Note: This paper is an extended version of: C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C.
Becker: A survey on engineering approaches for self-adaptive systems. In: Perv. and Mobile Comp. Journal,
vol. 17, no. B, pp. 184206, 2015 (DOI: 10.1016/j.pmcj.2014.09.009), https://www.sciencedirect.com/
science/article/pii/S157411921400162X. For this version of the paper, we included additional approaches
in Section 3.2 and the table in Appendix A.

A Survey on Engineering Approaches for Self-Adaptive Systems
(Extended Version)

Christian Krupitzer?, Martin Breitbach?, Felix Maximilian Roth?®, Sebastian VanSyckel?*, Gregor Schiele®, Christian
Becker?®

“University of Mannheim
Schloss, 68131 Mannheim, Germany
{christian.krupitzer, martin.breitbach, felix.maximilian.roth, sebastian.vansyckel, christian.becker}@uni-mannheim.de
bEmbedded Systems, Faculty of Engineering, Duisburg Essen University
Duisburg, Germany
gregor.schiele @uni-due.de

Abstract

The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and
configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive
computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore,
it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include
context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on
the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation.

Keywords: Taxonomy, Self-Adaptation, Survey, Self-Adaptive Systems, Context Adaptation.

1. Introduction

The complexity of modern pervasive information systems is increasing. Due to the growing number of powerful
mobile and embedded devices as well as the omnipresence of relatively high speed wireless networking, users today
expect systems to operate whenever and wherever they want, while traveling, at home, at work, or during vacation.
Systems are highly distributed and must integrate all available, highly specialized and heterogeneous devices (ranging
from embedded sensor nodes to Cloud servers) and data streams (including web data and real time sensor data) that
operate in an ever-changing environment with fluctuating network resources and availability. In additions, systems are
no longer restricted to small, tightly controllable areas with single administrative responsibility, like smart rooms or
buildings but are interconnected, leading to truly pervasive, global systems like Smart Cities or the Internet of Things.

Developing, configuring, and maintaining such systems is a very difficult, error prone, and time consuming task.
One promising way to reduce this effort is self-adaptation. A self-adaptive system (SAS) is able to automatically
modify itself in response to changes in its operating environment [1, 2]. The modification is done by adjusting
attributes (parameters) or artifacts of the system in response to changes in the system itself or in its environment.
In recent years, SASs have seen an increasing level of interest in different research areas like Pervasive Computing,
Autonomic Computing [2], and Nature-Inspired (Organic) Computing [3].

SASs provide so called self-* or self-management properties like self-configuration, self-healing in the presence
of failures, self-optimization, and self-protection against threats [2, 4]. For achieving adaptive behavior, basic system
properties are self-awareness and context-awareness [5]. Self-awareness describes the ability of a system, to be aware
of itself, i.e., to be able to monitor its resources, state, and behavior [6]. Context-awareness means that the system is

Preprint submitted to Pervasive and Mobile Computing Journal February 15, 2018

aware of its operational environment, the so called context [7]. According to Dey, context is “any information that can
be used to [characterize] the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications themselves” [8]. The system
uses sensors to collect information about its context and reasons about the information.

In this paper, we provide a structured overview of self-adaptation and approaches for engineering SASs, analyze
future research directions, and motivate the need for a new perspective on self-adaptation in pervasive computing
systems. Our main contributions are as follows: First, we develop a taxonomy for self-adaptation that integrates
existing views on self-adaptation and specifically context-adaptive systems, which are most relevant to pervasive
computing. Second, we survey existing approaches for engineering SASs. Third, we discuss a new type of SASs.

These contributions are directly reflected in the structure of the remaining part of the paper. In the next section, our
taxonomy for self-adaptation is presented. In Section 3, we present approaches for engineering SASs. Based on the
taxonomy and the approaches, in Section 4 we describe a new perspective of a SAS. A conclusion closes the paper.

2. Self-Adaptation

In this section, we summarize different aspects and perspectives on self-adaptation in SAS research and adaptation
in general, e.g., in pervasive systems, and present them in a comprehensive taxonomy for self-adaptation. Our taxon-
omy incorporates the results of an extensive literature review and integrates different existing taxonomies and works
on (self-)adaptation. Figure 1 shows an overview of our taxonomy. In the remaining part of this section we discuss
the different dimensions of our taxonomy.

Our taxonomy presents important characteristics of self-adaptation. These issues must be addressed by the imple-
mentation of the adaptation logic of such adaptive systems. They influence the reasoning about adaptation as well as
monitoring. The presentation of techniques for the implementation of the adaptation logic follows in Section 3.2.

- Proactive
Change in the Context ’ Time } ‘ Reactive
Change in the Technical Resources ‘ ! Reason)
Change Caused by the User(s) ‘ Parameter
‘ Technique } Structure
Single Application Self- Context

Ensemble of - Application Adaptation
Applications P Internal
E— 7 N Approach

Middleware System 4{ External
(Operating) System | Software Models

Network ! Level) S) . o Rules/Policies
Infrastructure Adaptation Adaptation Decision Criteria <+
—— Communication Goals
Communication Control i
Pattern utility

Technical Resources Degree of w
Hybrid

M Decentralization y
Centralized

Figure 1: Taxonomy of Self-Adaptation.

Before going into detail about our taxonomy, we first provide an overview of the main sources and influences
for it. Different taxonomies for self-adaptation or adaptation have been developed over the years. As one of the
first ones, Rohr ef al. describe a classification scheme for self-adaptation research in 2006 [9]. In their work, they
classify self-adaptation among the dimensions origin, activation, system layer, controller distribution, and operation.
In 2009, Salehie and Tahvildari present an overview over the landscape of self-adaptive software and related research
challenges, including their own taxonomy for self-adaptation [S]. A current overview of adaptation can be found in
[10], in which Handte ef al. classify the adaptation support for pervasive applications into the dimensions of time, level,
control, and technique. Macias-Escriva et al. describe in a recent survey current approaches, research challenges, and

2

applications for SASs [11]. All these surveys provide important insights into the field of SAS. However, none of them
gives an integrated view, incorporating all different existing views and aspects. In contrast, the goal of our work is to
present such a uniform taxonomy for self-adaptation.

Additionally, several works discuss aspects of self-adaptation. McKinley ef al. highlight the difference regarding
parameter vs. compositional adaptation [12]. In [1], the authors discuss the spectrum of adaptation from static activi-
ties to dynamic ones. In 2008 and 2010, two Dagstuhl seminars focused on research issues regarding the engineering
of SASs [13, 14]. Furthermore, there are two surveys that focus on Autonomic Computing. In [4], Huebscher and Mc-
Cann present an overview of Autonomic Computing and its applications, whereas Dobson et al. highlight autonomic
communications in [15].

In [5], Salehie and Tahvildari introduce the SW+1H questions for eliciting adaptation requirements:

When to adapt?

Why do we have to adapt?’

Where do we have to implement change?
What kind of change is needed?

Who has to perform the adaptation?
How is the adaptation performed?

Other authors formulate similar questions (e.g., [16], [17], [12], [18]). According to Salehie and Tahvildari, the
questions must be addressed during implementation of a SAS [5]. Therefore, it seems reasonable to answer these
questions when speaking about adaptation. Our taxonomy shows, how we answer the six questions.

As mentioned above, the different aspects of the taxonomy answer the SW+1H questions. However, our taxonomy
has a different view on the dimension known as type of control. Automatic control is distinguished from manual
control [10]. As a SAS should adapt without user involvement, we do not include this aspect in our taxonomy. In
other words, the question: ”"Who has to perform the adaptation?” is not answered with our taxonomy, because the
nature of a SAS leads to an automatic type of adaptation. Table 1 shows how the taxonomy answers the questions for
adaptation. In the rest of the section, we present our taxonomy in more detail.

| Question | Dimension of the taxonomy
When? Time (Reactive vs. Proactive)
Why? Reason (Context, Technical Resources, User)
Where? Level (Application, System Software, Communication, Technical Resources, Context)
What? Technique (Parameter, Structure, Context)
Who? N/A (Nature of a SAS leads to an automatic type of adaptation)
How? Adaptation Control (Approach, Adaptation Decision Criteria, Degree of Decentralization)

Table 1: Relation of the Taxonomy Dimensions and the Questions.

2.1. Time

The time aspect is related to the when-question: ”When should we adapt?”. The “traditional” view is a reactive
adaptation: After an event that causes the need for adaptation, e.g., a change in the resources or a drop in performance,
an adaptation plan is worked out [10]. Rohr et al. identify two further perspectives that plan adaptation before an
actual event happens: (i) predictive and (ii) proactive [9]. Here, the predictive dimension of time describes a situation,
in which a system identifies the need of adaptation before a drop in performance occurs, whereas proactive is an
adaptation to improve the performance without foregoing or anticipating drop in performance. Handte et al., however,
divide the temporal aspects of adaptation in two dimensions: (i) reactive and (ii) proactive. The reactive dimension
is in accordance with Rohr et al.’s description, however, proactive is defined as “modifications of an application
performed before an application can no longer be executed” [10]. Therefore, Rohr et al.’s [9] predictive dimension
is equal to the proactive dimension of Handte et al. [10], and the proactive dimension of Rohr et al. is not explicitly
mentioned by Handte ef al. [10]. In this work, we use the temporal definition of Handte et al. The split of time into
three dimensions is not necessary. The distinction of adaptation before or after the need for adaptation is enough for
describing the temporal aspect of adaptation. The third perspective introduced by Rohr ef al. — continuous adaptation

The why question was changed for this work. In [5], it was understood as motivation for building SASs.

3

for performance improvements — is part of the self-optimization property [2]. Self-optimization is a subset of self-
adaptation and, therefore, is implicitly included [5].

The time of adaptation is a central question. From the user’s point of view, proactive adaptation is preferable, since
it avoids interruptions in the user’s workflow with the system. On the other hand, the prediction algorithms needed
for proactive adaptation have several issues. They are complex to develop, their suitability is highly dependent on
the specific prediction tasks, and faulty results can cause suboptimal or malicious adaptations. Therefore, many ap-
proaches focus on reactive adaptation [10]. However, the choice for proactive or reactive adaptation is not exclusive.
Mapping the adaptation process to the Autonomic Computing MAPE cycle, the basic functionality for adaptation is
monitoring the environment, analyzing for change, computing adaptation plans, and executing these plans [2]. Reac-
tive and proactive adaptations involve similar activities regarding monitoring, planning, and executing, but strongly
differ in the analyzing phase. With reactive adaptation, the monitored data is analyzed for abnormal patterns. With
proactive adaptation, the monitored data is used to forecast system behavior or environmental state. It is possible to
combine proactive and reactive adaptation such that proactive adaptation is the goal, and reactive adaptation is used
as a back-up mechanism, i.e., if a change was not predicted (e.g., failing of a component).

An additional aspect related to time is the type of monitoring [5]. Continuous monitoring describes a constant
monitoring effort regarding the resources and the environment. Adaptive monitoring refers to monitoring of selected
features and, in case of anomalies, the monitoring process is intensified. The decision between continuous vs. adap-
tive monitoring influences the cost of monitoring and, hence, of the self-adaptation process. However, as it is an
implementation detail and not related to the adaptation decision itself,, it is not included in our taxonomy.

2.2. Reason

In general, adaptation is a reaction to a change. On the one hand, this reaction is costly. Accordingly, the type and
impact of a change should be clearly identified in order to decide, if an adaptation is necessary. On the other hand,
the parameters of an adequate adaptation are determined by the source of the change. Therefore, it is important to
identify the reason for an adaptation: ”"Why do we have to adapt?”. This is a central question influencing the reaction,
because different reasons result in different adaptation activities.

In a SAS, the reason for an adaptation is a change in one or various system elements:

¢ (i) a change in the technical resources, e.g., a defect of a hardware component, software fault, or the availability

of an alternative network connection,

e (ii) a change in the environment, e.g., the state of a context variable changed , or

e (iii) a change regarding the user, e.g., a change in the composition of the user group or the user preferences.

Therefore, in our taxonomy, adaptation can be triggered by changes in the technical resources, the context, or the
user(s). The explicit inclusion of the user as a reason for adaptation is not mentioned in other taxonomies.

Other taxonomies for (self-)adaptation do not include the reasons for adaptation. An explanation could be that the
reason for an adaptation is not seen as part of the decision, i.e., how the system should recover from a change or the
adaptation process itself. In our taxonomy, we explicitly include the reason for an adaptation because it is the trigger
of the adaptation process. In our understanding, it is fundamental for the adaptation decision to identify the reason
for adaptation and to reason about it. Consequently, the question "Why do we have to adapt?” has to be included
in the aspects of self-adaptation. Furthermore, the reasons for adaptation should be included in the aspects of self-
adaptation, because they determine the elements that have to be monitored. Without an adequate monitoring process,
the need for an adaptation can not be identified and, therefore, the adaptation process can not be started. Accordingly,
it is important to monitor the state of the technical resources (including hardware and software), the environment, and
the users interactions with sensors and interfaces for user interaction.

2.3. Level

Adaptation can be implemented on different levels in the system. In order to answer the question of ”Where do
we have to implement change?”, one must be aware of the different levels of a SAS. In general, a SAS is composed
of different elements: the managed element(s) and the adaption logic [19]. While the adaptation logic as the control
unit of the technical resources often stays stable, the managed elements can be adapted. Furthermore, it is possible
to adapt the environment and the user(s). This extends the common view on SASs, where the environment is only
monitored, not changed. An adaptation of the adaptation logic itself would enable an improvement of the adaptation
performance over time, but is out of scope of this work.

The managed elements are composed of various levels. The technical resources are hardware and other managed
resources, such as computers, smartphones, robots, traffic signs, or production facilities. The hardware is controlled
by system software, i.e., an operating system, and a middleware in case of distributed systems. On top of the system
software, the application is set up. The application can be an application running on a single device, or a distributed
application split in application parts running on various devices simultaneously. Both are seen as single application in
the following. Furthermore, various different applications can run simultaneously, as well as interact and form ensem-
bles of applications. This can lead to interferences, i.e., undesired interceptions and dependencies regarding the use of
resources [20]. For the interaction between the managed resources as well as the adaptation logic elements, commu-
nication is needed. Communication is seen in two perspectives. The network infrastructure is the physical network
connection, consisting of network cards, routers, WLAN, etc. Communication patterns are the logical communica-
tion, i.e., the style of interaction between the elements. Possible implementations can be event-based communication
or pub/sub communication. An additional level besides the technical resources and software is the system’s context.
Context-altering systems are able to adapt their context [7]. This extends the former view on SASs, where the environ-
ment is monitored but not explicitly altered. Implicitly, this may be done by actuators of the technical resources, but
so far is not explicitly controlled by the adaptation logic. In current SAS literature, context adaptation is not included
in the level of adaptation.

Adaptation can happen on all levels [9, 10]: Smartphone apps that switch to silent mode when the user is in a
meeting, e.g., detected by using calendar information, offer adaptation on the application level. Adaptive middleware
offers the possibility to exchange components at runtime [21, 22]. Autonomic communication techniques enable
adaptation on the network level [15]. An example adapting the communication is switching the network connection,
e.g., from 3G to WLAN as far as a WLAN connection is available. Self-healing capabilities enable the automatic
start of back-up systems, e.g., in a data center, which alters the technical resources. Context-adaptive applications can
adapt their behavior to the surrounding context, or adapt the context through actuators [7]. An example for context
adaptation is a smart meeting room that automatically dims the light when a presentation starts.

The adaptation logic of a SAS must be aware of these different levels, possible adaptation alternatives, and define
adaptation plans for the appropriate levels. Therefore, the question: ”Where to adapt?” must be answered on the
correct level(s) in order to achieve the system’s goals. In case the adaptation alternatives can target different levels,
the adaptation logic must decide which plan to execute based on criteria like cost, e.g., in terms of time, or achievable
utility for the system. Adaptation of the user is possible in theory, but not desirable in practice, as the application is
for the user and not the other way round. Hence, we do not include adaptation of the user in our taxonomy.

2.4. Technique

It is not sufficient to only identify the levels, where the adaptation should take place. Additionally, the specific
adaptation actions that should be carried out on those levels need to be identified, i.e., "What kind of change is
needed?”. In literature, different techniques for adaptation can be found.

McKinley ef al. distinguish between two approaches for adaptive software: (i) parameter adaptation and (ii)
compositional adaptation [12]. Parameter adaptation achieves a modified system behavior by adjusting system pa-
rameters. This can be achieved quite easily, as the adaptation logic must only control and change parameters. On
the other hand, changing parameters can involve high complexity, if the parameters are depended on each other. Fur-
thermore, in case different algorithms for one component exist, it is possible to switch between them. However, the
dynamic integration of new algorithms at runtime is not possible. The dynamic integration of new components is not
possible as well. An example for parameter adaptation is a rule-based system, in which rules specify the necessary
amount of servers running, depending on the current workload of the servers. In this setting, it is only possible to
add new servers as long as configured servers are available. However, it is not possible to dynamically transfer the
responsibilities of a faulty server instance to a new server instance, as such an exchange affects the system’s structure.
Compositional adaptation enables the exchange of algorithms or system components dynamically at runtime. There-
fore, it is possible to exchange defect components in order to prevent performance loses, improve the performance
by adding new components, or adjust the system to new circumstances. To use the server example above, this means
that during the execution of the application, additional servers can be integrated into the system, or that a new server
instance can overtake the responsibilities and tasks of another server instance.

A third technique can be derived from Pervasive Computing. Here, systems are context-adaptive and can alter
the context in which the systems are running. Therefore, we extend the range of techniques by context adaptation.

5

Context adaptation is not addressed by McKinley et al. [12]. Whereas the monitoring of the context and the detection
of contextual changes is supported by many SAS, context alteration is often not integrated in SASs.

Handte et al. categorize adaptation techniques in behavior, composition and context [10]. Here, parameter adap-
tation is a form of behavior adaptation. As a change in composition can also lead to a modified behavior, this view
overlaps. In this work, the techniques for adaptation are categorized in parameter, structure, and context. This is
a combination of the approaches mentioned by McKinley et al. and Handte et al. Parameter refers to adaptation
through the change of parameters. Structure subsumes change in the structure of the technical system, such as the
exchange of components, a new composition of components, or the removal/addition of components. Further, changes
in the relation between elements, technical resources or the environment/user(s), are structural adaptations as well.
Context refers to any changes in the context, e.g., modifying the state of context variables via actuators. Combinations
of techniques in one adaptation plan is possible, e.g., changing parameters of one component and adding further ones.

