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Abstract

With the ubiquity of main memory databases which are increasingly replac-
ing the old disk-oriented databases, relations are being stored in denormalized
form in order to increase the query throughput, thus, the dominance of join
operators in terms of costs is being replaced by the costs of evaluating selec-
tion predicates. Boolean expressions containing selection predicates connected
both conjunctively and disjunctively have been thus far solved by rather simple
heuristics which leaves a large optimization potential unharvested. To exacer-
bate the matter, such heuristics rely on the independent predicate selectivity
assumption which typically does not hold, and the constant predicate costs
assumption which in terms of main memory database systems does not hold ei-
ther. In this thesis we tackle the problem of optimizing Boolean expressions by
not relying on the independence assumption nor the constant predicate costs
assumption. We present optimization algorithms for queries containing both
conjunctively and disjunctively connected predicates together with a cost model
which precisely captures CPU architectural characteristics such as branch mis-
prediction. Our optimization algorithms achieve the optimum in terms of plan
quality, thus, they harvest the entire optimization potential inherent in Boolean
expressions.
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Zusammenfassung

Die sich wandelnde Hardwarelandschaft führt dazu, dass Hauptspeicher-Daten-
banksysteme die klassischen disk-basierten Systeme zunehmend verdrängen.
Hauptspeicher-Datenbanksysteme speichern Relationen in denormalisierter Fo-
rm um den Durchsatz an Anfragen zu erhöhen. In Folge dessen übernehmen
Selektionsprädikate die Rolle von Joins als entscheidenden Kostenfaktor. Kon-
junktiv sowie disjunktiv verknüpfte Boolesche Ausdrücke, welche Selektion-
sprädikate enthalten, wurden bisher von simplen Heuristiken optimiert. Dies
hat viel Spielraum für Optimierungen gelassen. Die kritischen Schwachstellen
dieser Heuristiken sind, dass sie sowohl annehmen, dass die Selektivtäten Un-
abhängigkeit voneinander sind, welches im Allgemeinen nicht gilt, sowie, dass
die Evaluationskosten von Prädikaten unempfindlich gegenüber ihrer Selek-
tivität sind. Letzteres spiegelt insbesondere in Hauptspeicher-Datenbanksys-
temen die Realität nicht wider. Diese Arbeit behandelt die Optimierung von
Booleschen Ausdrücken ohne diese Annahmen. Wir zeigen Optimierungsalgo-
rithmen für Anfragen, die sowohl konjunktiv als auch disjunktiv verknüpfte
Prädikate enthalten. Darüber hinaus präsentieren wir ein dafür angepasstes
Kostenmodell, welches Charakteristiken der Prozessorarchitektur, wie branch
misprediction, präzise modelliert. Unsere Optimierungsalgorithmen sind opti-
mal in Bezug auf die Planqualität; sie schöpfen das gesamte Optimierungspo-
tential Boolescher Ausdrücke aus.
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1. Introduction

Optimization of Boolean expressions in database system is a very challenging
problem, which prompts for carefully designed optimization algorithms in order
to harvest the large optimization potential inherent in them. With the advent
of main memory databases, optimization of Boolean expressions becomes an
even more challenging task requiring optimization algorithms which take into
account hardware characteristics such as CPU branch misprediction. In the
recent years, the memory price has drastically decreased and at the same time
its size has drastically increased. For instance, in early 80s the cost per MB
of main memory was around 6400 USD, whereas at the time of this thesis
writing it is 0.0059 USD1. Servers with terabytes of main memory have now
become affordable thus prompting a shift from disk oriented database systems
to main memory oriented database systems. Consequently, this thesis focuses
on optimization of Boolean expressions for main memory databases.

In the first part of this thesis, we consider the problem of optimizing Boolean
expressions composed of predicates connected conjunctively. We present an
efficient optimization algorithm for this class of queries which relies on dynamic
programming and generates the solutions in a bottom-up fashion.

Boolean expressions containing predicates connected conjunctively and dis-
junctively are then the topic of the second and the third part of this thesis.
We initially present an efficient heuristic optimization algorithm for disjunctive
predicates which leverages bypass processing. Although the heuristic algorithm
is superior to the existing heuristics in the literature, it does not attain the
optimum in terms of plan quality. We can, however, achieve the optimum by
means of the optimization algorithm presented in the third part of this thesis,
which optimizes Boolean expressions in a top-down fashion. Top-down algo-
rithms in contrast to bottom-up algorithm have the advantage of employing
search strategies like branch-and-bound pruning in order to reduce the search
space. Besides the branch-and-bound pruning search strategy, our top-down
optimization algorithms make a use of the Boolean difference calculus in order
to derive tighter upper bounds and this way prune even more aggressively the
search space.

Optimization algorithms found in the literature—and commonly used in com-
mercial relational database systems—rely on at least two assumptions: (1) pred-
icate selectivities are assumed to be independent, and (2) predicate costs are
assumed to be constant. Since both of these two assumptions typically do not
hold, optimization algorithms presented in this thesis do not rely on any of
them. Since we do not rely on the independence assumption, in the fourth part
of this thesis we present a very efficient sampling method, which can be used to

1The prices were taken from http://www.jcmit.net/memoryprice.htm
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1. Introduction

gather predicate selectivities for all the subsets of predicates given in a query.
To that end, optimization algorithms presented in this thesis work take into
consideration CPU architectural characteristics such as branch misprediction
penalty, as well as common subexpression elimination when present in Boolean
expressions.

Since the cost model plays a principal role in query optimization, we present a
cost model which very precisely models hardware characteristics such as branch
misprediction penalty as well as cache misses. The cost model presented in this
thesis is novel in that it shows a direct relationship between the error in the
cost functions and the plan quality.

The rest of the thesis is organized as follows. In Chapter 2 we presented
the preliminaries required to understand the subsequent chapters. Chapter 3
presents the system prototype used in this work. The cost model used in our
optimization algorithms is presented in Chapter 4 together with the approxima-
tion framework which is used to obtain the parameters for our cost functions.
The optimization algorithm for conjunctive Boolean expressions is the topic
of Chapter 5. A heuristic for Boolean expressions containing both conjunc-
tive and disjunctive predicates is presented in Chapter 6. Chapter 7 presents
a top-down optimization algorithm for Boolean expressions which attains the
optimum in terms of plan quality. Chapter 8 presents a sampling method which
efficiently gathers predicate selectivities. Furthermore, in Chapter 8 we show
how the predicate selectivities gathered by our sampling method can be used
when optimizing queries containing both conjunctive and disjunctive predicates.
Finally, Chapter 9 concludes the thesis.
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In this chapter we present the preliminaries required to understand the work in
this thesis.

Initially we give a brief introduction to the algebra, followed by some back-
ground information about the computer architecture. We conclude this chapter
by presenting details on the two major materialization strategies used in main
memory database systems.

2.1. Relational Model

The relational model was first introduced in 1969 by Edgar F. Codd, and since
then it became the de facto standard for data representation in the database
community. The relational model is quite pragmatic due to its fundamental
building block: mathematical relation. The roots of the relational model come
from set theory and first-order predicate logic.

In the relational model, a database is represented as a set of relations. A
relation consists of set tuples where each tuple is composed of a number of
<attribute, value> pairs. Tuples in a relation represent facts about some entity,
or relationships. Relations can be informally thought of as two-dimensional
tables consisting of rows and columns. Rows represent tuples, whereas columns
represent attribute values drawn from a finite domain.

Movie Year IMDb rating

The Godfather 1972 9.2
The Dark Knight 2008 8.9
Pulp Fiction 1994 8.9
A Beautiful Mind 2001 8.2

Table 2.1.: Movies relation

An example relation about movies has been depicted in Table 2.1. This
relation describes the movie title, the year when the movie first appeared, and
its IMDb1 rating.

The data-manipulation part of the relational model is defined in relational
algebra. The relational algebra operators are divided into two groups. The
first group include set operators coming from mathematical set theory. Such
operators are set union (∪), set difference (∩), set intersection (\) and cross
product (×). Since in relational model relations are defined as a set of tuples,
the above enumerated set operators are applicable. If, however, duplicates are

1http://www.imdb.com/
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to be considered, then we denote with ( -∪) the union operator without duplicate
elimination.

ei ∪ ej := {t|t ∈ ei ∨ t ∈ ej}
ei ∩ ej := {t|t ∈ ei ∧ t ∈ ej}
ei \ ej := {t|t ∈ ei ∧ t /∈ ej}

The second group consists of the operators which were developed for rela-
tional databases. In the second group belong operators such as selection (σ),
projection (π), join (./) among others.

The selection operator filters out all the tuples that do not satisfy the predi-
cate p:

σp(e) := { t | t ∈ e ∧ p(e)}.

We make no restriction on the predicate p, it can include method calls, nested
expressions, etc. Further, if the input of the selection does not contain duplicate
values, the output is duplicate-free too.

The projection operator π can be used to remove attributes

πA(e) := {a1 : x.a1, . . . , an : x.an |x ∈ e}

whereas the operator which is used to create (compute) new attributes is the
map operator χ [4, 44]: χA1:e′1,...,Ak:e

′
k
(e). The map operator extends an input

tuple by a new attribute A, whose value is calculated via an arbitrary expression
e′:

χA:e′(e) := {t ◦ [A : v] | t ∈ e, v = e′(t)},

where ◦ denotes the tuple concatenation operator. We generalize the map
operator for many attributes as follows:

χA1:e′1,...,Ak:e
′
k
(e) := χAk:e

′
k
(. . . χA1:e′1

(e) . . .).

In relational algebra there exists many variants of join operators. Five of
them are rather standard and encountered often in the literature. These are
join, semijoin, antijoin, left outerjoin, and full outerjoin. We will only give the
definition for the cross product and the regular join operator:

ei × ej := {x ◦ y |x ∈ ei ∧ y ∈ ej}
ei ./p ej := {x ◦ y |x ∈ ei ∧ y ∈ ej ∧ p(x, y)},

the definitions for the rest of join operators can be found in [46].

The input to relational algebra operators are instances of relations, and the
result of algebra operators are new relations. The newly produced relations can
be an input to other operators and this way one can flexibly combine a sequence
of relational algebra operations in a relational algebra expression. To this end,
relational algebra expressions enable users to specify their information retrieval
requests. As an example, lets assume that we are interested in finding all the
movie names that appeared in the time period between 1990 and 2005 from the
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movies relation depicted in Figure 2.5. This retrieval request can be expressed
in relational algebra as follows:

πmovie(σyear≥1990∧ year≤2005(Movies)).

Relational algebra is less expressive than conventional programming lan-
guages such as C++, Java, etc. That is, there are computations possible in
programming languages which cannot be performed in relational algebra. How-
ever, limitations in its expressive power make relational algebra easier to write
queries in, and further, they allow the optimizer to generate a highly optimized
code.

2.2. Computer Architecture

In the following subsections, we present computer architectural details which
are of relevance to understanding the material presented later. The material
touching the hardware covers only background information for readers not fa-
miliar with the modern computer architecture and is by no means exhaustive.
Readers interested in more details about the computer architecture are referred
to the excellent book by David A. Patterson and John LeRoy Hennessy – “Com-
puter Architecture: A Quantitative Approach” [27].

2.2.1. Instruction Pipelining in Modern Processors

Figure 2.1.: Illustration of sequential execution and instruction pipelining in a
five stage RISC processor

Execution in a processor is typically broken into a number of stages, where
specialized processor units execute each stage. In the most basic computing
model, the processor executes at most one instruction per clock cycle, this way
only one execution unit is active at any clock cycle while other execution units
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Figure 2.2.: Illustration of a pipeline stall

remain idle. This model is known as the sequential execution model. Modern
processors, however, allow for more than a single instruction to be executed
concurrently at any given clock cycle in order to increase the throughput. This
computation model is known as instruction pipelining, or instruction-level par-
allelism.

Execution stages in a processor typically follow the pattern: instruction fetch
(IF), instruction decode (ID), instruction execute (EX), memory access (MEM),
and write back (WB), i.e., save the results in a register (if necessary). The MEM
stage is applicable only when the instruction needs to access the data memory.
The difference between a pipelined execution model and the sequential one
has been illustrated in Figure 2.1. Note that modern CPUs have more stages
than the ones shown in this illustration, e.g., Intel Haswell processor has a 14-
stage pipeline and on the other extreme, Intel Prescott processor has a 31-stage
pipeline.

2.2.2. Branch Misprediction

For a program without conditional statements, the code is simply a sequence
of instructions allowing for a pipelined execution as shown in the bottom part
of Figure 2.1. If the program, however, contains conditional statements, CPU
tries to predict the outcome of the predicate and load into the pipeline in-
structions corresponding to the predicted execution path. This happens as the
CPU cannot support simultaneously all the possible paths in pipelined execu-
tion, therefore it has to guess the execution path. If the guessed execution
path turns out to be wrong, then several instruction in the pipeline have to be
flushed, thus causing a pipeline stall.

Figure 2.2 illustrates the branch misprediction and the resulting pipeline
stall. Assume that instruction 2 in the illustration is a conditional statement,
and hence at clock cycle 3, the processor speculatively fetches instruction 3 and
as a result, it executes the wrong sequence of the instructions 4,5, and 6. When
instruction 2 is completely executed at clock cycle 6, the CPU detects that the
sequence of the instructions 3-6 are wrongly executed, therefore it flushes the
pipeline and in clock 7 starts loading the correct sequence of the instructions
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7-10. When the instruction 7 is being fetched (IF), there is no overlapping
with earlier instructions due to the pipeline being flushed, and therefore CPU
resources are wasted. That is, the branch misprediction has delayed (stalled)
the execution of the instruction 7 by 4 cycles, whereas the normal delay between
two instructions is only 1 cycle, e.g., see the execution of the instructions 1 and
2 in Figure 2.2.

In real processors, delays due to control hazards like branch misprediction
are much longer as there the number of pipeline stages is larger. In Intel
i7-4770 Haswell processor the branch misprediction penalty is quite severe—
it costs 18-20 cycles2, which makes the optimization of this penalty critical.
The optimization algorithms presented in Chapter 5, Chapter 6 and Chapter 7
judicially optimize this penalty in the context of main memory databases.

Branching and Non-branching Conditions

As mentioned in the previous section, the presence of conditional statements
in a program can cause control-hazards due to branch misprediction(s). A
conditional statement can be composed of multiple predicates connected con-
junctively. Consider the following simple expression containing a conjunction
p1∧p2 of predicates. This conditional statement in programming languages like
C/C++ can be evaluated by expressions either of the form p1&& p2 or of the
form p1& p2. The evaluation of & is performed by first evaluating both its argu-
ments. Then, the logical and (∧) is calculated by a bitwise and operation. The
expression p1&& p2 is evaluated by first evaluating p1. If p1 evaluates to false,
this is the result. If p1 evaluates to true, then and only then p2 is evaluated.
The result of this evaluation is the result of the whole expression. To that end,
the evaluation of the expression p1&& p2 includes a conditional branch, which
introduces a possibility for branch misprediction. The evaluation of the expres-
sion p1& p2 does not include a conditional branch, although after its evaluation
there might be one.

To better understand the branching AND (&&) and non-branching AND (&)
logical connections, let us consider the following simple C/C++ code snippet:

bool branchingAnd ( int p1 , int p2 ) {
i f ( p1 > c1 && p2 < c2 ) {

return true ;
}
return fa l se ;

}

bool nonbranchingAnd ( int p1 , int p2 ) {
i f ( p1 > c1 & p2 < c2 ) {

return true ;
}
return fa l se ;

}

2http://www.7-cpu.com/cpu/Haswell.html
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The first function branchingAnd(int p1, int p2) contains an if condition
with the branching AND (&&) connection, whereas the second function contains
the same condition, however, with a non-branching AND (&) connection. In
the following, we show the assembly code generated when compiling these two
functions using Intel’s C++ compiler (icpc version 16.0.3):

1 branchingAnd ( int , i n t ) :
2 cmp edi , DWORD PTR c1
3 j l e . . B1 . 4
4 cmp es i , DWORD PTR c2
5 jge . . B1 . 4
6 mov eax , 1
7 r e t
8 . . B1 . 4 :
9 xor eax , eax

10 r e t
11
12 nonbranchingAnd ( int , i n t ) :
13 xor eax , eax
14 mov r8d , 1
15 xor edx , edx
16 cmp edi , DWORD PTR c1
17 cmovg edx , r8d
18 xor ecx , ecx
19 cmp es i , DWORD PTR c2
20 cmovl ecx , r8d
21 test edx , ecx
22 cmovne eax , r8d
23 r e t

For the branchingAnd(int p1, int p2) function, the compiler has gener-
ated a conditional jump to location ..B1.4 if the condition p1 > c1 is not
satisfied, as shown in line 3. In such case, the second condition is bypassed
altogether and the function returns a false value. In the generated code, how-
ever, there is also a second conditional jump shown in line 5. The second jump
corresponds to the second condition (p2 < c2), and is taken only if the first
condition succeeds, but the second one fails.

For the nonbranchingAnd(int p1, int p2) function, there are no such con-
ditional jumps in the generated assembly code. Both conditions are evaluated,
and their results are stored in the registers edx, and ecx. These two registers
will hold binary values (1 or 0) depending on the outcome of the respective con-
ditions. In line 21, however, there is a bitwise test instruction, which performs
a bitwise-AND over the registers edx, and esx. If the bitwise test yields 1, the
C/C++ code inside the if statement will be executed, otherwise the code control
will return to the point outside the if statement, that is, our function will return
false. To this end, depending on the predicate selectivities, one should carefully
choose either evaluation method in order to minimize the branch misprediction
penalty. We present in Chapter 5 an optimization algorithm for conjunctive
predicate, which judiciously chooses either logical connection (&& or &) depend-
ing on predicate selectivities in order to minimize the branch misprediction
penalty.
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Memory Size Latency

registers < 1 KB 1-2 cycles
L1 cache 64 KB 4 cycles
L2 cache 256 KB 12 cycles
L3 cache 8 MB 36 cycles
main memory GB to TB 50 - 200 cycles

Table 2.2.: Memory access times in a Intel i7-4770 Haswell processor

Figure 2.3.: Memory organization in a Intel i7-4770 Haswell processor

2.2.3. Hierarchical Organization of Memory

The gap in performance between processor and main memory started from early
80s to widen deeply in favor of processors. Since the processor speed is much
faster than the memory access time, the processor would spend most of the
time idle when requesting data from main memory (DRAM). In order to solve
this problem, computer architects introduced cache memories between the CPU
and the main memory. Caches are small memory pools built using static-RAM
(SRAM) technology, thus have very low access times but they are also very
expensive.

Since cache memory is expensive it is organized hierarchically. Lower level
cache (closer to the CPU) is faster, but smaller and more expensive than the
cache(s) situated in higher level(s). The size as well as the latency overhead of
the hierarchical memory system in a modern processor is shown in Table 2.2.
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Note that L1, L2 caches are typically located on the CPU die while L3 is placed
on the system board as it is shared between the CPU cores in a multi-core
processor. Further, L1 cache is typically divided for data (L1d) and instructions
(L1i). An illustration depicting the hierarchical memory organization in a multi-
core processor is shown in Figure 2.3.

Caches work adhering to the temporal locality principle [27], which means that
caches hold the most recently accessed data. The programs are more likely
to access again the recently accessed data, and due to the temporal locality
principle, the data will be quickly found in the cache and this way resulting
in a cache hit. If otherwise, a cache miss occurs and the data item has to be
brought-in from the memory (DRAM). More specifically, the CPU will first
look-up for a word in the L1 cache, and if not found, it continues searching in
the L2 cache, and if not there, it looks it up in the L3 cache and finally in the
main memory (DRAM). Each transition of the search from one level to another
(deeper) level of memory induces significantly higher look-up costs, as shown in
Table 2.2. Programs should therefore be designed with the memory hierarchy
in mind in order to minimize the expensive memory traffic between the CPU
and DRAM.

For efficiency reasons, the unit of transfer between the cache and the memory
is a block or a cache line at the time. The block is typically 64 bytes long (a
sequence of words) and in an event of a cache miss, a block of 64 bytes is
transfered from memory (or a higher level cache) into the cache. There are
three different placement schemes when it comes to placing a block into the
cache thus leading to the notion of cache associativity :

• n-way set associative cache is divided into sets, where set is a group of
n blocks of memory (or cache lines). A cache line is first mapped to a
set, and then within the set it can be placed anywhere. In order to find a
cache line in the cache, the set where the cache line could belong to is first
computed, and within the set it is searched for the cache line in parallel.
The set is found according to the address of the data [27]:

(cache line address) mod (number of sets in cache),

• direct mapping cache contains sets able to hold only one cache line, there-
fore a cache line is always placed in the same location within a set,

• fully associative cache contains only one set, thus a cache line can be
placed anywhere within the cache.

2.2.4. Virtual Memory

It is rather inefficient to allocate the entire memory space for each process as
many processes use only a portion of their allocated address space. The problem
of sharing the physical memory among processes is handled by the operating
system by means of the virtual memory.

Virtual memory divides the physical memory into pages and allocates them
to each running process. Such an allocation scheme provides protection; each
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Figure 2.4.: Illustration of the contiguous virtual memory on the left and its
mapping into the physical memory and the disk on the right

process can operate only over its allocated space and it cannot access the address
space allocated to other processes. Further, by means of the virtual memory,
the operating system can assign to processes more virtual memory than the
available physical memory. In the sight of the process its assigned (virtual)
memory is contiguous, but in reality its (virtual) memory space can be mapped
to pages scattered across different locations in the main memory including the
disk as well. Figure 2.4 illustrates the mapping of the virtual address space to
the physical address. The page size depends on the processor architecture and
is typically set to 4 KB, but larger pages are also supported.

Besides managing the physical memory and protection of the address space,
virtual memory offers another benefit, it allows loading the same program on
any physical memory location by means of relocation [27]. That is, the physical
memory of a program can be placed anywhere in the main memory or disk and
only the mapping of the virtual address space to physical memory need to be
updated.

Virtual memory as seen by the process needs to be translated into the physical
memory which is used by the hardware. This job is handled by the operating
system by utilizing a data structure known as page table. That is, page table
allows for translating virtual addresses to physical addresses. Since accessing
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the page table for each translation request is an expensive operation, there
exists special cache memory dedicated for holding entries of this structure,
called translation lookaside buffer (TLB). Details on this structure are given in
the following subsection.

2.2.5. Translation Lookaside Buffer

Page tables are typically very large and therefore stored in main memory. A
request to translate a virtual memory address to physical memory address takes
two memory accesses. The first one is to query the page table (a process called
page walk) and the second one to access the actual data. In order to spare the
traffic to main memory, most recent address translations are kept in a special
cache called translation lookaside buffer (TLB). Just like the regular cache,
the TLB is also hierarchical (L1, L2, L3), and divided for data (D-TLB) and
instructions (I-TLB).

If the entry for an address translation request cannot be found in the TLB,
an event known as TLB miss occurs. The TLB miss event triggers a page table
lookup which is an expensive operation as it amounts to reading a number of
memory locations in the page table in order to determine the physical address
required by the process. Once the physical address is determined, it is then
stored in the TLB, such that future memory translation requests result with a
“TLB hit” and this way the expensive page lookups are avoided.

TLB is a very scarce resource, e.g., in Intel Haswell i7-4770 processor, L1 TLB
has a capacity of only 64 entries and is 4-way set associative. Further, L1 TLB
is split into the TLB for program addresses (I-TLB) and for data addresses
(D-TLB). That is, the D-TLB and I-TLB have a capacity of only 32 entries
each. Such a small L1 TLB capacity means that the new incoming translation
requests if not present in the TLB evict older entries—as in TLB are kept only
the most recent entries, according to the temporal locality principle—and this
way causing expensive page lookups. Further, equally aligned addresses may
also cause expensive page lookups as they mutually evict entries of one another
in the TLB, even if the TLB capacity is not exhausted. This is due to the
limited associativity typically found in TLBs. We show in Chapter 3 how the
mutual eviction of equally aligned addresses affect a column store and how this
problem can be alleviated.

2.3. Storage Layouts for a Main Memory Database
System

Conceptually, database tables are two dimensional structures; columns repre-
senting the attribute values whereas rows represent the data about each entity
individually. The conceptual design, however, differs from the physical design:
the two dimensional tables need to be mapped to a one dimensional data struc-
tures, which are then stored in the storage medium (e.g., disks, RAM).

In the database world, there exists two major storage layouts: 1) the row-
layout or the n-ary storage model (NSM) which stores the tables in a row-

26



2.3. Storage Layouts for a Main Memory Database System

by-row fashion, and 2) the columnar-layout or the decomposed storage model
(DSM) [15], which stores the tables in a column-by-column fashion. Both stor-
age layouts are prevalent in commercial databases. In the following subsections,
we give more details on each respective storage layout.

2.3.1. Row Stores - NSM Layout

In NSM (N-ary Storage Model) storage layout, relations are stored in a row-
by-row fashion, where each row corresponds to a tuple. That is, all attribute
values of a tuple are stored closely together.

An example C++ code fragment of our Movie database in the row storage
layout is shown below:

struct movie t {
std : : s t r i n g movie ;
int year ;
double r a t i n g ;

} ;
s td : : vector<movie t> Movies ;

Row stores were designed with the goal of handling OLTP workloads. In such
workloads the records are read/updated in an entity granularity, e.g., update
a customer’s bank balance, transfer funds from one customer to another, etc.
Since the data in a row store are stored in tuple-wise fashion, row stores have a
low tuple reconstruction costs due to the co-location of attribute values. On the
other hand, sequentially scanning a single attribute (or few attributes) in a row
store is an expensive operation as the entire rows have to be fetched from the
main memory/disks, thus resulting with a suboptimal utilization of the memory
bandwidth. In addition, caches are loaded with unnecessary attribute values.
Section 2.3.2 show experimentally that read operations over a single attribute
in a row store are much more expensive than in a column store.

2.3.2. Column Stores - DSM Layout

In contrast to row stores, column stores partition relations vertically into bi-
nary relations, where each such binary relation corresponds to an individual
attribute. That is, a relation with n attributes is decomposed into n binary
relations. Binary relations in turn are composed of two attributes: the sur-
rogate, and the attribute. Note that surrogates (i.e., rids) can be left virtual,
they do not have to be explicitly materialized. This storage scheme is known as
the DSM (Decomposition Storage Model) [15] or vertically partitioned storage
layout. MonetDB [5] is a notable system adopting this storage layout.

Figure 2.5 depicts our example of Movies relation and its decomposition into
the DSM storage layout. The original relation can be reconstructed by means
of joins on rids.

An example C++ code snippet for our example Movie database in the colum-
nar storage layout is shown below.

struct Movie {
std : : vector<std : : s t r i ng> movie ;
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Movie Year IMDB rating

The Godfather 1972 9.2

The Dark Knight 2008 8.9

A Beautiful Mind 2001 8.2

rid Movie

1 The Godfather

2 The Dark Knight

3 A Beautiful Mind

rid Year

1 1972

2 2008

3 2001

rid IMDB rating

1 9.2

2 8.9

3 8.2

Figure 2.5.: Vertical partitioning of the Movies relation

std : : vector<int> year ;
s td : : vector<double> r a t i n g ;

} ;

Column stores open a possibility for a fine-grained (selective) representation;
a column can be stored in multiple sort orders, thus allowing for better com-
pression schemes. In general, column stores yield very good compression ratios
(e.g., see [2]) as the data of each attribute are kept close together, and further,
they are of the same type, thus reducing the entropy.

Column stores are especially attractive for applications in the Business In-
telligence (BI) domain. In contrast to row stores where queries operate on an
entity granularity, queries in the BI domain are typically long running queries
(known as OLAP queries) producing data summaries over a large set of records
but touch only few attributes, e.g., find the average balance of all customers
for 2016. Column stores offer an attractive query execution environment for
OLAP queries, as they allow fetching from the memory/disk only the columns
used in the query (and not entire rows), and this translates to reading less data,
thus the better utilization of the memory bandwidth. Column data items are
much smaller in width (compared to reading entire rows as it is the case with
row stores), therefore they fit nicely into CPU caches and this way allow for a
reduced cache miss ratio.

The scan operator is a fundamental operator in a database system as all other
operators are built on top of the scan operator. Scan operations over columns in
column stores are extremely efficient operations due to the locality of data items
in the respective columns. A column scan operation exhibits a sequential access
pattern, enabling the CPU prefetcher to bring into CPU cache the column items
in advance, and this way minimizing the memory access latency. To show this,
we have performed a small experiment showing the time it takes a sequential
scan over a single attribute in a row store vs. column store.

For this experiment, we have used our movie database; for the row store, the
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Figure 2.6.: Scan time in a row store and a column store over a single attribute

data were materialized in main memory in an instance of the movie structure
shown in the code snippet in Section 2.3.1 and for the column store, in an
instance of the structure shown in the code snippet above.

A number of relations were generated with cardinalities starting from 216 and
up to 228. The attribute values for the relation Movies were picked randomly
from a pool of movie data collected from IMDb. The query used in this experi-
ment projects the values of the attribute year: πyear(Movies). The query was
hand-coded in C++, and executed over both, the row and column store. The
runtime of the scan operations for both, the row store and the column store
were measured over all the relation sizes 216 − 228. The experiment was run in
a machine with Intel Xeon E5-2690 v2 3.00GHz processor and 256 GB of main
memory. The results of this experiment are shown in Figure 2.6.

As it can be seen in Figure 2.6, the scan operation in the column store is
by far more efficient than the same operation over the row store. For example,
if we look at the relation cardinality of 228, the scan operation in the column
store is a factor of 12 cheaper than the same operation in the row store. Such a
large difference in the runtime comes mainly from the fact that only the values
of the attribute year were required in the query. In the column store, the
scan operator iterates over the items of a single vector; the column items of
the attribute year are narrow in width (i.e., 32 bits), therefore they fit nicely
into the CPU cache lines. In contrast to the column store, in the row store
the tuples are much wider—they contain the values of all the attributes in the
scanned relation—thus causing expensive cache misses. In column stores, the
cache lines are filled with consecutive data items from the particular column
being scanned, allowing for an optimal utilization of the cache. That is, the
cache lines are not polluted with irrelevant data belonging to other attributes
which are not required in a query. In row stores, all the attribute values of a
tuple have to be brought into the cache lines even if the values of only a single
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Figure 2.7.: An UML graph of physical operators in SystemTx

attribute are required, therefore, the cache lines are polluted with unnecessary
data items. Of course, our experiment was biased towards column stores as
the query projected the values from a single attribute only. Nevertheless, our
experiment shows the superiority of column stores for applications that require
reading large amount of data but from rather few columns, as it is the case with
OLAP workloads.

