
Lightweight Cryptography on
Ultra-Constrained RFID Devices

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Matthias Alexander Hamann
aus Zweibrücken

Mannheim, 2018

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Matthias Krause, Universität Mannheim
Korreferent: Prof. Dr. Willi Meier, Fachhochschule Nordwestschweiz

Tag der mündlichen Prüfung: 22. Mai 2018

ABSTRACT

Devices of extremely small computational power like radio-frequency identification (RFID)
tags are used in practice to a rapidly growing extent, a trend commonly referred to as
ubiquitous computing. Despite their severely constrained resources, the security burden
which these devices have to carry is often enormous, as their fields of application range from
everyday access control to human-implantable chips providing sensitive medical information
about a person. Unfortunately, established cryptographic primitives such as AES are way
to ‘heavy’ (e.g., in terms of circuit size or power consumption) to be used in corresponding
RFID systems, calling for new solutions and thus initiating the research area of lightweight
cryptography.
In this thesis, we focus on the currently most restricted form of such devices and will refer
to them as ultra-constrained RFIDs. To fill this notion with life and in order to create a
profound basis for our subsequent cryptographic development, we start this work by providing
a comprehensive summary of conditions that should be met by lightweight cryptographic
schemes targeting ultra-constrained RFID devices. Building on these insights, we then
turn towards the two main topics of this thesis: lightweight authentication and lightweight
stream ciphers. To this end, we first provide a general introduction to the broad field of
authentication and study existing (allegedly) lightweight approaches. Drawing on this, with
the (n, k, L)〈80〉-protocol, we suggest our own lightweight authentication scheme and, on the
basis of corresponding hardware implementations for FPGAs and ASICs, demonstrate its
suitability for ultra-constrained RFIDs. Subsequently, we leave the path of searching for
dedicated authentication protocols and turn towards stream cipher design, where we first
revisit some prominent classical examples and, in particular, analyze their state initialization
algorithms. Following this, we investigate the rather young area of small-state stream
ciphers, which try to overcome the limit imposed by time-memory-data tradeoff (TMD-TO)
attacks on the security of classical stream ciphers. Here, we present some new attacks,
but also corresponding design ideas how to counter these. Paving the way for our own
small-state stream cipher, we then propose and analyze the Lizard-construction, which
combines the explicit use of packet mode with a new type of state initialization algorithm.
For corresponding keystream generator-based designs of inner state length n, we prove a
tight (2n/3)-bound on the security against TMD-TO key recovery attacks. Building on these
theoretical results, we finally present Lizard, our new lightweight stream cipher for ultra-
constrained RFIDs. Its hardware efficiency and security result from combining a Grain-like
design with the Lizard-construction. Most notably, besides lower area requirements, the
estimated power consumption of Lizard is also about 16 percent below that of Grain v1,
making it particularly suitable for passive RFID tags, which obtain their energy exclusively
through an electromagnetic field radiated by the reading device. The thesis is concluded by
an extensive Future Research Directions chapter, introducing various new ideas and thus
showing that the search for lightweight cryptographic solutions is far from being completed.

iii

ZUSAMMENFASSUNG

Elektronische Geräte mit extrem eingeschränkter Berechnungskraft wie funkbasierte Radio-
Frequency-Identification-Tags (RFID-Tags) durchsetzen zunehmend unseren Alltag. Unge-
achtet ihrer geringen Ressourcen ist die Sicherheitslast, die solche Geräte tragen müssen,
jedoch oftmals enorm. Denn ihr Einsatzbereich erstreckt sich bereits heute von einfachen
Zugangskontrollsystemen bis hin zu implantierbaren Chips, deren Manipulation, beispiels-
weise im Falle eines funkgesteuerten Herzschrittmachers, sogar lebensbedrohliche Folgen
haben kann. Da etablierte kryptographische Primitive wie AES jedoch zu ‘schwer’ (bspw.
hinsichtlich Schaltungsgröße oder Energieverbrauch) für solche RFID-Systeme sind, bedarf
es hier neuer Lösungen, welche im Bereich der sogenannten leichtgewichtigen Kryptographie
zusammengefasst werden.
In dieser Dissertationsschrift konzentrieren wir uns auf die gegenwärtig eingeschränkteste
Klasse von RFID-Tags, welche wir als ultra-constrained RFIDs bezeichnen werden. Um eine
solide Basis für unsere anschließende Entwicklungstätigkeit zu legen, beginnen wir die Arbeit
mit einer umfassenden Analyse der relevanten Hardwareeigenschaften und identifizieren dabei
insbesondere zentrale Kenngrößen, die von entsprechenden kryptographischen Verfahren
einzuhalten sind. Darauf aufbauend wenden wir uns dann unseren beiden Hauptthemen,
leichtgewichtige Authentifikation und leichtgewichtige Stromchiffren, zu. Wir beginnen mit
einer allgemeinen Einführung in das weite Themenfeld der Authentifikation und untersuchen
zudem bereits existierende (angeblich) leichtgewichtige Verfahren. Danach stellen wir mit
dem (n, k, L)〈80〉-Protokoll unseren eigenen Vorschlag vor und zeigen auf Basis entsprechen-
der Hardwareimplementierungen für FPGAs und ASICs, dass dieser für ultra-constrained
RFIDs geeignet ist. Anschließend wechseln wir in den Bereich der Stromchiffren und be-
trachten zu Anfang einige etablierte Verfahren, mit einem besonderen Fokus auf deren
Zustandsinitialisierung. Diesen stellen wir dann das junge Forschungsfeld sogenannter Small-
State-Stromchiffren gegenüber, welche zum Ziel haben, die Anfälligkeit klassischer Verfah-
ren gegenüber Time-Memory-Data-Tradeoff-Angriffen (TMD-TO-Angriffen) zu überwinden.
Hier identifizieren wir zwar neue Angriffsmöglichkeiten, können jedoch auch entsprechende
Gegenmaßnahmen vorschlagen. In Vorbereitung unserer eigenen Small-State-Stromchiffre
führen wir anschließend die Lizard-Konstruktion ein, welche die explizite Verwendung eines
Paketmodus mit einer neuen Form der Zustandsinitialisierung kombiniert. Für entsprechende
Keystream-Generator-basierte Designs mit innerer Zustandslänge n können wir eine scharfe
(2n/3)-Schranke hinsichtlich der Sicherheit gegenüber TMD-TO-Key-Recovery-Angriffen zei-
gen. Basierend auf diesem Ergebnis stellen wir dann Lizard vor, unsere neue leichtgewichtige
Stromchiffre für ultra-constrained RFIDs. Effizienz und Sicherheit resultieren hier aus der
Verbindung eines Grain-artigen Designs mit der Lizard-Konstruktion. Hervorzuheben ist,
neben einer geringeren Schaltungsgröße, die gegenüber Grain v1 um 16 Prozent verminderte
Leistungsaufnahme, welche Lizard besonders attraktiv für passive RFID-Tags macht, die ihre
Energie ausschließlich per elektromagnetischer Induktion über das entsprechende Lesegerät
beziehen. Abgeschlossen wird diese Dissertationsschrift durch ein umfangreiches Kapitel
über mögliche zukünftige Forschungsfelder. Die darin präsentierten neuen Ansätze und Ideen
zeigen, dass die Suche nach leichtgewichtigen kryptographischen Lösungen noch lange nicht
abgeschlossen ist.

v

Acknowledgements
First and foremost, I would like to thank my parents. Without their constant support, I
would have never made it even close to this point. I cannot imagine two kinder, more
caring, more loyal people, and my gratitude and love for them is beyond all measure.

I am also deeply indebted to my boss and PhD adviser, Prof. Dr. Matthias Krause. He
always had my back in academic and personal matters and guided me safely through the
sometimes arduous journey of doing a doctorate. I constantly admire the strong bonds
which, throughout the years, he maintained with his habilitation adviser, Prof. Dr. Ingo
Wegener, and sincerely hope that we will likewise keep in touch.

Furthermore, particular thanks go to Prof. Dr. Willi Meier, who agreed to be the
second assessor of this thesis. I benefited immensely from our research collaboration and,
when my father died only few weeks before the finalization of this thesis, I came to know
this reputable Swiss professor also as a very kindhearted man.
Two colleagues and fellow PhD students have rendered outstanding services to this

work. Christan A. Gorke not only took the strenuous job of proofreading, but also ported
our new stream cipher Lizard to PHP and offers a corresponding free online service (see
Appendix 8.A). Christian Müller, on the other hand, was my rescuing angel when LATEX
once more drove me nuts. Many thanks to both of you and rest assured that I am going
to return the favor.

I also wholeheartedly thank the other members of our research group, Prof. Dr. Frederik
Armknecht, Angela Jäschke, Vasily Mikhalev, and Alexander Moch, for the many great
discussions and, not least, all the fun we had together. You know how much I like you
all, but, nonetheless, I will never let you win at Atomic Bomberman [Int97]!
Deep thanks go to our two secretaries, Karin Teynor and, our newest group member,

Gabi Nusser. Without them, instead of writing these acknowledgements, I would still be
trying to figure out how to properly fill in a ‘Reisekostenformular’.
Further thanks go to Dr. Dirk Stegemann, who was my predecessor as PhD student

and teaching assistant and left a ‘well-tilled field’, which allowed me to have a smooth
transition from student to PhD life.
I also thank Prof. Dr. Felix Freiling for having employed me as a student helper for

many years, while his working group was still in Mannheim. It gave me the chance to
learn a lot about IT security, meet many interesting people, and also to visit my first
conferences, thus providing an early taste of academic life.
Moreover, I am very grateful to Prof. Dr. Peter Fischer and Dr. Michael Ritzert

from Heidelberg University (ZITI), who provided us with the necessary technical means
and additional valuable information for creating the hardware implementations of the

vii

(n, k, L)〈80〉-protocol and of Lizard.
Equally sincere thanks go to the experts from industry who, on condition of anonymity,

were willing to share their inside knowledge about capabilities and limits of state-of-the-
art low-cost RFID tags with us. As this information is based on real-world products of
the respective companies, its significance for Chapter 2 can hardly be overestimated.
Finally, I thank the anonymous reviewers of the papers underlying this PhD thesis.

Their efforts in the background are truly appreciated.

viii

Dedication

To my best friends: Mom and Dad.

ix

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1
1.1 General Introduction . 2
1.2 Structure of this Thesis . 4
1.3 Reading Guide . 6

2 Ultra-Constrained RFID Devices 9
2.1 Introduction . 10
2.2 Excursus: Implementation Options for Block and Stream Ciphers 11
2.3 Hardware Characteristics and Limits . 12

2.3.1 Operating Frequency and Transmission Bandwidth 13
2.3.2 Timing/Latency . 14
2.3.3 Area (in GE) . 14
2.3.4 Power . 16
2.3.5 Energy . 18
2.3.6 Clock Rate . 18
2.3.7 Delay (Critical Path) . 19
2.3.8 Random Number Generator (RNG) 20
2.3.9 Non-Volatile Memory (NVM) . 22
2.3.10 Fixed-key Storage . 23

2.4 Conclusion and Outlook . 24

3 Lightweight Authentication 27
3.1 Introduction . 28

3.1.1 Authentication as targeted in this Thesis 30
3.2 Excursus: When Authentication Goes Wrong 32

3.2.1 Compromising the University VPN 32
3.2.2 Compromising the University Member ID Card 37

xi

Contents

3.3 On the Principle Feasibility of Cipher-based Lightweight Authentication . 46
3.4 LPN-based Authentication Protocols . 48

3.4.1 Cost Drivers of LPN-based Authentication Protocols 51
3.4.2 Protocols based on Variants of the LPN Problem 54

3.5 The Cryptographic Power of Random Selection 55
3.5.1 The (n, k, L)++-Protocol . 56
3.5.2 The Security of (n, k, L)-type Protocols 58

3.6 Conclusion and Outlook . 60

4 The (n, k, L)〈80〉 Authentication Protocol 63
4.1 Introduction . 64
4.2 Design Rationale and Specification . 65

4.2.1 Modifications w.r.t. the original (n, k, L)++-Protocol 65
4.2.2 Protocol Description . 68

4.3 Security Analysis . 74
4.3.1 Impact of Using a Generator G . 74
4.3.2 Impact of Splitting the Connection Function 79

4.4 Hardware Efficiency . 81
4.4.1 The (n, k, L)〈80〉-Prover on ASICs 82
4.4.2 The (n, k, L)〈80〉-Prover on FPGAs 85

4.5 Conclusion and Outlook . 86
Appendices
4.A Test Vectors . 88

4.A.1 (n, k, L)〈80〉 with Parameters n = 128, k = 32, L = 16 88
4.A.2 (n, k, L)〈80〉 with Parameters n = 64, k = 32, L = 16 89

4.B Reference Implementation . 89

5 Classical Stream Ciphers 97
5.1 Introduction . 98
5.2 Some Prominent Stream Cipher Examples 100

5.2.1 E0 (used in Bluetooth) . 101
5.2.2 A5/1 (used in GSM) . 104
5.2.3 Trivium . 106
5.2.4 Grain v1 . 107
5.2.5 Excursus: Block Cipher-based Constructions 109

5.3 Modeling the State Initialization of the Examples 110
5.3.1 E0 (used in Bluetooth) . 111
5.3.2 A5/1 (used in GSM) . 112
5.3.3 Trivium . 113
5.3.4 Grain v1 . 114

5.4 Conclusion and Outlook . 114

xii

Contents

6 Small-State Stream Ciphers 117
6.1 Introduction . 118
6.2 Small-State Stream Ciphers . 122

6.2.1 Sprout . 122
6.2.2 Fruit . 124
6.2.3 Plantlet . 128
6.2.4 LIZARD . 130

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers 132
6.3.1 A Generic Distinguishing Attack against Stream Ciphers which

Continuously use the Non-volatile Key 133
6.3.2 A Key Recovery Attack against Fruit v1 143

6.4 The Future of Small-State Stream Ciphers 147
6.5 New Design Idea: Stream Ciphers which Continuously use the IV 150
6.6 Conclusion and Outlook . 151

Appendices
6.A Plantlet: Injectivity of IV → Initial State 153
6.B Shrunk Fruit v1 . 154

7 The LIZARD-Construction 157
7.1 Introduction . 158

7.1.1 A Model for KSG-based Stream Ciphers 158
7.1.2 The Role of TMD-TO Attacks . 161
7.1.3 Our Contribution . 162

7.2 More on Stream Ciphers . 165
7.3 Time-Memory-Data Tradeoff Attacks . 166
7.4 A Random Oracle Model for the LIZARD-Construction 171
7.5 The Security Lower Bound Proof . 174

7.5.1 The Main Theorem . 175
7.5.2 The Friendly Alice, Structural Collisions, and Sudden Death 176
7.5.3 Formalizing the Computational Behavior of Eve 179
7.5.4 Basic Definitions and the Idea of the Proof of Theorem 7.5 180
7.5.5 The Characterization of τ -Consistency 184
7.5.6 Assigning Colors to Elementary Events, Transcripts, and Keys . . 186
7.5.7 Starting with the Proof of Lemma 7.1 189
7.5.8 The Proof of Part (iii) of Lemma 7.1: Bounding the Probability of

Sudden Death . 192
7.5.9 The Proof of Part (i) of Lemma 7.1: Bounding the Probability of

Black Elementary Events . 194
7.5.10 The Proof of Part (iv) of Lemma 7.1 195

xiii

Contents

7.5.11 The Proof of Part (ii) of Lemma 7.1: Bounding the Probability of
Red and Blue Elementary Events 197

7.5.12 The Proof of Corollary 7.3, Parts (b.4) and (c) 200
7.5.13 The Proof of the Smoothness Lemma (Lemma 7.4), Part (II) . . . 205

7.6 Conclusion and Outlook . 209

Appendix
7.A A Short Excursion to Chernoff Bounds . 211

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices 215
8.1 Introduction . 216
8.2 Design Specification . 218

8.2.1 Components . 219
8.2.2 State Initialization . 220
8.2.3 Keystream Generation . 223

8.3 Design Considerations . 223
8.3.1 NFSR1 . 224
8.3.2 NFSR2 . 225
8.3.3 Output Function a . 225
8.3.4 Speedup Options . 228
8.3.5 State Initialization Algorithm . 228

8.4 Cryptanalysis . 230
8.4.1 Exhaustive Key Search . 231
8.4.2 Time-Memory-Data Tradeoff Attacks 231
8.4.3 Correlation Attacks, Linear Approximations 235
8.4.4 Algebraic Attacks . 237
8.4.5 Guess-and-determine Attacks . 238
8.4.6 Conditional Differentials, Cube Distinguishers 238
8.4.7 IV Collisions . 239
8.4.8 Related Key(/IV) Attacks, Slide Attacks 242
8.4.9 Weak Key/IV Pairs . 243
8.4.10 BDD-based Attacks . 243
8.4.11 External Cryptanalysis . 244

8.5 Hardware Implementation . 246
8.5.1 Performance . 247
8.5.2 Serialization of Phases 1 and 3 of LIZARD’s State Initialization . . 250

8.6 Conclusion and Outlook . 252

Appendices
8.A Test Vectors . 254
8.B Module Interfaces/Capabilities . 255
8.C Reference Implementation . 256

xiv

Contents

9 Future Research Directions 261
9.1 Introduction . 262
9.2 LIZARD-based Authentication . 263

9.2.1 Employing LIZARD ‘as it is’ . 263
9.2.2 Further Optimizing LIZARD for Authentication 267

9.3 More on Stream Ciphers that Continuously Use the IV 269
9.3.1 Continuous IV Use with Stream Ciphers working in Packet Mode . 270

9.4 BDD and SAT Attacks . 274
9.4.1 A Hands-on Introduction to (O)BDD Attacks 276
9.4.2 Towards More Efficient OBDD Attacks 279

9.5 Conclusion and Outlook . 287

10 Conclusion 289

Bibliography 293

xv

List of Figures

3.1 Some examples of manipulations of the ecUM. 42
3.2 Round i of the HB protocol. 49
3.3 Round i of the HB+ protocol. 50
3.4 An instance of the (n, k, L)++-protocol. 57

4.1 One round of the (n, k, L)〈80〉-protocol. 68

5.1 E0 encryption engine. 101
5.2 Initializing the LFSRs of E0. 102
5.3 Structure of A5/1. 105
5.4 Structure of Trivium. 107
5.5 Structure of Grain v1 (keystream generation phase). 108
5.6 Structure of Grain v1 (initialization phase). 109
5.7 Block cipher-based keystream generation using counter mode. 110
5.8 Initialization and keystream generation of LEX. 111

6.1 Keystream generation of Sprout. 122
6.2 Keystream generation of Fruit v1. 125
6.3 Keystream generation of Plantlet. 128
6.4 Keystream generation of Lizard. 130

7.1 The keystream generation phase in terms of our model. 161
7.2 Key and IV setup phase of the Lizard-construction. 162

8.1 Lizard in keystream generation mode. 218
8.2 Lizard in phase 2 of the state initialization. 221
8.3 Lizard in phase 4 of the state initialization. 222

9.1 A basic FPGA prototype of Lizard-based authentication. 265
9.2 The OBDDs R0, Q0, and P0 = R0 ∧Q0. 278
9.3 The OBDD P6. 279
9.4 The OBDD P0 after a reordering of variables. 281

xvii

List of Tables

2.1 RFID application fields, transfer rates, and range by waveband. 13
2.2 Area requirements of selected standard cells in µm2 and GE. 15

3.1 Complexities of the 2-round authentication protocols in [KPC+11]. 55

4.1 Implementation results of the (n, k, L)〈80〉-protocol on ASICs. 84

8.1 Implementation results of Lizard on ASICs. 249

xix

Listings

4.1 Reference implementation (Verilog) of the (n, k, L)〈80〉-prover. 90

8.1 Verilog module port declaration for Lizard. 255
8.2 Verilog module port declaration for Grain v1. 255
8.3 Reference implementation (Verilog) of Lizard. 256

xxi

Acronyms
AES Advanced Encryption Standard. iii, v, 2, 10, 14, 15, 21, 46, 47, 55, 67, 110, 290

API application programming interface. 254

ASCII American Standard Code for Information Interchange. 42

ASIC application-specific integrated circuit. iii, v, 5, 10, 14, 19, 37, 55, 63–65, 73, 81, 82,
84–86, 209, 247, 264, 291

BDD binary decision diagram. 6, 161, 227, 243, 244, 261, 262, 274–277, 280–284, 286,
287, 292

BRAM buffer random access memory. 55

CCMP Counter Mode Cipher Block Chaining Message Authentication Code Protocol.
216

CERT computer emergency response team. 34

CKU stream cipher continuous-key-use stream cipher. 135–138, 140–142, 150, 151, 162,
273

CMOS complementary metal-oxide-semiconductor. 21, 22, 247, 248

CNF conjunctive normal form. 276

CPU central processing unit. 124, 276, 283, 284, 286

CTR mode counter mode. 109, 110

DES Data Encryption Standard. 46

DFA differential fault analysis. 246, 276, 280

DH key exchange Diffie-Hellman key exchange. 33

DoS attack denial-of-service attack. 29

ECB mode electronic codebook mode. 85, 148, 269

EEPROM electrically erasable programmable read-only memory. 16, 17, 22–24, 37, 51,
52, 119, 130, 151, 217, 250

xxiii

Acronyms

EIRP effective isotropic radiated power. 17

EPC Electronic Product Code. 3, 10, 13, 15, 17, 22, 28, 290

FF flip-flop. 11, 15, 17, 20, 22, 69, 85, 86, 119, 148, 248

FPGA field-programmable gate array. iii, v, 5, 10, 31, 55, 63–65, 82, 85, 86, 104, 247,
252, 261, 262, 264, 265, 291

FSM finite-state machine. 69, 102, 103, 111, 112, 232

FSR feedback shift register. 17, 39, 83, 101, 109, 114, 118, 121, 123, 124, 126, 127,
129, 132, 135, 140–144, 148, 153–155, 217–219, 221, 222, 225, 226, 229, 233, 235,
237–239, 243, 248, 251, 252

GE gate equivalent. 15, 16, 21, 47, 81–85, 148, 224, 246–250, 263, 269

GSM Global System for Mobile Communications. 44, 98, 100, 104, 106, 109, 110, 160,
216, 233, 243, 262

HDL hardware description language. 12, 19

HTTPS Hypertext Transfer Protocol Secure. 6, 215, 216, 252, 292

IC integrated circuit. 16, 23, 38

ID identifier. 38, 40

IETF Internet Engineering Task Force. 34

IKE Internet Key Exchange. 33–35

IP address Internet Protocol address. 33

IV initialization vector. 5, 6, 71, 98–101, 104–107, 109–114, 117, 118, 121–124, 126,
128–131, 134–137, 139–141, 143–147, 149–151, 153–155, 158–166, 169–173, 179, 181,
182, 189, 209, 215–218, 220, 223, 224, 228–232, 234, 235, 239–246, 248–250, 252,
254, 255, 261–273, 287, 291, 292

KSG keystream generator. iii, v, 5, 60, 65, 71, 99, 102–104, 106, 107, 109, 111–114, 118,
119, 131, 132, 135, 144, 157–163, 165–171, 209, 215, 217, 220–222, 228, 230–232,
239, 242, 243, 248, 251, 271, 273, 274, 276, 277, 279, 282, 283, 286, 287, 291

LAN local area network. 32, 33, 264

LFSR linear feedback shift register. 57, 60, 66, 69, 71, 72, 75, 77, 84, 86, 90, 101–109,
111–114, 122, 125, 127–129, 131, 140, 141, 148, 153–155, 218, 219, 224–226, 235–238,
243, 244, 249, 263

xxiv

Acronyms

LPN learning parity with noise. 3, 4, 27, 31, 32, 46–54, 57, 61, 82, 85, 86, 290

LSB least significant bit. 72, 122, 125, 126, 128, 129

LUT lookup table. 65, 85, 86

MAC message authentication code. 5, 30, 157, 164, 291

MITM man-in-the-middle. 3, 31, 32, 35, 52, 54, 56, 64, 66, 67, 70, 71, 74, 78, 79, 265,
290

NESSIE New European Schemes for Signatures, Integrity, and Encryption. 2

NFC near-field communication. 43

NFSR nonlinear feedback shift register. 38, 84, 86, 101, 107–109, 114, 122, 123, 125, 126,
128, 129, 131, 140, 141, 148, 149, 153–155, 218, 219, 224–226, 235–237, 243, 244,
249, 268, 273, 287

OBDD ordered binary decision diagram. 71, 277–287

OFB mode output feedback mode. 109, 110, 133–135, 142

OS operating system. 33

PC personal computer. 37, 39, 41, 44, 124, 282

PIN personal identification number. 104

PRNG pseudorandom number generator. 21

PROM programmable read-only memory. 16, 24

PSK pre-shared key. 34–37

RAM random-access memory. 37, 282

RFID radio-frequency identification. iii, v, viii, 3–6, 9–25, 27–32, 36, 37, 44, 45, 47, 49,
51–57, 60, 61, 63, 64, 67, 70, 73, 81–87, 97, 119, 130, 152, 209, 215, 217, 218, 247,
250, 252, 253, 261, 263, 264, 266–268, 274, 275, 287, 290–292

RNG random number generator. 21, 25, 39, 46, 47, 50, 53, 75

RSA Rivest-Shamir-Adleman cryptosystem. 47

S-box substitution-box. 12, 67, 86

SAT Boolean satisfiability problem. 39, 124, 262, 274–276, 279, 280, 282, 287

xxv

Acronyms

SPN substitution-permutation network. 67

SSL Secure Sockets Layer. 98, 216

TKIP Temporal Key Integrity Protocol. 98

TLS Transport Layer Security. 98, 216

TMD cost time-memory-data cost. 163, 167, 169, 170

TMD-TO time-memory-data tradeoff. iii, v, 2, 5, 6, 39, 71, 97, 104, 112, 117–121, 124,
128–130, 132, 138, 141–143, 146, 148–151, 157, 158, 161–167, 169, 171–173, 177,
178, 209, 210, 215–217, 220, 222, 228–235, 238–240, 243–245, 252, 261, 262, 264,
267, 269–275, 287, 291, 292

TRNG true random number generator. 21

UID unique identifier. 40, 41, 43, 45, 266

USB Universal Serial Bus. 41

VGA Video Graphics Array. 264

VPN virtual private network. 32–37, 42, 44, 60

WEP Wired Equivalent Privacy. 33, 98

WLAN wireless local area network. 6, 33, 35, 36, 100, 160, 215, 216, 252, 292

WPA Wi-Fi Protected Access. 33, 98

xxvi

Lightweight, baby!

Ronnie Coleman (famed bodybuilder)

CHAPTER1
Introduction

ABSTRACT
In this chapter, we first provide a brief introduction to the field of lightweight cryptography in
general and explain, which kind of devices are targeted by corresponding designs. Subsequently,
we then outline the contents and structure of this thesis. Finally, we also give some brief remarks
and hints, which are meant to enhance the overall reading experience.

1

1 Introduction

1.1 General Introduction
For about fifteen years now, lightweight cryptography has been among the ‘hot topics’
in the cryptographic community, generating a vast number of academic publications
and suggested schemes. Two separate lines of research have been mainly driving this
development and still do so today: authentication and encryption. We will follow both of
these lines in this thesis and, in fact, conclude our work by merging them in the form of
a lightweight, stream cipher-based authentication protocol.
Regarding lightweight encryption, several competitions have been the catalyst for

designing corresponding schemes. After the AES block-cipher contest [Nat16] had ended
in 2000/2001 and due to the fact that the NESSIE project [Pre03] between 2000 and
2003 had not produced a standardizable stream cipher, in 2004, the eSTREAM project
[ECR08] was started in order to identify new stream ciphers for two application profiles:

“Profile 1 contains stream ciphers more suitable for software applications
with high throughput requirements. Profile 2 stream ciphers are particularly
suitable for hardware applications with restricted resources such as limited
storage, gate count, or power consumption.” [ECR08]

The above specification of Profile 2 can be seen as the birth certificate of contemporary
lightweight cryptography, as many of the metrics and limits identified during the following
selection process are still in place today. After the eSTREAM contest had finished in
2008 with a portfolio of four (later reduced to three) winners in the Profile 2 category, it
was now again up to block ciphers to catch up, as even highly optimized implementations
of AES [DR02] still required significantly more hardware resources than, e.g., Grain v1
[HJM06], the most hardware-efficient member of the final eSTREAM portfolio [BBV12].
In 2007 and 2009, respectively, the new lightweight block ciphers PRESENT [BKL+07]
and KATAN/KTANTAN [DCDK09] appeared, which were actually able to compete with
(and, depending on the type of implementation, even to surpass) Grain v1 in terms of
low hardware requirements. After that, for many years it looked as if the race between
lightweight block ciphers and lightweight stream ciphers had finally been decided in favor
of block ciphers. This notion was mainly based on the fact that, for stream ciphers,
so-called time-memory-data tradeoff (TMD-TO) attacks like those of Babbage [Bab95]
and Biryukov and Shamir [BS00] seemed to imply a natural lower bound regarding the
size of the inner state of these ciphers, which attributes for a significant part of their
hardware costs. However, in 2015, based on the new paradigm of continuously involving
the secret key in the state update, Armknecht and Mikhalev were able to ‘beat’ the
corresponding birthday bound with their new stream cipher Sprout [AM15]. Though
Sprout was broken soon after publication via non-generic attacks, it has raised significant
interest in the underlying design principle and a number of related ciphers have been
suggested since. In this thesis, we will present a different approach for reducing the size
of the inner state below the limit formerly induced by the birthday bound in the form

2

1.1 General Introduction

of the Lizard-construction and its first concrete instantiation, the lightweight stream
cipher Lizard.
Research in the field of lightweight authentication was sparked in 2001 by Hopper

and Blum in the form of their “Secure Human Identification Protocols” [HB01]. As
the title suggests, this scheme, which is known under the name HB protocol today, was
actually targeting humans as the ‘endpoint’ in an authentication process. More precisely,
the HB protocol was designed to be so simple in terms of operations, that these could
even be performed by human beings. From a theoretical point of view, the approach of
Hopper and Blum was appealing as well, because they were able to prove the security
of their protocol against passive adversaries (i.e., against pure eavesdropping) based
on the assumed hardness of the well-known learning parity with noise (LPN) problem.
In 2005, Juels and Weis then transferred the scheme to the context of radio-frequency
identification devices (RFIDs), by adding security against (certain) active attacks and
targeting so-called Electronic Product Codes (EPCs) with their new HB+ protocol [JW05].
While, nowadays, RFID technology is commonly associated with tiny computational

devices, it actually has its origin in the identification of huge objects. More specifically, it
was introduced in World War II to perform friend-or-foe recognition through equipping
airplanes with radio transmitters that were activated upon receipt of a signal sent by
ground radar stations [Rob05]. Measured by production volumes, today, RFID technology
rather serves civil purposes and authentication solutions are probably the most common
field of application for RFID tags. These range from obvious representatives which
many of us use every day, such as contactless smart cards for entrance control, to more
hidden ones, such as RFID tags incorporated or attached to goods in order to track
them or for protecting against product piracy. And the application areas of RFID-
based authentication are constantly broadening. Human-implantable tags already exist,
imposing new technological challenges (such as a low power and/or energy consumption)
on lightweight authentication solutions, whose striving for minimality is currently still
mainly motivated by the cost pressure for the production of corresponding devices.
In this spirit, with their HB+ protocol, Juels and Weis targeted the aforementioned

EPCs, which represent the most restricted type of RFID devices and are meant to replace
classical barcodes. Besides the new authentication scheme, another major contribution
of the respective paper [JW05] was a collection of hardware limits that such devices in
the price range of $0.05–$0.10 actually impose on cryptographic designs. In this thesis,
we will target hardware of similar capabilities, but rather refer to it as ultra-constrained
RFIDs in order to express the now broadened application range, apart from simply
replacing classical barcodes.

While one might now expect that, based on the profound basis laid by Juels and Weis
in [JW05], the development of dedicated lightweight authentication schemes would have
taken a similarly positive path as the field of lightweight block and stream ciphers, this
is unfortunately not the case. After the HB+ protocol was broken by active man-in-the-
middle (MITM) attacks [GRS05] already in 2005, a multitude of related schemes started

3

1 Introduction

to appear, which, however, seemed to increasingly submerge in the ‘theoretical beauty’
of the approach, eventually loosing sight of the actual hardware limits (probably also
due to the lack of an eSTREAM-like competition with its concrete evaluations). As
a consequence, in [AHM14], we were able to show that currently there does not seem
to be a single unbroken HB-type protocol feasible for ultra-constrained RFIDs. In this
thesis, employing another paradigm than the assumed hardness of the LPN problem, we
will present an alternative approach for designing dedicated lightweight authentication
protocols and, based on an actual hardware implementation, demonstrate its suitability for
respective devices. Finally, we will also forge a bridge between lightweight authentication
and state-of-the-art lightweight stream ciphers by demonstrating how our new design
Lizard can be used to realize hardware-efficient, privacy-preserving authentication on
ultra-constrained RFIDs.

1.2 Structure of this Thesis

In Chapter 2, we provide a comprehensive summary of conditions that should be met by
lightweight cryptographic schemes if deployed in low-cost RFID systems. Some of these
conditions have been collected from open literature, but most of them are the result of
various discussions with experts from industry. Although these experts were working for
different companies and were aiming for RFID-based cryptographic solutions in different
areas, all of them shared more or less the same view on what lightweight means in the
context of ultra-constrained devices and when a scheme can be considered to be relevant
for real-word applications. The metrics and conditions compiled here will also serve
as the basis for the design decisions and hardware evaluations made in the subsequent
chapters.

In Chapter 3, we give an introduction to authentication in general and its lightweight
forms in particular. Based on examples of failed real-world authentication solutions,
we develop a number of rules that should be considered when deploying RFID-based
authentication schemes in the field. Furthermore, we describe and evaluate (based on the
hardware limitations as introduced in Chapter 2) the three most common approaches
for lightweight authentication: (block) cipher-based protocols, LPN-based protocols,
and protocols based on random selection of secret linear functions. Referring to our
paper Lightweight Authentication Protocols on Ultra-Constrained RFIDs – Myths and
Facts [AHM14], we conclude that none of the currently unbroken LPN-based protocols
is suitable for ultra-constrained RFIDs. For authentication protocols based on random
selection of secret linear functions, we identify a comparatively large key length and
the use of involved operations as the major challenges for creating a hardware-efficient
implementation.

In Chapter 4, we introduce the new (n, k, L)〈80〉-protocol, a variant of linear authenti-
cation protocols which overcomes the above problems, and analyze its security against all

4

1.2 Structure of this Thesis

currently known, relevant passive and active attacks. Moreover, we present an implementa-
tion of our protocol for field-programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) based on the hardware description language Verilog and
discuss its efficiency w.r.t. the cost metrics described in Chapter 2. The respective
numbers show that the (n, k, L)〈80〉-protocol is a viable alternative to existing solutions
and is, for example, suited for the implementation on ultra-constrained RFID tags.

In Chapter 5, we leave the path of searching for dedicated authentication protocols and,
instead, lay the foundation for treating a fundamental question which arose to us while
designing the (n, k, L)〈80〉-protocol: ‘Why use a bitstream generator only to produce the
specifications of the secret functions, but not for generating the authentication token right
away?’ To this end, as a first step, we revisit some prominent examples of classical stream
ciphers in this chapter and, in particular, analyze their state initialization algorithms.
Later, in Chapter 7, the respective insights will then serve as a basis for our new stream
cipher design principle named Lizard-construction, which allows for creating provably
secure small-state constructions.

In Chapter 6, we introduce the corresponding, rather young research area of so-called
small-state stream ciphers, which try to overcome the limit imposed by TMD-TO attacks
on the security of classical stream ciphers. In the course of our studies, existing designs
and known analysis of small-state stream ciphers are revisited and new insights on
distinguishers and key recovery are derived based on TMD-TO attacks. A particular
result is the transfer of a generic distinguishing attack suggested in 2007 by Englund
et al. [EHJ07] to this new class of lightweight ciphers. Our analysis shows that the
initial hope of achieving full security against TMD-TO attacks by continuously using the
secret key has failed. In particular, we provide generic distinguishers for the small-state
stream ciphers Plantlet [MAM17] and Fruit [GHX16] with complexity significantly lower
than that of exhaustive key search. However, by studying the assumptions underlying
the applicability of these attacks, we are able to come up with a new design idea for
small-state stream ciphers, which might allow to finally achieve full security against
TMD-TO attacks by continuously using not only the key but also the initialization vector
(IV) during keystream generation. Another contribution of this chapter is the first key
recovery attack against Fruit v1. We show that there are at least 264 weak keys, each of
which does not provide 80-bit security as promised by the designers. As a consequence of
our attack, the designers of Fruit have updated their scheme to the new version Fruit v2.
In Chapter 7, we propose and analyze the Lizard-construction, a new way to build

stream ciphers. For corresponding keystream generator-based designs of inner state length
n, we prove a tight (2n/3)-bound on the security against TMD-TO key recovery attacks,
while the security against TMD-TO distinguishing attacks remains at the birthday-bound
level n/2. The lower bound of the (2n/3)-result refers to a random oracle model which
allows to derive formal security statements w.r.t. generic TMD-TO attacks. While similar
frameworks have already been widely used for analyzing the security of block cipher,
MAC, and hash function constructions, to the best of our knowledge this is the first

5

1 Introduction

time that such a model is considered in a stream cipher context. The security analysis
presented in this chapter is also of immediate practical relevance as, with Lizard, a first
instantiation of our new design principle (which we hence named Lizard-construction)
was introduced at FSE 2017 [HKM17b].

In Chapter 8, we then present Lizard, our new lightweight (small-state) stream cipher
for power-constrained devices like passive RFID tags. Its hardware efficiency results from
combining a Grain-like design with the Lizard-construction introduced in Chapter 7.
Lizard uses 120-bit keys, 64-bit IVs, and has an inner state length of 121 bits. It is
supposed to provide 80-bit security against key recovery attacks. Lizard allows to
generate up to 218 keystream bits per key/IV pair, which would be sufficient for many
existing communication scenarios like Bluetooth, WLAN, or HTTPS.
In Chapter 9, we suggest three, in our opinion, particularly promising projects for

future research in the field of lightweight cryptography. First, we connect our two main
topics, i.e., lightweight authentication and lightweight stream ciphers, by describing how
Lizard can be used to realize hardware-efficient, privacy-preserving authentication on
ultra-constrained RFIDs. Second, we take our idea of continuously using the IV as
part of a stream cipher’s state update one step further. While in Chapter 6, this new
approach ‘only’ serves to protect ciphers which continuously use the secret key against
TMD-TO distinguishing attacks, we here show that, under certain conditions, it can even
be used independently to thwart classical TMD-TO inner state recovery attacks. Third,
we explain why we believe that the field of BDD-based cryptanalysis has been neglected
for too long and provide several new ideas how the efficiency of such attacks could be
improved in the future.
Chapter 10 concludes this thesis by summarizing our results.

1.3 Reading Guide

In the following, we give some brief remarks and hints, which are meant to enhance the
reading experience for this thesis. First of all, we would like to ‘warn’ the reader that
between the chapters, there will be some small redundancies. This redundancy, however,
is intended and will be confined to the introduction of certain terms and concepts which
might not be familiar to all readers. Many readers will probably be interested in selected
topics only, and we want to save these readers from having to first consult several other
chapters in order to understand something which, otherwise, would have become clear
with just a few words of additional explanation. Nevertheless, we try to limit redundant
explanations to the necessary minimum and are confident that their degree is at a level
still tolerable to the more experienced reader.
Also mainly aimed at the aforementioned ‘selective readers’ are the brief abstracts

which we give on the title page of each chapter. Note that within these chapter abstracts,
we provide references only for explicit citations. This is meant to allow for quickly reading

6

1.3 Reading Guide

the respective passages without any further distraction. With respect to academic rigor,
we consider this approach permissible, as the corresponding references will all be given
subsequently in the introductions of the respective chapters.
In addition to the abstract, each chapter’s title page features a so-called declaration

of origin, where the underlying publications of the author (along with the respective
co-authors and the conferences/workshops at which the content was presented) are
listed. Some publications appear in more than one of these declarations of origin, if
the corresponding content was spread over multiple chapters for reasons of improved
presentation as part of this thesis.

Finally, we would like to point the reader to the list of acronyms in the preface of this
thesis. For reasons of better readability, at very few places of the text, an acronym that
is used for the first time will not be accompanied by the respective long form, which,
instead, is then given at some later point. While we tried to make sure that, where this
happens, the long form is actually of no relevance for understanding the corresponding
text passage, a reader of the PDF version of this thesis always has the possibility to click
on an acronym, which will then take him to the respective entry of the aforementioned
list.

7

So David triumphed over the Philistine
with a sling and a stone.

1 Samuel 17:50

CHAPTER2
Ultra-Constrained RFID Devices

ABSTRACT
While most lightweight cryptographic schemes have been well analyzed with respect to their
security, especially for authentication protocols often only little (or even nothing) is known with
respect to their suitability for ultra-constrained RFID devices in the production cost range of $0.05
to $0.10. Probably, this is mainly due to the fact that open literature rarely provides information
on what conditions need to be met by a scheme in practice, hindering a sound development and
analysis by the academic community.

In this chapter, we provide a comprehensive summary of conditions that should be met by
lightweight cryptographic schemes if deployed in low-cost RFID systems. Some of these conditions
have been collected from open literature, but most of them are the result of various discussions
with experts from industry. Although these experts were working for different companies and were
aiming for RFID-based cryptographic solutions in different areas, all of them shared more or less
the same view on what lightweight means in the context of ultra-constrained devices and when a
scheme can be considered to be relevant for real-word applications. The metrics and conditions
compiled here will also serve as the basis for the design decisions and hardware evaluations made
in the subsequent chapters.

Declaration of Origin: This chapter is partly based on the paper Lightweight Authentication
Protocols on Ultra-Constrained RFIDs – Myths and Facts [AHM14], written together with Frederik
Armknecht and Vasily Mikhalev and presented at RFIDSec 2014.

9

2 Ultra-Constrained RFID Devices

2.1 Introduction
Embedded systems are increasingly permeating our information society, being more and
more employed also in security- and safety-critical applications. However, corresponding
devices often suffer from very restricted hardware characteristics, which render existing
security solutions infeasible. This has created a need for so-called lightweight security
schemes that on the one hand, are appropriate for the targeted device characteristics but
on the other hand, still provide a sufficient level of security for the intended application.
One of the major use cases for such pervasive devices are authentication solutions,

e.g., access control for buildings or cars, electronic passports, or even human-implantable
chips providing sensitive medical information about a person. Consequently, the search
for lightweight authentication protocols became an important topic in IT security during
the last years with high relevance for academia and industry, producing a huge number of
different schemes and approaches (cf. Chapter 3). However, while an abundant number
of works investigate the security of these schemes, often only little (or even nothing)
is known with respect to their applicability for real-world scenarios. Probably, this is
mainly due to the fact that there is no common agreement on what conditions need to be
meet by a scheme to be considered as lightweight. The lack of a common understanding
made the development of new schemes and the analysis of existing ones with respect to
practical demands extremely difficult, if not even impossible.
Without doubt, universally applicable criteria cannot be accepted as these heavily

depend on the concrete use case and deployed technology. However, things are different
if focusing on a concrete scenario and having a concrete technology in mind. More
precisely, in this thesis we target cryptographic protocols between RFID readers and
ultra-constrained tags in the cost range of $0.05 to $0.10 like EPCs. The reasons for
this specific choice are twofold: First, RFID tags which can be produced at costs of
$0.10 or cheaper have been a common motivation for existing work (see, e.g., [FDW04],
[JW05], [CR08], [MME+11]). Second, if one allows for only few additional costs, standard
cryptographic primitives like the Advanced Encryption Standard (AES) [DR02] become
in fact feasible, thus practically removing the need for alternative solutions altogether
(see, e.g., [FDW04] and Subsection 2.3.3).

Due to their prevalence in the field of lightweight cryptography, we mainly focus on
ASICs in this work. They are (ex ante) tailored to a very specific need and subsequently
produced in large quantities, allowing for low unit cost and making them perfectly suitable
for pervasive devices like ultra-constrained RFID tags. Their counterparts are FPGAs,
which are integrated circuits designed to be configured by a customer or a designer after
manufacturing. Consequently, FPGAs are usually more expensive and will be discussed
at only few places in this thesis. In particular, if we do not explicitly indicate a different
hardware platform, we are always referring to ASICs.
In the following, we will specify and argue several conditions that need to be met

by cryptographic schemes to be suitable for ultra-constrained RFID devices. These

10

2.2 Excursus: Implementation Options for Block and Stream Ciphers

conditions have been derived partly from open literature but most importantly from
various discussions with experts from industry. Although these experts were working for
different companies and were aiming for RFID-based cryptographic solutions in different
areas, all of them shared more or less the same view on what lightweight means in the
context of ultra-constrained devices and when a scheme can be considered to be relevant
for real-word applications. As these conditions mostly result from long lasting experience
in hardware production and have not (or only partly) been comprehensively described
and summarized in open literature, we think that this information will be very helpful
for assessing the suitability of existing cryptographic schemes and for providing guidance
in the development of new ones.

Before we go into the corresponding details, note that Juels additionally points out that
while “it is tempting to dismiss this computational poverty a temporary state of affairs,
in the hope that Moore’s Law will soon render inexpensive tags more computationally
powerful [. . .] pricing pressure is a strong countervailing force” [Jue06]. And indeed, it
seems that most of the limits described in, e.g., [JW05] and [Jue06], still apply today as
our numerous discussions with experts from industry have revealed. Hence, the numbers
presented in the following paragraphs can be expected to remain valid also in the medium
term.

2.2 Excursus: Implementation Options for Block Ciphers and
Stream Ciphers

Naturally, when it comes to using cryptographic schemes on resource-constrained devices,
it is not only important to choose a suitable, efficient algorithm, but also, how this
algorithm is eventually implemented. The three main concepts distinguished here are
parallel, round-based, and serialized implementations.
Round-based refers to block ciphers which are built as cascade of identical (or nearly

identical) rounds. In implementations of such ciphers, the hardware components for
the computation of one round can usually be reused for the other rounds, which, e.g.,
helps to save on chip area (see Subsection 2.3.3). As a consequence, for round-based
implementations, the number of clock cycles for encrypting a single block of data is usually
equal to the number of rounds of the respective block cipher algorithm. If faster encryption
is required, several (or even all) rounds can be computed within a single clock cycle at the
cost of increased chip area and power consumption (see Subsection 2.3.4). This type of
implementation is usually called parallel, which, however, can be misleading, as the rounds
of classical block ciphers still have to be computed sequentially. Therefore, the alternative
term unrolled has also become very common to describe such implementations.1 Finally,

1Parallel/unrolled implementations can be further distinguished depending on whether the input of
the encryption module is supposed to be processed within a single clock cycle or, alternatively, through
several stages that are separated via flip-flops, which serve as a kind of temporary memory between

11

2 Ultra-Constrained RFID Devices

there is also the possibility to save further chip area (and power) compared to round-
based implementations by splitting up the individual rounds as well, which allows to
reuse round-internal components such as substitution-boxes (S-boxes). This is called a
serialized implementation.

For stream ciphers (see Chapters 5 to 8), which, in their standard implementation,
usually produce one keystream bit per clock cycle, the implementation option parallel
commonly refers to the generation of more than one keystream bit per clock cycle, e.g.,
via multiple parallel feedback and output functions. In Chapter 8, this will be explained
in detail at the example of our new lightweight stream cipher Lizard. The block cipher
implementation option round-based obviously does not make much sense for common
stream ciphers and the term serialized can have different meanings. For example, in
our implementation of Lizard, we serialize parts of the state initialization, i.e., certain
steps in the cipher’s algorithmic description of this phase are each spread over several
clock cycles (see Subsections 8.5.1 and 8.5.2). This allows us to significantly decrease the
chip area of our implementation in exchange for a slightly increased (but still moderate)
latency (see Subsection 2.3.2).
Finally, also note that the settings of the compiler, which transforms an algorithm’s

description given in a so-called hardware description language (HDL) (such as VHDL
or Verilog) into an actual circuit (consisting of so-called standard cells; i.e., components
such as AND/OR/XOR, which realize simple Boolean functions), can have a major
impact on some of the metrics discussed below. For example, in order to be suitable
for being operated at very high clock rates, a circuit needs to have a low delay (see
Subsection 2.3.7), which can be achieved by reducing the logical depth of its function
implementations. This, however, often comes at the cost of more expensive components
in terms of area and power. Hence, in order to achieve the best possible comparison of
schemes, they should always be implemented with the same standard cell libraries and
compiler settings (as we do, e.g., in Subsection 8.5.1 when comparing our new lightweight
stream cipher Lizard to Grain v1).

2.3 Hardware Characteristics and Limits

In this section, we provide a comprehensive summary of hardware characteristics and
corresponding conditions that should be met by lightweight cryptographic schemes if
deployed on ultra-constrained RFID devices. As pointed out in the chapter’s introduction,
part of this information has been collected from open literature, but most of it is the
result of various discussions with experts from industry. Unfortunately, all of our sources
requested confidentiality due to the fact that this data might allow to draw inferences

the corresponding clock cycles. The latter variant realizes a pipeline, which has the advantage that the
critical path (see Subsection 2.3.7) of the respective circuit is shorter, hence allowing a higher maximum
clock rate.

12

2.3 Hardware Characteristics and Limits

Table 2.1: RFID application fields, transfer rates, and range by waveband. (cf. [SCU11])

Waveband Utilization Bandwidth Distance
Low Frequency (LF), 30–300 kHz Animal Identification < 10 kbit/s 0.1–0.5 m
Medium Frequency (MF), 0.3–3 MHz Contactless Payment < 50 kbit/s 0.5–0.8 m
High Frequency (HF), 3–30 MHz Access Control < 100 kbit/s 0.05–3 m
Ultra HF (UHF), 0.3–3 GHz Range Counting < 200 kbit/s 1–5 m
Super HF (SHF), 3–30 GHz Vehicle Identification < 200 kbit/s ca. 10 m

about the current products of their respective companies. However, as far as possible,
we tried to support and match it with publicly available information and, moreover,
most parts of this section are also contained in our publication [AHM14], which has been
peer-reviewed and presented at RFIDSec 2014. An interesting side effect of this matching
process of public and confidential data was the realization that many of the ‘older’ limits
for low-cost RFIDs, which have been published as early as 2005 (see, e.g., [JW05]), are
still in place in today’s industry.

2.3.1 Operating Frequency and Transmission Bandwidth

The waveband of RFID tags and, closely related, their maximum available transfer rate
is determined by several factors. One of the most important is the targeted reading
distance implied by, inter alia, a tag’s purpose. For example, while it may be desirable to
read a complete pallet of products with attached EPC tags over a long distance, access
control should rather be confined to a close environment, e.g., someone putting his access
card right on top of a corresponding reader. Table 2.1 is based on the data provided in
[SCU11]. It shows that corresponding cryptographic solutions are limited to exchanging
data at a rate of at most 200 kbit/s (100 kbit/s in the very common HF band) between
a tag and a reader.

For authentication, the common notion is that the whole process should not take more
than 150 ms (see Subsection 2.3.2). Given the above transfer rates, this implies that
about 30 000 bits can be considered as the upper bound for an authentication protocol’s
communication complexity. Furthermore, this number is even lowered by the fact that,
within those 150 ms, the respective data must be processed by the tag and that not only
non-volatile memory but also volatile memory (e.g., Juels and Weis assume 32–128 bits
in [JW05]) is a scarce resource, which heavily limits buffering incoming data. Also note
that, depending on the number of labels that need to be read per second, the number
of available bits per authentication instance may actually be much lower. For example,
in [CR08] it is stated that “in accordance with C1G2, a maximum tag to reader data
transmission rate of 640 kbps and a reader to tag data transmission rate of 126 kbps
based on equi-probable binary ones and zeros in the transmission can be calculated” and

13

2 Ultra-Constrained RFID Devices

that “performance criteria of an RFID system demand a minimum label reading speed
in excess of 200 labels per second”.

For the design of lightweight ciphers, the limited transfer rates of RFID tags are highly
relevant (though rarely2 discussed), too, as they determine the maximum possible clock
rates which the corresponding implementations have to be capable of (see Subsection 2.3.6
for further details).

2.3.2 Timing/Latency

Perhaps surprisingly, we were told the aforementioned upper timing bound of 150 ms for
authentication by various hardware producers on the basis of rather different reasons.
These ranged from human interaction in the presence of additional tag functions to
regulations by the automotive industry w.r.t. timing restrictions for component interaction.
From a technical point of view, UHF regulations would impose a maximum of 400 ms
due to channel hopping but “user performance requirements establish a time limitation
on a label operation since at least 100–300 labels must be read per second” [REC05]. For
example, Feldhofer et al. designed their AES-based authentication protocol such that
each tag has 18 ms time, hence “a maximum of 50 tags can be authenticated per second”
[FDW04]. Consequently, the upper bound of 150 ms told to us by several industrial
sources is probably already very generous and, depending on the use case, might actually
be much lower by factors of 10–50. Keep in mind that this would directly translate to
vastly reduced upper bounds for communication (e.g., a maximum of 600 bits instead of
30 000 bits per authentication) or available clock cycles (e.g., only 300 instead of 15 000;
see Subsection 2.3.6).
For implementations of encryption algorithms, one has to distinguish between block

ciphers and stream ciphers when it comes to latency. In the field of block ciphers, the
term latency usually refers to the number of clock cycles required to encrypt a single
plaintext block. Obviously, this number does not only depend on the algorithm itself, but
also on the way it is implemented (see Section 2.2). For stream ciphers (see Chapters 5
to 8), which, in their standard implementation, usually produce one keystream bit per
clock cycle, the term latency is traditionally used to describe the time (measured in clock
cycles) for the so-called state initialization, i.e., until the first keystream bit is available.
So in the case of block ciphers, latency behaves inversely proportional to the encryption
speed, whereas for stream ciphers, the influence of latency on the overall time to produce
some keystream segment decreases with increasing keystream lengths.

2.3.3 Area (in GE)

As explained, we focus on ASICs in this thesis because of their prevalence in the field of
ultra-constrained RFID devices. Due to the fact that for ASIC implementations, area

2In fact, during our research, we have not encountered a single work which discusses this connection.

14

2.3 Hardware Characteristics and Limits

Table 2.2: Area requirements of selected standard cells of the UMCL18G212T3 library (in
µm2 and GE). (cf. [Pos09])

Cell NOT NAND NOR AND OR MUX XOR D FF

Area [µm2] 6.45 9.68 9.68 12.90 12.90 22.58 25.81 51.61
[GE] 0.67 1.00 1.00 1.33 1.33 2.33 2.67 5.33

requirements in µm2 strongly depend on the used standard cell library (and, thus, the
fabrication technology), it has become common practice to resort to a more general metric
called gate equivalents (GE) instead. In short, one GE is equivalent to the area of a
two-input drive-strength-one NAND gate. This at least allows for a rough comparison of
area requirements derived using different technologies. To give the reader an impression
how typical standard cells contribute to the area of a circuit, in Table 2.2 we provide
a corresponding overview for the UMCL18G212T3 library, which underlies, e.g., our
hardware implementations of the (n, k, L)〈80〉-protocol (see Chapter 4) and of Lizard
(see Chapter 8). In particular, note that a D flip-flop (FF), the cheapest type of flip-flop,
already requires four times the area of an AND gate. This comparatively high area
demand of flip-flops is one of the motivations for our study of small-state ciphers, starting
in Chapter 6 and leading to our new lightweight stream cipher Lizard in Chapter 8.

In 2005, Juels and Weis [JW05] stated the “Security Gate Count Budget” of an EPC tag
to be “200–2000 gates” and, even today, this upper bound of 2000 GE is still commonly
considered to be the magic number for lightweight cryptographic implementations. From
an academic perspective, this conclusion can be drawn based on the fact that many
recent works (see, e.g., [WZ11], [PMK+11], [SE12], [MSGAHJ13], [BSS+15], [KJAB17])
still assume 2000 GE to be the upper bound w.r.t. tag area. Some other works assume
between 200 and 4000 GE [CR08, REC05] but are sometimes not clear about whether
they are actually referring to the total area of a low-cost RFID tag or just the amount
of gate equivalents available for security purposes. Apart from academic publications,
all experts from industry we spoke to confirmed that 2000 GE today still constitutes a
plausible security gate count budged for low-cost RFIDs. For comparison, one of the
currently smallest known AES implementations due to Feldhofer et al. [FWR05] requires
about 3400 GE, which implies that newly suggested approaches requiring even more area
should at least be obliged to justify what additional benefit they bring. This obligation
to justify even the need for a single additional gate has straightforward monetary reasons
as, according to [CR08], 1000 additional gates of silicon logic increase a tag’s price by
$0.01, which amounts to considerable sums given production volumes of hundreds of
millions in the case of low-cost RFID tags.
It should also be noted that, in addition to the number and placement of logic gates,

other (security-related) components contribute to the chip area of an RFID tag as well.

15

2 Ultra-Constrained RFID Devices

For example, one way to fix constant bit values (e.g., cryptographic keys) on individual
tags is to use fuses/antifuses and ‘burn’ a corresponding selection of them (usually through
applying high voltages) before a tag leaves the factory (see Subsection 2.3.10). Depending
on the particular technology, fuses/antifuses can require considerable area themselves
(e.g., in order to ensure that no other elements of the integrated circuit (IC) are affected
by burning them) and, equally important, additionally required components for setting
the values (e.g., for providing the high voltages) take chip area as well. Consequently,
this technique seems infeasible for ultra-constrained RFIDs when it comes to storing
large amounts (i.e., thousands) of constant bits at production time. Please note that we
are explicitly not referring to the use of fuses/antifuses as part of programmable read-only
memory devices (PROMs) here. This is because in lightweight cryptography, schemes
which are targeted at fixed-key scenarios (such as some of the stream ciphers in Chapter 6)
assume that accessing the respective key bits takes neither time nor inflicts other costs
like an increased power consumption. In other words, fixed key bits are considered to be
an immediate part of the cipher’s circuit. For PROMs, whose contents are accessed by
providing corresponding memory addresses (or which output their contents sequentially),
this is clearly not the case. In this spirit, we consider PROMs as another type of general
non-volatile memory (see Subsection 2.3.9) like electrically erasable programmable read-
only memory devices (EEPROMs) in this thesis, and not as a fixed-key storage option
(see Subsection 2.3.10) in the sense of lightweight cryptographic schemes.

Providing additional security against side-channel attacks, which use information
obtained from physical characteristics (such as power consumption) of an actual im-
plementation, can also easily double the area requirements of a cryptographic scheme.
For example, in [PMK+11] a side-channel resistant, serialized implementation of the
lightweight block cipher PRESENT [BKL+07] is suggested, which, depending on the level
of resistance, requires between 2282 GE and 3582 GE, as compared to an unprotected
serialized implementation for only 1111 GE.3 However, as pointed out before, we will
focus on the immediate algorithmic aspects of lightweight cryptography in this thesis and
leave the development of side-channel resistant versions of our schemes as future work.

2.3.4 Power

Closely related to the amount of required hardware logic is an RFID tag’s power consump-
tion, which consists of a static and a dynamic part. In short, static power consumption
denotes the power which a circuit consumes while being in a stable state, i.e., while no
switching (e.g., triggered by a clock signal or external inputs) occurs. Consequently,
static power consumption is roughly proportional to the area of a circuit. Dynamic power
consumption is the result of switching activity, i.e., when inputs of standard cells change

3Other important hardware metrics such as power consumption are affected by implementing side-
channel resistance, as well. For example, w.r.t. power consumption, the relative increase for the respective
implementations of PRESENT in [PMK+11] is even larger.

16

2.3 Hardware Characteristics and Limits

and new outputs need to be ‘computed’. In our case, such changes are usually triggered
by an external clock signal. Consequently, the higher the clock rate (see Subsection 2.3.6)
of an RFID tag is, the higher its dynamic power consumption will be. A common method
in hardware design to lower the switching activity independently of the clock rate is
to apply so-called clock gating. Roughly speaking, clock gating temporarily disables
parts of the circuit while they are not needed by disabling their connection to the clock
signal. This technique adds some further logic, but can have very positive effects on a
scheme’s power consumption and is hence also used in our implementation of Lizard
(see Subsection 8.5.1 for further details).

As a major part of this thesis is devoted to the search for new small-state stream
ciphers (see Chapters 6 to 8), let us point out here that flip-flops are not only costly in
terms of area (cf. Subsection 2.3.3), but also in terms of power. Their rather high static
power consumption is related to their comparatively large size, as explained above. But
especially in cryptographic contexts, also their dynamic power consumption is extensive.
For example, when used as a component of a cryptographic feedback shift register, due to
general security assumptions, in each clock cycle, such a flip-flop should have a probability
of 0.5 of changing its stored value, leading to considerable switching activity and, thus,
additional power consumption of a large standard cell.
The reason why power is such a ‘precious resource’ on low-cost RFID tags lies in the

fact that these devices are commonly powered via an electromagnetic field radiated by
the reader (i.e., passively). As the transmission power of an RFID reader is limited by
factors such as regulations (e.g., for the EPC Gen 2 band, to 4 W effective isotropic
radiated power (EIRP) in the U.S. and 2 W EIRP in Israel [Rep13]), the more power
a tag consumes, the smaller the maximum (legally possible) reading distance becomes.
In [JW05], Juels and Weis give a general upper bound of 10 µW and Saarinen and
Engels emphasize that power peaks should be below 3 µW to 30 µW [SE12]. Hence, if
an algorithm depends on high clock rates to perform its operations within a reasonable
time span and uses, in addition, power demanding components like EEPROMs (see
Subsection 2.3.9), the power budget of a lightweight RFID tag my easily be exhausted.
Another design choice which may heavily influence a tag’s power consumption is the
technology library used to implement it. For example, in [RPLP08], running the block
cipher PRESENT [BKL+07] at 100 kHz is compared for the libraries 0.35µ AMIS (3.3 V),
0.25µ IHP (2.7 V), and 0.18µ UMC (1.8 V), leading to different power consumptions of
11.20 µW, 4.24 µW, and 2.52 µW, respectively. Consequently, as already pointed out in
Section 2.2, especially for the comparison of power consumption it is of vital importance
to employ an identical set-up w.r.t. tools, technology libraries, and compiler options.

Finally, note that, as Ingrid Verbauwhede points out in [Ver13], power consumption is
also closely connected to temperature. More precisely, e.g., implanted devices such as
pace makers should not lead to temperature differences larger than 1 °C, motivating her
to explore the question “How much crypto in one microJoule or 10 microWatt?” [Ver13],
which is in line with the limit for power consumption that we have established above.

17

2 Ultra-Constrained RFID Devices

2.3.5 Energy
Another important issue emphasized by Ingrid Verbauwhede in the aforementioned talk
at Real World Crypo 2013 is that “low power is NOT low energy” [Ver13]. While a
circuit may have a rather low power consumption (e.g., due to low area and few switching
activity per clock cycle), it may still consume (too) much energy if it needs a lot of
clock cycles to ‘do the job’. In particular, a parallel or round-based implementation (see
Section 2.2) of a block cipher will usually be more energy efficient (w.r.t. the metric energy
per encrypted bit) than a serialized implementation, which has a lower power consumption
but requires more clock cycles to encrypt one block of data. For stream ciphers, which,
in their standard implementation, usually generate one keystream bit per clock cycle,
energy consumption is important w.r.t. the length of the generated keystreams. This
is due to the fact that stream ciphers usually need a state initialization phase before
the first keystream bit can be output. In consequence, if only very short keystreams are
produced (e.g., if the cipher is employed in a challenge-response authentication scheme),
it may actually be preferable from an energy perspective to use a block cipher or some
dedicated authentication protocol instead. In Subsection 8.5.1, we will discuss this topic
in further detail as part of the hardware analysis of our new stream cipher Lizard.

Note, however, that despite the undisputed importance of the factor energy in general-
purpose cryptographic hardware design, we will mainly focus on power in thesis. This
is due to the fact that energy is only relevant in the context of so-called active RFID
tags, which are equipped with a battery. The term active here also means that, due to
their autonomous power supply, such devices can perform tasks without an RFID reader
being present. For example, a group of nodes can interact among each other in order
to execute some kind of consensus protocol. Due to the additional battery and their
advanced capabilities, such devices are however far outside the scope of production costs
between $0.05 to $0.10 as targeted in this thesis. On passive RFID tags, on the other
hand, energy consumption is obviously irrelevant as long as the aforementioned limits
on power consumption are satisfied. Such tags are virtually ‘dead’ while no reader is
present.4

2.3.6 Clock Rate
Ceteris paribus, the higher the clock rate of a tag is, the more clock cycles are available
for the cryptographic processes. But as pointed out in the previous paragraphs, factors
like the power budget of a passively powered RFID tag impose an upper bound on its
clock frequency. Many works (e.g., [Pos09], [FDW04], [PLHCETR09]) consider 100 kHz
to be the prevalent clock rate feasible on ultra-constrained RFID tags. This value is in

4In fact, this is the very reason why we named our new lightweight stream cipher for power-constrained
devices (see Chapter 8) Lizard. Just like a lizard depends on sun’s rays to get active, the passive devices
targeted by our low-power cipher need the electromagnetic field radiated by an RFID reader to perform
their computations and transmit data (via modulation of the radiation reflected by the tag’s antenna).

18

2.3 Hardware Characteristics and Limits

line with the information we obtained from the RFID hardware producers who demanded
confidentiality.
Assuming an upper bound of 150 ms for executing a full authentication instance, a

clock rate of 100 kHz immediately implies an upper bound of 15 000 clock cycles on
the tag’s side to authenticate successfully. In Section 3.4, we will point out that many
allegedly lightweight protocols exceed this upper bound of 15 000 clock cycles even by
magnitudes and, hence, would be clearly infeasible also for higher clock rates like 1 MHz.

As we have seen above, the transmission bandwidth of RFID tags is also rather limited,
which has important implications for lightweight ciphers targeting such devices, because
the maximum transfer rates also determine the maximum possible clock rates which
the corresponding implementations have to be capable of. This holds especially for
stream ciphers, which, in their standard (i.e., non-parallelized) implementation, usually
produce one keystream bit per clock cycle. Given that at most 200 kbit/s have to
be encrypted, we (and the experts that we contacted) do not see a need for stream
cipher implementations on RFID tags that target significantly higher clock rates than
200 kHz.5 In the eSTREAM competition [ECR08] (see Chapter 5 for further details),
however, the ASIC implementations of the stream cipher candidates in the hardware
category were actually also evaluated (e.g., in [GB08]) with respect to a metric called
delay (see Subsection 2.3.7), which determines the maximum possible clock rate at
which they can operate. At this maximum possible clock rate, other metrics such as
power consumption were then determined. While this may have been relevant for the
general-purpose hardware-efficient stream ciphers targeted in eSTREAM competition,
a maximum possible clock frequency of 724.6 MHz (providing a throughput of 724.6
Mbit/s) along with a corresponding power consumption of 7772 µW (cf. [GB08]) for
the eSTREAM portfolio member Grain v1 [HJM06] is by magnitudes larger than what
ultra-constrained devices are capable of (also in terms of transmitting the encrypted
data). Consequently, we will not treat the metrics maximum clock frequency, maximum
throughput, or delay in detail in this thesis. For the sake of completeness, however, we
will briefly discuss delay in the next subsection.

2.3.7 Delay (Critical Path)
As pointed out above, for creating hardware implementations of cryptographic schemes, so-
called HDLs like VHDL or Verilog are used. These HDL descriptions are then transformed
into logic circuits in a process called synthesis by means of special compilers such as
Encounter RTL Compiler (see, e.g., Subsection 8.5.1 for a more detailed description at the
example of our new stream cipher Lizard). To perform this transformation, compilers
use so-called standard cell libraries auch as UMCL18G212T3 (0.18 µm, 1.8 V), where
standard cells represent an abstraction for a combination of interconnected transistors

5Even if the tag itself should operate at a higher clock rate, it would be possible to use a so-called
clock divider to operate the encryption circuit at a lower speed.

19

2 Ultra-Constrained RFID Devices

which realize some (simple) Boolean function such as AND, OR, XOR etc. Now when
the input of such a standard cell changes (i.e., switching activitiy occurs), it takes a
small amount of time until the output of this cell enters a new stable state. In particular,
during this short time span, which is called the standard cell’s delay, there is no guarantee
about which value(s) are provided at the cell’s output port(s). As a consequence, for a
circuit where its input has to propagate through a cascade of standard cells (i.e., for a
circuit which realizes a function of logical depth greater one) until it reaches the output
port(s) or some flip-flop (where the corresponding value will then be available at the next
clock cycle), the delays of the corresponding standard cells add up to the delay of the
respective path. Clearly, even for very simple circuits, there will usually be many of such
paths. The delay of the longest path (w.r.t. the delays of the standard cells contained in
this path) is called the critical path of this circuit.

This delay of the critical path (commonly simply referred to by the delay), determines
the maximum possible clock rate which the respective circuit can be operated at. For
example, as for low-cost RFIDs, 100 kHz is the commonly assumed clock rate (see
Subsection 2.3.6), this would allow a delay of up to 107 ps. For comparison, the delay of
our implementation of Lizard is 2474 ps (see Subsection 8.5.1), which corresponds to a
maximum possible clock frequency of about 404 MHz and, hence, allows for a throughput
of up to 404 Mbit/s. This simple example already shows that delays as, e.g., considered
for the general-purpose stream ciphers in the eSTREAM contest, play a negligible role
in the context of lightweight ciphers for ultra-constrained devices and, in particular,
should not serve as a design criterion. This is due to the fact that compilers can actually
be instructed to optimize for smaller delays (in order to allow for higher clock rates),
which, however, will lead to the use of more expensive components in terms of area and
power, something, which is highly undesirable for extremely lightweight implementations.
The reason why we provide these numbers anyhow for Lizard in Subsection 8.5.1 is to
demonstrate that even without optimizing for this metric, our new stream cipher allows
for being run at sufficiently high clock rates.6

2.3.8 Random Number Generator (RNG)

The hardware means of generating random numbers on a lightweight RFID tag can
probably be considered the ‘magic bullet’ with respect to authentication protocols and are
most likely the main reason why all of the hardware producers we interviewed demanded
to remain unnamed. In [JW05], Juels and Weis state w.r.t. the famous HB and HB+

authentication protocols (see Section 3.4) that the random noise bit ν (and probably
also the blinding factors required as part of each protocol round; see, again, Section 3.4)

6Also note that, though targeting low-cost devices, Lizard can still be used in scenarios where
throughputs larger than 404 Mbit/s are required, simply by using techniques like pipelining (as done for
the stream cipher Espresso in [DH15]) in order to reduce the delay or by implementing a parallelized
version of Lizard as described in Subsection 8.3.4.

20

2.3 Hardware Characteristics and Limits

“can be cheaply generated from physical properties like thermal noise, shot noise, diode
breakdown noise, metastability, oscillation jitter, or any of a slew of other methods”.
While the listed physical properties can undoubtedly serve as a source for the generation
of random bits, ensuring a sufficient level of entropy in these cases still constitutes
a difficult task and is subject to research areas on its own. For example, [TBM08]
presents a metastability-based true random number generator (TRNG) fabricated in
0.13 µm bulk complementary metal-oxide-semiconductor (CMOS) technology, which
requires 0.145 mm2 of area and consumes 1 mW of power (at a clock rate of 200 MHz).
Even for lower clock rates (and, hence, lower power consumptions), the required area
of 0.145 mm2 would still render this TRNG infeasible as a component (i.e., as only
one of many parts) of a low-cost RFID tag considering that “10 US cents RFID read
only chips have design sizes ranging from 0.16 mm2 to 0.25 mm2” [REC05] and that
the RNG’s “circuit should not occupy more area than 100× 100µm” [BB08].7 TRNGs
designed particularly for passive RFID tags exist, too, but we are only aware of those
like in [BB08], which focus on generating 16-bit-long random numbers mainly meant
for resolving collisions during communication. Hence, it is unclear to what extent such
low-cost RNGs are actually suitable for generating large, continuous amounts of random
bits (with sufficient entropy) in time as needed by many HB-type protocols for each
authentication instance. For the sake of completeness, we would like to mention that
there are also pseudorandom number generators (PRNGs) aiming at low-cost scenarios,
but, e.g., LAMED [PLHCETR09] still consumes roughly 1600 GE, which is about 600
GE more than a serialized implementation of the lightweight block cipher PRESENT
[RPLP08], which can be used straightforwardly to realize (one-way) authentication in the
spirit of [FDW04] without the need for any random numbers at all on tag side. As none of
the above TRNG/PRNG solutions seems to fit the scenario implied by HB-type protocols
on ultra-constrained devices, at this point, we have resort to information provided to
us by different experts from industry, who all agree that generating more than 128 true
random bits per authentication on an RFID tag in the price range of $0.05–$0.10 seems
currently implausible. For authentication schemes other than those of the HB-family,
128 true random bits would however be perfectly sufficient. This particularly applies to
protocols based on the principle of random selection (see Section 3.5 and Chapter 4) and
cipher-based approaches (see Section 3.3) like using our new stream cipher Lizard in a
challenge-response authentication scheme (see Chapter 8), the latter of which would, as
pointed out above, not need any random number generator at all on the tag side.

Note, however, that none of those HB-type protocols in Section 3.4 which are currently
unbroken were ruled infeasible only because they require more than 128 random bits per
authentication and, in addition, many protocols exceed this number even by magnitudes.

7In [BB08], a 0.13 µm CMOS process is used. For comparison, the AES implementation in [FWR05]
is based on a 0.35 µm CMOS process and occupies 0.25 mm2, which “compares roughly to 3400 gate
equivalents” in this context.

21

2 Ultra-Constrained RFID Devices

Finally, another problem particular to HB-type protocols is that they depend on a specific
probability distribution w.r.t. the noise bit ν and deriving such a fixed distribution from
the aforementioned sources is also everything but a trivial task.

2.3.9 Non-Volatile Memory (NVM)

While the cost of volatile memory is usually implicitly included in the numbers for area
through flip-flops/latches (respectively the components needed to build those), non-
volatile memory is commonly provided through the use of EEPROMs. One drawback,
however, to employing EEPROMs is their high latency. Moreover, from the first EEPROM
memory unit on, corresponding charge pumps have to be included in the design in order
to supply the high voltages necessary for memory programming. Hence, EEPROMs are
not only a major cost driver in terms of money and area but also have a significant impact
on a tags power budget when it comes to ultra-constrained RFID devices. Concretely,
Ranasinghe and Cole state in [CR08] that, for low-cost RFID tags, the power required
for a read operation amounts to 5–10 µW while “a write operation to its EEPROM
will require about 50 µW or more”, which would practically allow only read operations
(in the field) given the aforementioned power limitations of, e.g., EPC UHF tags, and,
hence, inhibit a tag from keeping values across a loss of power (for example, between
two separate communication instances). For comparison, the implementation of our new
stream cipher Lizard consumes only 2.1 µW (see Subsection 8.5.1). This is particularly
important when comparing ciphers like Lizard or Grain, which need to load the key
only during their state initialization phases, to ciphers that continuously access the secret
key in the EEPROM also during keystream generation, like Sprout, Fruit and Plantlet
(see Subsections 6.2.1 to 6.2.3 for further details).

With respect to area requirements, Nuykin et al. [NKTZ12] propose a low-cost 640-bit
EEPROM for passive RFID tags fabricated in a 0.18 µm CMOS process, which requires a
total area of 0.04 mm2. They also compare their design to several other recent suggestions,
which all require at least twice the area and mostly offer even less memory (e.g., 192 bits).
It is therefore not surprising that, as compared to the targeted low-cost EPC-like devices,
even significantly more expensive RFID tags like the HITAG 1 by NXP do not provide
more than 2048 bits of EEPROM. In line with this, Juels and Weis assume “128-512
bits of read-only-storage” and “32-128 bits of volatile read-write memory” to be realistic
memory resources available on low-cost RFID tags, not considering non-volatile read-
write-storage at all [JW05]. Finally, our sources from industry also all agreed that 2048
bits constitute a plausible upper bound for current EEPROM sizes on ultra-constrained
RFID tags in the $0.05 to $0.10 range.

As we have already mentioned ciphers that continuously use the secret key (which will
be discussed in detail as part of Chapter 6) above, we would also like to point out that
in [MAM17], Mikhalev et al. provide a further analysis of EEPROMs as a component
in lightweight stream cipher design. While their evaluation does not treat the question

22

2.3 Hardware Characteristics and Limits

of power consumption, it provides valuable information on the effects that EEPROM
access times have on the encryption speeds of ciphers that continuously use the secret
key such as Plantlet (see Subsection 6.2.3) and Fruit (see Subsection 6.2.2). However, as
the new cryptographic schemes that we suggest in this thesis need to access the secret
key only two times (the stream cipher Lizard; cf. Chapter 8) respectively four times
(the (n, k, L)〈80〉 authentication protocol with n = 64 and four rounds; cf. Chapter 4) per
execution, EEPROM access times are negligible in our case and will not be discussed in
further detail.

2.3.10 Fixed-key Storage

As explained in the previous subsection, some modern lightweight cryptographic schemes
can, despite their low area requirements, actually turn out to be unsuitable for many
ultra-constrained RFIDs when used in connection with EEPROMs, because continuous
access to this kind of key storage severely strains the power budget of respective devices.
A more suitable option in such cases is to use fixed keys, which are irreversibly set at
production time. This, however, comes with several drawbacks apart from the apparent
one that, e.g., in case of a security breach, it is impossible to change the secret key
of an RFID tag later on in the field. In particular, setting keys already at production
time inevitably means that the tag manufacturer will know this key, too, which may be
unacceptable for certain customers. Moreover, there is also the economical issue that such
fixed-key tags cannot be produced (and sold to intermediaries) in customer-independent
volumes, but have to leave the factory already in their final, specific configuration. Further
drawbacks of using fixed keys depend on how these are implemented as will be explained
below.
One common way of irreversibly setting the secret key already at production time

is the use of key-dependent masks. In a nutshell, such masks are used in integrated
circuit fabrication to apply the respective hardware designs to wafers8 in a process
called photolithography. This effectively means that the secret key is already part of the
corresponding hardware circuit. However, while this can alleviate the need for additional
components like EEPROMs (see Subsection 2.3.9) or fuses (see below) on low-cost RFID
tags, it inevitably results in the potentially dangerous situation that large quantities of
tags will now share the same irreversible key. Concretely, as production costs increase
with each new mask (by thousands of U.S. dollars), the size of per-mask-batches must
be big enough (i.e., hundreds of thousands or even millions of devices) to allow for
per-tag savings (e.g., by removing the need for EEPROMs) which compensate for the
additional costs of using multiple masks. At the same time, an attacker’s outlook on, e.g.,
counterfeiting large amounts of items who are all protected by RFID tags using the same

8Wafers are plates of semiconductor material, which, at the end of the production process, contain
the final microcircuits. Note that each wafer can (and usually does) consist of many independent circuits,
which are then separated and packaged into individual casings.

23

2 Ultra-Constrained RFID Devices

key, may now easily justify the costs for mounting a key recovery attack against one of
those tags. In Subsections 3.2.1 and 3.2.2, we will discuss this grave security hazard of
group keys in further detail at the example of two real-world attacks by the author of
this thesis against the infrastructure of the University of Mannheim.
Clearly, if the deployment scenario requires fully individual keys, key-dependent

masks are not economical. Here, a fixed-key implementation alternative is the use of
fuses/antifuses, which were already treated as part of Subsection 2.3.3 in the context
of chip area. The advantage over key-dependent masks is that fuses/antifuses allow
to set the secret key at a later point in the production process, at which it is actually
feasible to do this on a per-tag basis. Moreover, once fixed, they neither suffer from the
high power consumption nor from the latency problems characteristic of EEPROMs.9
However, the general problems that come with factory-set fixed keys (as discussed in the
first paragraph of this subsection) remain. And, like EEPROMs, fuses/antifuses are an
additional component not required with key-dependent mask, which, e.g., increases chip
area as explained in Subsection 2.3.3.
Finally, it should should also be noted that implementing fixed keys via masks or

fuses/antifuses can actually introduce new security challenges. This is due to the fact
that invasive hardware attacks (for instance, through etching and the use of an electron
microscope) pose a real danger to RFID tags whose keys are set using these techniques.
Especially if group keys are used (see above), an attacker will not hesitate to destroy a
tag in the course of obtaining its secret key, because this same key can then still be used
to manipulate all the other devices in the group.

2.4 Conclusion and Outlook
In this chapter, we presented all relevant hardware metrics that we encountered during
our study of cryptographic algorithms for ultra-constrained devices. We will not provide
a summarizing table of strict limits, however, for the following reason. As pointed
out at several occasions above, many of the metrics are actually subject to a tradeoff
(e.g., area/power vs. delay) or depend on the requirements of the actual application
scenario (e.g., authenticating only one tag in at most 150 ms or a whole group of tags
with only 18 ms time for each tag as done in [FDW04]). In particular for extremely
lightweight algorithms, which operate at the very edge of what is technically possible,
a collection strict of limits would in fact be counterproductive. Instead, we suggest to
use the information presented in this chapter in the following way when designing a new
cryptographic scheme for ultra-constrained devices:

(1) Ask yourself what your new scheme is exactly meant to provide. In particular,
give a precise specification of its usage environment (How many tags need to be

9Remember that, as pointed out in Subsection 2.3.3, we are not talking about fuses/antifuses as a
component of PROMs here.

24

2.4 Conclusion and Outlook

authenticated simultaneously? What encryption speed is targeted? How long need
the generated keystreams to be?) and hardware conditions (What capabilities is
the RFID tag supposed to have?) in your design document.

(2) Identify the metrics and corresponding limits relevant for your use case by reading
this chapter. Can ultra-constrained devices actually provide what your scheme
needs? Which tradeoffs will be the most favorable ones?

(3) Design your scheme and create a first reference implementation with these metrics
in mind.

(4) Double-check by consulting this chapter once more. Are all of the limits which are
relevant for your use case satisfied? Might small tweaks of your algorithm even
allow for a broadened range of application scenarios while still satisfying the limits?

Admittedly, this short ‘design guide’ might sound trivial or even naïve at first. However,
our experience shows that, unfortunately, these basic points are often completely ignored
in academic publications of new cryptographic schemes. This particularly holds for
authentication protocols, as we will see in Section 3.4. For example, many of the allegedly
lightweight authentication schemes discussed there simply claim to be lightweight due to
the use of ‘simple’ operations, neglecting that they have to perform these operations an
unfeasibly high number of times (implying unrealistically high clock rates or the violation
of timing restrictions) or the fact that the respective hardware does not provide a powerful
RNG. In the context of block ciphers and stream ciphers, on the other hand, it has been
good practice for a long time now (probably also due to the respective competitions
like the eSTREAM contest) to supply new design suggestions with at least some basic
assessment of feasibility. Still, we think that also these design directions will benefit from
the comprehensive collection of hardware metrics and limits for ultra-constrained devices
presented in this chapter.

In the following Chapter 3, we will provide an introduction to the field of lightweight
authentication. In particular, as indicated above, we will show (based on the limits esta-
blished in the current chapter) that a broad range of allegedly lightweight authentication
schemes is actually not suitable for ultra-constrained devices. In Chapter 4, we will then
introduce a feasible alternative in the form of our new (n, k, L)〈80〉-protocol. The metrics
and limits discussed above will also play an important role in Chapter 8 in the context of
our new lightweight stream cipher Lizard, which explicitly targets power-constrained
devices.

25

Da ging der Wolf fort zu einem Krämer und kaufte ein
großes Stück Kreide, die aß er und machte damit seine
Stimme fein. Dann kam er zurück, klopfte an die Haustür
und rief: “Macht auf, ihr lieben Kinder, eure Mutter ist
da und hat jedem von euch etwas mitgebracht.”

Der Wolf und die sieben Geißlein (Gebrüder Grimm)

CHAPTER3
Lightweight Authentication

ABSTRACT
Authentication solutions are probably the most common field of application for ultra-constrained
RFIDs. They range from obvious representatives which many of us use every day, such as
contactless smart cards for entrance control, to more hidden ones, such as RFID tags incorporated
or attached to goods in order to track them or for protecting against product piracy. And the
application areas of RFID-based authentication are constantly broadening. Human-implantable
tags already exist, imposing new technological challenges (such as a low power and/or energy
consumption) on lightweight authentication solutions, whose striving for minimality is currently
still mainly motivated by the cost pressure for the production of corresponding devices.

In this chapter, we provide an introduction to authentication in general and its lightweight
forms in particular. Based on examples of failed real-world authentication solutions, we develop a
number of rules that should be considered when deploying RFID-based authentication schemes
in the field. Furthermore, we describe and evaluate (based on the hardware limitations of
ultra-constrained devices as introduced in Chapter 2) the three most common approaches for
lightweight authentication: (block) cipher-based protocols, LPN-based protocols, and protocols
based on random selection of secret linear functions. Building on a scheme of the latter type,
namely the (n, k, L)++-protocol, we will then suggest a new lightweight authentication protocol
actually feasible for ultra-constrained RFIDs in Chapter 4.

Declaration of Origin: Subsection 3.1.1 is based on the paper Hardware Efficient Authen-
tication based on Random Selection [AHK14], written together with Frederik Armknecht and
Matthias Krause and presented at Sicherheit 2014. Sections 3.3 and 3.4 are based on the paper
Lightweight Authentication Protocols on Ultra-Constrained RFIDs – Myths and Facts [AHM14],
written together with Frederik Armknecht and Vasily Mikhalev and presented at RFIDSec 2014.
Section 3.5 is based on the paper The Cryptographic Power of Random Selection [KH11], written
together with Matthias Krause and presented at SAC 2011, and the paper [AHK14] (see above).
Note that [KH11], in turn, is largely based on the diploma thesis [Ham10] of the author of this
PhD thesis (see Footnote 20 on page 58 for further remarks).

27

3 Lightweight Authentication

3.1 Introduction
As pointed out before, embedded systems are increasingly permeating our information
society, being more and more used also in security- and safety-critical applications.
Devices of extremely small computational power like RFID tags are used in practice
to a rapidly growing extent, a trend commonly referred to as ubiquitous computing.
One of the major use-cases for such pervasive devices are authentication solutions, e.g.,
access control for buildings or cars, electronic passports or even human-implantable chips
providing sensitive medical information about a person. Moreover, in times of increasing
product piracy, secure (esp. unclonable) RFID tags play a major role in anti-counterfeiting
solutions [STF05]. Similarly, they are also employed to guarantee the adherence to legal
restrictions. In the U.S. state of Colorado, for example, the use of RFID technology is
mandatory for “digital tracking of marijuana plants from seed to sale” [His14].

Before we go into the details of lightweight authentication, it is important to distinguish
three different concepts that are closely connected and hence often mixed up, which can
have devastating security impacts, as we will see, e.g., in Subsections 3.2.1 and 3.2.2:

Identification refers to the process of claiming an identity. This happens, for example,
when you enter your username in some login form (e.g., in order to access your
email account). Similarly, in our context of RFID communication, identification
takes place when a tag broadcasts some unique identifier as in the case of Electronic
Product Codes (EPCs), which are meant to provide an alternative to classic barcodes.
Obviously, radio-frequency identification already contains this identification purpose
right in its name. However, in our email example, anybody who knows your
username (e.g., because it is your email prefix) could enter it into the respective
login form. Similarly, by means of some dedicated hardware (see Subsection 3.2.2),
some attacker could transmit the same identifier as the original valid RFID tag
after eavesdropping on it. To prevent this, identification is usually accompanied by
a second stage called authentication.

Authentication is (in our context) the act of proving that the previous claim made about
the identity is actually true. This is usually achieved by one (or a combination) of
three factors: something that the user has (e.g., a security token), something that
the user knows (e.g., a password), or something that the user is (e.g., biometric
authentication via fingerprint or iris scans). Hence, in our previous email example,
the user would not only have to enter his username but also his password into the
login form in order to be successfully authenticated by the email server. Similarly,
RFID reader and tag would execute some kind of authentication protocol (e.g., a
challenge-response scheme based on some common shared secret) in order to ensure
that the tag claims its identity rightfully. After the process of authentication has
been completed successfully, our user, however, cannot yet access his email account.
This requires the additional step of authorization.

28

3.1 Introduction

Authorization is the act of granting certain rights to some entity that has been successfully
identified and authenticated. In the case of our valid user, this would mean that
(e.g., based on some database with user rights) he is now allowed to access his
mailbox. However, as he lacks the rights for the mailboxes of other users, those
will be forbidden to him. (The same, e.g., applies to user folders on multi-user
operating systems.) W.r.t. our RFID tag, the process of authorization could, e.g.,
lead to the opening of a door to some restricted area.

As pointed out above, understanding the differences between these three concepts is
vital in terms of security. It is also important in order to understand what this chapter
and the following Chapter 4 are meant to provide. More precisely, we will exclusively
focus on the part of authentication. Authorization is naturally performed on the RFID
reader’s side, respectively by the back end (i.e., the underlying server infrastructure)
which it is connected to. Identification is a large and interesting research area on its own,
treating problems such as privacy preservation.
For example, already today, most people carry several RFID-capable cards (access

cards, credit cards etc.) in their wallet and, for reasons of convenience, often simply
hold this wallet in front of corresponding RFID readers. Without techniques for privacy
preservation, this could, e.g., be used to trace to a user or to obtain other sensitive data
such as membership information based on unique properties of the respective identification
string. Possible countermeasures include hardware solutions such as range reduction
(requiring, e.g., an RFID access card to be put right on top of the corresponding reader)
or wallets made from special shielding materials that create a Faraday cage. Another
approach is to strive for privacy preservation already on the protocol level. A very simple
solution based on a symmetric secret key k ∈ {0, 1}n could, e.g., look as follows: The
verifier (i.e., the RFID reader) chooses a random challenge c ∈R {0, 1}n and sends it to
the prover (i.e., the RFID tag). The prover also chooses a random number x ∈R {0, 1}n
and computes the response r := (x, Fk (c||x)), where Fk : {0, 1}2n −→ {0, 1}2n is some
key-dependent pseudorandom function and c||x represents the concatenation of c and x.1
The verifier then searches his user database for some key k′ such that (x, Fk′ (c||x)) = r
holds. Obviously, this combined authentication-identification scheme has the severe
disadvantage that it puts a heavy load on the verifier in case of large user groups due to
the costs for finding the right key through repeated evaluations of Fk′ for different k′.2
Other, more efficient schemes (w.r.t. the costs on the verifier’s side) exist, too, but

they are commonly based on the use of asymmetric cryptography and additional building
1The reason why the prover also chooses some random number x is to thwart a tracing attack (e.g.,

to record the movements of a card holder within some area), in which the attacker would always send the
same challenge c leading to identical responses due to the unique key k of the tag.

2Also note that this simple authentication scheme would be extremely susceptible to so-called denial-
of-service attacks (DoS attacks), in which the attacker would flood the verifier with authentication requests
under non-existent keys in order to bring the verifier (respectively its back-end system) down (or render
it at least unavailable to other, legal RFID tags) based on the resulting computational overload.

29

3 Lightweight Authentication

blocks such as hash functions or message authentication codes (MACs) (see, e.g., [BCI08]
or [Vau07]). As such solutions, however, are currently infeasible for ultra-constrained
RFID tags, we will not treat (privacy-preserving) identification in further detail in this
thesis, but instead focus on the part of lightweight (privacy-preserving) authentication.
In particular, when speaking of privacy preservation, we will thereby exclusively refer to
its authentication-related aspects such as avoiding the aforementioned tracing attacks (cf.
Footnote 1 on page 29).
Before we continue by providing an overview of approaches for designing concrete

lightweight authentication schemes targeting ultra-constrained devices, it should be
noted that, apart from the three different factors ‘what you know’, ‘what you have’, and
‘what you are’ discussed above, authentication has many more varieties. For example,
besides one-way authentication, where, e.g., an RFID tag only proves its identity to the
reader, there is also the concept of mutual authentication, where both parties prove their
respective identities. Depending on the scenario, the failure to employ the latter can lead
to devastating security problems as we will see in Subsection 3.2.1.

3.1.1 Authentication as targeted in this Thesis
In this thesis, which has its focus on ultra-constrained RFIDs as introduced in Chapter 2,
the schemes we consider all have to operate at the very edge of what is technically
possible in terms of minimality. In the spirit of this minimalism, we will concentrate on
the most basic variant of authentication problem and try to solve it with as few resources
as possible: an RFID tag seeking to prove its identity to the reader by means of some
shared secret. The common approach here is to use challenge-response protocols (see our
privacy-preserving example above), where the tag authenticates itself towards the reader
by implicitly proving the knowledge of the secret. This is accomplished by answering
challenges sent by the reader, where the responses depend on the shared secret.
Due to their hardware demands typical authentication protocols (e.g., those that are

based on asymmetric cryptography) are usually not suited for ultra-constrained devices
in the production cost range of $0.05 to $0.10. Consequently, the search for dedicated
lightweight authentication protocols became an important topic in cryptography during
the last years with high relevance for academia and industry, generating a significant
number of different approaches and schemes.
Nonetheless, one can identify three approaches that can be seen as the most relevant

principles for constructing lightweight authentication schemes today:
(1) protocols which use lightweight block ciphers as basic cryptographic operations,

(2) protocols which employ the well-researched principle of adding biased noise to a
secret linear function,

(3) protocols which are based on the principle of random selection, being the most
recent of all three paradigms.

30

3.1 Introduction

Concerning approach (1): Block cipher-based protocols can be seen as a very straight-
forward approach for enabling authentication. The basic idea is that the verifier (e.g., an
RFID reader) chooses a random value and sends as challenge the encryption of this value
to the prover (e.g., an RFID tag). The task of the prover is to decrypt the challenge and
to send back the chosen value in plaintext. (Trivially, the task of correctly encrypting
an unencrypted nonce chosen at random by the verifier is equivalent here.) Obviously,
the computational effort is mostly dominated by the execution of the deployed cipher.
It has to be stated that very convincing proposals for lightweight block ciphers such as
PRESENT [BKL+07], KATAN and KTANTAN [DCDK09], PRINCE [BCG+12], Simon
[BSS+13], and SKINNY [BJK+16] do exist, which have been analyzed in a large number
of papers. However, such protocols are less flexible with respect to scalability than other
approaches, e.g., as they always have to take the block size of the underlying block
cipher into account.3 Nonetheless, we will give a more detailed example for the principle
feasibility of this approach w.r.t. ultra-constrained RFIDs in Section 3.3.
Clearly, as an alternative to block ciphers, also stream ciphers can be used as part of

an authentication scheme. However, according to our sources in industry (see Chapter 2),
corresponding solutions are currently less common on ultra-constrained RFID tags. In
Section 9.2, we will present an FPGA ‘prototype’ of an authentication scheme feasible for
such devices based on our new lightweight stream cipher Lizard introduced in Chapter 8.

Concerning approach (2): The security of these kinds of protocols w.r.t passive attac-
kers can be reduced to the widely accepted hardness of the LPN assumption. In a nutshell,
LPN-based protocols all adapt more or less the following principle: given a challenge
a ∈ GF(2)n, n ∈ N, the response is computed as f(a)⊕ e, where f : GF(2)n −→ GF(2)
is a secret (linear) function and e some noise bit which takes a value of 1 with a constant
probability p < 1/2. Straightforwardly, the authentication process comprises of running
the above protocol round many times and accepting finally iff the fraction of wrong
answers remains below a certain threshold.

A severe drawback of these protocols is that presumably secure parameter choices often
imply large amounts of transmitted data. Combined with the small available bandwidth
in RFID communication, this may add up to authentication times unacceptable for many
applications. A further major problem is that many variants (e.g., HB+ [JW05], HB#

[GRS08], Trusted-HB [BC08]) have already been broken by active MITM attacks (see,
e.g., [GRS05], [OOV08], [FS09]). In Section 3.4, we will discuss LPN-based authentication
protocols in further detail and conclude that currently there does not seem to be a single
unbroken suggestion feasible for ultra-constrained devices.

3In particular, depending on the block size and the size of the challenges and possible additional data
(such as the random value x {0, 1}n in the simple, privacy-preserving authentication scheme example
given above), the hardware cost of block cipher-based authentication approaches can significantly increase
beyond the cost for the core encryption algorithm, e.g., due to the need to also implement a suitable
mode of operation.

31

3 Lightweight Authentication

Concerning approach (3): The principle of random selection implies that the secret key
K consists of a small collection of L linear mappings F1, . . . , FL. The prover computes
responses to challenges a by randomly choosing one of these functions Fl ∈ K and
replying with Fl(a′), where a′ depends on a in a way specified by the concrete protocol
variant (see, e.g., Subsection 3.5.1 and Section 4.2).

The first protocols of this kind were the CKK-protocols given in [CKK08]. Further
protocols based on the principle of random selection include the Ff -protocols in [BKM+09]
and the Linear Protocols in [KS09]. The most important and still unbroken suggestion
of the latter type is the (n, k, L)++-protocol, which is provably resistant w.r.t. to a wide
family of active MITM attacks. Moreover, in analogy to HB-type protocols and the LPN
problem, in [KH11] a learning problem called RandomSelect has been introduced and
analyzed, and it is conjectured that “the complexity of RandomSelect also defines a lower
bound on the security achievable by protocols using random selection of linear functions,
e.g., the improved (n, k, L)++-protocol”.
In Section 3.5, we will further study the principle of random selection and also recall

the (n, k, L)++-protocol from [KS09]. This will then serve in Chapter 4 as the basis for
our new (n, k, L)〈80〉-protocol, which, in contrast to the original (n, k, L)++-protocol, is
actually feasible for ultra-constrained RFIDs.

