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Abstract—Various trends such as mobility of devices, Cloud
Computing, or Cyber-Physical Systems lead to a higher degree
of distribution. These systems-of-systems need to be integrated.
The integration of various subsystems still remains a challenge.
Self-improvement within self-adaptive systems can help to shift
integration tasks from the static design time to the runtime, which
fits the dynamic needs of these systems. Thus, it can enable the
integration of system parts at runtime.

In this paper, we define self-improvement as an adaptation of
an Autonomic Computing system’s adaptation logic. We present
an overview of approaches for self-improvement in the domains
of Autonomic Computing and self-adaptive systems. Based on a
taxonomy for self-adaptation, we compare the approaches and
categorize them. The categorization shows that the approaches
focus either on structural or parameter adaptation but seldomly
combine both. Based on the categorization, we elaborate chal-
lenges, that need to be addressed by future approaches for
offering self-improving system integration at runtime.

I. INTRODUCTION

Trends as Cyber-Physical Systems with its growing number
of mobile and embedded devices as well as the omnipresence
of (wireless) networks results in a higher degree of distri-
bution. Research communities in the domains of Autonomic
Computing, Organic Computing, or self-adaptive systems try
to tackle these challenges through shifting activities from
design time to runtime, which leads to the need of automated
system integration. The foundation of self-adaptation are the
self-* properties [1], [2]. One of them is self-improvement,
which supports the integration of system parts at runtime as
it supports the ”continuous development” of systems through
continuous improvements.

In this paper, we focus on self-improvement within self-
adaptive systems. We provide the following contributions.
First, we present an overview on approaches for self-
improvement. Second, we compare the approaches based on
our taxonomy for self-adaptation [3]. Last, we discuss the
strengths and weaknesses of the approaches and elaborate
challenges that need to be addressed in future research.

The structure of the remaining paper reflects these contri-
butions. Section II introduces the concept of self-adaptation
as well as defines the terms self-adaptive systems (SASs)
and self-improvement. Section III presents surveys that are
similar to this work. In Section IV, we present the different
approaches for self-improvement in the domain of SASs.
Section V compares the approaches using the taxonomy from
Section II as metric. In Section VI, we discuss the approaches
and derive challenges for future work. Finally, Section VII
concludes the paper with a summary.

II. BACKGROUND

Self-adaptation is the ability of a system to adapt its
behavior to changes in the system itself or in its environment
[4], [1]. Self-adaptation has different dimensions that have to
be taken into account when implementing an SAS. Next, we
present these dimensions, define the terms self-adaptive system
and self-improvement, as well as present the structure of these
systems.

A. Taxonomy on Self-Adaptation

In [3], we present a taxonomy on self-adaptation and use it
for categorizing engineering approaches for SASs. As shown
in Figure 1, this taxonomy consists of five dimensions: reason,
time, technique, level, and adaptation control. In the following,
we explain these dimensions in detail.

The first dimension is the reason for an adaptation. A reason
can be a change in context, in the system’s resources, or a
change (e.g., changing goals) caused by the user which in-
cludes a possible administrator. The time dimension is divided
into reactive (reaction after a change) and proactive (action
before a change). Techniques can be parameter adaptation or
structural adaptation (including algorithmic and compositional
adaptation). Additionally, the context itself can be adapted.
As the level of the adaptation, we identified the application
itself, the system software, the communication, the technical



Fig. 1. Taxonomy for self-adaptive systems, based on [3].

resources, or the context. The last dimension is adaptation
control. It is split into three subdimensions: adaptation ap-
proach, adaptation decision criteria, and degree of decentral-
ization. The approach can be internal (i.e., interwoven with the
resources) or external (i.e., separated from the resources). In
literature, the following decision criteria are present: models,
rules/policies, goals, or a utility (function). The degree of de-
centralization describes if various subsystems are responsible
for controlling the adaptation or whether the functionality is
centralized. We will compare different approaches for self-
improvement of SAS based on this taxonomy in Section V.

B. Self-Adaptive Systems and Self-Improvement

According to [4], a self-adaptive system (SAS) ”modifies
its own behavior in response to changes in its operating
environment”. Such systems consist of two main elements:
the managed resources (MRs) and the adaptation logic (AL)
[2]. MRs can be all types of computational resources and
range from small scale smartphones, laptops, or robotics to
large scale systems-of-systems like cars, production facilities,
or data centers and provide the functionality of the system. The
AL monitors the MRs as well as the environment and performs
adaptations on the MRs. Therefore, the AL implements some
kind of feedback loop, such as the MAPE cycle [1] known
from Autonomic Computing.