2.5. Adaptation Control

A SAS is composed of the adaptation logic and the managed resources. Responsible for controlling the adaptation
is the adaptation logic. This involves monitoring the managed system as well as the environment and the user(s),
analyzing the monitored data for anomalies, planning the adaptation, and executing the adaptation plans. Therefore,
the adaptation logic is responsible for answering the question: "How to adapt?”. By answering this question the
adaptation logic determines how to perform adaptation.

Two approaches for implementing the adaptation logic can be found in literature. SASs following the internal
approach intertwine the adaptation logic with the system resources. The external approach splits the system into
adaptation logic and managed resources, which increases maintainability through modularization [5, 23].

The control unit needs a metric in order to decide how to adapt. Different metrics are present in the literature:
models, rules and policies, goals, or utility functions [24]. The different adaptation possibilities must be analyzed with
the help of the criteria and the best one must be chosen. Different criteria can be combined, e.g., goal model based
planning where goals have additional utility values for solving conflicts between goals.

Another aspect of the adaptation logic is the degree of decentralization. A centralized adaptation logic can be a
solution for systems with a small amount of resources to manage. When it comes to large systems with many compo-
nents to manage, a decentralized approach for a split of the responsibilities can improve the system performance for
adaptation [19]. Various degrees of decentralization are possible. In fully decentralized approaches, each sub-system
has a complete adaptation logic and different patterns of communication are possible [19]. Hybrid approaches add
central components to decentralized approaches or distribute the adaptation logic functionality to sub-systems.

In this section, we presented a taxonomy of self-adaptation. We combined different works on self-adaptation
and adaptation in general. Self-adaptation can be described with the dimensions: Time, Reason, Level, Technique,
and Adaptation Control. Developers of SASs must be aware of these dimensions and their systems must integrate
these dimensions for monitoring and reasoning about adaptation. In Section 3, we give a detailed introduction to the
adaptation logic. Further, we discuss different approaches for developing a SAS’s adaptation logic.

3. Engineering Self-Adaptive Systems

In the previous section, we presented our understanding of self-adaptation by creating a taxonomy for self-adapta-
tion. The dimensions of the taxonomy are important aspects for a SAS’s adaptation logic to reason about adaptation.
In this section, we want to highlight the "How?” aspect: the construction of a SAS’s brain” - the adaptation logic.
The other dimensions of the taxonomy influence monitoring, reasoning, and executing, controlled by the adaptation
logic. Therefore, we present the general structure of the adaptation logic of a SAS as control unit of the adaptation
process and discuss general implementation issues. Subsequently, we discuss different approaches for constructing
SASs and show which aspects of our taxonomy they address.

3.1. Adaptation Logic Issues

A SAS is composed of managed resources and the adaptation logic. This can be represented as a tuple SAS =
(AL, MR) with the adaptation logic AL and the managed resources MR [19]. Both, adaptation logic and managed
resources, can be divided into various elements. The adaptation logic — as control unit for the adaptation [25] — is
modeled as group of adaptation logic elements AL = aly, ..., al, and monitors the environment (M), analyzes the data

6

for change (A), plans adaptation (P), and controls the execution of the adaptation (E). These activities are known from
Autonomic Computing as MAPE cycle or MAPE functionality [2]. Other authors propose similar feedback loops for
SASs (e.g., [15], [26], [27]). Therefore, in this work, the MAPE cycle is used as basic feedback structure for the
adaptation logic. The adaptation logic can be complemented by additional elements, such as a knowledge component
responsible for managing content (e.g., monitoring values, rules, or policies) or a learning component. The managed
resources are a group of resources MR = mry, ..., mr,, such as hardware with software, smart phones, robotics, or
unmanned vehicles. Figure 2 presents the basic layout of a SAS. The dashed line shows the system border.

Figure 2: A SAS (AL = Adaptation Logic, MR = Managed Resources, U = User(s), C = Context, M,A,P.E = MAPE functionality).

The dimensions Time, Reason, Level, and Technique of our taxonomy can be mapped to the MAPE function-
ality. The Time dimension influences the decision of analyzing algorithms, as proactive recognition of the need for
adaptation has other requirements — especially the need for predictions — as reactive detection of changes. Monitoring
should be continuous no matter whether the adaptation is proactive or reactive. The Reason dimension influences
monitoring, analyzing, and planning, as it describes the reasons for adaptation and, therefore, the aspects that should
be monitored, where analyzing has to determine changes as well as the metrics, that must be addressed with the adap-
tation plans. The Level for adaptation is obviously important for planning and executing as these activities must be
aware of the elements that should be adapted. Monitoring has to determine the elements for the levels that are present
in the managed resources. The Technique dimension influences the planning and executing, as planning describes
which adaptation techniques to use on which elements and executing controls the execution of the techniques. The
fifth dimension Adaptation Control describes the structure of the adaptation logic and is not related to any specific
MAPE functionality. Table 2 presents the mapping of the MAPE functionality to the dimensions of our taxonomy.

] | Time | Reason | Level | Technique |
Monitoring Continuous What to monitor Identification of the | —
levels
Analyzing Algorithms de- | Where to analyze — —
pend on reactive or
proactive dimension
Planning — What should be in- | Adaptation plans ad- | Plans for performing
fluenced by planning | dress these levels the techniques
Executing — — Execution of the | Execution of the
change on the levels | techniques on differ-
ent elements

Table 2: Relation of the MAPE Activities and the Dimensions of the Taxonomy.

Abstracted from the concrete implementation of the adaptation logic, general issues can be identified. The adapta-
tion logic can be intertwined with the rest of the application or separated. For analyzing and planning of the adaptation,
the adaptation logic can use different metrics. Another issue is the degree of decentralization of the logic and the dis-
tribution of the MAPE functionality on different sub-system parts. Following, these issues are presented in detail.

7

3.1.1. Implementation Approaches

In literature, two approaches regarding the interplay of adaptation logic and managed resources can be found [23].
The internal approach intertwines the application logic and the managed resources. Sensors, effectors, and adaptation
logic elements are mixed with the managed resources. This approach has several drawbacks: issues in scalability and
maintainability can arise, global information of the system is not guaranteed, and testing of the adaptation logic is
complicated [23]. Nevertheless, the internal approach can be suitable for local adaptations, e.g., exception handling.

The external approach separates the adaptation logic and managed resources [23] and connects them via sensors
and effectors [2]. Sensors are interfaces used by the adaptation logic for getting information from the managed
resources, e.2., the system state or performance measurements. Effectors are used by the adaptation logic for enabling
adaptation, e.g., through changing parameters or starting components. The external approach addresses the drawbacks
of the internal one and offers scalability as one adaptation logic can manage various resources, maintainability as the
responsibilities are divided and can be maintained separately, and eases the achievement of a global view. Furthermore,
it offers reusability of the adaptation logic or at least of the processes and algorithms used in the adaptation logic
[5, 23]. The external approach is superior in most cases and can be found more often in literature [23].

3.1.2. Adaptation Decision Criteria

Different approaches for analyzing and planning the adaptation are present. These approaches need a metric for
identifying the need for adaptation and for choosing a suitable adaptation plans, respectively. These metrics are based
on: models, rules/policies, goals, or utility [24].

In model-based approaches, models represent the actual and the desired situations. They include goals, the system
architecture, the environment, or other circumstances. Through analysis of the models, suitable adaptation plans are
worked out. For rule-based or policy-based approaches, rules or policies determine, how the system should react in
different situations and how to adapt. Often, rules/policies are defined at design time, which leads to non-dynamic
approaches. Goal-based approaches aims at fulfilling specific system goals. These goals influence, how the system
should perform. During the planning process, the adaptation logic must define adaptation plans for achieving these
goals. One has to mention, that the goals can be contradicting, which must be solved by the adaptation logic. In utility-
based approaches, utility is a function of the system value for the user and involved costs. The goal is to maximize
the overall system utility. The adaptation logic evaluates the utility values of adaption strategies and selects the one
with the highest utility. Disadvantageous are the difficulty of defining utility functions, as well as the complexity and
the uncertainty in calculating adaptation costs and utility values.

So far, most SASs monitor the context for detecting changes in the context. The explicit inclusion of context
adaptation through actuators is not included in the decision criteria for the analyzing and planning. This could be
done for reducing problems with plans that lead to unanticipated changes resulting of context adaptation.

3.1.3. Degree of Decentralization

Usually, SASs are systems-of-systems. SASs can be found in cloud computing, traffic control systems, production
facility control, or pervasive systems. Central questions are, whether the adaptation logic should be decentralized or
centralized and how the MAPE functionality should be distributed. In [28], the authors define self-adaptation as a
top-down approach for system control. This means that a central unit has to control the system. Self-organization is
seen as the opposite, a bottom-up approach. Dedicated units organize and coordinate themselves without a central
instance. In this work, self-adaptation subsumes both. Centralized self-adaptation with a central instance for control
is defined as self-adaptation in [28]. Self-organization with decentralized system control is in this work decentralized
self-adaptation. In case the adaptation logic has to be distributed, developers have to define an interaction pattern.

Within a centralized adaptation logic (see Figure 3a), one sub-system implements the adaptation logic, is responsi-
ble for monitoring the context and all resources, and controls adaptation. Whereas a global maximum can be achieved
because the central instance is aware of all information, this approach is not suitable for large systems, with a high
amount of information, or resource-poor devices because of the calculation power needed [19, 29]. For large systems,
a central approach is hard to achieve because of the size of the system and real time constraints.

One alternative is a fully decentralized approach (see Figure 3b), in which each sub-system has its own application
logic with full MAPE functionality and adapts itself. Furthermore, the adaptation logic elements can communicate
for achieving global goals. In the IBM reference model for Autonomic Computing [2, 30], additional orchestrating
autonomic managers improve the coordination, but introduces a hybrid approach. Weyns et al. describe patterns for

- (- (D) (DD
Q- @ ©||@ ®||@ ®fj@ @| = y — .
GD (O A AL LA LA @ (e @ @l ©
AL (AL JUAL JUAL JUAL J

A\ 4 A\ 4 v \ 4 V} \ 4 {t \ 4
e aYa N\ aYa a
MR||MR||MR||MR||MR || MR MR MR MR | MR || MR | MR

(a) Centralized Adaptation Logic. (b) Decentralized Adaptation Logic. (c) Hybrid Adaptation Logic.

Figure 3: Comparison of Adaptation Logic Structures (AL = Adaptation Logic, MR = Managed Resources, M,A,P.E = MAPE functionality).

how to distribute the MAPE functionality on various sub-systems with different levels of interaction and decentraliza-
tion [19]: (i) Coordinated Control Pattern, (ii) Information Sharing Pattern, (iii) Master/Slave Pattern, (iv) Regional
Planning Pattern, and (v) Hierarchical Control Pattern. The patterns (i) and (ii) are fully decentralized with interac-
tion, whereas the patterns (iii) - (v) have centralized elements and, therefore, are hybrid approaches. Figure 3¢ shows
one concrete implementation of the Regional Planning Pattern with 2 groups as an example for a hybrid approach.

Designers of SASs must be aware of the implications resulting from the distribution of their applications. It is
important, to decide for a suitable pattern depending on the number of sub-systems, coordination needed between
them for adaptation decision making, or relevance of achieving global goals.

These three issues — approach for the adaptation logic, adaptation decision metrics, and the degree of decentraliza-
tion — influence the design of an adaptation logic. Furthermore, monitoring and reasoning (analyzing and planning),
must include the dimensions presented in our taxonomy. In the following, we present different approaches for SASs.

3.2. Survey on Engineering Self-Adaptive Systems

So far, we presented different aspects of the adaptation logic’s implementation like the integration of adaptation
logic, adaptation metrics, and decentralization of the logic. These are general issues. We have not answered the
question, how a concrete adaptation logic is implemented. In literature, different approaches for SAS construction
can be found. In this section, we categorize and present these approaches. Furthermore, we link the approaches to the
dimensions of our taxonomy and the MAPE activities.

Our objective is to present the diversity of approaches that are present in literature and their appropriateness for
SAS development. We do not want to discuss every category and approach in fully detail nor do we claim to present
all available literature for each category as this would go beyond the scope of this paper. In literature, many works
detail the use of the approaches, discuss their strengths and weaknesses, and point to similar works. The interested
reader is referred to the cited works for more detailed information about the approaches.

3.2.1. Model-based Approaches

In Model-Driven Engineering (MDE), the focus is on models as first class entities for describing software and
its environment [31]. Incomplete information at design time and changing conditions at runtime leads to a shift in
the use of models from using models for design to the use of models at runtime [32]. Therefore, runtime models
or models @run.time enable monitoring, e.g., by representing the system and its environment, and reasoning, e.g.,
comparing a model capturing the actual system state with a desired system state, at runtime and provide abstractions
from code. In this section, we present different model-based approaches for SASs that use models for monitoring and
reasoning. Therefore, we focus on runtime models and neglect the use of models at design time.

According to [4] and [33], three types of models are used for monitoring and reasoning in a SAS:

e System models represent the system state.

o Goal models, policies and rules, or utility functions model the adaptation decision criteria.

e Environment models capture the context.

In the following, we present the first two in more detail. More information on context modeling can be found
in literature (e.g., in [34]). Three types of system models can be found in literature: architectural models, feature

9

models, and behavioral models. Architectural models represent the system’s architecture (e.g., [35], [36], [23]).
These models capture the architecture in different representations, e.g., as components [37] or layers [38]. In Section
3.2.2, we enlarge on the use of architectural models. Another type of system models are feature models that capture
different features of software [39]. Defining all possible features and combinations of them with feature models offers
a way for reasoning about adaptation by representing all possible configurations of a SAS and choosing the most
suitable configuration [40]. Feature models for SASs are used by different authors (e.g., [41], [21], [42], [40], [43]).
Often, feature models are used as variability models which capture commonalities and variability in a system family
([441], [40]). A third type of system models, behavioral models, describe the behavior of the system and the possible
transitions between the different system behaviors [45]. Therefore, they are applicable for describing behavioral
adaptation. Often, state automata [46] or UML state machines [47] are used as notation for behavioral models.

Goal models describe the goals, that a system should fulfill [38], or its requirements [48], respectively. If the
system does not fulfill its goals, adaptation is required. Goal models are used for reasoning as well as creation
of adaptation plans (e.g., [48], [38], [49], [50]). Chen et al. combine goal models representing requirements and
architectural models representing design decisions in order to achieve complex adaptations at runtime [51]. Mazzola
Paluska et al. describe the behavior of an adaptive application with models of Goals and Techniques [52]. Using a
Satisfaction score, the application chooses the most suitable Technigue for the Goals at runtime.

In literature, different approaches using model-driven techniques for SASs can be found. The Software Engi-
neering Institute defines a Software Product Line (SPL) as ”a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or mission and that are devel-
oped from a common set of core assets in a prescribed way” [53]. Besides the first authors, Gomaa and Hussein
presented the Reconfigurable Evolutionary Product Line Life Cycle based on SPLs [54]. Hallsteinsen, Hinchey, and
Schmid propose a dynamic SPL approach [55], which is used in [21] in combination with models @run.time. Further
approaches that use dynamic software product lines can be found (e.g., [40], [43], [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67]). All of these approaches use the SPL principle for modeling different system con-
figurations, often with feature models [43] or variability models [40]. Additionally, [64] and [65] combine a model
for the system with one for the system features. Using a SAT solver, the adaptation logic can use this information
to choose a system configuration that satisfies the current context constraint (cf. [65]). The most suitable configura-
tion is chosen and the system is adapted accordingly, e.g., with the help of component-based [54] or aspect-oriented
programming techniques [21]. Therefore, the SPL approaches address mostly analyzing and planning. The MUSIC
framework offers model-based development for SASs by integrating service-orientation and component-based devel-
opment [23, 68, 69]. Design models are used in the design phase for specifying the system components and the initial
system configuration. Component models represent the structure of the components. Runtime adaptation models are
used for modeling system adaptation at runtime [69]. The MUSIC framework addresses all MAPE activities. Mecha-
tronicUML is a model-driven development approach tailored to self-adaptive or self-optimizing systems in mechanical
engineering [70, 71]. It supports modeling based on a subset of UML and verification based on decomposition and
compositional model checking. Similar, the Adapt Case Modeling Language [72] is a UML-based language which
enables specification of self-adaptivity concerns.

Meta-modeling is essential for model-driven development [73]. Therefore, runtime models must be constructed
on base of meta-models. Vogel, Seibel, and Giese propose to use megamodels for subsuming different runtime models
and reasoning about adaptation on higher levels of abstraction [74]. They integrated their megamodels in a model-
driven architecture with a model transformation engine between the adaptation logic and the managed system [75-77].
Lehmann et al. identify the need of additional runtime capabilities for meta-models and propose an approach for meta-
modeling of runtime models [78].

Models are often used to support monitoring and reasoning in SASs. Different authors propose the use of mod-
els@run.time for SAS construction (e.g., [79], [80], [81], [82], [83], [32]). Vogel and Giese envision to unify develop-
ment models and models@run.time. As even self-adaptive systems still require (manual) maintenance, an integration
of the models could significantly facilitate the maintenance task [84]. Nevertheless, models are only a supporting tool
for monitoring and reasoning that need to be accompanied by additional techniques for the change of the managed
resources, such as aspect-oriented programming (e.g., [85], [41], [21]), component-based programming (e.g., [54],
[86]), architecture-based approaches (e.g., [82], [35], [1]), service-oriented approaches (e.g., [69], [87]), or integra-
tion in frameworks, e.g., for context-aware systems [83]. In the further sections, we present these categories in detail.
Furthermore, models can be used for checking and verifying system states [31, 85, 88].

10

3.2.2. Architecture-based Approaches

A software architecture is a set of software elements (or components), the relations between them, as well as the
properties of both [89] and denotes the high-level structure of software [90]. Regarding adaptation purposes, software
architectures are used for different activities. A SAS must be aware of its structure, which is called self-awareness [5].
Software architectures can be used for representing the system structure and reasoning about adaptation levels [15].
On the other hand, software architectures are used for the construction of SASs and defining responsibilities [38]. In
this section, we present architecture-based approaches.

