

AUTOMATIC REFINEMENT OF

LARGE-SCALE CROSS-DOMAIN

KNOWLEDGE GRAPHS

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

André de Oliveira Melo

aus Santiago, Brasilien

Mannheim, 2018

Dekan: Professor Dr. Heinz Jürgen Müller, Universität Mannheim

Referent: Professor Dr. Heiko Paulheim, Universität Mannheim

Korreferent*: Professor Dr. Heiner Stuckenschmidt, Universität Mannheim

Tag der mündlichen Prüfung: 24. August 2018

*Anmerkung: Der Korreferent wird aus dem lateinischen "con" und "referre" abgeleitet und damit ist der "zweite Gutachter"

der Korreferent - mir zwei "r".

Abstract

Knowledge graphs are a way to represent complex structured and unstructured in-
formation integrated into an ontology, with which one can reason about the existing
information to deduce new information or highlight inconsistencies. Knowledge
graphs are divided into the terminology box (TBox), also known as ontology, and
the assertions box (ABox). The former consists of a set of schema axioms defining
classes and properties which describe the data domain. Whereas the ABox consists
of a set of facts describing instances in terms of the TBox vocabulary.

In the recent years, there have been several initiatives for creating large-scale
cross-domain knowledge graphs, both free and commercial, with DBpedia, YAGO,
and Wikidata being amongst the most successful free datasets. Those graphs are
often constructed with the extraction of information from semi-structured knowl-
edge, such as Wikipedia, or unstructured text from the web using NLP methods. It
is unlikely, in particular when heuristic methods are applied and unreliable sources
are used, that the knowledge graph is fully correct or complete. There is a trade-
off between completeness and correctness, which is addressed differently in each
knowledge graph’s construction approach.

There is a wide variety of applications for knowledge graphs, e.g. semantic
search and discovery, question answering, recommender systems, expert systems
and personal assistants. The quality of a knowledge graph is crucial for its applica-
tions. In order to further increase the quality of such large-scale knowledge graphs,
various automatic refinement methods have been proposed. Those methods try to
infer and add missing knowledge to the graph, or detect erroneous pieces of infor-
mation. In this thesis, we investigate the problem of automatic knowledge graph
refinement and propose methods that address the problem from two directions, au-
tomatic refinement of the TBox and of the ABox.

In Part I we address the ABox refinement problem. We propose a method for
predicting missing type assertions using hierarchical multilabel classifiers and in-
going/outgoing links as features. We also present an approach to detection of rela-
tion assertion errors which exploits type and path patterns in the graph. Moreover,
we propose an approach to correction of relation errors originating from confusions
between entities. Also in the ABox refinement direction, we propose a knowledge
graph model and process for synthesizing knowledge graphs for benchmarking
ABox completion methods.

In Part II we address the TBox refinement problem. We propose methods for

iii

iv

inducing flexible relation constraints from the ABox, which are expressed using
SHACL. We introduce an ILP refinement step which exploits correlations between
numerical attributes and relations in order to the efficiently learn Horn rules with
numerical attributes. Finally, we investigate the introduction of lexical information
from textual corpora into the ILP algorithm in order to improve quality of induced
class expressions.

In Appendix A we present an empirical comparison of local and global feature
selection for transformation based multilabel classification. This work consolidates
the advantage of using local feature selection, which is exploited in our approaches
for type prediction and detection of relation assertion errors.

Zusammenfassung

Wissensbasen stellen eine Möglichkeit dar, komplexe strukturierte und unstrukturi-
erte Informationen als Ontologie und Instanzen darzustellen. Mit diesen Informa-
tionen können Schlussfolgerungen, Regeln und andere Formen von Logik verwen-
den werden, um neue Informationen abzuleiten oder Inkonsistenzen aufzudecken.
Wissensbasen sind aufgeteilt in einen terminologischen Formalismus (Ontologie/T-
Box) und in einen assertionalen Formalismus (ABox). Ersteres besteht aus einer
Reihe von Axiomen, die Klassen und Eigenschaften definieren und die Daten-
domäne beschreiben. Wohingegen die ABox aus einer Menge von Fakten besteht,
die die Instanzen in Bezug auf das TBox-Vokabular beschreiben.

In den letzten Jahren gab es mehrere Initiativen, um große domänenübergrei-
fende Wissensbasen (sowohl freie als auch kommerzielle) zu erstellen, wobei DB-
pedia, YAGO und Wikidata zu den erfolgreichsten freien Datansätzen gehören.
Diese Graphen werden oft aus semistrukturiertem Wissen, wie Wikipedia, oder
unstrukturierten Texten aus dem Internet unter Verwendung von NLP-Methoden
konstruiert. Insbesondere wenn heuristische Methoden und unzuverlässige Daten-
quellen verwendet werden, ist es unwahrscheinlich, dass die Wissensbasis völlig
korrekt oder vollständig ist. Es gibt einen Kompromiss zwischen Vollständigkeit
und Korrektheit, der in jedem Konstruktionsansatz der Wissensbasis unterschiedlich
behandelt wird.

Es gibt eine große Vielfalt von Anwendungen für Wissensbasen, z.B. semantis-
che Suche, Frage-Antwort Szenarios, Empfehlungssysteme, Expertensysteme und
persönliche Assistenten. Die Qualität einer Wissensbasis ist entscheidend für ihre
Anwendungen. Um die Qualität solcher umfangreichen Wissensbasen weiter zu er-
höhen, wurden verschiedene automatische Verfeinerungsverfahren vorgeschlagen.
Diese Methoden versuchen, fehlendes Wissen abzuleiten und hinzuzufügen, oder
fehlerhafte Informationen zu erkennen. In dieser Arbeit untersuchen wir das Prob-
lem der automatischen Verfeinerung von Wissensbasen und schlagen Methoden
vor, die das Problem aus zwei Richtungen angehen: automatischen Verfeinerung
von TBox sowie ABox.

In Abschnitt I befassen wir uns mit dem ABox-Verfeinerungsproblem. Wir
schlagen eine Methode zur Vorhersage fehlender Typ-Informationen vor, die hi-
erarchische Multilabel-Klassifikatoren und eingehende/ausgehende Verbindungen
als Merkmale/Features verwenden. Wir präsentieren auch einen Ansatz zur Erken-
nung von falschen Beziehungen zwischen zwei Entitäten, der die Typinformation

v

vi

und Pfadmuster im Graphen verwendet. Darüber hinaus schlagen wir einen Ansatz
zur Korrektur dieser Fehler vor, die aus Verwechslungen zwischen Entitäten entste-
hen. Im Rahmen der ABox-Verfeinerung, schlagen wir ein Modell und einen
Prozess zur Synthese von Wissensbasen vor, die zum Benchmarking von Meth-
oden zur ABox-Vervollständigung verwendet werden.

In Abschnitt II sprechen wir das TBox-Verfeinerungsproblem an. Wir schla-
gen Methoden vor, um aus der ABox flexible Restrikionen von Beziehungen zu
erzeugen, die mit SHACL ausgedrückt werden. Wir führen einen ILP-Verfei-
nerungsschritt ein, der Korrelationen zwischen numerischen Attributen und Bezie-
hungen ausnutzt, um Hornregeln mit numerischen Attributen effizienter zu lernen.
Abschließend untersuchen wir die Einführung von lexikalischen Informationen aus
Textkorpora, um die Qualität erzeugter Klassenausdrücke von ILP-Verfahren zu
verbessern.

Im Anhang A präsentieren wir einen empirischen Vergleich der lokalen und
globalen Merkmalselektion für transformationsbasierte Multilabel-Klassifikation.
Diese Arbeit konsolidiert den Vorteil der Verwendung lokaler Merkmalselektion,
die in unseren Ansätzen für die Typvorhersage und die Erkennung von falschen
Beziehungen ausgenutzt wird.

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Contributions . 5
1.3 Structure . 5

2 Fundamentals 8
2.1 Knowledge Graphs in the Semantic Web 8
2.2 Linked Open Data . 9
2.3 Knowledge Graph Construction 12
2.4 Incompleteness and Noise . 13
2.5 Knowledge Graph Lifecycle . 14
2.6 Ontology Learning . 16
2.7 Automatic ABox Refinement Approaches 17

2.7.1 Error Detection vs. Graph Completion 17
2.7.2 Internal vs. External Methods 17
2.7.3 Latent vs. Graph Feature Models 17

2.8 Evaluation of Knowledge Graph Refinement Methods 18

3 Related Work 20
3.1 Synthesis of Knowledge Graphs for Benchmarking 20
3.2 Type Prediction . 21
3.3 Relation Assertion Error Detection 23
3.4 Correction of Confusions in Knowledge Graphs 24
3.5 Relation Constraints Learning 25
3.6 Inductive Lexical Learning of Class Expressions 26
3.7 Learning Rules With Numerical Attributes 27
3.8 Summary . 28

I ABox Refinement 30

4 Synthesizing Knowledge Graphs for Refinement Benchmarking 31
4.1 Introduction . 31
4.2 Knowledge Graph Model . 32

vii

viii CONTENTS

4.3 Synthesis Process . 35
4.4 Experiments . 37
4.5 Conclusion . 42

5 Type Prediction using Hierarchical Multilabel Classification 43
5.1 Introduction . 43
5.2 Preliminaries . 44

5.2.1 Multilabel Classification Approaches 45
5.2.2 Hierarchical Multilabel Classification Approaches 45
5.2.3 Evaluation Measures . 47

5.3 Problem Definition . 48
5.4 Approach . 50

5.4.1 Algorithm . 50
5.4.2 Features . 53

5.5 Experiments . 56
5.5.1 Datasets . 56
5.5.2 SLCN Base Classifier and Parameter Settings 59
5.5.3 Graph Features vs. Latent Features 59
5.5.4 Scalability Experiments 62
5.5.5 Large-Scale Experiments on SW Datasets 63

5.6 Conclusion . 65

6 Detection of Relation Assertion Errors 66
6.1 Introduction . 66
6.2 Problem Definition . 67
6.3 Approach . 67

6.3.1 Extracted Features . 69
6.3.2 Learning the Model . 71

6.4 Experiments . 71
6.4.1 Datasets . 72
6.4.2 Evaluation Measures . 73
6.4.3 Parameter Settings . 74
6.4.4 Comparison . 75
6.4.5 Manual Evaluation . 77

6.5 Conclusion . 79

7 Correction of Confusions Between Entities 80
7.1 Introduction . 80
7.2 Proposed Approach . 81

7.2.1 Type Prediction . 81
7.2.2 Retrieving Candidates 82
7.2.3 Correcting Wrong facts 83

7.3 Experiments . 84
7.4 Conclusion . 86

CONTENTS ix

II TBox Refinement 87

8 Generation of SHACL Relation Constraints 88
8.1 Introduction . 88
8.2 Generating SHACL constraints 89

8.2.1 SHACL . 90
8.2.2 Generation Process . 90

8.3 Experiments . 94
8.4 Conclusion . 98

9 Inductive Lexical Learning of Class Expressions 99
9.1 Introduction . 99
9.2 Preliminaries . 100
9.3 Approach . 102
9.4 Evaluation . 104

9.4.1 Experimental Setup . 104
9.4.2 Results . 105
9.4.3 Discussion . 107

9.5 Conclusion . 108

10 Learning Rules With Numerical Attributes 109
10.1 Introduction . 109
10.2 Problem Definition . 111
10.3 Interestingness Measure . 112
10.4 Correlation Lattice . 113

10.4.1 Independence Test . 114
10.4.2 Scalability . 115

10.5 ILP Algorithm . 116
10.6 Experiments . 116
10.7 Conclusion . 120

11 Thesis Conclusion 121
11.1 Part I: ABox Refinement . 121
11.2 Part II: TBox Refinement . 122
11.3 Open Issues and Limitations . 123
11.4 Future Work . 124

11.4.1 General Perspective . 125

A Local vs. Global Feature Selection in Multilabel Classification 127
A.1 Introduction . 127
A.2 Background . 128

A.2.1 Multilabel Classification 129
A.2.2 Hierarchical Multilabel Classification 130
A.2.3 Evaluation Measures . 132

x CONTENTS

A.2.4 Feature Selection Methods 134
A.3 Related Work . 134
A.4 Feature Selection on Transformed Multilabel Classification 135

A.4.1 Global Feature Selection 135
A.4.2 Local Feature Selection 136
A.4.3 Analysis of Local Feature Sets 137

A.5 Experiments . 138
A.5.1 Datasets . 139
A.5.2 Scalability . 142
A.5.3 Results . 143
A.5.4 Statistical Analysis . 147

A.6 Conclusion and Future Work . 149

Bibliography 151

List of Publications

Parts of the work presented in this thesis have been previously published in interna-
tional journals and proceedings of international conferences. For all publications
the author of this thesis was a key contributor of the work presented in both the
publications and this thesis.

• André Melo, Martin Theobald and Johanna Völker: Correlation-Based Re-
finement of Rules with Numerical Attributes. In Proceedings of FLAIRS’14,
pages 345–250 (125): Chapter 10

• André Melo and Heiko Paulheim. Detection of Relation Assertion Errors in
Knowledge Graphs. In Proceedings of K-CAP’17, pages 22:1–22:8 (121):
Chapter 6.

• André Melo and Heiko Paulheim: Type Prediction in RDF Knowledge Bases
Using Hierarchical Multilabel Classification. In Proceedings of WIMS’16,
pages 14:1–14:10 (124): Chapter 5

• André Melo and Heiko Paulheim: Synthesizing Knowledge Graphs for Link
and Type Prediction Benchmarking. In Proceedings of ESWC’17, pages
136–151 (123): Chapter 4

• André Melo and Heiko Paulheim: Type Prediction in RDF Knowledge Bases
Using Hierarchical Multilabel Classification With Graph and Latent Fea-
tures. International Journal on Artificial Intelligence Tools, Volume 26, 2017
(126): Chapter 5

• André Melo and Heiko Paulheim: An Approach to Correction of Erroneous
Links in Knowledge Graphs. In Proceedings of QEKGraph colocated with
K-CAP’17 (120): Chapter 7

• André Melo and Heiko Paulheim: Learning SHACL Constraints for Valida-
tion of Relation Assertions in Knowledge Graphs. Submitted to Semantic
Web Journal (Tracking number: 1888-3101): Chapter 8

• Lorenz Bühmann, Daniel Fleischhacker, Jens Lehmann, André Melo and
Johanna Völker: Inductive Lexical Learning of Class Expressions. In Pro-
ceedings of EKAW’14, pages 42–53 (23): Chapter 9

xi

xii CONTENTS

• André Melo and Heiko Paulheim: Local and Global Feature Selection for
Multilabel Classification With Binary Relevance. Airtificial Intelligence Re-
view, pages 1–28, 2017 (122): Appendix A

List of Figures

1.1 Example of movie recommendation using a knowledge base (28) . 2

2.1 Semantic Web stack . 10
2.2 The Linking Open Data cloud diagram 11
2.3 The Linked Data lifecycle . 15

4.1 Distances of performance measures to original datasets 39
4.2 Effect of scaling the replica sizes up and down 39
4.3 Nemenyi Critical distance diagrams for link and type prediction . 41
4.4 Synthesis process runtime over dataset size for the ESWC2015 model 42

5.1 A subset of the DBpedia type hierarchy 45
5.2 Hierarchical multilabel classification local classifier approaches . 47
5.3 Evaluation of the impact of the parameters n and k on hF and

runtime. 60
5.4 Type prediction results for different number of HolE embeddings

dimensions . 61
5.5 Scalability in terms of number of instances, features and labels . . 63

6.1 Critical distance diagram comparing path selection heuristics . . . 75
6.2 Manual evaluation on DBpedia and NELL 78
6.3 Runtime comparison of the evaluated methods 79

7.1 Manual evaluation on DBpedia and NELL respectively 85

8.1 Example of decision tree pruning 91
8.2 Manual evaluation on DBpedia and YAGO 96
8.3 Manual evaluation of the differences between SHACL and SSI on

DBpedia and YAGO . 96

9.1 Outline of the general learning approach in ELTL: Class expres-
sions taking the available background knowledge into account are
generated and evaluated in a heuristic with respect to the target
learning problem. Figure adapted from (77). 101

9.2 Illustration of a search tree in ELTL. 102

xiii

xiv LIST OF FIGURES

10.1 Confidence distribution over age Y 110
10.2 Confidence distribution of rule r2 over the age attribute for the

overall USA population (a) as well as refined by the states Florida
(b) and South Dakota (c) . 111

10.3 Example of a body support distribution (10.3a) with different pos-
itives distributions (10.3b) and (10.3d) 112

10.4 Example of correlation lattice for the numerical attribute age . . . 114
10.5 Example of a test for independence between the literals marital-

Status(X,single) and employmentStatus(X,unemployed) 115
10.6 Evaluation of the correlation lattice construction 118
10.7 Evaluation of the ILP extension 119

A.2 Wilcoxon test on flat and hierarchical multilabel datasets 148
A.1 Global vs local feature selection comparison with J48 and mea-

sures D1 and D2. 150

List of Tables

2.1 Profiling of major LOD datasets (166) 13

4.1 Statistics about the datasets used in the experiments 38
4.2 Summary of the link prediction results 40
4.3 Summary of the type prediction results 40

5.1 Statistics about the datasets used 57
5.2 Comparison of different local classifiers on SLCN 59
5.3 Comparison of hF for type prediction on different feature sets . . 61
5.4 Evaluation of different classification methods on large cross-domain

SW datasets . 64
5.5 Evaluation of different classification methods on smaller SW datasets 65

6.1 Comparison of local classifiers and number of selected features on
generated errors of kind 1 . 74

6.2 Comparison of FMRR on generated errors of kind 1 75
6.3 Comparison of FMRR on generated errors of kind 2 76
6.4 Proportion of path and type features selected 77

8.1 PaTyBRED features translation into SHACL 93

9.1 Excerpt of the 50 class expressions that have been evaluated for the
class Astronaut. The first column denotes the rank of the DL-
Learner output without taking statistical measures into account.
Only the class expressions have been shown in random order to
the evaluators. 105

9.2 Results of relevance measure analysis. 106

10.1 Example of rules without numerical intervals 109
10.2 Example of rules refined with numerical intervals 110

A.1 Enron features ranked by information gain in descending order . . 137
A.2 Statistics about the flat datasets used 140
A.3 Statistics about the hierarchical datasets used 141

xv

xvi LIST OF TABLES

A.4 Comparison of local and global feature selection with mean aggre-
gation on flat multilabel datasets 144

A.5 Comparison of local and global feature selection with mean aggre-
gation on hierarchical multilabel datasets 145

A.6 Comparison of local and global feature selection with max aggre-
gation on flat multilabel datasets 146

A.7 Comparison of local and global feature selection with max aggre-
gation on. popular hierarchical multilabel datasets 147

A.8 Correlations between D1 and D2 measures and the ratio between
global and local feature selection approaches for different evalua-
tion measures . 148

List of Acronyms

AI Artificial Intelligence

IE Information Extraction

IR Information Retrieval

IRI Internationalized Resource Identifier

KB Knowledge Base

KG Knowledge Graph

DAG Directed Acyclic Graph

NLP Natural Language Processing

SRL Statistical Relational Learning

OIE Open Information Extraction

POS Part-of-speech

RDF Resource Description Framework

RDFS RDF Schema

OWL Web Ontology Language

SHACL Shapes Constraint Language

LOD Linked Open Data

SVM Support Vector Machine

HMC Hierarchical Multilabel Classification

BR Binary Relevance

idf inverse document frequency

tf -idf term frequency–inverse document frequency

xvii

Chapter 1

Introduction

Semantic Web knowledge graphs are an important information source for many
intelligent systems that require access to structured knowledge. Those knowledge
graphs contain descriptions of the data as well as factual knowledge about real
world entities and their relations and attributes in a fully machine-readable for-
mat. Some of the most used Semantic Web knowledge bases are large-scale cross-
domain datasets, such as DBpedia (106), YAGO (186), NELL (26), and Wiki-
data (56).

Generating such datasets is an extremely challenging task, which often involves
a trade-off between coverage and accuracy. That means it is difficult to generate
large datasets with high quality. Guaranteeing that every fact is correct is com-
plicated and often requires a manual evaluation, which is unfeasible on the scale
of the aforementioned datasets with tens or hundreds of million facts. YAGO has
been estimated to have 95% of correct data (186), while DBpedia’s correctness is
estimated to be 88% (220) and NELL’s 74% (26).

On the other hand, while these datasets are some of the largest existing knowl-
edge graphs, it is practically impossible to achieve full completeness in such cross-
domain datasets. That means incompleteness cannot be solved. However, it is
important to reduce it as much as possible without sacrificing the data’s correct-
ness.

Both incompleteness and noise are common problems and solving, or at least
reducing, them would be of great benefit for the applications which use such
datasets. The process of reducing incompleteness and noise is called refinement.
Developing automatic knowledge graph refinement methods which can do that on a
large scale is a good way to reduce these problems therewith improving the quality
of the data.

There is a wide variety of applications for knowledge graphs, e.g. semantic
search and discovery, question answering, recommender systems, expert systems
and personal assistants. For instance, knowledge graphs can play an important role
addressing the cold-start problem, which is common in recommender systems and
concerns the issue that the system cannot draw any inferences for users or items

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of movie recommendation using a knowledge base (28)

about which it has not yet gathered sufficient information.
Knowledge graphs are a great tool for leveraging external knowledge for im-

proving content-based recommendations. Figure 1.1 illustrates how knowledge
graphs can be exploited by recommender systems to reduce the cold-start prob-
lem (28). With the information from knowledge graphs it is possible to extend
the movies with information about actors and directors, including how they are
related. In the example, Bob who has only watched Schindler’s List so far, can
be recommended other popular movies directed by the Steven Spielberg, such as
Saving Private Ryan and The Terminal.

If a knowledge graph has wrong or missing links, that can lead to worse rec-
ommendations. By improving the quality and coverage of a knowledge graph, i.e.
removing wrong facts and adding missing facts, this and many other applications
which use knowledge graphs can indirectly profit from such improvement.

There is a wide variety of refinement methods in the literature. Some ap-
proaches focus on refining the TBox, also known as schema or ontology, which
describes a conceptualization, a set of concepts and properties for these concepts.
Others approaches focus on refining the ABox, which consists of TBox-compliant
statements about individuals belonging to those concepts. While there exist meth-
ods which can use external resources, such as web data and information extracted
from textual corpora, the focus of this thesis in on the methods which rely exclu-
sively on information already present in the knowledge graph.

The refinement of TBox is also known in the literature as ontology learning.
Since ABox statements need to comply with the TBox, the refinement of the TBox
can lead to the indirect detection of ABox errors.

Designing a good TBox can be a difficult task, especially on large-scale cross-
domain datasets, where it is complicated to have a deep understanding of the data.
Moreover, in crowdsource datasets, such as Wikidata, it is important that users –
who help populate the ABox – can clearly understand the TBox vocabulary and

3

use it adequately.
In many instances it can be interesting to consider a bottom-up approach, where

the ABox information is used in order to learn patterns which can be integrated into
the TBox. With that, unforeseen patterns can be induced from the data, and wrong
patterns or often misused vocabulary can be identified and fixed.

Many ABox refinement methods do not use TBox information, relying exclu-
sively on the relations between instances. However, since many knowledge graphs
do have a schema, which provide valuable information about the data domain, it
makes sense to exploit such information when available. The ABox refinement
problem in the Semantic Web community has been traditionally divided into type
prediction, i.e. prediction of missing instance types (concepts), and link prediction,
i.e. prediction of relationships between instances.

Reasoning is one of the main premises of the semantic web, and it enables the
deduction of new facts, thereby reducing incompleteness. Nevertheless, perform-
ing deductive reasoning on incorrect data can be problematic, since chains of sev-
eral wrong facts can be deduced from a single wrong fact, resulting in the increase
of incorrectness. It has been shown that classical ontology reasoning can propagate
errors and lead to nonsensical results when applied on real-world datasets (150).
Therefore, it is necessary to develop more robust statistical methods which can
work on noisy data in order to mitigate this problem.

Some of those aforementioned challenges from automatic knowledge graph re-
finement are addressed in this thesis. In Part I we present ABox refinements meth-
ods, which include a type prediction approach based on hierarchical multilabel
classification, an approach to detection of relation assertion errors and an approach
to correction of wrong links originated from confusions between instances. In ad-
dition, we also propose a knowledge graph model and synthesis process for gener-
ating artificial knowledge graphs for benchmarking of ABox completion methods.

In Part II we present TBox refinement methods, which include the generation
of relation constraints from the ABox. We also propose a method for induction of
intuitive class expressions by incorporating lexical information into inductive logic
programming (ILP), and an extension of the ILP algorithm to efficiently learn rules
with numerical attributes, where correlations between numerical properties and
literals are exploited by building a so-called correlation lattice.

In the Appendix we present a work about local feature selection in multilabel
classification, which is one of the foundations of our type prediction and relation
assertion error detection methods. There we perform an extensive empirical com-
parison of local and global feature selection for transformation based multilabel
classification methods, and show that the local approach consistently outperforms
the global approach in terms of predictive performance without sacrificing runtime.

In this thesis we study the automatic knowledge graph refinement problem
from different perspectives and evaluate our proposed methods on a large set of
popular publicly available knowledge graphs. It is important to notice that, as men-
tioned earlier, external information is also worth considering and can potentially
further improve the quality of a knowledge graph. However, we restrict ourselves

4 CHAPTER 1. INTRODUCTION

to the information already contained in the knowledge graph, such as the ontology
axioms, type assertions, path patterns, textual and numerical information from data
properties.

1.1 Research Questions

The general research question of this thesis is How to automatically refine knowl-
edge graphs using the information already contained in the graph?. In order to
answer this question, we divide it into a number of more specific questions which
are addressed in the later chapters of this thesis.

RQ1: How to automatically improve the quality of the ABox?
The problem of automatic refinement of knowledge graphs can be divided into

two subproblems. One is the refinement of the ontology (TBox), addressed by
RQ2, and the other is the refinement of the assertions box (ABox). The ABox
refinement problem includes the detection and correction of erroneous facts, ad-
dressed in Chapters 6 and 7, as well as the prediction of missing facts, addressed
in Chapter 5.

RQ2: How to automatically improve the quality of the TBox?
Automatic improvement of the TBox is an important part of the knowledge graph

refinement problem. One of the main approaches to ontology learning is the in-
duction of TBox axioms from the ABox. This can aid the construction and mainte-
nance of the ontology and provide valuable insights about the data. This question
is addressed in Chapters 8 and 9.

RQ3: How to efficiently apply refinement methods on large-scale data?
Enabling automatic knowledge graph refinement methods to be applied on large-

scale graphs, as well as across multiple interlinked datasets is also an important
problem. Scalable methods and efficient heuristics to explore large search spaces
are good means to enable such methods to be applied on large amounts of data.
This question is addressed in Chapter 10 and Appendix A.

RQ4: How to synthesize knowledge graphs for benchmarking knowledge graph
completion methods?

Artificially generated datasets are an important tool for comparing different al-
gorithms for a given task. Being able to control characteristics of the data and
analyzing how methods are affected by them are important to deeply understand
the behavior of these methods. The challenge is to synthesize knowledge graphs
from a given model, which should be able to convey characteristics important to
the knowledge graph completion task. This question is addressed in Chapter 4.

1.2. CONTRIBUTIONS 5

1.2 Contributions

The contributions of this thesis are diverse and cover several different aspects of
the automatic knowledge graph refinement, including methods for automatic TBox
and ABox refinement. More specifically the contributions of this thesis are the
following:

• A knowledge graph synthesis model for benchmarking of link and type pre-
diction methods – Chapter 4.

• An approach to type prediction using hierarchical multilabel classification –
Chapter 5.

• A machine learning approach to detection of relation assertion errors using
path and type features – Chapter 6.

• An approach to correction of erroneous links originated from confusion be-
tween entities – Chapter 7.

• An approach to learning expressive relation constraints based on our pro-
posed relation assertion error detection method – Chapter 8

• An investigation of how to incorporate lexical information in order to learn
more intuitive class expressions – Chapter 9.

• A correlation-based approach for refinement of clauses with numerical at-
tributes – Chapter 10.

• An empirical study comparing local with global feature selection multilabel
classification transformation methods – Appendix A.

1.3 Structure

The contents of the next chapters of this thesis are summarized as follows:
Chapter 2: Fundamentals - A brief motivation for the thesis and an overview of
some of the basics of knowledge graphs, semantic web, linked open data, knowl-
edge graph construction, knowledge graph refinement methods and evaluation ap-
proaches is presented.
Chapter 3: Related Work - A comprehensive overview of existing knowledge
graph refinement approaches is given. The overview covers works related to all of
the thesis contributions listed earlier.
Chapter 4: Synthesizing Knowledge Graphs for Refinement Benchmarking -
A model for synthesizing knowledge graphs for benchmarking of knowledge graph
completion methods, more specifically type and link prediction, is proposed. The
model is able to replicate different characteristics of a knowledge graph related to
the completion task. An evaluation is conducted to find out how well the proposed

6 CHAPTER 1. INTRODUCTION

model is able to replicate knowledge completion results of popular datasets and to
find out which model elements are the most relevant for a good replication.
Chapter 5: Type Prediction using Hierarchical Multilabel Classification - Hi-
erarchical multilabel classification with local feature selection is applied for the
prediction of missing types in knowledge graphs. It is shown that the structure
of type hierarchies can be exploited to efficiently handle the cross-domain nature
of large knowledge graphs and to improve scalability. Our evaluation show that
the proposed approach outperforms previous state-of-the-art type prediction ap-
proaches.
Chapter 6: Detection of Relation Assertion Errors - A supervised method for
detection of relation assertion errors based on path and type features is proposed.
The method consists of a binary classifier for each relation, which predicts whether
a pair of subject-object entities belongs to the given relation. Moreover, an ap-
proach for the exploration of the graph paths search space involving heuristic path
relevance measures is presented. It is shown that the proposed method is able to
outperform state-of-the-art error detection and link prediction approaches on the
error detection task.
Chapter 7: Correction of Confusions Between Entities - An approach to cor-
rection of confusions between entities is presented, where the focus is placed on
detected relation assertion errors caused by such confusions. The proposed ap-
proach is able to detect such cases and propose corrections, based on Wikipedia
disambiguation links and approximate string matching. It is shown that the ap-
proach is capable of correcting many of these cases, although the current accuracy
achieved is not good enough to enable its application in a fully automated fashion.
Chapter 8: Generation of SHACL Relation Constraints - An approach to gen-
eration of relation constraints, based on the error detection method from Chapter 6,
is proposed. The approach consists of learning a decision tree to detect error in
each relation, which is then translated into a logical expression that represents the
constraint. It is shown that the learned constraints can be more flexible and adapt
better to incomplete data, being better at detecting errors than other state-of-the-art
ontology learning approaches, such as statistical schema induction.
Chapter 9: Inductive Lexical Learning of Class Expressions - A method for
generation of more intuitive class expressions based on lexical information is pre-
sented. It extends the existing DL-Learner heuristics, which rely on scores based
on examples coverage obtained via logical inference, by adding relatedness infor-
mation about the target class and the entities in its class expression obtained from
textual corpora. A manual evaluation shows that a combination of relatedness mea-
sures is able to resemble the human perception of intuitiveness of a class expression
best.
Chapter 10: Learning Rules With Numerical Attributes - A method for effi-
cient refinement of rules with numerical attributes based on correlations between
numerical attributes and categories is presented. The method exploits distributions
of instances over numerical attributes on different subpopulations, and organize
the information on a so-called correlation lattice. The lattice can be later used in

1.3. STRUCTURE 7

the ILP refinement step to efficiently explore the search space thereby improving
scalability.
Appendix A: Local vs. Global Feature Selection in Multilabel Classification -
An empirical comparison between local and global feature selection strategies for
transformation based multilabel classification methods. It is shown that local fea-
ture selection, where the selection is performed independently on each transformed
datasets and local classifiers can work on specialized set of features, consistently
outperforms the global approach.

Chapter 2

Fundamentals

In this chapter we present works which are fundamental to understanding of the
thesis. It starts with the basics of knowledge graphs, semantic web and linked
open data, then an overview of main knowldege graph ABox and TBox refinement
methods are presented followed by evaluation approaches.

2.1 Knowledge Graphs in the Semantic Web

A knowledge graph1, or knowledge base, is a technology used to store complex
structured and unstructured information used by a computer system. It is composed
by ABox and TBox statements. TBox statements describe a conceptualization,
a set of concepts and properties for these concepts. ABox are TBox-compliant
statements about individuals belonging to those concepts. For instance, “every
musician is a person” and “musicians play for bands” are TBox statements, while
“Trent Reznor is a musician”, “Nine Inch Nails is a band” and “Trent Reznor plays
for Nine Inch Nails” are ABox statements.

In the Semantic Web the Resource Description Framework (RDF)2 is the lan-
guage of choice for describing knowledge graphs. It is represents statements about
resources in the form of triples <subject–predicate–object>, where the resources
are represented by a uniform resource identifier (URI). The subject denotes the re-
source, and the predicate expresses a relationship between the subject and the ob-
ject or properties of the subject. Moreover, resources may be divided into groups
called classes, whose members of a class are known as instances of the given class.

RDF standard representation uses standard XML notation, however, there are
also more readable representations such as N-Triples, Turtle and Notation3. The
ABox example mentioned earlier can be represented in RDF with Turtle notation
as follows:

1The term Knowledge Graph was coined by Google in 2012 and has been recently also used to
refer to Semantic Web knowledge bases.

2https://www.w3.org/RDF/

8

https://www.w3.org/RDF/

2.2. LINKED OPEN DATA 9

@prefix ex: <http://example.org/> .

ex:Nine_Inch_Nails a ex:Band .
ex:Trent_Reznor a ex:Musician ;

ex:playsFor ex:Nine_Inch_Nails .

RDF is also used as base for ontology languages, such as OWL3 and RDFS4,
which are used to define the TBox, often also referred to as ontology or schema.
Both the Web Ontology Language (OWL) and RDF Schema (RDFS) provide a
data-modelling vocabulary for RDF. OWL is intended to be compatible with and
extend RDFS.

With RDFS one can, for example, define that the domain of the ex:playsFor
relation is ex:Musician and the range is ex:Band. It can also organize classes
in a hierarchy determining subsumption relations between them. For instance,
we can define a more general class ex:Agent which is the superclass of both
ex:Musician and ex:Band, and a more general relation ex:memberOf which sub-
sumes ex:playsFor and has domain and range ex:Agent.

Knowledge graphs represented in RDF can be accessed using the query lan-
guage SPARQL5. The language has capabilities for querying across diverse RDF
data sources. It is also capable of querying required and optional graph patterns,
which can be combined with conjunctions and disjunctions. SPARQL also sup-
ports constraining queries by source RDF graph as well as many of the features
supported by SQL.

@prefix ex: <http://example.org/> .

ex:Musician rdfs:subClassOf ex:Agent .
ex:Band rdfs:subClassOf ex:Agent .
ex:playsFor rdfs:domain ex:Musician ;

rdfs:range ex:Band .
ex:memberOf rdfs:domain ex:Agent ;

rdfs:range ex:Agent .

Figure 2.1 illustrates the architecture of the Semantic Web, showing how the
different layers are stacked. Top of the stack (Trust, Proof and Unifying logic
layers) is an essential part of the vision of the Semantic Web. However, at the
moment there are still no implementation standards for those layers.

2.2 Linked Open Data

Linked Open Data is a method for publishing structured data so that it can be inter-
linked and become more useful through semantic queries. It builds upon standard

3https://www.w3.org/OWL/
4https://www.w3.org/TR/rdf-schema/
5https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/OWL/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-sparql-query/

10 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Semantic Web stack

web technologies, extending them to share information in a way that can be read
automatically by computers. The four principles of linked data outlined by Tim
Berners-Lee are the following:

1. Use URIs to name (identify) things.

2. Use HTTP URIs so that these things can be looked up (interpreted, "derefer-
enced").

3. Provide useful information about what a name identifies when it’s looked up,
using open standards such as RDF, SPARQL, etc.

4. Refer to other things using their HTTP URI-based names when publishing
data on the Web.

The number of linked open datasets available has quickly grown in the last
few years, going from a few dozen of datasets in 2007 to more than a thousand
nowadays. Figure 2.26 shows the Linked Open Data cloud diagram (2018-05-30)
featuring 1168 datasets.

This gives an idea of the rapid adoption of the LOD principles. However, it
is also worth noting that there are still several challenges to be addressed. What
Figure 2.2 does not show is the fact that many of those datasets do not adequately

6"Linking Open Data cloud diagram 2018, by Andrejs Abele, John P. McCrae, Paul Buitelaar,
Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"

http://lod-cloud.net/

2.2. LINKED OPEN DATA 11

Figure 2.2: The Linking Open Data cloud diagram

12 CHAPTER 2. FUNDAMENTALS

apply the linked data best practices (76). These best practices can be grouped into
three areas:

• Linking: By setting RDF links, data providers connect their datasets into a
single global data graph which can be navigated by applications and enables
the discovery of additional data by following links.

• Vocabulary Usage: Publishers should use terms from widely-used vocabu-
laries in order to ease the interpretation of their data. If data providers use
their own vocabularies, the terms of such proprietary vocabularies should be
dereferencable, and their definitions should contain RDF links pointing to
widely-used vocabularies.

• Metadata Provision: Linked Data should be as self-descriptive as possible,
and therefore include metadata. For instance, information about licensing,
provenance and accessibility should be provided. With that, users and ap-
plications can easily know whether they are licensed to use the data, assess
its quality and access the data via alternative methods such as SPARQL end-
points or data dumps.

An evaluation of the adoption of linking, vocabulary, metadata best practices
(176), shows that most datasets fail to fully apply these practices. Provenance
information is provided for roughly a third of all datasets. Only 10% of all datasets
provide machine-readable licensing information and only 14.69% provide VoID7

metadata. This results there is still a long way for the vision of linked data

2.3 Knowledge Graph Construction

Most of the popular large-scale knowledge graphs, because of their magnitude,
cannot be fully manually created and maintained. They rely, at least partially,
on automatic methods for knowledge extraction which transform unstructured or
semi-structured data, such as natural language text and web tables, into RDF triples.
In this section we provide a brief overview of how some of the most popular pub-
licly available large-scale cross-domain knowledge graphs are constructed.

DBpedia: DBpedia is extracted from Wikipedia’s structured data. The in-
foboxes of articles are the main source of information, with types of infoboxes
mapped into classes, and keys into properties in the DBpedia ontology.

