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Abstract

In Chapter 1 of this thesis, we briefly summarize the theory about the genetic
variance from quantitative genetics, the genomic variance in linear regression
models, and relate these quantities to the “Missing Heritability”.
In Chapter 2, we introduce novel concepts of estimating the genomic variance in
accordance to quantitative genetics theory, i.e. the source of the genetic variability
stems from the variability in marker-genotypes and not from the randomness of the
marker effects. We distinguish the analysis between Fixed Effect Models, Bayesian
Regression Models and Random Regression Models. We adapt the estimators for
the genomic variance to the specific model set-ups and show that the resulting
quantities explicitly include the contribution of linkage disequilibrium.
We substantiate our theoretical findings in simulations studies in Chapter 3 by
showing that our approach enables a reduction of the “Missing Heritability”.

Zusammenfassung

Im ersten Kapitel dieser Dissertation fassen wir theoretische Resultate zu der
genetischen Varianz aus der quantitativen Genetik und Ergebnisse über die
genomische Varianz in linearen Regressionsmodellen zusammen. Außerdem stellen
wir den Zusammenhang zu der sogenannten „Missing Heritability“ her.
Im zweiten Kapitel führen wir neuartige Konzepte zur Schätzung der genomischen
Varianz ein, die im Einklang mit der Theorie aus der quantitativen Genetik stehen.
Das bedeutet, dass als Ursache der genetischen Variabilität die Variabilität in den
Genotypen der Marker benutzt wird und nicht die Zufälligkeit der Effekte dieser
Marker. Wir unterscheiden Regressionsmodelle mit fixen Effekten, Bayesianische
Regressionsmodelle und Regressionsmodelle mit zufälligen Effekten. Wir passen
die Schätzer für die genomische Varianz an die spezifischen Modellvoraussetzungen
an und zeigen, dass die so erhaltenen Schätzer explizit den Beitrag des
Kopplungsungleichgewichtes enthalten.
Diese theoretischen Resultate werden in Kapitel 3 in Simulationsstudien
untermauert. Dabei zeigen wir, dass unser Vorgehen eine Verringerung der
„Missing Heritability“ ermöglicht.
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Introduction

I know it’s trivial, but I’ve forgotten
why.

Allan Guth

Genetics as a subarea of biology is the science of heredity of genetic characteristics,
dealing with resemblances and differences of related organisms resulting from the
interaction of their genes and the environment. It is concerned with the
transmission of hereditary dispositions from parents to their progeny as well as
variations of these phenomena. This area of research originated in Gregor Mendel’s
crossing experiments on peas around 1865 and has applications in the breeding of
improved yielding plants and animals, and genetic testing, for instance (Lex, 1999).
Enormous advances in gene technology (blotting, chromatography, electrophoresis,
polymerase chain reaction, DNA-sequencing, ...) and detecting technologies
(genetic chips, sensor-technology, ...) from the mid 1980’s on are intrinsically tied
to the step from the investigation of single genes to the analysis of the whole
nucleotide sequence of genomes (entire set of genetic material), sequences generally
in the range of billions of nucleotide pairs. Genomics denotes the systematic
analysis of the complete genome, or all active genes, of an organism and includes
the creation of gene libraries, genetic mapping of genes on chromosomes,
sequencing as well as sequence analysis, also known as “decoding” of the DNA
(Lex, 1999; Bickel et al., 2009; Becker, 2011). Genomics aims at improving the
understanding of evolution of organisms, evolutionary biological processes as well
as the emergence of diseases (Lex, 1999). In the year 1990 the Human Genomes
Project started with the goal of sequencing the whole human genome and
successfully finished in 2003 with a reported sequence coverage of 99% of the
human genome to an accuracy of 99.99% (Bickel et al., 2009). Nowadays, there are
many fully-sequenced model organisms, for example the flower Arabidopsis
thaliana (The 1001 Genomes Consortium, 2016), which are the basis for many
genomic studies.
The continuously sinking sequencing and data-storing costs have shifted the focus
in genomics from the acquisition of sequence data to functional aspects like the
interaction of genes and the analysis of their (biological) function (Bickel et al.,
2009). The occurrence of a quantitative characteristic (phenotype) often depends
on the interaction of several genes, whose DNA-sequence and specific function is
not known. Instead of genes, one speaks in general of quantitative trait loci
(QTL), which stands for locations (in the following loci) on chromosomes that
influence the heredity of quantitative traits (Becker, 2011). Molecular biological
methods enable to specifically select genotypes with favored alleles such that the
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overall aim in many studies is to link the phenotype to the genotype, which is
often connected with enormous amounts of complex and noisy genomic data.
This high-dimensional data offers many opportunities but also entails many
challenges (Fan et al., 2014). The recognition of subtle patterns and heterogeneity
become possible but they are tied to noise accumulation, spurious correlations and
measurement errors (Fan et al., 2014). The demand for high-dimensional statistical
models including tools for prediction and inference, where the number of
parameter is of much larger order than the sample size, is definitely given (Bickel
et al., 2009; Fan et al., 2014). Possible coping methods include supervised learning
(Hastie et al., 2008) such as dimension reduction, variable selection and
regularization approaches (Hoerl and Kennard, 1970; Tibshirani, 1996; Fan and
Lv, 2008; Bühlmann and van de Geer, 2011), mixed modeling (Henderson, 1984;
Searle et al., 1992) and Bayesian statistics (Gelman et al., 2014).

In quantitative genetics, the additive genetic variance is defined as the variance of
the additive genetic value in a population. It is the chief cause of resemblance
between relatives and therefore the most important determinant of the response of
a population to selection (Falconer and Mackay, 1996). In addition to that, the
additive variance is a main component of the (narrow-sense) heritability, which is
defined as the proportion of the phenotypic variance that can be explained by the
additive variance of the genotypic value (Falconer and Mackay, 1996). The
heritability is one of the main objectives in many genetic studies and is eminent,
amongst other things, for the prediction of the response to selection in the
breeder’s equation (Piepho and Moehring, 2007; Hill, 2010).
The genomic variance, the genomic equivalent to the genetic variance, is defined as
the variance of a trait that can be explained by a linear regression on a set of
markers (de los Campos et al., 2015). Many authors have been chasing what is
sometimes coined “missing heritability” (Maher, 2008) which means that only a
fraction of the “true” genetic variance can be captured by a regression on
influential loci.
Approaches for the estimation of the genomic variance include single-marker fixed
effect regression in genome-wide association studies (Maher, 2008), a joint fit of all
common markers in a method termed genome-wide complex trait analysis (GCTA)
GREML (Yang et al., 2011), and using the posterior distribution of marker effects
in Bayesian regression (Lehermeier et al., 2017).
Recently, there has been a general discussion whether estimators for the genomic
variance account for linkage disequilibrium (LD) between markers, which is defined
as the covariance between additive effects of marker pairs (Bulmer, 1971). Some
authors argue that estimators similar to GCTA-GREML lack the contribution of
LD (de los Campos et al., 2015; Kumar et al., 2015, 2016; Lehermeier et al., 2017)
whereas others (Yang et al., 2016) resolutely disagree.

In Chapter 1 of this thesis we introduce relevant definitions and aspects of
quantitative genetics and genomics. We elaborate on the “missing heritability” and
existing estimation approaches of the genomic variance in the literature. In
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Chapter 2 we investigate the additive genomic variance in linear regression models
within the framework of quantitative genetics. This connection is reflected in the
fixed effect model (FEM), where the regression parameter β is deterministic and
the genomic variability comes in only through the randomness of the marker
content. However, unbiased FEM’s like ordinary-least-squares (OLS) are ill-posed
in genomic datasets that are characterized by their high-dimensionality. As a
remedy, Bayesian regression models (BRM) and random effect models (REM) are
often used. In these models, though, the effect vector β is defined as a random
variable and therefore these models do not lie within the classical framework of
quantitative genetics. We investigate the expression for the genomic variance in
FEM, BRM and REM and notice that, in general, the genomic variance strongly
depends on the assumptions for the effect vector. We show that it is necessary to
consider the genomic variance as a random quantity and not as a fixed population
parameter in these model set-ups. In BRM, this results in the estimation of the
posterior expectation of the genomic variance. In REM, we show that up-to-now,
the genomic variance has been estimated as a parameter of the marginal,
i.e. unconditional, model (e.g.GCTA-GREML). By strictly conditioning on the
effect vector as in BRM, we constitute a paradigm shift from the estimation of the
marginal genomic variance to the prediction of the random conditional genomic
variance, which is structurally in perfect accordance to the posterior genomic
variance in BRM. Inspired by the prediction of random effects (or in equivalent
terminology: the estimation of the realized values of random effects) introduced by
Henderson (1984) at the beginning of his chapter on prediction of random
variables, we call our procedure the prediction of the genomic variance in REM. To
this end, we introduce a mathematically founded best unbiased predictor for the
genomic variance that is adapted to the specified model assumptions.
We take on the above mentioned critique that GCTA-GREML neglects the
contribution of LD due to the diagonal covariance structure of the marginal β
(Kumar et al., 2015, 2016). We show that the conditional genomic variance
explicitly accounts for LD and remarkably reduces the “missing heritability”. In
addition to that, the difference of the novel predictor and the estimator of the
marginal genomic variance in REM can be used as an indicator for the contribution
of LD to the genomic variance. In general, the conditional genomic variance in
REM is structurally similar to the genomic variance in FEM and therefore has an
interpretation close to the classical genetic variance from quantitative genetics.
Chapter 2 as well as Chapter 3, where we substantiate our theoretical findings by
an exemplary simulation study based on the commonly used dataset on 1814 mice,
are fully based on the bioRxiv -manuscript Schreck and Schlather (2018).





1. Preliminaries

Life is the only art that we are
required to practice without
preparation, and without being
allowed the preliminary trials, the
failures and botches, that are essential
for training.

Lewis Mumford

1.1. Quantitative Genetics

This section is based on Falconer and Mackay (1996) with some extensions of my
own.

Quantitative genetics deals with the inheritance of differences between individuals
in a population, whose genetic constitution can be specified by the nature and the
count of each genotype (exact genetic fixture by an individual set of genes). We
only consider diploid organisms, i.e. organisms with two complete sets of
chromosomes, which also defines the number of possible alleles for the genes.
The phenotypic value P , the degree of a certain characteristic of an individual, can
be separated into the genetic value G and environmental deviations E

P = G+ E, (1.1)

where E[E] = 0.

As a toy example, we firstly assume that the genome is made up of one single gene
A with corresponding alleles A1 and A2. As a consequence, there exist three
possible genotypes, namely the homozygotes A1A1 and A2A2 as well as the
heterozygote A1A2. We assign the homozygote A1A1 the value a ∈ R and the
other homozygote the value −a. The value of the heterozygote A1A2 equals the
dominance deviation d ∈ R representing the effect of putting genes together to
genotypes. The discrepancy d is caused by interactions of the alleles of a gene
(within locus interactions). From now on we assume absence of dominance,
i.e. d = 0.
Summarized, the genetic, or genotypic, value G of an individual depends on its
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genotype as well as the assigned corresponding effect:

G :=


a, if genotype A1A1

0, if genotype A1A2

−a, if genotype A2A2.

(1.2)

We denote the frequency of allele A1 in a population by p and the frequency of
allele A2 in the same population by q, so that p+ q = 1. The mean genotypic value
in the population then equals a(p− q). The genetic, or genotypic, variance is
defined as the variance of the genetic value G. Heritability in the broad sense is
the relative importance of heredity in determining phenotypic values, i.e. the extent
to which individual phenotypes are determined by the genotype. The narrow-sense
heritability h2, in the following only the heritability h2, is the extent to which
phenotypes are determined by genes transmitted from parents, or the relative
importance of the additive variance. In the absence of dominance, the genetic
variance V at one locus equals

V := Var(G) = p2a2 + q2a2 − a2(p− q)2 = 2pqa2. (1.3)

The additive genetic value G is considered as a random variable in (1.3), but the
source of variation is not clearly specified.
Let us model the genotype at locus A as a discrete random variable X with three
realizations by using the arbitrary equidistant coding A1A1=̂2, A1A2=̂1 and
A2A2=̂0 with the corresponding allele frequencies:

X =


2, with P (X = 2) = p2

1, with P (X = 1) = 2pq

0, with P (X = 0) = q2.

(1.4)

The random variable X has expectation E[X] = 2p and variance Var(X) = 2pq.
The genetic value G as in (1.2) can be expressed as

G = a(X − 1).

The effect a is also called the effect of allele substitution because the effect of a
genotype increases by the amount a for every additional allele A1. The genetic
variance equals

V = Var(G) = Var(X) a2 = 2pqa2, (1.5)

which coincides with (1.3) and is independent of linear shifts of the random
variable X. Scaling of X by the constant b can be absorbed by the effect size a,
and a/b then denotes the effect of allele substitution.

We extend this analysis to the multi-loci case by assuming that genomes are
made-up of k bi-allelic genes A,B,C, ... with corresponding alleles
A1,A2,B1,B2,C1,C2, ... In accordance to the single-locus case, there exist three
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possible genotypes with their corresponding genotypic values aj , allele frequencies
pj and genetic values Gj , j = 1, ..., k, at each locus. Usually, the total genetic value
G of an individual is partitioned into additive (

∑k
j=1Gj), dominance (D) and

interaction (I) contributions

G =
k∑
j=1

Gj +D + I, (1.6)

where the list of possible effects determining G in (1.6) is not exhaustive.
Deviations from the purely additive combination of the single genotypic values of
the loci are called interactions or epistasis deviations (I). Although non-additive
genomic variation exists, most of the genetic variation can be explained by the
additive model, such that it is sufficient to investigate the additive genetic variance
(Hill et al., 2008). Specifically, epistasis I is only important on the gene-level but
not for genetic variances (Hill et al., 2008), and Zhu et al. (2015) show that for
human complex traits dominance variation D contributes little. In this thesis we
assume that genes act additively within each locus (D = 0) and between loci
(I = 0). Consequently, we can write G as the sum of the genotypic values of the
different loci and calculate as in Bulmer (1971)

V := Var(G) = Var

(
k∑
j=1

Gj

)
=

k∑
j=1

Var(Gj) +
k∑
i=1

k∑
j=1
j 6=i

Cov(Gi, Gj), (1.7)

where the sum of the variances of genetic values of the single loci is called genic
variance. Linkage disequilibrium (LD) is defined as the covariance between the
additive effects of the genes (Bulmer, 1971) and the contribution of LD is zero
under random mating and the absence of selection (Bulmer, 1971). LD is an
important factor for the genetic variance, especially when departing from random
mating and Hardy-Weinberg equilibrium, which is generally the case in breeding
(Hill et al., 2008; Dempfle, 2018), for instance.
We model the genotypes of the single loci as a random k-vector with an arbitrary
covariance structure and an equidistant coding of the genotypes of the loci as in
(1.4). Then, the genetic value G can be expressed as

G =

k∑
j=1

Gj =

k∑
j=1

aj(Xj − 1). (1.8)

The genetic variance (1.7) equals

V =

k∑
j=1

ajVar(Xj) +

k∑
i=1

k∑
j=1
j 6=i

aiajCov(Xi, Xj), (1.9)

independent of linear shifts of the Xj , j = 1, ..., k. This implies that the variability
of the genetic value is caused by the variability in the genotypes, and their (fixed)
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effects aj , j = 1, ..., k, act as factors, see (1.9). The difference of individuals in their
genetic values is caused by the inter-individual differences in allele genotypes at
QTL (Gianola et al., 2009; de los Campos et al., 2015). This conclusion is going to
be a vital foundation for the analysis in Chapter 2.