2.4. Iterator Model

Query execution in traditional database systems consist of physical operators
that implement an interface consisting of three primitive virtual functions:
open(), getNext(), and close(). This is known as the volcano-style [23] iterator-
based query execution, or simply the pull model.

An UML class diagram of operators that implement these virtual functions
in SystemTx has been depicted in Fig. 2.7. We separate the operators in three
groups: scan operators, which basically scan the source of tuples, the second
group consists of operators that consume tuples from a single input. The third
and the final group consists of operators that consume tuples from two inputs,
e.g., the left and the right input in a join operator.

A volcano-style query execution works by first having the root operator call
the function open() on all its children operators all the way to the leaf opera-
tors. In response to this call, each operator in the operator tree initializes its
resources. A consumer operator, in this case the root operator pulls the tuples
from its children operators by means of the function call getNext(). After the
entire stream of tuples has been processed, the root operator propagates the
function call close() to all its children operators, and as effect, all the operators
receiving this call close their resources and release their buffers. This iterator
model (pull model) is illustrated in Figure 2.8.

The dual of the pull model is the push mode. The push data flow model differs
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Figure 2.8.: Illustration of the pull-based iterator model

from the pull data flow model, in that the stream of tuples are not pulled but
rather pushed towards consumer operators by their children operators all the
way to the root (top-most) operator. It has been shown in [52] that the push
model allows for a better code and exhibits better data locality. We have,
therefore, implemented the push model in our system.

In the literature, tuple producing operators are categorized into three groups:
operators that produce tuple-at-a-time, operators that produce a block of tu-
ples – chunk-at-a-time, and the operators that materialize entire columns -
column-at-a-time. In the following subsections, we briefly explain these groups
of operators.

Tuple-at-a-time

Tuple-at-a-time is an iterator model used commonly in traditional database
systems, whereby operators produce a single tuple for each getNext() function
call. In this approach, operators do not materialize tuples, but they route
them to their parent operator (consumer operators). This is known in database
terminology as pipelining.

On the other hand, pipeline breakers are those operators that materialize
their tuples before passing them to the next operator. A good example of a
pipeline breaker is the hash-join operator. The tuples from one of its sides
(recall that join operators are binary operators) are materialized in a hashmap
structure, therefore the pipeline is broken. The tuples from the other side are
then probed against the hashmap, and only if they qualify after this step, they
flow to the next operator.

The main drawback with the tuple-at-the-time execution paradigm is that it
incurs high interpretation overhead. Depending on the operator tree size and
the selectivity of predicates, an arbitrary large number of function calls take
place before a tuple is produced and has reached the root operator. That is,
the function getNext() can be called million times or more to process a column,
depending on the column size. In addition, each function invocation (e.g.,
getNext()) corresponds to a look-up in the virtual function table, thus adding
more costs. As the function call getNext() is routed from one operator to another,
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the CPU cache has to be flushed and reloaded with operator specific instructions
as well as operator data. Inadvertently, this leads to high cache miss-ratio, and
causes expensive memory stalls.

Ailamaki et. al [3] show that 90 % of memory stalls in database systems are
caused by first level (L1) I-Cache and second level (L2) D-Cache misses. First
level I-Cache size is relatively small (in range of 4 - 32 KB), hence instruction
misses occur often in the tuple-at-a-time iterator model even for a small operator
tree size.

Chunk-at-a-time

Chunk-at-a-time is an execution scheme where instead of pipelining a single
tuple, operators fill a chunk with tuples and pass an iterator (which is merely
a memory reference) to their parent operator. An iterator in this context is
a pointer that points to the chunk’s start address. We refer to the chunk as
buffer, which has a start position, a size attribute, and an end position.

Chunk-at-a-time scheme has the advantage that only a memory address is
routed from one operator to another instead of expensive copies of chunks.
However, operators in this approach have to break the pipeline, due to buffer
materialization, thus costing additional memory. The advantage of the chunk-
at-a-time approach however is that it allows for block-oriented processing of
tuples, thus reducing significantly the number of getNext() function calls. The
latter is replaced by the getNextBlock() function call which significantly amortizes
the costs of the function call getNext(), as getNextBlock() is called on chunk-basis
and not on tuple-basis, as it is the case with getNext(). In chunk-at-a-time, the
consumer operators iterate over tuples in a chunk in a tight loop, e.g.:

for(Iterator* it = chunk.begin(); it != chunk.end(); ++it) {

// do smth with a tuple, e.g., print it

print(*it);

}

The processing of tuples in a tight-loop opens doors to the efficient vectorized
execution, as such tuple iteration is not interrupted by the function calls get-

Next(), i.e., more valuable CPU time is spent on operating over values than on
function call overhead [7, 64]. This scheme opens doors for other optimizations
such as loop-pipelining, automatic SIMD code generation by the compiler, less
data cache misses due to high data locality (cache lines are filled with data
from one chunk, thus less memory traffic). A notable system implementing this
execution scheme is VectorWise [66].

Chunks hold relatively small number of (cache resident) items and are ma-
terialized incrementally. Chunks are implemented as an array (vector) in the
actual code. The array size is a system parameter and it is set in accordance to
the cache size, such that the arrays can fit into the CPUs L2 D-Cache. If arrays
do not fit into the CPUs cache, expensive memory traffic between cache and
main memory is caused. Such traffic forms a major bottleneck in main memory
database systems. This is well illustrated in the Figure 2.9. According to the
experiments in [65], as the vector size increases beyond 2K elements, they start
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Figure 2.9.: Illustration of tuple processing schemes. The x-axis denotes the
vector size. Figure taken from [65].

spilling into main memory (they don’t fit any longer into the CPU cache), thus
expensive memory traffic is caused.

Column-at-a-time

Systems like MonetDB [6] have taken the other extreme and materialize inter-
mediate results - entire columns.

Materializing entire columns leads to the advantage that only one function
call is required for processing all the tuples by a single operator. Just as in
chunk-at-a-time execution model, this execution scheme opens ways for opti-
mizations such as loop-unrolling, automatic SIMD instruction generation by
compilers, etc. That is, tuple interpretation overhead is significantly reduced,
however, at the price of high memory consumption. When working with large
data sets, expensive memory traffic is caused by each operator, as operators
will spend significant time writing into memory, and the intermediate results
won’t fit into the CPU cache, see Fig. 2.9. This problem is further exacerbated
with multi-CPUs which share their memory, as shown in [64].
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In this chapter, we first present our main memory column oriented database
system coined SystemTx. After a brief introduction of SystemTx, a section
follows which presents the initial storage layout used in SystemTx. The initial
storage layout was then replaced by a new storage layout as it caused high TLB
miss rates when scanning multiple columns sequentially. The underpinnings of
the new storage layout are the topic of the last section of this chapter.

3.1. Introduction

Although SystemTx is a main memory column store, we use rows/tuples as
a representation of intermediate results. This allows for better cache locality
during the evaluation of expressions. Second, we implemented the push-based
model, as it allows for better code and exhibits better data locality [52]. In a
push-based model, each algebraic operator implements an interface with init,
step, and close functions. The step function is the most important. It accepts
an input tuple, processes it, and passes it to the consumer operator up the tree
via calling the step function of the consumer.

TX_Scan::run() {

for(i=0; i<|R|; ++i) {

t.rid=i; t.ap++; t.bp++; t.cp++ ...

consumer.step(t);

}

}

The RID variable and the column pointers in tuple t are maintained by the scan
operator (as depicted in the pseudo code above). This way, they point to the
correct column values, and upon request, such column values can be fetched by
means of the map operator, as shown in the code snippets below.

In SystemTx, there exist two ways of dereferencing (accessing) column values.
The first method accesses column values based on row identifiers (RIDs). In
pseudocode, this reads as:

Tx_MAP1::step(t) {

t.A = R.A[t.rid];

t.B = R.B[t.rid];

t.C = R.C[t.rid];

...

consumer.step(t);

}
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The second method accesses column values based on column pointers

Tx_MAP2::step(t) {

t.A = *(t.ap);

t.B = *(t.bp);

t.C = *(t.cp);

...

consumer.step(t);

}

The column values are also stored in the tuple t, which is then passed to the
next operator (consumer) in the operator tree.

The selection operator simply pipelines the qualifying tuples to its consumer
operator.

Tx_Select::step(t) {

if(p(t)) consumer.step(t);

}

3.1.1. Physical operators in SystemTx

In this section, we present physical operators implemented in the SystemTx
that are of relevance to this thesis work.

Sequential scan operator scan(R) scans an input relation R by means of
a tuple t. The tuple t contains an attribute named RID, which represents the
row identifier and pointers to columns of R; these pointers are offsets to the
respective column values. The number of pointers in tuple t is query dependent,
that is, for each attribute required in a query, there is a pointer to the values
of that attribute (i.e., column).

The scan operator iterates over all “tuples” by incrementing the pointers
in t and the RID variable. The tuple t is pushed iteratively to the consumer
operator via the consumer’s step method call as shown in the pseudo of the
previous section.

Before we present the bypass selection operator, let us briefly recall the reg-
ular selection operator defined in Section 2.1. The selection operator σp(e) :=
{ t | t ∈ e ∧ p(e)} filters out all the tuples that do not satisfy the predicate p.
The tuples that pass the predicate are passed up higher in the tree to the next
operator.

Bypass selection operator σ+p (e) := { t | t ∈ e ∧ p(e)} and σ−p (e) := e −
σ+p (e) ≡ { t | t ∈ e ∧ ¬p(e)} in contrast to the regular selection operator bifur-
cates the input stream into two disjoint streams; the true stream denoted by
σ+p (e), and the false stream denoted by σ−p (e), respectively. To this end, the
two output streams are finally merged by the union operator -∪ (without an
expensive duplicate elimination, see Section 6.4), sitting on top of the plan.

One should not think of the bypass selection operator as two operators, where
one produces the true stream and the other one the false stream of tuples. This
operator is implemented as a single operator σ± and produces both streams
simultaneously. The benefits of the bypass selection operator are shown in
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Figure 3.1.: Column access costs over the initial storage layout

Chapter 6. In the following, the pseudocode for bypass selection operator is
shown.

Tx_BYPSelect::step(t) {

if(p(t)) {

consumer_true.step(t);

} else {

consumer_false.step(t);

}

}

3.2. A Bad Storage Layout

In this section we present our initial storage layout used in our in-memory
database system – SystemTx. In this storage layout relations are entirely kept
in main memory, and they are vertically partitioned (DSM scheme), that is,
attribute values of each attribute are stored in a separate column. Columns in
turn are stored in separate vectors (i.e., arrays), just as in the example storage
layout given in Section 2.3.2. A relation R may contain a number of such
vectors depending on the number of attributes, whereby each vector represents
an individual attribute of R.

One important cost factor in a main memory column store is the cost of the
dereferenciation operator used for column access [1]. The scan time of course
is proportional to the cardinality of the column. Thus, several relation sizes
must be tested. We were interested in the costs of scanning multiple (i.e.,
1, 2, . . . , 9) columns simultaneously. The measurements for such scans over our
initial storage layout are contained in Figure 3.1. The x-axis is labeled by the
base-2 logarithm of the relation’s cardinality. The y-axis presents the access
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Figure 3.2.: The effect of DTLB misses on a column store

time per column and row in nanoseconds. Each of the curves 1-9 corresponds
to 1-9 simultaneous column scans.

From the cost function point of view, these curves are sub-optimal. They give
the impression that they cannot be easily approximated with a high precision,
i.e., an approximation yielding a small q-error (cf. Chapter 4). And indeed,
the visual impression turned out to be true. Further, note the steep increase
from relation size 221 to 222. To accurately model this steep ascent, additional
relation sizes between these two points (221 − 222) would have to be generated
and scan costs on these would have to be measured. Clearly, this would have a
profound negative impact on the calibration time of the cost model. Last but
not least, we were not satisfied with the high latency in column accesses, which
as shown in Figure 3.1 are in order of 30 ns for 9 columns. To this end, our
initial storage layout proved to be a bad basis for a query execution engine.

An analysis of the cause of this bad behavior revealed the following. The
reason for the steep increase in the latency times is the high rate of L1 DTLB
misses (details are given in Sec. 2.2.5). To understand why this effect only
shows for more than 4 simultaneously scanned columns, it is important to know
that the processor used is an Intel Xeon E5-2690 v2 3.00GHz processor. This
processor has four prefetchers, explaining that there is virtually no difference
in time between scanning 1 column and scanning 4 columns simultaneously.
The second important piece of information is that the processor has a 4-way
associative L1 DTLB. This explains why the curves go higher and higher for
more than 4 simultaneous column scans. That is, the fixed stride in such column
accesses operations lead to the eviction of DTLB entries. The last point is that
the steep increase occurs only for relations with cardinalities larger than 221.
This is explained by the small L1 DTLB size.

We have repeated the same experiment using newer hardware (Haswell and
Skylake XEON processors). The results of this experiment are shown in Fig-
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Figure 3.3.: The effect of DTLB misses on a column store

ures 3.2-3.3. In the new experiment with the new hardware, we see that the
effects of the DTLB misses are not as severe as in the previous experiment.
Nevertheless, in the next subsection we present a new storage layout which al-
leviates the negative effect of DTLB misses regardless of the hardware (new or
old), and in addition, the scan operations become cheaper.

3.3. Storage Layout in SystemTx

Having found the reason for the steep ascend in access time, we were looking
for the cause within the initial storage layout. In the initial storage layout,
during bulk load and during restart, system allocates huge chunks of memory,
holding, whenever possible, a whole column of a given relation. This results
in scan strides which suffer badly from L1 DTLB misses. Thus, we decided to
implement a new storage layout. In the new storage layout, we changed (among
other things we did not like either) the memory allocation strategy. Instead of
allocating huge chunks for each column, we allocate multiple smaller chunks
of memory for each column. These chunks are not of fixed size but instead
are able to contain a fixed number of attribute values. Further, the allocation
strategy goes round robin on the columns. This is illustrated in Figure 3.4.
The green rounded rectangles represent the logical columns, and the white
rectangles represent the column chunks, which in the figure are accidentally all
of the same size. The line with the arrows demonstrates the timeline of the
chunk allocation process. Each column maintains offset pointers (in an array)
to the beginning of each of its constituent chunks. Using these pointers we can
iterate over items belonging to a column as if they were stored contiguously in
the memory. Since the chunk’s cardinality is known (is a global parameter), we
do not risk overflowing the chunks when scanning columns. Upon scanning all
the items belonging to a single chunk, we jump to the next chunk (belonging to
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Figure 3.4.: Illustration of the chunk-wise storage layout in SystemTx

the column that we are currently iterating) by following the next chunk pointer.
Technical details on the allocator are presented in Appendix A.1.

The benefits of the new storage layout for the old and new hardware can
be seen in Figures 3.5–3.7. The curves are now more streamlined, therefore
allowing for better approximation by cost functions (cf. Chapter 4), and further,
the absolute column scan costs have also dropped as a side-effect, which we
warmly welcomed.
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Figure 3.5.: Reduced DTLB miss effect using the new storage layout
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Figure 3.6.: Reduced DTLB miss effect using the new storage layout

41



3. SystemTx

 0

 1

 2

 3

 4

 5

 6

 7

 12  14  16  18  20  22  24  26  28

ti
m

e
-p

e
r-

tu
p

le
 [

n
s]

relation size [log]

Intel(R) Xeon(R) CPU E5-2620 v4  2.10GHz

1
2
3
4
5
6
7
8
9

Figure 3.7.: Reduced DTLB miss effect using the new storage layout
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In this chapter, we present the cost model derived from our column store –
SystemTx. Cost model presented in this chapter is used by the optimization
algorithms presented later in Chapter 5 to Chapter 7.

The contents of this chapter were published in [33].

4.1. Introduction

The goal of the query optimizer is to find the optimal (i.e., the cheapest) plan
from the space of all possible plans. Query optimizers discriminate the enu-
merated plans based on their costs. Since the cost metric plays a decisive role
in finding the “cheapest” plan, it is important that our cost model closely re-
sembles the true costs of a plan, i.e., the cost of an actual execution of the
plan. The cheapest plan doesn’t necessarily have to be the plan with lowest
running time, it could be the one that minimizes the energy consumption (e.g.,
for databases running on handheld devices), or the time until the first tuple is
produced. Nevertheless, in this chapter we assume that the cheapest plan is
the one with the lowest total execution time.

In the new era of emerging main memory databases, the role of I/O costs
has diminished, whereas the CPU costs have taken the dominating role. In
main memory databases, CPU architectural characteristics such as the branch
misprediction penalty can outweigh by far the costs of simple comparisons,
therefore they should be well estimated by a cost model. Further, costs such as
accessing column values, incrementing iterators, tuple pipelining etc., play an
equally important role in a main memory database system.

In this chapter, we tackle two subproblems related to the cost model. First,
we establish the cost functions, and second, we show how to obtain the param-
eters for the cost functions.

Cost functions cannot model 100% error-free the true costs of a plan due to
the speculative nature of modern CPUs, hierarchical memory etc. However, we
should strive to minimize the error if the goal is to find the best plan, i.e., the
plan with the lowest execution costs. The majority of the cost function in the
literature minimize the `2 error. Since `2 does not provide bounds on error, it
is not suited for query optimization. In this thesis, we approximate the cost
functions under the q-error. Approximation under the q-error, it turn, provides
us bounds on the quality of the approximation. In the light of q-error, we
present two important findings: (1) we show that if our cost function is precise
up to a factor q, then the plan picked by our optimizer under this (erroneous)
cost function is at most a factor of q2 far from the optimal plan. That is, we
show a direct link between the error of the cost functions and the plan quality.
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Although a direct link between the error of the cardinality estimation and the
plan quality has been shown in [48], we show for the first time that there is also
a direct link between the error of the cost function and the plan quality. (2)
We show that if the q-error is bounded by a small q, then the best plan picked
by the optimizer is still the optimal plan.

Cost functions depend on cardinalities. In Chapter 8, we present an efficient
method based on sampling which can be used to find the selectivities for all the
subsets of predicates given in a query.

The rest of the chapter is organized as follows. Related work is described
in Section 4.2. In Section 4.3 we define the q-error, whereas in Section 4.4 we
show its theoretical implications for our cost model. In Section 4.5 we state the
cost functions for the physical operators scan, selection (σ), and the map (χ)
operator. Additionally, we provide cost functions for the evaluation of conjunc-
tions p1∧p2 of predicates by expressions either of the form p1& p2 or of the form
p1&& p2. The benefits of each of these alternatives were discussed in depth in
Section 2.2.2. Section 4.5 also includes the cost functions for memory accesses
and branch misprediction. In Section 4.6 we present our approximation frame-
work which is used to obtain the parameters for our cost functions, whereas the
validation of our cost model is shown in Section 4.7.

4.2. Related Work

An accurate generic cost model for main memory database is presented by
Manegold et al. [40]. Their cost model covers the hierarchical memory model in
modern processors (cf. Section 2.2); it accounts for architectural characteristics
such as cache and TLB misses. It further distinguishes between sequential and
random access patterns as obviously they exhibit different costs. The authors
in [40] provide a calibrator1 tool, which can be used to extract parameters
for their cost model. Such parameters include the size of the CPU cache(s),
cache line size, memory access time, TLB miss latencies etc. Despite being
quite precise, their cost model does not account for the branch misprediction
penalty, which in turn, is an important cost factor for main memory databases
as we will show in this chapter.

The work in [54] extends the cost model in [40]. It adapts it for the partially
decomposed storage model (PDSM) for main memory databases [24] and JIT
compiled queries. JIT compiled queries contain many nested interleaved physi-
cal operators which result with complex memory access patterns, thus making
the cost model non-trivial to devise. In this work, the cost of branch mispre-
diction penalty for queries over the generated partitions are not accounted for.
However, the branch misprediction penalty in Intel processors outweighs both
L1 and L2 data cache misses in terms of CPU cycles2.

Another cost model for partially decomposed storage model for main mem-
ory databases was presented by Grund et al. in [24]. They first present a
cost model which aims to accurately model the cache miss rate for a given

1http://homepages.cwi.nl/˜manegold/Calibrator/
2http://www.7-cpu.com/cpu/Haswell.html
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partitioning scheme. Having a cost model that models the cache miss rate,
they present a database design algorithm for finding a partitioning scheme for
a given workload, which minimizes the cache miss rate. The cost of the branch
misprediction penalty for queries over the generated partitions is not accounted
for.

To the best of our knowledge, the work by Ross [56] is the first one that
provides a cost model which includes the branch misprediction component.
However, the cost model in [56] is rather simple, it assumes a perfect branch
predictor in a CPU. That is, it assumes that a branch will be taken whenever
the selectivity of an atomic predicate sel(p) > 0.5, or otherwise, i.e., when
sel(p) ≤ 0.5. In reality, the branch predictor in CPU is a much more complex
piece of hardware and using such a simple prediction model, one cannot truly
model it. We take a different approach, we approximate the branch mispredic-
tion costs over the entire selectivity range. Our approximation method relies
on the recent advances in approximation theory, thereby yielding a cost func-
tions which models branch misprediction very accurately, as confirmed by the
validation of our cost functions in Section 4.7.

4.3. The Convex Paranorm: Q-paranorm

In this section, we give some background information on the Q-paranorm, in
order to understand the error metric used in this work. A detailed exposition
of this subject is given in [45, 46].

The norms `1, `2, `∞ are generally well known and well covered in the litera-
ture, however that is not the case with `q. For x ∈ R, the Q-paranorm (‖.‖Q)
is defined as follows [45]:

‖.‖Q =


∞ if x ≤ 0

1/x if 0 < x ≤ 1

x if 1 ≤ x

The multivariate case is defined by simply taking the maximum over all elements
of x:

‖x‖Q =
n

max
i=1
‖xi‖Q

The Q-paranorm is denoted by `q. In similar fashion as with the norm, we now
give the definition of the paranorm.

Definition 4.3.1. (paranorm) Let V be a linear space, and let ‖.‖ : V → R,
where ‖.‖ is a real-valued function over V , such that

1. ‖w‖ ≥ 0

2. ‖w + v‖ ≤ ‖w‖+ ‖v‖

Then ‖.‖ defines a paranorm in V .
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name definition minimizes error

median

{
x(n+1)/2 n is odd

(xx/2 + xn/2+1)/2 n is even
E1 =

∑
i |xi − x̂|

mean 1
n

∑
i xi E2 =

√∑
i(xi − x̂)2

middle (max(X) + min(X))/2 E∞ = maxi |xi − x̂|
q-middle

√
max(X) min(X) Eq = maxi max{xi/x̂, x̂/xi}

Table 4.1.: Equations for approximating a set of numbers and the error they
minimize

The distance of two vectors w, v ∈ Rn under `q is defined as follows

dq(w, v) = ‖w/v‖Q, v > 0

and the w/v for the vectors w and v is defined simply as element-wise division:

w/v = (w1/v1, w2/v2, . . . , wn/vn)ᵀ, vi > 0

The symbol ᵀ denotes the transposition.
Given the background information on vector norms, we state formally our

approximation problem: For a matrix A ∈ Rm×n, and set of points (xi, yi),
where (1 ≤ i ≤ m), and ~y = (y1, y2, . . . , yn), we need to find a vector ~c ∈
Rn, so the distance d(A~c, ~y) is minimal. The vector ~c is then called the best
approximation, or the solution.

Our goal is to find the best approximation under `q, as we want to minimize
the multiplicative error Eq.

Let x > 0 be a value and x̂ > 0 be an estimate for it. Then, the q-error of
the estimate x̂ is defined as

q-error(x̂) := ‖x̂/x‖Q , (4.1)

Thus, the q-error measures the factor by which the estimate x̂ deviates from
the true value x.

A strong argument for choosing the q-error as the error metric is that the
q-error gives error bounds, which is not the case with `1 nor with `2. Linear
regression for instance, minimizes `2, and since it gives no error bounds is not
useful in the context of query optimization. This leads to the question why
is the error bound important? If we have an error bound, then for a given
estimate x̂ we can derive the interval which with certainty contains the true
value x. Even more importantly, error bounds enable us to establish a direct
link between the quality of the cost function and the plan quality. More details
will follow in the next section.

Let us exemplify this with a concrete example. Assume we have a set of
points Z = {2, 4, 9}, and then we derive the following approximations for Z,
according to the equations given in Table 4.1, thus yielding:

The error which is minimized by each approximation is given in the rightmost
column of the Table 4.1. Out of the error metrics shown in the rightmost column
of Table 4.1, only E∞ and Eq give error bounds.
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median mean middle q-middle

4 5 5.5 4.2

Now lets derive the error bounds for E∞. If max(x) − min(x) defines the
spread δ of x, it follows that for every value xi ∈ X, where X is the set of
values we wish to approximate:

m− δ/2 ≤ xi ≤ m+ δ/2

and m is the middle of X. This way we have an additive and symmetric error
bound for all elements in the set X.

For our example set Z, we have m = 5.5 whereas δ = 9− 2 = 7. Thus all the
elements xi ∈ Z are bounded by

5.5− 7/2 ≤ xi ≤ 5.5 + 7/2 =⇒ 2 ≤ xi ≤ 9.

If we inspect the elements of our example set Z, the inequality shown above
indeed holds for all the elements of Z.

In similar fashion as for E∞, we now show how to derive the error bounds for
the q-error too. The geometric spread [46] is defined as δ =

√
max(x)/min(x).

Having the geometric spread, we can derive a (symmetric) multiplicative error
bound for all elements xi ∈ X as:

(1/δ)q ≤ xi ≤ δq

where q is the geometric mean (q-middle).

4.4. The Link between Q-Error and Plan Quality

One can not expect that cost functions give exactly the same results as the mea-
sured costs, especially since the measured costs are typically non-deterministic.
It follows that an error metric is required in order to measure the deviation of
the estimated from the measured costs.

The error metrics we use is the q-error. The definition of the q-error was given
in the previous section (see Eq. 4.1). The q-error itself is well known [9, 17,
21, 32, 48], but so far has only been applied to measure cardinality estimation
errors. We apply it to measure the error of cost functions and show that there
is a direct link between the q-error and plan quality.

Let C(e) denote the result of some cost function applied to some algebraic
expression e, and let M(e) denote the true measured costs (e.g., runtime).
Then, according to our definition (cf. Eq. 4.1), the q-error of the cost function
C(e) is

q-error(C(e)) = ‖M(e)/C(e)‖Q .

Choosing the q-error as the error metrics of choice is well justified by the
following theorem and its corollary, for which we need some preparation. Let
E = {e1, . . . , ek} denote a set of plans. This set could be, for example, a
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set of plans equivalent to a given query and generated/explored by the plan
generator. However, E can be an arbitrary set of plans, making the theorem
and its corollary very general. Further, let eopt in be the optimal plan in E for a
query Q, minimizing M(e), and ebest the best plan in E , minimizing C(e). We
are now interested in the factor by which the true costs of ebest are larger than
the true costs of the optimal plan eopt. An upper bound for this factor is given
in the following theorem.

Theorem 4.4.1. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q, then
‖M(ebest)/M(eopt)‖Q ≤ q

2

Consider the case where E contains all the plans for a given query. Then,
Theorem 4.4.1 tells us that if our cost function is precise up to a factor of q,
then the plan picked under this (erroneous) cost function is at most a factor of
q2 away from the optimal plan. Since q2 grows fast, this gives us some incentive
to minimize q.

In terms of the cardinality estimation error, it was shown in [48] that the
theoretical upper bound for the plan quality is higher, a factor of q4, given that
the q-errors of the cardinality estimates are bounded by q. In line with these
two theoretical findings are the experimental results of Leis et al. [38]. They
observe that cardinality estimation errors have a much higher impact on plan
quality than cost model errors.

An important corollary to the theorem is:

Corollary. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q and for all ei 6= eopt

q <
√
‖M(ei)/M(eopt)‖Q,

then
M(ebest) =M(eopt).

Thus, if the q-error of C is small enough (here ≤ q), then the best plan chosen
has the same cost as the optimal plan. Hence, the plan generator will still pick
the optimal plan despite of the error in the cost function. This corollary, thus
gives us an additional incentive to keep the q-error of our cost functions as small
as possible. We now present the proofs.

Proof of Theorem 4.4.1 Since under the cost function C the plan ebest is
minimal, we must have

C(ebest) ≤ C(eopt),

and since under M the plan eopt is minimal, we have

M(eopt) ≤M(ebest).
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Since for all plans e we have ‖M(e)/C(e)‖Q ≤ q, we can conclude that3

M(ebest) ≤ qC(ebest)
M(eopt) ≥ (1/q)C(eopt).

Using all these inequalities, we can derive

‖M(ebest)/M(eopt)‖Q ≤ M(ebest)

M(eopt)

≤ qC(ebest)
(1/q)C(eopt)

≤ qC(eopt)
(1/q)C(eopt)

≤ q2

�
Proof of Cor. 4.4 Assume M(ebest) 6= M(eopt). Then, by Theorem 4.4.1

we have the following contradiction:

M(ebest)

M(eopt)
≤ q2 < M(ebest)

M(eopt)

�
Note that the first inequality comes from Theorem 4.4.1 and the second one

from Corollary 4.4.

4.5. Cost Model

Traditionally, query processing is performed in two separate phases: query
optimization and query execution. In this approach, the query optimizer (QO)
takes the input query and produces a query execution plan (QEP). Then, the
query execution engine (QEE) evaluates the QEP to produce the query’s result.
The important link between the QO and the QEE is the cost model. The cost
model consists of a set of cost functions, which model the resource consumption
of the QEE for a given QEP.

As most QEEs are based on a physical algebra, the total costs of a QEP
can be calculated by the sum of the costs of the physical operators contained
therein, and the cost model needs to provide cost functions for all physical
operators supported by the QEE.

On the other hand, the QO takes the cost model to evaluate different QEPs
and to select the cheapest one among all those considered. To this end, it is
important that the cost functions are as precise as possible. But what is the
precise meaning of precise? What is needed is an error metrics that measures
the deviation of the cost functions from the real costs measured by executing
plans in the QEE. As there are plenty of metrics to be found in the literature,
the question is which one is to be chosen for the purpose of query processing?

