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1 Introduction 

The regulation of electricity utilities is a topic of great research interest and practical relevance. 

In the past few decades, theoretical and empirical scholars, as well as policy makers, have ad-

dressed various issues related to mechanism design and cost-efficiency incentives, especially 

in the presence of information asymmetries between regulator and regulated firm. At the risk 

of oversimplifying, one might say that, in terms of the investment incentives provided, regula-

tion mechanisms can be high-powered or low-powered. In a high-powered incentive mecha-

nism, price caps are largely independent of firms’ costs. This provides regulated firms high 

incentives for cost reduction, but at the cost of setting prices that may be too high or too low. 

In a low-powered incentive mechanism, prices are set in line with the regulated firms' costs; 

this prevents major misalignments between prices and costs, but at the cost of providing low 

incentives for cost reduction. 

The trade-off between high- and low-powered incentive mechanisms is largely an empirical 

question: do cost-reduction incentives really matter? Do regulated firms subject to higher-pow-

ered regulation mechanisms invest more in cost reduction? 

The German system for regulating electricity distribution system operators (DSOs) provides a 

natural setting for addressing these questions. A legal exemption in the German incentive reg-

ulation system effectively results in two different regulatory regimes, one with higher-powered 

incentives than the other. Specifically, the default regulatory mechanism unfolds over a five-

year period. While revenue caps are initially based on the DSOs’ own costs, caps gradually 

decrease over time and are eventually determined by the industry's most cost efficient firm 

(which the regulator identifies beforehand by means of efficiency analyses). In this sense, the 

default regulatory regime is a hybrid of cost-based regulation (first year) and yardstick regula-

tion (last year of the regulatory period).1 

Small DSOs (those with less than 30,000 connected consumers) can opt for an alternative reg-

ulation regime. As in the default regime, revenue caps are initially based on the DSOs’ own 

costs. However, unlike the default regime, where prices adjust toward the fifth-year yardstick 

cap, under the alternative system prices adjust at an exogenously given rate. In this sense, the 

alternative regulatory regime provides lower incentives for cost reduction: even fifth-year 

prices are a function of first-period costs. This regime is thus based to a larger degree on cost-

                                                 

1 See Shleifer (1985) for yardstick regulation. See also Averch and Johnson (1962) and Finsinger and Kraft (1984) 
for cost-plus regulation and its incentive for wasteful spending. 
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based regulation than the default regime and disregards the individual DSOs’ true cost effi-

ciency when demanding cost reductions. The default regime relying on a yardstick element is 

thus much closer to the theoretical ideal of a price cap regulation determining exogenous pro-

spective price targets.2 

In this paper, we propose a difference-in-differences (DiD) approach to estimate the impact of 

incentives on cost reduction; that is, we examine the impact of price exogeneity on regulated 

firms’ cost-reduction efforts. The first level of difference in our DiD analysis compares periods 

when incentives are in effect to periods when they are not, whereas the second level of differ-

ence compares DSOs subject to a high-powered mechanism to DSOs subject to a low-powered 

mechanism. 

The DiD approach allows us to control for potentially confounding factors such as a heteroge-

neous expansion of power plants for decentralized renewable electricity generation. Moreover, 

it enables us to account for the potential selection bias due to the non-random assignment of 

treatment. We argue that the participation choice of small DSOs is driven by expected gains 

that depend on time-invariant unobservables (such as propensity to take regulatory risks). The 

average treatment effect on the treated can then still be consistently estimated with DSO-spe-

cific effects (Blundell and Dias, 2009). 

We use data on 108 German DSOs with less than 70,000 connected consumers over the period 

2010-2013. Revenue caps for the regulatory period 2014-2018 are based on each DSO’s cost 

in 2011, the base year. We compare cost changes from 2010-2011 for DSOs under each regu-

latory regime. 

Our results suggest that a switch to the lower-powered regulation regime is associated with 

higher costs. This is especially true for firms that are more efficient to begin with. A matched-

                                                 

2 There is some disagreement — both in economics literature and in regulatory practice — regarding the usage of 
the term “price cap.” Beesley and Littlechild (1989) and Laffont and Tirole (1993) stress its proximity to cost of 
service (or rate of return) regulation. However, in theory a completely exogenous price cap makes the firm the 
residual claimant of its profits (Cabral and Riordan (1989)). In this sense, yardstick regulation is the practical 
counterpart of this theoretical extreme. In regulatory practice — and in the empirical literature — the term “price 
cap” often refers to an incentive scheme subject to periodical regulatory audits, which effectively make a firm’s 
price a function of its (historical) cost (Littlechild, 1986; also cf. section 2 below). Price cap regulation is then 
effectively a low-powered mechanism (especially if the regulatory lag is short). In our case, the alternative regime 
is closer to this historical own-cost based approach, whereas the default regime determines final period’s price 
targets based on cost data exogenous to the firm. The German regulator calls both regimes “revenue-cap regula-
tion” (“Erlösobergrenze” in the Incentive Regulation Ordinance (IRO)). So as to avoid further confusion, we use 
the terms “revenue-cap” or “alternative” regime for the low-powered; and “yardstick” or “default” regime for the 
high-powered scheme. 
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sample regression, which we perform as a robustness check on and extension of our DiD ap-

proach, shows an increase of about 7% in the costs of the regulated firms in the top efficiency 

quartile. 

The increase in costs is consistent with the basic idea that incentives matter: if a regulated firm 

can keep a greater fraction of its cost savings, then cost savings are greater. The fact that the 

effect is particularly strong for firms that are more efficient is consistent with two different 

ideas, both of which we discuss in detail in the theory section of the paper: First, more efficient 

firms have a greater ability to add wasteful expenditures to their cost base. Second, in a world 

of asymmetric information and sequential regulation without regulator commitment, efficient 

regulated firms have an incentive to pool with inefficient firms: the ratchet effect (Laffont and 

Tirole, 1993). 

The paper is organized as follows. The next section discusses related literature. Section 3 pro-

vides an overview of the German regulatory setting; a stylized theoretical model; and a set of 

testable hypotheses. Our empirical approach is explained in Section 4, and the results are pre-

sented in Section 5. Section 6 concludes the paper. 

2  Related literature 

Since the 1980s, and following the United Kingdom's lead, a number of countries implemented 

various forms of incentive regulation. (Until then, utilities were typically subject to cost-based 

regulation (US) or were state owned (UK and Europe).) This institutional development was 

accompanied by a renewed research interest, both theoretical and empirical, on the economics 

of regulation.3 

At the empirical level, the central question regards the impact of incentive regulation on the 

regulated firm's cost-reduction effort, and ultimately on their efficiency levels. Newbery and 

Pollitt (1997) and Domah and Pollitt (2001) show that the introduction of incentive regulation 

promoted productivity and service quality among UK electricity utilities. Greenstein et al. 

(1995) and Ai and Sappington (2002) demonstrate that incentive regulation in the US telecom-

munications sector encouraged cost-reducing investment. Results by Majumdar (1997) further 

indicate that this positively affected technical efficiency. More recent evidence by Cambini and 

Rondi (2010), who examine EU energy utilities from 1997 to 2007, shows that investment rates 

                                                 

3 At the theoretical level, two relevant contributions regarding price-cap regulation are Cabral and Riordan (1989) 
and Biglaiser and Riordan (2000). 
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tend to be higher under incentive than under cost-based regulation. Seo and Shin (2011) find a 

positive effect of incentive regulation on productivity in the US telecommunications industry 

during the period 1988-1998.4 

Despite the variety of industries and data sets considered, a common pattern among virtually 

all of the empirical studies is the comparison of firm efficiency before and after the adoption of 

incentive regulation. For example, different US states adopted price-cap regulation at different 

points in time, which provides a right-hand side explanatory variable for a firm investment 

regression. By comparison with this strand of the literature, the strength of our empirical ap-

proach is that it consists of a differences-in-differences approach with a regression-discontinu-

ity flavor based on an essentially exogenous feature of regulation: that the alternative (low-

powered) regulatory regime is only an option for DSOs with less than 30,000 connected con-

sumers. 

Beyond this general characterization, two papers are particularly germane to ours and deserve 

special mention. Like us, Cullmann and Nieswand (2016) study the investment behavior of 

German DSOs. They measure an increase in investment after the introduction of incentive reg-

ulation, especially in the base year. Whereas their results are consistent with our evidence, they 

do not make a case for a causal effect in the way we do. Moreover, they do not distinguish the 

different regulatory regimes (low- and high-powered) as we do. Agrell et al. (2005), in turn, is 

similar to our paper in that they provide a dynamic framework with which to compare revenue-

cap and yardstick regulation. They use data on Swedish electricity utilities from 1996 to 2000 

and focus on the value of yardstick regulation in reducing uncertainty regarding price cap levels. 

However, their different regulatory regimes are based on (out of sample) counterfactual simu-

lations, while our results are based on historical data. 

3 Setting 

In this section we provide a brief description of the German incentive regulation; develop a 

simple formal model that encapsulates the main features of the various regulatory systems; and 

derive a series of theoretical results which imply specific testable predictions. 

                                                 

4 For largely qualitative analysis of the effects of incentive regulation, see also Braeutigam and Panzar (1993); 
Crew and Kleindorfer (1996, 2002); Joskow (2008); Liston (1993; Guthrie (2006); Vogelsang (2002). Kridel, 
Sappington and Weisman (1996) and Sappington and Weisman (2010) provide detailed surveys of the empirical 
literature. 



5 
 

3.1 Incentive regulation in Germany 

In 2009, Germany switched from a cost-based to an incentive-based regulation regime of elec-

tricity network access charges. In this section, we explain its functioning in general terms, leav-

ing for Appendix A.2 the more detailed description of the Incentive Regulation Ordinance 

(IRO) which led to the regulatory change.  

Similarly to many other countries, the German regulator imposes revenue caps on its more than 

800 electricity Distribution System Operators (DSO). The idea is that, by setting allowed prices 

over a period of time, firms become residual claimants of any cost reductions during the regu-

latory period, and are thus highly incentivized to become more cost efficient. Against this effi-

ciency benefit, one must also consider that the cap itself is at least partly based on the firm's 

cost, which in turn creates some incentives for wasteful expenditures. 

The extent of the cost-reduction and cost-padding incentives depends on how revenue caps are 

computed and applied. In Germany we find two different regulatory regimes: a default regime 

and an alternative regime. The alternative regime was introduced by the regulator in attempt to 

reduce bureaucratic costs: it is characterized by less reporting requirements. This simpler re-

gime can only be chosen by DSOs with less than 30,000 connected consumers (which corre-

sponds to more than 75 percent of all German DSOs). We first describe the features that are 

common to both systems, then their differences.  

Under both regimes there is a designated base year (three years before the regulatory period) 

during which firm costs are audited. The estimate of the firm's cost determines the revenue cap 

at the start of the five-year regulatory period. The revenue cap then declines in each subsequent 

year.5 

The differences between the two regimes pertain to the way the cap is adjusted over time. Under 

the default regime, an industry efficiency frontier (yardstick) is estimated by the regulator.6 By 

the end of the regulatory period, all firms are set a revenue cap corresponding to this efficiency 

                                                 

5 Revenue caps basically comprise two components. A first component corresponds to costs that are beyond the 
DSOs’ control, such as concession fees or feed-in remuneration for decentralized electricity generation. A second 
component corresponds to controllable costs, i.e. the effective costs of network operation; this component is sub-
ject to cost-reduction targets. (The official regulatory formula also accounts for variations in the consumer price 
index, industry’s productivity growth, quality and changes in supply obligations; see Appendix A.2 for details.)  
6 The regulatory authority employs a combination of Stochastic Frontier Analysis (SFA) and Data Envelopment 
Analysis (DEA), using costs as input; and exit points, network length, annual peak load, and area served amongst 
others as outputs; see Appendix A.3 for details. 
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frontier. Until then, each firm's revenue cap declines linearly from the first year's level (which, 

as we have seen before, is determined by the firm's cost during the designated base year). 