1.2. Genomics

The effects of quantitative trait loci (QTL) are often very small and disguised by
environmental noise and cannot be detected directly in the phenotypes. Possible
solutions include the use of molecular markers that are linked to the object of
interest. Markers are DNA-sequences that are not necessarily the DNA-sequences
of the genes for a certain trait but “close” to it and are inherited together with the
genes (Becker, 2011). In order to make inferences about the QTL using the
markers, it is necessary that the markers are in LD with the QTL, i.e. that the
distribution of the alleles for the markers and the QTL are not independent.
Molecular markers can be produced by several methods. They all have in common
that differences between genotypes are made visible in their DNA-sequence. The
so-called Single Nucleotide Polymorphisms (SNP) are the most effective sort of
markers because every variation in the nucleotide sequence of the DNA can be
detected (Bickel et al., 2009; Becker, 2011).

We assume that the genome is mapped with p ∈ N markers. The phenotype of n
individuals is regressed on the marker-data in order to make investigations and
inferences on the contribution of the markers to the phenotype. We consider the
phenotype-genotype regression model

y = µ+ g + ε (1.10)

as the genomic equivalent to (1.1). By µ we denote a fixed intercept
column-n-vector with equal entries, g is the n-vector of genomic values and
εi ∼ N (0, σ2

ε), i = 1, ..., n, denotes the environmental deviations.
In accordance to the genetic characteristics in Section 1.1, the genomic value g is
defined as the sum of the genomic values at each marker. We denote by X the
n× p design matrix coding the genotypes of the markers similar to the coding of
the genotypes of the QTL in (1.4), and by β we denote the p-vector of marker
effects. Then, the genomic values can be separated into the coded genotype of the
single markers and their corresponding effects:

g := Xβ. (1.11)

Model (1.10) is called linear equivalent model (Henderson, 1984) to the “standard”
additive linear regression model

y = µ+ Xβ + ε := µ+

( p∑
j=1

xijβj

)
i=1,...,n

+ ε, (1.12)
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if y in (1.10) equals y in (1.12) in distribution. We consider mean-centered data:∑n
i=1 xij = 0 for j = 1, ..., p, in order to be consistent with the literature. If

necessary we adapt model (1.10) accordingly such that the equivalence remains.
We consider deviations from the mean-centering assumptions in Appendix A.5.

The genomic variance is defined as the variance of the phenotypes that can be
explained by a linear regression on a set of markers (de los Campos et al., 2015),
the mean trace of the variances of the genomic values gi, i = 1, ..., n, in model
(1.10)

V equi :=
1

n
tr
(
Cov(g)

)
, (1.13)

or equivalently

V real :=
1

n
tr
(
Cov(Xβ)

)
(1.14)

in model (1.12). In accordance to Section 1.1, the genomic heritability is defined as
the proportion of the genomic variance of the trait variance.

Statistical theory mainly focuses on model (1.12). For instance, it is possible to use
fixed-effect regression like ordinary-least squares (OLS), see Appendix A.1. In this
case, the genomic variance-covariance matrix Cov(Xβ) would constantly equal 0.
Genomic data are usually high-dimensional, caused by the increasing number of
markers p compared to the relatively small number of sequenced individuals n
(p� n). Consequently, the matrix X is not of full column rank p and fitting a
unique OLS model is ill-posed (Bühlmann and van de Geer, 2011).
Possible solutions include single-step regressions methods that are often used in
genome-wide association studies (GWAS) to execute variable selection on the basis
of p-values, and penalized estimation methods like Ridge Regression (Hoerl and
Kennard, 1970), LASSO (Tibshirani, 1996), Sure Independence Screening (Fan and
Lv, 2008) and many others. Variable selection is only meaningful with sparsity
assumptions (Bühlmann and van de Geer, 2011) on the effect vector β, which in
most applications contradicts the infinitesimal model with the assumption that all
effects are small and that the number of QTL’s p tends to infinity (Bulmer, 1971).
Random effect models (REM), in which the effect vector β is assigned a normal
distribution, see Appendix A.3, are widely used especially in animal breeding
(Henderson, 1984). Due to the paper of Meuwissen et al. (2001) the usage of
Bayesian regression models (BRM) has strongly increased in genomics. Similar to
the REM, the basic idea of adjustment in BRM’s, see Appendix A.2, is to express
uncertainty of the effect vector β by assigning it a prior distribution. Then, by
adapting to the data by means of its likelihood, one attains the posterior
distribution of the effect vector.
Both the BRM and REM are widely used in genomic applications. The variance of
the effect vector β has the Bayesian interpretation of expressing uncertainty about
the true but unknown effect value of the specific locus (variance of 0 only means
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that there is no uncertainty, not that the effect is null). The frequentist
interpretation of the variance of the effects β is as the variance in a conceptual
sampling scheme where the effects are drawn at random from a population of loci
(Gianola et al., 2009). Despite that, the genomic variance, Cov(Xβ), in BRM and
REM is assumed to be caused by the randomness of the marker effects β. As a
consequence, the genomic variance is not in accordance with the genetic variance
from Section 1.1. We believe that this is the chief cause for the “missing
heritability”.

1.3. The “Missing Heritability”

In general, the expression “missing heritability” refers to the difference of the
genetic and the genomic variance. Possible causes of the “missing heritability”
include imperfect LD between the QTL and the markers, various genetic effects
that cannot be captured by a linear regression on markers, inadequate theory and
biased estimators. We focus on the difference of the additive genetic and genomic
variance under the structural assumptions made in Section 1.1 and Section 1.2,
particularly the linear and additive gene action, see (1.6). We review methods to
estimate the genomic variance widely used in literature and connect them to the
“missing heritability”. This section is partly based on the bioRxiv -manuscript
Schreck and Schlather (2018).

To begin with, researchers have used GWAS in order to find QTL by using
single-marker fixed effect regression combined with variable selection based on
p-values. After having added the estimated corresponding genomic variances of the
single statistically significant loci, they asserted that they could only account for a
fraction of the “true” genetic variance. For instance, Maher (2008) found that only
5% instead of the widely accepted heritability estimate of 80% of human height
could be explained. Golan et al. (2014) state that the “true” genetic variance is
generally underestimated when applying variable selection to genomic datasets
which are typically characterized by their high-dimensionality, where the number
of variables p is much larger than the number of observations n.

It is well known that a lot of traits are influenced by many genes and that at least
some loci with tiny effects are missed when using variable selection or even
single-marker regression models. As a consequence, Yang et al. (2010) decided to
fit all common markers jointly using genomic best linear unbiased prediction
(GBLUP), where they assume the genomic value g, see (1.11), to vary at random
in the equivalent model (1.10). The n-vector of genomic values is assumed to
follow a normal distribution:

g ∼ N
(

0, σ2
gG
)
. (1.15)

In accordance with the infinitesimal model (Bulmer, 1971), the mean of the
marginal genomic value is set to 0. The only unknown in the variance-covariance
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matrix σ2
gG of g is the parameter σ2

g . The matrix G is a genomic relationship
matrix (GRM), expressing the relationship of the n individuals under
consideration. Often, the mean trace of G is normalized to equal 1 (VanRaden,
2008; Yang et al., 2010, 2011). Then, the genomic variance, see (1.13), is calculated
as the mean of the genomic variances of the single individuals:

V equi
r :=

1

n
tr
(
Cov(g)

)
=

1

n
tr
(
σ2
gG
)

= σ2
g . (1.16)

We note that in this approach, the variance component σ2
g of the linear model

(1.10) equals the genomic variance. This variance component, however, exists due
to model assumptions that do not reflect quantitative genetics theory from Section
1.1.
The variance component σ2

g is estimated by restricted maximum likelihood
(REML), see Appendix A.3, in an approach termed genome-wide complex trait
analysis genomic restricted maximum likelihood (GCTA-GREML) (Yang et al.,
2010, 2011). The estimated equivalent genomic variance V̂ equi

r equals

V̂ equi
r =

1

n
tr(G)σ̂2

g = σ̂2
g . (1.17)

Yang et al. (2010) show that using this approach to quantify the combined effect of
all SNP’s in one regression model explains a larger part of the heritability than
only using certain variants quantified by GWAS methods. They illustrate their
results on the dataset on human height by pointing out that they can explain a
heritability of about 45%. They conclude that the main reason for the remaining
missing heritability is incomplete LD of causal variants with the genotyped SNPs,
which refers to the general difference of genetic and genomic variances.
Kumar et al. (2015, 2016) criticize GCTA-GREML because of the assumption that
the estimated GRM G is treated as a fixed quantity without sampling errors,
although the GRM is actually a realization of an underlying stochastic process. In
addition to that, we notice that the estimator (1.17) strongly depends on the
specific form of G that determines the variance-covariance structure of the
genomic effects g. Modifications or different constructions of this matrix lead to
differences in estimated genomic variances (Legarra, 2015). This is not a favorable
behavior and contradicts assumptions about the independence of the genetic
variance with respect to coding, see Section 1.1.
Some authors argue that estimators similar to GCTA-GREML lack the
contribution of LD (de los Campos et al., 2015; Kumar et al., 2015, 2016;
Lehermeier et al., 2017) whereas others (Yang et al., 2016) resolutely disagree.
More specifically, Kumar et al. (2015, 2016) state that in GCTA-GREML the
contributions of the p markers to the phenotypic value are assumed to be
independent normally distributed random variables with equal variances. Thus,
they claim that the random contribution made by each marker is not correlated
with the random contributions made by any other marker which leads to a
negligence of the contribution of LD to the genomic variance. In order to clarify
this critique, we consider the “original” linear model (1.12) in which the genotypic
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value g is split up into the marker-genotype matrix X and its effects β. This
corresponds to the equivalent model (1.10) by defining

σ2
βXX> =

1

p
XX>(pσ2

β) =: Gσ2
g , (1.18)

where σ2
g := pσ2

β and G := 1
pXX> (VanRaden, 2008; Yang et al., 2010, 2011).

We calculate the genomic variance-covariance matrix as

Cov(Xβ) = XX>σ2
β. (1.19)

The genomic variance (1.14) is estimated using (1.19):

V̂ real
r =

1

n
tr
(

Ĉov(Xβ)
)

=
1

n
tr
(
XX>

)
σ̂2
β

≈ σ̂2
βtr
(

Σ̂X

)
= σ̂2

β

p∑
j=1

V̂ar(Xj),
(1.20)

where we have used trace-properties and the unbiased method-of-moments
estimator

Σ̂X :=
1

n− 1
X>X (1.21)

for the variance-covariance matrix of the marker genotypes ΣX (more details in
Chapter 2). We conclude that the empirical variances of the marker genotypes
influence the estimated genomic variance in this model, but due to the
assumptions on the structure of the unconditional distribution of β, the empirical
covariances between the markers do not contribute to the genomic variance in
(1.20). This explicitly contradicts formula (1.9) in Section 1.1 and leads to the
general assertions that estimators of this sort neglect the contribution of LD.

In a study on the model plant Arabidopsis thaliana
(The 1001 Genomes Consortium, 2016), Lehermeier et al. (2017) use Bayesian
ridge regression (BRR) to relate the phenotype flowering time to the genomic data.
In BRR the effect vector β, the variance of β and the residual variance σ2

ε are
assigned prior distributions, for more details see Appendix A.2. The authors derive
an empirical sample variance of the genomic value g in (1.11) as

n−1β>X>Xβ, (1.22)

which, for mean-centered data, resembles an empirical genomic version of the
genetic variance (1.9). They estimate (1.22) using the Markov Chain Monte Carlo
(MCMC) samples

(
β̂(m)

)
m=1,...,M

in the estimator

ŴPost :=
1

M

M∑
m=1

(
β̂(m)

)>
Σ̂X β̂

(m) (1.23)
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which according to Lehermeier et al. (2017) draws samples from the posterior
distribution of (1.22). The authors show that this estimator explains a larger
proportion of the phenotypic variance than estimators like (1.17) and (1.20)
(VanRaden, 2008; Yang et al., 2010, 2011) derived in REM’s because ŴPost
explicitly includes the contribution of LD. It is not clear how the estimator (1.23)
was derived and what its corresponding theoretical value is. If β is treated as a
random variable, then calculating a sample variance in (1.22) results in a random
variable again and it is not clear why the theoretical variance of β was not used to
derive a theoretical genomic variance term. This approach implicitly treats the
genomic variance in BRM as a random variable and makes inferences about its
posterior mean. All in all, despite lacking theoretical justification, this approach
constitutes a very important step towards estimation approaches for the genomic
variance including the contribution of LD that are based on MCMC sampling.





2. Genomic Variances

There is nothing so practical as a
good theory.

Kurt Lewin

This chapter is mainly based on the bioRxiv -manuscript Schreck and Schlather
(2018).

In Section 1.1 we have seen that the source of variation in the genetic value of an
individual is the uncertainty in allele content at the QTL, whereas the genotypic
effects are deterministic population parameters and therefore possess no variance,
see (1.9). Contrary to that, in the regression analysis on markers in genomics in
Section 1.2, the genomic variance is caused by the model assumptions for the effect
vector. As a consequence, we have seen in Section 1.3 that the contribution of LD
to the genomic variance is mostly neglected and “missing heritability” is created,
especially in REM.

In this chapter, we execute a mathematically rigorous analysis of the estimation of
the genomic variance with respect to the definitions in quantitative genetics. We
first transfer the methodological assumptions from quantitative genetics to
genomics, namely that the variability in the genomic value of an individual stems
from the uncertainty in allele content of the markers, whereas the effects of the
marker genotypes are assumed to be deterministic. In order to do so, we consider
the basic additive linear model

Y = µ+Xβ + ε, (2.1)

where Y is the phenotype of a random individual, µ is a deterministic intercept
and β is a p-vector of marker effects. The random allele content at the markers is
coded by the random row-p-vector X similar to (1.4) with expectation E[X] = 0 in
order to be consistent with Section 1.3. In Appendix A.5 we consider deviations
from this assumption. The covariance matrix of X is denoted by ΣX . The residual
ε is assumed to be independent of Xβ and normally distributed with mean 0 and
variance σ2

ε .
In the realized model (1.12) one considers n independent realizations of (Y,X)
without differences in the regression analysis (Bühlmann and van de Geer, 2011).
Empirical mean-centering approximates the assumptions in the theoretical model
(Bühlmann and van de Geer, 2011).
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There is no theoretical equivalent form of (2.1) that induces model (1.10) similar
to how model (2.1) induces (1.12). Therefore, we base the analysis in this section
on model (2.1) and in the end transfer the resulting estimators and predictors to
the equivalent realized model using relationship of the models (1.10) and (1.12).

To be consistent with Section 1.2, the additive genomic variance V is defined as
the variance of the genomic value Xβ which consists of the inter-individual
differences in allele content at the markers as well as the effects of the markers
themselves (de los Campos et al., 2015):

V := Var(Xβ). (2.2)

Due to independence of Xβ and ε we can separate the phenotypic variance σ2
Y in

the genomic variance V and into the residual variance σ2
ε :

σ2
Y = V + σ2

ε . (2.3)

In Section 2.1, we define the genomic variance in the FEM as the genomic
equivalent of the genetic variance (1.9). In Section 2.2 we provide the theoretical
foundations for the estimation of the posterior genomic variance similar to that in
Lehermeier et al. (2017). In Section 2.3 we improve on the estimation of the
genomic variance in REM as in (1.17) and (1.20) by introducing the novel concept
of the prediction of the genomic variance.