The Rainbow framework [35] is one of the most well-known frameworks for SASs. Driven by external control
for self-adaptation, the SAS is divided into an architecture layer and a system layer with the managed resources. The
architecture layer has different components, which define adaptation plans. A translation infrastructure translates and
controls the deployment of these plans in the system layer. For supporting runtime adaptation, an architectural style
notion of the system is used and extended with adaptation operators and strategies. This architectural notion offers
the possibility to monitor the resources as a system model and reason about change. Rainbow supports structural and
parameter adaptation on different system levels. The 3L Approach of Kramer and Magee [38] offers a three layer
architecture model for self-management based on Gat’s three layer sense-plan-act architecture [91]. The Component
Control layer controls the managed resources. On top of the Component Control layer, the Change Management layer
monitors the system, signals changes to the uppermost layer, and implements adaptation plans on the components,
e.g., compositional adaptation through switching components. The Goal Management layer on top of the Change
Management layer, works out adaptation plans based on goals the SAS should fulfill. As the planning process is a
reaction on changes, only reactive adaptation is supported.

Further approaches use agent-related techniques for implementing architectural change (e.g., [92], [93]; see Sec-
tion 3.2.7) or dedicated architectural components for controlling the adaptation as Rainbow’s architecture layer [35],
the Architectural Run-time Configuration Manager [94], or the Architecture evolution manager in Archstudio [1, 36].
Architecture-based approaches are accompanied by factors for controlling the adaptation as strategies (e.g., [35]), poli-
cies (e.g., [30], [2], [94], [95], [92]), goals (e.g., [96], [38], [97]), task characteristics (e.g., [98, 99]), or constraints
(e.g., [35]). Architecture-based adaptation research is complemented with research on improvements in the use of
architectures and architecture adaptation in a SAS, e.g., architectural patterns [19, 100-103], resource prediction for
improving self-adaptation [104], or dynamic architectural styles [105]. The BASE framework defines four evaluation
dimensions (behavior, asynchrony of change, state, and execution context) which help to assess architectural styles
and their suitability for runtime evolution [106].

Many architecture-based approaches represent the architecture in the form of models. Therefore, they use archi-
tectural models for monitoring the resources and/or reasoning about adaptation (e.g., [107], [108], [109], [35], [36],
[11, [82], [86], [37], [110], [23], [111], [112]). Architecture Description Languages (ADL) describe architectural
models. Different authors have developed ADLs or extended existing ones for SASs, e.g., DARWIN ([113] used,
e.g., in [114]), C2/xADL [36], Dynamic Wright [115], Gerel [116], CHAM [117], COMMUNITY [118], Rapide [119],
LEDA [112], or ACME [107, 108]. A comparison of ADLs can be found in [120].

All architecture-based approaches implement the MAPE functionality (mostly implicitly, i.e., without dedicated
components). For reasoning about the system’s structure, architectural models are used in combination with metrics
as policies, goals, strategies, or constraints. Furthermore, all approaches are external, i.e., they have a dedicated
adaptation logic, e.g., in the form of components (e.g., [36], [1], [94]) or layers (e.g., [35] or [38]).

3.2.3. Reflection Approaches

Reflection is the ability of software to examine and possibly modify its structure (structural reflection) or behavior
(behavioral reflection) at runtime [121, 122]. The notion of computational reflection in programming languages was
introduced by Brian Cantwell Smith [123] and is equivalent to the term reflection [124]. Reflection is divided into
two activities: introspection refers to the observation of an application’s own behavior, intercession is the reaction on
introspection’s results [12], i.e., structural, parameter, or context adaptation.

The ability of reflection is an underlying principle for SASs [12, 125, 126] that enables self-awareness. In [125],
the authors describe a reflection reference model which explicitly includes a meta-level sub-system for reflection and
a reflection prism describing the properties of reflection. Weyns, Malek, and Andersson describe a formal approach
for self-adaptation based on computational reflection [33], which is presented in detail in Section 3.2.9.

Reflection can be used on different levels. Architectural reflection (or structural reflection) leads to reflection

11

regarding the software architecture of an application, i.e., its components, interconnections, or data types [12, 127].
Approaches for architectural reflection are proposed by various authors (e.g., [128], [127], [129], [130], [131], [132],
[133]). Behavioral reflection refers to reflection regarding the behavior of the software, e.g., algorithms for compu-
tation or communication mechanisms [12, 134]. Reflex is an approach for integrating partial behavioral reflection in
Java [126]. Kava also adds behavioral reflection to Java by using byte code rewriting [134]. Additionally, approaches
that use behavioral models for analyzing changes in the system fall into this category.

Reflective middleware, such as DynamicTAO [135] and Open ORB [136], can support runtime reconfiguration
of a component-based system [125, 137]. According to [138], reflective middleware can deal with highly dynamic
environments and supports development of flexible, adaptive systems. CARISMA integrates the reflective middleware
concept and context-awareness [139], which enables the construction of SASs.

In the approaches presented so far, reflection focuses on the software itself, e.g., on components, architecture, or
communication behavior. Sawyer et al. propose requirements-awareness for SASs: the use of reflection techniques for
introspection of requirements at runtime [140]. Introspection and intercession are basic functionalities for adaptation.
With introspection, the reason for adaptation can be detected, i.e. introspection includes monitoring and analyzing.
Since introspection classically only detects the cause for adaptation after it happened, only reactive adaptation is
possible. Intercession determines and controls the adaptation, i.e., controls planning and execution.

3.2.4. Programming Paradigms

For parameter and structural adaptation, different programming paradigms can be used. This section presents
different programming approaches. These are known from Software Engineering and are not specific to SASs.

In Component-Based Development (CBD), also known as Component-Based Software Engineering (CBSE) and
Component-Based Programming (CBP), software components are encapsulated parts of software, that can indepen-
dently from each other be developed, deployed, and composed [141]. Known examples are Enterprise JavaBeans,
COM/DCOM, or the CORBA Component Model [12]. In [12], the authors propose the use of components integrated
in a framework that supports late binding for enabling structural adaptation. Therefore, developers must clearly define
interfaces, and the adaptation logic must be able to handle the coexistence of components and control the exchange
of components. For determining which components must be exchanged, some kind of metric is needed. In literature
different metrics can be found, e.g., goal-based [38, 96] or model-based [37, 86]. Architectural models [37, 86] or
component models — such as Fractal [142] (e.g., used in [143] or [144]), K-components [131], or OpenCom [137] —
define self-contained components. Component-based approaches for SASs are used in many approaches (e.g., [12],
[145], [131], [111], [146], [147], [96], [38], [37], [86], [148], [144], [149], [150], [151]). The use of CBP techniques
at runtime for achieving structural adaptation of applications differs from using CBD at design time for developing
adaptive software as in [47], where CBP is used for constructing autonomous component units.

In Aspect-Oriented Programming (AOP) the program is divided in distinct parts, called concerns. The goal is
to use generic functionality in different classes (cross-cutting concerns). Therefore, logical concerns are separated
from the concrete implementation [152]. One example of an AOP language is AspectJ, an extension to Java [153].
Whereas dynamic recomposition is often related to cross-cutting concerns as QoS, McKinley ef al. propose AOP for
enabling separation of concerns, which leads to simplified compositional adaptation [12]. Haesevoets et al. show
different possibilities to use AOP techniques for self-adaptation [154]. Other authors highlight single aspects (e.g.,
[155], [143], [156], [157]). For SAS development, AOP is often used as an adaptation mechanism, e.g., for structural
adaptation, that is controlled by the adaptation logic. Morin ef al. present such an approach by combining MDE and
aspect-oriented modeling to manage dynamic variability [21, 41].

Other authors propose the use of generative programming for SASs [12, 158, 159]. In generative programming,
software is built with the help of high-level descriptions, that are mapped to generic classes, templates, aspects, and
components [160]. Whereas the transformation from description to code is unproblematic, vice versa is not sup-
ported, what complicates the use of generative programming for SAS implementation [159]. Adaptive programming
techniques can support the development of SASs [161, 162]. In [163], the authors propose an adaptive programming
approach which integrates reinforcement learning for learning behavior at run-time, which can only roughly be deter-
mined by the developer at design-time. In Context-oriented Programming (COP) — known from Pervasive Computing
and Ubiquitous Computing — the context is incorporated as a first-class construct in programming languages [164].
This way, the software is able to reason about changes in the context and to appropriately adapt. For a SAS, incorpo-
rating only the context is not sufficient but the managed resources must be integrated as well. COP approaches can be

12

found in [165], [164], [166], and [167]. Often, COP is combined with AOP [167].

The presented programming techniques, are mainly used for compositional, reactive adaptation. However, they
could be used for all kinds of software adaptation because it only offers an adaptation mechanism that is controlled by
the adaptation logic. They can be used for planning and executing of adaptation. Further procedures for monitoring
and analyzing have to be included. Often, the techniques are supported by middleware and reasoning is model-based.

3.2.5. Control Theory

Control structures are an important part of the adaptation logic of SASs [27]. Control loop engineering poses
different challenges: developing reference architectures for control loops, creating a catalog of control loop structures,
middleware support for control loop integration, verification & validation techniques to test and evaluate control loops’
behavior, and integration of the user [168]. To address these issues, knowledge from control theory is used for the
development of SASs [169]. Shaw states that control engineering methodologies should be considered for the software
architecture ”when the execution of a software system is affected by external disturbances” [170]. Furthermore, she
separates the control system from the main process. There are two types of control systems: open loop and closed
loop [170]. The difference is that a closed loop system uses information about monitored output variables to adjust
process variables whereas an open loop system adjusts process variables without considering output variables. Closed
loop systems can be further divided into feedback control systems and feedforward control systems. Whereas the
feedback loop reacts on changes of the output variable, the feedforward loop adjusts process variables by anticipating
the effects on the output variable. According to Abdelzaher et al. “control theory provides a formal approach to
designing closed loop systems” [171].

Feedback control loops can be adaptive [27]. An adaptive control loop can adjust the controller to respond to
changes of the controlled process. For this purpose, there is a second control loop on top of the main control loop.
Two standard schemes of adaptive feedback control loops are Model Identification Adaptive Control (MIAC) [172]
and Model Reference Adaptive Control (MRAC) [173]. However, adaptive control comes to its limitations when the
control law, e.g., decision functions, stay fixed for their lifetime [174]. Then, the control law can only be updated
in a limited way. To overcome this problem, reconfigurable control makes use of learning approaches in order to
dynamically adapt the control law [174]. In [175], feedback control loops are represented using actor objects [176].
An actor encapsulates its state and behavior and can only receive, process, and send messages. Each actor is assigned
one specific role (sensor, filter, controller, or effector). Adaptive behavior is achieved by connecting corresponding
actors. Sensors are responsible for collecting data which is then analyzed by filters. Controllers decide on appropriate
actions which are executed by effectors.

Kephart and Chess introduce in [2] the MAPE-K loop. There, the MAPE functionality is extended with a shared
knowledge repository. Meanwhile, the MAPE-K loop concept is a widely used reference model for SASs (e.g., [19],
[69], [29], [175], [87], [38], [177]). As the control loop is separated from the managed element, adaptation control
is external. Adaptation time is reactive since the MAPE-K loop is a feedback loop. Similar to the MAPE-K loop,
Dobson et al. presented the autonomic control loop [15]. Here, the MAPE functionality is called differently — collect,
analyze, decide, and act — but has the same responsibilities [15].

In [178], Miiller er al. propose to model feedback loops as first class design elements. Hebig et al. take up
this issue and present a UML profile that allows for explicitly architecting control loops with component diagrams
[179]. There, a control loop is built of four components: controller, process component, sensor, and actuator. Sensor
and actuator are used to observe and adjust the managed element. Thus, they use an external approach. In [180],
Diao et al. implement a deployable testbed for Autonomic Computing based on different control approaches. Filieri,
Hoffmann, and Maggio formulated a methodology which generates a system model and then uses this model to set up
a controller which is able to manage the non-functional requirements of the system [181].

Control engineering for SASs focuses on feedback loops which results in reactive adaptation. Proactive ap-
proaches might be feasible using feedforward loops. Adaptation control is mainly external and can take place de-
centralized. Furthermore, the approaches mentioned above address the whole MAPE functionality. The reader is
referred to [182] for further information on designing SASs using control engineering.

3.2.6. Service-oriented Approaches
Services are small, encapsulated, and autonomous units of software that fulfill a specific task. In Service-Oriented
Computing (SOC) such services are used to ’support the development of rapid, low-cost, interoperable, evolvable, and

13

massively distributed applications” [183]. The key for SOC is a service-oriented architecture (SOA), which enables
finding, use, and connection of services. The service approach can be transferred to SASs.

The naive approach for building a service-oriented SAS is to model the managed resources’ functionality as ser-
vices and use the SOA for communication. The adaptation logic decides, which services should run. Therefore,
dynamic exchange of services offers structural adaptation capabilities [184]. The problem is, how to build the adapta-
tion logic and how to enable the exchange of services.

Different frameworks for SASs use service-oriented techniques. In [185], the authors outline the principle of
autonomic SOAs. The MUSIC framework offers model-driven development of service-based SASs [23, 68, 69]. The
SASSY framework is a model-driven, self-architecting framework for SASs [87, 186]. Services in a directory, QoS-
patterns, and adaptation patterns form the base for SAS construction. In MetaSelf, a SOA is controlled by dynamically
modifying metadata, policies, and components [187]. The QoSMOS framework provides a full stack (MAPE) solution
to service-based SAS with a focus on QoS [188]. It offers ways to formally specify QoS requirements and tool
support for developers. Other approaches combine AOP and service-orientation for building SASs ([155], [157]),
take advantage of SOA as technical basis for implementing the variability of dynamic SPLs [62], integrate multi-
agent system approaches and SOA [189], use component models which are filled with service implementations at
runtime ([190], [149]), apply requirements engineering techniques for building service-based SASs (CARE method)
[191], adopt the Active Components concept for engineering decentralized control [192], or focus on QoS aspects
within service-based self-adaptation, such as the MOSES framework [193].

Service-oriented approaches focus on structural adaptation through exchange of services or change in the com-
position of services. Therefore, the managed resources are represented as services and the adaptation logic, either
implemented as services or as a layer above, controls the composition of services. Often, models are used for rea-
soning, which services need to be adjusted (e.g., [69], [87], [149]). These approaches are reactive, whereas proactive
approaches would be feasible, too. The level of adaptation is mostly the application level, the services of the appli-
cation. The re-composition or exchange of services concerns the planning and executing activities and needs to be
accompanied by monitoring and analyzing procedures for building a SAS.

3.2.7. Agent-based Approaches

A software agent is a piece of software that fulfills a specific task autonomously and cooperate for common tasks.
A multi-agent system (MAS) is a system of agents that share common goals and, therefore, communicate and coop-
erate. For MASs it is claimed, that "they are especially suited to develop software systems that are decentralized, can
deal flexibly with dynamic conditions, and are open to system components that come and go” [93]. These properties
make agent-based techniques valuable for the development of SASs.

De Wolf and Holvoet discussed several aspects in the construction of self-organizing MAS, such as dynamics
and decentralized control in a MAS [194], emergence and self-organization for MASs [195], a proposition for a
methodology for engineering self-organizing MASs [196], and design patterns for adaptable MAS [101]. Tesauro
et al. present Unity [197], a decentralized architecture for Autonomic Computing with autonomic elements. With
Unity, autonomic system behavior, such as goal-driven self-assembly, self-healing, and real time self-optimization,
can be achieved. Bernon et al. propose the Adaptive Multi-Agent Systems (AMAS) theory, in which the system is
based on the MAS principle and the agents cooperate for achieving self-organization and adjustments to changes in
the environment [198]. Furthermore, they offer tools for the development of SASs based on the AMAS theory. The
TOTA middleware can support self-organization in MAS by integrating adaptivity and context-awareness [199].

Other authors integrate a MAS and SOA for building SASs [189], use CBD for designing autonomous agents as
components [47], use adaptive object models for designing a MAS [132], or present design patterns for SASs based on
agent structures ([200], [102], [101]). Further approaches use agent-related techniques for implementing architectural
change ([92], [93]). The variety of agent-based approaches offers (in theory) both temporal aspects of self-adaptation.
Adaptation happens mainly on the application level, but other levels are feasible, too. Most approaches rely on a
decentralized adaptation logic, as the MAS should not be controlled by one central unit. The main focus in this
category of the MAPE cycle is the planning component.

3.2.8. Nature-inspired Approaches

Natural systems are composed of a large number of decentrally organized interacting components [201]. Each
component has only limited information based on which they adapt. The resulting overall behavior of the system is
then different from the behavior of the individual components, called emergence [27, 195]. Nature-inspired systems

14

may bring certain benefits such as spatiality, self-adaptability, and openness [202]. Furthermore, they can be catego-
rized into four key metaphors: biological, physical, chemical, and social. In this section, we present some examples
for using nature-inspired mechanisms in SAS. Further overviews can be found in literature (e.g., [202], [11]).

Biological approaches in computer science have emerged with the study of collective behavior in natural MAS
by Parunak [203]. Biological mechanisms, such as flocking [204-206], foraging [204, 207, 208], nest building [204],
molding [204], local inhibition [201, 209, 210], lateral inhibition [211], chemotaxis [201, 212, 213], embryogenesis
[204], morphogen gradient [201], local monitoring [201], quorum sensing [201, 204, 214], consensus [201, 213],
firefly synchronization [215], stigmergy [203, 204, 212, 213], web weaving [204, 216], brood sorting [204], and the
human immune system [213, 217] or human autonomous nervous system [2, 204], respectively, have been applied
in self-organizing systems and can be transferred to SASs. Fernandez-Marquez et al. specified bio-inspired design
patterns for self-organizing systems [218].

Physical approaches, so far, mainly focus on the metaphor of potential fields pioneered by Kathib who employed
them for obstacle avoidance in path planning in [219]. Reif and Wang propose a distributed method to control au-
tonomous robots based on potential fields [220]. In [221], the authors apply potential fields for exploration and
foraging tasks of autonomous robots. Weyns et al. employ potential fields for adaptive task assignment in MAS
[222]. In [199], Mamei and Zambonelli present the TOTA approach, a framework for pervasive and mobile computing
approaches. Here, communication takes place with the help of potential fields. The SAPERE approach also allows
for the creation of potential fields [213].

Chemical approaches focus on chemical reactions. The Higher Order Chemical Language (HOCL) serves as a
mean for programming service composition based on chemical reactions and enables late binding of components at
runtime [223]. Viroli and Casadei propose biochemical tuple spaces, a coordination model for self-organizing systems
based on chemical reactions [224]. SAPERE contains a spatial substrate which acts as a coordination space for agents
which interact via tuples called live semantic annotations (LSAs) [213].

Social approaches concentrate on market and auction mechanisms, as well as social norms (e.g., [225], [226],
[227]). As an example, in [227], coordination in MAS is based on social conventions.