But before we go into details w.r.t. the above approaches for designing lightweight
authentication schemes, we will now give some practical examples of security failures in
the context of authentication.

3.2 Excursus: When Authentication Goes Wrong

The following two subsections contain anecdotal descriptions of flawed authentication
approaches which the author of this thesis encountered during his time at the University
of Mannheim. These examples shall serve to illustrate the importance of various points
we have made so far in this chapter (e.g., identification vs. authentication) and Chapter 2
(e.g., random number generation). Note, however, that as the technical details of the
respective attacks only partly fall into the general scope of this thesis, we will treat the
corresponding background in this section at a rather high level. Our focus here is on the
conceptual mistakes that enabled these attacks in the first place, as the resulting lessons
learned equally apply for authentication schemes targeting ultra-constrained devices.

3.2.1 Compromising the University VPN

Virtual private networks (VPNs) are a very common method for protecting digital
communication that has to pass an untrusted channel such as the internet. In particular,
they are used to allow, e.g., remote workers to securely connect to the local area network
(LAN) of their company. To this end, the client uses some dedicated software (or some

32

3.2 Excursus: When Authentication Goes Wrong

functionality pre-integrated in his operating system (OS)) to create a so-called VPN
tunnel. After this tunnel, which is usually encrypted, has been established, the client
can then access protected resources that would normally only be available via direct
connection to the company LAN. One of the major providers of such solutions is Cisco
Systems, which will also be in the focus of this subsection.
In March 2005, when the author of this thesis was a second-semester student at the

University of Mannheim, VPNs, however, also served another important purpose. At
that time, network communication over wireless local area networks (WLANs) was still
a rather new technology in the consumer market and the means of protecting such
connections were very limited. In particular, the Wired Equivalent Privacy (WEP)
algorithm, which had been the standard way of encrypting WLAN communication since
1997 [Ins97], was already proven highly insecure by Fluhrer, Mantin, and Shamir in 2001
[FMS01] (due to a weakness in the key scheduling algorithm of the stream cipher RC4).
In 2004, the Wi-Fi Protected Access (WPA) protocol [Ins04] was introduced as a successor
to WEP, but at the beginning of 2005, a large number of devices did not yet support
it. As a consequence, many German universities, including the University of Mannheim,
resorted to another solution: In a first stage of the communication establishment, they
allowed unauthenticated and unencrypted connections to their WLAN access points.
These connections, however, were strictly limited to traffic between the respective client
and a VPN appliance (usually a Cisco VPN 3000 Series Concentrator). In a second
stage, the client then had to establish a VPN tunnel with this VPN appliance on the
basis of his credentials (i.e., username and password). Only after this process had been
completed successfully, the user was then allowed to access the university network (and
the internet) through this encrypted tunnel.
This setup, which, as pointed out above, was used at many German universities at

the beginning of 2005, got the author of this thesis wondering whether an attacker could
‘make something out of it’. This suspicion was, in particular, sparked by the initial stage
of establishing an unauthenticated and unencrypted WLAN connection, which, e.g., easily
allows for (passively and, hence, undetectably) eavesdropping on the corresponding traffic
between the clients and the VPN appliance during the negotiations of the respective VPN
tunnels. Doing so, the author quickly learned that the corresponding VPN configuration
obviously used to the so-called Aggressive Mode. In a nutshell, when using Internet Key
Exchange (IKE) in this context as part of authentication setup, there are two options:
Main Mode and Aggressive Mode. Both variants rely on Diffie-Hellman key exchange
(DH key exchange) for establishing a common secret session key that is used in the later
parts of the communication. However, in Aggressive Mode, the multi-step IKE phase of
Main Mode is compressed into a smaller number of steps.4 As a result, when Aggressive

4This has mainly two reasons: First, connection setup is faster due to the reduced number of
authentication steps. Second, and more importantly, when used straightforwardly, Main Mode would
require the use of static Internet Protocol addresses (IP addresses), which is hardly feasible in the context
of, e.g., university networks.

33

3 Lightweight Authentication

Mode is used, parts of the authentication setup are not yet protected by the session key
and, hence, leaked to an eveasdropper, the most important of it being the hash of the
so-called pre-shared key (PSK). In the VPN setup used by the University of Mannheim
at the beginning of 2005, this PSK was employed as a group key (and all members of the
university, including students, belonged to the same group, hence sharing the same key),
which, during the IKE authentication phase, served to mutually authenticate a client
and the VPN appliance. Consequently, everyone who was able to get hold of this PSK
was, in principle, able to take the role of the university’s VPN appliance. This will play
an important part in the later course of our attack.

So what are the means to learn this important PSK? In 1999, John Pliam had already
pointed out to the Internet Engineering Task Force (IETF) severe security problems w.r.t.
authentication via IKE and Xauth (see later) with weak PSKs [Pli99]. In his respective
messages, he drafts how to obtain the PSK from the IKE phase for Main Mode and
Aggressive Mode based on dictionary attacks5, where in Aggressive Mode, the attack can
even be performed passively (i.e., using only eavesdropping techniques and not interacting
with the valid communication parties). However, dictionary attacks can be very costly
(and remember that these events take place in 2005), so the author of this thesis had to
resort to another way of obtaining the PSK.

Fortunately, being a member (and, hence, valid user) of the university himself, he had
access to the configuration file that each VPN client program needed to be supplied with.
Naturally, in order to be used in the aforementioned authentication process, the PSK had
to be contained in this file. However, for security reasons, it was there only in encrypted
form. But clearly, at some point during the connection process, client software would load
it. To the help of the author, older versions of the corresponding Cisco VPN client had
the weakness that during connection establishment, a plaintext version of the encrypted
PSK could be extracted by standard tools from the volatile memory of the respective
computer system. Cisco acknowledged this problem in 2004 [Cis04], but susceptible client
versions could still be obtained in March 2005 and thus allowed the author of this thesis
to use this type of key recovery. (In October 2005, the situation became then even easier
for attackers, when HAL 9000 of the ‘security’ group Evil Scientists published his Cisco
Password Revealer, which was based on reverse engineering the code that Cisco used for
encrypting the PSK before storing it in configuration files, hence allowing for direct key
recovery.)

So at this point, the author of this thesis was now able to take the role of the university’s
VPN appliance. Through the aforementioned messages by John Pliam [Pli99] from 1999
and various recent computer emergency response team (CERT) warnings (like that of
RUS-CERT of the University of Stuttgart [RUS04]) from 2004, he then became aware

5A dictionary attack targets weak passwords by searching for common terms (and variations of
those) in a dictionary supplied by the attacker. In the case of the above attack against Aggressive Mode,
these potential passwords are hashed and compared to the hash of the actual PSK obtained via, e.g.,
eavesdropping.

34

3.2 Excursus: When Authentication Goes Wrong

that in many cases, Xauth was used on top of IKE for additional client authentication
(remember that through the IKE authentication part discussed above, the user and the
VPN appliance have only been mutually authenticated using the PSK, i.e., a group
key; consequently, the VPN appliance does not yet know which of its users is actually
trying to establish a VPN tunnel). During this additional user authentication step, the
respective username and password were actually sent through the newly established VPN
tunnel to the VPN appliance; in particular, no kind of, e.g., challenge-response protocol
was performed to additionally protect the password. As it quickly turned out, also the
University of Mannheim used this problematic setup.
So just by studying corresponding security reports, the author of this thesis (then

being a second-semester student) now had enough information to be convinced that
it would be possible to compromise the university’s VPN system and obtain the login
credentials of its users. However, two technical parts of the attack were still open: First,
it was necessary to set up a fake VPN appliance under the attacker’s control, which had
to behave like the proprietary Cisco solution at least until the login credentials had been
transmitted. After this point, the connection could then be dropped as the goal was only
to obtain the user passwords and not to mount a full MITM attack. Second, the valid
users actually had to be lured into connecting to this fake VPN appliance.

Realizing the second part was fairly easy as the university’s WLAN access points did
not authenticate themselves in any way to their users. Instead, the clients automatically
connected to those access point which broadcasted the name of the university WLAN and
had the strongest signal. Here, it is important to know that common WLAN devices only
use a signal strength of 30 mW. With special equipment (a Senao NL-2511CD PLUS
EXT2 PCMCIA card with Prism 2.5 chipset), the author was however able to set up a
WLAN access point with a signal strength theoretically6 beyond 200 mW. This ensured
that newly connecting clients in the periphery of the author’s system would always
connect to his WLAN access point instead of to the university’s one. Moreover, even
already connected users could be lured to this fake access point by first deauthenticating
them from the regular ones with the use of tools like void11 [van05].
The final (and more difficult) step was to create a fake VPN sever compatible with

Cisco clients. Obviously, due to monetary reasons, obtaining an original Cisco VPN 3000
Series Concentrator was out of scope for the author being a student. So the only possible
solution seemed to take some open-source VPN server software and modify it in a way
compatible with the proprietary Cisco protocol. Fortunately, during his corresponding
research, the author of this thesis then learned that Philippe Sultan had already started
a similar project in 2004 [Sul04] based on the Openswan [Xel17] IPsec implementation
for Linux. While some additional changes had to be made to the code provided by
Philippe Sultan in order to increase compatibility and also to add some functionality

6In 2005, 100 mW was the legal maximum signal strength in Germany, so, naturally, the author of
this thesis never exceeded this limit during his tests back then.

35

3 Lightweight Authentication

(such as improved credential logging), in the end this was a task that could be done by a
second-semester student with some diligence and time.

Now, the complete setup was ready to be tested in a controlled environment in order
not to break any laws. And, in fact, everything worked as intended. That is, in a first
stage, the clients connected to the fake WLAN access point provided by the author
instead of the regular one of the university. Then, they started to initiate connections to
the fake VPN appliance and trusted it to be valid based on its knowledge of the PSK.
Finally, they transmitted their username and password (which were automatically logged
by the fake VPN server) and the connection was terminated by the fake access point.

After the author of this thesis had completed his proof-of-concept setup, he informed
the university authorities and, following a transition period of several months, the whole
VPN system was updated to a new, certificate-based solution, in which asymmetric
cryptography was now used to prove the server’s identity. A configuration of this type
is still in place (and seemingly secure) today, many years after the described incident
happened in March 2005.
As a final note, it should be pointed out that if revealed to the general public of the

university, the consequences of this attack would have been disastrous. This is due to
the fact that the captured VPN credentials were not only used for network access, but
actually severed as the general login details for almost all electronic services provided by
the university. In particular, they also allowed access to the mail accounts of students
and staff members (including professors). Moreover, for student accounts, they allowed
to subscribe and unsubscribe the respective students to any kind of exam in their course
of studies and, for staff accounts, they allowed to access the electronic grade management
system of their chairs, including the possibility to see student grades from the past
years and enter new grades for current courses. Fortunately, the about five months of
transition period, until the new VPN setup could be launched, passed without leakage (or
independent discovery by some other student) of the attack described in this subsection,
so, in the end, no harm to the university or its members seems to have resulted from the
failed VPN authentication solution.

Now what are the lessons learned from this security incident and how do they transfer
to the field of lightweight cryptography for ultra-constrained devices?

Key Management. Symmetric group keys should only be used with great care. In
particular, it is of vital importance that the respective group members can actually
be trusted (this was not the case for the PSK in the VPN scenario targeted above
and will also play an important role in the following Subsection 3.2.2). But especially
for low-cost RFID devices, there is another danger to the use of group keys, which
was already mentioned in Subsection 2.3.10 and results from the trivial principle
that the higher the potential gain, the more an attacker will invest into reaching
his goal. The use of lightweight cryptographic solutions (with, e.g., ‘only’ 60- or
80-bit security), on the other hand, is often justified by the assumption that no

36

3.2 Excursus: When Authentication Goes Wrong

attacker will spend considerable resources in order to recover the secret key of, e.g.,
a $0.05 to $0.10 RFID tag that is used to protect a single box of low-cost drugs
like Aspirin against counterfeiting. If, however, the producer uses the same key for
all of his boxes, it might now actually be worth the effort for an attacker.7

Service Separation. Use low-cost RFIDs only for low-impact purposes and, in particular,
protect separate resources (with different sensitivity) by separate means, even if the
user is the same. This may sound trivial, but in the above VPN example, the lack
of using different login credentials for different purposes was exactly what made
the attack so dangerous (as it allowed to also access, e.g., mail accounts and the
grade management system through the intercepted VPN user passwords).

Key Protection. The secret key is not only vulnerable in its non-volatile storage location,
but also during its usage by a cryptographic algorithm. In the above VPN attack,
this allowed the author of this thesis to extract the plaintext PSK from the random-
access memory (RAM) of his personal computer (PC), even though it was stored
in encrypted form in the configuration file on his hard drive. Similarly, especially
for RFID tags, not only key recovery via targeting the EEPROM or breaking the
cryptographic scheme has to be considered, but also side-channel attacks, which
were already discussed as part of Subsection 2.3.3, pose a serious threat. For
example, in [OP11] a side-channel key recovery attack against the popular MIFARE
DESFire MF3ICD40 contactless smart card is presented. Its predecessor, the
MIFARE Classic, will be in the focus of the following Subsection 3.2.2.

3.2.2 Compromising the University Member ID Card
The next authentication-related security incident which we are going to analyze took
place at the beginning of 2013. It is centered around the MIFARE Classic, an ASIC-based
contactless smart card, which was introduced by the Austrian company Mikron in 1994.
The name MIFARE is an acronym for Mikron Fare Collection System, describing the
initial purpose of these low-cost cards with very limited computational power. In 1995,
Mikron was acquired by Philips, whose semiconductor branch was then separated and
sold in 2006, forming the new company NXP. As a product of these major companies,
the MIFARE branch (including successors of the MIFARE Classic such as the MIFARE
DESFire) has since turned into the world’s most used type of contactless smart card, with

7We will see in Chapter 6 that some modern lightweight cryptographic schemes can even require the
use of such group keys in order to be used efficiently. This is due to the fact that the common way of
storing secret keys on ultra-constrained devices is through EEPROMs, which, if accessed continuously
(as done by these schemes), severely strain the power budget of respective devices (cf. Subsection 2.3.9).
A more suitable option for respective cryptographic schemes such as Plantlet (see Subsection 6.2.3) and
Fruit (see Subsection 6.2.2) is to use fixed keys as introduced in Subsection 2.3.10. In certain cases (see,
again, Subsection 2.3.10), however, this is only economical if large amounts of devices share the same
fixed key, thus making it a group key and resulting in the aforementioned security hazards.

37

3 Lightweight Authentication

more than 10 billion ICs sold [NXP17]. According to [GRVS09], in 2009, the MIFARE
Classic alone covered “more than 70 % of the contactless smartcard market”.

However, with its enormous commercial success, the MIFARE Classic also made its way
into applications for which it had never been designed in the beginning. Despite its initial
purpose as a device for convenient micropayment (i.e., transactions involving very small
amounts of money in the range of few USD), companies started deploying it in much
more security-sensitive scenarios such as identity verification and access control. In this
function, under the name ecUM, the MIFARE Classic was also used at the University of
Mannheim in 2013, where the author of this thesis was working for the chair of theoretical
computer science. Apart from access control for parking lots (20 €/month) and buildings,
this MIFARE Classic-based member ID card for students and employees also served
for, e.g., lending books, copying/printing, paying the semesterly student fees (> 100 €),
and buying the public transport student pass (> 100 €) at special terminals as well as
meals and drinks at the canteen. The count of corresponding card holders was at least
40 000, as attached institutions (such as the Duale Hochschule Baden-Württemberg and
the Hochschule Mannheim) used the same card, too. These numbers already show that a
compromise of the ecUM could have led to severe financial damage.
While one might already wonder why someone would want to use a smart card for

micropayment from the nineties for macropayment (i.e., transactions involving larger
amounts of money) in 2013, this gets even more disturbing when knowing that successful
attacks against the MIFARE Classic started to appear as early as 2007, when Nohl
and Plötz presented a partial reverse engineering of its algorithms at the 24th Chaos
Communication Congress [NP07]. Up until then, the card’s vendors had tried to increase
its security by keeping the inner workings secret. This foolish approach, which we will
discuss in further detail at the end of this subsection, was then completely shattered
in 2008, when Nohl et al. published the paper [NESP08] titled “Reverse-engineering a
Cryptographic RFID Tag” about their findings and de Koning Gans et al. demonstrated
how to read and modify data on MIFARE Classic cards without knowing the corresponding
secret key [dKGHG08]. In quick succession, several more such papers appeared in 2008
and 2009 (e.g., [GdKGM+08] and [GRVS09]), which now even described how to recover
the secret keys8 and how to clone cards (such as those of the public transport system of
London and the Netherlands, respectively; see [GdKGM+08]).
The security flaws, which these attacks were based on, are manifold. In particular,

after having been reverse engineered, the card’s stream cipher called Crypto1 was found
to be extremely weak. It uses only 48-bit symmetric keys and is based on a single
48-bit nonlinear feedback shift register (NFSR) that contains the main secret state. It is
therefore not surprising that, already in 2008, an algebraic attack (see Subsection 8.4.4
for an explanation of this term) was published by Courtois et al. [CNO08], which can

8The memory of the MIFARE Classic is divided into several sectors, which can be protected by
individual symmetric 48-bit keys.

38

3.2 Excursus: When Authentication Goes Wrong

recover the secret key in about 200 seconds on an off-the-shelf PC, if only about 50 bits of
keystream are known. To achieve this kind of performance, the authors of [CNO08] used
so-called SAT solvers, which will be discussed as part of Section 9.4. In [GdKGM+08],
two different attacks against Crypto1 are proposed. The first one is (though not explicitly
mentioned by the authors) essentially an application of Babbage’s classical TMD-TO
attack against stream ciphers [Bab95] (see Chapter 7 and Subsection 8.4.2 for extensive
details on this type of attack). In a precomputation phase, for 236 of the 248 possible
secret inner states, the first 64 bits of keystream are computed and stored as (inner
state, keystream)-pairs in a table. Then, in the online phase, the attacker searches
for a corresponding collision based on 212 64-bit keystream pieces obtained from 212

real-world authentications of the targeted device. Based on the birthday paradox, w.h.p.,
such a collision is found and yields the respective secret inner state. The authors of
[GdKGM+08] also show how, based on this state, the secret key can then be recovered.
Note that, while applying a TMD-TO attack against a stream cipher with only 48 bits
inner state size might seem trivial at first, the important contribution in [GdKGM+08]
is that the authors also show how the required keystream can actually be obtained based
on a weakness in the authentication protocol of the MIFARE Classic, which leaks 64
bits per authentication instance. Naturally, this latter result can also be combined with
the aforementioned algebraic attack in [CNO08], which requires only 50 bits of known
keystream (hence, eavesdropping on only a single authentication instance is sufficient) to
recover the secret key in about 200 seconds on a standard PC. However, in addition to
the above TMD-TO attack, the authors of [GdKGM+08] also suggest a second, more
efficient attack, which makes use of a weakness in the Crypto1 stream cipher itself and can
recover the secret key within only one second based on a single authentication trace. To
this end, they exploit that the nonlinear output function of Crypto1 uses only feedback
shift register (FSR) cells with odd indices. As pointed out at the beginning of this
paragraph, many more security flaws of the MIFARE Classic have since been discovered.
In particular, the RNG (see Subsection 2.3.8) used for generating the authentication
nonces was also found to be surprisingly weak. In [GRVS09], this fact (along with some
other observations about the employed authentication protocol) is used to mount what
the authors call the “nested authentication attack”. Given the secret key for one of the
16 sectors of a MIFARE Classic 1K9, this attack is able to recover the secret keys of
the other sectors in under one second. The implications of this are vast as the nested
authentication attack just requires card-only access. That is, if a MIFARE Classic is used
for various purposes (as in the case of the University of Mannheim’s ecUM), where each
of these different applications has its own card sector and a corresponding separate secret
key, it is still sufficient for an attacker to eavesdrop on only one real-world authentication

9The MIFARE Classic contactless smart card was available in two different memory sizes: the
MIFARE Classic 1K offers 1024 bytes and the MIFARE Classic 4K offers 4096 bytes. While differing in
sector numbers and sector sizes, both variants use the same security mechanisms and are hence both
vulnerable to the described attacks.

39

3 Lightweight Authentication

instance for one of the sectors. After finding the secret key of this sector with one of
the above attacks, he can then recover the keys of the other sectors without any further
eavesdropping and the associated danger of being caught. (For example, eavesdropping
on the authentication of a smart card at a printer system located in some ‘darke corner’
is clearly less dangerous for an attacker than eavesdropping on an authentication instance
at the main entrance’s door lock, which might be protected by a different card sector
with a different secret key.)

So, given that, through the above publications and the corresponding media coverage,
the author of this thesis already knew in 2008 about the MIFARE Classic’s severe security
problems, why did the following attack against the University of Mannheim’s ecUM
take place not until 2013? The answer to this question is already partly contained in
[GRVS09], where Garcia et al. state:

“[C]ontactless smart cards are generally not the only security mechanism in
place. For instance, public transport payment systems such as the Oyster
card and OV-Chipkaart have a back-end system recording transactions and
attempting to detect fraudulent activities (such as traveling on a cloned
card). Systems like these will now have to deal with the fact that it turns
out to be fairly easy to read and clone cards. Whether or not the current
implementations of these back ends are up to the task should be the subject
to further scrutiny.” [GRVS09]

In the same spirit, the author of this thesis assumed that also the University of
Mannheim’s ecUM infrastructure would feature such a second security layer as part of
its back end. In fact, a corresponding protection could have been realized fairly easily
as, even after the attacks of 2008 and 2009, an important hardware element of the
MIFARE Classic still remained (partly) secure: each card had its own 4-byte unique
identifier (UID), which was burned in at the factory and could not be changed afterwards.
Moreover, hardware devices like the Proxmark 3 (see below) did not support full card
emulation for the MIFARE Classic yet, i.e., while they could send an arbitrarily chosen
UID to some reader, it was not possible to realize a completely virtual card based on
the memory dump of an actually existing one. In an environment like the University of
Mannheim, where the MIFARE Classic-based ecUM was only handed out to users who
proved their identity by means of an official passport document, the uniqueness of each
card’s UID10 would have hence allowed to trace fraudulent card modifications back to
the corresponding card holder if a corresponding database had existed. Furthermore, it
would have been possible to not accept cards with nonexistent UIDs at all.

10Given the limited number of 232 possible 4-byte UIDs combined with the vast commercial success of
the MIFARE Classic, it has to be expected that there actually exit cards which share the same UID.
However, we will assume it as being truly unique here as an attacker would have had to buy huge amounts
of cards in order to find such a collision, which is clearly not economical in the context of targeting a
university ID card such as the ecUM.

40

3.2 Excursus: When Authentication Goes Wrong

At the beginning of 2013, however, this situation changed drastically with the appea-
rance of the so-called Magic Chinese Cards on the Chinese black market. These special
MIFARE Classic cards, whose sale had not been authorized by the rightholder NXP, now
also allowed to change the UID (arbitrarily often) in the field and, hence, finally enabled
the creation of perfect clones. For about $15 per card, the author of this thesis was able
to import a bunch of these from China in March 2013.
Eventually allowing for total anonymity, it was now time to evaluate the strength

of the ecUM’s back end. In a first step, the author targeted the electronic door locks,
which, on the whole campus, were used to control the access to parking lots, buildings
and certain offices. Shockingly, he soon learned that the authentication scheme for these
door locks was not based on any secret information at all. Instead, it was sufficient if
a card (or another emulation device) sent a UID that had previously been added to
the access control list of the respective lock. Note that the MIFARE Classic’s UID
is public in the sense that it is not protected by encryption and any reader (not only
‘valid’ ones) who is in close proximity to such a contactless smart card will receive this
information. For example, it is already sufficient if an attacker with a malicious reader
‘accidentally’ touches (for less than one second) the back pocket, containing a wallet with
the ecUM in it, of a victim waiting in line at the canteen. Similarly, one could also place
such readers in or under seats, e.g., in the library, or simply manipulate valid readers
by hiding a second, malicious one in the respective casing. So, as UID-only MIFARE
Classic card emulation was already possible in 2013 (e.g., using a small $300-device called
Proxmark 3 [PRO17]), the author of this thesis did not even need the Magic Chinese
Cards to open corresponding locks. Instead, he could simply root an off-the-shelf Android
smartphone (i.e., replace its operating system by a custom one which allowed access to
the underlying Linux system) and connect the Proxmark 3 to it via Universal Serial
Bus (USB) after installing the corresponding drivers and software. This gave him an
unobtrusive bundle fitting into a larger wallet and allowing to flexibly send arbitrarily
chosen UIDs to targeted readers in order to open the corresponding doors. Naturally,
the Magic Chinese Cards worked as well (and were even less obtrusive), but the fact
that they were not even needed shows that the ecUM-based access control system of the
university had probably already been vulnerable for years (using the UID-only emulation
feature of the Proxmark 3), when the author performed his attack in 2013.

After this disturbing discovery, the next logical step was to target the payment functions
of the ecUM. To this end, it was now necessary to read the memory contents of a real-
world card. This, however, required to know the secret keys of the corresponding card
sectors. Being a member of the university himself and, hence, having access to a valid
ecUM, the author of this thesis was able to use the aforementioned attacks (more precisely,
a combination of the eavesdropping-based sector key recovery attack from [GdKGM+08]
and the nested authentication attack from [GRVS09]) to recover all 48-bit sector keys
of his own card. This allowed him to dump the full memory contents of his ecUM
into a file on his PC. While this memory dump already revealed some information

41

3 Lightweight Authentication

211.82 € (old)
− 2.00 € (coffee)
209.82 € (new)

Corresponding
deposits were
never made.

Manipulating
the transaction
history.

Figure 3.1: Some examples of manipulations of the ecUM that we performed during our
attack. Interestingly, it was even possible to override the card’s 200-EUR limit and use the
corresponding credit without setting off any local or back end-based alarms.

about the card contents at first sight, such as the card number in American Standard
Code for Information Interchange (ASCII) format (also printed on the card itself), most
of it initially looked like a random collection of bytes. To further analyze the data
stored on his card, the author then went on to perform a multitude of card transactions
and, between each two of these, created a new memory dump. By comparing these
dumps, he then gradually learned where and how the money on the card as well as the
corresponding checksums were stored. Moreover, using dumps of other cards (kindly
provided by colleagues and student helpers) as well, it was also possible to identify
additional information such as the member type (e.g., students have to pay less at the
canteen than employees) and the card’s transaction history. Based on these findings,
the author was then finally able to fully manipulate (and use!) his card at leisure (see
Fig. 3.1).
Given the previous results from 2008 and 2009, the fact that, after some grunt work,

the card contents could be modified arbitrarily was not really surprising. The following
discoveries, however, were extremely disturbing. First, after having broken his own
card, the author could use the same secret keys for accessing any other ecUM as well.
Deploying such an infrastructure is grossly negligent in the context of a university as it
basically assumes that any user of the system is honest (an assumption, which already
lead into disaster in the case of the VPN compromise presented in Subsection 3.2.1). For
a smart card like the ecUM, it takes only few seconds to read the full card contents and,

42

3.2 Excursus: When Authentication Goes Wrong

thus, steal someones identity and money.
Second, and probably even more irritating, two months of further analysis revealed

that there seemed to be no back-end protection mechanism in place at all. More precisely,
it was not only possible to use manipulated real-world cards for more than two months
without any blocking or at least investigation from the operator’s side, but even fully
made-up cards (with nonexistent UIDs and ecUM card numbers) were accepted at any
point in time during our investigation. When we finally informed the responsible office of
our findings (providing a full history of our transactions), obviously nobody had noticed
that there had some fraud been going on. This complete lack of back-end security also
revealed that, in contrast to the author’s initial expectations, even for attacking such a
security-sensitive application as the ecUM’s payment function, the new Magic Chinese
Cards would have actually not been necessary. In particular, the full anonymity and
the possibility to create perfect clones (including the UID) provided by the modifiable
UIDs of these cards turned out to be completely irrelevant, because the back end of the
university’s card payment system obviously did not make use of UIDs as an additional
protection layer anyhow.
During the aforementioned period of two months, in which we waited whether the

ecUM’s back-end system would finally detect our fraudulent activities, the author decided
to additionally exemplify the impact of the card’s security problems by means of modern
smartphone technology. More precisely, many current smartphones feature near-field
communication (NFC), e.g., to allow for contactless payment. At the beginning of 2013,
one of the most common of these NFC-capable devices was the Samsung Galaxy S3 with
(as of 2015) more than 70 million units sold [Ham15]. As it turned out, the corresponding
Android (the Galaxy S3’s operating system) NFC programming library already supported
communication with MIFARE Classic contactless smart cards. Having recovered the
secret keys used by his university, it was hence an easy task for the author of this thesis to
create a small Android app, which could read and modify any ecUM card. In particular,
it allowed for arbitrary manipulations of the respective credit without any corresponding
real-world money transactions. Moreover, using the app, a user would have also been
able to easily alter his status from, e.g., employee to student, leading to reduced prices
at the canteen. Finally, when Magic Chinese Cards were used as the app’s writing target,
it also allowed to fully clone cards or change a card’s UID in order to get access to, e.g.,
the university’s buildings and parking lots.
For obvious reasons, the above Android app, which would have enabled even non-

technical users to easily commit fraud, was never published, but only used for internal
demonstration purposes. Several months after we presented our findings, the ecUM
was finally converted to another smart card type (the MIFARE DESFire EV1). It was
probably only a matter of luck that seemingly no one else at the university discovered
and exploited the weaknesses of the ecUM in the meantime as, given the large number of
users and the security-sensitive applications of the card, this might have led to severe
financial damage for the users and the operator.

43

3 Lightweight Authentication

Now, like in Subsection 3.2.1, what are the lessons learned from this incident and how
do they transfer to the field of lightweight cryptography for ultra-constrained devices?

Kerckhoffs’ Principle. Obey Kerckhoffs’ principle (originally published in 1883 as part
of [Ker83a] and [Ker83b]), which, adapted to contemporary cryptography, states
that the security of a cryptosystem should solely depend on the secrecy of the
key and, in particular, not on keeping the respective algorithms secret (see, e.g.,
[vTJ11]). Besides the MIFARE Classic debacle with Crypto1, many other real-world
security failures are the result of disregarding this basic rule, as well. For example,
shortly after the A5/1 cipher (see Subsection 5.2.2) of the Global System for Mobile
Communications (GSM) standard had been reverse-engineered by Brienco et al.
[BGW99], the scheme was fully broken and key recovery could even be performed on
standard PCs (see, e.g., [BSW01]). The proprietary stream ciphers of the satellite
phone standards GMR-1 and GMR-2 suffered a similar fate in 2012 [DHW+12].
While especially for ultra-constrained devices, whose cryptographic algorithms have
to operate on the very edge of what is technically possible, it might be tempting to
violate Kerckhoffs’ principle and rather follow a ‘security by obscurity’-approach,
history has shown that reverse engineering will be successful rather sooner than
later, always eventually imposing the whole security burden on the strength of the
respective cryptographic algorithms and the secrecy of their keys.

Key Management. Just like in the case of the VPN attack discussed in Subsection 3.2.1,
the use of group keys was a fatal mistake for the ecUM, too. In the context of
heterogeneous organizations like a university, the underlying assumption that all
group members are honest (or unable to tamper with a device under their control),
is disturbingly naïve. With group keys, even physical key recovery attacks that lead
to the destruction of the targeted device (such as slicing and analyzing the chip
layer by layer) become attractive. In consequence, especially for ‘weak’ targets such
as ultra-constrained RFIDs (where, e.g., implementing strong protection against
side-channel attacks may be uneconomic), group keys should rather be avoided,
even though this might be challenging for some cryptographic schemes as pointed
out by Footnote 7 on page 37.

Back-end Security. In short, a weak front end requires a strong back end. As explained
above, regarding the ecUM, the lack of back-end security could have led to huge
financial damage to the university, as corresponding fraud would not have been
detected. While ultra-constrained RFIDs should not be used for applications like
macropayment anyhow, they may still constitute a worthwhile target for an attacker
due to their sheer number. Consequently, it is either necessary that, though being
individually weak, these devices are strong as a group (e.g., by avoiding group
keys), or that part of the security load is outsourced to the respective back end
(e.g., through the introduction of plausibility checks for tag/group behavior).

44

3.2 Excursus: When Authentication Goes Wrong

Awareness. In the case of the ecUM, several conceptual mistakes where made that can be
subsumed under lack of awareness. First, either misled by the vendor’s marketing
or due to carelessness (and a lack of proper research), a hardware device from
the nineties originally designed for convenient micropayment was used in 2013
for much more security-sensitive applications. Second, even though the MIFARE
Classic’s security had been proven to be close to zero already in 2008, the ecUM
remained in use until our attack in 2013. The only reason why the author of
this thesis had not tried an attack before was his (wrong) believe in the existence
of an appropriate back-end security mechanism based on the uniqueness of the
cards’ UIDs, as explained above. The office responsible for the ecUM, on the other
hand, should have known immediately that such a security mechanism did not
exist and that, in consequence, already from 2008 on, the card was open to any
kind of fraud. The fact that, between 2008 and 2013, the ecUM was not migrated
to some newer contactless smart card can hence only be explained by a lack of
awareness of the MIFARE Classic’s severe security issues.11 Third and finally, also
the awareness of the impacts of technological progress on the criticality of the issue
was missing. When we initially reported that we were able to manipulate the ecUM
at leisure with the Proxmark 3, we had to face the comment that this would not
be a problem as the ‘ordinary student’ did not own such a $300-device. It was only
until we presented the aforementioned smartphone app that the actual severity of
the problem was recognized.

Clearly, these three awareness issues w.r.t. the ecUM straightforwardly transfer to
the field of ultra-constrained RFIDs. In particular, developers should not overload
such devices with inappropriate functionality in the course of time. Moreover, due
to the small security margin provided by lightweight cryptographic algorithms, a
raised awareness of advances in cryptanalysis is not only indispensable on the parts
of manufacturers and vendors, but also for customers of corresponding products.

Identification 6= Authentication. Another mistake made for the ecUM was to mix the
different concepts of identification and authentication as introduced at the beginning
of Section 3.1. As explained above, the UID of a MIFARE Classic contactless smart
card is public information that can be easily spoofed (i.e., copied to or emulated)
by other devices, and, hence, only suitable for identification (e.g., as a means of
avoiding communication collisions when several tags are in the proximity of the
same reader), but not for authentication. In the following sections and in Chapter 4,
we will show how authentication for ultra-constrained RFIDs can be done properly,
based on the use of symmetric cryptography.

11In defense of the respective administrators, one could argue that part of the blame lies also with the
manufacturer/vendor of the ecUM system, as, particularly in the case of such a large infrastructure, they
should have warned their customers vehemently.

45

3 Lightweight Authentication

Random Number Generation. Several attacks against the MIFARE Classic made use
of the card’s weak mechanism of generating random numbers (see, e.g., [GRVS09]).
One particular problem is that the MIFARE Classic always initializes its RNG
with the same value, which allows to narrow down the set of actually used random
numbers by measuring or controlling the time between the (passively powered)
card’s start-up and the sending of its first message. This example once more confirms
our notion already expressed in Subsection 2.3.8 that random number generation
belongs to the most restricting aspects of lightweight cryptographic design for
ultra-constrained devices. In particular, authentication protocols which, during
each single authentication instance, require huge amounts of random numbers
to be operated securely, are practically infeasible, even though they might be
extremely lightweight with respect to other important metrics such as chip area (cf.
Subsection 2.3.3). In Section 3.4, we will evaluate some of these failed approaches
at the example of LPN-based authentication.

3.3 On the Principle Feasibility of Cipher-based Lightweight
Authentication

Before we are going to assess dedicated authentication protocols suggested for constrained
hardware, we will first point out the existence of an intuitive and, in fact, perfectly feasible
approach, which makes use of existing encryption schemes: the verifier sends a random
challenge to the prover, asking to encrypt it with a secret key, and finally checks whether
the response is correct, ultimately leading to accepting or rejection. Typically, due to
the harsh resource constraints in lightweight cryptography, only symmetric variants of
encryption schemes are used as primitives for this type of protocols.
It should be noted that such cipher-based schemes are not only popular from a

theoretical but also from a practical point of view, i.e., they are actually being used in
industry. The reasons for this are twofold: Firstly, choosing the ‘right’ cipher as the
encryption primitive in the above protocol description actually allows for creating feasible
solutions whose security is dominated by the security of the underlying encryption function.
But before we go into details about that, we would like to briefly mention a second,
less technical, but in industry sometimes even more important factor: standardization.
In Section 3.4, we will argue that dedicated LPN-based authentication protocols are
currently not used for practical solutions because, due to their hardware costs, this is
simply not possible. But even if it was, they would have a hard time competing with
cipher-based schemes in real-world applications. This results from the fact that, as
many engineers from industry told us, when it comes to selling cryptographic products,
customers want security (or rather a sense of it) by the use of standardized components.
And the best-standardized components in cryptography are, in fact, (block) ciphers (e.g.,
most prominently, in the form of the Data Encryption Standard (DES) and AES). Hence,

46

3.3 On the Principle Feasibility of Cipher-based Lightweight Authentication

virtually everyone from industry we spoke to pointed out that, if resources allow for it,
a generic cipher-based scheme using AES (or, for even more powerful devices and also
depending on the deployment scenario, an asymmetric primitive like the Rivest-Shamir-
Adleman cryptosystem (RSA)) will be preferred.

Unfortunately, one of the smallest currently know AES implementations by Feldhofer
et al. [FWR05] still requires an area of about 3400 GE, which is well beyond the the
limit of 2000 GE for ultra-constrained devices justified in Subsection 2.3.3. But while
AES is generally not targeted at low-cost hardware, there exists in fact a standardized
(in ISO/IEC 29192-2:2012) lightweight block cipher in the form of PRESENT [BKL+07],
which we will now use to exemplify why, as claimed above, cipher-based authentication
schemes are actually feasible in the context of lightweight cryptography. Section 3.4 will
show that one of the main bottlenecks of LPN-based authentication protocols is their
massive requirement of random numbers. In contrast, the prover (as compared to the
more powerful verifier) does not need to create any random numbers at all in the case of
a cipher-based authentication scheme.12

Similarly, also the communication complexity is much lower (some LPN-based protocols
need up to hundreds of thousands of bits per authentication; see Section 3.4), as in
the case of PRESENT, which has a block length of 64 bits and a key length of 80 bits,
a challenge consisting of two blocks, i.e., 128 bits, should be sufficient to provide the
maximum possible security (otherwise, the pseudorandomness property of the underlying
block cipher would be violated). A corresponding bandwidth is available on even the least
powerful devices (see Subsection 2.3.1). The remaining conditions on low-cost RFID tags
as outlined in Chapter 2 are satisfied by a PRESENT-based authentication scheme as
well, according to the following numbers taken from [RPLP08]. Concretely, a serialized
implementation of PRESENT requires an area of about 1080 GE and 563 clock cycles to
process one block, both of which are well below the previously discussed limits of 2000
GE and 15 000 clock cycles, respectively. Finally, also the limited power budget of a
low-cost RFID tag (see Subsection 2.3.4) is respected, for by using the UMCL18G212T3
(0.18 µm, 1.8 V) standard cell library (see, e.g., Section 8.5 for further details), it is
possible to reach as low as 2.52 µW given a clock speed of 100 kHz. In summary, the
example of PRESENT has shown that it is in fact possible for an authentication scheme
to satisfy the conditions of low-cost hardware as outlined in Chapter 2 and still provide
the required level of security. After all, PRESENT remains unbroken so far, even without
claiming provable security as several LPN-based protocols have done in the past (see
Section 3.4), many of which were then shown to be insecure shortly after by considering
slightly different but nonetheless plausible attack scenarios.
As a final remark w.r.t. cipher-based authentication, we would like to point out that,

though we used PRESENT in the above example due to its popularity and standardization,

12If the tag should feature an RNG anyhow, PRESENT would even allow for mutual authentication
at practically no additional costs as compared to the LPN-based protocols assessed in Section 3.4.

47

3 Lightweight Authentication

there are several other, similarly feasible primitives. Among these is the block cipher
PRINCE [BCG+12], which is characterized as a “low-latency block cipher” by its authors
and targets “applications for which a low-latency encryption and instant response time is
highly desirable, such as instant authentication”. Furthermore, not only block ciphers
but also lightweight stream ciphers should be considered as potential building blocks for
authentication protocols. Consequently, in Chapter 9, we will conclude this thesis, inter
alia, with a suggestion for a privacy-preserving lightweight authentication scheme based
on our new stream cipher Lizard introduced in Chapter 8.

3.4 LPN-based Authentication Protocols
The most prominent non-proprietary approach for designing dedicated lightweight authen-
tication protocols, which do not use existing ciphers as a building block, are LPN-based
schemes. This branch of research was initiated by HB [HB01] and HB+ [JW05] (in 2001
and 2005, respectively), which became the prototypes for a whole family of protocols that
ground their security on the hardness of the learning parity with noise (LPN) problem (or
variants of it). In a nutshell, this problem, which is known to be NP-hard13 [BMvT78],
can be defined as follows.

Definition 3.1: Learning Parity with Noise (LPN) Problem

Let n ∈ N and η ∈ (0, 0.5) be public parameters. Then the corresponding learning
parity with noise (LPN) problem can be defined as the following learning problem.
At the beginning of the corresponding oracle game, the oracle chooses uniformly
and at random a secret vector x ∈U {0, 1}l. The learner then poses a number of
(empty) oracle queries, each of which is answered (independently from the other
queries) by the oracle as follows:

1. The oracle chooses a random noise bit ν according to the Bernoulli distribu-
tion (i.e., Pr[ν = 1] = η and Pr[ν = 0] = 1− η).

2. The oracle chooses uniformly and at random vector a ∈U {0, 1}l.

3. The oracle answers with the tuple (a, 〈a, x〉 ⊕ ν) ∈ {0, 1}l × {0, 1}, where
〈a, x〉 denotes the scalar multiplication of the vectors a and x.

The goal of the learner is to recover the secret vector x.

As pointed out above, most LPN-based authentication schemes are variants of the
13Note that (even under the assumption P 6= NP) the NP-hardness of a problem does not automatically

imply the security of corresponding cryptographic schemes. In, particular, though being NP-hard in
general, there might still be large subsets of respective problem instances which can be solved efficiently.

48

3.4 LPN-based Authentication Protocols

Verifier(x) Prover(x, η)
RFID reader RFID tag

challenge

compute

z(i) =
〈
a(i), x

〉
⊕ ν

a(i) ∈U {0, 1}l

a(i)

ν ∈ {0, 1 | Pr[ν = 1] = η}

response

z(i)

accept if〈
a(i), x

〉
= z(i)

Figure 3.2: Round i of the HB protocol. (cf. [HB01])

HB protocol suggested by Hopper and Blum [HB01] or its extension HB+ by Juels and
Weis [JW05]. Therefore, as LPN-based schemes are not a main topic of this thesis, we
will only describe these two protocols here in further detail and refer the reader to the
respective original publications (e.g., summarized in [AHM14]) for the follow-up schemes.

The HB protocol [HB01] was originally developed to be used by humans and with this
aim was designed to be very simple. Both the reader (verifier) and the tag (prover) share a
secret x ∈ {0, 1}l. The protocol is composed of a number r of rounds that are conceptually
all the same. At the beginning of round 1 ≤ i ≤ r, the verifier chooses a random challenge
a(i) ∈ {0, 1}l and sends it to the prover, who replies with z(i) = 〈a(i), x〉 ⊕ ν, where
ν ∈ {0, 1} represents a biased random noise bit satisfying Pr[ν = 1] = η for a fixed
probability η ∈ (0, 0.5). Then, the reader verifies whether the received bit z(i) is equal
to 〈a(i), x〉. If this is the case, the response is called correct and otherwise incorrect.
Figure 3.2 depicts one such round of the HB protocol. The whole authentication is
considered successful by the verifier if less than η · r wrong answers were given by the
prover. The security of HB against passive attacks, in which an attacker is only able to
eavesdrop on the communication between a valid reader and a valid tag, relies on the
LPN problem with the public parameters l and ν (see, e.g., [LF06]).
Unfortunately, it quickly turned out that the original HB protocol is susceptible to

active attacks in which a malicious reader tries to extract the tag’s secret by adaptively
choosing non-random challenges (see, e.g., [JW05]). In reaction, Juels and Weis suggested
the augmented version HB+ [JW05] in 2005, explicitly aiming for usage in the RFID
context. In extension to the HB scheme, the tag and the reader now share an additional
secret y ∈ {0, 1}l. At the beginning of round 1 ≤ i ≤ r, the tag generates a random
blinding factor b(i) ∈ {0, 1}l and sends it to the reader. Afterwards, similar to the
HB protocol, the reader generates a challenge a(i) ∈ {0, 1}l and sends it to the tag.

49

3 Lightweight Authentication

Verifier(x, y) Prover(x, y, η)
RFID reader RFID tag

challenge

compute

z(i) =
〈
a(i), x

〉
⊕
〈
b(i), y

〉
⊕ ν

a(i) ∈U {0, 1}l

a(i)

ν ∈ {0, 1 | Pr[ν = 1] = η}

response

z(i)

accept if〈
a(i), x

〉
⊕

〈
b(i), y

〉
= z(i)

b(i) ∈U {0, 1}l

blinding factor

b(i)

Figure 3.3: Round i of the HB+ protocol. (cf. [JW05])

Then, the tag computes z(i) = 〈a(i), x〉 ⊕ 〈b(i), x〉 ⊕ ν, where ν is a randomly chosen
noise bit satisfying Pr [ν = 1] = η, and responds with it to the reader for verification.
Figure 3.3 depicts one such round of HB+. Like for the original HB protocol, the whole
authentication is successful if less than η · r wrong answers were given by the prover.
It is easy to see that, besides the parameters l and ν, also the number r of protocol

rounds plays an important role for HB-type authentication shemes as each additional
round increases the confidence of the verifier. If the noise probability η is chosen too
close to 0.5, then a huge number r of rounds is required in order to make the protocol
reliable (i.e., valid provers shall not be rejected). At the same time, if η is close to 0,
then for obtaining the necessary level of security, extremely large key lengths for x and y
are inevitable (as less noise makes it easier for an attacker to learn the shared secrets).
Hence, an appropriate tradeoff needs to be found, which is specified by the choice of η.

However, besides security and reliability considerations, there are also practical aspects
that impact reasonable choices for η. Usually, RNGs (see Subsection 2.3.8) are assumed
to produce uniformly distributed random bits. In this case, it is much easier to implement
instantiations where η = 2−j , j ∈ N, as j uniformly distributed bits are sufficient for the
generation of one noise bit ν. For other values of η, many more uniformly random bits
may be needed to realize a correspondingly biased random bit generator on top of those.

As pointed out above, there is in fact a multitude of LPN-based authentication protocol
suggestions. In our paper [AHM14], we provide an overview over 18 of the most relevant
of them, along with an in-depth analysis of possible parameter choices (for the noise

50

3.4 LPN-based Authentication Protocols

probability η, the required key size and the number r of rounds necessary) and the implied
hardware costs. In particular, we come to the staggering conclusion there is currently
not a single unbroken LPN-based authentication scheme suitable for ultra-constrained
devices. Consequently, apart from the aforementioned protoypes HB and HB+, we will
not go into further detail w.r.t. other protocols of this type in this thesis. Instead, in the
following Subsection 3.4.1, we will refer to a generalized structure of such protocols in
order to explain the corresponding hardware efficiency problems. The respective insights
will then help us to choose a more suitable approach in Section 3.5 and Chapter 4, where
our (n, k, L)〈80〉-protocol for lightweight authentication will be introduced. Before that,
however, we will also briefly assess some other authentication protocols in Subsection 3.4.2,
which are not based on the original LPN problem but on new variants of it. Though we
will see that, like for the classical HB-type schemes, these protocols are also not suitable
for ultra-constrained hardware, we wanted to include them for the sake of completeness.

3.4.1 Cost Drivers of LPN-based Authentication Protocols

In Chapter 2, we have established a concrete notion of the term lightweight in the RFID
context by providing actual hardware limits for low-cost tags. At the example of LPN-
based authentication protocols, we will now demonstrate that even schemes which might
look temptingly lightweight at first sight (due to their use of extremely simple operations;
cf., e.g., Fig. 3.3) can eventually turn out to be very costly. In order to evaluate whether
a protocol really complies to all of the respective hardware limits, it is necessary to first
identify the major cost drivers of such schemes. For LPN-based authentication protocols,
these are the symmetric key(s) along with challenges, blinding factors, and noise bits.
In the following, we will discuss for each of the respective protocol properties how it is
linked to the hardware capabilities of ultra-constrained RFID tags in the $0.05 to $0.10
cost range as discussed in Chapter 2.

Symmetric keys. All allegedly lightweight LPN-based authentication protocols use
symmetric keys14. Consequently, the full shared secret must be permanently available
on the (passively powered) tag, thus implying the need for some kind of key storage.
Depending on the deployment scenario, multiple (e.g., batches of) RFID tags might
share a single key or, in other cases, tag-individual secrets may be required. Closely
related, but even more restrictive w.r.t. key storage options, is a potential need to set or
change the secret key of a tag that is already in the field, as compared to irreversibly
fixing the key once at production time. We refer the reader to Subsection 2.3.9 and
Subsection 2.3.10 for an explanation of corresponding key storage options (e.g., EEPROMs,

14For the sake of simplicity, in this subsection, the term key will always be used to refer to the shared
secret’s unique representation as a binary vector in the corresponding scheme, irrespective of potential
blow-up measures like, e.g., the use of Toeplitz matrices. In particular, the key size lower bounds the size
of the individual key storage required on each tag.

51

3 Lightweight Authentication

fuses/antifuses, key-dependent masks) for ultra-constrained devices and to Subsection 3.2.1
and Subsection 3.2.2 for a discussion of the security hazards connected with group keys.
These general preconditions will now be compared to the requirements imposed

by how symmetric keys are chosen and used in LPN-based authentication protocols.
Unfortunately, in addition to considerations such as whether group keys can be used
or not, key storage options are here further restricted by the large key size common to
these schemes. In [KPC+11], key sizes for various LPN-based protocols are specified on
the basis of a parameter l. For example, the key size of the HB+ protocol suggested
by Juels and Weis in [JW05] is given as 2l along with l = 500 described as a “typical
parameter”.15 Please note that the resulting key length of 1000 bits is even at the lower
end of the protocols summarized in [KPC+11] (which range from l bits for the original
HB protocol [HB01], over 4.2 · l bits for AUTH [KPC+11], up to 80 · l = 40 000 bits for
a MITM-secure protocol also suggested in [KPC+11]; see Subsection 3.4.2 for further
details). However, e.g., due to area requirements, already for 1000 bits it seems highly
questionable whether fuses/antifuses can still be considered a feasible option for storing
the secret key on a low-cost RFID tag. Moreover, as pointed out previously, similar to
(or even worse than) key-dependent masks, fuses/antifuses fail to provide substantial
physical security. Ultimately, it depends on the deployment scenario whether this is
an actual threat, hence requiring the use of, e.g., EEPROMs instead. Bring to mind,
however, that in the context of ultra-constrained RFID devices, EEPROMs typically
do not allow for storing more than 2048 bits. As a result, it must be suspected that
many of the LPN-based protocols are already precluded by their key sizes from practical
application on RFID tags in the $0.05 to $0.10 range.

Challenges, blinding factors, and noise bits. Another property characteristic of LPN-
based authentication protocols is their heavy use of challenges and blinding16 factors. As
most LPN-based schemes represent variants of HB+ (see Fig. 3.3), the following three
phases per round can usually be identified:
(1) The prover creates a vector of random bits, the so-called blinding factor, which is

then transmitted to the verifier.

(2) Just alike, the verifier now also creates a random bit vector (i.e., the challenge)
and sends it to the tag.

(3) Depending on the specific protocol, the prover deterministically computes some
1-bit value based on the blinding factor in (1), the challenge in (2), as well as the

15In the case of HB+, the parameter l corresponds to the respective sizes of the two secrets x, y ∈ {0, 1}l
and to the size of the challenge a ∈ {0, 1}l and the size of the blinding factor b ∈ {0, 1}l (see Fig. 3.3).

16Note that, apart from the aforementioned usage in the HB+ protocol (i.e., to avoid the extraction of
a tag’s secret through adaptively chosen challenges by an active attacker), blinding techniques can actually
serve various purposes in cryptography. For example, they can also be used to thwart side-channel attacks
by eliminating input-characteristic function evaluation times (or respective power consumptions).

52

3.4 LPN-based Authentication Protocols

shared key. Finally, he needs to produce one more random bit, which, on contrast
to the aforementioned challenge and blinding vectors, is not based on the uniform
but some other, fixed distribution. Adding this so-called noise bit to the 1-bit value
yielded by the previous operation is crucial to the security of LPN-based protocols
as explained previously. The resulting bit is then sent to the verifier, who will check
whether it is correct or not. As, in the latter case, either the prover was illegitimate
in the first place or the noise bit was 1, multiple protocol rounds are necessary to
ensure that, with high probability, bad provers will eventually be rejected while
honest ones are accepted.

In the following paragraph, we will denote the number of protocol rounds per authentica-
tion run by r and, for reasons of simplicity, assume that the blinding vector in step (1)
as well as the challenge vector in step (2) are both of length l (as done in the original
HB+ paper [JW05] and popular follow-up works like [KPC+11]).

Apparently, the general protocol structure we just outlined makes heavy use of at least
two hardware resources previously identified as potential bottlenecks for low-cost RFID
tags: the transmission bandwidth (see Subsection 2.3.1) and the generation of random
numbers (see Subsection 2.3.8). Concretely, in each round of the above archetypical
scheme, the communication complexity amounts to 2l + 1 and the prover (i.e., the ultra-
constrained RFID device) needs to obtain l uniformly random bits and one differently
distributed random bit from his RNG. Hence, a single authentication procedure consisting
of r rounds has a communication complexity of at approximately r ·2l bits and requires at
least r · l random bits on the prover’s side. As in the previous paragraph about key sizes,
let us exemplify the actual consequences of these complexities for LPN-based protocols
using parameter choices described as “typical” in [KPC+11]: l = 500 and r = 250.
Moreover, as justified in Subsection 2.3.2, let us consider 150 ms to be the maximum
time available for a complete authentication. As a result, at least 250 · (2 · 500) = 250 000
bits would need to be transmitted within 150 ms, corresponding to a vastly implausible
transmission rate of 250 000/0.15 bit/s ≈ 1.66 Mbit/s (as compared to actual values
between 10 kbit/s and 200 kbit/s as given in Chapter 2). Similarly far from reality is the
idea that an RFID tag whose production costs are in the $0.05–$0.10 range could actually
feature an RNG delivering as much as 250 · 500 = 125 000 uniformly distributed random
bits within just 150 ms. Apart from the apparent bottlenecks transmission bandwidth
and generation of random numbers, the generalizing description of LPN-based protocol at
the beginning of this paragraph contains a third aspect worth investigating. Concretely,
depending on the involved operations, the first computation in step (3) can easily turn
out to consume (possibly too) many clock cycles, especially in view of the fact that several
operands of length 500 bits or more are involved. As this is highly protocol-specific and
implementation-dependent (e.g., parallel vs. serial processing in step (3) of HB+) though,
we again refer to our publication [AHM14], which parts of this section are based on and
where a large number of LPN-based authentication protocols are evaluated in detail.

53

3 Lightweight Authentication

3.4.2 Protocols based on Variants of the LPN Problem

For the sake of completeness, we conclude this section by addressing some dedicated
protocols which deviate from the common ‘HB-type’ design approach in that they are not
based on the classical LPN problem but on (new) variants of it. As a consequence, they
also use rather different operations than the simple scalar multiplications which, e.g., HB
and HB+ are based on. Please note, however, that we will not go into the corresponding
details, but instead explain on a higher level, why these authentication schemes also do
not conform to the strict hardware requirements imposed by ultra-constrained devices.

AUTH, MAC1, and MAC2

In reaction to the continuing security problems of classical HB-type LPN-based authen-
tication protocols, many of which were eventually broken by means of MITM attacks
(see, again, [AHM14]), Kiltz et al. introduced a two-round authentication protocol called
AUTH in 2011 [KPC+11], which, based on a new LPN variant called subset LPN, provably
provides active (but not MITM) security.17 In addition, two provably MITM-secure
protocols, called MAC1 and MAC2, are also suggested in the same paper. The authors
of [KPC+11] provide an assessment of the corresponding complexities (e.g., for communi-
cation, computation, and key size), which, however, partly use the Θ-notation. When
compared to the constraints of low-cost RFID tags as justified in Chapter 2, the respective
numbers, summarized in Table 3.1, immediately show that the provable security comes
at a high price and that these protocols are, without doubt, not suited for such devices.
For AUTH, MAC1 and MAC2, the parameter l controls the challenge as well as the

key size (like in Subsection 3.4.1) and n is similar to the number r of rounds for HB-type
protocols (see Footnote 17 for further details). The tradeoff parameter c, 1 ≤ c ≤ n,
between key size and communication complexity is due to Gilbert et al. [GRS08] and
λ is referred to as a “security parameter”. Please note in particular that the term PIP
in Table 3.1 subsumes the additional computational complexity of evaluating a certain
pairwise independent permutation, which, according to the designers, takes Θ(m2) time,

17The number of rounds here cannot be compared with classical HB-type protocols, as the authors of
[KPC+11] follow a completely different design approach. In a nutshell, the term 2-round in [KPC+11]
actually refers to the verifier sending a (single) challenge and the prover sending a (single) response, where
this whole process is performed only once (as compared to many times in classical HB-type protocols).
Note, however, that also, e.g., HB (cf. Fig. 3.2) could be used in this way by having the prover send a
random matrix of size r · l only once, instead of sending r random challenge vectors of size l over the
course of r rounds. Correspondingly, the prover would answer with a single vector of size r, instead
of sending r individual response bits during r rounds. But, clearly, from a hardware perspective, this
would be even more challenging for an ultra-constrained RFID tag due to the additional volatile storage
required for buffering the incoming matrix of size r · l. In AUTH, however, the size of the single challenge
is in fact only 2 · l. Nevertheless, the communication complexity is still huge because the single response
consists of a vector of length n and a matrix of size n · l (or, depending on the implementation, even
n · 2l; see [KPC+11]), where n equals the size of r in HB-type protocols.

54

3.5 The Cryptographic Power of Random Selection

Table 3.1: Complexities of the 2-round authentication protocols suggested in [KPC+11].
The designers give l = 500, n = 250, and λ = 80 as “typical parameters”. c is a “tradeoff
parameter” with 1 ≤ c ≤ n.

Construction Communication Computation Key size
AUTH l · n · 2.1/c Θ(l · r) l · 4.2 · c
MAC1 l · n · 2.1/c Θ(l · r) + PIP l · 12.6 · c
MAC2 l · n · 1.1/c Θ(l · r) + PIP l · λ · c

where m ≈ 1200 for MAC1 and m ≈ 600 for MAC2. Clearly, the resulting numbers
of additionally required clock cycles are well beyond the limits of what we justified in
Subsection 2.3.6 as feasible. In addition, for AUTH as well as for MAC1 and MAC2,
any choice of c in Table 3.1 will either result in a key size (cf. Subsection 3.4.1) or in a
communication complexity (cf. Subsection 2.3.1) definitely not feasible in the context of
low-cost RFID tags.

Lapin

Probably due to the efficiency problems of AUTH, MAC1, and MAC2, a new authentica-
tion scheme called Lapin [HKL+12] was suggested in 2012. It is based on the results in
[KPC+11] and builds its security on what the designers call the Ring LPN problem. As
compared to, e.g., AUTH, the communication complexity of Lapin (given as 1300 bits in
[HKL+12]) is now actually feasible for RFID tags in the $0.05 to $0.10 range. However,
the authors themselves state that they are “targeting lightweight tags that are equipped
with (small) CPUs” as compared to “ultra constrained tokens (such as RFIDs in the
price range of few cents targeting the EPC market”. Moreover, the protocol was strongly
criticized in [BL13], where the authors come to the conclusion that Lapin is even less
efficient than AES, at the same time providing a lower level of security. A suggestion
for an FPGA implementation of Lapin was made in [GLS14], which requires 36 kB of
buffer random access memory (BRAM) and, hence, makes the protocol clearly infeasible
when transferred to low-cost ASICs. Taking into account all these arguments, we will
not discuss this scheme in further detail.

3.5 The Cryptographic Power of Random Selection
The principle of random selection underlies, e.g., the CKK-protocols of Cichoń, Klonowski,
and Kutyłowski [CKK08] as well as the Ff -protocols in [BKM+09] and the Linear
Protocols in [KS09]. It can be described as follows.

Suppose that the verifier Alice and the prover Bob run a challenge-response authentica-
tion protocol which uses a lightweight symmetric encryption operation E : {0, 1}n×K −→

55

3 Lightweight Authentication

{0, 1}m of block length n, where K denotes an appropriate key space.18 Suppose further
that E is weak in the sense that a passive adversary can efficiently compute the secret
key κ ∈ K from samples of the form (u,Eκ(u)). This is obviously the case if E is linear.
Random selection denotes a method for compensating the weakness of E by using the

following mode of operation. Instead of holding a single κ ∈ K, Alice and Bob share a
collection κ(1), . . . , κ(L) of keys from K as their common secret information, where L > 1
is a small constant. Upon receiving a challenge u ∈ {0, 1}n from Alice, Bob chooses a
random index l ∈ {1, . . . , L} and outputs the response y = Eκ(l)(u). The verification of y
with respect to u can be efficiently done by computing E−1

κ(l)(y) for all l = 1, . . . , L.
Note that the protocols introduced in [CKK08], [BKM+09], and [KS09] are based

on random selection of GF(2)-linear functions. This is motivated by the fact that
GF(2)-linear functions can be implemented efficiently in hardware and have desirable
pseudorandomness properties with respect to a wide range of important statistical tests.
In the following Subsection 3.5.1, we will now recall the definition of the (n, k, L)++-

protocol suggested by Krause and Stegemann in 2009 [KS09]. The corresponding general
security conjecture for (n, k, L)-type protocols will then be outlined in Subsection 3.5.2.
Finally, in Chapter 4, we will tweak the (n, k, L)++-protocol in order to make it suitable
for ultra-constrained RFIDs.

3.5.1 The (n, k, L)++-Protocol

The (n, k, L)++-protocol [KS09] is a one-round challenge-response authentication protocol,
whose symmetric key consists of a small number L of injective GF(2)-linear functions
F1, . . . , FL : GF(2)n −→ GF(2)n+k. Based on a first analysis of the underlying security
assumption, the following parameter sizes were suggested by the designers: n = 256,
k = 64, L = 5. Figure 3.4 depicts an instance of the (n, k, L)++-protocol for a verifier
Alice (RFID reader) and a prover Bob (RFID tag).

The authentication process is initiated by Alice, who chooses uniformly and at random
a challenge a ∈ GF(2)n2 , a 6= 0, and sends it to the prover. Likewise, the prover
chooses a random nonce b ∈ GF(2)n2 , b 6= 0, of the same length, randomly picks one of
the L secret linear functions F1, . . . , FL, and responds with w = Fl (f (a, b)). For the
nonlinear, bijective connection function f : GF(2n2)∗×GF(2n2)∗ −→ GF(2n2)∗×GF(2n2)∗,
where GF(2n2)∗ denotes GF(2n2) \ {0}, we identify the vector space GF(2)n2 with the
finite field GF(2n2). f is defined by f(a, b) = (ab, ab3) for all a, b ∈ GF(2n2)∗. It is
included for thwarting a certain class of MITM attacks (see Subsection 4.3.2). In order
to verify the prover’s response, the reader Alice first checks whether w belongs to one
of the L n-dimensional subspaces V1, . . . , VL of GF(2)n+k which are the images of the
corresponding injective GF(2)-linear functions F1, . . . , FL. Given that w ∈ Vl holds for

18Note that in this section and in the following Chapter 4, we will use K for key spaces and κ for keys
in order to avoid confusion, with, e.g., the parameter k of the discussed (n, k, L)-type authentication
protocols.

56

3.5 The Cryptographic Power of Random Selection

Verifier(F1, . . . , FL) Prover(F1, . . . , FL)
Alice Bob

RFID reader RFID tag

a ∈U GF(2)
n
2 , a 6= 0

l ∈U {1, . . . , L}

w

b ∈U GF(2)
n
2 , b 6= 0

let (ã, b̃) = f−1
(
F−1
l (w)

)

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

challenge

response

w = Fl(f(a, b))

compute

a

Figure 3.4: An instance of the (n, k, L)++-protocol. (cf. [KS09])

some l ∈ {1, . . . , L}, Alice subsequently computes (ã, b̃) = f−1(F−1
l (w)). Finally, if ã

equals the initial challenge a, Alice will accept the prover’s valid response.
It is easy to see that the (n, k, L)++-protocol suffers from a large key length, similar to

(or even worse than) the LPN-based suggestions discussed in the previous section, as each
of the L secret GF(2)-linear functions F1, . . . , FL : {0, 1}n −→ {0, 1}n+k can be expressed
as a distinct ((n+ k)× n)-matrix over GF (2). Thus, in total, ((n+ k) · n) ·L bits would
need to be stored permanently, which is clearly infeasible for the suggested parameters
n = 256, k = 64, and L = 5. Moreover, the nonlinear connection function f induces a
large computational overhead in the form of several multiplications over GF(2n2)∗. Our
new (n, k, L)〈80〉-protocol (introduced in the following Chapter 4) addresses these issues,
e.g., by using an LFSR-based self-shrinking generator [MS94] to derive the specifications
of the functions F1, . . . , FL on the basis of a now feasible 80-bit key.

Before we proceed with an overview over the general security properties and assumptions
for (n, k, L)-type protocols in the following Subsection 3.5.2, let us briefly treat another
aspect of (n, k, L)++-based authentication, which has neither been discussed in the
original publication by Krause and Stegemann [KS09], nor in follow-up works like
[Ham10], [KH11], and [AHM14]: privacy. More precisely, privacy is not only lost if an
attacker manages to break the scheme by recovering the secret key, but can already
be compromised if an attacker is able to track an RFID tag that always gives the
same response for the same challenge (see Section 3.1 for an example together with a
simple countermeasure for block ciphers). Fortunately, the (n, k, L)++-protocol provides
privacy preservation in this scenario. This is due to the fact that the random nonce
b ∈ GF(2)n2 , chosen by the prover (and not even made public), does not only protect
against active extraction of the secret functions F1, . . . , FL through adaptively chosen

57

3 Lightweight Authentication

challenges, but also thwarts tracking based on repeatedly sending a constant challenge.19

This important security property will carry over from the (n, k, L)++-protocol to our
new (n, k, L)〈80〉-protocol introduced in Chapter 4.

3.5.2 The Security of (n, k, L)-type Protocols

The security of (n, k, L)-type authentication protocols is based on the conjectured hardness
of the learning problem RandomSelect(L, n, ρ), which is studied in our paper [KH11]20

and reads as follows: learn GF(2)-linear functions f1, . . . , fL : {0, 1}n −→ {0, 1}ρ from
values (u, fl (u)), where the secret indices l ∈ {1, . . . , L} and the inputs u ∈ {0, 1}n are
randomly chosen by an oracle.
The running time of our corresponding learning algorithm is dominated by the effort

for solving a full-rank system of linear equations of O(nL) unknowns over GF(2ρ). Note,
however, that in contrast to the protocol parameters n and L, an attacker against (n, k, L)-
type protocols has in fact (some) control over the size of ρ, due to the GF(2)-linearity of the
secret functions F1, . . . , FL. In Appendix B of [KH11], we sketch (based on a corresponding
previous result in [KS09]) how an efficient algorithm for RandomSelect(L, n, ρ) can be
used to attack the (n, k, L)+-protocol described21 by Krause and Stegemann in [KS09],
if ρ is chosen such that ρ ≥ dlog2(L)e. The reason for this condition will become clearer
during the outline of our learning algorithm given below.

Note that, to the best of our knowledge, no faster way of solving RandomSelect(L, n, ρ)
has been found, yet, and that trivial approaches lead to a running time exponential
in n. Thus, our learning algorithm, which conducts an algebraic attack in the spirit
of [CKPS00], hints at how the parameters n and L should be chosen for protocols
using random selection of linear functions (such as the (n, k, L)++-protocol in [KS09]
and the (n, k, L)〈80〉-protocol in Chapter 4) in order to achieve an appropriate level
of cryptographic security. For example, when choosing n = 128 and L = 8, solving
RandomSelect(L, n, ρ) by means of our approach implies solving a system of around

19Note that the principle of random selection itself already provides some protection against tracking
based on constant challenges posed by malicious readers. This protection, however, is quite weak, as the
set of L possible responses for some fixed challenge can usually be obtained rather quickly, which would
then allow an attacker to proceed as usual.

20The paper [KH11] (SAC 2011) is largely based on the diploma thesis [Ham10] of the author of this
PhD thesis. Therefore, we will only provide a brief summary of the corresponding results here in order to
avoid any issues w.r.t. duplicate content. Giving this summary, however, is necessary, because it facilitates
to understand the parameter choices and security claims for our new (n, k, L)〈80〉-protocol, which will be
introduced in Chapter 4. Please also note that, in contrast to [KH11], we will write RandomSelect(L, n, ρ)
instead of RandomSelect(L, n, a) to avoid potential confusions of the challenge a, commonly used in
descriptions of (n, k, L)-type protocols, with the parameter a (now ρ) of the learning problem.

21We use the term described here, because the (n, k, L)+-protocol, which corresponds to the (n, k, L)++-
protocol without the connection function f (cf. Subsection 3.5.1), was never suggested for practical
application. Instead, it only served to demonstrate the necessity of such a connection function, as, without
it, (n, k, L)-type protocols are vulnerable to so-called (x, y)-equality attacks (see Subsection 4.3.2).

58

3.5 The Cryptographic Power of Random Selection

(128
8
)
≈ 240 unknowns over GF(2)ρ (with ρ ≥ 3), which should be sufficiently difficult for

most scenarios. In the context of lightweight cryptography, where 80 bits is a common
key size, the choice n = 64 and L = 8 (resulting in about 232 unknowns) is already
adequate, based on the common notion that solving such a system has time complexity
about (232)3.
Before we go into the details of our learning algorithm for RandomSelect(L, n, ρ), we

would like to point out that, besides n and L, the third protocol parameter k also plays an
important role for (n, k, L)-type authentication schemes. More precisely, it must ensure
that the following probabilities are sufficiently small:

1.) the probability that one of the functions Fl, l = 1, . . . , L, is not injective (if they
are chosen randomly from the set of all possible linear functions from GF(2)n to
GF(2)n+k, as in the case of our new (n, k, L)〈80〉-protocol introduced in Chapter 4),

2.) the probability that a random vector w ∈ GF(2)n+k falls into ⋃Ll=1 Vl,

3.) the probability that a random vector w ∈ Vl falls into Vl ∩ Vk for some k 6= l,

4.) the probability that there is a pair of secret subspaces Vl, Vk, 1 ≤ l 6= k ≤ L, such
that dim(Vl ⊕ Vk) < n+ k.

For an estimation of the respective probabilities (for randomly chosen linear functions)
and a detailed explanation of corresponding implications, we refer the reader to [KS09]
and [KH11]. We would like to briefly point out, however, that, e.g., if a secret function
Fl should not be injective and, hence, imply a smaller subspace Vl of dimension, e.g.,
n − 1 instead of n, this does not mean an immediate break of the protocol’s security.
Instead, it will just slightly increase the load on the verifier’s side, who now has to check
whether a set of possible preimages under Fl actually contains the valid one (i.e., the
one corresponding to his initial challenge). As the verifier is commonly assumed to be
significantly more powerful than the prover, this can be considered tolerable. A similar
argumentation holds for the case that a response w ∈ Vl should fall into Vl ∩ Vk for some
k 6= l. There, assuming that Fl and Fk are injective, the verifier would have to check
whether either the preimage to w under Fl or the preimage to w under Fk is correct. The
resulting increase of computational load on the verifier’s side is negligible. Nevertheless, it
is clear that if, in the case of a practical protocol instantiation, the respective probabilities
should turn out to be way too large, this would in fact impair security.

A Learning Algorithm for RandomSelect(L, n, ρ)

Our approach for solving RandomSelect(L, n, ρ) can be sketched as follows (see [KH11] for
further details). We begin by representing the secret L linear basis functions f1, . . . , fL :
{0, 1}n −→ {0, 1}ρ as an (unknown) assignment A to a collection X = (xli)i=1,...,n,l=1,...,L
of variables taking values from the field K = GF(2ρ). In consequence, each example

59

3 Lightweight Authentication

(u, fl (u)) induces a degree-L equation of a certain type in the X-variables, which allows
for reducing the learning problem RandomSelect(L, n, ρ) to the problem of solving a
system of degree-L equations over K. While, in general, the latter problem is known to
be NP-hard, we show in [KH11] an efficient way to solve this special kind of systems.
One specific problem of our approach is that, due to inherent symmetries of the

degree-L equations, we can never reach a system which has full linear rank with respect
to the corresponding monomials. In fact, this is the main difference between our learning
algorithm and the well-known algebraic attack approaches for cryptanalyzing LFSR-based
keystream generators (see, e.g., [CM03], [AK03], [Cou03], [MPC04]).
We circumvent this problem by identifying an appropriate set T (n,L) of basis poly-

nomials of degree at most L, which allow to express the degree-L equations as linear
equations over T (n,L). The choice of T (n,L) is justified by Theorem 2 in [KH11], saying
that if |K| ≥ L, then the system of linear equations over T (n,L) induced by all possible
examples has full rank |T (n,L)|. Note that according to Theorem 1 in [KH11], this is
not true if |K| < L, thus imposing a lower bound on an attacker’s choice of ρ. Our
experiments, which are presented in Section 5 of [KH11], indicate that if |K| ≥ L, then
with probability close to one, the number of examples necessary for obtaining a full rank
system over T (n,L) exceeds |T (n,L)| only by a small constant factor. This implies that
the effort for computing the unique weak solution t(A) = (t∗(A))t∗∈T (n,L) corresponding
to the strong solution A equals the time for solving a system of about |T (n,L)| linear
equations (with |T (n,L)| variables) over K, where |T (n,L)| = ∑L

j=1
(n
j

)
(L− j + 1).

But in contrast to the algebraic attacks in [CM03], [AK03], [Cou03], and [MPC04], we
still had to solve another nontrivial problem in [KH11], namely, to compute the strong
solution A, which identifies the secret functions f1, . . . , fL, from the unique weak solution
t(A). An efficient way to do this is described in Section 4 of the paper. The overall
complexity of our approach is dominated by the effort for computing the weak solution.
As a final remark, we would like to point out that all our theoretical estimates in

[KH11] were also backed-up through experimental evaluation using the computer algebra
system Magma [BCP97]. We are thus convinced that they form a profound basis for the
parameter choices made in the context of our new (n, k, L)〈80〉-protocol, which will be
presented in the following Chapter 4.

3.6 Conclusion and Outlook

In this chapter, we have provided an introduction to authentication in general and its
lightweight forms in particular. It started with an explanation of the different concepts
identification, authentication, and authorization, which are all closely connected when
using RFID tags in practice, but have separate aims each. In particular, our examples of
real-world authentication failures (in the form of attacks against the VPN infrastructure
and the ecUM contactless smart card infrastructure of the author’s university) have

60

3.6 Conclusion and Outlook

shown that, despite the sole appearance of the term identification in the acronym RFID,
identification without proper authentication can easily lead to disaster. Apart from this
general (and rather obvious) insight, the attacks and their underlying flaws also provided
guidance w.r.t. various additional rules vital for the security of real-world authentication
systems, such as the implementation of strong back-end security as well as proper random
number generation and key management/protection.
In the second part of the chapter, we have described and evaluated (based on the

hardware limitations of ultra-constrained devices as introduced in Chapter 2) the three
most common approaches for lightweight authentication: (block) cipher-based protocols,
LPN-based protocols, and protocols based on random selection of secret linear functions.
Building on a protocol of the latter type, namely the (n, k, L)++ protocol of Krause and
Stegemann [KS09], we will now suggest a new lightweight authentication protocol actually
feasible for ultra-constrained RFIDs in Chapter 4. In analogy to HB-type protocols and
the LPN problem (cf. Section 3.4), its security will be based on the conjectured hardness
of the RandomSelect problem as introduced in Subsection 3.5.2.

61

Trust, but verify.

Russian proverb

CHAPTER4
The (n, k, L)〈80〉 Authentication Protocol

ABSTRACT
Lightweight authentication protocols based on random selection of secret linear functions were
introduced as an alternative design paradigm besides the usage of lightweight block ciphers and
the principle of adding biased noise. However, a comparatively large key length and the use of
involved operations made a hardware-efficient implementation a challenging task.

In this chapter, we introduce the (n, k, L)〈80〉-protocol, a variant of linear authentication
protocols which overcomes these problems, and analyze its security against all currently known,
relevant passive and active attacks. Moreover, we present an implementation of our protocol
for FPGAs and ASICs based on the hardware description language Verilog and discuss its
efficiency w.r.t. the cost metrics described in Chapter 2. The respective numbers show that the
(n, k, L)〈80〉-protocol is a viable alternative to existing solutions and is, for example, suited for
the implementation on ultra-constrained RFID tags.

Declaration of Origin: This chapter is based on the paper Hardware Efficient Authentication
based on Random Selection [AHK14], written together with Frederik Armknecht and Matthias
Krause and presented at Sicherheit 2014.

63

4 The (n, k, L)〈80〉 Authentication Protocol

4.1 Introduction

In previous works about the (n, k, L)++-protocol [KS09] described in Subsection 3.5.1,
two problems w.r.t. efficiency were left open for future research and prevented this type
of protocol from being practically used so far: First, the large key length resulting from
the need to specify the L secret linear functions. Second, certain operations deemed
necessary in order to achieve MITM-security were still too demanding in hardware.
The (n, k, L)〈80〉-protocol introduced in this chapter aims at solving both of these

problems. In particular, we are able to reduce the key length to a feasible size of
80 bits and show that the security reductions presented in [KS09] and [KH11] still
apply to a large extent. Moreover, all operations used in the (n, k, L)〈80〉-protocol
can be realized efficiently in hardware. In order to demonstrate this, we created an
actual implementation for FPGAs and ASICs using the hardware description language
Verilog. When compared to the hardware limits for ultra-constrained RFIDs described in
Chapter 2, the corresponding results indicate that the new protocol is a viable alternative
to prevalent block cipher-based constructions.
Important remark: Though being based on the paper Hardware Efficient Authentication
based on Random Selection [AHK14], written together with Matthias Krause and Frederik
Armknecht and presented at Sicherheit 2014, this chapter contains some important
novelties. More precisely, [AHK14] was mainly focused on the fundamental approaches
for making the (n, k, L)++-protocol actually feasible. In particular, the hardware results
presented there were given without an exact specification of the respective algorithm
(e.g., there was no description of the feedback function used by the underlying generator)
and, instead, basically served only to demonstrate the general feasibility of the applied
techniques. In this chapter, we will add the missing details and, in fact, provide a concrete
recommendation for a practical instantiation of the (n, k, L)80-scheme. To this end, we
now also give a reference implementation written in Verilog and corresponding test vectors
for the parameter choices n = 128, k = 32, L = 16 and n = 64, k = 32, L = 16. Another
important difference to the general description of the (n, k, L)80-approach from [AHK14]
is that the key size will now actually be 80 bits (as seemingly suggested by the protocol’s
name). In [AHK14], the key size depended on the parameter L and equaled 80−dlog2(L)e,
which, as we discovered in subsequent discussions with readers of our paper, apparently
created some confusion. This has now been remedied in the concrete protocol suggestion
presented in this chapter. As this specific suggestion, however, still fits into the general
framework described in [AHK14], we did not want to deviate strongly from the name
(n, k, L)80. Instead, for our new instantiation, we speak of the (n, k, L)〈80〉-protocol, in
particular, to signify that the key length is now actually 80 bits.

Structure of this chapter: In Section 4.2, we present the design rationale (including
the relevant modifications w.r.t. the underlying (n, k, L)++-protocol) and a detailed
description of our new (n, k, L)〈80〉-protocol. Building on this, Section 4.3 then explains

64

4.2 Design Rationale and Specification

how it is achieved that, despite the respective modifications, the security reductions
given in [KS09] and [KH11] still apply to a large extent. In Section 4.4, we present the
details of our hardware implementation for FPGAs and ASICs. Section 4.5 concludes the
chapter and provides an outlook on potential future work as well as on the subsequent
contents of this thesis. Test vectors and a reference implementation can be found in
Appendix 4.A and Appendix 4.B, respectively.

4.2 Design Rationale and Specification
As pointed out in the above introduction and in Subsection 3.5.1, a crucial open problem
of the original (n, k, L)++-protocol was the excessively large key length. More precisely,
as each of the L secret injective linear functions F1, . . . , FL : {0, 1}n −→ {0, 1}n+k can
be expressed as a distinct ((n+ k)× n)-matrix over GF (2), in total ((n+ k) · n) · L bits
would need to be stored permanently, which is clearly infeasible (w.r.t. ultra-constrained
devices) for the parameters n = 256, k = 64, L = 5 suggested by the designers in [KS09].
Moreover, for such parameters sizes, even the ‘simple’ nonlinear connection function

f(a, b) = (ab, ab3) of the (n, k, L)++-protocol induces a large computational overhead in
the form of several multiplications over GF(2n2)∗. Analogously, lookup tables, e.g., in
order to efficiently compute b3, would be rather expensive in terms of chip area.

In this section, we introduce the new (n, k, L)〈80〉-protocol to overcome the two problems
mentioned above. In short, the basic ideas are summarized as follows:

• To shorten the key length, the linear functions are no longer randomly sampled
and stored but are computed from a smaller seed.

• To lower the effort of the connection function, we replace it by several subfunctions
which compute the same functionality but on a smaller domain.

One consequence of these modifications w.r.t. the original (n, k, L)++-protocol is that
the new protocol needs to be executed several times per authentication instance, i.e., it
is composed of multiple (algorithmically identical) rounds.

4.2.1 Modifications w.r.t. the original (n, k, L)++-Protocol
We will now explain all relevant modifications in further detail. The description of the
resulting, new (n, k, L)〈80〉-protocol will then be given in the following Subsection 4.2.2,
along with a suggestion for concrete instantiations with the parameters n = 128, k = 32,
L = 16 and n = 64, k = 32, L = 16, respectively.

Shortening the Key Length. The basic idea is to take a keystream generator (KSG)
G that uses a seed of length m+M to (pseudorandomly) generate the ((n+ k) · n) · L
key bits characterizing the secret linear functions F1, . . . , FL. In particular, we suppose

65

4 The (n, k, L)〈80〉 Authentication Protocol

that L = 2M for a small M ∈ N (e.g., M = 4) and represent each index l, 1 ≤ l ≤ L,
as an M -bit string, where l = 1 corresponds to 0 . . . 00, l = 2 corresponds to 0 . . . 01
etc. Hence, given a secret symmetric session key κ = (κ0, . . . , κm−1), the entries of the
matrix corresponding to Fl are certain bits from the keystream produced by G on (l, κ).
Striving for a lightweight construction, it might be tempting to employ a single linear
feedback shift register (LFSR) as a simple bitstream generator G. However, we show in
Subsection 4.3.1 that allowing the matrices of F1, . . . , FL to be generated by a keystream
of small linear complexity opens the door to an algebraic attack which is much more
efficient than the aforementioned algorithm from [KH11].

Splitting the Connection Function. Another open problem was to reduce the cost
introduced by the connection function f : GF(2n2)∗ ×GF(2n2)∗ −→ GF(2n2)∗ ×GF(2n2)∗,
which is applied to the random values a, b ∈ GF(2n2), a, b 6= 0, before they are fed to
one of the L secret linear functions F1, . . . , FL.1 Instead of using f(a, b) = (ab, ab3) as a
connection function (and thus multiplying over GF(2n2)∗), in the new (n, k, L)〈80〉-protocol,
we compute

f(a, b) =
((
a1b1, a1b

3
1

)
, . . . ,

(
an/8bn/8, an/8b

3
n/8

))
,

where ai, bi ∈ GF(24), ai, bi 6= 0, are obtained by splitting a and b into blocks of 4 bits,
respectively. The practical security implications of this modification, which reduces the
number of valid challenge-nonce pairs (a, b) from (2n/2 − 1)2 to (24 − 1)n/4, are mainly
confined to the active attack discussed in Subsection 4.3.2.

Further Modification. On contrast to the (practically infeasible) (n, k, L)++-protocol,
it is necessary to run the (n, k, L)〈80〉-protocol multiple times in order to obtain sufficient
resistance w.r.t. certain MITM attacks. The reasons for this are twofold: First, for
efficiency reasons, our concrete instantiations (introduced in Subsection 4.2.2) and their
respective implementations (described in Section 4.4) use challenge-nonce tuples of length
at most n = 128 bits as compared to n = 256 bits suggested for (n, k, L)++ in [KS09].
Second, one has to compensate for the aforementioned decrease of valid inputs (a, b)
resulting from splitting up a and b into blocks of size 4 bits each as part of the modified
connection function. In Subsection 4.3.2, we show that these modifications lead to an
upper bound of 2−n/4 (e.g., 216 for n = 64) for the success probability of a certain MITM
attacker to convince an honest verifier to accept an illegitimate response. As, even with
n = 128, this success probability is too large for practical applications, one has to run
the protocol at least two times, which would, e.g., lead to an upper bound of 2−n/2 due
to the fact that the rounds can be considered independent w.r.t. the details of this type

1Like in the description of the original (n, k, L)++-protocol in Subsection 3.5.1, we identify the vector
space GF(2) n

2 with the finite field GF(2 n
2) here.

66

4.2 Design Rationale and Specification

of attack. We consider a success probability of 2−64 sufficiently small in the context of
ultra-constrained RFIDs, where it seems implausible that a respective MITM attacker
will be able to interfere in a correspondingly large number of authentication instances
between a valid tag and a valid reader. Moreover, as pointed out in Section 3.2, there
should always be a back-end system which checks for such malicious activities and, in the
above case, could simply ban the respective RFID tag after a certain number of failed
authentication attempts caused by the MITM attack.

Important remark: In our paper [AHK14], where the original (n, k, L)80-scheme was
introduced, we wrote at this point:

“As a final modification to the original (n, k, L)++-protocol, we introduce a
(publicly known) bit-wise permutation σ to the n-bit result of f (a, b). Note
that in terms of hardware efficiency, such a bit-wise permutation comes at
practically no cost as it is realized simply through wires and does not involve
any additional gates.” [AHK14]

In hindsight, the author of this thesis is now convinced that the additional introduction
of this bitwise permutation σ had actually no effect (i.e., neither positive nor negative)
on the security of the protocol. The underlying intuition for the use of σ in [AHK14]
was to compensate for the fact that the new connection function

f(a, b) =
((
a1b1, a1b

3
1

)
, . . . ,

(
an/8bn/8, an/8b

3
n/8

))
now effectively maps separate blocks of 8 bits to separate blocks of 8 bits (instead of
mapping one block of n bits to one block of n bits in the original (n, k, L)++-protocol).
But while such bitwise permutations are in fact an integral part of many cryptographic
schemes (such as substitution-permutation networks (SPNs) used, e.g., for the block
ciphers AES [DR02] and PRESENT [BKL+07]), their use in our paper [AHK14] seems
to have been rather a case of ‘security by obscurity’. For in contrast to SPNs, the output
of our permutation σ is not fed to a nonlinear S-box, but instead to a secret GF(2)-linear
function Fl. Consequently, as σ is public, the fact that the individual bits of the 8-bit
output blocks of f are now spread through σ over the whole n-bit input vector for
Fl does not induce any additional difficulties for an attacker who seeks to deduce the
specification of Fl. Thus, despite the fact that our statement in [AHK14] that “such a
bit-wise permutation comes at practically no cost as it is realized simply through wires
and does not involve any additional gates” remains true, we decided to remove σ for the
(n, k, L)〈80〉-protocol presented in this thesis, as we believe it to be good cryptographic
practice to include only components/operations for which an actual security benefit
can be shown (see also our corresponding criticism w.r.t. the stream cipher Fruit in
Chapter 6). Nevertheless, we would also like to point out that the security analysis for
(n, k, L)80 given in [AHK14] was independent of the use of σ and, hence, remains valid
for the (n, k, L)〈80〉-protocol as shown in Section 4.3.

67

4 The (n, k, L)〈80〉 Authentication Protocol

Verifier(κ) Prover(κ)
Alice Bob

RFID reader RFID tag

a ∈U GF(2)
n
2 , a 6= 0

l ∈U {1, . . . , L}

w

b ∈U GF(2)
n
2 , b 6= 0

let (ã, b̃) = f−1
(
F−1
l (w)

)

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl, Fl = G(l, κ)

challenge

response

Fl = G(l, κ)

compute

a

w = Fl(f(a, b))

Figure 4.1: One round of the (n, k, L)〈80〉-protocol. The computation of Fl = G(l, κ) through
the generator G can be performed on the fly while computing w = Fl(f(a, b)). As for the
original (n, k, L)++-protocol, Vl denotes the vector space corresponding to the image of Fl.

4.2.2 Protocol Description
This subsection is divided into two parts. In the first part, we describe the general
properties of the (n, k, L)〈80〉-protocol for arbitrary choices of the parameters n, k, L and
an abstract generator G. Building on this, we will then suggest concrete instantiations
for the parameters n = 128, k = 32, L = 16 and n = 64, k = 32, L = 16, respectively, in
the second part of the subsection. These instantiations will also form the basis of our
hardware implementation presented in Section 4.4 and come with corresponding sets of
test vectors.

General Properties

The (n, k, L)〈80〉-protocol proceeds according to the original (n, k, L)++-scheme described
in Subsection 3.5.1, with the additional condition that n must be divisible by 8 (see
below). As depicted in Fig. 4.1, the process is initiated by the verifier Alice, who chooses
some a ∈ GF(2)n2 uniformly and at random and sends it to the prover Bob. Bob then
also randomly chooses some b ∈ GF(2)n2 and some l ∈ {1, . . . , L}, and answers with

w = Fl(f(a, b)) = Fl
((
a1b1, a1b

3
1

)
, . . . ,

(
an/8bn/8, an/8b

3
n/8

))
, (4.1)

where ai and bi are elements of GF(24) that correspond to the respective 4-bit blocks of
a and b. Remember that in order to allow for inverting f(a, b) as part of the verification,
only challenges a and nonces b satisfying ai, bi 6= 0 for all i ∈

{
1, . . . , n8

}
are allowed by the

68

4.2 Design Rationale and Specification

protocol. The verification step of Alice is exactly the same as for the original (n, k, L)++-
protocol. Please note that while a might be known to an adversary eavesdropping on the
communication between Alice and Bob, b is kept strictly secret by the prover and is only
used to compute f(a, b).
As outlined previously, in order to achieve a feasible key length for the (n, k, L)〈80〉-

protocol, we suggest to deploy a generator G for specifying the secret linear functions
F1, . . . , FL based on an 80-bit secret key κ = (κ0, . . . , κ79) shared by Alice and Bob. For
l ∈ {1, . . . , L} and κ as inputs (i.e., as a seed) of G, we denote by G(l, κ) the corresponding
((n+ k) · n)-bit output (z0, . . . , z(n+k)·n−1), which determines the secret function Fl and
the computation of its n+ k output bits (w0, . . . , wn+k−1), i.e., the actual authentication
token, on an input f(a, b) = (x0, . . . , xn−1) as follows:

w0 = z0 · x0 ⊕ · · · ⊕ zn−1 · xn−1,

· · ·
wn+k−1 = z(n+k−1)·n · x0 ⊕ · · · ⊕ z(n+k−1)·n+(n−1) · xn−1.

(4.2)

Similar to general stream cipher design (see, e.g., Chapter 5), it is obviously crucial
here that the chosen generator G, which is a finite-state machine, will produce an output
stream of period at least (n + k) · n for any seed (l, κ). In the case of our concrete
instantiations of the (n, k, L)〈80〉-protocol, which will be presented in the second part
of this subsection, we achieve this by using a maximum-length LFSR as the central
component of G and explicitly forbidding the use of the all-zero key.

It should be noted that in the course of computing, e.g., w0, only a one-bit-wide register
is needed in hardware, i.e., firstly, z0 · x0 is computed and stored, then z1 · x1 is XORed,
and so on, until zn−1 · xn−1 has been added and w0 is finally ready to be transmitted to
the verifier. This is an important property as volatile memory in the form of flip-flops
is especially costly in terms of area and power consumption, so that its use should be
restricted to an absolute minimum when designing lightweight cryptographic protocols.
While we trade an increase in the number of clock cycles for a reduction of area

(and, thus, also static power consumption; cf. Subsection 2.3.4) in several parts of
the (n, k, L)〈80〉-protocol (see, e.g., the above paragraph), the hardware implementation
outlined in Section 4.4 also contains measures to reduce the time complexity where
possible. Most notably, the blockwise evaluation of f(a, b) can be performed concurrently
with the initialization phase of the generator G without inducing any additional hardware
cost. This allows to start computing the first token bit y0 instantly once G is ready.
Before we proceed with the second part of this subsection containing our concrete

instantiations of the (n, k, L)〈80〉-protocol, let us briefly explain one more design decision.
Providing the secret function index l as an input to the generator G is, in fact, not strin-
gently necessary. More precisely, we could have also obtained different specifications of the
respective L secret functions on the basis of a single, larger output

(
z0, . . . , zL·(n+k)·n−1

)

69

4 The (n, k, L)〈80〉 Authentication Protocol

of a generator G with κ as its only input as follows:

F1 =̂
(
z0, . . . , z(n+k)·n−1

)
,

· · ·

FL =̂
(
z(L−1)·(n+k)·n, . . . , zL·(n+k)·n−1

)
.

This, however, would have resulted in a computational load unacceptable already for
moderate parameter choices like n = 64, k = 32, and L = 16 (for which, in the worst case,
16 ·(64 + 32) ·64 = 98 304 bits would need to be generated by G per protocol round) in the
context of ultra-constrained RFIDs. Remember that for a single authentication instance
with this choice of parameters, four rounds are recommended to obtain adequate (MITM)
security, resulting in almost 400 000 bits to be generated by the prover’s generator G.2
Comparing this to the common limit of 150 ms w.r.t. authentication times and a clock
rate of 100 kHz prevalent for ultra-constrained RFIDs as described in Chapter 2, such a
solution would have clearly not been feasible. Finally, we also believe that our preferred
solution of using a generator G with l as an additional input is also superior in terms of
security. This judgement is based on the fact that for the generation of each function
specification Fl, G then runs its initialization phase anew under a different seed (due
to the change of the function index l), thus better destroying the relations between the
generator’s inner states underlying the different secret functions F1, . . . , Fl.

Concrete Instantiations for n = 128 and n = 64

After the generalized description of the (n, k, L)〈80〉-protocol in the former part of this
subsection, we will now provide two suggestions for concrete instantiations with the
parameters n = 128, k = 32, L = 16 and n = 64, k = 32, L = 16, respectively. These
instantiations will also form the basis of our hardware implementation presented in
Section 4.4. Corresponding sets of test vectors are provided in Appendix 4.A.

The respective parameter choices are motivated by our previous security considerations
for (n, k, L)-type authentication protocols as discussed in Subsection 3.5.2. In particular,
applying the algebraic attack approach from [KH11] against our new (n, k, L)〈80〉-protocol
with parameters n = 128 and L = 16 (resp. n = 64 and L = 16) implies solving a
system of around

(128
16
)
≈ 266 (resp.

(64
16
)
≈ 249) unknowns, which can be considered

sufficiently difficult. For n = 128, choosing L = 8 would, in fact, already be adequate.
The reason for choosing L = 16 anyhow, is that this allows us to use the same generator
for both instantiations. We not only consider this more elegant, but it has also a very

2Despite the fact that, in this alternative scenario (where G takes only the key κ as its single input),
the output of G would be the same for all rounds, these bits would still need to be generated anew per
round, due to a lack of corresponding storage capabilities on ultra-constrained RFIDs. After all, the very
reason for using a generator G is to avoid having to store an explicit specification of the secret functions
F1, . . . , FL.