2.1. Fixed Effect Model (FEM)

We consider β in model (2.1) as a p-vector of fixed effects here, i.e. as a
deterministic population parameter. Consequently, we calculate the genomic
variance V defined in (2.2) as

Vf := Var(Xβ) = β>ΣXβ

=

p∑
j=1

β2
jVar(Xj)︸ ︷︷ ︸
=:V g

f

+

p∑
i=1

p∑
j=1
j 6=i

βiβjCov(Xi, Xj)

︸ ︷︷ ︸
=:V LD

f

, (2.4)

which is the genomic equivalent of the genetic variance for multiple QTL in
quantitative genetics, see (1.9).
We have split up the genomic variance in the FEM into the additive locus-specific
variance V g

f (also called genic variance) and the contribution V LD
f of LD between

different markers to the genomic variance. The genomic variance Vf in (2.4) is a
weighted sum of the variances of the single marker content and the covariance
between the content of the markers, where the weights are given by products of the
elements of the fixed effect vector β. It is important to notice that in the FEM the
genomic variance would constantly equal 0 if the analysis was based on the
conditional model (1.12), see also Section 1.2.
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The genomic variance Vf is a quadratic form in the unknown elements of β and
simply plugging an unbiased estimator β̂ for β and an unbiased estimator Σ̂X for
ΣX into (2.4) leads to the biased estimator

V̂ bias
f = β̂>Σ̂X β̂ (2.5)

for the genomic variance Vf. It has expectation

E
[
V̂ bias

f

]
= E

[
β̂>Σ̂X β̂

]
(2.6)

=

p∑
i=1

p∑
j=1

E
[
σ̂Xij β̂iβ̂j

]

=

p∑
i=1

p∑
j=1

[
Cov

(
σ̂Xij , β̂iβ̂j

)
+ E

[
σ̂Xij

]
E
[
β̂iβ̂j

]]

=

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , β̂iβ̂j

)
+ σXij

[
σβ̂ij + E

[
β̂i

]
E
[
β̂j

]]

=

p∑
i=1

p∑
j=1

(
σXij βiβj + σXij σ

β̂
ij

)
+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , β̂iβ̂j

)

= β>ΣXβ + tr
(

ΣXΣβ̂

)
+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , β̂iβ̂j

)
, (2.7)

where we denote the covariance between the random variables Zi and Zj by
σZij := Cov(Zi, Zj). The plug-in estimator V̂ bias

f contains second order products of
the random variables β̂j , j = 1, ..., p, and is therefore biased by the amount

Bias
(
V̂ bias

f

)
:= E

[
V̂ bias

f

]
− Vf

(2.7),(2.4)
= tr

(
ΣXΣβ̂

)
+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , β̂iβ̂j

)
, (2.8)

where only tr
(
ΣXΣβ̂

)
is amenable to estimation.

Consequently, we correct for the covariance of the estimator β̂ by defining

V̂f := β̂>Σ̂X β̂ − tr
(

Σ̂XΣ̂β̂

)
(2.9)

as a less biased estimator for Vf, where Σ̂β̂ denotes an unbiased estimator for the
variance-covariance matrix Σβ̂ := Cov

(
β̂
)
of β̂.
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We investigate the bias-correction term tr
(
Σ̂XΣ̂β̂

)
and find that

E
[
tr
(

Σ̂XΣ̂β̂

)]
=

p∑
i=1

p∑
j=1

E
[
σ̂Xij σ̂

β̂
ij

]

=

p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , σ̂

β̂
ij

)
+

p∑
i=1

p∑
j=1

E
[
σ̂Xij

]
E
[
σ̂β̂ij

]

=

p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , σ̂

β̂
ij

)
+

p∑
i=1

p∑
j=1

σXij σ
β̂
ij

=

p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , σ̂

β̂
ij

)
+ tr

(
ΣXΣβ̂

)
. (2.10)

Then, we examine the estimator V̂f:

E
[
V̂f

]
= E

[
β̂>Σ̂X β̂

]
− E

[
tr
(

Σ̂XΣ̂β̂

)]
(2.7),(2.10)

= β>ΣXβ + tr
(

ΣXΣβ̂

)
+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , β̂iβ̂j

)

−
p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , σ̂

β̂
ij

)
− tr

(
ΣXΣβ̂

)

= β>ΣXβ +

p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , β̂iβ̂j − σ̂

β̂
ij

)
. (2.11)

The estimator V̂f is biased by the amount

Bias
(
V̂f

)
:= E

[
V̂f

]
− Vf

(2.11),(2.4)
=

p∑
i=1

p∑
j=1

Cov

(
σ̂Xij , β̂iβ̂j − σ̂

β̂
ij

)
. (2.12)

It is not clear that the bias of V̂f in (2.12) is smaller than the bias of V̂ bias
f in (2.8).

But, the bias in (2.12) is caused only by dependencies between the unbiased
plug-in estimators Σ̂X , β̂ and Σ̂β̂. If they are pairwise uncorrelated, the estimator
Vf is unbiased, whereas V̂ bias

f would still be biased by the amount tr(ΣXΣβ̂).
We call estimators “nearly unbiased”, if they are biased only due to correlations
between plug-in estimators.

In the case that the mean-centered realized design matrix X is of full column rank
p < n we can uniquely fit the realized linear model (1.12) using OLS.
As an outcome we obtain the estimated effect vector β̂, its estimated covariance
matrix Σ̂β̂ and the estimator for the residual variance σ̂2

ε , see Appendix A.1.
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Plugging these quantities into V̂f from (2.9) we obtain an improved estimator for
the genomic variance Vf in (2.4). We first calculate

tr
(

Σ̂XΣ̂β̂

)
(1.21),(A.2)

= tr
(

1

n− 1
X>X(X>X)−1σ̂2

ε

)
=

1

n− 1
σ̂2
ε tr(1p×p)

=
p

n− 1
σ̂2
ε . (2.13)

We express the nearly unbiased estimator V̂f in OLS as

V̂f
(2.9)
= β̂>Σ̂X β̂ − tr

(
Σ̂XΣ̂β̂

)
(2.13)

= y>X(X>X)−1 1

n− 1
X>X(X>X)−1X>y − p

n− 1
σ̂2
ε

(A.1)
=

1

n− 1
y>Hy − p

n− 1

1

n− (p+ 1)

[
y>(1−H)y + µ̂>µ̂− 2y>(1−H)µ̂

]
=

1

n− 1
y>Hy +

( 1

n− 1
− 1

n− (p+ 1)

)[
y>(1−H)y + µ̂>µ̂− 2y>µ̂

]
=

1

n− 1
y>Hy +

1

n− 1

[
y>(1−H)y + µ̂>µ̂− 2y>µ̂

]
− σ̂2

ε

=
1

n− 1
y>y +

n

n− 1
ȳ2 − 2

n− 1
ȳ

n∑
i=1

yi − σ̂2
ε

= σ̂2
y − σ̂2

ε .

We obtain the exact empirical variance decomposition

σ̂2
y = V̂f + σ̂2

ε (2.14)

in the OLS model which resembles the theoretical variance decomposition (2.3) in
model (2.1). This implies that we can expect the improved estimator for the
genomic variance and the estimator for the residual variance to sum up exactly to
the phenotypic variance regardless of the data considered. When using the OLS
method to fit a linear model, using the less biased estimator V̂f, see (2.9), to
estimate the genomic variance contribution of all markers is equivalent to simply
subtracting the residual variance from the phenotypic variance.

In high-dimensional datasets the OLS method does either not lead to unique
solutions or leads to estimated effects with large variances. Fixed effect solutions
with lower variance include penalized regression methods. These estimates are
obtained as the solution to an optimization problem that balances goodness of fit
and model complexity and is of the general form

β̂ = arg min
β
{L(y, β) + λJ(β)},
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where L(y, β) is a loss function that measures the lack of fit of the model to the
data, J(β) is a measure of model complexity and λ ≥ 0 is a regularization
parameter controlling the trade-off between goodness of fit and model complexity.
These models do not produce unbiased estimators for the effect vector β̂, which is
required in the derivation of Vf, and most of the time it is not possible to explicitly
correct for the bias. The theory for the FEM is consistent with quantitative
genetics and the genomic variance (2.4) explicitly includes the contribution of LD.
As the FEM is not appropriate in most genomic datasets, we extend the analysis
of this section to the BRM and the REM, which are both commonly used in
genomics.

2.2. Bayesian Regression Model (BRM)

Due to the paper of Meuwissen et al. (2001) the usage of Bayesian methods has
strongly increased in quantitative genetics. The high-dimensionality of genomic
data necessitates some way of regularization. The basic idea of adjustment in
Bayesian regression models is to express uncertainty of the effect vector β by
assigning it a prior distribution. Then, by adapting to the data by means of its
likelihood, one attains the posterior distribution of the effect vector.
We consider the linear model (2.1) again where β possesses the prior distribution
p(β) with prior expectation µβ (often chosen as 0) and prior variance-covariance
matrix Σβ. The specific form of the distribution of β is not relevant for the
following analysis. The genomic variance V given by (2.2) equals

Vb := Var(Xβ)

= Var
(
E[Xβ |β]

)
+ E

[
Var(Xβ |β)

]
= Var

(
E[X]β

)
+ E

[
β>ΣXβ

]
= E[X]ΣβE[X]> +

p∑
i=1

p∑
j=1

E
[
σXij βiβj

]
E[X]=0

=

p∑
i=1

p∑
j=1

σXij

(
σβij + E[βi]E[βj ]

)
= tr(ΣXΣβ) + µ>β ΣXµβ. (2.15)

This expression for the genomic variance is meaningless because we can arbitrarily
strongly influence it by the choice of the prior expectation and prior
variance-covariance matrix. Instead, we require the genomic variance in BRM to
move away from the prior assumptions by adapting to the data. In order to enable
this Bayesian learning, we consider the variance of the genomic value Xβ
conditional on the effect vector β:

W := Var(Xβ |β) = β>ΣXβ, (2.16)
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which is a quadratic form in the effect vector β and consistent with (2.4). By
assigning β a prior distribution, the genomic variance W (2.16) is assigned a prior
distribution with prior expectation:

E[W ] = E
[
tr
(

ΣXββ
>
)]

= tr
(

ΣXE
[
ββ>

])
= tr

(
ΣX

(
Cov(β) + E

[
β
]
E
[
β>
]))

= tr(ΣXΣβ) + µ>β ΣXµβ

= Vb.

Investigations in the BRM in the conditional linear model (1.12) are performed on
the posterior distribution of β by adapting to the phenotypic data y. We use
characteristics of the posterior distribution p(β|y) of β to infer the posterior
distribution of the genomic variance W given by (2.16), or equivalently the
posterior distribution of the quadratic form W of β. We define the fixed posterior
mean Wb of the genomic variance W as

Wb := E[W | y]

(2.16)
= tr

(
ΣXE

[
ββ>

∣∣∣ y])
= tr

(
ΣX

(
E
[
β
∣∣∣ y]E[β> ∣∣∣ y]+ Cov(β | y)

))
= µ>β|yΣXµβ|y + tr

(
ΣXΣβ|y

)
, (2.17)

which comprises the posterior expectation µβ|y := E[β | y] and the posterior
variance-covariance matrix Σβ|y := Var(β | y) of β. Consequently, we need not
explicitly sample from the posterior distribution of W because it is enough to infer
the posterior first and second moment of β.
The expression Wb structurally resembles the prior expectation Vb of W but
includes the posterior mean as well as the posterior covariance of β instead of the
prior moments. Structurally, the expressions for W and Wb resemble the genomic
variance Vf given by (2.4) in the FEM in Section 2.1. Furthermore, they explicitly
include the contribution of LD, where the role of the weights for the covariance
terms of X

(
formerly played by βiβj , i 6= j, in Vf, see equation (2.4)

)
is taken over

by the off-diagonal elements of the matrix of the posterior second moments
E
[
ββ>

∣∣ y] of β. Hence, Wb can be split up in the genic variance and a part
including the contribution of LD similar to Vf into (2.4).

There are many different approaches to fit the conditional model (1.12) in BRM
that mainly differ in the choice of the prior distribution for the effect vector β.
Analysis is always done on the posterior distribution of β from which samples are
drawn using MCMC methods, for instance. Then, the fixed characteristics of the
(posterior) effect vector can be estimated using for example the mean value and
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the empirical variance of the resulting Markov chain.
In this context, we denote the sequence of the Markov chain of the estimated
effects, after discarding the burn-in iterations and after thinning the chain, by the
sequence of p-vectors

(
β̂(m)

)
m=1,...,M

. These vectors are draws from the
distribution p(β|y). We express the quantities µβ|y and Σβ|y by their empirical
counterparts defined in the Appendix A.2, namely the estimated posterior mean
µ̂β|y in (A.3) of β and the estimated posterior covariance Σ̂β|y in (A.4). We
propose to plug (A.3) and (A.4) into the estimator

Ŵb := µ̂>β|yΣ̂X µ̂β|y − tr
(

Σ̂XΣ̂µ̂β|y

)
︸ ︷︷ ︸

Ŵ
(1)
b

+ tr
(

Σ̂XΣ̂β|y

)
︸ ︷︷ ︸

Ŵ
(2)
b

, (2.18)

for the mean of the posterior genomic variance Wb, see (2.17), in BRM, where
Σ̂µ̂β|y denotes an unbiased estimator for the covariance Σµ̂β|y , see (A.6), of the
estimated effects µ̂β|y.

The first part of expression (2.18), Ŵ (1)
b , is similar to V̂f such that we calculate

similar to (2.11):

E
[
Ŵ

(1)
b

]
=µ>β|yΣXµβ|y

+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , (µ̂β|y)i(µ̂β|y)j − σ̂

µ̂β|y
ij

)
.

We derive the expectation of the second part of expression (2.18), Ŵ (2)
b , as

E
[
Ŵ

(2)
b

]
= E

[
tr
(
Σ̂XΣ̂β|y

)]
= E

[ p∑
i=1

p∑
j=1

σ̂Xij σ̂
β|y
ij

]

=

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , σ̂

β|y
ij

)
+

p∑
i=1

p∑
j=1

E
[
σ̂Xij

]
E
[
σ̂
β|y
ij

]

=

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , σ̂

β|y
ij

)
+ tr(ΣXΣβ|y).
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Combining these results, we find

Bias
(
Ŵb

)
:=E

[
Ŵb

]
−Wb

=E
[
Ŵ

(1)
b

]
+ E

[
Ŵ

(2)
b

]
−Wb

=

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , σ̂

β|y
ij + (µ̂β|y)i(µ̂β|y)j − σ̂

µ̂β|y
ij

)

+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij

)
.

The remaining bias of the estimator Ŵb vanishes if the estimators σ̂Xij and

σ̂
β|y
ij − σ̂

µ̂β|y
ij + (µ̂β|y)i(µ̂β|y)j themselves are pairwise uncorrelated for all

i, j = 1, ..., p.

We express the nearly unbiased estimator Ŵb on the basis of MCMC realizations as

Ŵb
(2.18),(A.7)
≈ µ̂>β|yΣ̂X µ̂β|y +

(
1− 1

M

)
tr
(
Σ̂XΣ̂β|y

)
. (2.19)

Plugging µ̂β|y, see (A.3), and Σ̂β|y, see (A.4), into (2.19), we obtain:

Ŵb ≈ µ̂>β|yΣ̂X µ̂β|y + (1− 1

M
)tr(Σ̂XΣ̂β|y)

=

(
1

M

M∑
m=1

(
β̂(m)

)>)
Σ̂X

(
1

M

M∑
m=1

β̂(m)

)

+
M − 1

M

[
1

M − 1

M∑
m=1

(
β̂(m)

)>
Σ̂X β̂

(m)

− 1

M(M − 1)

M∑
k=1

M∑
m=1

(
β̂(k)

)>
Σ̂X β̂

(m)

]

=
1

M

M∑
m=1

(β̂(m))>Σ̂X β̂
(m) = ŴPost. (1.23)

The estimator (1.23) can explicitly be interpreted as an estimator for the posterior
mean of the genomic variance W in (2.16), in which the empirical mean is
calculated using the realizations of W in every MCMC sample. The estimator
ŴPost approximately equals the nearly unbiased estimator Ŵb for the mean of the
posterior genomic variance Wb. The estimator ŴPost is called M2 in Lehermeier
et al. (2017), see also Section 1.3, and it had already been mentioned that this
approach draws inferences on the posterior distribution of the genomic variance.
By introducing the random genomic variance W with posterior mean Wb for the
BRM in this section, we have laid the theoretical foundation and justification to
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use (1.23) as a nearly unbiased estimator for the posterior mean of the genomic
variance.

In this Bayesian approach, the expression W in (2.16) can also be interpreted as a
parameter to be inferred. In order to do so, and to express uncertainty about its
true value, we assign it a prior distribution. In our case this automatically happens
by making inferences on the effect vector β. This prior knowledge about the
genomic variance is expressed by the prior genomic variance Vb and then this belief
is updated using the data. However, the prior belief influences the adaption to the
data, which is only unproblematic in cases of perfect Bayesian learning.
After arriving at the posterior distribution, the value of the parameter can be
inferred using some characteristic of the posterior distribution. In the next section
we investigate the frequentist counterpart of the BRM, where the genomic variance
will be purely treated as a random variable.