Under the alternative regulatory regime, by contrast, the initial revenue cap is adjusted at an 

exogenous rate set by the regulator. In other words, whereas under the default regime the final 

cap is determined exogenously, under the alternative regime it is the adjustment rate that is 

determined exogenously.7 

Both the default and the alternative regimes include elements of cost-based regulation as well 

as elements of price-based regulation. However, the extent of cost-reduction incentives is 

greater under the default regime: under this regime revenue caps during the last period are ex-

ogenously given, as in pure yardstick regulation. By contrast, under the alternative regime rev-

enue caps in every period are a function of the firm's cost audit during the base year. 

Our empirical strategy uses this difference in incentive power, together with a “natural” assign-

ment to each system, to estimate the effects of regulation on cost reduction incentives. 

3.2 A model of regulation and cost reduction 

In order to better understand the effects of alternative regulatory mechanisms, we next develop 

a simple model of a regulated firm's cost-reduction strategy. 

Suppose that the firm is regulated during two periods: the base period and the regulatory period 

(or final period). The timing is very simple: First, the regulated firm chooses a level of wasteful 

expenditures. Next the regulator determines the allowed revenue in each of the two periods.  

With respect to the actual timing under the German system, we conflate the designated base 

year with the first year of the regulatory period (and call this the base period); and we collapse 

years 2 through 5 during the regulatory period into one (and call it the regulatory period).8 

For simplicity, we assume that firm output is exogenously given; and with no further loss of 

generality assume it to equal 1. The regulated firm's cost (total and per unit) in the base period,

0c , is given by  

                                                 

7 Similar to the default regime, in the alternative regime DSOs are assigned an efficiency score. However, unlike 
the default regime, where the regulator estimates each firm’s specific efficiency score, all firms are assigned the 
same score under the alternative regime: 87.5 percent in the first regulatory period (2009-2013) and 96.14 percent 
in the second regulatory period (2014-2018). 
8 To be more specific, we assume all years are like year 5. 
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0c wθ= +  

whereθ  is firm efficiency (which we assume to be exogenously given) and w  corresponds to 

wasteful expenditures. Moreover, the regulated firm's cost during the regulatory period is given 

by 

1c θ=  

 (Below we change this assumption by allowing base-period expenditures to have an effect on 

cost during subsequent periods.) 

Allowed revenue during the base period is given by 

( ) ( )oR e f wθ θ= +  

where ( )e θ  measures how effectively a type θ  firm is able to turn wasteful expenditures into 

its cost base (everything else equal); and ( )f w  measures how, independently of firm type, 

wasteful expenditures can be padded on to the cost base used by the regulator in setting revenue 

caps. 

We make the important assumption that ( )e θ  is decreasing. As a higher θ  implies that the firm 

is less efficient, we assume that less efficient firms find it harder to make wasteful expenditures 

count (in terms of making them part of the cost base). Intuitively, a less efficient firm will have 

a higher total cost; and a higher total cost is likely to increase the level of scrutiny by regulators, 

thus making it more difficult to “get away with” wasteful expenditures. 

As to ( )f w , we assume that it is a positive, strictly increasing, strictly concave and bounded 

function defined in +
 . The idea is that there are diminishing marginal effects in adding waste-

ful expenditures to the regulated cost base: first the firm will select expenditures that are easily 

passed on to the cost base. As more and more expenditures are added, the regulated firm even-

tually gets into highly dubious expenses (e.g., a third executive car). 

Allowed revenue during the regulatory period depends on the regulatory system. Under the 

default yardstick regime (denoted system y), allowed revenue during the regulatory period is 

determined by industry best practice (as assessed by the regulator), a value that is exogenous 

with respect to the regulated firm's cost level. Under the alternative revenue-cap regime (de-

noted system r), allowed revenue is given by (1 )oR x− , where (0,1)x∈  is determined by the 

regulator and exogenous with respect to the regulated firm's cost level. 
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The regulated firm's objective function consists of two different components: firm profits and 

wasteful expenditures. The idea is that the decision maker (the regulated firm's CEO) is sensi-

tive to firm profitability (directly because her compensation is linked to profits, and indirectly 

because her survival depends on shareholder satisfaction); and moreover the CEO benefits di-

rectly from many of the wasteful expenditures (e.g., extra executive cars). Formally, the regu-

lated firm's problem is as follows: 

max  o s

w
wπ π α+ +  

where π  denotes regulated firm profit; { , r}s y∈  denotes the regulatory system in place; and 

(0,1)α ∈ is the coefficient measuring utility from wasteful expenditures. For simplicity, we as-

sume no discounting between periods. We also assume that the private benefit from wasteful 

expenditures accrues during the first period. None of these assumptions changes the qualitative 

nature of our results. 

Given our assumptions, the profit functions are given by 

0

1

1

( ) ( ) ( )

(1 )

o o

y y y

r r o

R c e f w w
R c R
R c R x

π θ θ θ

π θ

π θ

= − = + − +

= − = −

= − = − −

 

where yR  is exogenously given. Finally, we define  

r yw w∆ ≡ −  

the difference, in terms of wasteful expenditures, between system r and system y. 

Based on this simple model, we derive two basic propositions which reflect the core of our 

theoretical (and later empirical) analysis.  

Proposition 1. 0∆ >  

(Proofs may be found in Appendix A.1.) Proposition 1 reflects what is perhaps the most basic 

result regarding regulation: incentives matter. Yardstick regulation, to the extent that it sets a 

revenue cap (during the regulatory period) which is not a function of the firm's cost, creates an 

extra incentive for firms to reduce costs: as far as the regulatory period is concerned, any cost 

increase translates directly into a profit decrease. By contrast, revenue-cap regulation has the 

property that revenue caps during every period are an increasing function of the firm's cost 
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during the basic period; and this creates additional incentives for the firm to increase its costs 

by means of wasteful expenditures. 

Proposition 2. Suppose ( ) log( )f w w= . Then / 0d dθ∆ < . 

Intuitively, more efficient firms are better able to turn wasteful expenditures into their cost base. 

As such, these firms are greatly affected by a change in regulatory regime. We note that the 

condition that ( )f w is logarithmic is sufficient (and greatly simplifies the proof of Proposition 

2) but is not necessary.  

We next consider a model extension that allows for the distinction between operating and cap-

ital expenditures. One important difference between these two types of expenditures is that 

capital expenditures during the base year have an effect on firm costs for a number of periods, 

including the regulatory period. The distinction is important: whereas w -operational expendi-

tures lead to cost padding, w -capital expenditures contribute to cost padding but also to an 

increase in cost during the period when the firm is a residual claimant of any cost reductions. 

In other words, the wasteful expenditure effect of cost-based regulation should be lower for 

capital expenses. 

To formalize this argument, we now split the value of w  into two different components: 

o kw w w= +  

From the model's point of view, the crucial difference between ow  and kw  is that the former 

can be chosen during the base period only, whereas the latter leads to multi-period commitment, 

which we model by assuming the same value of kw  in both periods. 

The regulated firm's problem is now given by 

max  ( )o s
o kw

w wπ π α+ + +  

The profit functions are now given by 

0

1

1

( )( ( ) ( )) ( )

( )

(1 ) ( )

o o
o o k k o k

y y y
k

r r o
k

R c e f w f w w w
R c R w
R c R x w

π θ θ θ

π θ

π θ

= − = + + − + +

= − = − +

= − = − − +

 

Similarly to our previous analysis, we define 
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r y
k k k

r y
o o o

w w
w w

∆ ≡ −

∆ ≡ −
 

We can then derive the following result. 

Proposition 3. o k∆ > ∆  

In words, the effects of incentive regulation are greater in reducing wasteful operating expenses 

than in reducing wasteful capital expenses. 

Finally, we note that the above model considers one regulation cycle only. As we explain in 

detail in the next section, there have already been two regulation cycles since the reform of the 

German electricity regulation system; and more cycles are expected to take place. More gener-

ally, in a repeated-regulation context with no long-term commitment on the part of the regula-

tor, theory predicts that ratcheting will take place: 

The regulator infers from a high performance an ability to repeat a similar performance 

in the future and becomes more demanding. Consequently the firm has an incentive to 

keep a low profile (Laffont and Tirole, 1993, p. 664). 

Specifically, Laffont and Tirole (1993) provide conditions such that, under asymmetric infor-

mation regarding the regulated firm’s cost efficiency, some measure of pooling of types takes 

place in the first period (see their Propositions 9.1 and 9.2). By pooling we mean that more 

efficient types signal the same cost level as less efficient types. This is consistent with the idea 

of more efficient DSOs inflating costs by more than less efficient DSOs (that is, efficient DSOs 

pooling with inefficient DSOs, at least partially).  

Laffont and Tirole (1993) do not provide results comparing the extent of pooling across differ-

ent regulatory mechanisms. However, intuitively the incentive for pooling in the first regulation 

round should be greater the more cost based future regulation rounds will be. For this reason, 

we would expect pooling to be greater under the alternative regime. 

We thus have an alternative reason why cost padding is greater for more efficient firms, that is, 

an alternative interpretation for Proposition 2’s prediction. 

3.3 Testable predictions 

Propositions 1-3 imply a series of related testable predictions. First, in the base year DSOs in 

the low-powered revenue-cap regime should show higher expenditures compared to DSOs in 

the high-powered yardstick regime (everything else constant). Second, this effect should be 
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particularly strong among more efficient firms. Third, this effect should be particularly strong 

for operating expenditures (as opposed to capital expenditures). 

4 Empirical approach 

Following our previous reasoning we expect different spending behaviors among DSOs in the 

base year, specifically in what concerns effective costs of network operation. Accordingly, we 

conduct our analysis for total expenditures as well as its capital and operational components. In 

this section we discuss our empirical approach and describe how our dataset was created. 

4.1  Identification strategy 

We identify possible differences in spending behavior based on a difference-in-differences 

(DiD) approach. This allows the identification of causal treatment effects by controlling for 

confounding factors with the help of a control group. Essentially, it assumes that two groups of 

initially similar subjects experience the same trend.9 The development of the control group’s 

outcome variable serves as a counterfactual with which the outcome of the treated group is 

compared. Any difference in the differences of the groups’ outcomes before and after the treat-

ment can be causally attributed to the treatment. 

This approach suits our setting well: DSOs in both regimes are located in the same jurisdiction 

and face decreasing revenue caps. However, whereas one group is subject to a cap that is even-

tually given by conditions exogenous to the regulated firm (the yardstick, or y, regime), another 

group is subject to a cap that reflects the firm’s expenditures during the base year (the revenue-

cap, or r, regime). The base year thus serves as our treatment; and the basic hypothesis to test 

is whether the r regime (the low-powered-incentive regime) leads to higher expenditures. 

As mentioned earlier, the revenue-cap regime can only be chosen by small DSOs, specifically 

those with less than 30,000 connected consumers (which corresponds to more than three quar-

ters of all German DSOs). This may question the assumption of a “parallel trend” for similar 

firms underlying a DiD approach: even though we could employ appropriate control variables 

in the DiD-regression approach, DSOs with more than, e.g., 200,000 connected consumers 

might encounter very different supply obligation conditions than smaller DSOs. We thus restrict 

our analysis to DSOs in the yardstick regime with at most 70,000 connected consumers. 