70

4.2 Design Rationale and Specification

practical advantage, in that it allows for applying corresponding security results to both
instantiations simultaneously.
Both variants generate their respective authentication tokens (of length 160 bits for

n = 128, k = 32, L = 16 and of length 96 bits for n = 64, k = 32, L = 16) as shown in
Eqs. (4.1) and (4.2). In order to resist the MITM attack explained in Subsection 4.3.2, we
suggest that an authentication instance for n = 128 should consist of two rounds, whereas
an authentication instance for n = 64 should consist of four rounds, which, in both cases,
all need to be passed by the prover in order for the verifier to finally answer with accept.
Note that the verifier will not provide intermediate results, i.e., the prover (or an attacker)
will only learn whether the authentication instance as a whole was successful or not. To
this end, it is also important that always the full number of rounds per authentication
instance is executed, even if the prover should have failed, e.g., already in the first round.
The last missing ‘detail’ in the description of our two concrete instantiations is the

specification of the employed generator G, which, as pointed out above, is the same
for both variants. Section 4.3 will show that while the (n, k, L)〈80〉-protocol can be
instantiated with any secure and hardware-efficient KSG, it is actually sufficient to
use a pseudorandom bit generator whose bitstream does not suffer from a small linear
complexity. For this reason, we decided to use the self-shrinking generator by Meier
and Staffelbach [MS94] on top of a simple maximum-length LFSR (i.e., an LFSR with a
primitive feedback polynomial). While only few additional gates are needed to implement
the logic of the self-shrinking generator when compared to implementing a mere maximum-
length LFSR, the security benefit is enormous. The best currently known attacks against
self-shrinking generators are a time-memory attack by Mihaljević [Mih96] and an OBDD-
based attack by Zenner, Krause, and Lucks [ZKL01]. However, we do not see how to use
these attacks in order to realize a nontrivial attack against the (n, k, L)〈80〉-protocol.3 In
particular, the fact that no algebraic attacks are known makes the self-shrinking generator
seem especially suited for our context. Moreover, Meier and Staffelbach have proved
in [MS94] that a self-shrinking generator based on a maximum-length LFSR of size N
bits has a period of at least 2bN/2c and a linear complexity of at least 2bN/2c−1, both

3Also note that in a classical time-memory-data tradeoff (TMD-TO) attack (see, e.g., Chapter 7)
against the (n, k, L)〈80〉-protocol, the n-bit result of f(a, b) would have to be treated as part of the inner
state. For n = 128 and a generator G of size 84 bits (see below), this would lead to an attack complexity
of 2(128+84)/2 = 2106, i.e., above that of exhaustive key search. For n = 64, the corresponding complexity
would be 274 and, hence, slightly below the effort for exhaustive key search. However, here, an attacker
also has to face the problem that the challenge space is only of size 264/2 (like IVs of stream ciphers,
challenges should obviously not be reused), as a result of which he will not be able to collect enough
data for an attack with overall complexity below 280. Another problem of straightforwardly applying
a classical TMD-TO attack against the (n, k, L)〈80〉-protocol would be that, per challenge, an attacker
could only obtain n+ k bits of data (as the output tokens of the (n, k, L)〈80〉-protocol would correspond
to the collected keystream pieces in a TMD-TO attack against stream ciphers). For our choice k = 32,
data pieces of size n+ k bits would, however, not be sufficient to uniquely identify the underlying inner
states comprising of the 84-bit state of G and the n-bit value of f(a, b).

71

4 The (n, k, L)〈80〉 Authentication Protocol

of which are perfectly sufficient in our context, where N = 84 bits. More precisely, we
use the primitive feedback polynomial x84 + x82 + x62 + x49 + x30 + x15 + 1 and, as an
initialization phase, clock the LFSR 256 times without producing output. Note that we
are aware of the fact that for N = 84, there would also be primitive polynomials with
fewer terms (such as x84 + x71 + 1), but we deliberately chose this one for faster diffusion
of inputs. The hardware costs of the additionally required gates are negligible.

To avoid ambiguity, please find below an algorithmic description of the initialization and
bitstream generation of the employed generator G, whose inner state at time t = 0, 1, . . .
we denote by

(
Gt0, . . . , G

t
83
)
.

Key and Function Index Loading. Let κ = (κ0, . . . , κ79) 6= 0 denote the 80-bit secret
key and let (l3, . . . , l0) denote the 4-bit binary representation of the index l ∈ {1, . . . , L},
L = 16, of the secret function Fl whose specification (z0, . . . , z(n+k)·n−1) shall be generated.
Note that l0 represents the least significant bit (LSB) here and that we start the binary
indexing with (0, 0, 0, 0); e.g., l = 1 corresponds to (l3, l2, l1, l0) = (0, 0, 0, 0) and l = 2
corresponds to (l3, l2, l1, l0) = (0, 0, 0, 1). The cells of G are now are initialized as follows:

G0
i :=

{
l3−i, for i ∈ {0, . . . , 3} ,
κi−4, for i ∈ {4, . . . , 83} .

Generator Initialization. For t = 0, . . . , 127, compute:

Gt+1
i := Gti+2, for i ∈ {0, . . . , 81} ,

Gt+1
82 := Gt0 ⊕Gt2 ⊕Gt22 ⊕Gt35 ⊕Gt54 ⊕Gt69,

Gt+1
83 := Gt1 ⊕Gt3 ⊕Gt23 ⊕Gt36 ⊕Gt55 ⊕Gt70.

Note that we describe a parallelized implementation of the generator’s LFSR here,
which requires only 128 clock cycles (instead of 256 for a classical, non-parallelized
implementation under the above primitive feedback polynomial). Due to the extremely
simple feedback function, this kind of parallelization is very cheap in hardware (only
few additional gates) and, hence, also employed in our Verilog reference implementation
presented in Appendix 4.B. The reason for using it already here as part of the algorithmic
specification of our protocol instantiations is that it is especially suited for the self-
shrinking generator and allows to describe the following phase rather elegantly.

Generating the Secret Function. Set j := 0. For t = 128, . . ., do:

1) If Gt0 = 1, then set zj := Gt1 and j := j + 1.

2) If j = (n+ k) · n, then stop the computation (as we are done). Else, compute:

Gt+1
i := Gti+2, for i ∈ {0, . . . , 81} ,

72

4.2 Design Rationale and Specification

Gt+1
82 := Gt0 ⊕Gt2 ⊕Gt22 ⊕Gt35 ⊕Gt54 ⊕Gt69,

Gt+1
83 := Gt1 ⊕Gt3 ⊕Gt23 ⊕Gt36 ⊕Gt55 ⊕Gt70.

As pointed out previously, in practice, the generation of the secret function specification
(z0, . . . , z(n+k)·n−1) is performed on the fly during the computation of the authentication
token (w0, . . . , wn+k−1) as described in Eq. (4.2).

This concludes the algorithmic specification of our concrete (n, k, L)〈80〉-protocol instan-
tiations for n = 128, k = 32, L = 16 (with 2 rounds) and n = 64, k = 32, L = 16 (with 4
rounds). But before we proceed with the security analysis in the following Section 4.3,
let us briefly explain why we actually suggest two variants (each with key size 80 bits),
despite the fact the we consider both of them secure against the algebraic attack in
[KH11] and the adapted (x, y)-equality attack in Subsection 4.3.2. The reason lies in the
tradeoff between challenge size versus hardware costs. In Section 4.4, we will see that for
n = 128 the chip area of an ASIC implementation is almost 50 percent higher than for
n = 64. In the context of ultra-constrained RFIDs, it seems rather unlikely that more
than 264/2 different challenges will be required during the lifetime of a corresponding
tag. However, if the challenges have to be chosen randomly (e.g., in the case of multiple
verifiers that are not connected via a common back end), a larger challenge space (such as
264 for n = 128) can, in fact, become necessary in order to reduce the risk of repetitions.
To avoid potential misconceptions here, we would like to point out the following facts:

• Despite the reduced challenge space of size 264/2 for the protocol variant n = 64,
k = 32, L = 16 (with 4 rounds), it is not sufficient for an attacker who wants to
impersonate a valid tag to be in possession of one valid authentication token for
a 32-bit challenge ‘accidentally’ asked twice by a verifier. Instead, he has to pass
all for rounds of the respective authentication instance, implying that he actually
needs to know the correct answers to each of the four 32-bit challenges posed by
the verifier.

• The vigilant reader may point out that our description of the general (n, k, L)〈80〉-
protocol structure in the first part of this subsection (and, e.g., in Fig. 4.1) actually
commands that the challenges are to be chosen randomly by the verifier, which
would forbid to implement additional countermeasures against the risk of repeating
challenges in order to maximize the lifetime of tags that use protocol instantiations
with relatively small n, such as n = 64. However, the reason behind this kind of
description is actually that we wanted to follow the description of the underlying
(n, k, L)++-protocol, where the challenges are also randomly chosen. But, in fact,
studying the algebraic attack from [KH11] and the adapted (x, y)-equality attack
in Subsection 4.3.2 shows that neither of them would benefit from non-randomly
chosen challenges. Consequently, we see no reason why the verifier should not

73

4 The (n, k, L)〈80〉 Authentication Protocol

apply suitable techniques for making sure that the posed challenges are unique,
thus allowing for longer lifetimes of tags due to the eliminated risk of repeating
challenges before the theoretically possible maximum n/2 is finally reached.

Finally, apart from the possibility to choose n = 128 or n = 64 depending on the
number of challenges required by the application scenario, we also provide the two
protocol instantiations as certain users might be willing to pay the cost of increased chip
area for the the variant n = 128, k = 32, L = 16 (with 2 rounds), in order to have a
larger security margin against possible future attacks (such as improved algorithms for
solving the learning problem RandomSelect(L, n, ρ) as described in Subsection 3.5.2).

4.3 Security Analysis

In this section we analyze the security of the (n, k, L)〈80〉-protocol, which is, as pointed
out previously, in fact a variant of the (n, k, L)++ authentication protocol from [KS09]
where some modifications have been made for improving the hardware efficiency. In a
nutshell, these modifications are (cf. Subsection 4.2.1):

• The linear functions Fl are not randomly chosen but, based on a secret key κ,
generated from the seed (l, κ) using a bitstream generator G.

• The connection function has been broken down into several subfunctions which all
realize in principle the same function, but restricted to a smaller domain.

Consequently, we investigate if and to what extent these modifications impact the security
of the (n, k, L)〈80〉-protocol in comparison to the security of the underlying (n, k, L)++-
protocol. With respect to the latter, remember that the best attacks known so far against
(n, k, L)-type protocols are the algebraic attack from [KH11] (cf. Subsection 3.5.2) and
the active MITM attack named (x, y)-equality attack from [KS09] (cf. Subsection 4.3.2).
For appropriately chosen parameters, the (n, k, L)++-protocol is resistant against both
types of attacks (see [KS09], [KH11], and Subsection 3.5.2).

4.3.1 Impact of Using a Generator G
In this subsection, we analyze the security impact if the secret linear functions F1, . . . , FL
are not randomly chosen, but derived from a bitstream produced by a generator G. To
this end, we will first demonstrate that if G is weak (more precisely, if the generated
bitstream exhibits a small linear complexity), then, in a certain setting, the whole protocol
becomes vulnerable to a variant of the algebraic attack from [KH11] that allows for
computing the specifications of F1, . . . , FL much more efficiently compared to the general
case of the respective learning algorithm. This shows the necessity for stronger generators.
In fact, we argue afterwards, using a standard hybrid argument, that using G does not

74

4.3 Security Analysis

imply any significant change in the protocol’s security if G is a secure4 pseudorandom
bit generator.

An Algebraic Attack for Weak Generators

In the following, we present an efficient algebraic attack if the generator G produces a
bitstream with a short, known linear complexity. For simplicity, we consider the case
that G is realized by a maximum-length LFSR. Observe, however, that the same attack
works against any G which produces a bitstream with low, known linear span.

But before we start, let us point out that the attack scenario in this subsection differs
from the one described in Appendix B of [KH11], where it is shown that an efficient
algorithm for the learning problem RandomSelect(L, n, ρ) (cf. Subsection 3.5.2) could be
used to break the (n, k, L)+-protocol. More precisely, in [KH11], the respective algorithm
for RandomSelect(L, n, ρ) serves to learn the L secret subspaces V1, . . . , VL of {0, 1}n+k

corresponding to the images of the L secret functions F1, . . . , FL : {0, 1}n −→ {0, 1}n+k,
but not the specifications of F1, . . . , FL themselves. The reason for this is that the
learning problem RandomSelect(L, n, ρ) assumes, as described in Subsection 3.5.2, that
the learner knows (input, output)-tuples (but not the corresponding function indices) for
the set of secret functions whose specifications he wants to deduce.
In (n, k, L)-type protocols, however, the secret nonce b ∈ {0, 1}n/2 is also part of

the input to Fl, thus making it impossible to apply RandomSelect(L, n, ρ) directly to
F1, . . . , FL in practice. Instead, for the attack against the (n, k, L)+-protocol, it is
assumed that the secret subspaces V1, . . . , VL have a special form which allows to recover
their specification using a learning algorithm for RandomSelect(L, n, ρ) (see [KH11] for
further details). Based on the knowledge of V1, . . . , VL, it is then shown how to fully break
the (n, k, L)+-protocol. Note that while a learning algorithm for RandomSelect(L, n, ρ)
analogously allows to obtain the specifications of V1, . . . , VL for the (n, k, L)++-protocol,
it has not yet been shown how this information can then be used to actually break the
protocol. Hence, as pointed out previously, the hardness of RandomSelect(L, n, ρ) is
actually conjectured to be a lower bound for the hardness of breaking the (n, k, L)++-
protocol.

In the same spirit, we will assume an even more powerful attacker (subsequently called
strong attacker) for the following algebraic attack for weak generators w.r.t. our new
(n, k, L)〈80〉-protocol. More precisely, we consider a passive attacker who actually knows
the secret nonces b ∈ {0, 1}n/2 and thus, as the challenges a ∈ {0, 1}n/2 are public,
input-output tuples (u,w) = (f(a, b), Fl(f(a, b)) ∈ {0, 1}n×{0, 1}n+k for the set of secret
functions F1, . . . , FL.5 In consequence, the following results are not meant to suggest

4The meaning of the term secure in this context will be defined more precisely during the respective
security reduction in the second part of this subsection.

5Note that this strong attacker scenario is not fully implausible as the example of the MIFARE
Classic’s weak RNG in Subsection 3.2.2 has shown.

75

4 The (n, k, L)〈80〉 Authentication Protocol

that the (n, k, L)〈80〉-protocol can definitely be broken in practice if the used generator G
produces a bitstream with a short, known linear complexity. Nevertheless, they definitely
suggest that, as a measure of caution, such generators should be avoided (in particular,
given that superior building blocks, such as the self-shrinking generator used for our
concrete protocol instantiations in Subsection 4.2.2, are available at the cost of only few
additional hardware gates).

The (n, k, L)++-Protocol versus a Strong Attacker. Let F1, . . . , FL : GF(2)n −→
GF(2)n+k denote the secret key consisting of L injective GF(2)-linear mappings, where
n, k, L are appropriately chosen. A strong attacker tries to compute specifications of
these functions on the basis of pairs (u,w), where w = Fl(u) for some secret index l,
which is randomly and uniformly chosen from {1, . . . , L} for each new pair.

In this scenario, the learning algorithm for RandomSelect(L, n, ρ) from [KH11] can
now be applied straightforwardly by choosing appropriate parameters µ, ρ such that
µ · ρ = n + k, considering the secret functions Fl as vectors of µ component functions
mapping from GF(2)n into GF(2)ρ, identifying GF(2)ρ with the finite field K = GF(2ρ),
and computing the component functions by means of the following algebraic attack
approach:
Suppose we are given secret linear functions f1, . . . , fL : Kn −→ K and we want to

compute specifications of these functions on the basis of known plaintext pairs (x, y),
where x is randomly and uniformly chosen from {0, 1}n ⊆ Kn and it holds that y = fl(x)
for some secret index l, which is randomly and uniformly chosen from {1, . . . , L} for each
new pair.
We were done if we could compute the values xi,l = fl(ei) for i = 1, . . . , n and

l = 1, . . . , L, where ei ∈ Kn denotes the standard vector having one at position i and
zero at all other positions.

Note that each known plaintext pair (x, y) yields a degree-L equation in the xi,l-variables
of the form

L∏
l=1

(⊕
i∈I

xi,l ⊕ y
)

= 0,

where x = ⊕
i∈I ei.

In [KH11], it is shown that systems built of degree-L equations of this kind can be
solved by a nontrivial application of the technique of linearization, which implies to
solve a system of linear equations over O(nL) variables (see the corresponding outline in
Subsection 3.5.2). To the best of our knowledge, no faster approach has been suggested
so far. So, even in the case of a strong attacker, who actually knows the secret nonces b
and, hence, the inputs to the secret functions Fl, the (n, k, L)++-protocol remains secure
against passive attacks for parameter choices like n = 128 and L = 8 or n = 64 and
L = 16.

76

4.3 Security Analysis

The (n, k, L)〈80〉-Protocol with a Weak G versus a Strong Attacker. We analyze now
the case that the ((n+ k) · n) ·L bits characterizing the secret linear functions F1, . . . , FL
are generated by one maximum-length LFSR of length m+M , where L = 2M . Remember
that the secret symmetric key κ = (κ0, . . . , κm−1) and the M random bits lM−1, . . . , l0
forming the binary representation of the secret index l ∈ {1, . . . , L = 2M} serve as the
initial state of the LFSR.
We show in the following that when facing a strong attacker (who knows the secret

nonces b and, hence, the inputs f(a, b) to the secret functions), this construction opens
the door to an algebraic attack allowing to compute the secret key bits much more
efficiently as compared to the general case described in the previous part about the
(n, k, L)++-protocol.

For demonstrating this, we consider the algebraic attack against the (n, k, L)++-protocol
described above and suppose that ρ is chosen by the attacker such that ρ = M + 1. Our
construction implies that each bit of the function matrices of F1, . . . , FL and, consequently,
each bit of the secret K-elements xi,l, is the output of a publicly known GF(2)-linear
mapping in the κ-bits and the random l-bits.
Hence, the secret K-elements xi,l can be written as

xi,l =
m−1⊕
s=0

ci,sκs ⊕
M−1⊕
t=0

Ci,tlt, (4.3)

where the bits lM−1, . . . , l0 of l and the vectors ci,s, Ci,t ∈ GF(2)ρ are publicly known.6
Thus, each known plaintext pair (x, y), x = ⊕

i∈I ei, translates into the statement that

m−1⊕
s=0

(⊕
i∈I

ci,s

)
κs ∈ W (y),

where the set W (y) ⊆ GF(2)ρ is defined by W (y) = {y ⊕ CI,1, . . . , y ⊕ CI,L} and for each
(lM−1, . . . , l0) representing an element l ∈ {1, . . . , L} it holds that

CI,l =
M−1⊕
t=0

(⊕
i∈I

Ci,t

)
lt.

Now we can compute a nonzero Boolean function g : {0, 1}ρ −→ {0, 1} which annihilates
W (y). This is possible as W (y) is a proper subset of {0, 1}ρ due to |W (y)| ≤ 2M = 2ρ−1.
More concretely, we compute a square free polynomial p = p (z1, . . . , zρ) which yields

g. This can be done by solving a system of at most L GF(2)-linear equations in at most
6To avoid potential misconceptions, note that, while the indices l are secretly chosen at random

during the execution of the protocol, in the context of Eq. (4.3) the binary representation lM−1 . . . , l0 of
l for xi,l is publicly known.

77

4 The (n, k, L)〈80〉 Authentication Protocol

2ρ variables corresponding to the square free monomials over z1, . . . , zρ. As M and ρ are
small numbers in practice, this is feasible. Note that the degree of p is at most ρ.
Consequently, the known plaintext pair (x, y) yields the following nonlinear equation

in the key bits:

p

(
m−1⊕
s=0

(⊕
i∈I

ci,s

)
κs

)
= 0.

The degree of this equation is at most ρ = log2(L) + 1, which is much smaller than
L, the degree of the algebraic attack for the general case as used above against the
(n, k, L)++-protocol. This shows that generators whose bitstream exhibits a small linear
complexity should be avoided for instantiations of our new (n, k, L)〈80〉-protocol.

Security Reduction for Pseudorandom-Bit-Generators G.

Next, we consider the case that G is instantiated by a bitstream generator which produces
a bitstream (zi) of pseudorandom bits given a seed α ∈ GF(2)r. More precisely, let
q = ((n+ k) · n) · L be the number of bits that characterize the secret linear functions
F1, . . . , FL. For simplicity, we assume that the first q outputs of G eventually define
the linear functions. Now let G be a (q, t, ε)-secure pseudorandom bit generator and let
z = (z0, . . . , zq−1) be a bitstring of length q. This means that for any algorithm D which
accepts q bits input and which runs in time t, it holds

|Pr[1← D(z) | z ← G(α), α ∈U GF(2)r]− Pr[1← D(z) | z ∈U GF(2)q]| ≤ ε. (4.4)

Using a standard argument, one can show that the success probability of any attacker A
against the protocol using G deviates at most by ε from the success probability if the
linear functions are characterized by uniformly and independently sampled bits. More
precisely, let A denote any attacker against the (n, k, L)〈80〉-protocol which runs in time
t at most. We define a corresponding security experiment ExpA, which is equal to 1 if A
has been successful. Moreover, we consider two games. In Game 0, the linear functions Fl
have been determined by the output of G based on a secret seed, while in Game 1, they
are characterized by independently and uniformly sampled bits. The latter corresponds
to a situation where the linear functions are randomly chosen, as suggested in the context
of the (n, k, L)++-protocol. It follows from Eq. (4.4) that

|Pr[ExpA = 1 | Game 0]− Pr[ExpA = 1 | Game 1]| ≤ ε.

Otherwise, A could be used directly as a distinguisher for telling apart random bits
from outputs of G, hence violating Eq. (4.4). Summing up, if G is a (q, t, ε)-secure
pseudorandom bit generator for a sufficiently small value ε, we can practically restrict to
the case that the linear functions are randomly chosen. In particular, using a corresponding
generator G yields at most a negligible difference w.r.t. the security against the algebraic
attack from [KH11] and the active MITM attack from [KS09] in comparison to the
original (n, k, L)++-protocol.

78

4.3 Security Analysis

4.3.2 Impact of Splitting the Connection Function
In this subsection, we investigate any impact on the security caused by splitting the
connection function. As the algebraic attack from [KH11] in the strong attacker setting
discussed above is independent of the connection function, the resistance against this
attack remains unchanged. However, as we elaborate below, the situation is different
for the active MITM attack against (n, k, L)-type protocols explained in [KS09]. This
MITM attack has been called (x, y)-equality attack and was used to break, e.g., the
CKK2-protocol by Cichoń, Klonowski and Kutyłowski [CKK08]. We show that splitting
the connection function implies an (for the attacker better) upper bound of about 2−n/4
for the success probability of this kind of attack against the (n, k, L)〈80〉-protocol. One
consequence is that for the parameters suggested in Subsection 4.2.2 (e.g., n = 64, k = 32,
L = 16), a reasonable level of security can be reached by running the protocol a few
times (e.g., four independently executed rounds would reduce the upper bound to 2−16·4

if n = 64).
We start with a description of the (x, y)-equality as given in [KS09]:

“The aim of an (x, y)-equality attacker Eve is to generate two messages
w 6= w′ ∈ GF(2)n+k and to efficiently test by MITM-access to the protocol
if w and w ⊕ w′ belong to the same linear subspace Vl for some l ∈ [L]. As
described above [i.e., in [KS09]], such an attack can be used to efficiently
compute specifications of the subspaces V1, . . . , VL.
Eve works in three phases:
1. Send a message y ∈ GF(2)N to Bob and receive w′ = Fl(f(y, b′)).
2. Observe a challenge a ∈ GF(2)N sent by Alice to Bob.
3. Compute a value x = x(y, w′, a) ∈ GF(2)N , send it to Bob, receive the

message w = Fr(f(x, b)) and send w ⊕ w′ to Alice.
The success probability of the attack is given by the probability that Alice
accepts w ⊕ w′ if l = r.” [KS09]

As pointed out above, for appropriately chosen n and authentication instances composed
of multiple rounds, the new connection function of the (n, k, L)〈80〉-protocol still yields
provable security against (x, y)-equality attacks (like the original (n, k, L)++-protocol as
shown in [KS09]). In the following, we identify GF(2)4 with the finite field K = GF(24)
and denote by + and · the addition and multiplication in K, respectively. Let the function
value f(a, b) for all a, b ∈ GF(2)n/2 be defined by

f(a, b) =
((
a1b1, a1b

3
1

)
, . . . ,

(
an/8bn/8, an/8b

3
n/8

))
,

where ai, bi ∈ K, i = 1, . . . , n/8, are obtained by partitioning a and b into blocks of 4
bits, respectively (cf. Eq. (4.1) in Subsection 4.2.2). Remember that, according to the

79

4 The (n, k, L)〈80〉 Authentication Protocol

specification of the (n, k, L)〈80〉-protocol, the prover Bob will only reply to challenges a
(and choose nonces b) which satisfy ai, bi 6= 0 for all i = 1, . . . , n/8.

The proof of the following theorem works analogous to the proof of Theorem 1 in
[KS09] for the connection function f(a, b) = (ab, ab3) of the (n, k, L)++-protocol.

Theorem 4.1

The success probability of an (x, y)-equality attack against the (n, k, L)〈80〉-protocol
is at most 0.2n/8.

Proof: For a challenge a ∈ (K∗)n/8, Alice accepts the response w⊕w′ ∈ GF(2)n+k with

w = Fl(f(x, b)) = Fl
((
x1b1, x1b

3
1

)
, . . . ,

(
xn/8bn/8, xn/8b

3
n/8

))
,

w′ = Fl
(
f
(
y, b′

))
= Fl

((
y1b
′
1, y1b

′3
1

)
, . . . ,

(
yn/8b

′
n/8, yn/8b

′3
n/8

))
and (

(u1, v1) , . . . ,
(
un/8, vn/8

))
= F−1

l

(
w ⊕ w′

)
if for all i = 1, . . . , n/8 it holds that (a−1

i ui)3 = a−1
i vi or, equivalently, u3

i = a2
i vi, where

the GF(2)-linearity of Fl implies that ui = xibi + yib
′
i and vi = xib

3
i + yib

′3
i .

In consequence, for known a, y ∈ (K∗)n/8 and secret b, b′ ∈ (K∗)n/8, Eve has to choose
an element x ∈ (K∗)n/8 such that(

xibi + yib
′
i

)3 = a2
i

(
xib

3
i + yib

′3
i

)
or, equivalently, (

xi + yi
b′i
bi

)3
= a2

i

(
xi + yi

(
b′i
bi

)3)
(4.5)

for all i = 1, . . . , n/8.
Let ci = b′i · b

−1
i . Then Eq. (4.5) is equivalent to Pi(xi, ci) = 0, where, for x̃, d ∈ K∗,

the polynomial Pi(x̃, d) is defined as

Pi(x̃, d) = x̃3 + (yid) x̃2 +
(
y2
i d

2 + a2
i

)
x̃+ d3

(
y3
i + yia

2
i

)
.

For arbitrarily fixed ai, yi ∈ K∗, there are |K∗| = 15 different polynomials of type Pi(x̃, d)
w.r.t. the variable x̃, because for each d ∈ K∗, the coefficient yid of x̃2 takes a different
value in K∗. Let Ni(x̃) = {d ∈ K∗ | Pi(x̃, d) = 0}. As, also w.r.t. the variable d, the
polynomial Pi(x̃, d) is of degree 3, it holds that |Ni(x̃)| ≤ 3 for any x̃ ∈ K∗.

80

4.4 Hardware Efficiency

Remember that in order for having Alice accept the response w ⊕ w′ in state a, Eve
needs to choose x ∈ (K∗)n/8 such that Eq. (4.5) is satisfied for all i = 1, . . . , n. This is
equivalent to choosing x ∈ (K∗)n/8 such that ci ∈ Ni(xi) for all i = 1, . . . , n/8. However,
as the nonces b′ and b are secret, Eve has no information about ci = b′i ·b

−1
i , i = 1, . . . , n/8.

In consequence, her success probability is bounded from above by

n/8∏
i=1

3
15 = 0.2n/8.

4.4 Hardware Efficiency

Preamble. As pointed out in Section 4.1, this chapter represents a major rewrite (and
a significant extension) of our underlying publication [AHK14]. The main reason for
these modifications (three years after presenting [AHK14]) is our improved knowledge in
the field of cryptographic hardware design, which we gained in the process of developing
the new lightweight stream cipher Lizard (see Chapter 8). This experience helped
us not only to increase the hardware efficiency of the implementation (which, in turn,
allowed for using larger parameters and a full 80-bit secret key now), but it also lead
to a more detailed analysis of the implied hardware costs. For example, in our original
publication [AHK14], no information about the power consumption of the preliminary
implementation of our scheme was given, which, as we know now, is a crucial metric when
comparing lightweight cryptographic designs (see Subsection 2.3.4 and Subsection 8.5.1).
In a nutshell, the update provided in this thesis, which we indicate by using the new
name (n, k, L)〈80〉-protocol, now turns the ‘feasibility study’ provided in [AHK14] into
a full-fledged protocol suggestion, which comes along with a concrete specification for
suggested parameters (see Subsection 4.2.2), corresponding sets of test vectors (see
Appendix 4.A), and a reference implementation written in Verilog (see Appendix 4.B).
As a final remark with respect to the contents of this subsection, we would like to ‘warn’
the reader that in the description of the targeted hardware metrics and the applied
techniques, there will be some redundancies with the information provided in Chapter 2
and Section 8.5. This redundancy is intended, as, given the extent of this thesis, we do
not want that a reader who is solely interested in the new (n, k, L)〈80〉-protocol has to
consult several other chapters, e.g., in order to find out what a gate equivalent is or how
power consumption is properly estimated for ASIC implementations of cryptographic
designs. We try, however, to keep the extent of such explanations at a level still tolerable
to the more experienced reader.
In order to assess the efficiency of our hardware implementation and to allow for

comparing the results with other cryptographic protocols, generally accepted cost metrics
are needed. In Chapter 2, an overview over the most relevant of them in the field of
ultra-constrained RFIDs (with a focus on ASICs) was given. In the following, we will

81

4 The (n, k, L)〈80〉 Authentication Protocol

focus on area, power, and timing (in the form of clock cycles needed on the prover’s side
during a full authentication instance).7 The information provided for FPGAs is rather a
‘byproduct’ of our Verilog implementation, because, as pointed out in Chapter 2, ASICs
are the prevalent component for ultra-constrained devices in the price range of $0.05–$0.10
as targeted in this thesis. Nevertheless, for the sake of completeness, we wanted to include
at least the area requirements of a corresponding FPGA implementation, because these
numbers are given for a few other lightweight cryptographic schemes (such as the block
cipher PRESENT [BKL+07]; see below) in the respective publications, as well.
Before presenting our implementation results for FPGAs and ASICs in the following

two subsections, we would like to share our impression that despite the multitude of
allegedly lightweight authentication protocols which have been suggested so far (see, e.g.,
[JW05], [BC08], [GRS08] or, more recently, [KPC+11]), none of the respective works
contains details about an actual hardware implementation for ASICs. In contrast, newly
introduced lightweight block ciphers like PRESENT [BKL+07] or KATAN [DCDK09]
always come with an extensive assessment of their real-world hardware cost. This (and
the fact that, as pointed out in Section 3.4, our paper [AHM14] has shown that currently
there does not seem to be a single unbroken LPN-based authentication protocol feasible
for ultra-constrained devices) is why in Subsections 4.4.1 and 4.4.2, we compare the
numbers of the (n, k, L)〈80〉-protocol rather with those of PRESENT (key length: 80 bits,
block length: 64 bits), assuming its use as part of the following simple authentication
scheme already described in Section 3.3: both parties share a secret 80-bit key for
PRESENT and in order to prove his identity, the prover needs to correctly encrypt a
random 64-bit challenge provided the verifier.
We hope that our hardware results presented in this subsection will encourage other

designers of lightweight authentication protocols to also go trough the process of actually
implementing their schemes to allow for easier efficiency comparison in the future.

4.4.1 The (n, k, L)〈80〉-Prover on ASICs

As pointed out previously, ASICs are a typical component in the context of RFID
applications. They are (ex ante) tailored to a very specific need and subsequently
produced in large quantities, allowing for low unit cost and making them perfectly
suitable for pervasive devices like ultra-constrained RFID tags. In the field of ASICs,
area is usually measured in µm2. However, as area requirements in µm2 strongly depend
on the used standard cell library, it is common to use a metric called gate equivalents

7Note that this is not cherry picking. Instead, other metrics like transmission bandwidth (cf. Sub-
section 2.3.1), delay (cf. Subsection 2.3.7), random number generation (cf. Subsection 2.3.8), and key
storage (cf. Subsections 2.3.9 and 2.3.10) are obviously not a bottle neck w.r.t. the (n, k, L)〈80〉-protocol,
so it would not be of much use to treat them here. The only exception is energy (cf. Subsection 2.3.5).
However, as pointed out previously, we are focusing on passively powered RFIDs in this thesis, where
energy consumption over time is irrelevant.

82

4.4 Hardware Efficiency

(GE) instead. In short, one GE is equivalent to the area of a two-input drive-strength-one
NAND gate. This at least allows for a rough comparison of area requirements derived
using different technologies (see Subsection 2.3.3 for further details).

For improved comparability of results, we employ the UMCL18G212T3 (0.18 µm, 1.8 V)
standard cell library that was also used by Poschmann in [Pos09] for implementing the
block cipher PRESENT. Our results (see Table 4.1) are obtained via Cadence Encounter
RTL Compiler RC12.22 [Cad17] and are based on the netlist generated through the
command synthesize -to_placed -effort high. As common in the field of ultra-
constrained devices (see, e.g., [Fel07]), we target a 100 kHz clock (cf. Subsection 2.3.6) and
employ clock gating (cf. Subsection 2.3.4). The switching activity for power estimation
(recorded with Mentor ModelSim SE-64 6.5b [Men17] and fed back to RTL compiler)
covers the generation of an authentication token of length n+ k bits at a clock rate of
100 kHz and includes loading of the inputs (key κ, challenge a, nonce b, secret function
index l) as well as the state initialization of the underlying self-shrinking generator. To
improve the accuracy of the results, switching activity for 25 different random input
combinations is considered and the arithmetic mean of the respective power estimations
is computed. For all power values given in Table 4.1, the largest deviation of a single
estimation from the computed average was below one percent.8
It is important to note that, as also pointed out in Subsections 2.3.4 and 8.5.1, while

the area requirement of cryptographic designs can be compared over different standard
cell libraries by using the measure gate equivalents, “[p]ower cannot be scaled reliably
between different processes and libraries” [GB08]. Consequently, despite the fact that the
power numbers of the (n, k, L)〈80〉-protocol as presented in Table 4.1 are below those of a
serialized (and, hence, least area- and power-consuming) implementation of PRESENT
(see below), we will not directly claim that our protocol is superior in this respect.
However, as the employed standard cell library is the same, it is safe to say that the
numbers are at least in the same ballpark.
The values in Table 4.1 show that w.r.t. area requirements, power consumption and

communication complexity, both variants of our new (n, k, L)〈80〉-protocol operate well
within the limits of ultra-constrained RFIDs as described in Chapter 2. Only the
authentication time may, at first sight, seem to be a problem when compared to the upper
bound of 150 ms told to us by several industrial sources (cf. Subsection 2.3.2). More
precisely, at a clock speed of 100 kHz, the variant with n = 128 would need about 820 ms
to perform its two rounds, while the the variant with n = 64 would still need about 493
ms to perform its four rounds. One may now argue that these authentication times will

8Please note that this deviation below one percent is not a copy-and-paste error from Subsection 8.5.1,
where the power analysis for our new stream cipher Lizard is presented and where the power consumptions
for different, randomly chosen inputs are similarly close to the average. This is, in fact, not surprising,
because in both cases, the dominating component is an FSR which, for reasons of cryptographic security,
is supposed to ‘behave rather randomly’ over time, leading to similar estimated power consumptions for
different inputs.

83

4 The (n, k, L)〈80〉 Authentication Protocol

Table 4.1: Hardware results w.r.t. ASICs for a clock speed of 100 kHz. Clock Cycles denotes
the total number of clock cycles needed on the prover’s side to perform a full authentication
instance consisting of multiple rounds. Due to the nature of the self-shrinking generator used
in our implementation, the values in the respective column may vary slightly for different
keys κ and function indices l.

Parameters ASIC Com. (Tag)
Area Power Clock Bits

n k L Rnds. [GE] [nW] Cycles IN/OUT
128 32 16 2 1925 2194 ≈ 82 000 128/320
64 32 16 4 1366 2138 ≈ 49 300 128/384

still be tolerable for certain applications, or simply assume devices with a slightly higher
clock speed than 100 kHz. However, for fairness reasons, we feel bound to the limits
as given in Subsection 2.3.2 when assessing the suitability of a cryptographic scheme
for ultra-constrained RFIDs. Fortunately, for the (n, k, L)〈80〉-protocol, authentication
times can, in fact, be improved quite easily and efficiently. This is due to the fact that
the dominating component w.r.t. token generation speed is the underlying LFSR-based
self-shrinking generator, for which, as explained in Subsection 4.2.2, parallelization is
rather straightforward and requires only few additional hardware gates, owing to the very
simple feedback function. In particular, the feedback polynomial which we chose for our
concrete instantiations provides, despite its good diffusion properties, the possibility for
parallelization up to the degree 15 (where, admittedly, a maximum of 14 makes more sense
in practice, due to the ‘2-bit-based’ nature of the self-shrinking generator).9 Consequently,
as our current instantiations only use parallelization of degree 2 (cf. Subsection 4.2.2 and
the reference implementation in Appendix 4.B), reducing the numbers of clock cycles
given in Table 4.1 at a further factor of 7 is possible at very moderate hardware costs.
Hence, even the larger (n, k, L)〈80〉-protocol variant with n = 128 can be considered for
general application in the context of ultra-constrained RFIDs.10

9The degree of straightforwardly possible parallelization is determined by the position of the ‘youngest’
(w.r.t. the generator’s internal bitstream) tap, which, in the case of our feedback polynomial x84 + x82 +
x62 + x49 + x30 + x15 + 1, corresponds to the linear monomial x15.

10Note that, while the underlying LFSR of our self-shrinking generator can be parallelized extremely
efficiently up to degree 15, some additional logic in our protocol implementation would be required for
parallelization degrees larger than 2, in order to handle the fact that, e.g., a self-shrinking generator
parallelized at degree 14 can output between 0 and 7 bits per clock cycle. In the case of our instantiation
with n = 64, the margin between the required 1366 GE and the virtual limit of 2000 GE is so large
that the additional logic required for processing the self-shrinking generator’s variable-length output can
definitely be realized still within our strict boundaries for ultra-constrained RFIDs. For the instantiation
with n = 128, on the other hand, it might be an alternative to use an easy parallelizable NFSR (like that
of Grain v1 [HJM06]; see Subsection 5.2.4) instead of the self-shrinking generator, in order to save the
logic for handling variable-length output and, thus, stay close to the postulated 2000 GE limit.

84

4.4 Hardware Efficiency

So, due to the fact that, as pointed out above, none of the (unbroken) LPN-based
authentication protocol suggestions seems to be suitable for such devices, to the best
of our knowledge, the (n, k, L)〈80〉-protocol is actually the first dedicated authentication
approach feasible for ultra-constrained RFIDs. Nevertheless, as a matter of candor,
we also need to compare our scheme to the classical (lightweight) block cipher-based
authentication approaches. As explained in Section 3.3, according to [RPLP08], a
serialized implementation of PRESENT can be realized at 1080 GE and requires 563
clock cycles to encrypt a single 64-bit block of data. The corresponding power consumption
is given as 2.52 µW for a clock speed of 100 kHz. Apart from the slightly higher power
requirements, these numbers may suggest that block cipher-based authentication is still
to be preferred. And, in fact, we do not claim that our approach is superior. However, it
offers an important feature that the assumed straightforward application of a lightweight
block cipher like PRESENT does not: privacy preservation. More precisely, due to the
use of the secret nonce b ∈ {0, 1}n/2 randomly chosen by the prover (cf. Subsection 4.2.2),
identical challenges will be answered with different authentication tokens. In Section 3.1,
we described in a basic setting how this can also be achieved for block-cipher based
constructions. Note, however, that the corresponding approach would effectively half
the challenge space to size 232 for a cipher with block length 64 bits like PRESENT.
In order to circumvent this limitation, it would additionally be required to implement
a suitable mode of operation (i.e., not electronic codebook mode (ECB mode)), which
comes at significant additional costs. The (n, k, L)〈80〉-protocol instantiation with n = 128
(resp. n = 64), on the other hand, offers a challenge space of size 264 (resp. 232) and
already includes privacy-preservation capabilities. Given that, as explained above, both
parameter choices can satisfy the limits of ultra-constrained RFIDs, we hence consider
our protocol a viable alternative to prevalent block cipher-based constructions.

4.4.2 The (n, k, L)〈80〉-Prover on FPGAs

In order to allow for an easy comparison on FPGAs, we target the same platform which
Poschmann used in [Pos09] for the encryption unit of PRESENT: the Spartan-3 XC3S400
(Package FG456, Speed -5) from Xilinx [Xil17]. Synthesis and implementation (including
Place & Route) is performed using Xlinix ISE Design Suite 14.7 and the Verilog code for
our modules is the same as that for the ASIC implementation discussed in the previous
Subsection 4.4.1 (see also our reference implementation for n = 128 in Appendix 4.B).
While actually aimed at ASICs, the area footprint of the (n, k, L)〈80〉-protocol is also

very moderate on FPGAs. More precisely, it amounts to 237 FFs and 307 4-input LUTs
for the instantiation with n = 128, k = 32, L = 16 and to 165 FFs and 236 4-input LUTs
for the instantiation with n = 64, k = 32, L = 16.11 This compares to 152 FFs and

11In a nutshell, on FPGAs, combinatorial logic is realized through lookup tables (LUTs). For example,
a 4-input LUT can be programmed to realize an arbitrary Boolean function over the input space {0, 1}4.
More complex logic is then realized by appropriately combining these building blocks.

85

4 The (n, k, L)〈80〉 Authentication Protocol

253 LUTs given in [Pos09] for the encryption unit of PRESENT on the same platform
and with an espresso-optimized [Uni94] S-box. Without this latter optimization, the
respective numbers are 154 FFs and 350 LUTs.
Overall, these numbers suggest that not only on ASICs, but also on FPGAs, the

(n, k, L)〈80〉-protocol can compete with prevalent block cipher-based constructions.

4.5 Conclusion and Outlook

In this chapter, we introduced the (n, k, L)〈80〉 authentication protocol, which is a
modification of the already investigated (n, k, L)++-protocol made in order to improve
hardware efficiency. The respective implementations confirm the suitability of our protocol
for use cases which demand for low hardware size and power consumption, e.g., ultra-
constrained RFID systems, making it interesting for practice. Moreover, the fact that the
security of the (n, k, L)〈80〉-protocol relies on a different paradigm than the alternative
approaches based on block ciphers or the LPN problem, i.e., the random selection of secret
functions, makes our new scheme likewise interesting for the cryptography community. A
further advantage as compared to, e.g., straightforward block cipher-based approaches, is
that privacy-preservation capabilities are already inherent in the (n, k, L)〈80〉-protocol.
One major modification w.r.t. the original (n, k, L)++-protocol is that the internal

linear functions are now generated by a bitstream generator G in order to save memory
regarding key storage. Our analysis shows that while using a single publicly known
LFSR renders the protocol insecure (in a strong adversary model), deploying a secure
pseudorandom bit generator is sufficient. For our concrete protocol specifications with
parameters n = 128, k = 32, L = 16 and n = 64, k = 32, L = 16, respectively, we
used the self-shrinking generator by Meier and Staffelbach [MS94] on top of a simple
maximum-length LFSR, as it provably generates a bitstream with high linear complexity
and hence protects against the aforementioned attack targeting protocol instantiations
that rely on a mere LFSR.
However, it remains an open question whether other, intermediate approaches, e.g.,

using an NFSR, might be viable alternatives. In general, given that the underlying
problem is relatively new, its hardness and possible connections to other problems need
to be investigated further. Moreover, despite the popularity of lightweight authentication
protocols, it turns out that only few actual implementations exist. This aspect represents
an important next step towards a better understanding and comparison of existing design
approaches.

In the following chapters of this thesis, we will leave the path of searching for dedicated
authentication protocols and, instead, treat a fundamental question which arose to us
while designing the (n, k, L)〈80〉-protocol: ‘Why use a bitstream generator only to produce
the specifications of the secret functions, but not for generating the authentication token
right away?’ To this end, in the following Chapter 5, we will briefly revisit some prominent

86

4.5 Conclusion and Outlook

examples of classical stream ciphers. Afterwards, in Chapter 6, we are then going to study
the most recent approaches for designing so-called small-state stream ciphers. Based
on the theoretical considerations in Chapter 7, we will subsequently introduce our own
lightweight stream cipher called Lizard in Chapter 8. Finally, in Chapter 9, we will
forge a bridge to this and the previous Chapter 3, by suggesting how Lizard can be
used to realize hardware-efficient, privacy-preserving authentication on ultra-constrained
RFIDs.

87

4 The (n, k, L)〈80〉 Authentication Protocol

Appendix 4.A Test Vectors

Key κ (80 bits), secret function index l ∈ {1, . . . , 16} as a bitstring (4 bits; l = 1→ 0000,
l = 2 → 0001 etc.), challenge a (n/2 bits), nonce b (n/2 bits), and the corresponding
(n+ k)-bit authentication token w in hexadecimal notation. To avoid ambiguity, note
that, e.g., the key

0x01234FFFFFFFFFFFFFFF

corresponds to

(κ0, . . . , κ79) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . , 1) .

Similarly, for a 96-bit authentication token w, the example

0x010000000000000000000000

would mean that the first seven bits of w (i.e., w0, . . . , w6) are zero, followed by a one
and 88 more zeros.

4.A.1 The (n, k, L)〈80〉-Protocol with Parameters n = 128, k = 32, L = 16

Key: 0x00000000000000000001
Function Index: 0x0
Challenge: 0x1F1F1F1F1F1F1F1F
Nonce: 0xF1F1F1F1F1F1F1F1
Token: 0xFF2740B656B0E63B7336BE440B45C0E908A864B7

Key: 0xFFFFFFFFFFFFFFFFFFFF
Function Index: 0xF
Challenge: 0xF1F1F1F1F1F1F1F1
Nonce: 0x1F1F1F1F1F1F1F1F
Token: 0x77CCF6242487A643275993F4B681C86373F43630

Key: 0x0123456789ABCDEF0123
Function Index: 0xA
Challenge: 0x123456789ABCDEF1
Nonce: 0x21FEDCBA98765432
Token: 0x98C6E14FB66F42C47B440FE5D3A68998BB8D8A06

88

4.B Reference Implementation

4.A.2 The (n, k, L)〈80〉-Protocol with Parameters n = 64, k = 32, L = 16
Key: 0x00000000000000000001
Function Index: 0x0
Challenge: 0x1F1F1F1F
Nonce: 0xF1F1F1F1
Token: 0x59590415D03CBA2BE11876FC

Key: 0xFFFFFFFFFFFFFFFFFFFF
Function Index: 0xF
Challenge: 0xF1F1F1F1
Nonce: 0x1F1F1F1F
Token: 0xE9E59C93591BC71F081CBF16

Key: 0x0123456789ABCDEF0123
Function Index: 0xA
Challenge: 0x12345678
Nonce: 0x1FEDCBA9
Token: 0x367A40C2532B1173B446C716

Appendix 4.B Reference Implementation

Listing 4.1 shows our reference implementation in Verilog for the (n, k, L)〈80〉-prover with
parameters n = 128, k = 32, L = 16. An implementation for the parameter combination
n = 64, k = 32, L = 16, whose hardware costs are also presented in Section 4.4, works
completely analogous. The major difference implied by choosing n = 64 is the smaller
size of the challenge a and the nonce b, each of which then comprises of 32 bits (instead
of 64 bits for n = 128). The necessary adaptions w.r.t. the indices and the counter limits
(e.g., for matrix multiplication) are obvious. Hence, for the sake of shortness, we only
give the reference implementation for the case n = 128 in this thesis.
The main module nkl80_128 uses synchronous reset (taking one clock cycle) and all

operations are triggered by the rising edge of the clock. Setting reset high resets the
module. Once reset is set low again, state initialization begins. After state initialization
has finished, the values of key (secret key), a (challenge), b (nonce), and l (secret
function index) do not need to be present on the corresponding wires any longer, i.e.,
outer modules driving these wires, e.g., via registers, can now use these registers for other
purposes. Once the module has completed state initialization, it enters the authentication
token generation phase. Each time a new token bit is ready to be read (via tokenBit) by
an outer module, tokenBitFlag is raised from from low to high. At the next rising edge
of the clock, tokenBitFlag is set to low again and the output over the wire tokenBit
becomes invalid. In order not to leak sensitive information about the computation of the

89

4 The (n, k, L)〈80〉 Authentication Protocol

token bits to outer modules, the signal provided by the wire tokenBit is constantly low
(i.e., zero) during intermediate steps of the computation. Once the full token has been
generated (in this case, 128 + 32 = 160 bits), doneFlag is raised from low to high and no
further operations are performed. In particular, also the underlying LFSR (the module
mlfsr84para) is paused in order not to waste precious power.

Listing 4.1: Reference implementation in Verilog of the (n, k, L)〈80〉-prover with parameters
n = 128, k = 32, L = 16.

1 ‘timescale 1us / 1ps
2
3 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4
5 module nkl80_128 (
6 input wire c lk ,
7 input wire r e s e t ,
8 input wire [0 : 7 9] key ,
9 input wire [0 : 6 3] a ,

10 input wire [0 : 6 3] b ,
11 input wire [3 : 0] l ,
12 output wire tokenBit ,
13 output wire tokenBitFlag ,
14 output wire doneFlag
15) ;
16
17 ////////////////
18
19 reg [1 : 0] proverFSM ;
20 // v l f s r_enab l e
21 localparam S_INIT = 2 ’ b01 ;
22 localparam S_MULT_NEXT_ROW = 2 ’ b10 ;
23 localparam S_MULT_SCALAR_PROD = 2 ’ b11 ;
24 localparam S_DONE = 2 ’ b00 ;
25
26 ////////////////
27
28 assign tokenBitFlag = (proverFSM == S_MULT_NEXT_ROW) ;
29 assign doneFlag = (proverFSM == S_DONE) ;
30
31 wire l f s r_enab l e ;
32 assign l f s r_enab l e = proverFSM [0] ;
33
34 ////////////////
35
36 // used f o r
37 // − s t ep count ing during mixing
38 // − row count ing during token genera t ion
39 reg [7 : 0] shared_ctr ;
40
41 // column counter f o r matrix mu l t i p l i c a t i o n

90

4.B Reference Implementation

42 reg [6 : 0] j_ctr ;
43
44 wire done_mixing ;
45 assign done_mixing = (shared_ctr == 8 ’ d127) ? 1 ’ b1 : 1 ’ b0 ;
46
47 wire done_scalarProduct ;
48 assign done_scalarProduct = (j_ctr == 7 ’ d127) ? 1 ’ b1 : 1 ’ b0 ;
49
50 wire done_matrixMult ;
51 assign done_matrixMult = (shared_ctr == 8 ’ d159) ? 1 ’ b1 : 1 ’ b0 ;
52
53 ////////////////
54
55 // used to s t o r e the in t e rmed ia t e r e s u l t o f the
56 // token b i t computation , w i l l f i n a l l y conta in the
57 // ac t ua l token b i t
58 reg tokenBit_temp ;
59
60 // i s s e t to f a l s e (0) i f the c h a l l e n g e s do not f u l f i l l t he
61 // requirements e xp l a ined in Chapter 4 o f the t h e s i s
62 // −> lead s to a l l−zero token
63 reg s e cu r i t yS ta tu sF l ag ;
64
65 // done_scalarProduct i s inc luded in order not to l e a k
66 // s e c r e t in format ion about the computation proces s o f
67 // the token b i t to outer modules
68 assign tokenBit = done_scalarProduct & se cu r i t yS ta tu sF l ag & tokenBit_temp ;
69
70 ////////////////
71
72 // the va lue f (a , b) s e r v e s as input f o r the s e c r e t
73 // func t i on F_l ; see Sec . 4 . 2 . 2 o f the t h e s i s
74
75 reg [0 : 1 2 7] f_ab ;
76
77 wire [3 : 0] l e f t F a c t o r ;
78 assign l e f t F a c t o r = f_ab [1 2 4 : 1 2 7] ;
79
80 wire [3 : 0] r i gh tFac to r ;
81 assign r i gh tFac to r = b [(shared_ctr [5 : 2] ∗ 4) +: 4] ;
82
83 wire [3 : 0] f_ab_chunk ;
84
85 multgf16 mult1 (
86 . f a c t o r 1 (l e f t F a c t o r) ,
87 . f a c t o r 2 (r i gh tFac to r) ,
88 . product (f_ab_chunk)
89) ;
90
91 ////////////////

91

4 The (n, k, L)〈80〉 Authentication Protocol

92
93 // a p a r a l l e l i z e d (2 s t e p s per c l o c k t i c k) ve r s i on o f the
94 // 84− b i t maximum−l e n g t h LFSR which our s e l f −s h r i n k in g
95 // genera tor i s based on ; see Sec . 4 . 2 . 2 o f the t h e s i s
96
97 wire l f s r_outputBi t1 ;
98 wire l f s r_outputBi t2 ;
99

100 ml f s r84para l f s r (
101 . c l k (c l k) ,
102 . l f s r_ r e s e t (r e s e t) ,
103 . l f s r_enab l e (l f s r_enab l e) ,
104 . key (key) ,
105 . l (l) ,
106 . l f s r_outputBi t1 (l f s r_outputBi t1) ,
107 . l f s r_outputBi t2 (l f s r_outputBi t2)
108) ;
109
110 ////////////////
111
112 always @(posedge c l k)
113 begin
114 i f (r e s e t)
115 begin
116 shared_ctr <= 8 ’ d0 ;
117 j_ctr <= 7 ’ d0 ;
118
119 s e cu r i t yS ta tu sF l ag <= 1 ’ b1 ;
120 tokenBit_temp <= 1 ’ b0 ;
121
122 proverFSM <= S_INIT ;
123 end
124 else i f (! doneFlag)
125 begin
126 i f (proverFSM == S_INIT)
127 begin
128 // computation o f (a ’ b ’ , a ’ b ’^3) over GF(2^4)
129 // in four c l o c k t i c k s
130 i f (shared_ctr [7 : 6] == 2 ’ b00)
131 case (shared_ctr [1 : 0])
132 2 ’ b00 :
133 begin
134 i f (shared_ctr > 0)
135 begin
136 f_ab [0 : 1 1 9] <= f_ab [8 : 1 2 7] ;
137 end
138
139 // (0 , a ’)
140 f_ab [1 2 4 : 1 2 7] <= a [(shared_ctr [5 : 2] ∗ 4) +: 4] ;
141 end

92

4.B Reference Implementation

142 2 ’ b01 :
143 begin
144 // check f o r s e c u r i t y v i o l a t i o n due to
145 // e i t h e r a ’ == 0 or b ’ == 0
146 // (and , hence , f_ab_chuck == 0 at t h i s po in t)
147 i f (f_ab_chunk == 4 ’ b0000)
148 s e cu r i t yS ta tu sF l ag <= 1 ’ b0 ;
149
150 // (a ’ b ’ , a ’ b ’)
151 f_ab [1 2 0 : 1 2 3] <= f_ab_chunk ;
152 f_ab [1 2 4 : 1 2 7] <= f_ab_chunk ;
153 end
154 2 ’ b10 :
155 begin
156 // (a ’ b ’ , a ’ b ’^2)
157 f_ab [1 2 4 : 1 2 7] <= f_ab_chunk ;
158 end
159 2 ’ b11 :
160 begin
161 // (a ’ b ’ , a ’ b ’^3)
162 f_ab [1 2 4 : 1 2 7] <= f_ab_chunk ;
163 end
164 endcase
165
166 i f (done_mixing)
167 begin
168 shared_ctr <= 8 ’ d0 ;
169
170 proverFSM <= S_MULT_SCALAR_PROD;
171 end
172 else
173 shared_ctr <= shared_ctr + 1 ;
174 end
175
176 i f (proverFSM == S_MULT_NEXT_ROW)
177 begin
178 i f (done_matrixMult)
179 proverFSM <= S_DONE;
180 else
181 begin
182 shared_ctr <= shared_ctr + 1 ;
183 j_ctr <= 7 ’ d0 ;
184
185 tokenBit_temp <= 1 ’ b0 ;
186
187 proverFSM <= S_MULT_SCALAR_PROD;
188 end
189 end
190
191 i f (proverFSM == S_MULT_SCALAR_PROD)

93

4 The (n, k, L)〈80〉 Authentication Protocol

192 begin
193 i f (l f s r_outputBi t1 == 1 ’ b1)
194 begin
195 tokenBit_temp <= tokenBit_temp ^ (l f s r_outputBi t2 &

f_ab [j_ctr]) ;
196
197 i f (done_scalarProduct)
198 proverFSM <= S_MULT_NEXT_ROW;
199 else
200 j_ctr <= j_ctr + 1 ;
201 end
202 end
203 end
204 end
205
206 ////////////////
207
208 endmodule
209
210 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
211
212 module multgf16 (
213 input wire [3 : 0] f a c to r1 ,
214 input wire [3 : 0] f a c to r2 ,
215 output wire [3 : 0] product
216) ;
217
218 ////////////////
219
220 wire [3 : 0] x , y ;
221
222 assign x = fa c t o r 1 ;
223 assign y = fa c t o r 2 ;
224
225 assign product [0] = (x [0] & y [0]) ^ (x [1] & y [3]) ^ (x [2] & y [2]) ^ (x [3]

& y [1]) ;
226 assign product [1] = (x [0] & y [1]) ^ (x [1] & y [0]) ^ (x [1] & y [3]) ^ (x [2]

& y [2]) ^ (x [3] & y [1]) ^ (x [2] & y [3]) ^ (x [3] & y [2]) ;
227 assign product [2] = (x [0] & y [2]) ^ (x [1] & y [1]) ^ (x [2] & y [0]) ^ (x [2]

& y [3]) ^ (x [3] & y [2]) ^ (x [3] & y [3]) ;
228 assign product [3] = (x [0] & y [3]) ^ (x [1] & y [2]) ^ (x [2] & y [1]) ^ (x [3]

& y [0]) ^ (x [3] & y [3]) ;
229
230 ////////////////
231
232 endmodule
233
234 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
235
236 module mlfs r84para (

94

4.B Reference Implementation

237 input wire c lk ,
238 input wire l f s r_ r e s e t ,
239 input wire l f s r_enab l e ,
240 input wire [0 : 7 9] key ,
241 input wire [3 : 0] l ,
242 output wire l f s r_outputBit1 ,
243 output wire l f s r_outputBi t2
244) ;
245
246 ////////////////
247
248 reg [0 : 8 3] l f s r_ s t a t e ;
249
250 // corresponding to the p r im i t i v e f e edback po lynomia l
251 // x^84 + x^82 + x^62 + x^49 + x^30 + x^15 + 1 (−> feedbackBi t1)
252 // resp . a s h i f t e d ve r s i on o f i t s taps (−> feedbackBi t2)
253 assign l f s r_ f e edbackB i t1 = l f s r_ s t a t e [(8 4 − 84)] ^ l f s r_ s t a t e [(8 4 − 82)] ^

l f s r_ s t a t e [(8 4 − 62)] ^ l f s r_ s t a t e [(8 4 − 49)] ^ l f s r_ s t a t e [(8 4 − 30)]
^ l f s r_ s t a t e [(8 4 − 15)] ;

254 assign l f s r_ f e edbackB i t2 = l f s r_ s t a t e [(8 4 − 84) + 1] ^ l f s r_ s t a t e [(8 4 −
82) + 1] ^ l f s r_ s t a t e [(8 4 − 62) + 1] ^ l f s r_ s t a t e [(8 4 − 49) + 1] ^
l f s r_ s t a t e [(8 4 − 30) + 1] ^ l f s r_ s t a t e [(8 4 − 15) + 1] ;

255
256 assign l f s r_outputBi t1 = l f s r_ s t a t e [0] ;
257 assign l f s r_outputBi t2 = l f s r_ s t a t e [1] ;
258
259 always @(posedge c l k)
260 begin
261 i f (l f s r_ r e s e t)
262 begin
263 l f s r_ s t a t e <= { l , key } ;
264 end
265 else i f (l f s r_enab l e)
266 begin
267 l f s r_ s t a t e [0 : 8 1] <= l f s r_ s t a t e [2 : 8 3] ;
268 l f s r_ s t a t e [8 2] <= l f s r_ f e edbackB i t1 ;
269 l f s r_ s t a t e [8 3] <= l f s r_ f e edbackB i t2 ;
270 end
271 end
272
273 ////////////////
274
275 endmodule
276
277 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

95

If you wait by the [key]stream long enough,
the bodies of your enemies will float by.

unknown TMD-TO cryptanalyst citing
Sun Tzu’s ‘The Art of War’

CHAPTER5
Classical Stream Ciphers

ABSTRACT
In this chapter, we leave the path of searching for dedicated authentication protocols suitable
for ultra-constrained RFIDs (cf. Chapter 2) and, instead, lay the foundation for treating a
fundamental question which arose to us while designing the (n, k, L)〈80〉-protocol introduced
in Chapter 4: ‘Why use a bitstream generator only to produce the specifications of the secret
functions, but not for generating the authentication token right away?’

To this end, as a first step, we revisit some prominent examples of classical stream ciphers here
and, in particular, analyze their respective state initialization algorithms. Later, in Chapter 7,
the corresponding insights will then serve as a basis for our new stream cipher design principle
named Lizard-construction.

Declaration of Origin: This chapter is based on the paper Stream Cipher Operation Modes with
Improved Security against Generic Collision Attacks [HK15] and the paper On Stream Ciphers
with Provable Beyond-the-Birthday-Bound Security against Time-Memory-Data Tradeoff Attacks
[HK18], both written together with Matthias Krause and published at the Cryptology ePrint
Archive and in Cryptography and Communications (Springer US journal), respectively.

97

5 Classical Stream Ciphers

5.1 Introduction
Stream ciphers have a long history when it comes to protecting digital communication. In
1987, Ronald L. Rivest designed RC4 [Sch95], which was later used in SSL/TLS [DR08]
and the wireless network security protocols WEP [Ins97] and TKIP (often called WPA)
[Ins04]. Other well-known stream cipher examples are E0 of the Bluetooth standard
[Blu14] and A5/1 of GSM [BGW99]. Unfortunately, E0 and A5/1 have been shown to be
highly insecure (see, e.g., [LMV05] and [BB06]) and RC4 also shows severe vulnerabilities,
which led to its removal from the TLS protocol [Pop15] and rendered other protocols like
WEP insecure [FMS01]. In 2004, the eSTREAM project [ECR08] was started in order
to identify new stream ciphers for two application profiles:

“Profile 1 contains stream ciphers more suitable for software applications
with high throughput requirements. Profile 2 stream ciphers are particularly
suitable for hardware applications with restricted resources such as limited
storage, gate count, or power consumption.” [ECR08]

The competition ended in 2008 and, for Profile 2, the resulting eSTREAM portfolio
contained four ciphers, one of which (i.e., F-FCSR-H v2 [BAL06]) was removed shortly
after due to new cryptanalytic results [HJ08]. After the latest review in 2012 [BBV12],
the remaining three ciphers for Profile 2 are still part of the portfolio: Grain v1 [HJM06],
MICKEY 2.0 [BD06], and Trivium [CP05]. In this chapter, we will revisit two of them,
namely Grain v1 and Trivium, as they archetypically represent two different extremes of
the common tradeoff between inner state size and complexity of the involved operations.
This tradeoff will play an important role in the context of small-state stream ciphers as
discussed in the following Chapter 6.
From a technical perspective, stream ciphers are symmetric encryption algorithms

intended for protecting, in an online manner, plaintext bitstreams X which have to pass
an insecure channel. Encryption is performed via bitwise addition of a keystream S to X,
which depends on a secret symmetric key k and a public initialization vector IV . The legal
recipient, who also knows k, decrypts the encrypted bitstream Y = X ⊕ S by generating
S and computing X = Y ⊕ S. Straightforward, non-parallelized implementations of
stream ciphers typically produce one keystream bit per clock cycle, thus allowing to
encrypt and transmit data ‘as it appears’. Stream ciphers are hence particularly suited
for time-critical communication scenarios where potentially small amounts of data need
to be processed instantly (such as over-the-air communication for mobile devices).1
In practice, the communication between legal users is usually organized in sessions,

where in the first phase of each session, the secret session key k is generated by executing
a key establishment protocol (see, e.g., Subsection 5.2.1 for that of E0 in Bluetooth). This

1While block ciphers can be used in such scenarios, too, they are usually less efficient, because for
data pieces smaller than their block size, padding is required, which leads to a wasteful overhead in terms
of computation and communication.

98

5.1 Introduction

session key generation phase will not be treated in detail in this thesis, as it represents a
large, independent research area of its own. Note that a session can, e.g., be a phone
call, where at the beginning of the call, a key establishment protocol between the mobile
phone and the nearest base station is performed.
Following [BG07], each stream cipher is associated with a well-defined set of inner

states and its keystream generation process can be divided into the following two phases:

(A) The key and IV setup phase, where an initial state is derived from the secret session
key k and an initialization vector IV .

(B) The keystream generation phase, in which the keystream is generated based on the
initial state derived in phase (A).

In this thesis, we focus on what we call KSG-based stream ciphers, for which the main
algorithmic component for performing phases (A) and (B) is a keystream generator (KSG).
KSGs are clock-controlled devices which can be formally specified by finite automata,
defined by an inner state length n, the set of inner states {0, 1}n, a state update function
π : {0, 1}n −→ {0, 1}n, and an output function outbit : {0, 1}n −→ {0, 1}. Starting from
an initial state qinit = q0, in each clock cycle t ≥ 0, the KSG produces an output bit
zt = outbit(qt) and changes the inner state according to qt+1 = π(qt). The keystream
S(qinit) corresponding to the initial state qinit is defined by concatenating all the outputs
bits z0z1z2 · · · .

As pointed out above, the key and IV setup phase (A) of a KSG-based stream cipher
is performed by a KSG-based state initialization algorithm, which computes, from the
session key k and the initialization vector IV , the initial state qinit. It typically contains
the following two subphases:

(A.1) The loading phase defines how the session key k and the initialization vector IV are
loaded into the inner state registers and results in a loading state qload = qload(k, IV).

(A.2) The mixing phase runs an appropriate KSG-based mixing algorithm

MIX : {0, 1}n −→ {0, 1}n

on qload and results in a state qmixed = MIX(qload).

The aim of the mixing phase (A.2) is to generate a sufficient amount of diffusion, confusion,
high algebraic degree etc. in the dependencies of the initial state bits from the session key
bits and the IV bits. In many cases, an essential part of the mixing algorithm consists in
running the KSG a certain number of times without producing keystream bits. Moreover,
as we will show in Section 5.3, for many ciphers (such as Trivium, Grain v1, A5/1, E0) it
holds that qinit = qmixed. Furthermore, we will also explain that for Trivium, Grain v1,
and A5/1, the mixing algorithm MIX can be inverted efficiently.

99

5 Classical Stream Ciphers

One can distinguish the following two operation modes of stream ciphers. In the one-
stream mode, the key and IV setup phase (A) is performed only once at the beginning of
the session and produces an initial state qinit = qinit(k, IV). The corresponding keystream
S = S(qinit) is used for the whole session. Note that due to their extremely large limits
(e.g., 264 bits for Trivium) on the amount of keystream generated under a single key/IV
pair, Trivium and Grain v1 can be considered to work in one-stream mode.2
In contrast to this, in the packet mode, the communication and encryption process

during a session is divided into packet steps i = 1, 2, . . ., where in each packet step, a
piece of message of a certain maximal packet length R is encrypted and sent. Correspon-
ding to this, the keystream of a session is the concatenation of the keystream packets
S1, S2, . . ., where for all i ≥ 1, Si denotes the keystream packet generated in packet step
i. Corresponding stream cipher instantiations are equipped with a mechanism providing,
for each packet step i, an initialization vector IV i (such as the frame counter in A5/1; cf.
Subsection 5.2.2). Each packet step i starts with performing the key and IV setup phase
(A), yielding a packet initial state qiinit = qiinit(k, IV i), followed by the generation of the
keystream packet Si, which is defined to be the prefix of length R of S(qiinit). Typical
examples for stream ciphers operating in packet mode are the Bluetooth cipher E0 (see
Subsection 5.2.1) and the GSM cipher A5/1 (see Subsection 5.2.2). Also note that in
the network protocols of many important digital communication scenarios, data streams
are transmitted packet-wise (Ethernet, WLAN, Bluetooth, cellular networks etc.). It
thus seems natural to consider stream ciphers running packet mode and, in particular, to
look for corresponding design optimizations (see Section 8.1 for more examples of stream
ciphers used in packet mode and for further information about their practical relevance).

Structure of this chapter: In Section 5.2, we revisit some of the most important classical
stream ciphers, where the term ‘classical’ is meant to distinguish them from small-state
stream ciphers as discussed in the following Chapter 6. Furthermore, in Subsection 5.2.5,
we also briefly describe how block ciphers can be used to create (though not bitwise
working) stream ciphers. In Section 5.3, we then analyze how the state initialization
algorithms of the concrete examples in Subsections 5.2.1 to 5.2.4 map to the abstract
model introduced above. The respective insights will be of particular importance in the
context of the Lizard-construction introduced in Chapter 7.

5.2 Some Prominent Stream Cipher Examples
This section provides an overview of some prominent stream ciphers, with a focus on
their respective state initialization algorithms and operation modes. It includes E0 (used
in Bluetooth) and A5/1 (used in GSM) as well as the eSTREAM hardware portfolio
members Trivium and Grain v1. Please observe in the following that E0 and A5/1

2Clearly, Trivium and Grain v1 could also be used in packet mode, but in contrast to, e.g., Lizard
(see Chapter 8), their design is not specifically optimized for such scenarios.

100

5.2 Some Prominent Stream Cipher Examples
K
ey

an
d
IV

XOR Output zt

LFSR1

LFSR2

LFSR3

LFSR4

x1
t

x2
t

x3
t

x4
t

Blender21

2

+

+ /2

3

x1
t

x2
t

x3
t

x4
t 3 2

Summation Combiner Logic

Figure 5.1: The E0 encryption engine in step t. x1
t , . . . , x

4
t denote the output bits of the

four LFSRs (see Fig. 5.2 for tap positions), respectively. zt denotes the bit generated by
E0’s output function in this step. (cf. [Blu14], p. 1323)

are both operated in packet mode (cf. Section 5.1) in the sense that each packet in a
session is encrypted under the same session key but using different, publicly known IVs.
Furthermore, keep in mind that, as pointed out above, there are actually practical attacks
on E0 and A5/1 (see, e.g., [LMV05] and [BB06], respectively), whereas Trivium and
Grain v1 can be considered still unbroken. There is, however, no connection between the
fact that E0 and A5/1 are operated in packet mode and the fact that they have been
broken. From a security perspective, they simply belong to an older generation of stream
ciphers as, for example, their feedback shift registers (FSRs) are all linear, in contrast to
the nonlinear feedback shift registers (NFSRs) used in Trivium and Grain v1.

5.2.1 E0 (used in Bluetooth)

The classical way of ensuring data confidentiality for Bluetooth connections between
a master device A and a slave device B utilizes stream cipher-based encryption on a

101

5 Classical Stream Ciphers

ADR[2] CL[1]Kc[12]Kc[8]Kc[4]Kc[0] CL24 25

8 12 20

24 x1
t

ADR[3] ADR[0]Kc[13]Kc[9]Kc[5]Kc[1] CL[0]L 0 0 1 31

12 16 24

24 x2
t

ADR[4] CL[2]Kc[14]Kc[10]Kc[6]Kc[2] CL25 33

4 24 28

32 x3
t

ADR[5] ADR[1]Kc[15]Kc[11]Kc[7]Kc[3] CL[0]U 1 1 1 39

4 28 36

32 x4
tCL[0]L = CL3 . . .CL0

CL[0]U = CL7 . . .CL4

Figure 5.2: Initializing the LFSRs of E0. ADR[i], Kc[i], and CL[i] denote the bytes of ADR,
Kc, and CL, respectively. (cf. [Blu14], p. 1327)

per-packet basis. More precisely, when encryption is activated, the payload of each packet
(at most 2790 bits for the so-called basic rate [Blu14]) is encrypted under a separate
payload key using the algorithm E0, which produces a keystream of appropriate length
that is XORed to the plaintext in a bitwise fashion. The term payload key, which is used
in the original Bluetooth specification [Blu14], refers to the 132-bit inner state of the
E0-KSG right before the first keystream bit for payload encryption is produced (i.e., in
terms of our abstract model, to the result qiinit of the state initialization algorithm). It
is derived on the basis of the current 128-bit encryption key Kc, the 48-bit Bluetooth
address ADR of the master, and 26 bits CL0, . . . ,CL25 of the master’s clock (to which
both devices are synchronized) at the time of the first transmission slot of the packet.3
Before we continue with the respective details, please note that the encryption key

Kc corresponds to a session key, i.e., Kc is constant for a potentially very large number
of successive packets. Consequently, the difference between the payload keys qiinit and
qjinit, i 6= j, of two different packets i and j during such a session solely arises from the
difference between the corresponding, publicly known clock values at encryption time.
In the following, we will describe how the individual payload key qiinit for a packet

i is generated by E0 based on the inputs Kc, ADR, and CL0, . . . ,CL25. The general
structure of the encryption engine of E0 is depicted in Fig. 5.1. The internal state of the
four LFSRs has a total size of 128 bits and the respective feedback polynomials are all
primitive (cf. [Blu14], p. 1322). Figure 5.2 shows the positions of the feedback taps. For
further details like the exact definition of the blender finite-state machine (4 bits), we
refer the reader to the official Bluetooth specification (cf. [Blu14], p. 1322–1324).

3Unlike the symmetric encryption key Kc, the values ADR and CL0, . . . ,CL25 are considered to be
public. For more details on the generation of Kc, we refer the reader to the corresponding paragraph at
the end of this subsection.

102

5.2 Some Prominent Stream Cipher Examples

In our context (i.e., w.r.t. our abstract model and the conclusions we will draw from it),
it is sufficient to understand that the inputs Kc, ADR, and CL0, . . . ,CL25 are split up
and, together with the two 3-bit constants 111 and 001, arranged as depicted in Fig. 5.2
prior to payload key generation, which then works as follows (cf. [Blu14], p. 1325–1326):4

Step t = 0: Disable the feedback switches of the four LFSRs and set all registers to zero.

Steps t = 1, . . . , 39: Start shifting Kc, ADR, CL0, . . . ,CL25, and the six bits 111 and
001 into the four LFSRs as depicted in Fig. 5.2 (e.g., at t = 1, CL24 is shifted into
LFSR1, 1 into LFSR2, CL25 into LFSR3, and 1 into LFSR4). For each LFSR, close
its feedback switch at the end of the step in which the first input bit has reached
this LFSR’s rightmost cell. When the last of the four switches (i.e., the switch of
LFSR4) is closed (i.e., at the end of step t = 39), reset the blender register cells
(4 bits) to zero.5

Steps t = 40, . . . , 55: Shift in the rest of the input bits. (Once an LFSR has no input
bits left, it is henceforth operated in the conventional way, i.e., it is clocked with
closed feedback switch and without any external interference.)

Steps t = 56, . . . , 111: Clock the E0-KSG. (Keep in mind that, in the steps t = 0, . . . , 111,
the result zt of E0’s output function (see Fig. 5.1) is discarded completely.)

Steps t = 112, . . . , 239: Clock the E0-KSG and save the 128 bits z112, . . . , z239 generated
by E0’s output function during those steps to some temporary internal location.
(Those bits are not used as actual keystream!)

Step t = 240: Copy the 128 bits z112, . . . , z239, which were generated during the steps
t = 112, . . . , 239, from the aforementioned temporary location into the register cells
of the four LFSRs (whose combined size is 25+31+33+39 = 128 bits), overwriting
their contents (for details, again, see [Blu14]). The contents of the blender register
cells are not modified during this step.

At this point, the combined contents of the register cells of the four LFSRs (128 bits)
and of the register cells of the blender component (4 bits) now represent the initial state
qiinit (132 bits) of the E0-KSG (called payload key in the Bluetooth specification [Blu14]).
Starting with this initial state qiinit, the output bits z240, z241, z242, . . ., which serve as

4Keep in mind that, during the following steps t = 0, . . . , 239, no keystream is produced. The first
keystream bit for encryption will be z240, which is generated by E0’s output function on the basis of the
inner state of the E0-KSG at the end of step t = 240 (i.e., on the basis of the initial state qiinit).

5In each step t (except t = 240), the blender finite-state machine (FSM) is clocked as a part of the
E0 encryption engine (cf. Fig. 5.1). However, as the blender register cells are reset to zero at the end
of t = 39 and as the output bits z0, . . . , z111 are discarded by E0, the summation combiner logic (cf.
Fig. 5.1) and the blender FSM can be regarded as inactive during the steps t = 0, . . . , 39. (see [Blu14],
p. 1322–1324, for further details)

103

5 Classical Stream Ciphers

keystream bits for the encryption of the payload of packet i, are then generated by the
E0-KSG.6 If another packet needs to be encrypted, the whole initialization process of
the cipher is repeated with a new clock value as part of the IV for the state initialization
algorithm of E0, leading to a different payload key.

Bluetooth: Generating the Encryption Key Kc

When two Bluetooth devices connect for the first time (called pairing), an initialization
key Kinit is computed using the algorithm E22, based on a common personal identification
number (PIN), the Bluetooth address of one of the devices, and a 128-bit random number.
Subsequently, Kinit is used together with two random 128-bit values and the 48-bit
Bluetooth addresses of both devices to create the the so-called link key (or combination
key) Kab using the algorithm E21. This link key is sometimes also referred to as the
authentication key, as it is used together with a (changing) 128-bit random number
during the subsequent authentications of the respective devices using the algorithm
E1. As a result of such an authentication during connection establishment, a 32-bit
authentication token SRES and a 96-bit value called ACO (Authenticated Ciphering
Offset) are produced. If authentication has been successful (i.e., the authentication tokens
match), a new encryption key Kc will be generated each time encryption is enabled by
the communicating parties.7 The generation of Kc is performed using the algorithm E3,
which is based on a hash function with the following inputs: the link key Kab, a 128-bit
random number EN_RAND, and the 96-bit value ACO generated during authentication.
To account for legal export restrictions, the Bluetooth specification provides means of
shortening the effective key length of Kc to less than 128 bits. The resulting keys are
often referred to as K ′c. However, as the absolute key length will still be 128 bits, we
omit this shortening step for the sake of clarity here and simply speak of the encryption
key Kc in our description of E0.

5.2.2 A5/1 (used in GSM)

Though considered outdated for security reasons (see, e.g., [BBK03] or the TMD-TO
attack using the FPGA cluster COPACOBANA in [GKNP08]), the stream cipher A5/1
is still widely used to encrypt GSM communication. Upon connection establishment, the
mobile device is authenticated and a 64-bit symmetric session key Kc is generated using

6To avoid any misconceptions, let us point out that the first keystream bit z240 is computed on the
basis of the new LFSR contents in step t = 240, i.e., on the basis of (four of) the bits z112, . . . , z239, which
are copied into the register cells of the four LFSRs in this step. (The contents of the blender register cells,
which are also involved in the computation of z240, do not change in step t = 240.) The next keystream
bit z241 is then obtained by clocking the E0-KSG once and computing the output bit on the basis of the
resulting register contents of the LFSRs and the blender component, and so on.

7According to the Bluetooth specification ([Blu14], p. 1308), when using E0, “the encryption keys
shall be refreshed by the Link Manager at least once every 228 Bluetooth Clocks (about 23.3 hours)”.

104

5.2 Some Prominent Stream Cipher Examples

LFSR1
1817161380

LFSR2
2120100

LFSR3
2221201070

Figure 5.3: Structure of A5/1, which consists of three LFSRs of total state length 64 bits.
The gray register cells denote the majority bits of the LFSRs.

one of the COMP128 [Bru04] algorithms, which take a publicly known 128-bit challenge
(i.e., a random number produced by the authentication center of the network) and a
common secret 128-bit key (stored on the SIM card and known to the authentication
center) as inputs. For each data frame of 114 downlink and 114 uplink bits, 228 keystream
bits are generated based on the 64-bit session key Kc and a (frame-individual) IV.
The LFSRs in A5/1 are either clocked all three in parallel or in so-called majority

mode, where, at each clock cycle, the majority function over the three majority bits in
Fig. 5.3 is computed and each LFSR is clocked if and only if its majority bit equals the
output of the majority function. Please note that the feedback polynomials of the three
LFSRs are all primitive (cf. [BD00]). The corresponding taps are depicted in Fig. 5.3.

Let Kc = (K63, . . . ,K0) denote the secret session key and let F = (F21, . . . , F0) denote
the 22-bit representation of the publicly known frame number. The 228 keystream
bits which will be XORed to the corresponding 114 downlink bits and 114 uplink bits,
respectively, are generated as follows (cf. [BD00]):

1. Set all register cells of the three LFSRs to 0.

2. For i = 0 to 63 do:
2.1 LFSR1[0] := LFSR1[0]⊕Ki

LFSR2[0] := LFSR2[0]⊕Ki

LFSR3[0] := LFSR3[0]⊕Ki

2.2 Clock all three LFSRs (i.e., no majority clocking).

3. For i = 0 to 21 do:
3.1 LFSR1[0] := LFSR1[0]⊕ Fi

LFSR2[0] := LFSR2[0]⊕ Fi
LFSR3[0] := LFSR3[0]⊕ Fi

3.2 Clock all three LFSRs (i.e., no majority clocking).

105

5 Classical Stream Ciphers

4. Clock the KSG 100 times using majority clocking and discard the output bits,
which are each computed as the XOR of the three bits LFSR1[18], LFSR2[21], and
LFSR3[22] as depicted in Fig. 5.3.

5. Generate 114 keystream bits for downlink encryption clocking the KSG 114 times
(using majority clocking).

6. Generate 114 keystream bits for uplink encryption clocking the KSG 114 times
(using majority clocking).

For the enrcyption of the next frame, the above process is repeated with the same
session key Kc but a different frame number F . Please note that the state of the LFSRs
after step 4 (i.e., right before the first keystream bit is produced) corresponds to what
was called payload key in the context of Bluetooth (cf. Subsection 5.2.1) or, in terms of
our abstract model introduced in Section 5.1, to the packet initial state qiinit of a packet i,
where packets are called frames for A5/1 in GSM.

5.2.3 Trivium
Trivium [CP05] is one of the three members of the eSTREAM hardware portfolio. It is
designed to produce a keystream of up to 264 bits based on an 80-bit symmetric key and
an 80-bit IV as inputs. Its inner structure consists of three shift registers of total length
288 bits, which are interwoven nonlinearly as depicted in Fig. 5.4. Each keystream bit is
computed as the XOR of six bits from the current internal state, two from each shift
register.
Before the first keystream bit is output, the following state initialization algorithm

is performed based on the key K = (K1, . . . ,K80) and the initialization vector IV =
(IV 1, . . . , IV 80) (cf. [CP05]):

1. (s1, s2, . . . , s93) := (K1, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177) := (IV 1, . . . , IV 80, 0, . . . , 0)
(s178, s179, . . . , s288) := (0, . . . , 0, 1, 1, 1)

2. For i = 1 to 4 · 288 do:
2.1 t1 := s66 ⊕ s91s92 ⊕ s93 ⊕ s171

t2 := s162 ⊕ s175s176 ⊕ s177 ⊕ s264
t3 := s243 ⊕ s286s287 ⊕ s288 ⊕ s69

2.2 (s1, s2, . . . , s93) := (t3, s1, . . . , s92)
(s94, s95, . . . , s177) := (t1, s94, . . . , s176)
(s178, s179, . . . , s288) := (t2, s178, . . . , s287)

In terms of our model, the 288-bit state s1, . . . , s288 of the three shift registers right
after stage 2 of the above initialization procedure has been completed corresponds to the

106

5.2 Some Prominent Stream Cipher Examples

zi

s1

s66

s 9
4

s162

s178

s 2
43

s288

Figure 5.4: Structure of Trivium (total state length 288 bits). zi denotes the output bit in
step i. (cf. [CP05])

initial state qinit. Based on this state, the KSG is then further clocked using the same
operations with the only difference that, from now on, in each step i the keystream bit
zi = s66⊕ s93⊕ s162⊕ s177⊕ s243⊕ s288 is output in order to encrypt one bit of plaintext.

Please observe that the state update of Trivium is reversible (see also [CP05]) during
state initialization and keystream generation. In particular, the knowledge of an arbitrary
inner state during one of these phases will allow an attacker to efficiently compute the
underlying secret key by clocking the cipher backwards.

5.2.4 Grain v1

Grain v1 [HJM06], like Trivium, is a member of the eSTREAM hardware portfolio. It
takes an 80-bit key and a 64-bit IV as inputs and is composed of two shift registers, one
an 80-bit NFSR and one an 80-bit LFSR, which are connected as depicted in Fig. 5.5.

Let us denote the 80-bit state of the NFSR by (b0, . . . , b79) and the 80-bit state of the
LFSR by (s0, . . . , s79). Then the state update of the NFSR during keystream generation

107

5 Classical Stream Ciphers

NFSR LFSR

h

7

13
g

6
f

Figure 5.5: Structure of Grain v1 (keystream generation phase). f denotes the linear
feedback function of the LFSR, g denotes the nonlinear feedback function of the NFSR. (cf.
[HJM06])

is defined by b′i := bi+1, i = {0, . . . , 78}, and

b′79 := s0 ⊕ b62 ⊕ b60 ⊕ b52 ⊕ b45 ⊕ b37 ⊕ b33 ⊕ b28 ⊕ b21 ⊕ b14 ⊕ b9 ⊕ b0
⊕ b63b60 ⊕ b37b33 ⊕ b15b9

⊕ b60b52b45 ⊕ b33b28b21

⊕ b63b45b28b9 ⊕ b60b52b37b33 ⊕ b63b60b21b15

⊕ b63b60b52b45b37 ⊕ b33b28b21b15b9

⊕ b52b45b37b33b28b21,

where (b′0, . . . , b′79) denotes the new state of the NFSR.
Analogously, the state update of the LFSR, whose feedback polynomial is primitive

(cf. [HJM06]), can be defined by s′i := si+1, i = {0, . . . , 78}, and

s′79 := s62 ⊕ s51 ⊕ s38 ⊕ s23 ⊕ s13 ⊕ s0,

where (s′0, . . . , s′79) denotes the new state of the LFSR.
The result h(s3, s25, s46, s64, b63) for the nonlinear function h : {0, 1}5 −→ {0, 1},

h(x0, x1, x2, x3, x4) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4

⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4,

is XORed with the seven NFSR bits b1, b2, b4, b10, b31, b43, b56 to produce the output of
the cipher. Observe that neither s0 nor b0 are among the inputs of h, as this implies that
the state update is not only reversible during the keystream generation phase8 depicted
in Fig. 5.5, but also during the initialization phase, which is depicted in Fig. 5.6 and will
now be described in further detail.

8The LFSR state update is trivially reversible and the NFSR update function contains b0 only as a
linear term.

108

5.2 Some Prominent Stream Cipher Examples

NFSR LFSR

h

7

13
g

6
f

Figure 5.6: Structure of Grain v1 (initialization phase). (cf. [HJM06])

At the beginning of the initialization phase, the 80-bit secret key k = (k0, . . . , k79) is
parallel loaded (i.e., copied) to the 80-bit NFSR and the 64-bit public initialization vector
IV = (IV 0, . . . , IV 63) is parallel loaded to the first 64 register cells of the LFSR. The 16
remaining LFSR register cells are filled with ones (thus, avoiding initialization with the
all-zero state). More precisely,

(b0, . . . , b79) := (k0, . . . , k79) ,
(s0, . . . , s79) := (IV 0, . . . , IV 63, 1, . . . , 1) .

After this, the cipher is clocked 160 times but instead of producing keystream, the output
is XORed to the previously described state update for the register cells b79 and s79 as
depicted in Fig. 5.6.

The resulting content of the two feedback shift registers (160 bits in total) corresponds
to the initial state qinit. Henceforth, the KSG is operated in keystream generation mode
(cf. Fig. 5.5), producing one keystream bit per clock cycle.

5.2.5 Excursus: Block Cipher-based Constructions
Before we move on to Section 5.3, where we will analyze in detail how the state initiali-
zation algorithms of the stream ciphers in Subsections 5.2.1 to 5.2.4 can be described
in terms of our abstract model, we now briefly discuss another way for realizing stream
ciphers, which will play a role in Chapter 6 in the context of distinguishing attacks.
Instead of designing a KSG from scratch, stream ciphers can also be built on the

basis of block ciphers, e.g., by using them in counter mode (CTR mode) as depicted in
Fig. 5.7.9 Notably, “one of the requirements imposed on all eSTREAM stream cipher

9A prominent example for this approach is A5/3 [3GP03], the ‘stronger’ alternative to A5/1 regarding
GSM encryption. A5/3 uses the block cipher KASUMI [3GP17] in a mixture between CTR mode and
output feedback mode (OFB mode). However, the effective key length in A5/3 is still only 64 bits and
there are already attacks with complexity below exhaustive key search (see, e.g., [BDK05] and [DKS10]).

109

5 Classical Stream Ciphers

Block Cipher
EncryptionKey

IV ‖Ctr0

Keystream0

Block Cipher
EncryptionKey

IV ‖Ctr1

Keystream1

Block Cipher
EncryptionKey

IV ‖Ctr2

Keystream2

Figure 5.7: Example of block cipher-based keystream generation using counter mode.
IV ||Ctr i denotes the concatenation of the initialization vector IV and the counter value
Ctr i in step i. Keystreami denotes the keystream fragment produced in step i.

submissions was that they should demonstrate the potential to be superior to the AES in
at least one significant aspect” [ECR05] and the respective testing framework included
AES in CTR mode.

Please observe that using a block cipher in CTR mode to generate a keystream as
shown in Fig. 5.7 can also be interpreted as a kind of packet mode (cf. Section 5.1),
similar to what we described for E0 and A5/1. In this case, however, the packet size
is not determined by the underlying technology (i.e., the maximum payload size for
Bluetooth packets or the fixed frame size in the case of GSM), but by the block size of
the employed block cipher instead. Concretely, the concatenation IV ||Ctr i used as the
input for the block cipher in Fig. 5.7 can be interpreted as a publicly known initialization
vector IV i on the basis of which the keystream Keystreami (i.e., Si in terms of our model
in Section 5.1) for the packet i, whose size equals the block length of the underlying
cipher, is generated.
A related approach in order to realize a stream cipher on the basis of a block cipher

was taken for LEX [Bir05], a phase 3 candidate in the eSTREAM software profile. The
way AES (with key and block length 128 bits) is used in LEX (see Fig. 5.8) strongly
resembles OFB mode, with the difference that instead of using the AES ciphertext blocks
as keystream blocks, in each AES round, four bytes are extracted from the intermediary
state and taken as keystream bytes (i.e., 320 bits of keystream during one invocation
of AES with a 128-bit key). By generalizing a distinguishing attack of Englund, Hell
and Johansson against LEX [EHJ07], in Chapter 6, we will be able to present a generic
distinguisher for the new class of so-called small-state stream ciphers as well.

5.3 Modeling the State Initialization of the Examples
In this section, we are now going to explore how the state initialization algorithms of
the ‘classical’ stream ciphers in Subsections 5.2.1 to 5.2.4 can be described in terms of
our abstract model introduced in Section 5.1. The resulting insights will then help us in

110

5.3 Modeling the State Initialization of the Examples

IV AES-128

Key

AES-128

Key

AES-128

Key

AES-128

Key

· · ·

320 bits 320 bits 320 bits

· · ·
Keystream

Figure 5.8: Initialization and keystream generation of LEX. (cf. [Bir05])

Chapter 7 to suggest and analyze a new type of state initialization in the form of the
Lizard-construction.

Let us recall that we suppose the key and IV setup phase (A) of a KSG-based stream
cipher to contain the following two subphases:

(A.1) The loading phase defines how the session key k and the initialization vector IV are
loaded into the inner state registers and results in a loading state qload = qload(k, IV).

(A.2) The mixing phase runs an appropriate KSG-based mixing algorithm

MIX : {0, 1}n −→ {0, 1}n

on qload and results in a state qmixed = MIX(qload).

In the following, we will see that for all of the examples in Subsections 5.2.1 to 5.2.4,
it holds that qinit = qmixed, where qinit denotes the initial state on the basis of which the
keystream is eventually computed by the KSG as described in Section 5.1. Moreover,
we will show that for A5/1, Trivium, and Grain v1, the mixing algorithm MIX can be
represented by an efficiently invertible, public function P : {0, 1}n −→ {0, 1}n, where, in
the case of Trivium and Grain v1, P is a permutation. For E0, a large part of the state
initialization algorithm can be described by an efficiently invertible, ‘nearly bijective’
function P ′ as well (see below).

5.3.1 E0 (used in Bluetooth)
For the sake of simplicity, in this subsection, we denote the combination of publicly
known inputs (including constants) for E0’s state initialization (cf. Subsection 5.2.1) by a
single initialization vector IV . The way IV (80 bits) and the secret key k (128 bits) are
loaded into the four LFSRs at the beginning of the initialization procedure is completely
GF(2)-linear. Hence, the combined state of the four LFSRs right after IV and k have
been shifted in completely (i.e., at t = 55) can be described as f(IV) ⊕ g(k), where
f : {0, 1}80 −→ {0, 1}128 and g : {0, 1}128 −→ {0, 1}128 are GF(2)-linear functions. The
4-bit state h(IV , k) of the blender FSM at t = 55 is determined by a nonlinear function

111

5 Classical Stream Ciphers

h : {0, 1}80 × {0, 1}128 −→ {0, 1}4 depending on the 80-bit initialization vector IV and
the 128-bit key k. Based on f(IV), g(k), and h(IV , k), we can now denote the full inner
state of E0 at t = 55 as

qiload = (f(IV)⊕ g(k)) ||h(IV , k).

Note, however, that, at this point in time, 32 bits of the secret session key k have
been shifted into LFSR1 (and nowhere else), which is only 25 bits wide (see Fig. 5.2 in
Subsection 5.2.1). Consequently, any attack recovering qiload will ‘only’ reveal a linear
combination with reduced information about k, which may induce further effort, e.g., by
requiring to search for the right 4-bit state of the blender engine, when trying to decrypt
other packets encrypted under the same session key.
In E0, the state update of the four LFSRs (128 bits) is fully bijective as they are

completely independent of each other and the blender engine (cf. Fig. 5.1). Only the
state update of the blender FSM (4 bits) possibly isn’t. Hence, we will describe the phase
between t = 56 and t = 111, during which, as part of the state initialization, the cipher
is clocked and its output is discarded, using an efficiently invertible and ‘nearly bijective’
function P ′ : {0, 1}132 −→ {0, 1}132.

A distinctive property of E0 is that, as the final step of the state initialization algorithm,
128 output bits are produced (between t = 112 and t = 239), which are not used as
keystream (i.e., they are kept internal), but instead (at t = 240) are parallel loaded to
the register cells of the four LFSRs. Let F̃ : {0, 1}132 −→ {0, 1}128 denote the one-way
function which, given an inner state y ∈ {0, 1}132, computes the first 128 output bits
of the E0-KSG based on y. Moreover, let h̃ : {0, 1}132 −→ {0, 1}4 denote the one-way
function which, given an inner state y ∈ {0, 1}132, computes the new 4-bit state of E0’s
blender FSM after 128 clock cycles. We can now describe the step between t = 112
and t = 240 using the function F ′ : {0, 1}132 −→ {0, 1}132 with F ′(y) = F̃ (y)|| h̃(y).
Subsequently, after t = 240, the keystream for the corresponding Bluetooth packet i (of
length at most 2790 bits) is produced based on the initial state

qiinit = qimixed = F ′
(
P ′
(
qiload

))
.

In terms of our abstract model, this means that for E0, the mixing algorithm MIX :
{0, 1}132 −→ {0, 1}132 has the form MIX = F ′ ◦ P ′, where P ′ is an efficiently invertible,
‘nearly bijective’ function and F ′ is a one-way function. As a consequence, in contrast to
A5/1, Trivium, and Grain v1 (see below), MIX is not efficiently invertible in the case of
E0. Nevertheless, we will show in Theorem 7.2 of Chapter 7 that this does not thwart
birthday-bound time-memory-data tradeoff attacks.

5.3.2 A5/1 (used in GSM)
The way in which the secret session key k (64 bits) and the initialization vector IV (22
bits) are loaded to the LFSRs of the A5/1 engine is rather similar to the Bluetooth

112

5.3 Modeling the State Initialization of the Examples

cipher E0. A major difference, however, is that during the first 64 clock cycles of the
state initialization algorithm, each of the 64 key bits is introduced to each of the three
LFSRs of total size 64 bits.
The way we model A5/1 makes use of following two “key ideas” from [BSW01] by

Biryukov, Shamir, and Wagner:

• “Key idea 3: A5/1 can be efficiently inverted”,

• “Key idea 4: The key can be extracted from the initial state of any frame”10.

As in the case of E0, the introduction of IV and k to three LFSRs of A5/1 at the
beginning of the initialization procedure is completely GF(2)-linear. Hence, the combined
state of the LFSRs right after IV and k have been shifted in completely (i.e., at the end
of step 3 of the algorithm in Subsection 5.2.2) can be described as

qiload = f(IV)⊕ g(k),

where f : {0, 1}22 −→ {0, 1}64 and g : {0, 1}64 −→ {0, 1}64 are GF(2)-linear functions.
Due to “key idea 3” from [BSW01], the subsequent stepping of the KSG for 100 times
using majority clocking (step 4 of the algorithm in Subsection 5.2.2) can be described by
an efficiently invertible function P : {0, 1}64 −→ {0, 1}64. Based on the initial state

qiinit = qimixed = P
(
qiload

)
after step 4, the 228 keystream bits for the corresponding frame are then produced.
Hence, in terms of our abstract model, the mixing algorithm MIX : {0, 1}64 −→ {0, 1}64

of A5/1 has the form MIX = P and MIX is efficiently invertible.