YAGO - Yet Another Great Ontology: YAGO’s extraction is also based on
Wikipedia. However, its classes are derived from the Wikipedia’s category system
instead of infobox type, and infobox keys are manually mapped into a smaller set of
properties. YAGO extracts and fuses knowledge extracted from various Wikipedia
language definitions, while DBpedia creates different KGs for each language.

NELL - Never Ending Learning Language: Instead of just using Wikipedia,
NELL extracts information from a large scale corpus of diverse websites. It is a

7http://www.w3.org/TR/void/

 http://www.w3.org/TR/void/

2.4. INCOMPLETENESS AND NOISE 13

Dataset DBpedia YAGO Wikidata OpenCyc NELL
Version 2016-04 YAGO3 2016-08-01 2016-09-05 08m.995

#instances 5 109 890 5 130 031 17 581 152 118 125 1 974 297
#facts 397 831 457 1 435 808 056 1 633 309 138 2 413 894 3 402 971
#classes 754 576 331 30 765 116 822 290
#relations 3555 93 659 11 053 165 1334
avg indegree 13.52 17.44 9.83 10.03 5.33
avg outdegree 47.55 101.86 41.25 9.23 1.25

Table 2.1: Profiling of major LOD datasets (166)

research project that attempts to create a computer system that learns over time to
read the web. Since it uses unstructured text as source, it relies on more complex
information extraction approaches which learn text patterns that correspond to type
and relation assertions.

Wikidata: Wikidata is a collaboratively edited knowledge graph, operated by
the Wikimedia foundation that also hosts Wikipedia. Data is entered and main-
tained by crowdsourced editors as well as automated bots. After the shutdown
of Freebase, the data contained in Freebase was subsequently moved to Wikidata.
A particularity of Wikidata is that for each axiom, provenance metadata can be
included

OpenCyc: OpenCyc is a publicly available and reduced version of Cyc, which
is one of the oldest knowledge graphs developed and curated by CyCorp.

There also exist other important private knowledge graphs such as Google’s
Knowledge Vault, Yahoo’s Knowlege Graph, Facebook’s Entities Graph and Mi-
crosoft’s Satori. However, since these datasets are not publicly available and there-
fore cannot be used in our experiments, we do not get into more details.

Table 2.1 (166) shows some statistics about the aforementioned datasets, in-
cluding the number of instances, facts, classes, relations, and average in-degree
and out-degree. The latter two values indicate the average number of ingoing links
per instance, i.e. relation assertions where the instance is the object, and the av-
erage number of outgoing links, i.e. relation assertions where the instance is the
subject.

Given the quality of the sources, scale of the datasets, and complexity of the
extraction process it is common that these datasets have several missing facts as
well as erroneous data. In the next sections we discuss these problems in more
details.

2.4 Incompleteness and Noise

All of the knowledge graphs mentioned in Section 2.3 have two problems in com-
mon: incompleteness and noise. Incompleteness refers to the absence of true facts
in the data, while noise refers to the existence of false facts.

14 CHAPTER 2. FUNDAMENTALS

There are two main possible sources of noise: extraction errors and source data
errors. The former refers to erroneous facts generated from correct input which
was corrupted by problems in the information extraction process. The latter refers
to errors which were already existent in the source data, e.g., a wrong entry in
Wikipedia infobox, or a typo in textual data.

It has been estimated that Wikipedia, which is the source from DBpedia and
YAGO, has 2.8% of wrong statements (209). YAGO’s and DBpedia’s correctness
have been estimated to be 95% and 88% respectively (186; 220), while NELL’s is
estimated to be only 74% correct (26). These figures have been calculated based
on manual evaluation of data samples.

Estimating incompleteness is a much more complicated task. The high level of
incompleteness of most graphs can be illustrated with the fact that in Wikidata only
2% of all people have a father, in YAGO the average number of children per person
is 0.02 (65), and in Freebase 71% of people have no known place of birth and 75%
no nationality (51). In general, between 69% and 99% of instances in popular KGs
lack at least one property that other entities in the same class have (185).

Refining knowledge graphs, i.e. reducing both incompleteness and noise, is an
extremely relevant task in such datasets. Given the large size of the cross-domain
datasets, which often contain several millions of triples, automatic methods are
essential to enable the refinement of datasets on such scale. In the next sections we
give an overview of automatic knowledge graph refinement methods, starting with
ontology learning, i.e. the refinement of the TBox, and then with automatic ABox
refinement approaches.

2.5 Knowledge Graph Lifecycle

Once a knowledge graph is created and deployed as linked data, it needs to be
adequately maintained. Additionally, the issues previously discussed should be
addressed in order to progressively improve the quality of the knowledge graph.
The lifecycle of linked data on the web (7), which comprises of eight stages shown
in Figure 2.3, provides a framework for maintaining the data and continuously
improving it.

The eight stages of the linked data lifecycle are defined as follows:

• Extraction: Information represented in unstructured form or adhering to
other structured or semi-structured representations must be extracted and
converted into RDF.

• Storage/Querying: Mechanisms have to be in place to store, index and query
this RDF data efficiently.

• Authoring: Users must have the opportunity to create new structured infor-
mation or to correct and extend existing ones.

2.5. KNOWLEDGE GRAPH LIFECYCLE 15

Figure 2.3: The Linked Data lifecycle

• Interlinking: Information about the or related entities in different datasets
needs to be linked.

• Enrichment: Since Linked Data primarily comprises instance data, we ob-
serve a lack of classification, structure and schema information. This de-
ficiency can be tackled by approaches for enriching data with higher-level
structures in order to be able to aggregate and query the data more efficiently.

• Quality Analysis: Datasets contain a variety of information of different qual-
ity. The quality of the information provided by different sources should be
adequately assessed.

• Evolution/Repair: Knowledge and information are dynamic in various do-
mains. Changes and modifications to knowledge graphs should be consid-
ered and methods should be able to spot problems and to automatically sug-
gest repairs.

• Exploration: Applications and users have to be empowered to browse, search
and explore the information available in a fast, reliable and user friendly
manner.

This thesis addresses mainly the enrichment and evolution stages. The ABox
refinement methods proposed in the thesis can be used to detecting and correcting
errors as well as predict missing facts. The TBox refinement methods, on the other
hand, can induce TBox axioms from the ABox, thereby spotting problems and

16 CHAPTER 2. FUNDAMENTALS

indirectly improving the quality of the ABox. The combination of the two kinds of
approaches enables the TBox and ABox to evolve together in a virtuous cycle.

2.6 Ontology Learning

Automatic ontology learning methods can be extremely helpful on the process of
creation, maintenance and extension of ontologies. While the quality of the learned
ontologies might not be perfect, especially when learning on noisy and incomplete
data, in general the set of learned axioms is small and can be manually evalu-
ated and improved by specialists. It can also be used to spot differences between
intended and actual uses of ontologies, which are difficult to be predicted by ontol-
ogy designers and laborious to be manually detected.

The impact of learned axioms can be significant, potentially allowing the detec-
tion of several errors or prediction of several new facts in the ABox with a single
axiom. Moreover, when compared with ABox refinement approaches, ontology
learning approaches have a clear decision process, which can be analyzed and im-
proved by humans.

Ontology learning approaches can be substantially different, going into various
research directions. Lehmann et al. (107) roughly classify such approaches into
four main areas: ontology learning from text, linked data mining, concept learning,
and crowdsourcing.

Ontology Learning from text mostly focuses on the generation of ontologies
with text mining and information extraction methods. A prominent example is
NELL project, which reads the web to add statements to its knowledge base and
improves its performance over time, by taking user input about the quality of the
extracted facts.

Linked Data Mining refers to the process of learning meaningful patterns in
RDF graphs. Being able to detect the structure within the knowledge graphs can
support the later creation of schemata and enable the detection of interesting as-
sociations between elements in the graph. Statistical schema induction (203) or
statistical relational learning methods are examples of methods in this area.

Concept Learning is a direction of research that aims at learning schema ax-
ioms, such as class expressions, from existing ontologies and instance data. Most
methods in this area are based on Inductive Logic Programming (113). While many
algorithms, such as DL-FOIL (100) and OCEL (105) are generic supervised ma-
chine learning approaches for description logics, there are also specific adaptations
to ontology learning (102), e.g., in terms of performance and usability.

An interesting alternative to purely automatic approaches is crowdsourcing on-
tologies. Formulating the task to be completed and providing incentives for peo-
ple to contribute are additional challenges of this kind of approach. Examples
of crowdsourcing in the field of ontology learning include taxonomy construction
via Amazon mechanical turk, and games with a purpose for ontology population
(35; 83).

2.7. AUTOMATIC ABOX REFINEMENT APPROACHES 17

2.7 Automatic ABox Refinement Approaches

In this section we give a brief overview of knowledge graph refinement approaches
that focus on directly improving the ABox. We present some of the state-of-the-art
methods and categorize them according to (137; 149).

2.7.1 Error Detection vs. Graph Completion

There are two main goals of knowledge graph refinement: adding missing knowl-
edge to the graph, i.e., completion, and identifying wrong information in the graph,
i.e., error detection. The former addresses the incompleteness problem, while the
latter addresses the noise problem.

Both completion and error detection approaches can be further distinguished by
the targeted kind of information in the knowledge graph. For example, some ap-
proaches are targeted towards completing/correcting entity type information, while
others are targeted to (either specific or any) relations between entities, interlinks
between different knowledge graphs, or literal values, such as numbers. The prob-
lem of completing a graph with relations between entities is often referred to in the
literature as link prediction, while the problem of completing a graph with entity
type information is often referred to as type prediction.

2.7.2 Internal vs. External Methods

Internal methods use only the knowledge contained in the knowledge graph itself to
predict missing information. External methods use sources of knowledge – such as
text corpora, other knowledge graphs or crowdsourcing – which are not part of the
knowledge graph itself. Those external sources can be linked from the knowledge
graph, such as knowledge graph interlinks or links to web pages (e.g., Wikipedia
pages describing an entity), or exist without any relation to the knowledge graph at
hand, such as large text corpora.

Some popular external methods focus on type prediction. E.g., Giovanni et
al. (71) exploit Wikipedia links to predict new types, Aprosio et al. (5) use
type information from DBpedia in different languages, while Gangemi et al. (67)
and Kliegr (88) use textual information from DBpedia abstracts. In link predic-
tion, some methods predict new relation assertions with learned text patterns from
Wikipedia text (97; 214). Other approaches using question answering based on
web search engines (210) as well as HTML web tables (170) have also been pro-
posed.

Amongst the internal methods, there are mainly two kinds: latent and graph
feature models, which will be discussed in more details next.

2.7.3 Latent vs. Graph Feature Models

Graph feature models rely on features which can be directly observed in a graph.
The intuition behind these methods is that similar entities are likely to be related

18 CHAPTER 2. FUNDAMENTALS

and that the similarity of entities can be derived from the neighborhood of nodes
or from the existence of paths between nodes.

Latent features are those features which are not directly observed in the data.
The main task of all latent feature models is to infer these features automatically
from the data, while maximizing a triple score function over the whole dataset. In
these models entities and relations are represented in lower-dimensional spaces.
The intuition behind the learned representations is that the relationships between
entities can be derived from interactions of their latent features.

Recently graph feature models have received a lot of attention and have become
some of the best performing models on the link prediction task. There are different
approaches to learning graph embeddings. There are tensor factorization mod-
els (e.g., RESCAL (139), TRESCAL (31)), translation models (e.g., TransE (15),
TransH (208), TransR (111)), multilayer perceptrons (e.g., E-MLP (181), ER-
MLP (51)) and neural tensor networks (NTN) (181). Other methods are based
on word embedding methods which are trained on random walks of a knowled-
graph (169; 38), however they are not conceived for the link prediction task and
cannot score triples.

Graph feature models have also been used for link prediction, e.g. path ranking
algorithm (PRA) (98) and subgraph feature extraction (SFE) (69), as well as for er-
ror detection, e.g. SDValidate (151). On the type prediction problem SDType (150)
is an example of a graph feature model.

2.8 Evaluation of Knowledge Graph Refinement Methods

There are three main kinds of evaluation approaches for ABox automatic refine-
ment (149): partial gold standard, silver standard and retrospective evaluation.

Partial Gold Standard: In this evaluation methodology a subset of graph enti-
ties or relations are selected and labeled manually. Other evaluations use external
data as partial gold standards. For completion tasks, this means that facts that
should exist in the knowledge graph are collected, whereas for correction tasks, a
set of facts in the graph is manually labeled as correct or incorrect. Crafting a gold
standard can be extremely costly, and the fact that the gold standard is created for
a relatively small sample can significantly affect the quality of the evaluation.

Silver Standard: Another evaluation strategy is to use the given knowledge
graph itself as a test dataset. For completion, that means a subset of the knowledge
graph is removed from the training dataset and used as test. For error detection,
wrong facts can be generated and added to the knowledge graph, then later be
used for reference in the evaluation. Since the knowledge graph is not perfect, it
cannot be considered as a gold standard, therefore we call it a silver standard. How-
ever, assuming that the given knowledge graph is already of reasonable quality, the
evaluation results should be a good approximation of the actual results, with the
advantage of being fully automatable.

Retrospective Evaluation: For retrospective evaluations, the output of a given

2.8. EVALUATION OF KNOWLEDGE GRAPH REFINEMENT METHODS 19

approach is given to human judges for annotation, who then label suggested com-
pletions or identified errors as correct and incorrect. The quality metric is usually
accuracy or precision, along with a statement about the total number of comple-
tions or errors found with the approach, and ideally also with a statement about
the agreement of the human judges. Recall and other measures which rely on it
cannot be calculated since the number of false positives cannot be calculated. One
advantage of retrospective evaluations is that they allow a very detailed analysis of
an approach’s results. However the annotations are specific for a given method and
cannot be reused.

For the evaluation of ontology learning approaches there are mainly gold stan-
dard and manual evaluation approaches. Given that the TBox is generally orders
of magnitude smaller than the ABox, in many cases the manual evaluation is fea-
sible. At the same time, the creation of a gold standard can be difficult since the
definition of a good ontology is often debatable and application dependent.

Chapter 3

Related Work

In this section we present previous works related to the contents of this thesis. We
cover related works in the area of knowledge graph synthesis (c.f. Section 3.1),
ABox refinement – including type prediction, detection and correction of relation
assertion errors (c.f. Sections 3.2, 3.3 and 3.4) – as well as TBox refinement –
more specifically learning relation constraints, class expressions and rules with
numerical attributes (c.f. Sections 3.5, 3.6. In the rest of this section we discuss
more extensively and deeply the works related to those areas.

3.1 Synthesis of Knowledge Graphs for Benchmarking

There have been works which address the synthesis of knowledge graphs for bench-
marking purposes. However, most efforts were focused on synthesizing A-box
assertions for a specific T-box. Moreover, these works generate benchmarking
datasets for various tasks in the Semantic Web, but none of them focus on the
evaluation of link and type prediction methods.

Guo et al. (73) propose a method for benchmarking Semantic Web knowl-
edge base systems on large OWL applications. They present the Lehigh University
Benchmark (LUBM), which has an ontology for the university domain and in-
cludes the Univ-Bench artificial data generator (UBA), as well as a set of queries
and performance measures. The data generator synthesizes A-boxes of arbitrary
size to evaluate scalability. The data contains information about universities, which
are artificially created based on some predefined restrictions, e.g. minimum and
maximum number of departments, student/faculty ratio, which are based on arbi-
trarily defined ranges.

SP2Bench (177) is a SPARQL performance benchmark based on DBLP data.
It features a data generator, which can create datasets of any given size. Similarly
to UBA, the authors synthesize the A-box based on an existing T-box, in this case
the DBLP ontology, and a dataset specific model used to generate the synthetic
data. The model uses logistic curves and simple intervals to describe characteristics
of the DBLP data, such as the number and types of publications, distribution of

20

3.2. TYPE PREDICTION 21

citations, and level of incompleteness over years.
Morsey et al. (130) created a SPARQL query benchmark based on DBpedia to

evaluate knowledge base storage systems. They gather a set of real world queries
extracted with query log mining, and run them on datasets of different sizes gener-
ated from DBpedia. Their “data generation” process consists of sampling the orig-
inal DBpedia dataset and changing the entities namespace. Two sampling methods
are considered: rand, which basically randomly selects a fraction of the triples,
and seed, which first sample a subset of the classes, then instances of these classes
are also sampled and added to a queue, with this process repeated until the target
dataset size is reached.

Linked Data Benchmark Council (LDBC) (4) developed the social network
benchmark (SNB) and the semantic publishing benchmark (SPB). The SNB which
includes a data generator that enables the creation of synthetic social network data
representative of a real social network. The data generated includes properties
occurring in real data, e.g. irregular structure, structure/value correlations and
power-law distributions. The benchmark covers main aspects of social network
data management, including interactive, business intelligence and graph analytics
workload. The SPB is similar to the SNB, but it concerns the scenario of a media
organization that maintains RDF descriptions of its catalogue of creative works.

3.2 Type Prediction

The problems of inference on noisy data in the Semantic Web has been identified
by Ji et al. (81) and Polleres et at. (156). Reasoning on noisy data can result
on the propagation of errors and further damage the quality of the data. There
have been solutions proposed for the specific problem of type inference in (general
or particular) RDF datasets in the recent past, using strategies such as machine
learning, statistical methods, and exploitation of external knowledge such as links
to other data sources or textual information. One of the first approaches to type
classification in relational data is discussed by Neville et al. (136). The authors
train a machine learning model on instances that already have a type, and apply it
to the untyped instances in an iterative manner.

Some works address slightly different inference problems. Instead of predict-
ing instance types, Oren et al. (143) predict possible predicates for resources based
on co-occurrence of properties. The approach discussed by Pohl (155) addresses
the problem of mapping DBpedia entities to the category system of OpenCyc. They
use DBpedia specific information – infoboxes, textual descriptions, Wikipedia cat-
egories and instance-level links to OpenCyc – and apply an a posteriori consistency
check using Cyc’s own consistency checking mechanism.

HYENA (219) is a multi-label classifier for named entity types based on hi-
erarchical taxonomies derived from YAGO. Textual features extracted from the
mentions of the named entity Wikipedia articles are used by the classifier, which
consists of the SCN approach with siblings negative examples selection. There

22 CHAPTER 3. RELATED WORK

are several works on type prediction which exploit specific aspects of DBpedia.
Aprosio et al. (5) introduced an approach which first exploits cross-language links
between DBpedia in different languages to increase coverage. They use nearest
neighbor classification based on different features, such as templates, categories,
and bag of words of the corresponding Wikipedia article.

The Tipalo system (67) leverages the natural language descriptions of DBpedia
entities to infer types, exploiting the fact that most abstracts in Wikipedia follow
similar patterns. Those descriptions are parsed and mapped to the WordNet and
DOLCE ontologies in order to find appropriate types. Giovanni et al. (71) exploit
types of resources derived from linked resources, where links between Wikipedia
pages are used to find linked resources (which are potentially more than the re-
sources actually linked in DBpedia). For each resource, they use the classes of re-
lated resources as features, and use k-nearest neighbors for predicting types based
on those features. However, none of those approaches can be trivially applied to
datasets other than DBpedia.

SDType (150) uses links between resources as indicators for types, namely the
ingoing and outgoing properties of instances. The method requires the prior distri-
bution of types, as well as, for every property, a conditional probability distribution
of object and subject types. Every property is assigned a weight, where maximum
weight is given to properties that appear with a single type only, while the minimum
weight is given to properties which are equally present in all types. Based on that,
when predicting the types of an instance, SDType computes a confidence value for
every type possible. Those types whose confidence value satisfies an arbitrarily
defined minimum confidence threshold are assigned to the instance’s prediction.

SDType is a simple and highly scalable method, whose complexity grows lin-
early with the number of statements in the knowledge base. According to the al-
gorithm categorization by Silla Jr. et al. (179), SDType can be considered a global
hierarchical multilabel classifier with multipath, non-mandatory leaf-nodes. SD-
Type also generates predictions consistent with the type hierarchy. That is because
the confidence of any non-root class will be always smaller or equal to that of its
superclass if the model is learned on data with all subsumed type assertions.

LIFT (222) relies on the idea of class specific features for local classifiers on
multilabel classification. The authors propose a method for generation of class spe-
cific features based on the distance of instances to the centroid of clusters computed
for the positive and negative examples. Since this approach requires a clustering
algorithm to be executed twice for each class, scalability is major issue.

Amongst the approaches discussed above and in (150), SDType is reportedly
the best performing type predictor (150; 151), also outperforming RDFS reason-
ing. Therefore, in the experiments of Chapter 5 we have restricted ourselves to
comparing hierarchical classification methods against SDType.

Statistical relational learning is an area which has a lot in common with type
prediction. In fact, type prediction can be considered a special case of the link
prediction problem, discussed earlier in this section, where instances are linked
with types. However, there are no reported results for type prediction using link

3.3. RELATION ASSERTION ERROR DETECTION 23

prediction approaches in the literature, therefore we cannot directly compare the
results presented in the respective papers with our method. Link prediction works
are presented in details in Section 3.3.

3.3 Relation Assertion Error Detection

The problem of relation assertion error detection in knowledge graphs has been re-
searched by the Semantic Web community. A few methods have been proposed for
cleansing large-scale LOD knowledge graphs, such as DBpedia and NELL, which
contain many relation assertion errors that cannot be detected by reasoning meth-
ods (151). Absence of domain and range restrictions of relations or too general
restrictions is one of the main causes of such problems.

SDValidate (151) exploits statistical distributions of types and relations, and
(48) applies outlier detection on type-based entity similarity measures to detect
erroneous relation assertions. These methods can effectively detect errors on DB-
pedia, however they require the existence of informative type assertions. More-
over, more complex errors containing wrong entities with correct types cannot be
detected. A detailed survey including link prediction and error detection methods
for knowledge graphs can be found in (149).

Link prediction, or knowledge graph completion (KGC), is a problem highly
related to error detection. Despite being a different problem, KGC methods can
also be used on the error detection problem. This kind of methods can be divided
into graph-based, which relies on features which can be directly observed in the
graph, and embedding methods, which learn embeddings that represent entities
and relations in a latent feature space.

The Path Ranking Algorithm (PRA) (98) has shown that a logistic regres-
sion classifier using path features generated with random walks can be used for
learning and inference in KGs and outperforms N-FOIL horn-clause inference on
NELL (98). The approach has been improved with Sub-graph Feature Extraction
(SFE) (69), which also simplifies some aspects of PRA. For instance, while PRA
uses real-value features which correspond to the probabilities to reach o from s
with a given path, SFE simply uses binary features which indicate if o can be
reached from s or not. SFE not only reduces runtime by an order of magnitude
when compared with PRA, but it also improves the qualitative performance.

In the recent years, knowledge graph embedding models, i.e., representations
of knowledge graphs into lower-dimensional dense vector spaces, have received a
lot of attention (207). Several different models have been developed for the knowl-
edge graph completion problem and have brought improvements in performance.

There is a plethora of different embeddings models for knowledge graphs. One
of the earliest embedding models is RESCAL (139), which performs tensor factor-
ization on the knowledge graph’s adjacency tensor, with the resulting eigenvectors
corresponding to the entity embeddings and the core tensor the relations matrices.
TRESCAL (31) extends RESCAL by exploiting entity types as well as domain and

24 CHAPTER 3. RELATED WORK

range restrictions of relations to improve the data quality and speed up the tensor
factorization process. Neural Tensor Model (NTN) (181) represents each relation
as a bilinear tensor operator followed by a linear matrix operator. Other early
embedding models include Structure Embeddings (SE) (16), Semantic Matching
Energy (SME) (14) and Latent Factor Model (LFM) (80).

Translation-based embeddings represent relations as translations between sub-
ject and object entities. TransE (15) was the first translation-based model proposed.
In TransE entities and relations share the same embeddings space, while in TransH
(208) and TransR (112) the translations are performed in the relations space, which
is different from the entities space, therefore requiring projection matrices to map
the entities onto the relations space. TransG (216) and CTransR (112) incorporate
multiple relation semantics, where a relation may have multiple meanings deter-
mined by the entities pair associated with the relation. PTransE (110) extends
TransE by considering relation paths as regular relations, which makes the number
of relations considered grow exponentially.

Other approaches include DistMult (217), which uses dot product instead of
translations to compute the triple scores. HolE (138) used circular correlation as
an operator to combine the subject and object embeddings, Complex Embeddings
(193) represents a triple score as the hermitian dot product of the relation, subject
and object embeddings, which consist of real and imaginary vector components.
ProjE (178) formulates the knowledge graph completion as a ranking problem, and
it optimizes the ranking of candidate entities collectively. Discriminative Gaif-
man Models (141) embeds subgraph patterns incorporating first-order rules in the
model. Some embedding models, such as RDF2Vec (169) and Global RDF vectors
(39), are not conceived for the KGC task and cannot generate triple scores. Thus
they cannot be directly used for error detection in the same way the other models
mentioned earlier can.

Recently some works have raised doubts about the performance of new KGC
embeddings models. Most of the experiments rely exclusively on two datasets
(WN18 and FB15k), which contain many inverse relations (191). Therefore some
of the models may exploit this characteristic and not necessarily perform as well
on other KGs. It has also been shown that the presence of relations between candi-
date pairs can be an extremely strong signal in some cases (191). Moreover, recent
works showed that a hyperparameter tuning has been overlooked and that a sim-
ple method, such as DistMult, can achieve state-of-the-art performance when well
tuned (82).

3.4 Correction of Confusions in Knowledge Graphs

In the knowledge graph context, there are mainly error detection and link predic-
tion approaches. Both are closely related to our problem: while error detection
deletes wrong triples, link prediction aims at adding new triples. In both cases, the
approaches learn a KG model which is capable of assigning confidence values to

3.5. RELATION CONSTRAINTS LEARNING 25

triples.
It is important to note that none of the link prediction approaches mentioned

address the problem of covering the candidate triples space.Error detection ap-
proaches, such as SDValidate and PaTyBRED, focus on the detection of already
existing erroneous triples. However, they do not address the problem of what to do
with the detected wrong facts. No knowledge graph refinement approach exploits
the assumption that some erroneous facts, because of confusions between entities,
can be corrected by fixing such confusions. This assumption can be used reduce
the candidate triples search space.

Rule-based systems, such as AMIE (66), cannot assign scores to arbitrary
triples. However, they could also be used to restrict the candidate triples search
space by identifying high confidence soft rules and using the missing facts from
instances where the rule does not hold as candidates. Combining them with previ-
ously mentioned KG models would be an interesting line of research, however, it
is out of the scope of this work.

Wang et al. (206) studied the problem of erroneous links in Wikipedia, which
is also the source of many errors of DBpedia. They model the Wikipedia links as
a weighted directed mono-relational graph, and propose the LinkRank algorithm
which similar to PageRank, but instead of ranking the nodes (entities), it ranks the
links. They use LinkRank to generate candidates for the link correction and use
textual features from the description of articles to learn an SVM classifier that can
detect errors and choose the best candidate for correction. While this is a closely
related problem, which can help reduce the number of relation errors by improving
the quality of the source data, their method cannot be directly applied on arbitrary
knowledge graphs. Moreover, our approach takes advantage of the multi-relational
nature of KGs, entity types, ontological information and the graph structure.

3.5 Relation Constraints Learning

As discussed in Section 3.3, most works on detection of relation assertion errors in
knowledge graphs address the problem on the level of individual assertions. There
are few works which attempt to derive reusable, higher-level artifacts, apart from
domain and range restrictions.

One such approach has been proposed in (190). The authors provide means of
learning additional domain and range restrictions for relations, which can then fa-
cilitate more fine-grained fact checking. The domain and range axioms learned are
a reusable artifact, but are not always suitable for the complex scenarios induced
by modern knowledge graphs.

Paulheim and Gangemi (153) have introduced an approach that clusters similar
relation assertion errors. Those clusters can be more easily inspected by experts
(e.g., by presenting them one typical, prominent example as a proxy for a class of
errors), but the expert still needs to identify the cause and come up with a suitable
fix manually.

26 CHAPTER 3. RELATED WORK

The work presented in (148) aims at closing that gap by precisely pinpointing
the cause of an error. For DBpedia, it is able to identify single axioms in the ontol-
ogy or single mapping elements (i.e., the smallest building blocks of the creation
process) that are responsible for a class of errors. It is, however, tightly tangled to
the DBpedia creation process and cannot be trivially transferred to other knowledge
graphs built with different methods.

Since we discuss the learning of constraints to be used for validating a knowl-
edge graph, we target a problem which is similar to that of ontology learning or
enrichment; a field in which quite a bit of related work exists. Rudolph (171) uses
a class of OWL axioms that generalize domain and range restrictions, which sup-
port the conjunction of concepts. Statistical schema induction (SSI) (204) uses
association rule mining to learn OWL 2 EL axioms, such as class and relation sub-
sumptions, relation’s domain and range restrictions, relation transitiveness. Büh-
mann and Lehmann (24) propose a method for enriching ontologies with OWL 2
axioms implemented in the DL-Learner framework. Regarding relation assertion
constraints, domain and range restrictions and relation cardinalities (133) are the
only kind of constraints which can be learned by these methods. A brief intro-
duction to ontology learning and overview of the main approaches can be found
in (107).

Gayo et al. (70) uses SHACL and ShEX to define constraints to validate and
describe linked data portals. Arndt et al. (6) uses rule mining to learn RDF-CV
(RDF Constraints Vocabulary). Swift Linked Data Miner (SLDM) (157) is the
only system at the moment which can automatically learn SHACL constraints.
However, it does not learn relation constraints, only class expressions.

Rule learning approaches, such as AMIE (66) and DL-learner (104), could in
principle have some of their rules converted into SHACL constraints. Since they
were not originally conceived for learning relation constraints, these approaches
would need to be extended in order to support it. As of now there are no works in
that direction.

3.6 Inductive Lexical Learning of Class Expressions

Since we presented the first approach towards unifying logical (data-based) and
lexical (text-based) ontology learning, we describe related work in both areas.

Early data-based works essentially focused on demonstrating the PAC-learnabi-
lity for various terminological languages derived from CLASSIC. In particular,
Cohen and Hirsh investigate the CORECLASSIC DL proving that it is not PAC-
learnable (40) as well as demonstrating the PAC-learnability of its sub-languages,
such as C-CLASSIC (41), through the bottom-up LCSLEARN algorithm. These
approaches tend to cast supervised concept learning to a structural generalizing
operator working on equivalent graph representations of the concept descriptions.
Recently, many approaches have been proposed that adopt the idea of general-
ization as search (128) performed through suitable operators that are specifically

3.7. LEARNING RULES WITH NUMERICAL ATTRIBUTES 27

designed for DL languages (9; 79; 103) on the grounds of the previous experi-
ence in the context of ILP. There is a body of research around the analysis of
such operators (105; 99) and studies on the practical scalability of algorithms using
them (77). Supervised learning systems, such as YINYANG (79) and DL-Learner
(101) have been developed and adoptions implemented for the ontology learning
use case (102; 25). Also techniques from the area of data mining have been used
for unsupervised ontology learning (203). As an alternative model, a new ver-
sion of the FOIL algorithm (160) has been implemented, resulting in the DL-FOIL

system (58). The general framework has been extended to cope with logical repre-
sentations designed for formal Web ontologies (59).

Unlike logical approaches which have been developed to generate ontologies
from structured data, lexical or NLP-based methods (213) draw upon the huge
amounts of unstructured text available, e.g., on the web. Many of these meth-
ods combine lexico-syntactic patterns (e.g., Hearst patterns (75)) and linguistic
resources like WordNet with machine learning techniques. While a growing num-
ber of ontology learning methods also leverages linked data or ontologies (e.g.
FRED (158)), the results are mostly limited to atomic entities and simple axioms.
An exception to this are pattern-based approaches to translating natural language
definitions into class expressions such as LExO (202).

Altogether, we can see that attempts have been made to integrate semantic web
data and logical inference into lexical approaches to ontology learning. However,
there has been little if any work on integrating lexical evidence into logics-based
ontology learning algorithms so far.

3.7 Learning Rules With Numerical Attributes

Related work consists of approaches for learning rules with numerical attribute
intervals (also called quantitative rules) in association rule mining as well as In-
ductive Logic Programming (ILP). To the best of our knowledge, there is no prior
work which focuses on the efficient exploration of the rules search space in ILP.
The works presented in this section addresses different problems which are tightly
related to our proposed approach.

The related works on association rule mining focus on learning rules of the
form (A1 ∈ [l1, u1])∧C1 ⇒ C2, whereA1 is an uninstantiated numerical attribute,
l1 and u1 are the lower and upper boundaries ofA1, and C1 and C2 are instantiated
conditions. Srikant and Agrawal (183) use a priori discretization of the numerical
attribute domain into fine partitions in order to treat them as regular categorical
attributes. They learn rules for the individual partitions and then try to merge rules
with adjacent partitions into wider intervals, but their approach does not guarantee
the optimality of the generated intervals. Brin et al. (21) propose an algorithm with
linear complexity for finding optimal intervals. It features a supervised bucketing
technique, which collapses instances together, reducing input size without sacri-
ficing optimality. Mata et al. (118) employ evolutionary techniques which do not

28 CHAPTER 3. RELATED WORK

require the discretization of the numerical attributes, and Salleb-Aouissi et al. (173)
employ a genetic-base algorithm in order to find the optimal interval boundaries.
Note that these algorithms could be integrated into our ILP extension for finding
the optimal lower and upper boundaries, after we have detected an interesting rule
with a numerical attribute with no intervals.

Inductive Logic Programming (ILP), introduced by (131) , is a state-of-the-
art technique for learning concepts from examples, which we base our approach
on. There are two main induction methods: top-down (which starts with specific
clauses and searches for generalizations), and bottom-up (which starts with a gen-
eral clause and searches for specializations). We use the top-down approach of
FOIL (160) , which essentially consists of a covering and a specialization loop.
The former ensures completeness, i.e. all positive examples are covered, whereas
the latter ensures consistency, i.e. no negative examples are covered. In order to
handle noisy data, we use a minimum expected accuracy (namely the probability
that an example covered by the clause is positive) as a stopping criterion in the spe-
cialization loop. We also restrict the hypothesis space to safe datalog rules, which
support arithmetical predicates providing the expressiveness required to define the
intervals of numerical attributes.

3.8 Summary

This thesis addresses a variety of challenges involving the automatic refinement
of knowledge graphs. The next chapters answer the research questions discussed
earlier at Section 1.1 and fill the gaps in the literature, which are summarized below.

• Firstly we identified that there are no knowledge graph synthesizers capable
of artificially generating data with characteristics relevant to link and type
prediction tasks.

• Previous type prediction methods were quite limited and did not take the
hierarchical structure of types. Moreover, type prediction has not been for-
mulated as a hierarchical multilabel classification problem.

• Despite the wide body of research on the link prediction problem, there were
previously no works addressing the detection of erroneous links, or which
evaluated link prediction methods on the error detection task.

• There’s no work on correcting detected erroneous relation assertions origi-
nated from confusions between entities, which is common type of error on
datasets extracted from Wiki sources.

• Relation constraint learning methods are restricted to domain and range re-
strictions, which in many cases is not expressive enough to cope with com-
plex domains.

3.8. SUMMARY 29

• Logical class expressions learning methods, which uses facts in the knowl-
edge graph to induce the expressions, have not been combined with lexical
methods, which relies on textual data.

• There are very few works on learning rules with numerical attributes, and no
work on efficiently learning such rules with inductive logic programming.

With the works presented in Chapters 4-10 those gaps are addressed one by
one in the same order. Finally, in Chapter 11 we conclude the thesis, discuss future
works and present important current challenges of knowledge graph refinement.

Part I

ABox Refinement

30

Chapter 4

Synthesizing Knowledge Graphs
for Refinement Benchmarking

4.1 Introduction

Benchmarking is an important way of evaluating and comparing different methods
for a given task. Having datasets with various characteristics is a crucial part of de-
signing good benchmarking tests, allowing to thoroughly analyze the performance
of a method under various conditions.

With the growing adoption and usage of Web-scale knowledge graphs, the data
quality of those graphs has drawn some attention, and methods for improving the
data quality, e.g., by predicting missing types and links, have been proposed. While
there are a few benchmarking datasets for other tasks in the Semantic Web commu-
nity, like SPARQL query performance (130; 177), ontology matching (34), entity
linking (200), machine learning (167), and question answering (114), benchmarks
for the task of type and link prediction are still missing. In contrast, the majority
of approaches is only tested on one or few datasets, most prominently different
versions of DBpedia, which makes it difficult to compare the approaches (149).
Thus, it would be desirable to have benchmarking datasets with different charac-
teristics, such as the number of entities, relation assertions, number of types, the
taxonomy of types, the density of the knowledge graph, etc. Furthermore, it would
be interesting to be able to have some control over these characteristics, vary them
if necessary, and generate a knowledge graph following defined settings.

Generating data artificially for evaluation purposes is not something new. Data
synthesizers have been used in various research areas. IBM Quest Synthetics Data
Generator1 is probably the most famous of them. It generates transaction tables
for frequent pattern mining. There are also generators, e.g., for spatial-temporal
data (188), clustering and outlier detection (33), data for information discovery
and analysis systems (174), and high-dimensional datasets (3).

1http://www.philippe-fournier-viger.com/spmf/datasets/IBM_Quest_
data_generator.zip

31

http://www.philippe-fournier-viger.com/spmf/datasets/IBM_Quest_data_generator.zip
http://www.philippe-fournier-viger.com/spmf/datasets/IBM_Quest_data_generator.zip

32 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

The overall goal is to synthesize a multitude of knowledge graphs to design
benchmarkings for the tasks of link and type prediction. A first step to achieve this
goal is to be able to replicate already existing datasets. In this chapter, we propose
knowledge graph models, and a synthesis process that is able to generate data based
on the models. To show the validity of the synthesis approach, our main goal is
to replicate the evaluation results when performing link and type prediction with
various state-of-the-art methods. We want to minimize the distance between the
original dataset and the synthesized replicas for these measures, and also preserve
method rankings. In our case, we select five methods for each task.

In order to be able to run systematic scalability tests with different approaches,
we also explore the possibility to generate replicas of different sizes (number of
entities and facts). The results should be preserved when varying the size of the
synthesized data.

The rest of this chapter is structured as follows. We introduce our model for
knowledge graphs in section 4.2, and discuss the synthesis approach in section 4.3.
In a set of experiments, we discuss the validity of our approach in section 4.4, and
conclude with a discussion the results.