                                                 

9 In our setting, the common trend assumption might be flawed by the special expenditure requirements due to an 
extraordinary expansion of solar PV plants in the DSOs’ grid, or the acquisition of new grids. (The availability of 
grid concessions generally follows a 20-year cycle.) However, the DiD regression approach allows us to control 
for such potential confounders. 
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Incentive regulation was introduced in Germany in 2009. We thus observe DSO choices during 

two regulation cycles. The majority of smaller DSOs (more than 90 percent) opted for the r 

regime the first time around; and of the ones that did not, many did so the second time around.10 

In this sense, our empirical design has a certain regression-discontinuity flavor: large DSOs 

choose the y regime and small DSOs choose the r regime, where the threshold is exogenously 

determined and we look at DSOs that are not too far from the separating threshold. However, 

despite the clear cutoff point (30,000 consumers), a “pure” regression discontinuity approach 

would be statistically fragile as there are hardly any DSOs just around the threshold.11 

In contrast to a standard regression-discontinuity approach, DiD has the advantage of address-

ing the possible selection bias arising from the non-random assignment of treatment: specifi-

cally, we take advantage of the two regulation cycles and of the subset of DSOs who experience 

both regimes: Assuming that decision-making is based on time-invariant unobservables (e.g., 

propensity to take regulatory risks), such DSO-specific effects cancel out in a DiD approach 

with fixed effects.12 Blundell and Dias (2009) show that the average treatment effect on the 

treated can be consistently estimated using OLS.13  

In addition to the treatment effect of the r versus the y regime, we are also interested in the 

effect of DSO efficiency level, that is, whether the effect of switching from a high-powered to 

a low-powered regulation regime depends on the regulated firm’s efficiency level. As DSOs in 

the r regime are not subject to benchmarking, we must conduct our own analysis in order to 

                                                 

10 The second wave of shifts to the r regime was partly caused by a more favorable value of x, from 0.875 in 2009-
2013 to 0.9614 in 2014-2018. (Recall that x applies independently of the DSO’s actual efficiency level.) 
Unfortunately, the regulator does not provide any official number (basically because competencies for small DSOs 
are located at the Federal State level). However, our database (which comprises network-related information on 
645 DSOs in Germany, out of which 500 are eligible for the r regime) shows an increase in DSOs in the r regime 
from 462 to 472. In the sample used for our analysis, this concerns 4 DSOs. 
11 A propensity-score matching approach is not promising either, as the number of connected consumers almost 
perfectly predicts treatment. Still, we followed a nearest-neighbor matching approach to compare expenditures 
between DSOs under different regulatory regimes (see section 5.2). The results from this approach confirm the 
results from the DiD method, which in the present setting we consider to be more robust. 
12 The pre-set homogenous efficiency score is, in fact, the most decisive factor. In combination with different 
degrees of risk inclination it can explain why more DSOs have opted for the r regime in the second period than in 
the first one. Furthermore, as the score was known before the base year (as well as the other bureaucratic facilita-
tions) and since eligibility is strictly determined by the number of consumers, assuming that unobserved temporary 
individual-specific shocks do not influence the participation decision seems warranted. 
13 Note that this is not the average treatment effect, which is usually of interest in the classical DiD approach. 
However, we are not primarily interested in the average difference in potential outcomes for anyone in the popu-
lation, but rather for firms being treated. That is, we only want to learn whether DSOs that are not subject to the 
yardstick element have exploited the opportunity to increase their future revenues through inflated costs in the 
base year. Observing firms having opted for the revenue-cap regime therefore does not compromise the results of 
our analysis. 
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assess DSO efficiency level. We follow the official guidelines of the IRO efficiency analysis, 

which is based on data from before the base year.  

Finally, we made an additional correction to ensure validity of the parallel-trend assumption 

required by a DiD approach: Recall that we consider the regulatory period 2014-2018, the caps 

for which are determined by expenditures during the base year of 2011. As this base year falls 

within the first period (2009-2013), we restrict our attention to DSOs in the y regime that have 

official efficiency scores between 82.5 and 92.5 percent, thus implying that their cost-reduction 

targets are comparable to the 87.5 percent target in the revenue-cap regime.14 

4.2 Dataset 

841 German DSOs were subject to the IRO in the regulatory period 2009-2013. Of these, 184 

were regulated under the yardstick regime, and the remaining 657 (all smaller DSOs) under the 

revenue-cap regime. Regarding the process of data collection, we should note that most small 

DSOs in Germany are still vertically integrated. For this reason, data on their network-operation 

expenditures can only be obtained by making use of accounting unbundling obligations. Alt-

hough these obligations are legally binding since 2011, and compliance increases every year, 

compliance is not universal. Moreover, in order to construct our dependent variables we also 

need data for 2010.  

These data requirements imply that our sample is a strict subset of the population.15 Specifi-

cally, we constructed an initial balanced panel of 116 DSOs from 2010 to 2013. However, as 

mentioned earlier, we restrict attention to DSOs with cost-reducing targets and supply obliga-

tions comparable to DSOs in the revenue-cap regime. This further restricts our panel to 108 

DSOs, out of which 19 fall into the high-powered yardstick regime and 89 into the low-powered 

revenue-cap regime.16  

DSOs in our sample distributed about 25 TWh of electricity and maintained about 50 thousand 

kilometers of low-voltage lines in 2011. This amounts to about five and four percent of the 

respective total numbers for Germany. 

                                                 

14 We obtain equally significant results when narrowing the interval to 85-90%, which, however, reduces the num-
ber of DSOs in the yardstick regime from 19 to 14. 
15 We also disregard DSOs with the legal status of a small corporation (Section 267 German Commercial Code), 
which exempts them from reporting detailed cost data in their annual statements. 
16 This classification stems from the second regulatory period as expenditures in the base year 2011 affect revenue 
caps in the second period 2014-2018. 
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Our cost data is derived from the DSOs annual statements.17 We follow the IRO’s method to 

compute effective network-operation costs (totex): we subtract non-controllable cost compo-

nents from total costs on the DSO’s balance sheet. By non-controllable costs components we 

mean costs such as concession fees, charges for the use of upstream network levels, or feed-in 

remuneration for decentralized renewable electricity generation (all of which are beyond the 

DSO control).18 

We divide total network operation costs into their operational and capital components. Specif-

ically, our analysis is based on the rate of change of effective network-operation costs (Δtotex) 

and its sub-components: the rate of change of operational expenditures (Δopex); and the rate of 

change of capital expenditures (Δcapex). Relying on rates of change is essential to track relative 

cost reductions – the central focus of our incentive regulation analysis. In addition, we employ 

the rate of investment (defined as gross investment in fixed assets as percent of fixed assets) as 

a further dependent variable to check robustness with regard to firm size and therefore absolute 

investment differences.  

Our data is complemented by a series of controls which we are able to obtain thanks to a variety 

of data disclosure requirements the DSOs are subject to. A first set of controls can be obtained 

from the DSOs’ websites. It includes (among others) data on the number of exit points, the 

length of underground and overhead lines, energy delivered, area served, and population.19 Sec-

ond, transmission system operators release data on the extension of renewable electricity gen-

eration. This information also allows us to retrace different speeds of extension and, thus, dif-

ferent demands for expenditures. Finally, by consulting annual statements and publications of 

municipalities, we identify whether concessions have been awarded, i.e., whether a DSO has 

acquired new networks.  

Table 1 displays summary statistics and Figure 1 depicts the development of expenditures dis-

tinguished by regime.20 

  

                                                 

17 We deflate data from the annual statements by the domestic producer price index for industrial products and an 
index for earnings in the energy supply sector, respectively. 
18 See Appendix A.3 for details. Even though we do not possess detailed cost data necessary for the official stand-
ardization, we are able to account for the crucial cost blocks which are within the DSOs’ control and those which 
are not. 
19 This information has to be published on the DSOs’ websites on a yearly basis and is collected by the service 
provider ene’t whose database we consult and replenish. 
20 Table A-4 in the appendix provides summary statistics for the non-restricted sample comprising all 116 DSOs. 
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Table 1: Summary statistics 

Variable Obs. Mean Std. D. Min Max Description 
Population 432 36553 20556 5168 100984 Population in area served at low voltage level 

Exit points 432 20.70 13.92 2.47 66.70 Total number of exit points at all voltage levels in 
1,000 

Energy delivered 432 223.32 151.04 38.35 744.86 Annual energy delivered to end users in GWh 
Area served 432 21.84 19.67 2.30 110.00 Area served at low voltage level in km² 

Network length 432 613.37 348.29 142.00 2437.00 Total length of underground and overhead lines 
at all voltage levels in km 

Growth solar cap. 432 65.44 217.79 0.82 3905.28 Growth rate of installed capacity for solar power 
electricity generation in % 

Cap. renewable 432 12.45 11.23 0.43 61.96 Installed capacity for renewable electricity gener-
ation in MW 

Network acquisition 432 0.04 0.20 0 1 Dummy indicating network acquisitions 

Overall network costs 432 12.87 7.64 1.84 52.12 Overall network-operation costs in m euro  
(= totex incl. non-controllable costs) 

Totex 432 5.62 3.25 1.02 19.34 Effective network-operation costs in m euro  
(= capex + opex) 

Δtotex 324 1.50 10.26 -33.37 55.16 totex𝑡𝑡 − totex𝑡𝑡−1
totex𝑡𝑡−1

 in % 

Opex 432 3.87 2.43 0.67 12.83 Standardized operational expenditures in m euro 

Δopex 324 1.56 13.49 -42.46 79.05 opex𝑡𝑡 − opex𝑡𝑡−1
opex𝑡𝑡−1

 in % 

Capex 432 1.76 1.06 0.17 6.77 Standardized capital expenditures in m euro 

Δcapex 324 2.34 11.88 -40.01 85.12 capex𝑡𝑡 − capex𝑡𝑡−1
capex𝑡𝑡−1

 in % 

Rate of investment 324 3.06 5.82 -34.12 63.63 additions− disposals of fixed assets (at cost)𝑡𝑡
cumulative fixed assets (at cost)𝑡𝑡−1

 in % 

Level of wear 432 70.72 13.32 15.69 90.02 cumulative depreciation𝑡𝑡
cumulative fixed assets (at cost)𝑡𝑡

 in % 

Notes: Summary statistics for data of 108 DSOs for years 2010-2013. Accounting data in 2010 euro. 
Sources: DSOs’ annual statements with separate accounting information for network operation as demanded by Section 
6b German Energy Act; DSOs’ network data published on their websites complying with Section 27 Network Charges 
Ordinance; data on renewable energy production published by transmission system operators complying with Section 73 
Renewable Energy Sources Act. 
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Figure 1: Development of expenditures distinguished by regulatory regime 
Source: own figure 

4.3 Efficiency analysis 

Our DSO efficiency analysis follows (as closely as possible) the guidelines laid down by the 

IRO, which stipulates an input-oriented efficiency analysis: DSOs which operate a given net-

work with lowest costs establish a frontier; and the remaining DSOs are rated in relation to that 

benchmark. Specifically, each DSO is assigned an efficiency level determined by the better of 

two values: one resulting from Data Envelopment Analysis (DEA), one from Stochastic Fron-

tier Analysis (SFA).21 The DEA method is non-parametric and relies on linear optimization. 

According to this method, deviations from the efficiency frontier are deemed deterministic (see 

Charnes et al. (1978)). By contrast, the SFA method is based on regression analysis and allows 

for noise (see Aigner et al., 1977; Meeusen and van den Broeck, 1977).22 

In addition to the previously-mentioned input totex, we use the following outputs measures: 

total number of exit points; annual energy delivered; length of underground and overhead lines 

(aggregated at low voltage level and separated at higher voltage levels); and total installed ca-

pacity for renewable electricity.23  

                                                 

21 The German regulatory authority, in fact, conducts four efficiency analyses: SFA and DEA with standardised 
and non-standardised costs, respectively. DSOs then receive the highest respective score (best-of-four). 
22 The SFA method is based on a parametric regression and requires an assumption on the production function. 
The IRO does not prescribe any particular functional form, but requires assuming non-decreasing returns to scale 
for DEA. Even though the choice of output parameters used in the official efficiency analyses is rather politically 
motivated, the IRO only specifies that the choice has to be guided by statistical means in order to capture the 
DSOs’ supply obligations. As the resulting efficiency scores only serve as inputs for our main investigation, we 
do not dwell on technical details and refer the interested reader to Coelli et al. (2005) or Bogetoft and Otto (2011). 
23 These were selected by a regression of 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 on a set of potential cost determinants; see Appendix A.3 for 
details. 
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Despite the unavailability of data as disaggregated as in the official analyses conducted by 

Agrell et al. (2008, 2014), our dataset allows us to perform comparable efficiency analyses.24 

These analyses are based on 2010 data, the year preceding the base year. This is important since 

(as per our theoretical analysis) we expect 2011 cost data to be “contaminated” by “strategic” 

wasteful expenditures (recall that 2011 is the base year for the subsequent regulatory period).  

The resulting cost efficiency scores are depicted in Figure 2.25 The SFA scores are more com-

pressed around a higher mean, but both methods generally produce strongly correlated scores. 