The AL implements a set of the self-* properties [1],
[2]. IBM identified four self-* properties as most important
for Autonomic Computing systems: self-configuration, self-
optimization, self-healing, and self-protection [1]. With respect
to this paper, we analyze the self-improvement property. As
there is not a common definition present in literature, we define
self-improvement as following:

Self-improvement of the AL is the adjustment of
the AL to handle former unknown circumstances or
changes in the environment or the MRs.

In our understanding, a system can only self-improve, if
the AL itself is changed. Otherwise, the AL can neither
handle unknown situations nor improve the performance of
adaptations. In contrast, self-optimization does change the
MR but not the AL. The same is true for self-optimizing
hierarchical approaches (e.g., [5] or [6]) as the hierarchy offers
decision-making on different levels with different scopes but

do not change the AL in a substantial way. Section IV presents
different approaches for self-improvement in SASs.

III. RELATED WORK

In literature, different surveys on SASs and Autonomic
Computing can be found. This section presents an overview
and highlights the differences to this work.

In [3], we present a taxonomy on self-adaptation and use
it for the categorization of engineering approaches for SASs.
There, we focused on how to build the AL for changing the
MR. Contrary, in this work, we focus on the level above and
how to change the AL at runtime. In [7], Macı́as-Escrivá et
al. describe approaches, research challenges, and applications
for SASs. Salehie and Tahvildari presented an overview over
the landscape of self-adaptive software and related research
challenges [2].

Other authors focus on formal specifications within SASs
and presented surveys on formals methods. In [8], Bradbury
et al. survey 14 formal specification approaches based on
graphs, process algebras, logic, and other formalisms. Weyns
et al. present a systematic literature review that showed that
the number of studies that employ formal methods in SASs
remains still low [9].

Further surveys concentrate on more specific aspects. Psaier
and Dustdar focused on the self-healing aspect and catego-
rized approaches for self-healing in ten research areas [10].
McKinley et al. highlight the difference regarding parameter
vs. compositional/structural adaptation and survey approaches
for both of them [11]. Oreizy et al. discuss the spectrum of
adaptation from static activities to dynamic ones [4].

Another two surveys focus on specific aspects within the
Autonomic Computing domain. Huebscher and McCann pre-
sented an overview of Autonomic Computing and its appli-
cations [12]. Dobson et al. focus on aspects of autonomic
communications [13].

All these surveys provide important insights into the field of
SASs. However, to the best of our knowledge, no survey in the
field focuses on approaches for adaptation of the adaptation
logic. This is the focus within this paper. In the following, we
present approaches for self-improvement and compare them.

IV. APPROACHES FOR SELF-IMPROVEMENT

AL adaptation may have several goals, such as (i) self-
healing (recovering from failures) or (ii) self-improvement.
According to [14], reasons for self-improvement can be the
need for an adjustment of the AL’s structure to reflect changes
in the MRs or an enhancement of the performance through
proactive adaptation of the AL’s parameters. As an example,
we consider an adaptive production cell with a dynamic
interaction scheme of robots (cf. [15]). In this scenario, rules
define which robots should interact. By changing rules, the
interaction scheme can be adapted, e.g., for fitting the pro-
duction plans of different items. In this case the coordination
of MRs can be improved. However, for improving the system
over time, the AL needs to be changed for reacting to new
conditions that have not been taken into account at design



time. Otherwise, the AL can only respond to known and an-
ticipated events. This section provides an overview of existing
approaches for self-improvement or evolution, respectively, of
the AL.

1) Three Layer Architecture (3LA): Figure 2 shows the
Three Layer Architecture (3LA) by Kramer and Magee [16].
Within the 3LA, MRs are part of the Component Control layer.
The layer provides the interfaces for monitoring and adapting
the resources. Beyond that, small self-tuning algorithms can be
included as well. Additionally, the layer detects situations that
cannot be handled by the current setup and propagates them
to the Change Management layer. Using predefined plans, the
Change Management layer determines a sequence of actions
to handle the new situation identified through the monitored
state. If no predefined plan matches the given situation, the
Goal Management layer is invoked. This layer is responsible
for the creation of the plans for the Change Management layer.
As the name of the layer indicates, it is based on a set of user-
defined goals that can change over time.
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Fig. 2. Overview of the Three Layer Architecture [16].

2) ActivFORMS: The basic idea of the ActivFORMS ap-
proach is the direct execution of formal models using a virtual
machine instead of implementing the models in code [17]. The
behavior of the system can be verified both at design time and
at runtime and, therefore, it is possible to guarantee a correct
adaptation behavior of the system. Following the architecture
proposed by Kramer and Magee [16], ActivFORMS divides
the system into three layers. The bottom layer consists of the
MRs. Above, the Active Model Engine (representing the AL
of the system) contains the virtual machine which executes the
formal model. A formal model is represented as a network of
timed automata and contains the AL in form of a MAPE-K
loop. Whenever the system detects that the currently executed
formal model cannot deal with the state of the system, the
uppermost layer – the Goal Management layer – is invoked.
The Goal Management layer tries to find a different formal
model that can satisfy the system goals and send it to the
Active Model Engine, which executes the new formal model
and adapts the resources accordingly.

