dbpedia-lookup
12http://www.cs.ox.ac.uk/isg/projects/LogMap/

http://wiki.dbpedia.org/projects/dbpedia-lookup
http://www.cs.ox.ac.uk/isg/projects/LogMap/

6.5. EVALUATION 123

0.39 is achieved. Regarding the class matching task, since the tables do not have
an explicit label, we cannot use it to employ a similar method.

In summary, individually addressing each matching task results in lower perfor-
mances, if applicable. Hence, it is reasonable why systems including T2K Match
handle the task of matching web tables to knowledge bases in an integrated fashion.

Comparison with PARIS PARIS performs simultaneous schema and data
matching with ontologies as input sources. Among the few ontology matching
systems that perform a combined approach, it is the only one that has been applied
on large-scale cross-domain datasets. The PARIS system has been evaluated within
four different scenarios, one is the matching of YAGO and DBpedia. For this sce-
nario, the authors report an F-measure of 0.81 for the instance matching task with a
precision of 0.92/1.0 for the property and of 0.84/0.94 for the class matching task.
Two different precision scores are mentioned since the performance depends on the
direction whether YAGO is matched to DBpedia or the other way around. The eval-
uation of the instance matching task can be performed automatically by comparing
the common Wikipedia identifiers. Contrary, the property and class matching tasks
have to be evaluated by sampling and manually annotating correspondences. That
is also why a recall estimation is not provided.

Compared to our results, the performance of the instance matching task is
pretty similar: both achieve precision of 0.9 with a recall of 0.75. The same ap-
plies for the class matching tasks. Nevertheless, we have to keep in mind that we
only consider a subset of DBpedia which facilitates matching due to the restricted
amount of available knowledge base elements. Contrary, the results of the property
matching task significantly differ by at least 15%. One reason is that ontologies
provide a formal schema, such that no errors of the metadata recovery exist and
we assume more consistent formatting etc. since the values are automatically ex-
tracted. Another reason is the structural richness and the size of the ontologies.
While the ontologies describe millions of instances with a variety of properties,
web tables usually only contain a few entities with a few attributes. In more detail,
DBpedia covers on average 11.44 properties to describe an instance, whereas the
number of attributes used in web tables is around 4. Similarly, each class covers
up to millions of instances, while a web table contains far less entities. Thus, more
evidence can be collected during the matching. This finding is strengthened by the
results reported by the authors: for instances described by more than 10 facts, the
precision and recall jumps to 0.97 and 0.85, respectively. To emphasize the out-
come, we run PARIS on the overlapping tables of T2D. For the instance matching
task, an F-measure of 0.07 is reached due to a pretty low precision of 0.04. Both
other tasks achieve similarly low performances. The results of PARIS on T2D are
confirmed by [Efthymiou et al., 2017]. Although it might be possible to improve
the results by tuning the parameters, it shows that out-of-the-box, a system focus-
ing on rich ontologies is not capable to deal with web tables.

124 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

Comparison with other web table matching systems Most existing systems
apply probabilistic models to match web tables to knowledge bases. Three such
systems have been introduced by [Limaye et al., 2010], [Mulwad et al., 2013]
and [Venetis et al., 2011]. Except for the TableMiner+ system [Zhang, 2014a],
columns covering literal values are not considered. All four approaches have been
evaluated on tables from the Limaye gold standard, mapped to the knowledge bases
YAGO, DBpedia, or Freebase. While Limaye et al. and Venetis et al. use the same
set of tables, Mulwad et al. recreated the gold standard by running their system
with low threshold and verify the correctness of the returned correspondences. As
stated in Section 6.4, the majority of the tables in the Limaye gold standard origi-
nates from Wikipedia where other conditions hold than for web tables coming from
arbitrary website. For example, Wikipedia tables always include a header row.

Although the evaluations have been performed on different datasets, we try to
draw some general conclusions. Since neither the implementations nor the results
are publicly available, we can only speculate about the different outcomes.

• F-measure scores for the instance matching task vary between 0.76 and 0.84,
for the property matching task between 0.55 and 0.84, and for the class
matching task between 0.45 and 0.69.

• The results of the property matching are below the instance matching results.

• For the instance and property matching task, T2K Match reports F-measure
scores in the same range.

The higher class matching results achieved by T2K Match mainly results from
two facts: we only consider a subset of DBpedia and other knowledge bases like
YAGO have in contrast to DBpedia a more fine-grained structure. Among other
features, all systems exploit instance candidates in order to determine the class.
Thus, if incorrect instances are assigned, the class assignment will most likely be
incorrect, too. Especially due to the small sizes of tables, this happens easily. Fur-
ther, the more classes exist, the more difficult it gets to identify which particular
class fits best. Since each superclass covers all instances of its subclasses, taking
the class to which the majority of instances belong to is not sufficient. Considering
the matched properties helps but only if these properties are specific for a class.
In summary, especially by having a look at the outcomes of other systems, we see
that the class matching task is not as simple as our results indicate.

Altogether, independent of the dataset, the achieved performances of other web
table to knowledge base matching systems mostly coincide with our results. How-
ever, we can see that the outcomes still leave room for improvement for all three
matching tasks.

6.6. SUMMARY 125

6.6 Summary

In this chapter, we introduced the matching of web tables to knowledge bases. First,
we pointed out the challenges of using web tables as a source. Some challenges
like the amount of data and its variety have to be dealt with whenever large amounts
of sources are integrated. Others are more specific for web tables like the size of
the tables or the lack of a formal schema.

To match web tables to a knowledge base, we described the three matching
tasks that need to be addressed: instance, property, and class matching. To be able
to perform all matching tasks, we presented a web-scale algorithm, T2K Match,
that combines the tasks in an integrated fashion. The evidence gathered from each
matching task has an influence on the other tasks. At first, candidates for each table
element are detected which serve as basis for subsequent steps. In contrast to all
existing works, except for [Zhang, 2016], the algorithm considers literal columns
covering numeric values or dates.

As one contribution of this thesis, we proposed the T2D gold standard which
covers correspondences for all three tasks. In contrast to existing gold standards,
T2D shows characteristics that especially focus on providing a dataset covering a
wide range of challenges:

• The gold standard is publicly available.

• It contains large amounts of correspondences for all three matching tasks,
including correspondences to datatype properties.

• The tables are extracted from more than one website to incorporate tables
with different characteristics.

• It includes tables that do not overlap with the knowledge base.

The T2D gold standard is used to evaluate T2K Match. In summary, F-measure
scores above 0.8 for the instance and 0.94 for the class matching task are achieved.
The performance of the property matching task is lower with an F-measure of 0.7.
Hence, the property matching seems to be the most difficult task for T2K Match.
We analyzed for which topics the tasks perform best and which differences can be
observed. In general, the lack of sufficient evidence poses the greatest challenge.
This is caused by heterogeneities such as the usage of different terms and by the
small amount of information which is available within each individual table. To
estimate the results, we discussed the performances reported by other web table to
knowledge base matching systems. Although the evaluation has been performed on
different datasets, the outcomes are in the same range, except for the class match-
ing task since we restricted ourselves to a subset of the DBpedia classes.

By proposing the T2K Match method and the T2D gold standard, we laid
the foundations for a systematical evaluation of the web table to knowledge base

126 CHAPTER 6. WEB TABLE TO KNOWLEDGE BASE MATCHING

matching task. The error analysis indicated that only considering the table content
not always sufficient to decide for the correct correspondence. Based on our find-
ings in combination with the results of related approaches, we conclude that web ta-
bles often do not form self-contained units. Without considering additional features
like the context of the table, e.g., the surrounding text, it is difficult, and sometimes
impossible, to identify the meaning behind the data [Embley et al., 2006, Hurst,
1999].

Chapter 7

Feature Utility Analysis

In the previous chapter, we introduced T2K Match, a method that performs the
three matching tasks, instance, property, and class matching, in an integrated fash-
ion. As shown on the T2D gold standard covering a wide range of challenges, the
algorithm is capable of generating correspondences within a restricted scenario:
only a subset of the DBpedia classes and web tables overlapping with DBpedia
have been used. Even with the simpler input, we demonstrated that finding the
correct correspondences is not straightforward. The main reason is the lack of evi-
dence which leads to incorrect decisions. This lack cannot be overcome by the set
of features used by T2K Match. Since tables do not always form self-contained
units, features found in the table gather insufficient evidence to decide for the cor-
rect correspondence. For the instance matching task this happens if a value-based
similarity cannot be computed due to non-overlapping attributes. In consequence,
a matcher has to rely on the comparison of the labels which can be ambiguous.

In this chapter, we present a utility analysis of features that have been consid-
ered in state-of-the-art web table matching systems. The set of features includes
features extracted from the context or gathered by external resources. By extend-
ing the T2K Match algorithm, it is possible to integrate all features into a single
system and evaluate it on the T2D gold standard. Further, to be able to handle
the increased amount of computed similarities in a proper way, we employ matrix
predictors that adapt the similarity aggregation individually for each table. We use
the full set of DBpedia classes and all web tables, including non-overlapping ta-
bles, of the T2D gold standard as input for the extended T2K Match method. Thus,
we determine how the matching results vary within the more complex scenario.
Moreover, we analyze the utility of every feature for the matching tasks. The anal-
ysis also includes an investigation to answer which features are most beneficial for
which table characteristics. Finally, we show to which extent the additional fea-
tures can overcome the lack of evidence as well as other difficulties we identified
during the T2K Match error analysis in the previous chapter (Section 6.5.2). The
following example illustrates how additional features can improve the matching

127

128 CHAPTER 7. FEATURE UTILITY ANALYSIS

performance.

Example 7.1 Figure 7.1 depicts an example in which the lack of evidence leads to
an incorrect correspondence. For the lake with the label Lake Superior in the web
table, two instance candidates in DBpedia have been detected: Lake Superior and
Superior Lake. The label similarity to both candidates is the same. In addition, a
value-based similarity cannot be determined since the value “MN-WI-Ontario” is
not similar to any value of the candidates. Hence, a correspondence to one of the
instances is created randomly. However, the string “Ontario” can be found in the
abstract of the Lake Superior instance. In addition, based on popularity statistics,
the Lake Superior candidate is much more common. By additionally considering
the abstracts of the instances and their popularity, more evidence can be gathered
which supports the decision that the candidate Lake Superior is the better choice.

Figure 7.1: Example web table about lakes with two instance candidates for the
entity with the label “Lake Superior”.

Subsequently, we start with the feature review in Section 7.1 and explain in
Section 7.2 how T2K Match is adapted. Section 7.3 discusses how existing sys-
tems exploit different features. The utility of each feature is analyzed in Section
7.4 and the results of the best feature combination for each task are reported. In
Section 7.5, the findings are summarized and open issues are discussed.

Parts of the feature overview and the results have already been published in
[Ritze and Bizer, 2017]. This works was carried out by myself alone.

7.1 Feature Review

Within each matching process, features serve as input for matchers which apply
a similarity measure to estimate the feature similarity. In this section, we intro-
duce which features have been used for matching web tables by state-of-the-art

7.1. FEATURE REVIEW 129

approaches. To enable a better overview, we define a categorization scheme which
enables a classification of the features according to different characteristics. Each
feature category is described in more detail, including a summary of the methods
that make use of these features. The matchers using the presented features as input
are described in a later section of this chapter (Section 7.2).

7.1.1 Feature Categorization

To structure the types of web table features, we introduce the categorization scheme
depicted in Figure 7.2. In general, a feature can either be found within the table
itself (Table T) or outside the table (Context C). As context features, we consider
everything that is not directly contained in the table. Context features can either be
page attributes (CPA), like the page title, or free text like the words surrounding
the table (CFT). We further divide table features into single features (TS), e.g.,
a label of an entity, and multiple features (TM), e.g., the set of all attribute labels
occurring in a table. Single features refer to a value in a single cell while multiple
features combine values spanning more than one cell. Other features originate from
external resources (E).

Figure 7.2: Web table feature categorization scheme.

7.1.2 Table Features

Table 7.1 gives an overview of the table features used by web table matching sys-
tems. Single table features are the entity label, the attribute label, as well as the
values in the cells. Multiple features are the entity with all information included in
the row, the set of attribute labels, and the table as text. All multiple features are
represented as bag-of-words.

Table 7.1: List of table features.

Feature Description Category
Entity label The label of an entity TS
Attribute label The header of an attribute TS
Value The value that can be found in a cell TS
Entity The values of one row TM
Set of attribute labels The set of all attribute labels TM
Table The table content without any structure TM

130 CHAPTER 7. FEATURE UTILITY ANALYSIS

Example 7.2 In Figure 7.3, the tables features for an example table about countries
are illustrated. An example of an entity label is Russia while Capital city presents
an attribute label and Canberra is the value indicating the capital of Australia.
The set of attribute labels contains for example the labels Rank and Population
density #sq km. The entity given as bag-of-words for the country China looks
like following: {4, China, Beijing, 133004500, Jul-08, 3.56%, 9596969, 138.6}.
Finally, the table as bag-of-words covers all cells in the table, including the entity
and attribute labels.

Figure 7.3: Table features of a web table about countries.

Since single table feature lay the foundation for the matching tasks, all state-
of-the-art systems take them into account. However, most systems are limited to
single table features in combination with features derived by other tasks [Zwickl-
bauer et al., 2013,Syed et al., 2010,Limaye et al., 2010,Muñoz et al., 2014,Venetis
et al., 2011, Ling et al., 2013, Hassanzadeh et al., 2015]. Contrary, multiple table
features are rarely considered. Approaches by [Hignette et al., 2007] and [Wang
et al., 2012] include the set of attributes labels as features that are used to gather
hints about the topic of a table. All systems using the Wikitology to gather candi-
dates [Mulwad et al., 2010b, Mulwad et al., 2013, Syed et al., 2010] and TableM-
iner [Zhang, 2014b] match web tables to knowledge bases using the attribute label
and the entity feature. Only InfoGather [Yakout et al., 2012] exploits all multiple
table features but for matching web tables among each other.

7.1.3 Context Features

The context of a table is specified as everything that is related to, but not included
in, the table. Context features that are used in state-of-the-art approaches are listed
in Table 7.2. Both, the page title and URL are page attributes that present gen-
eral web page information. The only free text feature is the surrounding words,

7.1. FEATURE REVIEW 131

including all words before and after the table. In general, context features are not
necessarily related to a particular table.

Table 7.2: List of context features.

Feature Description Category
URL The URL of the web page CPA
Page title The title of the web page CPA
Surrounding words The 200 words before and after the table CFT

Example 7.3 In Figure 7.4, the context features of the web table about countries
are illustrated. The page title starting with “List of Countries” indicates that a
table on this web page is about countries. In contrast, the URL does not directly
tell something about the content. However, other URLs clearly help to understand
the tables, e.g., the URL http://airportcodes.me/us-airport-codes
expects a table found on this page to describe airports. The words surrounding the
table, in this case only above the table, contain terms like “area” or “population”
which give hints that the table is about populated places.

Figure 7.4: Context features of a web table about countries.

Two other imaginable context features are the title of the table and semantic
markups like Microdata annotations. [Hignette et al., 2007] compute a similarity
between the title of the table and property labels of a domain-specific ontology.
The TableMiner system [Zhang, 2016] uses semantic markups found on the web
pages. However, our preliminary investigations indicate that a table title is very
rarely specified, only for about 3% of the tables. Similarly, semantic markups have
only been detected on particular websites like IMDB.com, none of the websites
from which the tables in T2D have been extracted.

http://airportcodes.me/us-airport-codes

132 CHAPTER 7. FEATURE UTILITY ANALYSIS

As stated by [Lehmberg and Bizer, 2016], context features are crucial for high
quality matching. Without considering information in the context of the table, it is
sometimes even impossible to identify the meaning behind the data [Hurst, 1999].
Two different strategies have been proposed to exploit the context, either to gather
more information about single attributes or about the table itself. [Braunschweig
et al., 2015a] take the surrounding words to extract attribute-specific context, the
CONTEXT operator of the Octopus system [Cafarella et al., 2009] uses context
features to find hidden attributes which are not explicitly described in the table. To
find information about the table, [Pimplikar and Sarawagi, 2012] match keywords
to the surrounding text of the table. Both, the InfoGather [Yakout et al., 2012] and
the TableMiner system [Zhang, 2014b] use the page attributes and the text to match
web tables, either among each other or to a knowledge base. Thus, TableMiner is
the only system tackling the web table to knowledge base matching task that goes
beyond the information found within the table.

7.1.4 External Features

Additionally, to overcome terminological heterogeneities, a common strategy is
to employ external resources, e.g., the general lexical databases WordNet [Fell-
baum, 1998]. For matching web tables, systems use co-occurrences databases that
leverage web text corpora [Venetis et al., 2011], natural language patterns to find
relations between entities [Sekhavat et al., 2014], or exploit the anchor text of
hyperlinks to find alternative surface forms of entity names [Bryl et al., 2015]. Al-
together, we investigate three external resources: WordNet, a surface form catalog,
and the popularity score of the instances computed based on Wikipedia inlinks.

7.1.5 Knowledge Base Features

In addition to the web table features, Table 7.3 depicts the according knowledge
base (DBpedia) features. Analogously, knowledge base features can either refer to
a single triple, e.g., a triple representing the information about an instance label,
or to a set of triples like the set of all abstracts of instances belonging to a class.
Features like the label or value are simply counterparts of table features. The ab-
stract of an instance, provided by the dbo:abstract property, is the first paragraph
of the according Wikipedia article. Contrary to other information provided by a
knowledge base, the abstracts are unstructured texts.

7.2 Matching Components

In the following, we present the matching process that is used to determine the
utility of the features. T2K Match algorithm is adapted to deal with the increased
amount of features and the non-overlapping tables included in T2D. The compo-
nent that has changed most is the aggregation of the similarities for which matrix
prediction is employed. Further, the matchers for each task are discussed in detail.

7.2. MATCHING COMPONENTS 133

Table 7.3: List of DBpedia features.

Feature Description
Instance label The name of the instance mentioned in the rdfs:label
Property label The name of the property mentioned in the rdfs:label
Class label The name of the class mentioned in the rdfs:label
Value The literal/object that is found in the triple object position
Instance abstract The abstract describing an instance
Instance classes The classes (+superclasses) to which an instance belongs
Set of class instances The set of instances belonging to a class
Set of class abstracts The set of abstracts of instances belonging to a class

7.2.1 Adaptions of the Methodology

A quick recap, each matching process consists of the four steps: preprocessing,
matcher execution, aggregation, and classification. The methodology introduced in
the previous chapter covers straightforward methods for these components. Except
for the preprocessing, all steps are improved to be able to handle the increased
amount of features and non-overlapping tables.

• Matcher Execution First, the candidate selection is performed to find can-
didates for all tasks as before. Afterwards, a larger set of matchers is applied
for each task will be introduced in Sections 7.2.3, 7.2.4, and 7.2.5.

• Aggregation With more features, more similarity matrices need to be ag-
gregated. In contrast to fixed weights, an adapted aggregation strategy using
matrix prediction is applied as it will be described in Section 7.2.2.

• Classification Distinguishing between overlapping and non-overlapping ta-
bles has not been necessary. To detect non-overlapping tables which lead to
incorrect correspondences, an adapted classification with a prefiltering and a
thresholding is applied.

Prefiltering As shown by [Cafarella et al., 2008a], only a small amount of web
tables is relational. In addition, only about 3% of the relational tables actually
overlap with DBpedia (see Chapter 5). Hence, we exclude all tables for which an
overlap with the knowledge base is not foreseeable. Therefore, a set of heuristics is
used. The heuristics follow two paradigms: overlapping tables correspond at least
to a few instances and most of these instances belong to the same class since we
assume a table to describe one topic. More precisely, Listing 7.1 depicts the four
requirements that need to be fulfilled for a table in order to not get filtered. If less
than 3 or less than 15% of the rows do not have an instance candidate at all, we
assume the table to not have enough overlap with the knowledge base. Further, if
the amount of classes to which the instances belong to is too large, the table either
covers diverse topics or the candidates only seem similar but actually do not fit to

134 CHAPTER 7. FEATURE UTILITY ANALYSIS

the rows. In both cases, we do not want to generate correspondences between the
table and the knowledge base because we cannot rely on the similarities. The same
holds if more than 50% of the instances do not belong to the chosen class. Con-
ditions for properties are not included since tables do not need to share properties
with the knowledge base. All parameters have been determined empirically.

Listing 7.1: Pseudocode for the prefiltering of a table t as part of the classification.
1 inst <- best instance candidates of t
2 class <- best class candidates of t
3 classes <- all class candidates of t
4 if(|inst| < 3 or |inst|/|rows| < 0.15) {return true}
5 if(1 - |classes|/|inst| < 0.3) { return true}
6 if(|inst belong to class|/|inst| < 0.5) {return true}
7 return false

Thresholding As soon as all non-overlapping tables are filtered out, a thresh-
old is applied on the set of possible correspondences to only return the ones that
are likely to hold. If the final similarity score between two elements is too low,
the system is not evident enough. In contrast to the threshold-based classifier in
the algorithm, a threshold for each matching task is used instead of a threshold
for all correspondences independent of the task. We determine a threshold for each
matching task by a learning decision tree, trained in a 10-fold cross-validation style.

With the adaptions to the methodology, the method is able to deal with the
additional features as well as with non-overlapping tables. Especially the efficient
filtering of non-overlapping tables is important for matching web-scale corpora.

7.2.2 Matrix Prediction

With a rising amount of features, the number of similarity matrices generated by
the matchers grows. The T2K Match algorithm used one of the most common ag-
gregation strategies which assign weights to each matcher to indicate how much
influence their matrices should have [Doan et al., 2012]. Most approaches in the
field of web table matching use such a weighted aggregation to combine similarity
matrices. While some of them empirically determine the weights, e.g., TableM-
iner [Zhang, 2014b], others employ machine learning [Yakout et al., 2012,Limaye
et al., 2010]. They all have in common that the same weights are used for all ta-
bles. Due to the diversity of tables, one single set of weights is not always the best
solution. Even tables with a same topic do not necessarily share the same charac-
teristics. For example, for a table with descriptive attribute labels, the best strategy
is to rely on the labels which is not the case for a table covering the same topic but
uses very general attribute labels. To overcome this issue, we use a quality-driven
combination strategy which adapts itself for each individual table. Such strate-
gies have been shown as promising in the field of ontology matching [Cruz et al.,

7.2. MATCHING COMPONENTS 135

2009]. The approach tries to measure the reliability of matchers by applying so
called matrix predictors on the generated similarity matrices [Sagi and Gal, 2013].
Predictors foretell the success of a matcher in identifying correct correspondences
by analyzing the matchers pairwise similarity scores. The predicted reliability is
then used as weight for each matrix. Since the prediction is individually performed
on every individual matrix, the reliability of a matcher can differ for each table.
Hence, we are able to use weights which are tailored to each table.

We propose and later evaluate three different matrix predictors: the average
predictor (Pavg), the standard deviation predictor (Pstdev), and the Herfindahl pre-
dictor predictor (Pherf). While the first two predictors that have been proposed
by [Sagi and Gal, 2013], the last one bases on the Herfindahl Index [Rhoades,
1993] and estimates the diversity of a matrix.

Average Predictor Based on the assumption that a high element in the similar-
ity matrix leads to a correct correspondence, a matrix with many high elements is
preferred over a matrix with lower elements. We compute the average of a matrix
M with matrix elements e as following:

PavgpMq �
°

i,j|ei,j¡0 ei,j°
i,j|ei,j¡0 1

(7.1)

Standard Deviation Predictor In addition to the average, the standard devi-
ation indicates whether the elements in a matrix are close to the average. With a
low standard deviation, we assume the matcher to always return roughly the same
similarity independent of the input. Thus, it is difficult to distinguish whether a cor-
respondence is correct. Formally, the standard deviation is computed as follows:

PstdevpMq �
d°

i,j|ei,j¡0pei,j � µq2
N

(7.2)

µ is the average of all matrix elements and N is the number of non-zero elements.

Herfindahl Index Predictor The Herfindahl Index (HHI) is an economic con-
cept which measures the size of firms in relation to the industry and serves as an
indicator of the amount of competition among them. A high HHI indicates that
one firm has a monopoly while a low HHI points to a lot of competition. We use
this concept to determine the diversity of each matrix row and in turn of the matrix
itself. Our matrix predictor based on the HHI is similar to the Match Competitor
Deviation Predictor, which has been recently proposed by [Gal et al., 2016], that
compares the elements of each matrix row with its average. We compute the nor-
malized HHI for each matrix row which ranges between 1

n and 1.0 where n is the
dimension of the matrix row.

136 CHAPTER 7. FEATURE UTILITY ANALYSIS

�
1.0 0.0 0.0 0.0

�
Figure 7.5: Matrix row with the
highest possible HHI (1.0)

�
0.1 0.1 0.1 0.1

�
Figure 7.6: Matrix row with the
lowest possible HHI (0.25)

Example 7.4 Figure 7.5 and Figure 7.6 show the highest and lowest possible case
for a four-dimensional matrix row. At best, we find exactly one element larger than
zero while all other elements are zero. Having this ideal case, we can perfectly see
which pair fits. In contrast, a matrix row which has exactly the same element for
each pair does not help at all to decide which correspondence should be created.
As result, the matrix row in Figure 7.5 has a normalized HHI of 1.0 and the matrix
row in Figure 7.6 of 0.25.

To get an estimation per matrix, we build the sum over all HHIs per matrix row
and normalize it. Formally:

Pherf pMq � 1

V

¸
i

°
j ei,j

2

p°j ei,jq2
(7.3)

where V represents the number of matrix rows in the matrix.

All predictors predict a value between 0 and 1 where a high value indicates that
the matrix is better according to the prediction criteria. A higher value can also be
interpreted as a higher reliability such that a greater emphasis should be put on the
according matrix during the aggregation. In Section 7.4.2, we will analyze which
predictor is best suited for which matching task and to which extent the predictors
correlate with the correct correspondences.