2.3. Random Effect Model (REM)

The effect vector β in model (2.1) is assumed to be a normally distributed random
variable with mean 0 and diagonal variance-covariance matrix with equal variances
σ2
β, which is equivalent to modeling the single p components of β as independent

random variables βj ∼ N (0, σ2
β), j = 1, ..., p.

We obtain the marginal genomic variance V in model (2.1) defined in (2.2) as

Vr = Var(Xβ)

= Var
(
E[Xβ |β]

)
+ E

[
Var(Xβ |β)

]
= Var

(
E[X]β

)
+ E

[
β>ΣXβ

]
= σ2

β E[X]E[X]> + E
[
tr
(

ΣXββ
>
)]

E[X]=0
= tr

(
ΣXE

[
ββ>

])
= E[β]>ΣXE[β] + tr(ΣXΣβ)

= σ2
βtr(ΣX) = σ2

β

p∑
j=1

Var(Xj). (2.20)

The specific form of the genomic variance Vr depends very much on the
assumptions for the first and second moment of the distribution of β.
Subsequently, the marginal genomic variance Vr in (2.20) can be estimated by

V̂r = σ̂2
βtr(Σ̂X) =

1

n− 1
σ̂2
βtr
(
X>X

)
(2.21)
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after obtaining an unbiased estimator σ̂2
β for the variance component σ2

β, see
Appendix A.3. We calculate

E
[
V̂r

]
= E

[
σ̂2
βtr
(
Σ̂X

)]
= Cov

(
σ̂2
β, tr

(
Σ̂X

))
+ E

[
σ̂2
β

]
E
[
tr
(
Σ̂X

)]
= σ2

βtr(ΣX) + Cov
(
σ̂2
β, tr

(
Σ̂X

))
.

We conclude that V̂r is a nearly unbiased estimator for the genomic variance Vr,
and is bias-free if the estimators σ̂2

β and Σ̂X are uncorrelated.

The estimators V̂ real
r and V̂ equi

r derived in Chapter 1.3 for the genomic variances
based on the realized model (1.12) or the equivalent model (1.10), respectively,
equal the estimator V̂r given by (2.21).
No matter which of these equivalent approaches to estimate the marginal genomic
variance Vr in (2.20) is used, they are similar to the first part of expression Vf (2.4),
namely

∑p
j=1 β

2
jVar(Xj). But instead of weighting the variances of the allele

content by different components of the (fixed) effect vector β, the weights in Vr, see
(2.20), equal the variance component σ2

β for every locus. More strikingly, the
covariances between the different loci take no part in Vr in (2.20) but they do so in
Vf in (2.4).
Nevertheless, it is not clear how strong LD is involved in the estimation of σ̂2

β or σ̂2
g

in the REML equations and implicitly influences the estimates V̂r (2.21), V̂ real
r

(1.20) and V̂ equi
r (1.17).

The assumptions on the marginal distribution of β (especially on its covariance
structure) are very influential and cause the marginal genomic variance Vr in (2.20)
to be unsatisfactory. This is similar to the genomic variance Vb in (2.15) in Section
2.2 that is arbitrarily strongly influenced by the prior moments of β.
Analogously to Section 2.2, we consider the genomic variance V conditionally on
the effect vector β

W := Var(Xβ |β) = β>ΣXβ = tr
(

ΣXββ
>
)
, (2.16)

which is a quadratic form in the normally distributed effect vector β. This random
variable has expectation

E[W ] = E
[
tr
(

ΣXββ
>
)]

= tr
(

ΣXE
[
ββ>

])
= tr

(
ΣX

(
E
[
β
]
E
[
β>
]

+ Cov(β)
))

= tr(ΣXσ
2
β1p×p)

= σ2
β

p∑
j=1

Var(Xj) = Vr.
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Investigations on the random variable W have to be done similar to investigations
on the random effect β in REM, namely by a strict conditioning on the phenotypic
data y in accordance to the prediction (Henderson, 1984) of the effect vector β,
where the BLUP µβ|y := E[β | y] of β is given by the conditional expectation of β
on y (Searle et al., 1992), see also Appendix A.3.

We define an unbiased predictor for the random genomic variance W in (2.16) as
the expectation of the random variable W conditional on the data y

Wr := E[W | y] = tr
(

ΣXE
[
ββ>

∣∣∣ y]) = µ>β|yΣXµβ|y + tr(ΣXΣβ|y), (2.22)

which can be expressed by the conditional variance-covariance matrix
Σβ|y := Cov(β | y) of β, additional to the BLUP µβ|y.
The predictor Wr is by definition unbiased for the random variable W , if
E[Wr] = E[W ], which holds per construction:

E[Wr] = E
[
E[W | y]

]
= E[W ] = Vr.

In addition to that, the predictor Wr is the minimum mean-squared-error (MMSE)
predictor as a function in y for the random variable W :

Assume that we have an arbitrary predictor g(y) as a measurable function in y for
the random variable W . Then, it holds that

E
[(
W − g(y)

)2 ∣∣∣ y] =E
[(
W −Wr +Wr − g(y)

)2 ∣∣∣ y]
=E

[(
W −Wr

)2 ∣∣∣ y]+ E
[(
Wr − g(y)

)2 ∣∣∣ y]
+ 2
(
Wr − g(y)

)
E
[(
W −Wr

) ∣∣∣ y]
=E

[(
W −Wr

)2 ∣∣∣ y]+
(
Wr − g(y)

)2
.

Consequently,

E
[(
W − g(y)

)2]
= E

[
E
[(
W − g(y)

)2 ∣∣∣ y]]
= E

[(
W −Wr

)2]
+ E

[(
Wr − g(y)

)2]
≥ E

[(
W −Wr

)2]
,

where equality holds if g(y) = Wr. This analysis is analogous to the one for the
BLUP µβ|y, see Appendix A.3, which is the MMSE predictor as a function in y for
the random effect β. We conclude that Wr is the optimal predictor for W with
respect to MSE.

The predictor Wr for the genomic variance W is structurally in perfect accordance
with the posterior genomic variance Wb in (2.17) and consequently has the same
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interpretation as Vf, see (2.4), similar to the genetic variance in quantitative
genetics. Most importantly, opposed to the marginal genomic variance Vr in (2.20),
the predicted genomic variance Wr includes the contribution of LD similar to Vf in
(2.4). This is achieved by weighting the covariances of X with the off-diagonals of
the matrix of the conditional second moment E

[
ββ>

∣∣ y] of β. Hence, Wr can be
split up in the genic variance and a part including the contribution of LD similar
to Vf in (2.4).
The marginal covariance structure σ2

β1p×p of β in Vr in (2.20), where its
components are independent with equal variances, changes drastically when
considering the conditional covariance structure Σβ|y of β, see (A.15). In this
conditional approach, the single components of β|y are not equally and
independently distributed, but possess an arbitrary covariance structure by
adapting to the data by means of the likelihood of the data similar to the posterior
covariance Σβ|y in Section 2.2. Consequently, we tackle one of the central points of
critique of GCTA-GREML issued by Kumar et al. (2015, 2016) by introducing the
concept of the prediction of conditional genomic variance.

We plug (A.15) into Wr in (2.22) and obtain an analytical relationship to its
expectation (the marginal genomic variance Vr):

Wr = µ>β|yΣXµβ|y + tr(ΣXΣβ|y)

= µ>β|yΣXµβ|y + σ2
βtr(ΣX)− tr(ΣXσ

2
βX
>Σ̃Xσ2

β)

= Vr + µ>β|yΣXµβ|y − tr(ΣXσ
2
βX
>Σ̃Xσ2

β). (2.23)

We replace the variance components σ2
β and σ2

ε in (2.23) by unbiased estimators
and plug them into Wr:

Ŵr = µ̂>β|yΣ̂X µ̂β|y + tr(Σ̂XΣ̂β|y), (2.24)

= V̂r + µ̂>β|yΣ̂X µ̂β|y − σ̂4
βtr
(
Σ̂XX

> ˆ̃ΣX
)
.

We make the important note that the unbiasedness of the predictor Ŵr can only be
given conditional on the estimated variance components σ̂2

β and σ̂2
ε because of

dependencies between these estimators and y. This problem is common in REM
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and also holds true for the BLUP, see Appendix A.3. We calculate

E
[
Ŵr

∣∣∣ σ̂2
β, σ̂

2
ε

]
= E

[
V̂r + µ̂>β|yΣ̂X µ̂β|y − σ̂4

βtr
(
Σ̂XX

> ˆ̃ΣX
) ∣∣∣ σ̂2

β, σ̂
2
ε

]
= σ̂2

βE
[
tr(Σ̂X)

∣∣∣ σ̂2
β, σ̂

2
ε

]
+ E

[
µ̂>β|yΣ̂X µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

]
− σ̂4

βtr
(
E
[
Σ̂X

∣∣∣ σ̂2
β, σ̂

2
ε

]
X> ˆ̃ΣX

)
(2.7)
= σ̂2

βtr(ΣX) + E
[
µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

]>
ΣXE

[
µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

]
+ tr

(
ΣXCov

(
µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

))
− σ̂4

βtr
(
ΣXX

> ˆ̃ΣX
)

+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , (µ̂β|y)i(µ̂β|y)j

∣∣∣ σ̂2
β, σ̂

2
ε

)
(A.19),(A.18)

= σ̂2
βtr(ΣX) +

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , (µ̂β|y)i(µ̂β|y)j

∣∣∣ σ̂2
β, σ̂

2
ε

)

= E
[
W
∣∣∣ σ̂2

β, σ̂
2
ε

]
+

p∑
i=1

p∑
j=1

Cov
(
σ̂Xij , (µ̂β|y)i(µ̂β|y)j

∣∣∣ σ̂2
β, σ̂

2
ε

)
,

such that we can assert nearly (conditional) unbiasedness.

In the equivalent linear model (1.10) there is no theoretical analogue to model
(2.1). Therefore, we perform the analysis in the model (2.1) and perform the
estimation and prediction in model (1.12). Afterwards, we transfer the results to
the equivalent model.
We can express the GBLUP µg|y := E[g | y] as well as the conditional
variance-covariance matrix Σg|y := Cov(g | y) using characteristics from the
“original” linear model (1.12), see (A.20) and (A.21). We calculate

1

n− 1
µ̂>g|yµ̂g|y =

1

n− 1
µ̂>β|yX

>Xµ̂β|y = µ̂>β|yΣ̂X µ̂β|y

and
1

n− 1
tr
(

Σ̂g|y

)
=

1

n− 1
tr
(
XΣ̂µβ|yX

>
)

=
1

n− 1
tr
(
X>XΣ̂µβ|y

)
= tr

(
Σ̂XΣ̂µβ|y

)
.

Consequently, we define

Ŵ equi
r :=

1

n− 1
µ̂>g|yµ̂g|y +

1

n− 1
tr
(
Σ̂g|y

)
(2.25)

in the linear model (1.12) as the analogous predictor to Ŵr, see (2.24).
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By considering the genomic variance in REM as random it becomes consistent
with quantitative genetic theory, see Section 1.1, and explicitly includes the
contribution of LD. The predictor for this random variable can be applied in the
“standard” linear model as well as the equivalent linear model. We also bridge the
gap between the estimation of the posterior mean of the genomic variance in BRM
and estimation of the marginal variance in REM that has been observed in
Lehermeier et al. (2017) and sketched in Section 1.3.
In Appendix A.4 we extend the considerations of this section to mixed effect
models (MEM).
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In theory there is no difference
between theory and practice.
In practice there is.

Yogi Berra

We illustrate the theoretical results from Chapter 2. We performed all calculations
with the free software R (R Development Core Team, 2017). This chapter is
mainly based on the bioRxiv -manuscript Schreck and Schlather (2018).

3.1. Preparation of Datasets

3.1.1. Data Availability

For the simulation studies in Section 3.2 we considered the mice dataset that
comes with the R-package “BGLR” (Perez and de los Campos, 2014). The data
originally stem from an experiment from Valdar et al. (2006a,b) in a mice
population. The dataset contains p = 10346 polymorphic markers that were
measured in n = 1814 mice. The trait under consideration was body mass index
(BMI) and body length (BL). In order to compare the estimators from the FEM
with the ones from BRM and REM we created a second dataset (the reduced mice
dataset) where we included only the first p̃ = 0.6n ≈ 1088 markers, such that
p̃ < n holds true. This is not the best way to fully assess the structure of the
genome (if the markers are ordered we probably consider the markers on the first
chromosome(s) only). However, this was not the main goal of our investigation.
We used the n× p (n× p̃) matrix X coding the marker content from the mice
(reduced mice) dataset to obtain a realistic LD-structure for the further analysis.
In order to obtain modified datasets with different QTL-to-marker densities we
assigned k out of the p (p̃) markers to be QTL. We denote by Xk the restriction of
the marker content data to the (designated) QTL content. For each k, we
calculated the covariance matrix ΣXk applying the method of moments estimator
(1.21) to the QTL content data Xk with all individuals. We attributed each
designated QTL with a corresponding “true” (fixed) effect k-vector βk. Then, we
calculated the Vk as

Vk = β>ΣXkβ, (3.1)

because it resembles the genetic variance, see (1.9) defined in Section 1.1.
It has been claimed that the main source of the “missing heritability” is imperfect
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LD between markers and QTL (Yang et al., 2010) which we exclude by explicitly
assigning markers to be QTL. In addition to that, the genomic variance under
consideration is purely additive and the variance-covariance matrix of the QTL
content is given. Consequently, the performance of the estimators and of the
predictor depends only on their ability to represent the genomic variance Vk for all
k.

In order to investigate the estimation (prediction) procedures for each k for
different levels of heritabilities

h2
k :=

Vk
Vk + σ2

ε

∈ {0.2, 0.5, 0.8},

we set the error variance σ2
ε equal to 1 and multiplied the “true” effect vector βk by

the constant ck, where

c2
k :=

h2
k

1− h2
k

σ2
ε

Vk
.

This results in considering genetic variances of Vk ∈ {0.25, 1, 4} for each
QTL-marker ratio k/p (k/p̃). Therefore, we can drop the dependence of Vk and h2

k

on k and in the following use only V and h2. We drew n realizations of ε from a
normal distribution with mean 0 and standard deviation σε = 1, calculated the
phenotypic values yk using the additive linear model (1.12), and hence obtained
several modified genomic datasets with phenotypic and genotypic values for each V
and h2.

Additional to the full mice dataset with phenotypes BMI and BL, we used the
publicly available historical wheat dataset that comes with the R-package “BGLR”
(Perez and de los Campos, 2014) for the analysis in Section 3.3. The data
originally stems from CIMMYT’s Global Wheat Program and consists of n = 599
lines of wheat where the trait under consideration was average grain yield. The
phenotypes are divided up into four basic target sets of environments designated as
Wheat I, Wheat II, Wheat III and Wheat IV. The lines where genotyped using
Diversity Array Technology and after removing markers with allele frequencies
lower than 0.05 we were left with p = 1279 polymorphism markers. More
information on the dataset can be found in Perez and de los Campos (2014).
In addition to that, we analyzed a population of n = 1057 fully sequenced
Arabidopsis lines for which phenotypes and genotypes are also publicly available
by the effort of the Arabidopsis 1001 Genomes project
(The 1001 Genomes Consortium, 2016). The lines represent natural inbred lines
and we examined the same trait, namely flowering time at 10°C (FT10), and the
same p = 193697 SNP markers that were used in Lehermeier et al. (2017).