3∀x > 0 ‖x‖Q ≤ q =⇒ 1/q ≤ x ≤ q
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Attribute Content

A Ascending integers from 0 to n
B Descending integers from n to 0
C Integers randomly uniformly distributed in [0, n]
D Ascending integers from 0 to n
E Descending integers from n to 0
F Integers randomly uniformly distributed in [0, n]
G Ascending integers from 0 to n
H Descending integers from n to 0

Table 4.2.: Attributes and their contents for the test relation R

We answered this question in Section 4.4 by providing a theorem that directly
links cost function errors to plan quality. Since cost estimation errors have a
profound negative influence on plan quality, it is important that the QEE allows
for smooth and precise cost functions. In Chapter 3, we gave an example of
a bad QEE to illustrate this point. Thus, the QO and the QEE very much
depend on each other.

Cost functions in SystemTx are mostly linear combinations of linear com-
ponents. Some of them contain branch misprediction costs as a non-linear
component. In any case, the cost functions contain parameters that must be
filled in. This process is called calibration, and it depends on the hardware.
Calibration in our system is automated and proceeds as follows. A relation R
with 9 different attributes and cardinalities is created. Initially, the cardinality
of R is set to 212 and then it is incremented in stepwise fashion up to 228. The
attributes of R and their contents are summarized in Table 4.2, where n denotes
the cardinality of R. Integers used for populating the relation R are of size 4
bytes, however, the same process can be applied for other types too.

For each size of R, three different plans are executed: (1) simple scans, (2)
scans followed by a map operator with memory accesses, and (3) scans followed
by a map operator and then by a selection operator. These plans correspond to
plans a-c in Fig. 4.1. The selection operator in SystemTx depends on the values
generated by the map operator, hence there is always a map operator preceding
a selection operator. Since these plans are incrementally more complex, it is
easy to extract the costs of a single operator from the measurements. For each
operator, the extracted measurements are then approximated, using the cost
functions. More details on the cost functions and their approximation are given
in the following subsections.

As mentioned in the introduction of this chapter, our goal is to minimize the
q-error; we do not use standard approximation techniques like linear regression,
as they minimize the `2 error, which is not really useful in the context of query
processing as shown in [48]. Instead, we apply the approximation techniques
presented in [58], since they allow approximations that directly minimize the
q-error.
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scan

(a)

χ∗(A1,...,An)

scan

(b)

σp

χ∗(A1,...,An)

scan

(c)

σp1&&p2

χ∗(A1,...,An)

scan

(d)

σp1&p2

χ∗(A1,...,An)

scan

(e)

σp2

σp1

χ∗(A1,...,An)

scan

(f)

σp2

χ∗(Am+1,...,An)

σp1

χ∗(A1,...,Am)

scan

(g)

Figure 4.1.: Plan types

4.5.1. Cost Functions

For convenience, all notational details are summarized in Table 4.3, and all
cost functions are presented in Table 4.4. Let us now briefly discuss the cost
functions.

The scan and the map operator both exhibit linear costs, and their cost
functions are thus rather simple (see Table 4.4). These cost equations can be
derived by looking at the implementation details of each operator (such details
for SystemTx are shown in Section 3.1). For example, the scan operator depends
on the relation size |R| as well as constants, e.g., cost of incrementing column
iterator(s) and tuple pipelining:

TX_Scan::run() {

for(i=0; i<|R|; ++i) {

t.rid=i; t.ap++; t.bp++; t.cp++ ...

consumer.step(t);

}

}

In the pseudocode above, the column pointers are incremented inside the for
loop, t.ap++; t.bp++; t.cp++ ..., whereas tuple pipelining is achieved by
calling the step function on the consumer: consumer.step(t).

In similar fashion, the map operator depends on the number of input tuples
|e| and the dereferenciation costs (deref) in addition to its constants (processing
input/output tuples):

Tx_MAP1::step(t) {
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Notation Description

R relation
Ai, Bi, . . . attributes, with and without index
A set of attributes
χ∗(A) map operator accessing A
aχ, bχ constants for map operator
deref(d) costs of dereferencing d columns
pi predicates
si, sel(pi) selectivities for predicates
e some algebraic expression (plan)
as, bs constants for scan operator
ain, aout constants for processing input/output tuples
B(s) branch misprediction cost for selectivity s
C(e) cost function applied to e, estimated runtime

Table 4.3.: Notation

C(scan(R)) = |R| ∗ as + bs

C(χ∗(A)(e)) = |e| ∗ (deref(1, n) + aχ) + bχ

C(p1&p2) = C(p1) + C(p2) + C(&)

C(p1&&p2) = C(p1) + B(s1) + s1C(p2)
C(σp(e)) = |e| ∗ (C(p) + B(sel(p)) + ain + sel(p) ∗ aout)
C(σ±p (e)) = |e| ∗ (C(p) + B(sel(p)) + ain + aout)

Table 4.4.: Cost functions
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t.A = R.A[t.rid];

t.B = R.B[t.rid];

t.C = R.C[t.rid];

...

consumer.step(t);

}

Tx_MAP2::step(t) {

t.A = *(t.ap);

t.B = *(t.bp);

t.C = *(t.cp);

...

consumer.step(t);

}

In the pseudocode above, the dereferenciation is achieved by either access-
ing column values based on the rid variable, e.g., t.A = R.A[t.rid];, or by
dereferencing column pointers, e.g., t.A = *(t.ap);.

In general, the dereferenciation costs can be replaced by general expression
evaluation costs, especially if expensive function calls occur.

As shown in Section 2.2.2, a conjunction p1∧p2 of predicates can be evaluated
by expressions either of the form p1&& p2 or of the form p1& p2, explaining the
cost functions given in Table 4.4 for both of these expressions.

The cost function of the selection (σ) and bypass selection operator (σ±)
is a linear combination of linear and non-linear components. The non-linear
component (B) accounts for branch misprediction costs. For older database
systems that still use an algebra that by tuple passing have an overhead, the
scan together with the map and the selection operator can be merged into one
operator; the cost of this new operator is then the sum of the cost of the scan,
the map and the selection operator.

The bypass selection operator and the regular selection operator exhibit a
small difference on their cost functions. That is, tuples flowing into the bypass
selection operator are split into true or false stream depending on the outcome
of the predicate:

Tx_Select_BYP::step(t) {

if(p(t))

consumer_true.step(t);

else

consumer_false.step(t);

}

In contrast, tuples flowing into the ordinary selection operator take only one
stream (the true stream) if they satisfy the selection predicate, otherwise they
are filtered out:

Tx_Select::step(t) {

if(p(t)) consumer.step(t);

}

53



4. Cost Estimation and Approximation

The bypass selection operator will come into play when we optimize Boolean
expressions which contain disjunctions. More details on this topic are given in
Chapter 6.

4.5.2. Memory Access Costs

Measuring memory access costs amounts to measuring the costs of our map
operator χ∗(A1,A2,...,Ak), for some attributes (i.e., columns) A1, A2, . . . , Ak.

In SystemTx, there exist two ways of dereferencing column values, based on
row identifiers, or based on column pointers. The pseudo code for both methods
are shown in the previous section and Section 3.1.

The costs of the map operator clearly depend on the column access/derefer-
enciation costs. We measure the costs of the dereference operator by measuring
the costs for plans shown in Figure 4.2. By subtracting the cost of the scan op-

χ∗(A1)

scan

χ∗(A1,A2)

scan

χ∗(A1,...,Ak)

scan

Figure 4.2.: Plan types for measuring the costs of the dereference operator

erator, we precisely capture the cost of the dereference operator. After we have
isolated the costs for the dereference operator, we approximate them by taking
the q-middle(x), where x denotes the dereference costs. For the definition of
q-middle, see Table 4.1. That is, we use a single constant for each number of
simultaneously accessed columns.
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Figure 4.3.: SystemTx: column access costs

The run-times for a number of plans dereferencing up to 9 different columns
are shown in Figure 4.3. The q-errors for all the plans and database sizes de-
picted in Figure 4.3 are shown in Figure 4.4. Note that we report the max

54



4.5. Cost Model

q-error for all database sizes ([212, 228]) for up to 9 simultaneous column deref-
erences at the time. The max q-error is very small for all the plans. In the
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Figure 4.4.: Q-error of dereferenciation

worst case, for a plan dereferencing 2 columns at the same time, it can be off
from the true costs by a maximum factor of 1.4. When the number of column
accesses is greater than 2, the q-error drops below 1.1. The reason fur such a
behavior is the cache size. For small relation sizes, the dereference operation
are extremely fast as the columns fit into the cache. As a result, it gets hard to
accurately measure the dereference operations, thus, the q-error is higher. For
larger relation sizes, however, the dereference costs are more streamlined (and
take longer) allowing for more accurate measurements, and hence, the q-error
is lower.

4.5.3. Branch Misprediction Costs
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Figure 4.5.: Execution time of a selection operator
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Fig. 4.5 shows the execution time of a simple scan over a column A, with
a cardinality 224 and with a selection predicate A < θ for varying θ and thus
selectivities. The main reason for this hill shape is the branch misprediction
penalty. Modern CPUs are very good at predicting branches when they are
taken nearly always or never. The worst performance occurs at the selectivity
of 0.5. At such selectivity, each branch outcome is taken with a probability
of 0.5, thus making it hard for the CPU to predict it. The negative effects
of the branch misprediction in the pipelined CPU execution model have been
illustrated in Section 2.2.2.

In order to extract the branch misprediction cost from the execution time of
a selection operator (σ), we proceed as follows. Recall the cost formula for the
selection operator defined in Section 4.5.1:

C(σp(e)) = |e| ∗ (C(p) + B(sel(p)) + ain + sel(p) ∗ aout).

For a selection over an attribute A belonging to some relation R, we have:

C(σp(A)) = n ∗ (ain + C(p)) + n ∗ s ∗ aout + n ∗ B(s), (4.2)

where n denotes the input cardinality (i.e., n = |e|), and s = sel(p). Let us
denote the measured cost for a given selectivity s by M(s). Then, Eq. (4.2)
becomes

M(s) = n ∗ (ain + C(p)) + n ∗ s ∗ aout + n ∗ B(s). (4.3)

For selectivity 0,
M(0) = n ∗ (ain + C(p)),

and for selectivity 1,
M(1) =M(0) + n ∗ aout ,

and thus

aout =
M(1)−M(0)

n

Using these equations, we derive from Eq. (4.3)

M(s) =M(0) + s ∗ (M(1)−M(0)) + n ∗ B(s), (4.4)

and thus the branch misprediction cost for a given selectivity s is:

B(s) = (M(s)−M(0)− s ∗ (M(1)−M(0)))/n. (4.5)

The branch misprediction can be very well approximated under the q-error [48]
by a polynomial of degree 4, yielding a very low q-error: 1.08. The branch mis-
prediction can also be well approximated by a cheaper piecewise approximation
function:

B(s) :=


6.264 ∗ s+ 0.0031 s < 0.4
−27.17 ∗ s2 + 26.88 ∗ s− 3.96 0.4 ≤ s ≤ 0.6
−6.065 ∗ s+ 6.065 0.6 < s

which yields a q-error of only 1.03. Note that the selectivity boundaries can be
automatically derived using binary search.
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Figure 4.6.: Approximation of branch misprediction penalty

The results of approximation of the branch misprediction penalty using our
piecewise approximation function have been depicted in Fig. 4.6, where “dat”
denotes the actual branch misprediction penalty, whereas “fun” our approxi-
mation function. The plotted graph confirms also visually that our piecewise
approximation function approximates indeed very closely the branch mispre-
diction penalty.

4.6. Approximation of Cost Functions

Our goal is to approximate the cost functions of the operators build in Sys-
temTx. These cost functions have been shown in Section 4.5.1. We have shown
earlier in this chapter the benefits of using q-error and its theoretical implica-
tions, therefore, we are interested to approximate our cost functions with the
aim of minimizing the multiplicative q-error. In this chapter, we provide some
details on our approximation framework.

We are in particular interested into finding parameter values, so that we
can find the best fit of experimental data. We have more experiments than
unknowns, associated with experimental errors, therefore not a single model
(function) will usually fit exactly the data, regardless of the parameter choice.
Hence, we are interested in finding parameters that give us the best fit into the
data that we get from experiments.

Let us consider a function f(s) which given a selectivity s ∈ [0, 1] as input,
returns the run-time, for some operator. The function f can be represented by
the following expression

f̂ :=
n∑
i=1

ciφi(x)

where f̂ is a linear combination of functions φi. The latter can be polynomial
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or a linear function. Coefficients are denoted by c, where c ∈ R. This equation
defines f̂ for all the points we wish to estimate. The argument x can be a
scalar x ∈ R, or a vector x ∈ Rn. Finding the coefficients c constitutes our
approximation problem.

Estimation of a particular point t̂i is derived from f̂ :

t̂i := f̂(si) =
n∑
i=1

ciφi(si)

For practical reasons, we represent the approximation problem in terms of
vectors and matrices. A matrix A which we call it the design matrix, is defined
by its elements ai,j = φj(xi), for some points (x, y) that we are interested to
approximate, thus

Am,n =


φ1(x1) φ2(x1) · · · φn(xi)
φ1(x2) φ2(x3) · · · φn(x2)

...
...

. . .
...

φ1(xm) φ2(xm) · · · φn(xm)


In order to make this concept clearer, lets assume that we are interested in

approximating the points by a polynomial of degree n− 1, whereby φi = xi−1.
We can take a quadratic function (n− 1 = 2), such as f̂(x) = c1 + c2x+ c3x

2,
the design matrix is then populated as follows

Am,n =


1 (x1)

1 (x1)
2

1 (x2)
1 (x2)

2

...
...

...
1 (xm)1 (xm)2


The goal is to find ~c, such that deviation of A~c from ~y is minimal. Knowing

that m > n, that is, there are more rows than columns (more equations than
unknowns), the system is overdetermined. The likelihood that a solution to a
such system exists is very small, i.e., the column space of A does not contain
~y. Therefore, we need to find an approximation with the smallest possible devi-
ation from ~y. The deviation could as well be zero (although highly unlikely in
overdetermined systems), thus

A~c = ~y

In order to measure the metric distance (deviation) between real-valued func-
tions such as approximation function f̂ and the real function f , we need to
define the norm, as metric distances are based on norms. Norm is also know in
literature as the length of a vector or its magnitude, denoted with double bars,
e.g., the length of the vector w is denoted by ‖w‖. Length of a vector or its
magnitude is a similar concept as the absolute value of real numbers, e.g., |λ|,
which denotes the magnitude of a scalar λ.

Definition 4.6.1. (norm) Let V be a linear space, and ‖.‖ : V → R, where ‖.‖
is a real-valued function over elements of the space V such that

1. ‖w‖ > 0, w 6= 0, otherwise ‖w‖ = 0⇔ w = 0
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2. ‖λw‖ = |λ| ‖w‖, λ ∈ R

3. ‖w + v‖ ≤ ‖w‖+ ‖v‖

Then ‖.‖ defines a norm on the vector space V

Definition 4.6.2. Linear spaces such as V with a norm defined are called
normed linear spaces.

Various norms exist, known as p-norms, or `p and are denoted with ‖.‖p. The
p-norm is a norm metric over Rn (or Cn), where ‖.‖p is defined as:

‖w‖p = (

n∑
i=0

|wi|p)1/p

for 1 ≤ p < ∞. The most common norms known are `1, `2, `∞, and according
to the above definition, they are computed as:

‖w‖1 = |w1|+ |w2|+ . . .+ |wn|

‖w‖2 =
√

(w1)2 + (w2)2 + . . .+ (wn)2

and for p =∞

‖w‖∞ = lim
p→∞

p

√
Σn
i=1|w|p = max

1≤i≤n
|wi|

where wi stands for the ith component of the vector w. The `2 norm is the
most common norm, it is also known as the Euclidean norm. The `∞ is the
minimax or the Chebyshev norm.

Definition 4.6.3. For a given point g, and a set Z, where Z belongs to a normed
linear space V, a point of Z that has a minimal distance from g, we call it a best
approximation. The problem of determining such points with minimal distance
is called a best approximation problem.

The distance between two vectors w, v in Rn is defined as follows:

dp(w, v) = ‖w − v‖p

for 1 ≤ p ≤ ∞. The distance defines the error metric, more generally, for a real
(or complex) numbers, where the sum of such numbers is finite Σ∞i=1|wi|p, or
for p =∞,Σ∞i=1|wi|, the error metric more generally is defined as

(
∞∑
i=1

|wi − vi|p)1/p

For our purposes, the vector v denotes the approximation (obtained from f̂)
whose error we measure. Our goal is to find the best approximation under a
normed vector space `p, knowing that different norms can produce different
vector ordering.

We take `q as the norm of choice, for its definition see Section 4.3. The reason
why we have chosen `q and its theoretical implications were given in Section 4.4.
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4.6.1. Application in SystemTx

Having defined our approximation framework, the next step is to approximate
the cost functions defined in Section 4.5.1. That is, we approximate the costs
each operator in SystemTx in order to be able to estimate the overall query
evaluation costs for query plans that our query optimizer enumerates. Having
achieved this goal, the costs of some query evaluation plan P is then estimated
as a summation of the (estimated) costs of the individual operators it contains:

C(P ) =
∑
op∈P

C(op).

However, before we can approximate the cost functions, we need to obtain
the data points that we are interested to approximate. The data points are
obtained by running query plans of different types as shown in Figure 4.1, over
different relation sizes and parameters (constants occurring within the predi-
cates). We measure the execution costs of each operator individually for the
entire selectivity range [0, 1]. Details on extraction of the costs of the individual
operators in SystemTx were given in Section 4.5. Our measurements will yield
the data points that we are interested in to approximated. For example, for
approximating the branch misprediction component of the selection operator
(σ)—after we have isolated the costs of branch misprediction component, as
shown in Section 4.5.3—we obtain the pair of points (si, ti), where s denotes
the selectivity and t the execution time.

In the second, step we determine the degree of functions φi, in order to
construct the design matrix, which finally allows us to obtain the coefficients
~c. For the branch misprediction component, we can choose a polynomial of
degree 4, or a piecewise function, as shown in Section 4.5.3. The goal is to find
the best approximation, i.e., to minimize the distance d(A~c, ~y). The problem of
finding the best approximation for multidimensional polynomials is transformed
to a SOCP problem. More details on this step are given in [46]. SOCP is a
convex optimization problem, and we solve it by means of the MOSEK [49]
library, which performs this step efficiently. The measurements of the accuracy
of approximation of the cost functions in SystemTx are shown in the following
section.

4.7. Cost Model Validation

In order to validate our cost model, we have compared the measured execution
times of several plans (see Figure 4.1) with the execution times predicted by
our cost model. The plan types shown in Figure 4.1 were chosen as they cover
most of the cases, and all other plan types build on top of them. Every plan
was executed for different relation sizes and plan parameters, i.e., constants
occurring within the predicates. For cost model validation we have used the
same relation R which was used for the calibration in Section 4.5.1. The schema
of this relation has been summarized in Table 4.2. For the validation purpose
of our cost functions we have used relation sizes starting from 210 and up to
228. The q-error we report is the maximum over the measurements over all
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the relation sizes, i.e., 210 up to 228. Table 4.5 shows the maximum q-error we
observed for each plan type shown in Figure 4.1.

Plan type q-error

(a) 1.09
(b) 1.1
(c) 1.08
(d) 1.34
(e) 1.09
(f) 1.14
(g) 1.27

Table 4.5.: True vs. estimated costs

Table 4.5 confirms that our cost functions are very accurate, yielding a max-
imum q-error of 1.3. That is, in the worst case, the upper bound on deviation
of our approximated cost functions from the true costs can be a factor of 1.3.
Thus, we conclude that our cost model is precise enough to serve the query
optimizer’s objective.

61





5. Optimization of Conjunctive
Predicates

Optimization of queries with conjunctive predicates for main memory databases
is a challenging task. The traditional way of optimizing this class of queries
relies on predicate ordering based on selectivities or ranks. However, the op-
timization of queries with conjunctive predicates is a much more challenging
task, requiring a holistic approach in view of (1) an accurate cost model that
is aware of CPU architectural characteristics such as branch (mis)prediction,
(2) a storage layer, allowing for a streamlined query execution, (3) a common
subexpression elimination technique, minimizing column access costs, and (4)
an optimization algorithm able to pick the optimal plan even in presence of a
small (bounded) estimation error. In this chapter, we present an optimization
algorithm for conjunctive queries which embraces the holistic approach, and
show its superiority experimentally.

Current approaches typically base their optimization algorithms on at least
one of two assumptions: (1) the predicate selectivities are assumed to be inde-
pendent, (2) the predicate costs are assumed to be constant. Our approach is
not based on these assumptions, as they in general do not hold.

The contents of this chapter were published in [33].

5.1. Introduction

It is not uncommon in data warehouses that decision support queries involve
a larger number of conjunctive selection predicates. Data warehouses are in-
creasingly storing tables in denormalized form [31] and in main memory, with
the goal of achieving better query response times. In such settings, joins and
disk I/O operations are not considered any longer the main cost [31], instead,
the evaluation of selection predicates has replaced them as the dominating cost
factor [31].

In this chapter, we focus on optimizing the class of conjunctive selection
predicates of the form

p1 ∧ p2 ∧ . . . ∧ pn

in the context of main-memory column stores.

Definition 5.1.1. Predicates in our context are atomic. In their simplest
manifestation, the predicates pi are of the form A θ c, where A is a column,
θ ∈ {=, 6=, <,≤, >,≥}, and c is a literal taking values from the domain of the
column. We also consider expensive predicates of type A like ’%text%’, as
well as predicates applying expensive (user defined) functions.
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5. Optimization of Conjunctive Predicates

The goal is to devise an optimization algorithm that determines the optimal
evaluation order of selection predicates given in a query. As it turns out, this
task is not as easy as it seems due to the details now becoming prominent.

Currently, two main approaches to optimize conjunctive queries can be found
in (commercial) DBMSs. The first, rather simplistic approach orders the pred-
icates by increasing selectivity and ignores the predicate costs [60, 66]. The
second approach [26] orders predicates in increasing order of their ranks, where
the rank of a predicate takes into account selectivities as well as evaluation costs
and is defined as follows [28]:

rank =
s− 1

c
(5.1)

where s denotes the predicate’s selectivity and c its per-tuple cost. Under this
optimization scheme, predicates with low costs and selectivities are given prior-
ity. The optimality of this approach can be proven for cost functions that exhibit
the adjacent sequence interchange (ASI) property [28]. The ASI-property it-
self requires that the independence assumption (IA) holds. That is, there are
no correlations between any two selection predicates, and the combined selec-
tivity of any subset of predicates can be calculated by multiplying the single
selectivities of the predicates contained therein.

It is well-known that this assumption in general does not hold [11]. To
see this, consider the beautiful example of Markl et al. [41]: make = ’HONDA’

and model = ’ACCORD’, where we observe the following. If we evaluate make

= ’HONDA’ first, its selectivity equals the market share of HONDA in our car
database. If we evaluate model = ’ACCORD’ first and then evaluate make =

’HONDA’, its selectivity will go up to 1.0, as there are no other car manufac-
tures producing a model named ’ACCORD’. This demonstrates that selectivities
are not independent. To make things worse, changing selectivities have an
impact on costs. Branch misprediction costs are maximal around a selectiv-
ity of 0.5 (see Figure 4.5 in Section 4.5.3) and drop significantly if selectivi-
ties approach either 0 or 1. Since for inexpensive predicates like comparisons,
the branch misprediction costs are much higher than the predicate evaluation
costs, neglecting branch misprediction costs results in very high error margins.
Summarizing, predicate selectivities cannot be assumed to be independent, nor
predicate costs to be constant. On the other hand, all previous approaches (see
Section 5.2) rely on the assumption of constant predicate costs (CC) or IA.

In case of p1 ≡ 0.49 ≤ A and p2 ≡ A ≤ 0.51, the attribute access costs
exceed the predicate evaluation costs by far. Since after the evaluation of p1
the attribute A has already been accessed, there is no need to access it again
for p2 [1]. Thus, the costs of evaluating p2 drop significantly, showing the
importance of common subexpression elimination (CSE). Most approaches do
not take CSE into account (see Section 5.2).

A conjunction p1 ∧ p2 of predicates can be evaluated by expressions either of
the form p1&& p2, or of the form p1& p2. The merits of either evaluation method
have been shown in Section 4.5.1.

The rest of the chapter is organized as follows. Section 5.2 presents the
related work. Section 5.3 presents the optimization algorithm, and Section 5.4
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shows the experimental results.

5.2. Related Work

A number of commercial systems order predicates in increasing order of their
selectivity without consideration of their costs. A good example is Vectorwise
[60, 66], a well-known column store geared towards analytical workloads.

A more serious approach is presented by Hellerstein et al. [26]. They pro-
pose a scheme for ordering expensive predicates in an optimal way. Predicates
in their work are not limited to cheap predicate, but can include non-trivial
user defined functions (UDFs) that are expensive to evaluate. To this end,
predicates are ranked in ascending order of the ranking metric shown in the
Eq. (5.1), in the introduction of this chapter. This ranking metric originates
from join-ordering domain [28, 37]. Hellerstein et al. [26] conclude that sorting
of expensive predicates according to the above ranking metric produces the op-
timal plan. However, this is true only under the independence assumption. We
have already seen that this assumption does not hold. Moreover, they do not
consider CSE and in addition, predicate costs are assumed to be constant, i.e.,
they rely on the CC assumption, too.

Kemper et al. [36] consider optimizing boolean expressions in object databases
by means of a heuristic based on Boolean difference calculus. Their algorithm
is not limited to conjunctive case, it can handle disjunctions too. We consider
disjunctions in Chapter 6, and compare this heuristic against our algorithms.
For now, it suffices to know that the optimization algorithm in [36] assumes
both CC and IA. Moreover, CSE is not considered.

Ross in [56] considers the optimization of conjunction of simple atomic pred-
icates over arrays residing in main-memory with the goal of optimizing the
branch misprediction costs. In particular, Ross [56] studies in detail the effect
of conditional branches on plan quality and presents an algorithm which opti-
mizes the branch misprediction penalty by cleverly connecting conjuncts with
branching-and &&, and logical-and &. However, his algorithm does not consider
CSE, and further, it relies on the IA. This, in turn, leaves a large optimization
potential unharvested and calls for a new optimization algorithm that abandons
both IA, CC and supports CSE.

The optimization algorithm shown in [56] has a time complexity of O(4n),
for n atomic predicates. In contrast, the algorithm presented in this chapter
has a much lower time complexity of O(n 2n), as shown in Section 5.3, while it
does not rely on the IA or CC, and, in addition, it supports CSE. In contrast
to our work, the work in [56] does not provide error bounds.

The work by Munagala et al. [50] considers ordering of selection predicates
by adopting approximation algorithms such as the set cover problem algorithm,
coined pipelined set cover. The authors of [50] provide two approximation al-
gorithms, an algorithm which is based on a greedy, and another based on a
local-search heuristics. Their cost function simply counts the number of ele-
ments that each set covers, where, in turn, each set is mapped to an operator
evaluating a selection predicate. Considering only the number of elements pro-
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5. Optimization of Conjunctive Predicates

Assumes Supports

IA CC CSE (&&),(&)

Kemper et al.[36] Yes Yes No No
Hellerstein et al.[26] Yes Yes No No
Ross [56] Yes No No Yes
Munagala et al.[50] Yes Yes No No
Neumann et al.[53] Yes Yes Yes No

here No No Yes Yes

Table 5.1.: Overview of related work

cessed does not provide an accurate cost function. Furthermore, this work relies
on both constant predicate costs and the independence assumption.

Their work by Neumann et al. [53] focuses on identifying and eliminating
common subexpressions involving expensive user defined function calls, and
show that the problem of finding an optimal ordering of predicates while con-
sidering CSE is NP-hard. Their work is based on both constant predicate costs
and the independence assumption.

The related work is summarized in Table 5.1, where we show the assumptions
they make, the support of CSE, as well as the support of branching (&&) vs.
non-branching (&) code.

5.3. The DPSel Optimization Algorithm for Conjunctive
Predicates

In this section, we present an optimization algorithm coined DPSel. DPSel
is responsible for producing query plans for evaluating conjunctions of selec-
tion predicates. It is based on dynamic programming. Figure 5.2 shows its
pseudocode. DPSel attains the optimum in terms of plan quality.

DP algorithms generate solutions in a bottom-up fashion by combining solu-
tions of subproblems [16]. That is, DP algorithms can be applied for problems
that exhibit an optimal substructure. DP algorithms avoid recomputation of
solutions for recurring subproblems by storing the solutions in a DP table;
whenever the same subproblem recurs, its solution is fetched from the DP table
instead of being recomputed each time it recurs, this way saving the recompu-
tation costs.

DPSel accepts as input an expression with an arbitrary number of selec-
tion predicates connected conjunctively. Further, selectivities must be provided
for each subset of the predicates occurring in the conjunction. These can be
calculated beforehand, using the method of entropy maximization [42], or via
the efficient sampling method shown in Chapter 8. In addition, the cost model
presented in Chapter 4 is utilized to calculate the estimated plan costs. The
output of DPsel is the best query evaluation plan, i.e., a plan with the lowest
estimated execution cost. Thereby, DPsel relies on neither the IA nor the
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BuildPlans(p, e)

// Input: a selection predicate p
an expression e (partial plan)

// Output: plan container B
1 Xe = ∪pi∈eXpi

2 Xp|e = Xp \Xe // outstanding maps

3 B = {σp(Xp|e(e))}
4 if e == σp′(Xp|e(e

′))

5 B+=σp′&p(Xp|e(e
′))

6 B+=σp′&&p(Xp|e(e
′))

7 return B

Figure 5.1.: Pseudocode for BuildPlans

DPSel

// Input: a set P = {p0, . . , pn−1} of predicates
// Output: an optimal plan

1 DP = an empty DP table, size → 2n

2 DP [∅] = scan(R)
3 for each 0 ≤ i < 2n − 1 ascending
4 P ′ = {pk ∈ P | (

⌊
i/2k

⌋
mod 2) = 1}

5 for each pj ∈ P \ P ′
6 for each ej ∈ BuildPlans(pj , DP [P ′])
7 StoreSolution(ej , P

′ ∪ {pj}, DP )
8 return DP [P ]

Figure 5.2.: Pseudocode for DPSel

StoreSolution(e, P,DP )

// Input: an expression e
a set of predicate(s) P
a DP table

// Output: none, affects DP
1 if DP [P ] == NULL ∨ Cost(DP [P ]) > Cost(e)
2 DP [P ] = e

Figure 5.3.: Pseudocode for StoreSolution

67



5. Optimization of Conjunctive Predicates

χa:∗(A)

σa>10 σa≤100

χb:∗(B)

χw:wordcount

σw≥5 σw≤15

Figure 5.4.: Dependency graph for the example query

CC assumption. Moreover, it supports CSE, as well as branching-and(&&) and
logical-and(&) predicate connectives.