The following example motivates why individually adapted weights are useful.

Example 7.5 Figure 7.7 and Figure 7.8 depict excerpts of tables about airlines and
videogames, together with parts of the corresponding DBpedia class.1 For both ta-
bles, similarity matrices based on a label and value comparison between the entities
and the instances have been computed. The weights of the matrices are determined
on the full tables using the matrix predictor Pherf . While the weights for the table
about airlines are almost the same (0.51 and 0.49), the weights for the table about
videogames vary (0.66 and 0.33). Both, the name of the airline and the code, are al-
most unique and point to the correct instances. Hence, it makes sense to evenly rely
on the label and the value, unlike it has been done using fixed weights, see Figure
6.4. Contrary, the attributes of the videogames table are not very discriminative for
two reasons: the values can be different, e.g., “Namco Bandai” vs. “Bandal Namco
Entertainment” and the publisher as well as the release date of other videogames
can be the same. Thus, emphasizing the results of the label comparison is useful to
determine the correct instance.

1Both tables originate from the T2D gold standard: 5873256 0 7795190905731964989 (airlines),
22864497 0 8632623712684511496 (videogames).

7.2. MATCHING COMPONENTS 137

Figure 7.7: Example table about airlines with similar label and value weights.

Figure 7.8: Example table about videogames with varying label and value weights.

7.2.3 Instance Matchers

We include five matchers for the instance matching task.

Entity Label Matcher The matcher compares the entity label with the instance
label using a hybrid Jaccard with Levenshtein as inner measure. Only the top 20
instances with respect to the similarities are considered further for each entity.

Value-based Matcher We use the value-based matcher of T2K which uses
data type specific similarity measures. The value similarities are weighted with the
attribute similarities and are aggregated per entity. If we know that an attribute cor-
responds to a property, the similarities of the according values get a higher weight.

138 CHAPTER 7. FEATURE UTILITY ANALYSIS

Surface Form Matcher Web tables often use synonymous names (“surface
forms”) which is difficult to spot for pure string-based similarity measures. The
problem refers to the terminological heterogeneity which has been identified as a
challenge for T2K. To understand alternative names, we use a surface form catalog
that has been created from anchor-texts of intra-Wikipedia links, Wikipedia article
titles, and disambiguation pages [Bryl et al., 2015]. Within the catalog, a TF-IDF
score is assigned to each surface form. For each string we find in the table, either
an entity label or a cell value, we build a set of terms consisting of the string itself
together with according surface forms. We only consider the three surface forms
with the highest TF-IDF scores if the difference of the scores between the two best
surface forms is smaller than 80%, otherwise we only add the surface form with the
highest score. The matcher itself compares each term found in the set of terms with
the counterparts in the knowledge base by using the entity label and value-based
matcher, respectively. As similarity score, the maximal similarity per set is taken.

Popularity-based Matcher The popularity-based matcher takes into account
how popular an instance in the knowledge base is. For example, an instance with
the label Paris can either refer to the capital of France or to the city in Texas. Both
instances are equal regarding their labels but most of the times, the city in France
will be meant. If additional evidence is missing, which is a serious issue as shown
in the previous chapter, taking the most popular instance is the best strategy. To
compute the popularity of an instance, we count the number of links in Wikipedia
that point at the Wikipedia page describing the instance [Daiber et al., 2013]. Alto-
gether, the matcher takes an entity and an instance as input and returns a similarity
score that represents the popularity of the instance.

Abstract Matcher Comparing the entity label and the values can be insuffi-
cient if the labels differ too much or if available information about an instance is
not covered by the values, e.g., the capital of a country is not mentioned in the
knowledge base but it is stated in the abstract of the instance. This becomes es-
pecially relevant for the use case of filling missing values in the knowledge base.
Therefore, the abstract matcher compares all values of a row with the abstracts of
the instances, both represented as bag-of-words. For each entity given as bag-of-
words, we create a TF-IDF vector and compare it to the TF-IDF vectors constructed
from the abstracts where at least one term is required to overlap. As similarity mea-
sure we use a combination of the denormalized cosine similarity (dot product) and
Jaccard to prefer vectors that contain several different terms in contrast to vectors
that cover only one term a number of times:

simpA,Bq � A
B � 1�
�

1

}AXB}

(7.4)

where A and B are TF-IDF vectors.

7.2. MATCHING COMPONENTS 139

7.2.4 Property Matchers

We utilize the following four matchers for the property matching task.

Attribute Label Matcher Although the attribute label is not always available
and not necessarily descriptive, it can give hints about the content of the attribute.
For example, the label capital in a table about countries indicates that a property
named capital is a better candidate than largestCity even if the similarities of the
values are very close. Analogously to the similarity measures used for entity la-
bels, we apply a hybrid Jaccard with Levenshtein as inner measure to compare the
attribute and property label.

WordNet Matcher To solve alternative names for attribute labels, we consult
the lexical database WordNet. WordNet is frequently applied in various research ar-
eas, e.g., in the field of ontology matching. Besides synonyms, we take hypernyms
and hyponyms (also inherited, maximal five, only coming from the first synset) into
account. As an example, for the attribute label country the terms state, nation, land,
and commonwealth can be found in WordNet. For each attribute label, we gener-
ate a set containing the label itself together with additional terms. The similarity
score is computed by applying the attribute label matcher on each term of the set
and returning the maximal similarity score that has been determined among the set.

Dictionary Matcher While WordNet is a general source of information, we
ancillary create a dictionary for attribute labels based on the results of matching
the WDC WTC 2012 to DBpedia as it has been done for the profiling (Chapter 5).
The correspondences are grouped by the property they refer to. For each group, the
according labels of the attributes are extracted. Thus, we are able to generate a dic-
tionary containing the property label together with the attribute labels that, based
on the matching, seem to be synonymous. At this point, the dictionary includes a
lot of noise, e.g., the term name is a synonym for almost every property. A filtering
based on the number of occurrences or on the number of websites is not useful,
since the rare cases are most promising. Hence, we develop a filter which excludes
all attribute labels that are assigned to more than 20 different properties because
they do not provide any benefit. The comparison is the same as for the WordNet
matcher.

Duplicate-based Attribute Matcher The duplicate-based attribute matcher
integrated in the algorithm is the counterpart of the value-based matcher: the com-
puted value similarities are weighted with the according instance similarities and
are aggregated over the attribute. Thus, if two values are similar and the associated
entity-instance pair is similar, it has a positive influence on the similarity of the
attribute-property pair.

140 CHAPTER 7. FEATURE UTILITY ANALYSIS

7.2.5 Class Matchers

We use the matchers listed below to assign classes to tables.

Page Attribute Matcher One strategy to overcome the lack of evidence that
results in incorrectly assigned classes is to consider details of the web page as the
page title and URL from which the table has been extracted. We preprocess both
page attributes, page title and URL, by applying stop word removal and stemming.
The similarity of a page attribute to a class is the number of characters of the class
label normalized by the number of characters in the page attribute.

Text Matcher Ideally, the set of abstracts belonging to instances of a class
contains not only the instance labels and associated property labels but also signif-
icant clue words. We use the text matcher for the features set of attribute labels,
table and surrounding words. All features are represented as bag-of-words. After
removing stop words, we build TF-IDF vectors indicating the characteristic terms
of the table and the classes. We apply the same similarity measure which is used
by the abstract matcher.

Majority-based Matcher The majority-based matcher refers to the identifica-
tion of class candidates as described in the algorithm. Based on initial instance
candidates detected by comparing the entity and instance labels, it is counted how
often such a candidate belongs to a particular class. As similarities, the relative
amounts of candidate instances associated with a class are returned.

Frequency-based Matcher Ideally, we want to find correspondences to spe-
cific classes over general classes which is not captured by the majority-based class
matcher. This issue has not been posed a challenge to the algorithm since it has
been evaluated on a DBpedia subset covering less classes. Similar to [Mulwad
et al., 2013], we define the specificity of a class c as following:

specpcq � 1� |c|
maxdPC |d| (7.5)

where C is the set of all classes in the knowledge base.
The specificity for each class corresponds to the similarity score that will be re-
turned by the frequency-based matcher.

Agreement Matcher The agreement matcher exploits the amount of class
matchers operating on features covering different aspects. Although the matchers
might not agree on the best class to choose, a class which is found by all the match-
ers is usually a good candidate. We propose the agreement matcher which takes
the results of all other class matchers and counts how often they agree per class. In
this case, all classes having a similarity score greater than zero are counted.

7.3. RELATED WORK 141

7.3 Related Work

In this section, we revise the state-of-the-art web table matching systems with re-
spect to the features they use and how they exploit them. All systems have been
introduced in the related work section of the previous chapter. We distinguish be-
tween approaches that only consider features extracted from the table and methods
that include also information found outside the table. A comparison of the match-
ing results reported by the systems is provided in the evaluation (Section 7.4).

7.3.1 Approaches Using Table Features

In this section, we discuss methods that rely on features found in the table itself.
Some systems solely rely on table features without including any further back-
ground knowledge. A recently published approach uses word embeddings on the
entity and instance labels. Thus, the similarities are computed based on the cosine
distance between the entity and instance vector representation [Efthymiou et al.,
2017]. Other approaches proposed by [Limaye et al., 2010] and [Muñoz et al.,
2013] focus on gathering statistics about properties from the knowledge base, e.g.,
to determine whether a property is used in a functional way. [Limaye et al., 2010]
find instance and property candidates by comparing the entity and attribute label
as well as taking the values into account. Additionally, the method includes all
alternative instance and property labels that can be found in the knowledge base,
e.g., redirects. Based on the gathered candidates, a joint inference is applied to
find the best assignments for all three matching tasks. Features that go beyond
the ones that can be directly extracted from one cell (single table features) are not
considered. The following approaches focus on the features found in the table but
incorporate background knowledge like probabilistic databases or the Wikitology
to collect further information.

Probabilistic databases as background knowledge Another group of meth-
ods use probabilistic databases with information about word co-occurrences that
have been gathered from large text corpora using Hearst pattern. [Venetis et al.,
2011] query the entity label in an isA database to get suitable classes for a col-
umn. By applying a maximum-likelihood model, the best classes are determined.
Similarly, a relation database for properties is used to assign properties to pairs of
named entity columns. If for two columns many label pairs are mentioned within
the same relation, the relation is assigned. Thus, only the entity label as well as
the values are considered as features. [Wang et al., 2012] utilize the isA database
called Probase together with an additional database for properties. As additional
feature, the set of attribute labels is taken into account to get an idea about the ta-
ble’s topic. Both approaches only consider a small set of features since they rely on
statistics provided by the probabilistic databases. These statistics are not available
in knowledge bases like DBpedia. Further, they focus on the class and property
matching task without explicitly linking the entities.

142 CHAPTER 7. FEATURE UTILITY ANALYSIS

Wikitology as Background Knowledge Among the approaches focusing on
features found in the table, three of them [Mulwad et al., 2010b, Mulwad et al.,
2013,Syed et al., 2010] additionally use the Wikitology as background knowledge.
Wikitology [Syed, 2010] is a hybrid knowledge base consisting of structured and
unstructured information extracted from Wikipedia, enriched with structured infor-
mation from DBpedia, Freebase, WordNet, and Yago. Wikitology provides an API
that allows for structured, unstructured, and combined queries. Thus, it provides a
powerful source of knowledge.

Listing 7.2: Wikitology query for an entity as provided by [Mulwad et al., 2010b]
1 Input: Entity Label, Entity, Attribute Label
2 Output: Top k instances from the knowledge base
3 Query: wikiTitle: entity label OR
4 redirects: entity label OR
5 firstSentence: entity label, attribute label OR
6 types: attribute label OR
7 categories: attribute label OR
8 contents: entity label (boost 4), entity OR
9 linkedConcepts: entity label (boost 4), entity OR

10 propertyValues: entity

Listing 7.2 shows how Wikitology is queried to get instances candidates. As
input, it takes the entity label, the entity (row content), and the attribute label.
These features are mapped to various fields of the Wikitology index. Based on the
mapping to the index, a query is generated which checks a set of alternative condi-
tions and returns the top k instances. The query checks whether the entity label is
contained in the title of a Wikipedia article (instance label), in a redirect or in the
first sentence of the Wikipedia article. Similarly, the first sentence of the according
Wikipedia article is also searched for the attribute label. Further, the attribute la-
bel is looked for in Wikipedia types or categories. The row data including the label
(boosted with a weight of 4) is searched in the full Wikipedia article text (contents),
within the set of linked articles (linked concept) as well as in the infobox (property
values). In summary, the Wikitology enables the simple usage of single and multi-
ple table features by providing an API that answers queries under consideration of
structured and unstructured data. In knowledge bases, such an API is usually not
available such that the functionality needs to be encoded in the matching algorithm.

Using the returned candidates, the approaches by [Mulwad et al., 2010b, Syed
et al., 2010] compute similarities to entities by applying popularity (page rank,
Wikitology index score, Wikipedia article length) and string similarity measures
(Levenshtein, Dice). Besides the internal Wikitology ranking, both methods con-
sider the instance label and popularity as features. The method proposed by [Mul-
wad et al., 2013] uses the Wikitology candidates as basis for a joint inference.

7.3. RELATED WORK 143

7.3.2 Approaches Using Context Features

Beside features found in the table itself, information from the web page, also called
context, can also be used. Context features are exploited for matching web tables
among each other or to assign classes to tables. Further, the context is popular to
improve table search by finding query terms in the context, extracting hidden at-
tributes, or gathering additional attribute labels. Especially for entity tables where
the entity label is not mentioned in the table itself, considering the context is cru-
cial [Yin et al., 2011].

Context features for table search To improve the table search, [Pimplikar
and Sarawagi, 2012] and subsequently [Sarawagi and Chakrabarti, 2014] match
keywords of the query among others to the surrounding text of the table. The TF-
IDF similarity between the keywords in the query and the context is one indicator
whether the table is considered as relevant for the query. Contrary to other ap-
proaches, the context is specified to consist of segments that are selected based on
their position in the DOM tree of the page document. Thus, only the segments
close to the table are considered as useful.

The CONTEXT operator of the Octopus system [Cafarella et al., 2009] uses
context features to find hidden attributes which are not explicitly described in the
table but projected out since they hold for every entity. For example, the VLDB
2008 conference page contains a table with the accepted publications. Since the
publication year is the same for each entity, there is no attribute stating the year.
However, the information is available on the web page and especially easy to un-
derstand for humans. Two proposed methods add additional attributes to the table
which have been derived from the context. One method is called SignificantTerms:
it examines the web page and returns the best k terms according to TF-IDF scores
that are not included in the table itself. Our approach does not explicitly generate
new attributes but use the information in the context for the comparison.

[Braunschweig et al., 2015a] use the context to gather more information about
single attributes to improve table and attribute search. Although [Pimplikar and
Sarawagi, 2012] stated that the context is useful but does not provide attribute-
specific information, the context can for example be exploited to resolve abbrevia-
tions in the attribute labels. Different levels of the context are taken into account:
the table caption, the headings before the table, the surrounding text as well as
the full text. By searching the attribute label in the context, either more detailed
descriptions can be extracted or acronyms and abbreviations can be resolved. How-
ever, large amounts of attribute labels are non-informative. To find more informa-
tive attribute labels, the entities of name-entity columns are matched to instances in
a knowledge base (YAGO). Based on the instances, a majority vote for the classes
is performed and the name of the best suitable class is used as attribute label. Ad-
ditionally, WordNet is utilized to gather synonyms of the attribute labels.

144 CHAPTER 7. FEATURE UTILITY ANALYSIS

Context features for table to table matching InfoGather [Yakout et al., 2012]
uses context features to match web tables among each other. Altogether, the sur-
rounding text, the table, the URL, the set of attribute names as well as the set of
values within one column are considered as features. All features are represented
as bag-of-words. For two web tables, the according bag-of-words are compared
using the cosine similarity based on TF-IDF scores. Since they are solving the
table-to-table matching task, the context features can be directly compared. Con-
trary, we cannot compare the surrounding text of a table with the surrounding text
of the knowledge base but have to artificially generate a document that can be com-
pared, i.e., the set of abstracts of all instances belonging to one class.

Context features for table to knowledge base matching Tableminer [Zhang,
2014a] and its extension TableMiner+ [Zhang, 2016] is the only system that ex-
ploits the context of a table for matching web tables to knowledge bases. As table
features, they use the attribute label, entity (called row content), and the column
content. Context features, also referred to as out-table features, are the page title,
the table caption, the surrounding paragraphs, and semantic markups. The algo-
rithm is divided into a learning and an update phase.

During the learning phase, first instance candidates are collected by searching
for instance labels that overlap with the entity labels. For these candidates, two
similarity scores are computed basing on the context and the name. To compute
the context similarity, for each candidate all triples are queried that have the candi-
date in the subject position. All objects found in these triples are normalized and
put together in a bag-of-words. All features, in- as well as out-table features, are
compared to the created bag-of-words using a weighted Dice measure. The name
similarity is the term overlap between the instance and entity label. Initial class
similarities are computed for each column by checking to which classes the best
candidates belong to. Further, all context features except for the row content are
compared to the bag-of-words consisting of the name and URI of the class. Af-
terwards, the instance and class matching are iterated until no new candidates for
both tasks are detected. At this point, the backward-update phase starts. The algo-
rithm decides for the class which in turn discards all instances that do not belong
to this class. As last step, the properties are assigned letting the instances vote for
the best property. Beside the similarity that is based on the instances, a context
score is computed using the attribute header, surrounding paragraphs, and seman-
tic markups for which the overlap with the property name and URI is checked.

In contrast to our approach, the popularity of an instance is not considered at
all and alternative names or abbreviations are only taken into account if a property
in the knowledge base explicitly refers to them, e.g., redirects. Further, the entity
represented as bag-of-words is compared to all objects of triples with the according
instance as subject. Hence, if a value is missing in the knowledge base, it will not

7.4. EVALUATION 145

occur in a triple and will thus not be available for the comparison. That is the reason
why we use the abstracts which often contain additional or other information about
the instances. Since the context usually covers general information about the topic
of the table and not about particular entities or attributes, it is not clear to which
extent the context helps for the instance and property matching task.

7.4 Evaluation

In this section, we analyze the utility of the various features that serve as input for
the matching of web tables to knowledge bases. First, we specify the experimental
setup in Section 7.4.1. Section 7.4.2 evaluates the applicability of the matrix pre-
diction aggregation. The aggregation weights indicate which features are in general
important and for which features the influence highly depends on the characteris-
tics of a particular table. Subsequently, Sections 7.4.3 - 7.4.5 present the results for
each matching task by applying different combinations of features. The analysis
comprises a discussion about improvements and a comparison to other approaches.

7.4.1 Experimental Setup

T2K has been adapted with all components mentioned in Section 7.2. The code has
been released in the T2K github repository.2 As input for the matching process, the
English DBpedia (version 2014) and the T2D gold standard (version 2) including
both, overlapping and non-overlapping tables, are used. In summary, 779 tables
are included from which 234 overlap with DBpedia and the others are either non-
relational tables or do not share entities that are represented in DBpedia.

7.4.2 Results of the Matrix Prediction

With an aggregation strategy based on matrix prediction we try to enable a the com-
bination of similarity matrices computed by different matchers that is tailored to
each individual table. The goal of this section is to analyze whether the introduced
matrix predictors are applicable and useful and if so how the weights differ for
tables with diverse characteristics. Following [Sagi and Gal, 2013], we measure
the quality of a matrix predictor using the Pearson product-moment correlation
coefficient [Pearson, 1895]. With a correlation analysis, we can verify to which
extent the weights are consistent with the correct correspondences. We perform a
correlation analysis with each of the matrix predictors Pavg, Pstdev, and Pherf to
the evaluation measures precision and recall. If a predictor has a high correlation
to precision and recall and we use the predictor for determining the weights, we
assume the resulting correspondences to show a comparable performance.

Table 7.4 shows the Pearson correlation coefficients between the instance and
property similarity matrices and precision and recall. All correlations are signif-

2https://github.com/T2KFramework/T2K/tree/EDBT

https://github.com/T2KFramework/T2K/tree/EDBT

146 CHAPTER 7. FEATURE UTILITY ANALYSIS

Table 7.4: Pearson correlation coefficient between different matrix predictors and
precision and recall.

Precision Recall
Matcher Pstdev Pavg Pherf Pstdev Pavg Pherf

Instance Similarity Matrices
Entity Label -0.17 -0.16 0.23 0.09 0.05 0.23
Value-based 0.36 0.12 0.38 0.5 0.31 0.53
Surface Form -0.29 -0.29 0.24 -0.09 -0.13 0.24
Popularity-based 0.14 0.11 0.26 -0.04 -0.04 -0.24
Abstract 0.05 0.13 0.21 0.18 0.29 0.15
mean 0.02 -0.02 0.33 0.16 0.12 0.23

Property Similarity Matrices
Attribute Label 0.45 0.43 0.22 0.42 0.49 0.21
Duplicate-based 0.05 0.09 -0.07 0.09 0.11 0.04
WordNet 0.43 0.32 0.12 0.34 0.37 0.18
Dictionary 0.36 0.36 0.13 0.27 0.45 0.15
mean 0.33 0.3 0.1 0.28 0.34 0.15

icant according to a two-sample paired t-test with significance level α � 0.001.
The analysis of the class similarity matrix predictors is not shown since the corre-
lations are not significant. This results from the fact that only 237 tables in T2D
overlap with DBpedia and in turn can be assigned to a DBpedia class. Thus, the
amount of data on which the correlation can be computed is too low to determine
a statistically significant effect. However, in practice the predictor Pherf shows
the most promising results. The same holds for instance similarity matrices where
Pherf has the highest correlation to both precision and recall. In contrast, for prop-
erty similarity matrices, Pavg correlates most. A reason is the comparably low
amount of possible property candidates for each attribute. Within each matching
task, the choice of the best performing predictor is mostly consistent. One excep-
tion is the correlation of Pherf to the recall of the popularity-based matrix since
the most popular instances do not necessarily need to be the correct candidates.
Based on the results, we use the prediction computed by Pherf as weights for the
instance and class similarity matrices and Pavg for the property similarity matrices.

By having a look at the weights, we can estimate the influence of a particular
matcher on the overall results. Figure 7.9 depicts the variations of weights for the
similarity matrices from different matchers. The median of the weights indicates
the overall importance of the features across all tables for a certain matching task.

• For the instance matching, the popularity of an instance seems to play a
crucial role, followed by the label.

• For the property matching, the values build the foundation.

7.4. EVALUATION 147

Fi
gu

re
7.

9:
B

ox
pl

ot
of

th
e

m
at

ri
x

ag
gr

eg
at

io
n

w
ei

gh
ts

di
vi

de
d

in
to

qu
ar

til
es

fo
re

ac
h

m
at

ch
er

.

148 CHAPTER 7. FEATURE UTILITY ANALYSIS

• For the class matching, the size of the class (frequency-based) and the amount
of instance candidates (majority-based) are most important.

• Adding external resources only lead to slight changes of the weights.

In contrast to the median, the partly large variations of the weights illustrate that
the actual utility of a feature depends on the individual matrix and in turn on the ta-
ble. This supports our assumption that taking the same aggregation weights for all
tables independent of their characteristics is not the best strategy. While the weight
variations are very large for all matchers operating on attribute labels (Attribute
Label-, Wordnet- and Dictionary matcher), it is the opposite for the matchers han-
dling bag-of-words. A large variation indicates that a feature is suitable for some
but not for all tables. This confirms the finding that web tables often either do not
contain attribute labels or ambiguous or non-informative labels (Section 6.1.1). For
matchers taking bag-of-words as input, the reliability is estimated similarly low for
all tables. Comparing bag-of-words always results in large amounts of candidates
since the applied similarity measures are vague.

To estimate whether a machine learning approach as for example used by [Li-
maye et al., 2010, Yakout et al., 2012] is also suitable, we experimented with de-
cision trees to learn the weights. Each decision tree gets all similarities from the
matchers as input and its task is to learn an aggregation model. For the instance
matching task, the learned decision tree solely considers the similarities generated
by the Entity Label matcher, all other similarities are not taken into account. This
results from the fact that the similarity based on the label comparison is the only
one producing reliable results across all tables. By applying matrix prediction, we
exactly overcome this issue without the need for supervision.

7.4.3 Results of the Instance Matching Task

First of all, we present the evaluation of the instance matching task. The goal is
understand which features are most important for the instance matching task and
which performance can be achieved with the best combination of these features.

Table 7.5 presents the results for different combinations of matchers.3 By only
considering the entity label, a moderate result with a precision of 0.72 is achieved.
Additionally taking the values into account increases the recall by 0.09 and the
precision by 0.08. As expected based on the weight analysis, including the values
helps to improve the performance but only using the entity label already leads to
a decent amount of correct correspondences. By adding surface forms, the recall
can again be raised by 0.02 which shows that alternative names for entities are used.

The popularity-based matcher slightly increases the precision and recall when
additionally considered besides the label and values. Whenever the similarities for

3Note that we do not display all possible combinations but the most notable ones.

7.4. EVALUATION 149

Table 7.5: Results of the instance matching task using different combinations of
matchers.

Matcher Precision Recall F-measure
Entity Label 0.72 0.65 0.68
Entity Label + Value-based 0.80 0.74 0.77
Surface Form + Value-based 0.80 0.76 0.78
Entity Label + Value-based + Popularity-based 0.81 0.76 0.79
Entity Label + Value-based + Abstract 0.93 0.68 0.79
All 0.92 0.71 0.80

candidate instances are close and no further evidence can be gathered, selecting the
more common instance is in most cases the better decision. However, this assump-
tion does especially not hold for web tables containing long-tail entities.