4.2 Knowledge Graph Model

We define a knowledge graph K = (T ,A), where T is the T-box and A is the
A-box containing relations assertions AR and type assertions AC . We define NC

as the set of concepts (types), NR as the set of roles (object properties) and NI as
the set of individuals (entities which occur as subject or object in relations). The
set of relation assertions is defined asAR = {p(s, o)|p ∈ NR ∧ s, o ∈ NI} and the
set of type assertion as AC = {C(s)|C ∈ NC ∧ s ∈ NI}.

In our proposed model, we learn the joint distribution of types over instances.
To that end, we compute P (T), which is the probability of an individual hav-
ing a set of types T . We define the set of types τ(s) of a given individual s as
τ(s) = {C|C(s) ∈ AC} and the set of individuals of given set of types T as
ET = {s|τ(s) = T}. This is important because most knowledge graphs allow in-
stances to have multiple types, and by modeling the distribution of instances over
sets of types we can capture the dependencies between types, which is relevant for
the problem described in this chapter. It is important to note that, e.g., the instance
Arnold_Schwarzenegger with set of types {Actor, Politician, BodyBuilder}
is not considered to belong to {Actor, Politician} when computing the distri-
butions. With that, we make sure that

∑
T∈P(NC) P (T) = 1, where P(NC) is the

powerset of types containing all possible combinations of types

P (T) =
|{s|τ(s) = T}|

|NI |
(4.1)

We also model the joint distribution of relations and the type set of their subject
(Ts) and object (To), which we call P (r, Ts, To). This distribution allows us to

4.2. KNOWLEDGE GRAPH MODEL 33

model how different types are related, and capture domain and range restrictions of
relations in a fine grained way. We can model not only that the relation playsFor
has domain Athlete and range SportsTeam, but also how athletes are distributed
over more specific types (e.g., FootballPlayer, BasketballPlayer, etc.) and
how teams are distributed over subclasses of SportsTeam (e.g., FootballTeam,
BasketballTeam, etc.). Most importantly, we can model that FootballPlayer
playsFor FootballTeam and BasketballPlayer playsFor BasketballTeam.

We model the joint distribution P (r, Ts, To) with the chain rule (4.3). We de-
compose it into the distribution of relations over facts P (r), conditional distribu-
tions of subject type set given relation P (Ts|r) and a conditional distributions of
object type set given subject type set and relation P (To|r, Ts).

P (r, Ts, To) = P (r)P (Ts|r)P (To|r, Ts) (4.2)

P (r) =
|{p(s, o) ∈ AR|p = r}|

|AR|
(4.3)

P (Ts|r) =
|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts}|

|{p(s, o) ∈ AR|p = r}| (4.4)

P (To|r, Ts) =
|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts ∧ τ(o) = To}|

|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts}|
(4.5)

It is important to note that in case there are inconsistencies in the knowledge graph,
such as domain/range violations or the assignment of inconsistent types, they are
also captured in the distribution P (r, Ts, To), and can be later replicated with their
respective probabilities.

Besides the probability distributions of types and relations, individuals also fol-
low a certain probability distribution, and not all relations have a uniform distribu-
tion w.r.t. their subjects and objects. In many cases, when selecting the individuals
from ETs and ETo , there might be some bias which we should take into account.
For instance, if we select r = livesIn, Ts = {Person} and To = {Country}, we
should not select the individual for Country based on a uniform distribution. The
distribution should be biased towards more populous countries, e.g., the probabil-
ity of selecting China should be much higher than that of Vatican. At the same
time, for the r = capitalOf with To = {Country}, the distribution of countries
should be uniform since all the countries are equally likely to have a capital.

After selecting the relation r and type set of subject Ts and object To, we then
need to select the subject and object individuals. Since in our synthesis process
we first generate the individuals and their type assertions and then generate the
relations assertions, there is a limited number of individuals belonging to a given
type set T which we define as nT = |ET |.

Following those considerations, we compute the conditional distributions of
subject and object individuals given a relation and type set of subject and object,
which we call P (e|r, Ts) and P (e|r, To), respectively. To that end, we count the
occurrences of subject individuals for all relations r and subject type set Ts, and
occurrences of object individuals for all r and To. We then sort the individuals by

34 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

frequency in descending order and fit a distribution model.
We need to select an instance from a finite set ET , and we should be able to

vary the size nT in order to be able to scale the knowledge base up and down.
Therefore we consider the use of uniform and exponential truncated distributions
(c.f. Equations 4.6 and 4.7).

f(x, b) =

{
1
b , if 0 ≤ x < b

0 , otherwise
(4.6)

f(x, b) =

{
e−x

1−e−b , if 0 ≤ x < b

0 , otherwise
(4.7)

In truncated distributions, occurrences are limited to values which lie inside a
given range. In the case of Equations 4.6 and 4.7, that interval is 0 ≤ x < b. It is
important to use truncated functions, because when synthesizing relation assertions
and selecting the individual for a given type, we can set b = nT , and select an
individual amongst the limited number of individuals that have the required type.

All distributions presented earlier in this section can effectively replicate some
characteristics of a knowledge graph, such as in and out degree and density of the
graph, however, they are not able to replicate more complex patterns involving
paths in the graph. An example of such pattern in a knowledge graph containing
data about families is that people who are married to the parent of a given child are
also the parent of that child with some confidence. This pattern can be represented
with the horn rule below.

marriedTo(x,y) ∧ childOf(x,z)⇒ childOf(y,z) [conf = 0.93]

Horn rules are basis of inductive logic programming (ILP) systems, such as ALEPH
(132), WARMR (72), DL-Learner (100), and AMIE (66). There are also ILP ex-
tensions with probabilistic methods (161) and that can efficiently handle numerical
attributes (125). We choose to use AMIE especially because of its better scalability
in comparison to ALEPH and WARMR.

As most ILP systems, AMIE uses techniques to restrict the search space. AMIE
mines only closed and connected rules. A rule is connected if all of its atoms are
connected transitively to every other atom of the rule, and two atoms are connected
if they share a variable or a constant. A rule is closed if every variable in the rule
appears at least twice. Such rules do not predict merely the existence of a fact (e.g.
diedIn(x,y) ⇒ wasBornIn(x,z), which is connected rule, but not closed), but
the concrete arguments for it (e.g. diedIn(x,y)⇒ wasBornIn(x,y)).

We use the horn rules learned by AMIE in our KB model in order to represent
more complex patterns and use their associated PCA (partial close-world assump-
tion) confidence value in the synthesis. In our model, we are able to ensure various
relation characteristics. The RDF Schema domain and range restrictions can be en-
sured by the joint distribution P (r, Ts, To). The horn rules can model symmetric,
transitive, equivalent, and inverse properties.

To cover even more complex schemas, we additionally learn functionality, in-
verse functionality and non-reflexiveness from the data. All relations which do

4.3. SYNTHESIS PROCESS 35

Algorithm 1 Knowledge base synthesis process
1: function GEN_KB(ne, nf , P (T), P (r), P (r, Ts, To),H)
2: A← ∅ . Create empty A-Box
3: E ← {} . Map of type sets and their entities
4: for i← 1 to ne do . synthesize entities
5: Ti ← randomly choose from P (T)
6: E[Ti]← E[Ti] ∪ {ei}
7: for C ∈ Ti do
8: A←A∪ {C(ei)}
9: i← 0

10: while i < nf do . synthesize relation assertions
11: ri, Tsi , Toi ← randomly choose from P (r, Ts, To) . use chain rule
12: si ← SELECT_ENTITY(E[Tsi], P (e|ri, Tsi))
13: oi ← SELECT_ENTITY(E[Toi], P (e|ri, Toi))
14: if VERIFY_TRIPLE(si, ri, oi) then
15: A←A∪ {ri(si, oi)}
16: CHECK_HORN_RULES(A, (si, ri, oi),H)
17: UPDATE_DISTRIBUTION(P (r, Ts, To))
18: i← i+ 1

19: return A

not have any same individual as both subject and object of a triple are considered
non-reflexive, all relations with object cardinality of 1 are considered functional,
and with subject cardinality of 1 are considered inverse functional. Learning these
characteristics from data allows us to detect relations which might not have been
conceived as, or not defined as such in the schema, but which in the available
data present the characteristics. For instance, a dataset with the childOf relation,
which is not functional, might contain data about people which have exclusively
one child, and with our approach we ensure this characteristic is replicated.

4.3 Synthesis Process

Algorithm 1 summarizes the process of synthesizing a knowledge graph. As input,
it uses the probability distributions P (T), P (r, Ts, To), P (e|r, Ts), and P (e|r, To),
a set of horn rules H, as well as the desired number of individuals ne and relation
assertions nf to be synthesized.

The function VERIFY_TRIPLE first verifies if the exact same triple is already
present in the synthesized KG. Then it checks whether functionality, inverse func-
tionality, and non-reflexiveness are satisfied. That is, it verifies if there is no as-
sertion with the given subject already present in the KG for functional relations,
no assertion with the given object for inverse functional relations, and the given
subject and object are different individuals for non-reflexive relations.

The function CHECK_HORN_RULES ensures that the patterns learned with the
horn rules are replicated in the synthesized data. It checks if a newly synthesized

36 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

fact triggers any of the learned horn rules. If a rule is triggered, the rule will
produce a new fact with a probability equal to that of its confidence. The new
facts produced by rules also need to be checked against the horn rules again, which
means that the CHECK_HORN_RULES function is called recursively until it does
not produce any new facts.

The function UPDATE_DISTRIBUTION makes sure that the original distribution
P (r, Ts, To) is not distorted by the production of new facts from horn rules, which
may not follow P (r, Ts, To). Therefore, it is necessary to adjust the joint distri-
bution in order to compensate this effects. We do that by simply keeping counts
for the relations, subject and object type sets, and based on the number of facts
to be synthesized and the distribution of already synthesized facts we can adjust
P (r, Ts, To).

Another detail not shown in Algorithm 1 is the use of a pool of subjects for
functional and pool of objects for inverse functional relations. We do that in order
to avoid generating facts which violate the functionality and inverse functionality
restrictions. If no pools are considered, the probability of generating violating
facts for a given relation increases linearly with the number of already existent
facts. With the pools, all individuals of a given type are initially in the pool, and
whenever an individual is picked to generate a new fact, this individual is removed
from the pool and cannot be picked again, therefore preventing the violations.

In the synthesis process some characteristics can be easily changed. Noise can
be introduced by smoothing the distribution P (r, Ts, To), making the probability
for invalid combinations of relations, subject and object types non-zero. The den-
sity of the knowledge graph can be altered by modifying the ratio nf /ne between
number of facts and individuals. It is possible to change the scale of the synthetic
knowledge graphs by simply multiplying the original number of individuals ne
and facts nf by a constant. That is, assuming that the number of relations in the
knowledge graph grows linearly with the number of individuals.

However, some knowledge graphs might have relations which are quadratic,
e.g. owl:differentFrom that indicates individuals that are not the same. There-
fore, for the quadratic relations of a knowledge base, we need to scale the number
of relation assertions quadratically with the number of individuals. This kind of
relations are rather rare, and they can be difficult to automatically detect. We use
a simple heuristic based on thresholds for the average number of different objects
per subject and different subjects per object. If both thresholds are reached, we
assume the relation to be quadratic.

One important characteristic is that the synthesis process is based on pseudo
random number generators (PRNG), therefore, the process is deterministic and
identical datasets can be generated if the same seed is used. By using different
seeds, it is also possible to generate different datasets from the same model and
with similar characteristics, allowing us to test the stability of methods.

4.4. EXPERIMENTS 37

4.4 Experiments

The link prediction task consists of predicting the existence (or probability of cor-
rectness) of edges in the graph (i.e., relation assertions). This is important since
existing knowledge graphs are often missing many facts, and some of the edges
they contain are incorrect. Nickel et al. (137) present a review of multirelational
models, many of which have been used for the link prediction task. We select
five popular methods to be used in our experiments: Path Ranking algorithm (98),
SDValidate (151), Holographic embeddings (HolE) (138), Translation embeddings
(TransE) (15) and RESCAL (139). In our experiments, we evaluate the prediction
of relation assertions only. All the measurements reported were obtained using 5-
fold cross-validation. The test set consists of the 20% of positive positive triples
selected in the cross-validation, plus negative examples. There are the same num-
ber of positive and negative examples in the test set, and the negative examples are
generated by corrupting each of the positive triples following the method described
by Bordes et al. (15).

Type prediction can be considered a subtask of link prediction where we are
interested on prediction links for the relation rdf:type. There are several type
prediction approaches which rely on external features (219; 5; 67; 71), however,
we concentrate on methods which rely on features extracted from the knowledge
graph. The methods used in the experiments are SDType (150) and SLCN (124), as
well as the state-of-art multilabel classifiers MLC4.5 (37), MLP (223) and MLkNN
(224) – multilabel versions of decision tree, multilayer perceptron and k-nearest
neighbors – with ingoing and outgoing links used as features as described in (124).

As input knowledge graphs, we use Wikidata, DBpedia (2015-10), and NELL.
We use the following smaller domain specific datasets: Thesoz2, Semantic Bible3

AIFB portal4, Nobel Prize5 and Mutagenesis. We also select four of the largest
conference datasets from the Semantic Web dog food corpus6, i.e., LREC2008,
WWW2012, ISWC2013, and ESWC2015. Some relevant statistics about the datasets
used in the experiments are shown in Table 4.1.

For every input KG, we synthesize replicas of three different sizes increased by
factors of 10. For smaller datasets we also scale the replicas up. On the Semantic
Web dog food datasets we synthesize replicas of sizes 10%, 100% and 1000%. For
large datasets we scale the replicas down (DBpedia and Wikidata replicas are of
sizes 0.01%, 0.1% and 1%, and the remaining datasets 1%, 10% and 100%).

We use the scikit-kge7 implementation of HolE, TransE and RESCAL, and the

2http://www.gesis.org/fileadmin/upload/dienstleistung/tools_
standards/thesoz_skos_turtle.zip

3http://www.semanticbible.com/
4http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/

Portal
5http://www.nobelprize.org/nobel_organizations/nobelmedia/

nobelprize_org/developer/manual-linkeddata/terms.html
6http://data.semanticweb.org/dumps/conferences/
7https://github.com/mnick/scikit-kge

http://www.gesis.org/fileadmin/upload/dienstleistung/tools_standards/thesoz_skos_turtle.zip
http://www.gesis.org/fileadmin/upload/dienstleistung/tools_standards/thesoz_skos_turtle.zip
http://www.semanticbible.com/
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://data.semanticweb.org/dumps/conferences/
https://github.com/mnick/scikit-kge

38 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

Dataset Entities Types Rels Type ass. Relation ass. Density

Wikidata 19060716 474 482 40198183 18955236 1.082 · 10−10
DBpedia 4940352 1027 646 31521734 14747048 9.353 · 10−10
NELL 1475674 276 248 5565472 174621 3.233 · 10−10
AIFB 27100 63 82 59613 59349 9.855 · 10−7
Mutagenesis 14157 91 4 48111 26533 3.310 · 10−5
SemanticBible 789 71 31 2563 2482 1.286 · 10−4
Thesoz 48540 10 16 109960 275430 7.306 · 10−6
NobelPrize 10013 23 18 19506 30148 1.671 · 10−5
ESWC2015 1285 16 25 1285 4062 9.840 · 10−5
ISWC2013 2548 20 39 2545 9992 3.946 · 10−5
WWW2012 3836 22 43 3907 15406 2.435 · 10−5
LREC2008 3502 7 24 3502 16514 5.611 · 10−5

Table 4.1: Statistics about the datasets used in the experiments

scikit-learn implementation of MLkNN, MLC4.5 and MLP. We implemented the
remaining methods ourselves. The proposed synthesis process code is available to
download.8

The evaluation measures used in the link experiments are the area under the
precision-recall curve (PR AUC) and area under the ROC curve (ROC AUC). For
the type prediction experiments we use micro-averaged F1-score and accuracy.
We compute the distance of these evaluation measures between the results on the
original datasets, and their synthetic replicas. In order to compare the ranking
of methods, we use the Spearman-ρ rank correlation coefficient. All the results
reported in this chapter were obtained with 5-fold cross-validation.

In order to evaluate how the different parts of the proposed knowledge base
model affect the results on link and type prediction tasks, we use 6 different models
in our evaluation: M1, M2, M3, e(M1), e(M2) and e(M3):

• M1 is the simplest version, which considers only the distributions P (T) and
P (r, Ts, To). The bias to selection of individuals is not considered, and indi-
viduals are always selected from an uniform distribution. No relation charac-
teristics (apart from domain and range restrictions covered by P (r, Ts, To))
are considered.

• M2 is M1 plus functionality, inverse functionality and non-reflexiveness of
relations.

• M3 is M2 plus the horn rules learned with AMIE.

• The models e(Mi) are the model Mi plus the biases to selection of individuals
P (e|r, Ts) and P (e|r, To).

8https://github.com/aolimelo/kbgen

https://github.com/aolimelo/kbgen

4.4. EXPERIMENTS 39

(a) Link prediction PR AUC distance on Nobel
Prize dataset

(b) Type prediction F1-score distance on Wikidata

Figure 4.1: Distances of performance measures to original datasets

(a) Link prediction on LREC2008 (PRA) (b) Type prediction on DBpedia (SLCN)

Figure 4.2: Effect of scaling the replica sizes up and down

We use AMIE with its default parameter settings (i.e., no rules with constants,
maximum rule length = 3, confidence computed with PCA, minimum support =
100 examples, minimum head coverage = 0.01).

We use PRA with maximum path length of 3 for all datasets. For HolE, TransE
and RESCAL we learn embeddings with 20 dimensions and maximum of 100
epochs. While this may not be the optimal settings for most datasets, we con-
sistently use the same settings throughout all of our experiments, since our aim is
not to achieve optimal results, but to show that the benchmark synthesis works as
desired.

Figure 4.1a shows an example of PR AUC distance on link prediction from
for the Nobel Prize datasets between original and replica (100% size) with the 5
selected methods. It is clear that the use of horn rules significantly improves the
results, as M3 and e(M3) performs better than the other methods, except from
SDValidate, which relies on exclusively on distributions of relations and object
types and does not exploit more complex path patterns.

Figure 4.1b shows an example ofF1-score distance on type prediction for Wiki-
data between original and replica (0.1% size). It is noticeable that horn rules do
not improve the results, as M1, M2, e(M1) and e(M2) perform better than M3 and

40 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

e(M3). This is explained by the fact that most of the evaluated type prediction
methods rely solely on ingoing and outgoing links of entities. Moreover, as ex-
plained in Section 4.2, horn rules can disturb the original distribution P (r, Ts, To),
which is crucial for the replication of ingoing and outgoing links.

Tables 4.2 and 4.3 show a summary of the results obtained over all datasets
for type prediction and link prediction, respectively. The values with subscript all
report the average of the results over all different sizes of replicas, while those with
subscript large report the averages over the largest size of replicas only. We do that
because different models, especially M3 and e(M3), perform worse than others for
smaller replica sizes, and we also want to know how the models perform when
ruling out this effect.

The results of Table 4.2 indicate that in terms of distance, M3 is the best method
overall, however, when it comes to preserving the rankings, the results become
more mixed. It is clear that introducing the horn rules does have a positive effect
on the model, especially for the distances which are reduced to less than half of
that of other models. In Table 4.3 we can see that M2 is the best overall in terms
of distance for both PR and ROC AUC, while for the rankings, the use of horn
rules again have a positive impact with M3 being the best method overall. The
link prediction results were reported for all datasets apart from DBpedia and Wiki-
data. Because of the large size of these two datasets and the complexity of the
approaches, the experiments did not finish in less than a week.

M1 e(M1) M2 e(M2) M3 e(M3)

PR
A

U
C

ρall 0.527 0.643 0.567 0.607 0.643 0.653
ρlarge 0.640 0.740 0.590 0.580 0.730 0.800
dall 0.243 0.247 0.247 0.245 0.112 0.115
dlarge 0.215 0.228 0.216 0.219 0.082 0.089

R
O

C
A

U
C ρall 0.647 0.613 0.657 0.613 0.610 0.577

ρlarge 0.650 0.610 0.640 0.630 0.670 0.620
dall 0.231 0.230 0.231 0.231 0.109 0.111
dlarge 0.211 0.215 0.208 0.211 0.087 0.095

Table 4.2: Summary of the link prediction results

M1 e(M1) M2 e(M2) M3 e(M3)

F
1
-s

co
re

ρall 0.208 0.221 0.195 0.259 0.362 0.265
ρlarge 0.343 0.273 0.251 0.400 0.456 0.410
dall 0.086 0.098 0.082 0.083 0.131 0.130
dlarge 0.059 0.065 0.055 0.057 0.083 0.084

A
cc

ur
ac

y ρall 0.290 0.334 0.315 0.343 0.406 0.307
ρlarge 0.470 0.420 0.357 0.498 0.502 0.433
dall 0.061 0.064 0.057 0.061 0.065 0.066
dlarge 0.056 0.060 0.054 0.057 0.061 0.062

Table 4.3: Summary of the type prediction results

4.4. EXPERIMENTS 41

(a) Link prediction (PR AUC) dall (b) Link prediction (PR AUC) ρall

(c) Type prediction (F1) dall (d) Type prediction (F1) ρall

Figure 4.3: Nemenyi Critical distance diagrams for link and type prediction

We also perform the Nemenyi test in order to find how significant the differ-
ences of the evaluated models is, both in terms of distance and ranking. Figure
4.3 shows the critical distance diagrams. For the distances d the models on the
left side are the best performers, since lower distances are desired, while for Spear-
man’s rank correlations ρ the models on the right side are the best performers, since
higher correlations are desired.

In Figure 4.3a we can see that PR AUC distances on link prediction between
the models with horn rules (M3 and e(M3)) and the others is very significant, while
the differences in terms of Spearman-ρ from Figure 4.3b are closer to the critical
distance (CD). We can also observe that the difference between M3 and e(M3) is
not significant, indicating that the use of bias to selection of instances does not have
a great impact. One possible explanation for that is the fact that, in order to sim-
plify our model and abstract from specific instances, we assume that, for a given
type set, the most frequent instances are always the same. That is, if we consider
the type set {Country} as object of livesIn and beatifiedPlace, we assume
that the most frequent country in both cases is the same individual, while in reality
the most frequent country for livesIn would be China and for beatifiedPlace
Italy. Since the computation of the bias can be very expensive, especially for larger
datasets with high number of types and individuals, M3 would be a more reason-
able choice than e(M3).

When analyzing Figure 4.3c, we notice that, in terms of F1-score distance, the
M2, e(M2) and M1 are not significantly different from each other, and the use
of horn rules has a significant negative effect. The Spearman-ρ from Figure 4.3d
values are very close to each other, without any significant difference between the
evaluated models.

We illustrate the difference in runtime for the synthesis processes with different
methods with Figure 4.4. The plot shows the number of facts generated over time
for the ESWC2015 dataset. It is clear that M3 and e(M3) are significantly slower

42 CHAPTER 4. SYNTHESIZING KNOWLEDGE GRAPHS

Figure 4.4: Synthesis process runtime over dataset size for the ESWC2015 model

than the others. It is also worth noting that these two models require horn rules,
which need to be learned with AMIE further increasing the model learning time.

4.5 Conclusion

In this chapter, we have proposed a knowledge graph model and synthesis process
which is able to capture essential characteristics of existing knowledge graphs,
which allows us to create replicas of those graphs at different scales. Overall, the
model M3 was the best performer, and the use of horn rules significantly improved
the results. The use of a bias to selection of subject and object individuals did
not show any significant improvement. In general, we recommend the use of M3,
unless the objective is to replicate the results of type prediction on a single methods,
without performing any comparisons. In Chapter 11 we summarize the conclusions
of this and other works presented throughout this thesis and discuss possible future
works.

Chapter 5

Type Prediction using
Hierarchical Multilabel
Classification

5.1 Introduction

Type information plays an important role in Semantic Web (SW) knowledge bases,
with type assertion axioms, defined by the rdf:type relation, being one of the
atomic building blocks of knowledge bases. Many datasets suffer from type asser-
tion incompleteness. For example, for DBpedia(12), the upper bounds for com-
pleteness of DBpedia 3.8 types are estimated to be at most 63.7%, with at least 2.7
million missing type statements, while YAGO types in DBpedia 3.8 are estimated
to be at most 53.3% complete(151). For example, Arnold_Schwarzenegger in
DBpedia is assigned only the type OfficeHolder and none of the other suitable
types, such as Actor and BodyBuilder.

A possible way to automatically infer type information on the Semantic Web
is the use of reasoning, e.g., standard RDFS reasoning via entailment rules. How-
ever, reasoning methods are sensitive to noisy data, and since open knowledge
bases created by crowdsourcing and/or heuristics are often noisy, logic-based rea-
soning approaches are likely to multiply errors. Statistical approaches, on the other
hand, are more robust to noise, since they do not rely on the quality of the T-box
axioms and are less influenced by single wrong A-box axioms. Therefore, they are
considered to be more suitable for the type prediction task (150).

One example that illustrates this problem is that in DBpedia the Album en-
tity Abbey_Road from the Beatles, is confused with the Musical Studio entity
Abbey_Road_Studios in some triples. The fact No_Reply_(song) recordedIn
Abbey_Road would lead to the inference that Abbey_Road is not only an Album but
also a Populated Place, which is the range of the property recordedIn. In (150),
we have shown that RDFS reasoning is prone to propagate noise, whereas heuris-
tic inference is suitable to limit the influence of noise. Therefore, in this work, we

43

44 CHAPTER 5. TYPE PREDICTION USING HMC

pursue the use of heuristic inference methods.
Since most Semantic Web knowledge bases organize the possible types as hier-

archies (defined in ontologies), we propose to model the type inference problem in
noisy and incomplete knowledge bases as a hierarchical multilabel classification
problem. It is hierarchical because we assume the types to be structured in a hierar-
chy, and it is multilabel because instances are allowed to have more than one type.
For example, in a knowledge base with the type hierarchy depicted in Figure 5.1,
the instance Arnold_Schwarzenegger should be typed as OfficeHolder, Actor,
and BodyBuilder, as well as their generalizations Artist, Athlete, and Person,
which can be inferred from type hierarchy.

As SW knowledge bases, especially cross-domain ones, can have a large num-
ber of types, the high dimensionality of the label space may challenge a multilabel
classification algorithm in many ways. First, the number of training examples an-
notated with each type, in particular those in the lower levels of the hierarchy and
in the long tail of an uneven distribution, will be significantly smaller than the total
number of examples. This is similar to the class imbalance problem in single-label
classification (164). Second, the computational cost of training a multilabel classi-
fier may be strongly affected by the number of labels (195).

Due to the presence of ontologies and their type hierarchies on the Semantic
Web, viewing type prediction as a hierarchical machine learning problem is the
most natural translation of the type prediction problem to a machine learning prob-
lem. However, it has never been viewed like that – to the best of our knowledge,
all machine learning based methods for type prediction in SW knowledge bases
proposed so far flatten the problem to non-hierarchical classification (149). One
possible reason that hierarchical multilabel classification has not been applied in
the field may be scalability issues when applying those methods to large-scale SW
knowledge bases.

In this chapter, we propose SLCN (for Scalable Local Classifier Per Node), a
modification of the local classifier per node approach, which improves the scalabil-
ity by performing local sampling, feature selection, and class balancing. We show
that our approach outperforms the current state of the art approaches for type pre-
diction in SW knowledge bases, and does so in a more scalable way than existing
algorithms for hierarchical multi-label classification.

The rest of this chapter is structured as follows. First, we briefly introduce
the foundations of hierarchical multilabel classification in Section 5.2, followed
by a problem statement in Section 5.3. We outline the proposed approach in sec-
tion 5.4, and report the outcome of experiments on various SW knowledge bases in
Section 5.5. We conclude give an outlook of possible future works in Section 5.6.

5.2 Preliminaries

In this section, we lay out the foundations of hierarchical multilabel classification
used in this work.

5.2. PRELIMINARIES 45

Person

Artist

Actor

AdultActor VoiceActor

Painter

OfficeHolder Athlete

MotorSportsRacer

MotorcycleRider RacingDriver

BodyBuilder

Figure 5.1: A subset of the DBpedia type hierarchy

5.2.1 Multilabel Classification Approaches

In the multilabel classification problem, there are multiple classes and, contrary to
the single-label multiclass classification problem, instances are allowed to belong
to more than one class. We define the set of classes as C = {c1, ..., c|C|}, and we
represent the multilabel of an instance x with a binary vector y = (y1, ..., y|C|) ∈
{0, 1}|C|.

Some of the existing multilabel classification approaches are standard binary
classification algorithms which have been adapted to the multilabel task, with-
out requiring problem transformations. This includes, e.g., AdaboostMH(175),
MLkNN(224) and BPMLL(226). Other approaches, such as Binary Relevance
(BR),Classifier Chains(164) (CC), Label Powerset (LP), and Random k-Labelsets
(RAKeL)(196), transform the multilabel problem into a set of binary classification
problems.

Binary Relevance (BR) is the simplest transformation approach, where a binary
classifier is trained for each class assuming the classes are mutually independent.
More complex transformation methods, such as Classifier Chains(164) (CC) and
Label Powerset (LP), can model dependencies between the classes. There are also
ensemble methods, such as Ensembles of Classifier Chains (ECC)(164) and Ran-
dom k-Labelsets (RAKeL)(196), where several classifiers are trained on different
subsamples and combined into a single model.

These approaches are agnostic with respect to a hierarchy relations among the
labels, and hence, they do not necessarily guarantee the predicted classes to be
consistent with the hierarchy.

5.2.2 Hierarchical Multilabel Classification Approaches

The hierarchical multilabel classification problem is similar to the multilabel clas-
sification problem, but the classes C are structured in a hierarchy G. The labels of
an instance should be consistent with G, i.e., if an instance belongs to a non-root
class then it must also belong to its ancestors (i.e., ci v cj ∧ yi = 1 → yj = 1).
The class hierarchy can be of two types: a tree, which allows nodes to have a sin-
gle parent only, and a directed acyclic graph (DAG) which allows nodes to have
multiple parents.

46 CHAPTER 5. TYPE PREDICTION USING HMC

As pointed out by Silla et al. (179), most of the current literature focuses on
working with trees as it is a simpler problem. There are mainly two types of hierar-
chical multilabel classification approaches: local and global classifiers. The main
difference is that the former breaks down the classification problem into smaller
and simpler problems exploiting the class hierarchy, while the latter considers the
problem as a whole, learning a single more complex model. In the next subsections
we present these approaches in more details.

Local Classifier Approach

The hierarchy is taken into account by using a local information perspective to
transform a multilabel classification problem into a set of simpler subproblems.
This is a kind of transformation approach, since for every subproblem works the
local classifier is trained on a different transformed dataset. According to Silla et al.
(179), there are mainly three approaches of using local information: local classifier
per node, local classifier per parent node, and local classifier per level. The local
hierarchical classification algorithms share a similar top-down approach in their
prediction phase, where the classifier first predicts its first-level (most generic) class
of an instance, then it uses that predicted class to reduce the choices of classes to
be predicted at the second level (the children of the classes predicted at the first
level), and so on, recursively, until the most specific prediction is made.

Local Classifier Per Node (LCN): The local classifier per node approach con-
sists of training one binary classifier for each node of the class hierarchy. Each
local binary classifier predicts whether an instance belongs to the class associated
with the node or not. There are two main ways to define the training set of the
local binary classifiers, which are called negative examples selection policies. One
is the all approach, which uses all instances to train all local classifiers, and sib-
lings, which uses the instances belonging to a node’s class and its siblings’ classes
to train the local classifiers. A comparison of different negative example selection
approaches is made in (54) and (57). The results indicate that both approaches have
roughly similar performances, however, siblings is more scalable than all.

Local Classifier Per Parent Node (LCPN): In this approach, a local multilabel
classifier is learned for every non-leaf node in the hierarchy. The labels are the
direct child nodes and the training instances are those which belong to the parent
node class. If each multilabel problem is transformed into a set of binary problems
with the binary relevance method, this is equivalent to local classifier per node.
Depending on the choice of the local multilabel classifier, it is possible to model
dependencies between sibling nodes.

Local Classifier Per Level (LCL): This is the type of classifier approach least
used so far on the literature. The local classifier per level approach consists of train-
ing one multilabel classifier for each level of the class hierarchy. That means it is
prone to class-membership inconsistency and therefore requires a post-processing
step to prevent it. In the literature this approach was only mentioned as a possible
approach by Freitas et al. (64), and used as a baseline comparison method in (36)

5.2. PRELIMINARIES 47

and (43). Moreover, there is no publicly available implementation of this kind of
approach.

A

B

D

H I

E

C

F

J K L

G

(a) LCN

A

B

D

H I

E

C

F

J K L

G

(b) LCPN

A

B

D

H I

E

C

F

J K L

G

(c) LCL

Figure 5.2: Hierarchical multilabel classification local classifier approaches

Figure 5.2 illustrates the difference between the three local classifier approaches.
The dashed closed curves indicate the set labels of each local classifier. In the case
of LCN (5.2a), each of the eleven local binary classifiers predicts whether an in-
stance belongs to its correspondent class or not. For LCPN (5.2b), there are five
local multilabel classifiers, whose labels are sibling nodes. For LCL (5.2c), there
are three local multilabel classifiers, whose labels are the nodes of each level of the
hierarchy.

Global Classifier Approach

In contrast to local classifier approaches, the global classifier approach (also known
as big bang approach), learns one single classification model built from the training
set, taking into account the class hierarchy as a whole during a single run of the
classification algorithm. When used during the prediction phase, each instance is
classified by the induced model, a process that can assign classes at potentially
every level of the hierarchy to the instance. Global classifier approaches lack the
kind of modularity for local training of the classifier that is a core characteristic of
the local classifier approaches.

An example of global classifier approach is MLC4.5 (37), which is a decision
tree algorithm adapted to handle multilabel data. A single decision tree is created
for the classifier, where each leaf node contains a vector with the class distributions.
This method guarantees consistency with the hierarchy, as the probability of a class
in the class distribution cannot be smaller than that of its children. Therefore,
for any probability threshold, the generated prediction will be consistent with the
hierarchy.

5.2.3 Evaluation Measures

Silla Jr. et al. (179) recommend the use of hierarchical loss (h-loss), and the hi-
erarchical precision (hP), recall (hR), and F-measure (hP) to evaluate hierarchical
multilabel classifiers. In this chapter, we also use the hamming loss (hamm), which
is commonly used in (non-hierarchical) multilabel classification and serves as basis
for the h-loss.

48 CHAPTER 5. TYPE PREDICTION USING HMC

The hP, hR, and hF (86) are the micro-averaged measures of precision, recall
and F-measure per class. By using the micro average, each class is weighted ac-
cording to the label frequencies. Equations 5.1, 5.2 and 5.3 show the definition
of these measures, where tpi, fpi and fni denote respectively the number of true
positives, false positives and false negatives of the class ci. Similarly to their binary
class versions, hP, hR and hF values range is in the interval [0, 1].

hP =

|C|∑
i=1

tpi

|C|∑
i=1

(tpi + fpi)

(5.1)

hR =

|C|∑
i=1

tpi

|C|∑
i=1

(tpi + fni)

(5.2)

hFβ =
(β2 + 1) · hP · hR
β2 · hP + hR

(5.3)

Equation 5.4 shows the Hamming loss (hamm) for one instance. We denote the
true label vector of an instance as y, and the predicted vector as ŷ, with yi = 1 if the
instance is of class ci, yi = 0 otherwise. Hamming loss reports how many times
on average, a class label is incorrectly predicted, i.e., the number of false positives
and false negatives, normalized over total number of classes and total number of
examples.

lh(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi (5.4)

hlH(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi max
{j|civcj}

1ŷj=yj (5.5)

Equation 5.5 shows the hierarchical loss (h-loss) (30) for one instance, which
extends hamming loss to account for any existing underlying hierarchical structure
of the labels. The idea of hierarchical loss is based on the notion that, whenever a
classifier makes a mistake at any node in a given hierarchy, no further loss should
be counted for any mistake in the subtree rooted at that particular node ignoring
any subtree which is rooted at a wrong prediction node.

5.3 Problem Definition

In a knowledge graph, not every instance may come with proper type information.
Untyped instances and instances with incomplete set of types are a common prob-
lem in Semantic Web knowledge bases (149), therefore, we need methods which

5.3. PROBLEM DEFINITION 49

can automatically predict types of instances. Thus, the task of type inference is to
assign types to untyped instances, as well as adding types to instances with incom-
plete type information. To that end, available information about the instance, such
as its relation to other instances, is used to train an inference model.

At the same time, not all information in the RDF data may be correct; there can
be various types of errors (220), including wrong relations between instances (151;
153), wrong interlinks between datasets (147), and wrong literal values (211; 62),
among others. Thus, when training a classifier for predicting missing types, those
errors will shine up as noise in the respective training set, and require a noise-
tolerant learning approach. We assume that the type hierarchy is correct, and we
restrict the hierarchical structure to trees for simplicity and because DAGS are not
supported by multilabel classification libraries.

In particular, types in RDF knowledge bases come are organized in hierarchies.
Hence, we model the type prediction task as a hierarchical multilabel classification
problem, which we define according to the categorization proposed in (179). The
classification problem is defined as < T,MPL,PD >, which means that the
type of graph representing the class hierarchy is a tree (T), instances are allowed to
have multiple paths of labels (MPL), and that instances are allowed to have partial
depth (PD) labeling (i.e., non-mandatory leaf node prediction).

The partial depth labeling is important in our problem since in many cases the
class hierarchy is incomplete, requiring an instance which cannot be typed with a
leaf node to be assigned a more general type. In Fig. 5.1, Arnold_Schwarzenegger
is neither an AdultActor nor a VoiceActor, i.e., none of the specializing classes
of Actor is appropriate. Thus, the instance should be typed as an Actor, which
is a non-leaf node. Supporting multipath labels is also relevant because many in-
stances might have multiple labels which are not in the same path in the hierarchy.
In the same example, Arnold_Schwarzenegger is labeled with OfficeHolder,
BodyBuilder, Actor, and their generalizations, thus having three paths in the hi-
erarchy.

Although our problem definition does not support DAGs, they can be trans-
formed into trees by selecting (e.g., at random, or by leveraging a priori distribu-
tions) a single parent for nodes with multiple parents. This simplifies the hierarchy,
but leads to an information loss, which could in theory result in a drop in the quality
of the predictions.

The extraction of features for the classifier is also an important part of the
problem addressed in this chapter. Different datasets might have domain specific
features highly valuable for the type prediction. The extraction of features from
knowledge bases is a problem which deserves an exclusive study. Therefore we
focus on graph and latent features which can be extracted from any knowledge
graph.