The algorithm starts by initializing an empty DP table and storing a plan
consisting of only the scan operator (cf. lines 1-2 in Figure 5.2). Selection
operators evaluating predicates are built on top of this operator. The loop in
line 3 iterates over all subsets P ′ of predicates P . The loop in line 5 iterates
over the predicates in P which are not in P ′. These are the new predicates
that are not yet included in the existing partial plans stored in the DP table.
Adding the new predicates to the existing (partial) plans is the responsibility of
the BuildPlans procedure, shown in Figure 6.7. The BuildPlans procedure
takes as an input a predicate and an existing partial plan.

A selection predicate depends on a certain set of map operators, thus forming
the notion of the dependency graph [53]. For each operator that relies on values
generated by some map operator, we draw an edge between that operator and
the map operator on which it depends. For illustration purposes, consider the
evaluation of the following query:

A > 10 ∧A ≤ 100 ∧ 5 ≤ wordcount(B) ∧ wordcount(B) ≤ 15

over some relation R(A:int, B:text). Its dependency graph is shown in Fig-
ure 5.4. The UDF wordcount returns the word count of its input parameter,
and it expects that the input parameter contains text. To this end, we are
interested in finding all tuples which have for the attribute A their values in
range of (10, 100], and have a word count between 5 and 15 for the attribute
values of B.

Selections involving attribute values of A depend on the map operator which
generates the attribute values of A, whereas the selections involving values of
the wordcount depend on the map operator which generates the values of the
wordcount. The wordcount itself depends on the map operator generating
attribute values of B, respectively. The attribute values of A in the above
predicate are needed in two places, that is, there is a common subexpression.
However, we can use only a single map operator generating the values of A,
instead of two, this way eliminating the common subexpression. The same ap-
plies for the UDF function call wordcount, which is also needed in two places.
UDF function calls can be much more expensive to evaluate than column deref-
erence operations, therefore CSE is of crucial importance when searching for
the optimal plan.

In the procedure BuildPlans, the set of dependencies that each input predi-
cate p depends on, as well as CSE, are taken care of in lines 1,2. For the sequence
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of selections in the partial plan e, their already executed map dependencies are
denoted by

Xe = ∪pi∈eXpi ,

whereas the map dependencies of the input predicate p, which are still to be
executed, are denoted by

Xp|e = Xp \Xe.

After the map operators and CSE are taken care of, three different (logically
equivalent) plans are created: 1) the input predicate is evaluated by a stan-
dalone selection operator added on top of the input plan, 2) the predicate is
connected by the logical-and (‘&’) connection to the predicate(s) evaluated by
the top selection operator in the input plan, and 3) the predicate is connected
in a similar fashion as in 2), but by using the branching-and (‘&&’) connection
instead of the logical-and. Plans of type (2) and (3) only make sense when the
top operator of the existing partial plan e is a selection operator. This check
is made in line 4 of the procedure BuildPlans. The newly constructed plans
are returned to the main method. The main method (line 7) passes these plans
to the StoreSolution procedure (see Figure 6.8), which in turn stores the
dominating plan (the plan with the lowest cost) in the DP table, and other
plans are pruned. Finally, the algorithm returns the best plan with the optimal
cost for evaluating the given set P of selection predicates. The time complexity
of DPSel is O(n 2n), for n predicates in a conjunctive query. The algorithm
has to interate over all the subsets of predicates, hence the term 2n (cf. line 3).
The term n comes from line 5; the algorithm iterates over all predicates in P
which are not in P ′.

Subset enumeration (cf. lines 3 - 4 in Figure 5.2) can be very efficiently
computed by means of bitvectors. In bitvector representation, the numbers
from 0 to 2n − 1, incremented by 1 represent all subsets of P . Such increments
by 1 are in line with the DP strategy: for each subset P ′, all subsets of P ′

are generated before P ′ itself. Further, increments by 1 is a very fast machine
operation requiring only one CPU instruction.

In our implementation, bitvectors are of integral types uint 32t or uint64 t.
That is, their width is limit to a word size (32 or 64 bits depending on the
architecture). Each bit position i in bitvector represents a predicate pi. An
example illustrating a set of predicates encoded in a bitvector representation
has been depicted in Figure 5.5. In bitvector representation, one can very
efficiently iterate over the bits set by means of assembler instructions, e.g.,
bit scan forward(bv) [29] and bit scan reverse(bv) [29]. The first in-

struction ( bit scan forward(bv)) returns the index of the least significant
bit set to 1, whereas the second instruction ( bit scan reverse(bv)) does the
opposite, it namely returns the index of the most significant bit set to 1.

Map dependencies in SystemTx are also stored in a bitvector, thus the compu-
tation of Xe and Xp|e can be done very efficiently by means of bitwise operators
(e.g., OR, XOR) — requiring only few CPU operations.
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01234567· · ·262728293031

remaining bits 1 1 0 0 1 0 1 1

Figure 5.5.: A bitvector of integral type uint32 t representing a set of predicates
P = {1, 2, 4, 7, 8}

5.4. Evaluation

The evaluation of predicates in data warehouses has become the major bot-
tleneck for decision support queries [31]. We show in this section that there
remains a large optimization potential unharvested by other commonly used
heuristics based optimization algorithms in RDBMSs. For the experimental
evaluation of our optimization algorithm DPSel, we compared it against two
widely used heuristics algorithms.

In some commercial systems, predicates are simply ordered in increasing order
of their selectivities. One example of such a system is Vectorwise [60, 66]. We
term the algorithm that orders predicates in ascending order of their selectivities
as Sel. Other systems order predicates in increasing order of their ranks, where
ranks are computed according to Eq. (5.1). We call this algorithm Rank.

In this section, we are interested in answering three main questions:

1. what is the loss of plan quality if we apply Sel or Rank compared to
DPSel,

2. what is the cost of applying DPSel instead of Sel or Rank, and

3. what is the loss on plan quality in the presence of cardinality estimation
errors.

For testing qualities of plans produced by DPSel vs. the other two heuristics
algorithms, we have performed two sets of experiments. For the first set of
experiments we used predicates with varying costs (general case), whereas for
the second set of experiments, we have used inexpensive predicates with equal
costs (special case). We have enriched the experimental evaluation by running
additional experiments using the TPC-H [18] and the Forest [14] dataset.

In order to set up the selectivities needed if we abandon the IA, we generated
a pool consisting of 100 different predicates joint selectivities for queries con-
taining up to 10 conjunctive atomic predicates. That is, for each combination
of predicates and their subsets, 100 different joint selectivities were available.

Selectivities for single predicates pi and pairs (pi ∧ pj)∀i, j were generated
randomly, uniformly distributed in the range [0, 1]. Their consistency was en-
sured by means of PDHGMp [47]. When randomly generating predicate selec-
tivities, there can be inconsistencies, therefore we have used PDHGMp algo-
rithm for generating consistent predicate selectivities. For the rest of predicates
∧i∈IPi, I ⊆ {1, . . . , n}, their joint selectivities were generated by the principle
of maximum entropy (ME) [42].

We conclude the Experiments section with a comparison of the running times
of the three algorithms. The experiments were run single-threaded, on a ma-
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# subexpr.
Nr. of predicates

3 4 5 6
Rank Sel Rank Sel Rank Sel Rank Sel

1 2.6 2.7 3.1 4.1 3.5 10.3 4.3 35.1
2 2.6 2.6 3.1 3.9 3.5 8.3 4.2 15.9
3 2.6 2.6 3.1 3.1 3.4 3.4 3.8 3.8

Table 5.2.: Relative optimization potential (in factors!) of DPSel vs. Rank
and Sel for the range of predicates 3-6.

# subexpr.
Nr. of predicates

7 8 9 10
Rank Sel Rank Sel Rank Sel Rank Sel

1 5.1 38.4 5.8 64.3 6.4 80.5 6.9 110
2 5 21.3 5.7 29.6 6.3 35.2 7.2 42.7
3 4.3 4.3 4.8 4.8 5.3 5.3 5.7 5.7

Table 5.3.: Relative optimization potential (in factors!) of DPSel vs. Rank
and Sel for the range of predicates 7-10.

chine with Intel Xeon E5-2690 v2 3.00GHz processor. The machine had 120
GB of main memory, running a 64-bit linux operating system. The algorithms
were implemented in C++ and compiled with Intel’s icpc compiler.

5.4.1. General Case

In this section, we show the results of the performance of DPSel vs. the other
two algorithms in terms of plan quality by using predicates with varying costs.
Selection operators make only comparisons (=, 6=, <,≤, >,≥) over the values
generated by subexpressions which they depend on, therefore, their cost was
set to 1. The costs of the subexpressions that selection predicates depended on
were generated randomly, uniformly distributed in the range [1,1000].

We ran three different sets of experiments, whereby in each experiment we
have tested the algorithms starting with 3, and up to 10 predicates, and a pool
containing in total 3 subexpressions. For each number of predicates, we ran the
algorithms 100 times. For each run, different predicate joint selectivities were
picked from the pool of joint predicate selectivities. For the first experiment,
each predicate depended on values generated by a single subexpression. We
assigned 1000 different random cost values to the subexpressions.

Since we were interested in finding the maximum optimization potential be-
tween DPSel and the other two heuristics algorithms, we recorded the plans
with the maximum cost difference from all the runs. We repeated the same
experiment and we varied the number of subexpressions on the dependency
graphs. That is, we performed two more experiments, where the dependency
graph for each predicate contained two and three subexpressions, respectively.

The results of this experiment are shown in Table 5.2 and Table 5.3. As the
plan costs varied greatly, the plan costs of Sel and Rank are given relative to
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Figure 5.6.: Plan costs for inexpensive predicates sharing a single subexpression

DPSel. Thus, the tables contain the factors by which the plans produced by
Sel and Rank are worse than the plans produced by DPSel.

For all the experiments, plans generated by DPSel outperformed by a large
margin both heuristics based algorithms. Starting with 3 predicates, DPSel
outperformed Rank and Sel by a factor greater than 2, for all sizes of depen-
dency graphs. With the increase in the number of predicates, the gap on plan
qualities increased as well such that for 10 predicates DPSel beats Sel by a
whopping factor of 110, and Rank by a factor of 7.

Our experiments show that query optimizers relying on heuristics for opti-
mization of conjunctive predicates produce plans that can be as far as a factor
of 110 away from the optimum.

5.4.2. Special Case

In this section, we list our experimental findings of comparing the qualities
of plans generated by DPSel and the other two heuristics (Rank, Sel) for
inexpensive predicates with costs equal to 1. That is, we have limited the cost
of the subexpressions to 1. As in the previous section, the cost of selection
predicates was set to 1, as they perform only comparison operations (=, 6=, <
,≤, >,≥) over the values generated by their respective subexpressions.

As in the previous subsection, we have tested the algorithms starting with
three, and up to ten predicates. For each number of predicates, we ran the
algorithms 100 times. For each run, a different predicates joint selectivity was
picked from the pool of joint selectivities.

For the first experiment, all the predicates were assigned dependency graphs
containing a single subexpression. The results of this experiment are shown in
Figure 5.6. The y-axes shows the per-tuple cost in nanoseconds (ns), whereas
the x-axes shows the number of predicates.

The algorithms Sel and Rank produced the same results, due to the fact that
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Figure 5.7.: Plan costs for inexpensive predicates, no shared subexpression

all predicate costs are equal, and thus can be safely neglected. For all the num-
bers of predicates, DPSel is the clear winner. Since all the predicates depended
on one subexpression, DPSel applies CSE. In addition to CSE, DPSel also
minimizes the branch misprediction costs. Whereas in the case of Rank and
Sel, the subexpression is evaluated for each selection, as CSE is not considered
there. In addition, the two heuristics do not minimize the branch misprediction
penalty.

Starting with three predicates, DPSel produced plans that are a bit over
20% cheaper than those produced by Rank and Sel. With the increase in the
number of predicates, the difference on plan quality produced by DPSel and
the other two algorithms increased as well. For 10 predicates, the difference on
plan qualities was as large as 40% in favor of DPSel. This is a large optimiza-
tion potential, considering that we have tested the algorithms for inexpensive
predicates.

We repeated the same experiment, but this time each selection depended on
the values generated by one unique subexpression. That is, there were no shared
subexpressions among selection operators. This way, we have eliminated the
optimization potential that DPSel harvests by employing CSE. The results of
this experiment are shown in Figure 5.7.

We observe that the costs of plans produced by DPSel are nevertheless lower
than those produced by Rank and Sel. This time, though, DPSel produced
better plans solely due to optimization of the branch misprediction penalty.

We conducted yet another experiment. This time, we generated a pool of 10
different subexpressions. Each selection predicate formed a dependency graph
containing 3 different subexpressions chosen randomly from the pool of subex-
pressions. As in Section 5.4.1, 100 different dependency graphs were generated.
As before, the algorithms were tested using 100 different predicates joint selec-
tivities. There results of this experiment are shown in Figure 5.8.
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Figure 5.8.: Plan costs for inexpensive predicates depending on 3 different
subexpressions

Algorithm Est. plan cost (ns) Evaluation cost (ns)

DPSel 8.49 8.99
Rank/Sel 12.09 12.59

Table 5.4.: DPSel vs. Rank and Sel over TPC-H dataset

We observe similar results to the case when a single subexpression was shared
among all selections (see Figure 5.6). Despite the fact that we have only eval-
uated cheap predicates with fixed costs, DPSel produced plans that are over
40 % cheaper than the heuristics based algorithms. For all the number of pred-
icates, DPSel consistently beats Rank and Sel.

5.4.3. TPC-H Dataset

This section presents the results of comparing DPSel vs. Rank and Sel by
using the TPC-H [18] dataset. For the TPC-H dataset, we have used a query
with three predicates over the lineitem table:

SELECT * FROM lineitem

WHERE orderkey <= 5889891

AND partkey <= 153588

AND suppkey <= 9960;

The lineitem table was generated using scaling factor (SF) 1, yielding a total
of slightly over 6 million tuples. Since DPSel does not rely on the IA, the pred-
icate selectivities for all subsets of predicates given in the query were computed
a-priori by means of the sampling method shown in Chapter 8.
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The results of this experiment are shown in Table 5.4. The middle column of
the table shows the estimated plan costs in time-per-tuple for each algorithm,
whereas the last column shows the actual measured plan costs by running the
actual plans in SystemTx. Note that in Table 5.4, there is one entry for both
Rank and Sel, as both heuristics produced the same plan due to the fact that
predicate costs were equal for all the predicates.

The loss in plan quality of heuristics based algorithms relative to DPSel
is a factor 1.4 or 40%. This is a huge gap considering that the predicates
were cheap to evaluate, there were no common subexpressions, and the query
contained only three predicates!

In addition to the gap on plan qualities, this experiment confirms that our
cost model is extremely precise: the estimated plan costs differ from the true
measured costs only after the decimal point.

5.4.4. Forest Dataset

In this section, we present the experimental evaluation of DPSel vs. Rank
and Sel by using the Forest [14] dataset.

The materialized relation of the Forest dataset contains 54 attributes, and
581.012 tuples. This rather wide relation validates the importance of optimizing
conjunctive queries.

For the Forest dataset, we used 4 cheap range predicates over different at-
tributes of the Forest relation. That is, all predicates had equal costs. The
predicates were of the type c1 ≤ attri ≤ c2, where c1, c2 denote integer con-
stants.

We generated randomly 1 million queries over randomly selected attributes
of the Forest relation with random predicate constants (i.e., c1, c2). The results
of this experiment are shown in Table 5.5.

Algorithm Equal costs Varying costs

Rank/Sel 2.01 21.42

Table 5.5.: Relative optimization potential of DPSel vs. Rank and Sel over
the Forest dataset

DPSel beats the other two heuristics algorithms by a factor of 2. An op-
timization potential of factor 2 is quite large, considering that predicates were
cheap to evaluate, and the query contained only 4 predicates.

We have repeated the same experiment with the Forest dataset, but this time
we assigned to subexpressions random costs uniformly distributed in the range
[1,100]. As expected, DPSel beats the other two algorithms, this time by a
large factor of 21 (cf. Table 5.5, third column).

5.4.5. Plan Quality Loss in Presence of Cardinality Estimation Errors

We cannot expect that a database system has detailed, and more importantly
correct knowledge about the joint frequency distribution of attribute values for
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f Equal costs Varying costs

2 2.27 3.03
3 2.66 5.03
4 3.14 6.97
5 3.3 8.64

Table 5.6.: The max q-error between ebest and eopt for different f values

a relation of interest. In this section, we experimentally investigate the influence
of estimation errors on the plan quality for conjunctive predicates.

In order to introduce a defined error, we have deliberately multiplied the
true predicate selectivities with an error factor (f). The goal was to find the
maximum deviation factor on the plan quality between eopt and ebest, where
eopt denotes the optimal plan and ebest denotes the best plan picked under an
erroneous cost function, i.e., a cost function which has to work with erroneous
predicate selectivities.

For this experiment, we have used again the Forest [14] dataset, a set of
eight predicates, and a pool containing 10k different predicate joint selectiv-
ities. All the predicate joint selectivities were multiplied by the error factor
f . There were 1k different values picked randomly from the set {f, 1/f}, for
all f := {2, 3, 4, 5}. For predicates with varying costs, 100 different values for
subexpression costs were chosen, uniformly randomly distributed in the range
[1, 100]. For predicates with equal costs, all subexpressions were assigned equal
costs.

The maximum deviation ratio (M(ebest)/M(eopt)) over all runs was recorded.
Recall that M(e) denotes the true measured costs for some plan e.

The results of this experiment are shown in Table 5.6. In the light of the-
orem 4.4.1, the maximum deviation on plan costs between ebest and eopt is
surprisingly low. That is, the maximum deviation factor on the plan quality
between eopt and ebest remains well below f2 for all values of f .

5.4.6. Runtime

In this section, we show the performance of DPSel against Rank and Sel in
terms of their running times.

We measured the runtime performance of the three algorithms, starting with
two and up to 10 predicates in total. The results of these measurements are
shown in Figure 5.9. The y-axis denotes the runtime in milliseconds (ms),
whereas the x-axis denotes the number of predicates that were fed to the algo-
rithms.

Although DPSel has a complexity proportional to O(n 2n) for n predicates,
our experiment shows that its runtime for up to 10 predicates is nevertheless
very low, under 0.6 milliseconds. Considering its optimization potential of factor
7 against Rank, and factor of 110 against Sel, the optimization time under
0.6 ms is certainly worth the price. Further, DPSel guarantees the optimum
in terms of the plan quality.
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Figure 5.9.: The evaluation results of runtime performance

5.5. Conclusion

In this chapter, we presented an optimization algorithm for conjunctive queries
that does not rely on assumptions like IA and CC. Furthermore, it takes CSE
into account, while supporting logical-and(&) and branching-and(&&) for evalu-
ating conjunctions. Experimentally, we showed that the loss in plan quality if
relying in IA and CC can be as high as a factor of 100, compared to the optimal
plan.

Since cost models play a crucial role in query optimization, we spent some
pages not only to present a cost model, but also to argue that the q-error is the
preferred metrics to measure the deviation of actual from estimated plan costs.
This is due to a new theorem presented that directly links the q-error of a cost
model to plan quality. To the best of our knowledge, this is the first time such
a link has been proven for any error metric.
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6. A Heuristic for Boolean Expressions

Optimization of Boolean expressions is a very challenging task which has been
vastly neglected by the research community and commercial databases. In this
chapter, we focus on the complex problem of optimization of Boolean expres-
sions by means of the bypass processing technique. In bypass processing, selec-
tion operators split the input tuple stream into two disjoint output streams: the
true-stream with tuples that satisfy the selection predicate and the false-stream
with tuples that do not. Bypass processing is crucial in avoiding expensive
predicates whenever the outcome of the query predicate can be determined by
evaluating the less expensive ones.

We have already shown in Chapter 5 that for main memory databases, CPU
architectural characteristics, such as the branch misprediction penalty, become
a prominent cost factor which cannot be ignored. In Chapter 5, we have pre-
sented an optimization algorithm which optimizes queries containing only con-
junctive predicates, whereas in this chapter we present an optimization algo-
rithm which, besides conjunctions, also handles disjunctions. The optimization
algorithm presented in this chapter takes into account the branch misprediction
penalty, duplicate predicate elimination together with common subexpressions
elimination.

The current literature relies on two assumptions: (1) predicate costs are
assumed to be constant, and (2) predicate selectivities are assumed to be inde-
pendent. Since both assumptions do not hold in practice, our approach is not
based on any of them.

In this chapter, we present a heuristic for optimizing Boolean expressions
whereas in the next chapter we present an optimization algorithm which guar-
antees the optimum in terms of plan quality. The contents of this chapter have
been published in [34].

6.1. Introduction

The optimization of Boolean expressions containing predicates connected by the
disjunction OR (∨) is a topic which has been neglected by the database research
community with the exception of a few publications. Instead, the focus was
set on the optimization of conjunctive predicates, as disjunctive predicates are
much more complex, and it was claimed that they do not occur often in practice.
This might have been true before, however, with the advent of main memory
database systems, this is changing. Main memory databases are especially
prevalent in decision support systems, where relations are being increasingly
stored in denormalized form due to the demands for high query response time.
In such settings, joins are not considered any longer the main cost, instead,
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selection predicates have taken this role [31]. A good example supporting this
claim is query Q1 taken from a customer workload [31]:

A = a AND B = b AND C IN (c,d)

AND D = 0 AND E = 0 AND F <= 11

AND G >= 2 AND H IN (e,f)

AND (I IN (g,h) OR I > j).

Further, the authors in [10] show that data mining and data warehouse ap-
plications often generate queries with long and complex predicate expressions,
requiring a query optimizer that generates efficient plans despite the complex-
ity of predicate expressions. To support this argument, they traced a real
database, containing 900 tables and 600MB of data. The trace contained 1931
queries, which were dominated by selections, and only few aggregate and join
queries [10].

As we will show experimentally in this chapter, there is a vast optimization
potential available for Boolean expressions, which we cannot afford to neglect
any longer, if our aim is to build responsive main memory database systems.

The optimization of Boolean expressions in relational database management
systems has been traditionally done by transforming Boolean expressions into
either conjunctive normal form (CNF) [57] or disjunctive normal form (DNF) [30,
61].

In CNF optimization scheme, disjuncts within Boolean factors can be ordered
optimally (locally) according to the equations in [25]. In DNF optimization
scheme, in the same fashion as in the CNF scheme, conjunctive predicates
within Boolean summands can be ordered optimally (locally) as shown in [25].

Optimality of the ordering methods shown in [25] can be proved only if the
independence assumption (IA) holds. However, it is well known that this as-
sumption does not hold (see Chapter 5). It was also shown in Chapter 5 that
changing predicate selectivities impacts the predicate costs. Fig. 4.5 shows the
execution time of a simple scan over a column A (containing 224 entries) and a
simple selection predicate A > c for varying c, and thus selectivities. The bell-
shaped curve is the result of the branch misprediction latency, which between
selectivity 0 and 1 can be as high as factor 7. Thus, it cannot be ignored. The
optimization algorithm presented in this work is branch misprediction aware.
Summarizing, predicate selectivities cannot be assumed to be independent, nor
predicate costs to be constant.

When optimizing conjunctive predicates, we have seen the importance of
common subexpression elimination (cf. Chapter 5), the same applies for dis-
junctive predicates too. Most approaches do not take CSE into account (see
Sec. 6.2). Further, in terms of disjunctive queries, duplicate predicates have a
profound impact on the plan quality, which, if not correctly recognized by the
optimizer, can lead to very poor plans. Consider the following example query
(p1 ∧ p2) ∨ (p1 ∧ p3). Let us assume for the moment that the evaluation of
predicate p1 resulted in a false outcome. Regardless which Boolean summand
(i.e. p1 ∧ p2 or p1 ∧ p3) was picked first, the second Boolean summand should
not be evaluated at all, as the result of this query is determined to be false.
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The algorithms presented in this chapter detects common duplicate predicates
and reduces the query accordingly.

When optimizing Boolean expressions, the maximum theoretical optimization
potential cannot be achieved by means of traditional plans. We can, however, fill
this gap by means of bypass processing [12, 35]. Using this technique, selection
operators split the tuple stream into two disjoint streams; the false streams
with tuples that do not satisfy a predicate, and the true stream with predicates
that do. The bypass processing technique is instrumental in avoiding expensive
predicates altogether, whenever the outcome of the query can be determined
by evaluating the cheap ones.

We summarize our contributions in this chapter as follows:

1. we present an optimization algorithm that, besides conjunctive predicates,
can also handle disjunctive predicates. Our algorithm relies neither on
the IA (independence assumption) nor the CC (constant predicate costs
assumption),

2. our algorithm supports CSE (common subexpression elimination) together
with the branch misprediction latency,

3. our algorithm generates bypass plans, this way filling the theoretical gap
on the vast optimization potential which cannot be harvested by tradi-
tional plans,

4. our algorithm supports elimination of shared predicates among different
boolean summands.

For in-memory database systems where queries are JIT compiled, e.g., Hy-
Per [52], the overhead of explicitly creating the physical bypass operators does
not exist. There, the system can generate the code for bypass operators as
nested if statements, this way making the algorithm presented in this chapter
very attractive for such systems.

In this chapter, we discuss the construction of bypass plans for in-memory
column stores. However, the algorithm presented in this chapter does not de-
pend on the storage layout, but only the cost functions depend on the storage
layout; the algorithm can work with any cost function. The algorithm pre-
sented in this chapter, however, has few disadvantages. It does not guarantee
the optimum in terms of plan quality, and further, it requires the queries in
DNF. In the worst case, if the query is in CNF, the conversion to DNF yields a
query which is exponentially blown-up in size. The algorithm presented in the
next chapter does not suffer from these disadvantages.

The rest of the chapter is organized as follows. Section 6.2 contains the re-
lated work. In Section 6.3 we present the preliminaries for this chapter. In
Section 6.4 we show different plan construction strategies for Boolean expres-
sions. Section 6.5 presents the optimization algorithm. Section 6.6 shows the
evaluation results.
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6.2. Related Work

As stated in the introduction, the most prevalent way of optimizing disjunctive
queries in commercial databases is based on either of the two normal forms:
CNF (like System R [57]) or DNF [30, 61]. The work in [25] shows how to
order both conjunctive (∨) and (∧) disjunctive predicates optimally. In [25], a
Boolean expression is represented as a tree of (∨) and (∧) nodes, whereby the
terminal nodes (leaves) represent the predicates in a given Boolean expression,
e.g., attribute θ constant. Let E∧ denote a (∧) node in the tree representation
of the Boolean expression, and E∨ denote a (∨) node, respectively. The work
in [25] says that the ordering of children nodes of E∧ according to the formula

c(x1)

1− s(x1)
≤ . . . ≤ c(xn)

1− s(xn)
(6.1)

produces an optimal ordering, that is, the expected evaluation time of E∧ is
minimal. Note that c(·) and s(·) denote the cost and the selectivity of a predi-
cate. Likewise, ordering of the children nodes of E∨ according to the equation

c(x1)

s(x1)
≤ . . . ≤ c(xn)

s(xn)
(6.2)

minimizes the expected evaluation costs of E∨. However, this is true only un-
der the independence assumption, and further, the work in [25] relies on the
constant predicate costs assumption, too. Both the CNF and DNF based eval-
uation methods suffer from the overhead inflicted by the query normalization;
the normalization yields queries that are exponentially blown up in their size.

In Muralikrishna’s work [51], common subexpressions are identified by means
of merge graphs. Given a Boolean expression in DNF, the disjunctive predicates
are merged such that the resulting number of scans and joins is minimized.
The work in [51] concerns itself with the identification of duplicate predicates
in order to avoid a repeated evaluation of the same predicate. It is also shown
that the problem of common subexpressions elimination for Boolean expressions
is NP-complete. This work relies on both assumptions, IA and CC, and further,
it requires the queries in DNF, thus it is associated with the overhead of query
normalization.

The bypass processing technique was first introduced in [35] for evaluating
Boolean expressions with expensive predicates in the context of object-oriented
databases. The main idea behind this work centers around avoiding the eval-
uation of expensive predicates whenever this is possible. That is, whenever
the outcome of the Boolean expression can be determined by evaluating other
predicates that are less expensive, the expensive predicates are bypassed. The
optimization algorithm in [35] is based on A∗ search, allowing for global order-
ing of atomic predicates, thus comes close to the optimum. However, due to
the exhaustive enumeration of predicate orderings, it is too expensive, therefore
impractical for queries with more than few predicates. Further, their algorithm
does not support CSE, and relies on IA and CC. The work in [12] extends the
work in [35] by handling NULL values.
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In the work by Kemper et al. [36], a heuristic based on Boolean Difference
Calculus is used to optimize the evaluation of Boolean expressions. The heuris-
tic orders selection predicates based on their influence on the query outcome
and on their evaluation cost. The elimination of common subexpressions is not
considered, and predicate selectivities are assumed to be independent. More-
over, this approach assumes constant predicate costs, too.

Chang et al. [8] take the DNF optimization scheme a step further. The union
operators are pushed down and placed immediately after the join operators.
This way, the expensive multi-way union operator (sitting on the top of the DNF
plans) and merging the streams of tuples from each disjunct is not required.
The multi-way union operator is the most expensive operator in DNF plans; it
has to filter duplicate tuples coming from all the sub-streams corresponding to
Boolean summands in a Boolean query. The approach in [8], however, works
only in special cases, that is, when the selectivity of the join operator is very low
(the join operator occurring immediately before the union operator). Besides
requiring queries in DNF, this work also relies on both assumptions (IA, CC).