Including the abstract matcher, which in contrast to all other instance match-
ers relies on a multiple table feature, results in a precision increase of 0.13 while
0.08 recall is lost. The loss of the recall might be unexpected at first glance since
a matcher comparing bag-of-words tends to generate large amounts of similarities
that can be noisy. The reason for the precision increase lies in the classification.
Since many potential correspondences exist, high thresholds need to be selected in
order to prevent a breakdown in F-measure. Thus, comparing all values of a row
with instance abstracts helps to find correct correspondences but has to be treated
cautiously to not ruin the overall performance. If we use the combination of all
instance matchers, the highest F-measure of 0.80 can be achieved. This illustrates
that the instance candidates found by matchers exploiting different features do not
necessarily overlap. Thus, the matchers can benefit from each other by comple-
menting each other and compensating their weaknesses. Without the matrix pre-
diction, exactly this variety of features cannot be exploited. As we explained at
the end of the previous section, a decision tree only uses the entity label as feature
since the similarities computed by other matchers vary to much among the tables.
Based on this decision, the maximal F-measure that can be achieved is 0.68 which
is the results of solely using the entity label matcher.

Comparison with other instance matching results The T2K Match algo-
rithm including only the entity label and values as features results in an F-measure
of 0.82 within the restricted scenario (Section 6.5.2). On the one hand, the F-
mesaure results achieved with the same features are only 0.05 less even though
non-overlapping tables are included and all DBpedia classes are used. On the
other hand, including all features, only a slight loss in F-measure has to be ac-
cepted. Concerning instance matching methods introduced in related works, the
only systems which compare web tables with knowledge bases without including
background knowledge or considering the context are provided by [Limaye et al.,

150 CHAPTER 7. FEATURE UTILITY ANALYSIS

2010], reporting an F-measure of 0.84 and by [Efthymiou et al., 2017] with an F-
measure between 0.82 and 0.85, depending on the gold standard. Thus, with the
features found in the table a good performance can be achieved.

By exploiting the Wikitology as background knowledge, the approaches auto-
matically include all features that we consider for the instance matching task. [Mul-
wad et al., 2010b] report an F-measure of 0.66 and [Syed et al., 2010] of 0.77.
However, the evaluation has only been performed on 15 resp. 5 tables such that
it is difficult to derive general conclusions. A subsequent approach by [Mulwad
et al., 2013] results in an F-measure of 0.76. The main reason for the comparably
low performance as stated by the authors is the lack of relevant data in the knowl-
edge base: correct instances do not belong to the class or do not use the according
property which is a requirement for the method to generate correspondences.

TableMiner+, the only system that considers the context, achieves an F-measure
of 0.84. Hence, on similar tables, the approaches by Limaye et al. and Zhang result
in almost the same performance although Limaye et al. consider the smallest set of
features. Further, for the methods using the Wikitology including a broad variety
of features, the performance is also below. Thus, the results from state-of-the-art
systems exactly underline that the utility of features cannot be derived properly if
the features are not included into a single system. However, the results are in a
similar range to the best results we report such that an F-measure of 0.84 seems to
be the upper bound for the instance matching task.

Summarizing, the entity labels seems to be the important feature but without in-
cluding values, a performance above 0.7 is not reachable, mainly due to the missing
information and terminological heterogeneities. With additional features like the
popularity of the instances, the results can be slightly increased but an F-measure
above 0.8 is not reachable which is in line with reported results from other sys-
tems. Thus, even with a large set of features, especially the ambiguity of the entity
label and the difficulty to decide for the correct instance cannot be fully overcome.
One possible reason is that even with a surface form catalog or by considering the
abstracts, the terminology or abbreviations used in web tables are not represented.

7.4.4 Results of the Property Matching Task

The results of the property matching experiments using different combinations of
matchers are illustrated in Table 7.6. In contrast to the instance matching task,
we get a rather low recall of less than 0.5 if we only take the attribute label into
account. Based on the weight analysis, we are already aware that the attribute label
is not necessarily a useful feature for all tables.

Including values, covered in the duplicate-based matcher, increases the recall
by 0.35 but slightly decreases the precision by 0.10. While values provide the pos-
sibility to compensate missing or non-informative attribute labels, they can also
adds incorrect correspondences if they fit accidentally. This especially holds for
attributes of data type numeric and date. For example, in a table describing films a

7.4. EVALUATION 151

Table 7.6: Results of the property matching task using different combinations of
matchers.

Matcher Precision Recall F-measure
Attribute Label 0.85 0.49 0.63
Attribute Label + Duplicate-based 0.75 0.84 0.79
WordNet + Duplicate-based 0.71 0.83 0.77
Dictionary + Duplicate-based 0.76 0.86 0.81
All 0.70 0.84 0.77

numeric attribute contains values that refer to a ranking. If these values are close
to a property like runtime, an incorrect correspondence will be generated since the
values seem to fit. Nevertheless, the values present a valuable feature especially
to achieve a decent level of recall. Taking the general lexical database WordNet
into account does neither improve precision nor recall. This confirms the findings
by [Braunschweig et al., 2015a], that a general dictionary is not very useful for
the property matching task. In contrast, using the dictionary created from web ta-
bles increases the recall as well as the precision. Hence, with specific background
knowledge that is tailored to web tables, it is possible to enhance the performance
as it has also been shown by [Yakout et al., 2012]. However, the creation of the
dictionary requires a lot of enhanced filtering. Without proper filtering, the dic-
tionary would only add large amounts of noise. The result of using all matchers
together is slightly lower than the best result due to the correspondences created by
the WordNet matcher which the other matchers are not able to prevent.

Comparison with other property matching results With the algorithm that
only relies on the duplicate-based method, an F-measure of 0.7 is determined. Sim-
ilar to the instance matching task, even with non-overlapping tables and the full
knowledge base, comparable results are achieved. Our results for the property
matching task are difficult to compare to other methods as many of the existing
systems only match attributes to object properties. Nevertheless, the results of re-
lated approaches can give insights about the usefulness of features. By only relying
on the table features, [Limaye et al., 2010] report an F-measure of 0.58, [Muñoz
et al., 2014] of 0.79. With Wikitology as background knowledge, the F-measure
varies a lot between 0.25 [Mulwad et al., 2010a] and 0.84 [Mulwad et al., 2013],
depending on the set of tables that is used for the evaluation as well as whether an
inference model is applied. Using a probabilistic database as performed by [Venetis
et al., 2011] does not seem to be beneficial, achieving an F-measure of 0.55. The
TableMiner+ system states an F-measure of 0.76 by exploiting the context [Zhang,
2016]. For the property matching task, including the context does not lead to the
highest results but using background knowledge together with an inference model
seems to be a suitable method. As for the instance matching task, our results are in
the same range as reported by others and close to the best performing system.

152 CHAPTER 7. FEATURE UTILITY ANALYSIS

Table 7.7: Results of the class matching task using different combinations of
matchers.

Matcher Precision Recall F-measure
Majority-based 0.47 0.51 0.49
Majority-based + Frequency-based 0.87 0.90 0.89
Page attribute 0.97 0.37 0.53
Text 0.75 0.34 0.46
Page attribute + Text +
Majority-based + Frequency-based 0.9 0.86 0.88
All 0.93 0.91 0.92

Overall, the values are most important for the property matching task together
with the attribute label as long as it is informative. While a general lexical database
does not improve the results, with an additional dictionary tailored to web tables,
the best results can be achieved. Similarly to the instance matching task, an F-
measure higher than 0.84 is not reported by any system.

7.4.5 Results of the Class Matching Task

Table 7.7 reports the results of our class matching experiments. When only con-
sidering the majority of the instance candidates to compute the class correspon-
dences, the precision is 0.47 and the recall 0.51. Thus, for only about half of the
tables the correct class is assigned. The main reason is the preferential treatment
of superclasses over specific classes which are lower down in the class hierarchy.
All instances that can be found in a specific class also count for its superclasses
and there might be further instances candidates belonging to these superclasses.
Together with the consideration of the frequency which exactly tackles the men-
tioned issue, an F-measure of 0.89 can be reached.

In order to see how far we get when solely considering matchers that rely on
context features, we evaluate the page attribute matcher and the text matcher inde-
pendently from the others. Since the differences in the performances are marginal,
we do not present the results for the individual features. Whenever the page at-
tribute matcher determines a high similarity, the according correspondence is very
likely to be correct. However, since the URL and page title are compared with
the label of the class, it can happen that no candidate is found at all. Regarding
the recall, similar holds for the text matcher but the generated correspondences are
not necessarily correct. This is not surprising because we already discovered that
matchers using features represented as bag-of-words have a weak ability to differ-
entiate between correct and incorrect candidates due to a lot of noise.

When we combine all previous matchers, an F-measure of 0.88 is obtained
which is still lower than the outcome of the majority- together with the frequency-

7.5. SUMMARY 153

based matcher. If we make use of the number of available class matchers which
is transposed by the agreement matcher, we reach an F-measure of 0.92. Thus,
taking advantage of features covering the whole spectrum of available information
and deciding for the class most of them agree on, is the best strategy for the class
matching task. Due to the fact that the class matching task has a strong influence
on the other two matching tasks, their performance can be substantially reduced
with an incorrect class. For example, when only using the text matcher, the recall
of the instance matching task drops to 0.52 and the property recall to 0.36.

Comparison with other class matching results Contrary to the other two
tasks, when applying the same strategy (majority-based matcher) as used within
the baseline algorithm, a similar performance cannot be sustained. On the one
hand, more classes are available such that superclasses are preferred and on the
other hand, non-overlapping tables for which a class correspondences is created
worsen the results. These are also the reasons why even with all features a slightly
lower (0.02) performance compared to the baseline algorithm can be achieved. As
for the other tasks, it is difficult to see which features are most useful from exist-
ing works. The lowest result, an F-measure of 0.43, is reported for the method
of [Limaye et al., 2010] which only considers information within the table. When
taking also the specificity of the classes into account [Mulwad et al., 2013], the
F-measure of 0.57 is neither higher nor lower than results of [Venetis et al., 2011]
or [Zwicklbauer et al., 2013]. Same holds for considering the context with a result
of 0.63 [Zhang, 2014b]. Nevertheless, considering the context seems to slightly
improve the results. The only system reporting performances in the same range as
ours (0.9q is the approach of [Syed et al., 2010] but is has only been evaluated on
5 tables. As we discussed during the profiling (Chapter 5) the choice of the knowl-
edge base can have a strong influence especially on the class matching result which
is also an explanation why other matching systems report way lower performances.

Altogether, for the class matching task it is important to consider to which
classes the candidate instances belong to as well as to take the frequency of the
class into account to not assign too generic classes. By having a look at the context,
some remaining cases can be addressed which are difficult to solve otherwise. In
contrast to both, the other matching tasks as well as other systems, the results for
the class matching task are the highest with an F-measure above 0.9.

7.5 Summary

In this chapter, we analyzed the utility of features that are used to match web tables.
First, we gave on overview of the features and proposed a classification scheme.
Features can either be found in the table itself or can be extracted from the con-
text. Further, external resources like catalogs including alternative names can be
taken into account. For each feature, we introduced task-specific matchers that are

154 CHAPTER 7. FEATURE UTILITY ANALYSIS

integrated in T2K Match. By adding more features and in turn generating more
similarity matrices, the aggregation needs to be able to combine the matrices in a
useful way. Therefore, we presented the concept of matrix prediction that individ-
ually adapts the aggregation weights for each table. Using matrix predictors, we
allow different web tables to favor the features that are most suitable.

We used different combinations of features for each matching task. In con-
trast to the evaluation of the T2K Match algorithm in Section 6.5, we included the
non-overlapping tables of the T2D gold standard and all DBpedia classes which
presents a more realistic scenario. As one contribution of this thesis, we proposed
a utility analysis of the features which considers two dimensions. First, the weights
assigned during the aggregation indicate which features are important for which
tasks and how the influence of a features varies for individual web tables.

• The entity label and the popularity has the strongest influence on the instance
matching results, the values contribute less but depends on the table.

• Usually the value gets the highest weight for the attribute matching while the
influence of the attribute label varies greatly if the label is non-informative.

• The influence of the features for the class matching is similarly distributed
among the majority-based, frequency-based and page attribute matchers.

• Features that are represented as bag-of-words like the surrounding words of
a table show very small variation and often only contribute little.

Second, the evaluation of the correspondences shows which combinations of
features achieve the best results for each task. In summary, taking as many features
as possible into account is promising for all three tasks. Features found within
tables generally lead to a higher correctness than context features. Nevertheless,
taking context features into account can improve the results but particular caution
is necessary since context features may also add a lot of noise. External resources
proved to be useful as long as their content is closely related to the content of the
web tables, i.e., the general lexical database WordNet does not improve the results
for the property matching task while a more specific dictionary does.

Altogether, taking a variety of features into account leads to F-measure scores
above 0.8 for the instance and property matching task and above 0.9 for the class
matching task. These results are in the same range or even above as the results
reported for T2K Match although a more realistic scenario without restrictions
regarding the input is considered (Section 6.5). Further, also the results reported
by other approaches are in the same range. Still, insufficient evidence due to the
small size of the tables, the lack of discriminative content, or different kinds of
heterogeneity cannot be fully overcome. Thus, the next chapter will introduce the
T2K Match++ method which exploits indirect matches to web tables about the
same topic and uses knowledge derived from the knowledge base.

Chapter 8

The T2K Match++ Method

In the previous chapters, we introduced the T2K match algorithm to match web
tables to knowledge bases and included additional features like the context of the
table. The analysis of the results shows that the method suffers from insufficient
evidence due to the small size of the tables, the lack of discriminative content, or
different kinds of heterogeneity that cannot be resolved by external resources. One
promising approach to overcome these issues is holistic matching that has been
used to match databases and ontologies [Do and Rahm, 2002,Hartung et al., 2013].
Holistic matching follows the observation that various sources contain the same
data but represent it differently [Rahm, 2016]. By jointly matching all sources,
additional evidence can be gathered as shown in the subsequent example.

Example 8.1 The entity French Republic is not similar to the instance France in
DBpedia although both refer to the same country. If we know that French Republic
and Republic of France describe the same real-world object and in turn Republic
of France and the DBpedia instance France, we can use the indirect match to infer
that French Republic and France also represents the same country.

Figure 8.1: Example of an indirect match.

Applying a holistic approach to match web tables to knowledge bases gives
rise to additional challenges. First, the tables need to be matched to each other for
the purpose of finding out which tables represent the same data. A table to table
matching potentially requires large amounts of comparisons. Second, the holistic
matching can also produce spurious matches resulting in incorrect correspondences
[Yakout et al., 2012]. Thus, we need a way to deal with spurious matches to not

155

156 CHAPTER 8. THE T2K MATCH++ METHOD

deteriorate the results. This especially holds for the property matching task. As we
will show, the value comparison is not always sufficient for this task to get high
precision results. One solution is to exploit domain knowledge that is gathered
from the data itself. This includes the distribution of the values of a property or
logical constraints which are given by the knowledge base. For example, assuming
a proper unit detection, an attribute including continuous numeric values will not
correspond to the property stating the population of a country since populations
are given as discrete values. The following example shows how holistic matching
improves the results for matching web tables to DBpedia.

Example 8.2 Figure 8.2 shows three web tables that have been matched to DB-
pedia using the T2K Match algorithm. Solid arrows represent correct correspon-
dences, dashed arrows indicate errors. All tables describe countries and the coun-
try names are depicted in the first (T2,T3) and second (T1) column, respectively.
For T2 and T3 all correct DBpedia countries are assigned. Contrary, for T1 only
one correct instance correspondence to the country Germany has been found, one
correspondence is missing (France for french republic) and one is incorrect (U.S.
state Georgia instead of the country Georgia). The country France is not matched
because the names are too dissimilar. Deciding for the U.S. state instead of the
country is the better choice since in general this instance is referenced more of-
ten. Regarding the property matching task, two incorrect correspondences to the
property population are generated. The reason is the incorrect assumption that the
column values represent populations of countries in millions. While T2 and T3
are correctly matched to a class called Country, T1 is assigned to the general class
Place. Place is chosen for T1 because all mapped instances are places and no more
specific classes can be assigned since Georgia is a state and Germany a country.
With a holistic approach, all correct instances and in turn correct class correspon-
dences can be determined. Since the entity with the name French Republic of T1 is
similar to the entity Republic of France in T2, we can infer that the instance France
should also be assigned to the entity in T1. Further, we determine that the major-
ity of entities having Georgia as name points to the country instead of the U.S.
state. The incorrect correspondences to the property population can be resolved by
determining that populations follow a normal and not a uniform distribution.

In this chapter, we describe the T2K Match++ method that holistically matches
web tables to a knowledge base. To complement the method, we utilize domain
knowledge for the property matching task. We evaluate the T2K Match++ method
on two gold standards: T2D and Limaye. Further, we show that the algorithm out-
performs all state-of-the-art web table to knowledge base matching systems.

First, Section 8.1 presents the T2K Match++ method. Section 8.2 discusses
other holistic approaches and methods exploiting domain knowledge. Afterwards,
the results are presented and compared to the performances achieved by other sys-
tems (Section 8.3). The chapter is concluded by a summary (Section 8.4).

8.1. METHODOLOGY 157

Figure 8.2: Correspondences of three web tables generated by T2K Match.

The description of the T2K Match++ algorithm and parts of the evaluation is
included in the paper [Ritze and Bizer, 2018]. The paper has been submitted to the
WSDM conference 2018. This works was carried out by myself alone.

8.1 Methodology

This section introduces the T2K Match++ method. At first, the overall workflow
is depicted and each step of the matching process is described. Compared to T2K
Match, an indirect matching component is included. In addition, the classification
is improved. All other parts remain unaffected.

8.1.1 Workflow

Figure 8.3 gives an overview of the overall T2K Match++ workflow, performing
the instance, property, and class matching task in an integrated fashion. It takes
web tables and a knowledge base as input and returns correspondences between
entities and instances, attributes and properties, and the web tables and knowledge
base classes. The process consists of the following steps: Preprocessing, Direct
Matching, Prefiltering, Indirect Matching, Aggregation and Classification.

• Direct Matching & Prefiltering The direct matching is the same as in T2K
Match (Chapter 6). Further, the best combination of features per task is
included as analyzed in Chapter 7. For the instance matching task, the sur-
face form matcher, the value-based, and the popularity-based matcher are
considered (Section 7.2.3). To find property correspondences, the dictio-
nary and duplicate-based matchers are used (Section 7.2.4). Lastly, for the
class matching task, all matchers introduced in Section 7.2.5 are taken into
account. The prefiltering excludes web tables that do not overlap with DB-
pedia (Section 7.2.1). Filtering these tables is especially important for the

158 CHAPTER 8. THE T2K MATCH++ METHOD

Figure 8.3: Holistic matching workflow of T2K Match++.

indirect matching. Otherwise, a large number of comparisons is required
and the possibility to generate spurious matches increases.

• Indirect Matching The holistic component goes beyond the direct compar-
ison between a web table and the knowledge base by exploiting that web
tables about the same topics also have similarities to the knowledge base.
These similarities can be used to gather more evidence or to detect similar-
ities to knowledge base elements that have not been considered before. A
detailed description is presented in Section 8.1.2.

8.1. METHODOLOGY 159

• Aggregation All similarity scores coming from the direct and indirect match-
ing are aggregated using the strategy based on matrix prediction as described
in Section 7.2.2. The weights to combine the similarities base adapt them-
selves for each individual table. In turn, if the direct matching similarities
seem to be useful in contrast to the indirect ones, these similarities will be
weighted higher to avoid spurious matches.

• Classification During the classification, the generated correspondences are
classified into matches and non-matches to only keep the ones which are
likely to hold. To be robust to spurious matches that can easily occur within
the indirect matching step, a proper classification strategy is needed. For
the property matching task, this includes domain knowledge. Section 8.1.3
explains the classification in more detail.

In summary, the T2K Match++ workflow includes components that have been
described in the previous chapters. Additionally, an indirect matching step is added
which requires a more sophisticated classification to not lose oneself in the amount
of possibly inaccurate correspondences.

8.1.2 Indirect Matching

One main limitation of the direct matching is the lack of evidence that cannot be
fully overcome even by including additional features. Within the indirect match-
ing step, we exploit that multiple tables covering the same topic are potentially
matched to the same knowledge base. The indirect matching consists of three sub-
sequent steps: table search, table matching, and mapping composition.

Table Search During the table search, we identify all tables which seem to be
similar to a given table t. To facilitate the search, we build a Lucene index con-
taining the concatenated entity labels of every table. Note that the index does not
include each individual entity label but only the concatenation per table to reduce
the number of queries that are required and in turn to speed up the search. Figure
8.4 shows the query process. For a table t, we pose a query to the index that covers
the entity labels processed the same way. In the given example, the query will be
“germany french republic georgia north korea”. The index returns all web tables
that are relevant according to the internal Lucene ranking. The ranking sorts the
tables mainly based on the cosine similarity of their TF-IDF vectors with the query
vector. Among the results, we take the top k tables. For our experiments, we set
k � 1000 which will be analyzed in Section 8.3.3.

Table Matching After receiving relevant tables for t, we perform a table to
table matching between t and all its relevant tables. Analogously to the instance,
property and class matching task, we need to perform an entity, attribute as well
as table matching. Similar to the matching of web tables to knowledge bases, we
start with finding candidate entities by comparing the entity labels using a hybrid

160 CHAPTER 8. THE T2K MATCH++ METHOD

Figure 8.4: Table search for related tables.

Jaccard measure. For each of the candidates, we compute a value-based similarity
by applying the same set of similarity measures as the T2K algorithm. By matching
all tables to the same central knowledge base, we face the specific situation to
be aware of similarities and in turn correspondences between all tables and the
knowledge base. Hence, we can use these correspondences to reduce the number
of comparisons. This blocking strategies is called correspondence-based blocking.
Thus, we only compare values of candidates as long as the attributes are similar to
the same property in the knowledge base according to the direct matching. Figure
8.5 illustrates the matching of two tables T1 and T2.

Figure 8.5: Correspondence-based blocking for the table to table matching.

Since we know that the entity with the label Georgia does not have any can-
didate in T2, we do not need to compare its values at all. The same holds for the
left-most attribute in T1 because it does not have similarities to any knowledge
base property. In both tables, we find an attribute that refers to the property popu-
lation in the knowledge base. Thus, with the correspondence-based blocking only
the values of the attribute with the header pop(mil) of T1 are compared to values
of the attribute population of T2. In combination with the candidate blocking, the
number of comparisons is reduced to three instead of 24. Apart from any hetero-
geneities and under the assumption that all similarities to the knowledge base from
the direct matching are correct, we only compare values which should cover the
same information. Thus, if two values are not similar at all, it is a strong indication
for non-corresponding entities.

8.1. METHODOLOGY 161

The attribute matching task is performed analogously: labels are used to gener-
ate candidates and the similarities to instances in the knowledge base for blocking
during the value comparison. For the table matching task, the similarity between
two tables is computed by counting how often the entities point to instances from
a certain class. By considering to which classes the instances belong to, we get
a more fine-grained view than relying on the similarities to the classes that have
been computed during the direct matching. For all three tasks, we do not include
any additional features due to the increased complexity and the findings from the
feature utility analysis in Chapter 7 that further features only slightly improve the
results when matching web tables to knowledge bases. As last step of the table
matching, we aggregate the similarity scores per task by applying the same matrix
predictors as introduced in Section 7.2.2.

Mapping Composition By now we only computed similarities among the ta-
bles but not between tables and knowledge base elements. The similarity score
for a table element a to the according knowledge base element b is determined by
applying a weighted voting strategy:

simpa, bq �
°

xPSimpbq simpa, xq
|C|

where C is the set of candidates of a and Simpbq the set of table elements that are
similar to b. As example, for an element a in total three candidates are available,
two of them point to the element e while the other one points to the element f . The
resulting similarities are computed as follows: simpa, eq � 2

3 and simpa, fq � 1
3 .

A typical strategy for computing similarities when exploiting transitivity is to mul-
tiply similarity scores. This would require multiplying the similarity of the can-
didate simpa, xq with the similarity score to the element in the knowledge base
simpb, xq. We renounce to do that because it leads to a rapid degrading of the sim-
ilarity value as shown by [Do and Rahm, 2002].

After executing the three steps, a set of similarities to knowledge base elements
based on the indirect matches has been created for each table element. Note that,
we do not include any additional levels of indirection, e.g., we are not looking
at tables that are only indirectly similar to a table t. The reason is that already
one level of indirection produces huge amounts of similarities that we have to deal
with. Additionally, every level of indirection potentially contains a large amount
of spurious matches that needs to be filtered.

8.1.3 Classification

The classification in T2K Match learns and applies a threshold on the final similar-
ity score to specify whether a correspondence is likely to hold. Thus, the threshold-
based classification purely relies on this score and does not take any further infor-
mation into account. However, we are in possession of a large set of information

162 CHAPTER 8. THE T2K MATCH++ METHOD

that we can for example gather during the matching. To improve the classification,
we use a strategy which goes beyond thresholding. For the instance task (I), prop-
erty task (P), and class task (C), we build decision trees which are fed with features
as described in Table 8.1. Most features are received twice, once from the direct
and one from the indirect matching (IN). In the feature descriptions, we refer to
other features using the number depicted in the first column.

Table 8.1: Features used for the classification.