In addition to the continuous-variable scores, we also define an “efficient DSO” dummy corre-

sponding to DSOs with an above-median SFA score.26 

 

Figure 2: Efficiency scores  
Source: own figure 

Notes: Efficiency scores of year 2010. Means: 0.72 (SFA), 0.68 (DEA).  
Standard deviations: 0.16 (SFA), 0.20 (DEA). Pearson's correlation coefficient: 0.88. 

4.4 Estimation 

We implement the DiD approach by means of a fixed-effects OLS regression: 

( )Δ "revenue-cap" base yearit i t it t i ittotex x uγ β δ α= × + + + +  

                                                 

24 We use the R packages “Benchmarking” by Bogetoft and Otto (2015) for DEA (assuming non-decreasing re-
turns to scale) and “frontier” by Coelli and Henningsen (2013) for SFA (assuming a Cobb-Douglas cost function 
with a half-normally distributed inefficiency term). See Appendix A.3 for details. We employ our larger sample 
of 116 DSOs, which increases the robustness of our efficiency analyses.  
25 To be accurate, we actually obtain technical cost efficiency scores as we treat costs as an input. Conventional 
cost efficiency scores can only be derived using additional price data on inputs (instead of quantity-times-price 
data, which we use and which is stipulated by the IRO). Bogetoft and Otto (2011, p. 108ff) show that this produc-
tion approach still approximates the respective cost function.  
26 As robustness checks we consider the upper quartile as well as the DEA-based efficiency scores. 
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where Δ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 denotes rate of cost change; “revenue-cap” and “base year” denote dummy var-

iables with the obvious interpretation; and 𝑥𝑥𝑖𝑖𝑖𝑖 represents various covariates (more on these be-

low). 

The regression coefficient 𝛾𝛾 measures whether DSOs in the revenue-cap regime had a different 

rate of change of effective network-operation costs in the base year 2011 compared to the year 

2013 and to the respective differential among DSOs in the yardstick regime. We further interact 

this variable with a dummy indicating the efficiency of DSOs in the revenue-cap regime. (To 

check robustness we also employ an interaction with the continuous efficiency variable.) 

The regression coefficient 𝛿𝛿𝑡𝑡 captures time-specific effects; 𝛼𝛼𝑖𝑖 depicts (unobserved) DSO-spe-

cific effects, and 𝑢𝑢𝑖𝑖𝑖𝑖 is an idiosyncratic error term. The above regression is based on a cluster-

robust estimate of the variance-covariance matrix, where we cluster at the DSO level.27 

Several conditions must be met in order for a DiD approach to be valid.28 First, Table 2 reveals 

that DSOs’ characteristics differ across regimes. In order to restore comparability, we include 

various covariates 𝑥𝑥𝑖𝑖𝑖𝑖 in the regression: number of exit points, annual energy delivered, net-

work length, installed capacity for renewable electricity generation, and the growth rate of in-

stalled capacity for solar power electricity generation.29 

Second, possible deviations from the common trend assumptions should be controlled for.30 In 

addition to controlling for the expansion rate of power plants for renewable electricity genera-

tion (see previous list of covariates), we include a dummy for network acquisitions. Such ac-

quisitions are subject to an official tendering for grid concessions. The year of acquisition can-

not be controlled by the DSOs and the corresponding increases in capital expenditures have to 

be accounted for. 

                                                 

27 Even though treatment only varies at the group level, inference of the DiD coefficient is not affected by cluster-
ing issues as mentioned by Bertrand et al. (2004) or Donald and Lang (2007). These authors are concerned with 
within-group correlation of errors, something that becomes an issue when we have, for example, individuals from 
several states. If treatment is assigned at the state level, unobserved state shocks could confound inference. As 
argued in section 4.1, we only focus on one jurisdiction and both groups have common dynamic incentives. Hence, 
we can safely assume away any group effects in the composite error, which in turn guarantees consistent estima-
tors. In our setting, another source of uncertainty over time is absent as treatment status is not serially correlated 
but only arises in the base year.  
28 We refer to the assumptions outlined by Lechner (2011): common trend, exogeneity of covariates (i.e. they are 
not influenced by the treatment), no anticipation (i.e. the treatment does neither affect the control nor the treatment 
group in the pre-treatment period). 
29 We disregard population due to high correlation with exit points (Pearson's correlation coefficient: 0.89). 
30 Due to a lack of data we cannot show the development of expenditure measures before 2010. However, as 
German regulation bases revenues on costs and since revenues are derived from network access charges, we can 
provide an indirect picture showing the development of network access charges. Figure A-2 in Appendix A.5 hints 
at a common trend over the whole observation period — apart from the base year which is expected. 
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Table 2: Differences among regulatory regimes 

Variable 
“Yardstick” “Revenue-cap” Difference (t-stat) 

(1) (2) (3): (1) - (2) 
Population 69209 29440 11.19*** 
Exit points 41.96 15.95 10.85*** 
Energy delivered 426.51 191.17 7.15*** 
Area served 26.41 20.06 1.30 
Network length 1044.80 504.53 7.86*** 
Cap. Renewable 13.15 7.97 2.38** 
Growth cap. Solar 275.53 90.77 1.96* 
Level of wear 73.34 70.11 0.90 
DSOs 19 89   
Notes: Data from year 2010; *,**,***: significant differences at 10%, 5% and 1% respectively 
(two-sided t-test). 

Third, the covariates must be exogenous, in particular not influenced by the treatment. This 

assumption seems reasonable in the present case: the number of exit points, network length and 

annual energy delivered are demand-driven (which is close to inelastic); the capacity for renew-

able electricity generation (and its growth rates) is determined by local producers; and network 

acquisitions follow a 20-year municipal concession-awarding cycle.  

An exception to the exogeneity assumption concerns the growth rate of installed capacity for 

solar power electricity generation. Given a high growth rate in the previous year, additional 

network-stabilizing expenditures might become necessary if a shock occurs in the form of ex-

traordinarily high solar radiation. To account for this possibility, we include the lagged growth 

rate as an additional control variable. 

Fourth, we must take care of anticipation effects. Normally, this would amount to checking that 

expenditures before 2011 did not include an anticipation effect (e.g., delaying expenditures to 

the base year). We do not have cost data for years before 2010, but we do for all subsequent 

years. As dynamic incentives are similar in all years of the regulatory period — besides the 

base year — this deviation from the usual DiD approach seems reasonable. Rather than antici-

pation effects, there could be “reverse anticipation” effects: 2012 expenditures that are strate-

gically transferred to 2011. To account for this possibility, we instead use 2013 as a “normal 

year” reference point.31 

                                                 

31 In our robustness checks we relax this assumption by also comparing expenditures to the subsequent years. We 
should also note that an assessment by the German regulator shows that DSOs have little flexibility to move in-
vestment timing. In fact, only less than four (resp. 14) percent of investments can be moved back two (resp. one) 
years, while the remaining ones must be undertaken immediately (Bundesnetzagentur (2015), p. 218). Mainte-
nance work shows a similar pattern. 
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Finally, we again acknowledge that our approach does not preclude the possibility of a selection 

bias arising from the non-random assignment of treatment. However, a DiD regression with 

fixed effects enables us to recover the average treatment effect on the treated, namely the addi-

tionally wasteful expenditures incurred by DSOs in the low-powered revenue-cap regime; and 

that is the primary focus of our analysis. 

5 Results 

5.1 Difference-in-differences results 

We start with the general comparison between DSOs in the revenue-cap and the yardstick re-

gime. Column (1) of Table 3 reveals no significant higher rates of totex change among the DSOs 

in the low-powered revenue-cap regime in the base year compared to DSOs in the high-powered 

yardstick regime. We neither find any effect regarding the covariates included to restore com-

parability among DSOs, which suggests these characteristics do not affect expenditures in a 

significant way. Columns (4) and (7) also fail to reveal any statistically significant higher rates 

of change in opex and capex. In sum, at this level we do find no empirical support for our first 

hypothesis: DSOs under the revenue-cap regime do not seem to inflate their base-year’s costs 

more than those under the yardstick regime. 

We next turn to our second hypothesis, where we consider spending behavior according to DSO 

efficiency level. In columns (2), (5) and (8) we define efficient DSOs in the revenue-cap regime 

as those with above-median efficiency score; whereas in columns (3), (6) and (9) we define 

efficient DSOs as those in the upper quartile.32 

 

                                                 

32 In both cases the efficiency score is estimated with the SFA approach. 
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Table 3: Difference-in-differences results – expenditure measures 

Dependent variable: Δtotex  Δopex  Δcapex 

 

No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: upper 

quartile 
  (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
"Revenue-cap“ × base 
year 

3.772    4.198    2.365   
(3.346)    (4.076)    (3.009)   

Efficient × "Revenue-cap“ 
× base year 

 8.799** 11.505***   10.924** 14.722***   2.342 3.478 
 (3.559) (4.292)   (4.305) (5.295)   (3.393) (4.268) 

Non-efficient × "Reve-
nue-cap“ × base year 

 -0.352 1.867   -1.319 1.605   2.384 2.091 
 (3.562) (3.355)   (4.310) (4.047)   (3.729) (3.225) 

Exit points -0.280 -0.252 -0.316  -0.408 -0.369 -0.456  -0.225 -0.225 -0.230 
(0.259) (0.236) (0.232)  (0.331) (0.315) (0.320)  (0.251) (0.255) (0.241) 

Energy delivered 0.033 0.044 0.043  0.041 0.056 0.055  0.010 0.010 0.011 
(0.036) (0.038) (0.038)  (0.044) (0.045) (0.045)  (0.039) (0.039) (0.039) 

Network length 0.042 0.038 0.044  0.068 0.063* 0.071**  0.014 0.014 0.014 
(0.035) (0.030) (0.029)  (0.042) (0.035) (0.033)  (0.037) (0.037) (0.037) 

Cap. renewable -0.229 -0.406 -0.422  0.127 -0.110 -0.135  -0.668* -0.667 -0.696* 
(0.372) (0.343) (0.355)  (0.475) (0.429) (0.440)  (0.372) (0.413) (0.396) 

Growth solar cap. 0.004 0.007** 0.005  0.004 0.008** 0.005  0.002 0.002 0.002 
(0.004) (0.003) (0.003)  (0.004) (0.004) (0.004)  (0.004) (0.004) (0.003) 

Lag. growth solar cap. 0.002 0.002 0.002  0.003* 0.003* 0.003  0.000 0.000 0.000 
(0.002) (0.001) (0.001)  (0.002) (0.002) (0.002)  (0.001) (0.002) (0.002) 

Grid acquisition 8.059 7.439 6.620  2.101 1.272 0.143  20.627* 20.629* 20.419* 
(7.992) (7.149) (6.950)  (8.252) (6.744) (6.682)  (11.332) (11.397) (11.421) 

Constant 
-23.033 -20.697 -22.609  -43.290* -40.166* -42.713**  3.883 3.873 3.944 

(21.460) (18.916) (18.364)   (24.444) (20.941) (20.551)   (25.039) (25.308) (24.703) 
DSOs 108 108 108  108 108 108  108 108 108 
R² within 0.11 0.19 0.18  0.10 0.19 0.18  0.16 0.16 0.16 
F 1.42 3.22*** 2.37**   1.47 3.84*** 2.37**   3.58*** 3.21*** 3.56*** 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Cluster-robust standard errors in parentheses. Distinction between non- and efficient DSOs using SFA 
efficiency scores. Years 2011 and 2013. *,**,***: significant at 10%, 5% and 1% respectively. 
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Column (2) reveals a positive and statistically significant DiD coefficient on the rate of totex 

change, indicating that, in the base year, efficient DSOs under the revenue-cap regime had 

higher total expenditures than those under the (high-powered) yardstick regime. The difference 

in the rate of totex change is about 9 percentage points.35 Column (3) shows that the effect is 

even stronger when focusing on upper quartile in terms of DSO efficiency level: the coefficient 

on totex is now about 12 percentage points (higher than DSOs under the yardstick regime).  

Together, these results provide partial evidence for Proposition 1 (high-powered-incentive reg-

ulation leads to greater efficiency); and strong evidence for Proposition 2 (the effect of incen-

tives is greater for more efficient firms). 