3.1.2. Model-fitting and Genomic Variance Calculation

Given the phenotypic and genotypic data described in Subsection 3.1.1, we fitted
the OLS model using the R-function “lm” and obtained the estimated effect vector
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β̂ as well as the estimated error variances σ̂2
ε . We used these in order to calculate

the biased estimator V̂ bias
f in (2.5) as well as the nearly unbiased estimator V̂f in

(2.9). The OLS method is not appropriate in applications where the number of
markers p is larger than the number of individuals n. Therefore we applied this
method only to the reduced mice dataset after removing any collinearity.
We fitted the BRR model with the function “BGLR” with the specification of the
model equal to “BRR” in the R-package “BGLR” (Perez and de los Campos, 2014).
We decided to use 30000 iterations of the Markov chain and discarded the first
10000 as burn-in, after we had exemplarily checked the convergence of the
resulting Markov chain and asserted convergence in every case. We kept only every
fifth realization of the remaining chain in order to obtain approximate
independence. This left us with M = 4000 state values that are assumed to be
representative of the posterior distribution. As a result of the application we
obtained estimators µ̂ for the intercept, σ̂2

ε for the residual variance, and a M × p
(M × p̃) matrix with realizations of the estimated effect vector β̂(m), m = 1, ...,M ,
in every state m of the considered Markov chain. We plugged these into ŴPost, see
(1.23), in order to calculate an estimator for the posterior expectation of the
genomic variance Wb defined in (2.17). BRR is conditionally on the variance
components equivalent to the BLUP model, for more details see Appendix A.2 and
Appendix A.3. Consequently, we expect similar results for both methods.
We fitted the GBLUP model in its equivalent form (1.10) as in Section 2.3 by
using the R-package “sommer” (Covarrubias-Pazaran, 2017) and in particular its
function “mmer”. We obtained the predicted effects µ̂g|y and the estimated
variance components σ̂2

g and σ̂2
ε . We used these quantities in order to calculate the

estimator V̂ equi
r in (1.17) for Vr and the predictor Ŵ equi

r in (2.25) for the
conditional genomic variance Wr. Despite the explicit implementation of V̂ equi

r and
Ŵ equi

r we use the equivalent quantities V̂r, see (2.21), and Ŵr, see (2.24), to
describe the simulation studies in order to emphasize the derivation using the
stochastic data-generating process X.

3.1.3. Performance Indexes

We compared each estimator V̂ for the genomic variance V with respect to the
absolute value of its relative bias

rBias(V̂ ) :=
|E[V̂ ]− V |

V
, (3.2)

and its relative root-mean-squared-error

rRMSE(V̂ ) :=

√
E
[
(V̂ − V )2

]
V

. (3.3)

For the analysis in Subsection 3.2.2 we define the relative contribution rLD of LD
to the genomic variance V as

rLD(V ) :=

∑p
i=1

∑p
j=1,j 6=i β

(k)
i β

(k)
j Cov(X

(k)
i , X

(k)
j )

V
, (3.4)
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and the indicator Ir in REM for the contribution of LD to the genomic variance as

Ir :=
Ŵr − V̂r

Ŵr
. (3.5)

3.2. Simulation Studies

3.2.1. Variation of Observational Data

We randomly selected k QTL as described in Subsection 3.1.1 and fixed them for
the further analysis. We chose the number k for the reduced mice dataset from the
set Krm := {10, 50, 100, 200, 500, 1000} and for the mice dataset from the set
Km := {10, 100, 500, 1000, 2000, 5000, 10000}. For practical reasons of creating
effect vectors with shapes of realizations of normal distributions or the
heavier-tailed gamma distribution, we chose the “true” effect vector βk as a
realization (i.e. fixed value) according to the distributions depicted in Table 3.1.
Formally, we considered an unknown data-generating process X with n realized
p-vectors contained in the design matrices X. We randomly selected ñ = 0.8n out
of the n realizations (individuals) 500 times for each combination of k and h2

which imitates drawing from the data-generating process X. In each iteration, we
calculated the estimators and the predictor in the OLS, BRR and
(G)BLUP-models as described in Subsection 3.1.2.

The estimation performance of the biased estimator V̂ bias
f compared to the

improved estimator V̂f from FEM in the reduced mice dataset is depicted in Figure
3.1 for a heritability of 0.2 (V = 0.25). The biased estimator V̂ bias

f performs
drastically worse than the improved estimator V̂f. This behavior of V̂ bias

f is very
similar for all considered h2 which emphasizes the importance of the
bias-correction in the FEM. For reasons of clarity we abstain from depicting the
estimator V̂ bias

f in the further analysis.

We compared the performance of the remaining estimators and the predictor for
the genomic variance in the reduced mice dataset for h2 = 0.2 in Figure 3.2, for
h2 = 0.5 in Figure 3.3 and for h2 = 0.8 in Figure 3.4. The estimated variances are
averaged over the 500 realizations and are depicted in subject to the number of
QTL k which also determines the QTL-marker ratios k/p̃.
The bias-corrected estimator V̂f given by (2.9) performs best and is very close to
the “true” value of the genomic variance for all levels of heritabilities h2 and
numbers of QTL k.
The estimator Ŵb, see (2.18), from the BRM overestimates the “true” genomic
variance for h2 = 0.2 for about over 10%. The performance of the estimator
improves with larger heritability and for h2 = 0.8 the estimator is very close to the
“true” value for all k. A possible reason for the overestimation by Ŵb is that the
model-fit in general could be poor such that the plugged-in state values are not
representative of the posterior distribution, although the MCMC-algorithm had
converged.
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The estimation performance of V̂r given by (2.21) depends on the QTL-marker
ratio. The underestimation of V̂r drastically increases with increasing number of
QTL’s k, whereas for a small QTL-marker ratio, the estimator V̂r tends to
overestimate the genetic variance. The performance of the estimator strongly
declines with increasing heritability, such that for h2 = 0.2 the relative bias
amounts to about 4%, for h2 = 0.5 to 5%-15% and for h2 = 0.8 to 5%-20%.
The novel predictor Ŵr defined in (2.24) from the REM overestimates the “true”
genomic variance for h2 = 0.2 but nevertheless performs better than the estimators
from the REM and the BRM. The predictor Ŵr performs relatively independent of
the QTL-marker ratio and its performance advantage upon V̂r increases with
increasing h2. Although the “true” genomic variance is calculated according to the
FEM, the performance of Ŵr can more than compete with the estimators V̂f from
FEM and Ŵb from the BRM. We put special emphasis on the performance
improvement of the novel predictor Ŵr versus the estimator V̂r in the case of higher
heritability (Figure 3.4). This resembles the study of the “missing heritability”
(Maher, 2008; Yang et al., 2010) and the novel predictor remarkably reduced the
“missing heritability” in REM in our simulation study. The number of covariances
that contribute to the genomic variance Vk depends quadratically (k2− k) on k and
we draw the conclusion that the increasing bias of V̂r in (2.21) with increasing k is
due to the quadratic increase in the number of missed covariances. In contrast to
that, the estimators V̂f in (2.9), Ŵb in (2.18) and the predictor Ŵr in (2.24), whose
theoretical counterparts are in accordance to the genetic variance, fluctuate around
the “true” value of the genomic variance independent on the number of covariances.

The performance of the estimators and the predictor from BRM and REM in the
full mice dataset is very similar to the performance in the reduced mice dataset
such that we can also assert the improved performance of Ŵb and Ŵr in the case of
p� n. In addition to that, we compared the estimators and the predictor with
respect to relative root-mean-squared-error, see (3.3), and assert similar behavior
as when investigating the estimation bias. We conclude that treating the genomic
variance as random is also advantageous with respect to the precision of the
estimators and the predictor. All additional figures can be found in Appendix B.1.
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Table 3.1.: Sources of Effect vector β in Subsection 3.2.1

K β

10 (1, 0.3,−0.5, 5,−2.4, 0.1,−0.6, 1.3,−2,−1.7)>

50 U [−2.6, 3]

100 G(0.1, 5)

200 N (0.1, 0.382)

500 N (0.2, 1)

1000 G(0.03, 8)

2000 N (0.1, 0.382)

5000 G(0.03, 8)

10000 N (0.1, 1)

Figure 3.1.: Estimated variance in the FEM (mean value over iterations of subsets of indi-
viduals) in the reduced mice dataset for different number of QTL k and fixed
numbers of markers p̃ = 1088. The genetic variance V equals 0.25 for all k
which resembles a heritability h2 of 0.2. The estimator V̂f performs remarkably
better than the biased estimator V̂ bias

f and is very close to V independently of
the QTL-to-marker ratio.
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Figure 3.2.: Estimated variance (mean value over iterations of subsets of individuals) in
the reduced mice dataset for different number of QTL k and fixed numbers
of markers p̃ = 1088. The genetic variance V equals 0.25 for all k which
resembles a heritability h2 of 0.2. The estimator V̂f from FEM performs best
followed by the predictor Ŵr for the conditional genomic variance in REM
which slightly overestimates V . The estimator V̂r underestimates V and the
bias of the estimators increases with k. The estimator for the posterior genomic
variance Ŵb constantly overestimates V by around 10%.

Figure 3.3.: Estimated variance (mean value over iterations of subsets of individuals) in
the reduced mice dataset for different number of QTL k and fixed numbers of
markers p̃ = 1088. The genetic variance V equals 1 for all k which resembles
a heritability h2 of 0.5. The estimator V̂f from the FEM and the predictor
Ŵr from the REM are very close to the “true” V for all k. The estimator
Ŵb for the posterior mean of genomic variance also performs well but slightly
overestimates V with increasing k. The estimator V̂r drastically underestimates
V and the bias of the estimator strongly increases with k.
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Figure 3.4.: Estimated variance (mean value over iterations of subsets of individuals) in
the reduced mice dataset for different number of QTL k and fixed numbers of
markers p̃ = 1088. The genetic variance V equals 4 for all k which resembles a
heritability h2 of 0.8. The estimator V̂f from the FEM, the predictor Ŵr from
the REM and the estimator Ŵb are constantly very close to V for all QTL-to-
marker ratios k/p̃. The estimator V̂r from the REM drastically underestimates
V and the bias of the estimator strongly increases with k.

3.2.2. Variation of QTL-Allocations

In Subsection 3.2.1 we investigated the performance of the estimators and the
predictor of the genomic variance for a fixed QTL-allocation and varying
observations. Hence, it is possible that the conclusions made depend strongly on
the specific QTL-allocation and the corresponding implied LD-structure, and
cannot be generalized. Consequently, we considered the whole dataset of
individuals and conducted the analysis in this section for different QTL-allocations
for each level of heratibility and number of QTL k. In order to do so, we
undertook 2000 iterations of randomly choosing the actual QTL-allocations for
every level of heritability h2 and each number of QTL k ∈ K, where
Km = {10, 100, 500, 1000, 2000, ..., 10000} for the mice dataset and
Krm = {10, 50, 100, 200, ..., 1000} for the reduced mice dataset. We used
β = (1, ..., 1)k as the “true” effect vector in Vk, see (3.1), prior to scaling by ck, in
order to weight all locus-specific variances as well as all disequilibrium covariances
equally.

We compared the performance of the estimator V̂ bias
f in (2.5) to the improved

estimator V̂f in (2.9) in the reduced mice dataset in Figure 3.5. Similar to
Subsection 3.2.1 we notice that the bias-corrected estimator V̂f behaves much
better than the estimator V̂ bias

f . In addition to that, V̂f fluctuates around the value
of V = 0.25 for all k, which indicates that the performance is independent of the
QTL-marker ratio. We observed similar behavior for h2 = 0.5 and h2 = 0.8 and,
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for reasons of clarity, made these figures available in Appendix B.2.

In Figures 3.6 (h2 = 0.2), 3.7 (h2 = 0.5) and 3.8 (h2 = 0.8) we depict the average
of the estimators and the predictor over all considered QTL-allocations in the
reduced mice dataset for different number of QTL k for a fixed number of markers
p̃ = 1088.
We notice that the behavior of all considered quantities over the range of k’s is
more bumpy compared to the analysis for a fixed QTL-allocation. This indicates
that the QTL-allocation influences the estimators and the predictor. The general
conduct of the estimator V̂f, see (2.9), the estimator Ŵb, see (2.18) and the
predictor Ŵr, see (2.24), is similar and independent of the level of heritability, as
we notice that these quantities have spikes and slabs for the same k (same
QTL-allocations) for each h2. This indicates that V̂f, Ŵb, and Ŵr are in
accordance and confirms that they can be used to estimate the genomic variance in
accordance with quantitative genetic theory.
The estimator V̂f fluctuates around the “true” value of the genomic variance,
whereas the estimator Ŵb constantly overestimates V for small h2 as in Subsection
3.2.1. The predictor Ŵr fluctuates around the “true” value of the genomic variance
for h2 = 0.2 and slightly overestimates for larger heritabilities, but performs at
least as good as V̂f and Ŵb. The estimator V̂r from REM underestimates the “true”
value of the genomic variance in all cases where the bias increases with increasing
k regardless of h2. Compared to the behavior in Subsection 3.2.1 where only one
QTL-allocation was examined, the estimator V̂r underestimates V also for small k.
The difference to the novel predictor Ŵr is striking. Especially for h2 = 0.8 the
estimator V̂r accounts for less than half of the genetic variance, which is in
accordance with observations of the “missing heritability” (Maher, 2008; Yang
et al., 2010). The missed covariances increase quadratically in k which explains the
increasing bias of the estimator V̂r. This simulation study indicates that the novel
predictor Ŵr in (2.24) as well as the estimator Ŵb in (2.18) are possible solutions
to the “missing heritability”, and we conclude that this is due to their explicit
inclusion of LD.

For each level of heritability h2 and each number of QTL k we considered 2000
different QTL-allocations and each of them defines a specific LD-structure.
Consequently, the “true” value of the genomic variance for each QTL-allocation can
be distinguished by a different relative contribution of LD to V as defined in rLD
in (3.4). We depict the empirical covariance of this relative contribution of LD
with the value of V̂r, Ŵr, the indicator Ir given by (3.5), the relative bias (3.2) of
V̂r and the relative bias of Ŵr for each h2 and k in Figure 3.9.
The correlation of V̂r with the relative contribution of LD is negative (about
−0.75) which indicates that the larger the contribution of LD, the smaller the
estimator becomes. This is clearly contrasted by the novel predictor Ŵr which is
approximately uncorrelated with the contribution of LD. In addition to that, the
relative bias of V̂r is positively correlated (about 0.75) with the relative
contribution of LD which demonstrates that the larger the contribution of LD, the
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larger the bias of the estimator becomes. This is once again contrasted by the
relative bias of Ŵr that is approximately uncorrelated to the contribution of LD.
Strikingly, the empirical correlation of the indicator Ir, which can be calculated
using only V̂r and Ŵr, is positively correlated with the relative contribution of LD
to the genomic variance. As a consequence, Ir constitutes a novel approximation of
the relative contribution of LD to the genomic variance.

In addition to the analysis for the reduced mice dataset, we compared the
estimators and the predictor in the full mice dataset where p� n. The
performance of the estimator Ŵb, V̂r, and the predictor Ŵr are very similar to the
performance in the reduced mice dataset. For reasons of clarity, we made the
corresponding figures available in Appendix B.2.

Figure 3.5.: Estimated variance in the FEM (mean value over different QTL-allocations) in
the reduced mice dataset for different numbers of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 0.25 for all k which resembles
a heritability h2 of 0.2. The estimator V̂f performs remarkably better than the
biased estimator V̂ bias

f and is very close to V independently of the QTL-to-
marker ratio.
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Figure 3.6.: Estimated variance (mean value over different QTL-allocations) in the reduced
mice dataset for different numbers of QTL k and fixed number of markers
p̃ = 1088. The genetic variance V equals 0.25 for all k which resembles a
heritability h2 of 0.2. The estimator V̂f from the FEM performs similar to
the predictor Ŵr from the REM and they are both close to the true V of
0.25. The estimator Ŵb from the BRM performs solidly but constantly sightly
overestimates the “true” genomic variance. The estimator V̂r from the REM
underestimates V by around 40% and the bias of the estimator tends to increase
with the number of QTL k.
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Figure 3.7.: Estimated variance (mean value over different QTL-allocations) in the reduced
mice dataset for different numbers of QTL k and fixed number of markers p̃ =
1088. The genetic variance V equals 1 for all k which resembles a heritability
h2 of 0.5. The estimator V̂f from the FEM performs similar to the predictor
Ŵr from the REM and the estimator Ŵb from the BRM and they are all very
close to V . The estimator V̂r from the REM underestimates V increasingly
with the number of QTL k and by at least 40% starting at a QTL-to-marker
ratio of 10%.