Feature Description Task
1 (In) Direct Label Similarity computed label similarity I,P
2 (In) Direct Value Similarity computed value similarity I,P
3 Sum Similarities 1� pInq1� 2� pInq2 I,P
4 (In) Direct Label Weight matrix predicted label weight I,P
5 (In) Direct Value Weight matrix predicted value weight I,P
6 (In) Direct Label Score 1 � 4 I,P
7 (In) Direct Value Score 2 � 5 I,P
8 (In) Direct Score 6� 7 I,P,C
9 Final Score 8� pInq8 I,P,C
10 Sum Label Scores 6� pInq6 I,P
11 Sum Value Scores 7� pInq8 I,P
12 (In) Direct Label Weight Deviation 1� 4 I,P
13 (In) Direct Value Weight Deviation 2� 5 I,P
14 (In) Direct Weight Deviation Sum 12� 13 I,P
15 (In) Direct Label Mean Difference 1�m°p1q I,P
16 (In) Direct Value Mean Difference 2�m°p2q I,P
17 Sum (In) Direct Differences 15� 16 I,P
18 Mapped Entity Ratio #entities

#entity correspondences I,P,C
19 Mapped Entities #entity correspondences I,P,C
20 Mapped Attribute Ratio #attributes

#attribute correspondences I,P,C
21 Mapped Attributes #attribute correspondences I,P,C
22 Number of indirectly found tables #tables by table search I,P,C

• The first set of features (1� 11) covers all similarities, aggregation weights,
scores (combination of similarity and weight), and sums of the scores. They
present the similarity estimates provided by each matcher of the direct and
indirect matching.

• Features 12 � 14 capture if one table element shows another behavior than
other elements of the same table. For example, a table describes countries
with an attribute stating the capital. Most entities in this table will have a
high similarity to the knowledge base instances since both, the label of the
countries and the capital fit. If one entity has low label and value similarities,
the mapped instance might not be correct.

8.1. METHODOLOGY 163

• In the same way, the difference of one similarity to the similarities of all ta-
bles computed by a specific matcher provides the information if the similar-
ity (or a combination of similarities) is above or below the average (15,16,17).

• Other features provide characteristics of the created mapping like the relative
and absolute amount of entities and attributes for which a corresponding
knowledge base element has been detected (18 � 21) and the amount of
similar indirect tables (22).

Each decision tree model is trained in a 10-fold cross-validation style in order
to prevent overfitting and create a generalized model. The learned decision trees
are presented and analyzed in the evaluation (Section 8.3.3). As indicated in the in-
troducing example in Figure 8.2, this classification is not sufficient for the property
matching task due to its characteristics. Hence, a classification, called knowledge-
based classification, with an additional set of features is applied.

Knowledge-based Classification The described classification relies on fea-
tures gathered during the matching process without taking information into account
which can be derived from the knowledge base itself. We refer to such information
as domain knowledge. As example, all population values in the knowledge base
are discrete numbers such that an attribute with continuous values cannot represent
the population.1 Considering such domain knowledge is especially useful for the
property matching task. On the one hand, the domain knowledge can be straight-
forwardly derived for properties from the knowledge base since usually a sufficient
amount of values exist. Thus, convincing characteristics can be derived which is
not the case for particular instances for which only a few facts exist. On the other
hand, the property matching task poses challenges that do not need to be addressed
by the other tasks. One challenge is that only about half of the attributes overlap
with properties from the knowledge base since web tables frequently cover infor-
mation that is not represented in a knowledge base. For example, web tables about
movies often include ranking attributes which are not contained in the knowledge
base. In this case, relying on the similarities between the values results in incor-
rect correspondences. By additionally taking indirect matches into account the
behavior can even be reinforced if incorrect correspondences confirm each other.
To tackle this issue, we extract characteristics of the properties and use them for
the classification. In the following, we list all features that are used during the
knowledge-based classification. While some features are general, others are only
useful for particular data types. Due to the feature division, we create an individual
decision tree for each data type (Section 8.3.3). An evaluation of the knowledge-
based classification will be provided in Section 8.3.

Fraction of Distinct Values (all data types) Properties can cover only distinct
values, e.g., capitals of countries, or repetitive values from a fixed set, e.g., age

1Assuming an optimal unit detection such that values like “1.2 thousand” cannot occur.

164 CHAPTER 8. THE T2K MATCH++ METHOD

restrictions of films. An attribute that covers many distinct values will most likely
not correspond to a category property although the values might look similar. A re-
lated idea is to create recognizer which cover the characteristics of attributes [Doan
et al., 2012]. For each attribute and property that are linked by a correspondence,
we first determine their fraction of distinct values and then take the difference.

fracdistppq �
|distinctpV q|

|V | diff distpp, aq � fracdistppq � fracdistpaq

where V are the values of an attribute or property p and distinctpV q is the set dis-
tinct values. If the fraction of distinct values is almost the same for the attribute
and the property, diff distpp, aq is close to 0.

Functionality (all data types) In knowledge bases, restrictions are expressed
in the according ontology language. A typical restriction of the ontology language
OWL is to define properties as functional (owl:FunctionalProperty) which indi-
cates that there can only be exactly one value of the property for each instance,
e.g., there can be only one birth date of a person. The feature we use indicates
whether two attributes are mapped to the same functional property. Exploiting
OWL restrictions has already been proposed by [Ehrig and Sure, 2004].

Cosine Similarity (string) For each attribute and property of data type string,
we normalize all values and split them at white spaces or special characters. Fur-
ther, we build TF-IDF vectors and compute their cosine similarity. If an attribute
does not share any important terms with the property, a correspondence does not
make sense although the values are similar. The resulting feature lies between �1
indicating the totally opposite and 1 meaning exactly the same.

Value Ranges (numeric, date) We check whether the median of the values of
an attribute is between the minimum and maximum value of the property. Using
percentiles instead of the minimum and maximum is not convincing because web
tables often show a completely different accumulation, e.g., for a typical web ta-
ble describing the highest mountains, the values of the height attribute will even
be outside the 0.99 percentile of the height property of mountains. Since we only
verify if the median is between the minimum and maximum, this feature is binary.

Fraction of Discrete Values (numeric) Numerical values can either be dis-
crete or continuous. For example, the population of a country cannot be continu-
ous since there cannot be half a person. Even if all values are similar, a continuous
attribute will most likely not fit to a discrete attribute. More precisely, we take the
difference of the fraction of discrete values for the attribute and property.

fracdiscppq �
|discpV q|

|V | diff discpp, aq � fracdiscppq � fracdiscpaq

where V are the values of an attribute resp. property p and the discpV q represents
the set of discrete values in V . Whenever diff discpp, aq is close to 0, the attribute

8.1. METHODOLOGY 165

and the property share a similar behavior regarding the fraction of discrete and
continuous values.

Kurtosis (numeric) The kurtosis of a distribution, the forth moment, measures
the peakedness and in turn tells something about their shape. If the shapes differ
essentially, the attribute and the property will most probably not contain the same
information. As example, an attribute with ranks of films will not fit to the property
indicating the runtime. In the first case, a union distribution is given while in the
second case, a normal distribution can be assumed. More specifically, we compute
the Pearson’s kurtosis, also referred to as excess kurtosis, of both the attribute
and the property and use their difference as feature. Including the characteristics
of the distributions during the matching of numeric attributes into account is also
described by [Pham et al., 2016].

kurtppq � 1

|V |
¸
i

pvi � v

s
q4 � 3 diff kurtpp, aq � kurtppq � kurtpaq

where s is the standard deviation. While a uniform distribution has an excess kurto-
sis of�1.2, a normal distribution has an excess kurtosis of 0. Thus, if diff kurtpp, aq
is close to 0, the underlying distributions are shaped similarly, the further away they
are, the more diverse their peakedness is.

Example Workflow The following example depicts how the steps of the work-
flow work together to generate instance correspondences.

Example 8.3 Figure 8.6 presents the result of each workflow step for the instance
matching task. The input is an excerpt of a table of the T2D gold standard.2 Besides
the entity label column, it covers one attribute with the airport code. The airport
code corresponds to the property dbo:iataCode in DBpedia. Further, for all three
entities in the table, a corresponding instance exist in DBpedia. During the direct
and indirect matching, similarity matrices including the similarities of the label
and value comparisons are generated. Matrix prediction is applied to compute the
matrix weights. The weights for the direct matching matrices are about 0.1 higher
than the weights for the indirect ones. This reason is that the indirect matrices
cover more entries greater than 0 which leads to a lower reliability. The differences
between the label and value weights are marginal since the label and the code are
mostly unique. The computed weights are used during the aggregation to combine
the similarities, resulting in one similarity matrix. This similarity matrix serves as
input for the classification during which a learned decision tree is applied to decide
whether a correspondence should hold. The simplified decision tree decides for a
correspondence if the final score, presented in the aggregated similarity matrix, is
above 0.8. If the final score is lower, the sum of the values scores from the direct
and indirect matching are considered. With a sum greater than 1.5 the correspon-
dence is not filtered out since the direct and indirect matching both agree on a high

2Table 5873256 0 7795190905731964989 in the T2D gold standard.

166 CHAPTER 8. THE T2K MATCH++ METHOD

Figure 8.6: T2K Match++ Workflow applied on an excerpt of a table about airports.

similarity during the value comparison. Hence, the label deviation of the entity ltu
iinternational airways with its instance in DBpedia can be overcome. In contrast
to the direct matching approach, see Figure 6.4, all correct correspondences are
generated with confidence scores between 0.62 and 0.99

8.2 Related Work

Section 6.4 and 7.3 already discussed systems for matching web tables to knowl-
edge bases according to different aspects. The field of related work that applies
holistic matching or domain knowledge is significantly smaller. In this section, we
present how holistic matching and domain knowledge is used by other methods.

8.2.1 Domain Knowledge

Approaches that exploit domain knowledge are also referred to as constraint-based
or in the field of ontology matching as structure-based techniques. They have been
employed for database and ontology matching [Rahm and Bernstein, 2001, Eu-
zenat and Shvaiko, 2007]. In contrast to other methods, they do not only rely on
comparisons between labels or values but infer constraints or compute similarities
based on structural characteristics. For matching databases, the data types [Do
and Rahm, 2002] and the cardinality [Navathe et al., 1986] are most common to
be exploited. When matching ontologies, domain and range restrictions [Noy and

8.2. RELATED WORK 167

Musen, 2000,Lambrix and Tan, 2005] as well as definitions of the according ontol-
ogy language can be utilized [Ehrig and Sure, 2004]. In addition, based on disjoint-
ness axioms defined by the ontologies, incorrect correspondences can be removed
due to their inconsistency [Meilicke et al., 2007]. Besides matching, similar meth-
ods have also been applied in the field of knowledge base creation [Suchanek et al.,
2007]. All mentioned methods have in common that the constraints based on in-
formation which is specified within the sources. For web tables or other types of
sources such information is not available.

Domain knowledge gathered from data Instead of relying on constraints that
are provided by the formal schema, domain knowledge can also be inferred from
the data itself, e.g., by finding value patterns or computing value statistics. As one
approach, recognizers are employed which generate a dictionary listing all possible
values that occur in a schema [Doan et al., 2012]. If most of the the values appear
in another schema, the recognizer concludes the similarities of the schemata. The
strategy is especially beneficial if a schema can only cover a fixed set of values,
e.g., the parental guidance movie classification.

One systems for matching database schemata by exploiting domain knowledge
gathered from the data is SEMINT [Li and Clifton, 2000]. For each data type,
SEMINT defines a set of characteristics. Among others, this includes the standard
deviation for numeric values or the ratio of white space for strings. It builds vec-
tors on these features and uses them as input for a neural network. Another field of
research in which constraints are used is outlier detection. A family of approaches
are statistical technique which profile the normal data, e.g., by maintaining his-
tograms, and filter out anomalous data instances [Chandola et al., 2009]. Often,
outlier approaches are mostly concerned with validating object-valued statements.
In contrast, [Fleischhacker et al., 2013] detect errors in numerical properties in
DBpedia by confirming facts using LOD datasets. Further, outlier detection is also
used to find incorrect links between LOD datasets [Paulheim, 2014]. As mentioned
during the introduction of the knowledge-based classifier, such characteristics be-
tween web tables and the knowledge base can significantly differ since web tables
only presents a restricted view on a domain.

The LSD system [Doan et al., 2001] applies a set of learners. Each learner
exploits a different part of information with the goal to match database schemas to
one mediated schema. Some of the learners incorporate constraints like the char-
acteristics of the value distribution. These constraints can be very domain specific,
e.g., it learns for the real estate domain that the average number of rooms does not
exceed 10. The same ideas are applied in the iMAP system [Dhamankar et al.,
2004] to find complex mappings and by [Madhavan et al., 2005] to match schemas
among each other. However, these methods focus on a set of particular domains
and are not suitable for cross-domain knowledge bases.

168 CHAPTER 8. THE T2K MATCH++ METHOD

Domain knowledge for matching web tables DSL [Pham et al., 2016] is a
domain-independent system that matches the schemas of different data sources,
among others also attributes of web tables, to ontologies. Besides similarities
based on attribute labels and values, a distribution as well as histogram similarity
is used. These similarities base on the same ideas as parts of our knowledge-based
classifier. All features serve as input for a logistic regression. Another approach
including domain knowledge for matching web tables to a knowledge base is im-
plemented by [Mulwad et al., 2013]. Different modules can be included that for
example identify whether an attribute contains data such as phone numbers. Using
this information, more convenient similarity measures can be applied.

8.2.2 Holistic Matching

The term “holistic matching” has been used in various contexts. In general, the
idea is to go beyond pairwise comparisons [Bellahsene et al., 2011]. Two main
directions are considered as holistic [Rahm, 2016]:

• Build groups to decrease the amount of comparisons.

• Combine information to improve the matching quality.

Holistic matching to decrease the amount of comparisons Focusing on build-
ing groups, one strategy for schema matching is to use co-occurrences of attributes
in schemata to decide whether attributes might have the same meaning [He and
Chang, 2004]. Altogether, the goal is to integrate n schemas all at once and not
one after another. Similarly, approaches for data matching mainly base on the
idea to build cluster of entities in which all entities refer to the same real-world
object [Hassanzadeh et al., 2009]. Such holistic methods exploit the amounts of
sources to be matched in order to avoid pairwise comparison of each source to all
other sources or to a target source. Our approach still performs pairwise compar-
ison of each table with the knowledge base but combines information from other
tables to improve the results.

Holistic matching to combine information The second direction of holistic
methods gather evidence from sources that are also matched to the same target.
Again, these strategies can be applied for schema [Do and Rahm, 2002] as well
as data matching [Hartung et al., 2013]. If correspondences already exist, either
characteristics can be learned or the transitivity can be exploited. [Madhavan et al.,
2005] use existing mappings to learn typical characteristics of attributes as well
as derive constraints for specific domains. A method to exploit the transitivity of
correspondences, also called mapping composition, is provided by [Hartung et al.,
2013]. Thus, new correspondences can be derived which leads to an improved cov-
erage of the schemas to be matched.

8.2. RELATED WORK 169

Holistic methods for table to table matching The InfoGather system [Yakout
et al., 2012] generates topic-specific graphs under consideration of indirect map-
pings in order to augment a query table with values found in a web table corpus.
One augmentation method is augmentation by attribute name where the query ta-
ble consists of an entity label column together with a second column for which an
attribute label is specified but the values are missing. Hence, the task is to find
the according values for the specified entity-attribute combination. First, the di-
rect match approach (DMA) selects tables with overlapping entity labels that also
share the attribute label of the augmentation attribute. Since the labels are com-
pared using string equality, a low recall is expected (around 0.33). Depending on
the domain of the query table, the precision can also be low due to the ambiguity
of entity labels, e.g., names of cell phones are the same as name of camera mod-
els. Thus, additional information is gathered by considering indirectly matching
tables in order to improve both, precision and recall. At first, the tables of a corpus
consisting of 573 million web tables are matched among each other. For this, a
combination of table and context features to compute the similarities between the
tables is used. These similarities serve as weights for edges within a graph repre-
senting each table of the web table corpus as node. By using the topic sensitive
pagerank, similarities between the query table and the tables in the graph are com-
puted by considering both, direct as well as indirect paths. Finally, the similarities
are aggregated to receive the value that is chosen to be augmented. To evaluate
the augmentation by attribute name, six datasets covering tables about cameras,
movies, baseball, albums, uk-pm, us-gov have been considered. The query tables
for the experiments are generated by randomly selecting entity and attribute labels
from the tables in the according datasets. The evaluation on value level shows that
on average, a precision of 0.8 with a recall of 0.97 can be achieved which is 0.15
and 0.61 better than the results of direct match approach, respectively. Besides the
input sources, a difference to our approach is that we restrict ourselves to indirect
matches of the path length 2 and do not consider tables that only match indirect to
already indirect matching tables. However, it is not clear whether further levels on
indirect matches provide any benefit. Another interesting finding by the authors is
that automatically generating attribute synonyms as proposed by [Cafarella et al.,
2008b] is not a useful approach without manual intervention.

Holistic methods for web table to knowledge base matching For matching
web tables to a knowledge base, [Cafarella et al., 2008b] follows a similar idea
as [He and Chang, 2004] and create an attribute correlation statistic database based
on a corpus of web tables. These statistics are used to create synonyms for attribute
labels. Hence, these synonyms help to resolve terminological heterogeneities. The
approach is similar to the creation of the synonym dictionary as described in the
previous Chapter (Section 7.2). In contrast, we require a web table corpus that is
already matched to a knowledge base such that the information are only available
for subsequent matching executions.

170 CHAPTER 8. THE T2K MATCH++ METHOD

8.3 Evaluation

In this section, we present the evaluation of the T2K Match++ method. Beside
the T2D gold standard, we apply T2K Match++ on a second gold standard, the
Limaye gold standard [Limaye et al., 2010], which is frequently used by other
web table matching systems. We report the overall results for both gold standards,
discuss the achieved performances for different steps, and analyze the results of
each individual matching tasks in detail. Finally, a comparison to the results of
state-of-the-art systems is given.

8.3.1 Experimental Setup

To be able to use indirect matches, correspondences between web tables and the
knowledge base need to be available. Thus, for our experiments, we use the WDC
WTC 2012 with 33 million tables and DBpedia (English version 2014) as input.
Since we do not know all correspondences of tables in the corpus, we measure the
performance of T2K Match++ on the T2D as well as on the Limdbp gold standard.

Limdbp We annotate tables from the gold standard presented by [Limaye et al.,
2010] with class, property, and instance correspondences to DBpedia. In more de-
tail, we reuse the set of 200 randomly chosen tables from the Limaye gold standard
as introduced by [Zhang, 2016]. Most of the tables, around 94% have been col-
lected from Wikipedia, the remaining ones originate from general web pages that
overlap with Wikipedia tables. Table 8.2 depicts the statistics for the Limdbp gold
standard. Altogether, 173 class correspondences have been created, 406 property-
(with 173 label correspondences) and 3 465 instance correspondences. It is espe-
cially conspicuous that the tables cover on average a similar amount of attributes
(5) as the overlapping tables in T2D while the average number of rows is consid-
erably less. Thus, especially for the property and class matching task, a smaller
amount of information is available. The lower number of rows per table obviously
results in a smaller set of correspondences to instances in DBpedia. The amount of
property and class correspondences are in the same order of magnitude.

Table 8.2: Statistics about entities and attributes in the Limdbp gold standard.

Average Median SD #Corr. Mapped Ratio
Rows 3679 22.01 14 21.59 3465 0.94
Columns 764 4.53 4 1.55 406 0.53

Compared to the T2D gold standard, the tables especially cover considerably
less rows (3 679 vs. 28 595) but with a comparable amount of attributes (764 vs.
1163). Thus, the Limdbp tables are significantly smaller but with a similar width.
In contrast, the mapped ratios are almost the same for both gold standards.

8.3. EVALUATION 171

The topics described by tables in the Limdbp gold standard are depicted in Fig-
ure 8.7. About 40% of all tables are about persons. Together with tables describing
populated places, 70% of the tables in the gold standard are covered. In contrast,
in T2D the most common topics are places and works but only with a respective
proportion of 20% which indicates a broader coverage of topics.

Figure 8.7: Number of instance correspondences per DBpedia category in the
Limdbp gold standard.

As we already discussed in Section 6.4.4, the main differences between the
T2D and Limaye gold standard, and in turn the Limdbp gold standard, are the va-
riety of sources, the availability of datatype property correspondences and the in-
corporation of non-overlapping tables. In contrast to web tables gathered from
arbitrary pages, other characteristics are provided. For example, almost every
Wikipedia table has an attribute label which does not hold for other web tables.

8.3.2 Overall Results

In this section, we evaluate the overall performance of T2K Match++. Table 8.3
shows the results for all three matching tasks on T2D and Limdbp. The results are
divided into three parts: only direct matching (dir), direct & indirect matching (ind)
and including the improved classification (all).

Results on T2D Only applying the direct matching leads to decent results for
all tasks as presented in the previous Chapter (Section 7.4), i.e., an F-measure of
0.79 for the instance, of 0.81 for the property, and of 0.92 for the class matching
task. By additionally performing the indirect matching step, the results for the in-
stance and class matching tasks can be improved but the precision of the property
matching task drastically drops. Besides useful evidence and correct correspon-
dences, indirect matches can also bring incorrect correspondences into play. This
especially affects the property matching task due to its characteristics: while for
92% of all rows DBpedia includes an instance referring to the same real-world

172 CHAPTER 8. THE T2K MATCH++ METHOD

Table 8.3: Results of T2K Match++ for all three matching tasks on T2D and
Limdbp.

Precision Recall F-measure
Task Dir. Ind. All Dir. Ind. All Dir. Ind. All

T
2D

Instance 0.81 0.90 0.94 0.77 0.79 0.80 0.79 0.84 0.87
Property 0.76 0.59 0.95 0.86 0.95 0.86 0.81 0.73 0.91
Class 0.93 0.95 0.95 0.91 0.93 0.93 0.92 0.94 0.94

L
im

d
bp Instance 0.90 0.86 0.95 0.83 0.82 0.81 0.86 0.84 0.87

Property 0.59 0.53 0.89 0.77 0.85 0.73 0.66 0.65 0.80
Class 0.85 0.88 0.88 0.85 0.88 0.88 0.85 0.88 0.88

object, for only 57% of the attributes a DBpedia property with the same meaning
exists. Thus, assigning a property to an attribute is more likely to be incorrect than
assigning an instance to an entity. In addition, even by solely performing the direct
matching, the precision for the property task is only about 0.75 which means that
25% of all correspondence in tables with the same topic are already incorrect. By
using the knowledge-based classifier exploiting domain knowledge, the incorrect
property correspondences are detected and in turn the decrease of precision for the
property matching task can be reversed. Additionally, the performance for the in-
stance matching task can be improved the indirect matching and a classification
that goes beyond thresholding. For the class matching task, precision and recall
are accomplished by the indirect matching but to a smaller amount (0.02) since
the F-measure achieved by direct matching is already above 0.9. Thus, with the
indirect matching, we are able to solve some of the remaining corner cases.

Results on Limdbp With the direct matching applied to the Limdbp gold stan-
dard, an F-measure of 0.86 for the instance, of 0.66 for the property, and of 0.85
for the class matching task can be achieved. One reason for the high instance per-
formance is that entities within Wikipedia tables often have the exact same label as
the instance in DBpedia. To underline the evidence, we found out that 65% of all
entities share exactly the same label as the according DBpedia instance. Contrary,
although almost every attribute has a label, the property matching performance is
comparatively low. The tables cover on average only 22 entities which leads to
a smaller amount of values that can be taken into account for the duplicate-based
method and in turn, little evidence is available to decide which property fits best,
if any. Further, about 70% of all tables from the Limdbp gold standard are about
persons and populated places: two of the DBpedia classes with the highest amount
of properties which in turn leads to an increased amount of candidates for each
attribute. Additionally including the indirect matches slightly worsen the results
for all tasks except for the class matching where an increase of 0.03 in F-measure
is detected. Improvements for the class matching result from the fact that less
actually overlapping tables are filtered out due to missing evidence. In contrast,

8.3. EVALUATION 173

the instance matching performance decreases since the indirect matches from the
comparably noisy and error-prone web table corpus leads to incorrect decisions.
Including the more advanced classification, the best results for all three tasks can
be achieved. Especially for the property matching, the F-measure can be raised by
0.14 compared to the direct matching.

Although the gold standards vary according to different characteristics like the
table size or the topical distribution, in most cases similar behavior can be ob-
served. For all three tasks, the best results are achieved if the combination of direct
and indirect matching together with the adapted classification is applied. Only con-
sidering indirect matches can, but does not need to, improve the instance matching
results, depending on the table characteristics and especially on the expected qual-
ity of the correspondences that are used during the indirect matching. On both gold
standards, including indirect matches decrease the results of the property matching
since almost every attribute is incorrectly assigned with a property and these incor-
rect correspondences cannot be filtered by the threshold-based classification. Thus,
the need for the knowledge-based classification becomes evident in both datasets.
Overall, the performances achieved on both gold standards are in the same range,
except for the property matching task where an increase in the performance be-
tween 0.17 (direct) and 0.11 (all) for T2D is determined. As mentioned, one rea-
son is the size of the tables since tables from Limdbp are smaller which reduces the
amount of evidence on which the algorithm can rely on.

Comparison to InfoGather InfoGather [Yakout et al., 2012] is the only system
that includes indirect matches for matching web tables among each other, for the
use case of table augmentation. On value level, they report on average a precision
of 0.8 with a recall of 0.97. Thus, similar F-measures can be achieved although
the results are not directly comparable. Further, the InfoGather system achieves an
increase in precision of 0.15 and in recall of 0.61 in contrast to only applying the
direct matching approach. For T2K Match++ we cannot detect such large recall
improvements. This mainly bases on the direct matching method: InfoGather re-
quires the equality of attribute labels in order to consider two web tables as match.
Hence, the results of the direct matching approach tend to have a high precision
with a low recall which is not the case for our direct approach. Apart from the
discrepancies, the InfoGather outcomes support our findings that holistic matching
is suitable for web tables and both, precision and recall can be improved.