50 CHAPTER 5. TYPE PREDICTION USING HMC

5.4 Approach

The problem of type prediction in RDF data requires highly scalable approaches
which can handle a high number of labels, features, and instances inherent to many
Semantic Web datasets. We propose a more scalable version of a local classifier
per node approach SLCN, which uses local feature selection (c.f. Appendix A).

In our approach, we assume that the knowledge base has a type hierarchy which
is materialized in the dataset, i.e., if an instance is assigned a given type, it must also
be assigned all its superclasses. If the hierarchy is not materialized, we perform
simple reasoning to infer the assertions of all superclasses absent in the dataset by
exploiting the subClassOf relations.

5.4.1 Algorithm

SLCN is based on the local classifier per node (LCN) with top-down prediction
approach and siblings negative examples selection policy. This means that we train
one binary classifier for every class ci ∈ C, and each of those classifiers is trained
on a local transformed dataset with a binary class label (belongs to the type: yc = 1,
or not: yc = 0). The top-down prediction approach means that when predicting the
types of a given instance, we first classify the instance for the types in the highest
level.

When considering a non-mandatory leaf-node prediction problem, the class-
prediction top-down approach has to use a stopping criterion that allows an ex-
ample to be classified just up to a non-leaf class node. We follow the approach
proposed by Wu et al. (215), where for all the types which the instance is predicted
to belong to, the local classifiers of its subtypes predict if the instance belongs to
any of its children, and so forth. Whenever the instance is predicted not to belong
to a given type, then it is assumed that it does not belong to any of its subtypes
either, therefore there is no need to run the local classifiers of the children nodes.

Assuming that a hierarchical multilabel classifier is perfect and correctly pre-
dicts all classes and we want to, for example, predict the types of the instance
Arnold_Schwarzenegger. The classifier would first predict it is a Person. Then
it would predict that it also belongs to its three subtypes Artist, OfficeHolder
and Athlete. Following the Artist branch, it would then predict that it belongs to
Actor and does not belong to Painter, and finally that it does not belong to either
AdultActor or VoiceActor. Following the Athlete branch, the classifier would
predict it belongs to BodyBuilder, and does not belong to MotorsportRacer. The
local classifiers for the subtypes MortorcycleRider and RacingDriver would
not need to make any prediction since the instance does not belong to their super-
type MotorsportRacer, and therefore, in order to be consistent with the hierarchy,
cannot belong to any of its children.

The top-down approach ensures that the outcome of the multilabel classifier
is consistent with the type hierarchy. However, it can cause the blocking prob-
lem (187), which may occur during the top-down process of classifying a test

5.4. APPROACH 51

example. The classifier at a certain level in the class hierarchy predicts that the
example in question does not have the class associated with that classifier. In this
case the classification of the example will be blocked, i.e., the example will not be
passed to the descendants of that classifier. Sun et at. (187) propose methods for
addressing this this problem (e.g., such as threshold reduction, restricted voting,
and extended multiplicative thresholds). However, the results show that, although
the proposed methods can reduce the blocking problem, they also cause a degra-
dation in precision. Therefore, in our approach we decide not to use any of these
approaches.

As scalability is an important factor in the problem studied in this chapter,
we choose to use the siblings negative examples policy, which reduces the sizes
of local training datasets for classes in the lower levels of the hierarchy. The lo-
cal training sets are created including the instances belonging to the target class
as positive examples and the instances belonging to its sibling classes as nega-
tive examples. For instance, the transformed dataset with siblings for the type
BodyBuilder would contain as negative examples the instances belonging to its
sibling class MotorsportRacer and, because we allow partial-depth prediction,
the instances which belong to its superclass Athlete but none of its children.

Typically, the number of labels in the lower levels of the hierarchy is higher, and
the lower the level of the label node, the smaller the subset is. Assuming that the
label hierarchy has a fanout b, and the instances have a single path only, the average
transformed dataset size would be |D| ∗ (b ∗ logb(|C|))/|C| instead of |D|. The
average size of the transformed datasets also increases with the number of different
paths instances have. However, for simplicity and because the average number of
different paths per instance is low in most real datasets (c.f. average number of
paths per instance (ANP) in Table 5.1), we ignore this factor when calculating the
average size.

In the proposed approach, local feature selection, sampling, and class balanc-
ing are performed for every local classifier. The intuition is that in each binary sub-
problem, where for the instances of a given class we predict whether they belong
to a subclass, not all the features might be relevant. Especially in cross-domain
datasets, such as DBpedia, YAGO, and Wikidata, the set of features required to
predict, for instance, if an Athlete is a MotorsportRacer is completely different
from those required to predict if an Infrastructure is an Airport. This allows
the local classifier to handle a smaller set of locally relevant features instead of a
larger set with features relevant to all classes.

Moreover, we choose to use the filter instead of the wrapper feature selection
method, where we calculate the information gain of each feature and select the
top-k most relevant features ranked by information gain. Since the idea of local
feature selection is to reduce the training time of the local classifiers, it makes
more sense to perform the feature selection if its complexity is lower than that of
the classifier training. Hence, we decide to use a simple feature selection method,
whose complexity grows linearly with the number of features.

The benefit of local feature selection cannot be achieved using global mul-

52 CHAPTER 5. TYPE PREDICTION USING HMC

tilabel classification methods, since a single model is learned on a single set of
selected features, which has to be relevant for all the classes. Selecting features
globally might lead to preferring features relevant to the most frequent classes, and
potentially leaving out features which are relevant to less frequent classes. In Ap-
pendix A we conduct experiments which show that local feature selection performs
consistently better than global feature selection.

For the local sampling, we set a maximum local training sample size n. The
idea is that if a local classifier has a number of instances smaller than the maxi-
mum training sample size, no sampling is performed, so that the training set does
not lose any valuable instances. On the other hand, local classifiers with a high
number of instances, such as those for the classes in higher level of the hierarchy,
will be trained on a smaller sample of size n, reducing the time required for train-
ing the local classifier. When sampling the data, potential class imbalance can be
addressed individually for each class in its transformed dataset. For that, we define
a bias to uniform class distribution u ∈ [0, 1], where u = 0 means that the class
distribution is left as it is, and u = 1 means that class weights are assigned values
that result in an uniform class distribution. With that, the classifier settings can be
defined by the triple < k, n, u >. In the experiments discussed in section 5.5.2, we
evaluate the influence of each of these parameters on the performance of SLCN.

Algorithm 2 shows the pseudo code of SLCN indicating the main character-
istics of the approach. The sampling and feature selection (SAMPLE_INSTANCES

and SELECT_FEATURES) is performed for every class c ∈ C and incorporated into
the training of SLCN. In the algorithm X is the features matrix, where instances
are represented by rows, and columns are features, Y is the labels matrix, also
with instances represented as rows, a |C| columns represent the types, h is a map
containing all the nodes of the type hierarchy, local_feats is a map containing the
sets of selected features for each class, and local_clfs a map of the local binary
classifiers of each class.

The function PREDICT_RECURSION illustrates how the top-down prediction
approach stopping criterion works, which we implement by keeping a set of indices
i to the instances to which the local classifiers should be applied.

One limitation of SLCN is that it does not support disjointness between classes,
since it assumes independence between sibling nodes. However, at the moment,
most knowledge bases do not contain class disjointness axioms. Approaches which
can model dependencies between classes, such as MLC4.5 and LCPN with ECC or
LPW, should be able to handle such disjointness even if not explicitly defined in the
ontology. When training the classifier, since we use the siblings negative examples
selection policy, we implicitly use the closed world assumption in order to generate
negative labels for the local classifiers. This can be a problem on datasets where
the type assertions are highly incomplete (146).

5.4. APPROACH 53

Algorithm 2 SLCN pseudocode
1: local_clfs← ∅
2: local_feats← ∅
3:
4: function TRAIN(X,Y, h)
5: for c ∈ C do
6: n← number of instances in X
7: if HAS_PARENT(h[c]) then
8: i← {i|Y [i, h[c].parent] = 1} . Select instances that belong to parent
9: else

10: i← {1, ..., n}
11: Xlocal ← X[i]
12: Ylocal ← Y [i, c]
13: Xlocal, Ylocal ← SAMPLE_INSTANCES(Xlocal, Ylocal, n)
14: local_feats[c]← SELECT_FEATURES(Xlocal, Ylocal, k)
15: Xlocal ← Xlocal[:, local_feats[c]]
16: local_clfs[c]← TRAIN_LOCAL_CLASSIFIER(Xlocal, Ylocal)
17:
18: function PREDICT_RECURSION(X,Y, h, n, i)
19: Xlocal ← X[:, local_feats[n]]
20: Y [i, n]← PREDICT_LOCAL_CLASSIFIER(local_clfs[n], Xlocal)
21: i← {i|Y [:, n] = 1}
22: for c ∈ h[n].children do
23: Y← PREDICT_RECURSION(X,Y, h, c, i)
24: return Y
25:
26: function PREDICT(X,h)
27: n← number of instances in X
28: Y ← ZEROS(n, |C|) . Initialize the matrix Y with zeros (empty predictions)
29: for r ∈GET_ROOTS(h) do
30: Y ← PREDICT_RECURSION(X,Y, h, r, {1, ..., n})
31: return Y

5.4.2 Features

It is not possible to directly apply hierarchical multilabel classification methods on
knowledge bases. In order to be able to work with classifiers, we need to represent
every typed instance x ∈ X in the knowledge base as a feature vector, and the types
of the given instance as labels. We focus on general features which can be extracted
from the relations between entities represented in a knowledge graph. Therefore,
we do not investigate features extracted from external sources and text. Accord-
ing to Nickel et al. (137), two kinds of features can be obtained from knowledge
graphs: latent features and graph features. The former consists of features which
cannot be directly observed in the graph, often these are lower-dimensional repre-
sentations (also known as embeddings) of entities. The latter consists of features
that can be directly observed from the edges in the graph.

54 CHAPTER 5. TYPE PREDICTION USING HMC

Latent features are dense lower dimensional representations of entities in an
embedding space. The existent latent multirelational learning models, often used
for the link prediction problem, generate this kind of entity representation. Since in
these models every entity on the knowledge graph is represented by embeddings,
we can use these embeddings as features and types as labels and train a multilabel
classifier for type prediction. Assuming that in the latent feature representations,
entities of same type are located close to each other in the embeddings space, these
features should in principle be useful for the type prediction task.

Some of the state-of-the-art embedding models are TransE (15), TransR (111),
RESCAL (139), multiway neural networks (mwNN) (51) and Holographic Em-
beddings (HolE) (138). In this chapter we choose to use Holographic Embeddings
(HolE) (138), which learns compositional vector space representations of entire
knowledge graphs. The proposed method is related to holographic models of as-
sociative memory in that it employs circular correlation to create compositional
representations. HolE is efficient to compute, easy to train, and highly scalable,
but at the same time it is highly expressive and can model complex relations. This
achieved by using circular correlation as the compositional operator (c.f. Equation
5.6), which is illustrated by the 3-dimensional example for c in Equation 5.7. It is
shown that holographic embeddings are able to outperform state-of-the-art meth-
ods, such as TransE and RESCAL, for link prediction in knowledge graphs and
relational learning benchmark datasets.

Circular correlation, also known as compressed tensor product, enables rela-
tions to be modeled as d-dimensional vectors instead of d × d matrices like in
RESCAL. With that the amount of memory for representing relations is reduced
from O(d2) to O(d) and the runtime for learning the model is reduced from O(d2)
to O(d log d) (138).

c = a ? b =

d−1∑
0

aib(k+1)modd (5.6)

c0 = a0b0 + a1b1 + a2b2
c1 = a0b2 + a1b0 + a2b1
c2 = a0b1 + a1b2 + a2b0

(5.7)

An important characteristic of the circular correlation as an operator to model
relations is that it is noncommutative, i.e., a ? b 6= b ? a, which enables it to model
asymmetric relations. In HolE, the probability of a triple (s, p, o) is modeled as
shown in Equation 5.8, where es and eo are the embedding representations of the
subject s and object o, and rp is a vector that represents the relation p, and σ is the
logistic function, that converts the triple score to a probability.

σ(r>p (es ? eo)) (5.8)

In this chapter, we will call the set of entity embedding features E, where E
has d dimensions. In general, d is small (d ∈ {5, 10, 25, 50, 150}), but the feature

5.4. APPROACH 55

vectors are dense, i.e. they have few zeros.
Graph features can be directly extracted from the triples in the graph, and there-

fore are simpler to be obtained. In this work, we propose the extraction of binary
features, following (152), which are not specific to a dataset at hand, but applicable
on any general SW knowledge base. Rout is the set of outgoing relations, Rin is
the set of ingoing relations, Qout is the set of qualified relations, i.e., pairs of out-
going relations and object types, and Qin is the set of ingoing qualified relations,
i.e., pairs of ingoing relations and subject types. For convenience, we define the
set of ingoing and outgoing relations as R = Rin ∪Rout and the set of all qualified
relations as Q = Qin ∪Qout.

The feature sets for the classification problem are extracted with the follow-
ing SPARQL queries, where the keyword a is used as a shorthand notation for
rdf:type:

Rout : select distinct ?x ?p where {?x ?p ?z, ?x a ?c}
Rin : select distinct ?x ?p where {?z ?p ?x, ?x a ?c}
Qout : select distinct ?x ?p ?t where {?x ?p ?z, ?z a ?t, ?x a ?c}
Qin : select distinct ?x ?p ?t where {?z ?p ?x, ?z a ?t, ?x a ?c}

In theory, on a knowledge base containing relations pi ∈ P , and ci ∈ C types,
Rout and Rin can have up to |P | dimensions, and Qout and Qin up to |P | × |C|
dimensions. In practice, however, Rin is often smaller than Rout because, for ex-
ample, data properties, which have literals as objects, appear always as outgoing
relations of entities and never as ingoing. Also, because of domains and range re-
strictions of relations, many combinations of outgoing relation and object type, as
well as ingoing relation and subject type never occur, therefore the sizes of Qout
and Qin often are significantly smaller than |P | × |C|. It is important to note that,
in contrast to the dense entity embeddings feature set E, the feature vectors Q and
R are in practice highly sparse with few non-zero entries. These characteristics can
be observed in Table 5.1, which give the size of these feature sets on the datasets
used in our experiments.

In our experiments, we define the set of features used in a type prediction task
as F , which may consist of any combination of the features sets Rout, Rin, Qout,
Qin or E. While in SLCN it is possible to include dataset specific features, such
as DBpedia categories or text features extracted from Wikipedia abstracts, in this
work, we concentrate on general features which can be extracted from any SW
knowledge base. It is worth mentioning that, in contrast to SDType (150) and other
existing methods, which usually rely on a certain kind of features, the proposed
hierarchical multilabel classification approaches can handle any kind of features
which could be extracted from knowledge bases, and is thus more versatile.

In the future we plan to perform experiments with different kinds of features
and propositionalization strategies (168), and evaluate how they affect the predic-
tive performance. However, since in this chapter we focus on the prediction meth-
ods and not the feature extraction, we restrict ourselves to the features described
previously.

56 CHAPTER 5. TYPE PREDICTION USING HMC

In summary, the contributions of this work are the formulation of the type
prediction as a hierarchical multilabel classification problem and the proposal of
SLCN, a scalable hierarchical multilabel classifier based on the local classifier per
node approach which exploits local feature selection and sampling in order to im-
prove scalability and facilitate the use of such approach on large cross-domain
LOD datasets. Moreover, we investigate how the use of different feature sets affect
the performance of SLCN and other methods. We consider embedding features ob-
tained with HolE, as well as ingoing and outgoing relations and qualified relations.

5.5 Experiments

The experiments are divided into five main parts. First, we evaluate the perfor-
mance of different local classifiers for SLCN, and different parameter values for
< k, n, u >. Second, we compare the influence of graph and latent features, show-
ing that the latter only lead to a marginal performance improvement. Subsequently
we compare SLCN to SDType and different state-of-the-art multilabel classifiers,
analyzing performance and scalability with respect to the number of instances, fea-
tures, and labels. We do not compare the proposed approach to RDFS reasoning,
because it has already been shown to outperform reasoning in the case of real-
world SW knowledge bases (150). Finally, in the last part, we make a comparison
on different large-scale RDF datasets.

For our experiments, we use MULAN 1.5, which is an open-source Java library
for learning from multilabel datasets based on WEKA (197). It includes a variety
of state-of-the-art multilabel classification algorithms, and offers multilabel feature
selection and evaluation. Apart from SDType, we compare SLCN to the local
approaches HMC, HOMER, and the global approach MLC4.5 (37). HMC is an
implementation of the LCPN approach. HOMER (195) is similar to HMC, but
it uses balanced clustering to generate a hierarchy for flat labels, where the non-
leaf nodes are meta-labels identifying label clusters. MLC4.5 and SDType were
re-implemented in the MULAN framework. The performance of SDType is very
sensitive to the chosen confidence threshold, and the optimal threshold may vary
with the used dataset. Therefore, for our experiments, we added an extra step
to the training phase of SDType in order to find the confidence threshold which
maximizes the hF measure. Apart from that, all methods were used with their
standard settings in MULAN.

5.5.1 Datasets

In our experiments, we use four different large scale cross-domain datasets: DB-
pedia, DBpedia with YAGO types, NELL, and Wikidata1. We also use AIFB and
Mutagenesis datasets, which are two smaller and simpler domain-specific datasets.

1The datasets used are available for download at
http://dws.informatik.uni-mannheim.de/en/research/hmctp

5.5. EXPERIMENTS 57

They are especially needed for the latent features experiments, since the computa-
tion of entity embeddings for the large scale datasets can be expensive. Because
MULAN can only handle trees, not arbitrary DAGs, we convert all DAG type hi-
erarchies to trees by retaining only the subsumption relation of the most frequent
parent node. Table 5.1 shows some statistics about the different datasets, including
number of instances, percentage of instances with partial-depth (PD) and multi-
path (MPL) labels, average number of paths per instance (ANP),number of labels
(|C|), and size of the different feature sets (|Rout|, |Rin|, |Qout|, |Qin|). In the next
paragraphs we briefly discuss relevant characteristic of each dataset used.

Dataset Instances MPL ANP PD |C| |Rout| |Rin| |Qout| |Qin|
DBpedia 4 218 125 0.02% 1.02 32.6% 476 1390 659 30 423 10 427
DBp(YAGO) 2 886 305 81.4% 3.16 86.2% 454 1308 638 61 595 45 484
NELL 29 317 38.9% 1.10 32.2% 264 248 248 2721 3056
Wikidata 19 254 100 63.4% 1.64 18.4% 474 1324 474 53 175 119 207
AIFB 27 100 48.3% 1.48 10.8% 58 81 81 287 538
Mutagenesis 14 157 0% 1.00 0% 87 4 4 118 14

Table 5.1: Statistics about the datasets used

DBpedia: We use DBpedia 20142 with mapping-based properties. There are
two main issues with existing DBpedia type assignments. The first is that DBpedia
only contains single path labels, although it is clear that several instances, such as
Arnold_Schwarzenegger, should belong to multiple paths. This happens because
of its extraction framework, which maps infoboxes to types and assigns an instance
to the type of the first infobox of its Wikipedia page. That makes it an exception
amongst other main RDF datasets which, as Table 5.2 illustrates, have a significant
portion of its instances with multipath labels. The second problem is that the cor-
rect type can be trivially predicted from outgoing properties, as reported in (151),
which happens because the DBpedia outgoing properties and types are generated
in one step from the same original information. Therefore, in our experiments, we
use only the feature sets Rin and Qin for DBpedia. DBpedia 2014 has a class hi-
erarchy which is not a tree only because of the class Library, which is a subclass
of EducationalInstitution and Building. All the other classes have a single
parent class. In order to convert it to a tree, we choose EducationalInstitution
to be the only superclass, following the tree depicted by the DBpedia Ontology
browser.3 Since DBpedia types were originally materialized with the DAG hierar-
chy, after the transformation to a tree, all the 816 instances of Library (0.02% of
the total) appear to have two paths in the tree.

DBpedia with YAGO types: Unlike DBpedia, YAGO4 extracts its type hi-

2http://wiki.dbpedia.org/Downloads2014
3http://mappings.dbpedia.org/server/ontology/classes/
4http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/downloads/

http://wiki.dbpedia.org/Downloads2014
http://mappings.dbpedia.org/server/ontology/classes/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/

58 CHAPTER 5. TYPE PREDICTION USING HMC

erarchy from Wikipedia categories. Because of that, it has a staggering 384 174
different types and a complex DAG type hierarchy. Moreover, YAGO has a very
limited number of relations (|Rout| = 37) with most relations on the people and
location domain), which results into a small number of features which are biased
to specific classes. With the number of labels much greater than the number of fea-
tures, the YAGO dataset as it is, is not well suited for the type prediction problem.
Most of the DBpedia instances are linked to the YAGO types. Therefore it makes
sense to combine both datasets by using DBpedia features and YAGO types as la-
bels. With that, the problem of DBpedia’s exclusively single-path labels, which are
extracted together with the outgoing properties, can be ruled out. The problem of
the high number of YAGO labels can be solved by simply choosing the top-k most
frequent types. In our experiments, arbitrarily select the 474 most frequent YAGO
labels.

Wikidata: Similarly to what was done to the YAGO types, in Wikidata, which
also has a large original |C| = 29099, we arbitrarily select the 454 most frequent
types. In contrary to the other knowledge bases used in the experiments, Wikidata
does not rely on information extraction methods to generate its RDF graph. Wiki-
data is part of the Wikimedia community and its pages contain structured data,
which can be exported to RDF format (56). Its type hierarchy is a DAG and, in
order to transform it into a tree, for all types with multiple parents we keep the
rdfs:subClassOf relation with the parent with greatest number of instances and
delete the rest.

NELL: We use the NELL dataset (version 08m.690), which has originally
1 168 998 instances. However, the NELL’s graph is highly sparse with only around
2% of instances being both typed and having at least one ingoing or outgoing rela-
tion. Therefore for the datasets used in our type prediction experiments we remove
the other 98% of instances and use only the remaining 29317.

AIFB: The AIFB dataset5 describes the AIFB research institute in terms of its
staff, research group, and publications. The data is an export of the AIFB website
and contains around 270 thousand triples. The type hierarchy is originally a wide
and shallow tree with average fanout 14.25 and average depth 2.04.

Mutagenesis: The MUTAG dataset is distributed as an example dataset for
the DL-Learner toolkit6. It contains information about 340 complex molecules
that are potentially carcinogenic, which is given by the isMutagenic property. The
molecules can be classified as "mutagenic" or "not mutagenic", and the main entity
types atoms bonds and compounds which define the molecules. The type hierarchy
is also originally a tree with average fanout 7.17 and average depth 2.49.

5http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/
Portal

6http://dl-learner.org

http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://dl-learner.org

5.5. EXPERIMENTS 59

5.5.2 SLCN Base Classifier and Parameter Settings

We conduct a first experiment to evaluate the performance of different types of
local classifiers on our approach. Four different popular binary classifiers available
in WEKA are evaluated. Table 5.2 reports the results of the comparison, which was
performed on a random sample of the DBpedia data with YAGO types containing
28 863 instances (1% of the total) and features F = R. The results indicate that
J48 (an implementation of the C4.5 decision tree algorithm) and LibSVM perform
equally well in terms of prediction quality, with J48 being about eight times faster
than SVM. Thus, we use J48 as a base classifier in the subsequent experiments.

classifier rt(ms) h-loss hamm hP hR hF

J48 111 711 2.5060±0.2044 0.0069±0.0005 0.5136±0.0373 0.4961±0.0249 0.5029±0.0110
NaiveBayes 56692 2.8531±0.1119 0.0076±0.0002 0.4519±0.0125 0.4161±0.0178 0.4330±0.0110
AdaboostM1 104 238 2.6207±0.1384 0.0072±0.0003 0.4831±0.0215 0.4311±0.0172 0.4548±0.0028
LibSVM 880 441 2.5080±0.2367 0.0069±0.0006 0.5165±0.0522 0.4705±0.0313 0.4891±0.0101

Table 5.2: Comparison of different local classifiers on SLCN

In the experiments, we evaluate how the three parameters k, n and u (i.e., the
number of features, the local training sample sizes, and the bias to uniform class
distribution) affect the performance of SLCN. The evaluation is performed on the
same sample described before, using J48 as local classifier and the default setting
k = 100, n = 500. We then vary k and n measuring the runtime as well as hP ,
hR, hF , h-loss and hamm.

The plots in Figure 5.3 show hF and runtime for different parameter values. It
is notable that for both the number of features k and maximum train set size n, the
hF curves flatten after a certain point, while the runtime curves continue to grow.
The optimal values for n and k depend on characteristics of the data, and may vary
from dataset to dataset.

As the local classification problems can be rather skewed, we have also per-
formed experiments with different sampling biases towards a more uniform class
distribution in the local sampling. Since SLCN is based on LCN with siblings neg-
ative example selection, the classes are not as imbalanced in the local training sets
as they are in the whole dataset. Moreover, we select the most frequent classes
from Wikidata and YAGO, which excludes the smallest classes, and hence avoids
the most skewed local classification problems. Therefore, the sampling bias to uni-
form class distribution does not significantly affect the performance of SLCN, i.e.,
we stick to stratified sampling in our experiments.

5.5.3 Graph Features vs. Latent Features

In this section, we perform a comparison between latent features and graph fea-
tures for type prediction. In these experiments we use HolE features, which were
learned on the whole datasets excluding the rdf:type relations. HolE provides

60 CHAPTER 5. TYPE PREDICTION USING HMC

0 1 2

·104

0.5

0.6

0.7

n

h
F

0 1,000 2,000

0.62

0.64

0.66

0.68

k

0 0.5 1

0.71

0.71

u

0 1 2

·104

0

1

2

3
·105

n

ru
n
ti
m
e
(m

s)

0 1,000 2,000
0

0.5

1

1.5

·105

k

0 0.5 1

1.6

1.8

2

2.2

·105

u

Figure 5.3: Evaluation of the impact of the parameters n and k on hF and runtime.

state-of-the-art performance with an expressive, yet simple and scalable model,
which enables us to learn the model on larger datasets (138). We use the HolE
implementation from the python library Scikit-KGE7. We learn holographic em-
beddings with the parameter settings recommended by the authors, and we vary
the number of dimensions in order to find the optimal value on the smaller datasets
AIFB and Mutagenesis.

Firstly, for the smaller datasets AIFB and Mutagenesis as well as NELL we
learn HolE embeddings with number of dimensions d ∈ {5, 10, 25, 50, 150}, and
evaluate how good the learned embeddings are as features for the type prediction
task. Figure 5.4 shows how the hF is affected by the dimensionality of the embed-
dings, for the Mutagenesis dataset 10 was the optimal value, for AIFB it was 25,
and for NELL it was 5. Since both datasets are fairly simple, we can observe that
for the higher number of dimensions, the model overfits. This, however, should
not be a problem for the other datasets, which are much more complex and contain
more relations.

We evaluate the performance of hierarchical multilabel classifiers for type pre-
diction with five different feature sets: qualified ingoing and outgoing relations
(Q), ingoing and outgoing relations (R), HolE embeddings only (E), combination
of R and HolE embeddings (R∪E), and combination of Q and HolE embeddings
(Q ∪ E).

The objective is to evaluate the relevance of entity embeddings to the type

7https://github.com/mnick/scikit-kge

https://github.com/mnick/scikit-kge

5.5. EXPERIMENTS 61

SDType SLCN HMC HOMER MLC4.5

101 102

0.2

0.3

0.4

0.5

dimensions

h
F

(a) Mutagenesis

101 102

0.6

0.65

0.7

0.75

dimensions

(b) AIFB

101 102

0.4

0.45

0.5

dimensions

(c) NELL

Figure 5.4: Type prediction results for different number of HolE embeddings di-
mensions

prediction task, and how they compare to other traditional graph features, as well
as to examine if any improvement can be obtained by combining these two kinds
of features. Since SDType cannot handle the real valued numerical features from
E, for this type prediction method we discretize the numerical attributes into 25
bins using the equal frequencies approach, resulting in 25d binary features.

Dataset Method Q R E R ∪ E Q ∪ E

AIFB

HMC 0.9870±0.0008 0.9495±0.0005 0.7424±0.0010 0.9437±0.0019 0.9867±0.0007
MLC4.5 0.9880±0.0011 0.9497±0.0007 0.6359±0.0028 0.9150±0.0017 0.9765±0.0016
SLCN 0.9764±0.0043 0.9380±0.0032 0.7213±0.0057 0.9223±0.0023 0.9764±0.0038
HOMER 0.9872±0.0007 0.9493±0.0003 0.7291±0.0021 0.9366±0.0016 0.9868±0.0007
SDType 0.8032±0.0040 0.7373±0.0040 0.7512±0.0014 0.7706±0.0006 0.7844±0.0007

Mutagenesis

HMC 0.9343±0.0020 0.7607±0.0034 0.4647±0.0041 0.7605±0.0032 0.9344±0.0022
MLC4.5 0.9050±0.0026 0.6796±0.0024 0.4165±0.0057 0.5998±0.0026 0.8897±0.0033
SLCN 0.9262±0.0053 0.7622±0.0078 0.4145±0.0319 0.7582±0.0083 0.9262±0.0053
HOMER 0.9339±0.0020 0.7778±0.0043 0.4953±0.0038 0.7777±0.0042 0.9340±0.0022
SDType 0.7372±0.0016 0.7261±0.0056 0.4511±0.0030 0.4608±0.0031 0.5265±0.0023

NELL

HMC 0.8695±0.0019 0.9165±0.0041 0.4869±0.0023 0.9186±0.0017 0.8695±0.0019
MLC4.5 0.9119±0.0016 0.9548±0.0014 0.4008±0.0038 0.8682±0.0019 0.7780±0.0040
SLCN 0.7608±0.0041 0.8956±0.0042 0.4794±0.0065 0.8842±0.0025 0.7365±0.0076
HOMER 0.8678±0.0155 0.9251±0.0036 0.5009±0.0030 0.9250±0.0009 0.8674±0.0155
SDType 0.8922±0.0025 0.9025±0.0026 0.5271±0.0019 0.5588±0.0035 0.6093±0.0026

Table 5.3: Comparison of hF for type prediction on different feature sets

The results from Table 5.3 indicate that the best set of features is the qualified
relations Q, which over all classifiers significantly improves the performance over
the set of ingoing and outgoing relationsR. The exception for that is NELL, where
Q performs worse than R. This happens because the knowledge graph is highly
incomplete, where several entities have no types or no ingoing or outgoing prop-

62 CHAPTER 5. TYPE PREDICTION USING HMC

erties. For the classification dataset we select only the entities which have at least
one type and at least one ingoing or outgoing relation, however, when extracting
the featuresQ some of the objects of outgoing and subjects of ingoing relations are
not typed entities, therefore we cannot use them as features in Q.

The latent features E, when used alone perform significantly worse than all
other feature sets, indicating that this kind of features is not very relevant for the
type prediction task. We also combine the embeddings E with R, in order to
evaluate if the embeddings can add relevant information and improve performance.
However, the experiments indicate that in some cases it does not significantly affect
the hF measure, while in others it actually acts as noise, reducing the quality of
the predictions.

Although the HolE embeddings have been shown to be useful in the link predic-
tion problem, in the type prediction problem they do not seem to be of significant
relevance when comparing to the graph features for the classifiers considered in
our experiments. This can be attributed to the fact that these entity embeddings are
learned with the objective of modeling links between entities, and not to separate
them by types. Admittedly, the datasets used in these experiments are rather small
and time constraints did not allow us to explore further approaches to exploit the
embeddings. Further work applying deep learning methods and performing exper-
iments on larger datasets would be better evaluate the relevance of embeddings in
type prediction.

5.5.4 Scalability Experiments

In this section, we compare the scalability of the methods in terms of the number of
instances, number of features, and number of labels of a dataset. The experiments
were conducted on the same sample of DBpedia with YAGO types described in the
previous section. To vary the number of instances, we randomly sample instances
as training set and progressively increase the sample size, for the number of fea-
tures we select features with highest information gain first, and for the number of
labels we select the most frequent labels first.

Figure 5.5 shows the runtime and hF of each method for different number of
instances, number of features and number of labels. SDType is the most scalable of
the compared methods, however, its hF was significantly lower than all the other
compared methods. The runtime of SLCN is close to that of SDType, improving
the runtime in comparison to the other hierarchical multilabel classifiers, and im-
proving hF in comparison to SDType. MLC4.5 has the best overall hF , however,
in terms of runtime, it does not scale as well as SDType and SLCN. It is particularly
noteworthy that the runtime of SDType and SLCN is significantly more scalable
than the other approaches in terms of number of instances, features, and labels.

Although in the plots SDType and SLCN seems not to change its runtime with
the number of instances, features and labels, their runtime is of course also affected.
However, in comparison with the other methods, the increase in runtime is much
smaller and cannot be visualized in the plot. The runtime of SLCN would grow

5.5. EXPERIMENTS 63

1 2 3

·104

0.65

0.7

0.75

instances

h
F

100 200 300 400
0.5

0.55

0.6

0.65

0.7

features

100 200
0.7

0.8

0.9

labels

1 2 3

·104

0

0.5

1

1.5

2
·108

instances

ru
n
ti
m
e
(m

s)

100 200 300 400

0

0.5

1

1.5

2
·106

features

100 200

0

1

2

3
·107

labels

SDType SLCN HMC HOMER MLC4.5

Figure 5.5: Scalability in terms of number of instances, features and labels

similarly to its local classifier for number features smaller than k and instances
smaller than n. For larger values, the number of instances and features of the
local datasets the would remain constant, and the increase in runtime would be
determined by the instance sampling and feature selection methods used.

5.5.5 Large-Scale Experiments on SW Datasets

In this section, we perform large-scale experiments on whole RDF datasets. Table
5.4 shows the results of 5-fold cross validation on the RDF datasets presented ear-
lier. Because of time limitation, we do not report the results for classifiers which
require more than a week for training. HMC, HOMER and MLC4.5 were able
to finish only on NELL, therefore for the other datasets in Table 5.4 we report
the results only for SDType and SLCN, which were able to finish for all datasets,
showing the effectiveness of the proposed approach in improving scalability.

On the NELL dataset, the HMC, HOMER and MLC4.5 perform better than
SDType and SLCN. However, the runtime of the first three methods are notably
longer than the others. When comparing SLCN against SDType, the former per-
forms consistently better with respect to all evaluation measures, but longer run-
time. Note that the results of SDType differ from those reported in (150) because
the latter includes owl:Thing and classes in other ontologies, such as FOAF and
schema.org, in the evaluation, while we exclude them. On all the other datasets,
which are significantly larger than NELL (c.f. Table 5.1), SLCN is the best overall
performer as HMC, HOMER and MLC4.5 were not able to finish in less than one
week.

The use of qualified relation features (Qout and Qin) substantially increases the

64 CHAPTER 5. TYPE PREDICTION USING HMC

Dataset Method hF h-loss hamm rt(ms)

DBpedia
F = Rin

SDType 0.7647±0.0021 0.7729±0.008 0.0027±0.0000 16 080 553
SLCN 0.8470±0.0009 0.4632±0.0051 0.0016±0.0000 7024255

DBpedia
F = Rin ∪Qin

SDType 0.7702±0.0002 0.7501±0.0014 0.0026±0.0000 54 511 659
SLCN 0.8462±0.0005 0.4610±0.0048 0.0016±0.0000 10154987

DBp(YAGO)
F = Rout ∪ Rin

SDType 0.6663±0.0001 2.6724±0.0019 0.0159±0.0000 6 744 282
SLCN 0.7029±0.0066 2.0965±0.0891 0.0133±0.0007 7635499

DBp(YAGO)
F = Rout ∪ Rin ∪Qout ∪Qin

SDType 0.6705±0.0002 2.6477±0.0019 0.0157±0.0000 213 904 335
SLCN 0.7022±0.0064 2.1057±0.0903 0.0134±0.0007 48374257

Wikidata
F = Rout ∪ Rin

SDType 0.7529±0.0001 0.5749±0.0002 0.0017±0.0000 208 957 224
SLCN 0.8116±0.0106 0.3748±0.0091 0.0014±0.0000 44807901

Wikidata
F = Rout ∪ Rin ∪Qout ∪Qin

SDType 0.7759±0.0001 0.5189±0.0003 0.0016±0.0000 272 206 437
SLCN 0.8680±0.0028 0.2712±0.0060 0.0011±0.0000 64413619

NELL
F = Rout ∪ Rin

SDType 0.9025±0.0026 0.4842±0.0129 0.0041±0.0001 1917946
SLCN 0.8956±0.0042 0.5851±0.0148 0.0045±0.0002 2 547 871
HMC 0.9165±0.0041 0.5014±0.0132 0.0036±0.0002 6 336 452
HOMER 0.9251±0.0036 0.4799±0.0136 0.0032±0.0001 10 957 195
MLC4.5 0.9548±0.0014 0.3305±0.0091 0.0020±0.0001 16 991 440

NELL
F = Qout ∪Qin

SDType 0.8922±0.0025 0.4447±0.0091 0.0045±0.0001 9289373
SLCN 0.7608±0.0041 1.0809±0.0175 0.0101±0.0002 18 252 489
HMC 0.8695±0.0019 0.6859±0.0767 0.0055±0.0001 102 815 535
HOMER 0.8678±0.0155 0.6866±0.1168 0.0056±0.0008 156 444 313
MLC4.5 0.9119±0.0016 0.4840±0.0044 0.0037±0.0001 166 477 106

Table 5.4: Evaluation of different classification methods on large cross-domain SW
datasets

dimensionality of the feature space, as it can observed in Table 5.1, and therefore
the runtime is also increased. SDType is able to improve its results when consid-
ering the greater set of features for DBpedia and DBpedia with YAGO types, but
SLCN actually yields slightly worse results. This may be because of a possibly
higher level of dependency between the features in Qout and Qin. Since the filter
feature selection method does not take dependencies between features into account,
the selected feature set could contain several redundant features.

The results in Table 5.5 can illustrate the importance of the high scalability of
SLCN. Training SLCN on AIFB with F = Q is faster than training HOMER or
HMC on F = R, and the prediction quality is significantly higher. On Mutagene-
sis, the training time is a bit slower, but again, the prediction quality is significantly
higher. That shows that, when time and computing resources are limited, using
SLCN allows you to work on a higher number of features in comparison to less
scalable methods, and ultimately achieve better results.