Most investigated approaches focus on the planning component. Thus, adequate procedures for monitoring, ana-
lyzing, and executing need to be included.

3.2.9. Formal Modeling and Verification Approaches

Self-* properties and dynamics make it hard to prove the correctness of SASs [228, 229]. However, a SAS requires
behavioral and structural guarantees [26], especially in safety-critical domains, e.g., traffic light systems [230]. In
contrast to regular software, self-adaptive software further needs verification at runtime to match requirements and
adaptation decisions [231]. A comprehensive overview of existing techniques to assure that self-adaptation maintains
system goals and corresponding challenges is given in [232].

As an approach to reduce the complexity of the verification task, Giidemann, Ortmeier, and Reif introduced the
Restore Invariant Approach (RIA) [228, 229, 233] based on transition automata for representing system components
and temporal logic to express functional properties. In this context, an invariant is a formula that divides all possible
allocations of functional properties into two sets: the functionality can be provided, i.e., the invariant holds, and the
functionality cannot be provided, i.e., the invariant is violated [233]. The former set is also called corridor [229]. As
long as the invariant holds, the system finds itself in the production phase. As soon as it gets violated, the system
changes to the reconfiguration phase, in which it restores the invariant and then switches back to production. So far,
the adaptation control of the RIA has been centralized and external, but a decentralized control unit is possible, too
[229]. RIA is reactive and adapts only to changes in the (technical) resources by altering the structure.

Weyns, Malek and Andersson suggest the formal reference model for self-adaptation (FORMS) [33]. They use
the Z notation in order to define a SAS, its relationship with the environment, and self-adaptation. Adaptation control
takes place centralized and external. King et al. propose a self-testing framework for Autonomic Computing systems
that validates structural and behavioral change requests at runtime in order to avoid costly system failures [234, 235].
When a change request comes in, it is forwarded to a special testing autonomic manager which validates the request.
This approach uses an external adaptation control.

Other approaches [236-239] explicitly address the domain of adaptation in cyber-physical systems. The DEECo
model and framework allows to simulate such systems on a large scale to examine the effects of adaptation strategies
[236, 237]. In [238], the authors present IRM-SA, a design method and model for cyber-physical systems that focuses

15

on dependability. It is combinable with DEECo. Gabor et al. apply the concept of ultra-high fidelity simulations
(digital twin) to online planning in cyber-physical systems [239].

Franco et al. formulate a stochastic approach to improve adaptation [240]. Based on a formal architecture de-
scription of a system in an ADL, the approach generates Discrete Time-based Markov Chains for each adaptation
strategy. By solving this model, the system determines the most promising strategy. Smith and Sanders [241] present
an incremental top-down approach to formally develop self-organizing systems, which is built on the three “’scales of
observation” introduced in [242]. The Autonomic System Specification Language is a framework for formally spec-
ifying and generating autonomic systems [243]. Cordy et al. use a model checking technique based on transition
systems in order to verify dynamic software product lines [60]. Another approach focuses on probabilistic runtime
model checking using Discrete Time Markov Chains [244, 245]. Arcaini, Riccobene, and Scandurra specify MAPE-K
loops in Abstract State Machines to verify the correctness of the AL and to discover unwanted interferences between
multiple loops at design time [246]. Priesterjahn et al. present a formal model for the timed hazard analysis of self-
healing systems [247]. De la Iglesia and Weyns use timed computational tree logic (TCTL) and timed automata (TA)
to formally specify and verify behaviors of self-adaptive systems [248]. Mongiello, Pelliccione, and Sciancalepore
combine the Design by contract concept and reflection to verify context-aware applications at runtime [249]. Nguyen
et al. developed a notation for verification of time-based constraints through simulation with colored Petri nets [151].
Zhang, Goldsby, and Cheng propose to model SASs as a collection of steady-state programs and a set of adaptations
which switch between these steady-state programs [250]. They use Linear Temporal Logic (LTL) to describe the
non-adaptive parts of the system and A-LTL (an extension to LTL) for the adaptive parts. A modular model checking
approach then verifies requirements satisfaction. Weyns and Iftikhar introduce a modular decision making process
for SASs which includes runtime verification based on ActiveFORMS [251, 252]. The system permanently maintains
models (system model, environment model, and quality models) and simulates them to verify whether it still meets
requirements or requires adaptation [252]. The DECIDE approach uses formal verification based on continuous-time
Markov chains and continuous stochastic logic to decentralize control loops of SAS and to guarantee QoS compliance
[253].

This category mainly addresses the analyzing part of the MAPE-loop. Further information on formal methods in
SASs can be found in [254].

3.2.10. Learning Approaches

Learning in a SAS is tightly coupled to self-optimization. A SAS continually optimizes its structure, parameters,
or algorithms in order to become more efficient with regard to performance or cost [2]. Therefore, learning in a
SAS focuses on structural optimization (e.g., [197], [255], [42], [256], [257], [258], [259]). In Unity [197], self-
optimization works with the help of a central resource arbiter that computes optimal allocations of resources based
on a utility function, which is refined by learning. Elkhodary et al. present a feature-oriented architecture for SASs
[42, 255]. Each goal has a utility function that is used for optimization. Fisch et al. propose a collaborative learning
approach by exchanging knowledge [256]. Rules represent knowledge. When an agent discovers a novel useful rule,
it broadcasts the rule, so that other agents can make use of it.

Several approaches use reinforcement learning for structural optimization. Dowling ef al. present collaborative
reinforcement learning for decentralized coordinated self-adaptive components [257]. Collaborative reinforcement
learning makes collective adaptation possible by collaborative feedback [260]. Kim and Park rely on Q-learning to
improve the mapping between environmental change and software configuration in a SAS at runtime [261]. Other
approaches apply reinforcement learning for decentralized self-adaptive service assembly [262], generation and evo-
lution of adaptation rules [263], or learning policies for the decision phase of a decision engine [264].

Parra et al. employ a constraint-based approach to optimize context-aware adaptations [258]. Pandey et al. inte-
grate fast, deterministic planning and slower, but more optimal Markov Decision Process planning to a hybrid planning
approach which is able to handle the trade-off between timeliness and optimality [259]. Prothmann et al. use evolu-
tionary programming for learning [230]. In an organic traffic control scenario, they introduce an observer/controller
architecture with on- and offline learning. A learning classifier system, responsible for online learning, is combined
with an offline learning evolutionary algorithm. Tomforde ef al. extend the observer/controller architecture with a
decentralized collaboration mechanism [265] and discuss several distribution possibilities of the architecture [266].
Cakar et al. use a generic observer/controller architecture, proposed in [177], as basis for their learning approach
[267]. Brockmann et al. developed a framework for controlled self-optimization in modular system architectures

16

based on goals with an online learning approach based on machine learning [268]. Rodrigues Filho and Porter sketch
a framework for unsupervised online learning which considers the requirement, implementation, and deployment
stage of software development [269, 270]. Tanabe et al. propose an online learning technique which uses stochastic
gradient descent. It updates the environmental model of a SAS based on execution traces collected at runtime [271].
The Fossa framework provides a simulation-based offline learner to automatically create rules for a rules-based plan-
ner [272]. To achieve this, the framework’s learning engine specifies new potential rules with an exploration strategy
such as genetic programming and evaluates them offline in a test environment afterwards.

Other works address parameter optimization. [273] gives an overview on evolutionary algorithms with regard to
parameter optimization. Abdelwahed, Kandasamy, and Neema present a control framework for self-managing dis-
tributed systems [274] and apply model learning procedures online for managing varying environmental and operating
conditions.

Algorithmic optimization aims at optimizing how a goal is achieved, hence altering the algorithms. Oreizy et
al. mention evolutionary programming and Al-based learning techniques in order to generate new algorithms to
encounter uncertain changes [1]. Kafaf and Kim propose a hybrid planning approach that combines a local and
a global knowledge base. Here, they use supervised machine learning with kNN and unsupervised learning with
k-means clustering for online optimization of an object recognition algorithm [275].

The field of search-based software engineering (SBSE) [276] aims at applying search-based metaheuristic tech-
niques to software engineering. Search techniques such as genetic programming examine large search spaces of
candidate solutions to find a (near) optimal solution to problems concerning requirements, design, or testing [277].
Traditionally, SBSE is used at design time. Contrary to the traditional approach, dynamic SBSE applies the principle
of SBSE at runtime to determine the most suitable system configuration during the planning phase of self-adaptation
[278, 279]. The SASSY framework uses SBSE (hill climbing) for reconfiguration [87]. SA:DuSE is a domain-specific
instance of the DuSE approach for design space representation and automated architecture design [280]. It applies
SBSE to search the design space of a SAS. The Hermes approach [100] automatically evolves adaptation paths at
design or runtime with the help of genetic programming. It is an extension of Plato [281], which generates the target
system configurations for the adaptation paths. Coker, Garlan, and Le Goues outline challenges of using SBSE in the
SAS domain [282]. Further approaches that use dynamic SBSE in SASs can be found, e.g., [283-288].

Learning approaches mainly focus on the planning component. Adequate procedures for monitoring, analyzing
and executing have to be added. Further, learning can be used for meta-adaptation of the adaptation logic.

3.2.11. Requirements Engineering for Self-Adaptive Systems

For SASs, a specialized form of requirements engineering (RE) is needed. Berry, Cheng, and Zhang defined
four levels of RE for dynamic adaptive systems: (i) Level 1: general definition of the system and its reaction by
developers, (ii) Level 2: the system does RE at runtime for achieving adaptation, (iii) Level 3: decision of developers
about adaptation mechanisms, and (iv) Level 4: research regarding adaptation mechanisms [289]. In this work, we
focus on on the dynamic aspects of RE at runtime (level 2), as it enables adaptation of the SAS.

The dynamic nature of a SAS potentially results in uncertainty at runtime [140], due to a lack of information at
design time [13]. According to Whittle et al., changes in a system’s environment, such as “sensor failures, noisy
networks, malicious threats, and unexpected (human) input” [290] are the main reasons for uncertainty. They further
propose to relax non-critical system goals in emergency situations in order to achieve high-level goals. Different
authors propose to include runtime capabilities for RE. Bencomo, Whittle, and Sawyer propose to model requirements
as runtime entities and to integrate reflection capabilities for requirements [291]. FLAGS is a goal model based
approach for modeling requirements at runtime [292]. In [293], the authors present a runtime infrastructure that is
able to manage requirements at runtime based on modeling the requirements with FLAGS. Souza proposes two new
classes of requirements for SASs: awareness requirements prescribe indicators of convergence in requirements and
evolution requirements represent strategies for adaptation addressing changes in the requirements models themselves
[294]. Furthermore, he describes an approach for requirements-based system adaptation. Morse et al. introduce
a technique based on fuzzy logic that characterizes and ranks different system configurations depending on their
conformance with (possibly conflicting) non-functional requirements [295].

Different requirement languages for SASs can be found in literature. In [296], the authors present RELAX, which
explicitly allows to specify and deal with uncertainty. As RELAX, still most notations for specifying requirements
are based on natural language prose [13]. However, there exist also other approaches based on goal models, agents,

17

or scenarios. Goal-based approaches are for example KAOS [297], i* [298], LoREM [48], FLAGS [292], and CARE
[299]. However, only CARE explicitly supports uncertainty. Tropos4AS [300] is an agent-based design framework
for modeling SAS requirements based on Tropos [301]. No explicit support for uncertainty is given. Scenario-based
notations, such as live sequence charts [302], also do not explicitly support uncertainty.

Since requirements can influence all dimensions of our taxonomy, runtime capabilities for managing requirements
are important for reasoning about adaptation. Requirements Engineering approaches usually address the whole MAPE
cycle. As requirements are a kind of goal the SAS should fulfill, RE approaches are mainly goal-based.

3.2.12. Further Approaches

There are further approaches, which cannot be categorized into one of the categories presented above.

In task-based adaptation, the system determines suitable adaptation policies based on the users’ task character-
istics [98, 99]. The adaptation mechanism is not defined, it only affects reasoning. Therefore, the approach cannot
be classified into one of the mentioned categories. It can be seen as utility-based adaptation with the objective to
maximize the system utility for the users in supporting their tasks. Task-based self-adaptation is used within the Aura
project [303].

Some approaches use middleware-centric adaptation for achieving structural adaptation. Sadjadi and McKinley
present an overview on adaptive middleware [22]. In [21], the authors build their approach on top of adaptive mid-
dleware. Hallsteinsen, Floch, and Stav proposed an approach for building SASs by using generic middleware for
handling the adaptation [130].

Moreover, several approaches introduce a Domain Specific Language (DSL) tailored to describe self-adaptation.
Stitch [304] is a language which is able to express adaptation strategies for architecture-based self-adaptation. It
empowers developers to represent potential strategies in a decision tree. A utility-based algorithm then chooses the
best adaptation strategy at runtime. Alvares, Rutten, and Seinturier propose Ctrl-F [305]. This high-level DSL
consists of a static description of architectural elements, similar to common ADLs, and a dynamic part which is able
to specify behaviors and policies. Sun and Satoh [306] as well as Anthony [307] further introduce languages capable
of specifying adaptation policies.

Additionally, some authors propose processes and modeling dimensions for simplifying the engineering of SASs.
In the FESAS project, we present a framework for using reusable components of a component library for adaptation
logic development [308]. As outcomes of Dagstuhl Seminars about software engineering (SE) for SASs [13, 14],
modeling dimensions (goals, change, mechanisms, and effects) [309], a design space for SASs with five principal
clusters of design decisions (observation, representation, control, identification, and enacting adaptation) [25], and
SE processes for moving activities from design to runtime when engineering SASs [310] are proposed. Zhang and
Cheng proposed a model-based process for the construction of adaptation models, automatic code generation from
the models for building adaptive programs, and verification and validation of the models [88]. In [311], the authors
propose a guideline with 14 tasks for the construction of self-organizing systems. Lightstone presents a guideline
for Autonomic Computing application development focusing on integration of the user [312]. Tomforde and Miiller-
Schloer introduce a meta-design process for the development of adaptive systems with five design decisions (obser-
vation model, configuration model, similartity metric, performance metric, and validation method) and three phases
(preparation, evaluation, utilization) [313]. Different authors propose the use of design patterns for developing SASs
(e.g., [19, 100-103, 200, 218, 308, 314-317]).

3.3. Conclusion

In this section, we highlighted implementation issues for the adaptation logic of a SAS. The adaptation logic
can be integrated into the resources or dedicated. Different metrics such as models, goals, rules/policies, or utility
influence the adaptation decision. Furthermore, developers must specify the degree of decentralization, distribution
of the adaptation logic elements, and interaction patterns.

Additionally, we discussed different approaches that can be used for building a SAS’s adaptation logic and we
classified the approaches into model-based, architecture-based, reflection, programming paradigms, control theory,
service-oriented, agent-based, nature-inspired, formal modeling & verification, learning, and requirements-oriented.
In contrast, Macfas-Escriva et al. differentiate approaches for building SASs into main approaches (external con-
trol mechanisms, CBSE, model-driven, nature-inspired computing, MAS, feedback systems), global tools & meth-
ods (models, simulation, architecture, frameworks), and specific tools & methods (feedback control loops, decision-
making, RE) [11]. Whereas the categories are similar as simulation is part of the learning approaches we presented, we

18

did not divide the approaches in their application for SAS development. Nevertheless, we acknowledge that our clas-
sification is not interception-free, e.g., in some architecture-based approaches, models are used for representing the
architecture and CBSE for the structural adaptation of the architecture. Furthermore, the categories can be combined
for developing a SAS, e.g., model-based analyzing with component-based adaptation.

We mapped the approaches to our taxonomy of self-adaptation as well as the MAPE activities. By doing this,
we identified that most approaches for development of SAS are reactive and do not explicitly include the influence of
actuators of the managed resources on the context, i.e., context adaptation. This can lead to serious problems and, in
the worst case, end up in a cycle where the adaptation logic decides to adapt, the adaptation leads to an unforeseen
change in the context, which results in further adaptation.

For that reason, in the next section, we extend the definition of a SAS to context-altering SAS based on the
mapping of our taxonomy for self-adaptation to the survey of SAS approaches.

4. A new Perspective on Self-Adaptive Systems and Research Challenges

The survey of approaches showed that the inclusion of context in most approaches is not sufficient. Whereas most
approaches monitor the context, explicit alteration of context is not included in many approaches and the environment
remains uncontrollable for the adaptation logic [310]. This can lead to undesired adaptation results. Therefore,
we propose explicit integration of context alteration into the reasoning process. In this section, we include context
adaptation for SASs and extend the definition of a SAS to a context-altering SAS. Furthermore, we will present
different research issues related to the implementation of SASs.

A SAS is composed of managed resources and the adaptation logic [19]. The surrounding context is used as input
for the analyzing process. For a SAS, the context is not controlled by the adaptation logic [310], i.e., it is not included
in the planning activity. So, context alteration is not explicitly included in the reasoning process. Furthermore, the
missing control of the context can lead to undesired change in the context through the managed resources’ actuators
and result in interferences [20]. In our understanding of SASs, the possibility to change the context is explicitly
integrated. Derived from the taxonomy presented in Section 2 — there, context is a level where adaptation can happen
— we propose the explicit integration of context for planning. Modeling context and context-altering capabilities as
a construct enables reasoning about it and enables the control of context adaptation by the adaptation logic. So, the
adaptation logic explicitly manages the context. Therefore, we extend the definition of a SAS and integrate context-
adapting and context-altering, respectively:

”A Self-Adaptive System is able to modify its behavior or its environment in response to changes in its operating
environment. The operating environment includes anything observable, such as end-user input, hardware devices,
surrounding context, or program instrumentation.”

This new perspective on SASs leads to a new definition of the system border of a SAS (compared to Section 3.1).
For a context-altering SAS, the system is able to change either its behavior through parameter or structural adaptation
of the managed resources or the context. This can result in additional dynamics for the adaptation compared to a
common SAS. Therefore, we include control of the context into the SAS and extend the SAS to a triple SAS =
(AL, MR, C) with the technical system — composed of the adaptation logic AL and the managed resources MR — and the
context C. Different context variables, e.g., temperature, noise, or light level, define the context. They are influenced
via actuators of the managed resources, controlled by the adaptation logic. Therefore, the context is modeled as
C ={cy,...,c,} where each c; symbolizes a context variable, e.g., the temperature. The user is not integrated because
the user should not be adapted. Figure 4 shows the principle layout of our view on SASs. The dashed line shows the
system border. This new view on SASs leads to different issues.