8.3.3 Detailed Evaluation

While the previous section focused on the evaluation of the performance of the
overall algorithm this section provides details on specific parts of our approach as
well as analyzes which direct matching errors can be avoided. Thereby we focus
on the T2D gold standard since on the one hand it covers a wider range of cases
and on the other hand, the results for both gold standards are mostly in line.

174 CHAPTER 8. THE T2K MATCH++ METHOD

Figure 8.8: Performance changes of different maximal numbers of retrievable ta-
bles in the table search.

Table Search During the indirect matching, we search for similar tables that
have also been matched to DBpedia. One important step is the table search where
similar tables are retrieved by querying an index using the entity labels. Following,
we analyze whether and to which extent the maximal number of tables retrieved
by the index has an influence on the performance in terms of F-measure. In Figure
8.8, the results using three different numbers, 100, 500, and 1 000, of maximal re-
trieved tables are shown. In general, retrieving more tables leads to better results
but only slight changes are noticeable. For the instance matching task, an improve
in recall by 0.03 is determined when increasing the number of tables from 500 to
1 000. Thus, for some entities the top 500 tables are not enough since these tables
might not contain similar entities, e.g., a particular song will not be found in every
table about songs even if other songs of that table are referred. Concerning the
property task, precision and recall is improved by 0.01 when taking 500 instead of
100 tables into account. In contrast to thousands of entities that can exist, usually
a restricted set of attributes is used to describe a domain. Hence, it is not necessary
to consider more tables but it does not harm. The results of the class matching
task show again a similar behavior as the results of the instance matching task:
the precision and recall can be increased by 0.01 and 0.03 when rising the number
of tables from 500 to 1 000 respectively. Using more than 1 000 retrievable tables
does not lead to an improvement of the results, and increases the runtime only.

Table Matching After retrieving the relevant tables from the index, the tables
are matched among each other. This includes the entity, attribute, and table match-
ing. For all three tasks, we analyze how many similar tables and elements we detect
during the matching. Starting with the table matching task, Figure 8.9 presents the
cumulative distribution function of the number of tables that are considered as sim-
ilar. A table is considered as similar if at least one correspondence to an instance
in DBpedia is shared. Since we set the maximal number of received tables to 1 000
more than 1 000 tables can never be similar. As the distribution states, for more
than 90% of the tables in T2D, no more than 900 tables are similar. For 10% of
the tables in T2D, we do not even find one table describing overlapping entities.
Hence, the results of these tables cannot be improved by the indirect matching. Ex-

8.3. EVALUATION 175

Figure 8.9: Distribution of detected similar tables per table in T2D.

amples are particularly tables containing long-tail entities, e.g., about hospitals in a
very specific area. More than 40% of the tables are similar to less than 100 tables.
This includes tables about topics like newspaper or museums. Only for a small
amount of tables we get close to the limit of 1 000. Such tables are about works
like video games or places. One reason for the amount of similar tables is of course
the distribution of tables in the corpus. However, a large amount of tables about a
certain domain in the corpus does not necessarily mean that the amount of similar
tables is also high. According to the topical distribution of web tables as outlined
in Chapter 5, tables about songs are frequent in the corpus. However, for a small
table with specific songs, only a small amount of similar tables will be found, if any.

Besides the amount of similar tables, different amounts of similar entities and
attributes can be detected. Figure 8.10 shows the distributions of similar entities
and attributes that can be found during the table matching, respectively. Both dis-
tributions indicate a similar behavior: for a large portion of entities and attributes
(20% and 34%) no similar elements can be detected, for 13% of the entities and
26% of the attributes only a few elements can be found but for 70% of the entities
and 40% of the attributes more than 10 elements are considered as similar.

Mapping Composition To know whether the amount of similar elements has
an influence on the results, we computed the correlation (Pearson correlation coef-
ficient) between the number of similar elements to the correctness of the generated
correspondence. The number of detected similar elements has a positive corre-
lation of 0.1 for entities and of 0.29 for attributes (statistically significant, TTest
α � 0.05). Hence, if no similar attribute can be found, it is an indication that
no correspondence to a DBpedia property exist. In contrast, for entities this does
not necessarily hold since especially long-tail entities are not found in other ta-
bles. For example, almost 1 000 mountains do not have any similar entities but the
correspondences to instances created by the direct matching are mostly correct.

176 CHAPTER 8. THE T2K MATCH++ METHOD

Figure 8.10: Distribution of detected similar entities per entity and attributes per
attribute for tables in T2D.

Classification The classification decides whether a correspondences is consid-
ered as match or non-match based on decision trees that are learned for the match-
ing tasks. Figure 8.11 and Figure 8.12 depict the decision trees for the instance and
class matching task, given the features described in Section 8.1.3 as input. Each
leaf associated with “1” is a match, “0” means a non-match.

For the instance matching task, the most upper decision is whether the final
score is above 0.54. Since the final score is the combination of the direct as well as
indirect matching, either both steps need to return a certain score or a sufficiently
high score from one of the matching steps is required. The sum of the label scores
is again a features that includes scores from both steps. Since the value in the con-
dition of the decision tree is slightly above 1.0, it is required that a label similarity
is detected by both matching steps. Based on the previous findings, we know that
correspondences can be correct even if no similarities are detected by the indirect
matching. This is also reflected in the decision tree: all following conditions are
concerned with features originating from the direct matching step. This includes
the differences to similarities of other entities in the same table, to all other entities
in other tables of the gold standard and the similarities with their weights.

The decision tree learned for the class matching task covers slightly less nodes.
The root condition proves whether the proportion of entities for which a corre-
spondence to a knowledge base instance has been generated to the total amount
of entities in the table is equal or less than 0.6. If additionally a low direct score
is determined, the correspondence between the table and the class is not likely to
hold. Hence, if the class decision only bases on a few instance correspondences for
which the evidence is not even high, the table does most probably not correspond
to this class. Otherwise, if more than 60% of the entities have a counterpart in the
knowledge base, even a lower direct score is enough to decide for the correspon-
dence. If more than a total of 11 entities have been matched to instances and the
final score exceeds a certain value, the correspondence is not excluded.

Comparing both trees, different features seem to be important for the instance

8.3. EVALUATION 177

Figure 8.11: Decision tree learned to classify instance correspondences.

Figure 8.12: Decision tree learned to classify class correspondences.

and class matching task. Especially features combined from both, indirect and
direct matching, are essential for the instance matching task. Contrary, for the
class matching task, table characteristics are more helpful. One obvious reason
is that the class matching task without indirect component already achieves an F-
measure above 0.9 such that only slight improvements are possible. In contrast, an
F-measure increase of 0.08 is determined for the instance matching task.

Knowledge-based Classification In addition to features used by the other two
tasks, characteristics derived from the knowledge base are included as features to
classify property correspondences. Since the features can refer to particular data

178 CHAPTER 8. THE T2K MATCH++ METHOD

types, an individual decision tree for each data type is generated. Figures 8.13,
8.14, 8.15 depict the decision trees learned for the property matching task. All trees
include knowledge-based features and features generated during the direct and in-
direct matching. Further, features basing on both - value and label similarities - are
taken into account. We will analyze the features derived from the knowledge base
independently of the classifier in a correlation analysis in Section 8.3.5.

Figure 8.13: Decision tree learned to classify string property correspondences.

Figure 8.14: Decision tree learned to classify date property correspondences.

Figure 8.15: Decision tree learned to classify numeric property correspondences.

8.3. EVALUATION 179

Figure 8.16: Different cases for improvement

Improvement Analysis For all three matching tasks, we know the precision
and recall changes that are achieved by applying T2K Match++. However, dif-
ferent cases of improvements can be responsible for the overall performance in-
crease. Figure 8.16 introduces the four cases where indirect matches can improve
the matching results, in this example of the instance matching task. Green ar-
rows indicate correct correspondences, red arrows incorrect correspondences and
dashed arrows missing correct correspondences. In general, we can either gather
positive or negative evidence such that the confidence of correct correspondences
can increase and the confidence of incorrect ones can be decreased.

• Case 1 In the first case, a correspondence between the entity and the cor-
rect instance can be found with direct comparison but the correspondence
might be filtered out during the classification since the confidence is not high
enough. Reasons for a low confidence could be that values do not overlap
or no correspondences to properties can be found for the table. If we find
similar entities in other tables that are also mapped to the same instance, we
can be more reliable that the correspondence is indeed correct. As example,
we can confirm the correspondence between the entity with the label Ger-
many to the DBpedia instance called Germany because other entities with
the same label are also matched to this instance.

• Case 2 For entities for which no suitable instance is detected during the
direct comparison, we can check to which instances similar entities have
been matched. In the example, we do not find the DBpedia instance France
as candidate for the entity French Republic because the labels are not similar
enough. However, the corpus covers similar entities which are at the same
time also similar to the preferred instance.

• Case 3 Besides confirming a correspondence, we can also gather negative
support which can lead to the exclusion of correspondences. Incorrect cor-
respondences can for example be generated if the labels accidentally fit and
we do not have any further evidence like similarities on the value level. If
we rarely find this incorrect correspondence for similar entities, it is an in-
dication that the correspondence is unlikely to hold. As example, a corre-
spondence is generated by the direct matching between the entity Georgia

180 CHAPTER 8. THE T2K MATCH++ METHOD

and the DBpedia instance named Georgia which describes the state in the
U.S. instead of the country located in Europe. This correspondence cannot
be confirmed by the correspondences detected for similar tables.

• Case 4 A combination of case 2 and 3 is represented by this case. On the
one hand, for a particular entity we find a correspondence during the indirect
matching that has not been considered before and on the other hand we do
not get any support for the incorrect correspondence. Due to the limited evi-
dence, the entity North Korea is matched to South Korea which is obviously
not correct. With the help of similar tables, the entity can be mapped to the
correct DBpedia instance. Thus, a correspondence pointing to the wrong
instance can be replaced by the correct correspondence.

To know which errors can be avoided by an additional indirect component, Ta-
ble 8.4 depicts the precision and recall changes for the four cases of improvement.
Regarding precision, gathering negative evidence for incorrect correspondences
(case 3) is particularly important for all matching tasks. Among all tasks, an in-
creased precision can be detected, even up to 0.18 for the instance and 0.2 for the
property task. As expected, a high rise in precision is often at the expense of a loss
in recall but the loss is limited. Cases 1 and 2 ensure a higher recall for all the tasks,
while confirming correspondences (case 1) is more important for the instance and
property matching task. For the last case, a small improvement can only be per-
ceived for the class matching task. Thus, for the other tasks either only a missing
correspondence can be found or an incorrect can be discarded but not at the same
time.

Table 8.4: Precision and recall changes for the different cases of improvement.

Precision per case Recall per case
Task 1 2 3 4 1 2 3 4
Instance -2 -2 +18 -1 +3 +2 -4 +1
Property -1 +0 +20 +0 +5 +1 -5 +0
Class +0 -2 +2 +2 +0 +2 +1 -1

In the following sections, we provide in-depth analysis of the results of each
task. Thereby we focus on the T2D gold standard since on the one hand they
provide a more realistic scenario and on the other hand, the results for both gold
standards are mostly in line.

8.3.4 Results of the Instance Matching Task

For the instance matching task, the direct matching step achieves an F-measure of
0.79. Considering indirect matches as well as applying the improved classification
increases the F-measure by 0.05 and 0.03, respectively. The extent of the improve-
ment is not the same for all entities but depends on their characteristics. Figure

8.3. EVALUATION 181

8.17 presents the performances for the classes from the first level of the DBpedia
class hierarchy to which the corresponding instances belong to. Instances that do
not have one of these classes as superclass are not considered (about 4%). When
we only apply direct matching, entities describing works have the lowest preci-
sion but at the same time the highest recall. A possible reason is the ambiguity of
work names, e.g., the term “Love” occurs in a lot of different work names. In con-
trast, for entities referring to places which make up 42% of all entities, the detected
correspondences are most often correct but we miss some of them.

Figure 8.17: Instance matching performance differences per superclass on T2D.

If the direct matching in combination with the indirect matching and the clas-
sifier is applied, high improvements regarding precision can be detected for Works
(0.17) followed by Agents (0.15). A simple reason is that the majority of tables
in the web table corpus is about works and agents as introduced in Chapter 5.
Thus, most evidence can be gathered during the indirect matching for instances
belonging to those classes. For all other classes, relatively high rises in precision
of around 10% are achieved. Also the recall is improved for most cases except
for Works where a decline of 0.06 is attained. Obviously, if the precision of the
direct matching is rather low, the similarities gained during the indirect matching
can be misleading and in turn correct correspondences can be filtered due to low
evidence. For other classes like Agent or Species, not only the precision but also
the recall can slightly be increased by 0.05 and 0.03, respectively. Since almost
half of the instances in T2D are of type Place, the increase in precision by 0.11
and the improvement in recall of 0.02 are conducive for the overall performance.

To get a more fine-grained view, Table 8.5 presents examples for classes of
instances where significant performance changes in precision and recall compared
to the results of the direct matching can be seen. For the classes Bird and Base-
ballPlayer, the recall increases by almost 0.4 and even comparatively large preci-
sion improvements can be achieved. These enhancements involve 9% (Bird) and
4% (BaseballPlayer) of all entities that have a correspondence to a DBpedia in-
stance. In contrast, for Saints, the recall can be drastically increased but at the
expense of precision. The improvements for instances of the classes Airline and

182 CHAPTER 8. THE T2K MATCH++ METHOD

Table 8.5: Examples for significant instance matching task performance changes.

Class #Rows Precision Recall
Bird 2304 +0.16 +0.34
BaseballPlayer 910 +0.18 +0.39
Plant 720 +0.24 +0.22
Airline 477 +0.20 +0.27
Lake 545 +0.12 -0.25
Hospital 310 -0.01 -0.40
Newspaper 65 -0.07 -0.18
Saint 455 -0.13% +0.57

Plant are some of the largest especially regarding precision. Tables about airlines
often include codes like the IATA-code which is a very distinct attribute. Decreased
recall scores are found for Hospital and Lake, mainly due to the reason that we do
not find these very specific long tail entities very often among the tables in the
corpus and thus in contrast to other entities cannot confirm the detected correspon-
dences. One example of a lower precision are instances of type Newspaper. As
it is generally the case for works, newspaper names often refer to general terms,
e.g., “the sun”. Since the indirect matching relies on the similarities for all tables
computed during the direct matching, this issue cannot be fully overcome.

8.3.5 Results of the Property Matching Task

When matching attributes to properties, including indirect matches drastically de-
creases the precision by 0.17. T2K Match++ assigns a property to almost every
attribute and a threshold-based classification is not able to distinguish between
matches and non-matches. The lack of precision can be compensated by apply-
ing the knowledge-based classification exploiting domain knowledge. Overall, the
precision can be increased to 0.95 while the recall almost remains the same, result-
ing in an F-measure raise by 0.1 compared to the direct matching.

Figure 8.18 depicts the performance changes per data type. The most drastic
change can be seen for numeric attributes which make up 25% of all attributes
in T2D. For them, an enhancement in the precision of 0.37 can be achieved. For
strings, the precision improvement accounts for 0.09, for dates a raise in precision
of 0.17 can be found. The reason for the higher performance change for numeric
attributes is the variety of features that can be exploited during the classification.
Regarding recall, an increase for numeric attributes by 0.15 but at the same time a
slight decrease for string attributes is detected. Since string attributes occur more
often, the in- and decrease compensate each other on the overall results.

Attributes for which correspondences are not found during the direct match-
ing are often time- or location varying attributes, e.g., the population of a country
or the release date of a film. For attributes of type string, in contrast to the di-

8.3. EVALUATION 183

Figure 8.18: Property matching task results per data type on T2D.

rect matching, correspondences can be detected if the values include longer texts
or terms that do not originate from a controlled vocabulary or use abbreviations.
Thus, the values in the table are too different to the according DBpedia values.
However, we find tables in the corpus whose values are similar and their attributes
have been matched to a DBpedia property. This can happen for a set of reasons:
more evidence is available because more entities are mapped to instances, the table
contains additional/other entities or the extent of the variation between the values
is slightly less.
The precision may be increased if incorrect correspondences are detected by the
direct comparison but they cannot be confirmed when considering similar tables.
One example is the mapping of “view date” of a film to its release date. Knowing
that similar tables do not share the correspondence, it is classified as non-match.

Since the knowledge-based classifier is most important for the property match-
ing task to improve the results, we analyze the influence of different features on the
classification results. Table 8.6 depicts the Pearson correlation coefficients between
the features with the largest influence and the correct classification decision. All
correlations are significant (TTest with α � 0.05), except for the final similarity
score of string attributes, marked by an asterisk.

At first glance, we see that the correlations and their extent highly depend on
the data type. As example, while we find correlation scores above 0.6 for nu-
meric attributes, the highest score for string attributes is around 0.3. For attributes
of data type string, the label similarity as well as the cosine similarity show the
highest positive correlation, followed by the value similarity. All other features do
not seem to have an influence on the result. In contrast, for numeric attributes a
variety of features are even highly correlated. Besides the similarities that are com-
puted during the matching, the distinctness seems to play an important role. If the
attribute and the property do not share the same characteristics regarding the dis-
tribution of distinct values, the correspondence will probably be incorrect. Further,
the features that are specifically included for numeric attributes are all positively
correlated, especially the fraction of discrete values.
Regarding date attributes, the label similarity is even negatively correlated with the

184 CHAPTER 8. THE T2K MATCH++ METHOD

Table 8.6: Pearson correlation coefficients between different features and the
knowledge-based classification.

Feature String Numeric Date
Direct Label Similarity 0.31 0.61 -0.17
Direct Value Similarity 0.22 0.31 0.40
Final Similarity *0.10 0.60 0.00
Distinct Values -0.05 -0.52 -
Functionality 0.00 0.00 -0.26
Cosine Similarity 0.30 - -
Value Ranges - 0.13 0.28
Discrete Values - 0.33 -
Kurtosis - -0.23 -

correspondence label. This indicates that a high similarity (regarding our similar-
ity measure) between the attribute and property labels tends to lead to an incorrect
correspondence. A reason are terms like ”date“ which frequently occur in attribute
and property labels. The final similarity score that is used for thresholding does
neither have a positive nor a negative correlation. For filtering incorrectly matched
date attributes, especially the functionality and the fact whether the median of the
values lies in the range of the property is important.

In general, the domain knowledge features act as plausibility checks but they
cannot be used without other features like the value similarities.

8.3.6 Results of the Class Matching Task

Regarding the class matching task, we can detect improvements of 0.02 in precision
as well as recall compared to the direct matching.

Figure 8.19: Table with a correspondence to the DBpedia class Person.

The incorrect correspondences that can be avoided when taking indirect matches
into account are mainly assignments of classes that happen due to accidentally fit-

8.3. EVALUATION 185

ting labels of instances to entites. Figure 8.19 shows an excerpt of a table that
has been assigned to the class Person during the direct matching. For most of the
entities, a person is found in DBpedia whose label is similar. However, none of
the entities actually refers to a person in DBpedia. However, the incorrect instance
correspondence cannot be filtered out based due to the similarity. Querying the
index during the indirect table search results in an empty set of relevant tables.
Thus, no table is similar which provides the crucial hint that no class should be
assigned since the table does not overlap with DBpedia. Improvements in recall
result from correspondences which have not been generated before due to low ev-
idence. Among other reasons, this can happen if a table only includes a small
amount of rows. With the additional evidence we get during the indirect step, we
are able to assign the correct class.

8.3.7 Comparison with State-of-the-Art

All systems matching web tables to knowledge bases have been presented in previ-
ous chapters. While some of them use tables from the T2D gold standard for evalu-
ation, most have been applied on tables from the Limaye gold standard. Firstly, we
compare T2K Match++ to systems using T2D and secondly, discuss the evaluation
on tables from the Limaye gold standard.

Table 8.7: Results of web table matching systems evaluated on tables from T2D.

F-measure
System Instance Property Class
T2K Match++ 0.87 0.91 0.94
LogMap [Efthymiou et al., 2016] 0.70 - -
[Efthymiou et al., 2017] 0.85 - -

TAIPAN [Ermilov and Ngomo, 2016] - 0.51 -
DSL [Pham et al., 2016] - 0.77 -

Approaches evaluated on tables from the T2D gold standard Table 8.7
presents the results of matching system that use tables from the T2D gold stan-
dard for their evaluation. Altogether, four approaches have been evaluated, i.e., on
the set of overlapping tables in T2D. Since they directly reuse the annotated cor-
respondences, all of them use DBpedia as knowledge base. None of the systems
performs all three matching tasks, they either focus on the instance or property
matching task. LogMap has been developed to match ontologies [Jiménez-Ruiz
and Cuenca Grau, 2011] but has been applied on web tables to evaluate how well
ontology matching tools are able to deal with web tables [Efthymiou et al., 2016].
Hence, an F-measure of 0.7 for the instance matching task is achieved without any
adaptions to the specific characteristics of web tables. The result is close to the
performance (0.68 F-measure) we reported in Chapter 7 when only the entity la-
bels are used as features. Recently, [Efthymiou et al., 2017] presented a system

186 CHAPTER 8. THE T2K MATCH++ METHOD

exploiting word embeddings to compare entities with instances. The reported F-
measure of 0.85 is very close to the result of T2K Match++. The other two systems,
TAIPAN [Ermilov and Ngomo, 2016] and DSL [Pham et al., 2016], focus on the
property matching task, resulting in an F-measure of 0.51 and 0.77, respectively.
TAIPAN retrieves property candidates using the attribute label and applies a prob-
abilistic model to find the best suitable property. Besides the tables in T2D, they
include additional tables in their gold standard such that the results are difficult
to compare. However, the achieved performance is slightly below the results we
stated when only considering the attribute label (F-measure of 0.63). DSL uses
statistical features based on the attribute and property distribution which are simi-
lar to our domain knowledge features. With this strategy, an F-measure of 0.77 is
determined which is comparable to the performance of our direct matching method
(0.81). T2K Match++ outperforms all approaches that have been applied on tables
from the T2D gold standard. Since they all focus on a particular matching task,
they cannot take advantage of the information gathered from the other tasks. Both
approaches, LogMap and TAIPAN take only a small set of features into account,
mainly relying on the label which is not sufficient to achieve best possible results.
However, as shown by [Efthymiou et al., 2017], with a more sophisticated method
including word embeddings, a high performance can be reached even if a small set
of features is considered. With additional features capturing different characteris-
tics the performance can be increased as shown by the DSL system. Nevertheless,
none of the systems attains F-measure scores around 0.9.

Approaches evaluated on tables from the Limaye gold standard In the lit-
erature, we find five systems that are evaluated on tables from the Limaye gold
standard. Originally, the gold standard contains correspondences to the knowledge
base YAGO. Over time, the tables have also been annotated with classes, proper-
ties and instance from the knowledge bases DBpedia and Freebase. Since different
knowledge bases provide different characteristics, the results are not directly com-
parable. Further, except for the approaches introduced by [Venetis et al., 2011],
the methods are evaluated on individual subsets of tables. Additionally to the dif-
ferences in the data, the systems only consider named entity attributes and do not
annotate attributes including literals. Further, they assign instances to each named
entity found in the table, regardless of whether they are contained in the entity label
attribute. Thus, web tables that we consider as non-relational because they do not
contain an entity label column are nevertheless matched by the other systems.

In Table 8.8 the achieved performances of the matching systems are presented.
A weighted average is used whenever necessary, i.e., if systems are evaluated on
several subsets of tables for particular tasks. By leaving the described discrepancies
aside, T2K Match++ achieves the highest results for all three matching tasks. One
reason for the partially large difference in F-measure for the class matching task,
especially for the system proposed by [Limaye et al., 2010] and [Mulwad et al.,
2013], might be caused by the choice of the knowledge base. While DBpedia cov-

8.4. SUMMARY 187

Table 8.8: Results of web table matching systems evaluated on tables from the
Limaye gold standard.

F-measure
System Knowledge Base Instance Property Class
T2K Match++ DBpedia 0.87 0.84 0.80
TabelMiner+ [Zhang, 2016] Freebase 0.84 0.76 0.75
[Limaye et al., 2010] YAGO 0.84 0.58 0.45
[Mulwad et al., 2013] YAGO, DBpedia 0.76 0.84 0.55
[Venetis et al., 2011] YAGO - 0.55 0.69
[Efthymiou et al., 2017] DBpedia 0.82 - -

ers a few hundreds of classes, YAGO includes hundreds of thousands of classes
which potentially make it more difficult to determine the correct class. Regard-
ing the other two tasks, the highest reported results are similar to the performance
of T2K Match++. Except for TableMiner+, every system shows high F-measure
scores for one but not for all tasks. Hence, large performance differences among
the tasks up to an F-measure of 0.4 are detected. On the one hand, this indicates
that good results for one matching task do not entail similar performances for the
other matching tasks. On the other hand, gathering as much information as possible
as TableMiner+ does, leads to more consistent results for all tasks. In comparison
to the results of the best performing system TableMiner+, the F-measure for the
difficult property matching task is increased by 0.08, for the class nmatching task
by 0.05 for the instance matching task by 0.03.

In summary, all improvements we proposed within T2K Match++ lead to high
results for all three matching tasks on two gold standards, outperforming all state-
of-the-art matching systems.

8.4 Summary

In this chapter, we introduced one of the main contributions of this thesis: the
T2K Match++ method which holistically matches web tables to knowledge bases.
Altogether, it performs all three matching tasks in an integrated fashion (Section
6.2), using various features like the context of the web table (Chapter 7) together
with a component that exploits indirect mappings of similar tables. By including
an indirect matching step, more evidence can be gathered which overcomes the
limitations of matching web tables in isolation (direct matching). Additionally,
considering domain knowledge for the property matching task which is derived
from the knowledge base complements the approach. To the best of our knowl-
edge, no system exists for matching web tables to knowledge bases which takes
indirect matches into account.

