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Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Martin Schlather, Universität Mannheim
Korreferent: Prof. Dr. Tilmann Gneiting, Karlsruher Institut für Technologie

Tag der mündlichen Prüfung: 22. Juni 2018



Abstract

Spatial data with several components, such as observations of air temperature and pressure
in a certain geographical region or the content of two metals in a geological deposit, require
models which can capture the spatial dependence structure of individual components and the
relationship between them. In a wealth of applications, multivariate Gaussian random fields
are sensible models for multivariate spatial data and their second order structure specifies the
marginal correlations and the cross-correlations between the components. In this thesis we
focus on covariance models and simulation techniques for bivariate fields.

In Chapter 2 we summarize some definitions and facts from univariate and multivariate
Geostatistics which are essential for the subsequent chapters.

Chapter 3 introduces two novel bivariate parametric covariance models, the powered ex-
ponential (or stable) covariance model and the generalized Cauchy covariance model. Both
models allow for flexible smoothness, variance, scale, and cross-correlation parameters. The
smoothness parameter is in (0, 1]. Additionally, the bivariate generalized Cauchy model allows
for distinct long range parameters. The results are based on general sufficient conditions for the
positive definiteness of 2×2-matrix valued functions. These conditions are easy to check, since
they require only computing the derivatives of a bivariate covariance function and calculating
an infimum of a function of one variable. We also show that the univariate spherical model
can be generalized to the bivariate case with spherical marginal and cross-covariance functions
only in a trivial way.

Circulant embedding is a powerful algorithm for fast simulation of stationary Gaussian ran-
dom fields on a rectangular grid in Rn, which works perfectly for compactly supported co-
variance functions. Cut-off circulant embedding techniques have been developed for univariate
random fields for dimensions up to R3 and rely on the modification of a covariance function
outside the simulation window, such that the modified covariance function is compactly sup-
ported. In Chapter 4 we propose extensions of the cut-off approach for bivariate Gaussian
random fields. In particular, we provide a method for simulating bivariate fields with a bi-
variate powered exponential covariance model and the full bivariate Matérn covariance model
for certain sets of parameters. On the way we extend the cut-off circulant embedding method
even for univariate models.

In Chapter 5 we illustrate the use of the bivariate powered exponential model for a data
example.
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Zusammenfassung

Räumliche Daten mit mehreren Komponenten, wie Beobachtungen von Lufttemperatur und
Atmosphärendruck in einer bestimmten geographischen Region oder der Gehalt von zwei Met-
allen in einer geologischen Lagerstätte, erfordern Modelle, die die räumliche Abhängigkeitsstruk-
tur einzelner Komponenten und die Beziehungen zwischen ihnen erfassen. In einer Vielzahl
von Anwendungen sind multivariate Gauß’sche Zufallsfelder sinnvolle Modelle für multivariate
räumliche Daten und ihre Struktur zweiter Ordnung spezifiziert die marginalen Korrelationen
und die Kreuzkorrelationen zwischen den Komponenten. Diese Arbeit konzentriert sich auf
Kovarianzmodelle und Simulationstechniken für bivariate Felder.

Kapitel 2 fasst einige Definitionen und Fakten der univariaten und der multivariaten Geo-
statistik zusammen, die grundlegend für die folgenden Kapitel sind.

Kapitel 3 stellt zwei neuartige bivariate parametrische Kovarianzmodelle vor, das potenzex-
ponentielle (oder stabile) Kovarianzmodell und das verallgemeinerte Cauchy-Kovarianzmodell.
Beide Modelle ermöglichen flexible Glättungs-, Varianz-, Skalierungs- und Kreuzkorrelationspa-
rameter. Der Glättungsparameter ist in (0, 1]. Zusätzlich erlaubt das bivariate verallgemeinerte
Cauchy-Modell verschiedene Langzeitparameter. Die Ergebnisse basieren auf hinreichenden
Bedingungen für die positiv Definitheit von 2 × 2-Matrix-wertigen Funktionen. Diese Bedin-
gungen sind einfach zu überprüfen, da nur die Ableitungen einer bivariaten Kovarianzfunktion
berechnet werden müssen, und das Infimum einer Funktion von einer Variablen zu bestimmen
ist. Zudem wird gezeigt, dass das univariate sphärische Modell nur auf triviale Weise auf
den bivariaten Fall mit sphärischen marginalen und Kreuzkovarianzfunktionen verallgemeinert
werden kann.

Circulant Embedding ist ein leistungsfähiger Algorithmus zur schnellen Simulation von sta-
tionären Gauß’schen Zufallsfeldern auf einem rechteckigen Gitter in Rn, der perfekt für Kovar-
ianzfunktionen mit kompaktem Träger funktioniert. Cut-off circulant Embedding Techniken
wurden für univariate Zufallsfelder für Dimensionen bis zu R3 entwickelt und basieren auf
der Modifikation einer Kovarianzfunktion außerhalb des Simulationsfensters, sodass die mod-
ifizierte Kovarianzfunktion einen kompakten Träger hat. In Kapitel 4 werden Erweiterungen
des Cut-off-Ansatzes für bivariate Gauß’sche Zufallsfelder vorgeschlagt. Insbesondere wird eine
Methode zur Simulation von bivariaten Feldern mit einem bivariaten exponentiellen Kovarianz-
modell und dem vollständigen bivariaten Matérn-Kovarianzmodell für bestimmte Parameter-
sätze bereitgestellt. Dabei wird die Cut-off circulant Embedding-Methode auch für univariate
Modelle erweitert.

Kapitel 5 illustriert die Verwendung des bivariaten potenzexponentiellen Modells anhand
eines Datenbeispiels.
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1 Introduction

Multivariate data measured in space arise in a variety of disciplines including soil science (Lark
and Papritz, 2003), ecology (Pelletier et al., 2009), mining (Zawadzki et al., 2013), geology
(Mery et al., 2017) and meteorology (Hewer et al., 2017). Air temperature and pressure in
a certain geographical region or the content of two metals in a geological deposit are the
examples of spatial processes with two components. Spatial dependence within and between
the components is exploited in particular when the component of interest is not exhaustively
sampled, whereas the measurement of other components can be easily carried out, e.g. in soil
sciences (Goovaerts (1999) and Atkinson et al. (1992)). An appropriate multivariate spatial
covariance model gives more sensible results for spatial interpolation than univariate models,
see for example Cressie and Zammit-Mangion (2016). In environmental and climate sciences it
is important to model spatial meteorological data jointly in order to reflect spatial dependence
within and between components adequately (see the discussions in Feldmann et al. (2015),
Berrocal et al. (2007), and Gel et al. (2004)); otherwise the obtained results might be unsound.

Multivariate Gaussian random fields, characterized by their mean and covariance functions,
are the basis for modeling spatial data in these areas. Classical textbooks on univariate and
multivariate geostatistics include Cressie (1993), Chilès and Delfiner (1999), Lantuejoul (2001),
Wackernagel (2003), and Goovaerts and Goovaerts (1997). For simplicity, in the theoretical
part of the thesis we consider zero mean random fields. Then a covariance function describes the
properties of the corresponding Gaussian random field. Consider, for example, a realization
of a Gaussian random field with two components shown in two upper plots in Figure 1.1.
This field has the bivariate Matérn covariance model (Gneiting et al., 2010), which is plotted
under the realizations. The functions ψ11 and ψ22, called marginal covariances, describe the
properties of the first and the second field respectively. The behavior of the covariance function
at the origin largely reflects the smoothness of the corresponding field (Gneiting, 2002). In
the bivariate Matérn model the smoothness of each field is controlled by the corresponding
parameter νii > 0, i = 1, 2. In Figure 1.1, ν22 > ν11 and therefore the realization on the right
hand side is smoother than the one on the left hand sight. The scale parameter sii > 0, i = 1, 2,
controls the decay of the marginal correlation with the distance. For example, the correlation
of any two observations of the first field for the larger distance is higher than the correlation of
any two observations of the second field, therefore the upper left plot is more colorful than the
upper right one. The middle picture in the lower panel of Figure 1.1 is the graph of the cross-
covariance function ψ12, which describes the covariance structure between the two components.
The scale parameter s12 controls the correlation decay between the components. Thus, the
correlation between the observation of the first field and the observation of the second field is
maximum at zero distance and it decreases as the distance increases. While the maximum of
a marginal covariance function is always at the origin, the maximum of the cross-covariance
function (assuming positive correlation between a given variable pair) may be shifted away
from the origin, which is typical when one component affects another component with some
delay (Wackernagel (2003), Hansen (2018)). However, we focus on covariance functions which
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Figure 1.1: A realization of a bivariate Gaussian random field (upper two plots) with the
bivariate Matérn covariance model (lower three plots). The stationary and isotropic covariance
function depends on the distance r between the locations. The lower left and the right plots
show the marginal covariance functions ψ11 and ψ22, respectively.

depend only on the distance between observations, i.e. they are invariant with respect to the
location of observations and the direction of the separation vector.

A covariance function must guarantee that the variance of an arbitrary linear combination
of observations of any involved components, taken at arbitrary spatial locations is nonnegative.
In this thesis we concentrate on constructing matrix-valued functions that satisfy this require-
ment, on simulation techniques which are suitable for these functions and on inference with
them. In Chapter 2 we summarize some definitions and facts from univariate and multivariate
Geostatistics which are crucial for the subsequent chapters.

A comprehensive overview of recent covariance functions for multivariate geostatistics is
found in Genton and Kleiber (2015) and Schlather et al. (2015). Among these models is
the linear model of coregionalization (LMC), see Goulard and Voltz (1992) and Wackernagel
(2003). Although it is widely used by practitioners, it lacks flexibility, since all direct and
cross variograms share the same set of basic structures. This means, in particularly, that the
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smoothness of any component is equal to the smoothness of the roughest latent process, and,
thus, the standard approach LMC does not admit individually distinct smoothness properties,
unless structural zeros are imposed on the latent process coefficients (Gneiting et al. (2010)
and Goovaerts and Goovaerts (1997)). Models with compact support are introduced in Du and
Ma (2013), Porcu et al. (2013), Daley et al. (2015) and Schlather et al. (2017). Kleiber (2017)
studies the properties of multivariate random fields in the frequency domain. Cressie and
Zammit-Mangion (2016) develop a conditional approach for constructing multivariate models.

Genton and Kleiber (2015) pose the question how to characterize a parameter set of the
valid multivariate powered exponential (or stable) model. In Chapter 3 we give a partial
answer to this question, providing sufficient conditions for the positive definiteness of a bivariate
model. In a similar way we can also formulate sufficient conditions for the positive definiteness
of the bivariate generalized Cauchy model. These models are flexible, intuitive and easily
interpretable: in both models three parameters characterize the smoothness of the covariances
of process components and the cross-covariance. Further three parameters model the long-range
behaviour in the bivariate Cauchy model. The smoothness parameters of marginal covariances
in both models are restricted to values in (0, 1]. The results are based on general sufficient
conditions for the positive definiteness of a 2 × 2-matrix valued functions. These conditions
require only computing the derivatives of a bivariate covariance function of order two and three
in R and in R3, respectively, and calculating an infimum of a function of one variable. We also
show that the univariate spherical model can be generalized to the bivariate case with spherical
marginal and cross-covariance functions only in a trivial way. We collect some new bivariate
models, whose construction follows directly from Schoenberg’s theorem.

Development of many multivariate covariance models led to the increasing interest in sim-
ulation algorithms. Cholesky decomposition is not suitable for samples with a larger number
of locations, not least because the computing time of the algorithm is cubic in the number of
variables. For functions possessing spectral densities with closed formulae, the spectral turn-
ing bands algorithm can be used (Arroyo and Emery (2017) and Emery et al. (2016)). The
multivariate turning bands method is implemented in the R package RandomFields (Schlather
et al., 2017). Both turning bands methods are faster than the Cholesky decomposition and can
be performed for any configuration of the target locations, but they produce realizations that
are only approximately Gaussian. Under certain conditions on a covariance function the multi-
variate version of the circulant embedding algorithm, presented in Chan and Wood (1999) and
explained in detail in Helgason et al. (2011), produces Gaussian realizations. However, simi-
larly to the univariate case, for many multivariate covariance models that do not have compact
support exact simulation is not possible. Cut-off circulant embedding techniques have been
developed for univariate random fields for dimensions up to R3 and rely on the modification
of a covariance function outside the simulation window, such that the modified covariance
function is compactly supported. In Chapter 4 we propose extensions of the cut-off approach
for univariate and bivariate Gaussian random fields. In particular, we provide a method for
simulating bivariate fields with a bivariate powered exponential covariance model and the full
bivariate Matérn covariance model for certain sets of parameters on a grid.

In Chapter 5 we illustrate the use of the bivariate exponential model for a data example on
the content of copper and zinc in the top soil of a 14 km2 region in Swiss Jura. We compare
the performance of bivariate powered exponential model to the traditional linear model of
coregionalization and the bivariate Matérn model.





2 Preliminaries

We briefly summarize some basic definitions and facts about covariance functions and var-
iograms of univariate and multivariate Gaussian random fields, which are necessary in the
subsequent parts.

There is sometimes a confusion between the notions multidimensional and multivariate in
the literature. Hereinafter we call a random field Z univariate if it has only one component,
and multivariate if it has m ≥ 1 components, i.e. Z(x) = (Z1(x), . . . , Zm(x)), x ∈ Rn. In
Chapters 3 and 4 we will be concerned with bivariate fields, i.e. m = 2. The term multidimen-
sional refers to the index set of Z, i.e. to the dimension of x. For example, a one dimensional
univariate field is just a temporal stochastic process, a two dimensional univariate field is a
’classical’ random field and a three dimensional bivariate field Z(x) = (Z1(x), Z2(x)) has two
components with x ∈ R3.

The finite dimensional distributions of a multivariate Gaussian random field Z(x) are multi-
variate normal and thus the distribution of the field is uniquely characterized by its mean and
covariance function. For simplicity, we assume in the theoretical part of the thesis that the
random field is centered, i.e. EZ(x) = 0 for all x ∈ Rn. We denote the covariance function by
C(x, y) = Cov(Z(x), Z(y)), x, y ∈ Rn. Clearly, a covariance function C of a multivariate field
is a matrix-valued function, whose diagonal elements Cii(x, y), i = 1, . . . ,m, are the marginal
covariance functions and the off-diagonal elements Cij(x, y) are the cross-covariance functions
of the components of the process 1 ≤ i 6= j ≤ m. The content of the next two sections is based
mostly on Wackernagel (2003), Chilès and Delfiner (1999) and Yaglom (1987).

2.1 Multivariate covariance functions

A covariance function C is called stationary if for any x, h ∈ Rn and i, j = 1, . . . ,m it holds:

Cij(x+ h, x) = Cij(h, 0) =: Cij(h).

A stationary multivariate covariance function is not necessarily an even or odd function. In
general, we have

Cij(−h) 6= Cij(h),

but
Cij(h) = Cji(−h).

C is stationary and isotropic if additionally C(h1) = C(h2) whenever ‖h1‖ = ‖h2‖, i.e. marginal
covariance functions and cross-covariance functions depend only on the distance between the
variables locations. Hereinafter we write C(r) instead of C(h) with r = ‖h‖, whenever C is
stationary and isotropic.

We denote by Φn the set of continuous functions ϕ : [0,∞) 7→ R such that the map (x, y) 7→
ϕ(||x − y||) is positive definite on Rn. Analogously, Φm

n denotes the class of mappings ϕ =
[ϕij(·)]mi,j=1 : [0,∞) 7→ Rm×m with each ϕij being continuous, such that

C(x, y) = [ϕij(||x− y||)]mi,j=1 , x, y ∈ Rn,

7



8 Chapter 2. Preliminaries

is an m×m matrix-valued covariance function on Rn.

We recall that a covariance function must be positive definite, i.e. it guarantees that the
variance of an arbitrary linear combination of observations of any involved components Zi(x),
i = 1, . . . ,m, taken at arbitrary spatial locations is nonnegative. That is, C is symmetric and
for any p ∈ N, a1, . . . , ap ∈ Rm, and x1, . . . , xp ∈ Rn it must hold

p∑
i=1

aTi C(xi − xj)aj ≥ 0.

Reversely, for each positive definite function C there exists a Gaussian random field with C
being its covariance function. Thus, the terms covariance function and positive definite function
are interchangeable.

Example 2.1 (Linear model of coregionalization, Goulard and Voltz (1992); Wackernagel
(2003))
The basic statement of the linear model of coregionalization (LMC) is that each variable Zi,
i = 1, . . . ,m, of a multivariate field Z is a linear combination of p independent univariate
stationary random fields with unit variance {Yk, k = 1, . . . , p}.

Zi(x) =

p∑
k=1

aikYk(x), x ∈ Rn.

The resulting multivariate covariance is

Cij(h) =

p∑
k=1

aikajkρk(h), h ∈ Rn,

where ρk(h) is a correlation function of Yk and A = [aik]
m,p
i,k=1 is a m × p full rank matrix.

Although this model is widely used among practitioners, it lacks flexibility and its limitations
are discussed in Gneiting et al. (2010)

Example 2.2 (Convolution)
Suppose that c1, . . . , cm are real-valued functions on Rn which are both integrable and square-
integrable. The matrix-valued function defined by equation

Cij(h) = (ci ∗ cj)(h), h ∈ Rn, i, j = 1, . . . ,m,

where the asterisk ∗ denotes the convolution operator, is a matrix-valued covariance function on
Rn (Theorem 2 in Gneiting et al. (2010)). These models are introduced in Ver Hoef and Barry
(1998) and Gaspari and Cohn (1999); the multivariate parsimonious Matérn covariance model
(Gneiting et al., 2010) serves as an example of this construction. Kleiber (2017) discusses the
properties and limitations of this class of models.

For a better understanding of the properties of a covariance function it is often useful to
examine its Fourier transform. A stationary covariance function C has the following spectral
representation

C(h) =

∫
Rn
ei〈x,h〉F (dx) for all h ∈ Rn, (2.1)
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where the increments ∆F (x) = F (x + ∆x) − F (x) of the matrix-valued function F (x) are
positive semidefinite matrices for all x ∈ Rn and ∆x ≥ 0 (componentweise). The diagonal
elements Fii(x), i = 1, . . . ,m, are real, non-decreasing and bounded; the off-diagonal terms
Fij(x), i 6= j, i, j = 1, . . . ,m, are in general complex-valued and of finite variation. Conversely,
any matrix of continuous functions C(h) is a matrix-valued covariance function, if the matrices
of increments ∆F (x) are positive semi-definite for any x ∈ Rn and ∆x ≥ 0. This result
is a multidimensional generalization of Cramer’s theorem (Cramer, 1940), which is itself a
multivariate generalization of Bochner’s theorem (Bochner, 1955) and can be found in Gikhman
and Skorokhod (2004), Yaglom (1987), and Wackernagel (2003).