3) NoMPRoL: SASs usually operate in unstable and dy-
namic environments. This leads to incomplete and inaccurate
models due to high complexity and uncertainty. As a result,

a model should be updated when the environment changes.
In the NoMPRoL approach [18], an SAS is composed of the
three layers known from the 3LA approach [16]. The Change
Management layer acts based on reactive plans which are
generated in the Goal Management layer. The reactive plans
consist of actions for known and anticipated states and can,
therefore, handle discrepancies between the expected and the
actual behavior. As the domain model evolves with changes
in the environment, the Goal Management layer changes the
reactive plan over time for adjusting it to new states. The Goal
Management layer observes the reaction of the environment to
actions of the Component layer using execution traces. With
the help of probabilistic rule learning, the system generates
rules based on these execution traces that represent known
and anticipated states. Finally, the rules are used to update the
Goal Management layer and, accordingly, the reactive plans
of the Change Management layer.

4) Dynamic Control Loops (DCL): Often, an SAS is com-
posed of several, independent control loops. Each control loop
is responsible for a certain behavior of the system. All control
loops together form the AL. In [19], the authors propose a
system for adding/removing control loops to/from the AL.
Additionally to a Java framework, which enables the change
of control loops at runtime, the authors of [19] propose
a technique to generate models for systems composed out
of several control loops. With the support of a goal model
compiler, the approach supports the system developer in the
identification of control loops.

5) PLASMA: PLASMA [20] utilizes user-defined goals and
two kinds of models as adaptation decision criteria: (i) a
domain model that captures all possible states of the system’s
components and (ii) an adaptation model which describes the
possible architectural configurations of the system. The system
has three distinct layers. The application layer is the lowest
layer and consists of the MRs. The adaptation layer offers
plan-based adaptation of the MRs in the application layer.
Finally, the planning layer handles the generation of plans for
the other layers. The plans for the AL describe the desired
architecture for the application. Likewise, the plans for the
application layer define the possible adaptations. A possible
reason for an adaptation can be changes in the high-level goals
of the system, which are provided by the user, or component
failures.

6) FUSION: FUSION supports the development of feature-
oriented SASs [21]. The architecture of the system can be
divided into three parts: the running system, an adaptation
cycle, and a learning cycle. A feature can either be active
or inactive. It is not intended that features are added to the
system at runtime. The adaptation cycle adapts the MRs by
turning features on and off. Therefore, it collects data from the
running system, calculates the utility of the overall system and
checks, whether goals of the system are violated. In case of a
violation, it tries to find a different selection of features, which
increases the utility and satisfies the goals. For this process,
it relies on a shared knowledge base. The learning cycle is



responsible for creating the knowledge base by learning the
impact of adaptation decisions.

7) KAMI: The KAMI approach focuses on models for non-
functional requirements like reliability or performance [22].
The AL uses these models to reason about adaptations. Usu-
ally, models for estimating these properties solely rely on
estimates by either domain experts or they can be extracted
from similar running systems. In KAMI, models should not
only be used at design time but instead also be updated at
runtime to fit system’s evolution. By collecting data from
the running system, a Bayesian estimator can update the
model and, therefore, keep the model in sync with the current
situation. This model can then be used by the AL for further
analysis, e.g., to detect whether the non-functional require-
ments are fulfilled. Beyond that, the AL can predict possible
violations in the future. In both situations, a violation triggers
an adaptation of the system to counteract the deficiency. Using
a plug-in architecture, the approach can be used with different
model types suitable for different requirements.

8) Organic Traffic Control (OTC): Within the Organic
Traffic Control (OTC), an SAS uses evolutionary algorithms
for the control of road traffic signals in urban areas ([23], [24]).
The MRs are traffic light controllers. Values for their cycle
times and the offset to phases of other traffic lights can be ad-
justed. These parameters are modified by a learning classifier
system which uses rules and selects an action based on the
highest expected reward. The associated action of the selected
rule contains the values for the parameters of the traffic
light controller. Additionally, the system performs an off-line
optimization of the parameters. Therefore, unforeseen traffic
situations are generated and by combining the parameters of
the traffic light controller using evolutionary algorithms, new
combinations are generated. These combinations are evaluated
using a traffic simulator of the intersection and, finally, added
to the learning classifier system of the AL.