5.3.3 Trivium
For Trivium, the way the the secret key k (80 bits) and the initialization vector IV (80
bits) are introduced to the state registers (of total length 288 bits) is even simpler than
in the case of E0 or A5/1, as the respective values are simply parallel loaded (see step 1
of the state initialization algorithm in Subsection 5.2.3), resulting in the loading state

qload = σ(k||IV ||CONST),

where CONST denotes the initialization constants (208 bits) and σ : {0, 1}288 −→
{0, 1}288 denotes a fixed, publicly known, bitwise permutation, which determines the
exact placement of the key bits, IV bits, and constant bits.

10Note that Biryukov, Shamir, and Wagner refer to the state of the LFSRs right after the frame
counter has been introduced (i.e., after step 3 of the algorithm in Subsection 5.2.2) as the “initial state”,
whereas we denote by initial state the output of the state initialization procedure (i.e., the state at the
end of step 4 of the algorithm in Subsection 5.2.2). This, however, does not harm our argumentation as
“key idea 4” can be combined with “key idea 3”.

113

5 Classical Stream Ciphers

As pointed out previously, the subsequent clocking of the Trivium engine without
producing output (step 2 of the state initialization algorithm) is easily reversible. Thus,
we can describe this step (comprising 4 · 288 clock cycles) by an efficiently invertible
permutation P : {0, 1}288 −→ {0, 1}288. Based on the resulting initial state

qinit = qmixed = P (qload),

a keystream of up to 264 bits is then produced by the KSG. Hence, in terms of our
abstract model, the mixing algorithm MIX : {0, 1}288 −→ {0, 1}288 of Trivium has the
form MIX = P and MIX is an efficiently invertible permutation.

5.3.4 Grain v1
The state initialization of Grain v1 works similar to the one of Trivium. That is, the
secret key k (80 bits) and the initialization vector IV (64 bits) are parallel loaded to the
register cells of the NFSR and the LFSR, respectively, resulting in the loading state

qload = σ(k||IV ||CONST),

where CONST denotes the initialization constants (16 bits) and σ : {0, 1}160 −→ {0, 1}160

denotes a fixed, publicly known, bitwise permutation, which determines the exact place-
ment of the key bits, IV bits, and constant bits.
Subsequently, the cipher is clocked 160 times without producing keystream. Even

though the output of the nonlinear function h : {0, 1}5 −→ {0, 1}, XORed with further
seven bits from the NFSR, is fed back to both FSRs during this phase, we have seen in
Subsection 5.2.4 that the state update of Grain v1 is still straightforwardly reversible.
We can thus describe this stage of the state initialization algorithm using an efficiently
invertible permutation P : {0, 1}160 −→ {0, 1}160. Just like in the case of Trivium, the
resulting initial state can now be written as

qinit = qmixed = P (qload).

Hence, in terms of our abstract model, the mixing algorithm MIX : {0, 1}160 −→ {0, 1}160

of Grain 1 has the form MIX = P and MIX is an efficiently invertible permutation.

5.4 Conclusion and Outlook
In this chapter, we revisited some prominent examples of classical stream ciphers and,
in particular, analyzed their respective state initialization algorithms. Moreover, we
explained that in practical applications, stream ciphers are usually used in packet mode.
In Chapter 7, the corresponding insights will serve as a basis for our new stream cipher
design principle named Lizard-construction. But prior to this, as a counterpart to

114

5.4 Conclusion and Outlook

‘classical’ stream ciphers, we will introduce the new group of so-called small-state stream
ciphers in the following Chapter 6. In a nutshell, for an inner state of size n bits, these
ciphers try to reach a security level larger than n/2, which is the limit imposed on
classical stream ciphers by the birthday bound. Note that Grain v1, which has a 160-bit
inner state and aims for 80-bit security, exactly hits this classical ‘frontier’. In particular,
regarding the common tradeoff between inner state size and complexity of the involved
operations, we have seen in Subsections 5.2.3 and 5.2.4, respectively, that while Trivium
uses a comparatively large state but extremely simple functions, Grain v1 actually works
the other way around. It is henceforth not surprising that all of the small-state stream
ciphers described in the following Chapter 6 are based on the general structure of the
Grain family [HJMM08].

115

Small is beautiful!

Fritz Schumacher (economist)

CHAPTER6
Small-State Stream Ciphers

ABSTRACT
Time-memory-data tradeoff (TMD-TO) attacks limit the security level of many classical stream
ciphers to the birthday bound. Very recently, a new field of research has emerged, which searches
for so-called small-state stream ciphers that try to overcome this limitation. In this chapter,
existing designs and known analysis of small-state stream ciphers are revisited and new insights
on distinguishers and key recovery are derived based on TMD-TO attacks.

A particular result is the transfer of a generic distinguishing attack suggested in 2007 by
Englund et al. to this new class of lightweight ciphers. Our analysis shows that the initial hope of
achieving full security against TMD-TO attacks by continuously using the secret key has failed.
In particular, we provide generic distinguishers for Plantlet and Fruit with complexity significantly
smaller than that of exhaustive key search. However, by studying the assumptions underlying
the applicability of these attacks, we are able to come up with a new design idea for small-state
stream ciphers, which might allow to finally achieve full security against TMD-TO attacks by
continuously using not only the key but also the IV during keystream generation.

Another contribution of this chapter is the first key recovery attack against Fruit v1. We show
that there are at least 264 weak keys, each of which does not provide 80-bit security as promised
by designers. As a consequence of our attack, the designers of Fruit have updated their scheme
to the new version Fruit v2.

Declaration of Origin: This chapter is based on the paper Design and Analysis of Small-State
Grain-like Stream Ciphers [HKMZ18], written together with Matthias Krause, Willi Meier, and
Bin Zhang and published in Cryptography and Communications (Springer US journal).

117

6 Small-State Stream Ciphers

6.1 Introduction

As explained in the previous Chapter 5, for more than three decades now, stream ciphers
have been an essential component of many digital communication solutions. In 2004,
after the discovery of weaknesses in several practically used ciphers such as E0 (cf.
Subsection 5.2.1) and A5/1 (cf. Subsection 5.2.2), the eSTREAM project [ECR08] was
started in order to identify new stream ciphers for different application profiles. In the
hardware category, aiming at devices with restricted resources, three ciphers are still
part of the eSTREAM portfolio after the latest revision in 2012: Trivium [CP05] (cf.
Subsection 5.2.3), Grain v1 [HJM06] (cf. Subsection 5.2.4), and MICKEY 2.0 [BD06].

Common to these three ciphers is that they have an inner state length of at least twice
the size of the targeted security level against key recovery attacks. This is due to the
inherent vulnerability of classical stream ciphers against TMD-TO attacks like those of
Babbage [Bab95] and Biryukov and Shamir [BS00], which allow to recover some inner
state during keystream generation (and, usually, also the corresponding initial state by
clocking the cipher backwards) with an overall attack complexity of 2n/2, where n denotes
the inner state length of the underlying KSG. If the state initialization algorithm, which
computes the initial state from a given key/IV pair, is efficiently invertible (as it is, e.g.,
for Trivium and Grain; see Section 5.3), knowing the initial state immediately reveals
the secret key. And even if the state initialization algorithm is not efficiently invertible,
variants of such TMD-TO attacks can allow for key recovery, e.g., by targeting the inner
state at t = 0, which often contains the secret key (see Section 5.2). A generic view on
these attacks is provided in Chapter 7 along with a corresponding complexity analysis.
Furthermore, building on the aforementioned classical TMD-TO attacks, a large body of
work (see, e.g., [HS05] and [Bjø08]) about improved techniques/applications and resulting
design implications for stream ciphers has been published since.
In 2015, a new line of research emerged with the publication of Sprout [AM15] by

Armknecht and Mikhalev, which pursues the goal of reducing the size of the volatile
inner state of lightweight stream ciphers below this ‘magic’ boundary formerly induced
by TMD-TO attacks. We will refer to such ciphers, whose volatile inner state size is less
than twice the targeted security level against key recovery, by the term small-state stream
ciphers. Sprout has a Grain-like structure and uses two 40-bit feedback shift registers. In
comparison to conventional stream ciphers like Grain v1, the characteristic difference of
Sprout is that the 80-bit key is not only accessed during the state initialization but also
continuously used as part of the state update during the subsequent keystream generation
phase. Even though Sprout was broken shortly after publication (see, e.g., [LNP15],
[ZG15], [Ban15], [EK16]), it has sparked interest in the underlying design principle and
related ciphers like Fruit [GHX16] have been suggested since. It is observed that the
designers of Fruit have changed the specification of their cipher several times in the past
(e.g., ePrint versions 20160521:111224, 20161124:115414, 20170304:073404 of [GHX16] all
contain different algorithms). We will refer to the most recent version of Fruit at the

118

6.1 Introduction

time of our attacks (i.e., ePrint version 20170304:073404) as Fruit v1 in the rest of this
chapter. Note that, in reaction to our results, the designers of Fruit have updated their
scheme to the new version Fruit v2 (ePrint version 20170724:053140).
Although continuously accessing the secret key is elegant in theory, it often comes at

a heavy price in practice. For example, if the key is stored in an EEPROM (see Sub-
section 2.3.9), the corresponding access times may significantly slow down the operation
speed of the KSG. This is particularly true if the key bits are not accessed sequentially
(as in the case of Sprout and its successor Plantlet [MAM17]) but at random positions
(as in the case of Fruit v1). In fact, Fruit v1 needs to access six different, non-sequential
key bits per clock cycle. Another drawback to continuously reading key bits from an
EEPROM is the associated increase in power consumption, which is especially proble-
matic for low-cost RFID tags, where the power budget is often as low as 10 µW (cf.
Subsection 2.3.4). For comparison, Ranasinghe and Cole state that “[a] tag performing a
read operation will require about 5 µW – 10 µW, while a tag attempting to perform a
write operation to its E2PROM will require about 50 µW or more.” [CR08] A way to
circumvent the disadvantages of continuously accessing the key in the EEPROM might be
to buffer it in volatile memory. This, however, would significantly increase the hardware
costs of the corresponding implementation due the additionally required flip-flops (cf.
Subsection 2.3.3).

On the other hand, in an application where the key is fixed (e.g., by using key-dependent
masks or via ‘burning’ fuses/antifuses; cf. Subsection 2.3.10), continuously accessing key
bits (in potentially random order) is clearly feasible. Hence the question whether a more
complicated1 key schedule as in the case of Fruit v1 does provide additional security
when compared to, e.g., Plantlet, is not only interesting from a theoretical point of view
but of actual practical relevance.

As a consequence of this discussion, we see a number of issues that motivate small-state
stream ciphers and their further study:

• Resource limitations defined by the notions “ultra-constrained RFIDs” [AHM14]
(cf. Chapter 2) and “ultra-lightweight cryptography” [BP17].

• Optimizing the design (w.r.t. hardware efficiency) for certain application scenarios.
See, for example, our new stream cipher Lizard in Chapter 8, which works in
packet mode (cf. Section 5.1) and allows for a more power-efficient implementation
than, e.g., Grain v1; or Sprout-like ciphers, which target scenarios where the secret
key is permanently available to the encryption engine.

• The theoretical question, how the ‘established’ n/2 security bound implied by
classical TMD-TO attacks like those of Babbage [Bab95] or Biryukov and Shamir

1Please note that when speaking of a more complicated key schedule, we are referring to the way in
which the key bits are used in order to compute the round key bit (e.g., using more than on key bit as
input to an elaborate round key function with potentially high algebraic degree).

119

6 Small-State Stream Ciphers

[BS00] can be improved w.r.t. key recovery and/or distinguishing.

• Which of these ‘alleged improvements’ do actually provide provable security? (we
refer to our security proof for Lizard in Chapter 7 and to the contents of Section 6.3)

In direction of cryptanalysis, while Plantlet has not been broken in the meantime,
this chapter presents a key recovery attack against Fruit v1 that makes use of the
cipher’s insecure key schedule. In fact, our results seem to raise the question whether
there is actually a need for (respectively a benefit of) a more complicated key schedule
than the basic one used in Plantlet. Because not only Fruit v1 has now been broken
due to its nonlinear key schedule, but also Sprout initially suffered from this fate (see
Subsection 6.2.1). It seems that simplicity may actually be preferable here. After all,
the original idea underlying the use of key bits for the state update during keystream
generation was simply to protect against TMD-TO attacks aiming at inner state recovery.
Sequentially using one key bit per clock cycle as done by Plantlet already seems to do
this job.

Another contribution of this chapter is the discussion of TMD-TO distinguishing attacks
against ciphers like Sprout, Fruit v1, and Plantlet, which continuously use the secret
key as part of the state update. The existence of such attacks with a complexity below
that of exhaustive key search was considered an exclusion criterion in the eSTREAM
contest. Making use of a result by Englund, Hell and Johansson [EHJ07], we give a
generic keystream-based TMD-TO distinguisher with attack complexity way below the
complexity of exhaustive key search for Plantlet and Fruit v1. In fact, Banik already
showed in 2015 [Ban15] that there is a similar distinguisher for Sprout. His attack can also
be seen as a specific variant of the generic distinguisher by Englund, Hell and Johansson
from 2007 (i.e., long before Sprout, Fruit, and Plantlet were introduced).

We would like to point out that, in our opinion, the existence of distinguishing attacks
with a complexity below that of exhaustive key search should not be a knock-out criterion
for stream ciphers targeting ultra-lightweight applications, because such attacks might
actually be tolerable depending on the application scenario. Nonetheless, the user needs
to know about the corresponding complexities in order to be able to decide on this
question. In [GHX16] (version 20170304:073404), however, the designers of Fruit v1 do
not discuss the topic of distinguishing attacks at all, which might give potential users the
impression that Fruit v1 is considered 80-bit secure (the general security level claimed
in the abstract of the paper) against this type of attack. The designers of Plantlet, on
the other hand, recognize the possibility of distinguishing attacks and discuss them as
part of their cryptanalysis in [MAM17]. In particular, they point out the aforementioned
distinguishing attack of Banik against Sprout and acknowledge that it would also be
applicable to Plantlet (“the memory complexity of this distinguishing attack against
Plantlet is at least 2 58 which is about 32,768 terabytes” [MAM17]). However, they also
state: “This attack is possible due to the simplicity of the round key function. It would
be possible to make the design resistant against this attack by either choosing a more

120

6.1 Introduction

complicated key-selection function or by further increasing internal state size.” [MAM17]
While increasing the size of the inner state would in fact be a valid countermeasure
(though it would somehow counteract the initial idea of having a smaller state), employing
a more complicated key schedule as suggested by the Plantlet designers would not help.

The fact that the designers of Fruit v1 do not discuss the topic of distinguishing attacks
at all together with the above misconception of the Plantlet authors w.r.t. the effects of
a more complicated key schedule seem to make it beneficial for future research in the
direction of small-state stream ciphers to revisit the distinguishing attack by Englund, Hell,
and Johansson and transfer it, along with a discussion of the now necessary assumptions,
to this new application context. In particular, by analyzing those assumptions, we will
then be able to come up with a new design idea for small-state stream ciphers, which
finally delivers what continuously using the secret key alone cannot: security against
TMD-TO-based key recovery and distinguishing attacks.

Before we sketch the structure of this chapter, let us mention that, besides our results
about Sprout, Fruit and Plantlet, we will also provide a brief description of our new
stream cipher Lizard here, despite the fact that it will be treated in extensive detail in
Chapter 8. Our reason for doing so is that in Section 6.2, we want to draw the full picture
regarding the current state of the art in small-state stream cipher development. This
holds in particular as Lizard is currently the only design which strives for beyond-the-
birthday-bound security w.r.t. key recovery based on a different approach than Sprout-like
ciphers.

Structure of this chapter: In Section 6.2, the existing small-state stream ciphers and
their known analysis are revisited. In Subsection 6.3.1, we present a generic distinguishing
attack against ciphers which continuously use the secret key, like Sprout, Fruit and Plantlet.
It is based on a result by Englund, Hell and Johansson [EHJ07] from 2007 and also related
to the distinguishing attack of Banik [Ban15] against Sprout from 2015. The generic
nature of the attack will clarify that the security against distinguishing of ciphers which
continuously use the secret key cannot be increased by choosing a more complicated
key schedule. In Subsection 6.3.2, we demonstrate that Fruit v1 has at least 264 weak
keys, each of which does not provide the 80-bit security promised by the designers. The
corresponding attack exploits the cipher’s vulnerable key schedule and uses a variant of
Babbage’s TMD-TO attack [Bab95] to recover a subset of the unknown key bits together
with a certain state of the feedback shift registers (FSRs) during state initialization.
Based on this information, the cipher is then clocked back and the rest of the key bits is
read from the FSRs at t = 0. In Section 6.4, we indicate recent advances and potential
directions for further developments of small-state stream ciphers. In Section 6.5, a new
design idea on stream ciphers which continuously use the initialization vector is presented,
which not only allows to achieve security against TMD-TO-based key recovery but also
against distinguishing. Section 6.6 concludes the chapter and provides an outlook on
potential future work as well as on the subsequent contents of this thesis.

121

6 Small-State Stream Ciphers

NFSR LFSR

h

29
g

6
f

z

2 77

Round Key Function

3 3
c4
t

k∗t

80

Key k

Figure 6.1: Keystream generation of Sprout. (cf. [AM15] and [ZG15])

6.2 Small-State Stream Ciphers

In the following, we will provide an overview over all current small-state stream ciphers,
along with their respective specification and a summary of cryptanalytic results.

6.2.1 Sprout

Sprout [AM15] utilizes an 80-bit secret key k = (k0, . . . , k79) and a 70-bit public initi-
alization vector IV = (IV 0, . . . , IV 69). Its structure, depicted in Fig. 6.1, is based on
that of the Grain family of stream ciphers [HJMM08] (cf. Subsection 5.2.4). The major
innovation of Sprout is that, through a round key function, the secret key is continuously
(i.e., also during keystream generation) used for updating parts of the volatile inner
state, which consists of a 40-bit NFSR, a linked 40-bit LFSR with a primitive feedback
polynomial, and a 9-bit counter.

As done in [AM15], we denote the feedback function of the NFSR, the feedback function
of the LFSR, and the nonlinear filter function by g, f , and h, respectively. The lower 7
bits of the 9-bit counter, denoted by (c6

t , c
5
t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t) at time t, realize a modulo 80

counter. As depicted in Fig. 6.1, the 5th LSB c4
t of this counter is involved in the NFSR’s

state update. Being part of a modulo 80 counter, the largest possible cycle length for c4
t

is obviously 80 and, as can be checked easily, it in fact reaches this maximum.
Let Lt = (lt, lt+1, . . . , lt+39) and N t = (nt, nt+1, . . . , nt+39) denote the inner states of

the LFSR and the NFSR at time t, respectively. The 40-bit LFSR is updated by f as

lt+40 = f
(
Lt
)

= lt ⊕ lt+5 ⊕ lt+15 ⊕ lt+20 ⊕ lt+25 ⊕ lt+34.

122

6.2 Small-State Stream Ciphers

The 40-bit NFSR is updated by g, together with the bits k∗t , lt, and c4
t , as

nt+40 = k∗t ⊕ lt ⊕ c4
t ⊕ g

(
N t
)

= k∗t ⊕ lt ⊕ c4
t ⊕ nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39 ⊕ nt+2nt+25

⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18 ⊕ nt+22nt+24

⊕ nt+26nt+32 ⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31

⊕ nt+33nt+36nt+37nt+38,

where the round key bit k∗t is defined through

k∗t =
{
kt, 0 ≤ t ≤ 79,
k(t mod 80) · ut, t ≥ 80,

(6.1)

with ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29.
Given the FSR states Lt and N t at time t, the keystream bit zt is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23, nt+38)

⊕
(⊕

i∈B
nt+i

)
⊕ lt+30,

where B = {1, 6, 15, 17, 23, 28, 34} and the nonlinear filter function is

h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38.

The state initialization algorithm of Sprout works as follows. As a first step, the IV
and a 10-bit constant are loaded to the FSR cells:

ni = IV i, 0 ≤ i ≤ 39,

lj =

IV j+40, 0 ≤ j ≤ 29,
1, 30 ≤ j ≤ 38,
0, j = 39.

Note that, as the key will be continuously involved in the state update, it is not loaded
to the FSRs at this point in time (in contrast to, e.g., Trivium and Grain v1; cf.
Subsections 5.2.3 and 5.2.4, respectively). Subsequent to the IV loading, the cipher is
then clocked 320 times under the modified update relations

lt+40 = zt ⊕ f
(
Lt
)
,

nt+40 = zt ⊕ k∗t ⊕ lt ⊕ c4
t ⊕ g

(
N t
)
.

123

6 Small-State Stream Ciphers

Following this stage, during which zt is kept internal, the keystream generation phase
starts and zt is output for encryption purposes instead of being fed back to the FSRs
(just like in the case of Grain v1).

Shortly after the new design had been proposed, various cryptanalytic results for
Sprout were published in quick succession. It started with a related key attack by Hao
[Hao15], which, however, cannot be considered a break of the cipher, because Armknecht
and Mikhalev had stated in [AM15] that “as the key is assumed to be fixed, related-key
attacks are out of scope”. The first real attack against Sprout, targeting a single key
scenario, is due to Lallemand and Naya-Plasencia [LNP15]. It has a time complexity
of around 269 Sprout encryptions and is based on a divide-and-conquer approach using
list merging techniques. In [MSBD15], an attack using SAT solvers (see Section 9.4) is
described by Maitra et al. It uses a guess-and-determine approach requiring 254 attempts
(i.e., it guesses 54 bits of the volatile inner state), where each of these trials results in a
SAT instance that can be solved within about one minute on a standard PC. Given the
speed of modern CPUs, it is unclear, however, whether the results in [MSBD15] actually
lead to a real attack with computational cost below that of exhaustive key search.

Particularly interesting is the approach of Esgin and Kara in [EK16], as they mount a
TMD-TO attack with overall complexity below 245 against Sprout, whose major design
promise was, in fact, to protect against this type of attacks by continuously using the
secret key. Esgin and Kara circumvent the corresponding challenges through exploiting
the nonlinearity of Sprout’s round key function. More precisely, in those steps t, t ≥ 80,
where the bit ut in the above Eq. (6.1) takes the value 0, no key bit is involved in the
state update. Note that our new TMD-TO-based key recovery attack against Fruit v1,
which is presented in Subsection 6.3.2, makes use of the cipher’s complicated, nonlinear
key schedule as well.
In [Ban15], another SAT solver-based attack is proposed by Banik, which requires to

guess slightly less bits (i.e., 50 instead of 54 bits) of Sprout’s FSRs than the aforementioned
attack by Maitra et al. Moreover, in the same paper, Banik proposes a key recovery attack
with time complexity about 266.7 Sprout encryptions, requiring negligible memory. The
currently best attack against Sprout is due to Zhang and Gong [ZG15]. Like Esgin and
Kara, they use a TMD-TO approach and claim that “[w]ith carefully chosen parameters,
the new attack is at least 220 times faster than Lallemand/Naya-Plasencia attack at
Crypto 2015, Maitra et al. attack and Banik attack, 210 times faster than Esgin/Kara
attack with much less memory.”

6.2.2 Fruit

Like Sprout, Fruit [GHX16] adopts a Grain-like structure and utilizes an 80-bit secret key
k = (k0, . . . , k79) together with a 70-bit public initialization vector IV = (IV 0, . . . , IV 69).
As pointed out in Section 6.1, the designers of Fruit have changed their cipher’s spe-
cification several times in the past (mostly in reaction to attacks). In this subsection,

124

6.2 Small-State Stream Ciphers

NFSR LFSR

h

16
g

6
f

zt

3 87

Round Key Function

c3
t

k′t

Key k, Counter Cr

Figure 6.2: Keystream generation of Fruit v1 (i.e., ePrint version 20170304:073404 of
[GHX16]).

we describe the variant given in ePrint version 20170304:073404 of [GHX16] (calling it
Fruit v1), as it was the most recent at the time of our key recovery attack presented in
Subsection 6.3.2.2 Moreover, we will also explain how Fruit v1 was patched to Fruit v2.

Following the new design paradigm of Sprout, in Fruit v1, the secret key is continuously
used for updating parts of the volatile inner state, which consists of a 37-bit NFSR, a
linked 43-bit LFSR with a primitive feedback polynomial, and two counters of size 7 bits
and 8 bits, respectively. The cipher’s general structure is depicted in Fig. 6.2.
As done for Sprout and Grain v1, we denote the feedback function of the NFSR, the

feedback function of the LFSR, and the nonlinear filter function by g, f , and h, respectively.
Following the original cipher description in [GHX16], at time t, the two counters (which
work independently) are denoted by Cr = (c0

t , . . . , c
6
t) and Cc = (c7

t , . . . , c
14
t) and their

LSBs are c6
t and c14

t , respectively. While Cr is used for the round key function and as part
of the NFSR’s state update, Cc only serves to count the steps during state initialization.
Let Lt = (lt, lt+1, . . . , lt+42) and N t = (nt, nt+1, . . . , nt+36) denote the inner states of

the LFSR and the NFSR at time t, respectively. The 43-bit LFSR is updated by f as

lt+43 = f
(
Lt
)

= lt ⊕ lt+8 ⊕ lt+18 ⊕ lt+23 ⊕ lt+28 ⊕ lt+37.

2Note that, in reaction to our key recovery attack, the designers of Fruit have updated their scheme
to Fruit v2 (ePrint version 20170724:053140 of [GHX16]). While, prior to that, they had simply called
it “Fruit”, in the appendix of 20170724:053140, they now refer to all earlier versions as “Fruit v1”. In
this thesis, however, we use the name Fruit v1 strictly for the cipher specification given in ePrint version
20170304:073404, just as we have done in our main publication [HKMZ18] and our underlying ePrint
paper [HKMZ17b]. By this, we also mean to clarify that our attack in Subsection 6.3.2 was the only one
working for Fruit prior to its update to Fruit v2; i.e., due to corresponding patches, previous attacks (like
those in [DS17] and [HKMZ17a]) could not be applied anymore against what we call Fruit v1 here.

125

6 Small-State Stream Ciphers

The 37-bit NFSR is updated by g, together with the bits k′t, lt, and c3
t , as

nt+37 = k′t ⊕ lt ⊕ c3
t ⊕ g

(
N t
)

= k′t ⊕ lt ⊕ c3
t ⊕ nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12nt+3 ⊕ nt+14nt+25

⊕ nt+5nt+23nt+31 ⊕ nt+8nt+18 ⊕ nt+28nt+30nt+32nt+34,

where k′t denotes the output of the round key function at time t.
As in the original description [GHX16], let the (decimal) values of s, y, u, p, q, r be

defined through the bits of the counter Cr as

s =
(
c0
t , c

1
t , c

2
t , c

3
t , c

4
t , c

5
t

)
, y =

(
c3
t , c

4
t , c

5
t

)
, u =

(
c4
t , c

5
t , c

6
t

)
,

p =
(
c0
t , c

1
t , c

2
t , c

3
t , c

4
t

)
, q =

(
c1
t , c

2
t , c

3
t , c

4
t , c

5
t

)
, r =

(
c3
t , c

4
t , c

5
t , c

6
t

)
,

where, in each case, the rightmost bit is the LSB of the binary representation of the
corresponding natural number. Then for all t ≥ 0, the round key bit k′t of Fruit v1 is
computed as

k′t = ksky+64 ⊕ kpku+72 ⊕ kq+32 ⊕ kr+64. (6.2)

Given the FSR states Lt and N t, the nonlinear filter function h computes the value

ht = lt+6lt+15 ⊕ lt+1lt+22 ⊕ nt+35lt+27 ⊕ lt+11lt+33 ⊕ nt+1nt+33lt+42.

The keystream bit zt at time t is then generated as

zt = ht ⊕ nt ⊕ nt+7 ⊕ nt+13 ⊕ nt+19 ⊕ nt+24 ⊕ nt+29 ⊕ nt+36 ⊕ lt+38.

The state initialization algorithm of Fruit v1 works as follows. As a first step, the
80-bit key is loaded to the FSR cells through

ni = ki, 0 ≤ i ≤ 36,
lj = kj+37, 0 ≤ j ≤ 42

and both counters are set to 0. Then, the 70-bit initialization vector IV is extended to
130 bits as

IV ′ =
(
IV ′0, . . . , IV ′129

)
= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸

10

, IV0, . . . , IV69︸ ︷︷ ︸
70

, 0, . . . , 0︸ ︷︷ ︸
50

)

and the cipher is clocked 130 times under the modified update relations

lt+43 = zt ⊕ IV ′t ⊕ f
(
Lt
)
,

126

6.2 Small-State Stream Ciphers

nt+37 = zt ⊕ IV ′t ⊕ k′t ⊕ lt ⊕ c3
t ⊕ g

(
N t
)
.

Following this, the seven (henceforth secret) bits of the counter Cr are overwritten as

c0
130 = n130, c

1
130 = n131, . . . , c

5
130 = n135, c

6
130 = l130

based on six bits from N130 and one bit from L130. Subsequently, the bit l130 of L130

is overwritten with 1 in order to avoid the all-zero state for the LFSR. As the final
step of the state initialization algorithm, Fruit v1 is then clocked 80 times in keystream
generation mode (i.e., without feeding zt and IV ′ any longer to the FSRs; cf. Fig. 6.2),
but without outputting zt. After that, the actual keystream generation phase starts and
the first keystream bit used for plaintext encryption is z210.
Two attacks against the prior versions of what we call Fruit v1 here are known.

The first is due to Dey and Sarkar [DS17]. Using a divide-and-conquer approach and
sieving techniques, they are able to recover the secret key on the basis of about 275

Fruit encryptions. The second attack is a fast correlation attack by Meier and Zhang
[HKMZ17a] and was presented at ESC 2017.3 It allows to recover the initial states of
the two FSRs and the 128-bit round key with complexity about 269. As the counter
Cr underlying the round key function (cf. Eq. (6.2)) is only 7 bits wide, the maximum
possible cycle length for the round key bit k′t during keystream generation is obviously 128.
Hence, knowing the initial FSR states and this 128-bit round key allows for decrypting the
respective ciphertext. Besides the actual attack against Fruit, an important contribution
of [HKMZ17a] was the derivation of corresponding design principles for Grain-like small-
state stream ciphers. In Section 6.4, we will treat these new criteria in further detail.

As pointed out above, both of these attacks do not work for Fruit v1 any more due to
corresponding design patches. However, in Subsection 6.3.2, we demonstrate that Fruit v1
has at least 264 weak keys, each of which does not provide the 80-bit security promised by
the designers. Moreover, our generic distinguisher for small-state stream ciphers which
continuously use the secret key, presented in Subsection 6.3.1, can be applied as well.
As a consequence of our key recovery attack, the designers of Fruit patched Fruit v1,

resulting in the new specification Fruit v2 (ePrint version 20170724:053140 of [GHX16]).
More precisely, they changed the round key function to

k′t = ksky+32 ⊕ kpku+64 ⊕ kq+16 ⊕ kr+48

with s = (c0
t , c

1
t , c

2
t , c

3
t , c

4
t), y = (c5

t , c
6
t , c

0
t , c

1
t , c

2
t), u = (c3

t , c
4
t , c

5
t , c

6
t), p = (c0

t , c
1
t , c

2
t , c

3
t),

q = (c4
t , c

5
t , c

6
t , c

0
t , c

1
t), r = (c2

t , c
3
t , c

4
t , c

5
t , c

6
t). The new version is not susceptible to our key

recovery attack any longer, but, as we discuss in Section 6.4, the question remains, in
what respect the complicated key schedule of Fruit is actually superior to the simple one

3Note that, very recently, the results of Meier and Zhang given in [HKMZ17a] were published as a
full paper by Zhang, Gong, and Meier [ZGM17]. However, for reasons of chronological consistency, we
will keep referring to the original presentation [HKMZ17a] in the rest of this chapter.

127

6 Small-State Stream Ciphers

NFSR LFSR

h

29
g

6
f

zt

2 77

Round Key Function

ct4

k̃t

80

Key k

nt0 nt39 lt0 lt61
lt0

Figure 6.3: Keystream generation of Plantlet. (cf. [MAM17])

used in Plantlet (see below). It should also be noted that our generic distinguisher in
Subsection 6.3.1 still works for Fruit v2.

6.2.3 Plantlet

In reaction to the aforementioned attacks against Sprout (cf. Subsection 6.2.1), the
designers presented a modified version at FSE 2017 [MAM17], calling it Plantlet. The
structure of Plantlet, which takes 80-bit keys and 90-bit IVs, is depicted in Fig. 6.3. For
the sake of brevity, we will focus on the changes compared to Sprout in this subsection.
Moreover, as the designers of Sprout and Plantlet have changed their notation between
the corresponding works, we will also use their new notation for Plantlet here.

Plantlet consists of a 40-bit NFSR, a 61-bit LFSR, and a 9-bit counter, the latter of
which works exactly like the counter in Sprout (cf. Subsection 6.2.1). In particular, like in
Sprout, the 5th LSB ct4 of the counter is employed in the state update during keystream
generation. The most prominent change w.r.t. the predecessor Sprout is the simplified
round key function of Plantlet: k̃t = k(t mod 80), t ≥ 0. In Section 6.4, we will conjecture
that despite its simplicity, this key schedule is actually the optimal one w.r.t. countering
TMD-TO key recovery attacks for ciphers that continuously use the non-volatile key.

During initialization (which, like in Sprout, takes 320 clock cycles), the LFSR of
Plantlet is updated as

lt+1
60 = 1,
lt+1
59 = lt54 ⊕ lt43 ⊕ lt34 ⊕ lt20 ⊕ lt14 ⊕ lt0 ⊕ zt,
lt+1
i = lti+1, 0 ≤ i ≤ 58,

(6.3)

128

6.2 Small-State Stream Ciphers

for 0 ≤ t ≤ 319. For keystream generation (i.e., t ≥ 320), it then changes to

lt+1
60 = lt54 ⊕ lt43 ⊕ lt34 ⊕ lt20 ⊕ lt14 ⊕ lt0,
lt+1
i = lti+1, 0 ≤ i ≤ 59.

Note that during initialization, the LSB of the 61-bit LFSR is ignored, turning it
effectively into a 60-bit LFSR. However, though none of the taps change between both
stages, the corresponding feedback polynomials of the respective LFSRs are both primitive.
The designers of Plantlet call this property double-layer LFSR.4

The NFSR feedback is identical to that of Sprout, i.e.,

nt+1
39 = k̃t ⊕ lt0 ⊕ ct4 ⊕ nt0 ⊕ nt13 ⊕ nt19 ⊕ nt35 ⊕ nt39

⊕ nt2nt25 ⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14n
t
21 ⊕ nt16n

t
18 ⊕ nt22n

t
24 ⊕ nt26n

t
32

⊕ nt10n
t
11n

t
12 ⊕ nt27n

t
30n

t
31 ⊕ nt33n

t
36n

t
37n

t
38,

nt+1
i = nti+1, 0 ≤ i ≤ 38,

for t ≥ 320. During initialization (i.e., for 0 ≤ t ≤ 319), the linear term zt is XORed
additionally to the NFSR update (and the LFSR update; see Eq. (6.3) above), just like
in Sprout.
The output function of Plantlet has the form

zt = ht ⊕ lt30 ⊕
(⊕

i∈B
nti

)
,

where B = {1, 6, 15, 17, 23, 28, 34} and

ht = nt4l
t
6 ⊕ lt8lt10 ⊕ lt32l

t
17 ⊕ lt19l

t
23 ⊕ nt4lt32n

t
38.

After loading the 90-bit IV via n0
i = IV i, 0 ≤ i ≤ 39, and l0i−40 = IV i, 40 ≤ i ≤ 89,

to the FSR cells and setting l050 = . . . = l058 = 1, l059 = 0, l060 = 1 at t = 0, the state
initialization and the keystream generation work analogously to the corresponding phases
in Sprout based on the above components (see Subsection 6.2.1 for further details).

So far, the only cryptanalytic result for Plantlet is a differential fault attack by Maitra
and Siddhanti [SM17]. As the designers of Plantlet do not make any claims about
this scenario and given that such attacks are hard to realize, Plantlet can currently be
considered the only unbroken Sprout-like cipher.
In Subsection 6.3.1, we present a generic TMD-TO distinguishing attack against

Plantlet with overall complexity 261. While, based on a similar distinguishing attack
4While, from a theoretical point of view, this looks very elegant, it’s not really clear whether the

security of Plantlet does actually benefit from the fact that the LFSR feedback polynomial is also primitive
during initialization. After all, due to the additional feedback of the output bit zt, the LFSR’s period
between t = 0 and t = 319 is unclear anyhow.

129

6 Small-State Stream Ciphers

NFSR2 NFSR1

a

29
f2

17
f1

zt

46 7

Bt
0 Bt

89 St0 St30
St0

Figure 6.4: Keystream generation of Lizard.

against Sprout by Banik [Ban15], the designers of Plantlet acknowledge the existence of
such attacks (hence, we do not claim to break Plantlet), they also point out in [MAM17]
that a more complicated round key function would allow to thwart them. The generic
nature of our distinguishing attack will show that this is not the case.

6.2.4 LIZARD

While, w.r.t. key recovery attacks, Sprout-like stream ciphers in fact allow to reduce the
size of the volatile inner state below the birthday bound, the underlying principle of
continuously accessing the key from a separate non-volatile memory like an EEPROM
has two severe drawbacks as pointed out in Subsection 2.3.9 and Section 6.1: (i) reading
from an EEPROM is costly in terms of power, hence continuously accessing it during
keystream generation can, e.g., have a devastating impact on the energy budget of a
battery-powered RFID device (like a pace maker); (ii) accessing the EEPROM is also a
bottle neck w.r.t. the maximum possible speed for implementations of such ciphers.

Our lightweight stream cipher Lizard [HKM17b] uses another approach to reduce the
size of the inner state without suffering from the above drawbacks. Its state initialization
algorithm is based on our new design principle named Lizard-construction [HK18],
which allows for provable (2n/3)-security against generic TMD-TO key recovery attacks.
For an in-depth description and analysis of the Lizard-construction and its concrete
instantiation Lizard, we refer the reader to Chapters 7 and 8, respectively. As pointed
out in Section 6.1, in this chapter, we only provide a brief outline of Lizard’s structure
for the sake of drawing the full picture regarding the current state of the art in small-state
stream cipher development.

Lizard takes 120-bit keys, 64-bit IVs and has an inner state length of 121 bits. It
allows to generate up to 218 keystream bits per key/IV pair and is supposed to provide
80-bit security against key recovery attacks and 60-bit security against distinguishing.
Also note that, unlike Sprout, Plantlet, and Fruit, the tap positions in Lizard retain
the original Grain option of parallelization (up to a factor of 6) via duplicating the
(comparatively cheap) circuits of the feedback and output functions (cf. Subsection 8.3.4).

Lizard has a Grain-like structure (see Fig. 6.4) with the difference that instead of

130

6.2 Small-State Stream Ciphers

Grain’s maximum-length LFSR, a maximum-length NFSR is used (NFSR1), which is 31
bits wide and has the update relation

St+1
30 = St0 ⊕ St2 ⊕ St5 ⊕ St6 ⊕ St15 ⊕ St17 ⊕ St18 ⊕ St20 ⊕ St25

⊕ St8St18 ⊕ St8St20 ⊕ St12S
t
21 ⊕ St14S

t
19 ⊕ St17S

t
21 ⊕ St20S

t
22

⊕ St4St12S
t
22 ⊕ St4St19S

t
22 ⊕ St7St20S

t
21 ⊕ St8St18S

t
22

⊕ St8St20S
t
22 ⊕ St12S

t
19S

t
22 ⊕ St20S

t
21S

t
22 ⊕ St4St7St12S

t
21

⊕ St4St7St19S
t
21 ⊕ St4St12S

t
21S

t
22 ⊕ St4St19S

t
21S

t
22

⊕ St7St8St18S
t
21 ⊕ St7St8St20S

t
21 ⊕ St7St12S

t
19S

t
21

⊕ St8St18S
t
21S

t
22 ⊕ St8St20S

t
21S

t
22 ⊕ St12S

t
19S

t
21S

t
22,

St+1
i = Sti+1, 0 ≤ i ≤ 29.

NFSR2 (90 bits) is based on Grain-128a [gHJM11] and has the update relation

Bt+1
89 = St0 ⊕Bt

0 ⊕Bt
24 ⊕Bt

49 ⊕Bt
79 ⊕Bt

84 ⊕Bt
3B

t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83,

Bt+1
j = Bt

j+1, 0 ≤ j ≤ 88.

The output function of Lizard builds on the construction scheme introduced in
[MJSC16] as part of the FLIP family of stream ciphers. The output bit zt at time t is
computed as zt = Lt ⊕Qt ⊕ Tt ⊕ T̃t, where

Lt = Bt
7 ⊕Bt

11 ⊕Bt
30 ⊕Bt

40 ⊕Bt
45 ⊕Bt

54 ⊕Bt
71,

Qt = Bt
4B

t
21 ⊕Bt

9B
t
52 ⊕Bt

18B
t
37 ⊕Bt

44B
t
76,

Tt = Bt
5 ⊕Bt

8B
t
82 ⊕Bt

34B
t
67B

t
73 ⊕Bt

2B
t
28B

t
41B

t
65

⊕Bt
13B

t
29B

t
50B

t
64B

t
75 ⊕Bt

6B
t
14B

t
26B

t
32B

t
47B

t
61

⊕Bt
1B

t
19B

t
27B

t
43B

t
57B

t
66B

t
78,

T̃t = St23 ⊕ St3St16 ⊕ St9St13B
t
48 ⊕ St1St24B

t
38B

t
63.

The state initialization of Lizard, during which no keystream is output, proceeds
in four phases. At t = 0, the key K = (K0, . . . ,K119) and the initialization vector
IV = (IV 0, . . . , IV 63) are loaded to the registers of the KSG as follows:

B0
j =

{
Kj ⊕ IV j , 0 ≤ j ≤ 63,
Kj , 64 ≤ j ≤ 89,

S0
i =

Ki+90, 0 ≤ i ≤ 28,
K119 ⊕ 1, i = 29,
1, i = 30.

131

6 Small-State Stream Ciphers

Then, the KSG is clocked 128 times in the usual Grain-like manner, i.e., the output bit
zt is XORed to the feedback of both FSRs. After that, the secret key is used a second
(and last) time as follows:

B129
j = B128

j ⊕Kj , 0 ≤ j ≤ 89,

S129
i =

{
S128
i ⊕Ki+90, 0 ≤ i ≤ 29,

1, i = 30.

The final phase of Lizard’s state initialization consists in clocking the KSG 128 times
already in keystream generation mode (i.e., without XORing the output bit zt to the
FSRs’ feedback), but discarding the corresponding keystream bits. The first keystream
bit actually used for encryption is z257.
For a summary of ‘external’ cryptanalytic results for Lizard, we refer the reader to

Subsection 8.4.11. Let us, however, emphasize here that Lizard is currently unbroken.

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

Time-memory-data tradeoff (TMD-TO) attacks like those of Babbage [Bab95] and
Biryukov and Shamir [BS00] are probably the most powerful generic attacks against
stream ciphers. For classical stream ciphers like Trivium (cf. Subsection 5.2.3) and Grain
(cf. Subsection 5.2.4), which generate the keystream exclusively based on a so-called initial
state (see our model in Section 5.1) and have an efficiently invertible state initialization
algorithm (cf. Section 5.3), such attacks reduce the maximum possible security level to
half the size of the inner state of the KSG. As a consequence, stream ciphers used to have
comparatively large inner states. In 2015, Armknecht and Mikhalev suggested Sprout (cf.
Subsection 6.2.1), which tried to beat this birthday bound.
While classical TMD-TO attacks aiming at inner state recovery indeed cannot be

applied anymore (straightforwardly) against Sprout-like ciphers, we will now show that
they are still susceptible to another type of generic TMD-TO distinguishing attack.
Moreover, we will also present the first key recovery attack against Fruit v1 (our name for
the specification in ePrint version 20170304:073404 of [GHX16]). Our key recovery attack
makes use of the complicated round key function of Fruit v1 and raises the question,
whether simplicity (as present in Plantlet) wouldn’t actually be preferable here.

We would like to point out that, in this chapter, no particular familiarity with the
concept of TMD-TO-based key recovery and distinguishing attacks is required on the
reader’s side. In particular, all relevant details will be introduced, as required, in the
course of our respective attacks. For a more formal exposition, we refer the reader to the
following Chapters 7 and 8 (esp. Section 7.3 and Subsection 8.4.2, respectively).

132

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

6.3.1 A Generic Distinguishing Attack against Stream Ciphers which
Continuously use the Non-volatile Key

In this subsection, we present a generic distinguishing attack against stream ciphers which
continuously use the non-volatile key. Our description is based on a result by Englund,
Hell, and Johansson [EHJ07] from 2007 and hence also related to the distinguishing
attack of Banik against Sprout [Ban15] from 2015.

Revisiting the Generic Attack of Englund, Hell, and Johansson

In 2007, Englund, Hell, and Johansson published a note [EHJ07], in which they presented
a “new distinguishing attack scenario for stream ciphers, allowing a resynchronization
collision attack” and pointed out that “[t]he attack can succeed if the part of the state
that depends on both the key and the IV is smaller than twice the key size.” At the time
of publication, the authors did not have ciphers like Sprout, Fruit, or Plantlet in mind
(the first of which was only published in 2015), but they were targeting block ciphers in
output feedback mode (OFB mode). These can also be interpreted as (though not bitwise
working) stream ciphers and, in fact, the eSTREAM phase-3 candidate LEX [Bir05] (see
Subsection 5.2.5) is very similar to a block cipher in OFB mode, so the attack of Englund,
Hell, and Johansson could be applied. They start the description of their idea by:

“Let us divide the internal state of the cipher into two parts, State =
(StateK ,StateK+IV), where StateK is the part of the state that statically
holds the key and StateK+IV is the part of the state that is affected by both
the key and the IV. Also, let N be the size of StateK+IV in bits. If the key
size |K| > N/2, then the new distinguishing attack will always succeed with
complexity below exhaustive key search.” [EHJ07]

Note that this corresponds exactly to the scenario we are facing for Sprout, Fruit and
Plantlet. The attack description then continues:

“Consider a resynchronization scenario. We assume that the key is fixed and
that the cipher is reinitialized using many different IVs. Furthermore, we
assume that we have access to one long keystream sequence produced from one
of the IVs, denoted IV 0. We then intercept many short ciphertext messages,
each initialized using a different IV, and we assume that we know the first N
plaintext bits in every ciphertext message. Our goal is to recover the rest of
the plaintext for one of the messages. [. . .] We now proceed as follows. Let a
keystream block be N consecutive bits in a considered keystream sequence.
We first store 2N/2 different keystream blocks from the keystream generated
from IV 0 in a sorted table. Thus, we have a table covering a fraction of 2−N/2
of all possible keystream blocks of length N . If the cipher is reinitialized
with a new IV and we know the N first bits of the corresponding keystream,

133

6 Small-State Stream Ciphers

then the number of reinitializations needed in order to have a collision, i.e.,
receiving N bits that are present in the table, is geometrically distributed
with expected value 2N/2. Denote the IV producing the collision by IV c. If
a collision is found, then with high probability the states are the same and
the sequences following the colliding blocks of IV 0 and IV c will be identical.
That means that if we know only the first N keystream bits generated by
IV c, then we can predict future keystream bits from IV c. In other words, by
knowing only the first N plaintext bits of the message, we can decrypt the
rest of the ciphertext without knowing the key.” [EHJ07]

Depending on the application context and the attack complexity, the fact that the
attacker is not only able to distinguish the cipher from a random bitstream but also
obtains a potentially large amount of previously unknown keystream for the collision
initialization vector IV c, may pose a serious security risk.
Also note that what this attack effectively does is to look for two different IVs which

map to shifted versions of the same keystream. The same idea underlies, e.g., Banik’s
distinguishing attack against Sprout [Ban15]. However, the attack by Englund, Hell, and
Johansson cannot be applied carelessly to stream ciphers like Sprout, Fruit, and Plantlet.
The reason for this lies in their assumption that

“[i]f the cipher is reinitialized with a new IV and we know the N first bits of
the corresponding keystream, then the number of reinitializations needed in
order to have a collision, i.e., receiving N bits that are present in the table, is
geometrically distributed with expected value 2N/2.” [EHJ07]

This statement is obviously motivated by their application context of block ciphers in
OFB mode. There, the IV serves as the (volatile) initial state and thus, the IV space
and the space of (volatile) inner states have the same size. In fact, at a later point, the
authors even write:

“This resynchronization scenario will not give an attack on a block cipher in
counter mode. [. . .] However, the above scenario applies to block ciphers used
in OFB mode since the output block zi can be viewed as the part of the state
that depends on both the key and the IV, StateK+IV . Similarly, the key used
in the block cipher can be viewed as the part of the state that statically holds
the key, StateK . By reinitializing the OFB mode stream cipher with a new
IV, the cipher will enter a new random state after every encryption.” [EHJ07]

Note that for stream ciphers it is common to have the IV size below the total size of
the volatile inner state (see, e.g., Trivium and Grain, but also Sprout, Fruit, Plantlet,
and Lizard). Hence, reinitializing with a new IV will only allow us to randomly draw
elements from a subset of the set of all volatile inner states. We will thus see that for a
generic attack description against general stream ciphers, we need additional assumptions.

134

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

Such assumptions are also necessary because, for a block cipher in OFB mode, the
mapping of IVs to initial states is the identity and, hence, obviously injective. While,
under an arbitrarily fixed key, the respective mappings for Sprout and Plantlet are
injective, too, this is not clear for Fruit due to the fact that the IV is introduced ‘from
aside’ during the state initialization. As a consequence, in our experiment, we would
not draw uniformly at random from the set of all possible initial states as some of those
states would be more likely due to the fact that they are the result of more than one IV.

Another important difference between a block cipher in OFB mode and common stream
ciphers results from the fact that a block cipher realizes a permutation between plaintext
blocks and ciphertext blocks. Hence, for a block cipher in OFB mode, the mapping
of inner states (corresponding to the block cipher’s input blocks) to keystream blocks
(corresponding to the block cipher’s output blocks) is also a permutation. For common
stream ciphers, however, we do not have this guarantee as different inner states of size
n can actually lead to identical keystream blocks of size n. As a consequence, when
straightforwardly applying the attack of Englund, Hell, and Johansson to ciphers like
Sprout, Fruit, and Plantlet, we might actually experience keystream block collisions which
are not the result of colliding inner states but of collisions in the output function. To
avoid such ’false positives’, we need to slightly increase the size of the keystream blocks
which we save (for practical attacks, usually by only a few bits; see below).

We will now describe a generic attack scheme for stream ciphers that continuously use
the non-volatile key, which takes the above considerations into account. In particular,
explicitly specifying the required assumptions will enable us to come up with a new
design idea in Section 6.5 that thwarts this type of distinguishing attack. More precisely,
we will extend the 2-tuple State = (StateK ,StateK+IV) underlying the model of Englund,
Hell, and Johansson (and also Sprout-like ciphers) by a third component: StateIV .

A Generic Attack Scheme

Definition 6.1: Continuous-Key-Use (CKU) Stream Cipher

A CKU stream cipher is a standard KSG-based stream cipher (cf. Section 5.1) with
the additional tweak that, even after the state initialization has been completed,
the secret key is still used as an input to the state update function. The key
schedule, which determines the way in which the secret key influences the state
update, can depend on any part of the volatile inner state (FSRs, counters etc.).

Note that, e.g., Sprout, Fruit, and Plantlet are all CKU stream ciphers. Sprout’s key
schedule depends on a separate counter along with bits from the FSRs, while those of
Fruit and Plantlet only depend on a counter.

In the following definition, we do not not speak of any counters, but only of a volatile
inner state, which we consider potential counters to be part of (along with the FSRs

135

6 Small-State Stream Ciphers

etc.). The reason for doing so is that we want to stay as generic as possible in our attack
description in order to show its applicability for a wide range of CKU stream ciphers.

Definition 6.2

Let Cipher be a CKU stream cipher with the following properties:

• n: size of the volatile inner state in bits;

• l: IV length in bits;

• 2λ: limit of keystream bits per IV.

We define:
Ik =

{
InitialStatek(v) | v ∈ {0, 1}l

}
⊆ {0, 1}n ,

where InitialStatek(v) denotes the initial state which the state initialization algo-
rithm of Cipher computes on the basis of the key k and the IV v.

For our generic distinguishing attack against Cipher, we need the following two
assumptions to hold.

Assumption 6.1: IV Near-Injectivity

Cipher fulfills the IV Near-Injectivity assumption for the secret key k if |Ik| ≈ 2l.

Assumption 6.2: Initial State Randomness

Let σ := max {0, (n/2− λ)}, and let T be a set of about 2n/2 different ñ-bit
keystream blocks (with ñ slightly larger than n) that were obtained on the basis of
d2σe different IVs under an arbitrarily fixed key k by sliding an ñ-bit window over
each of the respective d2σe keystreams of length ≤ 2λ bits without experiencing
any collisions. Furthermore, let Sk(T) denote the set of volatile inner states which
underlie the keystream blocks in T for the secret key k.
Cipher fulfills the Initial State Randomness assumption if for such sets T , it holds
with high probability that

|Sk(T) ∩ Ik|
|Sk(T)| '

|Ik|
|{0, 1}n| .

Note that if a stream cipher violates Assumption 6.1, this itself opens the door for a
distinguishing attack that looks for IVs which produce identical keystreams. For example,

136

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

if the IV size is smaller than the key size, even a single such IV collision allows for a
distinguishing attack with complexity lower than that of exhaustive key search.5
Assumption 6.2 ensures that there will actually be a sufficient amount of collision

candidates to look for. Banik makes a similar assumption in his distinguishing attack
against Sprout in [Ban15] by expecting that for a randomly chosen inner state, there
is a probability of 2−10 that an IV exists for which this state is “the 80th keystream
phase state”. We will now describe our generic distinguishing attack against CKU stream
ciphers and explain its consequences for Fruit v1 and Plantlet afterwards.
So let Cipher be a CKU stream cipher with an n-bit volatile inner state, an IV

length of l bits, and a limit of 2λ keystream bits per IV. Moreover, let Cipher fulfill
Assumptions 6.1 and 6.2, and let σ := max {0, (n/2− λ)}. Then the following algorithm
allows to distinguish the keystream produced by Cipher from a random bitstream with
high probability.

Distinguisher:

Step (1) Obtain about 2n/2 ñ-bit keystream blocks (with ñ slightly larger than n) based
on d2σe different IVs from the oracle by sliding an ñ-bit window over each of the
respective d2σe keystreams of length ≤ 2λ bits and save the keystream blocks in
an efficiently searchable data structure like a hash table. If, during this step, a
collision occurs, we can already distinguish Cipher and stop.

Step (2) For 2n/2 different IVs, obtain the corresponding ñ-bit keystream prefix from
the oracle and look for a collision in the data structure created in Step (1). Once
such a collision is found, we can distinguish Cipher and stop.

[Output] If, during Step (1) or Step (2), a collision was found, we assume that we are
in the pseudorandom scenario of the distinguishing game (i.e., the oracle provides
its responses based on the actual outputs of Cipher under some arbitrarily fixed
secret key) and answer pseudorandom. Else, we assume that we are in the random
scenario of the distinguishing game (i.e., the oracle answers our queries with random
bitstrings) and answer random.

The success probability of the attack can be derived from the birthday paradox. Under
an arbitrarily fixed key k, the universe of the corresponding experiment is the set of
all possible initial states Ik, which, according to Assumption 6.1, has size |Ik| ≈ 2l.
Assumption 6.2 ensures that, w.h.p., a subset of size about 2n/2−(n−l) = 2l−n/2 of the
volatile inner states underlying the 2n/2 keystream blocks collected in Step (1) will belong
to the set Ik. Assumption 6.1 guarantees that in Step (2), we draw uniformly and
at random 2n/2 elements from Ik. According to the birthday paradox, when drawing

5A small amount of IV collisions may be tolerable depending on the security claims; see, e.g., Lizard,
which claims 80-bit security against key recovery and 60-bit security against distinguishing.

137

6 Small-State Stream Ciphers

uniformly and at random 2n/2 elements from a set of size 2l, we are likely to find a
collision with an arbitrarily fixed subset of size 2l−n/2.
The complexity of the above attack is:

(1) Obtain 2n/2 keystream blocks of size ñ bits each and store them in an efficiently
searchable data structure:

• Data complexity (keystream): 2n/2;
• Memory complexity (keystream blocks): 2n/2 · ñ;
• Time complexity: 2n/2.

(2) Obtain 2n/2 keystream prefixes of size ñ each and search for a collision in the data
structure created in Step (1).

• Data complexity (keystream prefixes): 2n/2 · ñ;
• Memory complexity: negligible;
• Time complexity: 2n/2.

Note that, for the time complexity, we consider the computation of each ñ-bit keystream
block to be an atomic operation, independent of whether it is a keystream prefix or a
block that appears in the middle of a keystream. This is motivated by the comparison to
the complexity of exhaustive key search, where, per key candidate, a keystream prefix
needs to be generated and compared to the given keystream prefix for the secret key.
In consequence, Step (1) and Step (2) each have a time complexity of 2n/2. Note that
for Step (1), where we slide an ñ-bit window over the keystream, we actually need less
encryption operations when we assume that each atomic encryption operation gives ñ new
keystream bits. However, inserting the 2n/2 keystream blocks into the hash table takes
2n/2 ·O(1) time. In our assessment of the corresponding time costs w.r.t. search structure
operations, we follow Hellman, who writes in his famous paper titled A Cryptanalytic
Time-Memory Trade-Off [Hel80]: “Because [. . .] is sorted by ciphertext, the cryptanalyst
can find C0 and its associated key in at most log2N operations using a binary search.
Either by neglecting logarithmic factors of through hash coding [4], this will be counted
as one operation.”

So the overall complexity of our generic TMD-TO distinguishing attack against CKU
stream ciphers is dominated by its data and memory complexities, which are both about
2n/2 · ñ. Consequently, if the key size of the attacked CKU stream cipher is larger than
(n/2) + log2 (ñ), we obtain a distinguishing attack complexity below the complexity of
exhaustive key search.6

6Englund, Hell, and Johansson similarly concluded: “If the key size |K| > N/2 , then the new
distinguishing attack will always succeed with complexity below exhaustive key search.” [EHJ07] However,
they left out the logarithmic summand, which we chose to include as exhaustive key search has negligible
data and memory complexity, whereas in the above distinguishing attack, these complexities are actually
each at a factor of ñ higher than the time complexity and dominate the overall cost of the attack.

138

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

Applying the Attack to Plantlet and Fruit v1

In the following, we will discuss the consequences of the above distinguishing attack for
the ciphers Plantlet (cf. Subsection 6.2.3) and Fruit v1 (cf. Subsection 6.2.2). Sprout will
not be treated due to the respective distinguishing result already presented by Banik
[Ban15]. The reason for including Plantlet despite the fact that the designers already
acknowledged that Banik’s attack against Sprout could also be transferred to Plantlet is
that they point out at the same time: “It would be possible to make the design resistant
against this attack by either choosing a more complicated key-selection function or by
further increasing internal state size.” [MAM17] We will show that the above attack is
completely independent of how complicated the key-selection function is. Fruit v1, on the
other hand, is discussed as the designers do not mention the possibility of distinguishing
attacks at all in their paper, which might give the impression that the security level
against distinguishing is supposed to equal that against key recovery via exhaustive key
search. We will show that this is not the case.

The main question when applying our generic attack scheme is obviously whether the
targeted cipher fulfills the necessary Assumptions 6.1 (IV Near-Injectivity) and 6.2 (Initial
State Randomness). In Appendix 6.A, we show for Plantlet that, under an arbitrarily
fixed key, the mapping of IVs to the corresponding volatile initial state is injective; hence,
Assumption 6.1 is fulfilled. For Fruit v1, we will also suppose Assumption 6.1 to be
fulfilled, despite the fact that here, IV collisions could actually occur. However, as pointed
out above, the existence of a large number of IV collisions would constitute a weakness
on its own. In particular, as the IV space of Fruit has only size 270 whereas the key
size is 80 bits, the existence of even a single IV collision would be sufficient to launch a
distinguishing attack with complexity below that of exhaustive key search by exhaustively
searching the complete IV space for this collision. More precisely, for each of the 270

IVs, one would ask the oracle in the corresponding distinguishing game for the respective
keystream prefix (of sufficient length; see discussion below) and store these keystream
prefixes in an efficiently searchable data structure. If some prefix should occur twice, one
answers pseudorandom as, w.h.p., one is in the pseudorandom scenario (i.e., the oracle
gives its answers based on the actual output of Fruit v1). If all prefixes are distinct, one
answers random, assuming that one is in the random scenario (i.e., the oracle answers
each query with a random bitstring). Under the premise that Fruit v1 has IV collisions,
this strategy, which, in the worst case, requires 270 oracle queries, will be successful with
probability close to 1 (and, hence, constitute a valid distinguisher, which has to be better
than the 0.5 success probability of pure guessing), as in both scenarios (each of which
occurs with probability 0.5) one will give the correct answer with probability close to 1
if the keystream prefixes are sufficiently long (see, again, the corresponding discussion
about the required length of keystream prefixes below). Note that if it is unclear whether
Fruit v1 actually has IV collisions, one can also combine the two approaches. That is, one
first assumes that Fruit v1 has no (or only few) IV collisions and uses our new generic

139

6 Small-State Stream Ciphers

distinguishing algorithm for CKU stream ciphers. If the algorithm is not successful
in finding a collision of keystream blocks, one then runs the above IV collision-based
distinguisher, assuming that there are either many IV collisions for Fruit v1 or that the
oracle is in the random scenario. The worst-case attack complexity of such a combined
distinguisher would obviously be dominated by the 270 oracle queries of the second part.
However, it would still be below the cost of exhaustive key search.
The applicability of Assumption 6.2, on the other hand, can neither be proved for

Plantlet nor for Fruit v1. Instead, we have to refer to a plausibility argument based on the
structure of the respective cipher (similarly to what, e.g., Banik did for Sprout [Ban15]):

• Plantlet: The IV space of Plantlet has size 290 and the corresponding mapping (un-
der an arbitrarily fixed key) to the set of initial states is injective (see Appendix 6.A).
As two bits of the 9-bit counter will not be used after the state initialization is
completed, the relevant volatile inner state of Plantlet has size 61 + 40 + 7 = 108
bits. From the cipher definition (cf. Subsection 6.2.3), we know that the remaining
7-bit counter will have the same binary value 0 . . . 0 for all initial states. During
keystream generation, this counter, interpreted as a natural number, stepwise takes
all values mod 80. In particular, in every 80th clock cycle, the counter takes binary
value 0 . . . 0. Based on general security assumptions for stream ciphers, we can also
expect that the FSR states will evolve randomly during keystream generation. As a
consequence, every time the counter takes value 0 . . . 0, we have a chance of 290−101

(the combined size of the FSRs is 101 bits) that there is an IV which has this inner
state as an initial state. So when picking an arbitrary (108 + ε)-bit keystream
block, we have a chance of 80−1 · 290−101 > 2−18 that the underlying 108-bit inner
state is also an initial state for some IV under the given key. This implies that
Assumption 6.2 holds.

• Fruit v1: The IV space of Fruit has size 270. Due to the way the IV is introduced
to the inner state, there is a possibility for IV collisions leading to the same initial
state. However, as explained above, for Fruit v1 we will also suppose Assumption 6.1
to be fulfilled. So let 270 be the approximate size of the set of initial states that
are actually possible under the given secret key. Like Plantlet, Fruit v1 has a
(7-bit wide) counter that influences the key bit selection. The volatile inner state
of Fruit v1 has size 37 + 43 + 7 = 87 bits. As in the case of Plantlet, the 7-bit
counter is stepwise incremented during keystream generation. However, there are
two differences: (1) the counter will actually cycle through all possible 27 values;
(2) the counter value of the initial states will not be known as it is set based on
certain (secret) FSR values as part of the state initialization (cf. Subsection 6.2.2).
We know, however, that each initial state has the property that, when clocked back
80 times (the respective state transition function is bijective), a certain position of
the LFSR has to be 1 and six positions of the NFSR have to equal six positions of
the counter. One in 27 inner states of size 87 bits will fulfill this property. Using

140

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

the same security argument about FSR state randomness as in the case of Plantlet,
we can hence expect that when picking an arbitrary (87 + ε)-bit keystream block,
we have a chance of about 2−7 ·

(
270−80) = 2−17 that the underlying 87-bit inner

state is also an initial state for some IV under the given key. This implies that
Assumption 6.2 holds.

In order to substantiate our assumption w.r.t. the randomly evolving FSR states during
keystream generation and the corresponding implications on the existence of a sufficient
amount of collision candidates, we created a reduced (i.e., ‘halved’) version of Fruit v1,
which we call Shrunk Fruit v1 (see Appendix 6.B for a specification). Shrunk Fruit v1
has a volatile inner state of size 46 bits (19-bit NFSR, 21-bit LFSR, 6-bit counter) and
is operated with 40-bit keys and 35-bit IVs. Assuming that Shrunk Fruit v1 fulfills
Assumptions 6.1 and 6.2, our new generic distinguisher for CKU stream ciphers should
find a collision pair w.h.p. based on 246/2 keystream blocks collected in Step (1) and 246/2

keystream prefixes requested in Step (2). We created a corresponding simulation with
the computer algebra system Magma [BCP97]. In each iteration of the experiment, a
random key was chosen and 223 50-bit keystream blocks were generated and stored as
described in Step (1) of the above distinguishing algorithm. Then, in line with Step (2),
50-bit keystream prefixes were computed for randomly chosen IVs until the first collision
with the set generated in Step (1) occurred. We performed 25 such iterations and the
average number of trials needed in Step (2) was 222.3, which is in line with our theoretical
results. The simulations also showed that as few as four additional bits per keystream
block (i.e., 50 instead of 46) were sufficient to avoid false positives, i.e., keystream block
collisions caused by collisions in the output function instead of by colliding inner states.

The complexities (Step (1) + Step (2)) of the above distinguishing attack when applied
to Plantlet and Fruit v1 are as follows:

• Plantlet:
– Data complexity: 2108/2 + 2108/2 · (108 + 20) ≈ 261;
– Memory complexity: 2108/2 · (108 + 20) = 261;
– Time complexity: 2108/2 + 2108/2 = 255.

• Fruit v1:
– Data complexity: 287/2 + 287/2 · (87 + 20) ≈ 250.2;
– Memory complexity: 287/2 · (87 + 20) ≈ 250.2;
– Time complexity: 287/2 + 287/2 = 244.5.

In both cases, we added a 20-bit security margin to the keystream block size in order to
avoid false positives as explained previously. Note that for classical TMD-TO attacks like
those of Babbage [Bab95] and Biryukov and Shamir [BS00], the length of the keystream

141

6 Small-State Stream Ciphers

segments which have to be stored is usually completely ignored when describing the
attack complexities (i.e., the memory complexity is given as 2n/2 instead of 2n/2 · n, the
latter of which is actually required for storing 2n/2 keystream blocks of size n bits each).
The same holds for the original description of Englund, Hell, and Johansson’s attack
in [EHJ07]. In our distinguishing attacks against Plantlet and Fruit v1, however, we
want to be as precise (and as fair) as possible. Therefore, we also not only included
the factor n itself, but further added a ‘global’ security margin against false positives
of 20 bits for both ciphers, despite their different inner state sizes.7 We believe that
20 bits are a sufficient upper bound in both cases for the following reason. One of the
most important design goals for stream ciphers is that their mapping inner state −→
keystream prefix should be as close to a random function as possible (see, e.g., Chapter 7
for a corresponding random oracle model) in order to thwart attacks that make use of
the cipher’s particular structure (i.e., non-generic attacks as compared to our generic
distinguisher). For a random function F : {0, 1}n −→ {0, 1}n+7, however, the following
holds: Let x ∈ {0, 1}n be chosen uniformly and at random. Then the probability that
there is no second preimage y ∈ {0, 1}n, y 6= x, with F (x) = F (y) is

(
2n+7 − 1

2n+7

)2n−1

≈
((

1− 1
2n+7

)2n+7)2−7

≈
(
1− e−1

)2−7

≈ 0.996

and, hence, with only 7 bits of security margin, already way larger than actually necessary
for our attack to succeed with high probability. We would also like to point out that, even
in the unlikely case that our 20-bit security margin should turn out to be slightly too
optimistic, this would have a negligible influence on the corresponding attack complexities
for Plantlet and Fruit v1 given above (e.g., even using 108 + 50 instead of 108 + 20 bits
would increase the overall attack complexity for Plantlet only from 261 to 261.3).

Note that for Plantlet, complexities could also easily be improved by taking the cipher
specifics into account. For example, the attacker actually knows which of the keystream
blocks collected in Step (1) are impossible to produce a collision (because he knows the
underlying counter values). These values would not have to be stored in the first place,
reducing the memory complexity of the attack. Moreover, the above attack complexities
are based on the assumption that all values can occur in the counter register. For Plantlet,
this is actually not the case, which would further reduce the attack complexity. However,
as pointed out before, we wanted to have a scheme for distinguishing attacks against
CKU stream ciphers which is as generic as possible.
Thereby, we hope to clarify that a more complicated key schedule (e.g., by having a

nonlinear round key function, making use of FSR bits etc.) will not protect against the
7As pointed out previously, due to the focus on block ciphers in OFB mode, this security margin

was not necessary for the attack of Englund, Hell, and Johansson. It would, however, be required in
the well-known TMD-TO attacks by Babbage [Bab95] and Biryukov and Shamir [BS00], where, like the
additional factor n itself, it is usually not included in the description of the respective attack complexities.

142

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

above distinguishing attack. So, while continuously using the secret key may protect
against TMD-TO inner state recovery attacks, it does not provide security (equal to the
security against key recovery) against TMD-TO distinguishing attacks.

A trivial way to thwart the above distinguishing attack would be to increase the size of
the volatile inner state. However, this would clearly counteract the initial idea of having
a smaller state. In Section 6.5, we introduce a new design idea for providing full security
against TMD-TO distinguishing attacks without increasing the volatile inner state.

6.3.2 A Key Recovery Attack against Fruit v1
The following attack against Fruit v1 (our name for the cipher specification in ePrint
version 20170304:073404 of [GHX16]; see Section 6.1 for further remarks) works for the
subset {k0, . . . , k63, 0, . . . , 0} ⊂ {0, 1}80 (i.e., for every 65 536th key), for which it allows
key recovery faster than exhaustive key search (i.e., with complexity < 264) against the
remaining bits k0, . . . , k63. In other words: Fruit has (at least) 264 weak keys, which do
not offer the promised 80-bit security.

Attack Description

Our attack makes use of Fruit v1’s complicated key schedule. More precisely:

Observation 6.1

The key schedule of Fruit v1 has the property that if k64 = k65 = . . . = k79 = 0
holds, then the key schedule bit k′t is always computed as k′t = kq+32, where
0 ≤ q ≤ 31 and q depends on t as described in Subsection 6.2.2. In particular, this
means that if k64 = k65 = . . . = k79 = 0 holds, then the key bits k0, . . . , k31 are
never involved in the computation of k′t.

So let us suppose that k64 = k65 = . . . = k79 = 0 holds. We will use a variant of
Babbage’s TMD-TO attack [Bab95] to recover the inner state (composed of the 80 bits
of the FSRs and the 32 key bits k32, . . . , k63, i.e., 112 bits in total) at t = 130 before the
counter Cr and the value of l130 are overwritten. Observe that if we know this inner state
and the IV underlying it, then we will be able to clock the cipher back and recover the
inner state at t = 0, which contains the full 80-bit key. Also note that the counter values
at t = 130 before Cr is overwritten are publicly known and always the same.

At the beginning of the corresponding key recovery game, the oracle chooses a random
key k = (k0, . . . , k79) satisfying k64 = k65 = . . . = k79 = 0. Thereafter, each query
performed by our algorithm (asking ‘What is the keystream prefix for IV x?’) is correctly
answered by the oracle according to the respective Fruit v1 output under k. Note that our
algorithm does not follow any particular strategy w.r.t. which IVs actually serve as query
inputs. The only condition is that the same IV is not used twice. Consequently, this

143

6 Small-State Stream Ciphers

oracle-based key recovery game actually corresponds to a classical known-plaintext setting,
where we know the plaintext and ciphertext prefixes (and, hence, also the keystream
prefixes) for 252 different public IVs (see below).
For the sake of brevity, in the following, we will omit the ‘security margin’ ε w.r.t.

the length of keystream fragments that we included in our above distinguishing attack.
As explained there, the corresponding number of additionally required bits is actually
negligible. In particular, it would only affect the data and memory complexities of our
key recovery attack, both of which are below the overall complexity (see below) and
would still not exceed it if we included a generous security margin of, e.g., 16 bits.

Attack algorithm:

Step (1) For 252 different IVs, obtain the 112-bit keystream prefix from the oracle and
save the tuples (keystream prefix, IV) in an appropriate (i.e., efficiently searchable
with respect to the keystream prefixes) data structure like a hash table.

Step (2) For 260 random choices of elements

((k∗32, . . . , k
∗
63), (l∗130, . . . , l

∗
172), (n∗130, . . . , n

∗
166)) ∈ {0, 1}112 ,

evaluate the function F : {0, 1}112 −→ {0, 1}112, which computes the first 112
keystream bits based on this random KSG state at t = 130, and look for a collision
in the data structure created in Step (1).8 Once a collision is found, clock the
cipher back based on the discovered (IV , inner state) pair and obtain the full secret
key as the FSR contents at t = 0.

[Output] If, during Step (2), a collision was found (which happens with high probability
according to the following Theorem 6.1), the algorithm provides the corresponding
secret key. Else, it answers SearchFailed and stops (or, alternatively, repeats Step
(2) until a collision is eventually found).

Theorem 6.1

According to the birthday paradox, with high probability, we will find a collision
between one of the keystream prefixes from Step (1) with a keystream prefix from
Step (2).

Proof. Shifted to the end of this subsection for reasons of clarity.
8Note that the 112-bit input ((k∗32, . . . , k

∗
63), (l∗130, . . . , l

∗
172), (n∗130, . . . , n

∗
166)) contains all necessary

information to compute this keystream prefix, because: the counter Cr at t = 130 is overwritten with
bits from these assumed FSR states, and we suppose the last 16 key bits to be 0, and thus the first 32
key bits are never needed again for the state update (and the keystream generation) after t = 0.

144

6.3 TMD-TO Attacks against Sprout-like Stream Ciphers

The complexity of the above attack is:

(1) Obtain 252 keystream prefixes of size 112 bits each and store them, together with
the respective IV of size 70 bits, in an efficiently searchable data structure:

• Time complexity: 252;
• Data complexity (keystream prefixes): 252 · 112 ≈ 258.8;
• Memory complexity ((keystream prefix, IV) tuples):

252 · (112 + 70) ≈ 259.5.

(2) Evaluate the function F 260 times (we will consider this as 260 atomic operations, just
like each encryption under a different key during exhaustive key search is usually
treated as an atomic operation; actually, we are even faster as we do not need to
perform the first 130 clock cycles of the initialization) and look for a collision:

• Time complexity: 260.

Obviously, for the tradeoff parameters that we chose (i.e., collecting 252 keystream
prefixes during Step (1) and performing 260 evaluations of F for different random inputs
in Step (2)), the overall attack cost is dominated by the time complexity 260. (Note
that we needed to get below 264 to show that for the targeted subset of 264 keys, the
remaining unknown 64 key bits can be recovered with complexity below exhaustive key
search, i.e., below 264.)
We close this subsection with some final remarks:

• For the related ciphers Grain and Plantlet, it can be shown that, under an arbitrarily
fixed key, the mapping of IVs to initial states is injective. Due to the way the
IV is introduced (i.e., ’from aside’) in Fruit, it is not clear to what extent this
property actually holds here. This leads to the situation that during Step (1) of the
algorithm, we could need some more attempts to arrive at a subset of 252 different
keystream prefixes corresponding to a set S, |S| = 252, of different inner states as
explained above. This, however, is not a problem as we could collect up to 257

keystream prefixes during Step (1) and still stay below the overall target complexity
264 of exhaustive key search against the bits k0, . . . , k63 (note that only the data
complexity would increase as we only save different keystream prefixes, which leaves
the memory complexity unchanged). Moreover, we could additionally tweak the
tradeoff parameters.

• For an older version of Fruit (i.e., ePrint version 20161124:115414 of [GHX16]),
the design description actually contained an upper bound (215) on the number of
IVs that should be used under the same secret key. In the newer ePrint version
20170304:073404, which underlies what we call Fruit v1 here, this restriction has

145

6 Small-State Stream Ciphers

been dropped.9 Nonetheless, we would like to point out that the above attack
could be easily adapted to a scenario with this restriction still in place. Instead
of targeting the inner state at t = 130, one could also target an arbitrary inner
state during keystream generation. However, in this case the counter would not be
known any longer and it (more precisely, only the six bits c1

t , . . . , c
6
t) would have to

be included in our TMD-TO attack. This would raise the data, memory and time
complexities each by a factor of at most 23 (the counter is also ‘halved’ via the
birthday paradox), which would still fall in the boundaries of a successful attack.10

In Step (1) of the attack, one would then obtain 255 118-bit keystream blocks based
on 212 keystreams each of size 243 bits (the limit set by the designers of Fruit v1)
for 212 different IVs. In Step (2), one would pick 263 random inputs for a modified
function F : {0, 1}118 −→ {0, 1}118. The rest of the attack then works analogously
to what we described before.

• An easy way to thwart our key recovery attack against Fruit v1 would obviously
be to add the linear term ’⊕ ks’, with s cyclically taking the values 0, . . . , 31, to
the cipher’s round key function. However, the question remains in what sense
(i.e., w.r.t. which kind of attacks) a more complicated round key function like that
of Fruit v1 is actually supposed to be superior to the basic one used in the yet
unbroken Plantlet.

Proof of Theorem 6.1

In Step (1), we collect keystream prefixes which correspond to a subset S of size 252 of
the set Ω = {0, 1}32 × {0, 1}43 × {0, 1}37 of size 2112. More precisely, the 112-bit inner
states underlying the keystream prefixes collected in Step (1) all belong to the same
secret key. This implies that S has a special structure:((

k̃32, . . . , k̃63
)
,
(
l̃130, . . . , l̃172

)
, (ñ130, . . . , ñ166)

)
∈ S

and
((
k̂32, . . . , k̂63

)
,
(
l̂130, . . . , l̂172

)
, (n̂130, . . . , n̂166)

)
∈ S

⇒ k̃i = k̂i for i = 32, . . . , 63.

However, we will see that this structure is completely irrelevant for the success proba-
bility of our attack. In particular, S does not have to be a random subset of Ω. The only
important aspect is that during Step (2), we are able to randomly select elements from

9Note that limiting a cipher which is designed for fixed-key scenarios (due to the continuous use of
non-sequential key bits) to 215 IVs per secret key, seems rather unrealistic as this would effectively mean
that a corresponding device would have to be dumped after at most 32 768 keystream generations.

10In fact, e.g., the data complexity would be increased by a factor below 23 (and possibly even
decrease), as now, the keystream blocks can be derived via sliding a 118-bit window over the keystream,
just like in the classical TMD-TO attack.

146

6.4 The Future of Small-State Stream Ciphers

the whole of Ω (which is the case in our attack as we are free to choose the inputs for
F : {0, 1}112 −→ {0, 1}112; see above).
So let S with |S| = 252 be an arbitrarily fixed subset of Ω with |Ω| = 2112. The

probability of finding a collision during Step (2) can be computed as 1 − p, where p
denotes the probability that the 260 elements which we draw during Step (2) all belong
to the set Ω \ S. For simplicity, we will assume here that our algorithm is ‘stupid’ in
the sense that it does not remember which elements it has already drawn uniformly and
at random during Step (2), i.e., the same non-collision elements in Ω \ S can be drawn
multiple times during this step. (Note that this assumption is obviously a disadvantage
for the attacker.) Then we get

p =
(

2112 − 252

2112

)260

=
(

1− 1
260

)260

≈ e−1,

which proves our Theorem 6.1 as 1− p ≈ 0.63.

6.4 The Future of Small-State Stream Ciphers
Discussing recent advances in the field of small-state stream ciphers, we have omitted
the most fundamental question so far: is small-state actually a meaningful design target?
From a theoretical point of view, small-state designs are certainly interesting as new
concepts like the continuous use of the secret key in Sprout-like ciphers or the Even-
Mansour-like [EM93] state initialization algorithm of Lizard now seem to allow to ‘beat
the birthday bound’ and hence to explore more extreme tradeoffs between state size and,
e.g., the complexity of feedback and output functions. The ultimate question here seems
to be whether we can achieve n-bit security against key recovery and distinguishing with
an n-bit volatile inner state? Our conjecture is that this is indeed possible by using
a Sprout-like approach which additionally includes the IV in the state update during
keystream generation (see Section 6.5).

But does a small-state approach also make sense from a practical perspective? Clearly,
registers are costly in terms of area (cf. Subsection 2.3.3) and power (cf. Subsection 2.3.4),
so the fewer state bits the better; but area and power are also consumed by the combina-
torial logic, e.g., for the feedback and output function. This conflict is also represented in
the eSTREAM portfolio, where Grain v1 (cf. Subsection 5.2.4) has an inner state size of
‘only’ 160 bits but rather involved feedback and output functions, whereas Trivium (cf.
Subsection 5.2.3) has an inner state of 288 bits but extremely simple feedback and output
functions. After the eSTREAM contest had finished (see Section 5.1 for further details),
the focus in the cryptographic community shifted from lightweight stream ciphers to
lightweight block ciphers like PRESENT [BKL+07] and KATAN/KTANTAN [DCDK09].
In 2009, Poschmann (one of the designers of PRESENT) concluded his PhD thesis about
lightweight cryptography with: “The widespread assumption that stream-ciphers can

147

6 Small-State Stream Ciphers

be implemented more efficiently in hardware compared to block ciphers does not hold
anymore, since the block cipher PRESENT requires only 1,000 GE.” [Pos09] A simple
estimation shows that the small-state design principle is apparently the only way to close
this efficiency gap (at least in terms of chip area measured in GE; cf. Subsection 2.3.3)
between lightweight block and stream ciphers: The FSR storage cells of Grain v1, which
achieves 80-bit security with a 160-bit inner state, consume alone (i.e., without any
additional counters, combinatorial logic etc.) at least 160 · 5.33 ≈ 853 GE using the
cheapest type of flip-flop (i.e., D flip-flops) with the UMCL18G212T3 standard cell library
that was also used by Poschmann for implementing PRESENT. Given that PRESENT
(which, like Grain v1, has a key size of 80 bits) can be implemented using this cell library
for only 1075 GE in total [RPLP08], it becomes clear that the only way for stream ciphers
to catch up here is to reduce the size of their volatile inner state below the birthday
bound. And in fact, ciphers like Plantlet and Lizard (both of which were introduced
at FSE 2017) indicate that the small-state design approach has made stream ciphers
‘exciting’ again. After all, both of them surpass Grain v1, the most hardware-efficient
member of the eSTREAM portfolio, in important metrics for lightweight ciphers like chip
area (Plantlet and Lizard) and power consumption (Lizard). Moreover, Plantlet can be
implemented with a chip area below 1000 GE and is hence even superior to PRESENT
in this respect.11

But the competitive efficiency w.r.t. block ciphers is not the only novelty of small-state
stream ciphers. Motivated by the attacks against Sprout (cf. Subsection 6.2.1), we
developed Lizard, whose full details are presented in Chapter 8 and which offers provable
security against generic TMD-TO key recovery attacks. Though corresponding proofs
are yet missing for Sprout-like ciphers, this is certainly a very promising direction of
future research. Moreover, all of the new small-state stream ciphers are still susceptible
to distinguishing attacks (see Subsection 8.4.2 for Lizard and Section 6.3 for Sprout-like
ciphers, respectively). For Trivium and Grain, only recently, security proofs w.r.t. generic
TMD-TO distinguishing attacks have been published by Krause [Kra17]. In Section 6.5,
we present a new design idea for small-state stream ciphers, for which we conjecture full
security against such attacks and expect that a corresponding security proof in a random
oracle model (see Chapter 7) will be available soon.

In Subsection 6.2.2, we have seen that fast correlation attacks, which were first
introduced by Meier and Staffelbach [MS88] in 1988, remain to be a real threat to
contemporary stream ciphers. In particular, the corresponding attack of Meier and Zhang
against Fruit [HKMZ17a] presented at ESC 2017 makes use of the fact that the nonlinear
filter function h becomes linear in the NFSR bits if the contents of the LFSR are known.
As pointed out in [HKMZ17a], the lessons learned here for the design of new small-state

11Also do not forget that, unlike stream ciphers, block ciphers additionally need an appropriate mode
of operation (if the problems of electronic codebook mode (ECB mode) are to be avoided), increasing
hardware costs in terms of, e.g., area and power consumption.

148

6.4 The Future of Small-State Stream Ciphers

Grain-like stream ciphers are that the output function needs to remain “[s]trong even
when one of the registers is known” and that the feedback function of the NFSR has to
be “[o]f high enough nonlinearity (to prevent good linear approximations).” Note that,
also for ciphers that continuously use the secret key (such as Sprout, Fruit, and Plantlet),
both of these conditions need to hold irrespective of the specifics of round key generation.
Very recently, important progress has also been made in the field of applying cube

attacks (introduced by Dinur and Shamir [DS09] in 2009) against NFSR-based stream
ciphers. More precisely, at Crypto 2017, two papers introduced new approaches for using
cubes beyond an experimentally feasible range: In [Liu17], a framework for evaluating the
algebraic degree of NFSR-based cryptosystems is suggested and cube-based distinguishing
attacks against round-reduced versions of Trivium and related ciphers are presented.
In [TIHM17], the so-called division property, which has already been exploited in the
context of block ciphers [Tod15], is used to allow for the currently best cube-based key
recovery attacks against round-reduced versions of Grain-128a [gHJM11], Trivium [CP05],
and ACORN [Wu16]. These advances show that stream cipher designers need to take
special care w.r.t. design decisions that have an impact on the algebraic degree of their
cipher.12 This is particularly important in the field of lightweight stream ciphers, where
designers might be tempted to implement feedback and output functions of low degree
and, in order to reduce latency and energy consumption, have only a small number of
initialization rounds.
An important implication of fast correlation and cube attacks is consequently that,

as strong feedback and output functions are of vital importance anyway (esp. if a large
number of initialization rounds (like in Trivium, cf. Subsection 5.2.3) is to be avoided due
to its unfavourable effects w.r.t. latency and energy consumption), designers of lightweight
stream ciphers should rather save on state cells.
Another lesson learned from existing attacks (e.g., those for Sprout summarized in

Subsection 6.2.1, or the new key recovery attack for Fruit v1 presented in Subsection 6.3.2)
against Sprout-like stream ciphers, which continuously use the secret key, is that a
complicated key schedule / round key function has so far only led to security problems.
In fact, we conjecture that the basic round key function used by Plantlet is actually
the optimal one (see also Section 6.5). More precisely, it is already sufficient to thwart
TMD-TO key recovery attacks. Other classical attack techniques like algebraic attacks,
correlation attacks etc. should be countered by established design measures like the choice
of feedback and output functions of a high enough degree.
In line with these insights, we will now conclude this chapter by presenting a new

design approach, which may not only allow to reduce the inner state size, but also to
provide full security against generic TMD-TO distinguishing attacks, something which is
yet missing for existing small-state stream ciphers like Sprout, Fruit, Plantlet, or Lizard.

12More precisely, in the context of cube attacks, the algebraic degree of the Boolean function that
maps secret key and IV to the first keystream bit.

149

6 Small-State Stream Ciphers

6.5 New Design Idea: Stream Ciphers which Continuously use
the IV

The assumption underlying the applicability of the distinguishing attack for CKU stream
ciphers like Sprout, Fruit v1, and Plantlet presented in Subsection 6.3.1 (and also, e.g.,
that of Banik [Ban15]), is that it is possible to find two IVs which, under an arbitrarily
fixed key, lead to shifted versions of the same keystream. In this section, we suggest a
potential countermeasure, which ensures that, under an arbitrarily fixed key, any two
IVs will always map to different keystreams.
The prominent innovation of Sprout (cf. Subsection 6.2.1) was to continuously (i.e.,

also during keystream generation) use the secret key as part of the state update in order
to protect against TMD-TO inner state recovery attacks. Our suggestion is now to also
continuously use the public IV as part of the state update in order to protect against
TMD-TO distinguishing attacks. By doing so, the public IV would become part of the
inner state, just like the secret key became part of the inner state in Sprout.
In consequence, resynchronization attacks that try to discover some collision in the

volatile part of the inner state based on collisions in the corresponding keystream segments
(such as our distinguishing attack presented in Subsection 6.3.1) would be thwarted. This
is due to the fact that through the continuous involvement of the IV in the state update,
two identical volatile inner states will subsequently evolve differently under different
IVs, thereby leading to different keystream segments, which deprives an attacker of the
corresponding possibility to efficiently detect collisions in the volatile inner state through
comparing segments of the observed keystreams.13 Hence, for a properly designed stream
cipher which continuously uses the key and the IV as part of its state update, neither
the classical TMD-TO attacks (due to the continuous key involvement) nor our new
distinguishing attack (due to the continuous IV involvement) will work any longer.

Now one may argue from a hardware perspective that, while the secret key has to be
stored anyhow (e.g., also for Trivium, Grain etc.) in order to be reused with other IVs,
this would not be the case for the IV. Hence, at first sight, assuming that the IV is still
accessible after state initialization might be considered cheating. However, we do not
think that this is the case for many application scenarios. Look, for example, at A5/1 (cf.
Subsection 5.2.2). There, the IV used in the encryption of a data packet is the respective
(sequentially incremented) 22-bit frame number. Hence, any A5/1 device needs some
memory containing this frame number anyhow. In general, especially for ciphers with
small IV spaces, there always has to be a mechanism like a stepwise incremented IV
register to make sure that the same IV is not accidentally used twice under the same
secret key. Similarly, in all communication scenarios like A5/1, where the packet counter
serves at the same time as an IV source, we will always have this information.

13In other words, under an arbitrarily fixed key, two IVs will never lead to shifted versions of the same
keystream.

150

6.6 Conclusion and Outlook

Actually, any stream cipher definition which strictly requires ‘Never use the same IV
twice under a single key!’ also needs a mechanism to enforce this requirement (though
stream cipher designers seem to hardly talk about this issue in their suggestions and
instead leave the problem of IV uniqueness to user). Independent of whether this
mechanism is to keep a stepwise incremented IV in a writable storage location like an
EEPROM or another register on the device, or whether the device actually keeps a table
of already used IVs, there will always be a source where a cipher can continuously get
the current IV from.
In this thesis, we will not suggest a specific instantiation of such a cipher which

continuously uses the secret key and the IV, but leave the development to future
work. However, it might be as easy as changing the round key function of Plantlet (cf.
Subsection 6.2.3) from k̃t = k(t mod 80), t ≥ 0, to

k̃t = k(t mod 80) ⊕ IV (t mod 90), t ≥ 0.

As a final note, we would like to point out that while our new design idea of continuously
using the IV as part of the state update was originally targeted at CKU stream ciphers
(see Definition 6.1 in Subsection 6.3.1), we conjecture its applicability also for other
contexts. In particular, as we will explain in Section 9.3 of the chapter Future Research
Directions, combining continuous IV use and packet mode14 can even thwart classical
TMD-TO attacks like those of Babbage [Bab95] and Biryukov and Shamir [BS00], without
requiring any additional measures such as using the secret key more than once.

6.6 Conclusion and Outlook
Our results show that the search for small-state stream ciphers which completely ‘defeat’
the birthday bound, is far from being finished. The initial hope that continuously
using the secret key would fully solve this problem has been shattered by TMD-TO
distinguishing attacks. While our new design principle of continuously using key and
IV might actually lead to ciphers that resist TMD-TO key recovery and distinguishing
attacks, it is obvious that the necessary hardware conditions will not be present in all
application scenarios. Hence, the search for alternative solutions remains a field which
is not only interesting from a theoretical point of view, but also of actual practical
relevance. The results presented in this chapter seem to indicate that a more complicated
key schedule (as used by Fruit) will probably not be the way to go. Another interesting
direction for future research might be the search for a non-Grain-like small-state stream
cipher.
In the following Chapter 7, we will present the Lizard-construction, which underlies

the provable (2n/3)-security against generic TMD-TO-based key recovery of our new
14See Section 5.1 for a formal introduction of this term, and Chapter 8 for a practical instantiation in

the form of our new lightweight stream cipher Lizard.

151

6 Small-State Stream Ciphers

lightweight stream cipher Lizard. While, for the sake of providing a complete overview
w.r.t. the current state of the art in small-state stream cipher design, we have already
briefly outlined the structure of Lizard in Subsection 6.2.4, Chapter 8 will then contain
the full details, including an in-depth security analysis and an assessment of the cipher’s
suitability for ultra-constrained RFIDs.

152

6.A Plantlet: Injectivity of IV → Initial State

Appendix 6.A Plantlet: Injectivity of IV → Initial State

The following algorithm computes (under an arbitrarily fixed key) for any given FSR
content at t = 320 a corresponding FSR content at t = 0, which, according to the
Plantlet algorithm (cf. Subsection 6.2.3), would lead to the given FSR content at t = 320.
(Moreover, it returns the IV contained in the FSRs at t = 0.) This shows that the
corresponding mapping of FSR contents at t = 0 to FSR contents at t = 320 under an
arbitrarily fixed key is surjective. As domain and codomain have the same size, this also
implies injectivity and shows that, under an arbitrarily fixed key, different IVs will always
be mapped to different initial states by Plantlet’s state initialization algorithm.

Given:

• 80-bit Key: (k0, . . . , k79)

• 60-bit LFSR part of the initial state:
(
l320
0 , . . . , l320

59
)

Note that l60 is irrelevant for us as it is not used during initialization.

• 40-bit NFSR part of the initial state:
(
n320

0 , . . . , n320
39
)

•
(
c0
t , . . . , c

8
t

)
is known for all t, t ≥ 0.

This is particularly important for ct4 (see below).

Algorithm:
for t = 319 down to 0 do

for i = 0 to 58 do
lti+1 ← lt+1

i

end for
for i = 0 to 38 do

nti+1 ← nt+1
i

end for(
xt0, . . . , x

t
8
)
←
(
nt4, l

t
6, l

t
8, l

t
10, l

t
32, l

t
17, l

t
19, l

t
23, n

t
38
)

ht ← xt0x
t
1 ⊕ xt2xt3 ⊕ xt4xt5 ⊕ xt6xt7 ⊕ xt0xt4xt8

zt ← ht ⊕ lt30 ⊕
(
nt1 ⊕ nt6 ⊕ nt15 ⊕ nt17 ⊕ nt23 ⊕ nt28 ⊕ nt34

)
lt0 ← lt+1

59 ⊕ lt54 ⊕ lt43 ⊕ lt34 ⊕ lt20 ⊕ lt14 ⊕ zt
k̃t ← k(t mod 80)
nt0 ← nt+1

39 ⊕ k̃t⊕ lt0⊕ ct4⊕ nt13⊕ nt19⊕ nt35⊕ nt39⊕ nt2nt25⊕ nt3nt5⊕ nt7nt8⊕ nt14n
t
21⊕

nt16n
t
18 ⊕ nt22n

t
24 ⊕ nt26n

t
32 ⊕ nt10n

t
11n

t
12 ⊕ nt27n

t
30n

t
31 ⊕ nt33n

t
36n

t
37n

t
38 ⊕ zt

end for
for i = 0 to 39 do

IV i ← n0
i

end for
for i = 40 to 89 do

153

6 Small-State Stream Ciphers

IV i ← l0i−40
end for

return (IV 0, . . . , IV 89)

Appendix 6.B Shrunk Fruit v1
In the following, we present an overview over Shrunk Fruit v1, our ‘halved’ variant
of Fruit v1 (cf. Subsection 6.2.2) that we used for the experiments described in Sub-
section 6.3.1. As compared to Fruit v1, which has a key size of 80 bits and an IV size of
70 bits, Shrunk Fruit v1 uses 40-bit keys and 35-bit IVs. The sizes of the NFSR and the
LFSR were also shrunk from 37 to 19 bits and from 43 to 21 bits, respectively. For the
specifications of the new FSRs as well as for the key schedule and the output function, we
did our very best to retain the properties of the original cipher and, in particular, not to
introduce new weaknesses. To that end, we actually even kept the number and degree of
terms in the key schedule, output and feedback functions of the original Fruit v1. Instead,
we just squeezed the corresponding tap indices to fit the new FSRs. In consequence,
Shrunk Fruit v1 is probably even stronger (against non-generic attacks) than one would
expect from a truly halved variant. Other important properties such as the use of a
maximum-length LFSR were also transferred from Fruit v1 to Shrunk Fruit v1. The
size of the counter Cr was only reduced by one bit, because in Fruit v1, seven bits are
required to index 80 key bits and, consequently, in Shrunk Fruit v1, six bits are now
required to index the 40 key bits. Please find below a full specification of Shrunk Fruit v1
in bullet point form:

• Input: 40-bit key k = (k0, . . . , k39), 35-bit IV IV = (IV 0, . . . , IV 34)

• Keystream Limit per IV: 221 bits (due to the 21-bit maximum-length LFSR;
corresponds to the limit of 243 bits and the 43-bit maximum-length LFSR in
Fruit v1)

• 6-bit Counter:
Cr =

(
c1
t , c

2
t , c

3
t , c

4
t , c

5
t , c

6
t

)
• Key Schedule:

k′t = ksky+32 ⊕ kpku+36 ⊕ kq+16 ⊕ kr+32

s =
(
c1
t , c

2
t , c

3
t , c

4
t , c

5
t

)
y =

(
c4
t , c

5
t

)
u =

(
c5
t , c

6
t

)
p =

(
c1
t , c

2
t , c

3
t , c

4
t

)

154

6.B Shrunk Fruit v1

q =
(
c2
t , c

3
t , c

4
t , c

5
t

)
r =

(
c4
t , c

5
t , c

6
t

)
• 19-bit NFSR:

nt+19 = k′t ⊕ lt ⊕ c4
t ⊕ nt ⊕ nt+5 ⊕ nt+10 ⊕ nt+6nt+2 ⊕ nt+8nt+13

⊕ nt+3nt+11nt+15 ⊕ nt+4nt+9 ⊕ nt+14nt+15nt+16nt+17

• 21-bit LFSR (a maximum-length LFSR like in Fruit v1):

lt+21 = lt ⊕ lt+4 ⊕ lt+9 ⊕ lt+12 ⊕ lt+14 ⊕ lt+17

• Keybit zt:

ht = lt+3lt+7 ⊕ lt+1lt+11 ⊕ nt+18lt+13 ⊕ lt+5lt+16 ⊕ nt+1nt+17lt+20

zt = ht ⊕ nt ⊕ nt+3 ⊕ nt+7 ⊕ nt+9 ⊕ nt+12 ⊕ nt+14 ⊕ nt+18 ⊕ lt+19

• IV ′ (extension of the 35-bit IV to 65 bits; corresponds to the extension
of the 70-bit IV to 130 bits in Fruit v1):

IV ′ =
(
IV ′0, . . . , IV ′64

)
= (1, 0, 0, 0, 0︸ ︷︷ ︸

5

, IV0, . . . , IV34︸ ︷︷ ︸
35

, 0, . . . , 0︸ ︷︷ ︸
25

)

• Key Loading:

(n0, . . . , n18) = (k0, . . . , k18)
(l0, . . . , l20) = (k19, . . . , k39)

• Key Schedule Counter Initialization:(
c1

0, c
2
0, c

3
0, c

4
0, c

5
0, c

6
0

)
= (0, . . . , 0)

• Initialization Procedure:
1. 65 IV loading and mixing steps as described for Fruit v1 in Subsection 6.2.2

(there: 130 steps).
2. Set (

c1
65, c

2
65, c

3
65, c

4
65, c

5
65, c

6
65

)
:= (n65, n66, n67, n68, n69, l65)

and then l65 := 1.
3. Clock 40 times in keystream generation mode (i.e., without feeding zt and IV ′

any longer to the FSRs), but without outputting zt, as described for Fruit v1
(there: 80 times).