The same qualitative results are also present when focusing on the rates of opex change (col-

umns (5) and (6)). The magnitude is even reinforced: efficient DSOs have about 11 to 15 per-

centage points higher rates of change. By contrast, we find no statistically significant effects 

regarding the rates of capex change (columns (8) and (9)).36 Together, these results provide 

support for Proposition 3: the effect of regulation incentives is greater for operating expendi-

tures than for capital expenditures. 

5.2 Robustness checks 

To check the robustness of our results, we change our regressions in various ways. First, we 

employ DEA efficiency scores instead of SFA scores.37 The results, shown in Table A-5 in 

Appendix A.4, confirm our basic results. 

Second, we interact the DiD-variable with a continuous efficiency score variable instead of a 

dummy indicating more and less efficient DSOs. Table A-6 reassures our previous results and 

shows that the change of totex and opex rates of DSOs in the revenue-cap regime significantly 

increase with each additional efficiency-score percentage point. 

                                                 

35 The statistically significant coefficient for the growth rate of installed solar capacity implies that this variable 
captures a factor that seemingly confounds spending. 
36 Regarding capital expenditures the statistical significance of grid acquisition is noteworthy, suggesting that this 
variable indeed controls for a deviation from the assumed common trend (the respective DSOs have an about 21 
percentage points higher rate of capex change). 
37 Even though the altered distinction does not affect the number of DSOs classified as efficient, their composition 
is changed. Regarding the median distinction only 40 of 44 DSOs in the simplified procedure are characterized as 
efficient by both methods. Regarding the upper-quartile distinction only 15 of 22 DSOs are deemed efficient by 
both methods. 



23 
 

Third, we focus on rates of investment capturing the components of capex that are not subject 

to any approximation. Table A-7 confirms the result obtained in the base regressions: the regu-

latory mechanism has no significant effect on capital expenditures.38 

Fourth, we relax the assumption of no “anticipation” effects: we compare the rates of 2011 cost 

changes to both 2012 and 2013. Table A-8 shows somewhat smaller DiD coefficients. How-

ever, we still find statistically significant cost inflation regarding the upper-quartile efficiency 

distinction using SFA scores. This suggests that the 2011 cost increase is partially – but not 

totally – accounted for by a “strategic” shift of 2012 expenditures to 2011. 

Fifth, Table A-9 and Table A-10 in the Appendix show that the results are robust to considering 

alternative output measures in the efficiency analyses. 

Finally, as an alternative to DiD — and as a “sanity” check of our DiD estimates — we estimate 

the differential effect of revenue-cap regulation vis-à-vis yardstick regulation by means of a 

matched regression. Specifically, we match on exit points, energy delivered, network length, 

the expansion rate of solar PV plants, and the level of wear, while disregarding any DSOs with 

grid acquisitions, which could otherwise not be sufficiently accounted for. The results, included 

in Table A-11, show that, for firms in the upper efficiency quartile, the rate of change in totex 

is greater for DSOs under the low-powered incentive regime, thus providing additional cre-

dence to our DiD results.  

5.3 Welfare analysis 

As a final exercise, we put the consequences of the piling up of inefficient expenditures in 

perspective. As the inflated costs in the base year translate into higher revenue caps that have 

to be borne by consumers paying the (increased) network access charges, we can evaluate the 

loss in consumer welfare. The loss is depicted by the excess expenditures of more efficient 

DSOs in the revenue-cap regime compared to their counterparts in the yardstick regime. How-

ever, we abstain from calculating the welfare effects directly using our DiD coefficients.39 Do-

ing so would imply to assume that DSOs in the revenue-cap regime would face the same cost-

                                                 

38 Compared to Cullmann and Nieswand (2016), who find increased investment in the base year, our findings are 
not contradictory. We only find that there is no difference between the regulatory regimes. Both regimes can still 
have generally increased their investments in the base year (the same holds true for our other expenditure 
measures). 
39 If we take the DiD coefficient of 11.505 from column (3) of Table 3 and calculate the hypothetical totex values 
absent this cost inflation, we get an estimate of 11.2% excessive totex for the upper quartile efficient DSOs in the 
revenue-cap regime, which corresponds to about 23 million euro in absolute terms. 
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reduction targets as before. However, this is not the case. If they were in the yardstick regime, 

they would receive cost-reduction targets based on their individual efficiency. 

Therefore, we instead perform an alternative counterfactual analysis and assume that their cost-

reduction targets would be updated. In particular, we conduct a nearest-neighbor matching to 

estimate excess expenditures. In contrast to our previous analysis, we now employ the full da-

taset of 116 DSOs which also comprises DSOs in the yardstick regime that, in the first regula-

tory period, have received official efficiency scores that are not comparable to the homogenous 

one in the revenue-cap regime. We thus have an increased number of potential matching part-

ners. 

We match DSOs of both regimes on the SFA efficiency score of 2010. We also match on exit 

points, energy delivered, network length, the expansion rate of solar PV plants, and the level of 

wear as additional controls, and disregard any DSOs with grid acquisitions in the base year. 

Table 4 provides the matching results with respect to the rates of totex change, which we want 

to focus on because totex is eventually providing the basis for revenue and thus network access 

charges.40 Obviously, the more efficient DSOs in the revenue-cap regime have higher rates of 

totex change than their matching partners in the yardstick regime. However, this is only statis-

tically significant regarding the upper quartile distinction. We thus focus on the latter in the 

following. 

Based on these estimates of inflated rates of totex change we subsequently calculate the absolute 

totex values for each of the upper quartile efficient DSOs in the revenue-cap regime if their 

actual rates had not been inflated by 6.805 to 7.379 percent (column (3)). Comparing these 

hypothetical totex values to the realized ones then allows to quantify the excessive spending. 

Using the respective values for the upper quartile efficient DSOs we find that the excessive 

totex range between 6.5 and 6.8 percent of the realized totex in the base year (or in absolute 

numbers: 4.2-4.6 million euro).41  

  

                                                 

40 Table A-12 contains the matching results for the remaining expenditure measures as well as for DEA scores. 
We find significant effects regarding opex with the upper quartile distinction using SFA scores. Whereas the anal-
ysis using DEA scores does not yield significant results, the effects point in a similar direction.  
41 Regarding DEA scores (see Table A-12) the excessive totex range would be 2.8-3.8%. 
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Table 4: Matching results for welfare analysis 

Dependent variable: Δtotex 

 

"Revenue-cap“ 
vs. "Yardstick" 

Median efficient in 
"Revenue-cap“ vs. 

"Yardstick" 

Upper quartile effi-
cient in "Revenue-

cap“ vs. "Yardstick" 
  (1) (2) (3) 
 Number of nearest neighbors: 4 

Average treatment ef-
fect on the treated 

0.403 4.295 7.379** 

(3.537) (3.417) (3.421) 
 Number of nearest neighbors: 5 

Average treatment ef-
fect on the treated 

0.826 4.079 6.805** 

(3.387) (3.148) (3.438) 
 Number of nearest neighbors: 6 

Average treatment ef-
fect on the treated 

0.656 3.919 6.995** 

(3.295) (3.055) (3.535) 

DSOs 113 69 47 
Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis dis-
tance metric). AI robust standard errors in parentheses. Matching on 2010 SFA efficiency 
score, exit points, energy delivered, network length, cap. renewable, growth solar cap, and 
level of wear. Unrestricted sample comprising also DSOs that have diverging official effi-
ciency scores. DSOs that encountered network acquisitions were disregarded. Year 2011. 
*,**,***: significant at 10%, 5% and 1% respectively. 

 

6 Conclusion 

We set out to compare two alternative regulatory regimes currently in place in the German 

electricity distribution sector. Conceptually, the revenue-cap regime, closer to cost-based regu-

lation, provides lower incentives for cost reduction than the yardstick regime, especially for 

firms that are more efficient to begin with. The results from our difference-in-differences anal-

ysis confirm this theoretical prediction. 

Our estimates are based on differences in year-on-year growth rates. As these differences apply 

to one year only (the base year), we may turn these into changes in cost level. This leads to an 

extra 7% total cost resulting from low-powered incentive regulation. Admittedly, this is not the 

end of the story: one advantage of the revenue-cap regime is that it saves on regulatory costs 

(e.g., estimating each DSO’s efficiency level). That said, a difference of 7%, once extrapolated 

to the hundreds of DSOs subject to revenue-cap regulation, adds up to a very large number, 

possibly close to 3 billion euro.42 

                                                 

42 The value of excess expenditure per DSO in our sample is about 4.5 million euro. Extrapolating to the universe 
of 650 DSOs under the revenue-cap regime we get a value of 2,925 million euros. 
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A. Appendix 

A.1  Proofs 

Proof of Proposition 1: The first-order condition under regulatory system y is given by 

( ) '( ) 1 0e f wθ α− + =  

leading to 

1
( )

yw g
e
α
θ

 −
=  

 
 

where ( )g ⋅  is the inverse of '( )f w . By contrast, under regulatory system r the f.o.c. is given 

by 
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Taking differences, 

 1 1
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x e e
α α
θ θ

   − −
∆ = −   −   

  (1) 

Note that, given our assumptions on ( )f w , it follows that '( )f w  is a strictly positive and 

strictly decreasing function in +
 ; and so ( )g ⋅  is also a strictly positive and strictly decreasing 

function in +
 . Together with our assumptions that (0,1)α ∈  and (0,1)x∈ , the result fol-

lows.∎ 

Proof of Proposition 2: If ( ) log( )f x x= , ( ) 1/g x x= . Equation 1 then becomes 

(2 ) ( ) ( ) (1 ) ( )
1 1 1

x e e x eθ θ θ
α α α

− −
∆ = − =

− − −
 

The result then follows from the assumption that ( )e θ  is strictly decreasing.∎ 

Proof of Proposition 3: The first-order conditions under regulatory system y is given by 
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It follows that o k∆ > ∆ .∎ 
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A.2  Incentive regulation in Germany 

In 2009, Germany’s previous cost-based regulation of electricity network access charges was 

replaced by the Incentive Regulation Ordinance (IRO). DSOs are given individual revenue caps 

that linearly decrease within the regulatory periods of five years thereby demanding a reduction 

of inefficient costs. In the default (high-powered incentive) regime, this amount is determined 

by an efficiency analysis conducted among DSOs prior to the respective regulatory period. By 

means of Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA), the Ger-

man regulator identifies DSOs being able to produce a given output (measured by exit points, 

network length, annual peak load and area served amongst others) with fewest costs. These 

DSOs serve as a benchmark to which less cost efficient DSOs have to converge.  

Only controllable costs are considered for this comparison. That is, any costs that DSOs cannot 

influence (like concession fees, charges for the use of upstream network levels or feed-in re-

muneration for decentralized electricity generation) are identified in a cost audit three years 

before the start of the regulatory period. These non-controllable costs are subtracted from the 

overall network-operation costs consisting of (standardized43) capital and operational expendi-

tures (see next section).  

Revenue caps limiting the scope of access charges are then calculated using the following reg-

ulatory formula: 

( )( ), ,0 ,0
0

1 .t
t pnc t tnc t c t t t

CPIRC C C V C PF EF Q
CPI

 
= + + − × × − × + 

 
 

The revenue cap, 𝑅𝑅𝑅𝑅𝑡𝑡, in year t mainly consists of three parts: (i) the ‘permanently non-control-

lable’ costs (𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡, ‘pnc costs’ henceforth), (ii) the effective costs of network operation, which 

are further decomposed in a part that is ‘temporarily non-controllable’ (𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡,0, i.e. the costs of 

an efficient network operation derived by multiplying the effective costs of network operation 

with the efficiency score), and in a part of ‘controllable’ costs (𝐶𝐶𝑐𝑐,0, i.e. inefficient costs), and 

(iii) an additional quality element preventing cost reductions at the expense of supply quality 

(𝑄𝑄𝑡𝑡).44 (1 − 𝑉𝑉𝑡𝑡) is a factor linearly distributing the required reduction of inefficient costs over 

                                                 

43 The German regulatory authority, in fact, conducts four efficiency analyses: SFA and DEA with standardised 
and non-standardised costs, respectively. DSOs then receive the highest respective score (Best-of-four). 
44 The official regulatory formula further comprises an element accounting for the volatility of fuel costs and a 
balancing element accounting for the administrative delay when pnc costs, for instance, suddenly increase justify-
ing a raised revenue cap but the official adjustment is only carried out in the subsequent year. 
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the regulatory period.45 The effective costs of network operation are deflated by the develop-

ment of the consumer price index (𝐶𝐶𝐶𝐶𝐶𝐶) as these costs are retrieved in the base year 0, in which 

the cost audit is conducted. This development is further corrected for the industry’s productivity 

growth (𝑃𝑃𝑃𝑃𝑡𝑡). Finally, changes in supply obligations are respected by the expansion factor (𝐸𝐸𝐸𝐸𝑡𝑡) 

correcting the effective costs of network operation.  