In [24], the OTC is extended. There, intersections col-
laborate and can form dynamic progressive signal systems
(DPSSs). The coordination between the intersections improves
the traffic flow in the area of the connected intersections.

9) FESAS ALM: In [14], we propose an approach for adapt-
ing the AL which enables self-improvement. We extend an
SAS with an additional layer: the Adaptation Logic Manager
(ALM) for adapting the AL of the SAS. The ALM is an AL
for the AL, hence, it consists of a feedback loop represented
by MAPE components. Furthermore, additional components
are introduced, e.g., for prediction of future events or learning
rules. The communication between the AL and the ALM is
performed via a proxy, the so called Proxy ALM. The Proxy
ALM is integrated in the FESAS Middleware for developing
SASs [25]. The Proxy ALM collects information from the
AL (e.g., the structure, algorithms, and monitored data) and
sends this information to the ALM. In case there is potential
to improve the AL’s performance, the ALM will adapt the AL.
The Proxy ALM receives adaptation plans from the ALM.

10) Learning and Evolution in DSPLs: In [3], we present
an overview of approaches that use Dynamic Software Product
Lines (DSPL) approaches for reasoning. Often, developers
specify SPLs at design time and the information is used
for finding alternative configurations and adaptation paths at
runtime. In [26], the authors present an approach for extending
DSPLs with learning and evolution. A reinforcement learning
approach searches new adaptation rules in the configuration
space. These rules are added to the AL. Additionally, evolution
is triggered if the user adds new requirements or if the learning
was not successful. This can happen if learning could not find
a configuration for the current context. In this case, developers
can re-define the DSPL. After redefining the configuration
space, learning is triggered again.

11) Requirements@Runtime (Reqs@RT): In [27], the au-
thors present an approach where the designer can change
requirements at runtime. In order to support requirement
changes, a goal model (based on FLAGS [28]) and an im-
plementation model are maintained. A mapping between these
two models allows the correct handling of requirement changes
at runtime. Adaptations resulting from such changes can have
an impact on the goal model as well as the implementation
model.

12) RAMUN: The RAMUN approach [29] focuses on com-
bining the knowledge of domain experts with machine learning
for optimizing the ruleset of adaptation rules. First, domain
experts define rules in an impact model. At runtime, this set
is extended with samples. These samples contain monitoring
values capturing the effects of adaptations. A machine learning
approach based on the k-plane algorithm analyzes the set
of initially defined rules and observations. The result is an
updated impact model which the planning functionality uses
to update adaptation rules.

13) Autonomic System Adaptation Layer: Solomon et al.
presented one of the first approaches [30] that address the
issue of self-improvement. Their approach adds an additional
layer on top of the AL’s MAPE loop which mainly changes
the data analysis (M+A) and adaptation control (A+P). This
layer gathers data from the MAPE loop and MRs, evaluates
the constraints in a rules engine, and adjusts the AL through
reconfiguration or replacement of MAPE components.

14) Update of Controllers: In [31], Nahabedian et al. intro-
duce an approach to specify correctness criteria for dynamic
updates of controllers for adaptation, i.e., the AL. These
correctness criteria form the base for a technique for auto-
matically computing a controller that handles the transition
of the controller, i.e., handles self-improvement of the AL.
The focus on their work is the identification of a safe state for
change of the controllers. They validate their approach in seven
case studies, however, the validation is limited to a conceptual
validation missing an implementation in a real system.

15) Meta-Adaptation Strategies: To address the limitations
of adaptability, Gerostathopoulos et al. define different strate-
gies for meta-adaptation as well as a classification schema for



further strategies [32]. Their approach integrates strategies that
address the issues of (i) unavailable data for the adaptation
decision, (ii) optimizing the scheduling of processes, and
(iii) assurance of monitoring and analyzing parameters. Further
strategies are proposed as future work. Using the JDEECo
framework, the authors evaluate the strategies.

16) Meta-Adaptation Layer: In [33], the authors present a
concept for an additional layer on top of the AL for self-
improvement. This additional layer is structured as MAPE
loop. It monitors the requirements by analyzing the knowledge
of the AL. The reconfiguration of the AL is controlled using
a variability model, a reasoning model (e.g., based on ECA
rules), and a context model. However, the work presented in
[33] only contains a concept, not a running implementation.

17) Models@Runtime for Meta-Adaptation:
Models@Runtime approaches keep a runtime model in
synchrony with the system. Any changes in the system are
reflected in the model. This model is used by the AL to
identify discrepancies in the system. Vice versa, changes
in the model are reflected in the system. Accordingly,
the AL triggers an adaptation of the system. However,
these approaches suffer from limitations in the monitoring
and execution functionalities that result from uncertainty at
runtime. In [34], the authors propose an approach to overcome
these limitations by integrating adaptive monitoring as well
as adaptive enactment of adaptations.