5.6. CONCLUSION 65

Dataset Method hF h-loss hamm rt(ms)

AIFB
F = R

SDType 0.7373±0.0040 0.8844±0.0062 0.0164±0.0001 80892
SLCN 0.9380±0.0032 0.2296±0.0064 0.0046±0.0002 88 997
HMC 0.9495±0.0005 0.1975±0.0044 0.0038±0.0000 442 235
HOMER 0.9493±0.0003 0.1983±0.0034 0.0038±0.0000 387 434
MLC4.5 0.9497±0.0007 0.1988±0.0059 0.0038±0.0001 389 573

AIFB
F = Q

SDType 0.8032±0.0040 0.6902±0.0065 0.0128±0.0001 207402
SLCN 0.9764±0.0043 0.0675±0.0080 0.0018±0.0003 399 530
HMC 0.9870±0.0008 0.0360±0.0028 0.0010±0.0001 1 609 020
HOMER 0.9872±0.0007 0.0356±0.0027 0.0010±0.0001 3 739 919
MLC4.5 0.9880±0.0011 0.0337±0.0028 0.0009±0.0001 1 484 945

Mutagenesis
F = R

SDType 0.7261±0.0056 1.2770±0.0324 0.0164±0.0005 56511
SLCN 0.7621±0.0077 0.8650±0.0064 0.0118±0.0002 1679
HMC 0.7607±0.0034 0.8541±0.0060 0.0118±0.0002 3505
HOMER 0.7778±0.0043 0.8805±0.0122 0.0121±0.0003 29 643
MLC4.5 0.6726±0.0023 1.3274±0.0076 0.0177±0.0001 55 289

Mutagenesis
F = Q

SDType 0.7372±0.0016 0.9357±0.0041 0.0135±0.0001 71213
SLCN 0.9262±0.0053 0.2835±0.0121 0.0040±0.0003 10 304
HMC 0.9343±0.0020 0.2540±0.0032 0.0036±0.0001 29 171
HOMER 0.9339±0.0020 0.2557±0.0033 0.0036±0.0001 109 943
MLC4.5 0.8991±0.0037 0.3728±0.0135 0.0055±0.0002 67 920

Table 5.5: Evaluation of different classification methods on smaller SW datasets

5.6 Conclusion

In this chapter, we have modeled the type prediction problem in Semantic Web
knowledge bases as a hierarchical multilabel classification problem. We propose
SLCN, and compare it to both popular hierarchical multilabel classifiers and the
state-of-the-art type prediction approach SDType (which is currently one of the
strongest and best scalable algorithms for the task at hand). The experiments in-
dicate that the local feature selection and local sampling can significantly improve
scalability without sacrificing the quality of the prediction. The results also show
that SLCN can perform better than SDType, while scaling better than the other mul-
tilabel classifiers evaluated in this chapter. With enough computing power avail-
able, a state-of-the-art hierarchical multilabel classifier, such MLC4.5, is the best
choice, while SLCN is a good trade-off when scalability is a major issue. The use
of entity embeddings as features in our proposed type prediction approach and the
results indicate that, under the experimental settings used in this chapter, the simple
graph-features yield significantly better results.

Chapter 6

Detection of Relation Assertion
Errors

6.1 Introduction

Many of the knowledge graphs published as Linked Open Data have been created
from semi-structured or unstructured sources. The magnitude of many of these
knowledge graphs, e.g.: DBpedia, NELL, Wikidata, YAGO, does not allow for
manual curation, and, instead, require the use of heuristics. Such heuristics, how-
ever, do not guarantee that the resulting graphs are free from errors. Wikipedia,
which serves as source for DBpedia and YAGO, is estimated to have 2.8% of its
statements wrong (209), which add up to the error caused by the extraction heuris-
tics. Therefore, automatic approaches to automatically detect wrong statements are
an important tool for the improvement of knowledge graph quality.

Incompleteness is another major problem of most knowledge graphs. Auto-
matic knowledge graph completion has been widely researched (137), with a va-
riety of methods proposed, including embedding models. Although such methods
can also be trivially employed for error detection, their performance has not yet
been extensively evaluated on the task.

Many existing large-scale error detection methods rely exclusively on the types
of subject and object of a relation (48; 151; 153), and try to spot violations of the
underlying ontology and/or typical usage patterns. While types can be a valuable
feature, some knowledge graphs lack this kind of information, have only incom-
plete type information, or have types which are not very informative. Moreover,
some errors might contain wrong instances of correct types. For example, if some-
one adds the fact playedFor(Ronaldo, Manchester_United), which would be
wrong because Ronaldo refers to Ronaldo Nazário instead of Cristiano Ronaldo,
such an approach would not be able to detect the error.

In knowledge graph completion, paths in the graph have been proven to be
valuable features (98; 69). For instance, in order to predict whether a person a lives
in a place b (livesIn(a,b)), one important path feature is whether the person has a

66

6.2. PROBLEM DEFINITION 67

spouse who lives in b (spouse(a,X)→ livesIn(X ,b)), or whether the person has
some child who was born in b (childOf(X ,a)→ bornIn(X ,b)). Generalizing it for
any pair of entities in a given relation, we can simply consider the previous example
as path features spouse→ livesIn and childOf-1→ bornIn, with binary values
indicating if the entities pair can be connected through each of the paths. For error
detection, these features can complement the type features. However, searching
for interesting paths for all the relations in a knowledge graph can be a challenging
task, especially in datasets with many relations.

In this chapter, we propose a hybrid approach called PaTyBRED (Paths and
Types with Binary Relevance for Error Detection), a method for the detection of
relation assertion errors in knowledge graphs, which incorporates type and path
features into local relation classifiers. Furthermore, we propose heuristic measures
for the exploration of the paths search space. We perform an extensive comparison
of our approach with state-of-the-art error detection and knowledge completion
methods, and we conduct a manual evaluation of our approach on DBpedia and
NELL.

6.2 Problem Definition

The problem addressed in this chapter is the detection of erroneous relation as-
sertions in knowledge graphs. A dataset containing errors is given, and the facts
should be ranked by their likelihood of being wrong.

It is important to note that we consider only features which can be extracted
from the links between entities (owl:ObjectProperty relation assertions) and
types (rdf:type assertions). To make the approach as versatile and applicable
to as many knowledge graphs as possible, we do not use any other information,
such as textual or numerical literals, or external knowledge sources. The problem
can be defined as relation assertions error detection on internal features according
to (149).

6.3 Approach

Our proposed approach is inspired by the Path Ranking Algorithm (PRA) (98) and
SDValidate (151). It consists of a binary classifier for every relation which predicts
the existence of a given pair of subject and object in the target relation. The set of
classifiers can be thought of as a single multilabel classifier with binary relevance
(i.e., each relation that can hold between a pair of instances is a label), where one
binary classifier is learned for each class separately, and local feature selection
(122) (c.f. Appendix A), with different classifiers being able to work on different
sets of specialized features.

We use two kinds of features. The first one are the types of subject and ob-
jects. This kind of information has been successfully used for error detection in

68 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

SDValidate (151). By analyzing the types of subject and object in one given re-
lation, one can easily spot a very common kind of error without relying on the
domain and range restrictions, which are often inexistent or too general. For ex-
ample, in DBpedia the triple recordedIn(I’m_a_Loser, Abbey_Road) is wrong.
I’m_a_Loser is a song by The Beatles from the album Abbey_Road and the rela-
tion recordedIn has domain MusicalWork and range PopulatedPlace. A song
being recorded in an Album is a clearly wrong fact. At the same time, if the object
were Abbey_Road_Studio of the type Recording_Studio, which is not a sub-
class of PopulatedPlace, the fact would also be wrong according to a method
relying solely on types. If there are many facts where songs are recorded in record-
ing studios, statistical methods such as SDValidate would be able to identify that
such a pattern is common, and therefore unlikely to be wrong, despite the viola-
tion of range restriction, while a song recorded in album is uncommon, therefore
likely to be an error. Hence, statistical approaches such as SDValidate respect the
actual usage of the ontology, rather than its axiomatic design. Recent works have
been proposed that pinpoint such mismatches automatically (148). Moreover, type
assertions might be absent or too general, resulting in no relevant information.

The main problem with this kind of approach is that it solely relies on type fea-
tures. That means such approaches do not work on knowledge graphs with no type
assertions, and may have poor performance on datasets with a shallow type hierar-
chy with non informative types or with incomplete type assertions. Moreover, by
solely using type features, it is impossible to detect wrong facts with wrong entities
of correct types, for instance, when a person instance is confused with another of
same or similar name.

Alternatively we can use path features similar to those of PRA. However, solely
relying on path features also has its problems. One of them is that correct facts
may be labeled as error because of incompleteness. For instance, if river in-
stances have the properties country (i.e., the countries a river passes through, typ-
ically multi-valued), and mouthCountry (i.e., the country where the river’s mouth
is, typically single-valued), then the feature country will be relevant for the re-
lation mouthCountry since the confidence of the rule mouthCountry(X ,Y) ⇒
country(X ,Y) is close to 1. However, some rivers do not have any assertions for
country because of incompleteness, thus their correct mouthCountry assertion is
predicted to be wrong. That can lead to propagation of incompleteness.

Another problem is that since country is a more relevant feature to predict the
relation mouthCountry than vice versa, since the latter is far less common than
the former. Hence, if an error occurs in the assertion of country for a river, it
might happen that a correct mouthCountry assertion ends up being more likely to
be detected as an error than the wrong country assertion. In order to make our
approach more robust, we combine both type and path features.

Finding the relevant paths for each relation can be a challenging task. Since
several paths may be relevant to different relations, we compute all possible paths
up to a given length, and for every relation’s local classifier we perform local fea-
ture selection. The number of possible paths grows exponentially with the number

6.3. APPROACH 69

of relations, therefore an exhaustive search can easily become unfeasible. It is then
crucial to have heuristics to efficiently navigate the search space. In the following
subsection we propose and discuss such heuristic measures.

6.3.1 Extracted Features

Our method includes the following parameters that define the path selection: maxi-
mum path length, maximum number of paths per length, and path selection heuris-
tics. Following the approach described in (98), we use the domain and range re-
strictions of relations for pruning uninteresting paths, and we do not allow a rela-
tion to be immediately followed by its inverse. If the number of possible paths of
a certain length exceeds the maximum number of paths per length, we apply our
path selection heuristics to prune the least interesting paths and comply with the
specified paths upper limit.

We define a knowledge graph K = (T ,A), where T is the T-box and A is
the A-box containing relations assertions AR and type assertions AC . We define
NC as the set of concepts (types), NR as the set of relations and NI as the set
of individuals (entities which occur as subject or object in relations). The set of
relation assertions is defined asAR = {r(s, o)|r ∈ NR ∧ s, o ∈ NI} and the set of
type assertion as AC = {C(s)|C ∈ NC ∧ s ∈ NI}.

We define a path P as a sequence of relations r1 → ...→ ri → ...→ rn. The
sequence of relations is connected by a chain of variables, with P (s, o) meaning
s and o can be connected by a path P (s, o) ⇐⇒ r1(s, x1) ∧ ... ∧ ri(xi−1, xi) ∧
... ∧ rn(xn−1, o). The inverse of a relation r is denoted as r−1 where r−1(s, o) =
r(o, s) can also be part of paths. A path of length one P = (r) is equivalent
to the relation itself P (s, o) ≡ r(s, o). The length of a path is denoted as |P |.
We define the set of subjects of P as sP = {s|P (s, o)} and set of objects as
oP = {o|P (s, o)}.

Relations and paths can be represented as adjacency matrices of size |NI | ×
|NI |.The adjacency matrix of P can be computed by the dot product of its relations.
However, computing the dot product of adjacency matrices can be an expensive
operation, especially in large-scale knowledge graphs with millions of entities and
high number of relations. Therefore, we need heuristic measures to explore the
search space and compute the dot product only for the most relevant paths.

Let A and B be adjacency matrices – which can refer to a single relation or a
path – which we want to concatenate in order to form a new path A ·B. We want a
heuristic measure which can estimate the relevance of the pathA·B without having
to perform a potentially expensive matrix multiplication to compute its adjacency
matrix. Since the paths computed are to be used by all relations, the proposed
heuristic measures should not be computed with respect to a target relation, but
only consider the matrices A and B.

Paths with empty adjacency matrices (|A · B| = 0) are useless and should
be pruned. A simple way to safely prune them is to calculate oA ∩ sB . The set
of objects oA contains the columns of A which have non-zero elements, and the

70 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

set of subjects sB contains the rows of B which have non-zero elements. If the
intersection is empty, then we know that |A · B| = 0. Note that |sB| ≤ |B| and
|oA| ≤ |A|, and the intersection is cheaper to compute than dot product, therefore
the runtime for computing oA ∩ sB is shorter.

For our proposed heuristic measures, we assume that paths with denser ad-
jacency matrices are more likely to be more relevant features. Since the size of
the intersection oA ∩ sB can be a good indicator of the number of nonzero ele-
ments in A ·B, we use it to define three measures for estimating the relevance of a
path A×B: We employ that characteristic into three proposed relevance measures
inter, m1 and m2 (c.f Equations 6.1, 6.2 and 6.3).

inter(A,B) = |oA ∩ sB| (6.1)

m1(A,B) =
|oA ∩ sB|
|sA ∩ oB|+ 1

(6.2)

m2(A,B) = |oA ∩ sB| × |sA ∪ oB| (6.3)

By early pruning irrelevant paths, time is saved not only by computing fewer
adjacency matrices, but also the number of features to be considered is reduced
(fewer columns in the features table to be populated and less features to have the
relevance computed).

Once the relevant paths have been selected, we compute their adjacency matri-
ces and use them to populate the features used to train the relation classifiers. One
of the problems of computing the whole adjacency matrix of paths is that some can
be very dense and require a lot of memory. For example, the path birthPlace→
locatedIn-1 on DBpedia, which represents everything which is located in a place
where someone was born in. Its adjacency matrix contains around 100 million
non-zero elements and consumes more than 1GB of memory. As it is unlikely that
all the entries in the matrix will be used, it would be desirable to handle such cases
in a more efficient manner in order to restrict the memory consumption and speed
up the paths adjacency matrices computation process.

It is worth pointing that the rdf:type relation is not considered in the paths.
They are treated separately and are used to generate the type features, which consist
of the set of asserted and subsumed types of an instance (we materialize the sub-
sumed types into the assertions and ignore the subsumption relations). Integrating
types into the paths can be problematic. Firstly it would significantly increase the
search space. Secondly, a path which begins with the rdf:type, can only continue
with rdf:type-1 because types can only be objects in this relation (if we do not
consider OWL class axioms in paths), and as mentioned earlier, we do not allow a
relation to be immediately followed by its inverse.

6.4. EXPERIMENTS 71

6.3.2 Learning the Model

Once the paths have been selected, and their adjacency matrices have been com-
puted, we can use them together with types as features to predict the existence of an
entity pair (s, o) in a relation. The first step is to build a training dataset containing
all extracted features for each relation r. We use as positive examples the entity
pairs Dpos = {(s, o)|r(s, o)}, i.e. all the non-zero cells in the relation’s adjacency
matrix. Following (15), we generate negative instances Dneg = {γ(s, o)|(s, o) ∈
Dpos ∧ γ(s, o) /∈ Dpos} for supervised training by corrupting entity pairs with γ,
which substitute the subject or the object for a random entity instance and ensur-
ing the new pair is not positive. In a preliminary experiment, we compared this
approach with that of (98), which is more expensive, and no significant difference
in performance was observed.

As labels we use information from r indicating the existence of (s, o) in the
relation. We extract path features from AR and type features from AC . The path
features are boolean values indicating whether a path connects s to o (P (s, o)|∀P ∈
P − (r)). The type features consist of the types of s and o (including subsumed
types), i.e. {C|C(s)} and {C|C(o)}. Other possible path feature is the existence
of a path starting or ending in s and p (P (s,X), P (X, s), P (o,X), P (X, o))
as proposed in SFE (69), however the authors found out that this kind of feature
does not improve performance. Our experimental results confirmed their results,
therefore we do not consider this kind of feature in our approach.

Before we learn the local classifiers, we evaluate the relevance of the features.
Since different features might be relevant for different relations, we perform feature
selection separately for every relation. This allows the relation classifiers to work
on a small set of locally relevant features, and, at the same time, removes irrelevant
features which might act as noise and reduce the classifier’s performance (122). We
use the filter method, which simply select the top-k most relevant features, with χ2

as relevance measure.
When comparing PaTyBRED with PRA and SFE, our approach has the fol-

lowing advantages. We try different popular classifiers to learn the relations, and
we found that logistic regression, which is used in PRA and SFE, is not the best
performer. We introduce a local feature selection step prior to training the relation
classifiers. We propose heuristic measures to explore the paths search space. More-
over, negative evidence features, i.e. paths which connect negative but no positive
entity pairs of a relation, are also considered. Since our approach is supervised and
includes negative examples in the training data, this kind of features are extremely
important to identify wrong facts.

6.4 Experiments

In our experiments, we evaluate the impact of different parameter settings in our
approach, and compare it with SDValidate and state-of-the-art knowledge graph

72 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

completion methods. We use ProjE1 as well as the TransE and HolE implemen-
tations of scikit-kge2. The implementation of PaTyBRED is available on Github3.
We do not directly compare our method with SFE, but we evaluate our approach
with path features only (PaBRED), which perform at least as well as SFE.

The reported results from the embedding methods were obtained by not consid-
ering the type assertions. We tried adding the type assertions as an extra relation,
however, this did not improve the results. The embedding methods suffer from the
problem that the distribution of scores over different relations is not uniform. Often
some relations have average triple scores lower than others, and this can result in a
bias when detecting errors.

In order to reduce this problem, we run isolation forest to detect score outliers
of each relation separately, and we use the outlier confidence values instead of the
triple scores to rank the facts. Since unusually high scores are also outliers and we
are interested only in the outliers of low scores, we do not consider as outlier any
fact with score greater than the relation’s average.

6.4.1 Datasets

In our experiments we use a variety of knowledge graphs, some of which are clean,
and others noisy. In the first part of our experiments we automatically evaluate the
performance of the error detection algorithms. In order to make the evaluation
automatic, we use a variety of datasets to which we add synthesized wrong facts.
We generate the erroneous facts by corrupting the subject or object of true facts,
i.e., replacing the original entity with a randomly selected which results in a fact
which does not exist in the original data. For our generation process, we add 1%
of noise, and we generate two kinds of errors. In the first, we corrupt the triple
by selecting any of the entities from the knowledge graph (independent of type),
and in the second, we select only triples which have the same types as the original
entity. That means the errors of the second kind are, in principle, more difficult to
be detected than those of the first kind, since the new entity is more likely to have
characteristics similar to those of the original one.

The datasets used are the following: As input knowledge graphs, we use DB-
pedia (2015-10), and NELL (08m-690). We use the following smaller domain spe-
cific datasets: Semantic Bible4 AIFB portal5 and Nobel Prize6. We also select four
of the largest conference datasets from the Semantic Web dog food corpus7, i.e.,
LREC2008, WWW2012, ISWC2013, and ESWC2015. WN18 and FB15k (Word-

1https://github.com/nddsg/ProjE
2https://github.com/mnick/scikit-kge
3https://github.com/aolimelo/kged
4http://www.semanticbible.com/
5http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/

Portal
6http://www.nobelprize.org/nobel_organizations/nobelmedia/

nobelprize_org/developer/manual-linkeddata/terms.html
7http://data.semanticweb.org/dumps/conferences/

https://github.com/nddsg/ProjE
https://github.com/mnick/scikit-kge
https://github.com/aolimelo/kged
http://www.semanticbible.com/
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://data.semanticweb.org/dumps/conferences/

6.4. EXPERIMENTS 73

Net 1.8 and a subset of Freebase with 15 000 entities), which have been widely
used on link prediction experiments, are also used.

The Semantic Web dog food datasets are known to be correct and locally com-
plete, i.e. no errors or missing relations between contained entities, therefore, the
generated errors can be used as gold standard. We could not find any evaluation
the of quality of AIFB, Semantic Bible or Nobel Prize. Since we cannot guarantee
the quality of the data, the synthesized errors can be considered a silver standard.
Because of incompleteness, some of the generated errors might actually be correct
facts, meaning there can be false positives in the silver standard, and because of
noise, there can also be false negatives in the silver standard.

The number of false positives is likely to be low even for highly incomplete
datasets, since in general, the number of missing facts is significantly smaller than
the number of possible facts (|NR||NI |2 − |AR|) from which the generated wrong
facts are drawn.

In the second part of the experiments we use DBpedia and NELL as large-scale
real-world use cases. These datasets are known to be noisy and incomplete, with
type assertion completeness estimated to be at most 63.7% on DBpedia (151). We
do not synthesize any erroneous facts, and rank all the facts by their confidence
values. Since we do not know the noisy facts or even the number of errors which
exist in DBpedia, we manually evaluate the top-100 results.

6.4.2 Evaluation Measures

In our defined problem we use ranking measures to evaluate the performance of the
error detection algorithms, since we compute scores for every triple in the graph
and generate a ranking. Similar to link prediction papers we use the mean rank
(µR), mean reciprocal rank (MRR), as well as their filtered variations fµR and
fMRR (c.f. Equations 6.4 and 6.5), which filters out correctly higher ranked pre-
dictions.

fMRR =
1

|E|

|E|∑
i=1

1

ranki − i+ 1
(6.4)

fµR =
1

|E|

|E|∑
i=1

ranki − i+ 1 (6.5)

We define E as the set of erroneous facts ordered by their rank in ascending
order. Subtracting i− 1 from the rank ensures that better ranked true positives are
filtered out. For instance, if E = (1, 2, 3, 5, 8) its filtered sequence of ranks would
be (1, 1, 1, 2, 5).

74 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

sembib eswc iswc www lrec nobel aifb wn18 fb15k
f
M
R
R

PaTyBRED LR
10 0.800 0.835 0.811 0.212 0.754 0.690 0.014 0.584 0.618

PaTyBRED RF
10 0.840 0.927 0.933 0.559 0.747 0.680 0.120 0.860 0.770

PaTyBRED SVM
10 0.838 0.906 0.980 0.414 0.844 0.673 0.070 0.820 0.713

PaTyBRED LR
25 0.745 0.907 0.862 0.707 0.786 0.788 0.068 0.584 0.524

PaTyBRED RF
25 0.881 0.928 0.964 0.795 0.653 0.782 0.213 0.795 0.545

PaTyBRED SVM
25 0.848 0.860 0.980 0.537 0.822 0.788 0.045 0.570 0.765

f
µ
R

PaTyBRED LR
10 0.008 0.020 0.006 0.0023 0.011 0.076 0.041 0.00352 0.015

PaTyBRED RF
10 0.009 0.009 0.010 0.0003 0.006 0.080 0.031 0.00003 0.018

PaTyBRED SVM
10 0.011 0.012 0.008 0.0007 0.004 0.103 0.041 0.00003 0.014

PaTyBRED LR
25 0.005 0.022 0.003 0.0012 0.011 0.051 0.035 0.00349 0.014

PaTyBRED RF
25 0.003 0.028 0.010 0.0001 0.006 0.051 0.028 0.00004 0.020

PaTyBRED SVM
25 0.007 0.015 0.006 0.0003 0.005 0.063 0.028 0.00006 0.014

Table 6.1: Comparison of local classifiers and number of selected features on gen-
erated errors of kind 1

6.4.3 Parameter Settings

First, we evaluate how the different PaTyBRED parameters affect its performance.
The evaluated parameters are the maximum path length (mpl), the maximum num-
ber of paths per length (mppl), the path selection heuristic measure (pshm), the
number of locally selected features (k), and the local classifier (clf).

As far as the maximum path length (mpl) is concerned, the best results were
achieved with mpl = 2, that is direct links and triangular patterns. Equivalent,
inverse, and subproperty relations, as well as other kinds of associations can be
exploited with direct links, while more complex associations with composed rela-
tions can be exploited with the triangular patterns. In none of the datasets used in
our experiments, a mpl > 2 achieved better results. It seems that paths longer than
two do not bring any information gain, while it significantly increase the search
space and slows runtime.

In our experiments, we evaluate three different classifiers (clf): random forests
(RF) (19), support vector machines (SVM) (42) and logistic regression (LR). We
also try two different number of selected features k, i.e., k = 10 and k = 25.
These numbers are low because we observed that only a small number of path and
type features are relevant to the local relation classifiers. Table 6.1 show how the
different settings of PaTyBRED SVM

25 on various datasets. The results show that RF
and SVM achieved the best results, while LR – which is used in PRA and SFE –
lagged behind.

The heuristic measures used for selecting relevant adjacency matrices are those
proposed in Section 6.3.1, i.e., inter, m1 and m2. As a baseline, we use the
random selection of paths. In order to better evaluate the quality of the paths
selected we exclude the type features and consider exclusively the selected paths.
We compared the heuristic measures on all the datasets presented in Section 6.4.1,

6.4. EXPERIMENTS 75

Figure 6.1: Critical distance diagram comparing path selection heuristics

sembib eswc iswc www lrec nobel aifb wn18 fb15k

f
M
R
R

PaTyBRED 0.848 0.928 0.980 0.795 0.844 0.788 0.213 0.860 0.770
TyBRED 0.463 0.782 0.315 0.744 0.693 0.758 0.205 — —
PaBRED 0.800 0.831 0.980 0.503 0.778 0.200 0.173 0.860 0.770
SDValidate 0.265 0.140 0.218 0.109 0.307 0.464 0.022 — —
ProjE 0.102 0.175 0.047 0.098 0.138 0.187 0.048 0.004 0.014
HolE 0.011 0.018 0.025 0.018 0.065 0.026 0.001 0.002 0.006
TransE 0.058 0.001 0.000 0.001 0.039 0.051 0.005 0.001 0.000

f
µ
R

PaTyBRED 0.003 0.009 0.003 0.0001 0.004 0.051 0.028 0.00003 0.014
TyBRED 0.121 0.083 0.102 0.0740 0.113 0.084 0.085 — —
PaBRED 0.009 0.010 0.005 0.0008 0.004 0.227 0.056 0.00003 0.014
SDValidate 0.355 0.397 0.326 0.3768 0.339 0.286 0.293 — —
ProjE 0.149 0.197 0.201 0.1796 0.179 0.177 0.252 0.18714 0.125
HolE 0.204 0.258 0.108 0.1170 0.108 0.213 0.235 0.17304 0.083
TransE 0.226 0.302 0.280 0.2381 0.163 0.320 0.329 0.26174 0.190

Table 6.2: Comparison of FMRR on generated errors of kind 1

ranked the measures and averaged them. In order to find out the significance of the
results we perform Nemenyi Test with α = 0.05. Since the number of datasets is
rather small, the difference between inter and m2 is not significant, however, they
are significantly better than the random approach (c.f. Figure 6.1).

6.4.4 Comparison

Tables 6.2 and 6.3 report a comparison between PaTyBRED and the other state-of-
the-art models. Table 6.3 refers to the datasets with errors with wrong entities of
correct types and Table 6.2 refers to errors with wrong entities of any types. Ta-
ble 6.3 does not contain results for WN18 and FB15k because the original datasets
do not contain entity types, which prevents errors of kind 2 to be generated. For
the same reason the results of SDValidate and TyBRED in Table 6.2 are not re-
ported for WN18 and FB15k. We report values for fMRR and fµR (fµR values
divided by the total number of facts in the KB in order to make the values more
comparable).

It is noticeable that the results for AIFB are significantly worse than other

76 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

sembib eswc iswc www lrec nobel aifb

f
M
R
R

PaTyBRED 0.482 0.553 0.941 0.609 0.532 0.022 0.272
TyBRED 0.001 0.001 0.001 0.001 0.000 0.000 0.000
PaBRED 0.579 0.567 0.941 0.625 0.486 0.250 0.205
SDValidate 0.001 0.001 0.001 0.000 0.000 0.000 0.000
ProjE 0.064 0.026 0.015 0.026 0.007 0.067 0.018
HolE 0.022 0.015 0.043 0.049 0.059 0.053 0.004
TransE 0.092 0.004 0.012 0.000 0.012 0.001 0.003

f
µ
R

PaTyBRED 0.082 0.124 0.023 0.035 0.027 0.250 0.080
TyBRED 0.597 0.503 0.512 0.495 0.551 0.526 0.496
PaBRED 0.086 0.099 0.017 0.023 0.011 0.212 0.065
SDValidate 0.570 0.457 0.467 0.506 0.495 0.495 0.475
ProjE 0.215 0.362 0.223 0.245 0.254 0.274 0.269
HolE 0.240 0.324 0.192 0.190 0.192 0.294 0.246
TransE 0.247 0.308 0.239 0.337 0.148 0.413 0.339

Table 6.3: Comparison of FMRR on generated errors of kind 2

datasets. One of the reasons is the fact that it has no inverse relations, which can
be extremely helpful on the error detection. Another reason is the fact that in AIFB
the author is defined by 27 author_n relations, with n indicating the position in
the authors list. That means it is necessary to not only model the author relation,
but also all the nth-author relations.

PaTyBRED, TyBRED and PaBRED were run with 6 different configuration:
clf ∈ {LR,RF,SVM} and k ∈ {10, 25}. For each dataset the results of the best
performing configuration are reported. The maximum number of paths per length
is set to 1000 and m2 is used as heuristic measure when the number of possi-
ble paths exceeds 1000, and the maximum path length is set to 2. The values
reported for the embeddings methods were the best amongst number dimensions
d ∈ {5, 15, 50, 100, 200} and with the outlier detection, as explained earlier.

It is worth mentioning that the outlier detection helped improve the perfor-
mance of embeddings’ fµR performance on average on 15%. The best results for
the embedding methods were obtained with d = 15 or d = 50 depending on the
dataset. The results reported for the knowledge graph completion in the original
paper for ProjE on FB15k were with d = 200. On error detection with the same
dataset the best performance was with d = 50, cutting the fµR in half. Addition-
ally, d = 5 and d15 also had better performance than d = 200. This indicates that
when using embeddings for error detection, the dimensionality should be lower
than for KGC. Since the dataset contains wrong triples, which shouldn’t be fit by
the model, overfitting can severely affect the performance (more than underfitting).

Our proposed method outperforms all the other methods, with the embedding
methods having a surprisingly low performance. PaTyBRED performs best when
combining types and paths, with TyBRED (with types only) and PaBRED (with

6.4. EXPERIMENTS 77

sembib eswc iswc www lrec nobel aifb nell dbpedia
Paths 0.432 0.412 0.415 0.358 0.479 0.222 0.182 0.032 0.060
Types 0.568 0.588 0.585 0.642 0.521 0.778 0.818 0.968 0.940

Table 6.4: Proportion of path and type features selected

paths only) being generally worse. To further understand the importance of com-
bining path type features, we analyze what kind of features are selected on the
local classifiers and report the proportion of types and paths. Table 6.4 shows the
average proportion of selected features over all relation classifiers with k = 10.
Overall more type features are selected, but both kinds of features are relevant on
the evaluated datasets. WN18 and FB15k are absent because they do not have type
assertions, and therefore have only path features.

Table 6.3, where the erroneous facts contain wrong instances of correct types,
shows how the performance of methods which rely on types exclusively (SDVali-
date and TyBRED) is similar to that of random ranking with fµR around 0.5. It
also shows how detecting errors of kind 2 is more difficult than those of kind 1,
and it reveals the importance of using path features for detecting facts with wrong
instances of correct types. We can also observe that PaBRED has performance
similar to PaTyBRED and even better on some datasets for kind 2 errors, since
type features are useless to detect those errors, and not considering type features
ensures that these cannot potentially replace more useful path features. The only
exceptions are on LREC and AIFBportal, where PaTyBRED has better fMRR
than PaBRED. However, on the same datasets PaBRED performs better in terms
of fµR, meaning that it has better average rank but less highly ranked instances.

6.4.5 Manual Evaluation

In this section we perform a manual evaluation of PaTyBRED on two large-scale
noisy datasets: DBpedia and NELL. We have a deeper look at the top-100 results
and classify the triples as correct, wrong and other errors, i.e., correct triples with
related errors, e.g. wrong or missing types of subject or object.

The results are shown in Figure 6.2 with PaTyBRED RF
10 and PaTyBRED RF

25 on
DBpedia (dbp10, dbp25) and NELL (nell10, nell25). PaTyBRED seems to perform
better on DBpedia with less local features (10) and more on NELL (25). Most of
the other error cases occurred because of type assertion incompleteness, with the
subject or object often having no types at all. Deleting these triples would lead to
propagation of incompleteness. These cases could be automatically detected, and
some of them fixed if the type completion methods (124; 150) are combined with
error detection. The quality of predicted types can be asserted by the improvement
of the scores of triples containing the entities with predicted types.

Some of the errors come from wrong links in Wikipedia pages, which originate
from confusions between entities of similar names. One example of such problem
is the fact formerTeam(Alan_Ricard, Buffalo_Bill), where the correct entity

78 CHAPTER 6. DETECTION OF RELATION ASSERTION ERRORS

dbp10 dbp25 dbp25 nell10 nell10 nell25 nell25

0

20

40

60

80

100
100 100 100 100

11

20

55

14

1 4 6 5

correct other errors wrong facts

Figure 6.2: Manual evaluation on DBpedia and NELL

should be the NFL team Buffalo_Bills instead of the character Buffalo_Bill.
In Chapter 7 we propose an approach which makes use of disambiguation links
(in DBpedia the dbo:wikiPageDisambiguates relation) and string distance to
correct these errors. By replacing subject or object with their respective candidates
and computing the triple scores, we can substitute the wrong triple with the best
scoring candidate (a similar idea has been used for correcting links in Wikipedia
(206)). In the manual evaluation, five of the DBpedia errors could potentially be
fixed with such an approach.

Entities in DBpedia are described in much more detail than in NELL (166).
Around 20% of NELL’s instances are untyped, while in DBpedia only 1% of them
have no types other than owl:Thing. Furthermore, in NELL, reasoning is already
used in the construction process for error detection, which means that very obvious
errors and violations of the underlying ontology are already removed. This may
explain why NELL performs better with more locally selected features, as opposed
to DBpedia. By increasing the number of features the number of correct facts with
untyped subject or object in the top-100 was reduced from 48 to 9, and the number
of actual errors increased from 45 to 86.

Amongst the five correct facts from DBpedia which were wrongly predicted to
be errors, two were from the relation seeAlso. That is understandable since the
relation has very wide semantics, and any pair of vaguely related entities can be
correct. Modelling such a complex relation can be a difficult task. Another error
detected was location(Alan_Turing_Institute, British_Library), which is
a correct fact, but the unique case of an organization which is located in a library.
The last case is with the foundedBy relation, with two cases of newspapers found
by political parties, not persons.

6.5. CONCLUSION 79

103 104 105 106

100

101

102

103

104

105

Number of triples

R
un

tim
e

(s
)

PaTyBRED
SDValidate

ProjE
TransE
HolE

Figure 6.3: Runtime comparison of the evaluated methods

We also make a scalability comparison of the evaluate methods. The results
are shown in Figure 6.3. We can observe that SDValidate has by far the lowest
runtimes, since it is a model simpler than the others. Amongst the embedding
methods, ProjE which directly optimizes the rankings in the link prediction task,
has the steepest runtime growth. HolE and TransE have similar scalability being
more scalable than ProjE. PaTyBRED, due to the aggressive local feature selection
and sampling, has the least steep of the curves. This indicates the appropriateness
of PaTyBRED for handling large datasets.

The scalability test is performed on synthesized replica of DBpedia with the
M3 model (c.f Chapter 4) of sizes {0.01%, 0.1%, 1% and 10%} of the original
size, that means the number of triples varies from around 1.5k to 1.5M triples.

6.5 Conclusion

We have shown that although the error detection problem is similar to knowledge
completion, methods which perform well in knowledge completion might not nec-
essarily be appropriate for error detection. We propose PaTyBRED, a robust super-
vised error detection method which relies on type and path features, and compare
it with state-of-the-art error detection and knowledge graph completion methods.
We demonstrate the importance of combining those path and type features together,
and we also perform a manual evaluation of our approach on DBpedia and NELL.

Chapter 7

Correction of Confusions
Between Entities

7.1 Introduction

Knowledge graphs are known to be both often incomplete and incorrect. Several
link prediction and error detection methods have been proposed, however, few of
them explicitly focus on error correction or address the problem of choosing which
absent facts should be added to the knowledge graph.

The problem is that the number of possible relation assertions grows quadrati-
cally with the number of instances nc = n2inr − nf , where ni is the number of in-
stances, nr the number of relations and nf the number of existing facts in the graph.
For large datasets such as DBpedia, Wikidata and YAGO, computing the confi-
dence score of all these facts is challenging. While pruning possible facts which
violate ontology constraints, especially domain and range restrictions of relations,
can significantly reduce the search space, the problem is still very challenging. To
illustrate the size of the search space, in DBpedia (2016-10) nc ≈ 4.4×1017 facts;
when filtering those triples which violate the domain and range restriction the num-
ber is reduced to nc ≈ 2.8 × 1017, which is still too large to compute confidence
for all those candidates.

A promising approach for enriching a KG with some of its missing facts is the
correction of erroneous facts. Some of the wrong facts which exist in a KG can be
corrected. The error originates from some problem in the knowledge acquisition
process, or in the source data. A good example of the latter are errors in Wikipedia,
which serves as the main source of DBpedia and YAGO. If any of the links in the
infobox are wrong, the extraction process generates a wrong fact. NELL, on the
other hand, has text as main source of information and in many cases the source
text has correct information, which cannot be extracted correctly.

In both cases it is common that an instance is confused with another one of a
similar name (i.e., label or IRI). For example, the fact formerTeam(Alan_Ricard,
Buffalo_Bill) is an erroneous fact from DBpedia which originates from a typo

80

7.2. PROPOSED APPROACH 81

in Wikipedia: when referring to the NFL team Buffalo_Bills, the s was missing,
therefore, the NFL team was confused with the character Buffalo_Bill. In NELL
the entity insect_raccoon exists because of problems when extracting the fact
that raccoons prey on insects, and is confused with mammal_raccoon.

Some relation assertion error detection approaches, such as PaTyBRED (121)
and SDValidate (151), rely on type information, and since erroneous type assertions
are also a common problem, that might result in correct relation assertions with an
instance of incorrect or incomplete types being wrongly identified as erroneous.
Therefore, combining such methods with type prediction (124; 150) is beneficial
to rule out cases where the error is detected rather due to a missing or incorrect
type of the subject or object than due to an erroneous relation assertion.

Therefore, it is relevant to make a careful analysis of detected errors, identify
the source of each error, and if possible correct them. In this chapter, we propose
CoCKG (Correction of Confusions in Knowledge Graphs), an automatic correc-
tion approach which resolves relation assertion errors caused by instance confu-
sion. The approach relies on error detection methods as well as type predictors
to assess the confidence of the corrected facts. It uses approximate string match-
ing and exploits both searching for entities with similar IRIs as well as Wikipedia
disambiguation pages (if available) to find candidate instances for correcting the
facts.