In the work by Chaudhuri et al. [10], two key ideas are presented: (1) complex
predicate factorization and (2) predicate condition relaxation. Their main idea
centers around exploiting the available indexes in order to create index-intersect
and union plans. In addition to the requirement of available indexes, this work
assumes both IA and CC.

An optimal algorithm for converting decision tables to decision trees was pre-
sented by Reinwald and Soland in [55]. Boolean expressions can be considered
as a special case of this algorithm. Therefore, the algorithm in [55] can be used
to find the optimal plan for evaluating a Boolean expression. The inner nodes of
the resulting decision tree contain Boolean conditions, each having two branches
(true/false), whereas the tree leaves contain the respective actions. The actions
can be viewed as the outcome of the Boolean expression (i.e., true or false).

This algorithm has a time complexity proportional to O(n−k+ 1)2
(k−1)

, where
n denotes the number of candidate decision trees and k the number of parti-
tioning steps. Such time complexity renders this algorithm impractical (for any
practical application). Moreover, it assumes fixed costs for each condition and
relies on the independence assumption, too.

An example decision tree is shown in Fig. 6.1. Each node is extended to
another node (i.e., a Boolean condition), or an action. The processing of a
decision table corresponds to the traversal of the decision tree, starting from
the root node, and following the path all the way to a leaf node, based on the
Boolean outcome of each intermediate node. The action corresponding to the
leaf node is then carried out. Since there are many equivalent decision trees for
a given decision table, the algorithm in [55] finds the one with the lowest costs.

The algorithm presented by Reinwald and Soland embraces the Branch and
Bound strategy as in the Traveling Salesman algorithm [39]. The algorithm
works by considering the set of all candidate decision trees that are equivalent
to a given decision table. The set of candidate decision trees is partitioned
into smaller subsets, and a lower bound on expected costs is assigned to each
subset. Subsets are further partitioned into smaller subsets, and finally a subset
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Figure 6.1.: A decision tree containing three Boolean conditions x1, x2, x3

Assumes Supports

IA CC CSE BMP /

Chang et al [8] Yes Yes No No No
Chaudhuri et al. [10] Yes Yes Yes No No
Claussen et al. [12] Yes Yes No No Yes
Hanani [25] Yes Yes No No No
Kemper et al. [35]∗ Yes Yes No No Yes
Kemper et al. [36] Yes Yes No No No
Muralikrishna [51] Yes Yes Yes No No
Reinwald et al. [55]∗ Yes Yes No No No

Table 6.1.: Overview of related work

containing only one element is found. This element corresponds to the optimal
decision tree, with its expected costs lower or equal than the lower bound of all
other subsets.

Table 6.1 summarizes the related work on the assumptions they make, the
support of CSE, optimization of branch misprediction (BMP), and bypass pro-
cessing (/). Additionally, work that attains the optimum (in terms of plan
quality) is marked with (*).

6.3. Preliminaries

In this section, we describe the preliminaries required to understand the opti-
mization algorithms in this chapter.

6.3.1. Predicates

Predicates in our context are atomic, see Definition 5.1.1 in Chapter 5. Pred-
icates can be connected by means of the conjunction AND (∧), e.g. p1 ∧ p2 ∧
. . .∧ pn, or the disjunction OR (∨), e.g. p1 ∨ p2 ∨ . . .∨ pn. Boolean expressions
consisting of a mixture of both AND and OR connections can be transformed
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(a) DNF plan
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(b) CNF plan
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Figure 6.2.: Evaluation plans for the query (Pc ∧ Pl) ∨ Pr

to either normal form: conjunctive normal form (CNF) or disjunctive normal
form (DNF).

A predicate query in CNF is composed of a conjunction of Boolean factors,
where each Boolean factor contains predicates connected disjunctively:

m∨
i=1

n∧
j=1

pi,j := (p1,1 ∨ . . . ∨ p1,n)︸ ︷︷ ︸
1st Boolean factor

∧ . . . ∧ (pm,1 ∨ . . . ∨ pm,n)︸ ︷︷ ︸
mth Boolean factor

.

DNF is the dual of CNF. DNF is composed of a disjunction of Boolean sum-
mands, where each Boolean summand contains predicates connected conjunc-
tively:

m∧
i=1

n∨
j=1

pi,j := (p1,1 ∧ . . . ∧ p1,n)︸ ︷︷ ︸
1st Boolean summand

∨ . . . ∨ (pm,1 ∧ . . . ∧ pm,n)︸ ︷︷ ︸
mth Boolean summand

.

6.4. Plan Construction Strategies

Bypass plans are best understood when compared against the traditional (non-
bypass) plans. We present, therefore, three different plan construction strategies
for disjunctive queries; DNF-based, CNF-based and bypass plans.

To illustratively compare these three different plan constructing strategies,
we use a simple example query with three predicates over a fictional movies
database:

(category = ’Action’ AND length < 120) OR rating > 4

where the predicates are abbreviated as follows:

1. Pc: category=‘action’,

2. Pl: length < 120, and

3. Pr: rating > 4.
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6.4.1. Traditional Plans: DNF and CNF

Traditionally, disjunctive queries in commercial databases are translated into
either of DNF or CNF form. The DNF and CNF-based plans for our example
query are shown in Figure 6.2a and 6.2b.

The construction of DNF-based plans constitutes to ordering of predicates
within Boolean summands. The latter can be done efficiently as shown in [25].
However, this ordering relies on the independence assumption. Further, com-
mon subexpressions have to be identified in order to avoid redundant compu-
tations.

In DNF-based plans, there are as many tuple streams as there are summands
in a DNF query. For our example query, two identical streams of tuples to be
processed are created. One stream flows to the predicate Pc and the other to Pr.
On top of DNF plans, there always exists a duplicate eliminating union operator
(∪), which merges and eliminates duplicate tuples. Due to identical streams of
tuples which are produced in DNF plans, copies of tuples that pass the filtering
conditions (predicates) from more than a single stream have to be eliminated.
Of course, this approach with duplicate tuple elimination works only when the
set semantics is desired. If otherwise the bag semantics (SQL semantics) is
desired, tuples have to be appended with an identifier, e.g. RIDs, In the rest
of the chapter, we will refer to the algorithm which produces DNF-based plans
as DNFalg.

The CNF-based approach starts with a query in conjunctive normal form,
consisting of a conjunction of Boolean factors (i.e., disjunctive terms). The
optimization of CNF-based plans proceeds in two stages:

1. ordering of Boolean factors, and

2. ordering of predicates within Boolean factors.

Hanani in [25] shows how to determine an optimal ordering of (1) and (2). The
ordering according to Hanani’s [25] equations (cf. Eq. 6.1, 6.2, in related work
section) yields the optimal plan only under the independence assumption.

In contrast to DNF-based plans, CNF-based plans do not need the union
operator. CNF-based plans have the disadvantage of repetition of selection
predicates in all the stages of the query plan. As it can be seen in the plan
depicted in Figure 6.2b for our example query, the predicate Pr occurs in both
stages, this way adding unnecessary costs. We shall call this algorithm CN-
Falg.

6.4.2. Bypass Plans

Each bypass selection maintains two disjoint output streams of tuples, namely
the true and the false stream. The idea is to discard those tuples that do not
make it to the result set as early as possible. The bypass technique is not new,
it was already used in [12, 35].

Consider again our example query, together with its depicted bypass plan
in Figure 6.2c. Tuples that satisfy the predicate Pc are pipelined to the next
predicate, namely Pl, and if they satisfy this predicate, too, they are part of
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the final result. On the other hand, tuples that do not satisfy Pc bypass Pl
altogether, as the evaluation of Pl is unnecessary, therefore, they are pipelined
directly to predicate Pr instead. These tuples correspond to the false stream
of Pc. Bypass processing is instrumental in avoiding expensive predicates (e.g.,
predicates with the SQL LIKE, UDF calls, etc) whenever their evaluation is
not required. Furthermore, in contrast to DNF-based plans, the union operator
( -∪) sitting on top of the bypass plan does not have to perform the extra work
of duplicate elimination, as tuple streams in bypass plans are disjoint. That is,
the union operator in bypass plans is a simple multi-way merge operator, which
is much cheaper to evaluate than the union operator with the duplicate elimi-
nation (∪). To that end, bypass plans offer a vast optimization potential which
has been experimentally shown in [12, 35], and reconfirmed by our experiments
(see Section 6.6).

6.5. A Heuristic Optimization Algorithm for Boolean
Expressions

In this section, we present a heuristic optimization algorithm for disjunctive
predicates. We initially provide an overview of how the algorithm works and
then we give a detailed description of the algorithm.

6.5.1. Overview of the Algorithm

The main idea behind the algorithm which we are going to present in this section
centers around (1) ordering (optimally) the predicates within each summand,
and (2) ordering of the summands themselves, in addition to constructing valid
bypass plans. For illustration purposes, let us consider the following example
query:

(x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x5 ∧ x6).

Illustration of the bypass plan construction for this example query is shown
in Figure 6.3. The algorithm starts by building a plan consisting of only a scan
operator (depicted in Figure 6.3a), as all other operators are built on top of it.
Next, each Boolean summand given in the query is picked as a candidate for the
next partial plan that will be built on top of the scan operator. Since a Boolean
summand contains a conjunction of predicates, the (partial) plan evaluating
these predicates is built by means of the DPSel algorithm (cf. Figure 6.6).
Note that the DPSel algorithm shown in Figure 6.6 is a modified version of
the original algorithm shown in Chapter 5, adapted for bypass plan generation.

For our example query, DPSel returns a partial plan on top of the scan
operator, as illustrated in Figure 6.3b. In the newly created plan, there is
a negative edge (denoted by the minus ‘−’ sign) for each selection operator.
The negative edges stand for the false stream of tuples, and we call them false
branches. In each one of these false branches, the partial plan evaluating the
next summand is built in the same fashion as on top of the scan operator (cf.
Figure 6.3d, 6.3e). In the process, however, we need to be careful with details,
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Figure 6.3.: Bypass plan construction for the example query (x1 ∧ x2 ∧ x3) ∨
(x2 ∧ x5 ∧ x6)
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BypassPlanGen(E)

// Input: a set of boolean summands E = {S1, . . . , Sn}
// Output: best plan

1 bestplan.branches = {scan(R)}
2 return Optimize(bestplan,E)

Figure 6.4.: Pseudocode for BypassPlanGen

Optimize(e, E)

// Input: plan e
a set of boolean summands E = {S1, . . . , Sn}

// Output: best plan
1 bestplan = NULL
2 for each Si ∈ E
3 B = ∅
4 for each b ∈ e.branches
5 F = {false preds. in b}
6 T = {true preds. in b}
7 if F ∩ Si == ∅ ∧ T + Si
8 B = B ∪DPSel(b, Si \ T ).branches
9 et = an empty plan

10 et.branches = B
11 et = Optimize(et, E \ {Si})
12 if bestplan == NULL ∨ C(bestplan) > C(et)
13 bestplan = et
14 return bestplan

Figure 6.5.: Pseudocode for Optimize

such as duplicate predicates occurring among different summands, as well as
common subexpression elimination.

6.5.2. The Algorithm in Detail

In this section, we present the details of the inner workings of our optimiza-
tion algorithm coined BypassPlanGen, abbreviated – BypassPlanGen. Its
pseudocode is shown in Figure 6.4.

BypassPlanGen accepts as an input a query in disjunctive normal form,
and further, selectivities must be provided for all subsets of predicates occurring
in the query. Selectivity estimates for subsets of predicates can be computed
by means of entropy maximization [42], graphical models [63] or by means of
the sampling method shown in Chapter 8.

BypassPlanGen starts (line 1) by creating a plan – bestplan, and the branch
of a plan containing only the scan operator is stored in its branches container.
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DPSel(branch, S)

// Input: a branch
a set S = {p0, . . . , pn−1} of predicates

// Output: optimal subplan on top of branch
1 DP = an empty DP table, size → 2n

2 DP [∅] = branch
3 for 0 ≤ i < 2n − 1 ascending
4 S′ = {pk ∈ S | (

⌊
i/2k

⌋
mod 2) = 1}

5 for each pj ∈ S \ S′
6 e = an empty plan
7 if S′ == ∅ ∧DP [S′] 6= scan(R)
8 e = BuildPlans(pj , DP [S′], false)
9 else

10 e = BuildPlans(pj , DP [S′],true)
11 StoreSolution(e, S′ ∪ {pj}, DP )
12 return DP [S]

Figure 6.6.: Pseudocode for DPSel

BuildPlans(p, e, stream)

// Input: a selection predicate p
an expression (partial plan) e
boolean flag stream

// Output: (partial) plan
1 Xe = ∪pj∈eXpj

2 Xp|e = Xp \Xe // outstanding maps

3 if e == scan(R)
4 return σpi(Xp|e(e))

5 elseif stream == true
6 e = σpi(Xp|e(σ

+
pj (e

′)))

7 else
8 e = σpi(Xp|e(σ

−
pj (e)))

9 return e

Figure 6.7.: Pseudocode for BuildPlans

StoreSolution(e, S,DP )

1 if DP [S] == NULL ∨ C(DP [S]) > C(e)
2 DP [S] = e

Figure 6.8.: Pseudocode for StoreSolution
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A plan is essentially a container of branches. In line 2, the procedure Optimize
is called with arguments bestplan, and the set of Boolean summands E.

The procedure Optimize (cf. Figure 6.5) works recursively by trying all the
permutations of Boolean summands in E. In line 1, an empty plan is created,
where the cheapest plan found will be stored and returned to the caller. Line 2
iterates over all the summands in E, and in line 3 an empty container of branches
is created. In line 4, the algorithm iterates over the branches of the input plan
e. We need to consider the possibility of building a partial plan evaluating the
current summand Si on top of each branch in e. However, before we do that,
we need to check for common predicates. That is, we need to make sure that Si
does not contain a predicate which is evaluated by a selection operator with a
non-empty false branch occurring below b, or by the selection operator that b
belongs to. By a non-empty branch we mean a branch that is connected to some
other operator, e.g., the false branch of the operator σx3 in Figure 6.3d is not
empty, as it is connected to σx6, whereas the false branch of the operator σx2
(in Figure 6.3d) is empty. In the same fashion, we need to make sure that the
predicates in the summand Si have not been already evaluated by the selection
operator in b or selection operators situated below b. To better illustrate this,
consider the example plan shown in Figure 6.3c. There is no point in building
the partial plan (shown in the red-dotted rectangle in Figure 6.3c) evaluating
predicates in Si = {x2, x5, x6} on top of the false branch of the bypass selection
operator σx2 , as the result will be false anyway.

Line 7 of procedure Optimize makes sure that no such unnecessary branches
are added to the plan. In the set F (line 5), we store the predicates evaluated
by the selection operator that b belongs to, and all the predicates belonging to
the selection operators occurring below b, that have a non-empty false branch.
In the set T (line 6) on the other hand, we store all the predicates belonging
to the selection operator in b and selection operators situated below b, i.e., true
branches.

Common predicate detection is crucial for building efficient plans: by detect-
ing such predicates, we can omit entire (unnecessary) bypass branches, and this
way drastically reduce the plan costs, and at the same time reduce the search
space. For the example partial plan in Figure 6.3b, and Si = {x2, x5, x6},
b = σx2 , we have F = {x2}, T = {x1, x2, x3}, thus the condition in line 7
results with a false outcome (F ∩ T 6= 0). That is, there will be no plan built
on top of the false branch of σx2 .

If there are no common predicates between the set F and T , DPSel algorithm
is called with the branch b, and the current summand Si (minus the predicates
in T ) as arguments (line 8). DPSel in turn will find an optimal (partial) plan
for evaluating the conjunction of predicates in Si on top of the branch b. To that
end, the false branches of the newly created partial plan by DPSel are returned
and added into the container – B. Going back to our example query, if DPSel
was called with arguments b = scan(R), and Si = {x2, x5, x6}, a partial plan
is built on top of the scan operator, containing three false branches, depicted
in Figure 6.3b. These false branches in turn, will be stored in the container B
such that on the next recursive invocation of Optimize, we can build the next
Boolean summand on top of each branch stored in B, given that the condition
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in line 7 is fulfilled. This has been illustrated in Figure 6.3d–6.3e, where the
newly added partial plans have been depicted in dotted rectangles. Details of
DPSel are given in Section 6.5.3.

In line 9, another empty plan (et) is created, which will hold the plan eval-
uating the current Boolean summand Si, and in line 10, et gets the branches
stored in B.

In line 11, the procedure Optimize calls itself with the new plan et and
the remaining summands. Line 12 compares the cost of the plan currently
found against bestplan. The dominating plan (i.e., the cheapest plan) is kept
in bestplan, and all other plans are pruned. When the recursion ends, the
bestplan is returned to the caller.

6.5.3. Optimization of Conjunctive Predicates in Boolean
Summands

The partial plans for conjunctive predicates in Boolean summands are built by
means of the DPSel algorithm (cf. Figure 6.6). This algorithm produces an
optimal plan for conjunctive predicates, generating solutions in a bottom-up
fashion, using dynamic programming. Since Boolean summands are composed
of conjunction of predicates, we can use the DPSel to optimize these predicates.
To this end, we have extended DPSel for the purpose of generating bypass
plans, as the original version of DPSel (shown in Chapter 5) supports neither
queries with disjunctions nor bypass plan creation.

DPSel starts by initializing an empty DP table and storing the input branch
in it (cf. lines 1-2 in Figure 6.6). Operators evaluating selection predicates in
the input Boolean summand S are built on top of this branch. The loop in
line 3 iterates over all subsets S′ of predicates in the summand S. The loop in
line 5 iterates over the predicates in S which are not in S′. These are the new
predicates that are not yet included in the existing partial plans stored in the
DP table.

Adding the new predicates to the existing (partial) plans is the responsibility
of the BuildPlans procedure shown in Figure 6.7. The BuildPlans proce-
dure takes as an input a predicate p, an existing partial plan e, and a Boolean
flag branch, indicating whether the new predicate is to be added to the regular
(true) branch or the false branch of the top bypass selection operator in the
existing input partial plan (e). In multiple predicate Boolean expressions, one
should take care of redundancies in terms of column accesses, user-defined func-
tion calls, etc. For example, in the query EMP.age > 20 AND EMP.age < 51,
the attribute values of EMP.age are needed in two places, hence the common
subexpression. We can, however, use a single map operator (χ) accessing the
values of EMP.age (cf. Figure 6.9), and this way eliminating the redundancy.
Recall that the map operator is used for dereferencing (i.e., accessing) column
values (cf. Chapter 3).

We differentiate the common subexpression elimination (CSE) from the com-
mon predicates elimination in that the former allows for column access opti-
mization, whereas the latter allows for false branch elimination when different
summands have predicates in common. Both are of a fundamental importance
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χa:∗(EMP.age)

σa>20 σa<51

Figure 6.9.: Dependency graph for the example query
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Figure 6.10.: Illustration of building bypass plans

to building efficient plans.

In the procedure BuildPlans, the set of map dependencies on which each
input predicate p depends, as well as CSE, are taken care of in lines 1,2. For
the sequence of selections in the partial plan e, their already executed map
dependencies are denoted by Xe = ∪pi∈eXpi , whereas the map dependencies of
the input predicate p, which are still to be executed, are denoted by Xp|e =
Xp \Xe.

To illustrate CSE implementation in our algorithm, consider again our exam-
ple query shown in Figure 6.3, and let the partial plan e = σx2(σx3(σx1(scan))),
and pi = x2. For the partial plan e, we have Xe = {x1, x2, x3}; these are the
already executed map operators (cf. Section 3.1.1) for predicates x1, x2, x3.
Now, we need to evaluate the new predicate pi on top of the existing plan e,
but before we do that, we need to make sure that its map dependencies are
fulfilled. Therefore, for pi = x2, we have:

Xp|e = Xp \Xe = {x2} \ {x1, x2, x3} = ∅

which results in an empty set, this way ensuring that we do not add a redundant
map operator to our plan and unnecessarily increase the plan costs.

After the map operators and CSE are taken care of, three cases are distin-
guished, covered in lines 3-8 of the BuildPlans procedure (cf. Figure 6.7):

1. If the input partial plan (e) is a scan operator (cf. line 3), then the
only way to evaluate the input predicate p is by a selection operator
which is added on top of the scan operator. This has been illustrated in
Figure 6.10a.

2. If the branch flag is set to true (cf. line 5), it follows that the input partial
plan (e) must contain a bypass selection operator as the top operator (i.e.,
not a scan operator), then the predicate p is evaluated by a new bypass
selection operator added on top of the true branch of the selection operator
in e, as depicted in Figure 6.10b.
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3. The last case implies (cf. line 7) that the input branch flag is set to false,
therefore, the selection operator evaluating p is added on top of the false
branch of the top operator in e, as depicted in Figure 6.10c.

Finally, the newly constructed plan is returned to the caller.
In line 6 of DPSel, an empty plan is created with the purpose of holding

the plan which will be subsequently returned by the BuildPlans procedure.
Line 7 checks if the set S′ is empty and at the same time makes sure that the
input branch is not a scan operator. If this condition if satisfied, BuildPlans
procedure is called with the false flag, indicating that it should build the false
branch of the bypass selection operator in DP [S′]. The reason for the check in
line 6 is to make sure that the procedure BuildPlans is not requested to build
a false branch on top of a scan operators as obviously this operator does not
have a false branch. If condition in line 7 is not satisfied, it entails that the top
operator of the input branch is a scan operator, therefore the algorthim should
build on top of its false branch. Recall that in the DP table for the key S′ = ∅
we have associated the input branch (cf. line 2).

Line 11 of DPSel algorithm passes the plan in e to the auxiliary procedure
StoreSolution (see Figure 6.8), which in turn stores the dominating plan
(the plan with the lowest cost) in the DP table. Plans produced by our algo-
rithm are costed according to the cost model shown in Chapter 4. Our cost
model takes into account the branch misprediction. The branch misprediction
in turn depends on predicate selectivities. As stated already in Section 6.5.2,
predicate selectivities for all the subsets of predicates are given as an input to
the algorithm.

By the time the main loop (lines 3-11) of DPSel exits, the best plan with
the optimal cost for evaluating the selection predicates in S on top of the input
branch is found and stored in the DP table. In line 12, the best plan is fetched
from the DP table and is returned to caller, i.e., to the procedure Optimize.

The time complexity of BypassPlanGen is O(k!mk−1), whereas its space
complexity is O(mk). Note that k stands for the number of Boolean summands
in a query, and m for the number of predicates in the largest (single) Boolean
summand. Although the time complexity of BypassPlanGen seems rather
high, it is still asymptotically much lower than the superexponential algorithm
given by Reinwald and Soland (cf. Section 6.2), or an algorithm that enumer-
ates all permutations of predicates – O(n!) for n predicates. Further, the gains
in plan quality when choosing BypassPlanGen over normal-form based algo-
rithms outweigh by far its costs as we will show in the experimental evaluation
of the algorithm in Section 6.6.

6.6. Evaluation of the Heuristic Algorithm

The evaluation of predicates in data warehouses has become the major bottle-
neck for decision support queries [31]. We show in this section that there is
a huge optimization potential not harvested by optimization algorithms typi-
cally used in RDBMSs. For the experimental evaluation of our optimization
algorithm – BypassPlanGen, we have compared it against two widely used
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algorithms DNFalg and CNFalg (cf. Section 6.4). Since DPSel [33] pro-
duces an optimal plan for conjunctive predicates, we applied it to the original
DNFalg algorithm, such that for each tuple stream an optimal local plan is
produced. Recall that in DNF plans (cf. Section 6.4) there are as many tuple
streams as there are Boolean summands in a query. We termed this new algo-
rithm DNFdp. DNFdp, thanks to DPSel minimizes the branch misprediction
penalty, and in addition, it applies CSE in each Boolean summand (locally).
We introduced DNFdp with the goal of improving the chances of a DNF-based
algorithm against the algorithm presented in this chapter – BypassPlanGen.

For testing the algorithms, we have performed three different sets of experi-
ments over three different data sets. We conclude the Experiments section with
a comparison of the running times of the four algorithms. All experiments were
run single-threaded on a machine with an Intel(R) Xeon(R) CPU E5-2640 v3
@ 2.60GHz processor. The machine was equipped with 264 GB of main mem-
ory, and ran a 64 bit Arch Linux operating system. All the algorithms were
implemented in C++, and compiled using g++ (version 6.2.1).

6.6.1. Forest Dataset

We have already introduced the Forest [14] dataset in the Evaluation section of
Chapter 5. Recall that the Forest [14] dataset contains data about US forests,
materialized in a relation with 54 attributes, and 581.012 tuples. This rather
wide relation validates the importance of optimizing Boolean expressions. We
have used three different queries, each containing 6 predicates in total and
varying number of Boolean summands (for queries in DNF) or Boolean factors
(for queries in CNF), respectively.

The predicates were simple range predicates of the form c1 ≤ attri ≤ c2,
were c1, c2 denote integer constants. As we do not rely on the IA, selectivity
estimates for all the subsets of predicates where derived by means of the very
efficient sampling method shown in Chapter 8.1.

We have compared all the four algorithms by generating randomly 1000
queries over randomly chosen attributes of the Forest relation. For all the
experiments, we have transformed the queries into both normal forms: DNF
and CNF. This way, we did not give any unfair advantage to any algorithm
over the rest.

Two different sets of experiments were performed. The first set contained
only inexpensive predicates, i.e., the cost of the map operators that predicates
depended on was set to 1. That is, all predicates had equal costs. For the second
set, we assigned random cost values to the map operator, uniformly distributed
in the range [1, 100]. That is, predicates had varying costs. For each query,
there were 100 different such random cost assignments to the map operators
that each predicate depended on.

Queries with equal predicate costs (no common predicates)

The results of this experiment are shown in Table 6.2 and Table 6.3. Note
that ‘B.s.’ and ‘B.f.’ denote the number of Boolean summands (for queries in
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Query type DNF

Costs Equal Varying

# B. s. 1 2 3 1 2 3

DNFalg 1.6 3 4.3 22.2 9.4 29.1
DNFdp 1.0 2.3 3.6 1.0 9.3 29.1
CNFalg 5.4 5.6 14.3 79.2 243.2 585.8

Table 6.2.: Relative optimization potential (in factors!) of BypassPlanGen
vs. DNFalg, DNFdp and CNFalg over the Forest dataset

Query type CNF

Costs Equal Varying

# B. s. 1 2 3 1 2 3

DNFalg 6.9 15.1 17.1 89.7 186.8 290.1
DNFdp 6.9 12.5 14.7 89.7 185.8 288.9
CNFalg 1.0 4 4.1 2.09 38.5 49.2

Table 6.3.: Relative optimization potential (in factors!) of BypassPlanGen
vs. DNFalg, DNFdp and CNFalg over the Forest dataset

Query type DNF

Costs Equal Varying

# B. s. 1 2 3 1 2 3

BypassPlanGen 5.4 9 7.8 65.2 139.7 123.7
DNFalg 6.1 13.1 16.7 75.5 174.3 232.8
DNFdp 5.4 11.1 14.6 62.2 168.7 231.6
CNFalg 10.1 25.9 24.6 137.2 615.4 781.5

Table 6.4.: Average time-per-tuple (ns) for query plans over the Forest dataset

Query type CNF

Costs Equal Varying

# B. s. 1 2 3 1 2 3

BypassPlanGen 4 4.7 7.5 27.8 32.4 42.5
DNFalg 18.7 44.3 47 321.5 723.6 746.5
DNFdp 18.7 38.2 38.2 321.5 713.9 720.8
CNFalg 4 6.6 10.3 28.2 86.68 160.1

Table 6.5.: Average time-per-tuple (ns) for query plans over the Forest dataset
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DNF), and number of Boolean factors (for queries in CNF), respectively. For
the definition of Boolean summands, respectively Boolean factors please refer
to Section 6.3. As the plan costs varied greatly, the difference on plan quali-
ties between the algorithms is shown in factors relative to BypassPlanGen.
That is, over all runs, we recorded the maximum deviation factor on the plan
quality of the plans produced by normal form algorithms (DNFalg, DNFdp,
CNFalg) relative to the plans produced by BypassPlanGen algorithm.

Starting with queries in DNF with inexpensive predicates (cf. Column ‘Equal’
in Table 6.2), and queries containing a single Boolean summand, BypassPlan-
Gen beats DNFalg by a factor of over 1.6 and CNFalg by a large factor of 5.4.
Since the query had only a single summand, and since both BypassPlanGen
and DNFdp employ the DPSel algorithm, they both produced the optimal
plan, hence equal costs. That is, queries containing a single Boolean summand
contain predicates connected conjunctively (no OR operations), therefore, there
is no opportunity for bypassing selection operators in the resulting plans. Con-
tinuing with queries with 2 and 3 Boolean summands, BypassPlanGen beats
the other algorithms by large factors, namely DNFalg by a factor 3 and 4.3,
DNFdp by a factor of 2.3 and 3.6, and CNFalg by 5.6 and 14.3, respectively.
These are very large factors, considering that the predicates were cheap to eval-
uate, and there were only 6 predicates in total. In case of the CNFalg, the
factors of difference in plan qualities relative to BypassPlanGen are much
larger when the query is given in DNF, as it has first to be transformed into
CNF, this way inducing multiple duplicate predicates across Boolean factors.
The same disadvantage applies to DNF-based algorithms when queries are given
in CNF (cf. Table 6.3). Note that when converting a query from one normal
form to another, the query blows-up exponentially in its size as a result. Even
for queries in CNF, the factors are very large relative to BypassPlanGen,
namely 6.9 for DNFalg, and DNFdp, for a single Boolean factor, all the way
to staggering factors of over 14 for three Boolean factors (for cheap predicates)!
For a single Boolean factor, both CNFalg and BypassPlanGen produced the
same results, as the query contained only OR operations. With the increase
of the number of Boolean factors, however, BypassPlanGen starts producing
plans that are cheaper than plans produced by CNFalg by a factor of 4 for
2 and 3 Boolean factors (for cheap predicates). To this end, regardless of the
normal form of the query (i.e., DNF or CNF), BypassPlanGen is the clear
winner by large factors.