188 CHAPTER 8. THE T2K MATCH++ METHOD

On the T2D gold standard, F-measure scores around 0.9 can be achieved for
all matching tasks. Further, on a second gold standard, the Limaye gold standard,
comparable performances are achieved. The highest improvement compared to
the direct matching is found for the property matching task with an increase of
10% in F-measure. For all three tasks, especially collecting negative support for
incorrect correspondence during the indirect matching step is important to enhance
the results. Altogether, T2K Match++ outperforms all state-of-the-art systems that
have been evaluated either on tables from the T2D or Limaye dataset. Most systems
show good results on one matching task but T2K Match++ is the only system that
achieves F-measure scores above 0.8 for all tasks. Compared to results of the best
performing system TableMiner+, the F-measure for the difficult property matching
task is increased by 0.08, for the class matching task by 0.05, and for the instance
matching task by 0.03.

Chapter 9

Conclusion

A promising source of data are web tables that have been employed in various use
cases like fact search or knowledge base augmentation. For the knowledge base
augmentation use case, the content of the web tables need to be understood. This
can be achieved by matching web tables to a knowledge base. For the matching,
three tasks need to be performed: instance, property and class matching. In this
thesis, we systematically evaluated the utility of a wide range of different features
for web table to knowledge base matching. Based on the results, the holistic T2K
Match++ method has been developed which covers all three matching tasks. Fur-
ther, we introduced a web table corpus together with its topical profile and a gold
standard to facilitate research focusing on web tables. In this chapter, we sum-
marize the key contributions, discuss known limitations, provide suggestions for
future work directions, and finally depict the research impact of our work.

9.1 Summary

This thesis focuses on matching web tables to knowledge bases in order to gen-
erate correspondences for each matching task. To achieve high quality matching
results, we systematically evaluated the utility of different features. Using these
findings, the T2K Match++ method has been developed. Therefore, we first pro-
posed an algorithm, T2K Match, which addresses the three matching tasks in an
integrated fashion. To evaluate the performance of a matching system, we intro-
duce the T2D gold standard which captures correspondences for all matching tasks
between a set of tables and the knowledge base DBpedia. By applying T2K on the
T2D gold standard, determined that relying only on features from the table is only
partly sufficient. To improve the results, we included a wide range of features and
analyzed their utility. Based on these findings, we extend T2K Match into T2K
Match++ which exploits indirect matches to web tables about the same topic and
uses knowledge derived from the knowledge base. T2K Match++ outperforms all
state-of-the-art web table to knowledge base matching approaches on the T2D and
Limaye gold standard.

189

190 CHAPTER 9. CONCLUSION

To be able to work with web tables as data source, we created the first publicly
available web table corpus, the WDC WTC 2012. In order to learn for which use
cases web tables are most promising, we generated a topical profile of the web
table corpus by matching it to DBpedia. Moreover, we analyzed potential of web
tables for the use case of filling missing values in a knowledge base. In turn, the
tables of the WDC WTC 2012 corpus together with the generated profile provided
the basis for the T2D gold standard.

In the following, we discuss the contributions of this thesis.

9.1.1 Improving the Matching Evaluability and Transparency

We provide the publicly available gold standard T2D which has been generated to
evaluate all tasks of matching web tables to knowledge bases. By now, most of the
matching approaches for matching web tables to knowledge base have either been
evaluated on topic-specific tables, a small amount of tables only, or on tables stem-
ming from Wikipedia. Hence, topic-independent gold standards with a sufficient
amount of tables are restricted regarding the choice of websites. Further, they do
not include non-overlapping tables which does not follow the distribution of tables
found on the Web. Only a small number of tables are relational and additionally
overlap with a knowledge base. The T2D gold standard covers 779 tables including
about 26 000 instance, 658 property, and 233 class correspondences to DBpedia.
The distribution of the topics is balanced between tables describing for example
works, agents and places. Thus, in contrast to other gold standard, e.g., introduced
by [Limaye et al., 2010], a wider range of challenges is covered and the matching
of web tables to knowledge bases is reflected more realistically.

By applying the algorithm T2K Match on T2D, various types of difficulties
like the lack of evidence can be identified. Since state-of-the-art web table match-
ing systems are evaluated on gold standards with a restricted range of challenges
and their results are neither transparent nor verifiable, the influence and extent of
the difficulties have not been known before. To find ways how to overcome these
difficulties, we analyzed the utility of features that are used in state-of-the-art web
table matching systems. Beside features found in the table itself, the set of features
includes the web table context as well as external resources like a surface form
catalog providing alternative names. In previous works, only a subset of the tasks
and the features is considered so a conclusion of the usefulness of individual fea-
tures cannot be drawn. We integrate all features into T2K Match and proof their
utility on the T2D gold standard. For the instance matching task, the entity label
as well as the popularity of the instances has the largest influence on the results,
considering the values contribute less. Contrary, the values show the largest util-
ity for the property matching task while the influence of the attribute label varies
largely, depending on the label informativeness. The results of the class matching

9.1. SUMMARY 191

task depend on a variety of features: the majority of the instances, the frequency
as well as the page title and URL. In general, features found within tables lead to
more correct results than context features. Nevertheless, taking context features
into account can improve the results but particular caution is necessary since con-
text features may also add a lot of noise. External resources show to be useful as
long as their content is closely related to the content of the web tables.

Since not only the T2D gold standard but also the code of the matching method
is publicly available, the results are transparent, can be reproduced, and additional
features can be included.

9.1.2 Improving the Matching Quality

T2K Match++ is a web-scale system for holistically matching web tables to knowl-
edge bases resulting in a high matching quality with respect to correctness and
completeness. It covers all three matching tasks - instance, property, and class
matching - in an integrated fashion. Compared to previous works, we do not
only focus on relation extraction between named entity columns but also consider
datatype properties which requires to include literal values. One of the main chal-
lenges that are posed by web tables is the lack of information, e.g., due to the size
of tables or the non-existence of headers. To overcome the hetereogeneities, the
method exploits the context of a web table as well as knowledge gained by match-
ing web tables with the same topic. In order to properly handle additional features
and indirect mappings, we adapted all steps of the matching process. First, an ag-
gregation which estimates the matcher reliability ensures that features we cannot
rely on for an individual table do not have a strong influence on the matching result.
Second, a classification that goes beyond threshold-based filtering by exploiting
domain knowledge is able to determine which correspondences are likely to hold,
even if incorrect information is added due to indirect mappings. We evaluated T2K
Match++ on the T2D gold standard which covers a wider range of challenges and
reflects the matching task more realistically than other gold standards. On this
gold standard F-measure scores around 0.9 are accomplished for all tasks which is
higher than other systems report.

Most of the systems proposed in literature neither include information that can
be gathered from the context nor take into account that tables with similar topics
are also matched to the knowledge base. Almost all systems have been evaluated
on tables from the Limaye gold standard. This gold standard focuses on tables
originating from Wikipedia which restricts the range of challenges and the repre-
sentativity. To be able to compare the results, we applied T2K Match++ on the
Limaye gold standard. All web table to knowledge base systems are outperformed
by T2K Match++ on all three matching tasks. This includes systems that incor-
porate background knowledge like an isA database [Venetis et al., 2011], apply
probabilistic models [Limaye et al., 2010, Mulwad et al., 2013] or use an iterative

192 CHAPTER 9. CONCLUSION

matching approach [Zhang, 2016]. Most systems show good results on one match-
ing task but T2K Match++ is the only system that achieves F-measure scores above
0.8 for all tasks. Compared to results of the best performing system TableMiner+,
the F-measure for the difficult property matching task is increased by 0.08, for the
class and instance matching task by 0.05 and 0.03, respectively. However, it needs
to be mentioned that the majority of systems uses different knowledge bases as
input which somehow limits the comparability.

Overall, we presented the T2K Match++ method that achieves high matching
performances on both - a commonly used dataset including tables from Wikipedia
and a dataset covering a wider range of challenges and incorporating tables from
more than one website.

9.1.3 Increasing the Data Availability and Applicability

Until 2009, only big search engines have been in possession of large web crawls
and in turn have been able to extract structured data from the Web in large scales.
With the incorporation of non-profit organizations like the Common Crawl, re-
searchers outside the companies can use large publicly available web crawls. In
this thesis, we presented the first publicly available web table corpus: WDC Web
Table Corpus 2012. Based on the WDC extraction framework, we were able to
extract large amounts of relational web tables. Further, we implemented each step
of the relational web table extraction process. The process covers the classification
into relational tables and the metadata recovery, including methods for entity label
column or data type detection. The WDC Web Table Corpus comprises 147 mil-
lion relational tables that have been extracted from 3.5 billion pages. In total, about
1.1% of all tables are relational which is in line with the results of other extractions,
e.g., by [Cafarella et al., 2008a]. With on average 12.4 rows and 3.5 columns, the
web tables show similar characteristics as reported for other corpora.

Since web table corpora have not been publicly available, one can only spec-
ulate which topics are covered by web tables. With the WDC Web Table Corpus,
we are able to profile the tables. We provide a topical analysis of the web tables
by matching them to DBpedia. Out of the relational tables only about 3% could
be matched to DBpedia. Thus, the majority of tables do not overlap with DBpe-
dia since they cover topics like products which are rarely represented in DBpedia.
However, about 1 million tables actually overlap with DBpedia. Most commonly
detected topics are persons, especially athletes, and works. With the topical anal-
ysis, it is possible to estimate for a use case if web tables are a suitable source.
Based on tables for which correspondences have been generated, we analyze the
potential for one use case, the knowledge base augmentation. Since knowledge
bases are most useful when they are complete and correct as possible, finding facts
in web tables that are not included in the knowledge base are important. To es-
timate the slot filling potential for DBpedia, we first have to group the facts and

9.2. LIMITATIONS AND FUTURE WORK 193

then to resolve inconsistencies. Grouping all facts with the same instance-property
combination results in about 1 million groups which presents the maximal amount
of new facts. Of them, about 75% are included in DBpedia while the remaining
25% are missing. By applying the knowledge-base trust fusion strategy that es-
timates the quality of the created facts by comparing them to the according facts
in the knowledge base, an F-measure of 0.7 is determined. The same quality is
assumed for the missing facts. Overall, the slot filling potential highly depends on
the individual property. For example, the largest amount of missing facts can be
found for release dates of works with 15 836 new facts.

In brief, with the first publicly available web table corpus, researchers are able
to work with web tables. Based on the topical profiling, researchers get an impres-
sion for which use cases web tables are beneficial.

9.2 Limitations and Future Work

In the following, we discuss current limitations of the presented approaches and
which directions of feature work help to overcome these limitations. Considering
the whole data integration pipeline, starting from the extraction and ending with the
fusion, each single component could be improved or restriction could be relaxed.

This already starts with the assumptions that are defined by the underlying
entity-attribute table model. In this model, exactly one concept is mentioned per
table, each attribute is said to be binary and describe an entity whose name is de-
picted in the entity label column. Tables that describe more than one concept,
have compound entity label columns or n-ary attributes are not interpreted cor-
rectly [Adelfio and Samet, 2013, Lehmberg and Bizer, 2016, Oulabi et al., 2016].
Therefore, semantic normalization tries to detect and separate individual semantic
concepts. For tables, [Braunschweig et al., 2015b] apply a semantic normaliza-
tion that uses functional dependencies to identify concepts. All subsequent steps
can then be performed on the normalized tables such that it is possible to correctly
match them to the knowledge base.

The web table extraction, including the classification and metadata recovery,
builds the foundation of the further process and hence has a crucial influence on
the integration results. The classification of relational tables that has been applied
to generate the WDC Web Table Corpus 2012 results in a precision of about 0.6
which is improvable. Further, all tables are excluded for which the entity label
column detection is not able to recover an entity label column. One possible en-
hancement of the entity column detection is to use the knowledge base to get an
impression if values of a column correspond to instance labels and the remaining
attributes potentially fit to properties. Such an entity label column detection is for
example performed by [Wang et al., 2012] using the knowledge base Probase.

194 CHAPTER 9. CONCLUSION

Regarding the matching, if tables only consist of a few entities, they can either
get filtered due to missing evidence or incorrect correspondences can be generated.
Even by considering additional features like the context or similar tables, not all
tables will get matched correctly. As recently shown by [Lehmberg and Bizer,
2017], stitching web tables from a website together improves the matching quality.
Thus, stitched tables together before matching them can be beneficial especially to
improve the matching recall and increase the amount of generated correspondences
which in turn potentially increases the amount of missing facts that can be found
for augmenting a knowledge base. However, the currently available gold standards
rarely cover such tables. This results from the table selection strategy that uses seed
entities to find tables that overlap with a knowledge base. Without a gold standard
that explicitly includes small tables, the improvement in the matching quality using
stitched tables is hardly measurable.

Another direction of future work is to introduce a feedback loop between match-
ing and fusion. During the fusion, we compare the generated facts to the knowledge
base and in turn can derive which correspondences are correct. Thus, the knowl-
edge base can be used as distant-supervision for learning better matching rules and
data fusion policies. A typical approach for matching ontologies is to let an expert
verify correspondences and learn from the answers how to adapt the matching to
improve the quality [Ritze et al., 2013]. By using the knowledge base to verify the
generated facts, the feedback can be gathered automatically. However, the feed-
back loop can also involve the user especially if the knowledge base does not have
enough coverage [Chu et al., 2015, Fan et al., 2014].

9.3 Research Impact

In this section, we describe the impact of our contributions for other researchers.
First, the data including the generated web table corpora as well as the T2D gold
standard as has already been reused by the research community. Second, our ap-
proaches are either applied or used as state-of-the-art reference to which other
methods are compared to.

Data Reuse The WDC Web Table corpora are used as large scale data sources
that provide real-world scenarios. Both, [Zhu et al., 2016] and [Rao and Zhu, 2016]
apply their blocking strategy, local sensitive hashing, on the corpus to show that
the approaches are able to decrease the tremendous amount of required compar-
isons. [Tschirschnitz et al., 2017] use the corpus to detect inclusion dependencies.
By now, three table matching systems consider the T2D gold standard for their
evaluation. [Efthymiou et al., 2016, Efthymiou et al., 2017] use it to compare the
performance of different instance matching methods, the TAIPAN system [Ermilov
and Ngomo, 2016] and the system by [Pham et al., 2016] are evaluated on T2D.

9.3. RESEARCH IMPACT 195

Method Reuse The four mentioned matching systems are not only evaluated
on the T2D gold standard but also compare their results to the results of T2K Match
which is referred to as state-of-the-art system for matching web tables to knowl-
edge bases. Further, parts of the algorithm have been integrated in the data science
platform RapidMiner1 to enable a table search [Gentile et al., 2016]. Further, T2K
Match has been adapted to match web tables to the Yahoo knowledge graph and to
Wikidata [Oulabi and Bizer, 2017]. Besides the matching, also the methods within
the web table extraction have been reused. While [Eberius et al., 2015] build on
our extraction framework to create the Dresden Web Table Corpus consisting of
125 million relational tables, [Saleiro et al., 2017] integrate our entity label column
detection into their system to generate a set of 600 queries from Wikipedia tables
that is used to evaluate a table search algorithm.

In summary, web tables have become a source that is gaining more and more at-
tention. Companies like Google already provide yet an experimental interface that
answers queries by showing tables that include the according information. With
publicly available web table corpora, we enable the usage of web tables for the
entire research community. A gold standard covering tables from more than one
source helps the researchers to find shortcomings of their approaches and provide
an ability to easily compare the results. By presenting the feature utility study, we
highlighted which features are crucial to achieve acceptable matching results and
which external sources are beneficial to consider. T2K Match and its successor
T2K Match++ provide methods that are already referred to as state-of-the-art such
that newly introduced approaches try to outperform them which in turn advances
the research. Finally, we believe that our findings together with the discussed lim-
itations lay a foundation for future research.

1https://rapidminer.com/

https://rapidminer.com/

196 CHAPTER 9. CONCLUSION

List of Figures

1.1 Example web table table about NFL players. 2
1.2 Example web table about videogames. 2
1.3 Example web table about countries. 2
1.4 Real-world objects that are referred by the character sequence “USA”

that is given in the example web table. 3
1.5 Correspondences between a web table and a knowledge base. . . . 4
1.6 Search for the population of the country Germany in Google Tables. 6

2.1 Example of two sources describing countries. 14
2.2 Schema matching results of the country sources. 15
2.3 Data matching results of the country sources. 15
2.4 Fusion results of the country sources. 16
2.5 General matching process with two sources as input and a set of

correspondences as output. 18
2.6 Functionality of a matcher with a similarity matrix as output. . . . 19
2.7 Aggregation of two similarity matrices. 20
2.8 Schema matching approaches according to [Bilke, 2006]. 24

3.1 Linked Open Data Cloud as of June 2017. 32
3.2 DBpedia extraction process using the template for German locations. 34

4.1 Example relational table about cities. 39
4.2 Steps of the relational web table extraction process. 40
4.3 Web table classification scheme according to [Eberius et al., 2015]. 41
4.4 Example layout tables extracted from amazon.com. 42
4.5 Example entity table about the city San Francisco. 42
4.6 Example matrix table about the demographic changes in California. 42
4.7 Web table with annotated metadata: entity label column, attribute

label row, column data types, language, and context. 43
4.8 Overview of the web corpus extraction framework workflow. . . . 45
4.9 Comparison of table characteristics of the Relational WDC WTC

2012 and the WebTables [Cafarella et al., 2008a] corpus. 59

5.1 Profiling process of the WDC WTC 2012. 65

197

198 LIST OF FIGURES

5.2 Distribution of instance correspondences. 71
5.3 Distribution of property correspondences. 72
5.4 Distribution of group sizes. 73
5.5 Distribution of data types aggregated by their steps. 75

6.1 Correspondences generated by the three matching tasks for an ex-
ample table about countries. 93

6.2 Workflow of the T2K Match algorithm. 94
6.3 Normalization of two strings. 95
6.4 T2K Match Workflow applied on an example table about airlines. 97
6.5 Value-based matching of an entity with one of its candidates. . . . 99
6.6 Distribution of rows in overlapping tables in T2D. 105
6.7 Distribution of columns in overlapping tables in T2D. 105
6.8 Number of instance correspondences per category in T2D. 105
6.9 Popularity of the linked instance in T2D. 106
6.10 Number of class correspondences per superclass in T2D. 107
6.11 Average amount of instance candidates per entity in each table. . . 119
6.12 F-measure changes by applying additional iterations. 119
6.13 Precision of the three matching tasks according to their category. . 120

7.1 Example web table about lakes with two instance candidates for
the entity with the label “Lake Superior”. 128

7.2 Web table feature categorization scheme. 129
7.3 Table features of a web table about countries. 130
7.4 Context features of a web table about countries. 131
7.5 Matrix row with the highest possible HHI (1.0) 136
7.6 Matrix row with the lowest possible HHI (0.25) 136
7.7 Example table about airlines with similar label and value weights. 137
7.8 Example table about videogames with varying label and value weights.137
7.9 Boxplot of the matrix aggregation weights divided into quartiles

for each matcher. 147

8.1 Example of an indirect match. 155
8.2 Correspondences of three web tables generated by T2K Match. . . 157
8.3 Holistic matching workflow of T2K Match++. 158
8.4 Table search for related tables. 160
8.5 Correspondence-based blocking for the table to table matching. . . 160
8.6 T2K Match++ Workflow applied on an excerpt of a table about

airports. 166
8.7 Number of instance correspondences per DBpedia category in the

Limdbp gold standard. 171
8.8 Performance changes of different maximal numbers of retrievable

tables in the table search. 174
8.9 Distribution of detected similar tables per table in T2D. 175

LIST OF FIGURES 199

8.10 Distribution of detected similar entities per entity and attributes per
attribute for tables in T2D. 176

8.11 Decision tree learned to classify instance correspondences. 177
8.12 Decision tree learned to classify class correspondences. 177
8.13 Decision tree learned to classify string property correspondences. . 178
8.14 Decision tree learned to classify date property correspondences. . 178
8.15 Decision tree learned to classify numeric property correspondences. 178
8.16 Different cases for improvement 179
8.17 Instance matching performance differences per superclass on T2D. 181
8.18 Property matching task results per data type on T2D. 183
8.19 Table with a correspondence to the DBpedia class Person. 184

200 LIST OF FIGURES

List of Tables

3.1 Frequent classes in DBpedia, version 2014. 35

4.1 Structure of a table. 39
4.2 Structure of a relational table. 39
4.3 Statistics of the 2012 and July 2015 Common Crawl corpora. . . . 44
4.4 Statistics of the WDC Web Table corpora. 45
4.5 Statistics of the relational WDC Web Table corpora. 47
4.6 Results of the column data type detection method. 49
4.7 Table characteristics of the Relational WDC WTC 2012. 57
4.8 Most frequent attribute labels in the Relational WDC WTC 2012. 57
4.9 Distribution of the data types in the Relational WDC WTC 2012. . 57
4.10 Characteristics of the Relational Mappable WDC WTC 2012. . . . 58
4.11 Distribution of genuine table types of the WDC WTC 2015. . . . 58
4.12 Overview of existing relational web table corpora. 59
4.13 Characteristics of web table corpora extracted from web pages of

the Common Crawl. 60

5.1 Statistics of the Relational Mappable WDC WTC 2012. 67
5.2 Most frequent PLDs and headers found in the Relational Mappable

WDC WTC 2012. 68
5.3 Correspondence statistics of the Relational Mappable WDC WTC

2012. 69
5.4 Examples for frequent instances and properties. 72
5.5 Distribution of groups per class. 74
5.6 Distribution of data types per step. 75
5.7 Comparison with the annotated DBpedia classes found by [Has-

sanzadeh et al., 2015]. 78
5.8 Number of (non-)overlapping triples and evaluation results per fu-

sion strategy. 82
5.9 Knowledge-based trust fusion results per data type. 83
5.10 Knowledge-based trust fusion results per class. 85
5.11 Properties with most overlapping triples. 85
5.12 Properties with most non-overlapping triples. 86

201

202 LIST OF TABLES

5.13 Properties with the highest precision results. 86

6.1 Statistics about row and column distributions in the T2D gold stan-
dard. 104

6.2 Statistics about the set of overlapping tables in T2D. 104
6.3 Top 5 linked DBpedia properties in T2D. 107
6.4 Overview of the tasks addressed by approaches matching web ta-

bles to knowledge bases. 112
6.5 Overview of the results achieved by matching approaches address-

ing all three matching tasks. 114
6.6 T2K Match parameters. 116
6.7 Results of T2K Match for matching the overlapping tables of T2D

to the DBpedia subset. 117
6.8 Confusion matrix for results of the data type detection. 118
6.9 Results of methods focusing on the instance matching task. 122

7.1 List of table features. 129
7.2 List of context features. 131
7.3 List of DBpedia features. 133
7.4 Pearson correlation coefficient between different matrix predictors

and precision and recall. 146
7.5 Results of the instance matching task using different combinations

of matchers. 149
7.6 Results of the property matching task using different combinations

of matchers. 151
7.7 Results of the class matching task using different combinations of

matchers. 152

8.1 Features used for the classification. 162
8.2 Statistics about entities and attributes in the Limdbp gold standard. 170
8.3 Results of T2K Match++ for all three matching tasks on T2D and

Limdbp. 172
8.4 Precision and recall changes for the different cases of improvement. 180
8.5 Examples for significant instance matching task performance changes.182
8.6 Pearson correlation coefficients between different features and the

knowledge-based classification. 184
8.7 Results of web table matching systems evaluated on tables from T2D.185
8.8 Results of web table matching systems evaluated on tables from

the Limaye gold standard. 187

Listings

3.1 Example of triples about the city Mannheim in the Turtle syntax. . 31
4.1 Example of a web table embedded in HTML. 40
4.2 Pseudocode for the data type detection given the set of values V of

a column C. 48
4.3 Pseudocode to find the entity label column given the set of columns

C of a table. 50
6.1 Pseudocode to perform the duplicate-based property matching be-

tween attribute a and property p. 100
7.1 Pseudocode for the prefiltering of a table t as part of the classification.134
7.2 Wikitology query for an entity as provided by [Mulwad et al., 2010b]142

203

204 LISTINGS

Bibliography

[Abadi et al., 2014] Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bern-
stein, P. A., Carey, M. J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M. J.,
Gehrke, J., Haas, L. M., Halevy, A. Y., Hellerstein, J. M., Ioannidis, Y. E., Ja-
gadish, H. V., Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton,
J. F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B. C., Ré, C., Suciu, D.,
Stonebraker, M., Walter, T., and Widom, J. (2014). The beckman report on
database research. SIGMOD Rec., 43(3):61–70.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations
of Databases: The Logical Level. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition.

[Adelfio and Samet, 2013] Adelfio, M. D. and Samet, H. (2013). Schema Extrac-
tion for Tabular Data on the Web. Proc. of the VLDB Endow., 6:421–432.

[Aggrawal, 2015] Aggrawal, A. (2015). Managing big data integration in the pub-
lic sector. Information Science Reference - Imprint of: IGI Publishing.

[Aprosio et al., 2013] Aprosio, A. P., Giuliano, C., and Lavelli, A. (2013). Extend-
ing the coverage of dbpedia properties using distant supervision over wikipedia.
In Proc. of the 2013th Int. Conference on NLP-DBpedia, pages 20–31, Aachen,
Germany, Germany. CEUR-WS.org.

[Assaf et al., 2015] Assaf, A., Troncy, R., and Senart, A. (2015). Roomba: An
Extensible Framework to Validate and Build Dataset Profiles, pages 325–339.
Springer International Publishing, Cham.

[Aumueller et al., 2005] Aumueller, D., Do, H.-H., Massmann, S., and Rahm, E.
(2005). Schema and ontology matching with coma++. In Proc. of the 2005
ACM SIGMOD Int. Conference on Management of Data, SIGMOD ’05, pages
906–908, New York, NY, USA. ACM.