Context adaptation. The inclusion of context adaptation controlled by the adaptation logic leads to research
issues that are not relevant in the traditional view of SAS, where the environment is not controlled by the adaptation
logic [310]. Different issues for context reasoning , e.g., unreliability of sensor information, are present [34]. These
issues are valid for context-altering SASs, as well as for analyzing activities of common SASs. So far, context is
mainly included for analysis purposes in SASs. For a context-altering SAS, the context must be integrated into
planning, i.e., information about the context-altering capabilities of the technical resources is necessary for planning.
The reasoning part of the adaptation logic must know all adaptation possibilities [318]. This implies that the actuators
of managed resources for changing context variables must be integrated in the reasoning process and the context

19

o EEm o - o o E—

Figure 4: A Context-Altering Self-Adaptive System (AL = Adaptation Logic, MR = Managed Resources, U = User(s), C = Context).

variables must be modeled accordingly [318]. Therefore, existing context modeling and reasoning techniques (e.g.,
see [34]) must be integrated in approaches for SAS for building context-altering SAS.

Decentralization of the adaptation logic. As already mentioned in Section 3.1.3 and in the taxonomy in Section
2.5, one issue of implementing SASs is the decentralization of the adaptation logic [26]. Different authors already
addressed issues of a decentralized adaptation logic (e.g., [29], [19], [101], [194], [179]). Nevertheless, there are open
challenges: partial shared knowledge, coordination in the MAPE functions, uncertainty, conflicting goals, system-
wide assurance & verification, overhead for coordination, and missing standardization [19, 29]. Research needs
to tackle these challenges. Furthermore, we propose systematic research on factors that influence the degree of
decentralization of the adaptation logic, as well as which interaction pattern should be used [308].

The inclusion of context alteration introduces further challenges. In a distributed system, different elements share
the context. Having a decentralized adaptation logic, the problem of uncontrollable context adaptation can still happen,
even if context adaptation is included in the reasoning process, e.g., if two subsystems A and B both have an adaptation
logic that do not interact, but an adaptation of subsystem A influences the context in a negative way for subsystem
B. Therefore, decentralization of the adaptation logic can lead to a fragmentation of context(-altering) information.
This must be addressed, e.g., by exchange of information about context-altering capabilities between the different
adaptation logic elements or context needs, respectively or with frameworks, such as the COMITY framework [20].
Furthermore, distributed monitoring of the context can be an issue as different parts of a distributed system can have
different types of sensors and gain different information. An approach can be the implementation of a context broker,
that distributes the context information within the adaptation logic, e.g., implemented similar to the information
sharing pattern [19].

Proactive adaptation. Proactive adaptation is one of the temporal dimensions for adaptation (see Section 2.1).
The aim is to adapt before it becomes necessary based on prediction. From the users point of view, this is preferable,
as it reduces interruptions and adaptations can be optimized for a sequence of events [10, 318]. Further, proactive
adaptation includes context adaptation via actuators in order to avoid unwanted situations. However, proactive adap-
tation has several remaining challenges, especially in scenarios of multiple applications or systems that share context.
First, it is very complex to develop without suitable frameworks, which do not exist at this point. Second, it is highly
dependent on the correctness of the predictions, as faulty predictions can cause suboptimal adaptations. The major
challenges here are predicting the time of an event with high enough accuracy, as well as predicting user behavior and
rare events. Third, as mentioned before, adaptations from independent sources can cause oscillating adaptations. This
problem is especially prevalent for proactive adaptation, as additional adaptations would cancel its benefits. Hence,
coordination is very important for proactive adaptation. As the survey has shown, so far most approaches for adaptive
systems focus on reactive adaptation. Integration of proactive adaptation into SASs is a challenging task that needs
further research.

Further challenges for SAS development. Further challenges can be found in literature. Integration of the user in
the adaptation process, i.e. human-in-the-loop integration, gets increasing importance within the community. Central
issues for runtime models are the integration of different model representations, how to use known techniques from
design models at runtime, reversible model transformations, or modeling the relation between runtime models and

20

the represented architecture [82, 319]. Due to uncertainty, aspects of requirements engineering must be performed
at run-time ([140], [320]). Verification & validation (V&V) techniques need to handle the dynamics of requirements
as well as uncertainty ([168], [26]). SE processes have to be adapted for SAS development. Especially the shift of
activities from development time to runtime is challenging [310]. This has been addressed in the second Dagstuhl
seminar on SE for SASs [13]. Reusability of processes as well as components is addressed in the FESAS project
[308]. A detailed presentation of these challenges would go beyond the scope of this paper.

5. Conclusion

In this paper, we presented a taxonomy for self-adaptation, a survey on engineering approaches for SASs, and
a new perspective on SASs, the context-altering SAS. Based on literature research and combination of existing
surveys, the taxonomy describes self-adaptation in the dimensions time, reason, technique, level, and adaptation
control. The adaptation logic, which controls the adaptation, must be appropriately designed. Developers need to
define the approach, adaptation decision criteria, and degree of decentralization, as well as the integration of the
self-adaptation dimensions for monitoring and reasoning. For building SASs, different approaches can be found
in literature. We classified the approaches in different categories: model-based, architecture-based, reflection, pro-
gramming paradigms, control theory, service-oriented, agent-based, nature-inspired, formal modeling & verification,
learning, and requirements-oriented. These categories can overlap, e.g., some architecture-based approaches use ar-
chitectural models for reasoning and CBD for structural adaptation. The taxonomy showed that most approaches
focus on reactive adaptation without the integration of context adaptation. This motivates our new view on SASs.
Whereas in a common SAS the context is only monitored, for a context-altering SAS we assume that the adaptation
logic is aware of actuators and uses them for adapting the context. The new context-altering capabilities introduce
additional challenges, such as the integration of context alteration into the reasoning process. These challenges, such
as integration of the context for analyzing and planning, decentralization of context monitoring and reasoning on con-
text, and proactivity of adaptation should be addressed within the SEAMS community for easier development of SAS
that uses the potential of context adaptation.

Appendix A. Overview of the Approaches Presented in the Survey

Table A.3 shows an overview of the most relevant approaches that we presented in Section 3.2 and shows their
relation to MAPE activities, the taxonomy of Section 2, and the issues for implementing an adaptation logic of Section
3.1.

Within the table, we used the following abbreviations:

e M/A/P/E = Monitoring, Analyzing, Planning, Executing

o React = Reactive; Proact = Proactive;

e Ctx = Context; TR = Technical resources; U = User(s);

e App = Application; Comm = Communication; Sys = System Software;

e Tec = Technique; Par = Parameter; Str = Structure;

e Appr = Approach; Ext = External; Int = Internal;

e DC = Decision Criteria;

e DDec = Degree of Decentralization; Hyb = Hybrid; Dec = Decentralized; Cen = Centralized

If a cell is marked with ”-”, this means that the approach does not have a specific requirement or that no further
information is given.

21

22

Approach MAPE |Time Reason Level Tec Adaptation Control
Appr DC DDec
9 (Dynamic) Software Product Lines [21, 40, |A/P React Ctx/ App/ Par/ Ext Goals, -
4 |43, 54-67] TR/ U Comm/ Str Policies,
= TR Utility
2 |MUSIC [23, 68, 69] All React Ctx/ App/ Par/ |Ext Models, Hyb/
= TR Comm Str Utility ~ Cen
Meta-models/ Megamodels [74—76, 84] All - - - - Ext Models -
MechatronicUML [70, 71] All React Ctx/ TR Par/ Ext Models All
TR Str
9 Rainbow Framework [35] All React TR App/ Par/ Ext Models, All
4 TR Str Policies
'g 3L Approach [38] All React Ctx/ App/ Par/ Ext Goals All
= TR TR Str
E Architectural Run-time Configuration Man- | All React TR App/ Par/ |Ext Policies, -
@ ager [94] TR Str Models
<C | Archstudio [1, 36] All React Ctx/ App/ Par/ Ext Models All
TR TR Str
Introspection [12] M/A - Ctx/ - - Both - -
3 TR/ U
2 |Intercession [12] P/E - - All All Both - -
5 Reflection Reference Model [125] All React Ctx/ App/ Par/ Ext (Meta) -
g TR TR Str Models
% | FORMS See category “Formal Modelling and Verification Approaches”
~ | Reflex [126] All React TR App/ Par/ Ext (Meta) -
TR Str Models
Kava [134] All React TR App/ Par/ Ext (Meta) -
TR Str Models
Reflective Middleware [135, 136, 139] P/E - - Sys/ Par/ - - -
Comm Str
CARISMA [139] All React Ctx/ App/ Par Ext Policies Dec/
TR TR Hyb
» | Component-Based SE [12, 37, 38, 86, 96, |P/E - - App/ Str Ext All All
§0 111, 131, 144-151] TR
:'; Aspect-Oriented Programming [21, 41, 153, | P/E - - App/ St Ext All All
& [154] TR
&b | Generative Programming [12, 158, 159] P/E - - App/ Par/ Ext All All
E TR Str
% Adaptive Programming [161-163] Addresses various aspects in the development of SAS
Eﬂ Context-oriented Programming [164, 165,|A/P/E |React Ctx/ App/ All - Models, -
& |167] TR TR/ Goals
Ctx
... | Autonomic Computing [2] All React TR/ Sys Par Ext Policies, Dec
§ Ctx Goals
ﬁ Autonomic Communication [15] All React TR/ Comm Par/ - - -
S Ctx Ctx
g Control Loop Patterns [178] All React Ctx Sys/ Par - Models -
@} TR
Control Loop UML Profile [179] All React TR Comm Par/ Ext - Dec
Str

23

Approach MAPE |Time Reason Level Tec Adaptation Control
Appr DC DDec
Control Theory Foundation [180] All React TR/ Sys Par Ext Models -
Ctx
MUSIC See category "Model-based Approaches”
9 SASSY Framework [87, 186] All React Ctx/ App Str Ext Goals, Dec/
= TR Utility Hyb
'% MetaSelf [187] All React Ctx/ App Str Ext Policies, All
3 TR Rules
E QoSMOS [188] All React Ctx/ App Str Ext Models Cen
3 TR
Aspect-oriented and Service-oriented Com- | P/E - - App Str Ext - -
puting [155, 157]
Agent systems and SOA See category ”Agent-based Approaches”
Component models and services [149, 190] | All React TR App Str Ext - -
CARE method [191] A/P/E |React Ctx/ App Str Ext Goals, Cen
TR/ U Utility
MOSES Framework [193] All React TR App Str Ext Goals, Cen
Utility
< | MOCAS [47] All React Ctx Sys Par - Policies Dec
% Design Patterns [101] P React Ctx App Par - Models Dec
T | Agent-Based Modeling, Dynamical Systems | All React Ctx App Par - Models Dec/
§0 Analysis, and Decentralized Control [194] Hyb
< | Unity See category “Learning Approaches”
Optimization [205, 206, 208] P React TR/ Sys Par/ - Utility Dec
Ctx Str
Autonomic Computing for Pervasive ICT |P React TR App/ Par/ - - Dec
[209] Sys Str
S | Frequency Planning [210, 211] P React TR App Par - - Dec
§ Data Harvesting [212] P React Ctx App Par - Utility Dec
-2 | Network Synchronicity [215] P React TR Sys Par - - Dec
95’ Region Detection [216] P React Ctx App Par - - Dec
§ Immune System [217] P React Ctx Sys Par - - Dec/
Hyb
Obstacle Avoidance [219] P React Ctx App Par Int Utility -
Potential Fields [213, 220, 221] P React Ctx App Par - - Dec/
Hyb
Task Assignment [222] P React Ctx App Par - Utility Dec
Ecosystem Framework [225] - React Ctx App Par - Utility Dec
RAPPID [226] P React Ctx App Par - - Dec
Social Conventions [227] P React Ctx App Par - - Dec
«» | FORMS [33] All React TR/ Sys/ Par/ Ext Models -
<
2 Ctx TR Str
g Restore-Invariant Approach [228, 229, 233] A React TR TR Str - - -
= Self-Testing Framework [234, 235] A React TR/ Sys Par Ext - Dec
£ Ctx
£ | Stochastic Modeling [240] M, A,P|React TR/ TR Par/ Ext Models, Cen
/ Ctx Str Utility
Proact
Markov Chains [244, 245] AP React TR/ TR Par/ Ext Models Cen
Ctx Str

Adaptation languages [304-307]

Processes [88, 308, 310-313]

Modeling Dimensions [25, 309]

Design patterns [19, 100-103, 200, 218, 308,
314-317]

Approach MAPE |Time Reason Level Tec Adaptation Control
Appr DC DDec
Abstract State Machines [246] All React TR/ TR Par/ Ext Models All
Ctx Str
Timed Hazard Analysis [247] A/P React TR TR Str Ext Models -
MAPE-K Formal Templates [248] All React TR/ TR Par/ Ext Models -
Ctx / Str
U
ActiveFORMS [251, 252] All React TR/ App/ Par/ Ext Models Cen
Ctx / Sys Str
U
Unity [197] P React TR Sys Par - Goals, Dec
o Utility
.S | FUSION [42, 255] P React TR/ App/ Par/ - Goals, -
g ..
s Ctx Sys Str Utility
3 |Reinforcement Learning [163, 257, 260-264] | P React TR/ App Par/ |Ext [Utility All
Ctx Str
Evolutionary Algorithms [230, 265-267, 273] | All React Ctx App Par Ext Utlity All
Control-Based Framework [274] P React Ctx Sys Par Ext Models Cen
Fossa AP Provides learning of rules at design time
SBSE [87, 100, 278-280, 282-288] P React All App Par /|Ext Models, Cen
Str Utility
2 LoREM [48] All React - - Par - Models -
£ | Requirements @Runtime [293] A/P React U App Par/ - Goals -
3 Str
& | Zanshin [294] All React Ctx App Par - Goals -
5 Task-based adaptation [98, 99, 303] A/P - - App/ - - Goals, -
= TR Utility
£ | Middleware-centric adaptation [21, 22, 130] |All React Ctx/ App/ Par/ Ext All Dec/
TR TR Str Hyb

Different type of support: Some support reasoning on adapta-

tion, some the design of adaptive systems

Does support the design/development activities of all types of
SAS; does not influence the actual system at run-time adapta-

tion

Support of design, rather than the specific implementation of

the adaptation logic

Does support many different aspects, e.g., design of the adap-
tation logic, information dissemination, reasoning, or execu-

tion

Table A.3: Overview of the Approaches of the Survey.

References

[1] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, An
Architecture-Based Approach to Self-Adaptive Software, IEEE Intelligent Systems 14 (3) (1999) 54-62.
[2] J. O. Kephart, D. M. Chess, The Vision of Autonomic Computing, IEEE Computer 36 (1) (2003) 41-50.

[3] C.Miiller-Schloer, H. Schmeck, T. Ungerer (Eds.), Organic Computing — A Paradigm Shift for Complex Systems, Springer, 2011.

[4] M. C. Huebscher, J. A. McCann, A survey of Autonomic Computing — Degrees, Models, and Applications, ACM Computing Surveys 40 (3)

(2008) 1-28.

[5] M. Salehie, L. Tahvildari, Self-Adaptive Software: Landscape & Research Challenges, ACM Transactions on Autonomous and Adaptive

Systems 4 (2) (2009) Art. 14.

[6] M. Hinchey, R. Sterritt, Self-Managing Software, IEEE Computer 39 (2) (2006) 107-109.

24

(7]
(8]
(91
[10]
[11]

[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]

[28]
[29]

[30]
[31]
[32]
[33]

B. Schilit, N. Adams, R. Want, Context-Aware Computing Applications, in: Proc. WMCSA, IEEE, 1994, pp. 85-90.

A. K. Dey, Understanding and Using Context, Personal and Ubiquitous Computing 5 (1) (2001) 4-7.

M. Rohr, S. Giesecke, W. Hasselbring, M. Hiel, W.-J. van den Heuvel, H. Weigand, A Classication Scheme for Self-adaptation Research,
in: Proc. SOAS, 2006, p. 5.

M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrén, 3PC: System Support for Adaptive Peer-to-Peer Pervasive Computing, ACM
Transactions on Autonomous and Adaptive Systems 7 (1) (2012) Art. 10.

F. D. Macias-Escrivé, R. Haber, R. del Toro, V. Hernandez, Self-adaptive systems: A survey of current approaches, research challenges and
applications, Expert Systems with Applications 40 (2013) 7267-7279.

P. McKinley, S. Sadjadi, E. Kasten, B. H. C. Cheng, Composing Adaptive Software, IEEE Computer 37 (7) (2004) 56-64.

B. H. C. Cheng, R. de Lemos, P. Inverardi, J. Magee (Eds.), Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer,
2009.

R. de Lemos, H. Giese, H. A. Miiller, M. Shaw (Eds.), Software Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer,
2013.

S. Dobson, F. Zambonelli, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, A Survey of
Autonomic Communications, ACM Transactions on Autonomous and Adaptive Systems 1 (2) (2006) 223-259.

R. Laddaga, Active Software, in: Self-Adaptive Software, Vol. 1936 of LNCS, Springer, 2001, pp. 11-26.

J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxonomy of software change, Journal of Software Maintenance and
Evolution: Research and Practice 17 (5) (2005) 309-332.

A. Schmidt, K. van Laerhoven, How to Build Smart Appliances?, IEEE Personal Communications 8 (4) (2001) 66-71.

D. Weyns, B. R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese, K. M. Goschka, On Patterns
for Decentralized Control in Self-Adaptive Systems, in: Software Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer,
2013, pp. 76-107.

V. Majuntke, S. VanSyckel, D. Schifer, C. Krupitzer, G. Schiele, C. Becker, COMITY: Coordinated Application Adaptation in Multi-
Platform Pervasive Systems, in: Proc. PerCom, IEEE, 2013, pp. 11-19.

B. Morin, O. Barais, G. Nain, J.-M. Jézéquel, Taming Dynamically Adaptive Systems Using Models and Aspects, in: Proc. ICSE, IEEE,
2009, pp. 122-132.

S. M. Sadjadi, P. McKinley, A Survey of Adaptive Middleware, Tech. rep., Michgan State University, East Lansing, Michigan, USA (2003).
J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjorven, Using Architecture Models for Runtime Adaptability, IEEE Software
23 (2) (2006) 62-70.

P. Lalanda, J. A. McCann, A. Diaconescu, Autonomic Computing, Springer, 2013.

Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, M. Smit, A Design Space for Self-Adaptive Systems, in: Software
Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer, 2013, pp. 33-50.