• Output: The first keystream bit that is used for plaintext encryption is z105.

155

Es ist noch nicht genug, eine Sache zu beweisen,
man muß die Menschen zu ihr auch noch verführen
oder zu ihr erheben.

Friedrich Wilhelm Nietzsche

CHAPTER7
The Lizard-Construction

ABSTRACT
In this chapter, we propose and analyze the Lizard-construction, a new way to build KSG-based
stream ciphers (cf. Chapter 5). For an inner state size of n bits, we prove a tight (2n/3)-bound
on its security against TMD-TO key recovery attacks, while the security against TMD-TO
distinguishing attacks remains at the birthday-bound level n/2. The lower bound of the (2n/3)-
result refers to a random oracle model which allows to derive formal security statements w.r.t.
generic TMD-TO attacks. While similar frameworks have already been widely used for analyzing
the security of block cipher, MAC, and hash function constructions, to the best of our knowledge
this is the first time that such a model is considered in a stream cipher context.

The security analysis presented in this chapter is also of immediate practical relevance as,
with the stream cipher Lizard (see Chapter 8), a first instantiation of our new design principle,
which we hence named Lizard-construction, was introduced at FSE 2017. Though aiming for
80-bit security against key recovery, Lizard has an inner state size of only 121 bits and surpasses
Grain v1, the most hardware-efficient member of the eSTREAM portfolio, in important metrics
for lightweight ciphers (cf. Chapter 2) such as chip area and power consumption.

Declaration of Origin: This chapter is based on the paper On Stream Ciphers with Provable
Beyond-the-Birthday-Bound Security against Time-Memory-Data Tradeoff Attacks [HK18], written
together with Matthias Krause and published in Cryptography and Communications (Springer
US journal).

157

7 The LIZARD-Construction

7.1 Introduction
As pointed out in Chapter 5, most classical stream ciphers are vulnerable against generic
time-memory-data tradeoff (TMD-TO) attacks, which reduce their effective key length
to the birthday bound n/2, where n denotes the inner state size of the underlying
keystream generator (KSG). In consequence, e.g., the eSTREAM portfolio members
Trivium and Grain v1 (both targeting 80-bit security) have comparatively large inner
states of n = 288 bits and n = 160 bits, respectively. In this chapter, we propose
and analyze the Lizard-construction, a new way to build KSG-based stream ciphers.
Given an inner state size of n bits, we prove a tight (2n/3)-bound on its security against
TMD-TO key recovery attacks, while the security against TMD-TO distinguishing attacks
remains at the birthday-bound level n/2.
For reasons of clarity, this introduction is divided into three parts. In the first part

(Subsection 7.1.1), we will recall our model for KSG-based stream ciphers from Section 5.1.
Those readers, who still have all details of Chapter 5 present, can safely skip this subsection
up to the new Definition 7.1 at its very end. As we will strongly build on this model in
this chapter (and also on our findings with w.r.t. the state initialization algorithms of
classical stream ciphers as studied in Section 5.3), we still deemed it useful to repeat the
corresponding details here. In the second part of this introduction (Subsection 7.1.2), we
will briefly explain the role of TMD-TO attacks in general, and w.r.t. our framework in
particular. Based on this, in the third part (Subsection 7.1.3), we will then outline the
contribution of this chapter.

7.1.1 A Model for KSG-based Stream Ciphers

In our framework, we suppose that the communication between legal users is organized
in sessions, where in the first phase of each session, the secret session key k is generated
by executing a key establishment protocol (see, e.g., Subsection 5.2.1 for that of E0 in
Bluetooth). As pointed out in Section 5.1, this session key generation phase will not be
treated in detail in this thesis.
Following [BG07], each stream cipher is associated with a well-defined set of inner

states and its keystream generation process can be divided into the following two phases:

(A) The key and IV setup phase, where an initial state is derived from the secret session
key k and an initialization vector IV .

(B) The keystream generation phase, in which the keystream is generated based on the
initial state derived in phase (A).

In this thesis, we focus on what we call KSG-based stream ciphers, for which the
main algorithmic component for performing phases (A) and (B) is a keystream generator
(KSG).

158

7.1 Introduction

KSGs are clock-controlled devices which can be formally specified by finite automata,
defined by an inner state length n, the set of inner states {0, 1}n, a state update function
π : {0, 1}n −→ {0, 1}n, and an output function outbit : {0, 1}n −→ {0, 1}. Starting from
an initial state qinit = q0, in each clock cycle t ≥ 0, the KSG produces an output bit
zt = outbit(qt) and changes the inner state according to qt+1 = π(qt). The keystream
S(qinit) corresponding to the initial state qinit is defined by concatenating all the outputs
bits z0z1z2 · · · .

As pointed out above (and already in Chapter 5), the key and IV setup phase (A) of a
KSG-based stream cipher is performed by a KSG-based state initialization algorithm,
which computes, from the session key k and the initialization vector IV , the initial state
qinit. It typically contains the following two subphases:

(A.1) The loading phase defines how the session key k and the initialization vector IV are
loaded into the inner state registers and results in a loading state qload = qload(k, IV).

(A.2) The mixing phase runs an appropriate KSG-based mixing algorithm

MIX : {0, 1}n −→ {0, 1}n

on qload and results in a state qmixed = MIX(qload).

The aim of the mixing phase (A.2) is to generate a sufficient amount of diffusion, confusion,
high algebraic degree etc. in the dependencies of the initial state bits from the session key
bits and the IV bits. In many cases, an essential part of the mixing algorithm consists in
running the KSG a certain number of times without producing keystream bits. Moreover,
as we have shown in Section 5.3, for many ciphers (such as Trivium, Grain v1, A5/1,
E0) it holds that qinit = qmixed. Furthermore, we have also explained that for Trivium,
Grain v1, and A5/1, the mixing algorithm MIX can be inverted efficiently.
Note that also Sprout-like ciphers as discussed in Chapter 6 could be plugged into

this framework by treating the secret key as part of the inner (and, hence, also initial)
state. However, in the context of this chapter, we will confine our notion to how the
inner state is used in classical stream ciphers (cf. Chapter 5). In particular, we suppose
that MIX behaves like a random function with respect to standard security properties
(see Section 7.2 for further details).

One can distinguish the following two operation modes of stream ciphers. In the one-
stream mode, the key and IV setup phase (A) is performed only once at the beginning of
the session and produces an initial state qinit = qinit(k, IV). The corresponding keystream
S = S(qinit) is used for the whole session. As pointed out in Chapter 5, due to their
extremely large limits (e.g., 264 bits for Trivium) on the amount of keystream generated
under a single key/IV pair, Trivium and Grain v1 can be considered to work in one-stream
mode.1

1Clearly, Trivium and Grain v1 could also be used in packet mode, but in contrast to, e.g., Lizard
(see Chapter 8), their design is not specifically optimized for such scenarios.

159

7 The LIZARD-Construction

In contrast to this, in the packet mode, the communication and encryption process
during a session is divided into packet steps i = 1, 2, . . ., where in each packet step,
a piece of message of a certain maximal packet length R is encrypted and sent. Cor-
responding to this, the keystream of a session is the concatenation of the keystream
packets S1, S2, . . ., where for all i ≥ 1, Si denotes the keystream packet generated in
packet step i. Corresponding stream cipher instantiations are equipped with a mechanism
providing, for each packet step i, an initialization vector IV i (such as the frame counter
in A5/1; cf. Subsection 5.2.2). Each packet step i starts with performing the key and
IV setup phase (A), yielding a packet initial state qiinit = qiinit(k, IV i), followed by the
generation of the keystream packet Si, which is defined to be the prefix of length R of
S(qiinit). As we have seen in Chapter 5, typical examples for stream ciphers operating
in packet mode are the Bluetooth cipher E0 (cf. Subsection 5.2.1) and the GSM cipher
A5/1 (cf. Subsection 5.2.2). We also pointed out that in the network protocols of many
important digital communication scenarios, data streams are transmitted packet-wise
(Ethernet, WLAN, Bluetooth, cellular networks etc.). It thus seems natural to consider
stream ciphers running packet mode and, in particular, to look for corresponding design
optimizations (see Section 8.1 for more examples of stream ciphers used packet mode
and for further information about their practical relevance).
As in [BS00], [BG07], and many other papers, we consider the keystream generation

phase (B) of KSG-based stream ciphers as being defined by the output block function
OUTBLOCK : {0, 1}n −→ {0, 1}n, which assigns to each inner state q ∈ {0, 1}n the first
n keystream bits produced on q. Here, the exact definition of OUTBLOCK :

Definition 7.1: OUTBLOCK

For all q ∈ {0, 1}n, let

OUTBLOCK (q) = (z̃0, . . . , z̃n−1) ,

where for all r, 0 ≤ r ≤ n− 1,

z̃r = outbit(πr(q)),

where π : {0, 1}n −→ {0, 1}n and outbit : {0, 1}n −→ {0, 1} denote the state
transition function and the output function of the corresponding KSG, respectively.

Note that the keystream S(qinit(k, IV)) = (z0, z1, . . .) generated on a key/IV pair
(k, IV) can now be expressed as follows (see also Fig. 7.1). For each n-bit subblock
(zr, . . . , zr+n−1), it holds

(zr, . . . , zr+n−1) = OUTBLOCK (πr(qinit)).

160

7.1 Introduction

z0 z1 · · · zn−1 zn · · · z2n−2 z2n−1 z2n · · ·

· · ·
OUTBLOCK (qinit)

OUTBLOCK (π(qinit))

OUTBLOCK (πn(qinit))
· · ·

S(qinit)

outbit(qinit) outbit
(
π2n−2(qinit)

)
outbit

(
π2n−1(qinit)

)
Figure 7.1: The keystream generation phase (B) in terms of our model.

7.1.2 The Role of TMD-TO Attacks

During the last decades, many stream ciphers have been suggested and many diffe-
rent techniques for cryptanalyzing them have been developed (correlation attacks, fast
correlation attacks, guess-and-determine attacks, BDD attacks, cube attacks; see, e.g.,
Sections 6.2 and 8.4). Attacks on stream ciphers typically suppose that the attacker
knows a piece S′ of keystream which was generated under a secret session key k and a set
of known or actively chosen initialization vectors. Standard goals are to distinguish S′
from a truly random bitstream, to recover the inner states responsible for S′, to predict
a new keystream packet on the basis of S′, or to recover the secret session key.
Having already successfully applied them against Sprout-like ciphers in Section 6.3,

in this chapter, we once more focus on so-called time-memory-data tradeoff (TMD-TO)
attacks, which are for many stream ciphers the most powerful known attacks. TMD-
TO attacks have a generic nature in the sense that they access the security-relevant
components MIX and OUTBLOCK only in a black-box manner. This implies that
from the attacker’s point of view, these components are ideally designed in the spirit of
[GT15]. Hence, the target of TMD-TO attacks is the way how the components MIX and
OUTBLOCK interact in computing the keystream from the secret session key k and an
initialization vector IV .
In consequence, such TMD-TO attacks can usually be formulated for variable inner

state length n. Correspondingly, we express upper and lower security bounds for stream
cipher constructions against TMD-TO attacks in an asymptotic manner. For instance,
we say that a stream cipher construction has, for some number a, 0 ≤ a ≤ 1, the security
level a · n w.r.t. TMD-TO attacks if there is a TMD-TO attack of cost behavior O(2a·n)
with significant success probability and, for all α < a, all TMD-TO attacks of cost
behavior O(2α·n) have only negligibly small success probability. We will discuss the cost
behavior of TMD-TO attacks in more detail at the beginning of Section 7.3.

The vulnerability against generic TMD-TO attacks such as those of Babbage [Bab95]
or Biryukov and Shamir [BS00] represents an inherent weakness of KSG-based stream

161

7 The LIZARD-Construction

MIX
IV qload

k
qmixed qinit

k

Figure 7.2: Key and IV setup phase (A) of the Lizard-construction. The XOR symbol
denotes the addition of the corresponding n-bit vectors over GF(2).

ciphers.2 This vulnerability implies that for KSG-based stream ciphers working in one-
stream mode, the effective key length is bounded by n/2, where n denotes the inner
state length of the underlying KSG. As a consequence, classical stream ciphers have
comparatively large inner state lengths; e.g., 288 bits and 160 bits for the eSTREAM
portfolio members Trivium (see Subsection 5.2.3) and Grain v1 (see Subsection 5.2.4),
respectively.

7.1.3 Our Contribution
In this chapter, we propose a construction principle for designing KSG-based stream
ciphers with a provable beyond-the-birthday-bound security of 2n/3 against generic TMD-
TO key recovery attacks: taking a stream cipher with a state initialization algorithm of
the new type

qinit = MIX(qload)⊕ k, (7.1)

where qload = k⊕IV (see Fig. 7.2), and using it in packet mode. We give this construction
principle the name Lizard-construction, as it underlies the stream cipher Lizard (see
Chapter 8) introduced at FSE 2017.
The Lizard-construction can be motivated as follows. Babbage’s TMD-TO attack

[Bab95] implies that if a KSG-based stream cipher runs in one-stream mode, then it is
possible to predict the keystream of the whole session with a TMD-TO attack of cost
behavior O(2n/2) (see Theorem 7.1 in Section 7.3). Moreover, if the state initialization
algorithm is efficiently invertible (as it is the case, e.g., for Trivium, Grain v1, and A5/1;
cf. Section 5.3), then this attack even yields the secret session key.
Consequently, for obtaining KSG-based stream ciphers with beyond-the-birthday-

bound resistance against TMD-TO attacks, one has to consider stream ciphers running
in packet mode. But this alone is not enough. More precisely, many stream ciphers (such
as Trivium, Grain v1, A5/1, and E0; see, again, Section 5.3) employ a state initialization
algorithm of type

qinit = MIX(qload) (7.2)
2Let us once more emphasize that, in this chapter, when speaking of KSG-based stream ciphers, we

are referring to classical constructions; i.e., continuous-key-use stream ciphers (cf. Definition 6.1) such as
Sprout-like designs are not treated here.

162

7.1 Introduction

with qload = qload(k, IV), instead of

qinit = MIX(qload)⊕ k

with qload = qload(k, IV) = k ⊕ IV , as used by the Lizard-construction (cf. Eq. (7.1)).
We show in Theorem 7.2 that even if a stream cipher runs in packet mode and even if
the state initialization algorithm is not efficiently invertible (as, e.g., that of E0), a state
initialization algorithm of the type in Eq. (7.2) provides only a security level of n/2 w.r.t.
session key recovery attacks.
In contrast to this, we are able to prove a tight (2n/3)-bound on the security of

the Lizard-construction against TMD-TO attacks. More precisely, in Theorem 7.3 we
first describe a TMD-TO session key recovery attack of TMD cost Õ(22n/3) against the
Lizard-construction, which is based on the Slidex attack of Dunkelman, Keller, and
Shamir [DKS12] against the one-key Even-Mansour cipher [EM93].

The main contribution of this chapter is to then show that for the Lizard-construction,
this security bound of 2n/3 is sharp. The proof of the matching security lower bound
result is done, in the spirit of [GT15], in a random oracle model corresponding to
the components MIX and OUTBLOCK of the Lizard-construction. We prove an
information-theoretic lower bound on the security of the Lizard-construction against
generic chosen-IV attackers, who have black-box access to the component primitives MIX
and OUTBLOCK , and to the stream cipher construction itself. Due to their generic
nature, all known TMD-TO attacks against stream ciphers can be formulated as attacks
in this model in a straightforward way.

The proof of our security lower bound follows the typical structure of similar information-
theoretic proofs in the context of iterated Even-Mansour ciphers (see, e.g., [EM93],
[BKL+12], [ABD+13], [CS14], [CLL+14], [HT16]). In particular, it is inspired by the
(much shorter) security lower bound proof in [EM93]. As in [EM93], the lower bound
against key recovery attacks follows from a lower bound against the weaker type of attack
in which the goal of the attacker is to predict a new keystream packet, and which we
call packet prediction attack in the following. The rough idea consists in proving that if
an attacker Eve poses significantly less than at most 22n/3 component and construction
queries, then, with high probability, the entropy of the secret session key will still be
at least n− 1. This immediately implies an exponentially small success probability for
recovering the session key and we will show that this is also the case for predicting a
correct new packet.

Note that the security bound of 2n/3 for the Lizard-construction cannot hold against
distinguishing attacks. We show in Corollary 7.1 that there is a TMD-TO distinguishing
attack of TMD cost Õ(2n/2) against any KSG-based stream cipher working in packet
mode if the packet length exceeds the inner state length n.

To the best of our knowledge, this is the first time that a formal random oracle model
for the security of stream ciphers against generic TMD-TO attacks is considered. So

163

7 The LIZARD-Construction

far, similar models were used, e.g., for analyzing the security of operation modes of
key-alternating block cipher constructions (see the framework of iterated Even-Mansour
ciphers), or of cryptographic hash functions, or of MAC algorithms, but not for stream
ciphers. Note that in [BG07], another way of formally analyzing the security of stream
cipher constructions was proposed, namely in the complexity-theoretic framework of
pseudorandom number generators and pseudorandom function generators.

In 2015, Armknecht and Mikhalev suggested with Sprout (see Subsection 6.2.1) another
construction method for obtaining stream ciphers with beyond-the-birthday-bound secu-
rity against TMD-TO attacks. In Sprout, the symmetric secret key is not only accessed
during the state initialization but also continuously used as part of the state update
during the subsequent keystream generation phase. The hope here was to obtain stream
ciphers with the maximum possible resistance against TMD-TO attacks.
Although Sprout was broken soon after publication via non-generic attacks (see our

corresponding summary in Subsection 6.2.1), it has raised interest in the design principle
and, as outlined in Chapter 6, a number of related ciphers have been suggested since,
including Fruit [GHX16] and Plantlet [MAM17]. In Subsection 6.3.1, however, we have
shown that this whole class of Sprout-like ciphers is susceptible to generic TMD-TO
distinguishing attacks and, hence, does not meet the original expectation of providing full
TMD-TO security. This emphasizes the importance of provable resistance against TMD-
TO attacks as a design criterion for new stream cipher constructions. In particular, for
Sprout-like ciphers, also generic TMD-TO key recovery attacks are still a real possibility
as corresponding security proofs are missing yet.

As already mentioned, the Lizard-construction, offering provable beyond-the-birthday-
bound security against TMD-TO key recovery attacks, has inspired the design of our
recently published lightweight stream cipher Lizard [HKM17b]. Lizard works in packet
mode with a packet length of R ≤ 218 bits, has a state initialization algorithm of type
Eq. (7.1), and an inner state length of 121 bits. The design features of Lizard, presented
in Chapter 8, show that the Lizard-construction allows for practical instantiations which
are competitive w.r.t. important hardware metrics for lightweight devices such as chip
area (cf. Subsection 2.3.3) and power consumption (cf. Subsection 2.3.4).

Recently, interesting cryptanalytic results for Lizard have been published in [BICG17],
[MSS+17], and [SSMC17]. Please note, however, that none of these papers violates
the security claims made in the Lizard specification and, hence, breaks the cipher.
In particular, the analysis provided in [BICG17], [MSS+17], and [SSMC17] does not
indicate any weakness of the general Lizard-construction design principle. To avoid
potential misconceptions, it is especially important to realize that the algorithms in
[BICG17] for computing key/IV pairs which produce identical initial states (and, hence,
identical keystreams) do not lead to actual attacks. This is due to the fact that in these
algorithms, the attacker chooses the keys himself. This way, he is able to invert Phase 3
(the second key addition) of Lizard’s state initialization and generate some key/IV pair
that leads to a given initial state. However, the algorithms in [BICG17] do not provide

164

7.2 More on Stream Ciphers

any indication on how to efficiently find the actual secret key if the attacker is only
given an initial state together with the IV that was used to generate it (under this secret
key). In Subsection 8.4.11, we will provide further details w.r.t. the results of [BICG17],
[MSS+17], and [SSMC17] in the context of our in-depth security analysis for Lizard.

Structure of this chapter: In Section 7.2, we discuss some security-relevant properties
of the stream cipher components MIX and OUTBLOCK . In Section 7.3, we then start
our analysis by describing three generic TMD-TO attacks against KSG-based stream
ciphers, including one against the Lizard-construction. In Section 7.4, we introduce our
random oracle model for stream ciphers. Section 7.5 then contains the corresponding
lower bound results. In Section 7.6, we conclude the chapter by summarizing our findings,
showing some directions of further research, and providing an outlook on the remaining
parts of this thesis.

7.2 More on Stream Ciphers
In this section, we discuss some concrete security-relevant issues of the components
MIX ,OUTBLOCK : {0, 1}n −→ {0, 1}n of KSG-based stream ciphers. Let us fix a KSG
of inner state length n, and let π and outbit define its state transition and output bit
function, respectively. Observe first that the corresponding function OUTBLOCK is
π-iterative in the following sense:

Definition 7.2: π-iterative Function

A function F : {0, 1}n −→ {0, 1}n is called π-iterative if for all inputs y ∈ {0, 1}n
it holds that the suffix of length n− 1 of F (y) equals the prefix of length n− 1 of
F (π(y)).

Observe next that OUTBLOCK should be preimage resistant in the sense that it is infe-
asible to compute, for given z ∈ {0, 1}n, a value y ∈ {0, 1}n fulfilling OUTBLOCK (y) = z.
Otherwise, it would be feasible to predict, on the basis of the first n keystream bits of a
packet, all remaining keystream bits of this packet.

Concerning MIX , observe that standard efficiency and security assumptions on KSGs
imply that MIX should be an efficiently computable function which behaves like a random
function with respect to important properties such as correlation immunity, algebraic
degree, and resistance against conditional differential cryptanalysis. Moreover, as shown
in Section 5.3, for many stream ciphers MIX is bijective and can be inverted efficiently.

These properties will be reflected in our security analysis in the way that OUTBLOCK
is assumed to be a randomly chosen π-iterative function and that MIX is assumed to
be a randomly chosen permutation which can be inverted efficiently. Note, however,
that for many practical stream ciphers, the component OUTBLOCK may deviate from

165

7 The LIZARD-Construction

behaving like a random function in the following respect. For efficiency reasons, the
state transition function π and the output bit function outbit are often of rather low
degree. According to Definition 7.1, this implies that a small number of output bits of
OUTBLOCK (more specific, the leftmost ones) can have a lower degree than expected
for a random function. In consequence, the stream cipher can have a lowered sampling
resistance in the sense of [BS00] and [BSW01]. As described there, this could be used for
reducing the cost of certain TMD-TO attacks in a non-generic manner. For example,
a corresponding approach (now known as BSW-sampling) allowed for a very efficient
attack [BSW01] against A5/1 (cf. Subsection 5.2.2). As, for the asymptotic behavior
of TMD-TO attacks, the cost reductions of techniques like BSW-sampling are rather
negligible, we do not consider this effect in our security model. However, the possibility
of a lowered sampling resistance has to be considered in the design of concrete stream
ciphers (see Subsection 8.4.2).

7.3 Time-Memory-Data Tradeoff Attacks

In this section, we first make some general remarks on TMD-TO attacks against
KSG-based stream ciphers and then describe three such attacks. As explained in
Subsection 7.1.1, we consider KSG-based stream ciphers to be defined by the inner
state length n, the key length KL, the IV length IVL, and the algorithmic com-
ponents LOAD : {0, 1}KL × {0, 1}IVL −→ {0, 1}n, MIX : {0, 1}n −→ {0, 1}n, and
OUTBLOCK : {0, 1}n −→ {0, 1}n, where

qload = qload(k, IV) = LOAD(k, IV)

and qmixed = MIX(qload).
A TMD-TO attacker is supposed to know a certain amount of keystream (usually

called data), which has its origin in one session, i.e., it was generated under one secret
session key k. TMD-TO attacks are generic in the sense that they assume that the
security-relevant components MIX and OUTBLOCK are ideally designed, which is
reflected by the assumption that the attacker has only black-box access to MIX and
OUTBLOCK . One distinguishes passive TMD-TO attacks, in which the attacker knows
a certain amount of keystream generated w.r.t. to one or several IVs known to him,
and active TMD-TO attacks, in which the attacker gets keystream packets generated
w.r.t. to IVs of his choice.3 Note that the TMD-TO attacks discussed in this section are
passive, while our security lower bound in Section 7.5 refers to active TMD-TO attacks.
Consequently, the security guarantee of the Lizard-construction also holds w.r.t. the
strong class of chosen-IV attackers.

3In the spirit of this definition, our TMD-TO attacks against Sprout-like ciphers in Section 6.3 were
passive as they did not require to choose particular IVs.

166

7.3 Time-Memory-Data Tradeoff Attacks

Following [BS00] and [BSW01], TMD-TO attacks are associated with the cost metrics
time, memory, and data, which are scalable in the sense that a smaller amount of data
can be compensated by a larger amount of time and/or memory. This implies that the
cost behavior of TMD-TO attacks is usually expressed as a so-called tradeoff curve of
type f(T,M,D) = B, where B is some number. The interpretation is that if one invests
time T , memory M , and data D such that f(T,M,D) = B, then the attack reaches its
goal with significant success probability. In this chapter, we rather understand the cost of
a TMD-TO attack to be the minimal number C for which the relation f(T,M,D) = B
can be fulfilled under the condition that none of the metrics T,M,D exceeds C. For
instance, the tradeoff curve of Babbage’s attack is T ·D = 2n, which implies TMD cost
of 2n/2.

Note here that TMD-TO attacks are sometimes considered to be divided into a (key-
independent) precomputation phase, where, based on the components of the cipher, some
search data structure is constructed, and the online phase, in which the now given data
(e.g., passively or actively obtained keystream) is used for reaching the attack goal based
on the previously computed search data structure (see, e.g., the attacks in [BS00] and
[BSW01]). The size of this search data structure is usually counted as memory. In this
chapter, we do not distinguish between the costs of these two phases and take as cost
the overall TMD cost of both phases. This is in line with our TMD-TO attacks against
Sprout-like ciphers (see Section 6.3) and our security analysis for Lizard (see Section 8.4),
where we also focus on the overall cost (as the maximum of time, memory, and data
complexity) of the complete attacks. In particular, we do not treat higher precomputation
costs as ‘acceptable’, as is done in some other works (see, e.g., [MSS+17]).

We use the notation Õ(f(n)) for expressing the asymptotic cost behavior of algorithms,
which means that operations which rather need time (or memory) Θ(n), such as binary
search in a sorted array of size 2n, are counted with cost Õ(1) only. Moreover, at some
places we use the relation limN→∞(1− 1/N)N = e−1, which implies that the probability
that at least one of N independent trials with success probability 1/N is successful is
around 1− e−1 if N is large enough.

Let us start with the traditional attack of Babbage in [Bab95]:

Theorem 7.1

We consider a KSG-based stream cipher of inner state length n working in packet
mode or in one-stream mode. Suppose that the attacker Eve knows a collection of
pieces of keystream, which can have their origin in different packets of one session,
and which contain D different subsequences of n consecutive keystream bits. Then
Eve can compute the initial state of at least one packet in time Õ(2n/D) with
success probability around 1− e−1 (which implies a tradeoff curve T ·D = 2n and
minimum TMD cost 2n/2).

167

7 The LIZARD-Construction

Sketch of the Proof of Theorem 7.1: Eve generates, based on randomly and indepen-
dently chosen inner states y ∈ {0, 1}n, T = 2n/D times a pair (y,OUTBLOCK (y)). As
T ·D = 2n, with probability around 1− e−1 there is some pair (y,OUTBLOCK (y)) such
that y equals one of the inner states behind the T keystream subsequences of length n
known to Eve. As the state transition function π is efficiently invertible, this allows to
efficiently compute the secret initial state qiinit of the corresponding packet, respectively
of the only initial state qinit if the cipher runs in one-stream mode. Setting T = D = 2n/2
implies an attack of time and data Õ(2n/2).

In one-stream mode, the attack in Theorem 7.1 discovers the only initial state qinit and,
thus, the whole keystream of this session. In packet mode, the initial state of at least
one packet is discovered and, thus, the whole packet can be computed. Consequently, it
holds:

Corollary 7.1

We consider a KSG-based stream cipher of inner state length n working in packet
mode with packet length R = n+ 1. Suppose that Eve knows data consisting of D
different keystream packets. Then Eve can distinguish the pseudorandom scenario,
where the data is generated by the cipher, from the random scenario, where the
data comes from a truly random source, in time Õ(2n/D) with advantage around√
e−1 − e−1.

Sketch of the Proof of Corollary 7.1: For each inner state y ∈ {0, 1}n, we denote by
Z(y) ∈ {0, 1}n+1 the sequence of the first n+ 1 keystream bits generated on initial state
y. Moreover, let D∗ denote the set of all those packets Z ∈ {0, 1}n+1 contained in the
data for which there is some inner state y ∈ {0, 1}n with Z(y) = Z. We know that in
the pseudorandom case all D packets contained in the data belong to D∗, while in the
random case the probability that |D∗| deviates significantly from D/2 is negligibly small.
Eve now generates at most T = 2n/D times a pair (y, Z(y)) for randomly and

independently chosen inner states y ∈ {0, 1}n and stops with output pseudorandom if
she gets a collision, i.e., if she generated some y for which Z(y) coincides with one of the
D packets contained in the data. If after T = 2n/D rounds no collision happened, she
stops and outputs random.
By the same arguments as in the proof of Theorem 7.1, it follows that in the pseu-

dorandom case, the probability that Eve outputs pseudorandom is around 1− e−1. In
the random case, the probability that Eve outputs pseudorandom is around 1 − (1 −
((D/2)/2n))2n/D ≈ 1−

√
e−1. This implies an advantage of∣∣∣(1− e−1

)
−
(
1−
√
e−1

)∣∣∣ =
√
e−1 − e−1.

168

7.3 Time-Memory-Data Tradeoff Attacks

For achieving a higher resistance than Õ(2n/2) against packet prediction attacks and
session key recovery attacks, it must be hard to compute the session key from a given
packet initial state. Note that this is not the case for Trivium, Grain, and A5/1, as
for all these ciphers, MIX is efficiently invertible and its result is taken directly as the
initial state (see Section 5.3). Here, packet prediction attacks refer to stream ciphers
working in packet mode. The goal is to compute the keystream packet corresponding to
a new initialization vector IV ∗ under the secret session key, where new means that no
keystream bit of the packet to IV ∗ was known to Eve.
But even if the mixing algorithm is presumably preimage resistant (as in the case of

the Bluetooth cipher E0; cf. Subsection 5.3.1), the security against session key recovery
attacks will be only n/2 if the state initialization algorithm implies that the packet initial
states qiinit are equal to the respective packet mixing states qimixed (as they are for E0).
More precisely, it holds:

Theorem 7.2

We consider a KSG-based stream cipher working in packet mode with a state
initialization for which the packet initial states are equal to the packet mixing
states. Then, with probability around 1− e−1, an attacker Eve can compute the
secret session key in time Õ(2n/D) if she knows D different n-bit keystream packet
prefixes. This implies a tradeoff curve T ·D = 2n and thus minimum TMD cost
2n/2.

Proof of Theorem 7.2: By the assumption it holds that

qiinit = MIX
(
qload

(
k, IV i

))
for all packets i.
Eve generates T = 2n/D times a pair (q,OUTBLOCK(MIX(q))) for randomly and

independently chosen inner states q ∈ {0, 1}n. As T ·D = 2n, with probability around
1 − e−1, for some q, MIX(q) equals the initial state of one of the D keystream packet
prefixes known to Eve, which implies q = qload(k, IV i). This allows to compute k from q
as IV i is public. Here we assumed that k can be efficiently computed from qload(k, IV i)
and IV i, which is true for all KSG-based stream ciphers which are known to us (see, e.g.,
Section 5.3).

Consequently, to achieve beyond-the-birthday-bound security against generic TMD-TO
attacks, the state initialization algorithm has to provide qiinit 6= MIX(qload(k, IV i)).

The next theorem shows that if the packet initial states are computed according to the
Lizard-construction (see Eq. (7.1)), i.e., as qiinit = MIX(qiload)⊕k, where qiload = k⊕ IV i,
then there is a TMD-TO attack of TMD cost Õ(2(2/3)n).

169

7 The LIZARD-Construction

Theorem 7.3

We consider a KSG-based stream cipher working in packet mode for which the
inner state length n equals the IV length and the session key length, and we
assume that for all i ≥ 1, the packet initial states qiinit are generated according
to Eq. (7.1), see above. Suppose that Eve knows a set of D packet prefixes of
length n, i.e., a set of pairs {(IV i,PREFIX(IV i)) | i ∈ I∗} for a set I∗ ⊆ N, where
D = |I∗| ≥ 2n/2 and, for each i ∈ I∗,

PREFIX
(
IV i

)
= OUTBLOCK

(
MIX

(
IV i ⊕ k

)
⊕ k

)
.

Then, with constant positive probability, Eve can compute the secret session key
in time Õ(D + 22n

D2), which implies TMD cost of Õ(2(2/3)n).

Sketch of the Proof of Theorem 7.3: Our attack uses the idea of the Slidex attack of
Dunkelman, Keller, and Shamir [DKS12] against the one-key Even-Mansour cipher. We
describe the attack but only sketch the analysis of the success probability. For an exact
specification of the success probabilities we refer to [DKS12].

Let Q∗ denote the set of all initial states corresponding to the indices in I∗, i.e.,

Q∗ =
{

MIX
(
IV i ⊕ k

)
⊕ k

∣∣∣ i ∈ I∗} .
Observe that before starting the attack, Q∗ is unknown to Eve.
In the first phase of the attack, Eve generates D times a pair (q,OUTBLOCK(q))

for randomly and independently chosen inner states q ∈ {0, 1}n. Whenever q falls into
Q∗, which happens with probability D

2n , Eve sees a collision of OUTBLOCK(q) with
PREFIX(IV i) for some i ∈ I∗ and it holds MIX(IV i ⊕ k)⊕ k = q.

Consequently, after the first phase, a standard Chernoff bound argument yields that
Eve knows with constant positive probability a set of pairs {(IV i, qinit(IV i)) | i ∈ I∗∗}
for some I∗∗ ⊆ I∗ with |I∗∗| ≥ D2

2n .
In a second phase, Eve generates 2n

D2/2n = 22n

D2 times a pair (u,MIX(u)) for randomly
and independently chosen inner states u ∈ {0, 1}n. Eve stops with u if

u⊕ IV i = MIX(u)⊕ qinit
(
IV i

)
(7.3)

for some i ∈ I∗∗ and publishes the hypothesis that u⊕ IV i equals the session key k.
In [DKS12], it is shown that the event that Eq. (7.3) holds implies the event k = u⊕IV i

with positive constant probability if MIX is supposed to behave like a random permutation.
Note further that, as 22n

D2 · |I∗∗| ≥ 22n

D2 · D
2

2n = 2n, the event that Eq. (7.3) is fulfilled during
the second phase happens with probability around 1− e−1.

170

7.4 A Random Oracle Model for the LIZARD-Construction

7.4 A Random Oracle Model for the LIZARD-Construction

In this section, we introduce a formal framework for analyzing the security of the
Lizard-construction against generic TMD-TO attacks and start with a formal definition.

Definition 7.3: The LIZARD-Construction

A KSG-based stream cipher is designed according to the Lizard-construction if it
fulfills the following criteria:

(L1) The construction refers to three auxiliary parameters n, π,R, where n denotes
the inner state length, π : {0, 1}n −→ {0, 1}n denotes the state transition
function of the underlying KSG, and R denotes the packet length. It is
required that R ≥ n, that π is bijective, and that for all inner states
q ∈ {0, 1}n the period of the sequence (πr(q))∞r=0 is greater than R.

(L2) The construction refers to a set of secret session keys and a set of public
initialization vectors which are both defined to be {0, 1}n.

(L3) The construction consists in the following rules (see (L5)) how to generate
from a secret key k ∈ {0, 1}n and packet initialization vectors IV i ∈ {0, 1}n
the packet initial states qinit(k, IV i) ∈ {0, 1}n and the corresponding key-
stream packets

PACKET
(
k, IV i

)
= PACKET

(
qinit

(
k, IV i

))
∈ {0, 1}R .

(L4) These rules in (L5) refer to a bijective state mixing function MIX : {0, 1}n −→
{0, 1}n and a π-iterative output block function OUTBLOCK : {0, 1}n −→
{0, 1}n, which are considered to be the main components of the cipher (see
Definition 7.2 for the definition of π-iterativeness).

(L5) For all secret keys k ∈ {0, 1}n and initialization vectors IV i ∈ {0, 1}n, it
holds that

qinit
(
k, IV i

)
= MIX

(
k ⊕ IV i

)
⊕ k (7.4)

and
PACKET

(
qinit

(
k, IV i

))
= (z0, z1, . . . , zR−1) ,

where for all r, 0 ≤ r ≤ R− n, it holds

(zr, zr+1, . . . , zr+n−1) = OUTBLOCK
(
πr
(
qinit

(
k, IV i

)))
. (7.5)

171

7 The LIZARD-Construction

Note that Eq. (7.5) corresponds to the usual keystream generation definition (see
Section 7.2, especially Definition 7.1). Note further that the stream cipher Lizard, as
defined in Chapter 8, differs from the design features of the Lizard-construction in
some minor points, which do not harm our security bounds. For instance, in contrast to
condition (L2), the IV length of Lizard is smaller than the inner state length. Observe
that in our situation, a smaller IV length lowers the power of a chosen-IV attacker, i.e.,
our security lower bounds also hold for a modified Lizard-construction of IV length
smaller than n. We refer the reader to Subsection 8.3.5 for a detailed description of how
Lizard deviates from the general Lizard-construction and an in-depth explanation of
why these modifications do not harm the cipher’s security.

In our security analysis we consider, in the spirit of [GT15], the Lizard-construction to
be defined over an ideal state mixing function MIX , behaving like a random permutation
over {0, 1}n, and over an ideal output block function OUTBLOCK , behaving like a
random π-iterative function. We model the security of the Lizard-construction against
generic TMD-TO attacks by the adversary Eve’s success probability to win the following
packet prediction game (see Definition 7.4) with a limited number of oracle queries against
Alice, who holds a secret session key k. Eve has black-box access to the ideal components
MIX and OUTBLOCK , and is allowed to ask for keystream packets PACKET(k, IV i)
generated w.r.t. the secret session key k held by Alice and IVs IV i of Eve’s choice. Eve
wins the game if, after asking a certain number of oracle queries, she is able to predict
the keystream packet w.r.t. to a new IV, which has not been asked before.
From now on, for the sake of shortness of the denotations, we denote the component

functions MIX and OUTBLOCK by P and F , respectively, the construction function
PACKET by E, and initialization vectors by x ∈ {0, 1}n (respectively x′, x∗ etc.).

Definition 7.4: The Packet Prediction Game

(i) The game depends on the global parameters n, π,R, which satisfy the rules
in Definition 7.3, and a parameter M , which bounds the number of oracle
queries. The game is divided into a query phase and a prediction phase.

(ii) At the beginning, Alice chooses randomly and w.r.t. the uniform distribution
a secret triple ω = (kω, Pω, Fω), where
– kω ∈ {0, 1}n denotes the secret session key,
– Pω : {0, 1}n −→ {0, 1}n denotes a random permutation (correponding

to MIX),
– Fω : {0, 1}n −→ {0, 1}n denotes a random π-iterative function (corre-

ponding to OUTBLOCK).
We denote by Ω the corresponding probability space of all such triples
together with the uniform distribution.

172

7.4 A Random Oracle Model for the LIZARD-Construction

(iii) The adversary Eve is supposed to be a randomized oracle algorithm of
potentially unbounded computational power, who is allowed to pose com-
ponent queries of type ‘P (u) = ?’, or ‘P−1(v) = ?’, or ‘F (y) = ?’ for inputs
u, v ∈ {0, 1}n and y ∈ {0, 1}n, which are correctly answered by Alice by
Pω(u), (Pω)−1(v), or Fω(y), respectively.

(iv) Moreover, Eve is allowed to pose construction queries of the form ‘E(x) = ?’,
where x ∈ {0, 1}n, which will be answered by Alice with the keystream
packet Eω(x) corresponding to the initial state

y := Pω(x⊕ kω)⊕ kω

induced by the session key kω and the initialization vector x (see Eq. (7.4)).
Note that this keystream packet Eω(x) is the concatenation of R/n F -values.
In particular,

Eω(x) = Fω(y)
∣∣∣∣∣∣Fω(πn(y))

∣∣∣∣∣∣Fω(π2n(y)
)∣∣∣∣∣∣· · ·∣∣∣∣∣∣Fω(π(R/n−1)n(y)

)
.

W.l.o.g., for the sake of simplicity we assume in our proof that n divides R.

(v) In the query phase, Eve poses exactly M oracle queries. In the prediction
phase, Eve has to submit a pair (x∗, z∗) ∈ {0, 1}n × {0, 1}n, where x∗

does not occur as input of an E-query in the query phase. Eve wins if
z∗ = Fω(Pω(x∗⊕kω)⊕kω), i.e., if z∗ equals the block of the first n bits of the
keystream packet Eω(x∗) corresponding to the initial state Pω(x∗⊕ kω)⊕ kω,
i.e., the keystream packet corresponding to session key kω and initialization
vector x∗.

(vi) Besides the number M of oracle queries, the essential cost parameter is the
winning probability of Eve, which is measured with respect to the uniform
distribution on Ω and the internal randomization of Eve.

Observe that generic TMD-TO attacks (as described in Section 7.3) against the Lizard-
construction can be formulated in a straightforward way as packet prediction or key
recovery games in the sense of Definition 7.4. Here, the cost metric data corresponds to
the number of E-queries (possibly multiplied by the packet length), while each evaluation
of the cipher components MIX and OUTBLOCK corresponds to a P -, P−1-, or F -query
in the sense of Definition 7.4. Hence, the overall number of oracle queries in our game
constitutes a lower bound for the cost metric time of corresponding generic TMD-TO
attacks against the Lizard-construction. Note here that evaluations of the state transition
function π by Eve do not count in our security analysis; it is supposed that π is completely

173

7 The LIZARD-Construction

known to Eve. The function π has to satisfy rule (L1) of Definition 7.3, but apart from
that, it can be arbitrarily easy. Our lower bound arguments even work if π is linear.

We conclude this section by describing how a random uniformly distributed π-iterative
function can be generated.

Generating a random π-iterative function F : Note that, as π is bijective, the strongly
connected components of the directed graph Gπ = ({0, 1}n , Eπ), where Eπ = {(v, π(v)) |
v ∈ {0, 1}n}, are simple cycles C1, . . . , Cs of sizes d1, . . . , ds, which we call π-cycles.
For each π-cycle Cj , 1 ≤ j ≤ s, fix a starting point vj0 ∈ Cj . Note that Cj =
{vj0, . . . , v

j
dj−1}, where for all i, 1 ≤ i ≤ dj − 1, it holds vji = πi(vj0).

A uniformly distributed π-iterative function F can be defined by choosing for all j,
1 ≤ j ≤ s, randomly and independently a uniformly distributed bitstring

bj =
(
bj0, . . . , b

j
dj−1

)
∈ {0, 1}dj

and defining F (vji) for all i, 0 ≤ i ≤ dj − 1, by

F
(
vji

)
=
(
bji , b

j
(i+1) mod dj , . . . , b

j
(i+n−1) mod dj

)
.

Here we took into account that, by Definition 7.3, the sizes of the cycles are each larger
than R ≥ n. Note that the entropy of a random π-iterative function is 2n.

7.5 The Security Lower Bound Proof
In this section, we show the main result of this chapter, a sharp security lower bound for
the Lizard-construction. At several places, our lower bound proof uses a combinatorial
result proved by Chen et al. in [CLL+14], namely Theorem 1 in Section 3, which is known
as the Sum-Capture Theorem.

For motivating the use of this result, let us consider the situation that Alice holds a secret
triple ω = (kω, Pω, Fω) and that Eve asked a number of queries, where U,X, Y ⊆ {0, 1}n
denote the sets of inputs of the P -queries, E-queries and F -queries asked by Eve so far,
respectively. For Eve it is desirable that the choice of U,X, Y implies a sufficiently large
set of triples (u, x, y) ∈ U × X × Y for which x ⊕ u = Pω(u) ⊕ y, as such triples give
nontrivial information about the secret session key kω.

In particular, if Fω(y) is not equal to the prefix of length n of Eω(x), then x⊕ u 6= kω.
If Fω(y) equals the prefix of length n of Eω(x), then one can show that x⊕ u = kω holds
with constant positive probability.

Thus, Eve wins the game with high probability if she manages to pose the queries in
such a way that for all keys k ∈ {0, 1}n there is some (u, x, y) ∈ U ×X × Y fulfilling
x⊕ u = Pω(u)⊕ y = k. It is easy to show that this goal can be reached by Eve with high
probability with Õ(2(2/3)n) oracle queries.

174

7.5 The Security Lower Bound Proof

The Sum-Capture Theorem from [CLL+14], which we present in a slightly modified
form, shows that reaching this goal with significantly less than Õ(2(2/3)n) oracle queries
succeeds only with exponentially small success probability.

Theorem 7.4: Sum-Capture Theorem

Let P denote a uniformly random permutation over {0, 1}n, let N = 2n, and fix
an arbitrary number M , 9n ≤M ≤ N/2. Suppose that Eve (who is supposed to
be a probabilistic algorithm) poses a sequence U = {u1, . . . , uM} of M P -queries.
For any subsets X,Y ⊆ {0, 1}n let

µ(P,U,X, Y) = |{(u, x, y) ∈ U ×X × Y | x⊕ u = y ⊕ P (u)}| .

Then the probability for the event that there are subsets X,Y ⊆ {0, 1}n such that

µ(P,U,X, Y) ≥ M · |X| · |Y |
N

+ 2M2 ·
√
|X| · |Y |
N

+ 3
√
n ·M · |X| · |Y | (7.6)

is at most 2/N , where the probability is taken over the random choice of P and
the internal randomization of Eve.

7.5.1 The Main Theorem

We will now formulate our main result (Theorem 7.5) based on this technical definition:

Definition 7.5: B(M,R, n)

For natural numbers M,R, n, where R ≥ n, let

B(M,R, n) = 2−n ·M3 ·
(
R+ n− 1 + 2

√
R+ n− 1

)
+ 3 ·

√
n ·M3 · (R+ n− 1).

Note that B(M,R, n) equals the term on the right-hand side of Eq. (7.6) for |X| = M
and |Y | = (R+ n− 1)M .
In the formulation of the following Theorem 7.5, there occurs some balancedness

parameter ∆, which will be needed in the proof for identifying computational transcripts
which have some critical combinatorial properties.

Theorem 7.5: The Main Theorem

Suppose that the parameters M,R, n satisfy the following three rules for some
number ∆:

175

7 The LIZARD-Construction

(1) B(M,R, n) + 2 ·∆ ·M + (R+n)·M2

∆ ≤
(
1− 1√

2

)
· 2n,

(2) 22 · 2−(n−1) ·R ·M2 +
√

n·M
2 ≤ ∆−(R+n−1)

R+n−1 ,

(3) ∆ · ((n+R) ·M) ≤ ln(2) · 2n−3.

Then Eve’s success probability to win the packet prediction game with parameters
R,n,∆ with M oracle queries is bounded by

34 · 2−n +M · e−n +M · (∆ + 2) · 2−(n−1) + 11 · (R+ 4n) ·M · 2−(n−1).

This implies the following asymptotic lower bound result, which can be derived
straightforwardly from Theorem 7.5.

Corollary 7.2

Let ε > 0 and a > 1 be constants and suppose that M ≤ 2(2/3−ε)n, R ≤ na, and
∆ = b2n/3c. Then M,R, n,∆ satisfy all rules in Theorem 7.5 and Eve’s success
probability to win the packet prediction game with parameters R,n,∆ with M
oracle queries is bounded by 3 · 2−ε·n if n is large enough.

Getting started with the proof of Theorem 7.5: The remaining part of this chapter is
devoted to the proof of Theorem 7.5. It is divided into twelve subsections and accompanied
by Appendix 7.A, in which some useful basics on Chernoff bound techniques are presented.
In the first three subsections (Subsections 7.5.2 to 7.5.4), we describe and formalize the
computational behavior of Eve in a way which is similar to the framework of security
lower bounds for iterated Even-Mansour ciphers. Based on this formalism, we are able to
describe the main ideas for proving Theorem 7.5 in Subsection 7.5.4. At the end of this
subsection, we state Lemma 7.1, from which Theorem 7.5 can be directly concluded. The
remaining nine subsections (Subsections 7.5.5 to 7.5.13) are more technical and devoted
to the proofs of the four claims of Lemma 7.1, which directly correspond to the additive
terms of the probability bound stated in Theorem 7.5.

7.5.2 The Friendly Alice, Structural Collisions, and Sudden Death

We will prove our security bound for a modified game, in which Alice is supposed to
be friendly to Eve in the sense that in certain situations Alice provides some additional
information to Eve. In particular, Alice informs Eve if Eve managed to discover a
so-called structural collision (see Definition 7.6). Moreover, she follows a sudden-death

176

7.5 The Security Lower Bound Proof

rule (see Definition 7.8), which has to do with structural collisions.

Definition 7.6: Structural Collisions

• A pair (x, y), where x, y ∈ {0, 1}n, is called a structural EF -collision w.r.t.
to an elementary event ω = (kω, Pω, Fω) if

y = πr(Pω(x⊕ kω)⊕ kω)

for some r, −(n− 1) ≤ r ≤ R− 1. Note that this implies that the n-bit block
Fω(y) is a subblock of packet Eω(x) or has at least a nonempty intersection
with packet Eω(x).

• If (x, y) is a structural EF -collision w.r.t. ω, then the point ȳ = Pω(x ⊕
kω)⊕ kω is called the reference point of this collision.

• A pair (x, x′), where x 6= x′ ∈ {0, 1}n, is called a structural EE-collision
w.r.t. to ω if the initial states of the packets Eω(x) and Eω(x′) come so close
that these packets have a nonempty intersection, i.e., there is some number
r, 1 ≤ r ≤ R− 1, such that

πr(Pω(x⊕ kω)⊕ kω) = Pω
(
x′ ⊕ kω

)
⊕ kω or

πr
(
Pω
(
x′ ⊕ kω

)
⊕ kω

)
= Pω(x⊕ kω)⊕ kω.

Note that this implies that the suffix of packet Eω(x) starting at position r
equals the prefix of packet Eω(x′), or that the suffix of packet Eω(x′) starting
at position r equals the prefix of packet Eω(x).

Note here that structural EF -collisions are exactly those collisions which are exploited
in the classical TMD-TO attacks against stream ciphers. Note further that there may
occur collisions which are non-structural but caused by internal collisions of Fω.

Suppose that Alice holds the elementary event ω = (kω, Pω, Fω) and communicates
with Eve. The friendly Alice does the following:

Definition 7.7: The Friendly Alice

• Whenever Eve poses an F -query with some input y ∈ {0, 1}n which forms
a structural EF -collision (x, y) w.r.t. ω for some x ∈ {0, 1}n which already
occurred as input of an E-query posed before, then, besides publishing Fω(y),
Alice confirms a structural collision, publishes a pointer to the input x and
publishes the reference point Pω(x⊕ kω)⊕ kω of this collision.

177

7 The LIZARD-Construction

• Whenever Eve poses an E-query with some input x ∈ {0, 1}n which forms
a structural EF -collision (x, y) w.r.t. ω for some y which already occurred
as input of an F -query posed before, then, besides publishing Eω(x), Alice
confirms a structural collision, publishes a pointer to y and publishes the
reference point Pω(x⊕ kω)⊕ kω of this collision.

• Suppose that Eve poses an E-query with some input x ∈ {0, 1}n which
forms a structural EE-collision (x, x′) w.r.t. ω for some x′ which already
occurred as input of another E-query posed before. Suppose w.l.o.g. that
πr(Pω(x ⊕ kω) ⊕ kω) = Pω(x′ ⊕ kω) ⊕ kω for some r, 1 ≤ r ≤ R − 1.
Then, besides publishing Eω(x), Alice confirms a structural EE-collision
and publishes a pointer to x′. Moreover, Alice publishes the value y =
πr(Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω, the value Fω(y), and the reference
points ȳ = Pω(x⊕ kω)⊕ kω and y of the resulting structural EF -collisions
(x, y) and (x′, y).

Next, we formulate the sudden-death rule.

Definition 7.8: Sudden Death

Suppose that Alice holds an elementary event ω = (kω, Pω, Fω) and consider a
situation in which Eve already posed a number of queries. A pair (x, u), where
x, u ∈ {0, 1}n, is called a sudden-death pair w.r.t. ω if the following conditions are
fulfilled:

• Eve has already discovered a structural EF -collision (x, y) (which implies
that Eve has asked an E-query with input x).

• Eve has already asked a P -query with input u or a P−1-query with output
u.

• It holds x⊕ u = kω.

Whenever Eve asks a query which causes a sudden-death pair w.r.t. to the secret
ω held by Alice, then Alice immediately gives up, the game stops, and Eve wins.

Note that the friendliness of Alice increases Eve’s chances to win the prediction game.
Consequently, it is sufficient to show the security lower bound of Theorem 7.5 for an
adversary Eve who plays the packet prediction game with a friendly Alice. Note further
that the TMD-TO attack described in Theorem 7.3 consists in generating a sudden-death
pair.

178

7.5 The Security Lower Bound Proof

7.5.3 Formalizing the Computational Behavior of Eve
First note the well-known fact, proved, e.g., in [CLL+14] and many other papers, that it
is sufficient to prove our security lower bound for deterministic adversaries. For showing
this, suppose that Eve is randomized and that the randomization is organized by a
number B of random bits. Then Eve’s success probability can be written as

Pr[Eve successful] =
∑

b∈{0,1}B
2−B Pr[Eve successful | b], (7.7)

where Pr[Eve successful | b] denotes the success probability of the deterministic algorithm
obtained by assigning b to Eve’s random bits.

Consequently, if we show an upper bound on the success probability of all deterministic
adversaries, then by Eq. (7.7), this bound also holds for randomized adversaries. Therefore,
we assume from now on that Eve is deterministic.

Remember that, during each computation, Eve poses at most M oracle queries,
where she either wins via sudden death of Alice or she stops after M queries with the
publication of a pair consisting of an initialization vector x∗ ∈ {0, 1}n and a keystream
prefix z∗ ∈ {0, 1}n as final output.
We identify such computations with transcripts

τ =
(
(type1, input1, output1), . . . , (typej , inputj , outputj)

)
,

j ≤M , which are defined to be sequences of query triples corresponding to the oracle
queries posed during the computation. Here, typer ∈ {F, P−1, P, E}, inputr, and outputr
denote the type, the input, and the output of the r-th oracle query, r = 1, . . . , j,
respectively. Note that the output of an oracle query can, besides the output function
values of Pω, or P−1

ω , or Fω, or Eω, contain additional information about structural
collisions discovered by this query (see Definition 7.7).
If τ has length M , then (x∗(τ), z∗(τ)) ∈ {0, 1}n × {0, 1}n denotes the (initialization

vector, keystream prefix) pair published after τ based on τ . For transcripts τ of length j,
1 ≤ j ≤M , and numbers i, 1 ≤ i ≤ j, we denote by τ≤i the subtranscript corresponding
to the first i queries along τ .
Each elementary event ω ∈ Ω defines a unique transcript τω corresponding to the

computation of Eve on ω. The length of τω can be smaller than M . This is the case if
and only if the next query after the last query of τω produces a sudden-death pair w.r.t.
ω (see Definition 7.8). In this case, this next query is not counted to be a part of τω.

Definition 7.9: j-alive Elementary Event

For all j, 1 ≤ j ≤M , an elementary event ω ∈ Ω is called j-alive if the transcript
τω has length at least j.

179

7 The LIZARD-Construction

Let us denote by Ωs.death the set of all elementary events ω for which τω leads to the
generation of a sudden-death pair w.r.t. ω, and note that this is equivalent to τω having
length smaller than M . Eve’s computation τω on an elementary event ω is successful if
and only if either the length of τω is smaller than M (i.e., ω ∈ Ωs.death) or the first n bits
of the keystream packet corresponding to x∗(τω) via ω coincide with z∗(τω), i.e.,

Fω(Pω(x∗(τω)⊕ kω)⊕ kω) = z∗(τω).

We denote by Ωsucc ⊆ Ω the set of all elementary events leading to a successful computa-
tion. Note that Ωs.death ⊆ Ωsucc.

7.5.4 Basic Definitions and the Idea of the Proof of Theorem 7.5

For all j, 1 ≤ j ≤ M , we denote by T j the set of all transcripts τ of length j (i.e.,
consisting of j query triples) which occur with positive probability, i.e., for which there
is some ω ∈ Ω such that τ is the prefix of length j of τω. For each j, 1 ≤ j ≤ M , and
each transcript τ ∈ T j , we define the following sets corresponding to the queries along τ :

• X(τ) = {x ∈ {0, 1}n | τ contains an E-query with input x},

• Y (τ) = {y ∈ {0, 1}n | τ contains an F -query with input y},4

• U(τ) = {u ∈ {0, 1}n | τ contains a P -query with input u, or a P−1-query with
output u},

• V (τ) = {v ∈ {0, 1}n | τ contains a P -query with output v, or a P−1-query with
input v},

• X∗(τ) = {x ∈ X(τ) | x occurs at the left-hand side of some structural EF -collision
discovered during τ},

• Ȳ ∗(τ) = {ȳ ∈ {0, 1}n | ȳ is the reference point of some structural EF -collision
discovered during τ},

• Coll(τ) = {(x, ȳ) | x ∈ X∗(τ), and ȳ ∈ Ȳ ∗(τ) is the reference point of a structural
EF -collision (x, y) discovered during τ},

• Ȳ (r)(τ) = {ȳ ∈ {0, 1}n | πr(ȳ) ∈ Y (τ)},

• Ȳ (τ) = ⋃R−1
r=−(n−1) Ȳ

(r)(τ).

4Note that we put also those y to Y (τ) which occur at the right-hand side of a structural EF -collision
that was disclosed by Alice as additional information to an EE-collision, see Definition 7.7.

180

7.5 The Security Lower Bound Proof

Remember that we suppose Alice to be friendly in the sense of Definition 7.7. This
implies that the oracle answers of Alice along τ yield the complete knowledge about
Coll(τ), Ȳ ∗(τ), and X∗(τ).

Observe that X(τ) corresponds to the set of all initialization vectors for which Eve gets
the corresponding keystream packet from Alice during τ , and that X∗(τ) corresponds to
the set of all those initialization vectors for which Eve even knows the initial state of the
corresponding packet. These known initial states are contained in the set Ȳ ∗(τ). The
set Ȳ (τ) corresponds to the set of all initial states for which a part of the corresponding
keystream packet has been discovered during τ .
Note further that Coll(τ) yields all information also about structural EE-collisions

discovered during τ . This is because, due to Definition 7.7, for each structural EE-
collisions (x, x′) discovered during τ , there is some y ∈ Y (τ) such that (x, y) and (x′, y)
are structural EF -collisions discovered during τ . Moreover, Coll(τ) defines a one-to-
one correspondence between X∗(τ) and Ȳ ∗(τ), which is established by the bijection
Pω(x⊕ kω)⊕ kω for an ω ∈ Ω(τ) (see Definition 7.10 below). Note that, by definition,
this bijection is the same for all τ -consistent elements ω ∈ Ω(τ).

Definition 7.10: τ -consistent Elementary Events / Keys

For all j, 1 ≤ j ≤ M , and transcripts τ ∈ T j , we denote by Ω(τ) the set of all
τ -consistent elementary events ω, i.e.,

Ω(τ) =
{
ω ∈ Ω

∣∣∣ ω is j-alive and τ≤jω = τ
}
.

Ω(τ) defines the set K(τ) ⊆ {0, 1}n of τ -consistent keys, i.e.,

K(τ) = {kω | ω ∈ Ω(τ)} .

Note that Ω(τ) defines a probability distribution Prτ on K(τ). For all k ∈ K(τ), it
holds

Pr
τ

[k] = |{ω ∈ Ω (τ) | kω = k}|
|Ω (τ)| .

After the computation τ has happened, Eve’s knowledge about the secret ω can be
identified with the probability space Ω(τ) with the uniform distribution. Note that the
induced probability distribution Prτ on K(τ) does not need to be uniform. Actually,
the analysis of the distribution Prτ on K(τ) will be the key ingredient for proving
Theorem 7.5.

For describing the main idea of the proof, let us consider the situation that Alice
holds a secret ω = (kω, Pω, Fω) and that Eve performed M queries without generating a
sudden-death pair. Let us denote by τ the corresponding transcript τω.

Clearly, during τ the set of τ -consistent keys becomes smaller and smaller. For getting

181

7 The LIZARD-Construction

a first impression of how key candidates k ∈ {0, 1}n are discarded during τ , suppose that
τ contains query triples (P, u, v), (E, x, p), (F, y, z) for which x⊕u = k and πr(v⊕k) = y
for some r, 0 ≤ r ≤ R− 1. Then there are three possibilities:

1.) z does not equal the substring of packet p ∈ {0, 1}R starting at position r+ 1, or, if
r > R− n, the prefix of z of length R− r does not equal the suffix of length R− r
of packet p. Then k cannot be the right key, i.e., k 6∈ K(τ).

2.) z equals the substring of packet p ∈ {0, 1}R starting at position r+1, or, if r > R−n,
the prefix of z of length R − r equals the suffix of length R − r of packet p, but
(x, v ⊕ k) does not belong to Coll(τ). This implies that (x, y) does not form a
structural EF -collision (which would be the case if k was the right key kω) and
that the collision of z with p is caused by a (non-structural) internal collision of
Fω. Consequently, k 6∈ K(τ).

3.) z equals the substring of packet p ∈ {0, 1}R starting at position r+1, or, if r > R−n,
the prefix of z of length R − r equals the suffix of length R − r of packet p, and
(x, v ⊕ k) ∈ Coll(τ). Then it also holds that k 6∈ K(τ). Otherwise, if k = kω, then
(x, u) would form a sudden-death pair and the computation would have stopped
before τ was completed.

After τ is completed, Eve has to choose a pair (x∗(τ), z∗(τ)). She is in a promising
position if one of the following two conditions is fulfilled.

Condition 7.1

K(τ) contains only a small number of keys. In this case, Eve can choose one of
the few keys in K(τ), say k′, and construct an (initialization vector, keystream
prefix) pair by choosing some input u of a P -query of τ for which u ⊕ k′ is not
input of an E-query. Then k′ = kω implies that (u⊕ k′, Pτ (u)⊕ k′) is a successful
(initialization vector, keystream prefix) pair.

Condition 7.2

Prτ [kω] is nontrivially large. In this case, a Bayes decision is successful with
nontrivially high probability.

Our proof starts with a combinatorial characterization of τ -consistency of elementary
events and keys (see Subsection 7.5.5). This characterization will lead to the formulation
of three properties of elementary events ω, for which the following holds. Event ω has
one of these properties if and only if K(τω) satisfies Condition 7.1 or Condition 7.2 (see
Lemma 7.4). We will identify these three properties with the colors black, red, and blue
and denote by Ωblack, resp. Ωred, resp. Ωblue the sets of elementary events having the

182

7.5 The Security Lower Bound Proof

corresponding property (see Subsection 7.5.6). We will further define an elementary event
ω to be green, if it is neither red, nor black, nor blue, nor belongs to Ωs.death, and will
denote the set of all green elementary events by Ωgreen.

We prove Theorem 7.5 by using the following relation:

Pr
Ω

[Ωsucc] ≤ Pr
Ω

[
Ωblack ∩ Ωsucc

]
+ Pr

Ω

[(
Ωred ∪ Ωblue

)
∩ Ωsucc

]
+ Pr

Ω

[(
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

))
∩ Ωsucc

]
+ Pr

Ω
[Ωgreen ∩ Ωsucc].

Consequently, PrΩ[Ωsucc] can be upper bounded by

Pr
Ω

[Ωsucc] ≤ Pr
Ω

[
Ωblack

]
+ Pr

Ω

[
Ωred ∪ Ωblue

]
+ Pr

Ω

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
+ Pr

Ω
[Ωsucc ∩ Ωgreen].

(7.8)

Black and red elementary events will have the property that for all transcripts τ the
following holds: if one event ω ∈ Ω(τ) is black (resp. red), then all events in Ω(τ) are
black (resp. red). This justifies to define transcripts τ to be black (resp. red) if at least
one τ -consistent elementary event is black (resp. red). All transcripts which are neither
red nor black are called green. Note that for green transcripts τ , the set Ω(τ) can contain
green elementary events and blue elementary events.
This allows to rewrite the probability PrΩ[Ωsucc ∩ Ωgreen] as

Pr
Ω

[Ωsucc ∩ Ωgreen] = Pr
Ω

[Ωgreen] · Pr
Ωgreen

[Ωsucc] ≤ Pr
Ωgreen

[Ωsucc], (7.9)

where PrΩgreen [Ωsucc] can be written as

Pr
Ωgreen

[Ωsucc] =
∑

τ∈TMgreen

Pr
Ωgreen

[Ωsucc ∩ Ωgreen(τ)]

=
∑

τ∈TMgreen

Pr
Ωgreen

[τ] · Pr
Ωgreen(τ)

[Ωsucc].
(7.10)

Here, T Mgreen denotes the set of all green transcripts of length M and Ωgreen(τ) denotes
the set of all green elementary events in Ω(τ).
Note that we occasionally use the following denotation for conditional probabilities.

Let A,B be subsets (events) of the probability space Ω. Then we write

Pr
B

[A] := Pr
Ω

[A | B] = PrΩ[A ∩B]
PrΩ[B] .

By Eqs. (7.8) to (7.10), Theorem 7.5 follows directly from the following Lemma 7.1.

183

7 The LIZARD-Construction

Lemma 7.1

(i) It holds that PrΩ[Ωblack] ≤ 34 · 2−n.

(ii) It holds that PrΩ[Ωred ∪ Ωblue] ≤M · e−n.

(iii) It holds that

Pr
Ω

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
≤ 2−(n−1) · (∆ + 2) ·M.

(iv) For all τ ∈ T Mgreen, it holds that

Pr
Ωgreen(τ)

[Ωsucc] ≤ 11 · (R+ 4n) ·M · 2−(n−1).

We will prove Lemma 7.1 in Subsection 7.5.7 and the subsections following it.

7.5.5 The Characterization of τ -Consistency

Definition 7.11: (τ, k)-critical Point

Let k ∈ {0, 1}n. A point u ∈ U(τ) is called (τ, k)-critical if at least one of the
following conditions is fulfilled.

(C1) u⊕ k ∈ X(τ) \X∗(τ) and Pτ (u)⊕ k ∈ Ȳ (τ) \ Ȳ ∗(τ).

(C2) u⊕ k ∈ X∗(τ) or Pτ (u)⊕ k ∈ Ȳ ∗(τ).

Here, Pτ (u) denotes the output of the P -query on input u along τ , resp. the input
of the P−1-query with output u.

The notion of (τ, k)-critical points allows to characterize τ -consistency.

Lemma 7.2

A key k ∈ {0, 1}n is not τ -consistent if and only if there is a (τ, k)-critical point
u ∈ U(τ).

Proof of Lemma 7.2: We first prove the if-direction. Let k ∈ {0, 1}n and suppose
that there is some u ∈ U(τ) which is (τ, k)-critical. For deriving a contradiction, we
assume that k ∈ K(τ), i.e., that there is some ω ∈ Ω(τ) with kω = k.

184

7.5 The Security Lower Bound Proof

Suppose first that u is (τ, k)-critical via condition (C1) of Definition 7.11. By definition,
Pτ (u)⊕ k = Pω(u)⊕ kω ∈ Ȳ (τ), implying the existence of some r, −(n− 1) ≤ r ≤ R− 1,
such that πr(Pω(u)⊕ kω) ∈ Y (τ). This implies that (u⊕ kω, πr(Pω(u)⊕ kω)) has to be
classified as a structural EF -collision with reference point Pω(u)⊕ kω along τ . But this
cannot be true, as by Definition 7.8, (u⊕ k, u) would form a sudden-death pair w.r.t. ω,
which implies that ω 6∈ Ω(τ).

Suppose now that u is (τ, k)-critical via condition (C2) of Definition 7.11. If u⊕ k =
u⊕ kω ∈ X∗(τ), then (u⊕ k, u) is again a sudden-death pair w.r.t. ω, which implies that
ω 6∈ Ω(τ). If Pτ (u)⊕ k ∈ Ȳ ∗(τ), then (u⊕ k, Pτ (u)⊕ k) ∈ Coll(τ), which again implies
that (u⊕ k, u) is a sudden-death pair and that ω 6∈ Ω(τ).
Let us now show the only-if direction of Lemma 7.2. We fix some j, 1 ≤ j ≤ M ,

some transcript τ ∈ T j with PrΩ[τ] > 0, and some key k ∈ {0, 1}n for which there do
not exist (τ, k)-critical points u ∈ U(τ) in the sense of Definition 7.11.

We have to show that k is τ -consistent. We do this by constructing a permutation P ′
over {0, 1}n and a π-iterative function F ′ : {0, 1}n −→ {0, 1}n such that ω′ = (k, P ′, F ′) ∈
Ω(τ).
For all inputs x ∈ X(τ), u ∈ U(τ), v ∈ V (τ), and y ∈ Y (τ) of oracle queries posed

during τ , we denote by Eτ (x), Pτ (u), P−1
τ (v), and Fτ (y), respectively, the corresponding

oracle answers given by Alice during τ . P ′ and F ′ have to satisfy the condition that
P ′(u) = Pτ (u) and F ′(y) = Fτ (u) for all u ∈ U(τ) and y ∈ Y (τ), respectively.
We now have to define P ′ and F ′ outside of U(τ) and Y (τ), respectively, in such a

way that ω′ is τ -consistent. We do this by defining P ′ and F ′ along the (k, P ′)-paths
(u⊕ k, u, P ′(u)⊕ k) for all u ∈ {0, 1}n, where we go with u through {0, 1}n in a certain
order. In this process, we dynamically maintain a set Target(P ′), which is initially set to
{0, 1}n \ V (τ). Whenever we define P ′(u) for a new u, we delete P ′(u) from Target(P ′).
Phase 1 considers all u ∈ {0, 1}n for which u⊕ k ∈ X∗(τ).

Then it holds u 6∈ U(τ), as otherwise u would be (τ, k)-critical via condition (C2)
of Definition 7.11.
We define P ′(u) = ȳ ⊕ k, where ȳ denotes the unique point in Ȳ ∗(τ) for which
(u⊕ k, ȳ) ∈ Coll(τ). Note that the point ȳ⊕ k does not belong to V (τ). Otherwise,
if ȳ ⊕ k equaled Pτ (u′) for some u′ 6= u ∈ U(τ), then u′ would be (τ, k)-critical.
We define F ′ on the set {πr(P ′(u)⊕ k) | r = −(n− 1), . . . , R− 1} according to the
packet Eτ (u⊕ k). Note here that if −(n− 1) ≤ r < 0, then Eτ (u⊕ k) determines
only a suffix of F ′(πr(P ′(u)⊕k)), and that if R−n−1 < r ≤ R−1, then Eτ (u⊕k)
determines only a prefix of F ′(πr(P ′(u)⊕ k)).

Phase 2 treats the (k, P ′)-paths through those u ∈ U(τ) for which u⊕ k ∈ X(τ) \X∗(τ).
Note that for these u ∈ U(τ), as they are not (τ, k)-critical, it holds ȳ := Pτ (u)⊕k 6∈
Ȳ (τ). This implies that for all r, −(n− 1) ≤ r ≤ R− 1, it holds that πr(ȳ) is not
in Y (τ), which allows us to define F ′(πr(ȳ)) according to the packet Eτ (u⊕ k).

185

7 The LIZARD-Construction

Phase 3 considers all u 6∈ U(τ) for which u⊕ k ∈ X(τ) \X∗(τ).
Here, P ′(u) has to be chosen in such a way that P ′(u) ⊕ k 6∈ Ȳ (τ). Otherwise,
there would exist some r, −(n− 1) ≤ r ≤ R− 1, such that (u⊕ k, πr(P ′(u)⊕ k)) is
an EF -collision discovered during τ , which would imply that u⊕ k ∈ X∗(τ) and
contradict the assumption made for phase 3.
Corresponding to this, we define a set

Forbidden(u) =
{
v ∈ {0, 1}n

∣∣∣ v ⊕ k ∈ Ȳ (τ)
}

and choose
P ′(u) ∈ Target

(
P ′
)
\ Forbidden(u).

Note that for all remaining u ∈ {0, 1}n, the values of P ′(u) can be freely chosen in
Target(P ′). For all remaining y ∈ {0, 1}n, the values of F ′(y) can also be freely chosen in
{0, 1}n in such a way that the π-iterativeness of F ′ is maintained.

7.5.6 Assigning Colors to Elementary Events, Transcripts, and Keys

We will now assign the colors black, red, blue, and green to elementary events, transcripts,
and keys. There will be three colors, namely black, red, and blue, which have to be
considered as bad in the sense that if ω has a bad color, then τω yields some nontrivial
information which helps Eve to win the game. Let us start with the definition of black
elementary events, which is partly based on considering the following equivalence relation
≡P , induced by a permutation P over {0, 1}n.

Definition 7.12: The Equivalence Relation ≡P

Let P denote a permutation of {0, 1}n and let U be an arbitrary subset of {0, 1}n.

• For all u, u′ ∈ U , let u ≡P u′ if and only if u⊕ P (u) = u′ ⊕ P (u′).

• Let Max(P,U) denote the maximal size of an equivalence class w.r.t. ≡P in
U .

Definition 7.13: τ -critical Key

A key k ∈ {0, 1}n is called τ -critical if there is some u ∈ U(τ) such that u⊕k ∈ X(τ)
and Pτ (u)⊕ k ∈ Ȳ (τ).

Note that k ∈ {0, 1}n is τ -critical if there is some u ∈ U(τ) such that u is (τ, k)-critical
with regard to condition (C1) in Definition 7.11.

186

7.5 The Security Lower Bound Proof

Definition 7.14: Blackness

• For all j, 1 ≤ j ≤ M , a transcript τ ∈ T j is called black if the number of
τ -critical keys (see Definition 7.13) exceeds

B(M,R, n) = 2−n ·M3 ·
(
R+ n− 1 + 2

√
R+ n− 1

)
+ 3

√
n ·M3 · (R+ n− 1)

or if
Max(Pτ , U(τ)) > 5,

where Pτ : U(τ) −→ {0, 1}n denotes the injective mapping corresponding to
the P - and P−1-queries in τ .

• For all j, 1 ≤ j ≤ M , an elementary event ω ∈ Ω is called j-black if ω is
j-alive (see Definition 7.9) and the transcript τ≤jω , corresponding to the first
j queries along τω, is black.

• Let Ωj
black denote the set of all j-black elementary events and T jblack the set

of all black transcripts τ ∈ T j .

• Let Ωblack = ⋃M
j=1 Ωj

black.

Let us next define red transcripts.

Definition 7.15: Redness

• For all j, 1 ≤ j ≤ M , a transcript τ ∈ T j is called red if it is not black
but it holds |X∗(τ)| > ∆. (Remember that ∆ denotes some balancedness
parameter, which was introduced in Theorem 7.5.)

• For all j, 1 ≤ j ≤M , an elementary event ω ∈ Ω is called j-red if ω is j-alive
(see Definition 7.9) and the transcript τ≤jω is red.

• Let Ωj
red denote the set of all j-red elementary events and T jred the set of all

red transcripts τ ∈ T j .

• Let Ωred = ⋃M
j=1 Ωj

red.

Note that one strategy of Eve could be to pose queries in a first phase in such a way
that for the resulting transcript τ it holds that the set K(τ) of τ -consistent keys is small,
and then to try for each key in K(τ) whether it fits. Redness and blackness of transcripts
τ cover exactly the case in which this strategy could be successful.

187

7 The LIZARD-Construction

Lemma 7.3

For all j, 1 ≤ j ≤M , and τ ∈ T j , the following holds. If τ is neither red nor black,
then

|K(τ)| ≥ 2n −B(M,R, n)− 2 ·∆ · j.

Proof of Lemma 7.3: From Definition 7.11 and Lemma 7.2 we know that k ∈ {0, 1}n \
K(τ) if and only if there is some u ∈ U(τ) such that u is (τ, k)-critical via condition
(C1) or via condition (C2). Condition (C1) implies that k is τ -critical in the sense of
Definition 7.13. As τ is not black, the number of such keys is bounded by B(M,R, n).
Condition (C2) implies that k ∈ X∗(τ)⊕ U(τ) or k ∈ Ȳ ∗(τ)⊕ V (τ). As τ is not red, it
holds that |X∗(τ)⊕ U(τ)| ≤ ∆ · j and |Ȳ ∗(τ)⊕ U(τ)| ≤ ∆ · j.

The motivation for considering blue elementary events is as follows. We have seen above
that Ω(τ), the set of all possible events if Eve sees τ , defines a probability distribution
on K(τ), the set of all keys which are consistent with τ . This distribution is known to
Eve. Eve could make a Bayes decision and test the hypothesis that the secret key is the
most probable key in K(τ).

Blue elementary events ω̃ = (kω̃, Pω̃, Fω̃) will have the property that for τ = τω̃ it holds
that PrΩ(τ)[kω̃] is large, i.e., if Alice chooses a blue elementary event, then the success
probability of a Bayes decision made by Eve will be nontrivially high.

Definition 7.16: Blueness

• For all j, 1 ≤ j ≤ M , an elementary event ω ∈ Ω is called j-blue if ω is
j-alive (see Definition 7.9) and neither j-black nor j-red and if∣∣∣(X(τ≤jω)

⊕ kω
)
∩ U

(
τ≤jω

)∣∣∣ > ∆

or ∣∣∣(Ȳ (τ≤jω)
⊕ kω

)
∩ V

(
τ≤jω

)∣∣∣ > ∆.

• Let Ωj
blue denote the set of all j-blue elementary events.

• Let Ωblue = ⋃M
j=1 Ωj

blue.

Definition 7.17: Greenness

• For all j, 1 ≤ j ≤M , a transcript τ ∈ T j is called green if it is neither red
nor black.

188

7.5 The Security Lower Bound Proof

• For all j, 1 ≤ j ≤ M , an elementary event ω ∈ Ω is called j-green if ω is
j-alive (see Definition 7.9) and neither j-blue, nor j-red, nor j-black.

• Let Ωj
green denote the set of all j-green elementary events and T jgreen the set

of all green transcripts τ ∈ T j .

• Let Ωgreen = ΩM
green.

It is important to note the following difference between red and black events on the one
side, and green and blue events on the other side. If, for a transcript τ , one elementary
event in Ω(τ) is black (resp. red), then all elementary events in Ω(τ) are black (resp. red),
which justifies to define τ to be black (resp. red).

In contrast, if a transcript τ is green, then the elementary events in Ω(τ) are either
blue or green. This is because blueness of an elementary event ω ∈ Ω(τ) does not only
depend on τ but also on the component kω of ω.
We will prove Theorem 7.5 by showing that the probabilities of black, red, and blue

elementary events are exponentially small, that the probability of sudden-death events is
exponentially small, and that for green transcripts τ ∈ T Mgreen, the probability that Eve
publishes a correct (initialization vector, keystream prefix) pair is exponentially small
(see Lemma 7.1 and the now following Subsection 7.5.7).

To this end, let us have a closer look at the structure of Ω(τ) for green transcripts τ .
We know that for a green transcript τ , the decision if an elementary event ω ∈ Ω(τ) is
green or blue depends only on kω. This justifies the following definition:

Definition 7.18: τ -green/τ -blue Keys

• Let τ denote a green transcript. A τ -consistent key k ∈ K(τ) is called
τ -green if |(X(τ)⊕ k) ∩ U(τ)| ≤ ∆ and |(Ȳ (τ)⊕ k) ∩ V (τ)| ≤ ∆, and τ -blue
otherwise.

• We denote by Kgreen(τ) (resp. Kblue(τ)) the set of all τ -consistent keys which
are τ -green (resp. τ -blue).

Note that, by definition, for green transcripts τ it holds:

K(τ) = Kgreen(τ) ∪Kblue(τ).

7.5.7 Starting with the Proof of Lemma 7.1
Remember that for proving Lemma 7.1, we have to show the following claims:

(i) It holds that PrΩ[Ωblack] ≤ 34 · 2−n.

189

7 The LIZARD-Construction

(ii) It holds that PrΩ[Ωred ∪ Ωblue] ≤M · e−n.

(iii) It holds that

Pr
Ω

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
≤ 2−(n−1) · (∆ + 2) ·M.

(iv) For all τ ∈ T Mgreen, it holds that

Pr
Ωgreen(τ)

[Ωsucc] ≤ 11 · (R+ 4n) ·M · 2−(n−1).

The proofs of parts (i), (ii), (iii), and (iv) will be given in Subsections 7.5.9, 7.5.11,
7.5.8, and 7.5.10, respectively. All these proofs use the following Smoothness Lemma,
which shows that for all green transcripts τ , there is a sufficiently large number of green
τ -consistent keys and that the probabilities of these green keys do not differ too much.

Lemma 7.4: Smoothness Lemma

For all green transcripts τ , the following is true if n is large enough:

(I) |Kgreen(τ)| ≥ 1√
2 · 2

n.

(II) For all k, k′ ∈ Kgreen(τ), it holds that

Pr
Ωgreen(τ)

[k] ≤
√

2 · Pr
Ωgreen(τ)

[
k′
]
.

Lemma 7.4 implies the following corollary, which will be an important tool for proving
Lemma 7.1.

Corollary 7.3

For all green transcripts τ , the following is true:

(a) For all k ∈ {0, 1}n, it holds that

Pr
Ωgreen(τ)

[k] ≤ 2−(n−1).

(b) For all x, ȳ ∈ {0, 1}n, the following holds:
(b.1) If (x, ȳ) ∈ Coll(τ), then

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] = 1.

190

7.5 The Security Lower Bound Proof

(b.2) If (x, ȳ) 6∈ Coll(τ) but x ∈ X∗(τ) or ȳ ∈ Ȳ ∗(τ), then

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] = 0.

(b.3) If x ∈ X(τ) \X∗(τ) and ȳ ∈ Ȳ \ Ȳ ∗(τ), then

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] = 0.

(b.4) In all other cases, i.e., if x 6∈ X∗(τ) and ȳ 6∈ Ȳ ∗(τ) and (x 6∈ X(τ) or
ȳ 6∈ Ȳ (τ)), it holds

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] ≤ 9 · 2−(n−1).

(c) For all x, x′ ∈ {0, 1}n, where x 6∈ X(τ) and x′ ∈ X(τ), and all r, −(R+n) ≤
r ≤ R+ n, it holds

Pr
Ωgreen(τ)

[
πr(Pω(x⊕ kω)⊕ kω) = Pω

(
x′ ⊕ kω

)
⊕ kω

]
≤ 11 · 2−(n−1).

Note here that part (a) of Corollary 7.3 follows directly from Lemma 7.4. Parts (b.1),
(b.2), and (b.3) follow directly from the definition of τ -consistent keys. Parts (b.4) and
(c) will be proved in Subsection 7.5.12.

In the following, we prove part (I) of Lemma 7.4. The proof of part (II) can be found
in Subsection 7.5.13.

Proof of Part (I) of Lemma 7.4: We fix some number j, 1 ≤ j ≤ M , and some
transcript τ ∈ T jgreen.
By Lemma 7.3 it holds that

|Kgreen(τ)| = |K(τ)| −
∣∣∣Kblue(τ)

∣∣∣ ≥ 2n −B(M,R, n)− 2 ·∆ · j −
∣∣∣Kblue(τ)

∣∣∣ .
We show that ∣∣∣Kblue(τ)

∣∣∣ ≤ (R+ n) · j2

∆ .

This is because∑
k∈{0,1}n

|(X(τ)⊕ k) ∩ U(τ)| =
∑

k∈{0,1}n
|{(x, u) ∈ X(τ)× U(τ) | x⊕ u = k}|

= |X(τ)× U(τ)| = |X(τ)| · |U(τ)| ,

191

7 The LIZARD-Construction

which implies that

|{k ∈ {0, 1}n ; |(X(τ)⊕ k) ∩ U(τ)| > ∆}| ≤ |X(τ)| · |U(τ)|
∆ ≤ j2

∆ .

In exactly the same way, one can prove that

∣∣∣{k ∈ {0, 1}n ;
∣∣∣(Ȳ (τ)⊕ k

)
∩ V (τ)

∣∣∣ > ∆
}∣∣∣ ≤

∣∣∣Ȳ (τ)
∣∣∣ · |V (τ)|
∆ ≤ (R+ n− 1) · j2

∆ .

Consequently,

|Kgreen(τ)| ≥ 2n −B(M,R, n)− 2 ·∆ · j − (R+ n) · j2

∆ ≥ 1√
2
· 2n

if n is large enough. The last inequation follows from Theorem 7.5, (1).

7.5.8 The Proof of Part (iii) of Lemma 7.1: Bounding the Probability of
Sudden Death

In this subsection, we prove part (iii) of Lemma 7.1, namely that

Pr
Ω

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
≤ 2−(n−1) · (∆ + 2) ·M.

Let us denote by T all
green = ⋃M

j=1 T jgreen the set of all green transcripts which occur with
nonzero probability. Note that T all

green has the structure of a partially ordered set, where
a transcript τ ′ is smaller than τ if τ ′ is a prefix of τ .
We denote by T ∗green the set of maximal elements in this partially ordered set T all

green.
Observe that

T ∗green = T Mgreen ∪ T strange
green ,

where T strange
green contains all green transcripts τ ′ of length smaller than M for which all

transcripts τ which contain τ ′ as a prefix are black or red.
Let us denote by Ω̃ the set

Ω̃ =
(
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

))
∪

⋃
τ∈T ∗green

Ωgreen(τ),

where for all j, 1 ≤ j ≤M , and all τ ∈ T jgreen, it holds

Ωgreen(τ) =
{
ω ∈ Ωj

green

∣∣∣ τ≤jω = τ
}
.

For all τ ∈ T all
green, we denote by Ωs.death

green (τ) the set of all elementary events ω ∈ Ωgreen(τ)
for which the next query after τ generates a sudden-death pair w.r.t. ω. Note that
Ωs.death

green (τ) = ∅ if the length of τ is M .

192

7.5 The Security Lower Bound Proof

Observe that ω ∈ Ωs.death \ (Ωblack ∪Ωred ∪Ωblue) if and only if there is some τ ∈ T all
green

such that ω ∈ Ωs.death
green (τ). Consequently,

Pr
Ω

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
≤ Pr

Ω̃

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
=

∑
τ∈T all

green

Pr
Ω̃

[
Ωs.death

green (τ)
]
.

For all transcripts τ ∈ T ∗green, we fix a natural number i(τ), 1 ≤ i(τ) ≤ j, where j
denotes the length of τ . We do this in such a way that the sets

T (τ) =
{
τ≤i(τ), τ≤i(τ)+1, . . . , τ≤j

}
form a partition of the set T all

green into pairwise disjoints subsets.5 Note that the sets T (τ)
correspond to prefixes of the transcript τ .
Now define for all transcripts τ ∈ T ∗green subsets A(τ) and B(τ) of Ω̃:

A(τ) =
⋃

τ̃∈T (τ)
Ωs.death

green (τ̃),

B(τ) = Ωgreen(τ) ∪A(τ).

Note that the set system {B(τ) | τ ∈ T ∗green} defines a partition of Ω̃ into pairwise
disjoint subsets, that the set system {A(τ) | τ ∈ T ∗green} defines a partition of the set
Ωs.death \ (Ωblack ∪ Ωred ∪ Ωblue) into pairwise disjoint subsets, and that for all τ ∈ T ∗green
it holds A(τ) ⊆ B(τ). Consequently,

Pr
Ω̃

[
Ωs.death \

(
Ωblack ∪ Ωred ∪ Ωblue

)]
=

∑
τ∈T ∗green

Pr
Ω̃

[A(τ) ∩B(τ)]

=
∑

τ∈T ∗green

Pr
Ω̃

[B(τ)] · Pr
B(τ)

[A(τ)]

≤ max
τ∈T ∗green

Pr
B(τ)

[A(τ)].

(7.11)

We fix some arbitrary τ ∈ T ∗green and denote by j the length of τ . Note that for all
transcripts τ̃ ∈ T (τ), it holds that ω ∈ Ωs.death

green (τ̃) if and only if ω ∈ Ωgreen(τ̃) and the
key kω falls into the set D(τ̃), which is defined as follows:

D(τ̃) = (X∗new(τ̃)⊕ Unew(τ̃)) \ (X∗(τ̃)⊕ U(τ̃)) ,
5One way of constructing the numbers i(τ) is as follows. We enumerate the transcripts in T ∗green, take

the first transcript τ , set i(τ) = 1, and label all transcripts τ≤s, for s = i(τ), . . . , j, where j denotes the
length of τ . For all other transcripts τ ∈ T ∗green, define i(τ) to be the smallest number i for which τ≤i has
not been labeled so far and label all transcripts in the corresponding set T (τ).

193

7 The LIZARD-Construction

where X∗new(τ̃) and Unew(τ̃) denote the new sets X∗(·) and U(·) after posing the uniquely
determined next query after τ̃ . According to Corollary 7.3, part (a), the probability of
this event is bounded by 2−(n−1) · |D(τ̃)|.
Now observe that ⋃τ̃∈T (τ)D(τ̃) is a subset of X∗new(τ) ⊕ Unew(τ) if j < M and of

X∗(τ)⊕ U(τ) if j = M . If j < M , then |X∗new(τ)| ≤ |X∗(τ)|+ 2 ≤ ∆ + 2, as τ is green,
and |Unew(τ)| ≤ |U(τ)|+ 1 ≤M . We obtain that

Pr
B(τ)

[A(τ)] ≤ 2−(n−1) · |X∗new(τ)⊕ Unew(τ)| ≤ 2−(n−1) · (∆ + 2) ·M,

which proves part (iii) of Lemma 7.1 by Eq. (7.11).

7.5.9 The Proof of Part (i) of Lemma 7.1: Bounding the Probability of
Black Elementary Events

In this subsection, we prove part (i) of Lemma 7.1, namely that

Pr
Ω

[
Ωblack

]
≤ 34 · 2−n. (7.12)

Proof of Eq. (7.12): From Definition 7.14, it follows straightforwardly that for any
elementary event ω ∈ Ω, it holds that the transcript τω is black if and only if it has
some black prefix (where τω is considered to be its own prefix). This, in turn, implies
that ω ∈ Ωblack if and only if τω is black. Consequently, it is sufficient here to assess the
probability that for an ω ∈ Ω chosen uniformly and at random (see Definition 7.4), the
number of τω-critical keys exceeds B(M,R, n) or it holds Max(Pτω , U(τω)) > 5.
Remember from Definition 7.13 that a key k ∈ {0, 1}n is called τω-critical if there is

some u ∈ U(τω) such that x := u⊕k ∈ X(τω) and y := Pτω(u)⊕k ∈ Ȳ (τω), which implies
that for the corresponding triple (u, x, y) it holds that x ⊕ u = y ⊕ Pτω(u). Moreover,
remember from Theorem 7.4 the definition of µ(P,U,X, Y) for permutations P over
{0, 1}n and subsets U,X, Y of {0, 1}n:

µ(P,U,X, Y) = |{(u, x, y) ∈ U ×X × Y | x⊕ u = y ⊕ P (u)}| .

Consequently, µ(Pτω , U(τω), X(τω), Ȳ (τω)) is an upper bound for the number of τω-critical
keys.
Theorem 7.4 implies that the probability that for a randomly chosen ω ∈ Ω, it holds

that
µ
(
Pτω , U(τω), X(τω), Ȳ (τω)

)
≥ B(M,R, n),

is at most 2 · 2−n. Here, we took into account that |U(τω)| ≤ M , |X(τω)| ≤ M , and
|Ȳ (τω)| ≤M · (R+ n− 1).
So, the probability that for a randomly chosen ω ∈ Ω, ω falls into Ωblack because the

number of τω-critical keys exceeds B(M,R, n), is bounded from above by 2 · 2−n.

194

7.5 The Security Lower Bound Proof

We complete the proof by showing that

Pr
Ω

[Max(Pτω , U(τω)) ≥ 6] ≤ 32 · 2−n.

According to Definition 7.12, the event Max(Pτω , U(τω)) ≥ 6 implies the existence of
some U ′ ⊆ U(τω), |U ′| = 6, such that u′1 ⊕ Pτω(u′1) = u′2 ⊕ Pτω(u′2) for all u′1, u′2 ∈ U ′.
Given a subset U ′ ⊆ U(τω), |U ′| = 6, the probability that u′1 ⊕ Pτω(u′1) = u′2 ⊕ Pτω(u′2)
holds for all u′1, u′2 ∈ U ′, equals

5∏
i=1

1
2n − i ≤

(1
1/2 · 2n

)5
= 25 · 2−5·n.

Consequently,

Pr
Ω

[Max(Pτω , U(τω)) ≥ 6] ≤ |U(τω)|6 · 25 · 2−5·n

≤ 26·(2/3)n · 25 · 2−5·n = 32 · 2−n.

Here, for the sake of simplicity, we upper bounded the number of subsets with six elements
of U(τω) by |U(τω)|6. |U(τω)|, in turn, is upper bounded by 2(2/3)n as the underlying
transcript τω consists of at most 2(2/3)n queries.

7.5.10 The Proof of Part (iv) of Lemma 7.1

Let τ be a green transcript of lengthM , i.e., τ ∈ T Mgreen. We have to bound the probability
that Eve is successful under the condition that Alice has chosen a green elementary event
ω = (kω, Pω, Fω) ∈ Ωgreen(τ).

Depending on τ , Eve publishes a pair (x∗(τ), z∗(τ)) ∈ {0, 1}n × {0, 1}n, where x∗(τ) 6∈
X(τ). Eve wins if and only if z∗(τ) equals the block of the first n keystream bits of the
packet generated on input x∗(τ) under ω, i.e.,

z∗(τ) = Fω(Pω(x∗(τ)⊕ kω)⊕ kω).

For all ω ∈ Ωgreen(τ), let yω denote the value

yω = Pω(x∗(τ)⊕ kω)⊕ kω.

We have to bound the probability

Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ)].

We do this by dividing Ωgreen(τ) into two disjoint subsets IND and DEP, where IND
contains all those elementary events ω ∈ Ωgreen(τ) for which Fω(yω) is independent from
the queries and answers contained in τ , and DEP = Ωgreen(τ) \ IND.