18) Transformer Framework: The Transformer framework
enables the fusion of adaptation plans from different adaptation
modules [35]. Hence, it supports the construction of the AL as
a composition of various adaptation modules. The composition
of these components – called Composable Adaptation Planner
(CAP) – is determined by the current environmental context
of the system. Transformer monitors the environment, triggers
the creation of adaptation plans by the relevant CAPs, fusions
the adpatation plans to a single plan, and controls the execution
of this plan.

19) Further Approaches: Further approaches can be found
in literature that do not focus on but could handle specific
aspects for self-improvement. In the following, we present
some of them.

EUREMA [36] offers an approach for modeling megamodels
in hierarchies that integrate different runtime models. Models
in higher layers monitor relations and adapt runtime models
in lower layers. In [37], the authors offer MAPE-K tem-
plates for formal modeling of the behavior in the AL. The
authors of [38] formalize patterns for self-adaptation with
corresponding feedback loops and create a taxonomy. They
claim that this supports structural adaptation of the AL as
the formalization offers exchangeability. The DYNAMICO
reference architecture adds an additional layer on top of
the AL [39]. This layer implements an MAPE cycle for
monitoring and adjusting the AL to confirm to adaptation
objectives. However, none of these approaches include com-
ponents that automatically use the information at runtime for

self-improvement of the AL. The authors of [40] present
a design time approach to verify the behavior of MAPE-K
loops, especially in decentralized settings. In [41], the authors
describe a technique for synthesizing changes of different
versions of controllers (comparable to an AL). However, this
solution must be implemented individually for each system
and adaptation is performed by system administrators.

Through machine learning, it is possible to improve the AL,
e.g., through learning new rules or updating goals. Different
approaches can be found in literature. For further information
about these approaches, the interested reader is referred to the
overviews presented in [21] or [3]. However, most of these
approaches are highly use case dependent [21] or cannot cope
with new context situations.

As part of the ASCENS project, Hölzl et al. present a
software development life cycle that relies on the connection
of three loops [42]. In the design loop, the designer defines the
system’s requirements, models the system, and verifies it. After
deployment, the runtime loop starts in which the AL adapts
the system. For self-improvement, the AL feeds the design
process with feedback. Hence, developers can update the
system. However, the approach does not provide an automatic
evolution of the AL but need the integration of the developers.

V. COMPARISON

In the following, we compare the approaches from Section
IV using the aforementioned taxonomy on self-adaptation
from [3]. We neglect approaches for adapting the MR and
focus on adapting the AL, as this corresponds to our definition
of self-improvement (cf. Section II). Furthermore, for the
comparison, we exclude the approaches from Section IV-19 as
they are not integrated into an approach for self-improvement.

1) Three Layer Architecture (3LA): According to [16], the
reasons to adapt the AL in 3LA are the introduction of new
goals by the user, changes in the context, or technical resources
(e.g., a component failed). It is a reactive framework with
goal-based reasoning that supports parameter and composi-
tional adaptation of the AL (depends on the approach; not
specified in [16]). The approach is centralized and, since the
responsibility for adaptation reasoning is separated from the
system’s functionality, it is an external approach as well.

2) ActivFORMS: In ActivFORMS, the Goal Management
layer reacts if (i) the user adds new goals or changes existing
ones or (ii) the Active Model Engine cannot handle a change
in a technical resource or the context. Therefore, the adaptation
is reactive. In both cases, it triggers a goal-based adaptation of
the active model. Since the model gets changed, we categorize
it as a parametric approach. ActiveFORMS uses a centralized,
external approach for adapting the AL.

3) NoMPRoL: With respect to the taxonomy, the reason for
an adaptation is a context change in the system. The execution
traces are continuously collected and analyzed. The analysis
changes values of the planning model (parameter adaptation).
However, it reacts on analyzed results which makes it a
reactive approach. The adaptation decision criteria are based



on a domain model in combination with a probabilistic rule
learner using the execution traces. The adaptation is realized
using a centralized and external approach.

4) Dynamic Control Loops (DCL): The API for adding
and removing control loops enables structural adaptation of
the AL. As the administrator triggers a change of the control
loops, this is a reactive adaptation. The approach can be
characterized as external and centralized, as a clearly defined
interface for interaction exists. However, the authors claim that
the adaptation could also be triggered by some component of
the system [19]. The decision criteria of an adaptation is not
specified by the authors.