7.2 Proposed Approach

Our approach consists of first running an error detection algorithm (PaTyBRED in
the case of our experiments), selecting the top-k facts most likely to be wrong. In
the next step, the error is heuristically verified to be an actual relation assertion
error and not caused by missing type assertions in the object or subject with a
type predictor tp. In the final step, candidate entities are retrieved, and if any of
the candidates significantly improves the likelihood of the triple being right, we
replace it by that candidate. The function CORRECT_TRIPLE in Algorithm 3 gives
an overview of how CoCKG works. The parameter K is the set of all triples in
the knowledge graph, Terr is the set of triple and confidence pairs generated by the
error detection model (ed), tp is the type predictor, mc is the minimum confidence
threshold, and mcg the minimum confidence gain threshold, i.e. the ratio of the
new and old triple scores. In the next subsections we discuss the other parts in
more details.

7.2.1 Type Prediction

After selecting the k triples most likely to be wrong, we first check if their con-
fidence is low because of missing or wrong instance types (subject or object). In
order to do that, we run a type predictor tp on the subject and object instances. We
use as tp a multilabel random forest classifier based on qualified links (i.e. ingo-

82 CHAPTER 7. CORRECTION OF CONFUSIONS BETWEEN ENTITIES

Algorithm 3 Knowledge base correction process
1: function CORRECT_TRIPLES(K, Terr, ed, tp,mc,mcg)
2: Tcorr ← ∅
3: for t, scoret ∈ Terr do
4: s, p, o← t
5: stp← PREDICT_TYPES(tp, s)
6: otp← PREDICT_TYPES(tp, o)
7: if ¬(CONF_NT(ed, t, s, stp) ∨ CONF_NT(ed, t, o, otp)) then
8: scand← GET_CANDIDATES(s)
9: ocand← GET_CANDIDATES(o)

10: Tcand← {(si, p, o)|si ∈ scand} ∪ {(s, p, oi)|oi ∈ ocand}
11: Tcand← Tcand −K
12: cbest,maxconf ← nil, conf
13: for c ∈ Tcand do
14: if s ∈ domain(p) ∧ o ∈ range(p) then
15: scorec← CONF(ed, c)
16: if scorec ≥ mc ∧ scorec/scoret ≥ mcg then
17: cbest,maxconf ← c, scorec

18: if cbest 6= nil then
19: Tcorr ← Tcorr ∪ {(cbest, t)}
20: return Tcorr

ing links paired with subject type and outgoing links paired with object type), as
described in (124). If the set of predicted types of the subject are different from
the actual types, we change the type features used by ed and compute a new confi-
dence for the triple (c.f. CONF_NT). If the new score satisfiesmc andmcg, then we
conclude that the error was in the subject type assertions. The same is done for the
object, and if in neither case the confidence thresholds are satisfied, we proceed to
the next part where we try to substitute the subject and object with their respective
lists of candidates.

Combining the type prediction process with the error detection also has the
advantage that the newly predicted types can be validated on triples containing
the instance whose types were predicted. This can help support, or contradict the
type predictor, possibly detecting types which are wrongly predicted by identifying
triples where the score is lowered with the new types.

7.2.2 Retrieving Candidates

One simple way to find candidate entities to resolve entity confusions is to use
the disambiguation links. However, disambiguation pages are only available for
Wikipedia-based knowledge graphs, and furthermore are not available for all en-
tities (e.g. Ronaldo has no disambiguation page). In some cases the disambigua-
tion pages miss important entities (e.g. the page Bluebird_(disambiguation)
misses the entity Bluebird_(horse). Therefore, in order to correct the erroneous
fact grandisre(Miss_Potential,Bluebird)), we need an additional source of
candidates.

7.2. PROPOSED APPROACH 83

Since in our experiments we consider DBpedia and NELL, which have infor-
mative IRIs (in the case of DBpedia extracted from the correspondent Wikipedia’s
page), we search for candidate entities which have similar IRIs. Alternatively, it
could also be done with entity labels. This would be useful in KGs which have
uninformative IRIs (e.g. Wikidata and Freebase). For simplicity, in this chapter,
we refer to the informative part of an IRI as the “name” of the entity.

Retrieving all the instances of similar names can be a complicated task. This
kind of problem is known as approximate string matching, and it has been widely
researched (134; 218). For our method we use an approximate string matching
approach based on (127). First, we remove the IRI’s prefix and work with the
suffix as the entity’s name. We then tokenize the names and construct a deletions
dictionary with all tokens being added with all possible deletions up to a maximum
edit distance dmax threshold. This dictionary contains strings as keys and lists
with all tokens which can turn into the key string with up to dmax deletions as
values. Only pairs of tokens which share a common deletion string can have an
edit distance less or equal than dmax. We also have a tokens dictionary which has
tokens as keys and lists of entities which contain a given token as values. With that,
given a token and a dmax we can easily obtain all the entities which contain that a
string approximately similar to that token up to the maximum edit distance.

When searching for entities similar to a given entity, we perform queries for
every token of the entity’s name and we require that all tokens are matched. That
is, for a certain entity to be considered similar, it has to contain tokens similar to all
the tokens of the queried entity. A retrieved entity may have more tokens than the
queried entity, but not less. The idea is that in general, when entering an entities
name manually (e.g., in Wikipedia), it is common to underspecify the entity, but
highly unlikely to overspecify it. E.g., it is more likely that Ronaldo is wrongly
used instead of Cristiano_Ronaldo than the other way around. Furthermore, it
reduces the number of matched entities.

We also perform especial treatment on DBpedia and NELL entity names be-
cause of peculiarities in their IRI structures. In DBpedia it is common to have
between parentheses information to help disambiguate entities, which we consider
unnecessary since the entity types are used in the error detection method. In NELL
the first token is always the type of the entity, therefore, for similar reasons, we
ignore it.

7.2.3 Correcting Wrong facts

At this point, for each assertion identified as erroneous, we have our list of can-
didate instances for subject and object from the disambiguation links and approx-
imate string matching. We then compute a custom similarity measure s(e1, e2)
between an entity e1 and a candidate e2. Each entity ei consists of a set of its to-
kens. The measure we propose consists of two components. The first is the sum
of Levenshtein (dL) distance of all matched tokens, and the second considers the
number of unmatched tokens to capture a difference in specificity. The set of ap-

84 CHAPTER 7. CORRECTION OF CONFUSIONS BETWEEN ENTITIES

proximately matched token pairs is represented by µ(e1, e2) and the constant c is
the weight of the second component. This measure is used to sort the retrieved can-
didates, to prune them in case there are too many, and to break ties when deciding
which of the top-scoring candidates should be chosen.

s(e1, e2) =
∑

(t1,t2)∈µ(e1,e2)

dL(t1, t2) + c
|e1| − |µ(e1, e2)|

|e1| (7.1)

In case the relation has domain or range restrictions, we remove the candidates
which violate these restrictions. Later, for each of the candidates, we generate
triples by substituting the subject and object by each of the instances in its candi-
dates lists (first substitute subject only, then object only). That is, the total number
of candidate triples is the sum of the size of the subject and object candidates list.
We do not create candidate triples by substituting both the subject and object at
the same time because, although possible, we assume the simultaneous confusion
of both instances to be highly unlikely.1 This is also done in order to make the
number of candidate triples linear instead of quadratic.

We then remove the candidate triples which are already existent in the KG.
We compute the confidence of all candidate triples and select that with highest
confidence, given that mc and mcg are satisfied. Our method then outputs a list of
triple pairs containing the wrong triple detected and the corrected triple predicted.

7.3 Experiments

In our experiments we run CoCKG on DBpedia (2016-10) and NELL (08m-690),
then we manually evaluate the triples corrected by our approach. We run PaTy-
BRED on both datasets and select top-1% facts most likely to be errors to be pro-
cessed by our correction method. We classify each corrected fact in four different
categories:

1. WC: wrong fact turned into correct

2. WW: wrong fact turned into another wrong fact

3. CW: correct fact turned into wrong fact

4. CC: correct fact turned into another correct fact

Our approach was run with mc = 0.75,mcg = 2 and entity similarity measure
with c = 1.52. That resulted in 24,973 corrections on DBpedia and 616 correction
on NELL. It also detected that 873 (569) errors were caused by wrong types in

1For that to happen in the case of DBpedia, a Wikipedia user would have to go to the wrong
article page and insert a wrong link in the infobox.

2The parameter values were selected based on heuristics and may not be optimal

7.3. EXPERIMENTS 85

21

58

8

13

WC
WW
CW
CC

14
64

12

8

Figure 7.1: Manual evaluation on DBpedia and NELL respectively

DBpedia (NELL). Since manually evaluating all these corrections would be im-
possible, we randomly select 100 correction on each to perform the evaluation.

The results of our manual evaluation are shown in Figure 7.1. The proportion
of facts successfully corrected (case 1) was rather low. While our approach can
potentially improve the results by tweaking the parameters, and possibly using en-
sembles of different type predictors and error detectors, it currently cannot be used
as a fully automatic approach. However, we believe that combining our approach
with active learning is a promising direction which, with the help of specialists,
could significantly improve results.

When evaluating some relations individually, we notice that some of them
achieve good results. For instance, the relations sire, damsire, grandsire and
subsequentWork reaching more than 90% of successful corrections (case 1). The
results are good for these relations because horses are often named after other enti-
ties and artists often have albums named after themselves, which makes confusions
easy to happen.

One of the problems of our approach is that since it relies on PaTyBRED, which
cannot find many relevant path features on DBpedia and NELL (121), it is difficult
to distinguish between candidate entities of same type. For example, in NELL, the
entity person_paul as object of book_writer relation is always corrected with
writer_paul_feval.

The decision to generate candidate triples by corrupting either the subject or
object seemed to have worked well for DBpedia, where we could not find a triple
where both subject and object were wrong. On the other hand, in NELL such
case was observed a few times, e.g. ismultipleof(musicinstrument_herd,
musicinstrument_buffalo) whose object was corrected to mammal_buffalo but
the subject remained wrong.

Also, our assumption that confusions tend to use a more general IRI instead
of a more specific, requiring all tokens of the queried to be matched, does not al-
ways hold. One example of confusion in DBpedia which contradicts this assump-
tion is language(Paadatha_Thenikkal , Tamil_cinema), whose corrected object

86 CHAPTER 7. CORRECTION OF CONFUSIONS BETWEEN ENTITIES

would be Tamil_language and could not be retrieved by our approach. While this
can be a problem, dropping this assumption also means that more candidates enti-
ties will be retrieved, increasing the number of unrelated candidates. This would
possibly result in more occurrences of cases 2 and 3. Further experiments would
have to be conducted in order to evaluate the effects of such change.

7.4 Conclusion

In this chapter we proposed CoCKG, an approach for correcting erroneous facts
originated from entity confusions. The experiments show that CoCKG is capable
of correcting wrong triples with confused instances, with estimated precision of
21% of the produced corrections in DBpedia and 14% in NELL. The low precision
values obtained do not allow this process, as of now, to be used for fully automatic
KG enrichment. Nevertheless, it works as a proof of concept and can be useful,
e.g., as suggestions from which a user would ultimately decide whether to execute.

Part II

TBox Refinement

87

Chapter 8

Generation of SHACL Relation
Constraints

8.1 Introduction

Since creating a large-scale knowledge graph by manual curation would be an en-
deavour which is hardly feasible, today’s knowledge graphs are usually built using
heuristic methods (166). Since those heuristics have to trade off coverage and
precision, the resulting graphs are not free from errors. Hence, many works on
automatic relation validation and error detection in knowledge graphs have been
proposed (149).

In most cases, those approaches focus on individual relation assertions, and the
outcome is a list of individual errors, which can be very long. Hence, it is difficult
for experts to review and validate the results of those approaches. Furthermore, the
approaches are only valid for one graph at hand and cannot be trivially reused if
the graph changes. Hence, for constantly evolving graphs such as Wikidata or the
Live edition of DBpedia, they are hardly applicable.

As ontologies are one of the pillars of the Semantic Web, and many knowledge
graphs come with their own ontologies, they can also be used for validating indi-
vidual assertions in a knowledge graph. However, designing a good ontology can
be a challenging task, therefore there has been a lot of work on learning ontolo-
gies from data, using methods such as inductive logic programming (ILP) (24) or
association rule mining (204) for automatically learning ontology axioms.

One of the main problems with these methods is the restricted expressiveness
of the learned ontologies. Modern knowledge graphs are often complex, and con-
straints may require the use of axioms which cannot be expressed in OWL or can-
not be learned by current state-of-the-art methods. Furthermore, the intended and
the actual use of a property often diverge, leading to situations where a single on-
tology can hardly describe the different, often competing usages of a property.

One example for the latter case is the president in DBpedia. The relation is
originally conceived to be used to define the person who presides an organization,

88

8.2. GENERATING SHACL CONSTRAINTS 89

hence in DBpedia’s ontology it has the domain Organisation and range Person.
However, the relation is often used to define the president which a member of the
government served, e.g., president(Rex_Tillerson, Donald_Trump).

In order to allow both kinds of assertions, the domain of the relation should
be more flexible accepting Organisation or Person. A possible solution using
RDFS domain and range axioms is to use the most specific common parent of the
two classes, that is Agent, however, that also allows subjects to be of the classes
Deity, Family, which would be undesirable.

For the second use of the relation, path constraints can be useful for describing
the relation. In the DBpedia both members of the government and presidents have
successor relation assertions indicating the person who occupied their respective
positions after them. We know that a member of the government should have the
same president as its predecessor, or the successor of the president of its predeces-
sor. The former case happens when a president has, e.g., different secretaries of
state during its government, and the latter when the secretary of state is the first
nominated by a new president. This can be represented with the disjunction of two
graph path constraints:

president(a,b)→ (successor(c,a) ∧ president(c,b)) ∨
(successor(c,a) ∧ president(c,d) ∧ successor(d,b))

In this chapter, we propose an approach that can learn complex validation rules
for knowledge graphs. For representing those validation rules, we propose to use
SHACL1 (Shapes Contraint Language), a versatile constraints language for vali-
dating RDF graphs recommended by the W3C. It is a highly expressive language
which uses SPARQL queries to define constraints called shapes.

In order to learn the constraints we use PaTyBRED (121), which uses type and
path features to detect relation assertion errors and learns a decision tree for each
relation. These decision trees are then converted to SHACL constraints, which can
be easily integrated into a knowledge graph and used to validate the data.

8.2 Generating SHACL constraints

In this section we present our approach for translating decision trees learned with
PaTyBRED into SHACL relation constraints. It is important to note that we focus
on the creation of constraints for relations between entities (owl:ObjectProperty).
Constraints for owl:DataProperty relations containing, e.g. numerical, textual or
geographical data, are out of the scope of this work.

Learning such constraints has an important advantage when comparing to is
opaque relation assertion error detection methods, such as embeddings. The SHACL
constraints are human-readable and can be directly evaluated and improved by spe-
cialists without requiring the manual evaluation of its output.

1https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/

90 CHAPTER 8. GENERATION OF SHACL RELATION CONSTRAINTS

8.2.1 SHACL

Shapes Constraint Language (SHACL) is a language for validating RDF graphs
against a set of conditions, which are provided as shapes expressed in the form
of an RDF graph called shapes graph. The RDF graphs that are validated against
a shapes graph are called data graphs. The SHACL specification is divided into
SHACL Core and SHACL-SPARQL. SHACL Core consists of frequently needed
features for the representation of shapes, constraints and targets. The SHACL Core
language defines shapes about the focus node itself (node shapes) and shapes about
the values of a particular property or path for the focus node(property shapes).

SHACL-SPARQL consists of all features of SHACL Core plus the advanced
features of SPARQL-based constraints and an extension mechanism to declare new
constraint components. Constraint can be written as SPARQL ASK or SELECT
queries. These queries are interpreted against each shape focus node. If an ASK
query does not evaluate to true for a given node, then the constraint is violated.
Constraints described using a SELECT query must return an empty result set when
conforming with the constraint and non-empty set when violated.

SHACL also supports three different constraint severity levels: Info, Warning
and Violation. The different levels have no impact on the validation, but may be
used by to categorize validation results. It is up to the user to define how the
different severity levels are handled.

8.2.2 Generation Process

We generate SHACL constraints by first training decision trees for relation valida-
tion using PaTyBRED. Next, we consider the learned decision tree, more specifi-
cally, the subtree with the conditions for an example to be classified as erroneous.
The subtree is then converted it into a logical expression, whose negation is used
as a constraint for the relation. The idea is that we used as constraints the nega-
tion of the expression that defines the examples which are predicted by PaTyBRED
to be highly erroneous. In the rest of this section we describe in details how the
generation of the constraints is done.

Firstly we identify the nodes which contain only – or mostly – erroneous rela-
tion assertions. For a node not to be pruned it needs to satisfy minimum support
and confidence thresholds, or be an ancestor of a node which satisfies the thresh-
olds. If a non-leaf node satisfies both thresholds, all its ancestors can be pruned (to
avoid redundancies). This pruned tree can then be directly converted into a logi-
cal expression which will translate the conditions into a single SHACL constraint.
Each literal Li,j is a variable which may be negated or not. This can be directly
translated to node conditions in the tree which are satisfied (right branch) or not
(left branch).

Figure 8.1 shows an example of how the pruning process works. The ci nodes
represent conditions and the 2-dimensional vectors at the leaf nodes represent the
classes distribution, where the first dimension indicates the number of negative

8.2. GENERATING SHACL CONSTRAINTS 91

c1

c2

[30,0] c4

[5,5] [0,35]

c3

c5

[25,0] [0,25]

[10,5]

c1

c2

[30,0] c4

[5,5] [0,35]

c3

c5

[25,0] [0,25]

[10,5]

Figure 8.1: Example of decision tree pruning

examples (erroneous) and the second the number of correct examples. The pruned
tree from Figure 8.1 can then be converted into the following expression:

¬((¬c1 ∧ ¬c2) ∨ (c1 ∧ ¬c3 ∧ ¬c5))

A confidence value of 1 means that only pure nodes containing exclusively
negative examples can be selected. It also means that if the learned constraints are
to be applied on the original data, no existing errors can be detected. In order to
enable detection of preexisting errors, the confidence threshold of less than 1 is
necessary. We can use different confidence thresholds to define different SHACL
constraints with different severity levels. Constraints with lower confidence may
be used as warnings, while higher confidence values close to 1 maybe used as
violations.

Since PaTyBRED relies on path and type features, all conditions in the decision
tree nodes will be of the following kinds: subject type, object type and path.

The decision tree’s logical expression can be directly translated to SHACL
Core using sh:and, sh:or and sh:not. A shape for a relation :r can be defined
with :rShape a sh:NodeShape. We define the target nodes of the shape as sub-
jects of the target relation with sh:targetSubjectsOf. Subject type features test
if the subject of the relation assertion is of a certain class :C. This can be done in
SHACL with :rShape sh:class :C. The object can be restricted to a type :C
with the expression :rShape sh:property [sh:path :r; sh:class :C].

The main problem with SHACL Core is when translating path features. In
the decision trees we consider pairs of subject and object as examples, however
SHACL validation is performed on a single node basis. Its vocabulary provides

92 CHAPTER 8. GENERATION OF SHACL RELATION CONSTRAINTS

the components for property pair constraints sh:equals and sh:disjoint. The
first requires that for all focus nodes the set of nodes reach by both properties
(or property paths) should be identical, while the second requires that the sets are
disjoint. The problem is that what we need to represent is the subsumption relation
between a pairs of paths.

This can be illustrated with Example 1. If we want to validate the relation
assertions of :playedFor we need to consider the subject-object pairs (:Anelka,
:Chelsea) and (:Anelka, :Arsenal). Assuming every (s, o) pair is required to
also be connected by the path :livedIn/:ˆlocatedIn in order to be correct, then
both assertions should be valid. However, since the set of objects reached from
:Anelka with :playedFor are {:Chelsea,:Arsenal} and the objects reached
with :livedIn/:ˆlocatedIn are {:Chelsea,:Arsenal,:Westham}, an error on
the focus node :Anelka would be detected if we use sh:equals to represent the
path pattern.

Example 1:

:Anelka :playedFor :Chelsea .
:Anelka :playedFor :Arsenal .
:Anelka :livedIn :London .
:Chelsea :locatedIn :London .
:Arsenal :locatedIn :London .
:Westham :locatedIn :London .

Example 2:

:Anelka :playedFor :Chelsea .
:Anelka :playedFor :Arsenal_ARG .
:Anelka :livedIn :London .
:Chelsea :locatedIn :London .
:Arsenal_ARG :locatedIn :Sarandi .
:Westham :locatedIn :London .

A similar problem happens if we try to use the negation of sh:disjoint.
In Example 2 the subject-object pair (:Anelka, :Chelsea) is correct, whereas
(:Anelka, :Arsenal_ARG) is incorrect, since the pair is not connected with the
path :livedIn/:ˆlocatedIn because :Anelka did not live in :Sarandi. If we
validate the data using the negation of sh:disjoint, the sets of objects reached
with the two paths are not disjoint because both have :Chelsea, therefore the val-
idator would assume that for the focus node :Anelka there is no assertion error
with relation :playedFor. This would only work if the relation :playedFor were
functional. For that reason, we cannot correctly translate the PaTyBRED decision
trees into SHACL Core.

In SHACL-SPARQL path features can be correctly translated in a more intu-
itive way, since it is possible to work directly with subject-object pairs. Moreover,
it has the advantage of using a well-established and widely used language instead

8.2. GENERATING SHACL CONSTRAINTS 93

Feature SHACL-SPARQL SHACL Core

C(s) {$this a :C} _:b sh:class :C .
C(o) {?o a :C} _:b sh:property [sh:path :r; sh:class :C] .
p(s, o) {$this :p ?o} N/A
p(X, s) {?X :p $this} _:b sh:property [sh:path [sh:inversePath :p]] .
p(s,X) {$this :p ?X} _:b sh:property [sh:path :p] .
p(X, o) {?X :p ?o} N/A
p(o,X) {?o :p ?X} N/A

Table 8.1: PaTyBRED features translation into SHACL

of requiring the learning of a whole new vocabulary. The template for a SHACL-
SPARQL relation constraint is shown below. The SPARQL constraint is defined
with the sh:SPARQLConstraint component. The variable $this indicate the fo-
cus node and ?o its correspondent objects in the target relation.

:relSHACLShape a sh:NodeShape ;
sh:targetSubjectsOf :rel ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o
WHERE {
$this :rel ?o .
FILTER(!(E))

}
""" ;

] .

The relation constraints expression is represented by E, which is negated be-
cause during validation the select query needs to return an empty set if $this
satisfies the constraint. Table 8.1 shows how the PaTyBRED features can be con-
verted into SHACL-SPARQL and Core. The path :p represents a property chain
:r1/.../:rn in SHACL-SPARQL, with the ˆ character before a relation indicat-
ing the inverse of the relation.

For the earlier president relation example from DBpedia the expression E
could be defined as shown below. Every variable in the logical formula is expressed
as a different EXISTS clause. Negated literals can be represented by simply negat-
ing a single variable EXISTS clause. Alternatively, disjunctions and conjunctions
can be represented in a single EXISTS clause using “UNION” and “.” respectively,
however expressing negations would be complicated.

EXISTS {?o a :Person} &&
(EXISTS {$this a :Organisation} ||
(EXISTS {$this a :Person} &&
(EXISTS { $this ^:successor/:president ?o} ||
EXISTS { $this ^:successor/:president/:successor ?o}

)

94 CHAPTER 8. GENERATION OF SHACL RELATION CONSTRAINTS

)
)

It is important to note that the number of variables and the length of the ex-
pression will depend on the number of features selected defined by PaTyBRED. It
also depends on the decision tree settings, such as the maximum depth, maximum
number of leaf nodes, minimum samples on leaf and on split.

8.3 Experiments

To evaluate the learning of relation constraints, we compare the constraints learned
with our approach with domain and range restriction axioms learned with statis-
tical schema induction (SSI) (204). We conduct experiments on two large-scale
knowledge graphs, i.e., DBpedia and YAGO.

SSI uses association rule mining to induce domain and range restrictions from
the data. In order to learn such restrictions, it generates transaction tables where
transactions correspond to relation assertions and items correspond to relation and
subject types, for domain learning, or relation and object types, for range learning.
Then rules of the forms ∃r.> v C and ∃r−1.> v C (i.e., domain and range
axioms respectively) are learned with association rule mining.

We run both methods with minimum confidence of 0.95 and minimum sup-
port of 50 instances. For SSI, we use the most specific domain and range axioms
that satisfy the minimum confidence and support thresholds. Every constraint and
axiom preserves its original confidence value, and for every fact violating the con-
straints we assign the confidence of its original axiom.

We rank the detected errors by the scores, and select the top-10000 (top-10k)
errors with each method (less than 1% of the total amount of relation assertions).
Since many triples are in the top-10k of both methods, we manually evaluate only
those triples which are selected by one method and not the other.

We decided to evaluate the compared approaches based on their ability to detect
existing errors. Evaluating the quality of the generated constraints by themselves,
without considering their ability to detect errors, would be subjective. Since both
methods induce the constraints from the ABox and the detection of errors is their
main application, we think it is fair to evaluate the approaches by how accurately
they can detect errors in an incorrect dataset like DBpedia.

The learned SHACL constraints are translated from PaTyBRED decision trees
learned with mpl = 2, mppl = 5000, k = 10 and nneg = 1. Out of 646
owl:ObjectProperty relations from DBpedia 2015-10 considered, we learned
440 SHACL constraints. Out of those 122 were simple domain and range restric-
tions, 224 were combinations of subject and object types and 94 had path features
(from which 43 had length 2). The relevance of triangular path features in DBpedia
is rather small, contributing to only 6% of the features selected (c.f. Table 8.1).

8.3. EXPERIMENTS 95

Figure 8.2 shows the results of our manual evaluation on DBpedia2. Since
there is some overlap in the top-10k triples detected with each method (380 triples
in DBpedia and 5963 in YAGO), we also present the results of the evaluation on
the differences between the two methods in Figure 8.3. We call SHACL-SSI the
set of triples selected by the SHACL constraints and not by SSI, and SSI-SHACL
the set of those selected by SSI and not SHACL. We then select random samples
of 100 errors from SHACL-SSI and SSI-SHACL and manually evaluate them.

In the manual evaluation we classify the triples detected as errors into four
categories.

• WT-CC: wrong triple with correct types

• WT-WC: wrong triple with wrong types

• CT-WC: correct triple with wrong types

• CT-CC: correct triple with correct types

We consider a fact to have wrong type (WC), if either the subject or the object
in the triple has wrong or missing triple assertions. That includes instances which
are untyped, has too general types, or has wrong type assertions. A relation asser-
tion is considered correct (CT) if the pair of subject and object entities is correct,
independent of their types.

The results from Figure 6.2 show that the SHACL constraints are better at de-
tecting wrong triples, with a higher number of wrong triples with correct types
(WT-CC), which are more difficult to detect. Also, the number of correct triples
with wrong types (CT-WC) is reduced, showing that the more flexible SHACL con-
straints are better at modeling noisy and incomplete relations. We suppose that on
datasets where path features are more relevant, our learned SPARQL constraints
would have a greater advantage when compared to SSI, since the latter only ex-
ploits subject and object types.

We illustrate the results obtained with our method showing two examples of
SHACL constraints learned on DBpedia learned for the relations parent and kingdom,
as well as the relation isCitizenOf learned on YAGO. The :parentShape con-
straint uses exclusively path features, and it exploits the fact that generally people
have children with their spouses and that it is the inverse of the child relations. In
the DBpedia ontology child and parent are not the inverse of each other, with the
two relations having different number of assertions. By considering the two path
features, the constraint is more flexible requiring that neither paths connect sub-
ject and object for a relation assertion to violate the constraint. Such flexibility is
particularly important on incomplete datasets, such as DBpedia.

2The manual annotations can be accessed in http://data.dws.informatik.
uni-mannheim.de/hmctp/shacl-eval/

http://data.dws.informatik.uni-mannheim.de/hmctp/shacl-eval/
http://data.dws.informatik.uni-mannheim.de/hmctp/shacl-eval/

96 CHAPTER 8. GENERATION OF SHACL RELATION CONSTRAINTS

Figure 8.2: Manual evaluation on DBpedia and YAGO

Figure 8.3: Manual evaluation of the differences between SHACL and SSI on DB-
pedia and YAGO

8.3. EXPERIMENTS 97

:parentShape a sh:NodeShape ;
sh:targetSubjectsOf :parent ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o WHERE {
$this :parent ?o .
FILTER(!EXISTS {$this :parent/:spouse ?o} &&

!EXISTS {$this ^:child ?o})}
""" ;

] .

:kingdomShape a sh:NodeShape ;
sh:targetSubjectsOf :kingdom ;
sh:sparql [
a sh:SPARQLConstraint ;
sh:select """
SELECT $this ?o WHERE {
$this :kingdom ?o .
FILTER(!EXISTS {$this :family/:kingdom ?o} &&

!EXISTS {$this :phylum/:kingdom ?o} &&
!EXISTS {$this :genus/:kingdom ?o})}

""" ;
] .

:isCitizenOfShape a sh:NodeShape ;
sh:targetSubjectsOf :isCitizenOf ;
sh:sparql [
a sh:SPARQLConstraint;
sh:select """
SELECT $this ?o WHERE {
$this :isCitizenOf ?o .
FILTER(
!EXISTS {?o a :Country} ||
(!EXISTS {$this :wasBornIn/:isLocatedIn ?o} &&
!EXISTS {$this :graduatedFrom/:isLocatedIn ?o}

))}
""" ;
] .

The :isCitizenOfShape constraint learned on YAGO3 requires the object to
be of type :Country and the subject to be born in a place located in or gradu-
ated from an institution located in the same country. The constraint is not entirely
correct, since people who were not born in or did not graduate in a given coun-
try can still be citizen of that country. However, it reveals interesting patterns in
the data. Moreover, by varying the minimum confidence threshold one can obtain
more aggressive constraints, such as the one shown above, or more conservative
ones which do not require the paths conditions to be fulfilled.

The :kingdomShape exploits the fact that for every level of the life taxon-
omy below kingdom (from species to phylum), most instances have assertions
of the kingdom relation. The constraint requires that for every pair of subject-
object at least one of following three paths should exist: :family/:kingdom,

98 CHAPTER 8. GENERATION OF SHACL RELATION CONSTRAINTS

:phylum/:kingdom and :genus/:kingdom. The problem is that while this holds
for the majority of the :kingdom assertions, those which have a phylum as sub-
ject cannot have one of the three aforementioned paths because phylum is the level
directly under kingdom. Statistical methods – including our approach – identifies
such case as outlier, since the proportion of subjects which are phyla is very small.
This happens because there are orders of magnitude more species, genera, families,
orders and classes than phyla.

This case illustrate the importance of having readable constraints, which can
be understood and improved by specialists. The constraint could be easily fixed by
adding the path ˆ:phylum/:kingdom to the expression, which would include the
cases where the subject is a phylum into the definition.

One of the limitations of our approach is the cost of considering paths of length
mpl > 2 on datasets with many relations. In order to enable PaTyBRED to be used
on large-scale datasets, such as DBpedia and NELL, conservative values for mpl
and mppl need to be selected. This reduces the number of paths whose adjacency
matrix needs to be computed and the number of features considered in the relations’
training data. This improves the scalability, however, it also means that relevant
paths can be possibly left out.

Another limitation is that in its current implementation, PaTyBRED generates
negative examples by substituting the subject or object by a randomly selected en-
tity. Since the distribution of instances over classes on most KGs is highly skewed,
with some classes being much more likely to be sampled than others. That means
the generation of potentially relevant negative examples with instances of infre-
quent classes is unlikely, which may make it difficult to learn constraints with such
infrequent classes.

In order to compensate for this effect, we would need to introduce a bias to
selection of entities on the generation of negative examples. A possible solution is
to make it more likely to generate instances of the same or sibling classes, making
it more likely to select entities of classes that are more closely related to the class
of the original entity. That is an interesting problem, however it requires extensive
research in order to verify its effectiveness on mitigating the issue.

8.4 Conclusion

In this chapter we propose a method for learning SHACL-SPARQL constraints
for relations which is based on the relation assertion error detection method PaTy-
BRED. We compare the learned SHACL constraints with RDFS domain and range
restriction learned with statistical schema induction. We performed a manual com-
parison of the two approaches on DBpedia, and we show that our SHACL con-
straints are better at detecting wrong relation assertions while being more robust
when handling noise and incompleteness of subject and object type assertions.

Chapter 9

Inductive Lexical Learning of
Class Expressions

9.1 Introduction

There has recently been an increase in the number and size of RDF knowledge
bases, in particular in the context of the Linked Open Data initiative. However,
there is still a lack of knowledge bases that use expressive ontologies and instance
data structured according to those ontologies. Many datasets focus on instance
data and give less attention to the ontological layer. One of the reasons for this is
the effort required to build up an ontology. To address this problem, a multitude
of approaches have been devised using a plethora of methods (108). In particular,
there have been two main branches of research: On the one hand, lexical ontol-
ogy learning approaches aim at constructing ontologies from textual input (116)
and, on the other hand, logical learning approaches use existing RDF data as input
to construct ontologies (79; 25). In this work, we present the first algorithm, we
are aware of, which combines lexical and logical ontology learning. This consti-
tutes the first step on a larger research agenda aiming to improve ontology learning
algorithms to a state in which they achieve sufficient precision and recall to be em-
ployed in practice. Previous studies have shown that current algorithms have not
yet achieved this goal (c.f. Lehmann et al. (102)) and ontology learning remains an
extremely challenging problem.

Using a short example, we briefly want to illustrate how schemata improve-
ments can enable more powerful reasoning, consistency checking, and improved
querying possibilities. In particular, in this article we are concerned with learning
EL description logic concepts for definitions.

Example 1. The following definition in description logic syntax was learned by
our approach for the class Astronaut1 in DBpedia (106).

1We omit the namespace http://dbpedia.org/ontology/ for readability

99

http://dbpedia.org/ontology/

100CHAPTER 9. INDUCTIVE LEXICAL LEARNING OF CLASS EXPRESSIONS

Astronaut ≡Person u ∃mission.SpaceMission
u ∃timeInSpace.minute

The definition states that a person who was on a space mission and spent time
in space is an astronaut and vice versa. Adding this definition to an ontology can
have the following benefits: 1.) It can be used to detect inconsistencies and quality
problems. For instance, when using the Pellet Constraint Validator2 on a knowl-
edge base with the above axiom, it would report astronauts without an associated
space mission as violation.3 2.) Additional implicit information can be inferred,
e.g., in the above example each person, who was on a space mission and spent time
in space can be inferred to belong to the class Astronaut, which means that an
explicit assignment to that class is no longer necessary. 3.) It can serve as docu-
mentation for the purpose and correct usage of schema elements. For instance, in
the above example it can be argued that someone is an astronaut if he is trained for
a space mission, whereas the definition requires to actually take part in such a mis-
sion. The definition clarifies the intended usage. Overall, we make the following
contributions:

• first approach to combining logical and lexical ontology learning

• analysis of statistical relevance measures for learning class expressions

• a manual evaluation on a realistic large scale data set

The adapted algorithm is called ELTL (EL Tree Learner) and part of the open-
source framework DL-Learner4 (101) for concept learning in description logics
(DLs). The remainder of the chapter is structured as follows: Section 9.2 covers
preliminaries such as a definition of the learning problem in logical ontology learn-
ing and a description of the base algorithm we use. Subsequently, in Section 9.3,
we describe how statistical relevance measures applied on textual resources can be
integrated into the logical learning framework. Section 9.4 describes experiments
and insights obtained from them and we conclude in Section 9.5.

9.2 Preliminaries

For an introduction to OWL and description logics, we refer to (8). In this section,
we focus on giving an overview of the base learning algorithm we draw on. The
task we investigate resembles Inductive Logic Programming (140) using a descrip-
tion logic knowledge base as background knowledge and EL concepts as target
language. In the ontology learning problem we consider, we learn a definition of
a class A, which has (inferred or asserted) instances in the considered ontology.

2http://clarkparsia.com/pellet/icv/
3Under OWL semantics, this is not a violation, due to the Open World Assumption, unless we

can infer from other knowledge that the person cannot have taken part in a mission
4http://dl-learner.org

http://clarkparsia.com/pellet/icv/
http://dl-learner.org

9.2. PRELIMINARIES 101

To define the class learning problem, we need the notion of a retrieval reasoner
operation RK(C), which returns the set of all instances of C in a knowledge base
K.

Definition 1 (class learning problem). Let an existing named class A in a knowl-
edge base K be given. Analogous to standard information retrieval, the F-Score
of an EL concept C is computed based on precision on recall where the precision
is defined as |RK(C)∩RK(A)|

|RK(C)| and recall as |RK(C)∩RK(A)|
|RK(A)| . The goal of the class

learning problem is to maximize F-Score wrt. A.
background
knowledge

reasoner heuristic

class expression
generation

useuse

quality

class expression
query
results

query results

instance checks

Figure 9.1: Outline of the general learning approach in ELTL: Class expressions
taking the available background knowledge into account are generated and evalu-
ated in a heuristic with respect to the target learning problem. Figure adapted from
(77).

Figure 9.1 gives a brief overview of our base algorithm ELTL (EL Tree Learner),
which follows the common “generate and test” approach in ILP. This means that
learning is seen as a search process and several class expressions are generated and
tested against a background knowledge base. Each of those class expressions is
evaluated using a heuristic, which we will analyze later in more detail.

Definition 2 (refinement operator). A quasi-ordering is a reflexive and transitive
relation. In a quasi-ordered space (S,�) a downward (upward) refinement opera-
tor ρ is a mapping from S to 2S , such that for any C ∈ S we have that C ′ ∈ ρ(C)
implies C ′ � C (C � C ′). C ′ is called a specialization (generalization) of C.

Refinement operators can be used for searching in the space of expressions.
As ordering we can use subsumption (v), which is a quasi-ordering relation. If an
expression C subsumes an expression D (D v C), then C will cover all examples
which are covered by D. This makes subsumption a suitable order for searching in
expressions as it allows to prune parts of the search space without losing possible
solutions.

The approach we used is a top-down algorithm based on refinement operators
as illustrated in Figure 9.2. This means that the first class expression which will

102CHAPTER 9. INDUCTIVE LEXICAL LEARNING OF CLASS EXPRESSIONS

>

Language

Language u∃ spokenIn.>

Language u∃ spokenIn.Place. . .