Note that ω ∈ DEP if and only if

195

7 The LIZARD-Construction

(I) there is some i, −(n− 1) ≤ i ≤ n− 1, such that πi(yω) ∈ Y (τ), or

(II) there is some i, −(n− 1) ≤ i ≤ n− 1, some x ∈ X(τ), and some r, 0 ≤ r ≤ R− 1,
such that πi(yω) = πr(Pω(x⊕ kω)⊕ kω).

In case (I), Fω(yω) is not independent from the answer of the F -query with input πi(yω);
in case (II), Fω(yω) is not independent from the answer of the E-query with input x (in
particular, from the block starting at position r in packet Eω(x)).

Corresponding to this, DEP can be written as

DEP = DEP1 ∪DEP2,

where DEP1 contains all ω ∈ Ωgreen(τ) for which case (I) is fulfilled and DEP2 contains
all ω ∈ Ωgreen(τ) for which case (II) is fulfilled. Note that

Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ)] = Pr
Ωgreen(τ)

[DEP] · Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ) | DEP]

+ Pr
Ωgreen(τ)

[IND] · Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ) | IND]

≤ Pr
Ωgreen(τ)

[DEP] + Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ) | IND],

i.e.,

Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ)] ≤ Pr
Ωgreen(τ)

[DEP1] + Pr
Ωgreen(τ)

[DEP2]

+ Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ) | IND].
(7.13)

It is quite obvious that

Pr
Ωgreen(τ)

[Fω(yω) = z∗(τ) | IND] = 2−n, (7.14)

as ω ∈ IND implies that Fω(yω) can take all values in {0, 1}n with the same probability.
Next, observe that for all ω ∈ Ωgreen(τ), it holds that ω ∈ DEP1 if and only if

yω ∈
⋃

y∈Y (τ)

{
πi(y)

∣∣∣ −(n− 1) ≤ i ≤ n− 1
}
,

where the set at the right-hand side has size at most (2n− 1) ·M . As x∗(τ) 6∈ X(τ), it
follows by Corollary 7.3, part (b), that

Pr
Ωgreen(τ)

[DEP1] ≤ (2n− 1) ·M · 9 · 2−(n−1). (7.15)

Observe further that for all ω ∈ Ωgreen(τ), it holds that ω ∈ DEP2 if and only if

πi(Pω(x∗(τ)⊕ kω)⊕ kω) = Pω(x⊕ kω)⊕ kω

196

7.5 The Security Lower Bound Proof

for some x ∈ X(τ) and some number i, −(R+ n− 2) ≤ i ≤ n− 1. As x∗(τ) 6∈ X(τ), it
follows by Corollary 7.3, part (c), that

Pr
Ωgreen(τ)

[DEP2] ≤ (R+ 2n− 2) ·M · 11 · 2−(n−1). (7.16)

Putting Eqs. (7.13) to (7.16) together yields

Pr
Ωgreen(τ)

[Ωsucc] ≤ (2 + (2n− 1) ·M · 9 + (R+ 2n− 2) ·M · 11) · 2−(n−1)

< 11 · (R+ 4n) ·M · 2−(n−1).

7.5.11 The Proof of Part (ii) of Lemma 7.1: Bounding the Probability of
Red and Blue Elementary Events

We have to show that

Pr
Ω

[
Ωred ∪ Ωblue

]
≤M · e−n. (7.17)

In the proof, we will use a Chernoff bound argument, which is described in Appendix 7.A.

Proof of Eq. (7.17): Note first that for all ω ∈ Ωred∪Ωblue, there is some j, 1 ≤ j ≤M ,
such that the j-th query makes ω red or blue. Consequently,

Ωred ∪ Ωblue =
M⋃
j=1

Ωj−1
green ∩

(
Ωj

red ∪ Ωj
blue

)
,

which implies

Pr
Ω

[
Ωred ∪ Ωblue

]
≤

M∑
j=1

Pr
Ω

[
Ωj−1

green ∩
(
Ωj

red ∪ Ωj
blue

)]

=
M∑
j=1

Pr
Ω

[
Ωj

red ∪ Ωj
blue

∣∣∣ Ωj−1
green

]
· Pr

Ω

[
Ωj−1

green

]

≤
M∑
j=1

Pr
Ω

[
Ωj

red ∪ Ωj
blue

∣∣∣ Ωj−1
green

]
.

Hence, for proving Eq. (7.17), it is sufficient to show that for all j, 1 ≤ j ≤M , it holds

Pr
Ωj−1

green

[
Ωj

red ∪ Ωj
blue

]
= Pr

Ω

[
Ωj

red ∪ Ωj
blue

∣∣∣ Ωj−1
green

]
< e−n. (7.18)

Note first that Eq. (7.18) is true if j < ∆
R+n−1 , as then for all transcripts τ with j

queries, it holds that the cardinalities of X(τ) and Ȳ (τ) are smaller than ∆.

197

7 The LIZARD-Construction

We fix some arbitrary number j, ∆
R+n−1 ≤ j ≤M . For all J , 1 ≤ J ≤ j − 1, we define

a random variable DBJ ∈ {0, 1} over Ω, where DBJ(ω) = 1 if and only if ω is J-alive (see
Definition 7.9) and the J-th query along τω increases (X(τω)⊕ kω) ∩ U(τω) or increases
(Ȳ (τω)⊕ kω) ∩ V (τω) or increases X∗(τω). Formally,

DBJ(ω) = 1 ⇐⇒∣∣∣(X(τ≤Jω)
⊕ kω

)
∩ U

(
τ≤Jω

)∣∣∣ > ∣∣∣(X(τ≤J−1
ω

)
⊕ kω

)
∩ U

(
τ≤J−1
ω

)∣∣∣ or∣∣∣(Ȳ (τ≤Jω)
⊕ kω

)
∩ V

(
τ≤Jω

)∣∣∣ > ∣∣∣(Ȳ (τ≤J−1
ω

)
⊕ kω

)
∩ V

(
τ≤J−1
ω

)∣∣∣ or∣∣∣X∗(τ≤Jω)∣∣∣ > ∣∣∣X∗(τ≤J−1
ω

)∣∣∣ .
Note that the event ω ∈ Ωj

red ∩ Ωj
blue implies the event that

j−1∑
J=1

DBJ(ω) ≥ ∆− (R+ n− 1)
R+ n− 1 . (7.19)

This is because each query along τω increases (X(τω) ⊕ kω) ∩ U(τω) by at most one,
(Ȳ (τω)⊕ kω) ∩ V (τω) by at most R+ n− 1, and X∗(τω) by at most two. In particular,
each E-query can increase (X(τω)⊕ kω) ∩ U(τω) by at most one and X∗(τω) by at most
two, each P - or P−1-query can increase (X(τω)⊕ kω) ∩ U(τω) and (Ȳ (τω)⊕ kω) ∩ V (τω)
by at most one, and each F -query can increase (Ȳ (τω)⊕kω)∩V (τω) by at most R+n−1
and X∗(τω) by at most one.

We bound the probability of the event in Eq. (7.19) over Ωj−1
green. We do this by bounding

the probability of the event DBJ(ω) = 1 over Ωj−1
green for all J = 1, . . . , j − 1. Let us fix a

number J , 1 ≤ J ≤ j − 1. Note that

Pr
Ωj−1

green

[DBJ(ω) = 1] =
∑

τ∈T Jgreen

Pr
Ωj−1

green

[τ] · Pr
Ωj−1

green(τ)
[DBJ(ω) = 1].

Note further that for all τ ∈ T Jgreen and ω ∈ Ωj−1
green(τ), it holds that DBJ(ω) = 1 if and

only if at least one of the following conditions is fulfilled:

(A) The J-th query in τ is a P -query with input u or a P−1-query with output u and
kω ∈ u⊕X(τ).

(B) The J-th query in τ is a P -query with output v or a P−1-query with input v and
kω ∈ v ⊕ Ȳ (τ).

(C) The J-th query in τ is an F -query with input y and there is some r, −(n− 1) ≤
r ≤ R− 1, such that kω ∈ π−r(y)⊕ V (τ).

(D) The J-th query in τ is an E-query with input x and kω ∈ x⊕ U(τ).

198

7.5 The Security Lower Bound Proof

(E) The J-th query in τ is an E-query with input x and Pω(x⊕ kω)⊕ kω = ȳ for some
ȳ ∈ Ȳ (τ).

(F) The J-th query in τ is an F -query with input y and y = πr(Pω(x⊕ kω)⊕ kω) for
some x ∈ X(τ) \X∗(τ) and some number r, −(n− 1) ≤ r ≤ R− 1.

(G) The J-th query in τ is an E-query with input x and there is some r, −(R− 1) ≤
r ≤ R− 1, and some x′ ∈ X(τ) such that πr(Pω(x⊕ kω)⊕ kω) = Pω(x′ ⊕ kω)⊕ kω.

Note that (A) and (D) are the situations in which query J increases (X(τω)⊕kω)∩U(τω),
that (B) and (C) are the situations in which query J increases (Ȳ (τω)⊕kω)∩V (τω), that
(E) and (F) are the situations in which query J generates a new structural EF -collision
(i.e., increases X∗(τω) by one), and that (G) is the situation in which query J generates
a new structural EE-collision (i.e., increases X∗(τω) by one or two).
Note further that conditions (A,D) imply that kω belongs to a set of at most J − 1

elements. Conditions (B,C) imply that kω belongs to a set of at most (R+n− 1) · (J − 1)
elements. From Corollary 7.3, part (a), it follows that these events have probability at
most 2−(n−1) · (R+ n− 1) · (J − 1).
From Corollary 7.3, part (b), it follows that condition (E) has probability at most

9 · |Ȳ (τω)| ·2−(n−1) ≤ 9 ·(R+n−1) ·(J−1) ·2−(n−1) and that condition (F) has probability
at most 9 · (R+ n− 1) · |X(τω)| · 2−(n−1) ≤ 9 · (R+ n− 1) · (J − 1) · 2−(n−1).
From Corollary 7.3, part (c), it follows that condition (G) has probability at most

11 · (2R− 1) · |X(τω)| · 2−(n−1) ≤ 11 · (2R− 1) · (J − 1) · 2−(n−1).
We obtain that for all J , 1 ≤ J ≤ j − 1,

Pr
Ωj−1

green

[DBJ(ω) = 1] ≤ 11 · 2−(n−1) · (2R− 1) · (J − 1)

≤ 22 · 2−(n−1) ·R · (j − 1).
(7.20)

Eq. (7.20) allows us to apply the Chernoff bound method from Lemma 7.7 in Appen-
dix 7.A with N = j − 1, p = 22 · 2−(n−1) ·R · (j − 1), and d =

√
n/(2 · (j − 1)) to obtain

directly that

Pr
Ωj−1

green

j−1∑
J=1

DBJ(ω) > 22 · 2−(n−1) ·R · (j − 1)2 +

√
n · (j − 1)

2

 < e−n. (7.21)

Note that item (2) of Theorem 7.5 yields

22 · 2−(n−1) ·R · (j − 1)2 +

√
n · (j − 1)

2

< 22 · 2−(n−1) ·R ·M2 +
√
n ·M

2

≤ ∆− (R+ n− 1)
R+ n− 1 .

(7.22)

199

7 The LIZARD-Construction

Thus, Eq. (7.21) together with Eq. (7.22) proves Eqs. (7.18) and (7.17), and, consequently,
Lemma 7.1, part (ii).

7.5.12 The Proof of Corollary 7.3, Parts (b.4) and (c)
Let us fix an arbitrary number j, 1 ≤ j ≤ M , and a green transcript τ ∈ T jgreen. We
assume that part (a) of Corollary 7.3 holds, i.e., that for all k ∈ Kgreen(τ), we have

Pr
Ωgreen(τ)

[k] ≤ 2−(n−1). (7.23)

Let us first prove part (b.4) of Corollary 7.3. We fix some x, ȳ ∈ {0, 1}n, where
x 6∈ X∗(τ) and ȳ 6∈ Ȳ ∗(τ) and (x 6∈ X(τ) or ȳ 6∈ Ȳ (τ)). We have to show

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] ≤ 9 · 2−(n−1). (7.24)

Proof of Eq. (7.24): We divide Ωgreen(τ) into two subsets Ω1 and Ω2, where

Ω1 = {ω ∈ Ωgreen(τ) | x⊕ kω 6∈ U(τ)} ,
Ω2 = {ω ∈ Ωgreen(τ) | x⊕ kω ∈ U(τ)} ,

(7.25)

and denote

K1 = {k ∈ Kgreen(τ) | x⊕ k 6∈ U(τ)} ,
K2 = {k ∈ Kgreen(τ) | x⊕ k ∈ U(τ)} .

(7.26)

The sets Ω2 and K2 define another set W ⊆ {0, 1}n by

W = {Pω(x⊕ kω)⊕ kω | ω ∈ Ω2} = {Pτ (x⊕ k)⊕ k | k ∈ K2} .

Here, Pτ denotes the restriction of Pω to U(τ), which, by definition, is the same for all
ω ∈ Ω(τ). Note that |W | ≤ |K2| ≤ |U(τ)| ≤ j ≤M .
Let us now define an equivalence relation on K2. For keys k, k′ ∈ K2, we define that

k ≡ k′ if Pτ (x⊕ k)⊕ k = Pτ (x⊕ k′)⊕ k′. Let L1, . . . , Ls denote the equivalence classes
corresponding to the equivalence relation ≡ on K2. Clearly, s = |W | and for each class
Ll, 1 ≤ l ≤ s, there is exactly one w ∈W such that Pτ (x⊕ k)⊕ k = w for all k ∈ Ll.
Note that k ≡ k′ implies that x ⊕ k ≡Pτ x ⊕ k′ in the sense of Definition 7.12 and

remember that, as τ is not black, Max(Pτ , U(τ)) ≤ 5. This implies:

Lemma 7.5

For all w ∈W , the number of keys k ∈ K2 for which Pτ (x⊕ k)⊕ k = w is at most
five.

200

7.5 The Security Lower Bound Proof

Note that

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ]

= Pr
Ωgreen(τ)

[Ω1] · Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω1]

+ Pr
Ωgreen(τ)

[Ω2] · Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω2],

i.e.,

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ]

≤ Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω1]

+ Pr
Ωgreen(τ)

[Ω2] · Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω2].

(7.27)

For estimating PrΩgreen(τ)[Pω(x⊕ kω)⊕ kω = ȳ | Ω1], note that if x⊕ kω 6∈ U(τ) and
x ∈ X(τ), then Pω(x ⊕ kω) takes all values in {0, 1}n which are outside of V (τ) and
which are outside of Ȳ (τ)⊕ kω with the same probability (see the proof of Lemma 7.2).6
If x 6∈ X(τ), then Pω(x⊕ kω) takes all values in {0, 1}n which are outside of V (τ) with
the same probability (see the proof of Lemma 7.2). This implies that

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω1] ≤ 1
2n − (R+ n)M ≤ 2−(n−1) (7.28)

if n is large enough.
Observe next that by Eq. (7.23) it holds that

Pr
Ωgreen(τ)

[Ω2] ≤ 2−(n−1) · |K2| . (7.29)

For estimating PrΩgreen(τ)[Pω(x ⊕ kω) ⊕ kω = ȳ | Ω2], we first consider the case that
ȳ 6∈W . Then, by the definition of W , it holds that

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω2] = 0.

Assume now that ȳ ∈W . From Lemma 7.5 and the Smoothness Lemma (Lemma 7.4)
it follows that

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ | Ω2] ≤
√

2 · 5
|K2|

<
8
|K2|

. (7.30)

6Here, Pω(x⊕ kω) ∈ Ȳ (τ)⊕ kω would imply that x ∈ X∗(τ), which contradicts the assumption.

201

7 The LIZARD-Construction

Inserting Eqs. (7.28) to (7.30) into Eq. (7.27) yields

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = ȳ] ≤ 2−(n−1) + 2−(n−1) · |K2| ·
8
|K2|

= 9 · 2−(n−1).

Let us now prove part (c) of Corollary 7.3. We fix some x 6= x′ ∈ {0, 1}n, where
x 6∈ X(τ) and x′ ∈ X(τ), and some number i, −(R+ n) ≤ i ≤ R+ n. We have to show

Pr
Ωgreen(τ)

[
Ev
(
x, x′, i

)]
≤ 11 · 2−(n−1), (7.31)

where the event Ev(x, x′, i) ⊆ Ωgreen(τ) is defined as

Ev
(
x, x′, i

)
=
{
ω ∈ Ωgreen(τ)

∣∣∣ πi(Pω(x⊕ kω)⊕ kω) = Pω
(
x′ ⊕ kω

)
⊕ kω

}
.

Proof of Eq. (7.31): Let us first handle the case that x′ ∈ X∗(τ) and denote by y′
the unique value for which (x′, y′) ∈ Coll(τ). Then, by the definition of structural
EF -collisions, it holds that

Pω
(
x′ ⊕ kω

)
⊕ kω = y′

for all ω ∈ Ωgreen(τ).
Consequently, for all ω ∈ Ωgreen(τ) it holds that ω ∈ Ev(x, x′, i) if and only if

Pω(x⊕ kω)⊕ kω = π−i
(
y′
)
.

From part (b) of Corollary 7.3 it follows that if x′ ∈ X∗(τ), then

Pr
Ωgreen(τ)

[
Ev
(
x, x′, i

)]
≤ 9 · 2−(n−1) < 11 · 2−(n−1).

Now let us consider the case that x′ ∈ X(τ) \X∗(τ). For arbitrary points z ∈ {0, 1}n,
we define

Ωgreen(τ, z) = {ω ∈ Ωgreen(τ) | Pω(x⊕ kω)⊕ kω = z} ,
Kgreen(τ, z) = {k ∈ {0, 1}n | ∃ω ∈ Ωgreen(τ, z) : kω = k} .

Moreover, for b ∈ {1, 2}, we define

Ωb(z) = Ωgreen(τ, z) ∩ Ωb,

Kb(z) = Kgreen(τ, z) ∩Kb,

where the sets Ω1 and Ω2 and the sets K1 and K2 are defined as in Eqs. (7.25) and (7.26).
Let us clarify how the keys of elementary events in Ω1(z) and Ω2(z) and the keys in

K1(z) and K2(z) look like. It can be easily checked that for all ω = (kω, Pω, Fω) ∈ Ω1, it

202

7.5 The Security Lower Bound Proof

holds ω ∈ Ω1(z) if and only if z ⊕ kω 6∈ V (τ) and Pω(x ⊕ kω) = z ⊕ kω. Moreover, for
all ω = (kω, Pω, Fω) ∈ Ω2, it holds ω ∈ Ω2(z) if and only if Pτ (x⊕ kω)⊕ kω = z, which
implies by Lemma 7.5 that

|K2(z)| ≤ 5. (7.32)

We obtain that
|Kgreen(τ, z)| ≥ |K1(z)| ≥ |K1| − |V (τ)|

= |Kgreen(τ)| − |K2| − |V (τ)|
≥ |Kgreen(τ)| − 2 · |V (τ)|

≥ |Kgreen(τ)| − 2M ≥ 1√
2
· 2n

(7.33)

if n is large enough. The last inequation follows from M < 2(2/3)n and the proof of the
Smoothness Lemma (Lemma 7.4): It is a straightforward consequence of Eqs. (7.42)
and (7.43) in Subsection 7.5.13 that for all green transcripts τ and all constants δ < 1, it
holds that |Kgreen(τ)| ≥ δ · 2n if n is large enough. Lemma 7.4 states this just for δ = 1√

2 .
By exactly the same arguments as in the Smoothness Lemma (Lemma 7.4), one can

show that for all k, k′ ∈ Kgreen(τ, z), it holds that

Pr
Ωgreen(τ,z)

[k] ≤
√

2 · Pr
Ωgreen(τ,z)

[
k′
]

(7.34)

if n is large enough.
Eqs. (7.33) and (7.34) imply directly that for all k ∈ Kgreen(τ, z), it holds that

Pr
Ωgreen(τ,z)

[k] ≤ 2−(n−1) (7.35)

if n is large enough.
Note that

Pr
Ωgreen(τ)

[
Ev
(
x, x′, i

)]
=

∑
z∈{0,1}n

Pr
Ωgreen(τ)

[Pω(x⊕ kω)⊕ kω = z] · Pr
Ωgreen(τ,z)

[
Ev
(
x, x′, i

)]
.

(7.36)

For deriving an upper bound for PrΩgreen(τ,z)[Ev(x, x′, i)], we write

Pr
Ωgreen(τ,z)

[
Ev
(
x, x′, i

)]
= Pr

Ωgreen(τ,z)
[Ω1(z)] · Pr

Ω1(z)

[
Ev
(
x, x′, i

)]
+ Pr

Ωgreen(τ,z)
[Ω2(z)] · Pr

Ω2(z)

[
Ev
(
x, x′, i

)]
≤ Pr

Ω1(z)

[
Ev
(
x, x′, i

)]
+ Pr

Ωgreen(τ,z)
[Ω2(z)]

≤ Pr
Ω1(z)

[
Ev
(
x, x′, i

)]
+ 5 · 2−(n−1),

(7.37)

203

7 The LIZARD-Construction

where the last inequation follows from Eqs. (7.32) and (7.35).
We write K1(z) as

K1(z) = K3(z) ∪K4(z) ∪K5(z),

where

• K3(z) = {k ∈ K1(z) | x′ ⊕ k ∈ U(τ), Pτ (x′ ⊕ k)⊕ k = πi(z)},

• K4(z) = {k ∈ K1(z) | x′ ⊕ k ∈ U(τ), Pτ (x′ ⊕ k)⊕ k 6= πi(z)},

• K5(z) = {k ∈ K1(z) | x′ ⊕ k 6∈ U(τ)}.

From Lemma 7.5, we know that |K3(z)| ≤ 5.7 By exactly the same arguments as in
the Smoothness Lemma (Lemma 7.4), one can show that for all k, k′ ∈ K1(z), it holds

Pr
Ω1(z)

[k] ≤
√

2 · Pr
Ω1(z)

[
k′
]

(7.38)

if n is large enough. Eqs. (7.33) and (7.38) imply directly that for all k ∈ K1(z), it holds

Pr
Ω1(z)

[k] ≤ 2−(n−1) (7.39)

if n is large enough. From |K3(z)| ≤ 5 and Eq. (7.39) it now follows that

Pr
Ω1(z)

[
Ev
(
x, x′, i

)
∩ (kω ∈ K3(z))

]
≤ 5 · 2−(n−1).

Furthermore, w.r.t. K4(z), it obviously holds that

Pr
Ω1(z)

[
Ev
(
x, x′, i

)
∩ (kω ∈ K4(z))

]
= 0.

Consequently,

Pr
Ω1(z)

[
Ev
(
x, x′, i

)]
≤ Pr

Ω1(z)
[Ω5(z)] · Pr

Ω5(z)

[
Ev
(
x, x′, i

)]
+ 5 · 2−(n−1)

≤ Pr
Ω5(z)

[
Ev
(
x, x′, i

)]
+ 5 · 2−(n−1),

(7.40)

where Ω5(z) = {ω ∈ Ω1(z) | kω ∈ K5(z)}.
Note that for all ω ∈ Ω5(z), the condition that ω ∈ Ev(x, x′, i) is equivalent to

Pω
(
x′ ⊕ kω

)
= πi(z)⊕ kω,

7Lemma 7.5 refers to the keys in K2, whereas we now refer to the keys in K1(z) ⊆ K1. However, note
that the corresponding equivalence classes of keys are formed based on x for Lemma 7.5, but based on x′
here. Hence, as k ∈ K3(z) implies x′ ⊕ k ∈ U(τ), we can use the same arguments as for Lemma 7.5 in
order to conclude |K3(z)| ≤ 5.

204

7.5 The Security Lower Bound Proof

which has probability 0 if πi(z)⊕ kω ∈ V (τ) and probability at most

1
2n − (|V (τ)|+ 1)−

∣∣∣Ȳ (τ)
∣∣∣ ≤ 2−(n−1)

if πi(z) ⊕ kω 6∈ V (τ) and n is large enough; see Eq. (7.28) and the comment before
Eq. (7.28) and note that, here, Pω(x′ ⊕ kω) is not only disallowed to take the values in
V (τ), but also additionally disallowed to take the value z ⊕ kω = Pω(x⊕ kω) /∈ V (τ) (as
x 6= x′). We obtain that

Pr
Ω5(z)

[
Ev
(
x, x′, i

)]
≤ 2−(n−1) (7.41)

if n is large enough.
Putting Eqs. (7.37), (7.40), and (7.41) together, we obtain that for all z ∈ {0, 1}n, it

holds
Pr

Ωgreen(τ,z)

[
Ev
(
x, x′, i

)]
≤ 11 · 2−(n−1),

which implies by Eq. (7.36) that

Pr
Ωgreen(τ)

[
Ev
(
x, x′, i

)]
≤ 11 · 2−(n−1).

7.5.13 The Proof of the Smoothness Lemma (Lemma 7.4), Part (II)
We fix an arbitrary number j, 1 ≤ j ≤M , and a green transcript τ ∈ T jgreen. We analyze
the probability distribution PrΩ(τ) on Kgreen(τ) by showing that for all k ∈ Kgreen(τ),
it holds that this distribution is close to the uniform distribution on Kgreen(τ). More
precisely,

Pr
Ω(τ)

[k] ≤ δ · |Kgreen(τ)|−1

for δ =
(

2n−1

2n−1 − (R+ n)j

)2∆

.

(7.42)

Note that part (3) of Theorem 7.5 implies δ ≤
√

2. This is because for θ = (R+ n)j
and N = 2n−1, we can write δ as

δ =
(

N

N − θ

)2∆
=
(1

1− θ/N

)2∆
=
((1

1− θ/N

)N/θ) 2∆θ
N

≈ e
2∆θ
N . (7.43)

Part (3) of Theorem 7.5 implies that ∆ · θ ≤ ln(2)·N
4 , which is equivalent to

2∆θ
N
≤ ln(2)

2 .

205

7 The LIZARD-Construction

Proof of Eq. (7.42): The proof of Lemma 7.2 shows how, for keys k ∈ K(τ), completions
P ′ of Pτ on {0, 1}n \ U(τ) and F ′ of Fτ on {0, 1}n \ Y (τ) have to be constructed such
that (k, P ′, F ′) belongs to Ω(τ). In particular:

(1) The function values of P ′ on X∗(τ)⊕ k, a set of size |X∗(τ)|, are determined.

(2) The function values of P ′ on the set ((X(τ) \X∗(τ))⊕ k) \ U(τ) are forbidden to
fall into the set Ȳ (τ)⊕ k.

(3) We assume that P ′ is an arbitrarily fixed completion of Pτ satisfying (1) and (2)
and describe how a completion F ′ of Fτ has to be constructed in such a way that
(k, P ′, F ′) belongs to Ω(τ). The function values F ′(y) are determined or partly
determined on a set Z(k) = Z1(k)∪Z2(k), where Z1(k) contains all those y ∈ {0, 1}n
for which there is some r, −(n−1) ≤ r ≤ R−1, such that π−r(y) = P ′(x⊕k)⊕k for
some x ∈ X(τ) \X∗(τ), and Z2(k) contains all those y ∈ {0, 1}n for which there is
some i, −(n− 1) ≤ i ≤ n− 1, such that πi(y) ∈ Y (τ). Note that Z1(k)∩Z2(k) = ∅
and |Z1(k)| = |Z1(k′)| and |Z2(k)| = |Z2(k′)| for all k, k′ ∈ Kgreen(τ). This implies
that Z(k) has the same size for all k ∈ Kgreen(τ).

We use the following fact. Let A1, B1, A2, B2 be finite sets fulfilling A1∩A2 = B1∩B2 =
∅, |A1 ∪ A2| = |B1 ∪ B2|, |A2| < |B1|, and |B2| < |A1|. Then the number of bijective
mappings f : A1 ∪A2 −→ B1 ∪B2 for which f(A2) ⊆ B1 is

|A1|! · |B1|!
(|A1| − |B2|)!

= |A1|! · |B1|!
(|B1| − |A2|)!

. (7.44)

In the following, A1 corresponds to the set {0, 1}n \ (U(τ)∪ (X(τ)⊕ k)), A2 to the set
((X(τ) \X∗(τ))⊕ k) \ U(τ), B1 to the set {0, 1}n \ (V (τ) ∪ (Ȳ (τ)⊕ k)), and B2 to the
set ((Ȳ (τ) \ Ȳ ∗(τ))⊕ k) \ V (τ). We denote

• T = 2n − |X(τ)| − |U(τ)|,

• t = |X(τ) \X∗(τ)|,

• S = 2n − |Ȳ (τ)| − |V (τ)|,

• s = |Ȳ (τ) \ Ȳ ∗(τ)|.

It holds that S > 2n−1 and T > 2n−1 if n is large enough.
Note that for proving Lemma 7.4, it is sufficient to show that for all pairs k, k′ ∈

Kgreen(τ), it holds
PrΩ(τ)[k]
PrΩ(τ)[k′]

≤ δ.

206

7.5 The Security Lower Bound Proof

This is because τ is green, which, together with PrΩblue(τ)[k] = PrΩblue(τ)[k′] = 0 for
k, k′ ∈ Kgreen(τ), implies

PrΩ(τ)[k]
PrΩ(τ)[k′]

=
PrΩ(τ)[Ωgreen(τ)] · PrΩgreen(τ)[k] + PrΩ(τ)

[
Ωblue(τ)

]
· PrΩblue(τ)[k]

PrΩ(τ)[Ωgreen(τ)] · PrΩgreen(τ)[k′] + PrΩ(τ)[Ωblue(τ)] · PrΩblue(τ)[k′]

=
PrΩgreen(τ)[k]
PrΩgreen(τ)[k′]

.

Let us denote by ConsPτ (k) the set of all τ -consistent completions P ′ of Pτ on
{0, 1}n \ U(τ), i.e., of all completions P ′ of Pτ for which there is some completion F ′ of
Fτ on {0, 1}n \ Y (τ) such that (k, P ′, F ′) ∈ Ω(τ). The above statement (3) implies that
for all k ∈ K(τ) and completions P ′ ∈ ConsPτ (k), the number of such completions F ′ is
the same, i.e., does not depend on k. This implies that

PrΩ(τ)[k]
PrΩ(τ)[k′]

= |ConsPτ (k)|
|ConsPτ (k′)| .

Note that due to requirement (2) (see above), the size of ConsPτ (k) depends on the
sizes of the sets ((X(τ) \X∗(τ)) ⊕ k) \ U(τ) and ((Ȳ (τ) \ Ȳ ∗(τ)) ⊕ k) \ V (τ). As k is
not blue, the sizes of the corresponding intersections ((X(τ) \X∗(τ))⊕ k) ∩ U(τ) and
((Ȳ (τ) \ Ȳ ∗(τ))⊕ k) ∩ V (τ) can vary only between 0 and ∆ (see Definition 7.18).

Thus, for k ∈ Kgreen(τ), the value |ConsPτ (k)| is minimal if

|((X(τ) \X∗(τ))⊕ k) ∩ U(τ)| =
∣∣∣((Ȳ (τ) \ Ȳ ∗(τ)

)
⊕ k

)
∩ V (τ)

∣∣∣ = 0.

By Eq. (7.44) this implies

|ConsPτ (k)| = S! · T !
(T − s)! = S! · T !

(S − t)! . (7.45)

The value |ConsPτ (k)| is maximal if

|((X(τ) \X∗(τ))⊕ k) ∩ U(τ)| = min{∆, t} and∣∣∣((Ȳ (τ) \ Ȳ ∗(τ)
)
⊕ k

)
∩ V (τ)

∣∣∣ = min{∆, s}.
(7.46)

We now have to distinguish three cases corresponding to whether |X(τ) \X∗(τ)| > ∆
or not and whether |Ȳ (τ) \ Ȳ ∗(τ)| > ∆ or not.

Case 1: |X(τ) \X∗(τ)| > ∆ and |Ȳ (τ) \ Ȳ ∗(τ)| > ∆.
In this case, it follows from Eqs. (7.44) and (7.46) that

|ConsPτ (k)| ≤ (S + ∆)! · (T + ∆)!
(S + ∆− (t−∆))! = (S + ∆)! · (T + ∆)!

(S − t+ 2∆)! . (7.47)

207

7 The LIZARD-Construction

Eqs. (7.45) and (7.47) imply that the PrΩ(τ)-values of elements from Kgreen(τ) can
differ by a factor δ which is at most δ1 · δ2, where

δ1 = (T + 1)(T + 2) · · · (T + ∆)
(S − t+ 1)(S − t+ 2) · · · (S − t+ ∆) ≤

(
T

S − t

)∆
(7.48)

and

δ2 = (S + 1)(S + 2) · · · (S + ∆)
(S − t+ ∆ + 1)(S − t+ ∆ + 2) · · · (S − t+ 2∆)

≤
(

S

S − t+ ∆

)∆
=
(

S

S − (t−∆)

)∆
≤
(

S

S − j

)∆
≤
(

2n−1

2n−1 − j

)∆

.

Here we used the fact that from a ≥ b it follows that a
b ≥

a+1
b+1 .

For upper bounding δ1, we have to distinguish the two cases S ≥ T and S < T . If
S ≥ T , then, by Eq. (7.48),

δ1 ≤
(

S

S − t

)∆
≤
(

2n−1

2n−1 − j

)∆

. (7.49)

If S < T , then observe that S ≥ T−(R+n−1)j. This holds because |Ȳ (τ)| ≤ (R+n−1)j.
Consequently,

δ1 ≤
(

T

T − t− (R+ n− 1)j

)∆
≤
(

T

T − j − (R+ n− 1)j

)∆

=
(

T

T − (R+ n)j

)∆
≤
(

2n−1

2n−1 − (R+ n)j

)∆

.

(7.50)

Case 2: |X(τ) \X∗(τ)| ≤ ∆, i.e., t ≤ ∆.
Here, |ConsPτ (k)| is maximal if (X(τ) \X∗(τ))⊕ k is a subset of U(τ), which implies
|ConsPτ (k)| = (T + t)! and that, by Eq. (7.45), the |ConsPτ (k)|-values for k ∈ Kgreen(τ)
cannot differ by a factor larger than

(T + t)! · (S − t)!
T ! · S! = (T + 1) · . . . · (T + t)

(S − t+ 1) · . . . · S

≤
(

T

S − t

)t
≤
(

T

S − t

)∆
≤
(

2n−1

2n−1 − (R+ n)j

)∆

.

Note that the last inequation follows from the same case distinction (i.e., S ≥ T and
S < T) that was already performed as part of Case 1 above (see Eqs. (7.49) and (7.50)).

208

7.6 Conclusion and Outlook

Case 3: |Ȳ (τ) \ Ȳ ∗(τ)| ≤ ∆, i.e., s ≤ ∆.
Here, |ConsPτ (k)| is maximal if (Ȳ (τ) \ Ȳ ∗(τ))⊕ k is a subset of V (τ), which implies
|ConsPτ (k)| = (S + s)! and that, by Eq. (7.45), the |ConsPτ (k)|-values for k ∈ Kgreen(τ)
cannot differ by a factor larger than

(S + s)! · (T − s)!
T ! · S! = (S + 1) · . . . · (S + s)

(T − s+ 1) · . . . · T ≤
(

S

T − s

)s
≤
(

S

T − s

)∆
≤
(

S

S − j − s

)∆

≤
(

S

S − j − (R+ n− 1)j

)∆
=
(

S

S − (R+ n)j

)∆
≤
(

2n−1

2n−1 − (R+ n)j

)∆

.

Summarizing all three cases, we obtain that

δ ≤
(

2n−1

2n−1 − (R+ n)j

)2∆

.

Note: This concludes the proof of Lemma 7.4, thereby completing the proof of Lemma 7.1
and, in turn, also the proof of our main result (Theorem 7.5).

7.6 Conclusion and Outlook
In this chapter, we introduced, for the first time, a random oracle model for KSG-
based stream ciphers and proved a sharp asymptotic (2n/3)-bound on the security of
the Lizard-construction against generic chosen-IV key recovery and packet prediction
TMD-TO attacks. We hope that the security model and the lower bound techniques
developed here will help to prove similar sharp security bounds for other stream cipher
constructions.

We have further shown that for a packet length R > n, where n denotes the inner state
length of the underlying KSG, KSG-based stream ciphers can be only (n/2)-secure w.r.t.
generic TMD-TO distinguishing attacks (see Corollary 7.1). From a theoretical point of
view, it would be very interesting to analyze the case R = n. Our conjecture is that for
R = n, the Lizard-construction is (2n/3)-secure even against distinguishing attacks.

In the following Chapter 8, we will present our new lightweight stream cipher Lizard,
which is the first practical instantiation of the Lizard-construction and was introduced
at FSE 2017. The results of our corresponding hardware implementation for ASICs will
show that the Lizard-construction is a very promising design principle for the creation
of small-state stream ciphers (cf. Chapter 6) suitable for ultra-constrained RFIDs (cf.
Chapter 2). In particular, employing the Lizard-construction allows for provable security
against generic TMD-TO key recovery attacks, something which is yet missing for Sprout-
like approaches. Based on these insights, in Section 9.2, we will then suggest how Lizard

209

7 The LIZARD-Construction

(resp. the Lizard-construction) can be used to realize lightweight, privacy-preserving
authentication, thus constituting a viable alternative to prevalent block cipher-based
constructions (cf. Chapter 3). We consider this use case particularly interesting due
to our above conjecture about the (2n/3)-security of the Lizard-construction against
generic TMD-TO distinguishing attacks for the case R = n.

210

7.A A Short Excursion to Chernoff Bounds

Appendix 7.A A Short Excursion to Chernoff Bounds
At several places of our proof, we have to apply a technique called Chernoff bounds in
the literature. The basic Chernoff bound argument is the following.

Theorem 7.6

Let N be a positive integer, p ∈ (0, 1), and A1, . . . , AN be a set of mutually
independent random variables, where for all i = 1, . . . , N , it holds that Pr[Ai =
1−p] = p and Pr[Ai = −p] = 1−p. Let A = ∑N

i=1Ai. Then, for all a > 0, it holds

Pr[A > a] < e−2·a2/N . (7.51)

Proof of Theorem 7.6: See, e.g., Theorem A4 on page 235 of [ASE92].

We derive from Theorem 7.6 a corresponding result for random {0, 1}-variables.

Lemma 7.6

Let p, N , and Ai for i = 1, . . . , N be defined as in Theorem 7.6, and let Bi = Ai+p.
Note that Bi ∈ {0, 1} and Pr[Bi = 1] = p. Let B = ∑N

i=1Bi. Then, for all d > 0,
it holds

Pr[B > (p+ d)N] < e−2·d2·N .

Proof of Lemma 7.6: By definition, B = A+N · p. The proof is completed by putting
a = d ·N into Eq. (7.51) in Theorem 7.6.

We will apply Chernoff bound arguments in the following modified scenario and start
with some denotation.

Definition 7.19

Let N ≥ 1 and let X1, . . . , XN denote a collection of random {0, 1}-variables. For
all i, 1 ≤ i ≤ N , and for all b = (b1, . . . , bi) ∈ {0, 1}i, let X(b) denote the event
that Xj = bj for all j = 1, . . . , i.

Lemma 7.7

Let C1, . . . , CN denote a collection of random {0, 1}-variables fulfilling the following
two conditions for some probability bound p, 0 < p < 1:

211

7 The LIZARD-Construction

• Pr[C1 = 1] = p1 ≤ p.

• For all i, 2 ≤ i ≤ N , and all b ∈ {0, 1}i−1, there is some number p(b) ≤ p,
which can be computed from b, and for which it holds that

Pr[Ci = 1 | C(b)] = p(b).

Let C = ∑N
i=1Ci. Then, for all d > 0, it holds

Pr[C > (p+ d)N] < e−2·d2·N .

Note that for any D > 0 and d =
√
D/(2N), we obtain

Pr[C > (p+ d)N] = Pr

C > pN +
√
D ·N

2

 < e−D.

Proof of Lemma 7.7: We construct a collection of mutually independent binary random
variables B1, . . . , BN satisfying

• Ci = 1 implies Bi = 1,

• Pr[Bi = 1] = p

for all i, 1 ≤ i ≤ N . This proves our Lemma 7.7, as ∑N
i=1Ci ≤

∑N
i=1Bi with probability

one, and as Lemma 7.6 can be applied to B = ∑N
i=1Bi.

The experiments Expi behind Bi are for all i, 1 ≤ i ≤ N , defined as follows. We
start with Exp1: Exp1 performs the experiment behind C1. If C1 = 1, then it outputs
B1 = 1. If C1 = 0, then it starts an independent experiment with output E1 ∈ {0, 1}
and Pr[E1 = 1] = q1 = p−p1

1−p1
.

For i > 1, the experiment Expi is defined as follows:

• Look at the outcome b ∈ {0, 1}i−1 of the experiments behind C1, . . . , Ci−1 and
compute p(b).

• Perform the experiment behind Ci (note that Pr[Ci = 1 | C(b)] = p(b)). If Ci = 1,
then output Bi = 1. If Ci = 0, then start an independent experiment Ei with
output Ei ∈ {0, 1} and Pr[Ei = 1] = q(b) = p−p(b)

1−p(b) .

Note that Pr[B1 = 1] = p, as

Pr[B1 = 1 | C1 = 1] · Pr[C1 = 1] + Pr[B1 = 1 | C1 = 0] · Pr[C1 = 0]
= 1 · p1 + q1 · (1− p1) = p1 + (p− p1) = p.

212

7.A A Short Excursion to Chernoff Bounds

A similar argument shows that for all i, 2 ≤ i ≤ N , and all b ∈ {0, 1}i−1, it holds that
Pr[Bi = 1 | C(b)] = p. From this, it follows directly that Pr[Bi = 1] = p.

We now show the mutual independence of B1, . . . , BN . Remember that for all i,
1 ≤ i ≤ N , and all vectors b = (b1, . . . , bi) ∈ {0, 1}i, B(b) denotes the event that Bj = bj
for all j = 1, . . . , i, and that C(b) denotes the event that Cj = bj for all j = 1, . . . , i.

For showing the mutual independence of B1, . . . , BN , it is obviously sufficient to prove
that for all b ∈ {0, 1}N , it holds

Pr[B(b)] = p|b| · (1− p)N−|b|, (7.52)

where |b| denotes the number of 1-components in b.
We show Eq. (7.52) by induction on N . The case N = 1 follows directly from above,

where it was shown that Pr[B1 = 1] = p.
Now let us assume that N > 1 and that Eq. (7.52) holds for i = 1, . . . , N − 1. We

fix some vector b ∈ {0, 1}N and denote b̃ = (b1, . . . , bN−1). Note that by the induction
hypothesis, it holds

Pr[B(b)] = Pr
[
B
(
b̃
)
∩ (BN = bN)

]
= Pr

[
B
(
b̃
)]
· Pr

[
BN = bN

∣∣∣ B(b̃)]
= p|b̃| · (1− p)N−1−|b̃| · Pr

[
BN = bN

∣∣∣ B(b̃)].
Consequently, it is sufficient to show that for all b̃ = (b1, . . . , bN−1) ∈ {0, 1}N−1, it holds
Pr[BN = 1 | B(b̃)] = p.
Note that the event B(b̃) equals the disjoint union of all events B(b̃) ∩ C(b′), where

b′ ranges over all vectors from {0, 1}N−1 for which b′ ≤ b̃, i.e., for which b′j ≤ b̃j for all
j = 1, . . . , N − 1. It hence suffices to show that Pr[BN = 1 | C(b′)] = p for all b′ ≤ b̃. But
this follows directly from the definition of the experiment behind BN (see above).

213

I am the Lizard King,
I can do anything!

Jim Morrison (The Doors)

CHAPTER8
Lizard – A Lightweight Stream Cipher

for Power-constrained Devices

ABSTRACT
In the previous chapters, we have seen that TMD-TO attacks limit the security level of many
classical stream ciphers (like E0, A5/1, Trivium, Grain) to n/2, where n denotes the inner
state length of the underlying KSG. Seeking to overcome this limitation, very recently the new
field of so-called small-state stream ciphers has emerged. As part of the respective overview in
Chapter 6, we already sketched the design of Lizard, our new lightweight stream cipher for
power-constrained devices like passive RFID tags. In this chapter, we now provide the full details,
including an in-depth security analysis and an assessment of its hardware characteristics in terms
of the metrics introduced in Chapter 2.

The cipher’s efficiency results from combining a Grain-like design with the Lizard-construction
(cf. Chapter 7), our new construction principle for the state initialization of stream ciphers, which
offers provable (2n/3)-security against TMD-TO attacks aiming at key recovery. Lizard uses
120-bit keys, 64-bit IVs, and has an inner state length of 121 bits. It is supposed to provide 80-bit
security against key recovery attacks. Lizard allows to generate up to 218 keystream bits per
key/IV pair, which would be sufficient for many existing communication scenarios like Bluetooth,
WLAN, or HTTPS.

Declaration of Origin: This chapter is based on the paper LIZARD – A Lightweight Stream
Cipher for Power-constrained Devices [HKM17b], written together with Matthias Krause and
Willi Meier and presented at FSE 2017.

215

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

8.1 Introduction
As explained in Chapter 5, stream ciphers have a long history when it comes to protecting
digital communication. Due to the mentioned security flaws of older designs such
as RC4 [Sch95], E0 (Bluetooth) [Blu14], and A5/1 (GSM) [BGW99], in 2004, the
eSTREAM project [ECR08] was started in order to identify new stream ciphers for
different application profiles. In the hardware category, aiming at devices with restricted
resources, three ciphers are still part of the eSTREAM portfolio after the latest revision
in 2012 [BBV12]: Grain v1 [HJM06], MICKEY 2.0 [BD06], and Trivium [CP05].
Grain v1 uses 80-bit keys, 64-bit IVs and the authors do not give an explicit limit

on the number of keystream bits that should be generated for each key/IV pair (cf.
Subsection 5.2.4). MICKEY 2.0 uses 80-bit keys, IVs of variable length up to 80 bits and
the maximum amount of keystream bits for each key/IV pair is 240. Trivium uses 80-bit
keys, 80-bit IVs and at most 264 keystream bits should be generated for each key/IV pair
(cf. Subsection 5.2.3).

Interestingly, all three ciphers of the eSTREAM hardware portfolio are obviously
designed for potentially very large keystream sequences per key/IV pair. In contrast,
common transmission standards use much smaller packet sizes. For example, A5/1 of
GSM produces only 228 keystream bits per key/IV pair, where the session key is 64 bits
long and the IV corresponds to 22 bits of the publicly known frame (i.e., packet) number
(cf. Subsection 5.2.2). Similarly, Bluetooth packets contain at most 2790 bits for the
so-called basic rate. The Bluetooth cipher E0 takes a 128-bit session key and uses 26 bits
of the master’s clock, which is assumed to be publicly known, as the packet-specific IV
(cf. Subsection 5.2.1). For wireless local area networks (WLANs), the currently active
IEEE 802.11-2012 standard [Ins12] implies that at most 7943 bytes (i.e., < 216 bits)
are encrypted under the same key/IV pair using CCMP. Another widespread example
for encryption on a per-packet basis is SSL/TLS, which underlies Hypertext Transfer
Protocol Secure (HTTPS) and thus plays a vital role in securing the World Wide Web.
In the most recent version, TLS 1.2 [DR08], the maximum amount of data encrypted
under the same key/IV pair is 214 + 210 bytes (i.e., 217 + 213 < 218 bits), as long as RC4,
which is now forbidden for all TLS versions by RFC 7465 [Pop15], is not used.

Considering the above examples, the natural question arises whether a stream cipher
with attractive features regarding security and efficiency could be designed by specifically
targeting such packet mode scenarios (cf. Section 5.1), where only moderately long pieces
of keystream are generated under the same key/IV pair. In this chapter, we answer
the question in the affirmative by presenting Lizard, a lightweight stream cipher for
power-constrained devices. It takes 120-bit keys, 64-bit IVs and generates up to 218

keystream bits per key/IV pair. (Note that a maximum packet size of 218 bits covers
all of the real-world protocol examples given in the previous paragraph.) Lizard is
designed to provide 80-bit security against key recovery attacks including generic TMD-
TO attacks. This is remarkable insofar as Lizard’s inner state is only 121 bits wide.

216

8.1 Introduction

In contrast, Trivium and Grain v1, for example, have an inner state length of at least
twice the size of the targeted security level against key recovery attacks. This is due to
the inherent vulnerability of classical stream ciphers (i.e., stream ciphers which compute
the keystream based on a so-called initial state) against TMD-TO attacks like those of
Babbage [Bab95] and Biryukov and Shamir [BS00], which allow to recover some inner
state during keystream generation (and, usually, also the corresponding initial state by
clocking the cipher backwards) with an overall attack complexity of 2n/2, where n denotes
the inner state length of the underlying KSG (see Theorem 7.1 in Section 7.3). As the
state initialization algorithm, which computes the initial state from a given key/IV pair,
is efficiently invertible for Trivium and Grain v1 (cf. Section 5.3), knowing the initial
state immediately reveals the secret key. And even if the state initialization algorithm is
not efficiently invertible, variants of such TMD-TO attacks often allow for key recovery
(see Subsection 8.4.2 for further details). Lizard, on the other hand, represents the
first practical instantiation of the Lizard-construction introduced in Chapter 7, which
provides a method for designing stream ciphers in such a way that, for packet mode
scenarios, a beyond-the-birthday-bound security level of 2n/3 w.r.t. generic TMD-TO
attacks aiming at key recovery can be proved. (TMD-TO attacks aiming at recovering
some initial state still work for Lizard, but they do not allow to straightforwardly derive
the underlying secret key.)
The design of Lizard is closely related to that of Grain v1 (cf. Subsection 5.2.4),

which turned out to be the most hardware-efficient member of the eSTREAM portfolio
and, hence, can be considered as a benchmark for new hardware-oriented designs. When
compared to Grain v1, the major differences of Lizard are the smaller inner state
(121 bits vs. 160 bits), the larger key (120 bits vs. 80 bits) and the fact that Lizard
introduces the secret key not only once but twice during its state initialization. All
of these modifications are a direct consequence of implementing the generic Lizard-
construction as explained in Subsection 8.3.5. Naturally, reducing the size of the inner
state also required to change the underlying feedback shift registers (FSRs) and, for
security reasons, to choose a heavier output function.
In Chapter 6, where we already sketched the structure of Lizard, we also gave an

overview over some other recent small-state stream ciphers, namely Sprout [AM15],
Plantlet [MAM17], and Fruit [GHX16]. Common to these three ciphers is that they
continuously use the secret key during keystream generation, which, as explained in
Section 6.1, comes with certain efficiency drawbacks. In particular, continuously accessing
the secret key from EEPROM can have a severe impact on an RFID tag’s power budget
(see Subsection 2.3.9 for further details) as well as limit the maximum possible encryption
speed due to latency issues. Also note that, unlike Lizard, neither Sprout nor Plantlet
nor Fruit offer provable security against TMD-TO attacks aiming at key recovery.
We would like to point out that the above arguments by no means imply that we

reject the idea of stream ciphers that continuously access the secret key. However, they
illustrate the need for alternative ideas that allow to reduce the size of the inner state

217

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

NFSR2 NFSR1

a

29
f2

17
f1

zt

46 7

Bt
0 Bt

89 St0 St30
St0

Figure 8.1: Lizard in keystream generation mode.

even in scenarios where continuous key access is not feasible.
Lizard has been designed with low-cost scenarios like passively powered RFID tags

in mind. In particular, it outperforms Grain v1 in important hardware metrics like
cell area and power consumption. Most notably, the estimated power consumption is
about 16 percent below that of Grain v1, making Lizard particularly suitable for power-
constrained devices. This shows that in scenarios where plaintext packets of moderate
length are to be encrypted under individual IVs, the Lizard-construction provides an
interesting alternative to conventional state initialization algorithms of stream ciphers.

Structure of this chapter: In Section 8.2, we specify the components of Lizard (Sub-
section 8.2.1) and describe how it is operated during state initialization (Subsection 8.2.2)
and keystream generation (Subsection 8.2.3). Building on this, Section 8.3 then provi-
des the corresponding design considerations. In particular, Subsection 8.3.5 contains a
detailed explanation of how the generic Lizard-construction introduced in Chapter 7
has been implemented for Lizard. Section 8.4 treats the cryptanalysis of Lizard and
in Section 8.5, we present the details of our hardware implementation along with a
comparison of the corresponding performance metrics between Lizard and Grain v1.
Section 8.6 concludes the chapter and provides an outlook on potential future work as
well as on the remaining parts of this thesis. Test vectors and a reference implementation
can be found in Appendix 8.A and Appendix 8.C, respectively.

8.2 Design Specification

The design of Lizard is similar to (and was in fact inspired by) that of the Grain family
[HJMM08] of stream ciphers (see Subsection 5.2.4). In particular, the inner state of
Lizard is distributed over two interconnected FSRs as depicted in Fig. 8.1.

Note, however, that while Grain uses one LFSR and one NFSR, which, moreover, are
of the same length, Lizard uses two NFSRs of different lengths instead. The reasons for
this design choice will be explained in Section 8.3. Like in Grain, the third important

218

8.2 Design Specification

building block besides the two FSRs is a nonlinear output function, which takes inputs
from both shift registers and is also used as part of the state initialization algorithm.

In the following, we describe the components of the cipher in detail (Subsection 8.2.1)
and specify how it is operated during state initialization (Subsection 8.2.2) and keystream
generation (Subsection 8.2.3). For the sake of clarity, Subsections 8.2.1 to 8.2.3 contain
only the technical aspects of Lizard. Explanations of important design choices are
given separately in Section 8.3, along with a discussion of the security properties of the
particular components (e.g., the algebraic properties of the feedback functions).

8.2.1 Components
The 121-bit inner state of Lizard is distributed over two NFSRs, NFSR1 and NFSR2,
whose contents at time t = 0, 1, . . . we denote by (St0, . . . , St30) and (Bt

0, . . . , B
t
89), re-

spectively (cf. Fig. 8.1). As NFSR1 and NFSR2 are Fibonacci-type, for t ∈ N \ {0, 128}
(cf. Subsection 8.2.2) it holds that St+1

i := Sti+1, i = 0, . . . , 29, and Bt+1
j := Bt

j+1,
j = 0, . . . , 88.

NFSR1

In Lizard, NFSR1 replaces the LFSR of the Grain family of stream ciphers. NFSR1 is
31 bits wide and corresponds to the NFSR A10 of the eSTREAM Phase 2 (hardware
portfolio) candidate ACHTERBAHN-128/80 [GGK06]. For non-zero starting states, it
has a guaranteed period of 231 − 1 (i.e., maximal) and can be specified by the following
update relation (during keystream generation), defining f1 depicted in Fig. 8.1:

St+1
30 := St0 ⊕ St2 ⊕ St5 ⊕ St6 ⊕ St15 ⊕ St17 ⊕ St18 ⊕ St20 ⊕ St25

⊕ St8St18 ⊕ St8St20 ⊕ St12S
t
21 ⊕ St14S

t
19 ⊕ St17S

t
21 ⊕ St20S

t
22

⊕ St4St12S
t
22 ⊕ St4St19S

t
22 ⊕ St7St20S

t
21 ⊕ St8St18S

t
22

⊕ St8St20S
t
22 ⊕ St12S

t
19S

t
22 ⊕ St20S

t
21S

t
22 ⊕ St4St7St12S

t
21

⊕ St4St7St19S
t
21 ⊕ St4St12S

t
21S

t
22 ⊕ St4St19S

t
21S

t
22

⊕ St7St8St18S
t
21 ⊕ St7St8St20S

t
21 ⊕ St7St12S

t
19S

t
21

⊕ St8St18S
t
21S

t
22 ⊕ St8St20S

t
21S

t
22 ⊕ St12S

t
19S

t
21S

t
22.

NFSR2

NFSR2 is 90 bits wide and uses a modified version of g from Grain-128a [gHJM11] as
its feedback polynomial. More precisely, f2 of NFSR2 (cf. Fig. 8.1) squeezes the taps of
g to fit a 90-bit register, resulting in the following update relation (during keystream
generation):

Bt+1
89 := St0 ⊕Bt

0 ⊕Bt
24 ⊕Bt

49 ⊕Bt
79 ⊕Bt

84 ⊕Bt
3B

t
59 ⊕Bt

10B
t
12

219

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83.

Note that this update relation for Bt+1
89 additionally contains the masking bit St0 from

NFSR1 (analogously to the Grain family).

Output Function a

a : {0, 1}53 −→ {0, 1} builds on the construction scheme introduced in [MJSC16] as part
of the FLIP family of stream ciphers (see Section 8.3 for details). For the sake of clarity,
we define a through the output bit zt of Lizard at time t, which is computed as

zt := Lt ⊕Qt ⊕ Tt ⊕ T̃t,

where

Lt := Bt
7 ⊕Bt

11 ⊕Bt
30 ⊕Bt

40 ⊕Bt
45 ⊕Bt

54 ⊕Bt
71,

Qt := Bt
4B

t
21 ⊕Bt

9B
t
52 ⊕Bt

18B
t
37 ⊕Bt

44B
t
76,

Tt := Bt
5 ⊕Bt

8B
t
82 ⊕Bt

34B
t
67B

t
73 ⊕Bt

2B
t
28B

t
41B

t
65

⊕Bt
13B

t
29B

t
50B

t
64B

t
75 ⊕Bt

6B
t
14B

t
26B

t
32B

t
47B

t
61

⊕Bt
1B

t
19B

t
27B

t
43B

t
57B

t
66B

t
78,

T̃t := St23 ⊕ St3St16 ⊕ St9St13B
t
48 ⊕ St1St24B

t
38B

t
63.

8.2.2 State Initialization
The state initialization process can be divided into four phases. Phases 1–3 constitute
an instantiation of the Lizard-construction design principle introduced in Chapter 7,
which, in our case, provides 80-bit security against generic TMD-TO attacks aiming at
key recovery. Phase 4 is a consequence of the necessity to make sure that NFSR1 is not
in the all-zero state after phase 3 (see below for details).

Phase 1: Key and IV Loading

Let K = (K0, . . . ,K119) denote the 120-bit key and IV = (IV0, . . . , IV63) the 64-bit
public IV. The registers of the KSG are initialized as follows:

B0
j :=

{
Kj ⊕ IVj , for j ∈ {0, . . . , 63} ,
Kj , for j ∈ {64, . . . , 89} ,

S0
i :=

Ki+90, for i ∈ {0, . . . , 28} ,
K119 ⊕ 1, for i = 29,
1, for i = 30.

220

8.2 Design Specification

NFSR2 NFSR1

a

29
f2

17
f1

zt

46 7

Bt
0 Bt

89 St0 St30
St0

Figure 8.2: Lizard in phase 2 of the state initialization.

Phase 2: Grain-like Mixing

Clock the cipher 128 times without producing actual keystream. Instead, at time
t = 0, . . . , 127, the output bit zt is fed back into both FSRs as depicted in Fig. 8.2. To
avoid ambiguity, we now give the full update relations that will be used for NFSR2 and
NFSR1 in phase 2. For t = 0, . . . , 127, compute

Bt+1
j := Bt

j+1, for j ∈ {0, . . . , 88} ,
Bt+1

89 := zt ⊕ St0 ⊕Bt
0 ⊕Bt

24 ⊕Bt
49 ⊕Bt

79 ⊕Bt
84 ⊕Bt

3B
t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83,

St+1
i := Sti+1, for i ∈ {0, . . . , 29} ,
St+1

30 := zt ⊕ St0 ⊕ St2 ⊕ St5 ⊕ St6 ⊕ St15 ⊕ St17 ⊕ St18 ⊕ St20 ⊕ St25

⊕ St8St18 ⊕ St8St20 ⊕ St12S
t
21 ⊕ St14S

t
19 ⊕ St17S

t
21 ⊕ St20S

t
22

⊕ St4St12S
t
22 ⊕ St4St19S

t
22 ⊕ St7St20S

t
21 ⊕ St8St18S

t
22

⊕ St8St20S
t
22 ⊕ St12S

t
19S

t
22 ⊕ St20S

t
21S

t
22 ⊕ St4St7St12S

t
21

⊕ St4St7St19S
t
21 ⊕ St4St12S

t
21S

t
22 ⊕ St4St19S

t
21S

t
22

⊕ St7St8St18S
t
21 ⊕ St7St8St20S

t
21 ⊕ St7St12S

t
19S

t
21

⊕ St8St18S
t
21S

t
22 ⊕ St8St20S

t
21S

t
22 ⊕ St12S

t
19S

t
21S

t
22,

where zt := Lt ⊕Qt ⊕ Tt ⊕ T̃t is computed as described in Subsection 8.2.1.

Phase 3: Second Key Addition

In this phase, the 120-bit key is XORed in a bitwise fashion to the inner state of the
KSG, similar to how it was introduced in phase 1. More precisely, the following update
relations for NFSR2 and NFSR1 constitute phase 3:

B129
j := B128

j ⊕Kj , for j ∈ {0, . . . , 89} ,

221

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

NFSR2 NFSR1

29
f2

17
f1

Bt
0 Bt

89 St0 St30
St0

Figure 8.3: Lizard in phase 4 of the state initialization. The output function a is omitted
as all output bits generated in this phase are discarded.

S129
i :=

{
S128
i ⊕Ki+90, for i ∈ {0, . . . , 29} ,

1, for i = 30.

Note that, like in phase 1, the rightmost cell of NFSR1 is here again set to 1 in order to
avoid the all-zero state, which would practically render our maximum-length FSR NFSR1
ineffective as, after phase 3, the only input to it will come from its feedback function
(i.e., for t ≥ 129, St+1

i , i = 0, . . . , 30, is computed as described in Subsection 8.2.1). In
contrast to phase 1, the key bit K119 is not inverted in phase 3.

Phase 4: Final Diffusion

As pointed out previously, phases 1–3 constitute an instantiation of the key loading and
mixing steps of the generic Lizard-construction (cf. Chapter 7), which, in our case,
yields 80-bit security w.r.t. generic TMD-TO attacks aiming at key recovery. Phase 4
is additionally required in order to obtain the necessary diffusion w.r.t. the bit at the
rightmost position of NFSR1, which was set to 1 in phase 3. We achieve this by stepping
the whole KSG 128 times in keystream generation mode as phase 4 (see Fig. 8.3). Note
that the 128 output bits produced during phase 4 are discarded, i.e., they are not used
as actual keystream.

Once more, to avoid ambiguity, we give the full update relations that will be used for
NFSR2 and NFSR1 in phase 4. For t = 129, . . . , 256, compute

Bt+1
j := Bt

j+1, for j ∈ {0, . . . , 88} ,
Bt+1

89 := St0 ⊕Bt
0 ⊕Bt

24 ⊕Bt
49 ⊕Bt

79 ⊕Bt
84 ⊕Bt

3B
t
59 ⊕Bt

10B
t
12

⊕Bt
15B

t
16 ⊕Bt

25B
t
53 ⊕Bt

35B
t
42 ⊕Bt

55B
t
58 ⊕Bt

60B
t
74

⊕Bt
20B

t
22B

t
23 ⊕Bt

62B
t
68B

t
72 ⊕Bt

77B
t
80B

t
81B

t
83,

St+1
i := Sti+1, for i ∈ {0, . . . , 29} ,
St+1

30 := St0 ⊕ St2 ⊕ St5 ⊕ St6 ⊕ St15 ⊕ St17 ⊕ St18 ⊕ St20 ⊕ St25

⊕ St8St18 ⊕ St8St20 ⊕ St12S
t
21 ⊕ St14S

t
19 ⊕ St17S

t
21 ⊕ St20S

t
22

⊕ St4St12S
t
22 ⊕ St4St19S

t
22 ⊕ St7St20S

t
21 ⊕ St8St18S

t
22

⊕ St8St20S
t
22 ⊕ St12S

t
19S

t
22 ⊕ St20S

t
21S

t
22 ⊕ St4St7St12S

t
21

⊕ St4St7St19S
t
21 ⊕ St4St12S

t
21S

t
22 ⊕ St4St19S

t
21S

t
22

222

8.3 Design Considerations

⊕ St7St8St18S
t
21 ⊕ St7St8St20S

t
21 ⊕ St7St12S

t
19S

t
21

⊕ St8St18S
t
21S

t
22 ⊕ St8St20S

t
21S

t
22 ⊕ St12S

t
19S

t
21S

t
22.

See Subsection 8.3.5 for further remarks on this design choice.

8.2.3 Keystream Generation

At the end of the state initialization, the 31-bit (initial) state of NFSR1 is (S257
0 , . . . , S257

30)
and the 90-bit (initial) state of NFSR2 is (B257

0 , . . . , B257
89). The first keystream bit

that is used for plaintext encryption is z257. For t ≥ 257, the states (St+1
0 , . . . , St+1

30)
and (Bt+1

0 , . . . , Bt+1
89) and the output bit zt are computed using the relations given in

Subsection 8.2.1. Figure 8.1 on page 218 depicts the structure of Lizard during keystream
generation.

As Lizard is designed to be operated in packet mode, the maximum size of a plaintext
packet encrypted under the same key/IV pair is 218 bits and no key/IV pair may be used
more than once, i.e., for more than one packet. Let X = (x0, . . . , x|X|−1) denote such
a plaintext packet and let z257, z258 . . . be the keystream generated for it as described
before. Then the corresponding ciphertext packet Y = (y0, . . . , y|X|−1) can be produced
via yi := xi ⊕ zi+257, i = 0, . . . , |X| − 1. Decryption (given that the secret session key
and the public IV are known) works analogously.

Note that, though we use the terms plaintext/ciphertext packet here, Lizard is really
a (synchronous) stream cipher. That is, the keystream bits z257, z258 . . . are generated in
a bitwise fashion (and independently of the plaintext/ciphertext) and, consequently, the
individual plaintext bits xi can be encrypted and then (in the form of yi) transmitted as
they arrive. The same obviously holds for the decryption of the ciphertext bits yi on the
receiver’s side.

8.3 Design Considerations

In this section, we provide additional explanations w.r.t. our design, which were omitted
in Section 8.2 for the sake of clarity. Based on several of the following properties, we will
then argue in Section 8.4, why we believe that Lizard resists the currently known types
of attacks against stream ciphers.

Please note that in the following subsections (and also in Section 8.4), we will repeatedly
use standard cryptographic terms such as nonlinearity, balancedness, resiliency, algebraic
immunity etc. in the description of the employed feedback and output functions. For
corresponding definitions and further explanations, we refer the reader to, e.g., Boolean
Functions for Cryptography and Error Correcting Codes [Car12] by Claude Carlet (esp.
Section 4.1: Cryptographic criteria for Boolean functions). A nice overview is also given
in the paper [MJSC16] by Méaux et al.

223

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

8.3.1 NFSR1

As mentioned in Subsection 8.2.1, NFSR1 is 31 bits wide and corresponds to the NFSR
A10 of the eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80
[GGK06]. We chose the NFSR A10 out of the set of all maximum-length NFSRs used
in ACHTERBAHN due to the fact that the two NFSRs which would have offered even
slightly longer periods (namely, A11 and A12) both use inconvenient taps w.r.t. potential
speedup measures (see Subsection 8.3.3 for details). Moreover, we did not choose one of
the smaller maximum-length NFSRs of ACHTERBAHN as (under the condition that we
want to keep the speedup option as described below) those would have led to the situation
that we would have had to use certain taps of NFSR1 at the same time in its feedback
function and in the output function. The reason why we used the ACHTERBAHN design
as a source for our NFSR1 in the first place is twofold.
First, we wanted NFSR1 to have guaranteed period 231 − 1, as, in Lizard, NFSR1

replaces the maximum-length LFSR of the Grain family. Unfortunately, apart from
special cases like constructing n-bit NFSRs with period 2n−1 from n-bit maximum-length
LFSRs (cf. [Dub13]), not much is known yet about how to construct large NFSRs with
maximum period (see, e.g., [Dub12] or [Dub13] for further remarks and references to
corresponding approaches).1 However, due to the restriction to packet mode (with a
maximum of 218 keystream bits per key/IV pair), Lizard actually does not need as
large guaranteed periods as the Grain family, which allowed us to replace the maximum-
length LFSR of Grain by a suitable maximum-length NFSR. The design document of
ACHTERBAHN provides a collection of such maximum-length NFSRs of sufficient size.

The second reason for using A10 from ACHTERBAHN as our NFSR1 is its hardware
efficiency. Despite A10’s comparatively large algebraic normal form, the designers of
ACHTERBAHN are able provide a compact hardware realization of the feedback function
consuming only 31.75 gate equivalents (GE) and having logical depth three (see Chapter 2
and Section 8.5 for further details w.r.t. hardware complexity and an explanation of
corresponding units of measure like GE).

When operated in a self-contained manner (i.e., after phase 3 of the state initialization),
NFSR1 has a guaranteed period (for non-zero starting states) of 231 − 1. The following
properties of A10 of ACHTERBAHN (and, hence, also of NFSR1 of Lizard) were given in
[GGK06]: a nonlinearity of 61 440, an order of correlation immunity of 6, and a diffusion
parameter2 of 61. Moreover, it is easy to see that the feedback function f1 of NFSR1 is
balanced and, thus (as it is 6th order correlation-immune), 6-resilient. For comparison, in

1In fact, a de Bruijn sequence of length 2n can be generated with an n-bit NFSR. Still, for simplicity,
we also call our 31-bit NFSR1 with period 231 − 1 maximum-length, in analogy to the case of LFSRs
(where a period of 2n is obviously impossible to achieve with an n-bit LFSR).

2The diffusion parameter λ was determined experimentally in [GGK06] and denotes “the minimum
number of clock cycles needed in order to transform any two initial states of the shift register Aj of
Hamming distance 1 into shift register states of Hamming distance close to Nj/2” (Nj denotes the size of
the shift register Aj).

224

8.3 Design Considerations

Grain v1 as well as in Grain-128a, the feedback function of the LFSR (which is replaced
by NFSR1 in Lizard) has resiliency 5. Finally, the algebraic degree of f1 is 4.

8.3.2 NFSR2

NFSR2 is 90 bits wide and its feedback polynomial is a modified version of g from Grain-
128a [gHJM11], which, after years of intense cryptanalysis, is still considered unbroken.
In contrast to NFSR1, the period of NFSR2 during keystream generation is unknown
because, due to the masking bit from NFSR1, NFSR2 is actually a filter instead of a real
NFSR (cf. corresponding remark for the Grain family in [HJMM08]).

As described in Subsection 8.2.1, f2 of Lizard squeezes the taps of g from Grain-128a
in such a way that the property of g that no tap appears more than once is preserved in
f2. In consequence, several important properties of g like its balancedness, its resiliency
of 4, its nonlinearity of 267 403 264 and its security w.r.t. linear approximations (214 best
linear approximations with bias 63 · 2−15) carry over to f2 (see [gHJM11] for further
details regarding the security of g of Grain-128a). The algebraic degree of f2 is 4.

Beyond these properties, an important requirement for NFSR2 is that it should provide
resistance against cube-like attacks on the initialization. The NFSR as selected for
Lizard meets this condition as unpublished results suggest, [Tod17].

8.3.3 Output Function a

An important question in FSR-based stream cipher design is how to share the load of
ensuring security between the driving register(s) and the output function. To compensate
for the fact that the inner state of Lizard is smaller than that of Grain v1, we decided
that the output function should have more inputs and larger algebraic degree instead. It
builds on the construction scheme introduced in [MJSC16] as part of the FLIP family
of stream ciphers. More precisely, Lizard’s output function a can be written as the
direct sum of a linear function with seven monomials, a quadratic function with four
monomials, a triangular function with seven monomials, and another triangular function
with four monomials, where each tap of NFSR1 and NFSR2 appears at most once in a.

As a consequence, the output function of Lizard is defined over 53 variables, balanced,
and has, according to lemmata 3–6 in [MJSC16], the following security properties: a
nonlinearity of 4 476 506 321 453 056 (≈ 251), a resiliency of 8, an algebraic immunity of
at least 7, and a fast algebraic immunity of at least 8. The algebraic degree of a is 7.
If the content of NFSR1 at time t should be known to the attacker (e.g., as part of a

guess-and-determine attack), the output function still depends on at least 43 variables
and ‘gracefully degrades’ into the direct sum of a linear function with seven or eight
(depending on the values of St9 and St13) monomials, a quadratic function with four or five
(depending on the values of St1 and St24) monomials, and a triangular function with seven
monomials, which again conforms to the construction principle introduced in [MJSC16]

225

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

and leads to the following worst-case security properties for that situation: a nonlinearity
of 4 317 411 672 064 (≈ 241), a resiliency of 7, an algebraic immunity of at least 7, and a
fast algebraic immunity of at least 8.

While the choice of tap positions for state update functions is often already restricted
by the need to guarantee a certain period (e.g., as in the case of NFSR1), the choice of
tap positions for an output function is commonly less substantiated. For example, the
design documents introducing the members of the Grain family (cf. [HJM06], [gHJM11],
[HJMM08]) mainly focus on the conceptual question whether certain taps used in the
output function should be from the NFSR or the LFSR (and how many of each). The
more concrete question of which tap positions within each FSR are actually chosen for the
output function is almost exclusively discussed in the context of hardware acceleration or
when it comes to mitigate issues of previous versions arising from actual attacks (e.g.,
the attack of Dinur and Shamir [DS11] on Grain-128 [HJMM06], which lead to a change
of tap positions in the output function of Grain-128a [gHJM11]).
In the absence of canonical criteria for the selection of tap positions for Grain-like

constructions, we mainly resort to the concept of (full) positive difference sets that was
used by Golić in [Gol96] to assess the security of nonlinear filter generators consisting
of a single LFSR and a nonlinear output function: “for a positive integer λ, call Γ a
λth-order positive difference set if λ is the maximum number of pairs of its elements with
the same mutual difference (for λ = 1, we get a full positive difference set)” [Gol96].

In particular, the output function a of Lizard has the following properties:

• The set
{1, 3, 9, 13, 16, 23, 24}

of output function taps from NFSR1 is a 2nd-order positive difference set. Moreover,
no taps from NFSR1 are used at the same time for its feedback function and
the output function. (In Grain-128a, the feedback function of the LFSR, which
corresponds to our NFSR1, and the output function do not share any taps, either.)

• No taps from NFSR2 are used at the same time for its feedback function and
the output function. (In Grain-128a, the feedback function of the NFSR, which
corresponds to our NFSR2, and the output function share only a single tap called
“bi+95” in [gHJM11].)

• The direct sum Lt ⊕Qt ⊕ Tt uses only taps from NFSR2. (To maintain a sufficient
security level even when the content of the smaller NFSR1 is known to the attacker,
e.g., due to guessing; cf. Subsection 8.4.5.)

• The set
{5, 7, 11, 30, 40, 45, 54, 71}

of the tap indices (all from NFSR2) of the linear monomials of Lt⊕Qt⊕Tt is a full
positive difference set.

226

8.3 Design Considerations

• The set
{4, 8, 9, 18, 21, 37, 44, 52, 76, 82}

of the tap indices (all from NFSR2) of the quadratic monomials of Lt ⊕Qt ⊕ Tt is
a full positive difference set. One consequence of this is that each two bits of the
internal bitstream of NFSR2 can form at most once a quadratic monomial together.

• The sets
{|4− 21|, |8− 82|, |9− 52|, |18− 37|, |44− 76|}

of differences between the two taps (all from NFSR2) of each quadratic monomial
in Lt ⊕Qt ⊕ Tt and

{|3− 59|, |10− 12|, |15− 16|, |25− 53|, |35− 42|}

of differences between the two taps (all from NFSR2) of each quadratic monomial
in the feedback function of NFSR2 are disjoint. Hence, even during phase 2 of the
state initialization, each two bits of the internal bitstream of NFSR2 can form at
most once a quadratic monomial together.

• None of the differences

{|4− 21|, |8− 82|, |9− 52|, |18− 37|, |44− 76|}

between the two taps (all from NFSR2) of each quadratic monomial in Lt⊕Qt⊕Tt
appears as a difference between two taps of a higher degree monomial of Lt⊕Qt⊕Tt.

• Each of the sets

{34, 67, 73} ,
{2, 28, 41, 65} ,
{13, 29, 50, 64, 75} ,
{6, 14, 26, 32, 47, 61} ,
{1, 19, 27, 43, 57, 66, 78}

of tap indices (all from NFSR2) of the monomials of degree 3, . . . , 7 of Lt ⊕Qt ⊕ Tt
is a full positive difference set. Consequently, each two bits of the internal bitstream
of NFSR2 never appear more than once together as part of each (i.e., the same) of
those monomials.

Another cryptanalytic result motivating our selection of tap positions for the output
function of Lizard are attacks based on binary decision diagrams (BDDs). A direct
consequence of this type of attack against stream ciphers, which was introduced by
Krause in [Kra02] and applied to Grain-128 by Stegemann in [Ste07a], is that (roughly
speaking) the distance between the smallest and the largest tap index of a monomial
should be large for as many monomials as possible (see Subsection 8.4.10 for further
details).

227

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

8.3.4 Speedup Options

Our update relation for NFSR1 does not involve the five taps corresponding to St26, St27,
St28, St29, St30 in the generation of St+1

30 . Analogously, Bt+1
89 of NFSR2 is computed without

the involvement of Bt
85, Bt

86, Bt
87, Bt

88, Bt
89. These ten taps are also not used in the

output function of the cipher, which allows for a speedup of the keystream generation
(up to a factor of 6) simply by multiplying the (comparatively cheap) hardware for the
two feedback functions and the output function. Grain-128a uses the same idea to allow
for a speedup of up to a factor of 32 (which is obviously not possible here as NFSR1 has
only 31 register cells in total).

8.3.5 State Initialization Algorithm

As pointed out in Subsection 8.2.2, the state initialization algorithm of Lizard represents
an instantiation of the generic Lizard-construction introduced in Chapter 7, which, in
our case, provides 80-bit security against generic TMD-TO attacks aiming at key recovery
(cf. Subsection 8.4.2). In a nutshell, the Lizard-construction design principle for stream
ciphers can be described as follows:

• Choose an appropriate3 KSG of inner state length n and an appropriate packet
length R.

• Define the state initialization algorithm for packet i as follows:

(1) Loading: Given the symmetric session key k ∈ {0, 1}n and the packet initia-
lization vector IV i ∈ {0, 1}n, load IV i ⊕ k into the inner state registers of the
KSG, yielding the inner state qiload = IV i ⊕ k.

(2) Mixing: Run an appropriate KSG-based mixing algorithm4 on qiload, yielding
the inner state qimixed.

(3) Hardening: XOR k bitwise to this inner state qimixed, yielding the initial
state qiinit = qimixed ⊕ k.

• Starting with the initial state qiinit, the keystream for packet i is generated by the
KSG in the traditional way.

3Appropriate means that the KSG satisfies standard requirements w.r.t. design goals like security
and hardware efficiency. (2n/3)-security against TMD-TO attacks aiming at key recovery is then added
by the Lizard-construction.

4Such a mixing algorithm can, e.g., simply consist in repeatedly stepping the KSG in keystream
generation mode without producing output (cf. Trivium [CP05], Subsection 5.2.3) or involve more
sophisticated measures like generating a piece of internal keystream that is not output but instead loaded
in parallel to the inner state registers of the KSG as the initial state based on which the actual keystream
is then generated (cf. the E0-cipher of the Bluetooth standard [Blu14], Subsection 5.2.1).

228

8.3 Design Considerations

The state initialization algorithm of Lizard as described in Subsection 8.2.2 implements
the above scheme with some minor adaptions, which we will describe in the following.
Note that none of these modifications reduces the provable (2n/3)-security against
TMD-TO key recovery attacks provided by the generic Lizard-construction.

When compared to the generic scheme, the first obvious difference of Lizard is that
the IV length is now smaller than the key length. Even in the context of packet mode,
we currently do not see the need for IVs larger than 64 bits, hence, this design choice
was made to reduce the hardware costs of an implementation. (Grain v1 also uses 64-bit
IVs.) For extreme situations, where more than 264 packets need to be encrypted, Lizard
should be operated in a setting that allows the use of session keys.
W.r.t. potential security implications, observe that phase 1 of the state initialization

of Lizard (cf. Subsection 8.2.2) could equivalently be written as

B0
j :=

{
Kj ⊕ IV j , for j ∈ {0, . . . , 63} ,
Kj ⊕ 0, for j ∈ {64, . . . , 89} ,

S0
i :=

Ki+90 ⊕ 0, for i ∈ {0, . . . , 28} ,
K119 ⊕ 1, for i = 29,
1, for i = 30,

which (ignoring S0
30 for now, see below) can be interpreted as the loading phase of the

generic Lizard-construction under the restriction that the rightmost 56 bits of the
120-bit IV (in the generic scheme with n = 120) are fixed to (0, . . . , 0, 1). In the random
oracle model that was used to prove the (2n/3)-security of the Lizard-construction
against TMD-TO attacks aiming at key recovery (see Sections 7.4 and 7.5), such a
restriction of the choice of IVs in fact means a limitation of an attacker’s capabilities.
Hence, the security claims for the generic Lizard-construction still hold for Lizard (cf.
Subsection 8.4.2). The reason for setting S0

29 := K119⊕1 is to avoid the “sliding property”
of Grain v1 and Grain-128 that was pointed out in [DCKP08] (see Subsection 8.4.8 for
further details).
Another difference compared to the generic scheme is that in Lizard, the size of

the inner state is one bit larger than the size of the key. This extension by one bit is
necessary because of the Grain-like, FSR-based structure of Lizard. More precisely,
XORing a 120-bit key to a 120-bit inner state in phase 3 could result in a situation,
where both FSRs get stuck in the all-zero state, leading to an all-zero keystream for
the corresponding packet. Extending the inner state to 121 bits and setting S129

30 := 1
prevents this. Again, in the context of the security proof for the Lizard-construction, a
TMD-TO attack on Lizard (with 120-bit keys and a 121-bit inner state) will have at
least the same complexity as an attack on the generic scheme with 120-bit keys and a
120-bit inner state.

The third notable difference between the generic Lizard-construction and the state

229

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

initialization of Lizard is the additional phase 4 (cf. Subsection 8.2.2) in Lizard. The
purpose of this phase is twofold. First, without it, due to setting S129

30 := 1 in phase 3, one
bit of the inner state of NFSR1 would be known to an attacker during the first 31 steps of
keystream generation. Though we do not consider this an immediate threat (remember
that the output function of Lizard takes 53 inner state bits as input), it is nonetheless
an undesirable property that we feel should be avoided. The second motivation behind
phase 4 (and, in fact, also the reason for stepping the whole KSG in phase 4 instead
of only stepping NFSR1, which would have been sufficient to counter the first problem)
is to avoid certain related key/IV properties, which are discussed in detail as part of
Subsection 8.4.8.

8.4 Cryptanalysis

Beyond question, the essential feature of a cipher is its security. In particular, new
schemes need to resist those attacks which weakened or even broke other ciphers in the
past. The term resist here refers to a certain security level targeted by the designers,
where the common approach is to require that no attack with a complexity lower than
that of exhaustive key search exists. For Lizard, we deviate from this one-security-level-
fits-it-all approach to allow for a hardware-efficient implementation in low-cost scenarios,
where certain types of attacks might be of lesser importance than, e.g., strictly limiting
factors like power consumption. More precisely, Lizard offers 80-bit security against key
recovery and 60-bit security against distinguishing. Due to the key length of 120 bits, the
complexity of exhaustive key search is even significantly higher than that of key recovery
via TMD-TO attack (cf. Subsection 8.4.1 and Subsection 8.4.2).

Note that Lizard is only one of many cryptographic schemes that deviate from
the design paradigm key length = security level. Most prominently, in asymmetric
cryptography, key sizes significantly larger than the claimed security level are generally
accepted. A well-known example from the field of symmetric cryptography is the
lightweight authentication protocol by Hopper and Blum [HB01] (commonly known as
HB protocol) with its numerous variants (e.g., the HB+ protocol of Juels and Weis
[JW05]), some of which need key sizes of several hundreds of bits to be operated securely
(see Section 3.4 and [AHM14] for further details).

Trading some security against distinguishing attacks in favor of hardware efficiency
seems a plausible option to us as there are many practical scenarios where an attacker
will know anyhow that he is dealing with an encrypted data stream. Moreover, the fact
that there is a distinguishing attack does not mean that there are necessarily other, more
practically relevant attacks of the same complexity as well. Finally, we would like to
point out that for prominent lightweight block ciphers like PRESENT [BKL+07] and
KATAN64 [DCDK09], which both have 80-bit key size and 64-bit block size, a complete
code book can be built with complexity lower than 280 without considering the ciphers

230

8.4 Cryptanalysis

broken. In the same spirit, we consider a TMD-TO-based distinguishing attack of overall
attack complexity 260 against Lizard acceptable for many use cases.

In the following subsections, we will argue for several types of attacks against stream
ciphers (and the Grain family in particular) why we believe that Lizard will resist them.

8.4.1 Exhaustive Key Search

Based on experiments using the computer algebra system Magma [BCP97], the number
of possible initial states (under an arbitrarily fixed IV) after phase 4 of the state
initialization of Lizard is expected to be around 2119.34, if we assume that phase 2 of the
state initialization realizes a random, bijective mapping of (B0

0 , . . . , B
0
89, S

0
0 , . . . , S

0
30) to

(B128
0 , . . . , B128

89 , S128
0 , . . . , S128

30). Consequently, an attacker who knows a (sufficiently long)
piece of keystream of some packet will need at most around 2119.34 key guesses to find
the corresponding initial state, which then allows to generate the complete keystream of
this packet. Note that in Trivium and all members of the Grain family, for an arbitrarily
fixed IV, the state initialization realizes an injective mapping of the key space to the
set of initial states. In our case, this property is lost due to the second key addition
and setting S129

30 := 1 in phase 3 of the state initialization. Still, around 2119.34 possible
initial states for an arbitrarily fixed IV seems more than enough, given that Lizard is
supposed to be a power-saving alternative to Grain v1, whose key space has only size
280. Moreover, only if the actual key was found by the attacker (and not just one that
produces the same initial state for the given IV), he will be able to decrypt other packets
as well.

In [DCKP08], an attack on Grain v1 and Grain-128 (but not Grain-128a) was introduced
that allowed to reduce the cost of exhaustive key search by a factor of two by making
use of what the authors call the “sliding property” of those ciphers. In Subsection 8.4.8,
we explain how this sliding property was avoided for Lizard.

8.4.2 Time-Memory-Data Tradeoff Attacks

In the previous parts of this thesis, we have already seen that the vulnerability against
TMD-TO attacks like those of Babbage [Bab95] and Biryukov and Shamir [BS00] re-
presents an inherent weakness of existing practical stream ciphers. This yields the
well-known rule that for achieving l-bit security by a stream cipher (in the standard,
non-Lizard-construction-type operation mode), one has to choose an inner state length
of at least 2l for the underlying KSG. As a consequence, modern practical stream ciphers
have comparatively large inner state lengths (e.g., 288 bits for Trivium [CP05] or 160
bits for Grain v1 [HJM06]).5

5But also w.r.t. small-state stream ciphers, we have shown in Chapter 6 by means of our generic
TMD-TO distinguisher for Sprout-like ciphers and the TMD-TO key recovery attack against Fruit v1
that TMD-TO attacks are still among the major threats in contemporary stream cipher design.

231

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

Also remember that, e.g., for Trivium and all members of the Grain family, not only
the state update function during keystream generation but also the state initialization
algorithm, which computes the initial state from a key/IV pair, is efficiently invertible
(cf. Subsections 5.3.3 and 5.3.4). As a consequence, if an attacker manages to recover any
inner state during keystream generation, he will also be able to recover the corresponding
initial state, and, by inverting the state initialization algorithm, the underlying secret key.
While computing the initial state from any of the later inner states is also possible for
Lizard, the secret key cannot be computed efficiently from the initial state. This is due
to the fact that Lizard represents an instantiation of the general Lizard-construction
design principle as described in Chapter 7 and Subsection 8.3.5.
Hence, for Lizard, we have to treat the case of TMD-TO attacks aiming at key

recovery and the case of TMD-TO attacks aiming at recovering the initial state of some
packet separately. Before we go into the respective details, let us recall some terminology,
which we will make extensive use of.

Definition 8.1

In this subsection, we consider the following complexities w.r.t. TMD-TO attacks
against stream ciphers:

P : the preprocessing time of the attack,

T : the online time of the attack,

M : the memory required for the attack,

D: the (keystream) data required for the attack.

When we speak of the overall complexity of a TMD-TO attack, we refer to the
maximum of the above four cost factors (including preprocessing time). Corre-
spondingly, we assume attackers whose goal is to keep the overall complexity of
their attack as low as possible.

TMD-TO Attacks aiming at Recovering the Initial State of some Packet

For stream ciphers like Trivium, Grain, and also Lizard, which work as a finite-state
machines that compute keystream exclusively based on an initial state, recovering this
state allows an attacker to generate the whole keystream for the underlying key/IV pair
(i.e., in the case of Lizard, for one packet of length up to 218 bits). Furthermore, if
the cipher’s state update function is efficiently invertible (as for Trivium, Grain, and
Lizard), recovering one of the subsequent inner states is obviously also sufficient for a
successful attack.

Let us denote by N the number of all possible inner states of the targeted KSG. The

232

8.4 Cryptanalysis

TMD-TO attack of Babbage [Bab95] has the tradeoff curve TM = N with P = M and
T ≤ D (where T < D means that some of the available data is ignored during the online
phase of the attack). Obviously, the best overall complexity that can be achieved here is
N1/2 by choosing T = M = N1/2. The TMD-TO attack of Biryukov and Shamir [BS00]
is based on Hellman’s time-memory tradeoff attack for block ciphers [Hel80] and has the
tradeoff curve TM2D2 = N2 with P = N/D and T ≥ D2. As, in our model, the overall
complexity includes preprocessing, P = N/D implies here that N1/2 is a lower bound
for the attack’s overall complexity. This lower bound, however, cannot be achieved as
P = D = N1/2 would imply T ≥ N due to the restriction T ≥ D2. Note that even if we
did not consider preprocessing to be part of the overall attack complexity, the original
attack of Biryukov and Shamir would not have an overall complexity lower than N1/2

due to the condition T ≥ D2. Because choosing T < N1/2 would imply D < N1/4 and,
in order to satisfy TM2D2 = N2, also M > N1/2.

In [BS00], Biryukov and Shamir also discuss a technique called BSW-sampling, which
was originally used by Biryukov, Shamir, and Wagner in [BSW01] to attack the GSM
cipher A5/1. While BSW-sampling allows to relax the restriction T ≥ D2 in the above
attack, the tradeoff curve TM2D2 = N2 and the relation P = N/D remain unchanged.
Hence, if one considers precomputation to be part of the overall attack complexity (as
we do), even the use of BSW-sampling does not allow for attacks with overall complexity
lower than N1/2. Moreover, the applicability of BSW-sampling is highly cipher specific
(see [BS00] for further details). The designers of Grain v1 state:

“The sampling resistance of h(x) is reasonable: This function does not
become linear in the remaining variables by fixing less than 3 of its 5 variables.
Similarly, the variables occurring in monomials of g(x) are sufficiently disjoint.
Hence the resulting sampling resistance is large, and thus time/memory/data
tradeoff attacks are expected to have complexity not lower than O(280).”
[HJM06]

Note that the output function of Lizard is even much more complex than those of
Grain v1 or Grain-128a and, e.g., does not become linear in the remaining variables by
fixing less than 13 of its 53 variables. Moreover, the variables occurring in monomials of
f2 of Lizard (which corresponds to g in the Grain family) are also sufficiently disjoint.
Additionally, in contrast to the Grain family, both FSRs of Lizard are now nonlinear.
Consequently, we believe that, like Grain, Lizard is sufficiently resistant w.r.t. sampling.6

6Note that, after the presentation of Lizard at FSE 2017, Maitra et al. published [MSS+17], in
which a BSW-sampling TMD-TO attack against Lizard is suggested. In Subsection 8.4.11, we will
discuss these results in further detail and conclude that, as expected, Lizard does not perform worse
than Grain v1 w.r.t. such attacks. Note further that the attack of Maitra et al. has a precomputation
complexity significantly above the cipher’s targeted security level and, hence, does not violate any of our
security claims.

233

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

We will now briefly describe the two extreme cases of a TMD-TO inner state recovery
attack against Lizard, both of which have overall attack complexity of (at least) 260. In
the first variant, an attacker knows 121 keystream bits of each of approx. 260 keystream
packets. A TMD-TO attack like that of Babbage or Biryukov and Shamir will then
allow him to learn one of the corresponding 260 initial states of these keystream packets,
based on which he will be able to generate the complete keystream of this packet. Note,
however, that the attacker has no control about which one of these 260 keystream packets
he will eventually be able to generate completely. Moreover, the attacker must know at
least 121 bits of the respective keystream packet beforehand, i.e., he will not be able to
generate a keystream packet that was not part of his TMD-TO attack. In the second
extreme case, the attacker tries to keep the set of keystream packets used in his TMD-TO
attack as small as possible. This is achieved if he knows 218− 1 (i.e., one bit less than the
maximum packet size of Lizard) keystream bits of each of approx. 242 keystream packets.
Then, a TMD-TO attack (still with overall attack complexity 260) will allow him to learn
one of the corresponding 242 initial states of these keystream packets, based on which he
will be able to generate the complete keystream of this packet. Again, the attacker has
no control about which one of these 242 keystream packets he will eventually be able to
generate completely and, to launch his attack, he must know 218 − 1 keystream bits of
each of those 242 packets. In particular, the attacker will only learn a single keystream
bit that he didn’t know beforehand.

Obviously, the state recovery attack with overall complexity of (at least) 260 described
in the previous paragraph would also allow an attacker to distinguish Lizard from a
truly random function, i.e., the security against TMD-TO-based distinguishing attacks is
not increased by implementing the generic Lizard-construction. The reason why we do
not claim 60.5-bit security against distinguishing despite Lizard’s 121-bit state is the
following: An attacker could also target the inner state at the end of phase 3 of the state
initialization using a TMD-TO attack on the basis of 260 keystream data points obtained
from 260 different IVs. Such an attack could be realized with overall complexity 260 as,
due to setting S129

30 := 1 in phase 3, there are actually only 2120 states possible at t = 129.
Before we move on to discussing TMD-TO attacks that aim at recovering the secret

key, let us remind that actually all current small-state stream ciphers are susceptible to
TMD-TO distinguishing attacks with complexity significantly below that of key recovery.
In particular, we have shown in Subsection 6.3.1 that, e.g., the Sprout-like ciphers Plantlet
and Fruit v1, both of which use 80-bit keys, can be distinguished with complexities 261

and 250, respectively. For situations where this is not acceptable, we refer the reader to
our new design ideas presented in Sections 6.5 and 9.3.

TMD-TO Tradeoff Attacks aiming at Key Recovery

As pointed out in Subsection 8.3.5, Lizard’s state initialization represents an instantiation
of the generic Lizard-construction introduced in Chapter 7, which, in our case, offers

234

8.4 Cryptanalysis

80-bit security against key recovery via TMD-TO attacks. It is important to keep in mind
that the attacker model underlying the provable security of the Lizard-construction
(and also all other security claims w.r.t. Lizard) treats any precomputations as part
of the overall attack. In particular, our claims do not conflict with the TMD-TO key
recovery attack of Dunkelman and Keller presented in [DK08]: Let P , T , M , D be
defined as introduced at the beginning of this subsection with the additional condition
that all D keystream data points have to be obtained on the basis of different IVs (i.e.,
D keystream prefixes of sufficient length, generated under the same secret key but D
different IVs). Moreover, let K denote the number of all possible keys and let V denote
the number of all possible IVs. The key recovery attack of Dunkelman and Keller has
the tradeoff curve TM2D2 = (KV)2 with D ≤ V and P = (KV)/D.7 In the case of
Lizard, where K = 2120 and V = 264, this means that P = 2184/D with D ≤ 264.
Hence, the key recovery attack of Dunkelman and Keller would have a precomputation
complexity greater or equal exhaustive key search and thus way larger than the 80-bit
security against key recovery claimed for Lizard.
Finally, note that even when ignoring precomputation time (which we do not in our

security model), the attack of Dunkelman and Keller would not break Lizard’s 80-bit
security against key recovery. More generally, any TMD-TO attack with tradeoff curve
TM2D2 = (KV)2 and restriction D ≤ V will have an online complexity larger or equal
280 in the case of Lizard. Because when choosing D = 264 (i.e., as large as possible), one
obtains TM222·64 = (2120 · 264)2 or TM2 = 2240, for which T < 280 and M < 280 cannot
hold at the same time. Similarly, any TMD-TO attack with tradeoff curve TM = KV
will have an online complexity larger or equal 2(120+64)/2 = 292 for Lizard, even without
any additional restrictions on the tradeoff parameters.

8.4.3 Correlation Attacks, Linear Approximations
The designers of Grain v1 state:

“Due to the statistical properties of maximum-length LFSR sequences, the
bits in the LFSR are (almost) exactly balanced. This may not be the case
for a NFSR when it is driven autonomously. However, as the feedback g(x)
is xored with an LFSR-state, the bits in the NFSR are balanced. Moreover,
recall that g(x) is a balanced function. Therefore, the bits in the NFSR may
be assumed to be uncorrelated to the LFSR bits.” [HJM06]

The same, in fact, applies to Lizard, where (the maximum-length FSR) NFSR1 corre-
sponds to Grain’s LFSR, NFSR2 corresponds to Grain’s NFSR, and f2 corresponds to g

7The relation P = (KV)/D is not given explicitly in [DK08] but can be derived from the description
of the attack algorithm. Also note that, in contrast to the aforementioned (inner state recovery) attack
of Biryukov and Shamir, the condition T ≥ D2 does not have to be satisfied in the (key recovery) attack
of Dunkelman and Keller.