When the Cij are additionally absolutely integrable, there exists a spectral density matrix
such that

C(h) =

∫
Rn
ei〈h,x〉f(x)dx for all h ∈ Rn

and f(x) is a positive semi-definite matrix for all x ∈ Rn, see Yaglom (1987).

If C is stationary and isotropic, the Fourier transform in (2.1) can be replaced by a Hankel
transform, that is,

C(r) = 2(n−2)/2Γ
(n

2

)∫ ∞
0

(ru)−(n−2)/2J(n−2)/2(ru)dG(u), r ≥ 0, (2.2)

where Gij are the functions of bounded variation having the property that the matrix ∆G(u) =
G(u+ ∆u)−G(u) is positive semidefinite for all u,∆u > 0 (Yaglom, 1987). Analogous Hankel
transform for the spectral density reads

C(r) = (2π)n/2
∫ ∞

0
(ru)−(n−2)/2J(n−2)/2(ru)un−1f(u)du, r ≥ 0,

where [f(u)]mi,j=1 is a positive semi-definite matrix for all u ≥ 0. This result is a nultivariate
generalization of Schoenberg’s theorem (Schoenberg, 1938). The inversion formula for the
spectral density f , which exists if

∫∞
0 rn−1|C(r)|dr <∞, is

f(u) = (2π)−n/2
∫ ∞

0
(ur)−(n−2)/2J(n−2)/2(ur)rn−1C(r)dr,

see for example Stein (1999). In the subsequent Chapters 3, 4 and 5 we restrict our attention
to stationary and isotropic bivariate covariance models, whose components stem from the same
family, i.e. to models of the form

C(r) =

[
σ2

1ψ11(r) ρσ1σ2ψ12(r)
ρσ1σ2ψ12(r) σ2

2ψ22(r)

]
, (2.3)

where σi > 0 is the variance of the field Zi, ψij(·) = ψ(·|θij , sij) is a continuous univariate
stationary and isotropic correlation function, which depends on a scale (or range) parameter
sij > 0, i, j = 1, 2, and another optional parameter θij = (θ1

ij , ..., θ
k
ij) with k ∈ N (e.g. smooth-

ness, long range behaviour). Necessarily, |ρ| ≤ 1. Note that isotropy implies ψ12(r) = ψ21(r).
Furthermore, we choose σ1 = σ2 = 1, since the general case follows immediately from the
following fact:

C(r) =

[
σ1 0
0 σ2

]
×
[
ψ11(r) ρψ12(r)
ρψ12(r) ψ22(r)

]
×
[
σ1 0
0 σ2

]
.
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For instance, the multivariate Matérn model (Gneiting et al., 2010; Apanasovich et al., 2012)
is a representative of this class with

ψ (r|ν, s) =
21−ν

Γ(ν)
(sr)νKν(sr),

where s > 0 is a scale parameter, ν > 0 is a smoothness parameter and Kν is a modified Bessel
function of the second kind. The bivariate powered exponential model (Moreva and Schlather,
2017) also belongs to the class (2.3) with

ψ (r|α, s) = e−(sr)α ,

where s > 0 is a scale parameter and α ∈ (0, 2] is a smoothness parameter.
The class given by (2.3) can be seen as a generalization of the class of separable models

introduced by Mardia and Goodall (1993), where a multivariate covariance factorizes into a
product of a covariance matrix R and a univariate correlation function ψ(·), i.e.

Cij(r) = Rijψ(r), r ≥ 0, i, j = 1, . . . ,m.

That is, a separable model assumes that all components share the same spatial correlation
structure and differ only in their variances. In particular, the scale parameter is the same for
both marginal and cross-covariances. The class (2.3) is more flexible allowing each field to have
distinct smoothness, scale, and variance parameters and admitting flexible cross-correlation
between the fields. Given a univariate correlation function ψ, our goal in Chapter 3 is to find
the parameter sets for which the function C in (2.3) is a valid covariance function. Clearly, if
the components are uncorrelated, i.e. ρ = 0, then C is always a bivariate covariance function.
Thus, we are interested in the cases when |ρ| > 0.

2.2 Variograms

In Section 4.3 we focus on intrinsically stationary univariate random fields. Intrinsic station-
arity is a weaker assumption than stationarity. A random field Z with E(Z(x)− Z(y))2 <∞,
x, y ∈ Rn is called intrinsically stationary if E(Z(x+ h)− Z(x)) and E(Z(x+ h)− Z(x))2 do
not depend on x for all h ∈ Rn. Then we define the variogram

γ(h) =
1

2
E(Z(x+ h)− Z(x))2.

We recall that a function γ : Rn 7→ R is negative definite, if for any p ∈ N, x1, . . . , xp ∈ Rn,
and a1, . . . , ap ∈ R, such that

∑p
i=1 ai = 0, the following inequality holds

p∑
i=1

p∑
j=1

aiγ(xi − xj)aj ≤ 0.

Theorem 2.3 (Gneiting et al. (2001))
If γ is a real symmetric function in Rn satisfying γ(0) = 0, the following properties are equiv-
alent.

(i) There exists an intrinsically stationary Gaussian random field Z with variogram γ(·).



2.2. Variograms 11

(ii) The function γ is negative definite.

(iii) For all a > 0, exp(−aγ(·)) is a covariance function.

The equivalence of (i) and (ii) mimics the characterization of covariances as positive definite
functions. Theorem 2.3 extends known result (see the references in Gneiting et al. (2001)) by
removing the additional assumption of continuity of γ.

A stationary random field is always intrinsically stationary, but the converse is not true: the
Wiener process is a counterexample. A stationary field has a bounded variogram γ which is
linked with the covariance function C by the relation

γ(h) = C0 − C(h), h ∈ Rn, (2.4)

where C0 = C(0). If the variogram γ(h) of an intrinsically stationary random field is bounded,
there exists a constant C0 > 0 such that C(h) = C0 − γ(h) is a covariance function. The
minimal value of C0 is of great interest because higher variances can always be achieved by
adding a spatially constant, independent Gaussian random variable to a random field. Gneiting
et al. (2001) give the minimal value of C0 for bounded variograms. If γ is unbounded, then
(2.4) can hold locally, i.e. for |h| ≤ r and some r > 0. The existence and minimum value of C0

in (2.4) is discussed in Gneiting et al. (2001).
Finally, the rate with which a variogram γ(h) of a centered field can increase to infinity is

constrained by

lim
‖h‖→∞

γ(h)

‖h‖2
= 0, h ∈ Rn.





3 Bivariate covariance models

We discuss a sufficient condition and a necessary condition for the positive definiteness of
models from the class (2.3). We consider some examples of this class and introduce novel
bivariate models, built on Schoenberg’s theorem and on the sufficient condition. This chapter
is partially based on Moreva and Schlather (2017).

3.1 Models obtained by spectral approach

We collect some new examples of the class (2.3). The proof of positive definiteness (or the
contrary) of these models is based on Schoenberg’s theorem. Hereinafter we denote by fij
the spectral density of a correlation function ψij , i, j = 1, 2. By Schoenberg’s theorem, a
matrix-valued function C in (2.3) is positive definite if and only if

f11(r)f22(r)− ρ2f2
12(r) ≥ 0 (3.1)

for all r > 0.
Surprisingly, not all univariate models can be generalized to the multivariate case in a non-

trivial way. For example, the univariate spherical model, ψ(r|s) =
(
1− 3

2sr + 1
2(sr)3

)
+
, r ≥ 0,

s > 0, is widely used in geostatistics, but its bivariate generalization, defined by (2.3) is not
a covariance function unless the components are independent or the model is separable. To
prove this fact, we first need the following auxiliary results.

Lemma 3.1
Let (uk)k∈N be a sequence such that uk − ak ↑ b for some a > b > 0 as k tends to infinity.
Then for any s < 1, there exists a k0 ∈ N such that uk0/s 6= uk for all k ∈ N.

Proof. We prove the lemma by contradiction. Suppose that there exists an s < 1 such that
for all k ∈ N there is lk ∈ N with uk/s = ulk . First note that there exists N ∈ N such that
for every k ≥ N the corresponding uk lies inside the interval (b+ a(k − 1), b+ ak) and there
exists a decreasing sequence εk ↓ 0, εk ∈ (0, a), such that

uk = b+ ak − εk.

For any s < 1, there is n ∈ N and 0 ≤ c < 1 such that a/s = an− ac.
Consider the following cases.

(i) c = 0. There exist nb ∈ N and cb ∈ [0, 1) such that b/s = b+ a(nb − cb). Then we have

ulk =
uk
s

=
b+ ak − εk

s
= b+ a(nb − cb) + ank − εk

s
= b+ a(nb + nk)−

(
acb +

εk
s

)
.

We choose k large enough so that 0 < acb + εk
s < a. Since

b+ a(nb + n− 1) < ulk < b+ a(nb + n),

we get lk = nb + n and εnb+n = acb + εk/s. But then it follows that εlk > εk, which
cannot be true, since (εk)k∈N is a decreasing sequence.

13



14 Chapter 3. Bivariate covariance models

(ii) c > 0. By our assumption, for uk+1 there exists lk+1 > k + 1, such that
uk+1

s = ulk+1
.

We obtain

uk+1

s
=
uk + a− (εk+1 − εk)

s

=
uk
s

+
a

s
− εk+1 − εk

s

= ulk + an− ac− εk+1 − εk
s

= b+ alk − εlk + an− ac− εk+1 − εk
s

= b+ a(lk + n)−
(
ac+ εlk +

εk+1 − εk
s

)
Choose k large enough, so that 0 < ac + εlk +

εk+1−εk
s < a. Then lk+1 = lk + n and

εlk+n = ac+ εlk +
εk+1−εk

s . Note that εlk+n → ac when k →∞, which is a contradiction,
since c > 0.

Lemma 3.2
Let C be an m-variate continuous covariance function. Then the set of roots of fij is a superset
of the roots of fii and the roots of fjj for any i, j = 1, . . . ,m.

Proof. The lemma follows directly from Schoenberg’s theorem.

Theorem 3.3
Let C be stationary and isotropic covariance function from class (2.3) with ψij(r) = ψ(r/sij),
r ≥ 0, sij > 0, i, j = 1, 2, and let f be the spectral density of ψ. Suppose that there exists a
positive strictly increasing sequence (uk)k∈N such that the following properties hold:

(i) for any s < 1, there is a k0 ∈ N with uk0/s 6= uk for all k ∈ N,

(ii) the elements of the sequence (uk)k∈N constitute all positive roots of f .

Then either ρ = 0 or s11 = s12 = s22.

Proof. Without loss of generality we assume s11 ≤ s22. First note that the positive roots of
fij form the sequence (sijuk)k∈N and we denote by Aij the set of positive roots of fij , i.e.
Aij = {sijuk, k ∈ N}, i, j = 1, 2. We consider three cases:

• s12 > s11, then s11u1 /∈ A12 and by Lemma 3.2, the function C cannot be positive definite.

• s12 < s11, then by condition (i) there exists k0 such that s11
s12
uk0 6= uk for all k ∈ N and

therefore s11uk0 /∈ A12. By condition (ii) s11uk0 ∈ A11. Then by Lemma 3.2, the function
C cannot be positive definite.

• s12 = s11 < s22. This case is treated analogously to the previous one.

The generalization of Theorem 3.3 to a multivariate covariance function C follows immedi-
ately from the properties of positive definite matrices.
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Corollary 3.4
Let C be stationary and isotropic multivariate covariance function C with Cii(r) = ψ(r/sii),
Cij(r) = ρijψ(r/sij), sij > 0, |ρij | ≤ 1, i, j = 1, . . . ,m, i 6= j, and let f be the spectral density of
ψ. Suppose that there exists a positive strictly increasing sequence (uk)k∈N such the conditions
(i) and (ii) of Theorem 3.3 hold. Then for all i, j = 1, . . . ,m either ρij = 0 or sij = s for some
s > 0.

Theorem 3.5
The bivariate spherical model[ (

1− 3
2s11r + 1

2(s11r)
3
)

+
ρ
(
1− 3

2s12r + 1
2(s12r)

3
)

+

ρ
(
1− 3

2s12r + 1
2(s12r)

3
)

+

(
1− 3

2s22r + 1
2(s22r)

3
)

+

]
,

with r ≥ 0, sij > 0, |ρ| ≤ 1, i, j = 1, 2, belongs to the class Φ2
3 if and only if ρ = 0 or

s11 = s12 = s22.

Proof. The spectral density of the univariate spherical correlation functions is

f(u) =
3s

π2u6
(u cos(u/2s)− 2s sin(u/2s))2

Clearly, f is pseudo periodic and takes infinitely many zeros on u > 0. We denote by uk, k ∈ N,
the roots of the function f̃(u) = u− tan(u) on u > 0. Then the roots of the spectral density fij
are 2sijuk, k ∈ N, i, j = 1, 2. Noting that uk ↑ π

2 + πk as k → ∞, we apply Lemma 3.1 and
Theorem 3.3 and prove the theorem.

Remark 3.6
It is possible to construct a bivariate covariance model with the spherical marginal covariance
functions using the convolution approach, see Example 2.2 and Du and Ma (2013). In Example
2.2 in R3 we take

c1(x) = 1{‖x‖≤a/2},

c2(x) = 1{‖x‖≤b/2},

where x ∈ R3, a, b > 0. We assume without loss of generality that a > b. Then the marginal
covariance functions C11, C22 are

C11(r) =

∫
R3

1{‖x−y‖≤a/2}1{‖y‖≤a/2}dy =
πa3

6

(
1− 3

2

r

a
+

1

2

(r
a

)3
)

+

C22(r) =

∫
R3

1{‖x−y‖≤b/2}1{‖y‖≤b/2}dy =
πb3

6

(
1− 3

2

r

b
+

1

2

(r
b

)3
)

+

,

and the cross-covariance function is

C12(r) = C21(r) =

∫
R3

1{‖x−y‖≤a/2}1{‖y‖≤b/2}dy

=


πb3

6 , r ≤ a−b
2

π
12r

(
a+b

2 − r
)2 (

r2 − 3
4(a− b)2 + r(a+ b)

)
, a−b2 ≤ r ≤ a+b

2 ,

0, r ≥ a+b
2 .

where r = ‖x‖.
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Theorem 3.7 (Bessel I model)
The bivariate Bessel I model

2
n−2
2 Γ

(n
2

)[ Jn−2
2

(s11r)(s11r)
−n−2

2 ρJn−2
2

(s12r)(s12r)
−n−2

2

ρJn−2
2

(s12r)(s12r)
−n−2

2 Jn−2
2

(s22r)(s22r)
−n−2

2

]
, (3.2)

where sij > 0, i, j = 1, 2, belongs to the class Φ2
n if and only if ρ = 0 or s11 = s12 = s22.

Proof. Similarly to Theorem 3.5, if ρ = 0 or s11 = s12 = s22 the function defined by (3.2)
belongs to Φ2

n. In remains to show that for other parameter values (3.2) is not in Φ2
n. The

function ψ(r) = 2
n−2
2 Γ(n2 )(sr)−

n−2
2 Jn−2

2
(sr), r ≥ 0, s > 0, has the spectral representation (2.2)

with spectral distrubution function

Gs(u) =

{
0, u ≤ s,
1, u > s

By Schoenberg’s theorem the function (3.2) is positive definite if and only if the matrix

∆G(u) =

[
Gs11(u+ ∆u) ρGs12(u+ ∆u)
ρGs12(u+ ∆u) Gs22(u+ ∆u)

]
−
[
Gs11(u) ρGs12(u)
ρGs12(u) Gs22(u)

]
is positive definite for any u ≥ 0 and ∆u ≥ 0. First, consider the case s11 = s22. This case
splits into two subcases.

• s11 = s22, s12 > s11. Choose u and u+∆u such that s11 < u < s12 < u+∆u and observe
that the matrix

∆G(u) =

[
1 ρ
ρ 1

]
−
[
1 0
0 1

]
=

[
0 ρ
ρ 0

]
is not positive definite.

• s11 = s22, s12 < s11. Choose u and u+∆u such that u < s12 < u+∆u < s11 and observe
that the matrix

∆G(u) =

[
0 ρ
ρ 0

]
is not positive definite.

If s11 6= s22, we assume without loss of generality that s11 < s22. Then the following cases are
possible.

• s11 ≤ s12 < s22. Choose u and u + ∆u such that u < s11 ≤ s12 < u + ∆u < s22. Then
we get

∆G(u) =

[
1 ρ
ρ 0

]
is not positive definite.
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• s11 < s22 ≤ s12. Choose u and u + ∆u such that s11 < u < s22 ≤ s12 < u + ∆u. Then
we obtain that the matrix

∆G(u) =

[
1 ρ
ρ 1

]
−
[
1 0
0 0

]
=

[
0 ρ
ρ 1

]
is not positive definite.

• s12 < s11 < s22. Choose u and u+ ∆u such that u < s12 < u+ ∆u < s11 < s22.

∆G(u) =

[
0 ρ
ρ 0

]
is not positive definite

Remark 3.8 (Cardinal sine model)
A special case of the Bessel model with n = 3 is a cardinal sine. Theorem 3.7 asserts that the
following model [

sin(s11r)
s11r

ρ sin(s12r)
s12r

ρ sin(s12r)
s12r

sin(s12r)
s12r

]
,

where sij > 0, i, j = 1, 2, belongs to the class Φ2
3 if and only if ρ = 0 or if s11 = s12 = s22.

From Schoenberg’s theorem it follows the Bessel I model cannot be generalized to fields with
a number of components higher than two, unless the components are independent or the model
is separable.

If we replace n−2
2 by νij >

n−2
2 , i, j = 1, 2, in the Bessel I model (3.2) then the resulting

model is valid for some parameter set, which is described by the following theorem.

Theorem 3.9 (Bessel II model)
The bivariate Bessel II model

ϕ(r) =

[
2ν11Γ(ν11 + 1)

Jν11 (s11r)

(s11r)ν11
ρ2ν12Γ(ν12 + 1)

Jν12 (s12r)

(s12r)ν12

ρ2ν12Γ(ν12 + 1)
Jν12 (s12r)

(s12r)ν12
2ν22Γ(ν22 + 1)

Jν22 (s22r)

(s22r)ν22

]
, (3.3)

where νij > (n− 2)/2, sij > 0, i, j = 1, 2, and Jν is a Bessel function of the first kind, belongs
to the class Φ2

n if and only if s12 ≤ min{s11, s22} and its cross-correlation parameter ρ satisfies
the following inequality.