. . .

Agent Place . . .

Figure 9.2: Illustration of a search tree in ELTL.

be tested is the most general expression (>), which is then mapped to a set of
more specific expressions by means of a downward refinement operator. Naturally,
the refinement operator can be applied to the obtained expressions again, thereby
spanning a search tree. The search tree can be pruned when an expression does not
cover sufficiently many instances of the class A we want to describe.

The heart of such a learning strategy is to define a suitable refinement operator
and an appropriate search heuristics for deciding which nodes in the search tree
should be expanded. The refinement operator in the ELTL algorithm is defined
and evaluated in (103) and has several beneficial theoretical properties not further
detailed here.

9.3 Approach

The learning algorithms in the DL-Learner framework are designed by combining
a refinement operator with a search heuristic. While the operator itself is ideal
with respect to a set of beneficial theoretical properties as shown in (103), we
are investigating and improving the learning algorithm by incorporating a more
intelligent search heuristic.

Learning concepts in Description Logics is a search process. The refinement
operator is used for building the search tree, while a heuristic decides which nodes
to expand. This decision can be done based on different criteria like the number
of positive and/or negative examples covered by the class expression or the length
of the concept represented by the node. While the existing heuristics basically rely
on scores based on metrics according to coverage of the examples obtained via
logical inference, we have observed in previous experiments (102; 25) that best
coverage does not always result in the most intuitive class expressions, and the
search process can be improved by taking into account information contained in
textual resources. Therefore, we extract statistical information out of given text,
which might give some insights on the relevance of other ontology entities for the
class we want to describe. This idea is substantiated by the assumption that words
which are more related to each other tend to co-occur more often in texts as also
expressed in the famous statement to “know a word by the company it keeps” (61)
as frequently quoted throughout the linguistics community. This relevance score
can then be combined with the other metrics in the heuristic and, thus, influence the

9.3. APPROACH 103

navigation in the search tree, which in the end can result in better class descriptions.
Apart from the novel idea of including those relevance measures, one of our

main goals was to evaluate which measure is suitable. In order to measure the rel-
evance of entities for the definition of a given entity, we use popular co-occurrence
based association measures (32). The measures employed in this chapter are Jac-
card, Dice, Semi-conditional Information (SCI), Pointwise Mutual Information
(PMI), Log Likelihood Ratio (LLR), Chi-Square (χ2), T-test, and Significant PMI
(sPMI) (45). The first two measures have the advantage of being simple to com-
pute and their values always fall into the [0, 1] interval. The latter five measures
incorporate some notion of statistical significance, by considering the ratio of ob-
served (f(x, y)) and expected frequency assuming independence Ef(x, y) of an
entity pair x, y. PMI takes into account only the occurrence probabilities, ignoring
the absolute frequency, which results in a tendency to yield high score values for
low frequency pairs. sPMI solves this problem by incorporating corpus level sig-
nificance, which considers the probability of observing a given deviation between
f(x, y) and its expected value Ef(x, y). SCI multiplies PMI by the conditional
probability p(y|x), which tends to favor highly frequent pairs, therefore compen-
sating the PMI’s problem. LLR and χ2 are the only ones which have the null
addition property (32), which means that the measure is affected by the addition of
data containing neither x not y.

Apart from influencing the search process in the learning algorithm, the textual
evidence included by relevance measures can also influence the final ranking of
class expressions. Actually, we have two possibilities of how the learning process
can benefit from information contained in texts related to the knowledge base:

External Text Corpus The first option relies on an external text corpus C .
We treat each document d in the corpus as a separate context and get information
about the occurrence of the class c we want to describe, the occurrences of each
other schema entity (a class or property) ei, as well as the joint occurrences of c
with each ei. The retrieved information is then processed by the chosen relevance
measures. The computation of the relevance score for each ei is done in advance
before the learning algorithm starts, because we have to normalize the values (we’re
doing a min-max normalisation), especially when we’re using more than one rel-
evance measure. In the current approach, we check the occurrence of an entity in
a text by just taking a human-readable name for the entity5 and check if it occurs
syntactically in the text, i.e., we do not perform any kind of disambiguation which
is planned to be integrated in a future version.

Local Textual Information The second option uses textual resources which
are contained in the underlying knowledge base, e.g., the individuals could be ac-
companied by textual descriptions summarizing important facts about them like
the birth place of a person or that an astronaut participated in a particular space
mission. This information can be used to get the relevance of the schema entities
ei by checking for the occurrences of its labels in the descriptions of instances of

5Usually we use rdfs:label, but it’s of course possible to use any other property.

104CHAPTER 9. INDUCTIVE LEXICAL LEARNING OF CLASS EXPRESSIONS

the class we want to describe.

9.4 Evaluation

9.4.1 Experimental Setup

We performed our experiments on the English DBpedia data set in version 3.9 ac-
cessible via a local mirror. The DBpedia data set was extracted from Wikipedia and
at its core consists of resources corresponding to Wikipedia articles and facts ex-
tracted from article pages. DBpedia provides a lightweight OWL ontology, which
defines the different classes and properties used throughout the data set. The DB-
pedia ontology contained a total of 529 classes of which 423 are leaf classes, i.e.,
classes not having any non-trivial subclasses. Furthermore, the ontology contained
927 object and 1,406 datatype properties. The ontology is also used for extracting
the data from Wikipedia using mappings between infobox templates and ontology
classes as described in (106). The extraction process based on this mapping results
in the so-called mapping-based data set which we use in our experiments. Overall,
our experiments data set contained about 63.5 million triples describing 3,243,481
instances.

On this data set, we used DL-Learner (specifically ELTL) enhanced with the
relevance metrics as described above to learn class expressions for the classes con-
tained in the DBpedia ontology. As a corpus for the relevance metrics the abstracts
of all Wikipedia articles which described concepts modeled by an ontology class
were crawled and then provided for retrieval using a SOLR6 instance. This corre-
sponds to the “External Text Corpus” scenario described in the Section 9.3. Though
we also implemented the second scenario, we opted to only evaluate the first one
which is more generally usable because it does not rely on greater amounts of tex-
tual descriptions in the data set itself.

We generated class expressions for all leaf classes of the DBpedia ontology
which had at least 3 instances (288 out of 423). We then computed a sample set
of at most 100 positive examples (instances belonging to the class) and 200 nega-
tive examples. For the negative examples, 100 instances belonging to the sibling
classes and 100 instances of super classes which were not contained in the class
to describe were randomly chosen. After applying DL-Learner, we performed a
manual evaluation to find the combination of relatedness measures which resem-
bles the human perception of intuitiveness of a class expression best. To do this,
we randomly chose 100 of the classes with at least 10 alternative class expressions
generated. For each class with more than 50 class expressions, we picked the top-
50 expressions ranked by F-score. We handed the generated lists to four human
annotators (two researchers not involved in the research presented in this submis-
sion from the Universities of Mannheim and Leipzig, respectively) along with the
instruction to mark the class expressions which they consider most suitable for

6https://lucene.apache.org/solr/, version 4.1.0

https://lucene.apache.org/solr/

9.4. EVALUATION 105

class expression F-score PMI sPMI

1 Person u ∃ selection.> 0.977 0.662 0.529
3 Person u ∃ selection.> u ∃ birthPlace.PopulatedPlace 0.960 0.797 0.549
4 Person u ∃ selection.> u ∃ birthPlace.Place 0.960 0.716 0.518
5 Person u ∃ mission.SpaceMission 0.950 0.493 0.664
8 Person u ∃ selection.> u ∃ nationality.Country 0.947 0.707 0.498

12 Person u ∃ nationality.Country 0.937 0.697 0.489
13 Person u ∃ selection.> u ∃ occupation.PersonFunction 0.937 0.672 0.487
15 Person u ∃ timeInSpace.minute 0.933 0.771 0.571
17 Person u ∃ mission.SpaceMission u ∃ timeInSpace.minute 0.933 0.620 0.643
19 Person u ∃ selection.> u ∃ mission.SpaceMission 0.933 0.584 0.603
21 Person u ∃ mission.SpaceMission u ∃ birthPlace.Place 0.933 0.615 0.599
22 Person u ∃ selection.> u ∃ nationality.Country u ∃ birthPlace.Place 0.933 0.733 0.499
29 Person u ∃ selection.> u ∃ birthDate.date 0.923 0.553 0.466
30 Person u ∃ mission.SpaceMission u ∃ occupation.PersonFunction 0.923 0.571 0.568
31 Person u ∃ mission.SpaceMission u ∃ nationality.Country 0.923 0.605 0.579
41 Person u ∃ selection.> u ∃ birthPlace.PopulatedPlace u ∃ mission.SpaceMission 0.920 0.703 0.596
48 Person u ∃ selection.> u ∃ nationality.Country u ∃ occupation.PersonFunction 0.917 0.701 0.477

Table 9.1: Excerpt of the 50 class expressions that have been evaluated for the
class Astronaut. The first column denotes the rank of the DL-Learner output
without taking statistical measures into account. Only the class expressions have
been shown in random order to the evaluators.
being added to the DBpedia ontology as definitions of the class. Additionally, we
explicitly highlighted the possibility of marking multiple class expressions in cases
where they are equally suitable or no expression if there was no expression close
to an acceptable definition. The evaluation process took two hours per annotator
on average. An example of evaluated class expressions for the class Astronaut
is shown in Table 9.1.

In the second part of the evaluation, we applied several classification approaches
to the F-score and relevance measures values to find a combination which is suited
to reproduce the human assessment of intuitiveness. For this purpose, we employed
the implementations provided by the Weka toolkit (74) in version 3.6.6.

9.4.2 Results

First, we computed the inter-rater agreement using the Fleiss’ Kappa (63) statis-
tical measure to get a score of how much homogeneity, or consensus, there is in
the ratings given by judges. We evaluated the agreement on two different levels
in terms of granularity. On the class level we expect to have an agreement if the
evaluators selected at least one class expression to be useful as definition for the
corresponding class. Here we got a Fleiss’ Kappa value of 0.51 which can be inter-
preted as “moderate agreement” (96). On the more fine-grained class expression
level, we assume to have an agreement if the same class expression was selected as
an appropriate class definition. The Fleiss’ Kappa value was approximately 0.28
which can be seen as a “fair agreement”. For the 288 classes processed by DL-
Learner on average 51 class expressions have been generated. The average length
of the expressions, which is defined in a straightforward way, namely as the sum of

106CHAPTER 9. INDUCTIVE LEXICAL LEARNING OF CLASS EXPRESSIONS

algorithm accuracy F-score AUC

C4.5 77.5% 77.1% 79.6%
SVM 73.3% 74.6% 73.3%
Logistic Regression 72.8% 73.3% 79.9%
Conjunctive Rule 69.5% 67.9% 72.5%
Naive Bayes 64.1% 54.3% 75.6%
ELTL Baseline 59.4% 61.7% 63.8%

(a) Results of 10-fold cross-validation for different classi-
fiers.

feature added accuracy

T-test 61.3%
+ F-score 73.5%
+ LLR 77.3%
+ Jaccard 77.0%
+ PMI 78.0%
+ χ2 78.1%
+ SCI 78.5%

(b) Accuracy gain for features
using C4.5.

Table 9.2: Results of relevance measure analysis.
the numbers of concept, role, quantifier, and connective symbols occurring in the
expression was ≈ 10.
Our experiments address the following research questions:

1. Which relevance measures are particular suitable, and how should they be
combined?

2. Can a combination of statistical relevance measures improve the results of
logical ontology learning?

In order to answer the first question, we cast this task as a supervised machine
learning problem itself in which F-score and the presented relevance measures are
features of a learned definition. A definition is then considered to be a positive
example if an evaluator selected it in our experiment and negative otherwise. Since
this leads to a skewed distribution with more negative examples, we applied ran-
dom subsampling on the negative examples. This results in an equal distribution of
302 positive and negative examples. In a first step, we used these to obtain a suit-
able classifier. We ran different types of classifiers (see Table 9.2a), i.e., support
vector machines, decision trees, rules and probabilistic classifiers, as implemented
in the Weka toolkit7, with their default settings and used 10-fold cross-validation.
As a baseline, we used an optimal threshold for the F-Score, which was determined
by the Weka threshold selector meta classifier. An interesting insight is that the in-
clusion of relevance measures indeed significantly improves the standard approach
of computing F-Score on the underlying RDF data, which allows us to positively
answer the first research question.

The C4.5 decision tree algorithm performed best, so we used it as a base for
feature analysis. This analysis was performed by using standard wrappers for fea-
ture subset selection (89). In this case, we could exhaustively run all combinations
of features in C4.5 via 10-fold cross-validation and optimizing for predictive accu-
racy. The best performing feature subset is {F-score, PMI, χ2, Jaccard, LLR, SCI,

7http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

9.4. EVALUATION 107

T-test}. We used this subset and iteratively removed the feature which caused the
least loss in predictive accuracy. This allows us to observe the increase in accuracy
obtained by adding features as shown in Table 9.2b:

The first three features led to significant improvements in the ability to detect
promising definitions whereas the other features showed only small contributions
(even negative in one case). We also analyzed the weights of normalized features
in the SVM classifier:

3.6477× F-score −2.2027× PMI −0.1476× χ2

+0.7601× Dice +0.8325× Jaccard −0.4517× LLR

+0.2963× SCI +3.7772× sPMI +1.1387× T-test − 4.5916

It is notable here that PMI indeed has a negative weight. We believe this is due to
high PMI values for low frequency entity pairs, so the negative weight along with
the high positive weight of sPMI essentially acts as a noise filter. χ2 and LLR also
have negative weights, which might be related to their null addition property. We
also noted that some metrics have very low values close to zero in the majority of
cases and are essentially only used a tie breaker in the SVM classifier whereas the
C4.5 decision tree can make better use of those values.

9.4.3 Discussion

During the manual annotation of the created class expressions, the annotators did
not find suitable definitions for the classes in a number of cases. Based on the com-
ments provided by the annotators and manual inspection of the affected classes, we
were able to find patterns helping to categorize the problems. In the following, we
describe the categories and give examples for each.
Limited Ontology Vocabulary This problem arises due to relying on the classes
and properties defined in the DBpedia ontology. In these cases, the ontology
does not provide any entities which could be used to describe the class both ac-
curately and exhaustively. For example, the expressions generated for describing
the class Bodybuilder contained properties as height together with the class
Athlete. Obviously, this is a correct description of a bodybuilder but it also
matches all other athletes since the “restrictions” are actually properties of the par-
ent class. However, DL-Learner was unable to choose a better definition since the
ontology did not contain single properties or combinations of these specifically
able to describe a body builder. This type of problems could only be solved by
manually adding more specific properties or classes.
Limited Usage of Vocabulary A related problem arose when the ontology con-
tained an entity usable to describe a class fully which was not created by DL-
Learner. For instance, when describing the concept CanadianFootballLeague,
DL-Learner created definitions like SportsLeague u ∃team.SportsTeam
that describes a sports league but is not specific enough to exclude sport leagues
other than Canadian football league. Replacing SportsTeam in the definition

108CHAPTER 9. INDUCTIVE LEXICAL LEARNING OF CLASS EXPRESSIONS

by CanadianFootballTeam would lead to a flawless definition but is not pro-
posed by DL-Learner. This is because the positive examples do not contain a sig-
nificant number of assignments of teams to a Canadian football league that are also
asserted to be Canadian football teams.8 Again, this problem is hardly solvable
when learning expressions but only at the data level.
Superfluous Restrictions Some class expressions were also not chosen by the an-
notators because they contained superfluous restrictions. This is most often the
case when defining subclasses of Person like Writer and including restrictions
on, e.g., birthPlace. Clearly, this is not a restricting property for writers all
being persons. Thus, some of these definitions were not chosen by the annotators
who tried to choose the definitions as compact as possible. Most probably, this
problem is also caused by the missing vocabulary to describe some classes suit-
ably. We could try to prevent the generation of such definitions by considering the
domain and ranges of properties and filtering restrictions if properties are defined
for super classes of the currently considered class. However, then we would de-
pend more strongly on the correctness of the schema whose quality showed to be
doubtful in many cases throughout our experiments.

Another interesting example is the definition of an Architect, which uses
the property significantBuilding though from the word meaning this would
not be a definition covering all architects but only the more renowned ones which
not only have regular buildings but also significant ones. DBpedia, as it is derived
from Wikipedia, contains only few data on architects which are not famous for
their buildings. A different but less general problem was discovered for classes be-
longing to the biological taxonomy in DBpedia. Here, some generated wrong defi-
nitions pointed to flaws in the usage of biology-specific properties like kingdom.

In summary, we discovered a combination of measures for generating more
intuitive class expressions. From the inclusion of textual information, we were
able to complement the purely logical information employed by DL-Learner with
additional knowledge about how related specific properties are evaluated by hu-
mans. Most problems detected during the manual annotation can be traced back to
missing or underspecified input data.

9.5 Conclusion

In this chapter, we presented first steps towards combining the previously distinct
logical and lexical ontology learning areas. By extending a formerly pure logic
based approach with statistical methods which can be used on text corpora, we
were able to foster the generation of more intuitive class expressions. An exten-
sive manual evaluation with four human annotators showed that the integration of
relevance measures can significantly improve results. Nevertheless, we also dis-
covered and analyzed several problems for which we were partially able to trace
them back to data quality issues.

8Only 2 of 10 teams are assigned to be a Canadian football team.

Chapter 10

Learning Rules With Numerical
Attributes

10.1 Introduction

Discovering patterns by learning rules from knowledge or data bases enables us to
obtain concise descriptions of a domain, to predict new facts and to detect anoma-
lies. Especially by considering numerical values such as birth dates or measure-
ments, which are common in many data sets, we are often able to unveil interesting
patterns (e.g. spatial or seasonal). We illustrate the benefits and challenges of learn-
ing rules with numerical attributes by an example from the U.S. Census1 dataset,
where we would like to discover rules describing the marital status of a person with
a minimum confidence threshold of 0.7. The rules shown in Table 10.1 do not sat-
isfy the given threshold, but we can significantly increase their confidence values
if we restrict the numerical age variable Y to specific intervals.

id rule conf
r1 maritalStatus(X,single) :- age(X,Y) 0.40
r2 maritalStatus(X,married) :- age(X,Y) 0.46
r3 maritalStatus(X,widowed) :- age(X,Y) 0.06

Table 10.1: Example of rules without numerical intervals

In particular, by observing how the confidence values are distributed over the
age variable Y (cf. Figure 10.1), we notice that for the numerical intervals [0, 30],
[30, 80] and [90,∞) the confidences are much higher. In other words, the figure
shows that younger people are likely to be single (10.1a), middle-aged married
(10.1b), and elderly widowed (10.1c).

Given this insight, we can refine the rules r1, r2 and r3 by restricting Y to the
aforementioned intervals, and obtain rules which satisfy the confidence threshold

1U.S. Census (2000): http://www.rdfabout.com/demo/census/

109

http://www.rdfabout.com/demo/census/

110 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

(a) r1 (b) r2 (c) r3

Figure 10.1: Confidence distribution over age Y

(cf. Table 10.2).

id rule conf
r4 maritalStatus(X,single) :- age(X,Y),Y ∈ [0, 30] 0.91
r5 maritalStatus(X,married) :- age(X,Y),Y ∈ [30, 80] 0.72
r6 maritalStatus(X,widowed) :- age(X,Y),Y ∈ [90,∞) 0.71

Table 10.2: Example of rules refined with numerical intervals

However, note that if we had attempted to learn a concept which is uncorre-
lated to the attribute age, such as quarterOfBirth, a costly search for interesting
age intervals would have been useless. This is because for every quarter of the
year the confidence distribution over Y is practically uniform, as seen in the Figure
10.3 example for the first quarter case (quarterOfBirth(X,q1) :- age(X,Y)). Hence,
there is no interval for Y that yields significant confidence gain when compared to
the overall Y domain. Generally, it is desirable to avoid the computation of inter-
vals for uninteresting combinations of numerical and categorical attributes, since
the queries to obtain the support and confidence distributions are expensive and
the search space can easily become too large. So, before running these expensive
queries for a rule with unrestricted numerical attributes variables, we would like to
estimate the likelihood that the rule has a confidence distribution with interesting
intervals.

This interestingness estimation can also be used for choosing better categori-
cal refinements. For example, we could further extend rule r2 (cf. Table 10.1) by
also considering the U.S federal state a person lives in. We observe that the con-
fidence distribution of rule r2 refined with Florida (Figure 10.2b) is very similar
to the confidence distribution of the more general rule r2 (Figure 10.2a), whereas
for South Dakota (Figure 10.2c) the distribution is less uniform and yields higher
confidence values. Therefore, we are more likely to discover interesting rules if we
choose South Dakota instead of Florida as a refinement of the base rule.

10.2. PROBLEM DEFINITION 111

(a) USA (b) Florida (c) South Dakota

Figure 10.2: Confidence distribution of rule r2 over the age attribute for the overall
USA population (a) as well as refined by the states Florida (b) and South Dakota
(c)

In this chapter, we propose an efficient approach to mining datalog rules with
numerical and categorical attributes which employs information theory techniques
to speed up the ILP algorithm. We estimate the likelihood of any given rule to have
an interesting refinement in the form of an interval restriction on the numerical
attribute. This way of measuring a rule’s (potential) interestingness enables us to
efficiently explore the search space, rank the rules, and prune uninteresting rules
(e.g. quarterOfBirth(X,q1) :- age(X,Y)). Our approach comprises a preprocessing
phase for computing the correlations between numerical and categorical attributes,
as well as an extension to the ILP refinement step. We demonstrate the feasibility of
our approach by means of experiments with three large-scale datasets (U.S. Census
data, Freebase and DBpedia).

10.2 Problem Definition

Firstly we need to introduce the notions of base rules and refined rules:

Definition 1. A Base Rule is a rule whose body contains a free numerical attribute
variable.

Definition 2. A Refined Rule is a base rule with the numerical attribute variable
restricted to some interval.

For example, the rules r1, r2 and r3 are examples of base rules, while r4, r5
and r6 are their refined counterparts. Note that we only consider base rules with a
single numerical attribute. Our goal is to learn refined rules which yield significant
confidence gain over their corresponding base rules.

Definition 3. Confidence Gain is the ratio of the confidence of a refined rule to its
base rule (conf(rref)/conf(rbase)).

112 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

The confidence of a rule h :- b (with h being the head literal and b being the
body clause of the rule) is defined as conf(h:-b) = supp({h, b})/supp(b). Its
support is given by the number n+ of covered positive examples, i.e., supp(h:-
b) = n+({h, b}).

We consider a base rule interesting if it has a refined rule that satisfies the
minimum support, confidence and confidence gain thresholds. As we want to effi-
ciently explore the datalog base rules search space in ILP, our goal is to predict the
interestingness of a base rule before computing its confidence distribution.

10.3 Interestingness Measure

We are interested in base rules with non-uniform confidence distributions of low
entropy, which can result in interesting refined rules with high confidence gain.
This kind of confidence distribution is the result of divergent support distributions
of a rule’s body and positive examples.

In Figure 10.3 we compare the rules quarterOfBirth(X,q1) :- age(X,Y) and mar-
italStatus(X,married) :- age(X,Y) which share the same body. As we see in Figures
10.3a and 10.3d, the first rule’s body and positives distribution are practically the
same resulting in an uniform confidence distribution (10.3e), while for the latter
rule, its divergent positives distribution (10.3b) leads to a more interesting confi-
dence distribution (10.3c).

age(X,Y)

(a)

age(X,Y),maritalStatus(X,married)

(b)

maritalStatus(X,married) :- age(X,Y)

(c)

age(X,Y),quarterOfBirth(X,q1)

(d)

quarterOfBirth(X,q1) :- age(X,Y)

(e)

Figure 10.3: Example of a body support distribution (10.3a) with different positives
distributions (10.3b) and (10.3d)

10.4. CORRELATION LATTICE 113

The interestingness of a rule can be measured by computing the divergence
of the {body} and {body, head} support distributions. Hence, we discretize the
domain of Y into k disjoint buckets b1, . . . , bk, in order to obtain the support his-
togram of a clause c, which is defined as:

h(c) =< h1(c), . . . , hk(c) >,
where hi(c) = supp(c|Y ∈ bi) and |h(c)|1 = supp(c)

from which we obtain the probability density distribution of support f(c) =
h(c)/supp(c), where |f(c)|1 = 1.

Based on this we define the interestingness measure as IY (l|c), where l is the
literal to be added to the clause c, and Y is the free numerical attribute variable
we want to find an interval for. To compute IY we use a divergence measure D
compare the distributions of c and{c, l} over Y :

IY (l|c) = D(f(c)||f({c, l})) (10.1)

Because of sampling error, this divergence measure tends to yield higher values
for clauses with lower support, and thus favors them over higher support clauses.
In order to compensate this effect, and because we are also interested in rules with
high support, we propose a hybrid interestingness measure combining divergence
and support:

IY (l|c) = supp({c, l}) ∗D(f(c)||f({c, l})) (10.2)

In our implementation, we use Kullback-Leibler (94) as the divergence mea-
sureD, and we apply Laplace smoothing to all distributions prior to the divergence
value calculation in order to remove the zeros.

10.4 Correlation Lattice

In a preprocessing step, we create a correlation lattice for each numerical property.
The purpose of the lattice is to model the correlations between a given numeri-
cal property and different categories, which in our implementation are defined by
categorical literals.

A correlation lattice is structurally similar to an itemset lattice, introduced by
(1) . It describes the correlations between a numerical property and multiple cate-
gorical attributes. The target numerical property with a join variable X and a free
numerical variable Y is used as the root literal, and the categorical literals corre-
spond to the items in the itemset lattice. All of the categorical literals are joined by
the join variable X , forming in each node n a unique clause cn. Figure 10.4 shows
an example of lattice for the attribute age(X,Y).

Additionally, every node n has a corresponding histogram h(cn) with cn sup-
port distribution over Y . Therewith, all the edges between a parent node and a child
node have an associated interestingness value of adding the child’s new literal to
the parent’s clause. Since we need to compare the support distributions, the bucket

114 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

age(X,Y)

age(X,Y),
quarterOfBirth(X, q1)

age(X,Y),
quarterOfBirth(X, q4)

. . . age(X,Y),
maritalStatus(X, single)

age(X,Y),
maritalStatus(X,married)

.

age(X,Y),
quarterOfBirth(X, q1),
maritalStatus(X, single)

age(X,Y),
quarterOfBirth(X, q1),

maritalStatus(X,married)

.
age(X,Y),

quarterOfBirth(X, q4),
maritalStatus(X, single)

age(X,Y),
quarterOfBirth(X, q4),

maritalStatus(X,married)

Figure 10.4: Example of correlation lattice for the numerical attribute age

boundaries of the histograms must be consistent through the whole lattice. These
boundaries are defined in the root node based on the overall population. In our
implementation, the number of buckets is arbitrarily defined, and we use equal fre-
quencies as discretization method, because of its robustness with regard to skewed
distributions.

The correlation lattice is built with an Apriori-based algorithm, similar to that
introduced by (2) , which takes advantage of the anti-monotonicity property of the
support of the clauses in the lattice. Thus, it is possible to safely prune the nodes
which do not satisfy the support threshold. We also limit the number of levels in
the lattice to dmax, which is upper bounded by the maximum number of literals in
clauses allowed in the ILP algorithm.

10.4.1 Independence Test

With the information contained in the lattice, we can test whether two categorical
literals are independent given a certain clause. Let us assume we have two nodes n
andm with common parent p, and common child q, with clauses cp, cn = {cp, ln},
cm = {cp, lm} and cq = {cp, lm, ln}, where lm and ln are literals not contained in
the clause cp. It is possible to estimate the histogram ĥ of a node q, assuming that
ln and lm are conditionally independent given cp, as ĥ(cq) = h(cn)h(cm)/h(cp).
With the estimated ĥ(cq) and the observed actual h(cq), we can perform a Pearson’s
chi-squared test of independence.

Figure 10.5 shows an example where we check whether maritalStatus(X,single)
and employmentStatus(X,unemployed) are independent. There the test yields a p-

10.4. CORRELATION LATTICE 115

value of 0.96, which means that we have a high confidence that the two literals are
conditionally independent.

Node p :
cp = {hasIncome(X,Y)}
h(cp) =< 6, 10, 8, 4, 2, 1 >

Node m :
cm = {hasIncome(X,Y),
maritalStatus(X, single)}
h(cm) =< 4, 5, 4, 3, 1, 0 >

Node n :
cn = {hasIncome(X,Y),

employmentStatus(X, employed)}
h(cn) =< 3, 6, 6, 4, 2, 1 >

Node q :
cq = {hasIncome(X,Y),
maritalStatus(X, single),

employmentStatus(X, employed)}
h(cq) =< 2, 4, 2, 4, 1, 0 >
ĥ(cq) =< 2, 3, 3, 3, 1, 0 >

Figure 10.5: Example of a test for independence between the literals maritalSta-
tus(X,single) and employmentStatus(X,unemployed)

Detecting independence is important because, when we refine a clause in the
specialization loop by adding a new literal, the confidence distribution is not likely
to change significantly, if this new literal is conditionally independent of the head
given the body. For example, if we refine lm:-cp by adding ln to the body, the
confidence distribution does not change significantly because of the conditional
independence (P (lm|cp) ≈ P (lm|cp, ln)). Therefore, it is useful to set a maxi-
mum p-value threshold in order to define and detect independence. Note that for
deeper levels in the lattice, a particular node can be generated from different pairs
of joining nodes, therefore we cannot prune the conditionally independent nodes.
Instead, we mark the two edges joining the conditionally independent nodes as in-
dependent, and take that into account when refining a clause in order to prune a
conditionally independent refinement.

10.4.2 Scalability

Building a complete lattice can become an unfeasible task even with the apriori
pruning and the maximum depth. In this case the lattice with k categories can have
up to

∑dmax
i=1

(
k
i

)
nodes. As employing a very large k would be prohibitive, we

suggest to use the interestingness measures introduced in the previous section as
pruning heuristics. We also evaluate their performance in the experiments section.

Although the lattice construction can take a significant amount of time, it is

116 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

important to point out that the clauses contained in the lattice comprise a portion
of the ILP search space. The information in the lattice can be reused in the core
ILP algorithm preventing the execution of unnecessary queries. In addition, we
can directly extract rules of the form:

h(X, kh) :- b1(X, kb1), ..., bn(X, kbn), r(X,Y), Y ∈ [l, u]

where r is the root numerical property, l and u are the lower and upper boundaries
of Y , h(X, kh) and b1(X, kb1), . . . , bn(X, kbn) are the categorical literals, with
n < dmax. Rules of this form are semantically equivalent to association rules with
numerical attributes, with every instantiation of X considered as a transaction.

The correlation lattice can be easily extended to incorporate more complex cat-
egories by adopting a broader definition of categories. If we use categorical clauses
as defined in (119) instead of categorical literals, we are able to access categories
which are not directly connected to the lattice join variable X. This allows us to,
for instance, incorporate categories from linked datasets by using the owl:sameAs
property as a linking relation, enabling us to add cross-domain information to the
lattice. However, the problem also becomes more challenging as the number of
categories considered and joins required can dramatically increase.

10.5 ILP Algorithm

In order to take advantage of the proposed preprocessing when learning datalog
rules with numerical attributes, we need to extend the core ILP algorithm. In the
specialization loop, whenever we detect a base rule whose numerical attribute has
a correlation lattice, we query the lattice in order to check whether it is relevant to
consider refining it with numerical intervals.

Algorithm 4 first checks whether a clause is a base rule, then for each base
rule we query the lattice to obtain its interestingness value (cf. Algorithm 5). Sub-
sequently, if the interestingness value satisfies the minimum threshold, we search
for the numerical interval (cf. Algorithm 6), where the support and confidence
distributions are queried.

These distributions are then analyzed by an algorithm which searches for inter-
esting intervals which is represented by the getInterestingIntervals function. Note
that for the experiments described further below, we did not search for an optimal
interval as proposed by (21) , for example, but we only checked if there exists any
interesting interval. This is sufficient, in order to find out whether our interest-
ingness predictions are correct. Finally, we add the refined rules with the optimal
intervals to the refinement graph and continue the ILP algorithm normally.

10.6 Experiments

For our experiments we developed a Java-based implementation of the proposed
ILP extension, which uses RDF3X (135) as a knowledge base backend. First

10.6. EXPERIMENTS 117

Algorithm 4 Numerical Attribute Interval Refinement
1: for literal l in the body of the clause c do
2: if l is numerical and l has free numerical attribute variable and ∃ a lattice latticel

for l’s property then
3: if GETINTERESTINGNESS(c,latticel) ≥ mininterest then SEARCHNUMERI-

CALINTERVALS(c,l);

Algorithm 5 getInterestingness(cbase,latticel)
1: Y ← numerical variable of lnum
2: b← root node of latticel
3: for li ∈ body of cbase do
4: if li 6= lnum and li joins lnum and li is categorical then
5: b← b.getChild(li)
6: lhead← head of cbase
7: cbody ← clause of node b
8: h← b.getChild(lhead)
9: if h 6= b and edge {b, h} is not independent then

10: return IY (lhead, cbody)
11: else
12: return 0;

Algorithm 6 searchNumericalIntervals(cbase,lnum)
1: Y ← numerical variable of lnum
2: conf []← queryConfidenceDistribution(cbase,Y)
3: supp[]← querySupportDistribution(cbase,Y)
4: intervals← getInterestingIntervals(conf ,supp)
5: for intervali ∈ intervals do
6: cref ← c refined with intervali
7: add cref to ILP’s refinement graph

we focus on evaluating the quality of the correlation lattice and the scalability of
its construction in terms of runtime. Afterwards we evaluate how the proposed
correlation-based approach affects the core ILP algorithm. Since there is no prior
work on the exploration of base rules search space, we compare our approach
against the naïve exhaustive search, which searches for all the base rules in the
ILP refinement graph. This allows us to evaluate the core contribution of the pro-
posed approach by measuring the runtime reduction and its impact on the number
of learned rules in comparison to the naïve approach.

We used support only (supp) as a baseline, Kullback-Leibler only (kl-only),
and Kullback-Leibler combined with support (kl*supp). Experiments with other
divergence measures such as Jensen-Shannon and Chi-square were carried out, too.
However, preliminary results showed no major performance differences. Hence,
we only report results for Kullback-Leibler focusing on the comparison of support
only, divergence only, and hybrid measures. Our experiments were conducted on a

118 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

Intel i7-3770 3.40 GHz with 32 GB RAM.
U.S. Census. In the first experiment, we greedily built limited size correla-

tion lattices using the different interestingness measures as heuristics. We varied
the limit size and counted the number of interesting rules with numerical inter-
vals which can be found in the lattice, in order to assess its quality. Finally, we
measured the required time for building the lattices. For this experiment, we use
the U.S. Census (2000) dataset, because of its high quantity of numerical and cat-
egorical properties, high completeness and low noise. We built a lattice for the
income property and 16 categorical properties totalizing 224 categories with vari-
ous degrees of correlation with income. The lattice was constructed on a 1.7 GB
partition (with 884,365 person entities) and the extracted rules were tested on a
0.5 GB partition (with 369,024 person entities). The partitions were created with
random sampling, and they are mutually disjoint.

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

·105

#Nodes per lattice level

T
im

e
t
o

b
u
il
d

l
a
t
t
ic
e
(m

s)

supp

kl*supp
kl-only

(a) Build time per lattice size

0 100 200 300 400 500

0

20

40

60

80

#Nodes per Lattice level

#
In

t
e
r
e
st

in
g

R
u
l
e
s

supp

kl*supp
kl-only

(b) Learned rules per lattice size

Figure 10.6: Evaluation of the correlation lattice construction

In Figure 10.6a, we see that supp takes the longest to build the lattice, kl-
only takes the shortest, while kl*supp lies in-between. This is because the support
prioritizes nodes with higher support clauses, while the divergence, because of
sampling error, prioritizes lower support.

Figure 10.6b shows that although for the hybrid measure the lattice requires
much less time to be built than for supp, the number of resulting interesting rules
is roughly the same on average, and significantly higher for smaller lattices. The
comparatively low efficiency of the supp measure for smaller lattice sizes can be
accounted for by the fact that the literals with the highest support, such as hasDe-
ficiency(X,none), tend to have very low divergence and low correlation to income.
We also tested the accuracy of facts predicted by the learned rules. For all mea-
sures, the average accuracy was 0.81, with the exception of kl-only (0.75), since
the sampling error caused a lower average support.

In the second experiment, we evaluate the proposed ILP extension, and com-
pare the effectiveness of the different interestingness measures. When the min-

10.6. EXPERIMENTS 119

imum interestingness thresholds are set to zero, our approach is equivalent to a
naïve exhaustive search. Therefore, we know the number of interesting base rules
which exist in the search space. This is reflected by the top-right points in Fig-
ure 10.7. For the evaluation reported in the following, we use DBpedia 3.92 and
Freebase3. Although these datasets do not contain as many numerical facts as the
U.S. Census data, they consist of richer RDF graphs with a high number of links
between different entities. Hence, they enable us to evaluate our extension’s per-
formance when it comes to learning more complex datalog rules.

DBpedia. In the DBpedia experiment, we used 27 properties from the domain
movies and related domains containing 3.5 million facts, and focused on learning
rules with numerical intervals for the movie budget property with 14,769 facts.
Firstly we ran the naïve algorithm where for all base rules in the ILP refinement
graph we perform the numerical intervals search, in order to find out how many in-
teresting refined rules exist and how long the exhaustive search takes. Afterwards,
we run our proposed extension with different interestingness threshold values, and
for each threshold value, we measured the runtime spent with the search for refined
rules and the number of interesting rules discovered. Figure 10.7a shows the num-
ber of learned rules per runtime for the different measures. We notice that supp
has a nearly linear growth, while the other measures have an overall better perfor-
mance, indicating that including divergence in the interestingness measure helps
speed up the ILP algorithm.

0 1 2 3

·104

0

20

40

60

80

100

Runtime (ms)

#
L
e
a
r
n
e
d

R
u
l
e
s

supp

kl*supp
kl-only

(a) DBpedia

0 1 2 3 4 5 6

·104

0

20

40

60

Runtime (ms)

#
L
e
a
r
n
e
d

R
u
l
e
s

supp

kl*supp
kl-only

(b) Freebase

Figure 10.7: Evaluation of the ILP extension

Freebase. We performed the same experiment on 27 properties of the Free-
base domain people and related domains containing a total of 10 million facts,
and learned rules with numerical intervals for the properties weight, dateOfBirth,
height and salary, with 99.918, 1 351 870, 160 326 and 16 452 facts, respectively.