Figure A-1 depicts the path of cost reduction for an exemplary DSO. All revenue caps in the 

regulatory period are based on the overall costs of network operation occurring in the base year. 

In this example, 30 percent of these costs are deemed permanently non-controllable (and do not 

change over the period). Only the remaining costs are considered in the official efficiency anal-

ysis. Here, the DSO has obtained an efficiency score of 80 percent. This implies that its effective 

network-operation costs have to be reduced by 20 percent by the end of the regulatory period. 

The DSO receives revenue caps that – starting from the cost level in the base year (solid line) 

– are lowered by a certain percentage every year within the regulatory period. 

 

Figure A-1: Composition and development of revenue caps 
Source: own figure 

The just described regulation generally applies to all DSOs. However, smaller DSOs with less 

than 30,000 connected consumers can opt out of this default “standard procedure” for the whole 

regulatory period. In an alternative “simplified procedure” small DSOs face lower reporting 

requirements and better planning reliability as they are exempted from the efficiency analysis 

and are instead given a pre-set, homogenous efficiency score. In the first regulatory period 

2009-2013 this score was fixed at 87.5 percent (second period (2014-2018): 96.14 percent). 

                                                 

45 That is, for a 5-year period: 𝑉𝑉1 = 0.2,𝑉𝑉2 = 0.4, … ,𝑉𝑉5 = 1. 
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Moreover, 45 percent of overall network-operation costs are deemed pnc costs without any 

exhaustive identification.46 Revenue caps are also calculated using the regulatory formula but 

disregarding the quality element.47 However, whereas in the standard procedure any changes in 

pnc costs lead to an adjustment of revenue caps, only concession fees and charges for the use 

of upstream network levels are accounted for. Small DSOs further lack the possibility to deduct 

additional investment expenses caused by a high extension of renewable electricity generation 

that is not captured by the expansion factor.  

A.3  Efficiency analysis and cost approximation 

The IRO prescribes in detail which costs serve as input for the efficiency analysis. In general, 

total expenditures (totex) are composed of operational and capital expenditures (capex and 

opex), but both are subject to standardization. capex comprises the imputed equity yield rate 

and imputed depreciation. Imputation is carried out at the plant level and, depending on activa-

tion dates, evaluated at costs or at current costs. The equity yield rate is then calculated by 

adding up imputed net book values of fixed assets and the book values of financial and current 

assets necessary for operation, and by multiplying this sum by official interest rates.  

As we do not possess cost data at the plant level and cannot determine whether all financial and 

current assets are necessary for operation, we approximate capex in the following manner: We 

model the equity yield rate as fixed assets (at costs) times the official multiplier for ‘new’ assets 

(9.05% before corporation tax) and we employ the respective balance sheet item for deprecia-

tion (at book value).  

opex consists of material, personnel and sundry costs (at book values), which we model by their 

respective profit-and-loss-account items. opex is further supplemented by the interest on bor-

rowed capital but at most at equity market levels. We account for this by adding up liabilities 

and liability provisions and multiply this by the official value (3.98%).  

Costs that are officially deemed permanently non-controllable (‘pnc costs’) are deducted from 

these overall network-operation costs. Again, we cannot reproduce the full standardization re-

quired by Section 11.2 IRO due to a lack of detailed cost data. However, we are able to consider 

the three major blocks comprising concession fees, charges for the use of upstream network 

levels, and feed-in remuneration for decentralized renewable electricity generation. We possess 

                                                 

46 A major revision of the IRO in 2016 reduced this allowance to 5 percent. This, however, leaves our analysis 
unaffected. 
47 This would otherwise necessitate the (bureaucratic) reporting of detailed data like SAIDI. 
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explicit data on the latter, but have to approximate the former two. This works well for the 

concession fees (described in the next paragraph) but seems, in our opinion, rather problematic 

for the charges for the use of upstream network levels. Their calculation depends on annual 

energy delivered and annual peak load. We, unfortunately, do not have consistent data on the 

latter. In order to prevent any bias in our pivotal cost variable, we abstain from any approxima-

tion attempts. We rather make use of a more promising approach. The material costs item of 

the profit and loss account is subdivided into cost of raw materials and supplies, and cost of 

purchased services. Charges for the use of upstream network levels and feed-in remuneration 

for decentralized renewable electricity generation are filed into the former and depict the ma-

jority of this item (the rest basically comprises fuel costs, which are also separately accounted 

for in the official regulatory formula). We thus simply deduct this sub-item and only keep the 

cost of purchased services of the material costs item still promising to account for any autono-

mous cost inflation. 

Concession fees, which are claimed by local municipalities, are filed into the sundry costs item. 

Being non-controllable by the DSOs they have to be approximated and deducted. Their scope 

is legally limited and depends on the municipalities’ population. As they contribute to the mu-

nicipalities’ revenues and as municipalities are rather poor, we assume the highest possible 

charges. We, thus, approximate the DSOs’ concession fees by apportioning annual energy de-

livered into a part delivered to end users and into a part delivered to firms.48 We multiply the 

respective parts by the respective charges depending on the municipalities’ population.49 Some 

DSOs have reported their actual expenditures for concession fees enabling us to test the quality 

of our approximation. Regressing the actual values on our approximations yields a considerable 

R-squared of 0.91. 

The resulting block of effective network-operation costs is used as input for the efficiency anal-

ysis. The official efficiency analyses conducted by Agrell et al. (2008, 2014) consider the fol-

lowing outputs: the total number of exit points (at all voltage levels), area served, the length of 

underground and/or overhead lines at HV and MV level respectively, the total length of both 

underground and overhead lines at LV level, annual peak load (at HV/MV and MV/LV level 

respectively), the number of substations,50 and the total installed capacity for decentralized 

electricity generation (at all voltage levels). These outputs were, however, identified as cost 

                                                 

48 We determine the amount of energy delivered to end users by assuming inhabitants living in two-person house-
hold consuming 3,000 kWh per year. The remaining energy delivered is assumed to be transmitted to firms. 
49 The respective figures are laid down in Section 2.2 Concession Levy Ordinance. 
50 In the second official efficiency analysis, this variable has been replaced by the number of meters. 
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drivers regarding large DSOs and building on the detailed but confidential official database. As 

we consider rather smaller DSOs and also lack data on annual peak load, disaggregated decen-

tralized electricity generation, and substations, we conduct an own identification of cost drivers 

drawing on Agrell et al. (2008, 2014). Table A-1 presents the respective regression results with 

an increasing degree of aggregation regarding lines. 

We prefer specification (5) implying the lowest BIC and promising to account for DSOs ser-

vicing more expensive overhead lines at higher voltage levels. The IRO requires conducting 

efficiency analyses using both SFA and DEA. The only methodological prerequisite concerns 

DEA to assume non-decreasing returns to scale, which we accordingly do. For SFA, we assume 

a Cobb-Douglas cost function with a half-normally distributed inefficiency term.51 Choosing 

specification (5), however, complicates SFA. As some DSOs do not have any lines at higher 

voltage levels, taking logs is precluded. We, therefore, draw on Battese (1997) and add a 

dummy variable to indicate non-use. The SFA regression results for are presented in Table A-

2. We further conduct an efficiency analysis using specification (6) which has the highest de-

gree of aggregation and also disregards the output ‘area served’ which is prescribed by IRO but 

shows no statistical significance in our analysis. This specification allows taking logs of all 

variables. Output is presented in Table A-3. Although the classification of DSOs within the 

revenue-cap regime is changed, our DiD results remain robust (see Table A-9 and Table A-10). 

  

                                                 

51 We do not consider a translog functional form as this implies estimating many more parameters producing poor 
results for our dataset. 
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A.4  Tables 

Table A-1: Cost drivers 

  Dependent variable: effective network-operation costs (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) (in euro) 
  (1) (2) (3) (4) (5) (6) 

Exit points 81357.3*** 81207.5*** 89818.8*** 81469.6*** 80983.9*** 90533.6*** 
(13305.5) (13327.7) (13486.7) (13099.7) (13117.3) (13261.7) 

Cap. Renewable 8843.7 4953.2 34604.0** 8811.3 4982.4 34700.9** 
(16698.3) (16467.2) (16052.9) (16649.5) (16428.5) (16017.9) 

Area served 363.3 -709.4 2255.0    
(6989.8) (6954.8) (7273.6)    

Energy delivered (sum) 1815.1 2111.7 2419.9* 1802.9 2138.7 2332.7* 
(1344.5) (1328.1) (1385.7) (1320.6) (1298.6) (1354.2) 

Lines underground (LV) 359.5   362.4   
(997.6)   (993.8)   

Lines overhead (LV) 3628.3   3616.4   
(2705.8)   (2690.2)   

Network length (LV)  288.0   281.5  
 (997.9)   (993.7)  

Lines underground (>LV) 17042.1*** 17442.2***  17060.7*** 17409.0***  
(2824.6) (2813.2)  (2795.6) (2788.2)  

Lines overhead (>LV) 1865.4 5547.1  1903.6 5504.5  
(6088.9) (5430.1)  (6030.9) (5402.1)  

Network length (sum)   4031.7***   4075.8*** 

  (673.3)   (656.9) 

Constant 610275.2** 627137.3** 449388.8 614487.7** 618952.8** 474014.5* 
(270489.3) (270650.7) (278408.7) (257489.8) (257913.1) (266305.5) 

DSOs 232 232 232 232 232 232 
R² 0.74 0.73 0.70 0.74 0.73 0.70 
BIC 7391 7388 7402 7386 7382 7396 

We employ data on all 116 DSOs for the years 2010 and 2011 as we also intend to use the resulting efficiency scores 
to track the temporal development. OLS estimation using standard errors clustered at DSO level (reported in paren-
theses). As there are only few DSOs with lines at the HV level, we aggregate lines at the MV and HV level. *,**,***: 
significant at 10%, 5% and 1% respectively. 
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Table A-2: SFA regression results (model with lowest BIC) 

Stoc. frontier normal/half-normal model    Number of obs: 116 
    Log likelihood: -28.7103 

log(TOTEX) Coef. Std. Err. z P>|z| 
log(exit points) 0.471 0.070 6.705 0.000 
log(cap. renewable) 0.065 0.034 1.887 0.059 
log(energy delivered) 0.216 0.065 3.323 0.001 
log(network length (LV)) 0.076 0.099 0.770 0.441 
log(lines underground (>LV)) 0.124 0.093 1.336 0.182 
I(lines underground (>LV) = 0) 1.264 0.489 2.583 0.010 
log(lines overhead (>LV)) 0.035 0.023 1.544 0.123 
I(lines overhead (>LV) = 0) -0.025 0.069 -0.355 0.723 
Constant 11.330 0.357 31.697 0.000 
sigma_sq 0.253 0.046 5.448 0.000 
Gamma 0.913 0.049 18.769 0.000 
Notes: I(lines overhead (>LV) = 0) is a dummy indicating whether a DSO does not have any 
overhead lines at higher voltage levels. The DSO’s according value for log(lines overhead (>LV)) 
is then set to zero. The same applies to lines underground (>LV). This approach follows Battese 
(1997) and renders the use of the Cobb-Douglas functional form possible, even under the presence 
of non-used outputs. gamma is the share of the inefficiency term’s variation on the composite 
error term’s variation (sigma_sq). Its relatively high value indicates the presence of inefficiency 
(and not just noise). 