[Bailey et al., 2006] Bailey, P., Hawking, D., and Krumpholz, A. (2006). Toward
meaningful test collections for information integration benchmarking. In Proc.
of the 15th Int. Conference on the World Wide Web : Workshop on Information
Integration on the Web, IIWeb ’06.

205

206 BIBLIOGRAPHY

[Balakrishnan et al., 2015] Balakrishnan, S., Halevy, A., Harb, B., Lee, H., Mad-
havan, J., Rostamizadeh, A., Shen, W., Wilder, K., Wu, F., and Yu, C. (2015).
Applying webtables in practice. In Proc. of the 7th Biennial Conference on
Innovative Data Systems Research, CIDR ’15.

[Barbosa et al., 2014] Barbosa, L., Kien, P., Silva, C., Vieira, M., and Freire, J.
(2014). Structured open urban data: Understanding the landscape. Big Data,
2(3).

[Bellahsene et al., 2011] Bellahsene, Z., Bonifati, A., and Rahm, E. (2011).
Schema Matching and Mapping. Springer.

[Berners-Lee, 2006] Berners-Lee, T. (2006). Linked data.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The semantic web. Scientific American, (5):28–37.

[Bhagavatula et al., 2013] Bhagavatula, C. S., Noraset, T., and Downey, D. (2013).
Methods for exploring and mining tables on wikipedia. In Proc. of the ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics, pages 18–
26, New York, NY, USA. ACM.

[Bhagavatula et al., 2015] Bhagavatula, C. S., Noraset, T., and Downey, D. (2015).
TabEL: Entity Linking in Web Tables, pages 425–441. Springer International
Publishing, Cham.

[Bilenko and Mooney, 2003] Bilenko, M. and Mooney, R. J. (2003). Adaptive
duplicate detection using learnable string similarity measures. In Proc. of the
9th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining,
KDD ’03, pages 39–48, New York, NY, USA. ACM.

[Bilke, 2006] Bilke, A. (2006). Duplicate-based Schema Matching. PhD thesis.

[Bilke and Naumann, 2005] Bilke, A. and Naumann, F. (2005). Schema matching
using duplicates. In Proc. of the 21st Int. Conference on Data Engineering,
pages 69–80, Washington, DC, USA. IEEE Computer Society.

[Bizer, 2014] Bizer, C. (2014). Search Joins with the Web. In Proc. of the 17th
Int. Conference on Database Theory, ICDT ’14, page 3.

[Bizer et al., 2009a] Bizer, C., Heath, T., and Berners-Lee, T. (2009a). Linked
Data - The Story So Far. Int. Journal on Semantic Web and Information Systems,
5:1–22.

[Bizer et al., 2009b] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., and Hellmann, S. (2009b). Dbpedia - a crystallization point for
the web of data. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):154 – 165. The Web of Data.

BIBLIOGRAPHY 207

[Bleiholder and Naumann, 2009] Bleiholder, J. and Naumann, F. (2009). Data fu-
sion. ACM Comput. Surv., 41(1):1—41.

[Bollacker et al., 2008] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Tay-
lor, J. (2008). Freebase: A collaboratively created graph database for structur-
ing human knowledge. In Proc. of the 2008 ACM SIGMOD Int. Conference on
Management of Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA.
ACM.

[Braunschweig et al., 2015a] Braunschweig, K., Thiele, M., Eberius, J., and
Lehner, W. (2015a). Column-specific Context Extraction for Web Tables. In
Proc. of the 30th Annual ACM Symposium on Applied Computing, SAC ’15,
pages 1072–1077.

[Braunschweig et al., 2015b] Braunschweig, K., Thiele, M., and Lehner, W.
(2015b). From Web Tables to Concepts: A Semantic Normalization Approach,
pages 247–260. Springer International Publishing, Cham.

[Bryl et al., 2015] Bryl, V., Bizer, C., and Paulheim, H. (2015). Gathering alter-
native surface forms for dbpedia entities. In Proc. of the 3rd NLP & DBpedia
Workshop, pages 13–24.

[Buche et al., 2013] Buche, P., Dibie-Barthelemy, J., Ibanescu, L., and Soler, L.
(2013). Fuzzy web data tables integration guided by an ontological and termi-
nological resource. IEEE Transactions on Knowledge and Data Engineering,
25(4):805–819.

[Bühmann and Lehmann, 2013] Bühmann, L. and Lehmann, J. (2013). Pattern
based knowledge base enrichment. In Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J. X., Aroyo, L., Noy, N., Welty, C., and Janowicz, K.,
editors, Proc. of the 12th International Semantic Web Conference, ISWC ’13,
pages 33–48, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Busse et al., 1999] Busse, S., Kutsche, R.-D., Leser, U., and Weber, H. (1999).
Federated information systems : concepts, terminology, and architectures. Tech-
nical report, TU Berlin.

[Cafarella et al., 2008a] Cafarella, M., Halevy, Alonand Zhang, Y., Wang, D. Z.,
and Wu, E. (2008a). Uncovering the Relational Web. In Proc. of the 11th Int.
Workshop on the Web and Databases, WebDB ’08.

[Cafarella et al., 2009] Cafarella, M. J., Halevy, A., and Khoussainova, N. (2009).
Data Integration for the Relational Web. Proc. of the VLDB Endow., 2:1090–
1101.

[Cafarella et al., 2008b] Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E., and
Zhang, Y. (2008b). WebTables: Exploring the Power of Tables on the Web.
Proc. of the VLDB Endow., 1:538–549.

208 BIBLIOGRAPHY

[Cambazoglu and Baeza-Yates, 2015] Cambazoglu, B. B. and Baeza-Yates, R.
(2015). Scalability challenges in web search engines. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 7:1–138.

[Carlson et al., 2010] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,
Jr., E. R., and Mitchell, T. M. (2010). Toward an architecture for never-ending
language learning. In Proc. of the 24th AAAI Conference on Artificial Intelli-
gence (AAAI), pages 1306–1313. AAAI Press.

[Chakrabarti et al., 2002] Chakrabarti, S., Joshi, M. M., Punera, K., and Pennock,
D. M. (2002). The structure of broad topics on the web. In Proc. of the 11th Int.
Conference on World Wide Web, WWW ’02, pages 251–262, New York, NY,
USA. ACM.

[Chandola et al., 2009] Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM Comput. Surv., 41(3):15:1–15:58.

[Chen et al., 2000] Chen, H.-H., Tsai, S.-C., and Tsai, J.-H. (2000). Mining tables
from large scale html texts. In Proc. of the 18th Conference on Computational
Linguistics, COLING ’00, pages 166–172, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Chen et al., 2009] Chen, Z., Kalashnikov, D. V., and Mehrotra, S. (2009). Ex-
ploiting context analysis for combining multiple entity resolution systems. In
Proc. of the 2009 ACM SIGMOD Int. Conference on Management of Data, SIG-
MOD ’09, pages 207–218, New York, NY, USA. ACM.

[Christen, 2008] Christen, P. (2008). Automatic record linkage using seeded near-
est neighbour and support vector machine classification. In Proc. of the 14th
Int. Conference on Knowledge Discovery and Data Mining, KDD ’08.

[Christen, 2012] Christen, P. (2012). Data Matching. Springer.

[Christophides et al., 2015] Christophides, V., Efthymiou, V., and Stefanidis, K.
(2015). Entity Resolution in the Web of Data. Morgan & Claypool.

[Chu et al., 2015] Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang,
N., and Ye, Y. (2015). Katara: A data cleaning system powered by knowledge
bases and crowdsourcing. In Proc. of the 2015 ACM SIGMOD Int. Confer-
ence on Management of Data, SIGMOD ’15, pages 1247–1261, New York, NY,
USA. ACM.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387.

[Cohen et al., 2003] Cohen, W. W., Ravikumar, P., and Fienberg, S. (2003). A
comparison of string distance metrics for name-maching tasks. In Proc. of the
8th IJCAI Workshop on Information Integration, pages 73–78.

BIBLIOGRAPHY 209

[Crestan and Pantel, 2011] Crestan, E. and Pantel, P. (2011). Web-scale Table
Census and Classification. In Proc. of the 4th Int. Conf. on Web Search and
Data Mining, WSDM ’11, pages 545–554. ACM.

[Cruz et al., 2009] Cruz, I. F., Antonelli, F. P., and Stroe, C. (2009). Efficient
selection of mappings and automatic quality-driven combination of matching
methods. In Proc. of the 4th Int. Workshop on Ontology Matching, OM ’09.

[Daiber et al., 2013] Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N. (2013).
Improving efficiency and accuracy in multilingual entity extraction. In Proc. of
the 9th Int. Conference on Semantic Systems, I-Semantics ’13.

[Das Sarma et al., 2012] Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H.,
Wu, F., Xin, R., and Yu, C. (2012). Finding Related Tables. In Proc. of the 2012
ACM SIGMOD Int. Conference on Management of Data, SIGMOD ’12.

[Dhamankar et al., 2004] Dhamankar, R., Lee, Y., Doan, A., Halevy, A., and
Domingos, P. (2004). imap: Discovering complex semantic matches between
database schemas. In Proc. of the 2004 ACM SIGMOD Int. Conference on Man-
agement of Data, SIGMOD ’04, pages 383–394, New York, NY, USA. ACM.

[Dhenakaran and Sambanthan, 2011] Dhenakaran, S. and Sambanthan, K. T.
(2011). Web crawler - an overview. International Journal of Computer Sci-
ence and Communication, 2(1).

[Do and Rahm, 2002] Do, H.-H. and Rahm, E. (2002). COMA: A System for
Flexible Combination of Schema Matching Approaches. In Proc. of the 28th
Int. Conference on Very Large Data Bases, VLDB ’02, pages 610–621.

[Doan et al., 2001] Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconcil-
ing schemas of disparate data sources: A machine-learning approach. SIGMOD
Rec., 30(2):509–520.

[Doan et al., 2012] Doan, A., Halevy, A., and Ives, Z. (2012). Principles of Data
Integration. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition.

[Doan et al., 2004a] Doan, A., Madhavan, J., Domingos, P., and Halevy, A.
(2004a). Ontology Matching: A Machine Learning Approach, pages 385–403.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Doan et al., 2004b] Doan, A., Noy, N., and Halevy, A. (2004b). Introduction to
the Special Issue on Semantic Integration. SIGMOD Rec., 33(4).

[Dong et al., 2014] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Mur-
phy, K., Strohmann, T., Sun, S., and Zhang, W. (2014). Knowledge Vault: A
Web-scale Approach to Probabilistic Knowledge Fusion. In Proc. of the 20th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’14, pages 601–610.

210 BIBLIOGRAPHY

[Dong et al., 2015] Dong, X. L., Gabrilovich, E., Murphy, K., Dang, V., Horn, W.,
Lugaresi, C., Sun, S., and Zhang, W. (2015). Knowledge-based Trust: Estimat-
ing the Trustworthiness of Web Sources. Proc. of the VLDB Endow., 8(9):938–
949.

[Dong and Srivastava, 2015] Dong, X. L. and Srivastava, D. (2015). Big Data
Integration. Morgen & Claypool.

[Dragisic et al., 2014] Dragisic, Z., Eckert, K., Euzenat, J., Faria, D., Ferrara, A.,
Granada, R., Ivanova, V., Jiménez-Ruiz, E., Kempf, A. O., Lambrix, P., Mon-
tanelli, S., Paulheim, H., Ritze, D., Shvaiko, P., Solimando, A., Trojahn, C.,
Zamazal, O., and Grau, B. C. (2014). Results of the ontology alignment evalu-
ation initiative 2014. In Proc. of the 9th Int. Workshop on Ontology Matching,
OM’14, pages 61–104, Aachen, Germany, Germany. CEUR-WS.org.

[Duchateau and Bellahsene, 2014] Duchateau, F. and Bellahsene, Z. (2014). De-
signing a benchmark for the assessment of schema matching tools. Open Jour-
nal of Databases, 1(1):3–25.

[Dutta et al., 2015] Dutta, A., Meilicke, C., and Stuckenschmidt, H. (2015). En-
riching structured knowledge with open information. In Proc. of the 24th Int.
Conference on World Wide Web, WWW ’15, pages 267–277, Republic and Can-
ton of Geneva, Switzerland. International World Wide Web Conferences Steer-
ing Committee.

[Eberius et al., 2015] Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ah-
madov, A., and Lehner, W. (2015). Building the Dresden Web Table Corpus:
A Classification Approach. In Proc.of the 2nd Int. Symposium on Big Data
Computing, BDC ’15.

[Efthymiou et al., 2017] Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M.,
and Christophides, V. (2017). Matching web tables with knowledge base enti-
ties: From entity lookups to entity embeddings. In Proc. of the 16th Int. Seman-
tic Web Conference, ISWC ’17.

[Efthymiou et al., 2016] Efthymiou, V., Hassanzadeh, O., Sadoghi, M., and
Rodriguez-Muro, M. (2016). Annotating web tables through ontology match-
ing. In Proc. of the 15th Int. Workshop on Ontology Matching, OM ’16.

[Ehrig and Sure, 2004] Ehrig, M. and Sure, Y. (2004). Ontology Mapping – An
Integrated Approach, pages 76–91. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

[Elfeky et al., 2002] Elfeky, M. G., Verykios, V. S., and Elmagarmid, A. K. (2002).
Tailor: a record linkage toolbox. In Proc. 18th Int. Conference on Data Engi-
neering, pages 17–28.

BIBLIOGRAPHY 211

[Elmagarmid et al., 2007] Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S.
(2007). Duplicate record detection: A survey. IEEE Transactions on Knowledge
and Data Engineering, 19(1):1–16.

[Embley et al., 2006] Embley, D. W., Hurst, M., Lopresti, D., and Nagy, G.
(2006). Table-processing paradigms: a research survey. International Journal
of Document Analysis and Recognition, 8(2):66–86.

[Ermilov and Ngomo, 2016] Ermilov, I. and Ngomo, A.-C. N. (2016). TAIPAN:
Automatic Property Mapping for Tabular Data, pages 163–179. Springer Inter-
national Publishing, Cham.

[Euzenat and Shvaiko, 2007] Euzenat, J. and Shvaiko, P. (2007). Ontology Match-
ing. Springer.

[Fader et al., 2011] Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying
relations for open information extraction. In Proc. of the 2011 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’11, pages 1535–
1545, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Fan et al., 2014] Fan, J., Meiyu, L., Beng Chin, O., Wang-Chiew, T., and Zhang,
M. (2014). A Hybrid Machine-Crowdsourcing System for Matching Web Ta-
bles. In Proc. of the 30th IEEE Int. Conference on Data Engineering, pages
976–987.

[Färber et al., 2016] Färber, M., Ell, B., Menne, C., and Rettinger, A. (2016). A
Comparative Survey of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO.
Semantic Web, 1-5.

[Fellbaum, 1998] Fellbaum, C. (1998). WordNet: An Electronic Lexical Database.
MIT Press.

[Fellegi and Sunter, 1969] Fellegi, I. P. and Sunter, A. B. (1969). A theory for
record linkage. Journal of the American Statistical Association, 64(328):1183–
1210.

[Fleischhacker et al., 2013] Fleischhacker, D., Paulheim, H., Bryl, V., Vker, J.,
and Bizer, C. (2013). Detecting Errors in Numerical Linked Data using Cross-
Checked Outlier Detection . In Proc. of the 13th Int. Semantic Web Conference,
ISWC ’13.

[Fossati et al., 2017] Fossati, M., Dorigatti, E., and c, C. G. (2017). N-ary Re-
lation Extraction for Joint T-Box and A-Box Knowledge Base Augmentation.
Semantic Web Journal, pages 1–27.

[Gal et al., 2016] Gal, A., Roitman, H., and Sagi, T. (2016). From Diversity-based
Prediction to Better Ontology & Schema Matching. In Proc. of the 25th Int.
Conference on World Wide Web, WWW ’16.

212 BIBLIOGRAPHY

[Galkin et al., 2015] Galkin, M., Mouromtsev, D., and Auer, S. (2015). Identi-
fying Web Tables: Supporting a Neglected Type of Content on the Web. In
Klinov, P. and Mouromtsev, D., editors, Proc. of the 6th Int. Conference on
Knowledge Engineering and Semantic Web, pages 48–62, Cham. Springer In-
ternational Publishing.

[Gatterbauer et al., 2007] Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B.,
and Pollak, B. (2007). Towards Domain-independent Information Extraction
from Web Tables. In Proc. of the 16th Int. Conference on World Wide Web,
WWW ’07, pages 71–80, New York, NY, USA. ACM.

[Gentile et al., 2016] Gentile, A. L., Kirstein, S., Paulheim, H., and Bizer, C.
(2016). Extending RapidMiner with Data Search and Integration Capabilities,
pages 167–171. Springer International Publishing, Cham.

[Göbel et al., 2012] Göbel, M., Hassan, T., Oro, E., and Orsi, G. (2012). A
Methodology for Evaluating Algorithms for Table Understanding in PDF Doc-
uments. In Proc. of the 2012 ACM Symposium on Document Engineering, Do-
cEng ’12, pages 45–48, New York, NY, USA. ACM.

[Halevy et al., 2006] Halevy, A., Rajaraman, A., and Ordille, J. (2006). Data inte-
gration: The teenage years. In Proc. of the 32nd Int. Conference on Very Large
Data Bases, VLDB ’06, pages 9–16. VLDB Endowment.

[Halevy et al., 2005] Halevy, A. Y., Ashish, N., Bitton, D., Carey, M., Draper,
D., Pollock, J., Rosenthal, A., and Sikka, V. (2005). Enterprise Information
Integration: Successes, Challenges and Controversies. In Proc. of the 2005
ACM SIGMOD Int. Conference on Management of Data, SIGMOD ’05, pages
778–787, New York, NY, USA. ACM.

[Hartman and Ackermann, 2010] Hartman, K. and Ackermann, E. (2010). Search-
ing and Researching on the Internet and the World Wide Web. Franklin, Beedle
& Associates Inc.

[Hartung et al., 2013] Hartung, M., Gro, A., and Rahm, E. (2013). Composition
Methods for Link Discovery. In Proc. of 15th GI-Fachtagung fr Datenbanksys-
teme in Business, Technologie und Web.

[Hassanzadeh et al., 2009] Hassanzadeh, O., Chiang, F., Lee, H. C., and Miller,
R. J. (2009). Framework for Evaluating Clustering Algorithms in Duplicate
Detection. Proc. of the VLDB Endow., 2(1):1282–1293.

[Hassanzadeh et al., 2015] Hassanzadeh, O., Ward, M. J., Rodriguez-Muro, M.,
and Srinivas, K. (2015). Understanding a large corpus of web tables through
matching with knowledge bases: an empirical study. In Proc. of the 10th Int.
Workshop on Ontology Matching, OM ’15.

BIBLIOGRAPHY 213

[He and Chang, 2004] He, B. and Chang, K. C.-C. (2004). A Holistic Paradigm
for Large Scale Schema Matching. SIGMOD Rec., 33:20–25.

[Hernández and Stolfo, 1995] Hernández, M. A. and Stolfo, S. J. (1995). The
Merge/Purge Problem for Large Databases. In Proc. of the 1995 ACM SIG-
MOD Int. Conference on Management of Data, pages 127–138, New York, NY,
USA. ACM.

[Hernández and Stolfo, 1998] Hernández, M. A. and Stolfo, S. J. (1998). Real-
world Data is Dirty: Data Cleansing and The Merge/Purge Problem. Data Min-
ing and Knowledge Discovery, 2(1):9–37.

[Herschel and Naumann, 2010] Herschel, M. and Naumann, F. (2010). An Intro-
duction to Duplicate Detection. Morgan & Claypool.

[Hignette et al., 2007] Hignette, G., Buche, P., Dibie-Barthélemy, J., and Haem-
merlé, O. (2007). An Ontology-Driven Annotation of Data Tables. In Weske,
M., Hacid, M.-S., and Godart, C., editors, Proc. of the 8th Int. Conference on
Web Information Systems Engineering, WISE ’07, pages 29–40, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

[Hurst, 1999] Hurst, M. (1999). Layout and language: Beyond simple text for
information interaction - modelling the table. In Proc. of the 2nd Int. Conference
on Multimodel Interfaces.

[Hurst, 2001] Hurst, M. (2001). Layout and Language: Challenges for Table Un-
derstanding on the Web. In Proc. of the Int. Workshop on Web Document Anal-
ysis, pages 27–30.

[Isele and Bizer, 2012] Isele, R. and Bizer, C. (2012). Learning Expressive Link-
age Rules Using Genetic Programming. Proc. of the VLDB Endow., 5(11):1638–
1649.

[Jaccard, 2006] Jaccard, P. (2006). The distribution of the flora in the alpine zone.
New Phytologist, 11(2):37–50.

[Jiménez-Ruiz and Cuenca Grau, 2011] Jiménez-Ruiz, E. and Cuenca Grau, B.
(2011). LogMap: Logic-Based and Scalable Ontology Matching. In Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., and
Blomqvist, E., editors, Proc. of the 10th Int. Semantic Web Conference, ISWC
’11, pages 273–288, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Jung and Kwon, 2006] Jung, S.-W. and Kwon, H.-C. (2006). A scalable hybrid
approach for extracting head components from web tables. IEEE Transactions
on Knowledge and Data Engineering, 18(2):174–187.

[Kim and Lee, 2005] Kim, Y.-S. and Lee, K.-H. (2005). Detecting tables in Web
documents. Engineering Applications of Artificial Intelligence, 18(6):745 – 757.

214 BIBLIOGRAPHY

[Klyne and Carroll, 2004] Klyne, G. and Carroll, J. (2004). Resource Description
Framework (RDF): Concepts and Abstract Syntax - W3C Recommendation.

[Kobilarov et al., 2009] Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Size-
more, C., Smethurst, M., Bizer, C., and Lee, R. (2009). Media Meets Semantic
Web – How the BBC Uses DBpedia and Linked Data to Make Connections.
In Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., and Simperl, E., editors, Prof. of the 6th
European Semantic Web Conference, ESWC ’09, pages 723–737, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

[Köpcke and Rahm, 2010] Köpcke, H. and Rahm, E. (2010). Frameworks for en-
tity matching: A comparison. Data & Knowledge Engineering, 69(2):197 –
210.

[Lambrix and Tan, 2005] Lambrix, P. and Tan, H. (2005). A Framework for Align-
ing Ontologies, pages 17–31. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Lautert et al., 2013] Lautert, L. R., Scheidt, M. M., and Dorneles, C. F. (2013).
Web Table Taxonomy and Formalization. SIGMOD Rec., 42(3):28–33.

[Lehmann et al., 2015] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer,
S., and Bizer, C. (2015). DBpedia - A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web, 6(2):167–195.

[Lehmberg and Bizer, 2016] Lehmberg, O. and Bizer, C. (2016). Web Table Col-
umn Categorisation and Profiling. In Proc. of the 19th Int. Workshop on Web
and Databases, WebDB ’16. ACM.

[Lehmberg and Bizer, 2017] Lehmberg, O. and Bizer, C. (2017). Stitching Web
Tables for Improving Matching Quality. Proc. of the VLDB Endow.

[Lehmberg et al., 2016] Lehmberg, O., Ritze, D., Meusel, R., and Bizer, C.
(2016). A Large Public Corpus of Web Tables containing Time and Context
Metadata. In Proc. of the 25th Int. Conference on World Wide Web, WWW ’16.

[Lehmberg et al., 2015] Lehmberg, O., Ritze, D., Ristoski, P., Meusel, R., Paul-
heim, H., and Bizer, C. (2015). The Mannheim Search Join Engine. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 35:159–166.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

[Li et al., 2009] Li, J., Tang, J., Li, Y., and Luo, Q. (2009). RiMOM: A Dynamic
Multistrategy Ontology Alignment Framework. IEEE Transactions on Knowl-
edge and Data Engineering, 21(8):1218–1232.

BIBLIOGRAPHY 215

[Li and Clifton, 2000] Li, W.-S. and Clifton, C. (2000). SEMINT: A tool for iden-
tifying attribute correspondences in heterogeneous databases using neural net-
works. Data & Knowledge Engineering, 33(1):49 – 84.

[Limaye et al., 2010] Limaye, G., Sarawagi, S., and Chakrabarti, S. (2010). An-
notating and Searching Web Tables Using Entities, Types and Relationships.
Proc.of the VLDB Endow., 3:1338–1347.

[Lindahl, 2012] Lindahl, G. (2012). Blekko donates search data to common crawl.

[Ling et al., 2013] Ling, X., Halevy, A., Wu, F., and Yu, C. (2013). Synthesizing
union tables from the web. In Proc. of the 23rd Int. Joint Conference on Artificial
Intelligence, pages 2677–2683.

[Lu et al., 2013] Lu, C., Bing, L., Lam, W., Chan, K., and Gu, Y. (2013). Web
entity detection for semi-structured text data records with unlabeled data. Inter-
national Journal of Computational Linguistics and Applications, 4(2):135–150.

[Madhavan et al., 2005] Madhavan, J., Bernstein, P. A., Doan, A., and Halevy, A.
(2005). Corpus-Based Schema Matching. In Proc. of the. 21st Int. Conference
on Data Engineering, pages 57–68.

[Madhavan et al., 2001] Madhavan, J., Bernstein, P. A., and Rahm, E. (2001).
Generic Schema Matching with Cupid. In Proc. of the VLDB Endow., pages
49–58.

[Mahdisoltani et al., 2015] Mahdisoltani, F., Biega, J., and Suchanek, F. M.
(2015). YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proc. of
the 7th Biennial Conference on Innovative Data Systems Research, CIDR ’15.

[Mannino et al., 1988] Mannino, M. V., Chu, P., and Sager, T. (1988). Statistical
Profile Estimation in Database Systems. ACM Comput. Surv., 20(3):191–221.