235

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

(cf. Subsection 8.2.1 and Subsections 8.3.1 and 8.3.2).
In [MJSC16], Méaux et al. point out the importance of “good balancedness, non-

linearity and resiliency properties” of the filtering function in order to withstand correla-
tion attacks [Sie85] and fast correlation attacks [MS89]. As explained in Subsection 8.3.3,
Lizard features a rather heavy output function to compensate for the smaller inner
state compared to the original Grain family. It is defined over 53 variables and has
nonlinearity 4 476 506 321 453 056, whereas the output function of Grain v1 is defined
over 12 variables and has nonlinearity 1536 and the output function of Grain-128a is
defined over 17 variables and has nonlinearity 61 440. The resiliency of Lizard’s output
function is 8 compared to 7 for that of Grain v1 and Grain-128a, respectively.8
In [BGM06], Berbain, Gilbert, and Maximov present an attack on Grain v0 that

combines linear approximations of the NFSR’s feedback function and of the output
function in order to recover the initial state of the LFSR given a sufficient amount of
keystream bits. Once the initial state of the LFSR is known, each keystream bit can be
expressed as a linear function in one or two (depending on the LFSR state) bits of the
internal bitstream of the NFSR, which allows to efficiently recover the initial state of the
NFSR using “a technique which consists of building chains of keystream bits” [BGM06].
Two variants (differing in the LFSR derivation method) of this key recovery attack9

against Grain v0 are described in [BGM06], the best of which has time complexity 243,
memory complexity 242, and data (i.e., keystream) complexity 238.
As possible countermeasures, Berbain, Gilbert, and Maximov proposed the following

modifications [BGM06]: “Introduce several additional masking variables from the NFSR
in the keystream bit computation”, “replace g by a 2-resilient function”, “[m]odify the
filtering function h in order to make it more difficult to approximate”, and “[m]odify the
function g and h to increase the number of inputs”. The Grain designers revised their
eSTREAM submission accordingly (in particular, seven bits from the NFSR were added
linearly to the output function) and suggested Grain v1 [HJM06], for which the authors
of [BGM06] acknowledge that “[t]his novel version of Grain appears to be much stronger
and is immune against the statistical attacks presented in this paper”.

For Grain-128a, the feedback function g of the NFSR was constructed with the above
attack in mind. The designers state: “The best linear approximation of g is of considerable

8The resiliency of the output functions of Grain v1 [HJM06] and Grain-128a [gHJM11] is not specified
explicitly in the respective papers. However, these values can be computed rather easily: For Grain v1, the
designers state that the function h, which is part of the full output function, is balanced and correlation
immune of the first order. Thus, h is 1-resilient (but not 2-resilient as can be checked easily). By adding
seven linear monomials, whose tap positions are disjoint from those used in h, the resiliency of the full
output function of Grain v1 increases to 7. (This can be shown using lemmata 3 and 4 from [MJSC16].)
In Grain-128a, the function h is unbalanced and, hence, has resiliency −1 according to Definition 5 in
[MJSC16]. By adding eight linear monomials, whose tap positions are disjoint from those used in h, the
resiliency of the full output function of Grain-128a increases to 7.

9Remember that for the original Grain family, initial state recovery and key recovery are equivalent
due to the efficiently invertible state initialization algorithm (cf. Subsection 5.3.4).

236

8.4 Cryptanalysis

interest, and for it to contain many terms, we need the resiliency of the function g to be
high. We also need a high nonlinearity in order to obtain a small bias.” [gHJM11] As a
consequence, g was chosen such that it has nonlinearity 267 403 264 and resiliency 4.

As explained in Subsection 8.3.2, the feedback function f2 of NFSR2 in Lizard squeezes
the taps of g of Grain-128a in a way that preserves its balancedness, resiliency, and
nonlinearity. Moreover, in accordance with the above suggestions from [BGM06] and the
construction principle underlying g of Grain-128a (see previous paragraph), the output
function of Lizard has more than three times as many inputs, a much higher nonlinearity,
and a higher resiliency than those of Grain v1 and Grain-128a (cf. values at the beginning
of this subsection) in order to strengthen it against linear approximations.
Note that even if the initial state of NFSR1 of Lizard (corresponding to the LFSR

in the original Grain family) could be recovered by means of linear approximation, the
subsequent NFSR initial state recovery procedure for Grain v0 described in Section 5
of [BGM06] would not work against NFSR2 of Lizard. This is due to the fact that
the output function of Lizard will still contain at least ten nonlinear monomials (of
degrees 2, . . . , 7) over bits from NFSR2 if the content of NFSR1 should be known (cf.
Subsection 8.3.3), making the aforementioned chaining technique from [BGM06] not
applicable any more.

8.4.4 Algebraic Attacks

As pointed out previously, unlike for the members of the original Grain family, the state
initialization algorithm of Lizard is not efficiently invertible. Hence, we would actually
have to differentiate here between algebraic attacks aiming at key recovery and algebraic
attacks trying to recover the initial state of some keystream packet. However, an attempt
to express the observed keystream bits as functions of the 120 key bits and then solve the
corresponding system of equations would require to include all state transitions down to
t = 0. Given that both FSRs are nonlinear and considering the high algebraic degree of
the output function (which is used as part of the state update in phase 2 of the state
initialization), this is clearly more complex than expressing the observed keystream bits as
functions of the 121 bits of the initial state at t = 257 and then solving the corresponding
system of equations. Consequently, for the remainder of this subsection, we will focus on
algebraic attacks that try to recover the initial state of some keystream packet.

First of all, note that, to the best of our knowledge, no successful (i.e., having complexity
lower than 280 (Grain v1) or 2128 (Grain-128a)) algebraic attacks that can recover arbitrary
initial states for Grain v1 or Grain-128a have been reported so far.10 Due to the smaller

10The currently best result seems to be an algebraic attack by Berbain, Gilbert, and Joux against a
modified version of Grain-128, which requires 2115 computations and 239 keystream bits [BGJ09]. They
point out, however, that “[t]his attack is not applicable to the original Grain-128”. Moreover, note that
the required amount of keystream bits (belonging to a single initial state) would not be available for
Lizard due to the maximum packet size of 218 bits.

237

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

inner state of Lizard, the number of variables of the corresponding system of equations
in such an attack would now in fact be lower. This, however, is compensated for by the
larger degree of the output function, which is now 7 as compared to 3 for Grain v1 and
Grain-128a. As pointed out in Subsection 8.3.3, Lizard’s output function builds on the
construction scheme introduced in [MJSC16] and has algebraic immunity of at least 7
and fast algebraic immunity of at least 8. In addition, now both FSRs are nonlinear and
NFSR1, which corresponds to the LFSR of the original Grain family, has algebraic degree
4. Based on these properties, we expect that algebraic attacks against Lizard will not be
efficient (i.e., will not have complexity lower than 280, which is that of TMD-TO-based
key recovery as described in Subsection 8.4.2).

8.4.5 Guess-and-determine Attacks
The output function of Lizard depends on 53 variables, compared to 12 in Grain v1 and
17 in Grain-128a. As pointed out in Subsection 8.3.3, when guessing the shorter NFSR1,
the output function still depends on at last 43 variables and has the following worst-case
security properties: nonlinearity 4 317 411 672 064, resiliency 7, algebraic immunity at
least 7, and fast algebraic immunity at least 8. For comparison, the full output function
of Grain v1 (Grain-128a) has nonlinearity 1536 (61 440) and algebraic degree 3 (3). Thus
an algebraic attack on NFSR2 similar to the one in [BGJ09] will have large enough
complexity.
Note that guessing the content of NFSR1 at t = 0 corresponds to guessing the bits

K90, . . . ,K119 of the secret key. An attack that guesses the content of NFSR1 at t = 257
(i.e., the respective part of the initial state) in order to recover the full initial state will not
automatically reveal the secret key because of the use of the Lizard-construction design
principle, due to which the state initialization of Lizard (in contrast to the original
Grain family) is not efficiently invertible.

More precisely, when considered individually, phase 2 and phase 4 of the state initiali-
zation are obviously efficiently invertible. In particular, the knowledge of (S257

0 , . . . , S257
30)

(i.e., the NFSR1-related part of the initial state) is already sufficient to efficiently recover
(S129

0 , . . . , S129
30) (i.e., the content of NFSR1 after the second key addition in phase 3).

However, when treated as a whole, phases 1–3 (i.e., the state transition from t = 0 to
t = 129) cannot be inverted efficiently.

8.4.6 Conditional Differentials, Cube Distinguishers
Lehmann and Meier studied the security of Grain-128a against dynamic cube attacks
and differential attacks. They came to the following conclusion:

“To analyse the security of the cipher, we study the monomial structure
and use high order differential attacks on both the new and old versions.
The comparison of symbolic expressions suggests that Grain-128a is immune

238

8.4 Cryptanalysis

against dynamic cube attacks. Additionally, we find that it is also immune
against differential attacks as the best attack we could find results in a bias
at round 189 out of 256.” [LM12]

Lizard has 128 rounds in phase 2 of the state initialization, where the Grain-like mixing
is performed as described in Subsection 8.2.2 and further explained in Subsection 8.3.5.
On top of that, the key is added again in phase 3 of the state initialization and, finally,
the KSG is stepped 128 additional times (now in keystream generation mode) before the
first keystream bit is output.
Note that the inner state of Lizard (121 bits) is smaller than that of Grain v1 (160

bits) and significantly smaller than that of Grain-128a (256 bits), whereas the output
function is more dense. It depends on 53 variables as compared to 12 in Grain v1 and 17
in Grain-128a. The output function of Lizard also has more nonlinear monomials (13)
than Grain v1 (8) and Grain-128a (5). Moreover, now both FSRs are nonlinear.
The combination of a smaller state and a more dense output function causes a faster

diffusion of differentials and of the monomial structure for Lizard. Therefore, we expect
that Lizard is at least as resistant against differential attacks and dynamic cube attacks
as Grain v1 and Grain-128a, which seem to be already sufficiently secure in that respect.

8.4.7 IV Collisions
A consequence of setting S129

30 := 1 in phase 3 of the state initialization of Lizard
(cf. Subsection 8.2.2) is that, in contrast to the original Grain family, what we call IV
collisions can now occur, i.e., two key/IV pairs (K, IV) and (K, IV ′) with IV 6= IV ′
can map to the same initial state and, hence, result in identical keystream packets. The
implications of this are twofold.

First, an attacker could try to exploit this fact to launch a distinguishing attack. More
precisely, if the corresponding oracle answers with identical, sufficiently long keystream
packets for two different key/IV pairs (K, IV) and (K, IV ′), where IV 6= IV ′, then the
attacker can distinguish the pseudo-random from the random the scenario. However, as
we will prove at the end of this subsection, it holds that:

Theorem 8.1

The number of oracle queries necessary for finding an IV collision for Lizard with
probability greater than 1/2 exceeds 260.

In particular, the complexity of this attack is not lower than that of the generic TMD-TO
distinguishing attack discussed in Subsection 8.4.2.
The second implication of potential IV collisions is that an attacker might get hold

of a (partial) keystream packet x generated for the key/IV pair (K, IV) and a partial
keystream packet y generated for (K, IV ′), where IV 6= IV ′. If |x| > |y| > 121 and y

239

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

fully coincides with the corresponding part of x, then the attacker can conclude that,
with high probability, both (partial) keystream packets x and y where generated based
on the same initial state. Consequently, he would now know a larger piece (i.e., x) of
the keystream packet for (K, IV ′). However, the expected number of (partial) keystream
packets needed for finding such a collision is larger than 260 and the attacker would have
no choice w.r.t. for which one of these packets he would obtain further keystream bits.
Overall, this scenario has at least the complexity of the TMD-TO-based initial state
recovery attack described in Subsection 8.4.2 and seems even less realistic.

Proof of Theorem 8.1

In order to show that the number of oracle queries necessary for finding an IV collision
with probability > 1/2 exceeds 260 as claimed in Theorem 8.1, we first need to observe
that, for an arbitrarily fixed key, each initial state can be the result of at most two
different IVs.
Let (K, IV) and (K, ĨV) with IV 6= ĨV be an IV collision, i.e., the corresponding

initial states ((
B257

0 , . . . , B257
89

)
,
(
S257

0 , . . . , S257
30

))
for (K, IV) and ((

B̃257
0 , . . . , B̃257

89

)
,
(
S̃257

0 , . . . , S̃257
30

))
for (K, ĨV) coincide. Then((

B129
0 , . . . , B129

89

)
,
(
S129

0 , . . . , S129
30

))
=
((
B̃129

0 , . . . , B̃129
89

)
,
(
S̃129

0 , . . . , S̃129
30

))
must hold, as phase 4 of the state initialization algorithm of Lizard (cf. Subsection 8.2.2)
implements a bijective mapping over the set of all inner states. As the key is (arbitrarily)
fixed, we also know that (

B128
0 , . . . , B128

89

)
=
(
B̃128

0 , . . . , B̃128
89

)
together with either (

S128
0 , . . . , S128

30

)
=
(
S̃128

0 , . . . , S̃128
30

)
or (

S128
0 , . . . , S128

30

)
=
(
S̃128

0 , . . . , S̃128
30 ⊕ 1

)
must hold.

240

8.4 Cryptanalysis

The case((
B128

0 , . . . , B128
89

)
,
(
S128

0 , . . . , S128
30

))
=
((
B̃128

0 , . . . , B̃128
89

)
,
(
S̃128

0 , . . . , S̃128
30

))
,

however, is impossible due to the fact that, like phase 4, phase 2 of the state initialization
algorithm also implements a bijective mapping over the set of all inner states and, as
IV 6= ĨV , ((

B0
0 , . . . , B

0
89

)
,
(
S0

0 , . . . , S
0
30

))
6=
((
B̃0

0 , . . . , B̃
0
89

)
,
(
S̃0

0 , . . . , S̃
0
30

))
.

This now also shows immediately that there cannot be a third key/IV combination
(K, ÎV) with IV 6= ÎV 6= ĨV 6= IV that results in the same initial state as the IV collision
(K, IV) and (K, ĨV), because

S128
30 6= S̃128

30 6= Ŝ128
30 6= S128

30

is a contradiction.
How many oracles queries (K, IV i), i = 1, . . ., with IV i 6= IV j for i 6= j, are now

necessary in order to find an IV collision with probability 1/2? Based on the above
observations, we can model this as a simple urn problem. The urn contains 2120 different
pairs of balls (i.e., 2121 balls in total), where each pair of balls corresponds to a different
pair of inner states at t = 128 fulfilling((

B128
0 , . . . , B128

89

)
,
(
S128

0 , . . . , S128
30

))
=
((
B̃128

0 , . . . , B̃128
89

)
,
(
S̃128

0 , . . . , S̃128
30 ⊕ 1

))
.

The question is how many balls need to be drawn (randomly and without putting them
back) in order to have at least one pair with probability 1/2?

The probability pi that at attempt i = 1, . . ., a pair is completed, can be upper bounded
by

pi ≤
i− 1

2121 − (i− 1) .

Consequently, the probability Pr[k] that after k attempts, at least one pair has been
found, can be upper bounded by

Pr[k] ≤
k∑
i=1

pi =
k∑
i=1

i− 1
2121 − (i− 1) < k · k

2121 − k
.

For k ≤ 260, we have Pr[k] < 1/2, which proves the claim.11

11Note that, using the more precise estimate
∑k

i=1
i−1

2121−(i−1) ≤
∫ k

0
x

2121−x dx, one can even show that
Pr[k] ≤ 1/2 for all k ≤ 260.5.

241

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

8.4.8 Related Key(/IV) Attacks, Slide Attacks

In [Küç06], Küçük first pointed out a sliding property of the state initialization of Grain v1,
which was later formally published by De Cannière, Küçük, and Preneel in [DCKP08]
as: “For a fraction of 2−2·n of pairs (K, IV), there exists a related pair (K∗, IV ∗) which
produces an identical but n-bit shifted key stream.” In the same paper, the authors
describe how this property can be exploited to speed up exhaustive key search for Grain v1
(and also for Grain-128) by a factor of two. In addition, they also suggest a related-key
slide attack, for which they note: “As is the case for all related key attacks, the simple
attack just described is admittedly based on a rather strong supposition.” [DCKP08] As
a reaction, the designers of Grain-128a changed the 22-bit constant (1, . . . , 1) that was
used in state initialization of Grain-128 to (1, . . . , 1, 0).

For Lizard, a speed-up of exhaustive key search by a factor of two would actually be
tolerable due to the key length of 120 bits together with the fact that we aim for 80-bit
security against key recovery. Still, we consider such a sliding property undesirable as it
might pave the way for other attacks. To avoid it, we set S0

29 := K119⊕1 in phase 1 of the
state initialization (cf. Subsection 8.3.5). As a result, for a key/IV pair (K, IV), a related
key/IV pair (K∗, IV ∗) in the sense of [DCKP08] would have to satisfy K∗118 = K119 ⊕ 1.
This, however, would then lead to a bad (i.e., inverted) key bit being added in phase 3 of
the state initialization, where K∗118 = K119 must hold for the attack to work. Note that
without inverting K119 in phase 1 of the state initialization, Lizard would in fact suffer
from a variant of the sliding property, despite the second key addition in phase 3.
Another undesirable related key/IV property, which would arise out of using the

generic Lizard-construction with a Grain-like KSG, is avoided by phase 4 of the state
initialization of Lizard. More precisely, given some key/IV pair (K, IV) together with
the corresponding keystream packet, an attacker might know (or suspect) for some other
keystream packet that it was generated under the related key/IV pair (K ′, IV ′), where
K ′2 = K2 ⊕ 1, IV ′2 = IV 2 ⊕ 1, K ′i = Ki for 0 ≤ i ≤ 79, i 6= 2, and IV ′i = IV i for
0 ≤ i ≤ 63, i 6= 2. Without phase 4 (i.e., if z129 instead of z257 was the first keystream
bit used for plaintext encryption), the attacker could immediately conclude that the
first 11 keystream bits generated for (K ′, IV ′) are identical to the first 11 keystream bits
z129, . . . , z139 generated for (K, IV). This is due to the fact that if Ki ⊕ IV i = K ′i ⊕ IV ′i
for i = 0, . . . , 63 and Ki = K ′i for i = 64, . . . , 119, then the corresponding inner states of
Lizard will be identical after phase 2 of the state initialization. In the above example,
where key bit K2 and IV bit IV 2 are flipped for K ′2 and IV ′2, respectively, this would
lead to identical inner states after the second key addition at t = 129 except the bit B129

2
of NFSR2, which would be flipped now as well. However, it takes ten further steps of
the KSG for this information to reach a tap of the output function. While the described
scenario might seem rather far-fetched, we still wanted to avoid this kind of nonrandom
behavior in order to thwart other attacks that might make use of it. Moreover, as pointed
out in Subsection 8.3.5, phase 4 also became necessary due to setting S129

30 := 1 in phase 3.

242

8.4 Cryptanalysis

8.4.9 Weak Key/IV Pairs

In [ZW09], Zhang and Wang introduced the notion of weak key/IV pairs for the Grain
family of stream ciphers. They use such pairs, which lead to an all-zero initial state
of the LFSR, to mount distinguishing attacks and initial state recovery attacks.12 The
designers of Grain-128a point out: “We note that the IV is normally assumed to be
public, and that the probability of using a weak key/IV pair is 2−128. Any attacker
guessing this to happen and then launching a rather expensive attack, is much better off
just guessing a key.” [gHJM11] For Grain v1, which has 264 weak key/IV pairs among
a total of 2144 key/IV pairs, the corresponding probability would be 2−80, leading to a
similar conclusion.

In analogy to the definition of Zhang and Wang, weak key/IV pairs for Lizard would
lead to an all-zero initial state of NFSR1. This, however, is impossible due to setting
S129

30 := 1 in phase 3 of the state initialization (cf. Subsection 8.2.2) together with the
fact that, after phase 3, the only input to the maximum-length FSR NFSR1 comes from
its own feedback function.

Note that without setting S129
30 := 1 in phase 3 of the state initialization, there would

have been about 2153 weak key/IV pairs out of 2184 total key/IV pairs for Lizard, leading
to a probability of 2−31 for using a weak pair. Consequently, without setting S129

30 := 1 in
phase 3 of the state initialization, attacks based on weak key/IV pairs might have posed
a real threat to Lizard.

8.4.10 BDD-based Attacks

In [Kra02], Krause introduced the idea of using binary decision diagrams (BDDs) to
attack LFSR-based stream ciphers like A5/1 of the GSM standard or E0 of Bluetooth.
Stegemann later showed in [Ste07a], how this approach can be transferred to NFSR-based
stream ciphers like Trivium and Grain. In contrast to TMD-TO attacks or correlation
attacks, which potentially require a lot of keystream or ciphertext data, BDD attacks
are short-keystream attacks in the sense that only the information-theoretic minimum
of keystream bits (i.e., often only few more than n bits of keystream for a KSG of
inner state length n) is required to recover the corresponding initial state. As pointed
out in Subsection 8.4.2, for Trivium and all members of the Grain family, an attack
that recovers the initial state is equivalent to an attack that recovers the underlying
secret key as the state initialization of these stream ciphers is efficiently invertible (cf.
Subsections 5.3.3 and 5.3.4, respectively). For Lizard, this is not the case due to the use
of the Lizard-construction design principle. Hence, for each keystream packet produced
by Lizard, a separate BDD attack would be required to recover the corresponding initial
state, which would then allow to generate the remaining, unknown keystream bits of that

12Keep in mind that for all members of the original Grain family, initial state recovery is equivalent to
key recovery as pointed out in Subsection 8.4.2.

243

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

particular packet.
While we are currently not aware of any BDD attack faster than exhaustive key search

against any member of the Grain family, the major design consequence of the BDD-related
cryptanalytic results that Stegemann obtained for Grain-like stream ciphers is that the
maximum number of what he calls active monomials of the feedback functions and the
output function should be as large as possible (see [Ste07a] for further details). In the
setting of Stegemann, for Grain v1, the maximum number of active monomials would
be 0 for the LFSR, 6 for the NFSR, and 5 for the output function. For Grain-128a,
the maximum number of active monomials would be 0 for the LFSR, 3 for the NFSR,
and 3 for the output function. In comparison, for Lizard, the maximum number of
active monomials would be 21 for NFSR1, 3 for NFSR2, and 10 for the output function a.
Consequently, we expect that, despite the smaller inner state, Lizard will also perform
sufficiently well against BDD attacks.
Note that in Section 9.4 of the chapter Future Research Directions, we will treat the

concept of BDD-based cryptanalysis in further detail.

8.4.11 External Cryptanalysis

Since the presentation of Lizard at FSE 2017, several ‘external’ cryptanalytic results
have appeared, which we are now going to summarize. But before we do so, let us point
out that none of these interesting findings conflict with our security claims for Lizard.
In [BICG17], Banik et al. describe two strategies to generate key/IV pairs leading

to identical keystreams. Their respective observations, however, do not translate into
attacks with a complexity lower than our security claims made for Lizard. But, in
addition, the authors also suggest a distinguisher against (full) Lizard and a key recovery
attack against a round-reduced version. For their distinguisher, they state that “[t]he
process takes around 251.5 random IV encryptions (with encryption required to produce
218 keystream bits) and around 276.6 bits of memory.” Note here that as each of those
“random IV encryptions” consists in the generation of 218 keystream bits, this would
translate into a data complexity of 269.5 in terms of the classical TMD-TO attacks.
Moreover, the distinguisher of Banik et al. is exclusively based on finding collisions in
keystreams generated under the same key but different IVs (similar to what we describe
in Subsection 6.3.1) and, hence, takes a ‘detour’ that is actually not necessary for Lizard
(but for Sprout-like ciphers). More precisely, as already acknowledged in our original
cipher specification [HKM17b] (see also Subsection 8.4.2), classical TMD-TO attacks
like those of Babbage [Bab95] or Biryukov and Shamir [BS00] can be applied directly
to Lizard. As those attacks do not underlie the additional assumptions that attacks
like that of Banik against Sprout (cf. Subsection 6.3.1) and that of Banik et al. against
Lizard require, and as the overall complexity of these classical attacks (time 260.5, data
260.5, memory 260.5 · 121) is also better than that of Banik et al., it is unclear to what
extent the distinguisher presented in [BICG17] is actually relevant for the security of

244

8.4 Cryptanalysis

Lizard. Very interesting, however, is their key recovery attack against round-reduced
Lizard (226 out of 256 rounds), which is presented in the same paper and uses the
fact that, for an arbitrarily fixed key, there are on average 26 IV pairs which lead to
identical keystreams. It should be noted, however, that in a first version of their paper
(i.e., [BI17]), where the attack targeted 223 (instead of now 226) of the full 256 rounds,
Banik and Isobe pointed out that it is “very difficult to extend the attack” to a higher
number of rounds and that, in consequence, “any attack under 280 computations seems
infeasible.” It thus seems questionable whether the remaining gap of 30 rounds can be
closed within the complexities set by the security claims of the cipher. To understand this
conjecture, it is important to know that the attack of Banik et al. is actually independent
of the 128 rounds of phase 4 of Lizard’s state initialization algorithm. I.e., the ‘quality’
of the attack is solely determined by the number of rounds of phase 2 that can be coped
with. Given that the 128 Grain-like mixing steps of phase 2, which take place between
the two key additions, can be considered ‘the heart of Lizard’s state initialization’, it
seems quite some way to go to extend Banik et al.’s attack from currently 98 to the full
128 rounds. Finally, note that Banik et al. state in the abstract of their paper that their
“results do not affect the security claims of the designers.” [BICG17]

In [MSS+17], Maitra et al. present a TMD-TO attack against Lizard. While, in the
paper’s conclusion, the authors state that “our observation does not imply breaking
Lizard”, their results are very interesting nonetheless. More precisely, they mount a
technique called conditional BSW-sampling, where the term conditional reflects the “need
to fix a few state bits with a specific pattern”. The authors’ goal is to recover some inner
state during the online phase. Consequently, as Lizard’s state initialization algorithm
is designed according to the generic Lizard-construction, this attack does not lead to
key recovery. Moreover, as Lizard is operated in packet mode with a maximum packet
size of 218 bits, the effects of inner state recovery are further limited as described in
Subsection 8.4.2. In particular, the online complexity T = M = D = 254 of the attack
implies that at least 236 keystream packets are required as part of data and, similar to
our own example in Subsection 8.4.2, the attacker has no control about for which one of
these packets he will eventually obtain some inner state. Finally and most importantly,
the preprocessing complexity of the attack of Maitra et al. is P = 267 and, hence, does
not violate our claim of 60-bit security against distinguishing for Lizard in the original
cipher specification (see [HKM17b] and Subsection 8.4.2), as we clearly refer to the
overall complexity of any attack as the relevant limit. In our opinion, the attack of Maitra
et al. also confirms our original conjecture that “we believe that, like Grain, Lizard
is sufficiently resistant w.r.t. sampling” (cf. Subsection 8.4.2). This conclusion can be
drawn from the fact that, even while the eSTREAM contest was still running, a similar
BSW-sampling-based TMD-TO attack was applied against Grain v1 by Bjørstad [Bjø08]
in 2008, having the complexities P = 2106.5, T = 271, M = 271, D = 253.5. Given that
the attack of Bjørstad targets a cipher with an inner state of 160 bits (and, hence, a
security level of 80 bits w.r.t. inner state recovery), whereas Lizard, as a small-state

245

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

cipher, has only a 121-bit state, scaling down the respective complexities shows that
Lizard does not perform significantly worse than Grain v1 here. And remember that,
despite the results of Bjørstad, Grain v1 was finally selected as (and still is) a member of
the eSTREAM portfolio.
In [SSMC17], Siddhanti et al. present a differential fault analysis (DFA) attack on

Grain v1, ACORN v3, and Lizard. In a nutshell, this type of attack is based on
inducing (by technical means such as electromagnetic or laser beam injection) faults
(i.e., bit flips) in the inner state of the cipher. By restarting the cipher with the same
key/IV combination and comparing correct and ‘faulty’ keystreams, the attacker seeks to
deduce information about the correct secret inner state. Note that we (just like most
other cipher designers) do not make any claims about resistance against DFA in our
cipher specification. The reason for doing so is that, similar to side-channel resistance,
protection against DFA is usually considered a problem which has to be taken care of
by technical means or, after the ‘core cipher’ has been designed, added on top in the
form of established algorithmic modifications. For example, in [PMK+11] a side-channel
resistant, serialized implementation of the lightweight block cipher PRESENT [BKL+07]
is suggested, which, depending on the level of resistance, requires between 2282 GE and
3582 GE of chip area (cf. Subsection 2.3.3), as compared to an unprotected serialized
implementation for only 1111 GE. An implementation of PRESENT which is not only
side-channel but also fault resistant, is suggested in [CN17] and comes at enormous
hardware costs of 45 843 GE. Nevertheless, for the sake of completeness, we still want to
briefly summarize the findings of Siddhanti et al. here. Like for Grain v1, the authors
require 5 faults to successfully recover the targeted secret inner state of Lizard. They
acknowledge themselves, however: “As mentioned before, we can only solve for the secret
state and not for the secret key in case of Lizard. However, we can obtain the secret key
once the secret state is known in case of Grain v1 and ACORN v3.” [SSMC17] That is,
implementing the Lizard-construction design principle significantly limits the impact of
this kind of DFA. In fact, given the attack’s preconditions, one could question its sense
in the case of Lizard at all. More precisely, the attack assumes that it is possible to
repeatedly generate the keystream for a specific key/IV pair (even under injecting faults).
And ‘all it does’ is to provide one of the secret inner states underlying this particular
(already known) keystream. Due to the Lizard-construction, the recovered inner state is
of no use for generating keystream belonging to other key/IV pairs and, hence, actually
‘useless’ from the viewpoint of decrypting secret communication.

8.5 Hardware Implementation

In the following, we present the hardware results for our new stream cipher Lizard
and compare them to those of Grain v1 [HJM06]. The reasons for focusing on Grain v1
are twofold. First, it is a natural choice for comparison due to the close structural

246

8.5 Hardware Implementation

relation between Lizard and Grain v1 as explained in Sections 8.2 and 8.3. Second,
and more importantly, Grain v1 can be considered as a benchmark for new lightweight
stream cipher designs as it turned out to be the most hardware-efficient member of the
eSTREAM [ECR08] portfolio.13 This conclusion can be drawn, e.g., from tables 1–4 and
figures 1–3 in [GB08], where Good and Benaissa evaluate the hardware performance of
the phase-3, profile-2 candidates of the eSTREAM competition. (Note that, for the sake
of comparability, we are referring to the standard, non-parallelized implementations of
the ciphers, which, after initialization, produce one keystream bit per clock cycle.)

8.5.1 Performance
When comparing the hardware performance of ciphers, the first apparent task is to specify
which hardware is actually targeted. In line with papers like [Fel07] and [GB08], we
focus on application-specific integrated circuits (ASICs) with standard CMOS libraries.14

ASICs are an essential component in RFID technology, which, as Feldhofer puts it, “allows
giving a digital identity to nearly every object in the world” [Fel07]. While especially
low-cost RFID tags may be subject to severe resource limits as explained in Chapter 2, in
many cases, they still need to provide security features like confidentiality or privacy. The
two main restrictions imposed on the design of cryptographic protocols for RFID tags are
the circuit size (cf. Subsection 2.3.3) and the power budget (cf. Subsection 2.3.4). The
circuit size strongly influences the manufacturing costs of an RFID tag and is commonly
specified in gate equivalents (GE), where one GE corresponds to the area of a two-input
drive-strength-one NAND gate. The power consumption is crucial as low-cost RFID
tags are usually passively powered (i.e., via an electromagnetic field radiated by the
reader). Given that the transmission power of an RFID reader is limited by factors like
legal regulations, the more power a tag consumes, the smaller the maximum reading
distance becomes. As done by Feldhofer in [Fel07] for his comparison of low-power
implementations of Trivium and Grain, we will focus on these two values, cell area and
power consumption, in our comparison of Lizard and Grain v1.
In addition, we provide the critical path delay of the circuit and the number of

clock cycles required to perform the state initialization in Table 8.1. As explained
in Subsection 2.3.7, the metric delay plays a rather negligible role in the context of
ultra-constrained devices commonly running at clock speeds of about 100 kHz (cf.
Subsection 2.3.6). For comparison, the delay of our implementation of Lizard is 2474
ps, which would allow for a maximum clock frequency of about 404 MHz. Still, for the

13See Chapter 5 for more information on the eSTREAM project and the hardware portfolio members
Trivium [CP05] and Grain v1 [HJM06].

14The testing framework for eSTREAM profile-2 candidates [BKL+06] additionally considers low-cost
FPGAs and a corresponding performance evaluation can be found in, e.g., [GCB06] and [BKSQ07].
However, as ASICs are certainly more common in ultra-constrained, low-cost environments (targeted by
Lizard), we focus on this technology and leave an FPGA-related evaluation of our new cipher as future
work.

247

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

sake of completeness and as several other works like [GB08] do so as well, we decided to
provide the corresponding data. For further information about the technical details of
this metric and the related term critical path, we refer the reader to Subsection 2.3.7,
where, at the example of Lizard, we also explain how a delay of 2474 ps translates into
a maximum clock frequency of about 404 MHz.

Like Feldhofer, we will not provide compound metrics (e.g., the power-area-time product
given in [GB08]) but leave the computation (as appropriate for the application scenario)
to the reader. Moreover, it is important to note that while the area requirement of cipher
designs can be compared over different standard cell libraries by using the measure gate
equivalents, “[p]ower cannot be scaled reliably between different processes and libraries”
[GB08]. Consequently, it is inevitable to use the same design flow for all implementations
that are to be compared. As done by Good and Benaissa in [GCB06] and [GB08] in their
hardware comparison of eSTREAM candidates, we use Cadence tools [Cad17] for synthesis
and Mentor ModelSim [Men17] for generating switching activity. While Feldhofer uses
0.35 µm and Good and Benaissa use 0.13 µm CMOS process technology in the cited
papers, we employ the UMCL18G212T3 (0.18 µm, 1.8 V) standard cell library that was
also used by Poschmann in [Pos09] for implementing the block cipher PRESENT and by
Beierle et al. for the SKINNY family of block ciphers [BJK+16]. Our results (see Table 8.1)
are obtained via Cadence Encounter RTL Compiler RC12.22 [Cad17] and are based on
the netlist generated through the command synthesize -to_placed -effort high.
Like Feldhofer in [Fel07], we target a 100 kHz clock (cf. Subsection 2.3.6) and employ
clock gating (cf. Subsection 2.3.4). The switching activity for power estimation (recorded
with Mentor ModelSim SE-64 6.5b [Men17] and fed back to RTL compiler) covers the
generation of 10 kbit of keystream (as done in [GCB06]) at a clock rate of 100 kHz
and includes the state initialization of the compared cipher modules. To improve the
accuracy of the results, switching activity for 25 different random key/IV combinations
is considered and the arithmetic mean of the respective power estimations is computed.
For all power values given in Table 8.1, the largest deviation of a single estimation from
the computed average was below one percent.

As pointed out above, we had to implement not only our new cipher Lizard but also
Grain v1 in order to obtain a meaningful comparison of power consumptions on the
basis of the same design flow. Moreover, as Lizard targets low-power environments,
we decided to serialize phases 1 (i.e., the initial key and IV loading) and 3 (i.e., the
second key addition) of its state initialization (see Subsection 8.5.2 for details). This
allows to take full advantage of the FSR-based structure of the KSG by using simple
D flip-flops (without additional costly features like scan, set/reset or enable functionality)
for storing the cipher’s inner state. Naturally, for reasons of fairness, we considered the
positive effects of serializing the key/IV loading for Grain v1 as well. The corresponding
values can be found in Table 8.1 along with those for the straightforward implementation
of Grain v1. We do not suggest to use non-serialized key/IV loading for Lizard and,
hence, Table 8.1 only contains the hardware metrics for Lizard with phases 1 and 3

248

8.5 Hardware Implementation

Table 8.1: Hardware results for a clock speed of 100 kHz. The symbol ∗ indicates that the
respective implementation uses serialized key/IV loading. Latency is given as the number of
clock cycles needed to perform the state initialization (including module reset and key/IV
loading), denoted Load/Ini in the table. After state initialization, all designs produce one
keystream bit per clock cycle, corresponding to a throughput of 100 kbit/s.

Design Area Power Delay Load/Ini
[GE] [nW] [ps] [clk. cyc.]

Lizard∗ 1161 2110 2474 499
Grain v1∗ 1268 2517 2155 241
Grain v1 1221 3578 2166 161

implemented as described in Subsection 8.5.2.15

Serializing parts of the state initialization comes at a price, however, as it increases
latency. In the case of Lizard, 240 additional clock cycles are required for computing
the initial state, based on which, subsequently, one keystream bit per clock cycle is
produced. We consider this increase tolerable considering that, even with serialized
key/IV loading, the state initialization (including module reset) of Lizard takes only
499 clock cycles, as compared to, e.g., 1153 clock cycles for the straightforward (i.e.,
non-serialized) implementation of the state initialization of the eSTREAM hardware
portfolio member Trivium. For Grain v1, serializing the key/IV loading can be realized at
the cost of only 80 additional clock cycles as the key and the IV can be shifted separately
into the NFSR and the LFSR, respectively, at the same time. In our non-serialized
(i.e., straightforward) implementation of Grain v1, the key/IV loading is performed as
part of the module reset (which takes one clock cycle). Hence, the state initialization
takes 1 + 160 = 161 clock cycles. In the serialized implementation, the key/IV loading
of Grain v1 is performed in a separate stage, leading to a state initialization effort of
1 + 80 + 160 = 241 clock cycles.

Table 8.1 shows that the estimated power consumption of Lizard during the generation
of 10 kbit of keystream (including state initialization) is about 16 percent lower than
that of Grain v1 with serialized key/IV loading. Moreover, Lizard also allows to save
on chip area and, hence, production costs.
At first glance, the reduction in chip area might seem surprisingly small, considering

that Lizard’s inner state is about 25 percent smaller than that of Grain v1. Remember,
however, that Lizard needs additional logic for loading the (larger) key (twice) and,
moreover, we chose a much heavier output function, which is defined over 53 variables.

15The reason for not describing phases 1 and 3 of the state initialization of Lizard in its serialized
form in the first place in Subsection 8.2.2 is that we wanted the specification of the algorithm to be as
concise as possible. Moreover, the way we introduce Lizard in Subsection 8.2.2 hopefully facilitates to
understand the relation to the generic Lizard-construction as described in Subsection 8.3.5.

249

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

As a consequence of the larger key, Lizard would benefit more than Grain v1 from an
‘external’ key source (like an EEPROM; cf. Subsection 2.3.9) that takes over the task of
key bit selection based on an index or supplies the key bits sequentially. However, for
reasons of fairness, we assumed the (from Lizard’s point of view) worst situation that all
key and IV bits are provided via separate wires to the respective cipher modules, which
then have to take care of key bit selection themselves. To avoid ambiguity about the
capabilities of the implementations which the values in Table 8.1 are based on, we provide
the interfaces of the respective modules along with a short description in Appendix 8.B
and a reference implementation of Lizard written in Verilog in Appendix 8.C.
Finally, note that while Lizard explicitly targets power-constrained devices like

passively powered RFID tags, it can also help to save energy (cf. Subsection 2.3.5) on
battery powered devices. For example, producing 10 kbit of keystream (including state
initialization) at 100 kHz would consume 0.22 µJ with Lizard∗, 0.26 µJ with Grain v1∗,
and 0.36 µJ with Grain v1. Keep in mind, however, that due to the larger number of
state initialization cycles of Lizard∗, Grain v1∗ will consume less total energy for very
small keystream pieces.

For application scenarios where only few hundred (continuous) bits of plaintext are to be
encrypted under a single IV and the optimization target is energy consumption, it might
actually be preferable to not use stream ciphers at all, but instead resort to lightweight
block ciphers like SKINNY [BJK+16], Simon [BSS+13], or PRESENT [BKL+07]. For
example, a round-based implementation of SKINNY-64-128 (block size 64 bits, key size
up to 128 bits) takes 1696 GE and achieves a throughput of 177.78 kbit/s at 100 kHz
and a nibble-serial implementation takes 1399 GE and achieves 8.12 kbit/s at 100 kHz.
As block ciphers do not need a state initialization in the style of stream ciphers, these
throughput rates are achievable for all plaintext amounts whose length is a multiple of
the cipher’s block size. For stream ciphers, the effective throughput (including state
initialization) depends on the amount of keystream that is produced under a single IV.
This shows that efficiency comparison of stream ciphers and block ciphers is dependent
on targeted applications. For example, our implementations of Lizard and Grain v1
may be paused after each single keystream bit, whereas block ciphers can only operate
on whole blocks of data. Hence, in a scenario where only few bits (i.e., less than the
block size) need to be encrypted from time to time (under the same IV), the use of block
ciphers might lead to a large overhead w.r.t. computation and communication (due to
padding). In other scenarios, as described above, block ciphers may be preferable.

8.5.2 Serialization of Phases 1 and 3 of LIZARD’s State Initialization

As pointed out in the previous subsection, we decided to serialize phases 1 (i.e., the initial
key and IV loading) and 3 (i.e., the second key addition) of Lizard’s state initialization
in order to allow for a more power-efficient implementation.
More precisely, phase 1 of the state initialization is distributed over 121 clock cycles

250

8.5 Hardware Implementation

c = 0, . . . , 120 as follows:

B0,c+1
j :=

{
B0,c
j+1, for j ∈ {0, . . . , 88} ,

S0,c
0 , for j = 89,

S0,c+1
i :=

{
S0,c
i+1, for i ∈ {0, . . . , 29} ,
pc, for i = 30,

where

pc :=

Kc ⊕ IV c, for c ∈ {0, . . . , 63} ,
Kc, for c ∈ {64, . . . , 118} ,
Kc ⊕ 1, for c = 119,
1, for c = 120.

To avoid ambiguity, we point out that B0,121
j = B0

j , j = 0, . . . , 89, and S0,121
i = S0

i ,
i = 0, . . . , 30, where B0

j and S0
i are defined as explained in Subsection 8.2.2. The initial

content of the FSRs (i.e., B0,0
j , j = 0, . . . , 89, and S0,0

i , i = 0, . . . , 30) is undefined and
algorithmically irrelevant as, what effectively happens here, is that the bitstring

K0 ⊕ IV 0, . . . ,K63 ⊕ IV 63,K64, . . . ,K118,K119 ⊕ 1, 1

is shifted into the KSG’s driving registers ‘from the right’ (in terms of Fig. 8.1 in
Section 8.2).

Analogously, phase 3 of the state initialization is also distributed over 121 clock cycles
c = 0, . . . , 120 as follows:

B129,c+1
j :=

{
B129,c
j+1 , for j ∈ {0, . . . , 88} ,

S129,c
0 , for j = 89,

S129,c+1
i :=

{
S129,c
i+1 , for i ∈ {0, . . . , 29} ,
qc, for i = 30,

where

B129,0
j := B128

j for j ∈ {0, . . . , 89} ,
S129,0
i := S128

i for i ∈ {0, . . . , 30} ,

qc :=
{
B129,c

0 ⊕Kc, for c ∈ {0, . . . , 119} ,
1, for c = 120,

and B128
j and S128

i are defined as explained in Subsection 8.2.2.
Again, to avoid ambiguity, we point out that B129,121

j = B129
j , j = 0, . . . , 89, and

S129,121
i = S129

i , i = 0, . . . , 30, where B129
j and S129

i are defined as explained in Sub-
section 8.2.2.

251

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

8.6 Conclusion and Outlook
We presented Lizard, a new lightweight stream cipher for power-constrained devices like
passive RFID tags. Its hardware efficiency results from combining a Grain-like design
with the generic Lizard-construction introduced in Chapter 7, which offers provable
(2n/3)-security against TMD-TO attacks aiming at key recovery. Lizard uses 120-bit
keys, 64-bit IVs, and has an inner state length of 121 bits. It is supposed to provide 80-bit
security against key recovery attacks and 60-bit security against distinguishing attacks.
Lizard allows to generate up to 218 keystream bits per key/IV pair, which would be
sufficient for many existing communication scenarios like Bluetooth, WLAN, or HTTPS.
Hardware implementations for Lizard and Grain v1 were created using the same

design flow in order to allow for a meaningful comparison of performance metrics. The
results show that Lizard consumes about 16 percent less power than Grain v1 at slightly
reduced area requirements. This indicates that in scenarios where plaintext packets of
moderate length are to be encrypted under individual IVs, the Lizard-construction
design principle provides an interesting alternative to conventional state initialization
algorithms of stream ciphers.

As future work, we suggest to evaluate the performance of Lizard on other hardware
platforms like FPGAs or microcontrollers. Moreover, it might be interesting to investigate,
whether, under the current security guarantees, even more lightweight variants of Lizard
are possible (e.g., by choosing a less heavy output function). With respect to the generic
Lizard-construction, it would be desirable to have key sizes of 2n/3 (instead of currently
n) and still maintain provable (2n/3)-security against TMD-TO attacks aiming at key
recovery. One way to achieve this could be to derive an n-bit Lizard-construction key
(or even two separate n-bit keys for the respective phases of the state initialization)
on-the-fly from the actual (2n/3)-bit key, e.g., by using a component like the round key
function of Fruit [GHX16].
Another important open problem is the guaranteed keystream period of Lizard (as

well as of the Grain family and other stream ciphers like Trivium; see, e.g., [HG11]). In
the design document of Grain v1 [HJM06], it is stated that “the LFSR guarantees a
minimum period for the keystream and it also provides balancedness in the output.” But
in fact, in the setting of Grain (and also Lizard), a large guaranteed period of the internal
state (composed of both FSRs) is necessary but not sufficient for a large guaranteed
period of the keystream, because we only know that the period of the keystream divides
the length of the corresponding internal state cycle.
Finally, we also suggest to study and compare the suitability of recent (lightweight)

stream and block ciphers for different application scenarios. Such a comparison could be
in the style of [GB08], where Good and Benaissa evaluated the hardware performance
of eSTREAM candidates, but would also need to establish a reasonable common test
setting for the different concepts stream and block cipher.
In the following Chapter 9, we will discuss some more directions of potential future

252

8.6 Conclusion and Outlook

research, which we consider especially promising, in further detail. In particular, we
will also forge a bridge to our starting point of lightweight authentication protocols (see
Chapters 3 and 4) by sketching how Lizard could be used to realize hardware-efficient,
privacy-preserving authentication on ultra-constrained RFIDs, thus constituting a viable
alternative to prevalent block cipher-based constructions (cf. Section 3.3).

253

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

Appendix 8.A Test Vectors

Key (120 bits), IV (64 bits), and the corresponding first 128 keystream bits in hexadecimal
notation. To avoid ambiguity, note that, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(K0, . . . ,K119) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . , 1) .

Similarly, for the keystream, the example

0x01000000000000000000000000000000

would mean that the first seven keystream bits (i.e., z257, . . . , z263) are zero, followed by
a one and 120 more zeros.

Key: 0x000000000000000000000000000000
IV: 0x0000000000000000
Keystream: 0xB6304CA4CA276B3355EC2E10968E84B3

Key: 0x0000000000000000FFFFFFFFFFFFFF
IV: 0xFFFFFFFFFFFFFFFF
Keystream: 0x4D190941816F942358F0D164F4ECEB09

Key: 0x0123456789ABCDEF0123456789ABCD
IV: 0xABCDEF0123456789
Keystream: 0x983311A97831586548209DAFBF26FC93

LIZARD (online) in PHP. Note that Christian A. Gorke offers an open-source implemen-
tation of Lizard in PHP at https://th.informatik.uni-mannheim.de/lizard/php/.
On the respective website, users also have the possibility to generate keystreams of length
up to 10 000 bits for key/IV combinations of their choice via a convienient online form.
Moreover, this online service can also be accessed through a straighforward application
programming interface (API), which allows, e.g., for employing it as part of back-end
solutions (such as server-side verification in the case of Lizard-based authentication, cf.
Section 9.2).

254

https://th.informatik.uni-mannheim.de/lizard/php/

8.B Module Interfaces/Capabilities

Appendix 8.B Module Interfaces/Capabilities

Listing 8.1: Verilog module port declaration for Lizard.
1 module l i z a r d (
2 input wire c lk ,
3 input wire r e s e t ,
4 input wire enable ,
5 input wire [0 : 1 1 9] key ,
6 input wire [0 : 6 3] iv ,
7 output wire keystreamBit ,
8 output wire keystreamFlag
9) ;

Listing 8.2: Verilog module port declaration for Grain v1.
1 module gra inv1 (
2 input wire c lk ,
3 input wire r e s e t ,
4 input wire enable ,
5 input wire [0 : 7 9] key ,
6 input wire [0 : 6 3] iv ,
7 output wire keystreamBit ,
8 output wire keystreamFlag
9) ;

Listings 8.1 and 8.2 show the interfaces of the implemented cipher modules. For
Grain v1, the straightforward implementation and the variant with serialized key/IV
loading (denoted as Grain v1∗ in Table 8.1) have identical interfaces.
The modules use synchronous reset (taking one clock cycle) and all operations are

triggered by the rising edge of the clock. By setting the enable flag low, the respective
cipher module can be paused at any time during state initialization or keystream genera-
tion. Setting reset high resets a module. Once reset is set low again, state initialization
begins. For all modules, it is assumed that key and IV are available (via key and iv) until
key/IV loading has finished. Once a cipher module has completed state initialization
and enters the keystream generation phase, it changes keystreamFlag from low to high
and outputs one keystream bit per clock cycle via keystreamBit.

255

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

Appendix 8.C Reference Implementation

Listing 8.3: Reference implementation of Lizard in Verilog.
1 ‘timescale 1us / 1ps
2
3 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4
5 module l i z a r d (
6 input wire c lk ,
7 input wire r e s e t ,
8 input wire enable ,
9 input wire [0 : 1 1 9] key ,

10 input wire [0 : 6 3] iv ,
11 output wire keystreamBit ,
12 output wire keystreamFlag
13) ;
14
15 ////////////////
16
17 reg [2 : 0] cipherFSM ;
18
19 // keystreamFlag
20 // v
21 localparam S_PHASE1 = 3 ’b00_0 ;
22 localparam S_PHASE2 = 3 ’b01_0 ;
23 localparam S_PHASE3 = 3 ’b10_0 ;
24 localparam S_PHASE4 = 3 ’b11_0 ;
25 localparam S_GENOUT = 3 ’b11_1 ;
26
27 ////////////////
28
29 assign keystreamFlag = cipherFSM [0] ;
30
31 ////////////////
32
33 reg [0 : 3 0] n f s r1_sta t e ;
34 reg [0 : 8 9] n f s r2_sta t e ;
35
36 ////////////////
37
38 wire nfsr1_feedbackBit ;
39
40 // e f f i c i e n t implementat ion o f NFSR1’ s f eedback func t i on as dec r i b ed in

the ACHTERBAHN paper (c f . des i gn specs)
41
42 wire nfsr1_maj , nfsr1_mux1 , nfsr1_mux2 , nfsr1_mux3 , nfsr1_mux4 ;
43
44 assign nfsr1_maj = (n f s r1_sta t e [4] & n f s r1_sta t e [1 2]) | (n f s r1_sta t e [4] &

n f s r1_sta t e [1 9]) | (n f s r1_sta t e [1 2] & n f s r1_sta t e [1 9]) ;

256

8.C Reference Implementation

45 assign nfsr1_mux1 = (n f s r1_sta t e [2 1]) ? n f s r1_sta t e [1 2] : n f s r1_sta t e [1 7] ;
46 assign nfsr1_mux2 = (n f s r1_sta t e [8]) ? n f s r1_sta t e [1 8] : n f s r1_sta t e [2 0] ;
47 assign nfsr1_mux3 = (n f s r1_sta t e [2 1]) ? n f s r1_sta t e [7] : n f s r1_sta t e [2 2] ;
48 assign nfsr1_mux4 = (nfsr1_mux3) ? nfsr1_maj : nfsr1_mux2 ;
49
50 assign nfsr1_feedbackBit_achterbahn = nf s r1_sta t e [0] ^ n f s r1_sta t e [2] ^

n f s r1_sta t e [5] ^ n f s r1_sta t e [6] ^ n f s r1_sta t e [1 5] ^ n f s r1_sta t e [1 8] ^
n f s r1_sta t e [2 5] ^ (n f s r1_sta t e [1 4] & n f s r1_sta t e [1 9]) ^ nfsr1_mux1 ^
nfsr1_mux4 ;

51
52 assign nfsr1_feedbackBit = nfsr1_feedbackBit_achterbahn ;
53
54 ////////////////
55
56 wire nfsr2_feedbackBit ;
57
58 assign nfsr2_feedbackBit = n f s r2_sta t e [0] ^ n f s r2_sta t e [2 4] ^

n f s r2_sta t e [4 9] ^ n f s r2_sta t e [7 9] ^ n f s r2_sta t e [8 4] ^ (n f s r2_sta t e [3]
& n f s r2_sta t e [5 9]) ^ (n f s r2_sta t e [1 0] & n f s r2_sta t e [1 2]) ^
(n f s r2_sta t e [1 5] & n f s r2_sta t e [1 6]) ^ (n f s r2_sta t e [2 5] &
n f s r2_sta t e [5 3]) ^ (n f s r2_sta t e [3 5] & n f s r2_sta t e [4 2]) ^
(n f s r2_sta t e [5 5] & n f s r2_sta t e [5 8]) ^ (n f s r2_sta t e [6 0] &
n f s r2_sta t e [7 4]) ^ (n f s r2_sta t e [2 0] & n f s r2_sta t e [2 2] &
n f s r2_sta t e [2 3]) ^ (n f s r2_sta t e [6 2] & n f s r2_sta t e [6 8] &
n f s r2_sta t e [7 2]) ^ (n f s r2_sta t e [7 7] & n f s r2_sta t e [8 0] &
n f s r2_sta t e [8 1] & n f s r2_sta t e [8 3]) ;

59
60 ////////////////
61
62 wire outLin , outQuad , outTri1 , outTri2 ;
63
64 assign outLin = nf s r2_sta t e [7] ^ n f s r2_sta t e [1 1] ^ n f s r2_sta t e [3 0] ^

n f s r2_sta t e [4 0] ^ n f s r2_sta t e [4 5] ^ n f s r2_sta t e [5 4] ^ n f s r2_sta t e [7 1] ;
65
66 assign outQuad = (n f s r2_sta t e [4] & n f s r2_sta t e [2 1]) ^ (n f s r2_sta t e [9] &

n f s r2_sta t e [5 2]) ^ (n f s r2_sta t e [1 8] & n f s r2_sta t e [3 7]) ^
(n f s r2_sta t e [4 4] & n f s r2_sta t e [7 6]) ;

67
68 assign outTri1 = nf s r2_sta t e [5] ^ (n f s r2_sta t e [8] & n f s r2_sta t e [8 2]) ^

(n f s r2_sta t e [3 4] & n f s r2_sta t e [6 7] & n f s r2_sta t e [7 3]) ^
(n f s r2_sta t e [2] & n f s r2_sta t e [2 8] & n f s r2_sta t e [4 1] & n f s r2_sta t e [6 5])
^ (n f s r2_sta t e [1 3] & n f s r2_sta t e [2 9] & n f s r2_sta t e [5 0] &
n f s r2_sta t e [6 4] & n f s r2_sta t e [7 5]) ^ (n f s r2_sta t e [6] & n f s r2_sta t e [1 4]
& n f s r2_sta t e [2 6] & n f s r2_sta t e [3 2] & n f s r2_sta t e [4 7] &
n f s r2_sta t e [6 1]) ^ (n f s r2_sta t e [1] & n f s r2_sta t e [1 9] & n f s r2_sta t e [2 7]
& n f s r2_sta t e [4 3] & n f s r2_sta t e [5 7] & n f s r2_sta t e [6 6] &
n f s r2_sta t e [7 8]) ;

69
70 assign outTri2 = nf s r1_sta t e [2 3] ^ (n f s r1_sta t e [3] & n f s r1_sta t e [1 6]) ^

(n f s r1_sta t e [9] & n f s r1_sta t e [1 3] & n f s r2_sta t e [4 8]) ^ (n f s r1_sta t e [1]

257

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

& nf s r1_sta t e [2 4] & n f s r2_sta t e [3 8] & n f s r2_sta t e [6 3]) ;
71
72 assign keystreamBit = outLin ^ outQuad ^ outTri1 ^ outTri2 ;
73
74 ////////////////
75
76 reg [6 : 0] c t r ;
77
78 wire done_keyAddition ;
79 assign done_keyAddition = (c t r == 7 ’ d120) ? 1 ’ b1 : 1 ’ b0 ;
80
81 wire done_ivAddition ;
82 assign done_ivAddition = c t r [6] ;
83
84 wire done_mixing ;
85 assign done_mixing = (c t r == 7 ’ d127) ? 1 ’ b1 : 1 ’ b0 ;
86
87 wire [6 : 0] keyIndex ;
88 assign keyIndex = c t r [6 : 0] ;
89
90 wire [5 : 0] iv Index ;
91 assign iv Index = c t r [5 : 0] ;
92
93 ////////////////
94
95 always @(posedge c l k)
96 begin
97 i f (r e s e t)
98 begin
99 c t r <= 7 ’ d0 ;

100 cipherFSM <= S_PHASE1;
101 end
102 else i f (enable)
103 begin
104 n f s r1_sta t e [0 : 2 8] <= nf s r1_sta t e [1 : 2 9] ;
105 n f s r2_sta t e [0 : 8 8] <= nf s r2_sta t e [1 : 8 9] ;
106
107 case (cipherFSM)
108 S_PHASE1:
109 begin
110 n f s r2_sta t e [8 9] <= nf s r1_sta t e [0] ;
111
112 i f (done_keyAddition)
113 begin
114 n f s r1_sta t e [2 9] <= ~nf s r1_sta t e [3 0] ;
115 n f s r1_sta t e [3 0] <= 1 ’ b1 ;
116
117 c t r <= 7 ’ d0 ;
118 cipherFSM <= S_PHASE2;
119 end

258

8.C Reference Implementation

120 else
121 begin
122 n f s r1_sta t e [2 9] <= nf s r1_sta t e [3 0] ;
123
124 i f (done_ivAddition)
125 n f s r1_sta t e [3 0] <= key [keyIndex] ;
126 else
127 n f s r1_sta t e [3 0] <= key [keyIndex] ^ iv [iv Index] ;
128
129 c t r <= c t r + 1 ;
130 end
131 end
132
133 S_PHASE2:
134 begin
135 n f s r1_sta t e [2 9] <= nf s r1_sta t e [3 0] ;
136
137 n f s r1_sta t e [3 0] <= nfsr1_feedbackBit ^ keystreamBit ;
138 n f s r2_sta t e [8 9] <= nfsr2_feedbackBit ^ n f s r1_sta t e [0] ^

keystreamBit ;
139
140 i f (done_mixing)
141 begin
142 c t r <= 7 ’ d0 ;
143 cipherFSM <= S_PHASE3;
144 end
145 else
146 c t r <= c t r + 1 ;
147 end
148
149 S_PHASE3:
150 begin
151 n f s r1_sta t e [2 9] <= nf s r1_sta t e [3 0] ;
152
153 n f s r2_sta t e [8 9] <= nf s r1_sta t e [0] ;
154
155 i f (done_keyAddition)
156 begin
157 n f s r1_sta t e [3 0] <= 1 ’ b1 ;
158
159 c t r <= 7 ’ d0 ;
160 cipherFSM <= S_PHASE4;
161 end
162 else
163 begin
164 n f s r1_sta t e [3 0] <= nf s r2_sta t e [0] ^ key [keyIndex] ;
165
166 c t r <= c t r + 1 ;
167 end
168 end

259

8 LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

169
170 S_PHASE4:
171 begin
172 n f s r1_sta t e [2 9] <= nf s r1_sta t e [3 0] ;
173
174 n f s r1_sta t e [3 0] <= nfsr1_feedbackBit ;
175 n f s r2_sta t e [8 9] <= nfsr2_feedbackBit ^ n f s r1_sta t e [0] ;
176
177 i f (done_mixing)
178 cipherFSM <= S_GENOUT;
179 else
180 c t r <= c t r + 1 ;
181 end
182
183 S_GENOUT:
184 begin
185 n f s r1_sta t e [2 9] <= nf s r1_sta t e [3 0] ;
186
187 n f s r1_sta t e [3 0] <= nfsr1_feedbackBit ;
188 n f s r2_sta t e [8 9] <= nfsr2_feedbackBit ^ n f s r1_sta t e [0] ;
189 end
190 endcase
191 end
192 end
193
194 ////////////////
195
196 endmodule
197
198 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

260

Future forever and ever!

Graffiti at a university wall

CHAPTER9
Future Research Directions

ABSTRACT
Throughout this thesis, we have already identified various directions for potential future research
in the broad field of lightweight cryptography. Here, we now present three (in our opinion)
particularly interesting projects in further detail.

First, we describe a straightforward Lizard-based (cf. Chapter 8) authentication scheme
and present a corresponding basic FPGA prototype. We also discuss the relevance of privacy
preservation in this context and suggest, how the original Lizard design could be adapted for
making use of the full potential which the general Lizard-construction (cf. Chapter 7) offers
w.r.t. lightweight authentication.

Second, we take our idea of continuously using the IV as part of a stream cipher’s state update
one step further. While in Section 6.5, this new approach was ‘only’ meant to protect ciphers
which continuously use the secret key (i.e., Sprout-like ciphers) against TMD-TO distinguishing
attacks, we here show that by combining continuous IV use and packet mode (see, e.g., Section 5.1
and Chapter 7), classical TMD-TO inner state recovery attacks can be thwarted, as well.

Third, motivated by our application context of ultra-constrained RFID devices (cf. Chapter 2),
where (e.g., due to their restricted communication capabilities; cf. Subsection 2.3.1) often only
few keystream bits may actually be available to an attacker, we suggest to increase the study of
short-keystream attacks. In particular, we believe that the field of BDD-based cryptanalysis has
been neglected for too long and provide several new ideas how the efficiency of such attacks could
be improved in the future.

Declaration of Origin: Section 9.3 is based on the paper A Note on Stream Ciphers that
Continuously Use the IV [HKM17a], written together with Matthias Krause and Willi Meier and
presented at Dagstuhl Seminar 18021: Symmetric Cryptography, 2018 [Mei18].

261

9 Future Research Directions

9.1 Introduction

As part of the previous chapter conclusions, we have already pointed out numerous open
problems and potential directions for fruitful future work. Adding to this picture, in
this chapter, we will explicitly discuss three new ideas, which we consider particularly
promising, in further detail.
First, in Section 9.2, we sketch how our new lightweight stream cipher Lizard (cf.

Chapter 8) could be used (and further optimized) to realize hardware-efficient, privacy-
preserving authentication, thereby connecting our two main topics: lightweight authenti-
cation (cf. Chapters 3 and 4) and lightweight stream ciphers (cf. Chapters 6 to 8). As a
real-world example, we also describe our implementation of straightforward Lizard-based
authentication between two connected FPGA boards, which are supposed to serve as
targets in future side-channel cryptanalysis.

Second, in Section 9.3, we present a new idea for designing stream ciphers which resist
TMD-TO inner state recovery attacks. It combines the concept of explicitly targeting
packet mode scenarios (as introduced in Chapter 7) and the idea of continuously using
the IV as part of the state update (as introduced in Section 6.5). While in Section 6.5,
continuously using the IV was suggested to protect Sprout-like ciphers (i.e., ciphers
which continuously use the secret key) against TMD-TO distinguishing attacks, we
will explain here that for stream ciphers working in packet mode, it can also thwart
TMD-TO inner state recovery attacks. In particular, our approach alleviates the need
for additional countermeasures such as the continuous key use of Sprout-like ciphers (cf.
Subsections 6.2.1 to 6.2.3) or the second key addition in Lizard’s state initialization
algorithm (cf. Subsection 8.3.5).

Third, in Section 9.4, we suggest to ‘revive’ the cryptanalytic technique of BDD attacks,
originally introduced by Krause [Kra02] in 2002. After successful attacks against then
widespread stream ciphers such as E0 of the Bluetooth standard [Blu14] and A5/1 of
GSM [BGW99], and despite several follow-up publications (see, e.g., [KS06] and [Ste07a]),
the technique subsequently somehow sank into oblivion with the advent of eSTREAM
portfolio [BBV12] members such as Trivium [CP05] and Grain v1 [HJM06], whose state
size is at least twice the key size. However, we will explain that the lack of corresponding
research and respective publications after 2008 is very unfortunate for several (up-to-date)
reasons. To ‘reignite the flame’, we will also make several suggestions how the efficiency
of BDD attacks can be improved, especially in the important context of parallelization.
As SAT1 attacks have seen much attention recently and as they share strong relations to
BDD-based cryptanalysis, these will be discussed (and compared to BDD attacks) in
Section 9.4, as well.

Section 9.5 concludes the chapter.

1SAT is the common abbreviation for the Boolean satisfiability problem.

262

9.2 LIZARD-based Authentication

9.2 LIZARD-based Authentication

Remember that, in Chapter 5, we left the path of searching for dedicated authentication
protocols suitable for ultra-constrained RFIDs (cf. Chapter 2) and, instead, turned
to a fundamental question which arose to us while designing the (n, k, L)〈80〉-protocol
introduced in Chapter 4: ‘Why use a bitstream generator only to produce the specifications
of the secret functions, but not for generating the authentication token right away?’
With our new lightweight stream cipher Lizard (cf. Chapter 7), we now have the

necessary ‘tool’ to do exactly this. Lizard surpasses Grain v1 (cf. Subsection 5.2.4),
the most hardware-efficient member of the latest eSTREAM portfolio [BBV12], in
important metrics for lightweight ciphers such as chip area (cf. Subsection 2.3.3) and
power consumption (cf. Subsection 2.3.4). Given its hardware cost of only 1161 GE (see
Table 8.1 in Subsection 8.5.1), it can even compete with lightweight block ciphers like
PRESENT [BKL+07], whose straightforward implementation requires 1570 GE (and
32 clock cycles to encrypt one 64-bit block of data) [BKL+07] and whose serialized
implementation requires 1080 GE (and 563 clock cycles to encrypt one 64-bit block of
data) [RPLP08]. In fact, we will explain in the course of this section that Lizard-based
authentication can even be superior to the prevalent (lightweight) block cipher-based
schemes (cf. Section 3.3) if important additional features such as privacy preservation
are required.

9.2.1 Employing LIZARD ‘as it is’

Lizard can actually be used straightforwardly for realizing a basic challenge-response
authentication protocol. In the respective scenario, the verifier (an RFID reader) chooses
some 64-bit IV as the challenge and transmits it to the prover (an RFID tag), who
then responds with the corresponding keystream prefix of length 120 bits for the given
(public) IV and the common secret key. Knowing the IV and the key, the verifier is
able to generate the correct keystream prefix and, for a valid prover, both bitstrings will
match, leading to a successful authentication. Just like for general stream cipher-based
encryption, it is obviously crucial here that the same IV is never used twice. This
can be guaranteed if the verifier keeps a log of already consumed IVs or simply uses a
sequential (or, e.g., maximum-length LFSR-driven) IV counter. Alternatively, for each
authentication instance, the verifier can also simply choose a random IV, given that
the underlying IV space is large enough. In our targeted context of ultra-constrained
RFIDs, Lizard’s IV space of size 264 can be expected to be appropriate for nearly every
application scenario. And, in extreme cases, there is still the possibility to switch the
secret key after a predefined number of authentication events.

Also note that revealing the keystream should not lead to security issues here, as our
complete cryptanalysis for Lizard (see Section 8.4) was performed in a known-keystream
setting. Moreover, for the case of a malicious verifier, remember that the security proof

263

9 Future Research Directions

of the Lizard-construction against generic TMD-TO key recovery attacks even holds for
chosen-IV adversaries (see Chapter 7, esp. Section 7.4).

An FPGA Implementation of classical LIZARD-based Authentication

Field-programmable gate arrays (FPGAs) are an important component in hardware
development. In particular, even if the final product is supposed to be an ASIC (as in the
case of ultra-constrained RFIDs, cf. Chapter 2), they play a major role during the stage of
testing/prototyping. This is due to the fact that, as their name suggests, FPGAs actually
allow for reprogramming their respective circuits, e.g., in the course of applying further
optimizations or fixing bugs as part of the development process. The manufacturing
of ASICs, on the other hand, has large ‘entry costs’. That is, even to produce a single
ASIC, e.g., corresponding photolithographic masks (and wafers) are required, whose
costs amount to thousands of U.S. dollars (see, e.g., Subsection 2.3.10 for further details).
So, in a nutshell, if only few devices are required (as in the case of testing/prototyping),
FPGAs are the hardware of choice, whereas, when it comes to large-scale production
for the final product, ASICs can play their strengths in the context of ultra-constrained
RFIDs due to the then low per-unit costs (as, e.g., the aforementioned masks can be
used to produce thousands or millions of devices).
In consequence, we decided to use FPGAs to realize our basic prototype of Lizard-

based authentication depicted in Fig. 9.1. The reasons for building this real-world example
at all are twofold.
First, in the context of this thesis, we wanted to complete the picture spanning from

laying the theoretical foundations with the security proof of the Lizard-construction
(cf. Chapter 7), over designing a concrete instantiation in the form our new lightweight
stream cipher Lizard (cf. Chapter 8), to now presenting an actual hardware device.

Second, as future work, we suggest to evaluate (and potentially improve) Lizard w.r.t.
its resistance against side-channel attacks such as power analysis. In this context, our
basic FPGA prototype is supposed to serve as a first target.
Before we give a brief description of our hardware example, we would like to warn

the reader not to be mislead by the sheer sizes of the FPGA boards depicted in Fig. 9.1.
These are general-purpose testing boards, which contain a multitude of additional features
(such as LAN and VGA ports) that we make no use of here. The actual FPGA core is
a very small component on these boards and even ‘within’ this core, the gate array of
Lizard occupies only a tiny fraction of space.
In the setup depicted in Fig. 9.1, the left FPGA board plays the role of the verifier,

while the right board acts as the prover. On both boards, the FPGA core contains
a gate array built on the basis of our Lizard reference implementation provided in
Appendix 8.C. Around these ‘Lizard modules’, we implemented a simple challenge-
response authentication logic (as described above) and the respective communication
is performed through a basic, self-written communication protocol using the six small,

264

9.2 LIZARD-based Authentication

Figure 9.1: A basic FPGA prototype of Lizard-based authentication.

colored wires connecting the two boards.2 The verifier (i.e., the FPGA board on the
left) is additionally equipped with two attached displays delivering information about
the state of the authentication process. Moreover, the red numbers on the on-board
seven-segment displays indicate, how many bits the respective board has already received
in the course of the current authentication instance.

Figure 9.1 shows the state of a successfully completed authentication. For this example,
we used the secret key 0x0123456789ABCDEF0123456789ABCD and the public challenge
(i.e., IV) 0xABCDEF0123456789, corresponding to the third test vector which we provided
for Lizard in Appendix 8.A. The enlarged extract of the verifier’s OLED display in
the lower left corner of Fig. 9.1 is to be interpreted as follows: The second line shows
the challenge sent to the prover. The third line (starting with ‘=’) contains the first six
bytes of the correct 120-bit keystream prefix computed by the verifier on the basis of the
challenge and the secret key. The last line (starting with ‘<’) contains the first six bytes

2The reason why we neither used the built-in communication capabilities of the FPGA test boards
nor decided to attach some additional wireless communication hardware, is that, with regard to future
analysis (e.g., concerning side-channel or man-in-the-middle attacks), we wanted to keep the setting as
simple as possible.

265

9 Future Research Directions

of the 120-bit response received from the (here: valid) prover. As both bitstrings of size
120 bits matched, the verifier indicates ‘Authentication SUCCESSFUL’.

Towards Privacy Preservation for classical LIZARD-based Authentication

In Section 3.1, where we explained the different concepts of identification, authentication,
and authorization, we also briefly touched the attached problem of so-called privacy
preservation. One particular aspect of this large field of research is the problem of tracing.
Nowadays, most of us usually carry several RFID devices with us when we leave our
homes, knowingly (as in the case of membership cards like the ecUM, cf. Subsection 3.2.2)
or unknowingly (such as RFID tags contained in unsuspicious products like clothing). If,
upon request by an RFID reader, corresponding tags freely reveal their identity (see, e.g.,
the UID of the MIFARE Classic-based ecUM), then an attacker could place malicious
reading devices at various places in order to trace the movement of individuals (who, e.g.,
often tend to hold their whole wallet in front of a reader, allowing the respective device
to potentially communicate with all contained RFID-based cards). Note, however, that
this step of freely giving away an RFID tag’s identity often actually serves the purpose
of simplifying the subsequent authentication. As, if no group keys are used, it gives
the corresponding RFID reader (i.e., the verifier) the possibility to load the respective
‘tag-individual’ secret key from its database. But even if group keys are used or, more
simple, there is only one valid RFID tag (i.e., prover) for a certain reader (imagine, e.g.,
a single RFID key for your home’s front door), thus removing the need for a tag to reveal
its identity in advance, there is still the possibility of such tracing attacks through the
information revealed in the course of authentication.

So let us consider the simple case that no explicit identification is necessary as there is
only one valid prover for some verifier, i.e., this verifier holds only one secret key and
expects correct answers in a challenge-response protocol based on this certain key. Let
us further assume that the authentication is performed using the simple Lizard-based
scheme described above. Then an attacker could trace the prover (e.g., an RFID tag)
easily by always sending the same challenge, as the tag would always answer with the same
120-bit keystream prefix belonging to this challenge (i.e., IV) and its secret key. That is,
even though the attacker would not be able to recover the secret key or impersonate the
prover in some other way, he would at least always know that he is communicating with
the same RFID tag, e.g., allowing to trace its owner’s movements.
As explained in Section 3.1 (at the example of block cipher-based authentication),

one way to deal with this problem is to additionally introduce some random nonce x
on the prover’s side. But how should this nonce be used properly in the case of stream
cipher-based authentication? We first describe two tempting, but bad ways:

• The random nonce could be XORed to the keystream in order to produce constantly
changing responses (under the same challenge). Then, however, to allow for correct

266

9.2 LIZARD-based Authentication

verification, the prover would need to (publicly) communicate this nonce to the
verifier for each authentication instance. But trivially, this would now also enable
an attacker to cancel the effects of the nonce by XORing it to the response himself
and obtaining the underlying keystream. Irrespective of the used nonces, this
underlying keystream would still always be the same, as long as the challenge does
not change.

• A more sophisticated approach could be to XOR the challenge and the nonce. In
the case of our above Lizard-based example, this would mean that the 64-bit IV
is computed as IV := c⊕ x for a 64-bit challenge c and a 64-bit nonce x. Again,
the nonce x would have to be publicly transmitted to the verifier together with the
corresponding 120-bit keystream prefix to allow for correct verification. But while
this scheme can in fact thwart tracing, a much more severe security problem would
arise here. More precisely, observing a single successful authentication instance
would now allow an attacker to impersonate the valid prover in the future. As for
some new challenge c′, he could now simply compute his nonce as x′ := IV ⊕ c′,
and his response consisting of the initially observed 120-bit keystream prefix (for
the old challenge-nonce tuple (c, x) with IV = c⊕ x) together with his new nonce
x′ would be accepted by the verifier for c′.

In consequence, we suggest to realize privacy preservation for Lizard-based authen-
tication similar to how it was described for block cipher-based schemes in Section 3.1.
That is, the IV on the basis of which the 120-bit keystream prefix for authentication is
generated, should be computed as the concatenation IV := c||x of a challenge c and a
nonce x of ‘suitable’ sizes. The drawback of this approach is obviously that challenge and
nonce now need to share the IV length of the stream cipher, just like they needed to share
the block length of the block cipher-based example in Section 3.1. In our context of ultra-
constrained RFIDs, such a solution, where, e.g., the challenge size is set to 44 bits and the
nonce size is set to 20 bits (adding up to Lizard’s IV length of 64 bits), could in fact be
sufficient for many application scenarios. Nonetheless, in the following Subsection 9.2.2,
we suggest how Lizard could be tuned especially for authentication purposes, thereby
making full use of the possibilities offered by the underlying Lizard-construction.

9.2.2 Further Optimizing LIZARD for Authentication
First of all, remember that the general Lizard-construction (cf. Chapter 7) actually
assumes IV length = key length = inner state length. In particular, the corresponding
proof of the (2n/3)-security against generic TMD-TO key recovery attack was done in
this scenario and the only reason why our instantiation Lizard (cf. Chapter 8) with key
size 120 bits has an IV size of ‘only’ 64 bits is that, as explained in Subsection 8.3.5, we
saw no need for larger IVs in the context of lightweight stream ciphers and shortening
the IV allowed to save a little bit of chip area. But given the new application scenario of

267

9 Future Research Directions

privacy-preserving authentication described above, the few additional gates required for
using the full possible IV length of 120 bits in Lizard should be well worth the gain in
security and, hence, broadened applicability.

Another property of the general Lizard-construction gaining particular relevance in the
context of authentication is our conjecture made in Section 7.6 that for R = n (i.e., if the
packet size equals the size of the inner state), the Lizard-construction is (2n/3)-secure
even against distinguishing attacks. However, we cannot use this property for optimizing
our concrete instantiation Lizard w.r.t. authentication right away, as in Lizard, there is
the possibility of so-called IV collisions (cf. Subsection 8.4.7), which result out of setting
S129

30 := 1 in phase 3 of the state initialization of Lizard (cf. Subsection 8.2.2) and allow
for corresponding distinguishing attacks (even though with a complexity larger than the
claimed 60-bit security level against distinguishing). The reason for setting S129

30 := 1
in the first place was to avoid that, after phase 3 of the state initialization, NFSR1 (cf.
Section 8.2) could have otherwise gotten stuck in the all-zero state. In order to resolve
this issue for an authentication-focused variant of Lizard, we suggest that instead of
setting S129

30 := 1, the term

⊕
(
St1 ⊕ 1

) (
St2 ⊕ 1

)
· · ·
(
St30 ⊕ 1

)
should be added to the feedback function of the 31-bit NFSR NFSR1 of the original
Lizard.3 Thereby, NFSR1 obtains the full possible period of 231 (instead of currently
231 − 1, cf. Subsection 8.3.1) and the need for overwriting one of its cells with 1 during
phase 3 of the state initialization to avoid the all-zero state becomes obsolete. In
consequence, also the possibility of IV collisions and corresponding distinguishing attacks
is canceled. The reason why we did not do this already in the original Lizard lies
in the fact that if St26, St27, St28, St29, St30 are involved in the generation of St+1

30 , the
speedup option as described in Subsection 8.3.4 is completely lost. Here, in the context
of authentication, we believe that such a speedup option is not necessary, because in each
instance, only a short, 120-bit long keystream prefix needs to be generated. Remember
that, in Subsection 2.3.2, we explained that the common notion is that the whole
process of authentication should not take more than 150 ms. Furthermore, as described,
e.g., in Subsection 2.3.6, the prevalent clock rate for ultra-constrained RFIDs is 100
kHz. As Lizard’s state initialization requires only 499 clock cycles (see Table 8.1 in
Subsection 8.5.1), the generation of a 120-bit long keystream prefix takes only 619 clock
cycles in total. Given a 100 kHz clock, this translates into only 6.19 ms, which is way
below the 150 ms bound for authentication mentioned above.

3Note that the addition of this term can be expected to have negligible influence (if any influence at all)
on the security of Lizard. This is due to the fact that the order of states of the old NFSR1’s state cycle of
length 231−1 is completely preserved with only one exception: the all-zero state is now ‘glued into’ this state
cycle between the states (1, 0, . . . , 0) and (0, . . . , 0, 1) in the form (1, 0, . . . , 0)→ (0, . . . , 0)→ (0, . . . , 0, 1).

268

9.3 More on Stream Ciphers that Continuously Use the IV

We would like to point out that this is even faster than encrypting two 64-bit blocks
of data with a serialized implementation of PRESENT, which would take 2 · 563 = 1126
clock cycles (see the numbers at the very beginning of this section). As explained at the
end of Subsection 4.4.2, for realizing privacy-preserving authentication with PRESENT
for a challenge size of 64 bits, two blocks of data would be necessary, which, in turn,
would then also require to implement a suitable mode of operation (i.e., not ECB mode),
which comes at significant additional costs. Given that (without this required mode of
operation) a serialized implementation of PRESENT needs 1080 GE [RPLP08], whereas
standard Lizard amounts to 1161 GE (see Table 8.1 in Subsection 8.5.1), it is hard to
estimate which solution will finally be cheaper in terms of chip area (cf. Subsection 2.3.3)
after our above suggestions of using a full 120-bit IV and extending the period of NFSR1
to 231 have been implemented. However, it is safe to say that both numbers will be in the
same ballpark, making our modified variant of Lizard a viable alternative to prevalent
block cipher-based schemes when it comes to lightweight authentication.

In summary, as future work, we suggest to adapt standard Lizard as described above,
i.e., to extend the IV to 120 bits and to modify NFSR1 such that it reaches full period
231, which makes setting S129

30 := 1 obsolete and removes the corresponding IV collision
issues. In a privacy-preserving authentication scheme, this would, e.g., allow to choose
a challenge of size 80 bits and a nonce of size 40 bits4, which are then concatenated to
obtain the 120-bit IV, on the basis of which a 120-bit keystream prefix for authentication
is generated and transmitted to the verifier (together with the public nonce).

With regard to the respective security analysis, we suggest to particularly investigate
whether the conjectured (2n/3)-security of the Lizard-construction against generic
TMD-TO distinguishing attacks for R = n applies to this scheme. Moreover, special care
has also to be taken w.r.t. the effects that an increased IV length may have in the context
of other cryptanalytic techniques than TMD-TO.

9.3 More on Stream Ciphers that Continuously Use the IV

In Chapter 6, we gave an overview over the new class of so-called of small-state stream
ciphers, whose volatile inner state size is less than twice the key size (resp. the targeted
security level against key recovery). At the moment, this class consists of the three Sprout-
like ciphers (i.e., ciphers that continuously use the secret key) Sprout [AM15], Plantlet
[MAM17], and Fruit [GHX16] as well as our new stream cipher Lizard [HKM17b], which,
with the Lizard-construction (cf. Chapter 7), uses a different, non-Sprout-like approach
to achieve increased security against TMD-TO key recovery attacks. Remember that, in
Subsection 6.3.1, we also presented a generic distinguisher against Sprout-like ciphers
with a complexity significantly smaller than that of exhaustive key search. To thwart this

4Remember that the nonce only serves to thwart tracing, for which 40 bits should already be sufficient.

269

9 Future Research Directions

kind of attack, we suggested in Section 6.5 that these ciphers should not only continuously
use the secret key, but also continuously use the public IV in their state update.
However, in our original publication [HKMZ18] underlying Chapter 6, we concluded

for other, non-Sprout-like stream ciphers:

“Other small-state ciphers like Lizard [27] would hardly benefit for the
following reason: If the secret key is not used after the state initialization,
there is always the possibility of a TMD tradeoff inner state recovery attack like
those by Babbage [3] or Biryukov and Shamir [10]. Such an attack will have
complexity half the size of the volatile inner state, independent of whether the
IV is continuously used during state update, because the IV is public and the
attacker will be able to evaluate the function (volatile inner state, IV) −→
keystream block for randomly chosen volatile inner states and the proper
IV. The only advantage of continuously using the IV would be that TMD
tradeoff precomputations could be prevented as, if it is not a chosen-IV attack
scenario, the attacker would have to wait for which IV he actually obtains
the required/attacked keystream.” [HKMZ18]

In this section, we will argue why we believe that this restriction of continuous IV use
to the context of Sprout-like ciphers was probably premature. More precisely, we will
explain that, under certain conditions, general stream cipher constructions can benefit
from this new design idea as well.

9.3.1 Continuous IV Use with Stream Ciphers working in Packet Mode
At FSE 2017, our new small-state stream cipher Lizard (cf. Chapter 8) was introduced.
Apart from its provable security against TMD-TO-based key recovery attacks, one of
its prominent characteristics is that it explicitly targets packet mode scenarios, i.e.,
application contexts where only a moderate number of keystream bits needs to be
generated per key/IV pair. More precisely, Lizard allows to generate up to 218 keystream
bits per key/IV pair, which would be sufficient for many existing communication scenarios
like Bluetooth, WLAN, or HTTPS as explained in Section 8.1.

For Lizard, we claim 80-bit security against key recovery and 60-bit security against
distinguishing. The lower security level against distinguishing results from the fact that,
as pointed out in Subsection 8.4.2, TMD-TO-based inner state recovery attacks like those
of Babbage [Bab95] or Biryukov and Shamir [BS00] are still possible, because after the
state initialization of the cipher has been completed, the keystream is then generated
solely in dependence of the resulting (121-bit wide) initial state, exactly as it is done by
classical stream ciphers like Trivium [CP05] (cf. Subsection 5.2.3) and Grain [HJMM08]
(cf. Subsection 5.2.4).

In the following, we will explain that by using a stream cipher in packet mode together
with continuously involving the IV in the state update, TMD-TO-based inner state

270

9.3 More on Stream Ciphers that Continuously Use the IV

recovery attacks can actually be thwarted. For a technical discussion w.r.t. why the
assumption of continuous IV availability for encryption purposes is actually plausible in
many cases, we refer the reader to Section 6.5.

For the sake of brevity, let us only quickly recall the tradeoff curves and restrictions of
the relevant attacks. The TMD-TO attack of Babbage [Bab95] has the tradeoff curve
TM = N with P = M and T ≤ D (where T < D means that some of the available data
is ignored during the online phase of the attack). The TMD-TO attack of Biryukov
and Shamir [BS00] is based on Hellman’s time-memory tradeoff attack for block ciphers
[Hel80] and has the tradeoff curve TM2D2 = N2 with P = N/D and T ≥ D2. While
the use of so-called BSW-sampling [BSW01] allows to relax the restriction T ≥ D2 in the
Biryukov-Shamir attack, the tradeoff curve TM2D2 = N2 and the relation P = N/D
remain unchanged. For further details (also w.r.t. the involved cost metrics) please see,
e.g., Subsection 8.4.2. Keep in mind, however, that, as explained before, in this thesis we
always refer to the overall complexity of an attack (including precomputation) as the
relevant benchmark w.r.t. our security claims.

Attacking a Packet-Mode, Continuous-IV-Use Stream Cipher via Classical
TMD-TO Attacks

Let us now consider an arbitrary KSG-based stream cipher with a volatile inner state size
of 100 bits, a key size of 80 bits, and an IV size of 80 bits. Moreover, let us assume that
this stream cipher is used in packet mode with a limit of 220 keystream bits per key/IV
pair and that, during keystream generation, the IV is continuously employed in the
state update (like the key is continuously employed in the state update with Sprout-like
ciphers). Then, a generic TMD-TO attacker in the spirit of [Bab95] and [BS00] has the
following two possibilities:

1. He uses the fact that the IV is public and tries to invert the resulting function
FIV (volatile inner state) −→ keystream block by randomly choosing volatile inner
states of 100 bits and looking for a collision in the keystream of the attacked
packet. As the data there is limited to 220 bits, both Babbage and Biryukov-
Shamir TMD-TO attacks will lead to overall complexities of at least 280 (the cost
of exhaustive key search).5 In particular, observe that using data from another
packet (generated under another initialization vector IV ′) leads to an independent
birthday experiment, as the attacker then has to evaluate the different function
FIV ′ . That is, data obtained on the basis of different IVs cannot be used here to
achieve an ‘overall birthday bound-based’ advantage.

5More precisely, for the Babbage attack, the restrictions T ≤ D and P = M together with the
tradeoff curve TM = N imply M ≥ 280 and, hence, also P ≥ 280 in our example. Similarly, for the
Biryukov-Shamir attack, if D ≤ 220, with or without BSW-sampling, due to P = N/D the precomputation
complexity is at least 280 for N = 2100.

271

9 Future Research Directions

2. He ignores the information about the IV and uses data from various packets, i.e., he
tries to invert the function F (volatile inner state, IV) −→ keystream block. Then,
however, he has to sample randomly from the space Volatile Inner States× IVs of
size 2100+80, leading to an overall attack complexity above exhaustive key search.

Also note that the less common approach of attacking the function F (Key, IV) −→
keystream prefix for a collection of keystream prefixes obtained on the basis of different
IVs (as taken in, e.g., [HS05] and [DK08]), would not work, as well, because the key size
and the IV size add up to 160 here, leading to an overall complexity of at least 280.6
We would like to point out that for scenarios where different (e.g., session) keys are

used, it is important to deprive an attacker of the possibility to collect more data based
on a situation where the same IVs are used in different sessions, as this would eventually
allow him to recover a secret inner state (and, possibly, by clocking the cipher back, even
the session key) of one of these sessions. Potential countermeasures are here to keep
the IV counter over sessions (instead of resetting it) or to choose the IVs at random. If
IV reset is inevitable, one could also increase the volatile inner state from 100 bits to
120 bits in our above example and limit the number of session keys to a (in our opinion
plausible) number of 220.7 This would allow an attacker to obtain at most 240 keystream
bits generated under the same IV, and, for N now being 2120, again lead to overall
complexities of at least 280 for the above classical TMD-TO attacks.

Towards Practical Instantiations of our Design Idea

While the target of this section is mainly to stimulate a general discussion about our new
design idea, we still would like to point out an important aspect which has to be treated
with special care in potential future instantiations: the concrete way in which the IV is
involved in the state update.

As we have seen above, the security of our approach against generic TMD-TO attacks
is based on the assumption that an attacker will not be able to use the same function F
for attacking different packets. However, certain correlations between the functions FIV
and FIV ′ for different initialization vectors IV and IV ′ are unavoidable. For example,
given some arbitrary volatile inner state S, the keystream blocks FIV (S) and FIV ′(S)
will have the same first (i.e., leftmost) bit, as in our new design approach, the IV is
continuously involved in the state update, but does not enter the cipher’s output function
directly. Note that the same applies to Sprout-like ciphers w.r.t. the continuous use of
the secret key (cf. Subsections 6.2.1 to 6.2.3).

6To avoid any misconceptions, we would like to point out that also Grain v1 [HJM06], which has key
size 80 bits but IV size only 64 bits, would not succumb to this attack in a single-key scenario. This is
due to the fact that under a fixed key, an attacker would only be able to collect at most 264 keystream
prefixes, leading to an overall complexity above 280 for this type of TMD-TO attack. But by choosing key
length = IV length = 80 bits in our example, we can resist this attack even for multiple-key scenarios.

7With such state sizes, we are in the area of lightweight cryptography and corresponding applications.

272

9.3 More on Stream Ciphers that Continuously Use the IV

In this section, we do not discuss the potential security implications of such ‘subtle’
correlations, as we are focusing on generic TMD-TO attacks, which treat the function F
as a black-box. In particular, we also do not consider cipher-specific approaches which
might perform on-the-fly adaptions of F in order to make it applicable also to data
obtained from other packets. However, in concrete instantiations, it might be required to
fend off such non-generic attacks, which have yet to be developed.
But one important rule for future instantiations of our new design approach can be

formulated right away: it is of vital importance that each bit of an initialization vector
IV must always have the potential to influence the keystream block FIV (S) generated
on the basis of IV and a volatile inner state S. To illustrate this rule, imagine the bad
round IV function IV round = IV (2t) mod 80 · IV (2t+1) mod 80 for an initialization vector
IV = (IV 0, . . . , IV 79) of length 80 bits and t denoting the corresponding keystream
generation step of the KSG. In this case, a (chosen-IV) attacker could, e.g., focus on
the set (of size about 2 · 240) of all IVs which either have only zeros at their even index
positions or have only zeros at their odd index positions. Given the above bad round
IV function, all these IVs would never influence the state update during keystream
generation, allowing an attacker to target all the corresponding keystream packets with a
single function F (using the classical, generic TMD-TO attacks), thereby defeating our
assumption about the limit of data available to him.
Also less extreme scenarios could be imagined, where an attacker knows that for

certain blocks of a number of keystream packets, not all IV bits are involved in the
underlying state updates. Note that, due to their ‘complicated’ round key functions, the
continuous-key-use stream ciphers Sprout and Fruit have already succumbed to similar
TMD-TO attacks in the past w.r.t. the involvement of the key bits (see, e.g., [EK16]
and Subsection 6.3.2). In fact, in Section 6.4 we hence conjectured that the round key
function of Plantlet, which, in each step, simply cyclically XORs one key bit to the
feedback bit of the NFSR, is actually the optimal one for thwarting generic TMD-TO
attacks. In the same spirit, we also believe that for instantiations of our new design
approach, cyclically XORing one IV bit per step to the volatile inner state should be the
way to go.

Summing up, creating a concrete, secure instantiation of our new design idea of
combining continuous IV use and packet mode will definitely be a challenging task, as,
besides TMD-TO attacks, a wide range of other established cryptanalytic techniques
(such as correlation attacks, algebraic attacks etc.) will have to be considered, as well.
Nonetheless, we are convinced that the result will be worth the effort, not only from the
practical viewpoint of obtaining an even more resource-efficient stream cipher, but also
with regard to an improved theoretical understanding of the boundaries of lightweight
(small-state) design. In this respect, we particularly suggest to investigate whether for
the principle of continuously using the IV, similar security proofs as for the Lizard-
construction (cf. Chapter 7) or for the hardness of Trivium and Grain w.r.t. generic
TMD-TO attacks (see [Kra17]) can be found.

273

9 Future Research Directions

9.4 BDD and SAT Attacks
As we have seen in the previous chapters, long-keystream attacks such as TMD-TO
attacks or correlation attacks, which require an attacker to get hold of very large
keystream pieces (in the dimension of millions/billions of bits), play a dominating
role in the design and analysis of contemporary stream ciphers. This is reflected in a
multitude of corresponding publications (see, e.g., [MS88], [Bab95], [BS00], [LMV05],
[HS05], [Bjø08], [BGJ09], [EK16], [MSS+17], [ZGM17]) and also in the fact that we
considered it particularly important that our new lightweight stream cipher Lizard
(cf. Chapter 8) is provably resistant against generic TMD-TO key recovery attacks due
to implementing the Lizard-construction design principle (cf. Chapter 7). However,
especially in the context of ultra-constrained RFID devices (cf. Chapter 2), a real-world
attacker may easily run into a situation where only few bits of known keystream are
actually available to him. For this reason, we consider short-keystream attacks, which
often require only the information-theoretic minimum of keystream bits, an important
topic of future research.

Two prominent examples of such short-keystream attacks are attacks based on binary
decision diagrams (BDDs) and SAT solvers. In the context of stream cipher analysis,
the goal of corresponding attacks is usually to recover the KSG’s secret initial state.
As pointed out previously, for popular stream ciphers like Trivium [CP05] and Grain
[HJMM08], the state initialization algorithm is efficiently invertible (see Section 5.3)
and, hence, initial state recovery is equivalent to key recovery. The reason for targeting
the initial state instead of trying to directly recover the secret key lies in the fact that
the latter approach requires to additionally consider those state transitions which are
performed as part of the ciphers’ initialization algorithms. This, however, massively
increases the size of the corresponding BDD or SAT instances.