ρ2 ≤ Γ(ν11 + 1)Γ(ν22 + 1)

Γ(ν12 + 1)2

Γ(ν12 − n−2
2 )2

Γ(ν11 − n−2
2 )Γ(ν22 − n−2

2 )

s4ν12
12

s2ν11
11 s2ν22

22

22ν12−ν11−ν22× (3.4)

inf
0<u<s212

(s2
11 − u)ν11−n/2(s2

22 − u)ν22−n/2

(s2
12 − u)2ν12−n

.

In particular, this can be written as one of the following cases:

(i) if n
2 − 1 < ν12 <

n
2 , the bivariate Bessel II model is in Φ2

n if and only if ρ = 0,
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(ii) if ν12 = n/2, ν11 ≥ n/2, ν22 ≥ n/2, the bivariate Bessel II model is in Φ2
n if and only if

ρ2 ≤ 1

Γ(n2 + 1)2

Γ(ν11 + 1)Γ(ν22 + 1)

Γ(ν11 + 1− n
2 )Γ(ν22 + 1− n

2 )

s2n
12

s2ν11
11 s2ν22

22

2n−ν11−ν22×

(s2
11 − s2

12)ν11−n/2(s2
22 − s2

12)ν22−n/2,

(iii) if ν12 = n/2, (n−2)/2 < ν11 ≤ n/2, (n−2)/2 < ν22 ≤ n/2, the bivariate Bessel II model
is in Φ2

n if and only if

ρ2 ≤ 1

Γ(n2 + 1)2

Γ(ν11 + 1)Γ(ν22 + 1)

Γ(ν11 + 1− n
2 )Γ(ν22 + 1− n

2 )

s2n
12

sn11s
n
22

2n−ν11−ν22 ,

(iv) if ν12 = n/2, and ν11, ν22 are not as in (ii)-(iii), the infimum in (3.4) is attained either
at u = 0 or u = s2

12 or at

u =
(
(n/2− ν11)s2

22 + (n/2− ν22)s2
11

)
/(n− ν11 + ν22),

(v) if ν11, ν22 > (n − 2)/2 and ν12 > n/2 the infimum is attained either if u = 0, or if
u ∈ (0, s12) is a solution of the quadratic equation,

(ν11 + ν22 − 2ν12)u2

+ (n− ν11 − ν22)s2
12u+ (2ν12 −

n

2
)(s2

22 + s2
11)u− (ν22s

2
11 + ν11s

2
22)u (3.5)

+ (ν11 −
n

2
)s2

22s
2
12 + (ν22 −

n

2
)s2

11s
2
12 + (n− 2ν12)s2

11s
2
22 = 0.

Proof. The spectral density of the Bessel covariance function ψ(r) = 2νΓ(ν + 1)(sr)−νJν(sr),
r ≥ 0, s > 0, ν > (n− 1)/2, in Rn is

f(u) =

u−
n−2
2

π
n
2

Γ(ν+1)
s2ν2νΓ(ν+1−n

2
)

(
s2 − u2

)ν−n
2 , u ≤ s,

0, u > s,

see for example Chapter 22.2 in Yaglom (1987). Clearly, by Schoenberg’s theorem the function
(3.3) cannot be positive definite if s12 > min{s11, s22}. Assume now that s12 ≤ min{s11, s22}.
Then the function (3.3) is positive definite if and only if inequality (3.4) holds true. Let us
examine the function under infimum

w(u) =
(s2

11 − u)ν11−n/2(s2
22 − u)ν22−n/2

(s2
12 − u)2ν12−n

,

where u ∈ [0, s2
12]. Consider the following cases.

(i) n
2 − 1 ≤ ν12 <

n
2 , then w(s12) = 0.

(ii) - (iv) ν12 = n/2, then w(u) = (s2
11 − u)ν11−n/2(s2

22 − u)ν22−n/2. The derivative of w(u) is

w′(u) = −(s2
11 − u)ν11−n/2−1(s2

22 − u)ν22−n/2−1×

[(ν11 − n/2)(s2
22 − u) + (ν22 − n/2)(s2

11 − u)].
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The first two factors in the round brackets are positive for u ∈ [0, s2
12]. If ν11 ≥ n/2 and

ν22 ≥ n/2, then the term in square brackets is nonnegative and the derivative is nonpositive.
Therefore, w(u) is nonincreasing and the minimum is reached at u = s12. If ν11 ≤ n/2 and
ν22 ≤ n/2, the term in square brackets is nonpositive and the derivative is nonnegative.
Therefore, w(u) is nondecreasing and the minimum is reached at u = 0. For other values of
ν11 and ν22 the minimum of w(u) on [0, s2

12] is attained either at u = 0 or u = s12 or at

u =
(
(n/2− ν11)s2

22 + (n/2− ν22)s2
11

)
/(n− ν11 + ν22).

(v) If ν11, ν22 > (n− 2)/2 and ν12 > n/2 we analyze the derivative of w(u),

w′(u) =− (ν11 − n/2)(s2
11 − u)ν11−n/2−1(s2

22 − u)ν22−n/2(s2
12 − u)n−2ν12

− (ν22 − n/2)(s2
11 − u)ν11−n/2(s2

22 − u)ν22−n/2−1(s2
12 − u)n−2ν12

− (n− 2ν12)(s2
11 − u)ν11−n/2(s2

22 − u)ν22−n/2(s2
12 − u)n−2ν12−1

=− (s2
11 − u)ν11−n/2−1(s2

22 − u)ν22−n/2−1(s2
12 − u)n−2ν12−1

× [(ν11 − n/2)(s2
22 − u)(s2

12 − u) + (ν22 − n/2)(s2
11 − u)(s2

12 − u)

+ (n− 2ν12)(s2
11 − u)(s2

22 − u)].

The first three factors are positive for u ∈ [0, s2
12]. The term in square brackets is quadratic

in u and equals to

(ν11 + ν22 − 2ν12)u2

+ (n− ν11 − ν22)s2
12u+ (2ν12 −

n

2
)(s2

22 + s2
11)u− (ν22s

2
11 + ν11s

2
22)u

+ (ν11 −
n

2
)s2

22s
2
12 + (ν22 −

n

2
)s2

11s
2
12 + (n− 2ν12)s2

11s
2
22.

Thus, w(u) attains its minimum either at u = 0 or if u is a solution of (3.5) that is in [0, s2
12].

Corollary 3.10
If in Theorem 3.9 s11 = s12 = s22 = s, s > 0, then the two following cases are possible:

1. ν12 < (ν11 + ν22)/2, then the Bessel II model is in Φ2
n if and only if ρ = 0,

2. ν12 ≥ (ν11 + ν22)/2, then the Bessel II model is in Φ2
n if and only if

ρ2 ≤ Γ(ν11 + 1)Γ(ν22 + 1)

Γ(ν12 + 1)2

Γ(ν12 − n−2
2 )2

Γ(ν11 − n−2
2 )Γ(ν22 − n−2

2 )
.

Although Schoenberg’s theorem provides necessary and sufficient conditions for a matrix-
valued function to be positive definite, for many covariance models there exists no closed
formulae for their spectral densities. But even if there are analytical formulae, Schoenberg’s
theorem often leads to cumbersome expressions, which are impossible to calculate analytically
and very hard to minimize numerically. Consider, for example the Hole effect model.
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Theorem 3.11 (Hole effect model)
The bivariate Hole effect model[

e−s11r cos(b11r) ρe−s12r cos(b12r)
ρe−s12r cos(b12r) e−s22r cos(b22r)

]
, (3.6)

where sii ≥
√

3bii, sij > 0, bij > 0, i = 1, 2, belongs to the class Φ2
3 if and only if

ρ2 ≤ inf
u≥0

s11s22

s2
12

[
u2 + 2(s2

11 + b211)u+ (s2
11 + b211)(s2

11 − 3b211)

(u2 + 2u(s2
11 − b211) + (s2

11 + b211)2)2

]
×[

u2 + 2(s2
22 + b222)u+ (s2

22 + b222)(s2
22 − 3b222)

(u2 + 2u(s2
22 − b222) + (s2

22 + b222)2)2

]
×[

(u2 + 2u(s2
12 − b212) + (s2

12 + b212)2)4

(u2 + 2(s2
12 + b212)u+ (s2

12 + b212)(s2
12 − 3b212))2

]
. (3.7)

Proof. The spectral density of ψ(r) = e−sr cos(br), r ≥ 0, s > 0, b > 0, is

f(u) =
1

2π2u

∫ ∞
0

re−sr sin(ur) cos(br)dr

=
1

4π2u

∫ ∞
0

re−sr(sin(r(u+ b)) + sin(r(u− b)))dr

=
1

4π2u

[∫ ∞
0

re−sr sin(r(u+ b))dr +

∫ ∞
0

re−sr sin(r(u− b))dr
]

=
1

4π2u

[
2s(u+ b)

(s2 + (u+ b)2)2
+

2s(u− b)
(s2 + (u− b)2)2

]
=

s

2π2u

[
u+ b

(s2 + (u+ b)2)2
+

u− b
(s2 + (u− b)2)2

]
=

s

2π2u

[
2u(s4 − 2s2b2 + 2s2u2 − 3b4 + 2b2u2 + u4)

(s2 + (u+ b)2)2(s2 + (u− b)2)2

]
=

s

π2

[
u4 + 2(s2 + b2)u2 + s4 − 2s2b2 − 3b4

(s2 + (u+ b)2)2(s2 + (u− b)2)2

]
=

s

π2

[
u4 + 2(s2 + b2)u2 + (s2 + b2)(s2 − 3b2)

(u4 + 2u2(s2 − b2) + (s2 + b2)2)2

]
.

By the inequality (3.1) the function (3.6) is positive definite if and only if the inequality (3.7)
holds true.

3.2 Necessary condition for positive definiteness

The condition ν12 < (ν11 + ν22)/2 in the bivariate Matérn model (Gneiting et al., 2010) nec-
essarily leads to the independence of the components. In the forth section of their article, the
authors only very briefly discuss the origin of this condition. Similar restrictions are imposed
on smoothness parameters in the bivariate powered exponential model and the bivariate gen-
eralized Cauchy model in Sections 3.4 and 3.5. Since this kind of constrains is common for
many models of type (2.3) we look at it in detail and explain additionally similar conditions
on long-range parameters in the bivariate generalized Cauchy model.
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These constraints come from the multivariate version of Schoenberg’s theorem and the
Tauberian theorems (Bingham, 1972; Leonenko, 1999). Tauberian theorems link the prop-
erties of a univariate correlation function with those of its spectral measure. We first need the
notion of slow variation.

A function L : (0,∞) 7→ [0,∞) is said to be slowly varying at infinity (at zero), if for every
λ > 0, it holds

L(λr)

L(r)
→ 1 as r →∞ (r → 0).

We write f
·∼ g as t→ t0, t0 ∈ [0,∞], for two functions f and g on [0,∞), if f is asymptot-

ically proportional to g, i.e. f(t)/g(t)→ A, A > 0, as t→ t0.

Theorem 3.12 (Abelian and Tauberian theorems)
Let F be a spectral measure on [0,∞) of a stationary and isotropic univariate correlation
function ψ in Rn and let L be a function varying slowly at infinity.

• If 0 < α < 2, then

1− ψ(r)
·∼ rαL(1/r) as r → 0+ (3.8)

if and only if

1− F (u)
·∼ L(u)

uα
as u→∞. (3.9)

If α = 2, relation (3.8) is equivalent to∫ r

0
u[1− F (u)]du

·∼ L(r) as r →∞

or to ∫ r

0
u2F (du)

·∼ L(r) as r →∞.

If α = 0, the relation (3.8) implies the asymptotic equivalence (3.9). Conversely, (3.9)
implies (3.8) with α = 0 if [1−F (u)] is convex for u sufficiently large, but not in general.

• Let 0 < β < n. If

ψ(r)
·∼ L(r)r−β as r →∞,

then

F (u)
·∼ L

(
1

u

)
uβ as u→ 0 + .

Corollary 3.13
Let the spectral densities fij of a matrix-valued function C in (2.3) be decreasing. Let θij =
(αij , βij) in equation (2.3) parametrize the behaviour of ψ(r|θij , sij) at the origin and at infinity
respectively, i.e.

1− ψ(r|θij)
·∼ rαij as r → 0+,

ψ(r|θij)
·∼ r−βij as r →∞,

αij ∈ (0, 2), βij ∈ (0, n), i, j = 1, 2. Then C in (2.3) with α12 < (α11 + α22)/2 or β12 <
(β11 + β22)/2 cannot be positive definite unless ρ = 0.



22 Chapter 3. Bivariate covariance models

Proof. Theorem 3.12 implies that the spectral densities fij admit the following relations

fij(r)
·∼ r−αij−n as r →∞,

fij(r)
·∼ rβij−n as r → 0 + .

(3.10)

Combining (3.10) and (3.1) gives the assertion of the corollary.

In Corollary 3.13 we assumed for simplicity that sij = 1, i, j = 1, 2, because distinct scales
would not change the asymptotics. Additionally, we chose L(1/r) to be equal to some constant,
which is indeed the case for the examples below.

Example 3.14 (Powered exponential correlation function)

Let ψ(r) = e−r
α

, r > 0, α ∈ (0, 2), then observe that 1− ψ(r)
·∼ rα as r → 0+ and L(r) = 1.

The corresponding measure F varies at infinity as follows

1− F (u)
·∼ u−α as u→∞.

Since the function ψ decreases rapidly enough at infinity, the density f of F exists and

f(u)
·∼ u−α−n as u→∞.

The latter matches with the series representation of f in Nolan (2005). Thus, by Corollary 3.13,
the bivariate powered exponential model of the form (2.3) requires necessarily α12 ≥ (α11 +
α22)/2 unless ρ = 0.

Example 3.15 (Generalized Cauchy correlation function)

Let ψ(r) = (1 + rα)−β/α, r, β > 0, β < n, α ∈ (0, 2). Then 1 − ψ(r)
·∼ β
αr

α as r → 0+, so in

this case L(r) = β
α . The spectral density f of ψ decays at infinity as follows

f(u)
·∼ u−α−n as u→∞.

This matches the series representation for the spectral density of the Cauchy covariance in Lim
and Teo (2009). Analogously, the spectral density f behaves at the origin as

f(u)
·∼ uβ−n as u→ 0.

Thus, by Corollary 3.13, the bivariate generalized Cauchy model of the form (2.3) requires
necessarily α12 ≥ (α11 + α22)/2 and β12 ≥ (β11 + β22)/2 unless ρ = 0.

3.3 Sufficient condition for positive definiteness

Porcu and Zastavnyi (2011) provide the following construction principle for multivariate co-
variance models.

Theorem 3.16 A. Let (Ω,F , µ) be a measure space and E be a linear space. Assume that
the family of matrix-valued functions A(x, u) = [Aij(x, u)] : E ×Ω 7→ Rm×m satisfies the
following conditions:

(a) for every i, j = 1, . . . ,m and x ∈ E, the functions Aij(x, ·) belong to L1(Ω,F , µ);

(b) A(·, u) is a positive definite matrix-valued function for µ-almost every u ∈ Ω.
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Let

C(x) :=

∫
Ω
A(x, u)dµ(u) =

[∫
Ω
Aij(x, u)dµ(u)

]m
i,j=1

, x ∈ E.

Then C is a positive definite matrix-valued function in E.

B. Conditions (a) and (b) in part A are satisfied when A(x, u) = k(x, u)g(x, u), where the
maps k(x, u) : E × Ω 7→ R and g(x, u) = [gij(x, u)]mi,j=1 : E × Ω 7→ Rm×m satisfy the
following conditions:

a) for every i, j = 1, . . . ,m and x ∈ E, the functions k(x, ·)gij(x, ·) belong to L1(Ω,F , µ);

b) k(·, u) is positive definite for µ-almost every u ∈ Ω;

c) g(·, u) is a positive definite matrix-valued function or g(·, u) = g(u) is a positive
semidefinite matrix for µ-almost every u ∈ Ω.

Starting from known functions k and gij , Porcu et al. (2013) and Daley et al. (2015), see
also Schlather et al. (2017), construct new compactly supported multivariate covariance func-
tions. Our approach inspired by Gneiting (1999) and Sironvalle (1980) is different; we consider
the model (2.3) as a candidate for a multivariate covariance function and then find the corre-
sponding gij , which depend on parameters sij , θij , and the parameter set which guarantees its
positive definiteness.

The following theorem provides sufficient conditions for positive definiteness of a bivariate
model C in (2.3).

Theorem 3.17
A matrix-valued function C defined by equation (2.3) belongs

a) to the class Φ2
1 if ψij(r), i, j = 1, 2, is continuously differentiable in (0,∞) with piecewise

existing second derivative in (0,∞) and the following conditions hold:

(i) rψ′ij(r)→ 0 as r →∞ and rψ′ij(r)→ 0 as r → 0,

(ii) ψ′ij(r) is integrable in (0,∞), i, j = 1, 2,

(iii) the matrix [
ψ′′11(r) ρψ′′12(r)
ρψ′′12(r) ψ′′22(r)

]
(3.11)

is positive definite for almost all r ≥ 0.

b) to the class Φ2
3 if ψij(r), i, j = 1, 2 is twice continuously differentiable in (0,∞) with

piecewise existing third derivative in (0,∞) and the following conditions hold:

(i) rψ′ij(r)→ 0, r2ψ′′ij(r)→ 0 as r →∞ and rψ′ij(r)→ 0, r2ψ′′ij(r)→ 0 as r → 0,

(ii) ψ′ij(r), rψ
′′
ij(r) are integrable in (0,∞), i, j = 1, 2,

(iii) the matrix [
ψ′′11(r)− rψ′′′11(r) ρ(ψ′′12(r)− rψ′′′12(r))
ρ(ψ′′12(r)− rψ′′′12(r)) ψ′′11(r)− rψ′′′11(r)

]
(3.12)

is positive semidefinite for almost all r ≥ 0.
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Proof. In Theorem 3.16 B we take a Euclidean space Rn, n ∈ {1, 3}, as E and the Lebesgue
measure as µ. We first prove the assertion in R. We take k(r, u) =

(
1− r

u

)
+
, gii(u) = uψ′′ii(u),

i = 1, 2, and g12(u) = g21(u) = ρuψ′′12(u) for r ≥ 0, u > 0 and such that ψ′′ij(u) are defined.
We check the conditions of Theorem 3.16 B consequently. Conditions (i) and (ii) allow us to
apply integration by parts in the following integral, see for example Chapter 10.13 in Apostol
(1974), ∫ ∞

0
uψ′′ij(u)du = uψ′ij(u)|∞0 −

∫ ∞
0

ψ′ij(u)du = ψij(0) <∞. (3.13)

From equation (3.13) follows the condition a) in Theorem 3.16.B. Clearly, k(·, u) is a positive
definite function in R for u > 0 and therefore in Theorem 3.16 holds. Condition c) in Theorem
3.16.B is satisfied due to condition (iii). Then the following matrix-valued function is positive
definite [ ∫∞

0

(
1− r

u

)
+
uψ′′11(u)du ρ

∫∞
0

(
1− r

u

)
+
uψ′′12(u)du

ρ
∫∞

0

(
1− r

u

)
+
uψ′′12(u)du

∫∞
0

(
1− r

u

)
+
uψ′′22(u)du

]
. (3.14)

To simplify function (3.14) we apply integration by parts again. For r ≥ 0 we have∫ ∞
0

(
1− r

u

)
+
uψ′′ij(u)du =

∫ ∞
r

(u− r)ψ′′ij(u)du

=

∫ ∞
r

(u− r)dψ′ij(u)

= (u− r)ψ′ij(u)
∣∣∞
r
−
∫ ∞
r

ψ′ij(u)du

= ψij(r).