Figure 3.8.: Estimated variance (mean value over different QTL-allocations) in the reduced
mice dataset for different numbers of QTL k and fixed number of markers p̃ =
1088. The genetic variance V equals 4 for all k which resembles a heritability
h2 of 0.8. The estimator V̂f from the FEM, the predictor Ŵr from the REM
and the estimator Ŵb from the BRM are very close to the true V of 4. The
estimator V̂r from the REM drastically underestimates V and the bias of the
estimator tends to increase with the number of QTL’s k. For a large QTL-to-
marker ratio, V̂r can only recover about 40% of the genetic variance.
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Figure 3.9.: Empirical correlations with the relative contribution of LD to the “true” ge-
nomic variance in the reduced mice dataset for different numbers of QTL k for
fixed number of markers p̃ ≈ 1088. Values are averaged over the different lev-
els of h2 ∈ {0.2, 0.5, 0.8}. The correlation of the estimator V̂r with the relative
contribution of LD is about −0.7 except for k = 10, whereas the correlation of
the predictor Ŵr fluctuates around 0. The correlation of the relative bias of V̂r
is about 0.7 except for k = 10 which indicates that the larger the contribution
of LD to the genomic variance, the larger the bias of V̂r becomes. Contrary to
that, the bias of the predictor Ŵr is approximately uncorrelated to the relative
contribution of LD. The quantity Ir is positively correlated (0.7 − 0.8) to the
relative contribution of LD which makes it an usable indicator for the relative
contribution of LD to the genomic variance.
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3.3. Applications to Genomic Datasets

In Section 3.2 we noticed that the estimator V̂r underestimated the genetic
variance most of the time, whereas the predictor Ŵr was very close to the “true”
value, even in the high-dimensional set-up. We traced that back to the negligence
of the contribution of LD to the genetic variance (1.9). If we take a closer look at
the formula of the genetic variance and its genomic counterpart, we notice that the
sign and the size of the contribution of LD depends also on the elements of the
weighting vector β. As a consequence, it is also possible that the contribution of
LD reduces the genomic variance, such that the estimator V̂r overestimates the
genomic variance. The analysis in Subsection 3.2.2 has been done using the effect
vector β = (1, ..., 1)>k in order to weight the contribution of each locus equally. But
when different weighting vectors are used, no statement of the performance of the
estimator and the predictor in applications can yet be made.

In this section, we apply the estimator V̂r and the predictor Ŵr to the genomic
datasets with their corresponding traits introduced in Subsection 3.1.1. In this
application, we cannot make any statements about whether the estimator V̂r or the
predictor Ŵr is less biased because we do not know the value of the true genetic
variance.
Similar to the analysis in Lehermeier et al. (2017), we standardize the phenotypic
variance to equal 1 in order to be able to judge the variance decomposition of the
phenotypic variance in the genomic variance and the residual variance, see (2.3).

In Table 3.2 we depict the estimated genomic variance V̂r in the first column, the
predicted genomic variance Ŵr in the second column as well as the estimated
residual variance σ̂2

ε in the last column for the different datasets and traits.
For the Arabidopsis dataset in the first row we notice that the predictor is about
twice the size of the estimator. While the sum of V̂r and σ̂2

ε equals about 0.55, the
sum of Ŵr and σ̂2

ε is very close to the phenotypic variance 1. Thus, the predictor
captures a larger amount of the phenotypic variance, whereas the estimator misses
a large part of it. In accordance with the overall theme of this thesis, we carefully
conclude that this remaining genomic variance is due to the contribution of LD.
We notice in all seven datasets that the sum of the predictor Ŵr and the estimated
residual variance σ̂2

ε is very close to the phenotypic variance, whereas the sum of V̂r
and σ̂2

ε does not equal the phenotypic variance. In the mice datasets, BMI and BL,
as well as the wheat datasets the estimator V̂r is larger than the predictor Ŵr and
therefore explains a larger part of the phenotypic variance. But the sum of V̂r and
σ̂2
ε in these cases exceeds the phenotypic variance. We conclude that in these

particular cases, the contribution of LD to the genomic variance (sum of the
covariances between the loci weighted by the effect vector β) is negative.

Consequently, it is also possible that estimators similar to V̂r overestimate the
genomic variance. This entails problems in the definition of the heritability,
namely that the quotient of the genomic variance and the phenotypic variance
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differs from the quotient of the genomic variance and the sum of the genomic and
residual variance.
The predictor Ŵr also corrects for a negative contribution of LD and behaves in
accordance with the decomposition of the phenotypic variance, such that the
heritability can be uniquely defined.
This analysis also indicates that in purely random effect models the unbiased
predictor for the genomic variance equals the phenotypic variance minus the
residual variance.

Table 3.2.: Empirical Variance Decompositions

V̂r Ŵr σ̂2
ε

FT10 0.47486 0.92603 0.07389

BMI 0.22284 0.18301 0.81702

BL 0.37405 0.29840 0.70163

Wheat I 0.60417 0.45908 0.54094

Wheat II 0.53626 0.43503 0.56500

Wheat III 0.43330 0.34803 0.65204

Wheat IV 0.49061 0.40896 0.59112





Concluding Remarks

Would it help?

Rudolf Abel in “Bridge of Spies” as a
response to “Do you never worry?”

The original aim of my research was a full and mathematically rigorous analysis of
the genomic variance in phenotype-genotype regression models. The main reason
for that was the lack of a solid theoretical basis on which to build the estimation of
genomic variances, which led to various estimators in many different models,
producing different results. This brought about discussions about the unbiasedness
of the estimators, about the “missing heritability”, and about whether estimators
respect for the contribution of linkage disequilibrium.

Results

The key to the results in Chapter 2 was to accommodate the theory of the genomic
variance with quantitative genetics from Section 1.1. We believe that the
randomness of the effect vector β in Bayesian regression and random effect models
should be considered as a way of regularization and not as the source of genomic
variation. We changed the source of variation from the marker effects to the
marker content. This enabled an estimation of a genomic variance different from 0
in the FEM and resulted in treating the genomic variance in the BRM and the
REM as a random variable in the effect vector. The expectation of this random
variable with respect to y equals the marginal, or prior, genomic variance. By
adapting to the actual data, we move away from these assumptions. The posterior
distribution of this random variable is investigated in the Bayesian model, whereas
in the random effect model it resulted in the prediction of the genomic variance,
which is in accordance with the prediction of the random effects themselves.

We noticed that the expression for the genomic variance as a fixed population
parameter strongly depends on the model assumptions for the effect vector β.
Consequently, it is important to distinguish the analysis of the genomic variance in
the FEM, the BRM and the REM.
The genomic variance Vf in the FEM in Section 2.1 is the genomic equivalent of the
genetic variance in quantitative genetics from Section 1.1 and explicitly includes
the contribution of LD. We derived the nearly unbiased estimator V̂f in (2.9).
The genomic variance Vb as a population parameter in the BRM in Section 2.2
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proved to be meaningless because of its dependence on characteristics of the prior
distribution of the effect vector. In order to include characteristics of the posterior
distribution of β, we proposed to consider the genomic variance as the random
variable W with prior expectation Vb. Estimation in this model resulted in the
posterior expectation Wb, see (2.17), which includes the contribution of LD and
has an interpretation similar to the genomic variance in the FEM, even in
high-dimensional genomic datasets. We laid the theoretical foundations for the
posterior genomic variance in BRM, whose mean had already been estimated
without a study of the random variable under consideration, for instance in
Lehermeier et al. (2017).
The genomic variance in REM has been treated as the parameter Vr given by
(2.20), and popular estimation methods (e.g.GCTA-GREML) are based on the
marginal covariance matrix of the effect vector β which leads to a negligence of the
contribution of LD. In perfect accordance with the BRM, we introduced the novel
concept of the random genomic variance W , see (2.16), in REM by conditioning on
the effect vector β. We derived a nearly unbiased predictor Ŵr in (2.24) for the
random genomic variance in REM that is based on the covariance of the
conditional distribution of β given the data y. By adapting to the data, this
approach explicitly allowed for the contribution of LD and remarkably reduced the
“missing heritability” of V̂r in REM.
We illustrated our theoretical results in simulation studies in Section 3.2 as well as
on full genomic datasets in Section 3.3. We stated that the novel predictor Ŵr
performs drastically superior to the estimator V̂r and performs at least as good as
the estimator Ŵb used for the mean of the posterior genomic variance in BRM. We
introduced an innovative indicator Ir, see (3.5), of the contribution of LD to the
genomic variance by comparing the estimator V̂r and the predictor Ŵr. This added
to the conclusion that the improved performance of the novel predictor Ŵr
compared to the estimator V̂r is caused by the inclusion of LD.

Discussion

The additive genetic variance and the narrow-sense heritability are clearly and
uniquely defined in quantitative genetics, but nevertheless estimation procedures
for the genomic variance give different results (Chen, 2016). The estimation of the
genomic variance varies, especially in REM, even when using the same marker data
to calculate different genomic relationship matrices (Legarra, 2015; Fernando et al.,
2017). We substantiate that in the Appendix A.5, where we showed that
transformations of the input marker-matrix X change the estimate of the genomic
variance when using estimators (e.g.GCTA-GREML) based on the marginal
genomic variance Vr defined in (2.21). This contradicts the genetic variance in
Section 1.1 that is independent of the coding of the genotypes. In addition to that,
Kumar et al. (2015, 2016) state that the GRM in GCTA-GREML is an estimate of
the underlying data-generating process but is treated as a fixed quantity, which
makes the calculation of the genomic variance as in (1.19) invalid.
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Contrary to that, we built our analysis of genomic variances on the
data-generating process of the marker data by considering X as a random vector in
model (2.1). The resulting expression for the genomic variance in Chapter 2,
β>ΣXβ, showed to be independent of the centering of the marker data, regardless
of whether β is considered as a fixed population parameter or as a random variable
(which makes the genomic variance a random variable).
This tackles yet another central point of critique on GCTA-GREML issued by
Kumar et al. (2015, 2016), namely that the single marker effects are treated as
independent random variables with equal variances. Conditionally on the
phenotypic data, the random contribution of each marker is not independent any
more, see (A.15).
Our approach of treating the marker content X as random and considering the
genomic variance W in BRM and REM as a random variable conditional on the
effect vector can be considered as an extension of the genomic variance from the
FEM to high-dimensional datasets. Consequently, our approach constitutes the
genomic equivalent of the genetic variance in high-dimensional datasets also, which
is intrinsically tied to an explicit contribution of LD to the genomic variance.

In the theoretical expression of the genomic variance Vr, LD does not contribute.
However, when using the REML algorithm to estimate the variance component σ2

β,
LD takes a part and consequently also influences estimators similar to
GCTA-GREML. Nevertheless, as we have noticed in Figure 3.9, the bias of V̂r is
still very much correlated with the contribution of LD.

The estimation and the prediction of the effects β in high-dimensional datasets
using the BRM and the REM is executed by adapting to the data by means of its
likelihood, which possibly results in an over-adjustment. As a consequence,
estimating the posterior mean of the conditional variance in BRM and predicting
the conditional genomic variance in REM bears the risk of over-adjustment to the
data.
The simulation studies in Section 3.2 have been performed under a very simplistic
model and excluded the influence of imperfect LD between the markers and the
QTL, for instance. This removed one of the main sources of the “missing
heritability” claimed in literature, see Yang et al. (2010). The stability of the novel
predictor Ŵr as well as of the estimator of the posterior mean Ŵb has still to be
further tested in more complex scenarios with different LD-structures between
markers and with imperfect LD between markers and QTL.
The application to full genomic dataset in Section 3.3 proved that it is also
possible that the estimator V̂r overestimates the genetic variance, namely in cases
that the weighted sum of covariances between the marker genotypes becomes
negative. The predictor Ŵr is designed to correct for the negative sum of weighted
covariances in these scenarios likewise.

The nearly exact empirical decomposition of the phenotypic variance in the
predictor Ŵr and the residual variance σ̂2

ε in Table 3.2 indicates that some sort of
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analytical decomposition similar to the theoretical variance counterpart in (2.3) is
also possible for the random genomic variance W . This implies that there might be
yet another derivation and interpretation of the random genomic variance.

The genomic variance is tied to a regression on markers, whereas the genetic
variance is connected with QTL. Consequently, imperfect LD between the markers
and the QTL causes possible under- or overestimation of the genetic variance. The
simulation studies in Section 3.2 have shown that when the QTL are contained in
the set of markers, the FEM as well as the BRM and the REM are capable of
producing good results for the genomic variance, if the corresponding
model-specific estimators and predictors are used.
The REM and the BRM are connected by the special case in which a normal prior
with equal variances is chosen for the elements of the effect vector β, see Appendix
A.2 and Appendix A.3. Bayesian methods are more flexible in that many different
prior distributions for the effect vector can be chosen. Bayesian hierarchical models
enable an assignment of probabilities to the variance components in the model,
such that it is in principal possible to obtain arbitrary complex expressions for the
genomic variance in BRM. In BRM we make inferences about the posterior
distribution of the genomic variance W , see (2.16). It is also possible to use a more
robust characteristic like the median instead of the mean of the posterior
distribution. Both the BRM and the REM are connected to penalized regression
models which are themselves members of the family of FEM’s. Carving out theses
connections possibly presents another interesting research object.
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A.1. Ordinary Least Squares (OLS)

In this section we give the most important analytical results for ordinary
least-squares (OLS), which is particularly relevant for Section 2.1. Similar results
can, for instance, be found in Hastie et al. (2008), Izenman (2008), or Wakefield
(2013).

The OLS method is based on the realized (or conditional on X) model

y = µ+ Xβ + ε := µ+

( p∑
j=1

xijβj

)
i=1,...,n

+ ε, (1.12)

where ε ∼ N (0, σ2
ε1n×n). Denote by X̃ the n× (p+ 1) matrix (1n,X), where 1n is

the column-n-vector with every entry equal to 1. Then, the estimator that
minimizes the residual sum of squares ε>ε is called OLS estimator and is given by(

µ̂, β̂>
)>

=
(
X̃>X̃

)−1
X̃>y.

For mean-centered data, i.e.
∑n

i=1 xij = 0 for all j = 1, ..., p, it holds that

(
X̃>X̃

)−1
=

n−1 0

0 (X>X)−1

 .

Consequently, (
µ̂, β̂>

)>
=
(
ȳ, (X>X)−1X>y

)
.

The OLS estimator β̂ for β is distributed as

β̂ ∼ N
(
β, σ2

ε(X
>X)−1

)
and due to the Gauß-Markov Theorem it is the best linear unbiased estimator
(BLUE) for β (linear function of y, unbiased, and smallest variance among all
linear unbiased estimators).

An unbiased estimator σ̂2
ε for the residual variance σ2

ε is given by

σ̂2
ε :=

(
y −Xβ̂ − 1nµ̂

)>(
y −Xβ̂ − 1nµ̂

)
n− p− 1

,
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which can also be expressed as

σ̂2
ε =

1

n− (p+ 1)

[
y>(1−H)y + nµ̂2 − 2y>(1−H)1nµ̂

]
(A.1)

=
1

n− (p+ 1)

[
y>(1−H)y + nµ̂2 − 2nȳµ̂

]
,

where the hat-matrix H is defined as

H := X(X>X)−1X>.

It holds that

Hµ̂ = X(X>X)−1X>1nµ̂ = 0

because of the column-wise mean-centering of X.
Subsequently, an unbiased estimator Σ̂β̂ for the variance of β̂ in OLS is given by:

Σ̂β̂ = (X>X)−1σ̂2
ε . (A.2)

A.2. BRM’s with Markov Chain Monte Carlo

In this section we sketch some results from Bayesian regression models in
combination with Markov Chain Monte Carlo (MCMC) estimates that are
important for the calculation of the genomic variance in Section 2.2. We partly
build on the bioRxiv -manuscript Schreck and Schlather (2018).