5) PLASMA: PLASMA reacts on changing (user) goals and
system component failures, resulting in a reactive approach.
The external Planning Layer exchanges complete plans in
the Adaptation Layer. Hence, it offers parameter adaptation.
PLASMA uses goals and models as decision criteria. It works
in a centralized fashion.

6) FUSION: In FUSION, the learning cycle detects new
patterns in observed data from context and MRs and reacts
by adapting the feature models accordingly (parameter adap-
tation). Therefore, the adaptation is reactive. It is implemented
as centralized, external AL and uses goal utility functions as
decision criteria.

7) KAMI: KAMI uses an online parameter adaptation tech-
nique. The type of analysis performed on the model determines
whether the approach is used reactively, proactively, or both.
Predictions about possible future violations are possible, mak-
ing KAMI proactive. Using the predictions and by recognizing
changes in the context, KAMI updates the runtime model
accordingly but is limited to parameter adaptations because
only numerical values of the models can be updated. The
update of the knowledge base is done externally. KAMI uses
the system model as decision criterion in the centralized
control.

8) Organic Traffic Control (OTC): In [23], an off-line
simulator in combination with an evolutionary algorithm is
used to learn parameters for unknown traffic situations. Using
utility functions, the result of the simulation is evaluated. If the
simulation results improve the traffic situation (context), the
AL is adapted proactively with the improved set of parameters.
In [23], the OTC is limited to a single intersection, hence, it
is centralized.

Additionally to the learning classifier system in [23], the
creation of DPSSs introduced in [24] is organized in a
decentralized way. The collaborations represent a structural
adaptation technique. DPSSs are formed as a response to
the current traffic situation. Hence, it is reactive. Within
both systems, adaptations are controlled externally and the
evaluation of different traffic situations uses utility functions.

9) FESAS ALM: A first prototype implementation of the
ALM is currently under development. Due to simplicity
reasons, the prototype implementation follows a centralized
approach. The ALM is added as an additional layer to the AL

(external approach) for improved maintainability and reduced
dependability [43]. It responds to changes in the MRs or the
context. Besides reactive, structural adaptation of the AL, the
ALM offers proactive parameter adaptation in form of learning
new rules. The current prototype implementation of the ALM
uses rules and utility functions for reasoning.

10) Learning and Evolution in DSPLs: The approach for
learning and evolution of DSPLs presented in [26] adds
additional layers for rule learning and configuration space
evolution to an Autonomic Computing system. Therefore, it
is an external approach. The authors do not make any claims
about the degree of decentralization, however, the system
model shows a centralized design. Adaptation is triggered
by context change or when the user adds new requirements.
Hence, it is reactive. Evolution is model-based as it uses math-
ematical models and delivers a new DSPL configuration space
as output. Learning runs continuously to find and add new
adaptation rules (parameter adaptation), hence, it is proactive.
The reinforcement learning approach is utility-based.

11) Requirements@Runtime (Reqs@RT): In [27], adapta-
tions are triggered by the user or when the goal model changes.
In both cases, the goal model is used for reasoning and poten-
tially adapted (parameter adaptation). Thus, the approaches are
reactive. The decision module for AL adaptations is directly
interwoven in the AL, which makes the approach internal.
Rules are specified in order to cope with requirement changes.
They use a centralized approach.

12) RAMUN: In RAMUN [29], adaptation of the AL is
triggered if the performance of the current impact model or
ruleset, respectively, is not sufficient anymore. Hence, this is
a reactive adaptation triggered by issues related to the MRs
or the context. RAMUN is an extension of the AL, hence,
externally and centralized. As adaptation, RAMUN performs
a switch of the impact model as parameter for the planning
functionality. This switch is triggered after a model-based
analysis of the impact model and goals of the system using
machine learning.

13) Autonomic System Adaptation Layer: The additional
layer for adaptation the AL makes this an external approach.
Within this layer, a central rule engine [30] reasons about
reactive self-improvement based on the data captured from
the AL and the MRs. The reason is use-case specific and
can be changes in the MRs or the context. The approach
supports a wide range for adaptations from simple adjustments
of parameters to structural adaptation of the MAPE loop
components.

14) Update of Controllers: In [31], a controller might be
updated as a reaction to a change of environmental assump-
tions, requirements, and interfaces, hence, changes in the MRs,
AL, the context, or the user preferences. The external approach
is based on assurance of models. As a result, the configuration
of existing controllers might be adjusted as well as new
controllers might emerge and can substitute existing ones. The
degree of centralization is not further specified in [31].



TABLE I
APPROACHES FOR THE EVOLUTION OF THE ADAPTATION LOGIC CLASSIFIED USING THE TAXONOMY OF [3]. AS WE CONCENTRATED ON

SELF-IMPROVEMENT OF THE AL, THE LEVEL IS ALWAYS THE APPLICATION (HERE: THE AL). SYSTEM ADMINISTRATORS ARE CLASSIFIED AS USERS.