Thus, (3.14) and (2.3) are the same matrices.

The proof for R3 is analogous with k(r, u) =
(
1− r

u

)
+
− r

2u

(
1− r2

u2

)
+

and gii(u) = 1
3(uψ′′ii(u)−

u2ψ′′′ii (u)), i = 1, 2, g12(u) = 1
3ρ(uψ′′12(u) − u2ψ′′′12(u)), r ≥ 0, u > 0 and such that ψij(u)′′′,

i, j = 1, 2, are defined. Applying again integration by parts we obtain∫ ∞
0

[(
1− r

u

)
+
− r

2u

(
1− r2

u2

)
+

]
(uψ′′ij(u)− u2ψ′′′ij (u))du

=

∫ ∞
r

[
1− 3r

2u
+

r3

2u3

]
(uψ′′ij(u)− u2ψ′′′ij (u))du

=

∫ ∞
r

(
u− 3r

2
+

r3

2u2

)
(ψ′′ij(u)− uψ′′′ij (u))du

=

∫ ∞
r

(
u− 3r

2
+

r3

2u2

)
ψ′′ij(u)du−

∫ ∞
r

(
u2 − 3ru

2
+
r3

2u

)
ψ′′′ij (u)du

=

∫ ∞
r

(
u− 3r

2
+

r3

2u2

)
ψ′′ij(u)du−

∫ ∞
r

(
u2 − 3ru

2
+
r3

2u

)
dψ′′ij(u)

=

∫ ∞
r

(
u− 3r

2
+

r3

2u2

)
ψ′′ij(u)du

−
(
u2 − 3ru

2
+
r3

2u

)
ψ′′ij(u)

∣∣∣∣∞
r

+

∫ ∞
r

(
2u− 3r

2
− r3

2u2

)
ψ′′ij(u)du
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=

∫ ∞
r

3 (u− r)ψ′′ij(u)du

= 3

∫ ∞
r

(u− r) dψ′ij(u)

= 3 (u− r)ψ′ij(u)
∣∣∞
r
− 3

∫ ∞
r

ψ′ij(u)du

= 3ψij(r).

Remark 3.18
Two following conditions are sufficient for condition (iii) in Theorem 3.17, part a):

ψ′′ii(r) ≥ 0, i = 1, 2, r ∈ A, (3.15)

and

ρ2 ≤ inf
r∈A

ψ′′11(r)ψ′′22(r)

ψ′′12(r)2
, (3.16)

where A = {r ≥ 0 : ψ′′ij(r), i, j = 1, 2, exist}.
Two following conditions are sufficient for condition (iii) in Theorem 3.17, part b):

ψ′′ii(r)− rψ′′′ii (r) ≥ 0, i = 1, 2, r ∈ B, (3.17)

and

ρ2 ≤ inf
r∈B

(ψ′′11(r)− rψ′′′11(r))(ψ′′22(r)− rψ′′′22(r))

(ψ′′12(r)− rψ′′′12(r))2
, (3.18)

where B = {r ≥ 0 : ψ′′′ij (r), i, j = 1, 2, exist}. The infimum in inequalities (3.16) and (3.18)
is taken over all r > 0 with ψ′′12(r) 6= 0 and ψ′′12(r) − rψ′′′12(r) 6= 0 respectively. Note that the
inequalities (3.15) and (3.17) must hold only for marginal covariance functions, but not for
the cross-covariance functions, This allows α12 to take values in (0, 2] in the bivariate powered
exponential model and the bivariate generalized Cauchy model.

The functions k(r, u) are equal to the Euclid’s hat functions, k(r, u) = hn(r/u), n = 1, 3,
(Gneiting, 1999). Thus, Theorem 3.17 can be generalized to higher dimensions with the cor-
responding functions hn, but it requires the calculation of higher order derivatives.

Let the following function C be a covariance function of a stationary and isotropic m-variate
Gaussian random field,

C(r) =


2ψ11(r) ρ12ψ12(r) . . . ρ1mσmψ1m(r)

σ2ρ12ψ12(r) 2ψ22(r) . . . ρ2mσmψ2m(r)
...

...
. . .

...
ρ1mσmψ1n(r) ρ2nσmψ2m(r) . . . σ2

mψmm(r)

 , (3.19)

where ψij , i, j = 1, . . . ,m, as in (2.3). Then Theorem 3.17 can be generalized in the following
way.

Theorem 3.19
A matrix-valued function C defined by equation (3.19) belongs
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a) to the class Φ2
1 if ψij(r), i, j = 1, . . . ,m, is continuously differentiable in (0,∞) with

piecewise existing second derivative in (0,∞) and the following conditions holds

(i) rψ′ij(r)→ 0 as r →∞ and rψ′ij(r)→ 0 as r → 0, i, j = 1, . . . ,m,

(ii) ψ′ij(r) is integrable in (0,∞), i, j = 1, . . . ,m,

(iii) the matrix 
ψ′′11(r) ρ12ψ

′′
12(r) . . . ρ1mψ

′′
1m(r)

ρ12ψ
′′
12(r) ψ′′22(r) . . . ρ2mψ

′′
1m(r)

...
...

. . .
...

ρ1mψ
′′
12(r) ρ2mψ

′′
2m(r) . . . ψ′′mm(r)


is positive semidefinite for almost all r ≥ 0.

b) to the class Φ2
3 if ψij(r), i, j = 1, . . . ,m, is twice continuously differentiable in (0,∞)

with piecewise existing third derivative in (0,∞) and the following conditions holds

(i) rψ′ij(r) → 0, r2ψ′′ij(r) → 0 as r → ∞ and rψ′ij(r) → 0, r2ψ′′ij(r) → 0 as r → 0,
i, j = 1, . . . ,m,

(ii) ψ′ij(r), rψ
′′
ij(r) are integrable in (0,∞), i, j = 1, . . . ,m,

(iii) the matrix
ψ′′11(r)− rψ′′′11(r) ρ12(ψ′′12(r)− rψ′′′12(r)) . . . ρ1m(ψ′′1m(r)− rψ′′′1m(r))

ρ12(ψ′′12(r)− rψ′′′12(r)) (ψ′′22(r)− rψ′′′22(r)) . . . ρ2m(ψ′′2m(r)− rψ′′′2m(r))
...

...
. . .

...
ρ1m(ψ′′1m(r)− rψ′′′1m(r)) ρ2m(ψ′′2m(r)− rψ′′′2m(r)) . . . (ψ′′mm(r)− rψ′′′mm(r))


is positive semidefinite for almost all r ≥ 0.

3.4 Bivariate powered exponential model

The univariate powered exponential correlation function

ψ(r|α, s) = exp(−(sr)α),

s > 0, α ∈ (0, 2], generalizes the exponential correlation function (α = 1) and the Gaussian
correlation function (α = 2). It permits the full range of allowable values for the fractal
dimension (Gneiting, 2002). Unlike the Matérn model, the univariate powered exponential
correlation function does not allow for a smooth parametrization of the differentiability of the
field paths. Indeed, the paths are continuous and non-differentiable for α < 2 and infinitely
often differentiable for α = 2. Nevertheless, the powered exponential covariance may be a
good alternative for non-differentiable fields, as it is easy to calculate. Univariate powered
exponential covariance is used in Rundel et al. (2013), Guillot and Santos (2009), Henderson
et al. (2002), and Kent and Wood (1997), for example.

Each marginal covariance functions of the bivariate powered exponential model,

Cii(r) = exp(−(siir)
αi), (3.20)
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are of powered exponential type with smoothness parameter αii ∈ (0, 2] and scale parameter
sii > 0, i = 1, 2. The cross covariance functions,

C12(r) = C21(r) = ρ exp(−(s12r)
α12), (3.21)

are also a powered exponential function with colocated correlation ρ, smoothness parameter
α12 ∈ (0, 2] and scale parameter s12 > 0.

To describe a parameter space, for which the matrix-valued function (3.20) and (3.21) is a

covariance function, we define auxiliary functions q
(n)
α,s(r), n ∈ {1, 3}, by

q(1)
α,s(r) = α(sr)α − α+ 1,

q(3)
α,s(r) = α2(sr)2α − 3α2(sr)α + 4α(sr)α + α2 − 4α+ 3.

Theorem 3.20
A matrix-valued function C given by equations (3.20) and (3.21) with αii ∈ (0, 1], i = 1, 2, and
α12 ∈ (0, 2], belongs to the class Φ2

n, n ∈ {1, 3}, if

ρ2 ≤ α11α22s
α11
11 sα22

22

α2
12s

2α12
12

inf
r>0

[
rα11+α22−2α12e2(s12r)α12−(s11r)α11−(s22r)α22

× q
(n)
α11,s11(r)q

(n)
α22,s22(r)

(q
(n)
α12,s12(r))2

]
.

(3.22)

In particular, the infimum in (3.22) is positive if and only if one of the following conditions is
satisfied

(i) α12 = α11 = α22 and sα11
12 ≥

s
α11
11 +s

α11
22

2 ,

(ii) α12 = α11 > α22 and s12 > 2−1/α11s11,

(iii) α12 = α22 > α11 and s12 > 2−1/α22s22,

(iv) α12 > max{α11, α22}.
Moreover, if α12 < (α11 + α22)/2 is in Φ2

n, n ∈ N, if and only if ρ = 0.

Proof. Functions ψij(r|αij , sij), i, j = 1, 2, of the bivariate powered exponential model satisfy
the requirements of Theorem 3.17. The derivatives of ψij(r|αij , sij) are

ψ′(r|αij , sij) = −αijs
αij
ij r

αij−1e−(sijr)
αij
,

ψ′′(r|αij , sij) = αijs
αij
ij r

αij−2e−(sijr)
αij

(αij(sijr)
αij − αij + 1),

ψ′′′(r|αij , sij) = −αijs
αij
ij r

αij−3e−(sijr)
αij

× (3αij((sijr)
αij − 1) + α2

ij((sijr)
2αij − 3(sijr)

αij + 1) + 2).

• in R we plug in the derivatives into inequality (3.16). Then we get

ρ2 ≤ inf
r>0

ψ′′(r|α11, s11)ψ′′(r|α22, s22)

(ψ′′(r|α12, s12))2

=
α11α22

α2
12

sα11
11 sα22

22

s2α12
12

inf
r>0

[
rα11+α22−2α12e2(s12r)α12−(s11r)α11−(s22r)α22

× (α11(s11r)
α11 − α11 + 1)(α22(s22r)

α22 − α22 + 1)

((α12(s12r)α12 − α12 + 1))2

]
.
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• in R3 we first calculate

ψ′′(r|αij , s11)− rψ′′′(r|αij , sij)

= αijs
αij
ij r

αij−2e−(sijr)
αij

(αij(sijr)
αij − αij + 1)

+ αijs
αij
ij r

αij−2e−(sijr)
αij

(3αij((sijr)
αij − 1) + α2

ij((sijr)
2αij − 3(sijr)

αij + 1) + 2)

= αijs
αij
ij r

αij−2e−(sijr)
αij

[αij(sijr)
αij − αij + 1 + 3αij(sijr)

αij − 3αij

+α2
ij(sijr)

2αij − 3α2
ij(sijr)

αij + α2
ij + 2

]
= αijs

αij
ij r

αij−2e−(sijr)
αij [

α2
ij(sijr)

2αij − 3α2
ij(sijr)

αij + 4αij(sijr)
αij + α2

ij

−4αij + 3] .
(3.23)

Analogously to the previous case, we plug in (3.23) into inequality (3.18) and obtain the
desired inequality (3.22).

All factors of the right-hand side of (3.22) are positive for r > 0 meaning that the infimum can
be zero only at r = 0 or r =∞. Clearly, the infimum is positive for the parameter values given
in (i)− (iv) and it is zero otherwise. The case α12 <

α11+α22
2 is discussed in Section 3.2.

Since inequality (3.22) provides only a sufficient but not a necessary condition for the positive
definiteness, a zero infimum in inequality (3.22) does not imply that the model defined by (3.20)
and (3.21) is not a valid covariance model. Consider, for example, a bivariate exponential
model, i.e. a model with α11 = α12 = α22 = 1 in (3.20) and (3.21). It is a special case of the
bivariate Matérn model and a necessary and sufficient condition for its positive definiteness
can be calculated from Theorem 3 in Gneiting et al. (2010).

Corollary 3.21
The bivariate exponential model belongs to the class Φ2

n, n ∈ N, if and only if

ρ2 ≤ s11s22

s2
12

inf
r>0

(s2
12 + r2)1+n

(s2
1 + r2)1/2+n/2(s2

2 + r2)1/2+n/2
. (3.24)

In particular, this can be written as one of the following cases:

1. if s12 ≤ min{s11, s22} the bivariate exponential model is in Φ2
n, n ∈ N, if and only if

ρ2 ≤
(

s2
12

s11s22

)n
2. if min{s11, s22} ≤ s12 ≤ max{s11, s22} the infimum in (3.24) is attained either if r = 0,

or in the limit as r →∞ or if

r2 =
s2

11s
2
12 + s2

12s
2
22 − 2s2

11s
2
22

s2
11 + s2

22 − 2s2
12

.

3. if s12 ≥ max{s11, s22} the bivariate exponential model is in Φ2
n, n ∈ N, if and only if

ρ2 ≤ s11s22

s2
12

.
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We compare Corollary 3.21 with the sufficient condition from Theorem 3.20 in R. The
corresponding inequality for ρ is the following

ρ2 ≤ s2
11s

2
22

s4
12

inf
r>0

e(2s12−s11−s22)r. (3.25)

In particular,

1. if 2s12 − s11 − s22 ≥ 0 the bivariate exponential model is valid in R if

ρ2 ≤ s2
11s

2
22

s4
12

2. if 2s12 − s11 − s22 < 0 the infimum in (3.25) is zero and attained in the limit as r →∞
and therefore ρ = 0.

Thus, the sufficient condition for the bivariate exponential model (3.25) is more restrictive than
the criterion in Corollary 3.21.

The bivariate Gaussian model is a special case of the bivariate powered exponential model
with αij = 2, i, j = 1, 2. The spectral density of model admits the closed-form expression and
therefore the following criterion for positive definiteness can be formulated.

Theorem 3.22
The bivariate Gaussian model [

e−(s11r)2 ρe−(s12r)2

ρe−(s12r)2 e−(s22r)2

]
, (3.26)

with sij > 0, |ρ| ≤ 1, i, j = 1, 2, belongs to the class Φ2
n if and only if

(i) s2
12 ≤ 2s2

11s
2
22/(s

2
11 + s2

22) and ρ2 ≤ (s2
12/(s11s22))n

or

(ii) s2
12 > 2s2

11s
2
22/(s

2
11 + s2

22) and ρ = 0.

Proof. The Gaussian correlation function ψ = e−(sr)2 , r ≥ 0, s > 0, has the spectral density

fs(u) =
1

2nπn/2sn
e−

u2

4s2 , u ≥ 0.

By Schoenberg’s theorem, function (3.26) is positive definite if and only if

ρ2 ≤ s2n
12

sn11s
n
22

inf
r>0

e
− r2

4s211
− r2

4s222
+2 r2

4s212 =
s2n

12

sn11s
n
22

inf
r>0

e
r2

4s211s
2
22s

2
12

(2s211s
2
22−s212s211−s212s222)

(3.27)

Consider the following cases:

1. s2
12 ≤ 2s2

11s
2
22/(s

2
11 + s2

22), then the exponent in (3.27) is increasing in r, the infimum is
attained at zero and ρ2 ≤ (s2

12/(s11s22))n.

2. s2
12 > 2s2

11s
2
22/(s

2
11 + s2

22), then the exponent in (3.27) is decreasing in r, the infimum at
attained at infinity and ρ = 0.

The bivariate powered exponential model is implemented in the R package RandomFields
(Schlather et al., 2017). Figure 3.1 provides an example of the maximum attainable |ρ| in
inequality (3.22) that have been found numerically. For details on implementation see Sec-
tion 5.2.
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Figure 3.1: The maximum attainable |ρ| in
inequality (3.22) for the bivariate powered
exponential covariance model in R. The
parameters are α11 = 0.2, α22 = 0.5, s11 =
2, s22 = 3.

Figure 3.2: The maximum attainable |ρ| in
inequality (3.30) for the bivariate Cauchy
covariance model in R. The parameters are
α11 = 0.5, α22 = 0.9, β11 = 2, β12 = 2.5,
β22 = 2.1, s11 = 2, s22 = 2.5.

3.5 Bivariate generalized Cauchy model

The univariate generalized Cauchy model,

ψ(r|α, β, s) = (1 + (sr)α)−β/α,

has been introduced in Gneiting (2000); Gneiting and Schlather (2004). Here s > 0 is a scale
parameter, α ∈ (0, 2] is a smoothness parameter and β > 0 controls the long range behaviour of
the field. The model was applied to many fields of science and technology, including network
traffic (Li and Lim, 2008), hydrology (Koutsoyiannis, 2005) and medicine (Muniandy and
Stanslas, 2008).

Each marginal covariances of the bivariate generalized Cauchy model,

Cii(r) = σ2
1(1 + (siir)

αii)−βii/αii , (3.28)

is of generalized Cauchy type with variance parameter σi, smoothness parameter αii ∈ (0, 2],
long range parameter βii > 0 and scale parameter sii > 0, i = 1, 2. Each cross covariance,

C12(r) = C21(r) = ρσ1σ2(1 + (s12r)
α12)−β12/α12 , (3.29)

is also of generalized Cauchy type with the colocated correlation coefficient ρ, smoothness
parameter α12 ∈ (0, 2], long range parameter β12 > 0 and scale parameter s12 > 0.
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To describe a parameter space, for which the matrix-valued function (3.20) and (3.21) is a

covariance function, we define the auxiliary functions p
(n)
α,β,s(r), n ∈ {1, 3},

p
(1)
α,β,s(r) =

(β + 1)(sr)α − α+ 1

(1 + (sr)α)β/α+2

p
(3)
α,β,s(r) =

(β + 1)(β + 3)(sr)2α + (sr)α(4β + 5− 3α− 3βα− α2) + (α− 1)(α− 3)

(1 + (sr)α)β/α+3

Theorem 3.23
A matrix-valued function C given by equations (3.28) and (3.29) with αii ∈ (0, 1], α12 ∈ (0, 2]
and βij > 0, i, j = 1, 2, is positive definite in Rn, n ∈ {1, 3} if

ρ2 ≤ β11β22

β2
12

sα11
11 sα22

22

s2α12
12

inf
r>0

rα11+α22−2α12
p

(n)
α11,β11,s11

(r)p
(n)
α22,β22,s22

(r)

(p
(n)
α12,β12,s12

(r))2
(3.30)

In particular,

(i) if α12 ≥ (α11+α22)/2 and β12 ≥ (β11+β22)/2 the infimum in inequality (3.30) is positive.