Full Bayesian regression models are based on the model (2.1) and include a
distribution for X with parameter ψ such that there is a joint likelihood of the
data p(X,Y |β, ψ) combined with a prior distribution p(ψ, β) for the parameters
(Gelman et al., 2014). However, by assuming prior independence of the parameters
determining p(Y |X,β) and the parameters ψ determining p(X|ψ) leads to the
factorization p(ψ, β) = p(ψ)p(β). Consequently, the full conditional posteriori
p(ψ, β|X,Y ) can be expressed as the product p(ψ|X)p(β|X,Y ) such that the
second factor can be analyzed by itself in a standard regression model without loss
of information: p(β|X,Y ) ≈ p(β)p(Y |X,β) (Gelman et al., 2014).
Model (1.12) can be considered as n draws of (Y,X). The effect vector β in

y = µ+ Xβ + ε := µ+

( p∑
j=1

xijβj

)
i=1,...,n

+ ε, (1.12)

is assigned a prior distribution p(β) with finite prior expectation µβ := E[β] and
finite prior variance-covariance matrix Σβ := Cov(β). We leave the form of the
distribution p(β) unspecified in this general approach.

After the assignment of prior distributions to parameters of interest in model
(1.12), their posterior distribution is investigated, usually computationally with a
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simulation algorithm such as MCMC (Gelman et al., 2014). As a result of the
application, we obtain the Markov chain sequence of p-vectors

(
β̂(m)

)
m=1,...,M

which are assumed to be draws from the posterior distribution p(β|y) after
discarding the burn-in iterations and after thinning the chain. We use the
empirical mean

µ̂β|y =
1

M

M∑
m=1

β̂(m) (A.3)

as an unbiased estimator for the posterior expectation µβ|y and the empirical
variance

Σ̂β|y =
1

M − 1

M∑
m=1

β̂(m)
(
β̂(m)

)>
− 1

M(M − 1)

M∑
k=1

M∑
m=1

β̂(m)
(
β̂(k)

)>
(A.4)

as an estimator for the posterior covariance Σβ|y. In order to calculate Ŵb, see
(2.18), we still need an empirical expression for the covariance Σµ̂β|y of the
estimated effects.
It holds for all k,m ∈ {1, ...,M}, k 6= m, that

Cov
(
β̂(m), β̂(k)

)
≈ 0, (A.5)

because we have thinned the MCMC sample in order to obtain an approximately
independent chain. We find

Σµ̂β|y := Cov
(
µ̂β|y

)
(A.3)
= Cov

(
1

M

M∑
m=1

β̂(m),
1

M

M∑
k=1

β̂(k)

)

=
1

M2

M∑
m=1

M∑
k=1

Cov
(
β̂(m), β̂(k)

)

=
1

M2

[
M∑
m=1

Cov
(
β̂(m)

)
+

M∑
m=1

M∑
k=1
k 6=m

Cov
(
β̂(m), β̂(k)

)]

(A.5)
≈ 1

M2

M∑
m=1

Cov
(
β̂(m)

)
=

1

M
Σβ|y, (A.6)

where the last equation is due to the fact that all samples β̂(m),m = 1, ...,M , left
in the chain are representative of the posterior distribution. Thus,

tr
(
Σ̂XΣ̂µ̂β|y

) (A.6)
≈ 1

M
tr
(
Σ̂XΣ̂β|y

)
, (A.7)
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where the approximation in (A.7) is more precise, the closer the chain is to
independence.

Bayesian models offer a great flexibility in the choice of the prior distribution
(Gianola et al., 2009). It is also possible to assign prior distributions to the
variance component σ2

ε as well as hierarchically to parameters of already chosen
prior distributions. However, the prior influence can overwhelm the data for p→∞
(Leon-Novelo and Casella, 2011), depending on the specification of the prior.
Choosing the burn-in iterations as well as appropriate thinning of the chain is an
important task (Givens and Hoeting, 2013). Maybe even more important,
convergence analysis and diagnostics play a major role after the application of a
simulation algorithm and before using the results (Congdon, 2006).

Bayesian Ridge Regression (BRR) results from the assumption of independent
normal priors with identical variances σ2

β for the components of the effect vector:

p(βj |σ2
β) ∼ N (0, σ2

β), j = 1, ..., p, (A.8)

together with inverse-gamma priors for the variance components

σ2
β ∼ IG(aβ, bβ) (A.9)

and

σ2
ε ∼ IG(aε, bε). (A.10)

A random variable Z follows the inverse-gamma distribution IG(a, b) with shape
a > 0 and scale β > 0, if 1/Z ∼ G(a, b).

The inference in BRM is always done on the posterior distributions, or on the full
conditionals, respectively. For the special case of BRR, Kneib et al. (2011) derived:

β|σ2
β, σ

2
ε ∼ N (µβ|y,Σβ|y)

µβ|y = Σβ|y
1

σ2
ε

X>(y − µ) (A.11)

Σβ|y =

(
1

σ2
ε

X>X +
1

σ2
β

1p×p

)−1

(A.12)

σ2
β|β ∼ IG

(
aβ + 0.5p, bβ + 0.5β>β

)
σ2
ε |β ∼ IG

(
aε + 0.5n, bε + 0.5(y − µ−Xβ)>(y − µ−Xβ)

)
.

Drawing samples iteratively from these full conditionals illustrates the processing
of MCMC-algorithms.
We are going to see in Appendix A.3 that, conditionally on the variance
components σ2

β and σ2
ε , the BRR model is the Bayesian equivalent to the

frequentist BLUP-method.
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A.3. Best Linear Unbiased Prediction (BLUP)

In this section we give the most important analytical results for the BLUP method
and connect it to the genomic BLUP (GBLUP) in the equivalent model. We
mainly build on Henderson (1984) and Searle et al. (1992), and partly on the
bioRxiv -manuscript Schreck and Schlather (2018).

In the model

y = µ+ Xβ + ε := µ+

( p∑
j=1

xijβj

)
i=1,...,n

+ ε, (1.12)

it holds that ε ∼ N (0, σ2
ε1n×n) independently of the effect p-vector β which is

normally distributed with mean µβ = 0 and finite marginal variance-covariance
matrix σ2

β1p×p

β ∼ N (0, σ2
β1p×p),

such that

y ∼ N
(
µ,XX>σ2

β + σ2
ε1n×n︸ ︷︷ ︸

:=Σ̃−1

)
. (A.13)

It is not possible to estimate β because it is a random variable. Henderson (1984)
introduced the concept of the prediction of β, which refers to the estimation of the
realized values of the random effects. Common approaches to find a BLUP for β
are based on the mixed model equations (Henderson, 1984) or in general on
maximizing the conditional likelihood of y.

The joint distribution of y and β equalsy
β

 ∼ N[
µ

0

 ,

 Σ̃−1 σ2
βX

σ2
βX
> σ2

β1p×p

].
We obtain

β|y ∼ N
(
σ2
βX
>Σ̃(y − µ), σ2

β1p×p − σ2
βX
>Σ̃Xσ2

β

)
because of the joint normal distribution (Kotz et al., 2000). The BLUP µβ|y for β
is defined as µβ|y := E[β | y] (Searle et al., 1992) such that we obtain

µβ|y := E[β | y] = σ2
βX
>Σ̃(y − µ). (A.14)

The unbiasedness of the predictor µβ|y is seen very quickly, because

E[µβ|y] = E
[
E[β | y]

]
= E[β] = 0.
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In addition to that, the predictor µβ|y is the optimal predictor as a function in y
under MSE considerations. Assume that g(y) is a measurable function in y. Then,

E
[(
β − g(y)

)2 ∣∣∣ y] =E
[(
β − µβ|y + µβ|y − g(y)

)2 ∣∣∣ y]
=E
[(
β − µβ|y

)2 ∣∣∣ y]+ E
[(
µβ|y − g(y)

)2 ∣∣∣ y]
+ 2
(
µβ|y − g(y)

)
E
[(
β − µβ|y

) ∣∣∣ y]
=E
[(
β − µβ|y

)2 ∣∣∣ y]+
(
µβ|y − g(y)

)2
.

Consequently,

E
[(
β − g(y)

)2]
= E

[
E
[(
β − g(y)

)2 ∣∣∣ y]]
= E

[(
β − µβ|y

)2]
+ E

[(
µβ|y − g(y)

)2]
≥ E

[(
β − µβ|y

)2]
.

The variance-covariance matrix Σβ|y of the conditional distribution of β equals

Σβ|y := Cov(β | y) = σ2
β1p×p − σ2

βX
>Σ̃Xσ2

β. (A.15)

The Sherman-Morrison formula, or the more general Woodbury matrix identity
(Henderson and Searle, 1981), for a nonsingular matrix A and matrices U,B, V
with suitable dimensions equals

(A− UD−1V )−1 = A−1 +A−1U(D − V A−1U)−1V A−1. (A.16)

Setting A = 1
σ2
β
1p×p, U = −X>, D−1 = 1

σ2
ε
1n×n and V = X enables an equivalent

expression of (A.15)

Σβ|y =

(
1

σ2
ε

X>X +
1

σ2
β

1p×p

)−1

, (A.17)

which is the expression for the fully conditional posterior covariance matrix in
(A.12) of β in BRR, see Appendix A.2. In addition to that, the full conditional
posterior mean of β in BRR, see (A.11), can be reformulated using the equivalence
of (A.15) and (A.17)

µBRR
β|y

(A.11)
= Σβ|y

1

σ2
ε

X>(y − µ)

(A.15)
=

1

σ2
ε

[
σ2
βX
> − σ2

βX
>Σ̃XX>σ2

β

]
(y − µ)

= σ2
βX
>Σ̃

[
1

σ2
ε

Σ̃−1 −XX>
σ2
β

σ2
ε

]
(y − µ)

(A.13)
= σ2

βX
>Σ̃(y − µ)

(A.14)
= µBLUP

β|y ,
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such that we can state equivalence between the full conditional posterior mean of β
in BRR and the predictor for β in BLUP.

The variance of the BLUP equals

Cov(µβ|y) = Cov(β)− E
[
Cov(β

∣∣ y)
]

= σ2
βX
>Σ̃Xσ2

β. (A.18)

The variance components σ2
ε and σ2

β in model (1.12) in REM are usually estimated
using restricted maximum likelihood (REML), and are in general less biased than
maximum-likelihood estimates (Patterson and Thompson, 1971; Corbeil and
Searle, 1976; Searle et al., 1992). For balanced data, REML estimates for the
variance components equals the ANOVA estimates which are known to be
unbiased (Patterson and Thompson, 1971; Searle et al., 1992).

After inserting estimators for the variance components σ2
ε and σ2

β, the

unbiasedness of µ̂β|y = Ê[β | y] = σ̂2
βX
> ˆ̃Σ(y − µ̂) can only be asserted conditionally

on the estimated variance components:

E
[
µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

]
= E

[
σ̂2
βX
> ˆ̃Σ(y − µ̂)

∣∣∣ σ̂2
β, σ̂

2
ε

]
= σ̂2

βX
> ˆ̃ΣE

[
y − µ̂

∣∣∣ σ̂2
β, σ̂

2
ε

]
= 0 = E[β]. (A.19)

In the equivalent model

y = µ+ g + ε (1.10)

it holds that

g ∼ N (0, σ2
gG)

with

σ2
βXX> =

1

p
XX>(pσ2

β) =: Gσ2
g , (1.18)

where σ2
g := pσ2

β and G := 1
pXX>. Consequently,

g
d
= Xβ,

such that the genomic best linear unbiased predictor (GBLUP) for g equals

µg|y := E[g | y] = E[Xβ | y] = Xµβ|y
(A.14),(1.18)

= σ2
gG(Gσ2

g + σ2
ε1n×n)−1(y − µ).

(A.20)
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The conditional variance-covariance matrix of g is obtained as

Σg|y := Cov(g | y)

= XCov(µβ|y)X
>

= XΣµβ|yX
>

(1.18),(A.15)
= σ2

gG− σ2
gG(Gσ2

g + σ2
ε1n×n)−1Gσ2

g . (A.21)

This points out the relationship between the conditional moments of the effects in
the BLUP-model and the GBLUP-model.

A.4. Mixed-Effect Model (MEM)

This section is fully based on the bioRxiv -manuscript Schreck and Schlather (2018).

Up-to-now we have considered random effect models only. We extend model (2.1)
by including a fixed effect Zf which results in a mixed effect model (MEM) of the
form

Y = Zf +Xβ + ε,

where f is a k-vector of fixed effects as in section 2.1, β is a p-vector of random
effects as in section 2.3, Z is a random k row-vector and X is a random
p-row-vector. We assume that Zf and ε as well as Xβ and ε are independent.
We calculate

Var(Y ) = Var(Zf +Xβ + ε)

= Var(Zf) + Var(Xβ) + 2Cov(Zf,Xβ) + σ2
ε .

Inferences on the additive genomic variance of the fixed effect Zf can be done as
in Section 2.1 and inferences on the additive genomic variance of the random effect
Xβ can be done as in Section 2.3. If one is interested in the contribution of LD
between fixed effects and random effects, e.g. when including single important
markers as fixed effects in the MEM, we propose to predict the random conditional
covariance

Cov(Zf,Xβ |β) = f>Cov(Z,X)β, (A.22)

similar to the random genomic variance W in (2.16). We introduce

f̂Σ̂ZX µ̂β|y (A.23)

as a predictor for (A.22), where

f̂ = (Z> ˆ̃ΣZ)−1Z> ˆ̃Σy (A.24)
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is the BLUE of f with conditional covariance

Cov
(
f̂
∣∣∣ σ̂2

β, σ̂
2
ε

)
= Cov

(
(Z> ˆ̃ΣZ)−1Z> ˆ̃Σy

∣∣∣ σ̂2
β, σ̂

2
ε

)
= (Z> ˆ̃ΣZ)−1Z> ˆ̃ΣCov

(
y
∣∣∣ σ̂2

β, σ̂
2
ε

)
ˆ̃ΣZ(Z> ˆ̃ΣZ)−1

= (Z> ˆ̃ΣZ)−1. (A.25)

We calculate:

E
[
f̂Σ̂ZX µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

]
(2.7)
= tr

(
ΣXZCov

(
f̂ , µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

))
+

k∑
i=1

p∑
j=1

Cov
(
σ̂ZXij , f̂i(µ̂β|y)j

∣∣∣ σ̂2
β, σ̂

2
ε

)

=
k∑
i=1

p∑
j=1

Cov
(
σ̂ZXij , f̂i(µ̂β|y)j

∣∣∣ σ̂2
β, σ̂

2
ε

)
,

because

Cov
(
f̂ , µ̂β|y

∣∣∣ σ̂2
β, σ̂

2
ε

)
= Cov

(
f̂ , σ̂2

βX
> ˆ̃Σy

∣∣∣ σ̂2
β, σ̂

2
ε

)
− Cov

(
f̂ , σ̂2

βX
> ˆ̃ΣZf̂

∣∣∣ σ̂2
β, σ̂

2
ε

)
(A.24)

= Cov
(

(Z> ˆ̃ΣZ)−1Z> ˆ̃Σy, σ̂2
βX
> ˆ̃Σy

∣∣∣ σ̂2
β, σ̂

2
ε

)
− σ̂2

βCov
(
f̂
∣∣∣ σ̂2

β, σ̂
2
ε

)
Z> ˆ̃ΣX

(A.25)
= σ̂2

β(Z> ˆ̃ΣZ)−1Z> ˆ̃Σ ˆ̃Σ−1 ˆ̃ΣX

− σ̂2
β(Z> ˆ̃ΣZ)−1Z> ˆ̃ΣX

= 0.

The predictor in (A.23) is nearly unbiased for (A.22) given unbiased estimators σ̂2
β

and σ̂2
ε , because the random covariance in (A.22) has expectation 0.