R. de Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson et al., Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap, in: Software Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer, 2013, pp. 1-32.

Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. A. Miiller, M. Pezz¢, M. Shaw, Engineering Self-Adaptive
Systems through Feedback Loops, in: Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 48-70.

0. Babaoglu, H. E. Shrobe, Foreword from the General Co-Chairs , in: Proc. SASO, IEEE, 2007, pp. ix—x.

D. Weyns, S. Malek, J. Andersson, On Decentralized Self-Adaptation: Lessons from the Trenches and Challenges for the Future, in: Proc.
SEAMS, ACM, 2010, pp. 84-93.

IBM Corp., An Architectural Blueprint for Autonomic Computing, Tech. rep., IBM, Hawthorne, NY, USA (2005).

D. C. Schmidt, Guest Editor’s Introduction: Model-Driven Engineering, IEEE Computer 39 (2) (2006) 25-31.

R. France, B. Rumpe, Model-driven Development of Complex Software: A Research Roadmap, in: Proc FOSE, IEEE, 2007, pp. 37-54.

D. Weyns, S. Malek, J. Andersson, FORMS: Unifying Reference Model for Formal Specification of Distributed Self-Adaptive Systems,
ACM Trans. Auton. Adapt. Syst. 7 (1).

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A Survey of Context Modelling and Reasoning
Techniques, Pervasive and Mobile Computing 6 (2) (2010) 161-180.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, P. Steenkiste, Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure, IEEE Computer 37 (10) (2004) 46-54.

P. Oreizy, N. Medvidovic, R. N. Taylor, Architecture-Based Runtime Software Evolution, in: Proc. ICSE, IEEE, 1998, pp. 177-186.

N. Bencomo, P. Grace, C. Flores, D. Hughes, G. Blair, Genie: Supporting the Model Driven Development of Reflective, Component-based
Adaptive Systems, in: Proc. ICSE, ACM, 2008, pp. 811-814.

J. Kramer, J. Magee, Self-Managed Systems: an Architectural Challenge, in: Proc. FOSE, 2007, pp. 259-268.

D. Batory, Feature Models, Grammars, and Propositional Formulas, in: Software Product Lines, Vol. 3714 of LNCS, Springer, 2005, pp.
7-20.

C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic Computing through Reuse of Variability Models at Runtime: The Case of Smart
Homes, IEEE Computer 42 (10) (2009) 37-43.

B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen, G. Blair, An Aspect-Oriented and Model-Driven Approach for
Managing Dynamic Variability, in: Model Driven Engineering Languages and Systems, Vol. 5301 of LNCS, Springer, 2008, pp. 782-796.
A. Elkhodary, N. Esfahani, S. Malek, FUSION: A Framework for Engineering Self-tuning Self-adaptive Software Systems, in: Proc. FSE,
ACM, 2010, pp. 7-16.

M. Acher, P. Collet, F. Fleurey, P. Lahire, S. Moisan, J.-P. Rigault, Modeling Context and Dynamic Adaptations with Feature Models, in:
Proc. MRT, Vol. 509, CEUR-WS.org, 2009, pp. 89-98.

K. C. Kang, H. Lee, Variability Modeling, in: Systems and Software Variability Management, Springer, 2013, pp. 25-42.

C. Ghezzi, A. Mocci, M. Sangiorgio, Runtime Monitoring of Functional Component Changes with Behavior Models, in: Models in Software
Engineering, Vol. 7167 of LNCS, Springer, 2012, pp. 152-166.

25

[46]
[47]
[48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]
[63]

[64]
[65]
[66]
[67]
[68]

[69]

[70]
[71]
[72]
[73]
[74]

[75]
[76]

[77]
[78]
[79]

[80]
[81]

C. Ghezzi, A. Mocci, M. Monga, Synthesizing Intensional Behavior Models by Graph Transformation, in: Proc. ICSE, IEEE, 2009, pp.
430-440.

C. Ballagny, N. Hameurlain, F. Barbier, MOCAS: A State-Based Component Model for Self-Adaptation, in: Proc. SASO, IEEE, 2009, pp.
206-215.

H. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, D. Hughes, Goal-Based Modeling of Dynamically Adaptive System Requirements,
in: Proc. ECBS, IEEE, 2008, pp. 36-45.

X. Peng, B. Chen, Y. Yu, W. Zhao, Self-tuning of software systems through dynamic quality tradeoff and value-based feedback control loop,
Journal of Systems and Software 85 (12) (2012) 2707-2719.

M. Vrbaski, G. Mussbacher, D. Petriu, D. Amyot, Goal Models as Run-time Entities in Context-Aware Systems, in: Proc. MRT, ACM,
2012, pp. 3-8.

B. Chen, X. Peng, Y. Yu, B. Nuseibeh, W. Zhao, Self-Adaptation through Incremental Generative Model Transformations at Runtime, in:
Proc. ICSE, ACM/IEEE, 2014, pp. 676-687.

J. Mazzola Paluska, H. Pham, U. Saif, G. Chau, C. Terman, S. Ward, Structured Decomposition of Adaptive Applications, Pervasive and
Mobile Computing 4 (6) (2008) 791-806.

Software Engineering Institute (Carnegie Mellon University), Software Product Lines (2014).

URL http://www.sei.cmu.edu/productlines/

H. Gomaa, M. Hussein, Dynamic Software Reconfiguration in Software Product Families, in: Software Product-Family Engineering, Vol.
3014 of LNCS, Springer, 2004, pp. 435-444.

S. Hallsteinsen, M. Hinchey, K. Schmid, Dynamic Software Product Lines, IEEE Computer 41 (4) (2008) 93-95.

J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach, ACM/Addison-Wesley, 2000.

K. Pohl, G. Bockle, F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques, Springer, 2005.

S. Hallsteinsen, E. Stav, A. Solberg, J. Floch, Using Product Line Techniques to Build Adaptive Systems, in: Proc. SPLC, IEEE, 2006, pp.
141-150.

J. Lee, K. C. Kang, A Feature-Oriented Approach to Developing Dynamically Reconfigurable Products in Product Line Engineering, in:
Proc. SPLC, IEEE, 2006, pp. 131-140.

M. Cordy, A. Classen, P. Heymans, A. Legay, P-Y. Schobbens, Model Checking Adaptive Software with Featured Transition Systems, in:
Assurances for Self-Adaptive Systems, Vol. 7740 of LNCS, Springer, 2013, pp. 1-29.

N. Abbas, J. Andersson, Architectural Reasoning for Dynamic Software Product Lines, in: Proc. SPLC Workshops, IEEE, 2013, pp. 117-
124.

L. Baresi, S. Guinea, L. Pasquale, Service-Oriented Dynamic Software Product Lines, IEEE Computer 45 (10) (2012) 42-48.

N. Bencomo, P. Sawyer, G. Blair, P. Grace, Dynamically Adaptive Systems are Product Lines too: Using Model-Driven Techniques to
Capture Dynamic Variability of Adaptive Systems, in: Proc. DPSL, ACM, 2008, pp. 23-32.

K. Saller, M. Lochau, I. Reimund, Context-Aware DSPLs: Model-Based Runtime Adaptation for Resource-Constrained Systems, in: Proc.
SPLC Workshops, ACM, 2013, pp. 106—113.

M. Pfannemiiller, C. Krupitzer, M. Weckesser, C. Becker, A Dynamic Software Product Line Approach for Adaptation Planning in Auto-
nomic Computing Systems, in: Proc. ICAC, IEEE, 2017, pp. 247-254.

N. Gamez, L. Fuentes, J. M. Troya, Creating Self-Adapting Mobile Systems with Dynamic Software Product Lines, IEEE Softw. 32 (2)
(2015) 105 - 112.

M. Bashari, E. Bagheri, W. Du, Dynamic Software Product Line Engineering: A Reference Framework, Int. J. Softw. Eng. Knowl. Eng.
27 (2) (2017) 191-234.

K. Geihs, R. Reichle, M. Wagner, M. U. Khan, Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous and Service-Oriented
Environments, in: Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 146-163.

S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Mamelli, G. Papadopoulos, A development framework and
methodology for self-adapting applications in ubiquitous computing environments, Journal of Systems and Software 85 (12) (2012) 2840-
2859.

H. Giese, W. Schifer, Model-Driven Development of Safe Self-Optimizing Mechatronic Systems with MechatronicUML, in: Assur. Self-
Adaptive Syst., Vol. 7740 of LNCS, Springer, 2013, pp. 152-186.

C. Heinzemann, J. Rieke, W. Schifer, Simulating Self-Adaptive Component-Based Systems using MATLAB/Simulink, in: Proc. SASO,
IEEE, 2013, pp. 71-80.

M. Luckey, G. Engels, High-Quality Specification of Self-Adaptive Software Systems, in: Proc. SEAMS, ACM, 2013, pp. 143-152.

C. Atkinson, T. Kuhne, Model-Driven Development: A Metamodeling Foundation, IEEE Software 20 (5) (2003) 36-41.

T. Vogel, A. Seibel, H. Giese, The Role of Models and Megamodels at Runtime, in: Models in Software Engineering, Vol. 6627 of LNCS,
Springer, 2011, pp. 224-238.

T. Vogel, H. Giese, Adaptation and Abstract Runtime Models, in: Proc. SEAMS, ACM, 2010, pp. 39-48.

T. Vogel, H. Giese, A Language for Feedback Loops in Self-Adaptive Systems: Executable Runtime Megamodels, in: Proc. SEAMS, IEEE,
2012, pp. 129-138.

T. Vogel, H. Giese, Model-Driven Engineering of Self-Adaptive Software with EUREMA, ACM Trans. Auton. Adapt. Syst. 8 (4) (2014)
1-33.

G. Lehmann, M. Blumendorf, F. Trollmann, S. Albayrak, Meta-modeling Runtime Models, in: Models in Software Engineering, Vol. 6627
of LNCS, Springer, 2011, pp. 209-223.

B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, A. Solberg, Models@ Run.time to Support Dynamic Adaptation, IEEE Computer 42 (10)
(2009) 44-51.

G. Blair, N. Bencomo, R. B. France, Models @ run.time, IEEE Computer 42 (10) (2009) 22-27.

I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, Model evolution by run-time parameter adaptation, in: Proc. ICSE, IEEE, 2009, pp.
111-121.

26

[82]
[83]

[84]
[85]

[86]
[87]

[88]
[89]

[90]
[91]

[92]

[93]
[94]

[95]
[96]
[971
[98]
[99]

[100]
[101]

[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]

[117]
[118]

N. Bencomo, On the use of software models during software execution, in: Proc. MISE, IEEE, 2009, pp. 62-67.

G. H. Alférez, V. Pelechano, Dynamic Evolution of Context-Aware Systems with Models at Runtime, in: Model Driven Engineering
Languages and Systems, Vol. 7590 of LNCS, Springer, 2012, pp. 70-86.

T. Vogel, H. Giese, On Unifying Development Models and Runtime models, in: Proc. MRT, CEUR-WS.org, 2014, pp. 5-10.

F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, J.-M. Jézéquel, Modeling and Validating Dynamic Adaptation, in: Models in Software
Engineering, Vol. 5421 of LNCS, Springer, 2009, pp. 97-108.

N. Bencomo, G. Blair, Using Architecture Models to Support the Generation and Operation of Component-Based Adaptive Systems, in:
Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 183-200.

D. Menasce, H. Gomaa, S. Malek, J. P. Sousa, SASSY: A Framework for Self-Architecting Service-Oriented Systems, IEEE Software 28 (6)
(2011) 78-85.

J. Zhang, B. H. C. Cheng, Model-Based Development of Dynamically Adaptive Software, in: Proc. ICSE, ACM, 2006, pp. 371-308.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Stafford, Documenting Software Architectures:
Views and Beyond, 2nd Edition, Addison-Wesley, 2010.

M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.

E. Gat, On Three-Layer Architectures, in: Artificial intelligence and mobile robots: case studies of successful robot systems, MIT/AAAI
Press, 1998, pp. 195-210.

S. White, J. Hanson, I. Whalley, D. Chess, J. Kephart, An architectural approach to autonomic computing, in: Proc. ICAC, IEEE, 2004, pp.
2-9.

D. Weyns, Architecture-Based Design of Multi-Agent Systems, Springer, 2010.

J. C. Georgas, A. van der Hoek, R. N. Taylor, Using Architectural Models to Manage and Visualize Runtime Adaptation, IEEE Computer
42 (10) (2009) 52-60.

J. C. Georgas, R. N. Taylor, Policy-Based Architectural Adaptation Management: Robotics Domain Case Studies, in: Software Engineering
for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 89—108.

D. Sykes, W. Heaven, J. Magee, J. Kramer, From Goals To Components: A Combined Approach To Self-Management, in: Proc. SEAMS,
ACM, 2008, pp. 1-8.

W. Heaven, D. Sykes, J. Magee, J. Kramer, A Case Study in Goal-Driven Architectural Adaptation, in: Software Engineering for Self-
Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 109-127.

V. Poladian, J. P. Sousa, D. Garlan, M. Shaw, Dynamic Configuration of Resource-Aware Services, in: Proc. ICSE, ACM/IEEE, 2004, pp.
604-613.

J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, M. Shaw, Task-based Adaptation for Ubiquitous Computing, IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev. 36 (3) (2006) 328-340.

A.J. Ramirez, B. H. C. Cheng, Design Patterns for Developing Dynamically Adaptive Systems, in: Proc. SEAMS, ACM, 2010, pp. 49-58.
T. De Wolf, T. Holvoet, Design Patterns for Decentralised Coordination in Self-organising Emergent Systems, in: Engineering Self-
Organising Systems, Vol. 4335 of LNCS, Springer, 2007, pp. 28—-49.

L. Gardelli, M. Viroli, A. Omicini, Design Patterns for Self-Organizing Multiagent Systems, in: Proc. CEEMAS, Vol. 4696 of LNCS,
Springer, 2007, pp. 123-132.

O. Babaoglu, G. Canright, A. Deutsch, G. Caro, F. Ducatelle et al., Design patterns from biology for distributed computing, ACM Transac-
tions on Autonomous and Adaptive Systems 1 (1) (2006) 26—66.

S.-W. Cheng, V. V. Poladian, D. Garlan, B. R. Schmerl, Improving Architecture-Based Self-Adaptation through Resource Prediction, in:
Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 71-88.

P. Oreizy, N. Medvidovic, R. N. Taylor, Runtime Software Adaptation: Framework, Approaches, and Styles , in: Proc. ICSE Companion,
ACM, 2008, pp. 899-910.

R. N. Taylor, N. Medvidovic, P. Oreizy, Architectural Styles for Runtime Software Adaptation, in: Proc. WICSA/ECSA, IEEE, 2009, pp.
171-180.

S.-W. Cheng, D. Garlan, B. R. Schmerl, J. P. Sousa, B. Spitnagel, P. Steenkiste, Using Architectural Style as a Basis for System Self-repair,
in: Proc. WISCA, Kluwer, 2002, pp. 45-59.

S.-W. Cheng, D. Garlan, B. R. Schmerl, P. Steenkiste, N. Nu, Software Architecture-based Adaptation for Grid Computing, in: Proc. HPDC,
IEEE, 2002, pp. 389-398.

S.-W. Cheng, D. Garlan, B. R. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste, N. Hu, Software Architecture-Based Adaptation for
Pervasive Systems, in: Trends in Network and Pervasive Computing — ARCS 2002, Spinger, 2002, pp. 67-82.

S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Medvidovic, M. Mikic-Rakic, G. S. Sukhatme, An architecture-driven
software mobility framework, Journal of Systems and Software 83 (6) (2010) 972-989.

S. Sicard, F. Boyer, N. De Palma, Using Components for Architecture-Based Management: The Self-Repair case, in: Proc. ICSE, ACM,
2008, pp. 101-110.

C. Canal, E. Pimentel, J. M. Troya, Specification and Refinement of Dynamic Software Architectures, in: Software Architecture, Vol. 12 of
IFIP — The International Federation for Information Processing, Kluwer, 1999, pp. 107-126.

J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying Distributed Software Architectures, in: Software Engineering — ESEC 95, Vol.
989 of LNCS, Springer, 1995, pp. 137-153.

I. Georgiadis, J. Magee, J. Kramer, Self-Organising Software Architectures for Distributed Systems, in: Proc. WOSS, ACM, 2002, pp.
33-38.

R. Allen, R. Douence, D. Garlan, Specifying Dynamism in Software Architectures, in: Proc. Workshop on Foundations of CBSE, 1997, pp.
11-22.

M. Endler, J. Wei, Programming Generic Dynamic Reconfigurations for Distributed Applications, in: Proc. CDS, 1992, pp. 68-79.

M. Wermelinger, Towards a Chemical Model for Software Architecture Reconguration, in: Proc. CDS, IEEE, 1998, pp. 111-118.

M. Wermelinger, A. Lopes, J. L. Fiadeiro, A Graph Based Architectural (Re)conguration Language, ACM SIGSOFT Software Engineering

27

[119]
[120]

[121]
[122]

[123]
[124]
[125]
[126]
[127]
[128]
[129]

[130]
[131]

[132]
[133]
[134]
[135]
[136]
[137]

[138]
[139]

[140]

[141]
[142]

[143]
[144]
[145]
[146]
[147]
[148]
[149]

[150]
[151]

[152]
[153]

[154]

Notes 26 (5) (2001) 21-32.

D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, W. Mann, Specification and Analysis of System Architecture Using Rapide, IEEE
Transactions on Software Engineering 21 (4) (1995) 336-354.

J. S. Bradbury, J. R. Cordy, J. Dingel, M. Wermelinger, A Survey of Self-Management in Dynamic Software Architecture Specifications, in:
Proc. WOSS, ACM, 2004, pp. 28-33.

J. Malenfant, M. Jacques, F. Demers, A Tutorial on Behavioral Reflection and its Implementation, in: Proc. Reflection, 1996, pp. 1-20.

D. G. Bobrow, R. P. Gabriel, J. L. White, CLOS in Context: the Shape of the Design Space, in: Object-Oriented Programming, MIT Press,
1993, pp. 29-61.

B. C. Smith, Procedural reflection in programming languages, Phd thesis, Massachusetts Institute of Technology (1982).

P. Maes, Concepts and Experiments in Computational Reflection, in: Proc. OOPSLA, ACM, 1987, pp. 147-155.

J. Andersson, R. de Lemos, S. Malek, D. Weyns, Reflecting on Self-Adaptive Software Systems, in: Proc. SEAMS, IEEE, 2009, pp. 38—47.
E. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial Behavioral Reflection: Spatial and Temporal Selection of Reification, in: Proc. OOPSLA,
ACM, 2003, pp. 27-46.