(ii) if α12 < (α11 + α22)/2 the model is valid only for ρ = 0,

(iii) if β12 < (β11 + β22)/2 and βij < n, i, j = 1, 2, the model is valid if and only if ρ = 0,

(iv) if 2β12 < βii + n, βii < n and βjj > n for i 6= j, the model is valid if and only if ρ = 0,

(v) if β12 < (β11 + β22)/2, the infimum in inequality (3.30) is zero.

Proof. Analogously to the bivariate powered exponential model, functions ψij(r|αij , βij , sij),
i, j = 1, 2 of the bivariate generalized Cauchy model satisfy the requirements of Theorem 3.17.
Their derivatives are

ψ′(r|αij , βij , sij) = −βijs
αij
ij r

αij−1(1 + (sijr)
αij )−βij/αij−1,

ψ′′(r|αij , βij , sij) = βijs
αij
ij (1 + (sijr)

αij )−βij/αij−2rαij−2((βij + 1)(sijr)
αij − αij + 1),

ψ′′′(r|αij , βij , sij) = −βijs
αij
ij (1 + (sijr)

αij )−βij/αij−3rαij−3
[
(sijr)

2αij (βij + 1)(βij + 2)

−(sijr)
αij (αij − 1)(3βij + αij + 4) + (αij − 1)(αij − 2))] .

• In R we plug in the derivatives into the inequality 3.16. Then we get

ρ2 ≤ inf
r>0

ψ′′(r|α11, β11, s11)ψ′′(r|α22, β22, s22)

(ψ′′(r|α12, β12, s12))2

=
β11β22

β2
12

sα11
11 sα22

22

s2α12
12

inf
r>0

[
rα11+α22−2α12

× (1 + (s12r)
α12)2β12/α12+4

(1 + (s11r)α11)β11/α11+2(1 + (s22r)α22)β22/α22+2

× ((β11 + 1)(s11r)
α11 − α11 + 1)((β22 + 1)(s22r)

α22 − α22 + 1)

((β12 + 1)(s12r)α12 − α12 + 1)2

]
.
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• In R3 we first calculate

ψ′′(r|αij , βij , sij)− rψ′′′(r|αij , βij , sij)

= βijs
αij
ij (1 + (sijr)

αij )−βij/αij−2rαij−2((βij + 1)(sijr)
αij − αij + 1)

+ βijs
αij
ij (1 + (sijr)

αij )−βij/αij−3rαij−2
[
(sijr)

2αij (βij + 1)(βij + 2)

−(sijr)
αij (αij − 1)(3βij + αij + 4) + (αij − 1)(αij − 2))]

= βijs
αij
ij (1 + (sijr)

αij )−βij/αij−2rαij−2
[
(βij + 1)(βij + 2)(sijr)

2αij

+ (sijr)
αij (βij + 1− 3βijαij − α2

ij − 4αij + 3βij + αij + 4) + (αij − 1)(αij − 3)
]

= βijs
αij
ij (1 + (sijr)

αij )−βij/αij−2rαij−2
[
(βij + 1)(βij + 2)(sijr)

2αij

+ (sijr)
αij (4βij − 3βijαij − α2

ij − 3αij + 5) + (αij − 1)(αij − 3)
]
.

(3.31)
Then we plug in (3.31) into (3.18) and obtain the desired inequality (3.30).

Similarly to the bivariate powered exponential model, all factors of the right-hand side of
inequality (3.30) are positive for r > 0. This means that the infimum can be zero only at r = 0
or r = ∞. Clearly, for the parameter values given in (v) the infimum is zero at infinity, and
positive for parameters in (i). The cases (ii) and (iii) are discussed in Section 3.2. The assertion

in (iv) follows from the inequality (3.1) and the fact that f12(r)
·∼ rβ12−n, fii(r)

·∼ rβii−n as

r → 0 and fjj(r)
·∼ C for some C > 0 as r → 0, i 6= j. The assertions in (v) and (i) follows

directly from the inequality (3.30).

Analogously to the powered exponential model, inequality (3.30) is only a sufficient but not
a necessary condition for positive definiteness. Figure 3.2 provides an example of the maximum
attainable |ρ| in inequality (3.30) that have been found numerically.

Theorem 3.24
A matrix-valued function C given by equations (3.28) and (3.29) with α11 = α22 = α12 = 2 the
model belongs to the class Φ2

n, n ∈ N if and only if

ρ2 ≤ inf
r>0

(
2

r

)β12−(β11+β22)/2 Γ
(
β12
2

)2

Γ
(
β11
2

)
Γ
(
β22
2

) sn+β12
12

s
n/2+β11/2
11 s

n/2+β22/2
22

Kβ11−n
2

(
r
s11

)
Kβ22−n

2

(
r
s22

)
Kβ12−n

2

(
r
s12

)2

In particular, if β12 < (β11 + β22)/2 the model belongs to the class Φ2
n, n ∈ N if and only if

ρ = 0.

Proof. The spectral density of the correlation function ψ(r) = (1 + (sr)2)β/2, r ≥ 0, s, β > 0,
is

f(r) =
1

πn/22n/2+β/2−1Γ(β/2)sn

(r
s

)β/2−n/2
Kβ/2−n/2

(r
s

)
.

Inequality (3.24) follows directly from inequality (3.1).
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Corollary 3.25
A matrix-valued function C given by equations (3.28) and (3.29) with αij = 2 and βij = n+ 1
for all i, j = 1, 2, then

(i) if s12 ≤ 2s11s22/(s11 + s22), the model belongs to the class Φ2
n, n ∈ N, if and only if

ρ2 ≤ s2n
12

sn11s
n
22

,

(ii) s12 > 2s11s22/(s11 + s22), the model belongs to the class Φ2
n, n ∈ N if and only if ρ = 0.

Proof. For βij = n+ 1, i, j = 1, 2, the inequality (3.24) becomes

ρ2 ≤ inf
r>0

s2n
12

sn11s
n
22

e
r( 2
s12
− 1
s11
− 1
s22

)
. (3.32)

Consider two cases:

1. s12 ≤ 2s11s22/(s11 + s22), then the exponent in (3.32) is nondecreasing in r and attains
its minimum at zero, therefore

ρ2 ≤ s2n
12

sn11s
n
22

2. s12 > 2s11s22/(s11 + s22), then the exponent in (3.32) goes to zero as r goes to infinity
and ρ = 0.

3.6 Discussion

This chapter presents several novel covariance models from class (3.19) for the bivariate Gaus-
sian random fields. A parameter set of a valid bivariate covariance model possessing spectral
densities with closed formulae can be fully characterized by Schoenberg’s theorem. The exam-
ples of such models are collected in Section 3.1. We showed that the bivariate cardinal sine
model and the bivariate spherical model from class (3.19) are valid covariance models in R3

only if the components are independent or share the same spatial correlation structure.
We discussed the necessary conditions for the positive definiteness of the models of class (3.19),

which follow from Schoenberg’s theorem combined with the Tauberian and the Abelian the-
orems. These conditions impose restrictions on the smoothness and long range dependence
parameters and are common for all models of the class (3.19).

A sufficient conditions for positive definiteness proposed in Theorem 3.19 can be seen as a
generalization of the criteria of Pólya type for radial positive definite functions in R and R3 (cf.
Gneiting (2001); Gneiting et al. (2006) and Table 4.1) for multivariate fields. The bivariate
powered exponential model and the bivariate generalized Cauchy model satisfy these conditions
with certain sets of parameters. The bivariate generalized Cauchy model allows for distinct
long range parameters and to the best of our knowledge it is the first bivariate model with
such a property. Similarly to the criteria of Pólya type for univariate functions, our sufficient
conditions impose some restrictions on the smoothness parameter. Thus, the question, how to
characterize a parameter set of the valid bivariate powered exponential model and the bivariate
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generalized Cauchy model with the smoothness parameter greater that one, remains open. The
bounds for the correlation coefficient in both models are based on the sufficient conditions for
positive definiteness, therefore identifying sharp bounds for ρ is left for future research.

Theorem 3.17 can be generalized to higher dimensions and higher number of field’s compo-
nents, however it requires the cumbersome calculations of higher order derivatives and verifying
the positive definiteness of a larger matrix, respectively.



4 Simulation of univariate and bivariate fields

This chapter is mainly based on Moreva and Schlather (Moreva and Schlather).

4.1 Circulant embedding algorithm for compactly supported
covariance functions

We describe here the idea of the circulant embedding algorithm for compactly supported co-
variance functions on R. For technical details we refer the reader to the above mentioned
papers. Following Daley et al. (2015) by compact support we mean the support that has a
compact closure. We consider a univariate centered stationary Gaussian process Z on a grid
G = {xk = kh}Nk=0 with a mesh size h > 0. Let C be a compactly supported covariance
function, i.e. C(x) = 0 for all |x| ≥ d for some d ≥ 0. We assume that Nh ≥ d. Let Σ be the
covariance matrix with entries Σij = C(|xi − xj |), 0 ≤ i, j ≤ N . The matrix Σ is Toeplitz and
it is uniquely determined by its first row

c = (C(0), C(x1), . . . , C(xN−1), C(xN )).

Consider now an embedding of Σ into a symmetric circulant matrix S ∈ R2N×2N characterized
by its first row s defined as follows:

s = (C(0), C(x1), . . . , C(xN−1), C(xN ), C(xN−1), . . . , C(x1)).

Each row of the circulant matrix S is composed of cyclically shifted versions of the preceding
row. Figure 4.1 illustrates the case N = 2. Being circulant, S has the eigendecomposition

S =
1

2N
WΛW ∗,

where W is the one dimensional discrete Fourier transform matrix of size 2N×2N with entries
wpq = e2πipq/2N , p, q,= 0, . . . , 2N−1 and W ∗ is the conjugate transpose of W . The eigenvalues
in the diagonal matrix Λ form the vector λ = WsT . Because of the symmetry in the entries in
s, the entries λj can also be written as

λj = C(0) + C(xN ) cos(πj) + 2

N−1∑
k=1

C(xk) cos(πjk/N), j = 0, . . . 2N − 1. (4.1)

Toeplitz Circulant

Σ =

 C(0) C(h) C(2h)

C(h) C(0) C(h)

C(2h) C(h) C(0)

 −→ S =


C(0) C(h) C(2h) C(h)

C(h) C(0) C(h) C(2h)

C(2h) C(h) C(0) C(h)

C(h) C(2h) C(h) C(0)

 .

Figure 4.1: Toeplitz matrix and its circulant embedding matrix.

35
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Now let X = X1 + iX2 be a complex-valued random vector of dimension 2N , composed by
4N independent standard normal random variables. Furthermore, assume for the moment
that all λj , j = 0, . . . 2N − 1, are nonnegative. Then the real and the imaginary part of
Z̃ = WΛ1/2X/

√
2N form two independent vectors that are both N (0, S) distributed. Thus, a

vector formed by any N + 1 consecutive entries of Z̃ has the desired distribution.
Dietrich and Newsam (1997) showed that for a compactly supported univariate C there

exists an N , such that all λj are nonnegative. They used a Poisson summation formula, see
Chapter XIX in Feller (1971). We repeat their arguments, since their result can be extended
for multivariate multidimensional processes. Our multivariate extension in Theorem 4.16 pro-
vides a sufficient condition for the positive semidefiniteness of the circulant (block circulant)
embedding matrix which is much easier to check than the sufficient condition in Chan and
Wood (1999)’s proposition. We denote by f the spectral density of C,

f(x) =
1

π

∫ ∞
0

cos(ux)C(u)du, x ∈ R.

Theorem 4.1 (Poisson summation formula)
Suppose that the continuous covariance function C on R is absolutely integrable, and hence the
corresponding spectral density f is continuous. Then for x, t ∈ R and λ > 0 it holds that

∞∑
k=−∞

C(x+ 2kλ)e−it(2kλ+x) =
π

λ

∞∑
n=−∞

f
(π
λ
n+ t

)
ein(π/λ)x, (4.2)

provided the series on the left converges to a continuous function.

The series on the left in equation (4.2) is finite for a compactly supported C, therefore it is
continuous, as C is continuous. Let x = 0, λ = h/2, and t = πj/(Nh). Since C(kh) = 0 for
k ≥ N equation (4.2) reads

C(0) + 2

N−1∑
k=1

C(kh) cos

(
πjk

N

)
=

2π

h

∞∑
n=−∞

f

(
2π

h
n+

πj

Nh

)
.

The non-negativity of the density f guarantees the non-negativity of the series on the left. Since
C(xN ) = 0, we have shown that the eigenvalues λj of S in equation (4.1) are nonnegative.

The eigendecomposition of the circulant matrix S is calculated efficiently by the fast Fourier
transform (FFT) provided that S is of an appropriate size M×M , where M is highly composite,
e.g., M = 2k for some integer k. This yields a substantial gain in computational speed, see
Gneiting et al. (2006) for comparison with the Cholesky decomposition. If M is not highly
composite, the vector s can be filled with auxiliary entries, see Wood and Chan (1994) for
more details.

The idea of the algorithm for multivariate processes, that is Z(x) = (Z1(x), . . . , Zm(x)),
m ≥ 2, is intuitive: using circulant embedding algorithm for each Z1(x), . . . , Zm(x) sep-
arately, we get independent Z1(x), . . . , Zm(x), if the corresponding complex-valued vectors
X1, . . . , Xm are independent. To have a certain covariance structure between Z1, . . . , Zm, cor-
related X1, . . . , Xm are used. The generalization of the circulant embedding for n ≥ 2 exploits
the block Toeplitz structure of Σ and the multidimensional FFT. The multivariate version of
Bochner’s theorem (Cramer, 1940) combined with the multidimensional generalizations of the
Poisson summation formula (see Abate and Whitt (1992) and references therein) ensures the
exact simulations for the matrix-valued function C with compactly supported components in
complete analogy to the univariate case.
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4.2 Cut-off circulant embedding algorithm for univariate fields

Let ψ(r), r ∈ [0, 1], be a stationary and isotropic positive definite function for an n-dimensional
ball Bn(1) with diameter 1, and let χ(r) be of the form

χ(r) =


ψ(r), 0 ≤ r ≤ 1,

φ(r), 1 ≤ r ≤ R,
0, r ≥ R.

Here, the radius R and the function φ are chosen such that χ is a covariance function in Rn.
In principle, φ can be any type of function, but for calculation brevity Gneiting et al. (2006)
choose φ to be essentially a polynomial, see Figure 4.2 for the example with an exponential
covariance function ψ. Let G be a rectangular grid in [−1/

√
4n, 1/

√
4n]n ∈ Bn(1), i.e. the grid

has the diameter of length 1. The approach can be generalized to any arbitrary grid diameter.
Since the function χ(r) has compact support, the corresponding circulant matrix is positive
definite whenever the simulation window is larger than the support R. Hence a simulation on
G can be obtained by extending the grid largely enough, applying the circulant embedding
technique and restricting the obtained random field to G. This approach and an extension to
an arbitrary simulation window diameter and geometric anisotropies are implemented in the
R package RandomFields (Schlather et al., 2017).

We extend the cut-off approach by shifting the covariance ψ on G. More precisely, let
ψ(r)−C0 be a valid covariance function on G for some C0 > 0, which depends on the function
ψ. If a Gaussian random field Y has the covariance ψ(r)− C0 on G and if X ∼ N (0, C0) is a
spatially constant random variable independent of Y , then the field Y +X has the covariance
ψ on G. Indeed,

cov(Y (x) +X,Y (0) +X) = cov(Y (x), Y (0)) + cov(X,X) = ψ(r)− C0 + C0 = ψ(r),

where r = ‖x‖ and X ∈ Rn. This idea allows us to simulate fields with a smaller simulation
window than in Gneiting et al. (2006). Thus, Theorems 1 and 2 in Gneiting et al. (2006)
allow for the following far-reaching corollaries that guarantee the positive definiteness in Rn,
n = 2, 3, of functions obtained by a shift and a continuation with polynomials.

Note that although Theorem 2 in Gneiting et al. (2006) is formulated for R2, it is valid also
in R3, see Theorem 1.1 in Gneiting (2001) with k = 1, l = 1 and α = 1/2. For the reader’s
convenience we quote Theorems 1 and 2 from Gneiting et al. (2006) and then reformulate them
for variograms in order to apply them later on for the bridging variogram model (Schlather
and Moreva, 2017). These reformulations lead to the smaller cut-off radius R in a stationary
case, see Remarks 4.6 and 4.8.

Theorem 4.2 (Gneiting et al. (2006))
Let ψ be a continuous function on [0, d] such that ψ(r2) is positive and convex and ψ′(d) is
negative. Then the function

χ(r) =


ψ(r), 0 ≤ r ≤ d,
b(R1/2 − r1/2), d ≤ r ≤ R,
0, r ≥ R,

R = d1/2 − ψ(d)

2ψ′(d)d1/2
, b = −2ψ′(d)d1/2,

is positive definite in R2.
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Figure 4.2: Exponential covariance function and its cut-off version. The two functions coincide
on [0,1].

Theorem 4.3 (Gneiting et al. (2006))
Let ψ be a continuous function on [0, d] such that ψ′(r1/2) exists and is concave, ψ(d) is positive,
ψ′(d) is negative, and

2ψ′′(d)ψ(d) ≥ (ψ′(d))2. (4.3)

Then the function

χ(r) =


ψ(r), 0 ≤ r ≤ d,
b(R− r)2, d ≤ r ≤ R,
0, r ≥ R,

R = d− 2
ψ(d)

ψ′(d)
, b =

(ψ′(d))2

4ψ(d)
,

is positive definite in R3.

Lemma 4.4
Let f and g be two functions such that f is concave on [0, d], g is concave on [d,∞), f
has the left hand side derivative, g has the right hand side derivative, f(d) = g(d) ≤ 0 and
0 ≤ g′(d) ≤ f ′(d). Then the function

h(r) =

{
f(r), 0 ≤ r ≤ d,
g(r), r ≥ d,

is concave.