The first application of BDDs in the field of cryptanalysis is due to Krause, who showed
in [Kra02] that, e.g., for an A5/1-type (cf. Subsection 5.2.2) KSG of state size n, the
secret initial state can be computed from the first d1.14ne bis of the keystream in time
nO(1)20.6403n. Similar attack complexities were shown for E0-type (cf. Subsection 5.2.1)
KSGs and the self-shrinking generator [MS94] in the same paper. Despite the popularity
of [Kra02] (measured by the number of citations) and a follow-up publication by Krause
and Stegemann in 2006 [KS06], the technique of BDD-based cryptanalysis passed again
out of the community’s mind in the following years. To the best of our knowledge,
the most recent relevant contributions in this field now date back to 2007 and 2008,
respectively. More precisely, in 2007 Stegemann [Ste07a] performed a BDD attack against
Grain-128 [HJMM06], and in 2008, Eibach, Pilz, and Völkel [EPV08] considered BDD
attacks (for comparing efficiencies) in their SAT-based attack against a reduced version
of Trivium [CP05] called Bivium.
The reason why BDD attacks subsequently sank into oblivion is probably already

contained in Stegemann’s slides [Ste07b], with which he presented his attack [Ste07a]

274

9.4 BDD and SAT Attacks

against Grain-128 at SAC 2007. There, he gives the complexity of his BDD-based initial
state recovery attack as “time and memory ≈ 2187” and compares it to the classical
TMD-TO initial state recovery attack (see Theorem 7.1 in Chapter 7) requiring “2128

operations and keystream bits” (note that Grain-128 has an inner state size of 256 bits).
Stegemann concludes in his presentation that “[the] BDD-attack [is the] best non-trivial
short keystream attack” [Ste07b]. While this statement was undoubtedly correct, it
also showed that, at that time, BDD attacks started to become outdated. The initial
BDD attacks of Krause [Kra02] targeted stream ciphers whose inner state size equaled
(or was very close) to the key size. Therefore, given a corresponding cipher with an
efficiently invertible state initialization algorithm (such as A5/1; cf. Subsection 5.2.2),
an initial state recovery attack with complexity below that of ‘exhaustive initial state
search’ immediately yielded a key recovery attack with complexity below exhaustive
key search and, hence, broke the cipher. But as a consequence of these attacks (and,
in particular, the aforementioned TMD-TO attacks of Babbage [Bab95] and Biryukov
and Shamir [BS00]), newer ciphers such as Trivium [CP05] and Grain [HJMM08] now
featured inner states whose size was at least twice the key size. In this new context,
BDD attacks were not able to deliver ‘real cipher breaks’ any longer and, as they were
also inferior (w.r.t. the overall attack complexity) to generic TMD-TO attacks, could
now only be marketed as the “best non-trivial short keystream attack[s]” [Ste07b]. Given
the huge complexities of, e.g., 2187 for Stegemann’s BDD attack against Grain-128, the
short-keystream argument was obviously not interesting enough for the community to
further study this type of attack.
In our opinion, this lack of corresponding research and respective publications after

2008 is very unfortunate. The reasons for this are twofold. First, with the advent
of ultra-constrained RFIDs (cf. Chapter 2), which, due to their application context,
often produce only very moderate amounts of keystream during their whole lifetime,
short-keystream attacks are becoming increasingly important now. Furthermore, the
extremely restricted resources of such devices have inspired the new class of small-state
stream ciphers as discussed in Chapter 6. As their name suggests, these ciphers try to
minimize the size of the internal state, thereby once more closing the aforementioned
gap between state size and key size and thus making BDD attacks interesting again.
Second, and even more important, SAT attacks have already seen a huge revival in

the field of stream cipher cryptanalysis (see, e.g., [SNC09], [DA14], [MSBD15], [Ban15],
[SSMC17]). This is partly due to the fact that (unlike, e.g., in the above paper of Eibach,
Pilz, and Völkel [EPV08] from 2008) SAT attacks are now not only used as a ‘standalone
method’ any longer, but are also employed as a tool in other, usually non-generic attacks
(see, e.g., [DA14] or [SSMC17]). In Subsection 9.4.2, we will explain why we actually
believe BDD attacks to be even superior to SAT attacks in that respect, making them a
promising subject of future research.
The basic idea behind SAT attacks is very similar to that of BDD-based attacks

(see Subsection 9.4.1). In a nutshell, the attacker makes use of two different types of

275

9 Future Research Directions

information: (I) From the publicly available definition of the stream cipher, he knows the
KSG’s feedback function(s) and, thus, how the later bits of the secret internal bitstream
depend on the secret initial state. (II) He also knows the KSG’s output function and, by
observing keystream bits, can narrow down the possible inputs (i.e., combinations of bits
of the internal bitstream) responsible for these output bits. In a SAT attack, these two
types of information are coded into one large conjunctive normal form (CNF) formula
such that, once enough keystream has been observed, there is only satisfying assignment
to the corresponding variables, revealing the secret initial state (see, e.g., [BCJ07] for
further information).
Obviously, for a properly designed stream cipher, building and solving such a CNF

formula straightforwardly should be infeasible. In consequence, Eibach, Pilz, and Völkel
[EPV08] consider the case that certain parts of the secret initial state are guessed in
advance and then used to simplify the resulting SAT instances. Note that this also
provides a trivial way of parallelizing the attack by distributing SAT instances with
different pre-guessed parts of the initial state to different SAT solvers running on separate
CPUs. As pointed out above, another way of reducing the complexity of the respective
SAT instances to a feasible level is to additionally use information about the internal
bitstream obtained as part of another, non-generic attack (such as differential fault
analysis; see, e.g., [SSMC17]).

In our opinion, the further optimization potential for SAT-based cryptanalysis is rather
limited. This is due to the fact that corresponding attacks usually employ SAT solvers
in a black-box manner. That is, all necessary information is coded into one large CNF
formula, which is then fed to a SAT solver (such as CryptoMiniSat 4 [Soo15]) in the hope
that its ‘secret inner workings’ will find the satisfying assignment in feasible time. The
cryptanalyst’s scope of influence is more or less confined to slightly optimizing the CNF
formula in advance (e.g., through introducing new variables in order to restrict the size
of clauses) or, in the context of pre-guessing bits, to choosing the respective bit positions.
In [EPV08], where both of these techniques are applied, several guessing strategies are
compared experimentally, but the theoretical explanations of the corresponding results
are limited to some few conjectures. So this might in fact be a point where future
research could prove fruitful. However, as we will argue in the following, we are convinced
that in the field of BDD-based attacks, much more interesting work is to be done and,
correspondingly, much more improvements can be made.

9.4.1 A Hands-on Introduction to (O)BDD Attacks

As a lengthy introduction to the theory behind BDD attacks would go far beyond
the scope of this Future Research Directions chapter, we will instead refer to a simple
‘toy example’ of BDD-based cryptanalysis, which is supposed to contain just enough
information such that also a non-expert reader will be able to understand our suggestions
for future improvements provided in Subsection 9.4.2. For a more formal introduction to

276

9.4 BDD and SAT Attacks

the field of BDDs in general and BDD-based cryptanalysis in particular, we refer the
reader to [Weg00] and [Kra02], respectively.
Very important, however, is to keep in mind that, in the following, we will refer to a

special type of BDDs called ordered binary decision diagrams (OBDDs). In a nutshell,
OBDDs have two distinctive properties: (I) For each path from the root to a sink of
the OBDD, it holds that each variable may occur at most once on this path. (II) The
variables occur in the same order on all these paths of the OBDD.8

In consequence of this, OBDDs have several nice properties which we can benefit from
in our cryptanalysis of stream ciphers. In particular, crucial operations such as OBDD
minimization and OBDD conjunction can be performed efficiently. Moreover, OBDDs
allow to efficiently enumerate the set of all satisfying assignments, something which will
be very important later on in Subsection 9.4.2.

To fill the above notions about OBDDs with life and to get an idea of how OBDD-based
cryptanalysis basically works, let us consider the following ‘toy example’ of a simple KSG
with inner state size five, whose secret inner bitstream x0, x1, . . . , x4, x5, . . . (after state
initialization has been completed) is defined by the feedback relation

xt+5 := xt ⊕ xt+2 for t ≥ 0, (9.1)

where (x0, . . . , x4) denotes the secret initial state. Moreover, let the output function of
this KSG be given as

zt := xt+2 · xt+4 for t ≥ 0. (9.2)

It can be easily checked that for this KSG, the initial state (x0, . . . , x4) = (0, 1, 1, 0, 1)
leads to the keystream prefix

(z0, z1, . . . , z9) = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0) .

OBDD-based cryptanalysis now proceeds as follows. An attacker who gets hold of the
above keystream prefix and wants to recover the underlying secret initial state starts by
turning his information about step t = 0 into an OBDD. From Eq. (9.1), he knows that

x0 ⊕ x2 ⊕ x5 = 0 (9.3)

must hold w.r.t. the newly generated inner state stream bit x5. This knowledge is
represented by the OBDD R0 depicted in Fig. 9.2. Note that those assignments to the
variables x0, x2, x5 satisfying Eq. (9.3) are exactly the satisfying assignments of OBDD
R0 (i.e., those assignments which lead to the OBDD’s 1-sink).

8Note that when we work with several OBDDs in our cryptanalysis, all of these OBDDs will be
defined over the same set of variables (even though they do not necessarily contain all of them), and the
variable order will be the same (i.e., ‘global’) for all OBDDs.

277

9 Future Research Directions

x0

x2 x2

x5 x5

1 0

x2

x4

1 0

x0

x2 x2

x4 x4

x5 x5

1 0

Figure 9.2: The OBDDs R0 (left), Q0 (middle), and P0 = R0 ∧Q0 (right). The solid (resp.
dashed) edges denote that the variable corresponding to the source node of the edge takes
the value 1 (resp. 0).

Also at t = 0, the attacker learns from the observed first keystream bit z0 = 1 together
with Eq. (9.2) that

x2 · x4 = 1 (9.4)

must hold. This knowledge is represented by the OBDD Q0 depicted in Fig. 9.2.
Through AND-synthesis of the two OBDDs R0 and Q0, the attacker finally obtains the

OBDD P0 depicted in Fig. 9.2, whose satisfying assignments are exactly those assignments
to the variables x0, x2, x4, x5 which simultaneously fulfill Eqs. (9.3) and (9.4).

For the next step, t = 1, the attacker proceeds analogously. More precisely, he builds
the OBDDs R1 and Q1 corresponding to the relations

x1 ⊕ x3 ⊕ x6 = 0 (9.5)

and

x3 · x5 = 0 (9.6)

(as z1 = 0), respectively. The new main OBDD P1 is computed as

P1 := P0 ∧R1 ∧Q1.

Its satisfying assignments are exactly those assignments to the variables x0, x1, x2, x3,
x4, x5, x6 which simultaneously fulfill Eqs. (9.3) to (9.6). Unfortunately, the OBDD P1
is already too large to be depicted here.

278

9.4 BDD and SAT Attacks

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0 1

Figure 9.3: The OBDD P6, which contains the solution of our cryptanalysis. For space
reasons, we rotated the OBDD (except the sinks) by 90 degrees. The root of the tree is the
node labeled with x0.

The general attack strategy is now as follows. The attacker will treat the subsequent
rounds t = 2, 3, . . . accordingly, obtaining further growing OBDDs P2, P3, and so on.
However, as explained in detail in [Kra02], at some point, the size of the OBDDs Pt will
eventually reach a maximum and henceforth (usually quickly) decrease. Note that this
maximum actually dominates the overall complexity of the attack.
The reason, why, from some point on, the size of the OBDDs Pt starts to decrease

again, lies, roughly speaking, in the fact that the more keystream bits are considered,
the smaller becomes the number of inner state streams which are consistent with these
keystream bits as well as with the KSG’s feedback relation (for further details, again, we
refer to [Kra02]). In the case of our above ‘toy example’, after only seven steps, the main
OBDD P6 has degraded into a list as depicted in Fig. 9.3. The only satisfying assignment
to the first twelve bits of the inner state stream can be derived from P6 directly as

(x0, x1, x2, x3, x4, . . . , x11) = (0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0) .

The first five bits (x0, x1, x2, x3, x4) = (0, 1, 1, 0, 1) are the initial state that underlies
the attacked keystream prefix and, hence, represent the solution of our OBDD-based
cryptanalysis. From this initial state, an attacker can now generate the full keystream.

9.4.2 Towards More Efficient OBDD Attacks
Based on the notion of OBDD-based cryptanalysis established in Subsection 9.4.1, we
are now ready to sketch our new ideas of how to improve such attacks.

OBDDs as a Tool in Combined Attacks

As pointed out at the beginning of this section, SAT attacks have recently seen increased
use as tool in other, non-generic attacks. We believe that OBDDs are even more suitable
in this respect. This is due to the fact that, as explained, SAT solvers are usually
employed in a black-box manner. OBDDs, on the other hand, can efficiently provide

279

9 Future Research Directions

valuable information even in the midst of an ongoing attack. Look, for example, at the
OBDD P0 in Fig. 9.2 of Subsection 9.4.1, whose satisfying assignments are exactly those
assignments to the variables x0, x2, x4, x5 which simultaneously fulfill Eqs. (9.3) and (9.4).
Enumerating these satisfying assignments is efficiently possible by (virtually) flipping
the direction of all edges and computing all paths which lead from the 1-sink to the root
(here: the node labeled x0). Each of these paths (and no other) represents a satisfying
assignment. W.r.t. P0, we hence immediately see that (x0, x2, x4, x5) = (1, 1, 1, 0) and
(x0, x2, x4, x5) = (0, 1, 1, 1) are the only assignments simultaneously satisfying Eqs. (9.3)
and (9.4). The same approach is obviously possible also during the later stages of the
attack, e.g., for P4. We consider this a very interesting property in the context of
future combined attacks, where OBDDs are ‘only’ used as a tool together with other,
non-generic attack techniques (such as differential fault analysis or BSW-sampling; see,
e.g., Subsection 8.4.11). That is, during the attack, such intermediary information about
satisfying assignments can be supplied to other ‘attack components’ in order to optimize
their workings. In turn, corresponding results can subsequently be fed back to the OBDD.
This kind of constant interaction in both directions is very hard (if not impossible) to
efficiently realize with SAT solvers.

Systemizing and Evaluating Reordering Heuristics for Cryptanalysis

The advantages of OBDDs (e.g., w.r.t. the efficient enumeration of satisfying assignments)
come at a price, however. This price is their memory consumption. While even for
large problem instances, SAT solvers usually require very few memory, OBDDs can grow
heavily in the course of a real-world attack (see below). One way to counter this, is to use
variable reordering. To give the reader and idea of the results, we used Rudell’s sifting
algorithm [Rud93] with the CUDD package [Som15] for BDD manipulation of Somenzi
in order to reduce the size of the OBDD P0 from Fig. 9.2 in Subsection 9.4.1 based on a
new order of variables. The result is depicted in Fig. 9.4 and has now only five inner
nodes instead of originally seven.

In the theory-focused papers of Krause [Kra02] and Stegemann [Ste07a], such reordering
techniques were not considered, as the effects of the corresponding heuristics are very
hard to grasp in a theoretical model. In their BDD-based attack against Bivium, the
authors Eibach, Pilz, and Völkel state, however:

“The CUDD library does not support an explicit minimisation operation, but
the resulting BDD of an AND operation is already minimised (for a fixed
variable order). The reordering operation tries to further minimize the BDD
by reordering the variables. This operation requires most of the time in the
BDD attack and is performed every few steps (based on a heuristic). The
reordering operation is also just a heuristic and does usually not find the
best ordering of the variables. However it significantly reduces the size of the
BDD (up to a factor of 10) and makes future operations faster.” [EPV08]

280

9.4 BDD and SAT Attacks

x4

x2

x5

x0 x0

1 0

Figure 9.4: The OBDD P0 after a reordering of variables using Rudell’s sifting algorithm
[Rud93] with the CUDD package [Som15] of Somenzi. The new root is the node labeled x4.

Unfortunately, this is the only information w.r.t. reordering provided in the above paper.
Given the enormous significance of space reduction for the future applicability of OBDD
attacks together with the large body of work on corresponding reordering techniques
(see, e.g., [FMK91], [ISY91], [Rud93], [PSP94], [PS95], [BLW95]), we consider it a very
important next step to perform an experimental evaluation of the suitability of the
respective approaches in the context of cryptanalysis. Clearly, it would also be very
beneficial to integrate the general concept of variable reordering into the theoretical model
of BDD attacks by Krause [Kra02], e.g., in order to identify promising variable orders
for the respective attack instances in advance and to obtain corresponding bounds on
the sizes of the resulting optimized BDDs. We expect, however, that this will constitute
an extremely challenging task.

But not only the question of which reordering algorithm should be used is of importance,
but also the when matters. The above statement “The reordering operation tries to
further minimize the BDD by reordering the variables. This operation requires most of the
time in the BDD attack and is performed every few steps (based on a heuristic).” [EPV08]
of Eibach, Pilz, and Völkel suggests that they used CUDD’s automatic reordering feature,
which autonomously triggers reordering every few steps based on certain parameters.
In our preliminary experiments, we made the experience that manually choosing the
execution point of reordering leads to significantly better results. In particular, triggering
reordering just once a few steps (in terms of t) before the main OBDD Pt would have
reached its maximum size proved clearly superior to constant reordering. However, as
these are just some first observations, we believe that more research (and, in particular,
a corresponding theoretical foundation) is required in this respect.

281

9 Future Research Directions

Reordering in the Context of Parallelization

When it comes to real-world attacks, their potential to be parallelized is of enormous
practical relevance. In our experiments, we found that SAT attacks are currently superior
in that respect. The reasons for this are twofold. First, as already mentioned before,
SAT attacks consume very few memory. Second, to the best of our knowledge, the only
parallelization strategy suggested for BDD and SAT attacks so far is the trivial approach
of splitting the problem up into completely independent instances by pre-guessing certain
bits of the initial state (see, e.g., [KS06] and [EPV08]). While this way of sharing the
workload over different computational units is very easy to realize, it is, at the same time,
clearly suboptimal, as all but one unit will work on the basis of wrong information.9
In a later paragraph of this subsection, we will suggest a new, non-trivial strategy for
parallelizing BDD attacks, which allows the computational units to work together (on
the correct information) in order to find the solution.
Despite the subobtimality of parallelization via pre-guesssing, SAT attacks (unlike

BDD attacks) still perform rather well in this scenario, as our experiments have shown.
More precisely, we considered a simple KSG of size 39 bits, whose inner state stream is
defined by the relation

xt+39 := xt ⊕ xt+13 ⊕ xt+5 · xt+17 ⊕ xt+24 · xt+29 for t ≥ 0, (9.7)

where (x0, . . . , x38) denotes the secret initial state, and whose output function is

zt := xt+9 ⊕ xt+19 ⊕ xt+19 for t ≥ 0. (9.8)

Performing a keystream-only initial state recovery attack against this KSG using the
SAT solver MiniSat 2.2 [ES10] consumes (even without any pre-guessed initial state bits)
less than 2 MB of main memory on a standard PC. For comparison, a straightforwardly
implemented OBDD attack using the CUDD package [Som15] requires, under the same
conditions, almost 900 MB of main memory.

This extreme memory consumption of BDD attacks currently limits their potential to
be used in parallelized cryptanalysis, because there, random-access memory (RAM) is
often a scarce resource. For example, on a system equipped with four Intel Xeon Phi
Coprocessor (Model: 31S1P) cards, we were still easily able to employ each cards full
computational power (i.e., 57 cores with 1.10 GHz each) in the course of a parallelized
SAT attack (using pre-guessing) against a slightly larger KSG than our above example.

9Consider, e.g., the case of two instances obtained on the basis of pre-guessing the solution’s first
bit. Thus, only one of both instances will work with the correct information, while the other one will
practically spend its efforts in vain. The suboptimality of this strategy becomes obvious when considering
the extreme case that actually all bits of the solution are pre-guessed, as then, one effectively ends up with
an utterly inefficient variant of ‘exhaustive initial state search’, where each initial state test is performed
by building a separate BDD or SAT instance, instead of simply running the KSG on this initial state
candidate and comparing the resulting keystream prefix to the observed correct one.

282

9.4 BDD and SAT Attacks

A similar BDD-based attack, however, was not possible, as each of those Xeon Phi
Coprocessor cards is only equipped with a total of 8 GB of memory.

The use of variable reordering may be one way to alleviate this problem. For example,
by manually triggering reordering (using Rudell’s sifting algorithm [Rud93]) just once
a few steps before the OBDD in our attack against the above KSG of size 39 bits had
reached its maximum size, we were able reduce the memory consumption from almost 900
MB to about 237 MB. The problem here, however, was that the respective reordering step
alone took about 22 minutes, whereas the whole above OBDD attack without reordering
had taken ‘only’ 215 seconds. As the CUDD package [Som15] allows to pre-set some own
variable order, we were naturally interested in what would happen if we used the variable
order resulting from the above reordering step already from the beginning (without any
further reordering). And in fact, the whole attack now required only 158 MB and 24
seconds.10

Now executing an OBDD attack, thereby discovering a ‘good’ variable order, and
then repeating this same attack more efficiently based on the new variable order is
obviously not very exciting. What is, however, is an observation that we made during our
experiments. In the course of a parallelized OBDD attack (using pre-guessing) against the
above KSG, we discovered that a ‘good’ variable order found under an arbitrary choice
of the initial state’s pre-guessed part (i.e., even for a wrong one), also massively reduced
the memory and time consumption of the other attack instances of the parallelized attack
when pre-set there. In consequence, an optimized, parallel OBDD attack against a KSG
of inner state size, e.g., 60 bits, could look as follows:

1. Determine a 10-bit area of the secret initial state that shall be pre-guessed, leading
to 210 parallel OBDD attack instances, each of them operating based on one of the
corresponding 210 possible guesses for that 10-bit area.

2. Execute one of these 210 OBDD attack instances on a very potent system with a po-
werful CPU and fast memory. At the point where the corresponding OBDD reaches
its maximum size, manually trigger variable reordering and save the corresponding
variable order.11

3. Pre-set this variable order to the remaining 210 − 1 OBDD attack instances, which
will benefit from this information as described above and, hence, can now even be
executed on systems with less potent CPU cores and fewer memory, such as the
aforementioned Intel Xeon Phi Coprocessor cards.

10That the memory requirement here was even lower than in the experiment where the actual reordering
was performed, results from the fact that now, even the steps before the step during which the reordering
in the initial experiment had taken place, profited from the new ‘good’ variable order.

11If this maximum size OBDD should be too large even for the potent system to handle, reordering
can also be triggered already some steps before the maximum would have been reached and the results
can still be expected to be sufficiently well as the above practical example for our 39-bit KSG has shown.

283

9 Future Research Directions

Our current explanation for the observation that, in practice, this strategy seems to
work very well, is that despite the different pre-guessed parts, all of the respective parallel
OBDD attack instances seem to still share enough ‘common structure’ for profiting from
a common, ‘pre-optimized’ variable order. Keep in mind, however, that this is work in
progress, which needs to be backed up by further experiments and much more theoretical
study.

A New Approach for ‘Truely’ Parallelizing OBDD Attacks

As pointed out above, to the best of our knowledge, the only parallelization strategy
suggested for BDD attacks so far is the trivial approach of splitting the problem up into
completely independent instances by pre-guessing certain bits of the initial state (see,
e.g., [KS06]). In the following, we suggest to study a new strategy, in which the involved
CPU cores actually work together (based on the correct information solely coming from
the observed keystream), instead of working completely separately (with all but one using
wrong information due to the respective wrongly guessed parts of the initial state).

Our idea makes use of Theorem 3.3.6 in the book [Weg00] of Wegener, which implies
that the AND-synthesis of two OBDDs Gf and Gg (with sizes |Gf | and |Gg|) can be
performed in “expected time and space O(|G∗h|)”, “where G∗h is the graph consisting of
the nodes in the product graph Gh reachable from the node representing h”. Wegener
continues to add that “[o]ften, |G∗h| is much smaller than |Gf ||Gg|” and further points out
that “[t]he synthesis algorithm can easily be generalized to the synthesis of m functions
where we have to consider nodes of the product of the m corresponding OBDDs.”

Based on these theoretical foundations, we came up with the following new strategy for
OBDD-based cryptanalysis. Instead of building only one main OBDD Pt (see our example
in Subsection 9.4.1) we actually generate now ‘two main OBDDs’ P 1

t and P 2
t , where

for every even step t, P 1
t receives the information (comprising of the information about

the state transition and the information from the output function with the respective
observed keystream bit) of this step, and for every odd step t, P 2

t is supplied with the
respective information for that odd step. A more formal description of our new approach,
using the terms of the introductory example in Subsection 9.4.1, is given as Algorithm 9.1.
Note that for t ≥ X, the OBDD P̃t in Algorithm 9.1 will contain exactly the same

information (in particular, have the same satisfying assignments) as if it had been built
from the beginning as a single main OBDD Pt using the relations

P0 := R0 ∧Q0,

Pt := Pt−1 ∧Rt ∧Qt for t ≥ 1

of the classical approach explained in Subsection 9.4.1. Moreover, keep in mind that all
OBDDs involved in Algorithm 9.1 are defined over the same set of variables and use a
common variable order (cf. Footnote 8 on page 277).

284

9.4 BDD and SAT Attacks

Algorithm 9.1 A new approach for more efficient, parallelizable OBDD attacks.
X ← magic number (see explanation below)
P 1
−1 ← 1-OBDD
P 2
−1 ← 1-OBDD

for t = 0 to X do
if t is even then

P 1
t ← P 1

t−1 ∧Rt ∧Qt
P 2
t ← P 2

t−1
else

P 1
t ← P 1

t−1
P 2
t ← P 2

t−1 ∧Rt ∧Qt
end if

end for
P̃X ← P 1

X ∧ P 2
X

t← X
while P̃t has more than one satisfying assignments do

t← t+ 1
P̃t ← P̃t−1 ∧Rt ∧Qt

end while
return P̃t

The intuition behind the efficiency of our new approach is the following. Let tmax denote
the step in which the single main OBDD Pt would have reached its maximum size |Ptmax |
and remember that for t > tmax, the sizes |Pt| would henceforth constantly decrease
until only one satisfying assignment is left. Then, for a properly chosen parameter X
(in particular, X > tmax), the result P̃X := P 1

X ∧ P 2
X in Algorithm 9.1 will already have

much less nodes than Ptmax , and, according to Theorem 3.3.6 of Wegener [Weg00], the
respective synthesis operation will have advantageous (as compared to working with
Ptmax) expected time and memory consumption. However, for the new approach to be
actually more efficient than classical one, X must be, on the other hand, still small
enough such that the sizes of the OBDDs P 1

X and P 2
X still stay significantly below |Ptmax |.

So, obviously, the choice of the parameter X is of crucial importance, which is why
we called it the magic number at the beginning of Algorithm 9.1. Finding such a ‘good’
X is a challenging task, in particular, as it mainly depends on the value of tmax, which
we do not know in advance without first executing the attack in the classical, ‘single
main OBDD’-based way. Doing so, however, would trivially counteract the idea of being
more efficient. This is why, so far, we have been experimenting with various heuristics to
address this problem. As this, however, is still work in progress and as the description
of the respective heuristics would certainly go beyond the scope of this Future Research

285

9 Future Research Directions

Directions chapter, we instead refer the reader to a potential later publication or, hopefully
and even better, to his own ideas which we would be eager to hear about. The ‘holy grail’
in this context would obviously be a way of theoretically determining tmax in advance
based on the details of the respective cryptanalytic problem. Note that the initial work
on BDD-based attacks by Krause [Kra02] already contains corresponding considerations,
but the resulting bounds are currently not tight enough to be actually used in a practical
attack. Consequently, we strongly encourage future research in this direction.
To further motivate such research, note that our corresponding experimental results

are currently extremely promising. More precisely, remember that our aforementioned,
classical OBDD attack against the 39-bit KSG specified through Eqs. (9.7) and (9.8)
had consumed almost 900 MB of memory and taken about 215 seconds. The single
main OBDD used there reached its maximum size at tmax = 16. In contrast, for an
optimally chosen parameter X (here: X = 21), the same attack using our new approach
in Algorithm 9.1 requires only about 110 MB of memory and is completed in as few as 8
seconds. Note that we did not apply any further ‘tricks’ (such as reordering) to achieve
these vast improvements, i.e., they are exclusively based on the new algorithmic idea of
working with ‘two main OBDDs’ P 1

t and P 2
t , instead of performing the whole attack in

the classical way with only one main OBDD Pt from start to end.
As a final remark, we would like to point out that we even did not physically parallelize

the above new experimental attack. That is, the OBDDs P 1
t and P 2

t were generated by
a single thread on a single CPU core. Observe, however, that as they are built on the
basis of completely separate information, P 1

t and P 2
t could as well be easily computed in

parallel on different CPUs in order to further speed up the attack. In fact, we are tempted
to be bold enough to claim that, to the best of our knowledge, this new approach actually
represents the first, non-trivial way of truly parallelizing BDD attacks. In this respect,
also remember that, as pointed out by Wegener w.r.t. his Theorem 3.3.6 in [Weg00], “[t]he
synthesis algorithm can easily be generalized to the synthesis of m functions where we
have to consider nodes of the product of the m corresponding OBDDs.” In consequence,
a logical next step would be to extend our approach to using ‘additional main OBDDs’
P 3
t , P

4
t , . . . during the first phase of the attack, in order to further increase the speed and,

at the same time, lower the overall memory consumption.

Further Improvements for OBDD Attacks

We want to conclude this (O)BDD-related subsection with two additional short suggestions
of topics for potential future research in this area. Actually, both of them have also
already been briefly mentioned in the paper [EPV08] of Eibach, Pilz, and Völkel from
2008, but unfortunately, we have not seen any corresponding academic progress, yet. This
is probably due to a lack of respective research during the deep sleep that, as explained
at the beginning of this subsection, BDD-based cryptanalysis seems to have taken since
2008. Nonetheless, we consider these two topics rather important, in particular, as they

286

9.5 Conclusion and Outlook

are also connected to several of our suggestions above.
First, the order in which the information coming from the feedback and output relations

(together with the observed keystream bits) is introduced to the OBDDs has never been
analyzed systematically. Note that in this subsection, also for reasons of clarity and
comprehensibility, we have simply used the classical order implied by the respective
KSG’s inner workings. However, using a more sophisticated approach (such as, per step,
introducing feedback and output relations which share common variables) can safely be
expected to produce better results w.r.t. OBDD sizes and overall computation time.
Second, w.r.t. different pre-guessing strategies, Eibach, Pilz, and Völkel concluded in

2008 (for their attack against the reduced Trivium [CP05] variant Bivium, consisting of
two interconnected NFSRs):

“It turned out that for SAT solvers and BDDs it is most useful to guess the
internal bits close to the end of the 2 registers. The difference is that it is
optimal for the SAT solvers to only guess the end of the second register and
for the BDDs, it is optimal to share the guessed bits between the ends of both
registers. Looking at the equation system describing Bivium, we notice that
the variables close to the output occure rather frequent (those of the second
register a little more than those of the first). This might be one reason, why
these guessing strategies helped most.” [EPV08]

Unfortunately, this is the only theoretical explanation w.r.t. the choice of pre-guessing
strategies provided in [EPV08]. Given that, besides our new approach suggested above,
the pre-guessing of internal state bits is currently the only other way to parallelize OBDD
attacks, we believe that further research in this direction would prove very beneficial for
future applications of (O)BDD-based cryptanalysis.

9.5 Conclusion and Outlook
In this chapter, we discussed three potential areas of future research in further detail and
presented our corresponding ideas. First, we suggested how our new stream cipher Lizard
(cf. Chapter 8) could be used (and optimized) to realize lightweight, privacy-preserving
authentication for ultra-constrained RFID devices (cf. Chapter 2), hence representing a
viable alternative to prevalent block cipher-based schemes. Second, we explained that
by combining continuous IV use (cf. Section 6.5) and packet mode (see, e.g., Section 5.1
and Chapter 7), classical TMD-TO inner state recovery attacks like those of Babbage
[Bab95] or Biryukov and Shamir [BS00] can actually be thwarted. Third, we investigated
BDD- and SAT-based short-keystream cryptanalysis, and provided various suggestions
how the efficiency of future BDD attacks could be improved, particularly, with regard to
the increasingly important field of parallelization. As our most important contribution in
this context, we see the new technique proposed with Algorithm 9.1, which, to the best
of our knowledge, represents the first method for truly parallelizing BDD attacks.

287

9 Future Research Directions

As a final note, let us point out that the reason for discussing these three topics such
prominently in the form of a separate chapter, is not solely that they are among the top
priorities on our own research agenda. Instead, we hope that also other researchers will
be interested in the presented ideas and, thus, we would like to encourage any kind of
future collaboration on the respective projects.

In the following Chapter 10, we will conclude this thesis with a short summary of our
results.

288

Sie sind geladen – es schlägt zwölfe! So
sei es denn! – Lotte! Lotte, lebe wohl!
Lebe wohl!

Werther (Goethe)

CHAPTER10
Conclusion

289

10 Conclusion

After the AES block-cipher contest [Nat16] had finished in 2000/2001, much of the
cryptographic community’s attention shifted towards stream ciphers and, with the
corresponding eSTREAM project’s [ECR08] hardware-focused Profile 2, in particular
also towards resource-constrained devices. The major catalyst of this development was
the fact that around this time, in 2004, RFID technology was finally setting off to conquer
the mass market, calling for more lightweight cryptographic implementations than, e.g.,
AES [DR02] was able to provide. Grain v1 [HJM06], the most hardware-efficient member
of the final eSTREAM portfolio [BBV12], was already a first, important step in this
direction, but it was soon caught up and, depending on the type of implementation,
even surpassed in terms of low hardware requirements by the then new lightweight block
ciphers PRESENT [BKL+07] and KATAN/KTANTAN [DCDK09]. Only few months
after the eSTREAM contest had been launched in November 2004, and likewise motivated
by the advent of cheap, mass market RFID devices, Juels and Weis presented their HB+

authentication protocol [JW05], targeting so-called Electronic Product Codes (EPCs),
which are meant to replace classical barcodes on everyday goods. Though HB+ was
broken soon via active MITM attacks [GRS05], a multitude of related schemes (i.e., also
grounding their security claims on the assumed hardness of the well-known learning
parity with noise (LPN) problem) started to appear in quick succession, which, however,
seemed to increasingly loose sight of the tight hardware bounds on low-cost RFID tags
in the price range of $0.05–$0.10, as originally targeted by Juels and Weis in [JW05].

The situation described here thus brought up the following three questions:

1. When can a cryptographic scheme actually be called lightweight? In particular,
which concrete limits does it have to satisfy in order to be suitable for ultra-
constrained RFID devices?

2. Is it possible to design a (dedicated) lightweight authentication scheme for such ultra-
constrained RFIDs as an alternative to prevalent block cipher-based constructions?

3. Can stream ciphers be made more competitive w.r.t. current lightweight block
ciphers, or does Grain v1’s ‘birthday-based’ inner state size of twice the key size
imply a natural lower bound for the hardware costs of such designs?

In this thesis, we contributed to each of these three fields of interest. More precisely, in
Chapter 2, we first laid the necessary hardware foundations by providing a comprehen-
sive summary of relevant metrics and corresponding conditions that should be met by
lightweight cryptographic schemes if deployed in low-cost RFID systems. Some of these
conditions have been collected from open literature, but most of them are the result of
various discussions with experts from industry.

In Chapter 3, we then gave an introduction to authentication in general and its
lightweight forms in particular. An alarming result here was the insight that none of
the currently unbroken LPN-based authentication protocols is actually suitable for ultra-
constrained RFIDs. As a potential alternative, we identified authentication protocols

290

based on the principle of random selection of secret linear functions such as the (n, k, L)++-
protocol [KS09] suggested by Krause and Stegemann in 2009. However, a comparatively
large key length and the use of involved operations had prevented these protocols from
being deployed on resource-restricted devices, so far.
Motivated to solve these issues, in Chapter 4, we introduced our new (n, k, L)〈80〉

authentication protocol with key size 80 bits and, on the basis of hardware implementations
for FPGAs and ASICs, demonstrated its suitability for ultra-constrained RFIDs.

In Chapter 5, we then left the path of searching for dedicated authentication protocols
and, instead, laid the foundation for treating a fundamental question which arose to us
while designing the (n, k, L)〈80〉-protocol: ‘Why use a bitstream generator only to produce
the specifications of the secret functions, but not for generating the authentication token
right away?’ To this end, as a first step, we revisited some prominent examples of classical
stream ciphers and, in particular, analyzed their state initialization algorithms.
Subsequently, in Chapter 6, we turned towards the rather young research area of so-

called small-state stream ciphers, which try to overcome the limit imposed by TMD-TO
attacks (like those of Babbage [Bab95] or Biryukov and Shamir [BS00]) on the security of
classical stream ciphers. The prevalent design principle here, introduced by Armknecht
and Mikhalev in 2015 with their stream cipher Sprout [AM15], is to continuously involve
the secret key in the state update. However, by providing a generic distinguisher with
complexity significantly lower than that of exhaustive key search for such ciphers, we
showed in this chapter that the initial hope of achieving full security against TMD-TO
attacks raised by this new design approach has failed. But by studying the assumptions
underlying the applicability of our attack, we were then able to come up with a new
design idea for small-state stream ciphers, which might allow to finally thwart TMD-TO
key recovery and distinguishing attacks by continuously using not only the key but also
the IV during keystream generation. Another contribution of this chapter was the first
key recovery attack against Fruit v1 [GHX16], indicating that a simple round key function
is actually preferable for Sprout-like ciphers.

Paving the way for our own small-state stream cipher, in Chapter 7, we then proposed
and analyzed the Lizard-construction, which combines the explicit use of packet mode
with a new type of state initialization algorithm. For corresponding KSG-based designs
of inner state length n, we proved a tight (2n/3)-bound on the security against TMD-TO
key recovery attacks, while the security against TMD-TO distinguishing attacks remains
at the birthday-bound level n/2. The lower bound of the (2n/3)-result refers to a random
oracle model which allows to derive formal security statements w.r.t. generic TMD-TO
attacks. While similar frameworks were already used for analyzing the security of block
cipher, MAC, and hash function constructions, to the best of our knowledge this is the
first time that such a model has been considered in a stream cipher context.
Building on these theoretical results, in Chapter 8, we finally presented Lizard, our

new lightweight (small-state) stream cipher for power-constrained devices like passive
RFID tags. Lizard uses 120-bit keys, 64-bit IVs, has an inner state length of 121 bits,

291

10 Conclusion

and its hardware efficiency and security result from combining a Grain-like design with
the Lizard-construction. It is supposed to provide 80-bit protection against key recovery
attacks and allows to generate up to 218 keystream bits per key/IV pair, which would
be sufficient for many existing communication scenarios such as Bluetooth, WLAN, or
HTTPS. Most notably, besides lower area requirements, the estimated power consumption
of Lizard is also about 16 percent below that of Grain v1, making it particularly suitable
for passive RFID tags.

While in the respective conclusion sections of Chapters 2 to 8, we had already provided
numerous suggestions for potential future work, with Chapter 9, we decided to discuss
three particularly promising topics in further detail. First, we sketched how our new
lightweight stream cipher Lizard could be used (and further optimized) to realize
hardware-efficient, privacy-preserving authentication, thereby connecting our two main
topics: lightweight authentication and lightweight stream ciphers. Second, we suggested
how to combine our previous ideas of explicitly targeting packet mode scenarios and
continuously using the IV as part of the state update, in order to now thwart classical
TMD-TO inner state recovery attacks. Third, motivated by our application context of
ultra-constrained RFID devices with their corresponding bandwidth limitations, we found
that the field of short-keystream attacks should see more attention in future research. In
particular, we reasoned that the field of BDD-based cryptanalysis has been neglected
for too long and, in order to ‘reignite the flame’, provided several new ideas how the
efficiency and applicability of such attacks could be improved.
Not only the large extent of our Future Research Directions chapter, but also the

ongoing stream of corresponding publications (see, e.g., [BBI+15], [BJK+16], [SS16],
[MAM17], [Liu17], [JPST17], [ZXM18]) clearly shows that the search for lightweight
cryptographic solutions is far from being completed. Less than one month before the
finalization of this thesis, Amazon opened its first, automated grocery store Amazon Go
in Seattle [Win18], where, without any checkout lines or other interaction, customers
can simply leave the shop with their selected goods, being billed electronically over
their Amazon account. While, at first sight, this might seem like the perfect concluding
example in this thesis for the apparently inevitable triumph of RFID technology and
corresponding lightweight cryptographic solutions, unfortunately, it is not. For instead
of attaching an RFID tag to each product, Amazon decided to equip the respective
store with a vast amount of cameras and to employ corresponding object-recognition
techniques for tracking items and customers. The reason for this choice is very simple. In
the concerned product segment of milk boxes and the like, even low-cost RFID tags in the
price range of $0.05–$0.10 are currently still too expensive, given the low profit margins
which these goods offer to grocery retailers. In consequence, for staying competitive, even
more restricted RFID devices are to be expected, putting further pressure on the resource
demands of corresponding cryptographic solutions. However, we are absolutely confident
that the research community will be, once more, ready to take up this challenge.

292

Bibliography
[3GP03] 3GPP: 3rd Generation Partnership Project; Technical Specification

Group Services and System Aspects; 3G Security. Specification
of the A5/3 Encryption Algorithms for GSM and ECSD, and the
GEA3 Encryption Algorithm for GPRS; Document 1: A5/3 and
GEA3 Specifications (Release 6). 3GPP TS 55.216 V6.2.0 (2003-09),
2003. https://www.gsma.com/aboutus/wp-content/uploads/2014/
12/a53andgea3specifications.pdf.

[3GP17] 3GPP: 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; 3G Security. Specification of the 3GPP
confidentiality and integrity algorithms; Document 2: KASUMI specifica-
tion (Release 14). 3GPP TS 35.202 V14.0.0 (2017-03), 2017. http://www.
3gpp.org/ftp/Specs/archive/35_series/35.202/35202-e00.zip.

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P. Steinberger. On the Indifferentiability of Key-Alternating Ciphers.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 531–550. Springer, 2013.

[AHK14] Frederik Armknecht, Matthias Hamann, and Matthias Krause. Hardware
Efficient Authentication based on Random Selection. In Stefan Katzen-
beisser, Volkmar Lotz, and Edgar R. Weippl, editors, Sicherheit 2014:
Sicherheit, Schutz und Zuverlässigkeit, Beiträge der 7. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), 19.-21.
März 2014, Wien, Österreich, volume 228 of LNI, pages 169–185. GI,
2014.

[AHM14] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Light-
weight Authentication Protocols on Ultra-Constrained RFIDs - Myths
and Facts. In Nitesh Saxena and Ahmad-Reza Sadeghi, editors, Radio
Frequency Identification: Security and Privacy Issues: 10th Internatio-
nal Workshop, RFIDSec 2014, Oxford, UK, July 21-23, 2014, Revised
Selected Papers, pages 1–18. Springer International Publishing, Cham,
2014.

293

https://www.gsma.com/aboutus/wp-content/uploads/2014/12/a53andgea3specifications.pdf
https://www.gsma.com/aboutus/wp-content/uploads/2014/12/a53andgea3specifications.pdf
http://www.3gpp.org/ftp/Specs/archive/35_series/35.202/35202-e00.zip
http://www.3gpp.org/ftp/Specs/archive/35_series/35.202/35202-e00.zip

Bibliography

[AK03] Frederik Armknecht and Matthias Krause. Algebraic Attacks on Com-
biners with Memory. In Dan Boneh, editor, Advances in Cryptology
- CRYPTO 2003: 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003. Proceedings, pages
162–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers
with Shorter Internal States. In Gregor Leander, editor, Fast Software
Encryption: 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers, pages 451–470. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015.

[ASE92] Noga Alon, Joel H. Spencer, and Paul Erdős. The Probabilistic Method.
Wiley Interscience, New York, 1992.

[Bab95] Steve H. Babbage. Improved "exhaustive search" attacks on stream
ciphers. In Security and Detection, 1995., European Convention on,
pages 161–166, May 1995.

[BAL06] Thierry Berger, François Arnault, and Cédric Lauradoux. Update on F-
FCSR Stream Cipher. eSTREAM: the ECRYPT Stream Cipher Project,
2006. http://www.ecrypt.eu.org/stream/p3ciphers/ffcsr/ffcsr_
p3.pdf.

[Ban15] Subhadeep Banik. Some Results on Sprout. In Alex Biryukov and Vipul
Goyal, editors, Progress in Cryptology – INDOCRYPT 2015: 16th Inter-
national Conference on Cryptology in India, Bangalore, India, December
6-9, 2015, Proceedings, pages 124–139. Springer International Publishing,
Cham, 2015.

[BB06] Elad Barkan and Eli Biham. Conditional Estimators: An Effective Attack
on A5/1. In Bart Preneel and Stafford Tavares, editors, Selected Areas
in Cryptography: 12th International Workshop, SAC 2005, Kingston,
ON, Canada, August 11-12, 2005, Revised Selected Papers, pages 1–19.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[BB08] Ganesh K. Balachandran and Raymond E. Barnett. A 440-nA True
Random Number Generator for Passive RFID Tags. IEEE Transactions
on Circuits and Systems I: Regular Papers, 55(11):3723–3732, Dec 2008.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori:
A Block Cipher for Low Energy. In Tetsu Iwata and Jung Hee Cheon,

294

http://www.ecrypt.eu.org/stream/p3ciphers/ffcsr/ffcsr_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/ffcsr/ffcsr_p3.pdf

Bibliography

editors, Advances in Cryptology – ASIACRYPT 2015, pages 411–436,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BBK03] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted Communication. In Dan Boneh, editor,
Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 600–616. Springer Berlin Heidelberg, 2003.

[BBV12] Steve Babbage, Julia Borghoff, and Vesselin Velichkov. D.SYM.10 - The
eSTREAM Portfolio in 2012. eSTREAM: the ECRYPT Stream Cip-
her Project, 2012. http://www.ecrypt.eu.org/ecrypt2/documents/D.
SYM.10-v1.pdf.

[BC08] Julien Bringer and Hervé Chabanne. Trusted-HB: A low cost version of
HB+ secure against a man-in-the-middle attack. IEEE Trans. Inform.
Theor., 54:4339–4342, 2008.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and
Tolga Yalçın. PRINCE – A Low-Latency Block Cipher for Pervasive
Computing Applications. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology – ASIACRYPT 2012: 18th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, pages 208–225.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[BCI08] Julien Bringer, Hervé Chabanne, and Thomas Icart. Cryptanalysis of
EC-RAC, a RFID Identification Protocol. In Matthew K. Franklin,
Lucas Chi Kwong Hui, and Duncan S. Wong, editors, Cryptology and
Network Security: 7th International Conference, CANS 2008, Hong-Kong,
China, December 2-4, 2008. Proceedings, pages 149–161. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[BCJ07] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient
Methods for Conversion and Solution of Sparse Systems of Low-Degree
Multivariate Polynomials over GF(2) via SAT-Solvers. Cryptology ePrint
Archive, Report 2007/024, 2007. https://eprint.iacr.org/2007/024.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA
Algebra System I: The User Language. J. Symb. Comput., 24(3-4):235–
265, October 1997.

295

http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
https://eprint.iacr.org/2007/024

Bibliography

[BD00] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM Stream
Cipher. In Bimal Roy and Eiji Okamoto, editors, Progress in Cryptology
— INDOCRYPT 2000, volume 1977 of Lecture Notes in Computer Science,
pages 43–51. Springer Berlin Heidelberg, 2000.

[BD06] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0.
eSTREAM: the ECRYPT Stream Cipher Project, 2006. http://www.
ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rec-
tangle Attack on the Full KASUMI. In Bimal Roy, editor, Advances in
Cryptology - ASIACRYPT 2005: 11th International Conference on the
Theory and Application of Cryptology and Information Security, Chennai,
India, December 4-8, 2005. Proceedings, pages 443–461. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[BG07] Côme Berbain and Henri Gilbert. On the Security of IV Dependent
Stream Ciphers. In Alex Biryukov, editor, Fast Software Encryption: 14th
International Workshop, FSE 2007, Luxembourg, Luxembourg, March
26-28, 2007, Revised Selected Papers, pages 254–273. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[BGJ09] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Cor-
relation Attacks against Linearly Filtered Non Linear Feedback Shift
Registers. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography: 15th International Workshop,
SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised
Selected Papers, pages 184–198. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2009.

[BGM06] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis
of Grain. In Matthew Robshaw, editor, Fast Software Encryption: 13th
International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006,
Revised Selected Papers, pages 15–29. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical imple-
mentation of A5/1, 1999. Available at http://www.scard.org/gsm/a51.
html.

[BI17] Subhadeep Banik and Takanori Isobe. Some cryptanalytic results on
Lizard. Cryptology ePrint Archive, Report 2017/346, 2017. https:
//eprint.iacr.org/2017/346.

296

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.scard.org/gsm/a51.html
http://www.scard.org/gsm/a51.html
https://eprint.iacr.org/2017/346
https://eprint.iacr.org/2017/346

Bibliography

[BICG17] Subhadeep Banik, Takanori Isobe, Tingting Cui, and Jian Guo. Some
cryptanalytic results on Lizard. IACR Transactions on Symmetric Cryp-
tology, 2017(4):82–98, 2017.

[Bir05] Alex Biryukov. LEX. eSTREAM: the ECRYPT Stream Cipher Project,
2005. hhttp://www.ecrypt.eu.org/stream/lexp3.html.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY Family of Block Ciphers and Its Low-Latency Variant
MANTIS. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, pages 123–153. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[Bjø08] Tor E. Bjørstad. Cryptanalysis of Grain using Time/Memory/Date Tra-
deoffs. eSTREAM, ECRYPT Stream Cipher Project, Report 2008/012,
2008. http://www.ecrypt.eu.org/stream/papersdir/2008/012.pdf.

[BKL+06] Lejla Batina, Sandeep Kumar, Joseph Lano, Nele Lemke, Kirstin Mentens,
Christof Paar, Bart Preneel, Kazuo Sakiyama, and Ingrid Verbauwhede.
Testing Framework for eSTREAM Profile II Candidates. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/014, 2006. http://www.
ecrypt.eu.org/stream/papersdir/2006/014.pdf.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Christine
Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal
Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007: 9th International Workshop, Vienna,
Austria, September 10-13, 2007. Proceedings, pages 450–466. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[BKL+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier
Standaert, John Steinberger, and Elmar Tischhauser. Key-Alternating
Ciphers in a Provable Setting: Encryption Using a Small Number of
Public Permutations. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 45–62. Springer Berlin
Heidelberg, 2012.

297

hhttp://www.ecrypt.eu.org/stream/lexp3.html
http://www.ecrypt.eu.org/stream/papersdir/2008/012.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/014.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/014.pdf

Bibliography

[BKM+09] Erik-Oliver Blass, Anil Kurmus, Refik Molva, Guevara Noubir, and
Abdullatif Shikfa. The Ff -Family of Protocols for RFID-Privacy and
Authentication. In 5th Workshop on RFID Security, RFIDSec’09, 2009.

[BKSQ07] Philippe Bulens, Kassem Kalach, Francois-Xavier Standaert, and Jean-
Jacques Quisquater. FPGA Implementations of eSTREAM Phase-2
Focus Candidates with Hardware Profile. eSTREAM, ECRYPT Stream
Cipher Project, Report 2007/024, 2007. http://www.ecrypt.eu.org/
stream/papersdir/2007/024.pdf.

[BL13] Daniel J. Bernstein and Tanja Lange. Never Trust a Bunny. In Procee-
dings of the 8th International Conference on Radio Frequency Identifica-
tion: Security and Privacy Issues, RFIDSec’12, pages 137–148, Berlin,
Heidelberg, 2013. Springer-Verlag.

[Blu14] Bluetooth SIG. Bluetooth Core Specification 4.2, 2014.
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?
doc_id=286439.

[BLW95] Beate Bollig, Martin Löbbing, and Ingo Wegener. Simulated annealing
to improve variable orderings for OBDDs. In International Workshop on
Logic Synthesis, Granlibakken, CA, May 1995, pages 5–5, 1995.

[BMvT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the
inherent intractability of certain coding problems (Corresp.). IEEE
Transactions on Information Theory, 24(3):384–386, May 1978.

[BP17] Alex Biryukov and Leo Perrin. State of the Art in Lightweight Symmetric
Cryptography. Cryptology ePrint Archive, Report 2017/511, 2017. http:
//eprint.iacr.org/2017/511.

[Bru04] Billy Brumley. A3/A8 & COMP128. Helsinki University of Technology,
T-79.514 Special Course on Cryptology, 2004. http://www.tcs.hut.fi/
Studies/T-79.514/slides/S5.Brumley-comp128.pdf.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers. In Tatsuaki Okamoto, editor, Advances in
Cryptology — ASIACRYPT 2000: 6th International Conference on the
Theory and Application of Cryptology and Information Security Kyoto,
Japan, December 3–7, 2000 Proceedings, pages 1–13. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families of

298

http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
http://eprint.iacr.org/2017/511
http://eprint.iacr.org/2017/511
http://www.tcs.hut.fi/Studies/T-79.514/slides/S5.Brumley-comp128.pdf
http://www.tcs.hut.fi/Studies/T-79.514/slides/S5.Brumley-comp128.pdf

Bibliography

Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404,
2013. http://eprint.iacr.org/2013/404.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. SIMON and SPECK: Block Ciphers
for the Internet of Things. Cryptology ePrint Archive, Report 2015/585,
2015. http://eprint.iacr.org/2015/585.

[BSW01] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis
of A5/1 on a PC. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen,
and Bruce Schneier, editors, Fast Software Encryption: 7th International
Workshop, FSE 2000 New York, NY, USA, April 10–12, 2000 Proceedings,
pages 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[Cad17] Cadence Design Systems, Inc. Encounter RTL Compiler. Website
(accessed on October 17, 2017), 2017. http://www.cadence.com/.

[Car12] Claude Carlet. Boolean Functions for Cryptography and Error Correcting
Codes. LAGA, University of Paris 8, France, 2012. http://www.math.
univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf.

[Cis04] Cisco Systems. Cisco Security Notice: Cisco IPsec VPN Implemen-
tation Group Password Usage Vulnerability. archive.org – WayBack-
Machine, Version: May 02, 2004 (accessed on September 6, 2017),
2004. https://web.archive.org/web/20040502183734/http://www.
cisco.com/warp/public/707/cisco-sn-20040415-grppass.shtml.

[CKK08] Jacek Cichoń, Marek Klonowski, and Mirosław Kutyłowski. Privacy
Protection for RFID with Hidden Subset Identifiers. In Jadwiga Indulska,
Donald J. Patterson, Tom Rodden, and Max Ott, editors, Pervasive
Computing: 6th International Conference, Pervasive 2008 Sydney, Au-
stralia, May 19-22, 2008 Proceedings, pages 298–314. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient Algorithms for Solving Overdefined Systems of Multivariate
Polynomial Equations. In Bart Preneel, editor, Advances in Cryptology
— EUROCRYPT 2000: International Conference on the Theory and
Application of Cryptographic Techniques Bruges, Belgium, May 14–18,
2000 Proceedings, pages 392–407. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John
Steinberger. Minimizing the Two-Round Even-Mansour Cipher. In

299

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2015/585
http://www.cadence.com/
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
https://web.archive.org/web/20040502183734/http://www.cisco.com/warp/public/707/cisco-sn-20040415-grppass.shtml
https://web.archive.org/web/20040502183734/http://www.cisco.com/warp/public/707/cisco-sn-20040415-grppass.shtml

Bibliography

Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology
– CRYPTO 2014, volume 8616 of Lecture Notes in Computer Science,
pages 39–56. Springer Berlin Heidelberg, 2014.

[CM03] Nicolas T. Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers
with Linear Feedback. In Eli Biham, editor, Advances in Cryptology
— EUROCRYPT 2003: International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4–8,
2003 Proceedings, pages 345–359. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[CN17] Thomas De Cnudde and Svetla Nikova. Securing the PRESENT Block
Cipher Against Combined Side-Channel Analysis and Fault Attacks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(12):3291–3301, Dec 2017.

[CNO08] Nicolas T. Courtois, Karsten Nohl, and Sean O’Neil. Algebraic Attacks
on the Crypto-1 Stream Cipher in MiFare Classic and Oyster Cards.
Cryptology ePrint Archive, Report 2008/166, 2008. http://eprint.
iacr.org/2008/166.

[Cou03] Nicolas T. Courtois. Fast Algebraic Attacks on Stream Ciphers with Li-
near Feedback. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003: 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003. Proceedings, pages 176–194. Sprin-
ger Berlin Heidelberg, Berlin, Heidelberg, 2003.

[CP05] Christophe De Cannière and Bart Preneel. Trivium – Specifications.
eSTREAM: the ECRYPT Stream Cipher Project, 2005. http://www.
ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

[CR08] Peter H. Cole and Damith C. Ranasinghe. Networked RFID Systems and
Lightweight Cryptography: Raising Barriers to Product Counterfeiting.
Springer Berlin Heidelberg, first edition, 2008.

[CS14] Shan Chen and John Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 327–350. Springer Berlin Heidelberg,
2014.

[DA14] Prakash Dey and Avishek Adhikari. Improved Multi-Bit Differential
Fault Analysis of Trivium. In Willi Meier and Debdeep Mukhopadhyay,

300

http://eprint.iacr.org/2008/166
http://eprint.iacr.org/2008/166
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf

Bibliography

editors, Progress in Cryptology – INDOCRYPT 2014, pages 37–52, Cham,
2014. Springer International Publishing.

[DCDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KA-
TAN and KTANTAN — A Family of Small and Efficient Hardware-
Oriented Block Ciphers. In Christophe Clavier and Kris Gaj, editors,
Cryptographic Hardware and Embedded Systems - CHES 2009: 11th
International Workshop Lausanne, Switzerland, September 6-9, 2009 Pro-
ceedings, pages 272–288. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[DCKP08] Christophe De Cannière, Özgül Küçük, and Bart Preneel. Analysis of
Grain’s Initialization Algorithm. In Serge Vaudenay, editor, Progress in
Cryptology – AFRICACRYPT 2008: First International Conference on
Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings,
pages 276–289. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DH15] Elena Dubrova and Martin Hell. Espresso: A stream cipher for 5G
wireless communication systems. Cryptography and Communications,
pages 1–17, 2015.

[DHW+12] Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar, and
Thorsten Holz. Don’t Trust Satellite Phones: A Security Analysis of Two
Satphone Standards. In 2012 IEEE Symposium on Security and Privacy,
pages 128–142, May 2012.

[DK08] Orr Dunkelman and Nathan Keller. Treatment of the Initial Value in
Time-Memory-Data Tradeoff Attacks on Stream Ciphers. Cryptology
ePrint Archive, Report 2008/311, 2008. http://eprint.iacr.org/
2008/311.

[dKGHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia.
A Practical Attack on the MIFARE Classic. In Gilles Grimaud and
François-Xavier Standaert, editors, Smart Card Research and Advanced
Applications: 8th IFIP WG 8.8/11.2 International Conference, CARDIS
2008, London, UK, September 8-11, 2008. Proceedings, pages 267–282.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time
Attack on the A5/3 Cryptosystem Used in Third Generation GSM
Telephony. Cryptology ePrint Archive, Report 2010/013, 2010. http:
//eprint.iacr.org/2010/013.

301

http://eprint.iacr.org/2008/311
http://eprint.iacr.org/2008/311
http://eprint.iacr.org/2010/013
http://eprint.iacr.org/2010/013

Bibliography

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Crypto-
graphy: The Even-mansour Scheme Revisited. In Proceedings of the 31st
Annual International Conference on Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT’12, pages 336–354, Berlin, Heidelberg,
2012. Springer-Verlag.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box
Polynomials. In Antoine Joux, editor, Advances in Cryptology - EURO-
CRYPT 2009: 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-
30, 2009. Proceedings, pages 278–299, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube
Attacks. In Antoine Joux, editor, Fast Software Encryption: 18th In-
ternational Workshop, FSE 2011, Lyngby, Denmark, February 13-16,
2011, Revised Selected Papers, pages 167–187. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[DS17] Sabyasachi Dey and Santanu Sarkar. Cryptanalysis of full round Fruit.
Cryptology ePrint Archive, Report 2017/87, 2017. http://eprint.iacr.
org/2017/87.pdf.

[Dub12] Elena Dubrova. A List of Maximum Period NLFSRs. Cryptology ePrint
Archive, Report 2012/166, 2012. http://eprint.iacr.org/2012/166.

[Dub13] Elena Dubrova. A Scalable Method for Constructing Galois NLFSRs
With Period 2n − 1 Using Cross-Join Pairs. IEEE Transactions on
Information Theory, 59(1):703–709, January 2013.

[ECR05] ECRYPT - European Network of Excellence for Cryptology. eSTREAM
Optimized Code HOWTO, 2005. http://www.ecrypt.eu.org/stream/
perf/.

[ECR08] ECRYPT – European Network of Excellence for Cryptology. eSTREAM:
the ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org/
stream/.

302

http://eprint.iacr.org/2017/87.pdf
http://eprint.iacr.org/2017/87.pdf
http://eprint.iacr.org/2012/166
http://www.ecrypt.eu.org/stream/perf/
http://www.ecrypt.eu.org/stream/perf/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

Bibliography

[EHJ07] Håkan Englund, Martin Hell, and Thomas Johansson. A Note on Dis-
tinguishing Attacks. In 2007 IEEE Information Theory Workshop on
Information Theory for Wireless Networks, pages 1–4, July 2007.

[EK16] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full
Sprout with TMD Tradeoff Attacks. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography - SAC 2015: 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected
Papers, pages 67–85. Springer International Publishing, Cham, 2016.

[EM93] Shimon Even and Yishay Mansour. A construction of a cipher from a
single pseudorandom permutation. In Hideki Imai, RonaldL. Rivest, and
Tsutomu Matsumoto, editors, Advances in Cryptology — ASIACRYPT
’91, volume 739 of Lecture Notes in Computer Science, pages 210–224.
Springer Berlin Heidelberg, 1993.

[EPV08] Tobias Eibach, Enrico Pilz, and Gunnar Völkel. Attacking Bivium Using
SAT Solvers. In Hans Kleine Büning and Xishun Zhao, editors, Theory
and Applications of Satisfiability Testing – SAT 2008, pages 63–76, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[ES10] Niklas Eén and Niklas Sörensson. MiniSat 2.2. Website (accessed on
February 06, 2018), 2010. http://minisat.se/.

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong
Authentication for RFID Systems Using the AES Algorithm. In Marc
Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 357–370. Springer Berlin Heidelberg, 2004.

[Fel07] Martin Feldhofer. Comparison of Low-Power Implementations of Tri-
vium and Grain. eSTREAM, ECRYPT Stream Cipher Project, Re-
port 2007/027, 2007. http://www.ecrypt.eu.org/stream/papersdir/
2007/027.pdf.

[FMK91] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis. In Proceedings of the European Conference on Design
Automation., pages 50–54, Feb 1991.

[FMS01] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the Key
Scheduling Algorithm of RC4. In Serge Vaudenay and Amr M. Youssef,

303

http://minisat.se/
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf

Bibliography

editors, Selected Areas in Cryptography: 8th Annual International Works-
hop, SAC 2001 Toronto, Ontario, Canada, August 16–17, 2001 Revised
Papers, pages 1–24. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[FS09] Dmitry Frumkin and Adi Shamir. Untrusted-HB: Security Vulnerabilities
of Trusted-HB. Cryptology ePrint Archive, Report 2009/044, 2009.
http://eprint.iacr.org.

[FWR05] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. AES
implementation on a grain of sand. Information Security, IEE Proceedings,
152(1):13–20, Oct 2005.

[GB08] Tim Good and Mohammed Benaissa. Hardware performance of eS-
tream phase-III stream cipher candidates. eSTREAM: the ECRYPT
Stream Cipher Project, 2008. http://www.ecrypt.eu.org/stream/
docs/hardware.pdf.

[GCB06] Tim Good, William Chelton, and Mohamed Benaissa. Review of stream
cipher candidates from a low resource hardware perspective. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/016, 2006. http://www.
ecrypt.eu.org/stream/papersdir/2006/016.pdf.

[GdKGM+08] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter
van Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs.
Dismantling MIFARE Classic. In Sushil Jajodia and Javier Lopez,
editors, Computer Security - ESORICS 2008: 13th European Symposium
on Research in Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings, pages 97–114. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[GGK06] Berndt Gammel, Rainer Göttfert, and Oliver Kniffler. ACHTERBAHN-
128/80. eSTREAM: the ECRYPT Stream Cipher Project,
2006. http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/
achterbahn_p2.pdf.

[gHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-
128a: A New Version of Grain-128 with Optional Authentication. Interna-
tional Journal of Wireless and Mobile Computing, 5(1):48–59, December
2011.

[GHX16] Vahid Amin Ghafari, Honggang Hu, and Chengxin Xie. Fruit: Ultra-
Lightweight Stream Cipher with Shorter Internal State. Cryptology ePrint
Archive, Report 2016/355, 2016. http://eprint.iacr.org/2016/355.

304

http://eprint.iacr.org
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://eprint.iacr.org/2016/355

Bibliography

[GKNP08] Tim Güneysu, Timo Kasper, Martin Novotny, and Christof Paar. Cryp-
tanalysis with COPACOBANA. IEEE TRANSACTIONS ON COMPU-
TERS, 57(11):1498–1513, 2008.

[GLS14] Lubos Gaspar, Gaëtan Leurent, and François-Xavier Standaert. Hardware
Implementation and Side-Channel Analysis of Lapin. In Josh Benaloh,
editor, Topics in Cryptology – CT-RSA 2014: The Cryptographer’s Track
at the RSA Conference 2014, San Francisco, CA, USA, February 25-
28, 2014. Proceedings, pages 206–226. Springer International Publishing,
Cham, 2014.

[Gol96] Jovan Dj. Golić. On the security of nonlinear filter generators. In
Dieter Gollmann, editor, Fast Software Encryption: Third International
Workshop Cambridge, UK, February 21–23 1996 Proceedings, pages 173–
188. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[GRS05] Henri Gilbert, Matt Robshaw, and Hervé Sibert. An Active Attack
Against HB+ - A Provably Secure Lightweight Authentication Protocol.
Cryptology ePrint Archive, Report 2005/237, 2005. http://eprint.
iacr.org/2005/237.

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. HB#:
Increasing the Security and Efficiency of HB+. In Nigel Smart, editor,
Advances in Cryptology – EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 361–378. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[GRVS09] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers
Schreur. Wirelessly Pickpocketing a Mifare Classic Card. In Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09, pages
3–15, Washington, DC, USA, 2009. IEEE Computer Society.

[GT15] Peter Gazi and Stefano Tessaro. Secret-key cryptography from ideal
primitives: A systematic overview. In Information Theory Workshop
(ITW), 2015 IEEE, pages 1–5, April 2015.

[Ham10] Matthias Hamann. On the Complexity of a Learning Problem Induced by
a Lightweight Cryptographic Construction. Diploma thesis, University
of Mannheim, Germany, 2010.

[Ham15] Matt Hamblen. Samsung expects 70M Galaxy S6 and Edge
phones to be sold. Website (accessed on September 19, 2017),
2015. https://www.computerworld.com/article/2912156/

305

http://eprint.iacr.org/2005/237
http://eprint.iacr.org/2005/237
https://www.computerworld.com/article/2912156/samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.html
https://www.computerworld.com/article/2912156/samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.html

Bibliography

samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.
html.

[Hao15] Yonglin Hao. A Related-key Chosen-IV Distinguishing Attack on Full
Sprout Stream Cipher. Cryptology ePrint Archive, Report 2015/231,
2015. http://eprint.iacr.org/2015/231.pdf.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure Human Identification
Protocols. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT
2001: 7th International Conference on the Theory and Application of
Cryptology and Information Security Gold Coast, Australia, December
9–13, 2001 Proceedings, pages 52–66. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Tran-
sactions on Information Theory, 26(4):401–406, Jul 1980.

[HG11] Honggang Hu and Guang Gong. Periods on Two Kinds of Nonli-
near Feedback Shift Registers with Time Varying Feedback Functi-
ons. Technical report, University of Waterloo, Canada, 2011. http:
//cacr.uwaterloo.ca/techreports/2011/cacr2011-08.pdf.

[His14] Rebecca Hiscott. RFID Tags Track Marijuana From Seed to Sale, in
Colorado. Website of Mashable Inc. (accessed on October 01, 2017), 2014.
http://mashable.com/2014/02/11/marijuana-rfid-tracking/.

[HJ08] Martin Hell and Thomas Johansson. Breaking the F-FCSR-H Stream
Cipher in Real Time. In Josef Pieprzyk, editor, Advances in Cryptology -
ASIACRYPT 2008: 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Austra-
lia, December 7-11, 2008. Proceedings, pages 557–569. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[HJM06] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream
Cipher for Constrained Environments. eSTREAM: the ECRYPT Stream
Cipher Project, 2006. http://www.ecrypt.eu.org/stream/p3ciphers/
grain/Grain_p3.pdf.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier.
A Stream Cipher Proposal: Grain-128. In 2006 IEEE International
Symposium on Information Theory, pages 1614–1618, July 2006.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier.
The Grain Family of Stream Ciphers. In Matthew Robshaw and Olivier

306

https://www.computerworld.com/article/2912156/samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.html
https://www.computerworld.com/article/2912156/samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.html
https://www.computerworld.com/article/2912156/samsung-expects-70m-galaxy-s6-and-edge-phones-to-be-sold.html
http://eprint.iacr.org/2015/231.pdf
http://cacr.uwaterloo.ca/techreports/2011/cacr2011-08.pdf
http://cacr.uwaterloo.ca/techreports/2011/cacr2011-08.pdf
http://mashable.com/2014/02/11/marijuana-rfid-tracking/
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf

Bibliography

Billet, editors, New Stream Cipher Designs: The eSTREAM Finalists,
pages 179–190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[HK15] Matthias Hamann and Matthias Krause. Stream Cipher Operation Modes
with Improved Security against Generic Collision Attacks. Cryptology
ePrint Archive, Report 2015/757, 2015. http://eprint.iacr.org/
2015/757.

[HK18] Matthias Hamann and Matthias Krause. On stream ciphers with provable
beyond-the-birthday-bound security against time-memory-data tradeoff
attacks. Cryptography and Communications, 10(5):959–1012, Sep 2018.

[HKL+12] Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and
Krzysztof Pietrzak. Lapin: An Efficient Authentication Protocol Based
on Ring-LPN. In Anne Canteaut, editor, Fast Software Encryption,
volume 7549 of Lecture Notes in Computer Science, pages 346–365.
Springer Berlin Heidelberg, 2012.

[HKM17a] Matthias Hamann, Matthias Krause, and Willi Meier. A Note on Stream
Ciphers that Continuously Use the IV. Cryptology ePrint Archive, Report
2017/1172, 2017. https://eprint.iacr.org/2017/1172.

[HKM17b] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD – A Light-
weight Stream Cipher for Power-constrained Devices. IACR Transactions
on Symmetric Cryptology, 2017(1):45–79, 2017.

[HKMZ17a] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. On
Stream Ciphers with Small State. Early Symmetric Crypto (ESC),
January 2017, Canach, Luxembourg, 2017.

[HKMZ17b] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Time-
Memory-Data Tradeoff Attacks against Small-State Stream Ciphers.
Cryptology ePrint Archive, Report 2017/384, 2017. http://eprint.
iacr.org/2017/384.

[HKMZ18] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Design
and analysis of small-state grain-like stream ciphers. Cryptography and
Communications, 10(5):803–834, Sep 2018.

[HS05] Jin Hong and Palash Sarkar. New Applications of Time Memory Data
Tradeoffs. In Advances in Cryptology - ASIACRYPT 2005: 11th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Chennai, India, December 4-8, 2005. Proceedings,
pages 353–372. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

307

http://eprint.iacr.org/2015/757
http://eprint.iacr.org/2015/757
https://eprint.iacr.org/2017/1172
http://eprint.iacr.org/2017/384
http://eprint.iacr.org/2017/384

Bibliography

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating Ciphers and Key-
length Extension: Exact Bounds and Multi-user Security. Cryptology
ePrint Archive, Report 2016/578, 2016. http://eprint.iacr.org/
2016/578.

[Ins97] Institute of Electrical and Electronics Engineers. IEEE Standard for
Information Technology – Telecommunications and Information Exchange
Between Systems – Local and Metropolitan Area Networks – Specific
Requirements – Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. IEEE Std 802.11-1997, pages
i–445, 1997.

[Ins04] Institute of Electrical and Electronics Engineers. IEEE Standard for
Information Technology – Telecommunications and Information Exchange
Between Systems – Local and Metropolitan Area Networks – Specific
Requirements – Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications: Amendment 6: Medium Access
Control (MAC) Security Enhancements. IEEE Std 802.11i-2004, pages
1–190, July 2004.

[Ins12] Institute of Electrical and Electronics Engineers. IEEE Standard for In-
formation Technology – Telecommunications and Information Exchange
Between Systems – Local and Metropolitan Area Networks – Specific Re-
quirements – Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE Std 802.11-2012 (Revision
of IEEE Std 802.11-2007), pages 1–2793, March 2012.

[Int97] Interplay Productions. Atomic Bomberman. Website of Wikpedia (acces-
sed on February 19, 2018), 1997. https://en.wikipedia.org/wiki/
Atomic_Bomberman.

[ISY91] Nagisa Ishiura, Hiroshi Sawada, and Shuzo Yajima. Minimization of
binary decision diagrams based on exchanges of variables. In 1991 IEEE
International Conference on Computer-Aided Design Digest of Technical
Papers, pages 472–475, Nov 1991.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Sim, and Jade Tourteaux. Optimizing
Implementations of Lightweight Building Blocks. IACR Transactions on
Symmetric Cryptology, 2017(4):130–168, 2017.

[Jue06] Ari Juels. RFID Security and Privacy: A Research Survey. IEEE Journal
on Selected Areas in Communications, 24(2):381–394, September 2006.

308

http://eprint.iacr.org/2016/578
http://eprint.iacr.org/2016/578
https://en.wikipedia.org/wiki/Atomic_Bomberman
https://en.wikipedia.org/wiki/Atomic_Bomberman

Bibliography

[JW05] Ari Juels and Stephen A. Weis. Authenticating Pervasive Devices with
Human Protocols. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005. Proceedings, pages 293–
308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[Ker83a] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, IX:5–38, Jan 1883.

[Ker83b] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, IX:161–191, Feb 1883.

[KH11] Matthias Krause and Matthias Hamann. The Cryptographic Power of
Random Selection. In Proceedings of SAC 2011, volume 7118 of LNCS,
pages 134–150. Springer, 2011.

[KJAB17] Ahmed Khattab, Zahra Jeddi, Esmaeil Amini, and Magdy Bayoumi.
RFID Security: A Lightweight Paradigm. Analog Circuits and Signal
Processing. Springer International Publishing, 2017.

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele
Venturi. Efficient authentication from hard learning problems. In Pro-
ceedings of Eurocrypt 2011, volume 6632 of LNCS, pages 7–26. Springer,
2011.

[Kra02] Matthias Krause. BDD-Based Cryptanalysis of Keystream Generators.
In Lars R. Knudsen, editor, Advances in Cryptology — EUROCRYPT
2002: International Conference on the Theory and Applications of Cryp-
tographic Techniques Amsterdam, The Netherlands, April 28 – May 2,
2002 Proceedings, pages 222–237. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

[Kra17] Matthias Krause. On the Hardness of Trivium and Grain with respect
to Generic Time-Memory-Data Tradeoff Attacks. Cryptology ePrint
Archive, Report 2017/289, 2017. http://eprint.iacr.org/2017/289.

[KS06] Matthias Krause and Dirk Stegemann. Reducing the Space Complexity
of BDD-Based Attacks on Keystream Generators. In Matthew Robshaw,
editor, Fast Software Encryption, pages 163–178, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[KS09] Matthias Krause and Dirk Stegemann. More on the Security of Linear
RFID Authentication Protocols. In Proceedings of SAC 2009, volume
5867 of LNCS, pages 182–196. Springer, 2009.

309

http://eprint.iacr.org/2017/289

Bibliography

[Küç06] Özgül Küçük. Slide Resynchronization Attack on the Initialization
of Grain 1.0. eSTREAM, ECRYPT Stream Cipher Project, Report
2006/044, 2006. http://www.ecrypt.eu.org/stream.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In
Security and Cryptography for Networks, pages 348–359. Springer, 2006.

[Liu17] Meicheng Liu. Degree Evaluation of NFSR-Based Cryptosystems. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20–24, 2017, Proceedings, Part III, pages
227–249. Springer International Publishing, Cham, 2017.

[LM12] Michael Lehmann and Willi Meier. Conditional Differential Cryptanalysis
of Grain-128a. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark
Manulis, editors, Cryptology and Network Security: 11th International
Conference, CANS 2012, Darmstadt, Germany, December 12-14, 2012.
Proceedings, pages 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[LMV05] Yi Lu, Willi Meier, and Serge Vaudenay. The Conditional Correlation
Attack: A Practical Attack on Bluetooth Encryption. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005. Proceedings, pages 97–117. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2005.

[LNP15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full
Sprout. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages
663–682. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[MAM17] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers
that Continuously Access the Non-Volatile Key. IACR Transactions on
Symmetric Cryptology, 2016(2):52–79, 2017.

[Mei18] Willi Meier. TMD tradeoffs on small-state stream ciphers. Dagstuhl Semi-
nar 18021: Symmetric Cryptography, January 2018, Dagstuhl, Germany,
2018.

[Men17] Mentor. ModelSim. Website (accessed on October 17, 2017), 2017.
http://www.mentor.com/.

310

http://www.ecrypt.eu.org/stream
http://www.mentor.com/

Bibliography

[Mih96] Miodrag J. Mihaljević. A faster cryptanalysis of the self-shrinking ge-
nerator. In Josef Pieprzyk and Jennifer Seberry, editors, Information
Security and Privacy: First Australasian Conference, ACISP’96 Wol-
longong, NSW, Australia, June 24–26, 1996 Proceedings, pages 182–189.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and
Claude Carlet. Towards Stream Ciphers for Efficient FHE with Low-
Noise Ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages 311–343.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[MME+11] Honorio Martin, Enrique San Millán, Luis Entrena, Julio César Hernández
Castro, and Pedro Peris-Lopez. AKARI-X: A pseudorandom number
generator for secure lightweight systems. In IOLTS, pages 228–233, 2011.

[MPC04] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic Attacks and
Decomposition of Boolean Functions. In Christian Cachin and Jan L.
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004: In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings, pages
474–491. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[MS88] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Stream
Ciphers. In D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luck-
ham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and Chris-
toph G. Günther, editors, Advances in Cryptology — EUROCRYPT ’88:
Workshop on the Theory and Application of Cryptographic Techniques
Davos, Switzerland, May 25–27, 1988 Proceedings, pages 301–314, Berlin,
Heidelberg, 1988. Springer Berlin Heidelberg.

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain
stream ciphers. Journal of Cryptology, 1(3):159–176, 1989.

[MS94] Willi Meier and Othmar Staffelbach. The Self-Shrinking Generator. In
Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory
and Application of Cryptographic Techniques, Perugia, Italy, May 9-12,
1994, Proceedings, volume 950 of Lecture Notes in Computer Science,
pages 205–214. Springer, 1994.

311

Bibliography

[MSBD15] Subhamoy Maitra, Santanu Sarkar, Anubhab Baksi, and Pramit Dey. Key
Recovery from State Information of Sprout. Cryptology ePrint Archive,
Report 2015/236, 2015. http://eprint.iacr.org/2015/236.pdf.

[MSGAHJ13] Joan Melià-Seguí, Joaquin Garcia-Alfaro, and Jordi Herrera-Joancomartí.
J3Gen: A PRNG for Low-Cost Passive RFID. Sensors, 13(3):3816–3830,
2013.

[MSS+17] Subhamoy Maitra, Nishant Sinha, Akhilesh Siddhanti, Ravi Anand, and
Sugata Gangopadhyay. A TMDTO Attack Against Lizard. Cryptology
ePrint Archive, Report 2017/647, 2017. http://eprint.iacr.org/
2017/647.

[Nat16] National Institute of Standards and Technology (NIST). Cryptographic
Standards and Guidelines: AES Development. Website (accessed on
February 22, 2018), 2016. http://csrc.nist.gov/archive/aes/.

[NESP08] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz. Reverse-
engineering a Cryptographic RFID Tag. In Proceedings of the 17th
Conference on Security Symposium, SS’08, pages 185–193, Berkeley, CA,
USA, 2008. USENIX Association.

[NKTZ12] Andrey Nuykin, Alexander Kravtsov, Sergey Timoshin, and Igor Zubov.
A low cost EEPROM design for passive RFID tags. In Communications
and Electronics (ICCE), 2012 Fourth International Conference on, pages
443–446, Aug 2012.

[NP07] Karsten Nohl and Henryk Plötz. Mifare: Little Security, Despite
Obscurity. Website (accessed on September 16, 2017), 2007. https:
//events.ccc.de/congress/2007/Fahrplan/events/2378.en.html.

[NXP17] NXP Semiconductors. MIFARE. Website (accessed on September 16,
2017), 2017. https://www.mifare.net/.

[OOV08] Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay. On the Security
of HB# against a Man-in-the-Middle Attack. In Josef Pieprzyk, editor,
Advances in Cryptology - ASIACRYPT 2008: 14th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings, pages
108–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[OP11] David Oswald and Christof Paar. Breaking Mifare DESFire MF3ICD40:
Power Analysis and Templates in the Real World. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems

312

http://eprint.iacr.org/2015/236.pdf
http://eprint.iacr.org/2017/647
http://eprint.iacr.org/2017/647
http://csrc.nist.gov/archive/aes/
https://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html
https://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html
https://www.mifare.net/

Bibliography

– CHES 2011: 13th International Workshop, Nara, Japan, September 28 –
October 1, 2011. Proceedings, pages 207–222. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[PLHCETR09] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M. Estevez-
Tapiador, and Arturo Ribagorda. LAMED - A PRNG for EPC Class-1
Generation-2 RFID Specification. Comput. Stand. Interfaces, 31(1):88–97,
January 2009.

[Pli99] John Pliam. Authentication Vulnerabilities in IKE and Xauth with Weak
Pre-Shared Secrets. archive.org – WayBackMachine, Version: March 08,
2005 (accessed on September 6, 2017), 1999. https://web.archive.org/
web/20050308093355/https://www.ima.umn.edu/~pliam/xauth/.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Hu-
axiong Wang, and San Ling. Side-Channel Resistant Crypto for Less
than 2,300 GE. Journal of Cryptology, 24(2):322–345, Apr 2011.

[Pop15] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465 (Proposed Stan-
dard), February 2015.

[Pos09] Axel Poschmann. Lightweight Cryptography - Cryptographic Engineering
for a Pervasive World. Cryptology ePrint Archive, Report 2009/516,
2009. http://eprint.iacr.org/2009/516.

[Pre03] Bart Preneel. NESSIE: New European Schemes for Signatures, Integrity,
and Encryption. Website (accessed on October 19, 2017), 2003. https:
//www.cosic.esat.kuleuven.be/nessie/.

[PRO17] PROXMARK.org. Proxmark 3. Website (accessed on September 18,
2017), 2017. http://www.proxmark.org/.

[PS95] Shipra Panda and Fabio Somenzi. Who Are the Variables in Your
Neighborhood. In Proceedings of the 1995 IEEE/ACM International
Conference on Computer-aided Design, ICCAD ’95, pages 74–77, Wa-
shington, DC, USA, 1995. IEEE Computer Society.

[PSP94] Shipra Panda, Fabio Somenzi, and Bernard F. Plessier. Symmetry
Detection and Dynamic Variable Ordering of Decision Diagrams. In Pro-
ceedings of the 1994 IEEE/ACM International Conference on Computer-
aided Design, ICCAD ’94, pages 628–631, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

313

https://web.archive.org/web/20050308093355/https://www.ima.umn.edu/~pliam/xauth/
https://web.archive.org/web/20050308093355/https://www.ima.umn.edu/~pliam/xauth/
http://eprint.iacr.org/2009/516
https://www.cosic.esat.kuleuven.be/nessie/
https://www.cosic.esat.kuleuven.be/nessie/
http://www.proxmark.org/

Bibliography

[REC05] Damith C. Ranasinghe, Daniel W. Engels, and Peter H. Cole. Low-Cost
RFID Systems: Confronting Security and Privacy. In In: Auto-ID Labs
Research Workshop. Portal, 2005.

[Rep13] Craig A. Repec. Regulatory status for using RFID in the EPC Gen 2
band (860 to 960 MHz) of the UHF spectrum, 2013. http://www.gs1.
org/docs/epcglobal/UHF_Regulations.pdf.

[Rob05] Mark Roberti. The History of RFID Technology. Website of RFID Journal
(accessed on October 20, 2017), 2005. http://www.rfidjournal.com/
articles/view?1338/.

[RPLP08] Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar.
Ultra-Lightweight Implementations for Smart Devices – Security for 1000
Gate Equivalents. In Gilles Grimaud and François-Xavier Standaert,
editors, Smart Card Research and Advanced Applications: 8th IFIP WG
8.8/11.2 International Conference, CARDIS 2008, London, UK, Septem-
ber 8-11, 2008. Proceedings, pages 89–103. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[Rud93] Richard Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In Proceedings of 1993 International Conference on Computer
Aided Design (ICCAD), pages 42–47, Nov 1993.

[RUS04] RUS-CERT. RUS-CERT-1195: [Generic/IPsec] Risiken von XAUTH.
Website (accessed on September 6, 2017), 2004. https://cert.
uni-stuttgart.de/ticker/article.php?mid=1195.

[Sch95] Bruce Schneier. Applied Cryptography (2nd Ed.): Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, Inc., New York, NY, USA,
1995.

[SCU11] Jean-Ferdinand Susini, Harvé Chabanne, and Pascal Urien. RFID and
the Internet of Things, chapter RFID and the Internet of Things, page
304. ISTE - John Wiley & Sons, 2011.

[SE12] Markku-Juhani O. Saarinen and Daniel Engels. A Do-It-All-Cipher for
RFID: Design Requirements (Extended Abstract). Cryptology ePrint
Archive, Report 2012/317, 2012. http://eprint.iacr.org/2012/317.

[Sie85] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using
Ciphertext Only. IEEE Transactions on Computers, 34(1):81–85, January
1985.

314

http://www.gs1.org/docs/epcglobal/UHF_Regulations.pdf
http://www.gs1.org/docs/epcglobal/UHF_Regulations.pdf
http://www.rfidjournal.com/articles/view?1338/
http://www.rfidjournal.com/articles/view?1338/
https://cert.uni-stuttgart.de/ticker/article.php?mid=1195
https://cert.uni-stuttgart.de/ticker/article.php?mid=1195
http://eprint.iacr.org/2012/317

Bibliography

[SM17] Akhilesh Siddhanti Subhamoy Maitra. A differential fault attack on
plantlet. Cryptology ePrint Archive, Report 2017/088, 2017. http:
//eprint.iacr.org/2017/088.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
Solvers to Cryptographic Problems. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, pages 244–257,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Som15] Fabio Somenzi. CUDD 3.0.0. Website (accessed on February 05, 2018),
2015. http://vlsi.colorado.edu/~fabio/.

[Soo15] Mate Soos. CryptoMiniSat 4. Website (accessed on February 02, 2018),
2015. https://www.msoos.org/cryptominisat4/.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight Diffusion Layer: Impor-
tance of Toeplitz Matrices. IACR Transactions on Symmetric Cryptology,
2016(1), 2016.

[SSMC17] Akhilesh Anilkumar Siddhanti, Santanu Sarkar, Subhamoy Maitra, and
Anupam Chattopadhyay. Differential Fault Attack on Grain v1, ACORN
v3 and Lizard. Cryptology ePrint Archive, Report 2017/678, 2017.
http://eprint.iacr.org/2017/678.

[Ste07a] Dirk Stegemann. Extended BDD-Based Cryptanalysis of Keystream
Generators. In Carlisle Adams, Ali Miri, and Michael Wiener, editors,
Selected Areas in Cryptography: 14th International Workshop, SAC 2007,
Ottawa, Canada, August 16-17, 2007, Revised Selected Papers, pages
17–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[Ste07b] Dirk Stegemann. Extended BDD-based Cryptanalysis of Keystream Gene-
rators (Presentation). 14th Workshop on Selected Areas in Cryptography
(SAC), 2007, Canada, 2007.

[STF05] Thorsten Staake, Frédéric Thiesse, and Elgar Fleisch. Extending the EPC
network: the potential of RFID in anti-counterfeiting. In Proceedings
of the 2005 ACM symposium on Applied computing, pages 1607–1612.
ACM, 2005.

[Sul04] Philippe Sultan. An example of VPN server spoofing. Website (accessed
on September 6, 2017), 2004. https://who.rocq.inria.fr/Philippe.
Sultan/vpn/spoofed_vpn_server.html.

315

http://eprint.iacr.org/2017/088
http://eprint.iacr.org/2017/088
http://vlsi.colorado.edu/~fabio/
https://www.msoos.org/cryptominisat4/
http://eprint.iacr.org/2017/678
https://who.rocq.inria.fr/Philippe.Sultan/vpn/spoofed_vpn_server.html
https://who.rocq.inria.fr/Philippe.Sultan/vpn/spoofed_vpn_server.html

Bibliography

[TBM08] Carlos Tokunaga, David Blaauw, and Trevor Mudge. True Random
Number Generator With a Metastability-Based Quality Control. IEEE
Journal of Solid-State Circuits, 43(1):78–85, Jan 2008.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube
Attacks on Non-Blackbox Polynomials Based on Division Property. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20–24, 2017, Proceedings, Part III, pages
250–279. Springer International Publishing, Cham, 2017.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015: 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, pages 287–314, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[Tod17] Yosuke Todo. Personal communication, 2017.

[Uni94] University of California, Berkeley. Espresso, 1994. http://embedded.
eecs.berkeley.edu/pubs/downloads/espresso/index.htm.

[van05] vantronix | secure systems GmbH. void11. archive.org – WayBackMa-
chine, Version: February 06, 2005 (accessed on September 6, 2017),
2005. https://web.archive.org/web/20050206100144/http://www.
wlsec.net:80/void11/.

[Vau07] Serge Vaudenay. On Privacy Models for RFID. In Kaoru Kurosawa,
editor, Advances in Cryptology – ASIACRYPT 2007: 13th International
Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007. Proceedings, pages
68–87. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[Ver13] Ingrid Verbauwhede. How much crypto in one microJoule? Real World
Crypto 2013 – Stanford, CA, 2013. https://crypto.stanford.edu/
RealWorldCrypto/slides/ingrid.pdf.

[vTJ11] Henk C. A. van Tilborg and Sushil Jajodia, editors. Encyclopedia of
Cryptography and Security, page 675. Springer US, Boston, MA, 2011.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams:
Theory and Applications. SIAM e-books. Society for Industrial and
Applied Mathematics, 2000.

316

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://web.archive.org/web/20050206100144/http://www.wlsec.net:80/void11/
https://web.archive.org/web/20050206100144/http://www.wlsec.net:80/void11/
https://crypto.stanford.edu/RealWorldCrypto/slides/ingrid.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/ingrid.pdf

Bibliography

[Win18] Nick Wingfield. Inside Amazon Go, a Store of the Future.
Website of The New York Times (accessed on February 16,
2018), 2018. https://www.nytimes.com/2018/01/21/technology/
inside-amazon-go-a-store-of-the-future.html.

[Wu16] Hongjun Wu. Acorn v3. Submission to CAESAR competition., 2016.

[WZ11] Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In
Applied Cryptography and Network Security, volume 6715 of LNCS, pages
327–344. Springer, 2011.

[Xel17] Xelerance Corp. Openswan. Website (accessed on September 6, 2017),
2017. https://www.openswan.org/.

[Xil17] Xilinx, Inc. Xilinx Website, 2017. http://www.xilinx.com/.

[ZG15] Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like
Stream Ciphers. In Tetsu Iwata and Hee Jung Cheon, editors, Advances
in Cryptology – ASIACRYPT 2015: 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 – December 3, 2015, Proceedings, Part II,
pages 561–585. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[ZGM17] Bin Zhang, Xinxin Gong, and Willi Meier. Fast Correlation Attacks on
Grain-like Small State Stream Ciphers. IACR Transactions on Symmetric
Cryptology, 2017(4):58–81, 2017.

[ZKL01] Erik Zenner, Matthias Krause, and Stefan Lucks. Improved Cryptanalysis
of the Self-Shrinking Generator. In Vijay Varadharajan and Yi Mu,
editors, Information Security and Privacy: 6th Australasian Conference,
ACISP 2001 Sydney, Australia, July 11–13, 2001 Proceedings, pages
21–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[ZW09] Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain
Family. Cryptology ePrint Archive, Report 2009/109, 2009. http:
//eprint.iacr.org/2009/109.

[ZXM18] Bin Zhang, Chao Xu, and Willi Meier. Fast Near Collision Attack on the
Grain v1 Stream Cipher. Cryptology ePrint Archive, Report 2018/145
(accepted for IACR EUROCRYPT 2018), 2018. https://eprint.iacr.
org/2018/145.

317

https://www.nytimes.com/2018/01/21/technology/inside-amazon-go-a-store-of-the-future.html
https://www.nytimes.com/2018/01/21/technology/inside-amazon-go-a-store-of-the-future.html
https://www.openswan.org/
http://www.xilinx.com/
http://eprint.iacr.org/2009/109
http://eprint.iacr.org/2009/109
https://eprint.iacr.org/2018/145
https://eprint.iacr.org/2018/145

Erklärung der Urheberschaft
Eidesstattliche Versicherung gemäß § 7 Absatz 2 Buchstabe c) der Promotionsordnung
der Universität Mannheim (Stand: 11. Juni 2012) zur Erlangung des Doktorgrades der
Naturwissenschaften:

1. Bei der eingereichten Dissertation zum Thema
Lightweight Cryptography on Ultra-Constrained RFID Devices
handelt es sich um mein eigenständig erstelltes eigenes Werk.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner
unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtliche Zitate aus
anderen Werken als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder
Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.

4. Die Richtigkeit der vorstehenden Erklärung bestätige ich.

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen
einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir be-
kannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt
und nichts verschwiegen habe.

Mannheim, 04. Juni 2018 Matthias Alexander Hamann

319

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	General Introduction
	Structure of this Thesis
	Reading Guide

	Ultra-Constrained RFID Devices
	Introduction
	Excursus: Implementation Options for Block and Stream Ciphers
	Hardware Characteristics and Limits
	Operating Frequency and Transmission Bandwidth
	Timing/Latency
	Area (in GE)
	Power
	Energy
	Clock Rate
	Delay (Critical Path)
	Random Number Generator (RNG)
	Non-Volatile Memory (NVM)
	Fixed-key Storage

	Conclusion and Outlook

	Lightweight Authentication
	Introduction
	Authentication as targeted in this Thesis

	Excursus: When Authentication Goes Wrong
	Compromising the University VPN
	Compromising the University Member ID Card

	On the Principle Feasibility of Cipher-based Lightweight Authentication
	LPN-based Authentication Protocols
	Cost Drivers of LPN-based Authentication Protocols
	Protocols based on Variants of the LPN Problem

	The Cryptographic Power of Random Selection
	The (n,k,L)++ Protocol
	The Security of (n,k,L)-type Protocols

	Conclusion and Outlook

	The nkL<80> Authentication Protocol
	Introduction
	Design Rationale and Specification
	Modifications w.r.t. the original (n,k,L)++ Protocol
	Protocol Description

	Security Analysis
	Impact of Using a Generator G
	Impact of Splitting the Connection Function

	Hardware Efficiency
	The nkL<80>-Prover on ASICs
	The nkL<80>-Prover on FPGAs

	Conclusion and Outlook
	Test Vectors
	nkL<80> with Parameters n=128, k=32, L=16
	nkL<80> with Parameters n=64, k=32, L=16

	Reference Implementation

	Classical Stream Ciphers
	Introduction
	Some Prominent Stream Cipher Examples
	E0 (used in Bluetooth)
	A5/1 (used in GSM)
	Trivium
	Grain v1
	Excursus: Block Cipher-based Constructions

	Modeling the State Initialization of the Examples
	E0 (used in Bluetooth)
	A5/1 (used in GSM)
	Trivium
	Grain v1

	Conclusion and Outlook

	Small-State Stream Ciphers
	Introduction
	Small-State Stream Ciphers
	Sprout
	Fruit
	Plantlet
	LIZARD

	TMD-TO Attacks against Sprout-like Stream Ciphers
	A Generic Distinguishing Attack against Stream Ciphers which Continuously use the Non-volatile Key
	A Key Recovery Attack against Fruit v1

	The Future of Small-State Stream Ciphers
	New Design Idea: Stream Ciphers which Continuously use the IV
	Conclusion and Outlook
	Plantlet: Injectivity of IV -> Initial State
	Shrunk Fruit v1

	The LIZARD-Construction
	Introduction
	A Model for KSG-based Stream Ciphers
	The Role of TMD-TO Attacks
	Our Contribution

	More on Stream Ciphers
	Time-Memory-Data Tradeoff Attacks
	A Random Oracle Model for the LIZARD-Construction
	The Security Lower Bound Proof
	The Main Theorem
	The Friendly Alice, Structural Collisions, and Sudden Death
	Formalizing the Computational Behavior of Eve
	Basic Definitions and the Idea of the Proof of Theorem 7.5
	The Characterization of tau-Consistency
	Assigning Colors to Elementary Events, Transcripts, and Keys
	Starting with the Proof of Lemma 7.1
	The Proof of Part (iii) of Lemma 7.1
	The Proof of Part (i) of Lemma 7.1
	The Proof of Part (iv) of Lemma 7.1
	The Proof of Part (ii) of Lemma 7.1
	The Proof of Corollary 7.3, Parts (b.4) and (c)
	The Proof of the Smoothness Lemma (Lemma 7.4), Part (II)

	Conclusion and Outlook
	A Short Excursion to Chernoff Bounds

	LIZARD – A Lightweight Stream Cipher for Power-constrained Devices
	Introduction
	Design Specification
	Components
	State Initialization
	Keystream Generation

	Design Considerations
	NFSR1
	NFSR2
	Output Function a
	Speedup Options
	State Initialization Algorithm

	Cryptanalysis
	Exhaustive Key Search
	Time-Memory-Data Tradeoff Attacks
	Correlation Attacks, Linear Approximations
	Algebraic Attacks
	Guess-and-determine Attacks
	Conditional Differentials, Cube Distinguishers
	IV Collisions
	Related Key(/IV) Attacks, Slide Attacks
	Weak Key/IV Pairs
	BDD-based Attacks
	External Cryptanalysis

	Hardware Implementation
	Performance
	Serialization of Phases 1 and 3 of LIZARD's State Initialization

	Conclusion and Outlook
	Test Vectors
	Module Interfaces/Capabilities
	Reference Implementation

	Future Research Directions
	Introduction
	LIZARD-based Authentication
	Employing LIZARD `as it is'
	Further Optimizing LIZARD for Authentication

	More on Stream Ciphers that Continuously Use the IV
	Continuous IV Use with Stream Ciphers working in Packet Mode

	BDD and SAT Attacks
	A Hands-on Introduction to (O)BDD Attacks
	Towards More Efficient OBDD Attacks

	Conclusion and Outlook

	Conclusion
	Bibliography