F. Tisato, A. Savigni, W. Cazzola, A. Sosio, Architectural Reflection: Realising Software Architectures via Reflective Activities, in: Engi-
neering Distributed Objects, Vol. 1999 of LNCS, Springer, 2001, pp. 102—-115.

D. Garlan, B. R. Schmerl, Using Architectural Models at Runtime: Research Challenges, in: Software Architectures, Vol. 3047 of LNCS,
Springer, 2004, pp. 200-205.

R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, R. M. Greenwood, An Active Architecture Approach to Dynamic Systems
Co-evolution, in: Software Architecture, Vol. 4758 of LNCS, Springer, 2007, pp. 2-10.

S. Hallsteinsen, E. Stav, J. Floch, Self-Adaptation for Everyday Systems, in: Proc. WOSS, ACM, 2004, pp. 69-74.

J. Dowling, V. Cahill, The K-Component Architecture Meta-Model for Self-Adaptive Software, in: Metalevel Architectures and Separation
of Crosscutting Concerns, Vol. 2192 of LNCS, Springer, 2001, pp. 81-88.

R. Razavi, J.-F. Perrot, N. Guelfi, Adaptive Modeling: An Approach and a Method for Implementing Adaptive Agents, in: Massively
Multi-Agent Systems I, Vol. 3446 of LNCS, Springer, 2005, pp. 136-148.

W. Cazzola, Evaluation of Object-Oriented Reflective Models, in: Object-Oriented Technology: ECOOP98 Workshop Reader, Vol. 1543 of
LNCS, Springer, 1998, pp. 386-387.

1. Welch, R. J. Stroud, Kava - Using Bytecode Rewriting to add Behavioral Reflection to Java, in: Proc. USENIX COOTS, 2001, pp.
119-130.

F. Kon, M. Romin, P. Liu, J. Mao, T. Yamane, C. Magalha, R. H. Campbell, Monitoring, Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB, in: Middleware 2000, Vol. 1795 of LNCS, Springer, 2000, pp. 121-143.

G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke et al., The Design and Implementation of Open ORB 2, IEEE Distributed Systems
Online 2 (June).

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, T. Sivaharan, A Generic Component Model for Building Systems
Software, ACM Transactions on Computer Systems 26 (1) (2008) Art. 1.

F. Kon, F. Costa, G. Blair, R. H. Campbell, The Case for Reflective Middleware, Communications of the ACM 45 (6) (2002) 33-38.

L. Capra, W. Emmerich, C. Mascolo, CARISMA: Context-Aware Reflective Middleware System for Mobile Applications, IEEE Transac-
tions on Software Engineering 29 (10) (2003) 929-944.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein, Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive
Systems, in: Proc. RE, IEEE, 2010, pp. 95-103.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd Edition, Addison-Wesley, 2002.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani, The FRACTAL component model and its support in Java, Software: Practice
and Experience 36 (11-12) (2006) 1257-1284.

P.-C. David, T. Ledoux, An Aspect-Oriented Approach for Developing Self-Adaptive Fractal Components, in: Software Composition, Vol.
4089 of LNCS, Springer, 2006, pp. 82-97.

G. Blair, T. Coupaye, J.-B. Stefani, Component-based architecture: the Fractal initiative, annals of telecommunications — annales des
télécommunications 64 (1-2) (2009) 1-4.

C. Becker, M. Handte, G. Schiele, K. Rothermel, PCOM - A Component System for Pervasive Computing, in: Proc. PerCom, IEEE, 2004,
pp. 67-76.

G. Huang, H. Mei, F-Q. Yang, Runtime recovery and manipulation of software architecture of component-based systems, Automated
Software Engineering 13 (2) (2006) 257-281.

H. Liu, M. Parashar, Accord: A Programming Framework for Autonomic Applications, IEEE Trans. Syst. Man Cybern. Part C (Applications
Rev. 36 (3) (2006) 341-352.

M. Aksit, Z. Choukair, Dynamic, adaptive and reconfigurable systems overview and prospective vision, in: Proc. ICDCS Workshops, IEEE,
2003, pp. 84-89.

F. Irmert, T. Fischer, K. Meyer-Wegener, Runtime Adaptation in a Service-Oriented Component Model, in: Proc. SEAMS, ACM, 2008, pp.
97-104.

H. Klus, D. Niebuhr, A. Rausch, A Component Model for Dynamic Adaptive Systems, in: Proc. ESSPE, ACM, 2007, pp. 21-28.

V. H. Nguyen, F. Fouquet, N. Plouzeau, O. Barais, A Process for Continuous Validation of Self-Adapting Component Based Systems, in:
Proc. MRT, ACM, 2012, pp. 32-37.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-oriented programming, in: ECOOP’97 —
Object-Oriented Programming, Vol. 1241 of LNCS, Springer, 1997, pp. 220-242.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An Overview of Aspect], in: ECOOP 2001 — Object-Oriented
Programming, Vol. 2072 of LNCS, Springer, 2001, pp. 327-354.

R. Haesevoets, E. Truyen, T. Holvoet, W. Joosen, Weaving the Fabric of the Control Loop through Aspects, in: Self-Organizing Architec-
tures, Vol. 6090 of LNCS, Springer, 2009, pp. 38-65.

28

[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]

[167]
[168]

[169]
[170]
[171]
[172]
[173]
[174]
[175]

[176]
[177]

[178]
[179]

[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]

[191]
[192]

A. Charfi, T. Dinkelaker, M. Mezini, A Plug-in Architecture for Self-Adaptive Web Service Compositions, in: Proc. ICWS, IEEE, 2009, pp.
35-42.

P. Greenwood, L. Blair, A Framework for Policy Driven Auto-adaptive Systems Using Dynamic Framed Aspects, in: Transactions on
Aspect-Oriented Software Development II, Vol. 4242 of LNCS, Springer, 2006, pp. 30-65.

T. Huang, G.-Q. Wu, J. Wei, Runtime Monitoring Composite Web Services Through Stateful Aspect Extension, Journal of Computer Science
and Technology 24 (2) (2009) 294-308.

J. White, D. C. Schmidt, K. Czarnecki, C. Wienands, G. Lenz, E. Wuchner, L. Fiege, Automated Model-based Configuration of Enterprise
Java Applications, in: Proc. EDOC, IEEE, 2007, pp. 301-312.

O. Nierstrasz, M. Denker, L. Renggli, Model-Centric, Context-Aware Software Adaptation, in: Software Engineering for Self-Adaptive
Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 128-145.

K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and Applications, Addison-Wesley, 2000.

M. Gouda, T. Herman, Adaptive programming, IEEE Transactions on Software Engineering 17 (9) (1991) 911-921.

U. A. Acar, G. E. Blelloch, R. Harper, Adaptive functional programming, ACM Transactions on Programming Languages and Systems
28 (6) (2006) 990-1034.

C. Simpkins, S. Bhat, C. Isbell, M. Mateas, Towards Adaptive Programming: Integrating Reinforcement Learning into a Programming
Language, ACM SIGPLAN Notices 43 (10) (2008) 603-614.

R. Keays, A. Rakotonirainy, Context-Oriented Programming, in: Proc. MobiDe, ACM, 2003, pp. 9-16.

M. Autili, P. Di Benedetto, P. Inverardi, A Programming Model for Adaptable Java Applications, in: Proc. PPPJ, ACM, 2010, pp. 119-128.
G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming : a software engineering perspective, J. Syst. Softw. 85 (8) (2012)
1801-1817.

R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-Oriented Programming, Journal of Object Technology 7 (3) (2008) 125-151.

B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee et al., Software Engineering for Self-Adaptive Systems: A Research Roadmap,
in: Software Engineering for Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 1-26.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki,
C. Klein, F. Krikava, S. Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma, T. Vogel, Software Engineering
Meets Control Theory, in: Proc. SEAMS, ACM, 2015, pp. 71-82.

M. Shaw, Beyond Objects: A Software Design Paradigm Based on Process Control, SIGSOFT Softw. Eng. Notes 20 (1) (1995) 27-38.

T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, X. Zhu, Introduction to Control Theory And Its Application to Computing Systems, in:
Performance Modeling and Engineering, Springer, 2008, pp. 185-215.

T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, 1988.

K.J. Astrom, B. Wittenmark, Adaptive Control, 2nd Edition, Addison-Wesley, 1994.

M. Kokar, K. Baclawski, Y. Eracar, Control Theory-Based Foundations of Self-Controlling Software, IEEE Intelligent Systems 14 (3) (1999)
37-45.

F. Kfikava, P. Collet, R. B. France, Actor-based Runtime Model of Adaptable Feedback Control Loops, in: Proc. MRT, ACM, 2012, pp.
39-44.

C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, Atrtificial Intelligence 8 (3) (1977) 323-364.

U. Richter, M. Mnif, J. Branke, C. Miiller-Schloer, H. Schmeck, Towards a generic observer/controller architecture for Organic Computing,
in: GI Jahrestagung (1), Vol. 93 of LNI, GI, 2006, pp. 112-119.

H. A. Miiller, M. Pezze, M. Shaw, Visibility of Control in Adaptive Systems, in: Proc. ULSSIS, ACM, 2008, pp. 23-26.

R. Hebig, H. Giese, B. Becker, Making Control Loops Explicit when Architecting Self-adaptive Systems, in: Proc. SOAR, ACM, 2010, pp.
21-28.

Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, D. Phung, Self-Managing Systems: A Control Theory Foundation, in: Proc. ECBS,
IEEE, 2005, pp. 441-448.

A. Filieri, H. Hoffmann, M. Maggio, Automated Design of Self-Adaptive Software with Control-Theoretical Formal Guarantees, in: Proc.
ICSE, ACM/IEEE, 2014, pp. 299-310.

T. Patikirikorala, A. Colman, J. Han, L. Wang, A Systematic Survey on the Design of Self-Adaptive Software Systems Using Control
Engineering Approaches, in: Proc. SEAMS, IEEE, 2012, pp. 33—42.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented Computing: State of the Art and Research Challenges, IEEE
Computer 40 (11) (2007) 38-45.

E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, K. Pohl, A journey to highly dynamic, self-adaptive service-based applications, Auto-
mated Software Engineering 15 (3-4) (2008) 313-341.

L. Liu, H. Schmeck, A Roadmap towards Autonomic Service-Oriented Architectures, International Transactions on Systems Science and
Applications 2 (3) (2006) 245-254.

H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menascé, Software Adaptation Patterns for Service-Oriented Architectures, in: Proc.
SAC, ACM, 2010, pp. 462-469.

G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, MetaSelf - An Architecture and a Development Method for Dependable Self-*
Systems, in: Proc SAC, ACM, 2010, pp. 457-461.

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli, Dynamic QoS Management and Optimization in Service-Based
Systems, IEEE Trans. Softw. Eng. 37 (3) (2011) 387—409.

E. Garcia, A. Giret, V. Botti, Software Engineering for Service-Oriented MAS, in: Cooperative Information Agents XII, Vol. 5180 of LNCS,
Springer, 2008, pp. 86—100.

H. Cervantes, R. S. Hall, Autonomous Adaptation to Dynamic Availability Using a Service-Oriented Component Model, in: Proc. ICSE,
IEEE, 2004, pp. 614-623.

N. A. Qureshi, A. Perini, Requirements Engineering for Adaptive Service Based Applications, in: Proc. RE, IEEE, 2010, pp. 108-111.

T. Preisler, T. Dethlefs, W. Renz, Middleware for Constructing Decentralized Control in Self-Organizing Systems, in: Proc. ICAC, IEEE,

29

[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]

[214]
[215]

[216]

[217]
[218]

[219]
[220]

[221]
[222]

[223]
[224]

[225]
[226]

[227]

2015, pp. 325-330.

V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, R. Mirandola, MOSES: A Framework for QoS Driven Runtime Adaptation
of Service-Oriented Systems, IEEE Transactions on Software Engineering 38 (5) (2012) 1138-1159.

T. De Wolf, T. Holvoet, Towards Autonomic Computing: Agent-Based Modelling, Dynamical Systems Analysis, and Decentralised Control,
in: Proc. INDIN, IEEE, 2003, pp. 470—479.

T. De Wolf, T. Holvoet, Emergence Versus Self-Organisation Different Concepts but Promising When Combined, in: Engineering Self-
Organising Systems, Vol. 3464 of LNCS, Springer, 2005, pp. 1-15.

T. De Wolf, T. Holvoet, Towards a Methodology for Engineering Self-Organising Emergent Systems, in: Proc. SOAS, 10S Press, 2005, pp.
18-34.

G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O. Kephart, S. R. White, A Multi-Agent Systems Approach to
Autonomic Computing, in: Proc. AAMAS — Vol. 1, IEEE, 2004, pp. 464-471.

C. Bernon, V. Camps, M.-P. Gleizes, G. Picard, Tools for Self-Organizing Applications Engineering, in: Engineering Self-Organizaning
Systems, Vol. 2977 of LNCS, Springer, 2004, pp. 283-298.

M. Mamei, F. Zambonelli, Programming Pervasive and Mobile Computing Applications: the TOTA Approach, in: Proc. PerCom, IEEE,
2004, pp. 263-273.

M. H. Cruz Torres, T. Van Beers, T. Holvoet, (No) more design patterns for multi-agent systems, in: Proc. SPLASH Workshops, ACM,
2011, pp. 213-220.

R. Nagpal, A Catalog of Biologically-Inspired Primitives for Engineering Self-Organization, in: Engineering Self-Organising Systems, Vol.
2977 of LNCS, Springer, 2004, pp. 53-62.

F. Zambonelli, M. Viroli, A survey on nature-inspired metaphors for pervasive service ecosystems, International Journal of Pervasive Com-
puting and Communications 7 (3) (2011) 186-204.

H. Van Dyke Parunak, "Go to the Ant”: Engineering Principles from Natural Multi-Agent Systems, Annals of Operations Research 75
(1997) 69-101.

M. Mamei, R. Menezes, R. Tolksdorf, F. Zambonelli, Case Studies for Self-Organization in Computer Science, Journal of Systems Archi-
tecture 52 (8-9) (2006) 443-460.

S. Selvakennedy, S. Sinnappan, Y. Shang, A Biologically-Inspired Clustering Protocol for Wireless Sensor Networks, Computer Communi-
cations 30 (14-15) (2007) 2786-2801.

H. Zhang, J. Llorca, Nature-Inspired Self-Organization, Control, and Optimization in Heterogeneous Wireless Networks, IEEE Mobile
Computing 11 (7) (2012) 1207 — 1222.

E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999.

M. Dorigo, G. A. Di Caro, L. M. Gambardella, Ant Algorithms for Discrete Optimization, Artificial life 5 (2) (1999) 137-172.

M. Shackleton, F. Saffre, R. Tateson, E. Bonsma, C. Roadknight, Autonomic Computing for Pervasive ICT - A Whole-System Perspective,
in: Intelligent Spaces, Computer Communications and Networks, Springer, 2004, pp. 323-335.

R. Tateson, S. Howard, R. Bradbeer, Nature-Inspired Self-Organisation in Wireless Communications Networks, in: Engineering Self-
Organising Systems, Vol. 2977, Springer, 2004, pp. 63-74.

R. Tateson, Self-Organising Pattern Formation: Fruit Flies and Cell Phones, in: Parallel Problem Solving from Nature — PPSN V, Vol. 1498
of LNCS, Springer, 1998, pp. 732-741.

U. Lee, E. Magistretti, M. Gerla, P. Bellavista, P. Lio, K.-W. Lee, Bio-Inspired Multi-Agent Data Harvesting in a Proactive Urban Monitoring
Environment, Ad Hoc Networks 7 (4) (2009) 725-741.

G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, Engineering Pervasive Service Ecosystems: The SAPERE Approach, ACM Trans. Auton.
Adapt. Syst. 10 (1) (2015) 1-27.

M. B. Miller, B. L. Bassler, Quorum Sensing in Bacteria, Annual Reviews in Microbiology 55 (2001) 165-199.

G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-Inspired Sensor Network Synchronicity with Realistic Radio Effects,
in: Proc. SenSys, ACM, 2005, pp. 142-153.

C. Bourjot, V. Chevrier, V. Thomas, A New Swarm Mechanism Based on Social Spiders Colonies: From Web Weaving to Region Detection,
Web Intelligence and Agent Systems 1 (2003) 47-64.

D. Dasgupta, Advances in Artificial Inmune Systems, IEEE Computational Intelligence Magazine 1 (4) (2006) 40—49.

J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna, M. Viroli, J. L. Arcos, Description and composition of bio-inspired design
patterns: A complete overview, Nat. Comput. 12 (1) (2013) 43-67.

O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in: Proc. Robotics and Automation - Vol. 2, IEEE, 1985, pp.
500-505.

J. H. Reif, H. Wang, Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots, Robotics and Autonomous Systems
27 (1999) 171-194.

O. Simonin, Construction of Numerical Potential Fields with Reactive Agents, in: Proc. AAMAS, ACM, 2005, pp. 1351-1352.

D. Weyns, N. Bouck, T. Holvoet, A Field-Based Versus a Protocol-Based Approach for Adaptive Task Assignment, in: Autonomous Agents
and Multi-Agent Systems, Vol. 17, Springer, 2008, pp. 288-319.

J.-P. Bang¢tre, T. Priol, Chemical Programming of Future Service-oriented Architectures, Journal of Software 4 (7) (2009) 738-746.

M. Viroli, M. Casadei, Biochemical Tuple Spaces for Self-organising Coordination, in: Coordination Models and Languages, Vol. 5521 of
LNCS, Springer, 2009, pp. 143-162.

C. Villalba, F. Zambonelli, Towards nature-inspired pervasive service ecosystems: Concepts and simulation experiences, Journal of Network
and Computer Applications 34 (2) (2011) 589-602.

H. Van Dyke Parunak, J. Sauter, M. Fleischer, A. Ward, The RAPPID Project: Symbiosis between Industrial Requirements and MAS
Research, Autonomous Agents and Multi-Agent Systems 2 (2) (1999) 111-140.

N. Salazar, J. A. Rodriguez-Aguilar, J. L. Arcos, Robust Coordination in Large Convention Spaces, AI Communications 23 (4) (2010)
357-372.

30

[228]
[229]
[230]
[231]

[232]

[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258]
[259]

[260]
[261]

[262]

M. Giidemann, F. Ortmeier, W. Reif, Formal Modeling and Verification of Systems with Self-x Properties, in: Autonomic and Trusted
Computing, Vol. 4158 of LNCS, Springer, 2006, pp. 38—47.