Proof. First we note that for any r1, r2 such that 0 ≤ r1 ≤ d ≤ r2 it holds

g(r2) ≤ g(d) + g′(d)(r2 − d),

f(r1) ≤ f(d) + f ′(d)(r1 − d) ≤ 0,
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which yields

g(r2)(r1 − d)− f(r1)(r2 − d) ≥ f(d)(r1 − r2). (4.4)

The function h is clearly concave on [0, d] and [d,∞). Thus, we only need to show

h(tr1 + (1− t)r2) ≥ th(r1) + (1− t)h(r2)

for 0 ≤ r1 ≤ d ≤ r2. We denote l(t, r1, r2) = h(tr1 + (1− t)r2)− th(r1)− (1− t)h(r2). Consider
the following cases

• 0 ≤ tr1 + (1− t)r2 ≤ d. We note that

tr1 + (1− t)r2 = t∗r1 + (1− t∗)d, (4.5)

where t∗ = tr1+(1−t)r2−d
r1−d , t∗ ∈ [0, 1]. Then we have

t∗ − t =
tr1 + (1− t)r2 − d

r1 − d
− t =

(1− t)(r2 − d)

r1 − d
≤ 0, (4.6)

1− t∗ = 1− tr1 + (1− t)r2 − d
r1 − d

=
(r1 − r2)(1− t)

r1 − d
≥ 0. (4.7)

This yields

l(t, r1, r2) = f(tr1 + (1− t)r2)− tf(r1)− (1− t)g(r2)

(4.5)
= f(t∗r1 + (1− t∗)d)− tf(r1)− (1− t)g(r2)

≥ t∗f(r1) + (1− t∗)f(d)− tf(r1)− (1− t)g(r2)

= (t∗ − t)f(r1) + (1− t∗)f(d)− (1− t)g(r2)

(4.6),(4.7)
=

(1− t)(r2 − d)

r1 − d
f(r1) +

(r1 − r2)(1− t)
r1 − d

f(d)− (1− t)g(r2)

=
1− t
r1 − d

((r2 − d)f(r1) + (r1 − r2)f(d)− g(r2)(r1 − d))

(4.4)

≥ 1− t
r1 − d

(f(d)(r2 − r1) + (r1 − r2)f(d))

= 0.

• tr1 + (1− t)r2 ≥ d. We note that

tr1 + (1− t)r2 = t∗∗d+ (1− t∗∗)r2

where t∗∗ = t(r1−r2)
d−r2 . Then we have

t∗∗ − t =
t(r1 − r2)

d− r2
− t =

t(r1 − r2)− td+ tr2

d− r2
=
t(r1 − d)

d− r2
≥ 0. (4.8)
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This yields

l(t, r1, r2) = g(tr1 + (1− t)r2)− tf(r1)− (1− t)g(r2)

= g(t∗∗d+ (1− t∗∗)r2)− tf(r1)− (1− t)g(r2)

≥ t∗∗g(d) + (1− t∗∗)g(r2)− tf(r1)− (1− t)g(r2)

= t∗∗g(d) + (t− t∗∗)g(r2)− tf(r1)

(4.8)
=
t(r1 − r2)

d− r2
g(d)− t(r1 − d)

d− r2
g(r2)− tf(r1)

=
t

r2 − d
((r2 − r1)g(d) + (r1 − d)g(r2)− (r2 − d)f(r1))

(4.4)

≥ t

r2 − d
((r2 − r1)g(d) + f(d)(r1 − r2))

= 0.

Recall that covariance ψ and variogram γ of a stationary random fields are linked by ψ(r) =
ψ(0) − γ(r). If the field is only intrinsically stationary, then there can exists a C0 such that
ψ(r) = C0 − γ(r) holds locally.

Corollary 4.5
Let γ be a continuous function on [0, d], d > 0, such that γ(r2) is concave on [0,

√
d] and γ(d)

and γ′(d) are positive. Then the function χ on [0,∞) defined by

χ(r) =

{
C0 − γ(r), 0 ≤ r ≤ d,
0, r ≥ d,

(4.9)

where C0 = γ(d), is positive definite in R2.

Proof. The function χ(r2) is convex by Lemma 4.4. From the concavity of γ(r2) it follows that

γ(r2) ≤ γ(d) + 2
√
dγ′(d)(r −

√
d) < γ(d), r ∈ [0,

√
d)

This means that γ(d) − γ(0) > 0 and thus χ(0) > 0. Then we apply the first criteria in
Table 4.1.

Remark 4.6
Let the function ψ satisfy the conditions of Theorem 4.2. Then the function γ(r) = ψ(0)−ψ(r)
satisfies the conditions of Theorem 4.5. A centered random field Y with the covariance function
(4.9) can be simulated on G via the circulant embedding algorithm. Then we add a spatially
constant random variable X ∼ N (0, ψ(d)) which is independent of Y . The field Y + X has
the covariance ψ on G. Thus, we can simulate a random field with the covariance function ψ
without increasing the simulation window.

Corollary 4.7
Let γ be a continuous function on [0, d] such that γ′(r1/2) exists and is convex on [0, d2], γ(0)
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is zero, γ(d) is positive and γ′′(d) is negative. We set C0 = γ(d) − γ′(d)2

2γ′′(d) . Then the function

χ on [0,∞) defined by

χ(r) =


C0 − γ(r), 0 ≤ r ≤ d,
b(R− r)2, d ≤ r ≤ R,
0, r ≥ R,

(4.10)

where

R = d− γ′(d)

γ′′(d)
, b = −1

2
γ′′(d),

is positive definite in R3.

Proof. The result is proved by a reduction to the criteria of Pólya type in Table 4.1. The
function χ′(r1/2) is concave on [0, R2] by Lemma 4.4, since −γ′(r1/2) is concave on [0, d2] and
−2b(R − r1/2)2 is concave on [d2, R2]. Next we apply the same lemma to χ′(r1/2) on [0, R2]
and zero on [R2,∞). Thus, χ′(r1/2) is concave. The value χ(0) is positive, as γ(0) = 0 and
C0 > 0.

Remark 4.8
Let the function ψ satisfy the conditions of Theorem 4.3. Then the function γ(r) = ψ(0)−ψ(r)
satisfies the conditions of Corollary 4.7. We compare the cut-off radius from Theorem 4.3,
which we denote by R′ and the cut-off radius R from Corollary 4.7.

R′ −R = d− 2
ψ(d)

ψ′(d)
− d+

γ′(d)

γ′′(d)

= −2
ψ(d)

ψ′(d)
+
ψ′(d)

ψ′′(d)

=
−2ψ(d)ψ′′(d) + (ψ′(d))2

ψ′′(d)ψ′(d)

≥ 0,

where the last inequality is due to the inequality (4.3) and the fact that ψ′(d) is negative.
Analogously to Remark 4.6, a centered random field Y with the the covariance function (4.10)
can be simulated on G via the circulant embedding algorithm. Note that since

ψ(0)− C0 = ψ(d)− (ψ′(d))2

2ψ′′(d)
≥ 0

by the conditions of Theorem 4.3, we can take again X to be a spatially constant random
variable independent of Y and X ∼ N (0, ψ(0)− C0). Then the field Y +X has the covariance
ψ on G. Thus, we can simulate a field with the covariance function ψ with a smaller simulation
window than in Theorem 4.3.

Thus, in certain cases modifying covariance functions as in Corollaries 4.5 and 4.7 may
increase the speed of circulant embedding by several times compared with Theorem 1 and 2 in
Gneiting et al. (2006), respectively.

Corollaries 4.5 and 4.7 build upon functions χ that are once or twice differentiable outside
the origin and require the fractal dimension of the corresponding field to be greater than or
equal to n + 3/4 and n + 1/2, respectively, see Gneiting and Schlather (2004) and Table 4
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Table 4.1: Criteria of the Pólya type for isotropic covariance functions in Rn (Gneiting et al.,
2006), see also Theorem 1.1. in Gneiting (2001) with k = 1, l = 1 and α = 1/2. A continuous
function ψ on [0,∞) is a stationary and isotropic covariance function in Rn, if ψ(0) is positive,
limr→∞ ψ(r) = 0, and if the convexity or the non-negativity condition in the table holds.
Typographic errors have been corrected in the third criterion.

Convexity condition
Non-negativity condition

Requires n

ψ(r2) convex
ψ′(r) + 2rψ′′(r) ≥ 0

α ≤ 1
2 2

−ψ′(
√
r) convex

ψ′′(r)− rψ′′′(r) ≥ 0
α ≤ 1 3

−r−2 (2ψ′(
√
r)− 2

√
rψ′′(

√
r) + rψ′′′(

√
r)) convex

48 (ψ′′(r)r − ψ′(r))− 24r2ψ′′′(r) + 7r3ψ(iv)(r)− r4ψ(v)(r) ≥ 0
α ≤ 2 3

in Gneiting et al. (2006). In order to generalize the cut-off approach to smoother functions
(in the sense of fractal dimension of the corresponding field), we need an overall higher order
differentiability. We consider the following construction of χ

χ(r) =


C0 − γ(r), 0 ≤ r ≤ d,∑3

i=1 ai(R− r)ni , d ≤ r ≤ R,
0, r ≥ R,

(4.11)

where k ∈ N, ni ≥ 4, ni ∈ N, i = 1, 2, 3, ni 6= nj , i 6= j. For our purposes it suffices to choose
k = 3. The radius R is the smallest solution of the cubic equation

γ(iv)(d)(R− d)3 + γ′′′(d)

(
3∑
i=1

ni − 6

)
(R− d)2

+ γ′′(d)

 3∑
i 6=j

ninj − 3

3∑
i=1

ni + 7

 (R− d)

+ γ′(d)
3∏
i=1

(ni − 1) = 0, (4.12)

that is greater than d and is assumed to exist. The coefficients ai, i = 1, 2, 3, and the constant
C0 are

ai = −γ
′′′(d)(R− d)2 + γ′′(d)(nj + nk − 3)(R− d) + γ′(d)(nj − 1)(nk − 1)

ni(nj − ni)(nk − ni)(R− d)ni−1
,

C0 = γ(d) +

3∑
i=1

ai(R− d)ni ,

respectively. Here {j, k} = {1, 2, 3} \ {i}.
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Theorem 4.9
Let γ be a continuous function on [0, d] such that γ(0) = 0 and

r−2(2γ′(r1/2)− 2r1/2γ′′(r1/2) + rγ′′′(r1/2)) is convex (4.13)

or
48
(
γ′′(r)r − γ′(r)

)
− 24r2γ′′′(r) + 7r3γ(iv)(r)− r4γ(v)(r) ≤ 0. (4.13*)

Assume furthermore that equation (4.12) has a root R ≥ d. Then the function χ in (4.11) is a
covariance function in R3, if C0 > 0 and if for r ∈ [d,R]

3∑
i=1

aifni(r) ≥ 0 (4.14)

with

fk(r) =k
[
(k − 2)(k − 3)(k − 5)(k − 7)r4 + (k − 3)(7k2 − 69k + 158)Rr3

+24(k − 4)(k − 5)R2r2 + 48(k − 5)R3r + 48R4
]

(R− r)k−5.

Proof. We aim to show that the function χ(r) satisfies the following condition:

ζ(r) := −r−2(2χ′(r1/2)− 2r1/2χ′′(r1/2) + rχ′′′(r1/2)) is convex,

see the third condition in Table 4.1. Setting the polynomial in equation (4.11) and its deriva-
tives up to the order 4 at the point r = 1 to be equal to C0 − γ(d), −γ′(d), −γ′′(d), −γ′′′(d),
−γ(iv)(d) respectively, we obtain the following system of equations

∑3
i=1 ai(R− d)ni = C0 − γ(d),∑3
i=1 aini(R− d)ni−1 = γ′(d),∑3
i=1 aini(ni − 1)(R− d)ni−2 = −γ′′(d),∑3
i=1 aini(ni − 1)(ni − 2)(R− d)ni−3 = γ′′′(d),∑3
i=1 aini(ni − 1)(ni − 2)(ni − 3)(R− d)ni−4 = −γ(iv)(d).

(4.15)

This system of equations reduces to the cubic equation (4.12) with respect to R − d. For
the polynomial part on [d,R] we check the non-negativity condition (4.13*), which after some
tedious calculations reduces to the inequality (4.14). The function ζ(r) is now convex on [0, d2]
and [d2, R2]. Because of the last equation in (4.15) the right derivative of ζ at point d2 is equal
to its left derivative and therefore ζ is convex on [0, R2] by Lemma 4.4. Next we apply again
Lemma 4.4 to ζ is on [0, R2] and [0, R2] and get the convexity of ζ on [0,∞). By the third
criteria in Table 4.1 it follows that χ is positive definite in R3.

In practice the conditions in Theorem 4.9 can be checked numerically.

Remark 4.10
A solution R ≥ d of the equation (4.12) exists for any n1, n2, n3 ≥ 4, whenever

γ(iv)(d)γ′(d) < 0. (4.16)

Descartes’ rule of signs states that the number of positive roots of the polynomial g(y) =
c3y

3 + c2y
2 + c1y + c0, y, ci ∈ R, i = 0, . . . , 3, is either equal to the number of sign changes

between consecutive nonzero coefficients, or is reduced by an even number. If c3c0 < 0, there
are either one or three sign changes and therefore at least one positive root. Plugging in the
expression for c0 and c3 from equation (4.12) leads to the inequality (4.16).
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Figure 4.3: Univariate cut-off embedding for the powered exponential covariance model. The
color scheme corresponds to the associated numerical value of the cut-of radius R. The white
areas in both plots corresponds to the values of s and α in the powered exponential model,
for which the conditions of Theorem 4.9 are not satisfied. This means that either there is no
appropriate root of equation (4.12) or the construction (4.11) is not guaranteed to be positive
definite. We also whiten the area, for which the radius R exceeds 25 times the grid diameter,
since this requires increasing the simulation window at least by factor 625 and the simulating
algorithm becomes computationally infeasible.

Remark 4.11
Let a random field Y have a covariance function χ(r) as in (4.11) such that the function
γ(r) = ψ(0) − ψ(r) satisfies the conditions of Theorem 4.9. Suppose that 0 < C0 ≤ ψ(0).
Then, if X ∼ N (0, ψ(0) − C0) is a spatially constant random variable independent of Y , the
field Y + X has the covariance ψ(r) on G. Note that Theorem 4.9 does not guarantee that
C0 ∈ (0, ψ(0)).

Example 4.12 (Powered exponential model)
Figures 4.3 (a) and (b) illustrate the cut-off radius R for n1 = 5, n2 = 12, n3 = 20 and the
powered exponential correlation function

ψ(r|α, s) = exp(−(sr)α),

where s > 0 and α ∈ (0, 2]. The fractal dimension of the corresponding random field is
n + 1 − α/2. The convexity condition (4.13) holds true for α ≤ 1.85, which is a far larger
bound than the bound 1.0 which has been known up to now (Gneiting et al., 2006). The white
area in Figures 4.3 (a) for values s < 1 and α > 0.9 corresponds to the case where equality
(4.12) does not have an appropriate solution. This problem can be solved by increasing the grid
diameter, see Figure 4.3 (b), where the diameter is 10. Figures 4.3 (a) and (b) are identical
up to rescaling. In practice the diameter of the simulation window is typically several times
larger than the inverse of the scale s, see for example Gneiting et al. (2010).
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(a) n1 = 4, n2 = 7, n3 = 64.
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(b) n1 = 4, n2 = 12, n3 = 15.

Figure 4.4: Univariate cut-off embedding for the Matérn covariance model. The color scheme
corresponds to the associated numerical value of the cut-off radius R. Analogously to Figure
4.3, the white areas corresponds to the values of s and ν for which the conditions of Theorem 4.9
are not satisfied. We also whiten the area, for which the radius R exceeds 25 times the grid
diameter. The red spot and the line in the left plot are genuine.

Example 4.13 (Matérn model)
Figure 4.4 illustrates the cut-off radius R for the different n1, n2, n3 and the Matérn correlation
function

ψ (r|ν, s) =
21−ν

Γ(ν)
(sr)νKν(sr).

Here s > 0, ν > 0 and Kν is a modified Bessel function of the second kind. The fractal
dimension of the corresponding random field is n + 1 − min{ν, 1}. The convexity condition
(4.13) holds true for ν ≤ 1.5 whereas Theorem 2 in Gneiting et al. (2006) holds only for
ν ≤ 1/2.

4.3 Cut-off simulations for the parametric variogram model

We consider in detail the simulation of a random field with a bridging variogram model in-
troduced in Schlather (2014), see also Schlather and Moreva (2017). For 0 < α ≤ 2 and
−∞ < β ≤ 2 the isotropic variogram in Rn is defined as follows

γα,β(r) =
(1 + rα)β/α − 1

2β/α − 1
, (4.17)

where, as β → 0, the limiting function is log(1+rα)/ log 2. The normalizing constant is chosen
such that γα,β(1) = 1.

The parameter α models the smoothness of both the variogram and the corresponding Gaus-
sian random field (see Chapter 3 in Adler (1981) and Scheuerer (2010)), whereas β indicates
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the long range behaviour. The variogram γα,β is bounded, if and only if β < 0, and has
long memory for β ∈ (−1, 0), see Gneiting and Schlather (2004). Up to some multiplicative
constants, the function γα,β behaves like rα at the origin and like rβ for large r and β > 0.

The model simplifies for β = α to the power model of a fractional Brownian random field
(Mandelbrot and van Ness, 1968), i.e. γ(r) = rα, α ∈ (0, 2]. For 0 < β ≤ α it is a gener-
alization of the fractional Brownian model described in Schlather (2010), and for β < 0 it
is the generalized Cauchy model (Gneiting, 2000; Gneiting and Schlather, 2004). As β tends
to zero, the limiting model equals a modified version of the De Wijsian model (Wackernagel,
2003; Matheron, 1962). Thus, the main features of this model are that it separates behaviour
at the origin and infinity and allows for a smooth transition between bounded and unbounded
variograms.

We investigate which cut-off embedding techniques can be applied on [0, d/
√

2]n, n ≤ 3, to
the model with an additional scale parameter s > 0, i.e.

γα,β,s(r) =
(1 + (sr)α)β/α − 1

2β/α − 1
.

We will use the fact that for all derivatives of order k ∈ N it holds that:

γ
(k)
α,β,s(r) = skγ

(k)
α,β(sr). (4.18)

We start with the limiting case, β = 0. For simplicity, we omit the normalization constant 1
log 2

and redefine γα,0(r) = log(1 + rα). We will need the derivatives of γα,0(r), r > 0,

γ′α,0(r) =
αrα−1

1 + rα
≥ 0,

γ′′α,0(r) = −αr
α−2(rα − α+ 1)

(1 + rα)2
≤ 0,

γ′′′α,0(r) =
αrα−3(2r2α − rα(α− 1)(α+ 4) + (α− 1)(α− 2))

(1 + rα)3
.