A.5. Notes on the Mean-centering of X

This section is fully based on the bioRxiv -manuscript Schreck and Schlather (2018).

In model (2.1) in Chapter 2 we consider X to be a random row vector with
expectation 0. If we depart from that assumption and consider X̃ with E[X̃] 6= 0
and Cov(X̃) = ΣX instead of X, we reformulate model (2.1) based on X̃ as

Y = µ+ X̃β + ε = µ+
(
X̃ − E[X̃]

)
β + E[X̃]β + ε

d
= µ+Xβ + E[X̃]β + ε.
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In the FEM (β deterministic) the fixed term E[X̃]β is absorbed by the intercept
such that

Y = µ̃+Xβ + ε,

with µ̃ = µ+ E[X̃]β. We obtain the linear model (2.1) with mean-centered data
but different (fixed) intercept. Consequently, the genomic variance Vf in the FEM,
see (2.4), is unchanged whether we consider mean-centered allele content X or not
(X̃):

Var(Xβ) = β>ΣXβ = Var(X̃β).

In BRM and REM, where β ∼ (µβ,Σβ) is a random variable, the term E[X̃]β is a
random variable itself and is absorbed by the residual instead of the intercept

Y = µ+ X̃β + ε

= µ+
(
X̃ − E[X̃]

)
β + E[X̃]β + ε

d
= µ+Xβ + ε̃,

where ε̃ ∼ (0, σ2
ε + E[X]ΣβE[X]>). However, β is no longer independent of ε̃.

For the genomic variance V , see (2.2), in BRM and REM it makes a difference
whether we consider the mean-centered X or X̃ because:

Var
(
X̃β
)

= Varβ

(
E
[
X̃β |β

])
+ Eβ

[
Var
(
X̃β |β

)]
= Varβ

(
E
[
X̃
]
β
)

+ Eβ
[
β>ΣXβ

]
= E

[
X̃
]
ΣβE

[
X̃
]>

+

p∑
i=1

p∑
j=1

E
[
σXij βiβj

]
= E

[
X̃
]
ΣβE

[
X̃
]>

+ tr(ΣXΣβ) + µ>β ΣXµβ

6= tr(ΣXΣβ) + µ>β ΣXµβ = Var(Xβ).

This is consistent with the approach in Section 1.3 based on the realized model
(1.12) where the genomic variance in REM is estimated based on X

Cov(Xβ) = XX>σ2
β (1.19)

or when using GRM’s in the equivalent model (1.10)

σ2
βXX> =

1

p
XX>(pσ2

β) =: Gσ2
g . (1.18)

The genomic variance in these models clearly depends on whether using
mean-centered matrices X or not, especially in the equivalent model
transformations of X change the variance-covariance matrix of g. The GRM’s are
generally based on mean-centered matrices which is the reason why we have based
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the main analysis of this thesis on the mean-centered approach.
The random genomic variance W , defined in (2.16), however, does not depend on
centering

W := Var(Xβ |β) = β>ΣXβ = tr(ΣXββ
>) = Var(X̃β |β), (2.16)

and is therefore consistent with the genetic variance in Section 1.1 with respect to
the independence to the coding of the QTL genotypes, see for instance (1.4).

A scaling of X by the p-vector b can, similarly to Section 1.1, be absorbed by the
effect vector β, which then has to be redefined as β/b.





B. Figures

B.1. Variation of Observations

Figure B.1.: Estimated variance in the FEM (mean value over iterations of subsets of indi-
viduals) in the reduced mice dataset for different number of QTL k and fixed
number of markers p̃ = 1088. The genetic variance V equals 1 for all k which
resembles a heritability h2 of 0.5. The estimator V̂f performs remarkably bet-
ter than the biased estimator V̂ bias

f and is very close to V independently of
the QTL-to-marker ratio.
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Figure B.2.: Estimated variance in the FEM (mean value over iterations of subsets of indi-
viduals) in the reduced mice dataset for different number of QTL k and fixed
number of markers p̃ = 1088. The genetic variance V equals 4 for all k which
resembles a heritability h2 of 0.8. The estimator V̂f performs remarkably bet-
ter than the biased estimator V̂ bias

f and is very close to V independently of
the QTL-to-marker ratio.

Figure B.3.: Relative root-mean-squared-error over iterations of subsets of individuals in
the reduced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 0.25 for all k which resembles
a heritability h2 of 0.2. The predictor Ŵr in the REM and the estimator Ŵb
in the BRM perform best with an rRMSE of around 6%. The rRMSE of the
estimator V̂f from FEM is about 3% larger and the rRMSE of the estimator
V̂r in the REM is largest and larger than the rRMSE of Ŵr by up to the factor
2.
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Figure B.4.: Relative root-mean-squared-error over iterations of subsets of individuals in
the reduced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 1 for all k which resembles a
heritability h2 of 0.5. The predictor Ŵr from the REM, the estimator Ŵb from
the BRM and the estimator V̂f from FEM perform best whereas V̂r from the
REM is largest and larger than the rRMSE of Ŵr approximately by a factor
of 4.

Figure B.5.: Relative root-mean-squared-error over iterations of subsets of individuals in
the reduced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 4 for all k which resembles
a heritability h2 of 0.8. The predictor Ŵr from the REM, the estimator Ŵb
from the BRM and the estimator V̂f from FEM perform best whereas V̂r from
the REM is drastically larger.
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Figure B.6.: Estimated variance (mean value over iterations of subsets of individuals) in
the mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 0.25 for all k which resembles
a heritability h2 of 0.2. The predictor Ŵr from the REM overestimates V
approximately to the same extend that the estimator V̂r underestimates V .
The estimator Ŵb from BRM performs worst and overestimates V by at least
12%.

Figure B.7.: Estimated variance (mean value over iterations of subsets of individuals) in
the mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 1 for all k which resembles a
heritability h2 of 0.5. The predictor Ŵr from the REM performs best but
slightly overestimates V . The estimator V̂r from the REM underestimates V
by a large margin and the bias of the estimator is worst for a medium QTL-
to-marker ratio. The estimator Ŵb from the BRM constantly overestimates
V but performs very similar to the predictor Ŵr from REM.
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Figure B.8.: Estimated variance (mean value over iterations of subsets of individuals) in the
mice dataset for different number of QTL k and fixed number of markers p =
10346. The genetic variance V equals 4 for all k which resembles a heritability
h2 of 0.8. The estimator Ŵb from the BRM performs best and is very close
to the “true” V . The predictor Ŵr from the REM slightly underestimates V
whereas the estimator V̂r from the REM drastically underestimates V and the
bias of the estimator is worst for a medium QTL-to-marker ratio.

Figure B.9.: Relative root-mean-squared-error over iterations of subsets of individuals in
the mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 0.25 for all k which resembles a
heritability h2 of 0.2. The predictor Ŵr from the REM performs best with an
rRMSE of 7%-8% followed by the estimator V̂r with an rRMSE of 8%-10%.
The estimator Ŵb perform worst for medium QTL-to-marker ratio.
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Figure B.10.: Relative root-mean-squared-error over iterations of subsets of individuals in
the mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 1 for all k which resembles a
heritability h2 of 0.5. The predictor Ŵr from the REM and the estimator
Ŵb from the BRM perform best with an rRMSE of around 6% whereas the
rRMSE of V̂r is severely larger by up to a factor of 3.

Figure B.11.: Relative root-mean-squared-error over iterations of subsets of individuals in
the mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 4 for all k which resembles a
heritability h2 of 0.8. The estimator Ŵb from the BRM perform best with
an rRMSE of around 6%-8% whereas the predictor Ŵr performs worse but
still better than the estimator V̂r.



B.2. Variation of QTL-Allocations 69

B.2. Variation of QTL-Allocations

Figure B.12.: Estimated variance in FEM (mean value over different QTL allocations) in
the reduced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 1 for all k which resembles
a heritability h2 of 0.5. The estimator V̂f performs remarkably better than
the biased estimator V̂ bias

f and is very close to V independently of the QTL-
to-marker ratio.
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Figure B.13.: Estimated variance in FEM (mean value over different QTL allocations) in
the reduced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The genetic variance V equals 4 for all k which resembles
a heritability h2 of 0.8. The estimator V̂f performs remarkably better than
the biased estimator V̂ bias

f and is very close to V independently of the QTL-
to-marker ratio.

Figure B.14.: Relative root-mean-squared-error over different QTL allocations in the re-
duced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The “true” genomic variance V equals 0.25 for all k
which resembles a heritability h2 of 0.2. The predictor Ŵr for the condi-
tional genomic variance in REM and the estimator for the posterior genomic
variance Ŵb perform best. The rRMSE of the estimator V̂r for the marginal
genomic variance is larger than the rRMSE of Ŵr by more than the factor 2.
The rRMSE of the estimator V̂f from FEM is largest with an average value
of about 35%.



B.2. Variation of QTL-Allocations 71

Figure B.15.: Relative root-mean-squared-error over different QTL allocations in the re-
duced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The “true” genomic variance V equals 1 for all k which
resembles a heritability h2 of 0.5. The predictor Ŵr for the conditional ge-
nomic variance in REM and the estimator for the posterior genomic variance
Ŵb perform best. The rRMSE of the estimator V̂r for the marginal genomic
variance is significantly larger than the rRMSE of Ŵr. The rRMSE of the
estimator V̂f from FEM is largest with an average value of about 60%.

Figure B.16.: Relative root-mean-squared-error over different QTL allocations in the re-
duced mice dataset for different number of QTL k and fixed number of
markers p̃ = 1088. The “true” genomic variance V equals 4 for all k which
resembles a heritability h2 of 0.8. The predictor Ŵr for the conditional ge-
nomic variance in REM and the estimator for the posterior genomic variance
Ŵb perform best. The rRMSE of the estimator V̂r for the marginal genomic
variance is drastically larger than the rRMSE of Ŵr. The rRMSE of the
estimator V̂f from FEM is largest by a large amount.
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Figure B.17.: Estimated variance (mean value over different QTL allocations) in the
mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 0.25 for all k which resembles
a heritability h2 of 0.2. The predictor Ŵr from the REM and the estima-
tor Ŵb from the BRM overestimate V whereas the estimator V̂r from REM
underestimates V by approximately the same extend.

Figure B.18.: Estimated variance (mean value over different QTL allocations) in the mice
dataset for different number of QTL k and fixed number of markers p =
10346. The genetic variance V equals 1 for all k which resembles a heritability
h2 of 0.5. The predictor Ŵr from the REM and the estimator Ŵb from
the BRM perform best but overestimate V by about 10%. They perform
remarkably better than the estimator V̂r from the REM which drastically
underestimates V by over 30%-40%.
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Figure B.19.: Estimated variance (mean value over different QTL allocations) in the
mice dataset for different number of QTL k and fixed number of markers
p = 10346. The genetic variance V equals 4 for all k which resembles a
heritability h2 of 0.8. The predictor Ŵr from the REM and the estimator
Ŵb from the BRM perform best and are both very close to the “true” V
although they slightly overestimate it. They perform remarkably better than
the estimator V̂r from REM which drastically underestimates V by over 50%.
This constitutes a striking example for the missing heritability of V̂r.

Figure B.20.: Relative root-mean-squared-error over different QTL allocations in the mice
dataset for different number of QTL k and fixed number of markers p =
10346. The genetic variance V equals 0.25 for all k which resembles a her-
itability h2 of 0.2. The rRMSE of the predictor Ŵr, the estimator Ŵb and
the estimator V̂r fluctuate heavily in k, where the spikes and slabs of Ŵr and
Ŵb are in accordance.
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Figure B.21.: Relative root-mean-squared-error over different QTL allocations in the mice
dataset for different number of QTL k and fixed number of markers p =
10346. The genetic variance V equals 1 for all k which resembles a heritability
h2 of 0.5. The predictor Ŵr for the conditional genomic variance in REM and
the estimator for the posterior genomic variance Ŵb perform best whereas
the rRMSE of V̂r increases in k in the beginning and is larger than the rRMSE
of Ŵr.

Figure B.22.: Relative root-mean-squared-error over different QTL allocations in the mice
dataset for different number of QTL k and fixed number of markers p =
10346. The genetic variance V equals 4 for all k which resembles a heritability
h2 of 0.8. The predictor Ŵr for the conditional genomic variance in REM and
the estimator for the posterior genomic variance Ŵb perform best whereas
the rRMSE of V̂r increases in k in the beginning and is larger than the rRMSE
of Ŵr by an average factor of more than 10.
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Figure B.23.: Empirical correlations with the relative contribution of LD to the genetic
variance in the mice dataset for different number of QTL’s k for fixed num-
ber of markers p = 10346. Values are averaged over the different levels of
h2 ∈ {0.2, 0.5, 0.8}. The correlation of the estimator V̂r with the relative
contribution of LD is about −0.7 except for k = 10, whereas the correlation
of the predictor Ŵr fluctuates around 0. The correlation of the relative bias
of V̂r is about 0.7 except for k = 10 which indicates that the larger the con-
tribution of LD to the genomic variance, the larger the bias of V̂r becomes.
Contrary to that, the bias of the predictor Ŵr is approximately uncorrelated
to the relative contribution of LD. The quantity Ir is positively correlated
(0.9) to the relative contribution of LD which makes it an usable indicator
for the relative contribution of LD to the genomic variance.
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List of Abbreviations and Symbols

Abbreviations
BL Body Length

BLUE Best Linear Unbiased Estimation/ Estimator

BLUP Best Linear Unbiased Prediction/ Predictor

BMI Body Mass Index

BRM Bayesian Regression Model(s)

BRR Bayesian Ridge Regression

FEM Fixed Effect Model(s)

GBLUP Genomic Best Linear Unbiased Prediction/ Predictor

GCTA-GREML Genome-wide Complex Trait Analysis Genomic REML

GRM Genomic Relationship Matrix

GWAS Genome-wide Association Studies

LD Linkage Disequilibrium

MCMC Markov-Chain Monte Carlo

MSE Mean-squared-error

OLS Ordinary Least Squares

QTL Quantitative Trait Locus/ Loci

REM Random Effect Model(s)

REML Restricted Maximum Likelihood

SNP Single Nucleotide Polymorphism

rBias relative Bias

rLD relative contribution of LD to the genomic variance

rRMSE relative root-mean-squared-error

Genetics
E Environmental deviations

G Genetic/ genomic value

P Phenotypic value

V Variance of the genetic/ genomic value



82 List of Abbreviations and Symbols

Genomics
G n× n genomic relationship matrix

V̂ Estimated version of variable V

V equi Marginal genomic variance in equivalent model

V real Marginal genomic variance in realized model

Vb Prior genomic variance in the BRM

Vf Genomic variance in the FEM

Vr Marginal genomic variance in the REM

W Random genomic variance

Wb Posterior mean of W in BRM

Wr Predictor for W in REM

X Stochastic p-vector of marker genotypes

X n× p matrix of marker genotypes

Y Phenotypic value of random individual

g n-vector of genomic values, equals Xβ

h2 Narrow-sense heritability

y n-vector of phenotypic values

β Effect of marker-allele substitution

ε Environmental deviations

µ Intercept

µβ Mean of β

µβ|y BLUP for β

µg|y GBLUP for g

σ2
β Marginal variance of random effect β

σ2
ε Variance of ε

σ2
g “Genomic” variance in GBLUP

σ2
Y Phenotypic variance

Miscellaneous
G(a, b) Gamma distribution with shape a > 0 and scale b > 0

H hat-matrix

Ir Indicator for the relative contribution of LD to genomic vari-
ance in REM

IG(a, b) Inverse-gamma distribution with shape a > 0 and scale b > 0

Km Set containing the numbers of QTL for the mice dataset
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Krm Set containing the numbers of QTL for the reduced mice
dataset

M Number of MCMC samples after burn-in and thinning

k Number of QTL

n Number of individuals/ observations

p Number of markers

N (µ, σ2) Normal distribution with mean µ and variance σ2

ΣZ Variance-Covariance matrix of a random vector Z

1p×p p× p identity matrix

1n Column-n-vector with every entry equal to 1
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