Varying predicate costs (no common predicates)

For predicates with varying costs, the difference on plan qualities between By-
passPlanGen and normal form based algorithms is much greater (cf. columns
‘Varying’ in Table 6.2 and Table 6.3). Starting with a single Boolean sum-
mand, BypassPlanGen beats DNFalg by a large factor of 22, and CNFalg
by a huge factor of 79. Same as with cheap predicates, DNFdp produces the
same results as BypassPlanGen due to the fact that there was only a single
summand, therefore no OR operators. Continuing with 2 and 3 Boolean sum-
mands, BypassPlanGen is again the clear winner by very large margins. It
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beats both DNF algorithms by factors of over 9 and 29, and CNFalg by factors
of 243 and 585, respectively. For queries in CNF form (cf. columns ‘Varying’ in
Table 6.3), the situation is not better for the heuristics. Starting with a single
Boolean factor, BypassPlanGen produced plans that are cheaper than plans
produced by DNFalg and DNFdp by a factor of 89. CNFalg on the other
hand lost by a factor of 2 against BypassPlanGen. For queries with 2 and 3
Boolean factors, BypassPlanGen beats DNF-based algorithms by factors of
over 185 and 288! It beats CNFalg too, by factors of 38 and 49, respectively.

To that end, the gaps on plan qualities are very large, despite the fact that
the total number of predicates was limited to only 6 predicates. We initially
thought that because we have picked the maximum optimization potential over
all the queries, it might be the case that BypassPlanGen is performing so well
only for some few particular queries, and for the rest of queries the difference
might not be so large. We repeated the same experiments, but this time we
took the average time-per-tuple, over all queries. The results of this experiment
are shown in Table 6.4 for queries in DNF, and Table 6.5 for queries in CNF, re-
spectively. BypassPlanGen nevertheless shows much better query times. For
two Boolean summands (query in DNF), the plan quality difference between
BypassPlanGen vs. DNFalg and DNFdp is 31%, and 18% respectively.
For three summands, plans produced by BypassPlanGen are 53% cheaper
than those produced by DNFalg, and 46% cheaper than those produced by
DNFdp! It is interesting to note that for queries with 2 Boolean summands,
the plans produced by BypassPlanGen are more expensive than for queries
with 3 Boolean summands. The reason for such behavior is that for 2 Boolean
summands, BypassPlanGen has less opportunity to bypass predicates than
when there are 3 Boolean summands in a query. It follows that the gap on plan
qualities—between BypassPlanGen and heuristics—would increase even fur-
ther if we would increase the number of summands, respectively the number of
predicates. For queries in CNF with 2 and 3 Boolean factors, BypassPlanGen
produced plans that are by 27% cheaper than those produced by CNFalg.

For queries with varying predicate costs, regardless of the query form (DNF,
CNF) or the number of Boolean summands/factors, the gap on plan qualities
remains large in favor of BypassPlanGen (cf. column ’varying’ in Table 6.4
and Table 6.5).

Queries with Common predicates

We have repeated the same experiment over the same data set, with the differ-
ence that in this experiment we introduced duplicate predicates in our queries.
That is, we generated a pool with 6 predicates in total, and created 100k differ-
ent queries with random constants c1, c2 (recall that predicates over the Forest
data set were of the form c1 ≤ attri ≤ c2). Each query in turn contained 2 and
3 Boolean summands/factors. Predicates for each query were picked randomly
from the pool of predicates, this way giving a leeway to duplicate predicates.
We have omitted the results for queries with a single Boolean summand/factor,
as such queries are pure conjunctive/disjunctive. The results of this experiment
are shown in Table 6.6.
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Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

DNFalg 3.2 6.8 46 81 19 21 244 331
DNFdp 3.2 5.7 46 81 15 16 243 330
CNFalg 14 97 1021 2574 4.3 6 60 100

Table 6.6.: Relative optimization potential (in factors!) of BypassPlanGen
vs. DNFalg, DNFdp and CNFalg over the Forest dataset (com-
mon predicates)

Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

BypassPlanGen 7.2 5 103 67 4.1 4.4 36 47
DNFalg 12 15 170 225 29 34 489 517
DNFdp 10 13 165 222 26 29 483 505
CNFalg 18 21 391 652 7 10 98 155

Table 6.7.: Average time-per-tuple (ns) for query plans over the Forest dataset
(common predicates)
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For 2 and 3 Boolean summands and predicates with equal costs, Bypass-
PlanGen beats DNFalg by a factor of 3.2 and 6.8 respectively. DNFdp pro-
duced better plans than DNFalg due to DPSel which it employs, however,
it is still inferior to BypassPlanGen by factors of 3.2 and 5.7. As expected,
CNFalg produced very poor plans (dominated by plans of BypassPlanGen
by factors of 14 and 97) as the queries were in DNF. For predicates with vary-
ing costs, BypassPlanGen beats DNF-based algorithms by very large factors,
namely 46 and 81! As expected, CNFalg again produced extremely poor plans.

For queries in CNF, situation is not much better, except that the tables have
turned in favor for CNF vs. DNF-based algorithms. Nevertheless, Bypass-
PlanGen is the clear winner by large factors even for queries in CNF, and
for both cases, predicates with equal and varying costs (cf. columns under
the label ‘CNF’ in Table 6.6). Such large differences on plan qualities between
BypassPlanGen and normal form based algorithms are due to the ability
of BypassPlanGen to completely eliminate plan branches, whenever there
are shared predicates among different summands (cf. Section 6.5.2). This in
addition to the advantages of bypass plan generation.

The average time-per-tuple for queries with duplicate predicates are shown
in Table 6.7. For queries in DNF with equal costs, with 2 and 3 Boolean
summands, BypassPlanGen produces plans that are cheaper by 41% and 66%
than the plans produced by DNFalg, and by 32%, 62% than the plan produced
by DNFdp, respectively. As the queries were in DNF form, CNFalg produced
far inferior plans. For queries in DNF with varying costs, BypassPlanGen
beats DNFalg by 39% and 70%, and DNFdp by 37% and 69%.

For queries in CNF with equal costs, containing 2 and 3 Boolean factors, By-
passPlanGen produced plans that are cheaper by 41% and 56% than plans
produced by CNFalg. Plans for DNF based algorithms were by far inferior to
BypassPlanGen for queries in CNF, as expected. For varying costs, Bypass-
PlanGen produced plans that are 62% and 69% cheaper than those produced
by CNFalg.

6.6.2. Predicates with Random Selectivities

For this experiment, selectivities for single predicates Pi and pairs (Pi∧Pj)∀i, j
were generated randomly, uniformly distributed in the range [0, 1]. Their con-
sistency was ensured by means of PDHGMp [47]. When randomly generat-
ing predicate selectivities, there can be inconsistencies, therefore we have used
PDHGMp algorithm for generating consistent predicate selectivities. For the
rest of predicates ∧i∈IPi, I ⊆ {1, . . . , n}, their joint selectivities were generated
by the principle of maximum entropy (ME) [42]. We have again used queries
with a maximum of 6 predicates, and as in previous experiments, we did two sets
of experiments: one experiment included predicates with equal costs, whereas
the other one predicates with varying costs. A total of 1k queries were used,
in both normal forms (DNF, CNF), and each with 2 and 3 Boolean summand-
s/factors. The results of this experiment are shown in Table 6.8. The plan
difference of normal form based algorithms is shown in factors relative to By-
passPlanGen.
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Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

DNFalg 2.5 3.7 2.7 5.4 16 20 91 122
DNFdp 2 3.1 2.7 5.4 14 15 89 119
CNFalg 22 260 94 866 2.8 3.6 11 20

Table 6.8.: Relative optimization potential of BypassPlanGen vs. DNFalg,
DNFdp and CNFalg, joint predicate selectivities generated by ME
principle

Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

BypassPlanGen 11 10 158 127 6.3 6.6 38 38
DNFalg 23 25 242 274 73 86 815 941
DNFdp 19 21 228 264 62 70 789 892
CNFalg 104 715 3758 29895 11 15 132 190

Table 6.9.: Average time-per-tuple (ns), joint predicate selectivities generated
by ME principle

As it can be seen in Table 6.8, for queries in DNF with equal predicate
costs, BypassPlanGen produces cheaper plans than DNF-based algorithms
by factors of over 2 and 3, respectively. For predicates with varying costs,
factors have increased to 2.7 and 5.4. As expected, CNFalg produced far
inferior plans due to the queries being in DNF.

For queries in CNF, BypassPlanGen proved again to be the best alterna-
tive. It beats CNFalg by factors of over 2 and 3 for cheap predicates (equal
costs), and by factors of over 11 and 20 for predicates with varying costs. DNF-
based algorithms were vastly inferior due to the queries being in CNF.

The average plan costs (in time-per-tuple) have been shown in Table 6.9;
they confirm that BypassPlanGen produces cheaper plans, regardless of the
number of Boolean summands/factors or predicate costs. The gaps between the
DNFalg and CNFalg relative to BypassPlanGen in this experiment have
even further increased compared to the experiment with the Forest dataset.

Queries with common predicates

In the following, we present the results of the algorithms optimizing queries
which contain shared predicates, for the dataset generated by the principle
of ME. As with the Forest dataset experiment, we generated a pool with 6
predicates in total, and 100k random queries, with 2 and 3 Boolean summand-
s/factors. Predicates were picked randomly from the pool of predicates. The
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Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

DNFalg 3.5 6.3 31 37 16 20 113 140
DNFdp 2.9 5.3 29 36 14 15 111 132
CNFalg 24 303 136 2233 2.9 5.1 13 25

Table 6.10.: Relative optimization potential of BypassPlanGen vs. DNFalg,
DNFdp and CNFalg, joint predicate selectivities generated by
ME principle (common predicates)

Query type DNF CNF

Costs Equal Varying Equal Varying

# B. s./B. f. 2 3 2 3 2 3 2 3

BypassPlanGen 10 7.7 109 71 6.3 6 49 54
DNFalg 20 24 212 260 48 59 504 652
DNFdp 17 21 203 253 42 49 490 623
CNFalg 41 219 985 7218 10 14 128 188

Table 6.11.: Average time-per-tuple (ns), joint predicate selectivities generated
by ME principle (common predicates)

results of these experiments are shown in Table 6.10.

For queries with two and three summands, and for predicates with equal
costs, BypassPlanGen beats DNF-based algorithms by factors of over 2 and
5, respectively. These are large gaps given that the predicates were cheap to
evaluate. For varying costs predicates, the gaps have increased to whopping
factors of 29 and 36! For queries in CNF, BypassPlanGen is again the clear
winner. It beats CNFalg by factors of over 2 and 5 for cheap predicates, and
by factors of over 13 and 25 for predicates with varying costs.

The average plan costs over all queries used in this experiment are shown in
Table 6.11. Comparing these figures with the ones in Table 6.9 (no common
predicates), we can see that BypassPlanGen has produced cheaper plans,
whereas the plan costs for the normal form based algorithms have actually
increased. The reason why the plan costs have increased for the normal form
based algorithm is that in this experiment we used more queries – 100k instead
of 1000. Whereas the reason why BypassPlanGen produced cheaper plans
comes as a result of the optimization of common predicates.

We conclude that the detection and elimination of duplicate predicates plays
a crucial role in optimization of Boolean expressions, and thus it cannot be
ignored.
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6.6.3. CH-benchmark

In this section, we present the results of comparing the algorithms by using the
CH-benchmark [13, 62] workload. CH-benchmark is a complex, mixed workload
benchmark, devised with the goal of closing the gap between TPC-C (for OLTP)
and TPC-H (for OLAP).

For the purpose of testing our algorithms, we have picked Query 19 of this
benchmark:

SELECT SUM(ol_amount) AS revenue

FROM orderline, item

WHERE (

ol_i_id = i_id

AND i_data LIKE ‘%a’

AND ol_quantity >= 1

AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,2,3)

) OR (

ol_i_id = i_id

AND i_data LIKE ‘%b’

AND ol_quantity >= 1

AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,2,4)

) OR (

ol_i_id = i_id

AND i_data LIKE ‘%c’

AND ol_quantity >= 1

AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,5,3)

);

Query 19 suits very well to our purpose, it contains 15 predicates, and it contains
both Boolean operators: AND, OR. Further, it contains predicates with varying
costs, including cheap predicates with only comparison operators (i.e., ≤,≥),
somewhat more expensive predicates containing the IN, BETWEEN clauses, and
expensive predicates containing the LIKE clause.

Since we do not rely on the IA, selectivity estimates for all subsets of predi-
cates have to be supplied to our algorithms. For this purpose, we have used the
sampling method shown in Section 8.1 over the materialized relation obtained
as a product of joining item and orderline (on attributes ol i id = i id).
The newly materialized relation contained 15 million tuples.

The results of this experiment are shown in Table 7.12. The middle column
shows the overall plan costs (in seconds), and the right-most column shows
the optimization time (in ms). The results of CNFalg are not shown as this
algorithm did not terminate even after 10 minutes of optimization time. The
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6. A Heuristic for Boolean Expressions

Algorithm Plan costs (s) Opt. time (ms)

BypassPlanGen 0.8 1.77
DNFalg 8.56 0.057
DNFdp 1.1 0.208

Table 6.12.: CH-benchmark results for Query 19
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Figure 6.11.: The evaluation results of runtime performance

reason for this, is that Q19 is in DNF and had to be transformed into CNF,
which in turn resulted with a very large query containing in total 125 Boolean
factors, and each factor containing 5 predicates.
BypassPlanGen algorithm produced the best results; the plan produced

by this algorithm is 27% cheaper than that of DNFdp, and 90% cheaper than
that of DNFalg.

6.6.4. Runtime

Our experiments have convincingly shown that BypassPlanGen is the algo-
rithm of choice. We are now interested to know what is the price that we have
to pay if we choose BypassPlanGen over the normal form based algorithms
(i.e., DNFalg, DNFdp, CNFalg)? We answer this question by measuring the
runtimes of all the four algorithms used in our experiments. For the runtime
measurements, we have used queries with 10 predicates, and a varying number
of Boolean summands/factors. The results of this experiment are depicted in
Fig. 6.11, where the x-axis shows the number of Boolean summands, respec-
tively Boolean factors (for CNFalg), and the y-axis shows the elapsed time in
milliseconds.

For queries with a single Boolean summand, both BypassPlanGen and
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DNFdp have almost identical runtimes; the minimal difference is due to By-
passPlanGen having a larger constant. The reason for such identical runtimes
is that both BypassPlanGen and DNFdp employ DPSel for building plans
for conjunctive predicates, and since for a single summand there are only con-
junctions of predicates (no OR operations) then the whole optimization job is
performed by DPSel, thus both algorithms produce the same results. Note
that the time complexity of DPSel is proportional to O(n2n), where n denotes
the number of predicates in a conjunctive query (i.e., predicates in a single
Boolean summand).

For queries with 2 Boolean summands the runtimes drop significantly for
both BypassPlanGen and DNFdp. The reason for this drop in runtime is
mainly due to DPSel, as for queries with 2 Boolean summands the number
of predicates n has been halved in each summand, and since DPSel has ex-
ponential complexity, for a smaller n it has to do less, therefore the runtime
has dropped significantly for both algorithms. Of course, BypassPlanGen
is more expensive than DNFdp, as BypassPlanGen has to consider all the
permutations of Boolean summands, in addition to building the false branches
for each bypass selection operator.

For queries with 3, 4, and 5 Boolean summands, the optimization time of
BypassPlanGen increases as expected. This happens due to the permutations
of Boolean summands in BypassPlanGen, and now the number of Boolean
summands has increased. For DNFdp, the situation has improved, as the
number of conjunctive predicates have dropped even further with the increase
of the number of Boolean summands.

The runtime of the traditional algorithms DNFalg and CNFalg remains
low for all the number of Boolean summands/factors; their complexity is pro-
portional to O(n log n).

This experiment has shown that even for queries with 10 predicates with up to
5 Boolean summands, the optimization time of BypassPlanGen remains well
under 1.7 ms, which is a little price to pay given the possible gains in plan quality
that BypassPlanGen generates. We have seen in our previous experiments
that for disjunctive queries with only 6 predicates, BypassPlanGen beats
DNF-based algorithms by factors of over 330, and CNFalg by a factor of over
2000! Regardless if predicates are cheap or expensive to evaluate, the gap on
plan qualities between BypassPlanGen and the normal form based algorithms
is huge. Further, BypassPlanGen is the best algorithm regardless if the query
is in DNF or CNF.

6.7. Conclusion

In this chapter, we presented a heuristic optimization algorithm for disjunc-
tive queries that generates bypass plans for main memory database systems.
The algorithm presented in this chapter does not rely on common assumptions
such as independence and constant predicate costs assumption. Moreover, the
algorithm supports both common subexpression elimination and branch mis-
prediction optimization, as well as common predicate elimination technique.
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6. A Heuristic for Boolean Expressions

We have experimentally shown that regardless of the query’s normal form
(CNF or DNF) or the presence of common predicates, the algorithm presented
in this chapter produces far superior plans compared to the heuristics algorithms
found in the literature and in commercial database systems. The algorithm
requires, however, the queries in DNF.
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7. Optimal Evaluation of Boolean
Expressions

In the previous chapter, we have tackled the problem of optimizing Boolean
expressions by means of a heuristics optimization algorithm which—as validated
by the experiments in Chapter 6—produces by far better plans than the existing
heuristics in the literature and commonly used in RDBMSs. The heuristic
from the previous chapter, however, has some limitations; it expects queries
in DNF form, it does not recognize Boolean implications, and further, it does
not guarantee the optimum. In this chapter, we present a new optimization
algorithm for Boolean expressions, which suffers from none of those limitations.

7.1. Introduction

The most prevalent way of optimizing Boolean expressions in RDBMs relies on
query normalization into either conjunctive normal form (CNF) or disjunctive
normal form (DNF), and then order the conjuncts and disjuncts respectively.
In both CNF and DNF optimization schemes, the search space is limited to the
granules of Boolean factors/summands and not atomic predicates, as shown in
Chapter 6. To exacerbate the matter, query normalization produces queries
that are exponentially blown up in size, thus making them expensive to even
prohibitively expensive to evaluate. We have shown experimentally in Chapter 6
that CNF and DNF based evaluation methods in general produce very poor
plans.

In this chapter, we present a top-down optimization algorithm for Boolean
expressions which attains the optimality in terms of plan quality and exhibits
impressive runtimes, hence it is applicable for any practical application. In
contrast to bottom-up algorithms top-down algorithms are amenable to search
strategies like branch-and-bound pruning due to their demand driven nature.
The branch-and-bound search strategy enables top-down algorithms to effi-
ciently curtail their search space, and thus yielding better performance. The al-
gorithm presented in this chapter does not require any normalization of queries,
and the granules of optimization are the atomic predicates allowing for a fine-
grained global ordering of the atomic predicates and this way making the op-
timum attainable. In addition, the algorithm presented in this chapter derives
tighter upper bounds by means of Boolean Difference Calculus (BDC) [36] in
order to prune the search space more aggressively, which translates to further
improvements in the performance of the algorithm. To this end, the branch-and-
bound pruning combined with BDC allow for an improvement of performance
by an average factor of more than 5.
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Since the algorithm presented in this chapter yields optimal plans, we are
able to measure the quality of the exiting heuristics relative to the optimum.
Furthermore, we can also measure the entire optimization potential available
by measuring the gap between the worst and the best possible plan.

Recognition of Boolean implications in a query can help significantly reduce
the search space as well as the plan costs. Consider the following example query
predicate (A1 = ‘ABC’ ∧ A2 < 20)∨ (A1 = ‘DEF’ ∧ A3 6= 100). If A1 = ‘ABC’
is true, then it must be that A1 = ‘DEF’ = false, thus reducing the query to
A2 < 20. The work in the literature does not consider Boolean implications,
whereas the algorithm presented in this chapter does.

As shown in Chapter 6, when optimizing Boolean expressions, the true theo-
retical optimization potential cannot be achieved by means of traditional plans.
We can, however, fill this gap by means of bypass processing as in Chapter 6.
Recall that in bypass processing, selection operators split the input tuple stream
into two disjoint output streams: the true-stream with tuples that satisfy the
selection predicate and the false-stream with tuples that do not. Bypass pro-
cessing is crucial in avoiding expensive predicates whenever the outcome of the
query predicate can be determined by evaluating the less expensive ones.

We summarize our contributions presented in this chapter as follows:

1. we present an optimization algorithm for Boolean expressions that guar-
antees the optimality with respect to the plan quality, while at the same
time exhibits impressive runtimes,

2. our algorithm has made it possible for the first time to measure the gap
on plan quality between the existing heuristics and the optimum, as well
as the entire optimization potential available between the worst and the
best possible plan,

3. our algorithm optimizes the branch misprediction penalty, supports CSE
(common subexpression elimination), and duplicate predicate elimination,

4. our algorithm does not require normalization of Boolean expressions and
does rely neither on IA (independence assumption) nor CC (constant
predicate costs).

The rest of the chapter is organized as follows. Section 7.2 presents the
optimization algorithm, wheres Section 7.3 presents a heuristics algorithm based
on Boolean difference calculus. Section 7.4 presents some details on Boolean
expression representation and Section 7.5 shows the evaluation results.

7.2. The Optimization Algorithm

In the following, we present our top-down optimization algorithm for Boolean
expressions in a step-wise fashion in order to make it easier to understand. Our
optimization algorithm guarantees the optimum in terms of plan quality in all
the variants presented in this section.
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TDsim(e, Bxp, stream)

// Input: partail plan e
a query predicate Bxp
flag stream

// Output: best plan
1 bestcost =∞
2 bestplan = null
3 for each p ∈ {getPredicates(Bxp)}
4 e′ = BuildPlans(pi, e, stream)
5 e+ = TDsim(e′, Bxp[p← true],true)
6 e− = TDsim(e′, Bxp[p← false], false)
7 cost = Cost(e+) + Cost(e−) + Cost(e′)
8 if bestplan == null or bestcost > cost
9 bestplan = [e′, e+, e−]

10 bestcost = cost
11 return bestplan

Figure 7.1.: Pseudocode for TDsim

As an introduction to top-down optimization of Boolean expressions, we first
present the “simplest” variant of our top-down algorithm – TDsim. Its pseu-
docode is shown in Figure 7.1.

7.2.1. The Basic Idea

TDsim iterates over all the predicates in the input Boolean expression. Each
predicate is evaluated by a bypass selection operator, which, in turn, has two
output branches (i.e., the true and the false branch). The algorithm builds
the true and the false branch by invoking itself recursively. On each recursive
invocation, the input Boolean expression is simplified by assigning to the cur-
rent predicate either true or false depending on the branch being built. The
recursive descent stops once there are no predicates left in the input Boolean
expression, that is, the expression has been simplified to either true or false.
The simplification of Boolean expressions is explained in more detail in the
following subsection.

7.2.2. The Algorithm in Detail

The algorithm accepts as an input a partial plan (e), a Boolean expression
(Bxp), as well as a Boolean flag branch. The branch flag simply indicates
whether the invocation of the routine TDsim will build on top of the true or on
top of the false branch of the preceding bypass selection operator in e. Initially,
TDsim is called with a partial plan (e) consisting of only a scan operator, as all
selection operators evaluating the predicates in the input Boolean expression
(Bxp) are built on top of the scan operator. Further, for the initial call, the
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(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4)

x2 ∨ x3 ∨ x4

truex3 ∨ x4

truex4

truefalse

x4 ← false x4 ← true

x3 ← false x3 ← true

x2 ← false x2 ← true

false

x1 ← false x1 ← true

Figure 7.2.: Predicate assignment and Boolean expression simplification

branch flag is set to true; clearly the scan operator is not a bypass selection
operator, therefore, it does not have a false branch.

In line 1, the variable bestcost is declared and initialized to ∞. In this
variable, we store the cost of the best plan found in each invocation of the
algorithm, whereas the best plan itself is kept in the variable bestplan (line 2).

In line 3, the algorithm iterates over the set of all predicates in the input
Boolean expressions Bxp. Each predicate is evaluated by a single bypass selec-
tion operator, which is added to the partial plan e by means of the auxiliary
method BuildPlans. The resulting partial plan returned from BuildPlans
is kept in e′ (cf. line 4).

Since each bypass selection operator has two branches, we need to build these
branches, too, and repeat the same process until the plan evaluating the entire
expression (Bxp) is built. Branches in turn are built by two recursive descents
shown in lines 5-6. The true branch is kept in e+, and the false branch in
e−. In each such recursive descent, the input Boolean expression is simplified
by assigning to the current predicate p either a true (p ← true) or a false
(p← false) value, depending on the branch being built.

To illustrate the simplification of Boolean expressions, consider the following
example expression:

(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4).

Let us assume for the moment that the bypass selection operator for the pred-
icate p = x1 is built, and that the algorithm makes two recursive descents (cf.
lines 5-6 of TDsim) in order to build its two branches. The assignments, as well
as an instance of the resulting simplified expression, is depicted in Figure 7.2.

The simplification x1 ← false reduces the entire expression to false, hence,
the recursive descent on the false branch of σ−x1 returns immediately, that is,
the bypass selection operator evaluating x1 has an empty false branch. Its true
branch, however, will be built by the recursive invocations of the algorithm as
explained, until the expression is simplified to either true or false.

Note that the assignments of truth values to predicates ensure duplicate pred-
icate elimination. Whenever an assignment is made to a predicate pi, all oc-
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TDmemo(e, Bxp, stream)

// Input: partail plan e
a query predicate Bxp
flag stream

// Output: best plan
1 if Memo[Bxp] 6= null
2 return Memo[Bxp]
3 bestcost =∞
4 bestplan = null
5 for each p ∈ {getPredicates(Bxp)}
6 e′ = BuildPlans(pi, e, stream)
7 e+ = TDmemo(e′, Bxp[p← true],true)
8 e− = TDmemo(e′, Bxp[p← false], false)
9 cost = Cost(e+) + Cost(e−) + Cost(e′)

10 if bestplan == null or bestcost > cost
11 bestplan = [e′, e+, e−]
12 bestcost = cost
13 Memo[Bxp] = bestplan
14 return Memo[Bxp]

Figure 7.3.: Pseudocode for TDmemo

currences of pi in the Boolean expression are updated with the assigned truth
value, resulting in a new reduced expression as illustrated in Figure 7.2. The
simplification of Boolean expressions is proportional to O(n) for n predicates
in the expression, as the algorithm has to iterate over all the predicates in the
expression.

In line 7, the algorithm computes the costs of the partial plan in e′ including
its true e+ and its false e− branch, respectively. In lines 8-10, the algorithm
checks if the bestplan is null, or the newly found plan in e′ is cheaper than the
bestplan found so far. If any of these two conditions holds, the newly found
plan together with its branches is kept in the bestplan variable. Once the
iteration over the variables in the input Bxp is exhausted, the cheapest plan
found (bestplan) is returned to its caller (cf. line 11).

New predicates are added to the exiting (partial) plans in the same fashion as
in the heuristics algorithm shown in Section 6.5.2. That is, new predicates are
appended to the existing (partial) plans by means of the BuildPlans procedure
shown in Figure 6.7 (cf. Section 6.5.2). Finally, the newly constructed plan
resulting from the invocation of the BuildPlans procedure is returned to the
caller, i.e., to the TDsim algorithm.

7.2.3. Memoization

In the previous subsection, we showed the simplest variant of our top-down
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optimization algorithms for Boolean expressions. We now present an improved
version of TDsim coined TDmemo with its pseudo code shown in Figure 7.3.

In this approach, the recomputation of the solutions for the recurring (sub)exp-
ressions is avoided by means of memoization. That is, once a partial plan for
an expression has been computed, it gets registered (i.e., memoized) in an asso-
ciative data structure – memo table. Whenever the same expression recurs, we
fetch the already computed plan from the table associated with that particular
expression and thus avoid the expensive recomputation. Since subexpressions
often recur, memoization yields large improvements in the performance of the
algorithm—by an average factor of over 200—as we will show in Section 7.5.

Assignments. Boolean expressions cannot be used directly as keys for the
memo table in the actual code. For this purpose we have devised an assignment
structure composed of two bitvectors. The first bitvector (predicates bv)
represents the predicates which were assigned truth values, whereas the second
one (values bv) represents the truth values assigned to the predicates, i.e., 1
or 0 in bitwise representation. Now each time we need to associate or fetch a
plan for a particular Boolean expression in the memo table, we can efficiently
compute the hash code for the expression by means of the assignment structure,
and then use the computed hash code for querying the memo table. Thanks
to the assignment structure, hash codes for Boolean expressions can be very
efficiently computed. They require only two bitwise operations, namely a left
shift on the predicates bitvector and a bitwise-OR over the two bitvectors:

int hashcode() {

return ((predicates_bv << 32) | (values_bv));

}

In the pseudocode shown above, we are assuming that the bitvectors are stored
in integral integer types of width 64 bits. In the pseudocode that follows, we
will directly use Boolean expressions as keys for the memo table, but it should
be understood that in reality, we use their hash codes generated by means of
their assignment structures. Note that for every Boolean expression with n
predicates, there are at most 3n different assignments possible.

Line 1 of TDmemo checks against the memo table if the plan for the input
expression (Bxp) has already been computed, and if so, in line 2 the plan is
fetched from the table and returned to the caller. If otherwise, the plan has to
be computed in the same fashion as in the TDsim algorithm, but in contrast
to TDsim, before the newly computed plan is returned, it gets first registered
in the memo table (cf. line 13).

7.2.4. Branch-and-bound Pruning

As we have seen with TDsim and TDmemo, the nature of our top-down op-
timization algorithms is demand-driven. For each bypass selection operator,
its branches (true and false) are built on request. The demand driven nature
allows for employing the branch-and-bound pruning technique. The beauty of
this technique is that it enables the algorithm to reduce significantly its search
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space without jeopardizing optimality. In the worst case, the algorithm grace-
fully degrades into exhaustive search, e.g., like TDsim.

Branch-and-bound pruning is a state-of-the-art search strategy exploited in
the join optimization domain for successfully reducing the search space, as
shown in [19, 20]. We present in the following subsection the first optimiza-
tion algorithm for Boolean expressions that applies branch-and-bound pruning
search strategy. To the best of our knowledge, this is the first time that this
search strategy is being applied to the problem of optimization of Boolean
expressions. The experiments presented in Section 7.5 show that branch-and-
bound pruning yields large factors of improvement in the performance of the
algorithm.