F. Nafz, H. Seebach, J.-P. Steghofer, S. Baumler, W. Reif, A Formal Framework for Compositional Verification of Organic Computing
Systems, in: Autonomic and Trusted Computing, Vol. 6407 of LNCS, Springer, 2010, pp. 17-31.

H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Miiller-Schloer, H. Schmeck, Organic Control of Traffic Lights, in: Autonomic and
Trusted Computing, Vol. 5060 of LNCS, Springer, 2008, pp. 219-233.

R. Calinescu, C. Ghezzi, M. Kwiatkowska, R. Mirandola, Self-Adaptive Software Needs Quantitative Verification at Runtime, Commun.
ACM 55 (9) (2012) 69-77.

B. Schmerl, J. Andersson, T. Vogel, M. B. Cohen, C. M. F. Rubira, Y. Brun, A. Gorla, F. Zambonelli, L. Baresi, Challenges in Composing
and Decomposing Assurances for Self-Adaptive Systems, in: Softw. Eng. Self-Adaptive Syst. 3, Vol. 9640 of LNCS, Springer, 2017, pp.
64-89.

M. Giidemann, F. Nafz, F. Ortmeier, H. Seebach, W. Reif, A Specification and Construction Paradigm for Organic Computing Systems, in:
Proc. SASO, IEEE, 2008, pp. 233-242.

T. King, A. Ramirez, R. Cruz, P. Clarke, An Integrated Self-Testing Framework for Autonomic Computing Systems, Journal of Computers
2(9).

T. M. King, A. Ramirez, P. J. Clarke, B. Quinones-Morales, A Reusable Object-Oriented Design to Support Self-Testable Autonomic
Software, in: Proc. SAC, ACM, 2008, pp. 1664—1669.

M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, F. Plasil, An Architecture Framework for Experimentations with Self-Adaptive Cyber-
physical Systems, in: Proc. SEAMS., ACM, 2015, pp. 93-96.

V. Matena, T. Bures, 1. Gerostathopoulos, P. Hnetynka, Model Problem and Testbed for Experiments with Adaptation in Smart Cyber-
Physical Systems, in: Proc. SEAMS, ACM, 2016, pp. 82-88.

1. Gerostathopoulos, T. Bures, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, N. Plouzeau, Self-adaptation in software-intensive cyberphysical
systems: From system goals to architecture configurations, J. Syst. Softw. 122 (2016) 378-397.

T. Gabor, L. Belzner, M. Kiermeier, M. T. Beck, A. Neitz, A Simulation-Based Architecture for Smart Cyber-Physical Systems, in: Proc.
ICAC, IEEE, 2016, pp. 374-379.

J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela, B. Schmerl, D. Garlan, Improving self-adaptation planning through software
architecture-based stochastic modeling, J. Syst. Softw. 115 (2016) 42—60.

G. Smith, J. W. Sanders, Formal Development of Self-organising Systems, in: Autonomic and Trusted Computing, Vol. 5586 of LNCS,
Springer, 2009, pp. 90-104.

F. Zambonelli, A. Omicini, Challenges and Research Directions in Agent-Oriented Software Engineering, Autonomous Agents and Multi-
Agent Systems 9 (3) (2004) 253-283.

E. Vassev, J. Paquet, ASSL — Autonomic System Specification Language, in: Proc. SEW, IEEE, 2007, pp. 300-309.

A. Filieri, C. Ghezzi, G. Tamburrelli, Run-Time Efficient Probabilistic Model Checking, in: Proc. ICSE, ACM/IEEE, 2011, pp. 341-350.
A. Filieri, G. Tamburrelli, Probabilistic Verification at Runtime for Self-Adaptive Systems, in: Assurances for Self-Adaptive Systems, Vol.
7740 of LNCS, Springer, 2013, pp. 30-59.

P. Arcaini, E. Riccobene, P. Scandurra, Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation, in: Proc. SEAMS, ACM,
2015, pp. 13-23.

C. Priesterjahn, D. Steenken, M. Tichy, Timed Hazard Analysis of Self-healing Systems, in: Assurances for Self-Adaptive Systems, Vol.
7740 of LNCS, Springer, 2013, pp. 112-151.

D. G. De La Iglesia, D. Weyns, MAPE-K Formal Templates to Rigorously Design Behaviors for Self-Adaptive Systems, ACM Trans. Auton.
Adapt. Syst. 10 (3) (2015) 1-31.

M. Mongiello, P. Pelliccione, M. Sciancalepore, AC-contract: Run-time verification of context-aware applications, in: Proc. SEAMS, ACM,
2015, pp. 24-34.

J. Zhang, H. J. Goldsby, B. H. C. Cheng, Modular Verification of Dynamically Adaptive Systems, in: Proc. AOSD, ACM, 2009, pp. 161-172.
M. U. Iftikhar, D. Weyns, Activforms: Active formal models for self-adaptation, in: Proc. SEAMS, 2014, pp. 125-134.

D. Weyns, M. U. Iftikhar, Model-based Simulation at Runtime for Self-adaptive Systems, in: Proc. ICAC, IEEE, 2016, pp. 364-373.

R. Calinescu, S. Gerasimou, A. Banks, Self-Adaptive Software with Decentralised Control Loops, in: Proc. FASE, Springer, 2015, pp.
235-251.

D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, T. Ahmad, A Survey of Formal Methods in Self-adaptive Systems, in: Proc. C3S2E, ACM,
2012, pp. 67-79.

A. Elkhodary, S. Malek, N. Esfahani, On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems, in: Proc.
MRT, ACM/IEEE, 2009, pp. 41-50.

D. Fisch, E. Kalkowski, B. Sick, Collaborative Learning by Knowledge Exchange, in: Organic Computing — A Paradigm Shift for Complex
Systems, Springer, 2011, pp. 267-280.

J. Dowling, V. Cahill, Self-managed Decentralised Systems Using K-components and Collaborative Reinforcement Learning, in: Proc.
WOSS, ACM, 2004, pp. 39-43.

C. Parra, D. Romero, S. Mosser, R. Rouvoy, L. Duchien, L. Seinturier, Using Constraint-based Optimization and Variability to Support
Continuous Self-adaptation, in: Proc. SAC, ACM, 2012, pp. 486—491.

A. Pandey, G. A. Moreno, J. Cdmara, D. Garlan, Hybrid Planning for Decision Making in Self-Adaptive Systems, in: Proc. SASO., IEEE,
2016, pp. 130-139.

R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998.

D. Kim, S. Park, Reinforcement Learning-Based Dynamic Adaptation Planning Method for Architecture-based Self-Managed Software, in:
Proc. SEAMS, IEEE, 2009, pp. 76-85.

M. Caporuscio, M. D’ Angelo, V. Grassi, R. Mirandola, Reinforcement Learning Techniques for Decentralized Self-adaptive Service As-
sembly, in: Proc. ESSOC, Springer, 2016, pp. 53-68.

31

[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]

[279]
[280]

[281]

[282]
[283]

[284]
[285]

[286]
[287]
[288]
[289]
[290]
[291]

[292]
[293]

[294]
[295]
[296]
[297]

[298]

T. Zhao, W. Zhang, H. Zhao, Z. Jin, A Reinforcement Learning-based Framework for the Generation and Evolution of Adaptation Rules, in:
Proc. ICAC, IEEE, 2017, pp. 103-112.

J. Panerati, M. Triverio, M. Maggio, M. D. Santambrogio, On How to Coordinate the Behavior of Independent Adaptive Systems, in: 7th
Int. Work. Feed. Comput., ACM, 2012, pp. 1-6.

S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hihner, C. Miiller-Schloer, H. Schmeck, Decentralised Progressive Signal Systems
for Organic Traffic Control, in: Proc. SASO, IEEE, 2008, pp. 413-422.

S. Tomforde, H. Prothmann, J. Branke, J. Hiahner, M. Mnif, C. Miiller-Schloer, U. Richter, H. Schmeck, Observation and Control of Organic
Systems, in: Organic Computing — A Paradigm Shift for Complex Systems, Springer, 2011, pp. 325-338.

E. Cakar, N. Fredivianus, J. Hihner, J. Branke, C. Miiller-Schloer, H. Schmeck, Aspects of Learning in OC Systems, in: Organic Computing
— A Paradigm Shift for Complex Systems, Springer, 2011, pp. 237-251.

W. Brockmann, N. Rosemann, E. Maehle, A Framework for Controlled Self-optimisation in Modular System Architectures, in: Organic
Computing — A Paradigm Shift for Complex Systems, Springer, 2011, pp. 281-294.

R. Rodrigues Filho, B. Porter, A Runtime Framework for Machine-Augmented Software Design using Unsupervised Self-Learning, in:
Proc. ICAC, IEEE, 2016, pp. 231-232.

R. Rodrigues Filho, B. Porter, Demonstrating a Runtime Machine-centric Emergent Software Architecture Framework, in: Proc. ICAC,
IEEE, 2016, pp. 239-240.

M. Tanabe, K. Tei, Y. Fukazawa, S. Honiden, Learning environment model at runtime for self-adaptive systems, in: Proc. SAC, ACM, 2017,
pp. 1198-1204.

A. Frommgen, R. Rehner, M. Lehn, A. Buchmann, Fossa: Learning ECA Rules for Adaptive Distributed Systems, in: Proc. ICAC, IEEE,
2015, pp. 207-210.

T. Béck, H.-P. Schwefel, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation 1 (1) (1993)
1-23.

S. Abdelwahed, N. Kandasamy, S. Neema, A Control-based Framework for Self-managing Distributed Computing Systems, in: Proc.
WOSS, ACM, 2004, pp. 3-7.

D. A. Kafaf, D. K. Kim, A web service-based approach for developing self-adaptive systems, Comput. Electr. Eng. 63 (1) (2017) 260-276.
M. Harman, B. F. Jones, Search-based software engineering, Inf. Softw. Technol. 43 (14) (2001) 833-839.

M. Harman, P. McMinn, J. Teixeira De Souza, S. Yoo, Search Based Software Engineering: Techniques, Taxonomy, Tutorial, in: Empir.
Softw. Eng. Verif., Vol. 7007 of LNCS, Springer, 2012, pp. 1-59.

M. Harman, S. A. Mansouri, Y. Zhang, Search-Based Software Engineering: Trends, Techniques and Applications, ACM Comput. Surv.
45 (1) (2012) 1-61.

M. Harman, E. Burke, J. A. Clark, X. Yao, Dynamic Adaptive Search Based Software Engineering, in: Proc. ESEM, ACM, 2012, pp. 1-8.

S. S. Andrade, J. de A. Macédo, A Search-Based Approach for Architectural Design of Feedback Control Concerns in Self-Adaptive
Systems, in: Proc. SASO, IEEE, 2013, pp. 61-70.

A.J.Ramirez, D. B. Knoester, B. H. C. Cheng, P. K. McKinley, Applying Genetic Algorithms to Decision Making in Autonomic Computing
Systems, in: Proc. ICAC, ACM, 2009, pp. 97-106.

Z. Coker, D. Garlan, C. Le Goues, SASS: Self-adaptation using stochastic search, in: Proc. SEAMS, IEEE, 2015, pp. 168-174.

L. Wang, Using Search-Based Software Engineering to Handle the Changes with Uncertainties for Self-Adaptive Systems, in: Proc.
ESEC/FSE, ACM, 2017, pp. 1014-1017.

L. Wang, Search-Based Adaptation Planning Framework for Self-Adaptive Systems, in: Proc. ICSE-C, IEEE/ACM, 2017, pp. 465-466.

P. Zoghi, M. Shtern, M. Litoiu, Designing Search Based Adaptive Systems: A Quantitative Approach, in: Proc. SEAMS, ACM, 2014, pp.
7-16.

P. Zoghi, M. Shtern, M. Litoiu, H. Ghanbari, Designing Adaptive Applications Deployed on Cloud Environments, ACM Trans. Auton.
Adapt. Syst. 10 (4) (2016) 1-26.

S. S. Andrade, R. J. de Aratjo Macédo, Do Search-Based Approaches Improve the Design of Self-Adaptive Systems ? A Controlled
Experiment, in: Proc. Brazilian Symp. Softw. Eng., IEEE, 2014, pp. 101-110.

M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, F. Wu, Genetic Improvement for Adaptive Software Engineering
(Keynote), in: Proc. SEAMS, ACM, 2014, pp. 1-4.

D. M. Berry, B. H. C. Cheng, J. Zhang, The Four Levels of Requirements Engineering for and in Dynamic Adaptive Systems, in: Proc.
REFSQ, 2005, pp. 113-120.

J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J.-M. Bruel, RELAX: a language to address uncertainty in self-adaptive systems
requirement, Requirements Engineering 15 (2) (2010) 177-196.

N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, E. Letier, Requirements Reflection: Requirements As Runtime Entities, in: Proc. ICSE
— Vol. 2, ACM/IEEE, 2010, pp. 199-202.

L. Baresi, L. Pasquale, P. Spoletini, Fuzzy Goals for Requirements-Driven Adaptation, in: Proc. RE, IEEE, 2010, pp. 125-134.

L. Pasquale, L. Baresi, B. Nuseibeh, Towards Adaptive Systems through Requirements @Runtime, in: Proc. MRT, CEUR-WS.org, 2011,
pp. 13-24.

V. E. S. Souza, A. Lapouchnian, J. Mylopoulos, (Requirement) evolution requirements for adaptive systems, in: Proc. SEAMS, IEEE, 2012,
pp. 155-164.

J. Morse, D. Araiza-Illan, J. Lawry, A. Richards, K. Eder, A formal approach to analysing requirements conformance in adaptive systems,
Tech. rep., University of Bristol (2017).

J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J. Bruel, RELAX: Incorporating Uncertainty into the Specification of Self-Adaptive
Systems, in: Proc. RE, IEEE, 2009, pp. 79-88.

A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed requirements acquisition, Science of Computer Programming 20 (12) (1993)
3-50.

E. S. Yu, Towards modelling and reasoning support for early-phase requirements engineering, in: Proc. RE, IEEE, 1997, pp. 226-235.

32

[299]
[300]
[301]

[302]
[303]

[304]
[305]

[306]
[307]

[308]
[309]
[310]
[311]
[312]
[313]
[314]
[315]
[316]
[317]
[318]
[319]

[320]

N. A. Qureshi, A. Perini, Continuous Adaptive Requirements Engineering: An Architecture for Self-Adaptive Service-Based Applications,
in: Proc. RE@RunTime, IEEE, 2010, pp. 17-24.

M. Morandini, L. Penserini, A. Perini, Towards Goal-Oriented Development of Self-Adaptive Systems, in: Proc. SEAMS, ACM, 2008, pp.
9-16.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos: An Agent-Oriented Software Development Methodology, Au-
tonomous Agents and Multi-Agent Systems 8 (3) (2004) 203-236.

D. Harel, R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSC’s and the Play-Engine, Springer, 2003.

D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura: Toward Distraction-Free Pervasive Computing, IEEE Pervasive Com-
puting 1 (2) (2002) 22-31.

S.-W. Cheng, D. Garlan, Stitch: A language for architecture-based self-adaptation, Journal of Systems and Software 85 (12) (2012) 2860—
2875.

F. Alvares, E. Rutten, L. Seinturier, Behavioural Model-based Control for Autonomic Software Components, in: Proc. ICAC, IEEE, 2015,
pp. 187-196.

J. Sun, I. Satoh, Specifying Distributed Adaptation through Software Component Relocation, in: Proc. ICAC, IEEE, 2015, pp. 337-342.

R. J. Anthony, A Policy-Definition Language and Prototype Implementation Library for Policy-based Autonomic Systems, in: Proc. ICAC.,
1EEE, 2006, pp. 265-276.

C. Krupitzer, S. VanSyckel, C. Becker, FESAS: Towards a Framework for Engineering Self-Adaptive Systems, in: Proc. SASO, IEEE, 2013,
pp. 263-264.

J. Andersson, R. de Lemos, S. Malek, D. Weyns, Modeling Dimensions of Self-Adaptive Software Systems, in: Software Engineering for
Self-Adaptive Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 27-47.

J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi, T. Vogel, Software Engineering Processes for Self-Adaptive
Systems, in: Software Engineering for Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer, 2013, pp. 51-75.

H. Seebach, F. Nafz, J.-P. Steghofer, W. Reif, A Software Engineering Guideline for Self-Organizing Resource-Flow Systems, in: Proc.
SASO, IEEE, 2010, pp. 194-203.

S. Lightstone, Foundations of Autonomic Computing Development, in: Proc. EASe, IEEE, 2007, pp. 163-171.

S. Tomforde, C. Miiller-Schloer, Incremental Design of Adaptive Systems, J. Ambient Intell. Smart Environ. 6 (2) (2013) 179-198.

S. Frey, A. Diaconescu, I. Demeure, Architectural Integration Patterns for Autonomic Management Systems, in: Proc. EASe, 2012.

A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, M. Sharaf, Patterns for Self-Adaptation in Cyber-Physical Systems, in: S. Biffl,
A. Liider, D. Gerhard (Eds.), Multi-Disciplinary Eng. Cyber-Physical Prod. Syst., Springer, 2017, pp. 331-368.

S. Frey, A. Diaconescu, D. Menga, I. Demeure, A Generic Holonic Control Architecture for Heterogeneous Multiscale and Multiobjective
Smart Microgrids, ACM Trans. Auton. Adapt. Syst. 10 (2) (2015) 1-21.

P. L. Snyder, G. Valetto, J. L. Fernandez-Marquez, G. Di Marzo Serugendo, Augmenting the Repertoire of Design Patterns for Self-
Organized Software by Reverse Engineering a Bio-Inspired P2P System, in: Proc. SASO, IEEE, 2012, pp. 199-204.

S. VanSyckel, D. Schifer, G. Schiele, C. Becker, Configuration Management for Proactive Adaptation in Pervasive Environments, in: Proc.
SASO, IEEE, 2013, pp. 131-140.

H. A. Miiller, H. M. Kienle, U. Stege, Autonomic Computing - Now You See It, Now You Don’t, in: Software Engineering, Vol. 5413 of
LNCS, Springer, 2009, pp. 32-54.

A.J. Ramirez, A. C. Jensen, B. H. C. Cheng, A Taxonomy of Uncertainty for Dynamically Adaptive Systems, in: Proc. SEAMS, IEEE,
2012, pp. 99-108.

33