 

 

Table A-3: SFA regression results (model with highest degree of aggregation) 

Stoc. frontier normal/half-normal model    Number of obs: 116 
    Log likelihood: -32.81708 

log(TOTEX) Coef. Std. Err. z P>|z| 
log(exit points) 0.432 0.067 6.497 0.000 
log(cap. renewable) 0.078 0.033 2.352 0.019 
log(energy delivered) 0.225 0.069 3.249 0.001 
log(network length (LV)) 0.254 0.090 2.814 0.005 
log(lines underground (>LV)) 0.016 0.038 0.427 0.669 
I(lines underground (>LV) = 0) 10.863 0.390 27.844 0.000 
log(lines overhead (>LV)) 0.271 0.049 5.485 0.000 
I(lines overhead (>LV) = 0) 0.913 0.046 19.814 0.000 
Constant 0.432 0.067 6.497 0.000 
sigma_sq 0.078 0.033 2.352 0.019 
Gamma 0.225 0.069 3.249 0.001 
Notes: gamma is the share of the inefficiency term’s variation on the composite error term’s var-
iation (sigma_sq). Its relatively high value indicates the presence of inefficiency (and not just 
noise). 
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Table A-4: Summary statistics (non-restricted sample) 

Variable Obs. Mean Std. D. Min Max Description 
Population 464 38055 21064 5168 100984 Population in area served at low voltage level 

Exit points 464 21.85 14.34 2.47 66.70 Total number of exit points at all voltage levels in 
1,000 

Energy delivered 464 228.61 149.17 38.35 744.86 Annual energy delivered to end users in GWh 
Area served 464 21.70 19.10 2.30 110.00 Area served at low voltage level in km² 

Network length 464 628.15 350.03 142.00 2437.00 Total length of underground and overhead lines 
at all voltage levels in km 

Growth solar cap. 464 65.75 212.18 0.82 3905.28 Growth rate of installed capacity for solar power 
electricity generation in % 

Cap. Renewable 464 12.68 11.37 0.43 61.96 Installed capacity for renewable electricity gener-
ation in MW 

Network acquisition 464 0.04 0.19 0 1 Dummy indicating network acquisitions 

Overall network costs 464 13.22 7.67 1.84 52.12 Overall network-operation costs in m euro  
(= totex incl. non-controllable costs) 

Totex 464 5.90 3.57 1.02 23.65 Effective network-operation costs in m euro  
(= capex + opex) 

∆totex 348 1.48 10.02 -33.37 55.16 
totex𝑡𝑡 − totex𝑡𝑡−1

totex𝑡𝑡−1
 in % 

Opex 464 4.10 2.78 0.67 19.75 Standardized operational expenditures in m euro 

∆opex 348 1.48 13.24 -42.46 79.05 
opex𝑡𝑡 − opex𝑡𝑡−1

opex𝑡𝑡−1
 in % 

Capex 464 1.81 1.10 0.17 6.77 Standardized capital expenditures in m euro 

∆capex 348 3.42 24.08 -40.01 397.16 
capex𝑡𝑡 − capex𝑡𝑡−1

capex𝑡𝑡−1
 in % 

Rate of investment 348 6.00 55.28 -34.12 1028.97 
additions− disposals of fixed assets (at cost)𝑡𝑡

cumulative fixed assets (at cost)𝑡𝑡−1
 in % 

Level of wear 464 70.07 13.90 12.40 90.02 
cumulative depreciation𝑡𝑡

cumulative fixed assets (at cost)𝑡𝑡
 in % 

Notes: Summary statistics for data of 116 DSOs for years 2010-2013. Accounting data in 2010 euro. 
Sources: DSOs’ annual statements with separate accounting information for network operation as demanded by Section 
6b German Energy Act; DSOs’ network data published on their websites complying with Section 27 Network Charges 
Ordinance; data on renewable energy production published by transmission system operators complying with Section 73 
Renewable Energy Sources Act. 
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Table A-5: Difference-in-differences results – expenditure measures (DEA efficiency scores) 

Dependent variable: Δtotex    Δopex    Δcapex  

 

No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: upper 

quartile 
  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) 
"Revenue-cap“ × base 
year 

3.772    4.198    2.365   
(3.346)    (4.076)    (3.009)   

Efficient × "Revenue-cap“ 
× base year 

 8.955** 11.850***   11.439** 16.286***   2.178 2.849 
 (3.613) (4.180)   (4.364) (5.276)   (3.341) (4.134) 

Non-efficient × "Reve-
nue-cap“ × base year 

 -0.635 1.423   -1.957 0.684   2.524 2.224 
 (3.473) (3.411)   (4.161) (4.090)   (3.739) (3.262) 

Exit points -0.280 -0.314 -0.383  -0.408 -0.455 -0.561*  -0.225 -0.224 -0.231 
(0.259) (0.251) (0.240)  (0.331) (0.337) (0.337)  (0.251) (0.249) (0.244) 

Energy delivered 0.033 0.033 0.041  0.041 0.041 0.053  0.010 0.010 0.010 
(0.036) (0.035) (0.038)  (0.044) (0.041) (0.046)  (0.039) (0.039) (0.039) 

Network length 0.042 0.039 0.048  0.068 0.064* 0.078**  0.014 0.014 0.014 
(0.035) (0.029) (0.030)  (0.042) (0.033) (0.034)  (0.037) (0.038) (0.037) 

Cap. renewable -0.229 -0.348 -0.246  0.127 -0.039 0.101  -0.668* -0.664* -0.669* 
(0.372) (0.341) (0.344)  (0.475) (0.424) (0.428)  (0.372) (0.399) (0.374) 

Growth solar cap. 0.004 0.007** 0.005*  0.004 0.009** 0.006*  0.002 0.002 0.002 
(0.004) (0.004) (0.003)  (0.004) (0.004) (0.003)  (0.004) (0.004) (0.003) 

Lag. growth solar cap. 0.002 0.002 0.002  0.003* 0.003* 0.003  0.000 0.000 0.000 
(0.002) (0.001) (0.001)  (0.002) (0.002) (0.002)  (0.001) (0.002) (0.002) 

Grid acquisition 8.059 8.894 7.886  2.101 3.268 1.842  20.627* 20.596* 20.616* 
(7.992) (7.136) (6.843)  (8.252) (6.739) (6.050)  (11.332) (11.367) (11.354) 

Constant 
-23.033 -18.725 -26.454  -43.290* -37.273* -48.409**  3.883 3.728 3.678 

(21.460) (18.471) (19.052)   (24.444) (20.061) (20.448)   (25.039) (25.494) (24.995) 
DSOs 108 108 108  108 108 108  108 108 108 
R² within 0.11 0.20 0.19  0.10 0.22 0.22  0.16 0.16 0.16 
F 1.42 3.15*** 2.75***   1.47 3.79*** 3.22***   3.58*** 3.20*** 3.27*** 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Cluster-robust standard errors in parentheses. Distinction between non- and efficient DSOs using DEA 
efficiency scores. Years 2011 and 2013. *,**,***: significant at 10%, 5% and 1% respectively. 
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Table A-6: Difference-in-differences results – continuous efficiency score 

Dependent variable:  
using SFA scores   using DEA scores 

Δtotex  Δopex  Δcapex   Δtotex  Δopex  Δcapex  

(1) (2) (3)   (4) (5) (6) 

Efficiency score × "Reve-
nue-cap" × base year 

0.085* 0.100* 0.058  0.089** 0.112** 0.042 
(0.046) (0.055) (0.049)  (0.043) (0.053) (0.043) 

Exit points 
-0.334 -0.475 -0.265  -0.368 -0.527 -0.255 

(0.242) (0.317) (0.242)  (0.240) (0.320) (0.235) 

Energy delivered 
0.040 0.049 0.015  0.041 0.052 0.013 

(0.037) (0.044) (0.040)  (0.037) (0.045) (0.040) 

Network length 
0.041 0.067* 0.013  0.041 0.068* 0.013 

(0.033) (0.039) (0.036)  (0.033) (0.038) (0.036) 

Cap. renewable 
-0.307 0.029 -0.726*  -0.314 0.008 -0.693* 

(0.385) (0.489) (0.391)  (0.384) (0.490) (0.398) 

Growth solar cap. 
0.005 0.005 0.003  0.005 0.005 0.003 

(0.004) (0.004) (0.004)  (0.004) (0.004) (0.004) 

Lag. growth solar cap. 
0.002 0.004** 0.001  0.003* 0.004** 0.001 

(0.001) (0.002) (0.001)  (0.002) (0.002) (0.001) 

Grid acquisition 
8.417 2.551 20.895*  8.781 3.068 20.893* 

(7.625) (7.859) (11.095)  (7.570) (7.698) (11.212) 

Constant 
-21.612 -41.570* 4.893  -21.391 -41.133* 4.533 

(20.229) (23.071) (24.220)   (19.917) (22.509) (24.517) 

DSOs 108 108 108  108 108 108 

R² within 0.13 0.12 0.17  0.13 0.13 0.16 

F 1.85* 1.98** 3.74***   1.96* 2.07** 3.76*** 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Cluster-robust standard errors in parenthe-
ses. Years 2011 and 2013. *,**,***: significant at 10%, 5% and 1% respectively.  
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Table A-7: Difference-in-differences results – rate of investment 

Dependent variable: 
Rate of investment 

    using SFA scores   using DEA scores 

No efficiency 
distinction 

 
Efficiency 

distinction: 
median 

Efficiency dis-
tinction: up-
per quartile 

 
Efficiency 

distinction: 
median 

Efficiency  
distinction: up-

per quartile 

(1)   (2) (3)   (4) (5) 

"Revenue-cap“ × base 
year 

1.819       

(1.517)       

Efficient × "Revenue-cap“ 
× base year 

  0.701 1.693  0.880 1.568 
  (1.074) (1.357)  (1.069) (1.310) 

Non-efficient × "Revenue-
cap“ × base year 

  2.736 1.850  2.617 1.892 
  (2.469) (1.794)  (2.505) (1.800) 

Exit points 
0.035  0.028 0.035  0.041 0.038 

(0.121)  (0.131) (0.121)  (0.133) (0.121) 

Energy delivered 
0.014  0.012 0.013  0.014 0.013 

(0.020)  (0.018) (0.018)  (0.020) (0.019) 

Network length 
0.004  0.005 0.004  0.005 0.004 

(0.014)  (0.015) (0.014)  (0.015) (0.014) 

Cap. renewable 
0.062  0.099 0.066  0.083 0.062 

(0.160)  (0.197) (0.190)  (0.188) (0.163) 

Growth solar cap. 
-0.001  -0.002* -0.001  -0.002* -0.001* 

(0.001)  (0.001) (0.001)  (0.001) (0.001) 

Lag. growth solar cap. 
0.001  0.001 0.001  0.001 0.001 

(0.001)  (0.001) (0.001)  (0.001) (0.001) 

Grid acquisition 
5.793  5.930 5.827  5.642 5.798 

(3.741)  (3.886) (3.817)  (3.878) (3.770) 

Constant 
-5.404  -5.923 -5.411  -6.184 -5.297 

(9.939)   (10.812) (10.049)   (10.955) (9.862) 

DSOs 108  108 108  108 108 

R² within 0.06  0.06 0.06  0.06 0.06 

F 1.36   1.36 1.51   1.45 1.35 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Cluster-robust standard errors in parentheses. 
Years 2011 and 2013. *,**,***: significant at 10%, 5% and 1% respectively.  
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Table A-8: Difference-in-differences results – expenditure measures (relaxed anticipation assumption) 

  

No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 Distinction between non- and efficient DSOs using SFA efficiency scores 
Dependent variable: Δtotex   Δopex   Δcapex  
  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) 
"Revenue-cap“ × base 
year 

1.623    1.805    0.861   

(3.737)    (4.873)    (2.516)   

Efficient × "Revenue-cap“ 
× base year 

 6.183 9.722**   7.848 13.592**   1.476 1.488 
 (3.939) (4.342)   (5.247) (6.024)   (2.905) (3.297) 

Non-efficient × "Revenue-
cap“ × base year 

 -2.193 -0.527   -3.251 -1.323   0.347 0.695 
 (3.868) (3.739)   (5.024) (4.826)   (2.869) (2.644) 