7.2.5. Accumulated-Cost Bounding

Accumulated-cost bounding works by passing down a cost budget to the
top-down optimization procedure, while each recursive invocation of the opti-
mization procedure subtracts costs from the handed-over budget as soon as they
become known. The recursive descent halts once the budget drops below zero.
Notable systems implementing this technique in the realm of join optimization
are Volcano [23], Cascades [22] and Columbia [59].

The pseudocode of our algorithm —TDacb— implementing this technique is
shown in Figure 7.4. Line 1, just as in TDmemo, checks if the plan for the input
expression has been already computed and if that is the case, it also makes sure
that its cost does not exceed the handed-over budget (b) before returning it.
The condition in line 3, on the other hand, checks if the budget is lower than
the already known lower bound (LB) for the input expression. If this condition
holds, it is fruitless to continue with the plan construction, as it will not become
a part of the optimal plan. Lower bounds are maintained in the memo table –
LB. If the lower bound for an expression is not set, LB returns 0 by default.

Accumulated-cost bounding is a very efficient technique in preventing the
algorithm to build non-promising branches, which will not constitute the final
plan. However, in some scenarios, this technique can in fact make the algorithm
more expensive than the one without it, e.g., TDmemo. This behavior has also
been observed in the join optimization domain [20]. Such worst case behavior
occurs whenever a partial plan for some expression is requested a number of
times, and each time the handed-over budget is only slightly higher than before,
but still too low to produce the cheapest partial plan. This in turn leads to the
cascading negative effect of unnecessary computations of partial plans on each
such request. We solve this problem by proposing a rising budget. In line 5, we
check if the lower bound associated with the input expression is greater than
0, and if so, we know that a plan for the same expression has been requested
before, but was not constructed due to the insufficient budget. For this reason,
the budget is increased to the double of the current lower bound—given that the
handed-over budget is not greater than that—as shown in line 6 of TDacb. The
doubling of the budget alleviates the negative cascading effect of unnecessary
multiple plan computations due to the insufficient budget.

In line 9, the algorithm checks if the budget is sufficient for exploring the
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TDacb(e, Bxp, stream, b)

// Input: partail plan e, query predicate Bxp
flag stream, cost budget b

// Output: best plan
1 if Memo[Bxp] 6= null and Cost(Memo[Bxp]) ≤ b
2 return Memo[Bxp]
3 if LB[Bxp] ≥ b
4 return null
5 if LB[Bxp] > 0
6 b = max(b, LB[Bxp] ∗ 2)
7 bestcost =∞
8 bestplan = null
9 if b ≥ 0

10 for each p ∈ {getPredicates(Bxp)}
11 e′ = BuildPlans(pi, e, stream)
12 b′ = min(b, bestcost)− Cost(e′)
13 e+ = TDACB(e

′, Bxp[p← true],true, b′)
14 if e+ 6= null
15 b′ = b′ − Cost(e+)
16 e− = TDACB(e

′, Bxp[p← false], false, b′)
17 if e− 6= null
18 cost = Cost(e+) + Cost(e−) + Cost(e′)
19 if bestplan == null or bestcost > cost
20 bestplan = [e′, e+, e−]
21 bestcost = cost
22 // If no valid plan was found with budget b
23 if bestplan.e+ == null or bestplan.e− == null
24 LB[Bxp] = b
25 return null
26 Memo[Bxp] = bestplan
27 return Memo[Bxp]

Figure 7.4.: Pseudocode for TDacb
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search space further. If that is not the case, the recursive descent stops. If
otherwise, in line 12, the budget is updated, where the costs of the newly built
partial plan e′ are subtracted from the budget. The updated budget is stored
in the new variable b′. Line 13 requests the true branch of e′. This request is
made by the recursive invocation of TDacb with the updated budget b′. If no
plan is returned, it becomes clear that the handed-over budget was insufficient,
hence the partial plan e′ cannot become a part of the final plan. If otherwise,
in line 16 the algorithm requests the false branch of e′, but this time with even
a tighter budget. If the request succeeds, that is, a plan is returned, then in
similar fashion as with TDsim and TDmemo, in lines 19-21 we check if the
new plan is cheaper than the one stored in bestplan, and if so, we keep the new
plan in the bestplan variable.

If no valid plan1 was found, we set the lower bound for expression Bxp to
the handed-over budget (line 24). If a plan is requested again for the same
expression, and the handed-over budget lies below the lower bound set for the
expression, we can spare the efforts in constructing the plan as we know that
the budget will not suffice. That is, such recurring request will immediately
terminate, as shown in lines 3-4. If, on the other hand, a valid plan was found,
we register it with the memo table and return it to the caller. Note that for
the initial call, TDacb is handed a budget set to ∞.

To this end, the cost of the plan produced by means of Boolean difference
calculus (BDC) can be effectively leveraged for setting the upper bound in our
top-down optimization algorithm. So instead of calling TDacb with the initial
budget set to b =∞, we set the budget to the cost of a plan built by means of
BDC. By reducing the initial budget the algorithm can prune the search space
more aggressively, which translates to a better performance (cf. Section 7.5).
Details of a heuristic algorithm based on BDC are given in Section 7.3. The
variant of our top-down algorithm which works with a budget set by means of
BDC will be referred to as TDacb w. BDC.

The time complexity of our top-down algorithm is O(n3n), where n is the
number of predicates in the Boolean expression. The original input Boolean
expression sets the upper bound in terms of the number of possible assignments
that can be made to the expression, that is, the upper bound is proportional
to 3n. The upper bound can be derived from the fact that a predicate can be
assigned true/false value or left unassigned.

The complexity of our algorithm is far lower than the algorithm by Rein-
wald and Soland’s which also achieves the optimum, but has a time complexity
proportional to (O(22

n
)), for more details on this algorithm see Section 6.2 of

Chapter 6. Further, due to memoization and applying intelligent search tech-
niques like branch-and-bound, together with efficient upper bound derivation
by means of BDC, TDacb outperforms TDsim (which resembles the worst case
behavior) and TDmemo by large margins, as shown experimentally in Sec. 7.5.

1An invalid plan is a plan with one or both empty branches (i.e., branches set to null).

115



7. Optimal Evaluation of Boolean Expressions

7.2.6. Predicted-Cost Bounding

Accumulated-cost bounding works by passing the budget information in top-
down fashion, where the budget plays the role of the upper bound. Predicted-
cost bounding works by predicting what lies ahead; for a plan e′, we can predict
the lower bound by estimating the costs of its true e+ and false e− branch
without building the actual partial plans through recursive descents. If the
lower bound turns out to be larger than the cost of the already found best plan
for the given Bxp, we know that e+ and e− cannot be part of the optimal plan
and, hence, we can spare the recursive descents.

Predicted-cost bounding is not new, it has been successfully used in join enu-
meration algorithms [19, 20]. A notable system implementing this technique
for join optimization is the Columbia [59]. In contrast to the join optimiza-
tion problem, this technique proved unsuccessful for optimizing Boolean ex-
pressions. The only way to efficiently derive the lower bound estimates is by
taking the costs of evaluating the cheapest outstanding predicate in each of the
two branches. This, however, yields a rather weak bound (overly conservative)
which does not help much in pruning, but only in increasing the costs due to
the additional computation overhead incurred by the lower bound computation.
To this end, we have decided to not keep this technique in our algorithm, as
based on our experiments it proved unsuccessful.

7.2.7. Boolean Implications

The recognition of Boolean implication can have a great impact on the plan
quality as well as on the reduction of the optimization time. Let us consider
Q19 of the CH-Benchmark [62]:

SELECT SUM(ol_amount) AS revenue

FROM orderline, item

WHERE (

ol_i_id = i_id

AND i_data LIKE ‘%a’

AND ol_quantity >= 1

AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,2,3)

) OR (

ol_i_id = i_id

AND i_data LIKE ‘%b’

AND ol_quantity >= 1

AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,2,4)

) OR (

ol_i_id = i_id

AND i_data LIKE ‘%c’

AND ol_quantity >= 1
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AND ol_quantity <= 10

AND i_price BETWEEN 1 AND 400000

AND ol_w_id IN (1,5,3)

);

If the predicate i date LIKE ‘%a’ is true, then it implies that the predicates
i date LIKE ‘%b’, and i date LIKE ‘%c’ are false, thus reducing the entire
query to the first clause only. Boolean implications are recognized during the
simplification of the expression (p ← true/false) in our algorithm, e.g., see
lines 5,6 of Figure 7.1. Boolean implications help in reducing the optimization
time significantly, due to the reduced query size, and moreover, they yield
cheaper evaluation plans. The effect of Boolean implication on the optimization
time is confirmed by our experiments in Section 7.5.6 and Section 7.5.6.

7.3. Boolean Difference Calculus

Boolean difference calculus (BDC) is a heuristic which has been used for Boolean
expression optimization in [36]. It works by ordering the predicates based on
their influence on the outcome of the expression. The predicate with the highest
influence is picked first, and then its true/false branches are built recursively,
where the succeeding predicates are chosen in the same fashion. The influence
(or the rank) of the predicates is computed by means of Boolean difference:

∆xif(x1, . . , xi−1, xx+1, . . , xn)
def
=

f(x1, . . , xi−1, xi = false, xi+1, . . , xn) 6≡
f(x1, . . , xi−1, xi = true, xi+1, . . , xn)

The higher the probability (i.e., selectivity) s(∆xif) of ∆xif being true, the
higher is the influence of the predicate xi on the outcome of the Boolean ex-
pression. Having defined the Boolean difference, the ranks of predicates can be
computed according to the equation:

rankxi = s(∆xif)/c(xi),

where c(·) denotes the predicate evaluation cost. The pseudocode of the BDC-
based algorithm is shown in Fig. 7.5. Its time complexity is O(n2) for n predi-
cates.

BDC does not guarantee the plan optimality, however, in our context, it
can be used efficiently for decreasing the initial budget passed to our top-down
optimization algorithm TDacb.

7.4. Boolean Expression Implementation

Boolean expressions are commonly represented as a tree of nodes, where each
node corresponds to a conjunct (∧), or a disjunct (∨), or an atomic predicate.
Nodes can have zero or more children whereby the pointers to children nodes
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BDC(e, Bxp, stream)

// Input: partail plan e
a query predicate Bxp
flag stream

// Output: best plan
1 bestplan = null
2 bestvar =∞
3 bestrank = 0
4 for each p ∈ {getPredicates(Bxp)}
5 if rank(p) > bestrank
6 bestvar = p
7 bestrank = rank(p)
8 e′ = BuildPlans(bestvar, e, stream)
9 e+ = BDC(e′, Bxp[bestvar ← true],true)

10 e− = BDC(e′, Bxp[bestvar ← false], false)
11 bestplan = [e′, e+, e−]
12 return bestplan

Figure 7.5.: Pseudocode for BDC

∨

∧

x4x1

∧

x3x1

∧

x2x1

Figure 7.6.: Tree representation of the expression (x1∧x2)∨(x1∧x3)∨(x1∧x4)

are kept in an array pointers. An example depicting the tree representation for
a Boolean expression is given in Figure 7.6.

Tree implementation is straightforward and allows for easy traversal, as well
as manipulation of the tree, e.g., adding/removing nodes. However, the main
drawback with such a tree implementation are its high costs, coming as a re-
sult of pointer chasing. In order to fulfill standard operations such as reading
or deleting nodes, we have to follow the corresponding pointers leading to the
desired nodes, which turned out to be a costly operation as the nodes are scat-
tered throughout the memory, thus reducing the cache locality. Furthermore, in
such a representation, each new node requires memory allocation, and memory
allocations are relatively slow operations.

We thought we could do better, therefore we decided to encode expressions in
a very compact form – in bitvector representation. We allocate in one operation
a contiguous memory chunk, large enough to hold all the bitvectors required to
encode the input Boolean expression. Each bitvector corresponds to an integral
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# Pred. TDsim (bitvector) TDsim (tree)

4 0.012 0.43
6 0.376 11.8
8 22 351
10 2192 22940

Table 7.1.: Tree vs. bitvector representation (runtimes in ms)

data type such as unsigned integer, having a width of 32 or 64 bits, depending
on the architecture. In a single bitvector we encode a single Boolean connective
(∧,∨), together with its children, which can be atomic predicates or simply in-
dexes to other bitvectors (Boolean connectives) in the allocated memory chunk.
Bitvector representation of expressions yields a very small memory footprint,
which in turn fits nicely into the CPU cache. Moreover, a single memory chunk
allocation is a much more efficient operation than allocating each node sepa-
rately as it is the case with the tree representation.

In order to show the overhead incurred by the tree representation in our
optimization algorithm (versus bitvector representation) we have performed a
small experiment. Queries used in this experiment were in CNF form and
contained two atomic predicates in each Boolean factor. As a test algorithm we
have picked TDsim. That is, we ran TDsim with queries in tree representation
and bitvector representation. The recorded runtimes of this experiment are
shown in Table 7.1. The left column shows the total number of predicates used
in the experiment, the middle column shows the execution time of TDsim with
queries in bitvector representation, and the right column shows the execution
time of TDsim with queries in tree representation. The experiment was run
single-threaded, on a machine with Intel Xeon E5-2690 v2 3.00GHz processor.
The machine had 120 GB of main memory, running a 64-bit linux operating
system.

As it can be seen in Table 7.1, the same optimization algorithm running with
queries in bitvector representation yields much lower execution times than when
using tree representation. The difference in execution times gets as large as a
factor of over 30, thus showing the large overhead incurred when processing
expressions in tree representation.

7.5. Evaluation

Two features of optimization are of high significance in query optimization: (1)
the execution costs of the optimized query, i.e., the plan quality, and (2) the
costs incurred by the optimization algorithm.

We first measure the execution costs incurred by our top-down algorithms,
and then compare the winner against two state-of-the-art heuristics for Boolean
expression optimization.

All experiments were run single-threaded on a machine with an Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz processor. The machine was equipped
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with 264 GB of main memory, and ran a 64 bit Arch Linux operating system.
All the algorithms were implemented in C++, and compiled using g++ (version
6.2.1).

7.5.1. Forest dataset

We have already introduced the Forest [14] in the evaluation sections of Chap-
ter 5 and Chapter 6. In this section we will use the same dataset to test
the algorithms introduced in this chapter. Recall that the Forest dataset con-
tains data about US forests, materialized in a relation with 54 attributes, and
581.012 tuples. This rather wide relation validates the importance of optimizing
Boolean expressions.

For testing our algorithms we have used a set containing in total 16 predi-
cates. The predicates were simple range predicates of the form c1 ≤ attri ≤ c2,
were c1, c2 denote integer constants. As we do not rely on the independence
assumption, selectivity estimates for all the subsets of predicates were derived
by means of the very efficient sampling method shown in Chapter 8.

We compared all algorithms by generating randomly 10k queries over ran-
domly chosen attributes of the Forest relation. For all experiments, we used
queries in both normal forms: DNF and CNF. This way, we did not give any
unfair advantage to any algorithm over the others. Furthermore, most queries
we see in practice are either in CNF or DNF with deeper nested queries being
quite rare.

7.5.2. Runtime of Top-Down Algorithms

Table 7.2 and Table 7.3 compare the runtimes of our top-down optimization al-
gorithms, including their minimum, average as well as their maximum runtime.

For this experiment, each Boolean summand/factor consisted of two atomic
predicates. TDsim was tested only up to a maximum of 10 predicates, due
to its prohibitively large runtimes. Starting with 6 predicates, TDsim was
outperformed by TDmemo by an average factor of over 2. For 8 predicates
the gap reached a factor of 18, and for 10 predicates a factor of over 200, thus
showing the significance of memoization in our top-down algorithm.

Branch-and-bound pruning with accumulated-cost bounding (TDacb) showed
very promising results. Even for a small number of predicates, e.g., 6 predicates,
TDacb outperforms TDmemo by 20%. The gap kept increasing steadily with
the increase of the number of predicates, irrespective of the query type (DNF
or CNF). For 16 predicates and queries in DNF, the gap between TDacb and
TDmemo got as large as a factor of 4, whereas for CNF queries the factor was
2.7.

As shown in subsection 7.2.6, Boolean Difference Calculus (BDC) can be
useful in setting the upper bound in TDacb, and this way allowing for better
search space pruning. BDC showed improvements in TDacb for queries with
more than 12 predicates. For queries in DNF with 14 predicates (cf. Table 7.3),
BDC helped improve the average runtime of TDacb by 17%, and for 16 pred-
icates by 37%. For queries in CNF, the improvements were not so strong; for
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# pred.
TDsim TDmemo TDacb TDacb w. BDC

min avg max min avg max min avg max min avg max

4 0.009 0.012 0.029 0.014 0.02 0.045 0.007 0.017 0.048 0.009 0.017 0.047
6 0.33 0.376 0.77 0.15 0.16 0.38 0.029 0.127 0.366 0.037 0.133 0.372
8 21 22 50 0.96 1.17 3.02 0.187 0.748 2.9 0.165 0.741 2.9
10 2171 2192 2355 9.8 10.2 26 0.73 6.4 24 0.823 6.5 24
12 98 114 172 11.6 57 140 12.2 57 134
14 1457 1495 1565 141 637 1789 133 621 1781
16 13587 13734 13906 1193 5104 14122 1144 4987 14007

Table 7.2.: Performance (in ms) for CNF query type (p1 ∨ p2) ∧ . . .

# pred.
TDsim TDmemo TDacb TDacb w. BDC

min avg max min avg max min avg max min avg max

4 0.01 0.012 0.026 0.014 0.019 0.065 0.007 0.02 0.043 0.009 0.02 0.056
6 0.35 0.386 0.727 0.155 0.175 0.374 0.04 0.16 0.383 0.046 0.167 0.406
8 19 20 48 0.991 1.1 2.8 0.088 0.905 3.3 0.097 0.9 3.4
10 2109 2124 2261 10.1 10.6 27 0.674 7.1 26 0.717 7.1 27
12 101 118 190 1.32 55 127 1.6 56 119
14 1391 1536 1587 1.26 515 1469 2.7 440 1478
16 14255 14336 14520 135 3452 9662 65 2514 9509

Table 7.3.: Performance (in ms) for DNF query type (p1 ∧ p2) ∨ . . .
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# pred.
TDsim TDmemo TDacb TDacb w. BDC

min avg max min avg max min avg max min avg max

4 0.007 0.011 0.033 0.011 0.015 0.038 0.007 0.014 0.033 0.008 0.016 0.038
6 0.276 0.309 0.64 0.112 0.13 0.292 0.016 0.068 0.234 0.023 0.071 0.245
8 16.5 16.9 43.3 0.78 0.9 2.4 0.077 0.445 2.083 0.096 0.443 2.1
10 1587 1599 1677 6.4 6.8 19.05 0.277 2.8 13.7 0.343 2.9 14.2
12 74.8 76.9 153 2.1 21.1 56.4 2.5 21.4 56.1
14 1025 1039 1142 23.5 234 805 25.1 223 805
16 8733 8833 9016 298 1900 5604 275 1774 5564

Table 7.4.: Performance (in ms) for CNF query type (p1 ∨ p2 ∨ p3) ∧ . . .

# pred.
TDsim TDmemo TDacb TDacb w. BDC

min avg max min avg max min avg max min avg max

4 0.007 0.01 0.024 0.01 0.015 0.042 0.01 0.016 0.037 0.009 0.017 0.04
6 0.285 0.318 0.644 0.114 0.135 0.279 0.063 0.124 0.3 0.07 0.129 0.312
8 17 17.4 42.8 0.795 0.989 2.4 0.384 0.931 2.5 0.398 0.935 2.5
10 1618 1633 1724 6.6 6.9 18.4 0.923 5.01 15.1 1.072 5.055 15.3
12 77.2 78.7 147 35.1 61.1 118 35.3 61.2 118
14 1045 1059 1251 265 665 1068 165 640 1056
16 9281 9339 9573 279 3712 8810 6.5 2721 8726

Table 7.5.: Performance (in ms) for DNF query type (p1 ∧ p2 ∧ p3) ∨ . . .

1
2
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7.5. Evaluation

14 and 16 predicates, BDC helped decrease the average runtime of TDacb by
2.5%.

We repeated the same experiment, but this time we increased the number of
OR respectively AND operations in each Boolean summand/factor. That is,
each Boolean summand/factor now contains 3 atomic predicates. As before, we
used queries with 4 and up to 16 predicates. For those numbers of predicates
that could not be perfectly divided by 3, we appended the expression with an
additional summand/factor containing the remainder of predicates, e.g., for 8
predicates we have the following (DNF) expression: (p1 ∧ p2 ∧ p3) ∨ (p4 ∧ p5 ∧
p6)∨ (p7 ∧ p8), where all the Boolean summands have three conjuncts with the
exception of the last one, which has only two. The results of this experiment
are shown in Tables 7.4 and 7.5.

As in the first experiment, branch-and-bound pruning strategy yields signif-
icant improvements in the runtime of our top-down algorithm (TDacb). For
6 predicates and CNF queries, TDacb outperforms on average TDmemo by
47% , whereas the latter outperforms TDsim by 57%. With the increase of the
number of predicates, the gaps on performance between TDacb and TDmemo
increased steadily, such that for 16 predicates, TDacb beats TDmemo by a
large factor of over 4. BDC, same as before, helped further improve the runtime
of TDacb for queries with more than 12 predicates; for 14 predicates, BDC
helped reduce the average runtime of TDacb by 4.7% and for 16 predicates by
6.6%.

For queries in DNF, the gaps between TDacb and TDmemo are not as
large as for queries in CNF, but nevertheless significantly large. For all the
number of predicates TDacb outperformed TDmemo; for 16 predicates TDacb
outperformed TDmemo by a factor of 2.5, whereas BDC helped further improve
the performance of TDacb by as much as 26%.

To summarize, our experiments have shown that memoization is instrumen-
tal in reducing the runtime of our top-down algorithm; the gap on the average
runtime between the algorithm without memoization (TDsim) and the one with
memoization (TDmemo) gets as large as a factor of 200 for only 10 predicates
(cf. Table 7.3). Further, the branch-and-bound search strategy showed signifi-
cant improvements in all the queries. The gap on performance is as high as a
factor of 4 on average for queries with 16 predicates relative to the algorithm
not implementing this search strategy – TDmemo.

7.5.3. Evaluation of two heuristics

In this subsection we present the results of evaluating two existing state-of-the
art heuristics-based optimization algorithms in terms of plans quality against
the optimum, i.e., against the plans produced by our TD algorithms.

The heuristics we used are the following:

1. The heuristics algorithm presented in Chapter 6 which relies on a permu-
tation of Boolean summands. We abbreviate this algorithm in the rest of
this thesis writing as PBS.
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# pred.
BDC PBS Opt. pot.

avg max avg max avg max

4 1.15 6.98 1.01 1.12 1.86 18.17
6 1.18 3.93 1.01 1.11 2.12 17.81
8 1.23 3.52 1.01 1.16 2.67 25.14
10 1.26 5.10 1.01 1.13 3.26 24.27
12 2.76 22.06 1.02 1.11 8.76 45.24
14 3.60 61.43 1.03 1.24 13.01 135.97
16 4.08 81.28 1.84 24.58 16.64 198.51

Table 7.6.: Performance of the heuristics against the optimum for the Forest
dataset for DNF queries: (p1 ∧ p2) ∨ . . .

# pred.
BDC PBS Opt. pot.

avg max avg max avg max

4 1.16 4.63 1.19 1.80 1.86 13.30
6 1.19 5.38 1.97 2.97 2.30 16.14
8 1.22 5.00 2.76 26.42
10 1.24 5.39 3.02 18.81
12 1.36 5.10 2.07 9.98
14 1.36 4.53 2.16 18.37
16 1.36 5.31 2.24 17.88

Table 7.7.: Performance of the heuristics against the optimum for the Forest
dataset for CNF queries: (p1 ∨ p2) ∧ . . .

# pred.
BDC PBS Opt. pot.

avg max avg max avg max

4 1.10 7.72 1.01 1.15 2.61 64.38
6 1.25 7.16 1.01 1.15 2.55 34.33
8 1.20 3.69 1.01 1.09 2.48 17.98
10 1.14 8.71 1.01 1.07 5.02 52.70
12 1.69 14.18 1.02 1.10 5.05 30.13
14 2.83 60.19 1.61 24.44 8.39 134.75
16 7.74 211.86 2.62 50.80 24.36 498.92

Table 7.8.: Performance of the heuristics against the optimum for the Forest
dataset for DNF queries: (p1 ∧ p2 ∧ p3) ∨ . . .
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# pred.
BDC PBS Opt. pot.

avg max avg max avg max

4 1.14 89.03 1.46 95.61 2.94 119.83
6 1.24 67.04 1.29 51.83 2.36 149.66
8 1.23 74.06 2.41 158.53
10 1.20 3.24 3.47 33.63
12 1.81 10.40 2.94 14.67
14 1.73 9.26 2.81 13.49
16 1.58 8.45 3.00 55.13

Table 7.9.: Performance of the heuristics against the optimum for the Forest
dataset for CNF queries: (p1 ∨ p2 ∨ p3) ∧ . . .

2. A heuristics algorithm based on BDC [36] with its pseudo code shown in
Section 7.3.

An evaluation of the heuristics for Boolean expressions was not possible before,
as the existing algorithms in the literature that attain the optimum cannot
handle more than a few predicates due to their prohibitively high runtime (cf.
Section 6.2).

For this experiment, we have used predicates with varying costs over the
Forest dataset. That is, we have assigned random cost values to the map
operators, uniformly distributed in the range [1, 100]. For each query, there
were 100 such random cost assignments to the map operators that predicates
depended on.

The results of this experiment are shown in the Table 7.6 – Table 7.9. The
average as well as the maximum deviation factor(!) of the heuristics against
the optimum in terms of plan quality is shown.

For DNF queries with two atomic predicates in each conjunct and 4 predicates
in total, BDC deviates from the optimum on average by a factor of 1.15 (cf.
Table 7.6), whereas its maximum deviation is a factor of 6.9. The gaps on
the plan quality increase with the increase of the number of predicates. For 16
predicates, the average deviation from the optimum of plans produced by BDC
is a factor of 4, whereas its maximum deviation factor is 81! Plans produced
by PBS, for 4 predicates, deviate on average from the optimum by factor of
1.01, whereas their maximum deviation from the optimum is a factor of 1.12.
For 16 predicates, the average and the maximum deviation of plans produced
by PBS reach factors of 1.8 and 24 respectively. On average PBS produced
better plans than BDC over the entire range of queries, further, PBS proved
to be more robust, that is, its worst case behavior is better than that of BDC.
Nevertheless, both heuristics can be far off the optimum.

For CNF queries with binary predicates in each Boolean factor (cf. Table 7.7),
plans produced by BDC deviate on average from the optimum by an average
factor of 1.16, and in the worst case by a factor of 4.3. PBS requires queries
in DNF, therefore, it could not handle queries in CNF with more that 6 predi-
cates, due to the exponential query blow-up in size, which is a consequence of
converting the queries from one normal form to another.
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Table 7.8–Table 7.9 show the results of our experiments with an increased
number of AND (for DNF queries) respectively OR (for CNF queries) opera-
tions. For DNF queries with 4 predicates, BDC produced plans that on average
deviate from the optimum by a factor of 1.1, and the gap keeps increasing with
the increase of the number of predicates, this way reaching a factor of 7.7 for
16 predicates. The gaps on maximum deviation are far worse, they start from
a factor of 7.7 for 4 predicates and reach a factor of over 200 for 16 predicates!
PBS on the other hand, has again produced better plans in contrast to BDC;
for 4 predicates, plans produced by PBS deviate on average from the optimum
by a factor of 1.01, and for 16 predicates the factor on deviation gets as large
as 2.6. In the worst case, plans produced by PBS deviate from the optimum
by a large factor of 50.

For CNF queries with ternary atomic predicates in each Boolean factor, the
results for the heuristics were not that impressive, plans produced by BDC
deviated from the optimum by as much as a factor of 89, whereas PBS deviated
by a large factor of 95.

7.5.4. Optimization Potential

Next, we show the entire optimization potential available for the queries used
in these experiments. Since we can compute the optimum by means of our
top-down algorithm(s), we can also compute the entire optimization potential
available, which is the space between the best possible plan (optimum) and the
worst possible plan. The worst possible plan can be easily computed by any
variant of our top-down algorithms by simply altering the statement bestcost >
cost to bestcost < cost (cf. line 19 of Figure 7.4).

In Table 7.6 and Table 7.7 we show the maximum optimization potential for
DNF and CNF queries with binary predicates in each Boolean summand/factor.
The optimization potential is shown in the column ‘Opt. pot.’.

The optimization potential greatly increases with an increasing number of
predicates. On average, for DNF queries, the gap between the optimum and
the worst plan for 4 predicates is a factor of 1.86 and quickly reaches a factor of
16 for 16 predicates. If we take the maximum, the gap reaches a factor of 198!
For CNF queries, the average gap between the optimum and the worst plan is
bounded by a factor of 2.7, whereas the maximum deviation consists of a factor
of 26.

For DNF queries with ternary predicates in Boolean summands, the average
gap between the optimum and the worst plan is a factor of 24, whereas the
maximum is a factor of 498 (cf. Table 7.8). For the CNF counterpart, the
average deviation between the best and the worst possible plan was bounded
by a factor of 3 and the maximum deviation factor by 158 (cf. Table 7.8).
To this end, such a large optimization potential confirms the importance of
optimizing Boolean expressions.
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# pred.
(p1 ∧ p2) ∨ . . . (p1 ∧ p2 ∧ p3) ∨ . . .

BDC TDacb w. BDC PBS BDC TDacb w. BDC PBS

4 0.003 0.02 0.01 0.003 0.02 0.01
6 0.01 0.167 0.05 0.01 0.13 0.03
8 0.03 0.9 0.3 0.03 0.93 0.06
10 0.09 7.1 2.43 0.09 5.06 0.28
12 0.4 56 31 0.47 61 1.93
14 1.83 440 457 2.11 640 7.15
16 9.06 2514 8011 7.79 2721 87

Table 7.10.: Runtimes for DNF queries (in ms)

# pred.
(p1 ∨ p2) ∧ . . . (p1 ∨ p2 ∨ p3) ∧ . . .

BDC TDacb w. BDC PBS BDC TDacb w. BDC PBS

4 0.003 0.017 0.08 0.002 0.01 0.07
6 0.01 0.133 74.15 0.005 0.07 228
8 0.03 0.741 0.01 0.44
10 0.10 6.5 0.06 2.9
12 0.41 57 0.42 21.4
14 1.91 621 2.00 223
16 9.44 4987 6.98 1774

Table 7.11.: Runtimes for CNF queries (in ms)

7.5.5. Runtime

In the previous subsection, we have seen that the gap between the heuristics
and the optimum is quite large. We are now interested in answering the ques-
tion: what is the cost of applying our algorithm which attains the optimum
(e.g., TDacb) instead of heuristics? We answer this question by measuring
the performance of our most efficient top-down algorithm – TDacb w. BDC
(abbreviated in the rest of this section as only TDacb), and the two heuristics.
We have recorded the average optimization time for all the algorithms over 10k
queries over the Forest dataset. The results of this experiment for both DNF
and CNF queries are shown in Table 7.10 and Table 7.11. All the results show
the optimization time required by the algorithms in milliseconds (ms).