Consider the following cases:

• 0 < α ≤ 1/2. We apply Corollary 4.5, since γ′α,0(d) is positive and γα,0(r2) is a concave
function,

(γα,0(r2))′′/2 = γ′α,0(r2) + 2r2γ′′α,0(r2)

=
αr2α−2

1 + r2α
− 2r2αr

2α−4(r2α − α+ 1)

(1 + r2α)2

=
αr2α−2(1 + r2α)− 2αr2α−2(r2α − α+ 1)

(1 + r2α)2

=
αr2α−2 + αr4α−2 − 2αr4α−2 + 2α2r2α−2 − 2αr2α−2

(1 + r2α)2

=
−αr4α−2 + 2α2r2α−2 − αr2α−2

(1 + r2α)2

= −αr2α−2 r
2α + 1− 2α

(1 + r2α)2

≤ 0.
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(a) n1 = 4, n2 = 6, n3 = 7.
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(b) n1 = 4, n2 = 5, n3 = 128.

Figure 4.5: Univariate cut-off embedding for the modified De Wijsian variogram model. The
color scheme corresponds to the associated numerical value of the cut-of radius R. Analogously
to Figure 4.3, the white areas corresponds to s, α in the De Wijsian model, for which the
conditions of Theorem 4.9 are not satisfied. We also whiten the area, for which the radius R
exceeds 25 times the grid diameter.

In this case the circulant embedding works in R2 and simulation window does not need
to be increased. The same method can be applied to the modified De Wijsian model
with an additional scale parameter s > 0, namely γα,0,s(r) = log(1 + (sr)α). The scale
parameter s does not affect the positive definiteness of the cut-off function due to the
equation (4.18).

• 0 < α ≤ 1. We apply Corollary 4.7, since γ′′α,0(d) is negative and the function γ′α,0(r1/2)
is convex:

(γ′α,0(r1/2))′′ =
1

2
(γ′′α,0(r1/2)r−1/2)′

=
1

4
γ′′′α,0(r1/2)r−1 − 1

2
r−3/2γ′′α,0(r1/2)

=
1

4
r−3/2(γ′′′α,0(r1/2)r1/2 − 2γ′′α,0(r1/2)).

Then, note that

rγ′′′α,0(r)− γ′′α,0(r) =
αrα−2(2r2α − rα(α− 1)(α+ 4) + (α− 1)(α− 2))

(1 + rα)3

+
αrα−2(rα − α+ 1)

(1 + rα)2

=
αrα−2

(1 + rα)3

(
3r2α − rα(α2 + 4α− 6) + α2 − 4α+ 2

)
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=
αrα−2

(1 + rα)3

(
3r2α + rα(1− (α− 1)(α+ 5)) + (α− 2)2

)
≥ 0,

for r ≥ 0. Similarly to the previous case, introducing the scale parameter s does not
affect the positive definiteness of the cut-off function in R3 due to the equation (4.18).

• 1 < α ≤ 2. We apply Theorem 4.9 and continue the covariance function with the poly-
nomial. The positive definiteness of the cut-off function in R3 depends on the scale
parameter s and the degree of polynomial. Numerical results show that the modified de
Wijsian variogram satisfies the conditions (4.13*) for d = 1 if 1 < α ≤ 1.88 and s ∈ (0, 4].
Figure 4.5 illustrates the cut-off radius R for the different n1, n2, n3.

Remark 4.14
If we take in the definition of χ (4.11) four instead of three summands, the equations (4.12)
becomes

γ(iv)(d)(R− d)3 + γ′′′(d)

(
3∑
i=1

ni − 6

)
(R− d)2

+ γ′′(d)

 3∑
i 6=j

ninj − 3
3∑
i=1

ni + 7

 (R− d)

+ γ′(d)
3∏
i=1

(ni − 1)

+ a4n4

(
3∏
i=1

(n4 − ni)

)
(R− d)(n4−1) = 0. (4.19)

Numerical experiments for the De Wijsian model show that for a4 < 0 and some n4 > maxi ni
the radius R is smaller than for a4 = 0, but then the condition (4.14) is not fulfilled. For a4 > 0
we could not find any combination of ni such that the equation (4.19) has a real root R ≥ d.

Now we exclude the case β = 0. Again, we need the derivatives of γα,β(r), r ≥ 0,

γ′α,β(r) =
βrα−1(1 + rα)β/α−1

2β/α − 1
≥ 0,

γ′′α,β(r) =
βrα−2(1 + rα)β/α−2((β − 1)rα + α− 1)

2β/α − 1
,

γ′′′α,β(r) =
βrα−3(1 + rα)β/α−3((β − 2)(β − 1)r2α − (α− 1)(α− 3β + 4)rα + α2 − 3α+ 2)

2β/α − 1
.

Consider the following cases:
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Figure 4.6: Univariate cut-off embedding for the variogram model (4.17) with α = 1.5. The
color scheme corresponds to the associated numerical value of the cut-of radius R. Analogously
to Figure 4.3, the white areas corresponds to s, β, for which the conditions of Theorem 4.9
are not satisfied. We also whiten the area, for which the radius R exceeds 25 times the grid
diameter.

• β ≤ (1+(1−2α)/(sd)α)/2, 0 < α ≤ 1/2. We apply Corollary 4.5, since γ′α,β(d) is positive

and γα,β(r2) is a concave function,

(γα,β(r2))′′/2 = γ′α,β(r2) + 2r2γ′′α,β(r2)

=
βr2α−2(1 + r2α)β/α−1

2β/α − 1
+

2βr2α−2(1 + r2α)β/α−2((β − 1)r2α + α− 1)

2β/α − 1

=
βr2α−2(1 + r2α)β/α−2

2β/α − 1

(
(2β − 1)r2α + 2α− 1

)
≤ 0.

Introducing an additional scale parameter s > 0 influences only the boundary for β,
which comes from the equation (4.18). The upper boundary for β tends to 1/2 as the
diameter goes to infinity. The cut-off function is positive definite in R3.

• β ≤ 1, 1/2 < α ≤ 1. We apply Corollary 4.7, since γ′′α,β(d) is negative and γ′(r1/2) is
convex,

rγ′′′(r)− γ′′(r) =
βrα−2(1 + rα)β/α−3

2β/α − 1

[
(β − 2)(β − 1)r2α − (α− 1)(α− 3β + 4)rα

+α2 − 3α+ 2− (1 + rα)((β − 1)rα + α− 1)
]

=
βrα−2(1 + rα)β/α−3

2β/α − 1

[
(β − 2)(β − 1)r2α − (α− 1)(α− 3β + 4)rα
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Figure 4.7: Univariate cut-off embedding for the variogram model (4.17). The color scheme
corresponds to the associated numerical value of the cut-of radius R. Analogously to Figure
4.3, the white areas corresponds to s, α, for which the conditions of Theorem 4.9 are not
satisfied. We also whiten color the area, for which the radius R exceeds 25 times the grid
diameter.

+α2 − 3α+ 2− (β − 1)rα − α+ 1− (β − 1)r2α − αrα + rα
]

=
βrα−2(1 + rα)β/α−3

2β/α − 1

[
(β − 3)(β − 1)r2α − (α2 − 3αβ + 4α+ 4β − 6)rα

+(α− 3)(α− 1)]

=
βrα−2(1 + rα)β/α−3

2β/α − 1

[
(β − 3)(β − 1)r2α

−((α− 1)(α− 2) + (3α− 4)(1− β))rα + (α− 3)(α− 1)]

≥ 0.

In this case the scale parameter s does not affect the positive definiteness of the cut-off
function in R3 due to the equation (4.18).

• Theorem 4.9 can be applied for some α, β and s for simulations in R3. Figure 4.6
illustrates the cut-off radius R depending on s ∈ [0.01, 4], β ∈ [−2, 2] and two different
choices of n1, n2, n3. The parameter α = 1.5 is fixed. Figures 4.7 (a) and (b) illustrate
the dependence of the cut-off radius R on α and s for the fixed β = 1.5 and β = −1.5
respectively.
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4.4 Cut-off techniques for bivariate fields

We extend the univariate cut-off circulant embedding method to the case of a bivariate field
Z(x) = (Z1(x), Z2(x)), x ∈ Rn, n = 1 or n = 3, so that our modified covariance function is the
following [

σ2
1χ11(r) ρσ1σ2χ12(r)

ρσ1σ2χ12(r) σ2
2χ22(r)

]
, (4.20)

with

χij(r) =


ψij(r)− C0,ij , 0 ≤ r ≤ 1,

φij(r), 1 ≤ r ≤ Rij ,
0, r ≥ Rij ,

(4.21)

where i, j = 1, 2. The functions φij , the constants C0,ij and Rij , i, j = 1, 2 must be chosen such
that the function (4.20) is a matrix-valued covariance function in Rn. Then, as discussed in
Section 4.1, we can apply the circulant embedding algorithm to the function (4.20).

For a bivariate stationary Gaussian process in R3 we take φij(r) to be a polynomial of degree
four in order to get twice continuously differentiable χij(r),

φij(r) = bij(Rij − r)4, (4.22)

and

Rij = 1−
3ψ′ij(1)

ψ′′ij(1)
, bij =

ψ′′ij(1)3

108ψ′ij(1)2
, C0,ij = ψij(1)−

3ψ′ij(1)2

4ψ′′ij(1)
. (4.23)

Note that in R and in R3 we shift each element of the multivariate covariance by C0,ij , i, j = 1, 2,
see also Figure 4.8. Remark 4.17 below shows how to correct this in case of positive C0,ij by
adding spatially constant random variables.

Theorem 4.15
Let ψij , i, j = 1, 2, satisfy the conditions of Theorem 3.17 in R. Additionally assume that each
ψij satisfy the conditions of Theorem 4.3. Then the matrix-valued function (4.20) defined by
(4.21)- (4.23) is positive definite in R if

R12 ≤ min{R11, R22}

Proof. First we note that each χij(r), i, j = 1, 2 is a positive definite function in R3, so that
(2.3) is well defined. The proof of this fact purely repeats the proof of Theorem 2 in Gneiting
et al. (2006), adding a constant. Then we apply Theorem 3.17 in R to the function (4.20).
The conditions (i)-(ii) in Theorem 3.17 in R are obviously satisfied. It remains to check the
positive semidefiniteness of the matrix (3.11) for almost all r ≥ 0. Clearly, it holds in (0, 1)
by the construction of (4.20) and the conditions of the theorem. We assume without loss of
generality that R12 ≤ R11 ≤ R22. For the positive definiteness of the matrix (3.11) in (1, R12)
we need the following inequality to hold

ρ2 ≤ inf
1<r<R12

χ′′11(r)χ′′22(r)

(χ′′12(r))2
=
b11b22

b212

=
ψ′′11(d)ψ′′22(d)

(ψ′′12(d))2
.

This inequality holds automatically by the conditions of the theorem. Since bij > 0 and
inequality (4.24) holds, the matrix (3.11) is positive semidefinite for R12 < r < R11. Inequality
(4.24) guarantees that the matrix (3.11) is identically zero for r > R11.



52 Chapter 4. Simulation of univariate and bivariate fields

0 1 2 3 4 5

0.
0

0.
4

0.
8

r

e−(s11r)α11

cut−off

R11

1 − C0,11

0 1 2 3 4 5

0.
0

0.
4

0.
8

r

ρe−(s12r)α12

cut−off

R12

1 − C0,12

0 1 2 3 4 5

0.
0

0.
4

0.
8

r

ρe−(s12r)α12

cut−off

R12

1 − C0,12

0 1 2 3 4 5
0.

0
0.

4
0.

8
r

e−(s22r)α22

cut−off

R22

1 − C0,22

Figure 4.8: Bivariate powered exponential covariance function and its cut-off version. The
parameters are α11 = 0.7, α12 = 1, α22 = 0.8, s11 = 1.5, s12 = 2.5, s22 = 2, σ1 = σ2 = 1, and
ρ = 0.56. The dashed blue line and the solid black line are identical on [0, 1] up to a shifting
constant.

Theorem 4.16
Let ψij , i, j = 1, 2, satisfy the conditions of Theorem 3.17 in R3. Additionally assume that each
ψij satisfy the conditions of Theorem 4.3. Then the matrix-valued function (4.20) defined by
(4.21), (4.22), and (4.23) is positive definite in R3 if

R12 ≤ min{R11, R22} (4.24)

and

ρ2 ≤ b11b22

b212

(R2
11 − 1)(R2

22 − 1)

(R2
12 − 1)2

. (4.25)

Proof. The proof is analogous to the proof of Theorem 4.15. First we note that each χij(r),
i, j = 1, 2 is a positive definite function in R3, so that (2.3) is well defined. The proof of this
fact purely repeats the proof of Theorem 2 in Gneiting et al. (2006), replacing the polynomial
of degree 2 by the polynomial of degree 4 and adding a constant. Then we apply Theorem
3.17 in R3 to the function (4.20). The conditions (i)-(ii) in Theorem 3.17 in R are obviously
satisfied. It remains to check the positive semidefiniteness of the matrix (3.12) for almost all
r ≥ 0. Clearly, it holds in (0, 1) by the construction of (4.20) and the conditions of the theorem.
We assume without loss of generality that R12 ≤ R11 ≤ R22. For the positive definiteness of
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the matrix (3.12) in (1, R12) we need the following inequality to hold

ρ2 ≤ inf
1<r<R12

(χ′′11(r)− rχ′′′11(r))(χ′′22(r)− rχ′′′22(r))

(χ′′12(r)− rχ′′′12(r))2

=
b11b22

b212

inf
1<r<R2

12

(R2
11 − r)(R2

22 − r)
(R2

12 − r)2
.

Taking the derivative of g(r) = (r−R2
11)(r−R2

22)/(r−R2
12)2, we obtain that g is increasing on

[1, R2
12) and takes its minimum at the left endpoint r = 1. Thus, the inequality (4.25) ensures

the positive definiteness of the matrix (3.12) in (1, R12). The proof of the positive definiteness
of the matrix (3.12) in (R12, R11) ∪ (R11,∞) is similar to the proof of this fact in Theorem
4.15.

Remark 4.17
Let Y (x) = (Y1(x), Y2(x)) be a centered bivariate Gaussian random field with a covariance
matrix given by equations (4.20) to (4.22) and such that 0 ≤ C0,ij < 1, i, j = 1, 2, and ρ2C2

0,12 ≤
C0,11C0,22. Let X1, X2 be spatially constant random variables, which are independent of Y1(x)
and Y2(x) and have a bivariate normal distribution with zero mean and the following covariance
matrix [

C0,11 ρC0,12

ρC0,12 C0,22

]
.

Then on the grid G we have

cov (Y1(x) +X1, Y2(0) +X2) = cov (Y1(x), Y2(0)) + cov(X1, X2)

= ρψ12(r)− ρC0,12 + ρC0,12

= ρψ12(r),

where r = ‖x‖. Note that Theorem 4.16 neither guarantees C0 ∈ [0, 1) nor ρ2C2
0,12 ≤ C0,11C0,22.

However, in our numerical simulations, we could not find any counterexamples.

The two upper plots in Movies 4.1 and 4.2 illustrate simulations from the bivariate powered
exponential covariance model and bivariate Matérn covariance model, respectively, using cut-
off circulant embedding technique for the bivariate fields. The covariance functions are shown
in the three lower plots. The simulations were performed in R (R Core Team, 2018) with the
RandomFields package (Schlather et al., 2017).

4.5 Discussion

In this chapter we improved and extended the cut-off circulant embedding technique for the uni-
variate and multivariate Gaussian random fields. The idea of shifting the covariance function
by subtracting a constant allows us to simulate univariate fields with a smaller simulation win-
dow than in the original cut-off embedding. Cut-off circulant embedding, originally formulated
for simulating stationary fields on a grid, can be also applied to locally stationary fields, since
it requires only certain convexity conditions to hold. We reformulate the cut-off embedding
techniques for variograms and apply them to the new parametric variogram model, proposed
by Schlather (2014). The model allows for the smooth parametrization between the bounded
and unbounded variograms. Our modified cut-off technique allows us to exploit the circulant
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Movie 4.1: Simulations from the bivariate powered exponential model by means of the bivariate
cut-off circulant embedding techniqueand the corresponding covariance structure.

embedding method to simulate the fields with the bounded and unbounded variograms for a
certain parameter set. By means of the extended cut-off technique based on Theorem 4.9 we
can simulate smoother fields than in Gneiting et al. (2006). However, when α in the powered
exponential or the generalized Cauchy covariance approaches to two, the construction 4.11
is not guaranteed to be positive definite and the circulant embedding algorithm fails. The
improvement of the cut-off algorithm is left for further research.

In the bivariate cut-off method the additional shifting constants allow us to continue the
covariance functions with polynomials of degree four outside the grid smoothly enough, so
that we can prove the positive definiteness of the modified function by Theorem 3.17 and the
criteria of the Pólya type. Therefore, the smoothness of the simulated bivariate fields is limited.
The smoothness parameters in the bivariate powered exponential and the bivariate generalized
Cauchy models cannot exceed one. Finding a construction permitting smoother covariance
functions is left for future research.
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Movie 4.2: Simulations from the bivariate Matérn model by means of the bivariate cut-off
circulant embedding techniqueand the corresponding covariance structure.





5 Data analysis with bivariate covariance
models

5.1 Data example: content of copper and zinc in Swiss Jura

The classical geostatistical dataset Jura from Pierre Goovaerts’ book (Goovaerts and Goovaerts,
1997) is provided by the package gstat (Pebesma (2004), Gräler et al. (2016)). It contains con-
centrations of seven heavy metals (cadmium, cobalt, chromium, copper, nickel, lead and zinc)
in the topsoil. In this section we analyze the measurements of copper and zinc. The topsoil of
the 14.5 km2 region in Swiss Jura was sampled on a square grid at 250 m intervals with addi-
tional nesting with distances of 100 m, 40 m, 16 m and 6 m (Webster et al., 1994). The basic
grid consists of 207 nodes, out of which 38 nodes were selected for nesting. Starting from each
of these 38 nodes, the first location was chosen 100 m away in a random direction. The second
location was chosen 40 m away from the first one again in a random direction. In a similar
way the third and the forth locations were picked out, see Figure 5.1 for the points layout. For
more details on the sampling scheme and its statistical impact see Atteia et al. (1994), Webster
et al. (1994) and Chapters 2.3.1 and 4.1.1 in Goovaerts and Goovaerts (1997). The content
of zinc and copper is measured in parts per million (ppm), which means that the data are
compositional, i.e. contain only relative information and range from 0 to 106. However, since
the concentrations of copper and zinc are low (maxiumum 166.4 ppm for copper and 259.8
ppm for zinc), we analyze the dataset in a non-compositional way, following Pebesma (2017)
and Goovaerts and Goovaerts (1997), rather then employ a compositional approach (Aitchison
(1982), Pawlowsky-Glahn and Buccianti (2011), and Pawlowsky-Glahn and Egozcue (2006)).