Approach Time Reason Technique Adaptation Control
Approach Decision Criteria (De)centralization

3LA [16] Reactive Context/MR/User not specified External Goal Centralized
ActivFORMS [17] Reactive Context/MR/User Parameter External Goal Centralized
NoMPRoL [18] Reactive Context Parameter External Model/Rules Centralized
DCL [19] not specified User Structure External not specified Centralized
PLASMA [20] Reactive MR/User Parameter External Model/Goal Centralized
FUSION [21] Reactive Context/MR Parameter External Goal/Utility Centralized
KAMI [22] Reactive/Proactive Context Parameter External Model Centralized
OTC [23] Proactive Context Parameter External Utility Centralized
OTC DPSS [24] Reactive/Proactive Context Parameter/Structure External Utility Decentralized
FESAS [14] Reactive/Proactive Context/MR Parameter/Structure External Rules/Utility Centralized
DSPLs [26] Reactive/Proactive Context/User Parameter External Model/Utility Centralized
Reqs@RT [27] Reactive MR/User Parameter Internal Rules Centralized
RAMUN [29] Reactive MR Parameter External Model/Goal Centralized
Adapt. Layer [30] Reactive Context/MR Parameter/Structural External Rules Centralized
Update Ctlr. [31] Reactive Context/MR/User Parameter/Structural External Model not specified
M-A Strategies [32] Reactive Context/MR depends on strategy External depends on strategy Centralized
M-A Layer [33] Reactive Context/MR/User not specified External Model/Rules not specified
Models@RT [34] Reactive Context/MR Parameter Internal Model/Rules Centralized
Transformer [35] Reactive Context Structural External Model Centralized

15) Meta-Adaptation Strategies: The implementation pre-
sented in [32] is based on a dedicated component, hence, an
external, centralized approach. However, the strategies might
be usable in other contexts, e.g., inter-woven with the AL
(internally) or in decentralized settings. As the authors so far
only provide the implementation presented here, we focus in
this comparison on the details provided in [32]. Reactions are
triggered by the context or the MRs. The technique as well as
the decision criteria depend on the strategy.

16) Meta-Adaptation Layer: In [33], an external MAPE
loop reasons on adapting the AL. Therefore, models repre-
sent the knowledge of the AL, hence, the system reacts on
identified issues in the system’s performance. The decision is
based on context information, the performance of the MRs
as well as requirements, i.e., the user. Besides the models for
variability, reasoning, and context information, rules might be
integrated for reasoning. As [33] is a concept only, the authors
do neither specify the technique for reconfiguration nor the
degree of centralization.

17) Models@Runtime for Meta-Adaptation: The extension
presented in [34] is integrated into an approach for reasoning
based on Models@Runtime. The adaptive monitoring uses
a metamodel-driven approach. For executing adaptation, the
adaptive enactment tunes an initial adaptation plan using a
rule-based approach. Both functionalities are integrated into
a central instance that reacts to unpredicted changes of the
MRs or the context of the system. The adaptive monitoring
and execution changes parameters of the system, namely the
rules for monitoring and the models for adaptation.

18) Transformer Framework: The Transformer framework
[35] provides an external adaptation loop that composes the
planner of the AL dynamically at runtime. This reactive

process is based on the current system context. Transformer
provides model fusion of the plans from the different CAPs,
hence, it works model-based. As it changes the workflow of the
planning procedure at runtime through enabling and disabling
CAPs, it is an approach for structural adaptation of the AL.
The module for selection of CAPs is centralized.

VI. DISCUSSION

The last section compared 19 approaches for self-
improvement using the taxonomy of [3] as metric. Table
I shows the results of the approaches’ comparison. In this
section, we discuss the results of the comparison and derive
challenges for self-improvement.

Most of the approaches integrate reactive adaptations. Four
approaches combine reactive and proactive behavior. Only the
approach in [23] works purely proactively. In many cases,
a reactive adaptation can be sufficient as usually the AL
should find an appropriate adaptation for the MRs. Hence,
a reactive adaptation of the AL acts as a backup mechanism.
However, self-improvement works best if the AL is proactively
enhanced as it eliminates adaptation delays. Developers of
future approaches for self-improvement should consider both
possibilities for higher flexibility and improved adaptation
results.