R² within 0.13 0.18 0.18  0.10 0.14 0.15  0.21 0.21 0.21 

F 2.51*** 5.00*** 4.25***   2.11** 4.05*** 3.16***   4.31*** 4.04*** 4.02*** 

 Distinction between non- and efficient DSOs using DEA efficiency scores 

Dependent variable: Δtotex   Δopex   Δcapex  
  (10) (11) (12)   (13) (14) (15)   (16) (17) (18) 
"Revenue-cap“ × base 
year 

1.623    1.805    0.861   

(3.737)    (4.873)    (2.516)   

Efficient × "Revenue-cap“ 
× base year 

 6.405 7.872   8.546 11.116   0.968 1.703 
 (4.050) (4.949)   (5.393) (7.091)   (2.878) (3.271) 

Non-efficient × "Revenue-
cap“ × base year 

 -2.385 -0.294   -3.845 -1.051   0.771 0.603 
 (3.744) (3.778)   (4.814) (4.862)   (2.904) (2.649) 

R² within 0.13 0.18 0.16  0.10 0.15 0.13  0.21 0.21 0.21 

F 2.51*** 5.15*** 4.54***   2.11** 4.32*** 3.36***   4.31*** 3.92*** 4.01*** 
DSOs 108 108 108  108 108 108  108 108 108 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Covariates omitted for better presentation. Cluster-robust standard errors in parentheses. Years 2011 to 2013. 
*,**,***: significant at 10%, 5% and 1% respectively. 
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Table A-9: Difference-in-differences results – expenditure measures (alternative efficiency analysis) 

  

No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 No efficiency 
distinction 

Efficiency 
distinction: 

median 

Efficiency dis-
tinction: up-
per quartile 

 Distinction between non- and efficient DSOs using SFA efficiency scores 
Dependent variable: Δtotex   Δopex   Δcapex  
  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) 
"Revenue-cap“ × base 
year 

3.772    4.198    2.365   

(3.346)    (4.076)    (3.009)   

Efficient × "Revenue-cap“ 
× base year 

 8.771** 11.724***   10.859** 15.513***   2.603 1.247 
 (3.486) (4.445)   (4.220) (5.505)   (3.340) (4.509) 

Non-efficient × "Revenue-
cap“ × base year 

 -0.739 1.955   -1.812 1.614   2.150 2.620 
 (3.618) (3.361)   (4.418) (4.062)   (3.770) (3.193) 

R² within 0.11 0.20 0.18  0.10 0.20 0.19  0.16 0.16 0.16 

F 1.42 3.40*** 2.17**   1.47 3.64*** 2.39**   3.58*** 3.26*** 3.16*** 

 Distinction between non- and efficient DSOs using DEA efficiency scores 

Dependent variable: Δtotex   Δopex   Δcapex  
  (10) (11) (12)   (13) (14) (15)   (16) (17) (18) 
"Revenue-cap“ × base 
year 

3.772    4.198    2.365   

(3.346)    (4.076)    (3.009)   

Efficient × "Revenue-cap“ 
× base year 

 9.701*** 14.452***   12.513*** 19.129***   2.084 3.565 
 (3.538) (4.063)   (4.210) (4.922)   (3.379) (4.398) 

Non-efficient × "Revenue-
cap“ × base year 

 -1.228 0.939   -2.813 0.238   2.602 2.047 
 (3.485) (3.355)   (4.189) (4.067)   (3.750) (3.203) 

R² within 0.11 0.23 0.24  0.10 0.25 0.27  0.16 0.16 0.16 

F 1.42 3.63*** 3.43***   1.47 4.35*** 3.96***   3.58*** 3.20*** 3.28*** 
DSOs 108 108 108  108 108 108  108 108 108 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Covariates omitted for better presentation. Cluster-robust standard errors in parentheses. Years 2011 and 2013. 
*,**,***: significant at 10%, 5% and 1% respectively. 
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Table A-10: Difference-in-differences results – rate of investment (alternative efficiency 
analysis) 

Dependent variable: 
Rate of investment 

    using SFA scores   using DEA scores 

No efficiency 
distinction 

 
Efficiency 

distinction: 
median 

Efficiency dis-
tinction: up-
per quartile 

 
Efficiency 

distinction: 
median 

Efficiency  
distinction: up-

per quartile 

(1)   (2) (3)   (4) (5) 

"Revenue-cap“ × base 
year 

1.819       

(1.517)       

Efficient × "Revenue-cap“ 
× base year 

  0.782 1.224  0.825 1.536 
  (1.033) (1.405)  (1.088) (1.353) 

Non-efficient × "Revenue-
cap“ × base year 

  2.754 1.955  2.657 1.894 
  (2.511) (1.758)  (2.526) (1.775) 

Exit points 
0.035  0.040 0.038  0.035 0.035 

(0.121)  (0.132) (0.124)  (0.133) (0.121) 

Energy delivered 
0.014  0.012 0.013  0.014 0.013 

(0.020)  (0.018) (0.018)  (0.020) (0.018) 

Network length 
0.004  0.004 0.004  0.005 0.004 

(0.014)  (0.015) (0.014)  (0.015) (0.014) 

Cap. renewable 
0.062  0.079 0.074  0.092 0.065 

(0.160)  (0.178) (0.184)  (0.197) (0.171) 

Growth solar cap. 
-0.001  -0.002* -0.002*  -0.002* -0.001* 

(0.001)  (0.001) (0.001)  (0.001) (0.001) 

Lag. growth solar cap. 
0.001  0.001 0.001  0.001 0.001 

(0.001)  (0.001) (0.001)  (0.001) (0.001) 

Grid acquisition 
5.793  6.145 5.825  5.646 5.804 

(3.741)  (3.927) (3.796)  (3.884) (3.773) 

Constant 
-5.404  -5.738 -5.217  -6.309 -5.253 

(9.939)   (10.574) (9.975)   (11.082) (9.821) 

DSOs 108  108 108  108 108 

R² within 0.06  0.06 0.06  0.06 0.06 

F 1.36   1.46 1.28   1.43 1.33 
Notes: OLS estimation with DSO-fixed effects and time-fixed effects. Cluster-robust standard errors in parentheses. 
Years 2011 and 2013. *,**,***: significant at 10%, 5% and 1% respectively.  
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Table A-11: Matching results as alternative analysis 

Dependent variable: Δtotex    Δopex    Δcapex  

 

"Revenue-
cap“ vs. 

"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile ef-
ficient in "Reve-

nue-cap“ vs. 
"Yardstick" 

 
"Revenue-

cap“ vs. 
"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile ef-
ficient in "Reve-

nue-cap“ vs. 
"Yardstick" 

 
"Revenue-

cap“ vs. 
"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile 
efficient in  

"Revenue-cap“ 
vs. "Yardstick" 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) 
 Number of nearest neighbors: 4; efficiency distinction: SFA 

Average treatment 
effect on the treated 

4.363 8.406 10.014*  6.270 11.135* 13.659*  -2.971 -1.126 -0.968 

(5.700) (5.443) (5.642)  (6.900) (6.631) (7.350)  (5.778) (5.573) (6.004) 
 Number of nearest neighbors: 5; efficiency distinction: SFA 

Average treatment 
effect on the treated 

0.375 5.236 7.599*  0.891 6.613 10.408*  -1.072 0.705 0.696 

(4.362) (4.105) (4.435)  (5.179) (5.199) (6.131)  (4.687) (4.227) (4.624) 
 Number of nearest neighbors: 6; efficiency distinction: SFA 

Average treatment 
effect on the treated 

0.384 5.403 7.635*  0.716 6.730 10.358*  -0.532 1.317 1.244 

(3.902) (3.774) (4.115)  (4.697) (4.778) (5.673)  (4.227) (3.899) (4.438) 
            
 Number of nearest neighbors: 4; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.531 5.082 8.534*  1.247 6.586 11.127*  -1.513 0.471 2.722 

(4.834) (4.709) (4.744)  (5.653) (5.908) (6.560)  (5.265) (4.653) (4.893) 
 Number of nearest neighbors: 5; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.375 4.941 7.556*  0.891 6.494 10.404*  -1.072 0.302 1.482 

(4.362) (4.236) (4.443)  (5.179) (5.445) (6.263)  (4.687) (4.116) (4.612) 
 Number of nearest neighbors: 6; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.384 5.043 7.531*  0.716 6.562 10.109*  -0.532 0.778 2.205 

(3.902) (3.907) (4.105)  (4.697) (5.055) (5.743)  (4.227) (3.788) (4.209) 

DSOs 105 61 39   105 61 39   105 61 39 
Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis distance metric). AI robust standard errors in parentheses. Matching on exit points, energy delivered, network 
length, cap. renewable, growth solar cap, and level of wear. DSOs that encountered network acquisitions were disregarded. Distinction between non- and efficient DSOs using efficiency scores as 
mentioned. Year 2011. *,**,***: significant at 10%, 5% and 1% respectively.  
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Table A-12: Matching results for welfare analysis 

Dependent variable: Δtotex    Δopex    Δcapex  

 

"Revenue-
cap“ vs. 

"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile ef-
ficient in "Reve-

nue-cap“ vs. 
"Yardstick" 

 
"Revenue-

cap“ vs. 
"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile ef-
ficient in "Reve-

nue-cap“ vs. 
"Yardstick" 

 
"Revenue-

cap“ vs. 
"Yardstick" 

median effi-
cient in "Rev-
enue-cap“ vs. 
"Yardstick" 

upper quartile 
efficient in 

"Revenue-cap“ 
vs. "Yardstick" 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) 
 Number of nearest neighbors: 4; efficiency distinction: SFA 

Average treatment 
effect on the treated 

0.403 4.295 7.379**  1.438 5.402 9.179*  -3.889 -1.196 -0.914 

(3.537) (3.417) (3.421)  (4.341) (4.640) (5.166)  (7.581) (7.710) (10.677) 
 Number of nearest neighbors: 5; efficiency distinction: SFA 

Average treatment 
effect on the treated 

0.826 4.079 6.805**  1.848 5.160 8.724*  -3.753 -0.834 -0.693 

(3.387) (3.148) (3.438)  (4.184) (4.261) (4.989)  (7.707) (6.572) (9.017) 
 Number of nearest neighbors: 6; efficiency distinction: SFA 

Average treatment 
effect on the treated 

0.656 3.919 6.995**  1.579 5.004 9.158*  -3.195 -0.611 -0.431 

(3.295) (3.055) (3.535)  (4.106) (4.105) (5.101)  (6.858) (5.910) (8.025) 
            
 Number of nearest neighbors: 4; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.403 1.567 3.080  1.438 3.360 5.341  -3.889 -4.760 -0.148 

(3.537) (3.524) (3.748)  (4.341) (4.725) (5.655)  (7.581) (7.638) (3.991) 
 Number of nearest neighbors: 5; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.826 2.187 3.692  1.848 3.918 6.023  -3.753 -3.602 0.000 

(3.387) (3.296) (3.590)  (4.184) (4.434) (5.271)  (7.707) (6.546) (3.914) 
 Number of nearest neighbors: 6; efficiency distinction: DEA 

Average treatment 
effect on the treated 

0.656 2.638 4.032  1.579 4.337 6.327  -3.195 -2.759 0.240 

(3.295) (3.178) (3.477)  (4.106) (4.326) (5.159)  (6.858) (5.915) (3.778) 

DSOs 113 69 47   113 69 47   113 69 47 
Notes: Treatment-effects estimation using nearest-neighbor matching (Mahalanobis distance metric). AI robust standard errors in parentheses. Matching on 2010 efficiency score, exit points, 
energy delivered, network length, cap. renewable, growth solar cap, and level of wear. Unrestricted sample comprising also DSOs that have diverging official efficiency scores. DSOs that 
encountered network acquisitions were disregarded. Distinction between non- and efficient DSOs using efficiency scores as mentioned. Year 2011. *,**,***: significant at 10%, 5% and 1% 
respectively. 
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A.5  Figures 

 

Figure A-2: Development of network access charges for representative users  
by regulatory regime  

Source: own figure 
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