[McCallum et al., 2000] McCallum, A. K., Nigam, K., Rennie, J., and Seymore,
K. (2000). Automating the Construction of Internet Portals with Machine Learn-
ing. Information Retrieval, 3(2):127–163.

[Meilicke et al., 2007] Meilicke, C., Stuckenschmidt, H., and Tamilin, A. (2007).
Repairing Ontology Mappings. In Proc. of the 22nd AAAI Conference on Arti-
ficial Intelligence.

[Meusel, 2017] Meusel, R. (2017). Web-scale profiling of semantic annotations in
HTML pages. PhD thesis, Mannheim, Germany.

[Meusel et al., 2016] Meusel, R., Ritze, D., and Paulheim, H. (2016). Towards
More Accurate Statistical Profiling of Deployed schema.org Microdata. Spe-
cial Issue on Web Data Quality of the ACM Journal on Data and Information
Quality, 8(1):1–31.

216 BIBLIOGRAPHY

[Mühleisen and Bizer, 2012] Mühleisen, H. and Bizer, C. (2012). Web Data Com-
mons - Extracting Structured Data from Two Large Web Corpora. In Proc. of
the 5th WWW Workshop Linked Data on the Web, LDOW ’12.

[Mulwad et al., 2013] Mulwad, V., Finin, T., and Joshi, A. (2013). Semantic mes-
sage passing for generating linked data from tables. In Proc. of the 12th Int.
Semantic Web Conference, ISWC ’13.

[Mulwad et al., 2010a] Mulwad, V., Finin, T., Syed, Z., and Joshi, A. (2010a).
T2LD: Interpreting and Representing Tables as Linked Data . In Proc. of the
9th Int. Semantic Web Conference, ISWC ’10.

[Mulwad et al., 2010b] Mulwad, V., Finin, T., Syed, Z., and Joshi, A. (2010b).
Using linked data to interpret tables. In Proc. of the 1st Int. Workshop on Con-
suming Linked Data, COLD ’10.

[Muñoz et al., 2013] Muñoz, E., Hogan, A., and Mileo, A. (2013). Triplifying
Wikipedia’s Tables. In Proc. of the 1st Int. Conference on Linked Data for
Information Extraction, LD4IE ’13.

[Muñoz et al., 2014] Muñoz, E., Hogan, A., and Mileo, A. (2014). Using Linked
Data to Mine RDF from Wikipedia’s Tables. In Proc. of the 7th ACM Int. Con-
ference on Web Search and Data Mining, WSDM ’14, pages 533–542, New
York, NY, USA. ACM.

[Naumann, 2014] Naumann, F. (2014). Data profiling revisited. ACM SIGMOD
Record, 42(4):40–49.

[Navathe et al., 1986] Navathe, S., Elmasri, R., and Larson, J. (1986). Integrating
User Views in Database Design. Computer, 19(1):50–62.

[Neumaier et al., 2017] Neumaier, S., Polleres, A., Steyskal, S., and Umbrich, J.
(2017). Data Integration for Open Data on the Web. In Reasoning Web. Semantic
Interoperability on the Web. Springer, Lodon, United Kingdom. to appear.

[Ngomo and Auer, 2011] Ngomo, A.-C. N. and Auer, S. (2011). LIMES: A Time-
efficient Approach for Large-scale Link Discovery on the Web of Data. In Proc.
of the 22nd Int. Joint Conference on Artificial Intelligence, IJCAI’11, pages
2312–2317. AAAI Press.

[Ngomo et al., 2011] Ngomo, A.-C. N., Lehmann, J., Auer, S., and Höffner, K.
(2011). RAVEN - Active Learning of Link Specifications. In Proc of the 6th
Int. Workshop on Ontology Matching, OM ’11, pages 25–36, Aachen, Germany,
Germany. CEUR-WS.org.

[Noy and Musen, 2000] Noy, N. F. and Musen, M. A. (2000). Algorithm and Tool
for Automated Ontology Merging and Alignment. In Proc. of the 15th AAAI
Conference on Artificial Intelligence.

BIBLIOGRAPHY 217

[Oulabi and Bizer, 2017] Oulabi, Y. and Bizer, C. (2017). Estimating Missing
Temporal Meta-Information using Knowledge-Based-Trust. In Proc. of the 3rd
Int. Workshop on Knowledge Discovery on the WEB, KDWeb ’17.

[Oulabi et al., 2016] Oulabi, Y., Meusel, R., and Bizer, C. (2016). Fusing time-
dependent web table data. In Proc. of the 19th Int. Workshop on Web and
Databases, WebDB ’16, pages 3:1–3:7, New York, NY, USA. ACM.

[Page et al., 1999] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The
PageRank citation ranking: bringing order to the Web. Technical report, Stan-
ford InfoLab.

[Pasternack and Roth, 2010] Pasternack, J. and Roth, D. (2010). Knowing What
to Believe (when You Already Know Something). In Proc. of the 23rd Int.
Conference on Computational Linguistics, pages 877–885.

[Paulheim, 2014] Paulheim, H. (2014). Identifying Wrong Links between
Datasets by Multi-dimensional Outlier Detection. In Proc. of the 3rd Int. Work-
shop on Debugging Ontologies and Ontology Mappings, volume 1162, pages
27–38, Aachen. RWTH. Online Ressource.

[Paulheim and Ponzetto, 2013] Paulheim, H. and Ponzetto, S. (2013). Extending
DBpedia with Wikipedia List Pages. In Proc.of 1st Int. Workshop on NLP &
DBpedia.

[Pearson, 1895] Pearson, K. (1895). Notes on regression and inheritance in the
case of two parents. Proc. of the Royal Society of London, 58:240–242.

[Penn et al., 2001] Penn, G., Hu, J., Luo, H., and McDonald, R. (2001). Flexible
Web document analysis for delivery to narrow-bandwidth devices. In Proc. of
the 6th Int. Conference on Document Analysis and Recognition, pages 1074–
1078.

[Petrovski et al., 2014] Petrovski, P., Bryl, V., and Bizer, C. (2014). Learning
Regular Expressions for the Extraction of Product Attributes from E-commerce
Microdata. In Proc. of the 2nd Int. Conference on Linked Data for Informa-
tion Extraction, LD4IE ’14, pages 45–54, Aachen, Germany, Germany. CEUR-
WS.org.

[Pham et al., 2016] Pham, M., Alse, S., Knoblock, C. A., and Szekely, P. (2016).
Semantic Labeling: A Domain-Independent Approach. In Proc. of the 15th Int.
Semantic Web Conference, ISWC ’16, pages 446–462. Springer.

[Pimplikar and Sarawagi, 2012] Pimplikar, R. and Sarawagi, S. (2012). Answer-
ing Table Queries on the Web Using Column Keywords. Proc.of the VLDB
Endow., 5(10):908–919.

218 BIBLIOGRAPHY

[Pinto et al., 2002] Pinto, D., Branstein, M., Coleman, R., Croft, W. B., King, M.,
Li, W., and Wei, X. (2002). QuASM: A System for Question Answering Using
Semi-structured Data. In Proc. of the 2nd ACM/IEEE-CS Joint Conference on
Digital Libraries, JCDL ’02, pages 46–55, New York, NY, USA. ACM.

[Pinto et al., 2003] Pinto, D., McCallum, A., Wei, X., and Croft, W. B. (2003).
Table Extraction Using Conditional Random Fields. In Proc. of the 26th An-
nual Int. ACM SIGIR Conference on Research and Development in Informaion
Retrieval, SIGIR ’03, pages 235–242, New York, NY, USA. ACM.

[Qian, 2013] Qian, R. (2013). Understand Your World with Bing.

[Quercini and Reynaud-Delaı̂tre, 2013] Quercini, G. and Reynaud-Delaı̂tre, C.
(2013). Entity Discovery and Annotation in Tables. In Proc. of the 16th Int.
Conference on Extending Database Technology, EDBT ’13, Genoa, Italy.

[Rahm, 2016] Rahm, E. (2016). The Case for Holistic Data Integration. In Proc.
of the 20th Advances in Databases and Information Systems Conference, pages
11–27. Springer.

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A. (2001). A survey of
approaches to automatic schema matching. The VLDB Journal, 10(4):334–350.

[Rahm and Do, 2000] Rahm, E. and Do, H. H. (2000). Data Cleaning: Problems
and Current Approaches. IEEE Data Engineering Bulletin, 23(4):3–13.

[Rao and Zhu, 2016] Rao, B. and Zhu, E. (2016). Searching Web Data Using
MinHash LSH. In Proc. of the 2016 Int. Conference on Management of Data,
SIGMOD ’16, pages 2257–2258, New York, NY, USA. ACM.

[Rhoades, 1993] Rhoades, S. (1993). The Herfindahl-Herschman Index. Federal
Reserve Bulletin, 79:188–189.

[Rigden et al., 2016] Rigden, D., Fernandez-Suarez, X., and Galperin, M. (2016).
The 2016 database issue of Nucleic Acids Research and an updated molecular
biology database collection. Nucleic Acids Research, 44:D1 – D6.

[Rinser et al., 2013] Rinser, D., Lange, D., and Naumann, F. (2013). Cross-
Lingual Entity Matching and Infobox Alignment in Wikipedia. Information
Systems, 38:887–907.

[Ritze and Bizer, 2017] Ritze, D. and Bizer, C. (2017). Matching Web Tables To
DBpedia - A Feature Utility Study. In Proc. of the 20th Extended Database
Technology Conference, EDBT ’17.

[Ritze and Bizer, 2018] Ritze, D. and Bizer, C. (2018). T2K Match++: Restricting
Holistic Matching with Domain Knowledge. In Paper submitted at the 11th
ACM Int. Conference on Web Search and Data Mining, WSDM ’18.

BIBLIOGRAPHY 219

[Ritze et al., 2015] Ritze, D., Lehmberg, O., and Bizer, C. (2015). Matching
HTML Tables to DBpedia. In Proc. of the 5th Int. Conference on Web Intel-
ligence, Mining and Semantics, WIMS ’15.

[Ritze et al., 2016] Ritze, D., Lehmberg, O., Oulabi, Y., and Bizer, C. (2016). Pro-
filing the Potential of Web Tables for Augmenting Cross-domain Knowledge
Bases. In Proc. of the 25th Int. Conference on World Wide Web, WWW ’16.

[Ritze and Paulheim, 2011] Ritze, D. and Paulheim, H. (2011). Towards an Au-
tomatic Parameterization of Ontology Matching Tools Based on Example Map-
pings. In Proc. of the 6th Int. Workshop on Ontology Matching, OM ’11, pages
37–48, Aachen, Germany, Germany. CEUR-WS.org.

[Ritze et al., 2013] Ritze, D., Paulheim, H., and Eckert, K. (2013). Evaluation
Measures for Ontology Matchers in Supervised Matching Scenarios. In Alani,
H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J. X., Aroyo, L.,
Noy, N., Welty, C., and Janowicz, K., editors, Proc. of the 12th Int. Seman-
tic Web Conference, ISWC ’13, pages 392–407, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Ritze et al., 2010] Ritze, D., Völker, J., Meilicke, C., and Šváb Zamazal, O.
(2010). Linguistic Analysis for Complex Ontology Matching. In Proc. of the
5th Int. Ontology Matching Workshop, OM ’10, pages 1–12, Aachen, Germany,
Germany. CEUR-WS.org.

[Sagi and Gal, 2013] Sagi, T. and Gal, A. (2013). Schema matching prediction
with applications to data source discovery and dynamic ensembling. VLDB
Journal, 22:689–710.

[Saleiro et al., 2017] Saleiro, P., Milic-Frayling, N., Rodrigues, E. M., and Soares,
C. (2017). RELink: A Research Framework and Test Collection for Entity-
Relationship Retrieval. In Proc. of the 40th Int. ACM SIGIR Conference, page
to be publsihed.

[Salton and McGill, 1983] Salton, G. and McGill, M. (1983). Introduction to mod-
ern information retrieval. McGraw-Hill.

[Sandhaus, 2010] Sandhaus, E. (2010). Semantic Technology at The New York
Times: Lessons Learned and Future Directions. In Patel-Schneider, P. F., Pan,
Y., Hitzler, P., Mika, P., Zhang, L., Pan, J. Z., Horrocks, I., and Glimm, B.,
editors, Proc. of the 9th Int. Semantic Web Conference, ISWC ’10, pages 355–
355, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Sarawagi and Chakrabarti, 2014] Sarawagi, S. and Chakrabarti, S. (2014). Open-
domain Quantity Queries on Web Tables: Annotation, Response, and Consensus
Models. In Proc. of the 20th ACM SIGKDD Int. Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 711–720, New York, NY, USA.
ACM.

220 BIBLIOGRAPHY

[Schilder and Habel, 2001] Schilder, F. and Habel, C. (2001). From Temporal Ex-
pressions to Temporal Information: Semantic Tagging of News Messages. In
Proc. of the 13th Workshop on Temporal and Spatial Information Processing,
TASIP ’01, pages 9:1–9:8, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

[Schmachtenberg et al., 2014] Schmachtenberg, M., Bizer, C., and Paulheim, H.
(2014). Adoption of the Linked Data Best Practices in Different Topical Do-
mains. In Proc. of the 13th Int. Semantic Web Conference, volume 8796 of
ISWC ’14, pages 245–260. Springer International Publishing.

[Seitner et al., 2016] Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paul-
heim, H., and Ponzetto, S. (2016). A large database of hypernymy relations
extracted from the web. In Proc. of the 10th Edition of the Language Resources
and Evaluation Conference.

[Sekhavat et al., 2014] Sekhavat, Y. A., di Paolo, F., Barbosa, D., and Merialdo, P.
(2014). Knowledge Base Augmentation using Tabular Data. In Proc. of the 7th
Workshop on Linked Data on the Web, LDOW ’14.

[Seth et al., 2010] Seth, S., Jandhyala, R., Krishnamoorthy, M., and Nagy, G.
(2010). Analysis and Taxonomy of Column Header Categories for Web Ta-
bles. In Proc. of the 9th IAPR Int. Workshop on Document Analysis Systems,
DAS ’10, pages 81–88, New York, NY, USA. ACM.

[Singhal, 2012] Singhal, A. (2012). Introducing the Knowledge Graph: Things,
Not String. Blog. Retrieved June 07, 2017.

[Spiegler, 2013] Spiegler, S. (2013). Statistcs of the common crawl corpus 2012.
Technical report, Technical report, SwiftKey.

[Staab and Studer, 2009] Staab, S. and Studer, R. (2009). Handbook on Ontolo-
gies. Springer.

[Suchanek et al., 2011] Suchanek, F., Abiteboul, S., and Senellart, P. (2011).
Paris: Probabilistic alignment of Relations, Instances, and Schema. Proc.of
the VLDB Endowment, 5:157–168.

[Suchanek et al., 2007] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: A Core of Semantic Knowledge. In Proc. of the 16th Int. Conference on
World Wide Web, WWW ’07, NY. ACM Press.

[Surdeanu and Ji, 2014] Surdeanu, M. and Ji, H. (2014). Overview of the En-
glish Slot Filling Track at the TAC2014 Knowledge Base Population Evaluation.
http://nlp.cs.rpi.edu/paper/sf2014overview.pdf.

[Syed et al., 2010] Syed, Z., Finin, T., Mulwad, V., and Joshi, A. (2010). Exploit-
ing a Web of Semantic Data for Interpreting Tables. In Proc. of the 2nd Web
Science Conference.

BIBLIOGRAPHY 221

[Syed, 2010] Syed, Z. S. (2010). Wikitology: A Novel Hybrid Knowledge Base
Derived from Wikipedia. PhD thesis, Catonsville, MD, USA. AAI3422868.

[Tejada et al., 2001] Tejada, S., Knoblock, C. A., and Minton, S. (2001). Learn-
ing object identification rules for information integration. Information Systems,
26(8):607 – 633. Data Extraction,Cleaning and Reconciliation.

[Torzec, 2014] Torzec, N. (2014). Yahoo’s Knowledge Graph. Retrieved June 07,
2017.

[Tschirschnitz et al., 2017] Tschirschnitz, F., Papenbrock, T., and Naumann, F.
(2017). Detecting inclusion dependencies on very many tables. ACM Trans.
Database Syst., 42(3):18:1–18:29.

[Udrea et al., 2007] Udrea, O., Getoor, L., and Miller, R. J. (2007). Leveraging
Data and Structure in Ontology Integration. In Proc. of the 2007 ACM SIGMOD
Int. Conference on Management of Data, SIGMOD ’07, pages 449–460, New
York, NY, USA. ACM.

[Venetis et al., 2011] Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W.,
Wu, F., Miao, G., and Wu, C. (2011). Recovering Semantics of Tables on the
Web. Proc. of the VLDB Endow., pages 528–538.

[Verykios et al., 2000] Verykios, V. S., Elmagarmid, A. K., and Houstis, E. N.
(2000). Automating the approximate record-matching process. Information
Sciences, 126(14):83 – 98.

[Vrandečić and Krötzsch, 2014] Vrandečić, D. and Krötzsch, M. (2014). Wiki-
data: A Free Collaborative Knowledgebase. Commun. ACM, 57(10):78–85.

[Wang et al., 2012] Wang, J., Wang, H., Wang, Z., and Zhu, K. Q. (2012). Under-
standing Tables on the Web. In Proc. of the 31st Int. Conference on Conceptual
Modeling, pages 141–155.

[Wang and Cohen, 2008] Wang, R. C. and Cohen, W. W. (2008). Iterative Set
Expansion of Named Entities Using the Web. In Proc. of the 8th IEEE Int.
Conference on Data Mining, ICDM ’08, pages 1091–1096.

[Wang and Hu, 2002a] Wang, Y. and Hu, J. (2002a). A Machine Learning Based
Approach for Table Detection on the Web. In Proc. of the 11th Int. Conference
on World Wide Web, WWW ’02, pages 242–250, New York, NY, USA. ACM.

[Wang and Hu, 2002b] Wang, Y. and Hu, J. (2002b). Detecting Tables in HTML
Documents. In Proc. of the 5th Int. Workshop on Document Analysis Systems,
pages 249–260.

[Yakout et al., 2012] Yakout, M., Ganjam, K., Chakrabarti, K., and Chaudhuri, S.
(2012). InfoGather: Entity Augmentation and Attribute Discovery by Holistic

222 BIBLIOGRAPHY

Matching with Web Tables. In Proc. of the 2012 ACM SIGMOD Int. Conference
on Management of Data, pages 97–108.

[Yin and Tan, 2011] Yin, X. and Tan, W. (2011). Semi-supervised Truth Discov-
ery. In Proc. of the 20th Int. Conference on World Wide Web, WWW ’11, pages
217–226. AC.

[Yin et al., 2011] Yin, X., Tan, W., and Liu, C. (2011). FACTO: A Fact Lookup
Engine Based on Web Tables. In Proc. of the 20th Int. Conference on World
Wide Web, WWW ’11, pages 507–516, New York, NY, USA. ACM.

[Yoshida and Torisawa, 2001] Yoshida, M. and Torisawa, K. (2001). A method to
integrate tables of the world wide web. In Proc. of the 1st Int. Workshop on Web
Document Analysis, pages 31–34.

[Zanibbi et al., 2004] Zanibbi, R., Blostein, D., and Cordy, J. (2004). A survey of
table recognition. Int. Journal on Document Analysis and Recognition, 7:1–16.

[Zhang and Chakrabarti, 2013] Zhang, M. and Chakrabarti, K. (2013). Info-
Gather+: Semantic Matching and Annotation of Numeric and Time-varying At-
tributes in Web Tables. In Proc. of the 2013 ACM SIGMOD Int. Conference on
Management of Data, pages 145–156.

[Zhang, 2014a] Zhang, Z. (2014a). Learning with Partial Data for Semantic Ta-
ble Interpretation. In Janowicz, K., Schlobach, S., Lambrix, P., and Hyvönen,
E., editors, Proc. of the 19th Int. Conference on Knowledge Engineering and
Knowledge Management, EKAW ’14, pages 607–618, Cham. Springer Interna-
tional Publishing.

[Zhang, 2014b] Zhang, Z. (2014b). Towards efficient and effective semantic table
interpretation. In Proc. of the 12th Int. Semantic Web Conference, ISWC ’14,
pages 487–502. Springer.

[Zhang, 2016] Zhang, Z. (2016). Effective and Efficient Semantic Table Interpre-
tation using TableMiner+. The Semantic Web Journal.

[Zhao, 2007] Zhao, H. (2007). Semantic Matching Across Heterogeneous Data
Sources. Commun. ACM, 50(1):45–50.

[Zhao and Ram, 2007] Zhao, H. and Ram, S. (2007). Combining schema and in-
stance information for integrating heterogeneous data sources. Data & Knowl-
edge Engineering, 61(2):281 – 303.

[Zhu et al., 2016] Zhu, E., Nargesian, F., Pu, K. Q., and Miller, R. J. (2016).
LSH Ensemble: Internet-scale Domain Search. Proc. of the VLDB Endow.,
9(12):1185–1196.

BIBLIOGRAPHY 223

[Zwicklbauer et al., 2013] Zwicklbauer, S., Einsiedler, C., Granitzer, M., and
Seifert., C. (2013). Towards disambiguating Web tables. In Proc. of the 12th
Int. Semantic Web Conference, ISWC ’13, pages 205–208.

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline
	1.4 Published Work

	2 The Data Integration Process
	2.1 Tasks
	2.2 Challenges
	2.3 Matching
	2.3.1 Process
	2.3.2 Similarity Measures
	2.3.3 Schema Matching
	2.3.4 Data Matching
	2.3.5 Evaluation Criteria

	3 Knowledge Bases
	3.1 Preliminaries
	3.1.1 Resource Description Framework
	3.1.2 Linked Data Principles

	3.2 Common Knowledge Bases
	3.3 DBpedia

	4 Web Tables
	4.1 Relational Web Table Extraction
	4.1.1 Definitions
	4.1.2 Extraction Process

	4.2 Extraction of the WDC Web Table Corpora
	4.2.1 Common Crawl
	4.2.2 Web Table Extraction
	4.2.3 Web Table Classification
	4.2.4 Metadata Recovery

	4.3 Related Work
	4.3.1 Web Crawling & Table Extraction
	4.3.2 Web Table Classification
	4.3.3 Metadata Recovery

	4.4 WDC Web Table Corpora
	4.4.1 Statistical Analysis
	4.4.2 Comparison with other Corpora

	4.5 Conclusion

	5 Profiling the WDC Web Table Corpus
	5.1 Web Table Profiling
	5.1.1 Profiling Dimensions
	5.1.2 Profiling Process
	5.1.3 Representativity

	5.2 Statistical Analysis
	5.2.1 Table Size Distribution
	5.2.2 Domain & Header Distribution
	5.2.3 Correspondence Statistics
	5.2.4 Group Statistics

	5.3 Related Work
	5.3.1 Web Data Profiling
	5.3.2 Profiling of Web Table Corpora
	5.3.3 Knowledge Base Augmentation

	5.4 Knowledge Base Augmentation Potential
	5.4.1 Evaluation Methodology
	5.4.2 Fusion Strategies
	5.4.3 Manual Evaluation
	5.4.4 Fusion Results

	5.5 Summary

	6 Web Table to Knowledge Base Matching
	6.1 Introduction to Web Table Matching
	6.1.1 Challenges
	6.1.2 Matching to Knowledge Bases

	6.2 Methodology
	6.2.1 Workflow
	6.2.2 Candidate Selection
	6.2.3 Value-based Matcher
	6.2.4 Duplicate-based Matcher
	6.2.5 Attribute-based Refinement Matcher

	6.3 T2D Gold Standard
	6.3.1 Requirements
	6.3.2 Annotation Process
	6.3.3 Statistical Description

	6.4 Related Work
	6.4.1 Information Extraction
	6.4.2 Matching Databases and Ontologies
	6.4.3 Table Augmentation
	6.4.4 Web Table to Knowledge Base Matching Gold Standards
	6.4.5 Web Table to Knowledge Base Matching

	6.5 Evaluation
	6.5.1 Experimental Setup
	6.5.2 Overall Results
	6.5.3 Comparison with State-of-the-Art

	6.6 Summary

	7 Feature Utility Analysis
	7.1 Feature Review
	7.1.1 Feature Categorization
	7.1.2 Table Features
	7.1.3 Context Features
	7.1.4 External Features
	7.1.5 Knowledge Base Features

	7.2 Matching Components
	7.2.1 Adaptions of the Methodology
	7.2.2 Matrix Prediction
	7.2.3 Instance Matchers
	7.2.4 Property Matchers
	7.2.5 Class Matchers

	7.3 Related Work
	7.3.1 Approaches Using Table Features
	7.3.2 Approaches Using Context Features

	7.4 Evaluation
	7.4.1 Experimental Setup
	7.4.2 Results of the Matrix Prediction
	7.4.3 Results of the Instance Matching Task
	7.4.4 Results of the Property Matching Task
	7.4.5 Results of the Class Matching Task

	7.5 Summary

	8 The T2K Match++ Method
	8.1 Methodology
	8.1.1 Workflow
	8.1.2 Indirect Matching
	8.1.3 Classification

	8.2 Related Work
	8.2.1 Domain Knowledge
	8.2.2 Holistic Matching

	8.3 Evaluation
	8.3.1 Experimental Setup
	8.3.2 Overall Results
	8.3.3 Detailed Evaluation
	8.3.4 Results of the Instance Matching Task
	8.3.5 Results of the Property Matching Task
	8.3.6 Results of the Class Matching Task
	8.3.7 Comparison with State-of-the-Art

	8.4 Summary

	9 Conclusion
	9.1 Summary
	9.1.1 Improving the Matching Evaluability and Transparency
	9.1.2 Improving the Matching Quality
	9.1.3 Increasing the Data Availability and Applicability

	9.2 Limitations and Future Work
	9.3 Research Impact

	List of Figures
	List of Tables
	Listings
	Bibliography