As Table I shows, there is a high diversity within the
adaptation reason dimension. This indicates that the reason
in the approaches might be use case specific. Therefore, we
further analyzed the domains of the approaches’ use cases.
We identified four domains: intelligent transportation systems
(ITS), web services, data center management, and robotics/IoT.
These are core domains of Autonomic Computing and SAS.
Table II shows the use cases. Future work should elaborate on
common, generic strategies to offer more reusable approaches



TABLE II
APPLICATION DOMAINS OF THE APPROACHES. (ITS = INTELLIGENT

TRANSPORTATION SYSTEM, IOT = INTERNET OF THINGS).

Approach Use case Domain
3LA [16] not specified -
ActivFORMS [17] Robotic warehouse transporta-

tion
Robotics

NoMPRoL [18] Robotic factory transportation Robotics
DCL [19] Dust cleaning robot Robotics
PLASMA [20] Robotic convoy, e.g., for in-

ventory management
Robotics

FUSION [21] Travel Reservation System Web services
KAMI [22] Medical assistance web ser-

vice orchestration
Web services

OTC [23] Traffic lights at single intersec-
tion

ITS

OTC DPSS [24] Traffic lights at multiple inter-
sections

ITS

FESAS [14] not specified -
DSPLs [26] VM management, product line

management
Data center
management

Reqs@RT [27] Web portal for ordering food
from restaurants

Web services

RAMUN [29] Elastic scaling of virtual ma-
chines

Data center
management

Adapt. Layer [30] Cluster management Data center
management

Update Ctlr. [31] Mainly: plant, RailCabs, pro-
duction cell

ITS, Robotics

M-A
Strategies [32]

Fire fighter coordination IoT

M-A Layer [33] not specified -
Models@RT [34] CloudMF [44] Data center

management
Transformer [35] Video conferencing systems Web services

for self-improvement or provide guidelines within use cases
and generic guidelines across use cases. Therefore, developing
a benchmark for comparing the runtime performance of the
approaches is necessary.

The majority of the methods uses parameter adaptation.
Only four approaches provide both possibilities. [19] includes
structural adaptation only, however, it does not offer an
automated approach. Additionally, none of the approaches
with structural adaptation has a proactive behavior. Future
approaches should include structural adaptation of the AL.
This might be beneficial to better fit changes in the MRs or
the context. For example, consider the adaptive production
cell [15] from Section IV. Assuming a master/slave pattern
[45], slaves are not able to coordinate if the master crashes.
Therefore, a new master has to be selected - a structural
adaptation of the AL is required.

The fact that almost every method works with an external
approach corresponds to the findings of [43]. There, the
authors claim that an external approach offers better main-
tainability as well as extensibility. In terms of the degree of
decentralization only one method (the OTC) works decentral-
ized. All remaining approaches are centralized. This reflects
that in most approaches the AL is centralized, too. The fact
that a global view is facilitated by a centralized setting might
also be a reason. One possible challenge for future work is

to offer self-improvement in decentralized settings to improve
scalability. The results indicate a correlation between proactive
methods and utility functions. However, the decision criteria
are mixed for reactive adaptations. This reveals (comparable
to the adaptation reason) that the decision criteria might be
use case specific. Future work could focus on generalizing or
defining guidelines, when to use which criteria.

One has to mention, that it is possible to achieve self-
improvement by considering the AL itself as MR and adding
an additional component for adapting the AL. This way,
common approaches for building SASs (e.g., Rainbow [46],
Archstudio [4], or some of the approaches presented in [3])
could be used for adapting the AL and self-improvement,
respectively. However, to the best of our knowledge, current
research projects have not addressed this so far.

VII. CONCLUSION AND OUTLOOK

In this paper, we presented and compared approaches for
self-improvement in the Autonomic Computing and self-
adaptive systems domain. We compared 19 approaches from
different research communities, such as goal-based evolution,
DSPLs, machine learning, and requirements@runtime.

The comparison showed that most of the approaches use
an external, centralized approach for control. Decision criteria
as well as reason indicate use case specific implementations.
Here, future work could elaborate on generic solutions or
guidelines for use cases. Regarding the technique, parameter
adaptation prevail structural adaptation. As shown in the
example in Section VI, structural adaptation of the AL can
be beneficial. Future work should address this. Most of the
approaches focus on reactive adaptation. A stronger focus on
proactive adaptation would be beneficial as it offers adapta-
tion without interruption. In the case of system integration,
structural proactive adaptation could prepare the integration
of system parts proactively and boost the integration process.
Developing a benchmark would enable the evaluation and
comparison of the different approaches’ runtime performance.
This is an important aspect for future work.

We try to tackle these challenges within the FESAS
project [25], [14]. There, we implement a framework for self-
improvement that can integrate different approaches and offer
support for developers for facilitating self-improvement. The
framework should combine proactive, parameter adaptation
in the form of rule learning as well as reactive structural
adaptation.
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