The measurements at 359 locations are divided into a training set (259 locations) and a
validation set (100 locations). The training set consists of the grid points and the nested points,
while the validation set contains only the grid points. We fit several bivariate covariance models
to the training set and compare the models performance on the validation set.

Following Webster et al. (1994) we first take the log-transform of the metals concentra-
tion and then subtract the mean values of the logarithms. Figure 5.1 shows the transformed
concentrations of copper and zinc. To asses the normality of the data, we examine one and
two dimensional distributions. Shapiro-Wilk test does not reject the hypothesis that marginal
distributions of zinc and copper are univariate normal at significance level 0.05. QQ-plots in
Figures 5.2 and 5.3 for marginal distributions of copper and zinc also suggest that they are close
to normal. The chi-squared QQ-plot in Figure 5.4 does not go against the bivariate normal
distribution of the colocated data, neither rejects the Royston’s test the bivariate normality
at significance level 0.05. Further we assume that the data stem from a bivariate Gaussian
process with zero mean.

The colocated empirical correlation of the data is 0.62, therefore it is reasonable to fit a
bivariate covariance model. Covariance functions, which are not differentiable at the origin,
are often used in geostatistics, see for example Goovaerts (1999), Journel (1974), Lark et al.
(2006), Oliver and Webster (2014). Before fitting bivariate covariance models to the data, we

57



58 Chapter 5. Data analysis with bivariate covariance models

Copper

1000

2000

3000

4000

5000

1000 2000 3000 4000

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●●

●●

●

●

● ●

●●●

●●●●●

●

●●●

●

●

●

●

●●

●●
●●

●

●

●●●

●●

●

●●
●

●

●●●

●●●
●

●●
●●

●

●

●

●●●

●●●

●

●

●

●

01000 m
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Zinc

1000

2000

3000

4000

5000

1000 2000 3000 4000

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●●

●●

●

●

● ●

●●●

●●●●●

●

●●●

●

●

●

●

●●

●●
●●

●

●

●●●

●●

●

●●
●

●

●●●

●●●
●

●●
●●

●

●

●

●●●

●●●

●

●

●

●

01000 m
−1.0

−0.5

0.0

0.5

1.0

Figure 5.1: Concentration of copper and zinc in the topsoil.

fit a univariate exponential model to copper and zinc observations separately in order to see
if the condition αii ∈ (0, 1], i = 1, 2 in the bivariate powered exponential covariance model is
restrictive for this dataset. To account for measurement error we add the nugget effects to the
univariate powered exponential models

CC(r) = σ2
Ce
−(sCr)

αC + τ2
C1(r = 0),

CZ(r) = σ2
Ze
−(sZr)

αZ + τ2
Z1(r = 0),

where r > 0, αC , αZ ∈ (0, 2], and σC , σZ , τC , τZ , sC , sZ > 0. Subscripts C and Z refer for copper
and zinc, respectively. The maximum likelihood estimates of parameters for the univariate
powered exponential model applied to the copper and zinc data are shown in the first line of
Table 5.1. The fit suggests that the smoothness parameters αC and αZ for copper and zinc,
respectively, are less than one. Copper and zinc have different scale parameters, 1/sC = 94.8
and 1/ssZ = 188.6, therefore a flexible bivariate model is needed. Our full bivariate powered
exponential covariance model is defined by

CC(r) = σ2
Ce
−(sCr)

αC + τ2
C1(r = 0),

CZ(r) = σ2
Ze
−(sZr)

αZ + τ2
Z1(r = 0),

and
CCZ(r) = CZC(r) = ρCZσCσZe

−(sCZr)
αCZ ,

where αC , αZ ∈ (0, 1], αCZ ∈ (0, 2], sC , sZ , sCZ > 0 and |ρCZ | < 1 satisfy the conditions of
Theorem 3.20 and σC , σZ , τC , τZ > 0. The maximum likelihood estimates of the full bivariate
powered exponential model agree with the independent univariate estimates, see Table 5.1.
The copper and zinc standard deviations are σC = 0.70 and σZ = 0.36 respectively. There are
nugget effects for copper (τC = 0.04) and for zinc (τC = 0.07). The values of estimated smooth-
ness parameters αC = 0.74 and αC = 0.77 are closer to each other than in the independent
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Figure 5.2: QQ plot for copper
concentrations
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Figure 5.3: QQ plot for zinc
concentrations

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●●

●●●●●●●●●
●●
●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●
●●●●
●●●
●●●
●●●●●●

●●●●●
●●●●

●●●●●●
●●●●●

●●●●●
●●●●

●●●
●●●●●

●●●
●●●●●

●●●
●●●

●●
●●●●●

●●●

●
●●●●

●●
●

●
●

● ●

●

● ● ●

●

●

●

●

0

3

6

9

12

0 4 8 12

theoretical

sa
m

pl
e

Chi−squared QQ plot

Figure 5.4: Chi-squared QQ-
plot for copper and zinc con-
centrations

Table 5.1: Maximum likelihood estimates of parameters for bivariate powered exponential
model applied to the copper and zinc data.

Model σC σZ αC αZ αCZ 1/sC 1/sZ 1/sCZ ρCZ τC τZ
Independent 0.69 0.35 0.77 0.90 - 94.8 188.6 - - 0.09 0.1
Full 0.7 0.36 0.74 0.77 0.77 90.4 188.5 114.6 0.63 0.04 0.07
Parsimonious 0.7 0.36 0.76 0.76 0.76 91.0 197.5 117.6 0.62 0.07 0.07

model. This is probably due to the positive definiteness restrictions in Theorem 3.20, which
exclude some parameter combinations with very distinct scale and smoothness parameters and
a high correlation, which is estimated as ρLC = 0.63. The estimate of ρLC agrees well with the
colocated empirical correlation.

In order to assess a typical finite sample variability in the estimation of the bivariate powered
exponential model we perform a small simulation study. Specifically, we generate 500 realiza-
tions from the full bivariate powered exponential model with parameter values of Table 5.1.
The simulations are done on a 50 by 50 square grid of the area 14.6 km2. For each realization,
we choose randomly 259 points of the grid and fit the bivariate powered exponential model by
maximum likelihood. The fitted covariance functions are shown in Figure 5.5. The average
of all 500 covariances (red dashed line) is close to the original model (solid green line). The
parameters estimates are summarized by the boxplots in Figure 5.6. The medians of estimates
of σC , σZ , αC , αZ , ρCZ , sC , sZ , sCZ are very close to their true values.

Following Gneiting et al. (2010), we extend these finite sample results with a view towards
the infill and increasing domain spatial asymptotics. For infill asymptotics, we but doubled the
number of sample locations (to 518) in the same grid. For increasing domain asymptotics, we
extended the domain in both coordinate directions by a factor of

√
2 and doubled the number of

sample locations (to 518), so that the sampling density does not change. For simplicity we did
not include nesting locations. Fitted covariance functions and the boxplots of the corresponding
estimates are also included in Figures 5.5 and 5.6, respectively. Generally speaking, parameter
estimates are seen to be tighter under both asymptotic frameworks.

Since there is no strong evidence that αC , αZ , αCZ are distinct for the full bivariate powered
exponential model, we fit a parsimonious bivariate powered exponential model with αC = αL =
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Figure 5.5: Fitted bivariate powered exponential covariance models for 500 simulated bivariate
random fields. The bold solid line is the original covariance model, with which the fields were
simulated, the dashed line is the average of 500 fitted bivariate powered exponential models.
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Figure 5.6: Results of the simulation study for the bivariate powered exponential model, sum-
marized by boxplots of the ML estimates for σC , σZ , ρCZ , αC , αCZ , αZ , sC , sZ , sCZ , τC , τZ .
The boxes range from the lower to the upper quartile, and the whiskers extend to the most
extreme data point that is no more than 1.5 times the interquartile range from the box. The
red dashed horizontal lines are at the true values.
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Table 5.2: Maximum likelihood estimates of parameters for the bivariate Matérn model applied
to the copper and zinc data.

Model σC σZ νC νZ νCZ 1/sC 1/sZ 1/sCZ ρCZ τC τZ
Full 0.7 0.37 0.3 0.28 0.32 155.1 337.8 185.7 0.66 0.02 0.01

αLC = α. In addition, we set τC = τL = τ , since the medians of their estimates close to each
other. Thus, our parsimonious bivariate powered exponential model becomes

CC(r) = σ2
Ce
−(sCr)

α
+ τ21(r = 0),

CZ(r) = σ2
Ze
−(sZr)

α
+ τ21(r = 0),

and
CCZ(r) = CZC(r) = ρCZσCσZe

−(sCZr)
α
,

where α ∈ (0, 1], sC , sZ , sCZ > 0 and |ρCZ | < 1 satisfy the conditions of Theorem 3.20 and
σC , σZ , τ > 0. The parameter estimates of the parsimonious bivariate powered exponential
model agree well with those of the full bivariate powered exponential model, see Table 5.1.
The likelihood of the parsimonious model is only 0.05 smaller than the likelihood of the full
model, see Table 5.4.

Next, we fit the full bivariate Matérn model, i.e.

CC(r) = σ2
CMνC (sCr) + τ2

C1(r = 0),

CZ(r) = σ2
ZMνZ (sZr) + τ2

Z1(r = 0),

and
CCZ(r) = CZC(r) = ρCZσCσZMνCZ (sCZr),

where νL, νC , νCZ , sC , sZ , sCZ , σC , σZ , τ > 0, |ρCZ | ≤ 1, Mν(sr) = 21−ν

Γ(ν) (sr)νKν(sr), Kν(r)
is the modified Bessel function of the second kind and Γ is the gamma function. The ML
estimates are displayed in Table 5.2. The estimates of the variance are close to those in the
bivariate powered exponential model, whereas the estimated nugget effects are smaller than
those in the bivariate powered exponential model. From the estimates of the smoothness
parameters νC = 0.3 and νCZ = 0.28 we get the estimates of the fractal dimensions of zinc and
copper fields, which are 2.7 and 2.72. The corresponding estimates of fractal dimension in the
bivariate powered exponential models are 2.63 for copper and 2.62 for zinc in the full model
and 2.62 in the parsimonious.

The last model that we fit is the linear model of coregionalization with two latent powered
exponential fields. As in the previous cases, we augment the model with nugget effects. We
choose two latent fields in order to have a comparable number of parameters to estimate. The
covariance function thus becomes

CC(r) = b211e
−(s1r)α1 + b212e

−(s2r)α2 + τ2
C1(r = 0),

CZ(r) = b221e
−(s1r)α1 + b222e

−(s2r)α2 + τ2
Z1(r = 0),

and
CCZ(r) = CZC(r) = b11b21e

−(s1r)α1 + b12b22e
−(s2r)α2
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Table 5.3: Maximum likelihood estimates of parameters for the LMC model applied to the
copper and zinc data.

Model b11 b12 b21 b22 α1 α2 1/s1 1/s2 τL τC
LMC 0.68 0.1 0.18 0.31 0.78 0.79 91.32 240.04 0.1 0.07
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Figure 5.7: Empirical covariance and bivariate covariance functions for the copper and zinc
data, with maximum likelihood fits under the full bivariate powered exponential model,
(BiFPE; red long dashed line), the bivariate Matérn (BiW; green dashed line) , the parsi-
monious bivariate powered exponential model, (BiPPE; blue dashed dotted line), and the
linear model of coregionalization (LMC; violet dotted line).

with b11, b21, b12, b22, s1, s2 > 0, α1, α2 ∈ (0, 2]. The ML estimates of the LMC model are
displayed in the Table 5.3. Similarly to the previous models, the estimated smoothness pa-
rameters are close to each other, α1 = 0.78 and α2 = 0.79, whereas the scale parameters are
clearly distinct, 1/s1 = 91.32, 1/s2 = 240.04. The estimated variances, which are defined by√
b211 + b212 = 0.69 for copper and

√
b221 + b222 = 0.35 for zinc, agree well with the estimates

in the bivariate powered exponential model and the bivariate Matérn model and so do the
estimates of nugget effects.

Table 5.4 contains the comparison between the bivariate powered exponential, the bivariate
Matérn, the independent powered exponential and the LMC fits. The full bivariate Matérn
model achieves the highest likelihood. The parsimonious bivariate powered exponential model
has the smallest value of AIC. Having the same number of parameters as the LMC, the parsimo-
nious bivariate powered exponential model has a higher likelihood value. All bivariate models
have higher likelihood and smaller value of AIC than the independent powered exponential
model.

We compare predictive performance of the models on the validation set. First we take the
logarithm of copper and zinc in the test set and then subtract the mean of logarithms of copper
and zinc from the training set. At the test set locations we perform co-kriging to predict the
values for copper and zinc. Then we calculate the mean absolute error (MAE), i.e. the average
absolute error between the realization and the co-kriging point predictor. When we do not use
the measurements of zinc from the test set for copper prediction, there is no gain in exploiting
the bivariate models. The same holds for the zinc prediction without using copper values.
Smaller MAE is achieved when the measurements of zinc concentrations is included for copper
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Table 5.4: Comparison of the bivariate powered exponential, the bivariate Matérn, the inde-
pendent powered exponential and the LMC models for copper and zinc data.

Model
Number of
parameters

Log likelihood AIC
MAE

(copper)
MAE
(zinc)

Full bivariate powered exponential 11 -181.42 384.84 0.5543 0.2315
Parsimonious powered exponential 8 -181.47 378.93 0.5550 0.2318
Full bivariate Matérn 11 -181.21 384.42 0.5593 0.2347
LMC 10 -181.59 383.19 0.5534 0.2292
Independent powered exponential 8 -245.6 507.22 0.5764 0.2742

prediction and vice versa. The results are summarized in Table 5.4. The bivariate models
clearly outperform the independent model both in copper and zinc.

5.2 Implementation details

Theorem 3.20 in Section 3.4 determines the conditions on the parameter set of the bivariate
powered exponential model which guarantee the positive definiteness in Rn, n ∈ {1, 3}. These
conditions set the boundaries for ρLC depending on given α11, α22, α12, s11, s22, s12. Moreover,
parts (i)-(iv) of Theorem 3.20 state that the infimum in (3.22) can be positive only if α12 ≥
max{α11, α22}. These restrictions lead to the correlated maximum likelihood estimates. In
order to reduce the correlation of estimates and increase the speed of the parameters search,
we reparametrise the model inside the RandomFields package, following the approach for the
bivariate Matérn model. We introduce auxiliary parameters βred, ρred and ρmax such that

α12 = max{α11, α22}+ βred(2−max{α11, α22}),

where βred ∈ [0, 1] and

ρ = ρredρmax,

where |ρred| ∈ [0, 1] and ρmax = α11α22s
α11
11 sα22

22 /(α2
12s

2α12
12 ) infr>0 g(r) with

g(r) =

[
rα11+α22−2α12e2(s12r)α12−(s11r)α11−(s22r)α22 q

(n)
α11,s11(r)q

(n)
α22,s22(r)

(q
(n)
α12,s12(r))2

]
.

When performing loglikelihood optimization we vary the parameters α11, α22, βred, ρred, s11,
s22, s12 and based on their values compute α12 and ρ. The parameters βred and ρred are chosen
independently of α11, α22, α12, s11, s22, s12. With this reparametrization any combination of
values of α11 ∈ (0, 1], α22 ∈ (0, 1], βred ∈ [0, 1], s11, s22, s12 > 0, ρred ∈ [−1, 1] leads to the valid
bivariate powered exponential covariance model.

The calculation of ρmax requires finding an infimum of the function g(r). We are interested
in positive values of ρmax or, in other words, in cases (i)-(iv) of Theorem 3.20. Consider the
behaviour of the function g(r) at zero and at infinity provided that the conditions (i)-(iv) in
Theorem 3.20 hold true. Then we have

lim
r→∞

g(r) =∞.
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Under condition (i) of Theorem 3.20 we have

lim
r→0

g(r) = 1.

Conditions (ii) - (iv) of Theorem 3.20 yield

lim
r→0

g(r) =∞.

Thus, if the one of the conditions (ii) - (iv) of Theorem 3.20 holds, the function g attains its
minimum in (0,∞) and if the conditions (i) of Theorem 3.20 holds, g attains its minimum in
[0,∞). In general g is not unimodal on [0,∞), therefore we use the following heuristic algorithm
to find the minimum. First we locate an interval which is likely to contain a global minimum.
To do so we choose the starting points rm = 10k, k ∈ {−10,−9, . . . , 10}, and repeat Algorithm
1 for each k or until gmin = 0 for some k. If for some k ∈ {−10,−9, . . . , 10} Algorithm 1
returned gmin = 0, we stop and set ρmax = 0. If gmin = −1, we located an interval with a local
maximum. We run again Algorithm 1 with a new starting point rm/2. If gmin > 0 for several
k ∈ {−10,−9, . . . , 10}, we apply the golden-section search algorithm (Press et al., 1982) to the
corresponding intervals in order to find the minimum. Then the smallest minimum is the value
of ρmax. We noticed that in the intervals, where g takes values less than 0.05, the algorithm
often stops before finding a minimum. This happens when the function does not decrease fast
enough in the neighborhood of the true minimum and the golden-section search algorithm fails
to locate it, since its precision is limited, see Press et al. (1982) for more details. To avoid these
situations, we set ρmax = 0 if we came across a point r which guarantees that ρmax ≤ 0.05 while
running Algorithm 1 or the golden-section search algorithm. From a practical perspective this
is not a strict restriction, since the use of the bivariate model with such a low cross-correlation
parameter is superfluous. For the sake of consistency, we choose ε = 0.05 in Algorithm 1.
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Compute rl = rm/2, rr = 2rm. gmin = 0.
while g(rm) ≥ min{g(rr), g(rl)} and min{g(rm), g(rl), g(rr)} > ε do

if g(rm) ≥ max{g(rr), g(rl)} then
rm = rl ;
gmin = −1;
break;

end
if g(rl) ≤ g(rm) then

rm = rl;
gmin = g(rm) = g(rl);
rl = rl/2;

end
if g(rr) ≤ g(rm) then

rm = rr;
gmin = g(rm) = g(rr);
rr = 2rr;

end
if min{g(rm), g(rl), g(rr)} ≤ ε then

rr = rl = 0;
gmin = 0;

end

end
return gmin, rl, rr;

Algorithm 1: Search for an interval which contains a local minimum
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