BDC has quite a low runtime due to its low complexity (cf. Section 7.3).
PBS has lower runtimes than TDacb only up to 12 predicates for DNF queries,
for more than 12 predicates TDacb outperforms it. For 16 predicates, TDacb
beats PBS by a factor of 3, while at the same time guaranteeing the optimum.
For CNF queries, PBS cannot handle more than 6 predicates, while TDacb
and BDC do not have this limitation.

7.5.6. CH-benchmark

In this section we show the results of comparing the algorithms by using the
CH-benchmark [13, 62] workload. CH-benchmark is a complex, mixed workload
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Algorithm Plan costs (s) Opt. time (ms)

TDacb 0.6 5.2
TDacb (B. impl.) 0.6 2.7
TDacb w. BDC 0.6 5.1
TDacb w. BDC (B. impl.) 0.6 2.8
BDC 0.7 0.1
PBS 0.8 1.8
Worst plan 8.3 5.2

Table 7.12.: CH-benchmark results for Query 19

benchmark, devised with the goal of closing the gap between TPC-C (for OLTP)
and TPC-H (for OLAP). For the purpose of testing our algorithms, we have
picked Query 19 of this benchmark (shown in Section 7.2.7).

Query 19 suits our purpose very well, it contains 15 predicates, and both
boolean operators: AND, OR. Further, it contains predicates with varying
costs, including cheap predicates with only comparison operators (i.e., ≤,≥),
somewhat more expensive predicates containing the IN, BETWEEN clauses, and
expensive predicates containing the LIKE clause.

Since we do not rely on the IA, selectivity estimates for all subsets of predi-
cates have to be supplied to our algorithms. For this purpose, we have used the
sampling method shown in Chapter 8.1 over the materialized relation obtained
as a product of joining item and orderline (on attributes ol i id = i id).
The newly materialized relation contained 15 million tuples.

The results of this experiment are shown in Table 7.12. The left column lists
the algorithms tested in this experiment while the middle column shows the
overall plan costs (in seconds), and the rightmost column shows the optimization
time (in ms). TDacb has produced the cheapest plan of all the algorithms,
i.e., the optimum. The plan produced by BDC is 16.6% more expensive than
the optimum, and the plan produced by PBS is 33.3% more expensive than the
optimum. In Table 7.12 we have also shown the effect of Boolean implications
(entries marked with “B. impl.”) in the optimization time. The recognition of
Boolean implications has roughly halved the optimization time of our algorithm
(TDacb) without sacrificing plan optimality.

TDacb with cost bounding based on BDC (TDacb w. BDC) when consid-
ering Boolean implications has resulted in an optimization time slightly higher
than that of TDacb without BDC. The reason for this is that Boolean im-
plication has reduced Q19 to a single clause only (i.e., to a query with only 5
predicates instead of 15), which is a rather small query, therefore the overhead
of computing the initial cost bound by means of BDC has shown its effect. The
opposite was true when the Boolean implications were not considered, TDacb
w. BDC performed slightly better than TDacb.

The last row in Table 7.12 shows the worst possible plan for Q19, which in
turn gives us a clue for the large optimization potential available for this query,
i.e., a factor of 14.
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no Boolean impl. with Boolean impl.
#ibxp S #var Opt. time [ms] Opt. time [ms]

2 0 8 1.807 1.81
2 1 7 0.72 0.72
2 2 6 0.33 0.32
3 0 12 116.7 112
3 1 10 22.1 20.5
3 2 8 2.99 2.74
4 0 16 8111 6250
4 1 13 393.9 332
4 2 10 29.8 24.5

Table 7.13.: The effect of Boolean implications on CNF queries

no Boolean impl. with Boolean impl.
#ibxp S #var Opt. time [ms] Opt. time [ms]

2 0 8 1.48 1.24
2 1 7 0.77 0.55
2 2 6 0.28 0.25
3 0 12 110.2 59.29
3 1 10 21.8 10.37
3 2 8 3.08 1.46
4 0 16 8376 2695
4 1 13 378.7 157.6
4 2 10 28.02 12.02

Table 7.14.: The effect of Boolean implications on DNF queries

7.5.7. Boolean Implications

To better see the effect of Boolean implication in the optimization time we
have performed another experiment. We have used queries in both conjunctive
(CNF) and disjunctive normal forms (DNF) over the Forest dataset. Queries
were optimized by our top-down optimization algorithm – TDmemo. The re-
sults of this experiment are show in Table 7.13 and Table 7.14, whereby:

• #ibxp: denotes the number of Boolean factors (for CNF queries) respec-
tively the number of Boolean summands (for DNF queries),

• S: denotes the number of shared (atomic) predicates, and

• var: denotes the total number of (atomic) predicates given in the query.

In the first set of the experiments the optimizer ran with Boolean implications
recognizer turned off. The results of this experiment are shown under the
column “no Boolean impl.”. In the second set of experiments we enabled the
Boolean implication recognizer. The results of this experiment are shown under
the column “with Boolean impl.”.
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# pred.
BDC PBS Opt. pot.

avg max avg max avg max

3 1.11 8.95 1.01 1.15 1.39 25.81
4 1.15 9.32 1.01 1.18 1.60 26.19
5 1.18 29.83 1.01 1.19 2.03 43.07
6 1.19 10.89 1.01 1.19 1.72 29.33
7 1.27 14.21 1.01 1.18 2.28 37.09

Table 7.15.: Performance of the heuristics against the optimum for the Weather
dataset for DNF queries: (p1 ∧ p2) ∨ . . .

As it can be seen in Table 7.13 and Table 7.14, recognition of Boolean impli-
cations helped reduced the optimization time in the vast majority of queries.
That is, as our experiment shows, recognition of Boolean implications can help
reduce the optimization time by a factor of over 3.

7.5.8. Weather Dataset

In this section, we show the results of our experiments over the Weather [43]
dataset. The Weather dataset contains weather measurements for a single year,
materialized in a relation with 7 attributes, and containing well over 3.4 million
tuples. For this experiment, we have used a range of predicates starting from
3 up to 7 predicates in total. The predicates were simple range predicates of
the form c1 ≤ attri ≤ c2, were c1, c2 denote constants. We compared all the
algorithms by generating randomly 10k queries over randomly chosen attributes
of the Weather relation. We have used predicates with varying costs over the
Weather dataset, that is, we have assigned 100 different random cost values
to the map operators for each query, where the cost values were uniformly
distributed in the range [1, 100].

Just as in Sec. 7.5.4, we have compared the two heuristics against our top-
down algorithm. Additionally, we show the entire optimization potential (Opt.
pot.) available for the queries used in this experiment. Note that PBS for
CNF queries was tested only up to 6 predicates as it cannot handle larger CNF
queries due to the exponential blow-up in size when converting CNF queries to
DNF. Recall that PBS requires that queries are first normalized in DNF before
optimizing them, for more details see Chapter 6.

The results of this experiment are shown in Table 7.15 – Table 7.18. The
results show the deviation (in factors!) of the heuristics in terms of plan qual-
ity relative to the optimum, i.e., against the plans produced by our top-down
algorithm.

7.6. Conclusion

We have presented the first optimization algorithm for Boolean expressions
that attains the optimum in terms of plan quality and has a much lower time
complexity compared to the existing algorithms in the literature that attain the
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# pred.
BDC PBS Opt. pot.

avg max avg max avg max

3 1.07 15.08 1.51 1.99 2.35 25.79
4 1.15 7.31 1.15 1.83 1.63 26.46
5 1.07 12.48 1.89 7.24 4.18 42.69
6 1.19 6.18 1.54 1.95 1.54 23.44
7 1.01 13.14 6.31 54.42

Table 7.16.: Performance of the heuristics against the optimum for the Weather
dataset for CNF queries: (p1 ∨ p2) ∧ . . .

# pred.
BDC PBS Opt. pot.

avg max avg max avg max

3 1.44 24.95 1.01 1.10 2.66 25.82
4 1.11 12.14 1.01 1.15 2.10 40.15
5 1.17 7.55 1.02 1.20 1.72 28.47
6 1.21 9.75 1.01 1.16 1.77 26.66
7 1.22 3.91 1.01 1.13 1.62 17.69

Table 7.17.: Performance of the heuristics against the optimum for the Weather
dataset for DNF queries: (p1 ∧ p2 ∧ p3) ∨ . . .

# pred.
BDC PBS Opt. pot.

avg max avg max avg max

3 1.21 36.69 1.01 1.15 2.04 25.80
4 1.05 9.53 1.68 2.45 3.65 40.15
5 1.17 12.25 1.7 1.82 1.82 26.37
6 1.26 15.54 1.57 1.69 2.96 29.33
7 1.01 5.08 5.95 52.84

Table 7.18.: Performance of the heuristics against the optimum for the Forest
dataset for CNF queries: (p1 ∨ p2 ∨ p3) ∧ . . .
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optimality. We have shown experimentally that search techniques like branch-
and-bound with accumulated cost bounding together with memoization can
help drastically reduce the runtime. Further, we have shown that recognition of
Boolean implications in a query also helps significantly reduce the optimization
time.

The impressive runtimes of our top-down optimization algorithm (TDacb)
have enabled us to measure the performance of the state-of-the-art heuristics
algorithm against the optimum, and have seen that if we rely on heuristics for
optimizing Boolean expressions, a large optimization potential remains unhar-
vested. Such measurements wouldn’t be feasible with the optimization algo-
rithms from the literature which achieve the optimum.

7.6.1. Graceful Degradation

Generating optimal plans for Boolean expressions containing a large number of
predicates (e.g., 100) might not be always feasible due to the prohibitively long
computation times required by the optimization algorithm in presence of large
expressions.

Dynamic programming/memoization optimization algorithms do not exhibit
graceful degradation as the complete query execution plan is produced very late
in the plan generation process. In our top-down approach we can, however,
benefit from the Boolean difference calculus. That is, in TDacb an initial plan
is computed by means of BDC as its cost is used for setting the initial budget
(cf. Section 7.3). In the presence of a large number of predicates in the input
expressions, the algorithm can terminate at any time, and return the relatively
good plan computed by means of BDC.
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8. Cardinality Estimation

One cannot have a sound cost model without a sound framework on cardinality
estimation as cost functions depend on cardinality estimates. It was shown
in [38] experimentally, that the error in cardinality estimation dwarfs the error
in the cost model.

The optimization algorithms presented in this thesis do not rely on the in-
dependence assumption as it typically does not hold [11], therefore, selectivity
estimates for all the subsets of predicates given in a query have to be supplied.
Selectivity estimates for subsets of predicates can be derived in several ways,
e.g., by entropy maximization [42] or graphical models [63]. Both require some
implementation effort and runtime. In this chapter, we present an easy to im-
plement, and very efficient alternative. The main idea is to extend the usual
sampling procedure to gather more than the usual information.

8.1. Cardinality Estimation based on Sampling

Let P = {p1, . . . , pz} denote a set of z predicates. For a subset of predicates
P ′ ⊆ P , we denote by β(P ′) the formula

β(P ′) =
∧
pi∈P ′

pi, (8.1)

and by γ(P ′) the formula

γ(P ′) =
∧
pi∈P ′

pi ∧
∧

pi∈P∧pi 6∈P ′
¬pi. (8.2)

The selectivities of these predicates are denoted by sβ(P ′) and sγ(P ′). Thus,
β(P ′) is a conjunction of all predicates in P ′ whereas γ(P ′) is a minterm for P.

As a technicality needed below, note that every subset P ′ ⊆ P can be ex-
pressed as bitvector bv(P ′) of length |P |. Also, bv(P ′) can be interpreted as a
positive integer whose representation it is. Subsequently, we will identify these
two different interpretations of the same bitvector.

To illustrate the difference between sγ and sβ, consider the sample data taken
from the Forest [14] relation, shown in Table 8.1. Note that in Table 8.1 we
are only showing a small sample consisting of only the first three attributes out
of 54 attributes which the Forest relation contains. Now consider the following
two predicates p1 = elevation > 2600 and p2 = slope < 7, and P = {p1, p2}.
Values for both sβ(P ) and sγ(P ) are shown in Table 8.2.

The left-most column of Table 8.2 shows the subsets P ′ of predicates in P in
bitvector representation. The middle column shows the vector sβ, whereas the
rightmost column shows the vector sγ .
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Elevation Aspect Slope

2596 51 3
2590 56 2
2804 139 9
2785 155 18
2595 45 2
2579 132 6
2606 45 7
2605 49 4
2617 45 9
2612 59 10

Table 8.1.: Sample data taken from the Forest [14] dataset

P ′ sβ(P ) sγ(P )

00 1 0
01 0.6 0.5
10 0.5 0.4
11 0.1 0.1

Table 8.2.: Values of sγ(P ) and sγ(P ) for the Forest sample

Let us briefly illustrate the difference in computation of selectivities for β(P )
and γ(P ). Lets take as an example the second row in Table 8.2 corresponding to
the bitvector ‘01’. The selectivity sβ(P ′) for bv(P ′) = 01 shows the selectivity of
the predicate p1 as only the first bit1 in the bitvector is set to one (cf. Eq. 8.1).
The same bitvector in case of sγ(P ′) has a different semantics; it shows the
selectivity for the entire expression p1∧¬p2 and not only p1 (cf. Eq. 8.2). That
is, in case of sβ(P ′), we compute the selectivities for predicates (interpreted
conjunctively) corresponding to the bits set to one in the pattern P ′ whereas
in case of γ(P ), all the bits in the pattern P ′ matter, regardless if they are set
or not, since γ(P ′) defines a minterm for P .

Since the computation of γ(P ′) is little bit less intuitive than the computation
of β(P ), we will illustrate it by using our example predicate expression p1∧¬p2.
γ(P ′) for this example expression is computed as the number of rows, where
condition p1 is true (elevation > 2600) and p2 is false (slope ≥ 7), and finally
the derived count is divided by the total number of rows in the sample (i.e., 10,
cf. Table 8.1). This gives us the value γ(P ) = 0.5 as shown in Table 8.2.

Let us now discuss how to efficiently derive the values for sγ via sampling.
During the evaluation of a set of predicates {p1, . . . , pz}, besides determining
the number of sample tuples qualifying for all pi, we can also count the 2z

combinations of predicates evaluating to true or false. In the following, we
show the pseudocode (close to C++) of a method which efficiently achieves

1First bit in our interpretation is the least-significant bit
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this task:

1 getGamma(p , z , S )
2 // p i s vec to r o f p r ed i ca t e s ,
3 // z i t s length ,
4 // S i s the sample
5 int n = (1 << z ) ;
6 // array o f counter s i n i t i a l i z e d to zero
7 int c gamma [ n ] = {0} ;
8 for ( s : S ) { // f o r a l l sample t u p l e s in sample S
9 int k = 0 ;

10 for ( int i = 0 ; i < z ; ++i ) {
11 // p [ i ] ( s ) : eva luate p i on sample tup l e s
12 k |= (p [ i ] ( s ) << i ) ;
13 }
14 ++c gamma [ k ] ;
15 }
16 double s gamma [ n ] ;
17 for ( int i = 0 ; i < n ; ++i ) {
18 s gamma [ i ] = (double ) c gamma [ i ] / S . s i z e ( ) ;
19 }
20 return s gamma ;

Here, for every sample tuple s ∈ S, all predicates pi are evaluated (p[i](s)).
The result is either 0 or 1. Shifting this result by i and bitwise OR-ing it with
k, stores this result in the i-th bit of k. Thus, after the inner loop (cf. lines
10-13), k contains a bitvector representing the outcome of all predicates. Then,
k is used as an index into an array of counters and the according counter is
increased.

8.2. Cardinality Estimation for Conjunctive Predicates

In Chapter 5, we have presented an optimization algorithm—DPSel—for queries
containing predicates connected conjunctively. In order to compute plan costs,
DPSel needs the vector sβ. Having sβ, the optimizer can quickly fetch predi-
cate selectivities for any subset of conjunctive predicates directly from sβ.

The procedure getGamma presented in the previous section will give us sγ ,
and not sβ. Hence, we need a method to convert sγ to sβ.

Define the complete design matrix C as

C(i, j) =

{
1 if j ⊇ i
0 else

where j ⊇ i denotes the fact that every bit set to one in i is also set in j, i.e.,
i = i&j and i, j range from 0 to 2z − 1. Note that C is binary, non-singular,
and persymmetric.

The complete design matrix C allows us to go from sγ to sβ by

Csγ = sβ.

Since the positions of the ones in row i can be enumerated efficiently by enu-
merating supersets of the bitvector i (see [44, p66] for details), multiplications
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scan
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σp2
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Figure 8.1.: An example bypass plan for expression (p1 ∧ p2) ∨ p3

of C with a vector x can be implemented very efficiently using only a few bit
manipulating instructions and additions. No explicit representation of C is
required.

8.3. Cardinality Estimation for Disjunctive Predicates

The optimization algorithms presented in this thesis, which handle general Bool-
ean expressions (cf. Chapter 6 and Chapter 7), generate bypass plans. Recall
that in bypass plans, each selection operator has two output streams, the true
stream with the tuples satisfying the selection predicate and the false stream
with tuples that do not satisfy the selection predicate. It follows that in order
to compute the predicate selectivities required by our optimization algorithms
generating bypass plans, we cannot rely on sβ as we have to also consider the
false stream in each bypass selection operator. That is, besides conjuncts we
need to compute selectivities for disjuncts too. For this purpose, we can use the
vector sγ which can be efficiently generated by our sampling method getGamma.

Once we have computed the vector sγ by means of the sampling method
shown in the previous section, cardinalities for bypass plans can be computed
according to the method shown below (containing pseudocode close to C++).

1 c a l c c a r d i n a l i t y (A, nP , gamma)
2 // A : ass igment s t r u c t u r e
3 // np : number o f p r e d i c a t e s
4 double r e s = 0 ;
5 i f (0 == A. vars ( ) ) {
6 int n = (1 << np ) ;
7 for ( int i = 0 ; i < n ; ++i ) {
8 r e s += gamma[ i ] ;
9 }

10 return r e s ;
11 }
12 int VarMask = (1 << np) − 1 ;
13 int Part ia lAss ignment = A. vars ( ) & A. v a l s ( ) ;
14 int Unassigned = ˜(A. vars ( ) ) & VarMask ;
15 // f o r a l l subse t s ( in b i t v e c t o r rep . ) in ‘ Unassigned ’
16 for ( s ⊆ Unassigned ) {
17 r e s += gamma[ Part ia lAss ignment | s ] ;
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18 }
19 return r e s ;

The method calc cardinality takes as an input an assignment structure A

(assignment structure was explained in Section 7.2.3), a variable nP denoting
the number of predicates and a gamma vector (sγ).

Recall that the family of top-down optimization algorithms presented in
Chapter 7, iterate over the predicates in the input Boolean expression and
recursively simplify the expression by assigning truth values to predicates, i.e.,
true/false. The assignment of truth values to predicates results with a simpli-
fied expression due to the cancellation of terms as a result of the assignment.
An illustration of simplification of Boolean expressions has been shown in Fig-
ure 7.2 of Chapter 7. As already explained in Chapter 7, assignments made to
predicates and their respective assigned values are maintained in an assignment
structure.

In line 5 of the procedure calc cardinality, it is checked if the assignment
structure has no assigned predicates. If that results to be the case, the for loop
in line 8 iterates over all the entries in vector sγ , whereby their cumulative sum
is stored in the variable res. If, however, the condition in line 6 is not satisfied,
in lines 16-18 it is iterated over all the subsets s ⊆ Unassigned (in bitvector
representation). The variable Unassigned denotes the set of predicates which
are not assigned truth values (in bitvector representation), whereas the variable
PartialAssignment denotes the set of predicates which were assigned truth
values. Having both PartialAssignment and Unassigned variables, all we
need to do is iterate over all the subsets s of Unassigned and take the union
(bitwise-OR) of PartialAssignment and s (cf. line 17) over the gamma vector
and add the respective selectivity to the cumulative variable res. By iterating
over all the subsets of predicates in Unassigned (in bitvector representation),
we have considered all the possible combinations of true/false values which
predicates in Unassigned can take. The variables PartialAssignment and
Unassigned complement one-another in order to obtain the complete minterm
which is necessary to query the gamma vector. Once the for loop in lines 16-18
has exited, the computed predicate selectivities are returned to the caller (cf.
line 19).

For illustration of cardinality computation for bypass plans, consider the
following example expression (p1 ∧ p2) ∨ p3. Let us assume that the optimizer
has generated the bypass plan shown in Fig. 8.1a. For computing the input
cardinality for the selection operator σp3 added on top of the false branch of σp2
as shown in Fig. 8.1b, we need the selectivity factor for the subset of predicates
P ′ = 101 (p1 ∧ ¬p2 ∧ p3), whereas for the plan shown in Fig. 8.1c, we need the
selectivity factor for the subset of predicates P ′ = 110 (¬p1 ∧ p2 ∧ p3).

In order to complete the bypass plan, we need to build on the false branch
of the bypass selection operator σp2 and this way derive the plan shown in
Fig. 8.1b. For computing the input cardinality for the selection operator σp3 , the
optimizer invokes the method calc cardinality with the assignment structure
A, whereby A.vars = 011 and A.vals = 001, nP = 3, and the vector sγ .
A.vars denotes the already assigned predicates so far in the plan (in bitvector
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representation). In contrast to the field vars, the field vals encodes to the
values assigned to each predicate in A.vars (i.e., true/false). Note that the
unassigned predicates have a default value of 0 in the assignment structure.
When the optimizer considers building the false branch of the bypass selection
operator σp2 , it has already modified the assignment structure by setting the bits
corresponding to the predicates p1 and p2, hence A.vars = 011, and A.val =
001. Since we are building the false branch of the bypass selection operator
σp2 , the predicate p2 is assigned a false value, thus explaining A.val = 001. It
follows that PartialAssignment = 001 and Unassigned = 100, thus in the res
variable is stored the cumulative sum of selectivities for the indices 001, 101 (in
bitvector represenation) over the gamma vector.
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9. Conclusion

The optimization algorithm presented by Ross in [56] is the only algorithm in
the literature which optimizes conjunctive predicates for main memory databases,
while taking into account the branch misprediction penalty. This algorithm,
however, has a very high time complexity, proportional to O(4n) for n pred-
icates. Moreover, the cost model in [56] is also too simple, i.e., it does not
accurately capture the branch misprediction penalty. We have presented in
Chapter 5, a new optimization algorithm for conjunctive predicates which relies
on dynamic programming and generates the solutions in a bottom-up fashion.
Its time complexity is much lower—O(n 2n)—compared to the algorithm by
Ross [56], and in addition, in Chapter 4, we have presented a very accurate
cost model for main memory column stores that accurately models the branch
misprediction penalty.

The optimization of Boolean expressions which besides conjunctions con-
tain disjunctions as well, is on the other hand, a much more challenging task.
This class of queries has been traditionally optimized by very simple heuristics
leaving a large optimization potential unharvested. In Chapter 6, we have pre-
sented a heuristic for optimizing this class of queries. The major drawback of
our heuristic is that it requires queries in DNF, and while it performs very well
for queries in DNF, it cannot handle large queries in CNF. The reason for that
is the exponential blow-up of queries in size when converting them from one
normal form to another normal form (e.g., CNF to DNF).

In Chapter 7, we have presented a top-down optimization algorithm for
Boolean expressions which attains the optimum in terms of plan quality. The
algorithm in Chapter 7 does not suffer from limitations of the heuristic in Chap-
ter 6, and in addition, it also recognizes Boolean implications. The existing al-
gorithms in the literature that attain the optimum have prohibitively high run-
times, thus are not applicable for queries with more than very few predicates.
For instance, the algorithm by Reinwald and Soland [55] which attains the op-
timum in terms of plan quality has a complexity of O(22

n
) for n predicates. In

contrast, the complexity of our algorithm is much lower, i.e., O(n 3n). Further-
more, our algorithm—thanks to its top-down nature—applies search strategies
like branch-and-bound pruning for curtailing effectively its search space and
Boolean difference calculus for setting the initial upper bound. Branch-and-
bound pruning together with Boolean difference calculus improve the runtime
of the algorithm by several orders of magnitude without jeopardizing the plan
quality. For very large queries (e.g., containing over 100 predicates), however,
computing the optimal plan is not feasible. Our algorithm in such cases can
return a relatively good plan by means on Boolean difference calculus. As a
future work, it would be interesting to develop other heuristics with the aim of
closing the gap against the optimum.
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A.1. Allocator in SystemTx

class TxAllocator {
public :

stat ic constexpr uint Log2ChunkCardinality = 13 ;
stat ic constexpr s i z e t ChunkCardinal ity = (1LL << Log2ChunkCardinality ) ;
stat ic constexpr s i z e t Mask = ( ChunkCardinal ity − 1 ) ;
stat ic constexpr uint S h i f t = Log2ChunkCardinality ;
typedef unsigned int f l a g s t ;
enum f l a g s e t {

kNoFlags = 0
} ;

public :
typedef std : : vector<void∗> chunk vt ;
constexpr stat ic i n t 6 4 t MINSIZE = 16LL ∗ 1024LL ;

private :
TxAl locator ( const TxAllocator&) = delete ;
TxAl locator& operator=(const TxAllocator&) = delete ;

public :
TxAl locator ( ) ;
˜ TxAllocator ( ) ;

public :
void∗ a l l o c ( const i n t 6 4 t aElemSize , const f l a g s t aFlags ) ;

private :
chunk vt chunks ; // chunks
void∗ beg in ; // s t a r t o f f f r e e space in cur rent chunk
void∗ end ; // end o f cur rent chunk

} ;

TxAl locator : : TxAllocator ( )
: chunks ( ) {

}

TxAllocator : : ˜ TxAllocator ( ) {
for ( s i z e t i = 0 ; i < chunks . s i z e ( ) ; ++i ) {

f r e e ( chunks [ i ] ) ;
}

}

void∗
TxAllocator : : a l l o c ( const i n t 6 4 t aElemSize , const f l a g s t aFlags ) {

i n t 6 4 t l S i z e = ( ChunkCardinal ity ∗ aElemSize ) ;

i f ( l S i z e < MINSIZE) {
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l S i z e = MINSIZE ;
}

void∗ lRes = 0 ;
const int lRc = posix memalign(&lRes , 64 , l S i z e ) ;
i f ( lRc != 0) {

return 0 ;
}
memset ( lRes , 0x70707FAB , l S i z e ) ;

chunks . push back ( lRes ) ;

return lRes ;
}

A.1.1. Chunk-wise Column Organization in SystemTx

template<typename Tcontent>
class TxColumn {

public :
typedef Tcontent e l em t ;
typedef std : : vector<elem t> e lem vt ;
typedef std : : vector<e l em t∗> elem vpt ;

public :
stat ic constexpr s i z e t Mask = TxAllocator : : Mask ;
stat ic constexpr uint S h i f t = TxAllocator : : S h i f t ;
TxColumn( const TxColumn&) = delete ;
TxColumn& operator=(const TxColumn&) = delete ;

public :
TxColumn ( ) ;
˜TxColumn ( ) ;

public :
void reg i s terChunk ( e l em t ∗ aChunk ) ;
void initFrom ( const e lem vt& aIn i tVec ) ;

public :
inl ine s i z e t card ( ) const { return c a r d i n a l i t y ; }
inl ine s i z e t cap ( ) const { return c a p a c i t y ; }
inl ine s i z e t noChunks ( ) const { return chunks . s i z e ( ) ; }
inl ine const e l em t ∗ chunk ( const s i z e t i ) const { return chunks [ i ] ; }

public :
inl ine const e l em t& operator [ ] ( const s i z e t i ) const ;
inl ine e l em t& operator [ ] ( const s i z e t i ) ;

public :
void push back ( const e l em t ) ;

private :
s i z e t c a r d i n a l i t y ;
s i z e t c a p a c i t y ;
e lem vpt chunks ;
s i z e t i dx ; // used f o r i n s e r t i n g e lements i t e r a t i v e l y

} ;

The following code snippet shows how column elements are accessed in our
chunk-wise partitioned columns.
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template<typename Tcontent>
typename TxColumn<Tcontent > : : e l em t&
TxColumn<Tcontent > : : operator [ ] ( const s i z e t i ) {

return chunks [ i >> S h i f t ] [ i & Mask ] ;
}

The variable Shift is a system parameter and fixed for the whole system
(see the definition of TxAllocator). The operation [i & Mask] is a remainder
operation and is equivalent to [i % ChunkCardinality]. Registration of the
chunk pointers in a column is shown in the following code snippet.

template<typename Tcontent>
void
TxColumn<Tcontent > : : r eg i s terChunk ( e lem t ∗ aChunk) {

c a p a c i t y += TxAllocator : : ChunkCardinal ity ;
chunks . push back (aChunk ) ;

}

As it can be seen in the code snippet, chunks pointers are kept in the vector
chunks, further, each time a new chunk is registered, the cardinality of the

column is updated accordingly. Note that the chunk cardinality and the column
cardinality are two different things. The former denotes the number of items
in a single chunk, whereas the latter denotes the total number of items in the
column (covering all its constituent chunks).
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[61] David D Straube and M Tamer Özsu. Queries and query processing in
object-oriented database systems. ACM Transactions on Information Sys-
tems (TOIS), 8(4):387–430, 1990.

[62] TUM. CH-benchmark. https://db.in.tum.de/research/projects/

CHbenCHmark/.

[63] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently adapting graphical
models for selectivity estimation. VLDB Journal, 22:3–27, 2013.
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