2http://dbpedia.org/Downloads39
3https://developers.google.com/freebase/data (2013-10-06)

http://dbpedia.org/Downloads39
https://developers.google.com/freebase/data

120 CHAPTER 10. LEARNING RULES WITH NUMERICAL ATTRIBUTES

This difference in terms of performance highly depends on characteristics of the
data, such as the degree of correlation between the numerical attributes and cate-
gories or the average support of the interesting base rules. Nevertheless, we notice
that the hybrid measure are the most robust of the proposed measures, consistently
being the best overall performer in the experiments.

10.7 Conclusion

In this chapter, we presented an extension to the ILP algorithm which uses cor-
relation lattices to enable the efficient discovery of rules with numerical attribute
intervals. We suggested different interestingness measures for constructing these
lattices and evaluated their performance on the lattice construction and interesting-
ness prediction tasks. Our experiments indicate that the combination of divergence
and support is the best performing measure both as a pruning heuristic and for
speeding up the core ILP algorithm.

Chapter 11

Thesis Conclusion

In this thesis different approaches for automatic refinement of knowledge graphs
have been presented, both at TBox and ABox level. At ABox level, we have made
contributions in the detection and correction of relation assertion errors and predic-
tion of missing type assertions. Additionally we propose a model for synthesizing
knowledge graphs for completion benchmarking. At TBox level, we have pro-
posed a method for learning intuitive class expressions using lexical information,
the generation of relation constraints for data validation and a method for efficiently
learning rules with numerical attributes.

In the following sections we give a more detailed summary of the conclusions
drawn from each part of the thesis.

11.1 Part I: ABox Refinement

In Part I we propose methods for enrichment and detection of errors in the ABox.
In Chapter 4 we addressed the research question RQ4 by proposing a knowledge
graph model and synthesis process which is able to capture essential characteris-
tics of existing knowledge graphs, allowing the creation of replicas of those graphs
at different scales. Extensive experiments comparing the replicas and original
datasets in the link and type prediction tasks were conducted. We have performed
evaluations with five different methods for each task and comparisons of distances
and methods rankings between replicas and original datasets. Overall, the model
M3 was the best performer, and the use of horn rules significantly improved the
results. The use of a bias to selection of subject and object individuals did not
show any significant improvement. In general, we recommend the use of M3, un-
less the objective is to replicate the results of type prediction for a single method,
without performing a comparison to other methods. In that case M2, which does
not include horn rules, would be the best option.

In Chapter 5 we addressed the research question RQ1. We have formulated
type prediction as a hierarchical multilabel classification problem. We propose
SLCN, which is a local classifier per node hierarchical multilabel classifier. It

121

122 CHAPTER 11. THESIS CONCLUSION

takes advantage of the type hierarchy and uses local feature selection and sam-
pling. We compare our approach to popular hierarchical multilabel classifiers and
to SDType (which is currently one of the strongest and best scalable algorithms
for the type prediction task). The experiments indicate that the local feature selec-
tion and local sampling can significantly improve scalability without sacrificing the
quality of the prediction, and they also show that SLCN can perform better than
SDType, and scales better than the other multilabel classifiers evaluated. Given
a smaller datasets and enough computing power available, state-of-the-art hierar-
chical multilabel classifiers, such as HOMER, HMC and MLC4.5, are the best
choice. However, on larger datasets with high number of features, and where train-
ing time is an important factor, SLCN is the best option. We also evaluated the use
of entity embeddings as features for our proposed type prediction approach and
the initial results indicate that under the settings used in the experiment, the sim-
ple graph-features, such as ingoing and outgoing relations and qualified relations,
yield significantly better results, and combining entity embeddings with them does
not provide any significant improvement.

In Chapter 6 we address the research question RQ1 by proposing a method for
detecting relation assertion errors. We have shown that although the error detec-
tion problem is similar to knowledge graph completion problem, methods which
perform well in the latter might not necessarily perform well on the error former.
We propose PaTyBRED, a robust supervised error detection method which relies
on type and path features, and compare it with state-of-the-art error detection and
knowledge graph completion methods. We demonstrate the importance of com-
bining those path and type features together, and showed that our proposed method
outperformed all the compared methods.

In Chapter 7 we address the research question RQ1 and proposed CoCKG, an
approach for correcting erroneous facts originated from entity confusions. The ex-
periments show that CoCKG is capable of correcting wrong triples with confused
instances, with estimated precision of 21% of the produced corrections in DBpedia
and 14% in NELL. The low precision values obtained do not allow this process, as
of now, to be used for fully automatic KG enrichment. Nevertheless, it works as a
proof of concept and can be useful, e.g., as suggestions from which a user would
ultimately decide whether to execute.

11.2 Part II: TBox Refinement

In Part II of the thesis we proposed methods for automatically learning ontolo-
gies. In Chapter 8 the research question RQ2 is addressed by inducing relation
constraints from ABox data. We propose a method for learning relation constraints
which is based on the relation assertion error detection method PaTyBRED. We
compare the learned SHACL constraints with RDFS domain and range restriction
learned with statistical schema induction. We performed a manual comparison of
the two approaches on DBpedia, and we show that our SHACL constraints are bet-

11.3. OPEN ISSUES AND LIMITATIONS 123

ter at detecting wrong relation assertions while being more robust when handling
noise and incompleteness of subject and object type assertions.

In Chapter 9 we address the research question RQ2 and present the first steps
towards combining the previously distinct logical and lexical ontology learning ar-
eas. By extending a formerly pure logic based approach with statistical methods
which can be used on text corpora, we were able to foster the generation of more
intuitive class expressions. An extensive manual evaluation with four human anno-
tators showed that the integration of relevance measures can significantly improve
results. Nevertheless, we also discovered and analyzed several problems for which
we were partially able to trace back to data quality issues.

The research questions RQ2 and RQ3 were considered in Chapter 10, where
we presented an extension to the ILP algorithm which uses correlation lattices to
enable the efficient discovery of rules with numerical attribute intervals. We sug-
gested different interestingness measures for constructing these lattices and evalu-
ated their performance on the lattice construction and efficiency of the interesting-
ness measure for exploring the rules search space. Our experiments indicate that
the combination of divergence and support is the best performing measure both as
a pruning heuristic and for speeding up the core ILP algorithm. The proposed cor-
relation lattice has also been shown to be useful when combined with outlier detec-
tion methods for discovering numerical errors in Linked Open Data (62). It allows
the efficient exploration of subpopulations defined by categories in the search for
outliers which cannot be detected when considering the whole population.

11.3 Open Issues and Limitations

As mentioned in the individual chapters, there are many open issues and limita-
tions. In many occasions it was necessary to restrict the scope of our proposed
approaches in order to focus on specific aspects of a problem.

Our proposed method for generating artificial knowledge graphs cannot yet
generate artificial ontologies from scratch. At the moment it uses an already ex-
isting TBox and generates ABox assertions based on the given TBox. Another
limitation is that, when using horn rules to create graph path patterns, scalability
becomes an issue. Generating large datasets with millions of instances and facts
becomes expensive since the knowledge graph needs to be queries for every added
fact in order to verify if the antecedents of candidate rules are satisfied.

Both in the relation assertion error detection and type prediction approaches
we restrict ourselves to considering only relationships between entities, in order
to focus on the multirelational aspect of knowledge graphs. These approaches
would most likely benefit from other kinds of feature which can be found on many
knowledge graphs, such as numerical and textual properties or even images. Both
methods can be easily extended to support other kinds of features. Exploiting
multimodality is a promising direction to be followed, and at the moment there are
a few works which go towards this direction.

124 CHAPTER 11. THESIS CONCLUSION

Another important limitation of our approach for correction of confusions be-
tween entities is the fact that it often detects correct facts with wrongly typed sub-
ject or objects as erroneous. This happens because type information is often the
most relevant feature for error detection, and because datasets often have missing
or wrong type assertions. Although our proposed approach was able to mitigate this
kind of issue by integrating a type predictor into the algorithm, it remains a major
limitation. Additionally, a more extensive evaluation including other knowledge
graph models to generate triple scores as well as ensembles of different models
would be desirable. Since the experiments only used PaTyBRED to calculate the
triple scores, we cannot evaluate the full potential of the proposed approach. An-
other issue is the rather low accuracy obtained in the experiments, which makes it
prohibitive to be used in a fully automatic way.

Learning ontologies is a challenging problem, and fully automatic approaches
can struggle to produce highly accurate output, often requiring it to be reviewed
by a specialist. Introducing human knowledge in the learning process, with active
learning e.g., can lead to a higher level of performance while minimizing human
supervision.

11.4 Future Work

In the future, we intend to further work on our proposed knowledge graph synthesis
model and enable the synthesis of data from scratch, including schemas. We plan to
create a system which enables users to synthesize data based on a set of parameters
that gives control on important characteristics of a knowledge base, such as number
of entities, types, relations, assertions of types and relations, density, connectivity.
We also want to synthesize a set of knowledge bases of different characteristics in
order to create a benchmark for link prediction and type prediction.

Regarding type prediction, since our approach assumes independence between
sibling classes, we plan to consider a post processing step to take disjointness ax-
ioms into account. Combining our approach with specific feature selection meth-
ods for Semantic Web datasets would be a promising refinement. We also plan
to exploit dataset specific features, such as DBpedia features from abstracts, and
evaluate their impact on method’s performance. Furthermore, we want to adapt our
approach to support DAGs as type hierarchies, instead of trees only, and investigate
the impact it has on the quality of the predictions and runtime.

Incorporating other kinds of features that can be extracted from knowledge
graphs, such as numerical attributes and textual data, would be an interesting ex-
tension to our PaTyBRED error detection approach. It would also be interesting to
evaluate the impact of each kind of features on the error detection performance. As
discussed in Chapter 10, numerical attributes can be extremely relevant for some
relations. For instance, incorporating the attribute age can help better detect errors
on the relation married.

Adapting our approach for correction of confusions between entities to support

11.4. FUTURE WORK 125

active learning is another idea worth being investigated. Since guaranteeing the
quality of the newly generated facts is crucial, having input from the user to clarify
borderline cases and improve the overall results would be highly valuable. Fur-
thermore, using an ensemble of different KG models with different characteristics,
e.g. KG embeddings, instead of a single model may potentially increase the ro-
bustness of the system. It would also be worth adding textual features from entities
descriptions to help determine if a pair of entities is related or not.

We also consider the generation of SHACL constraints for numerical and tex-
tual data in the future. For numerical data constraints we can extend previous
numerical data outlier detection works (125; 62) to derive intervals which can be
used as constraints. For textual data we plan to use, for instance, regular expression
learning from data (60) in order to learn SHACL string pattern constraints.

We also plan to closely integrate the output of the lexical analysis into the ILP
refinement process in order to more efficiently produce intuitive class expressions.
This might positively influence the search in the hypotheses space, therefore result-
ing in the generation of more intuitive solutions first. Additionally, we are going to
extend our approach by employing more sophisticated word sense disambiguation
techniques, which will help the more accurate identification of entity mentions in
the text. We will also include WordNet and other lexical resources that can facili-
tate the detection of words which are synonymous to ontology entity labels.

Possible next steps in the direction of efficiently learning rules with numerical
attributes are to study the lattice build time and ILP speed up trade-off, investigate
numerical domain discretization methods and their effect on our approach, and
determine optimal minimum interestingness threshold values by analyzing the lat-
tices structure. We envision an application of our approach to multiple Linked Data
sources. By building correlation lattices with categories from distinct but related
sources we hope to enable an efficient discovery of cross-domain rules.

11.4.1 General Perspective

Automatic knowledge graph refinement has several challenges which need to be
investigated in the future. In this subsection give a general perspective of some
important problems which were not necessarily addressed in this thesis.

In terms of knowledge graph completion, there is a lot of research on devel-
oping new models. However, a problem which received little attention is the ex-
ploration of the search space of possible candidate triples. In Section 7 we briefly
discuss that problem, and show that on large-scale datasets this search space is
huge. For instance, in DBpedia, the search space size is of the order of 1017 candi-
dates triples. It is virtually impossible to compute triples scores for all candidates
in order to find out which triples to add to the knowledge graph. Therefore, inves-
tigating possible heuristics to efficiently explore the search space is crucial for link
prediction to become feasible on larger datasets.

Another important problem concerning the link prediction research is the lack
of a thorough comparison of the methods proposed so far. The small number of

126 CHAPTER 11. THESIS CONCLUSION

datasets used in the evaluation has been subject to criticism (82; 191). Some of the
major problems are the lack of large real-world datasets and unfair comparisons
between models, where different ways of training the embeddings, gradient descent
methods, number of negative examples and different dimensionalities are used.
Firstly, it would be necessary to create a set of benchmarking knowledge graphs
of different characteristics, so we can better understand what kind of model is best
suited for different kinds of graphs. Secondly, the various knowledge graph models
should be implemented under the same framework, in order to minimize the effect
of external factors which can influence the performance, and ultimately have a
fairer comparison.

Incorporating information from multimodal sources into the knowledge graph
model is also an interesting problem. Although most large-scale knowledge graphs
have a lot of data properties, such as numerical information, geo-location, text
and images, most knowledge graph models focus exclusively on the relationships
between instances. Although there has been some works in that direction (189; 17;
93; 68), the problem deserves more attention.

Regarding the detection of relation assertion errors, an important problem is
what to do with the detected errors. Deleting the errors is not always the best
option. As shown in Section 7, some of those errors can provide hints for their
correction. Moreover, error detection methods may wrongly detect a correct rela-
tion assertion as erroneous because of secondary facts, for instance a subject with
missing type assertions. In such case, the best thing to do would be to address the
actual source of the problem instead of deleting the correct relation assertion. Un-
derstanding what causes a relation assertion to be detected as erroneous and find
out the best way to address the problem is a research direction which can be very
useful.

In terms of TBox refinement, an interesting research question is whether knowl-
edge graph embeddings can be used to learn constraints in the latent space. For
instance, it is possible to learn relation constraints that restrict the region in the la-
tent space where the subjects and objects should be located (e.g. a hypersphere or
a hypercube). That would allow the introduction of knowledge graph constraints
which cannot be represented in languages such as OWL and RDFS.

All in all, automatic knowledge graph refinement is a challenging but highly
relevant research topic. Knowledge graphs are being used on a wide variety of
applications, such as medical diagnosis, question answering, information retrieval.
Improving the quality of such datasets can not only provide a better representation
of the application domain, but ultimately also positively impact its various appli-
cations.

Appendix A

Local vs. Global Feature
Selection in Multilabel
Classification

A.1 Introduction

Multilabel classification denotes a classification problem where a single instance
cannot be assigned only one, but multiple classes. It has gradually attracted signif-
icant attention from various communities and has been widely applied to diverse
problems from automatic annotation for multimedia contents to bioinformatics,
web page classification, information retrieval, tag recommendation and many oth-
ers. In this thesis, we use multilabel classification for the type prediction and rela-
tion assertion error detection problems in knowledge graphs (c.f. Chapters 5 and 6
respectively).

There are two general families of multilabel classification algorithms: (1) adap-
tations of single-label machine learning algorithms which deal with multilabel data
directly, and (2) transformation methods, which decompose the multilabel problem
into a set of simpler learning problems, usually binary classification. Transforma-
tion methods have been widely used and allow standard binary classifiers to be
used on the transformed problems, which are independent from each other and can
be easily parallelized.

Binary Relevance (BR) is one of the simplest and most popular transformation
methods. Its main drawback is that it does not consider dependencies between
labels, which can be modeled with more complex transformation methods such as
Classifier Chains (CC), Label Power-sets (LP), or Pruned Problem Transformation
(PPT). On the other hand, taking those dependencies into account results in higher
computational complexity, and scalability requirements might prohibit the use of
more sophisticated methods which model dependencies. However, it has has been
shown that in many cases, BR can yield predictive performance as good as more
complex methods depending on the characteristics of the data (115). Hence, we

127

128 APPENDIX A. LOCAL FEATURE SELECTION

focus on BR as a transformation method.
Feature selection is an important part of machine learning, allowing the reduc-

tion of training time, as well as the improvement of predictive quality (46; 85; 129).
When using a transformation approach for multilabel classification, the selection
of features can be performed locally or globally. In the global approach, the fea-
ture selection is performed only once on the original dataset, and the set of selected
features is the same for all local transformed datasets. In the local approach, the se-
lection is performed separately for each local classifier on its correspondent trans-
formed dataset, which means that different local classifiers may work on different
sets of class-specific features specialized for each transformed problem. This can
be particularly interesting for some datasets where the features which are relevant
for predicting one class might not be relevant for another.

In hierarchical multilabel classification, where the labels are structured in a hi-
erarchy, the use of the hierarchies can also influence the predictive performance
and runtime of the local and global feature selection processes (179). In this chap-
ter, we examine the difference between local and global feature selection not only
with flat multilabel data, but also on hierarchical multilabel classification prob-
lems. So far, the global feature selection approach has been widely studied in the
literature (52; 182; 221), while the local approach, although already considered in
the context of multiclass classification (47), has received little attention and has not
been systematically evaluated in the multilabel classification problem. The idea of
generating class-specific features for the problem transformation method has been
considered by LIFT (222), however, there are no works considering class-specific
feature selection and performing a comparison with the global approach in terms
of predictive performance and runtime on transformation based classifiers.

In this work, we conduct an empirical comparison between the local and global
feature selection approaches. We show that when using transformation methods,
the local approach results in a better overall predictive performance with similar
runtime. To the best of our knowledge, although local and global methods have
been discussed in the literature, this is the first systematic empirical evaluation and
comparison of the two approaches.

The rest of this chapter is structured as follows. Section A.2 gives an introduc-
tion to multi-label classification, feature selection, and the evaluation metrics used
in this chapter. Section A.3 introduces related works, parts of which are also used
in the experiments. Section A.4 discusses the use of local feature selection with
transformation methods, and section A.5 presents the empirical results. We end
with a discussion of results and an outlook on future work.

A.2 Background

In this section, we present the background work relevant to the understanding of
this work. We define the flat and hierarchical multilabel classification problems
and briefly present various state-of-the-art methods, as well as evaluation measures

A.2. BACKGROUND 129

used in the experiments.

A.2.1 Multilabel Classification

In the multilabel classification problem, there are multiple classes and, contrary
to the multiclass classification problem, instances are allowed to have more than
one class. We define the set of classes as C = {c1, ..., c|C|}, and we represent the
multilabel of an instance x with a binary vector y = (y1, ..., y|C|) ∈ {0, 1}|C|.

Multilabel classification approaches can be divided into transformation and
adaptation methods. These will be discussed in more details later in this section.
A comprehensive review on multilabel classification algorithms is given in Zhang
et al. (225).

Some of the existing multilabel classification approaches are variations of stan-
dard binary classification algorithms, which have been adapted to the multilabel
task without requiring problem transformations. This include, for example, Ad-
aboostMH (175), MLkNN (224), and MLC4.5 (37), which are the respective mul-
tilabel versions of Adaboost, k-Nearest Neighbors, and C4.5 (a decision tree algo-
rithm):

• AdaBoostMH is an adaptation of AdaBoost with its weak-learning condi-
tions being based on a one-against-all reduction to binary, which was orig-
inally designed to use weak-hypotheses that return a prediction for every
example and every label.

• The retrieval of the multilabel k-nearest neighbors is the same as in the tradi-
tional k-NN algorithm. The main difference is the determination of the label
set of a test example, where the prior and posterior probabilities of each label
within the k-nearest neighbors are considered and the Bayesian rule is use to
derive the predicted set of labels.

• The multi-label C4.5 algorithm (ML-C4.5) adapted the original C4.5 by
modifying the formula for calculating entropy to consider distributions over
all labels, which is equivalent to the sums of the entropies for each individual
class label, and allowing multiple labels in the leaves of the trees.

Adaptation methods usually learn a single model capable of predicting all
classes. In comparison, transformation methods will have as many models as trans-
formed datasets. Therefore, generally speaking, transformation methods require
more memory space than adaptation methods.

Transformation methods decompose the multilabel problem into a set of bi-
nary classification problems. There are mainly three categories of transformation
methods according to Madjarov et al. (115): binary relevance, label power-set, and
pair-wise methods.

The most popular method is called Binary Relevance (194) (BR), which trains
a binary classifier for each class (against the others), inherently assuming indepen-

130 APPENDIX A. LOCAL FEATURE SELECTION

dence between the classes. Classifier Chains (164) (CC) arrange the local classi-
fiers in a chain where the outcome of a classifier is used as a feature on the next
classifiers in the chain, allowing some dependency between labels to be modeled.

In the label power-set category, every different combination of labels occurring
in the training data is considered an individual class and the transformed classifi-
cation problem is multiclass. The potentially high number of label combinations
poses scalability challenges, as the number of label combinations can grow expo-
nentially with the number of labels resulting in up to 2|C| transformed labels. This
can significantly increase the complexity of the problem, making it prohibitive for
datasets with a high number of classes.

Pruned Problem Transformation (PPT) (162), in order to reduce the complex-
ity of the LP approach, selects only the transformed labels that occur more than
a minimum number of times. HOMER (195) (acronym for Hierarchy Of Multi-
labEl leaRners) generates a hierarchy for the labels, with meta-labels being non-
leaf nodes representing the union of a subset of labels. A multilabel classifier is
then trained for every non-leaf node in the hierarchy having the node’s children as
labels.

Ensemble methods use multiple adaptation and problem transformation meth-
ods as base classifiers and combine the output of the different trained models to
make a prediction. Random k-Labelsets (RAKeL) (196) generates random sets of
labels and trains a label power-set classifier for each randomly generated subset.
Ensemble of Pruned Sets (EPS) (165) uses pruning to reduce computational com-
plexity as well as example duplication method in order to reduce the error rate.
Ensemble of Classifier Chains (ECC) (164) has classifier chains as base classifiers,
the output of each base classifier is summed, and a threshold is applied to select
the labels predicted.

An extensive experimental comparison of multilabel classifiers including adap-
tation transformation and ensemble methods is reported in (115). The authors rec-
ommend the use of four different classifiers, three of which are transformation
methods, i.e., HOMER, BR, and CC.

A.2.2 Hierarchical Multilabel Classification

The hierarchical multilabel classification problem is similar to the multilabel clas-
sification problem, but the classes C are additionally arranged in a hierarchy G.
The labels of an instance should be consistent with G, i.e., if an instance belongs
to a non-root class then it must also belong to its ancestors (i.e., ∀ci v cj , if yi = 1
then yj = 1). The class hierarchy can be of two types: a tree, which allows nodes to
have a single parent only, and a directed acyclic graph (DAG) which allows nodes
to have multiple parents.

Two important aspects of hierarchical multilabel classification approaches are
whether they allow partial path predictions, i.e., mandatory vs. non-mandatory leaf
node prediction, and whether they guarantee to output labels that are consistent
with hierarchy or not.

A.2. BACKGROUND 131

As for multilabel classification, there are mainly two types of hierarchical mul-
tilabel classification approaches: local and global classifiers. The main difference
is that the former is basically a transformation method which breaks down the clas-
sification problem into smaller and simpler problems exploiting the class hierarchy,
while the latter considers the problem as a whole, learning a single more complex
model.

The local hierarchical classification algorithms share a similar top-down ap-
proach in their prediction phase, where the classifier first predicts its first-level
(most generic) classes of an instance, then it uses each predicted class to reduce
the choices of classes to be predicted at the second level (the children of the classes
predicted at the first level), and so on, recursively, until the most specific predic-
tion is made. According to the hierarchical classification survey from Silla et al.
(179), there are mainly two standard ways of using the local information: a local
classifier per node and a local classifier per parent node. The local classifier per
level approach, where one local multilabel classifier is trained for every level of
the hierarchy, is also mentioned in the survey from Silla et al. (179). However,
very few works consider this approach since it suffers from inherent consistency
problems: LCL has a single classifier per level and the children of nodes classified
as false might also be classified as true. In contrast, LCN and LCPN guarantee
consistency: in the prediction phase, they are applied top down, only predicting
labels for lower levels in the hierarchy if their parent(s) have been predicted.

Local Classifier Per Node (LCN): The local classifier per node approach con-
sists of training one binary classifier for each node of the class hierarchy. Similarly
to Binary Relevance, each local binary classifier predicts whether an instance be-
longs to the class associated with the node or not. There are two main ways to de-
fine the training set of of the local binary classifiers. When training a local binary
classifier for one label at hand, there are two strategies for selecting the negative
examples for the local classifier: the all approaches, which uses all instances with
all other labels as negative examples, and siblings, which only uses instances of
the label’s siblings in the hierarchy, reducing the size of the transformed datasets
for classes in the lower levels of the hierarchy. A comparison of different negative
example selection approaches is made in Eisner et al. (54) and Fagni et al. (57).
The results indicate that both approaches have roughly the same predictive perfor-
mance, however, siblings is more scalable than all, as it reduces the average size of
the local training sets.

Local Classifier Per Parent Node (LCPN): In this approach, a local multilabel
classifier is learned for every parent (i.e., non-leaf) node in the hierarchy. The
labels are the direct child nodes, and the training instances are those which belong
to the parent node class. Depending on the choice of the local multilabel classifier,
it is possible to model dependencies between sibling nodes. LCPN with Binary
Relevance as a base multilabel classifier is equivalent to LCN using the siblings
negative example selection policy.

In contrast to local classifier approaches, the global classifier approach (also
known as big bang approach) learns one single classification model built from the

132 APPENDIX A. LOCAL FEATURE SELECTION

training set, taking into account the class hierarchy as a whole during a single run of
the classification algorithm. When used during the prediction phase, each instance
is classified by the induced model, a process that can assign classes at potentially
every level of the hierarchy to the instance.

One example for a global approach based on the Rocchio classifier is used in
Labrou (95). Some global methods do not guarantee consistency with the hierarchy
and therefore need a post processing step in order to ensure consistency (86; 87).

Clus-HMC (201) is a version of the previous method featuring predictive clus-
tering trees (13) to generate a label hierarchy, which is not necessarily existent at
first. Dimitrovski et at. (49) use ensemble approaches with Clus-HMC and report
that the use of ensembles results in increased predictive performance. Otero et al.
(144) propose a global hierarchical Ant-Miner classification method which is able
to handle DAG hierarchies.

Further details about hierarchical multilabel classification methods can be found
in the survey by Silla et al. (179), where an extensive comparison of classifiers,
evaluation measures, as well as negative example selection policies is presented.

A.2.3 Evaluation Measures

In order to evaluate the predictive performance of the transformation based mul-
tilabel classifiers with different feature selection approaches, we use some popu-
lar measures recommended in the literature (179; 115) for our experiments. The
µP , µR and µF (86) are the micro-averaged measures of precision, recall and F-
measure per class. By using the micro average, each class is weighted according to
the frequency it occurs in the test data. The macro-average measures mF , mR and
mF are the average with uniform weights for the classes. Equations A.1 and A.2
show the definition of these measures, where tpi, fpi and fni denote respectively
the number of true positives, false positives and false negatives of the class ci.

µP =

|C|∑
i=1

tpi

|C|∑
i=1

tpi + fpi

µR =

|C|∑
i=1

tpi

|C|∑
i=1

tpi + fni

µF = 2
µP × µR
µP + µR

(A.1)

mP =
1

|C|

|C|∑
i=1

tpi
tpi + fpi

mR =
1

|C|

|C|∑
i=1

tpi
tpi + fni

mF = 2
mP ×mR
mP +mR

(A.2)
Equation 5.4 shows the Hamming loss (lh) for one instance. We denote the true

label vector of an instance as y, and the predicted vector as ŷ, with yi = 1 if the
instance is of class ci, yi = 0 otherwise. Hamming loss reports how many times
on average, a class label is incorrectly predicted, i.e., the number of false positives

A.2. BACKGROUND 133

and false negatives, normalized over total number of classes and total number of
examples.

Equation 5.5 shows the hierarchical loss (hlH) (30), which is a hierarchical
multilabel classification measure that extends hamming loss to account for any
existing underlying hierarchical structure of the labels.

The idea of hierarchical loss is based on the notion that, whenever a classifier
makes a mistake at a given node in a hierarchy, no further loss should be counted
for any mistake in its descendants, therefore ignoring all wrong predictions for
nodes which are descendants of a wrongly predicted node.

Costa et al. (44) review evaluation measure for hierarchical classification, and
the authors conclude that there is no consensus on what measure should be used,
and none of them have been widely adopted, while most works use the standard flat
measures. Brucker et al. (22) make an empirical comparison of hierarchical and
flat multilabel classification evaluation measures and search for relations between
them. The authors report that hierarchical measures improve the quality assessment
for hierarchical classification over flat measures, at the same time they state that flat
and hierarchical measures agree on whether a classification result is good or not.

Cerri et al. (29) experimentally analyze methods for multilabel classification
which are based on decision trees. Various evaluation measures are investigated in
terms of consistency, discriminancy and indifferency. The authors suggest the use
of hF , hP and hR as evaluation measures. These are equivalent to µF , µP and
µR with all observed and predicted labels consistent with the class hierarchy as
described in Section A.2.2, i.e., if one instance is assigned a non-root class, it must
also be assigned all the ancestors of the given class.

Kosmopulos et al. (91) make a detailed study of the problems of hierarchical
classification evaluation measures. The authors categorize the evaluation measures
into pair-based, which uses graph distance measures to compare predicted and true
labels, and set-based, which use hierarchical relations to augment the sets of pre-
dicted and true labels (includes hF , hP , hR). Their results indicate that set-based
measure FLCA (F-measure with lowest common ancestor), which is highly cor-
related with hF , with the main difference being in DAG cases, which we do no
consider in this work.

For hierarchical classification we choose to use hF , because it is widely rec-
ommended in the literature. Since in our hierarchical classification experiments the
labels are always consistent with the class hierarchy, which makes hF equivalent to
µF , we choose to call it µF in this chapter. In order to emphasize the performance
on less frequent classes we also use the its macro-averaged version mF .

It is important to note that we do not use AUC and ROC, although these mea-
sures would be relevant in our evaluation. In order to use AUC and ROC in the
multilabel context, it is necessary that all the classes share the same confidence
threshold, however, in the transformation methods we allow local classifiers to
have their own confidence threshold values as they are trained independently from
the other local classifiers.

134 APPENDIX A. LOCAL FEATURE SELECTION

A.2.4 Feature Selection Methods

Traditional feature selection methods can be divided into filter, wrapper, and hy-
brid methods (46; 129). Filter methods rank the features based on some relevance
measure, and select the k highest ranked features according to that measure. It is
the simplest and most scalable of the methods. Two of the most popular relevance
measures used are mutual information (MI), which is equivalent to information
gain, and chi-squared (χ2). Other filter techniques include, for instance, relief
(85), which is based on separation capabilities of randomly selected instances, and
ensembles of different measures (172; 142), where different ranking measures are
used, and the feature ranks are combined. This approach has been extended for the
hierarchical multilabel classification problem by Slavkov et al. (180).

In wrapper methods, a classifier is repetitively invoked and evaluated with dif-
ferent feature subsets. Exhaustive search is a method where all possible combi-
nations of features are tested, and the one combination which yields the best per-
formance is selected. This, of course, is utterly expensive and feasible only on
datasets with small number of features. A popular wrapper method is the greedy
forward search, where features are incrementally selected one at time in a greedy
way, considering dependencies between features and reducing redundancy. It uses
heuristics in order to reduce the search space, and therefore does not guarantee that
the selected set of features is optimal.

Hybrid methods, as the name suggests, combine characteristics of both filter
and wrapper methods. Huda et al. (78) include the filter’s feature ranking score
into the wrapper stage to speed up the search process. Zhu et al. (227) incorporate
a filter ranking method into the memetic evolutionary algorithm accelerating the
search and identifying core feature subsets.

A.3 Related Work

The quantitative effect of local feature selection has not been empirically researched,
but some approaches follow similar ideas. Label specific sets of features has been
exploited by the Label Specific Features (LIFT) (222). The label specific features
are generated by clustering the set of negative and positive instances (Nk and Pk)
into mk clusters each, and for each instance 2mk-dimensional features are gener-
ated by computing the distance from the instance to each of the centroids. Qu et al.
(159) use the concept of local feature selection, and propose a relevance measure
based on the density of negative and positive instances. It requires the distances
between all pair of instances to be calculated, therefore the complexity grows with
the number of instances squared, making it prohibitive for larger datesets.

Doquire and Verleysen (52) perform a comparison between multidimensional
mutual information (MI) and chi-squared (χ2) using greedy forward search strategy
with problem transformation method (PPT). A nearest neighbors based MI estima-
tor is used combined with a simple greedy forward search strategy to achieve fea-
ture selection. Their experimental results indicate that the MI based approach has

A.4. FEATURE SELECTION ON TRANSFORMED MULTILABEL CLASSIFICATION135

an advantage over the method based on the χ2 statistic. Particularly, the proposed
approach generally leads to an increase in performance both for the Hamming loss
and the accuracy compared with the case where no feature selection is considered.

Zhang et al. (221) compare the performance of feature selection strategies
based on principal component analysis (PCA) and genetic algorithms (GA) on
MLNB (an adaptation of Naïve Bayes for the mutilabel problem), and on Naïve
Bayes with binary relevance transformation. Their experiments indicate that the
feature selection methods studied lead to an improved performance of the Naïve
Bayes based classifiers. The authors raise scalability issues concerning the com-
plexity of GA feature selection and its applicability on larger data with higher di-
mensional feature spaces. It is important to point out that the PCA requires the
features to be numerical, therefore alternative methods or additional preprocessing
steps should be considered for handling nominal attributes.

On the multi-class classification problem, de Lannoy et al. (47) study the lo-
cal feature selection approach on the one-vs-all and one-vs-one approaches. They
focus on correcting a potential bias caused by the fact that the binary classifiers
are trained on different feature sets. On the hierarchical multilabel classification
problem, Kosmopoulos et al. (90) uses a more scalable version of PCA for dimen-
sionality reduction on sibling nodes at higher levels of the hierarchy which are the
most expensive local classifiers because of the high number of instances. They per-
form experiments on the large-scale hierarchical text classification challenge data
(145) (LSHTC1).

In this work we focus on the comparison of local and global feature selection
approaches on transformation methods for multilabel classification, in particular
binary relevance. To that end, we apply similar feature selection techniques locally
and globally, evaluate the performance of transformation based methods with dif-
ferent base classifiers, and compare the results for flat and hierarchical multilabel
classification datasets in terms of predictive performance and scalability.

A.4 Feature Selection on Transformed Multilabel Classi-
fication

When transforming a multilabel classification problem into a set of binary prob-
lems, there are two possible ways of performing feature selection: global feature
selection, where all local binary classifiers are trained on the same set of glob-
ally selected features, and local feature selection, where the feature selection is
performed separately for each local binary classifier.

A.4.1 Global Feature Selection

The global approach selects a set of features which is shared by all the local clas-
sifiers. This approach, in contrary to the local approach, can also be applied on

1https://www.kaggle.com/c/lshtc

https://www.kaggle.com/c/lshtc

136 APPENDIX A. LOCAL FEATURE SELECTION

adaptation methods. This may be one reason why the global approach has gener-
ally received more attention in the literature.

Many global feature selection methods involve the computation of relevance
measures individually for every class, followed by the aggregation of the class spe-
cific values. Spolaor and Tsoumakas (182) compare aggregation methods for the
binary relevance approach. The approach consists of computing the relevance of
each feature for every class individually, exactly like in the binary classification
problem. Afterwards the global relevance of a given feature is computed by aggre-
gating the relevance values of the feature for all classes.

The feature selection methods evaluated in the study were Mean, Min, Max,
Round-Robin, and Rand-Robin. In Mean, the aggregated value is simply the av-
erage relevance of the feature over all classes, in Min the aggregation value is
the lowest relevance and in Max the greatest. The features are then ranked by
their aggregated values, and those with highest aggregated relevance are selected.
Round-robin selects the best feature in the ranking related to each label in turn,
while Rand-Robin selects the best feature for a label randomly chosen with proba-
bility inversely proportional to its frequency. Each feature taken in turn is removed
from the rankings so that they cannot be selected again. The motivation for the
Rand and Round-Robin approaches is to reduce the bias to selection of features
more relevant to frequent classes to the detriment of less frequent ones.

The authors evaluate these approaches with both Chi-squared and Bi-normal
Separation as relevance measures. The experimental results indicate the Max and
Mean aggregation methods with chi-squared measure were the best performers.

Other feature selection methods adapts the traditional feature relevance for bi-
nary classification to consider all classes at the same time. Doquire and Verley-
sen (52) compare the multidimensional mutual information (MI), computed with
Kozachenko-Leonenko estimation (92), and chi-squared (χ2) relevance measures
on a problem transformed with PPT and greedy forward search strategy for feature
selection. The authors report a better performance of the MI based approach in
comparison with the method based on the χ2 statistic in terms of both hamming
loss and accuracy. The use of greedy forward selection ensures dependencies be-
tween features are considered, however, that also affects scalability, which is an
important aspect in our setting.

A.4.2 Local Feature Selection

The local feature selection approach can be applied on any transformation based
multilabel classifier. The idea of local feature selection is to perform the selec-
tion for every local transformed dataset separately, i.e., different local classifiers
may work on different sets of features, which are specialized for each subproblem.
Given a dataset D with features set F , transformed labels t ∈ T , where t is a bi-
nary class attribute and T is the set of transformed labels, and transformed datasets
{Dt|t ∈ T}, where Dt is a transformed dataset with binary class t. We define
the set of locally selected features for each label as Ft ⊆ F for each transformed

A.4. FEATURE SELECTION ON TRANSFORMED MULTILABEL CLASSIFICATION137

Rank Global Local(B.B2) Local(C.C6) Local(C.C10) Local(B.B9)

1
2
3
4
5
6
7
8
9

10

prices
california

price
power

utilities
generators

plants
federal

electricity
davis

subject
enron
pmto

forwarded
steven

kean
original

cc
message

na

california
commission

price
diego
prices
plants

customers
generators

market
electricity

attorney
confidential

received
committee

include
continue

policy
williams

50
27

http
kaminski

forward
email
issue
www

ferc
meeting

mailto
drive

Table A.1: Enron features ranked by information gain in descending order

dataset Dt, and Flocal as the collection of subsets {Ft|t ∈ T}.
In order to demonstrate the practical difference between local and global fea-

ture selection approaches, we show as an example the top 10 features selected for
the Enron dataset with the filter method and information gain. The dataset is a
subset of Enron email corpus2, labeled with a set of categories. It is based on a
collection of email messages exchanged by Enron’s board of directors that were
categorized into 53 topic categories, such as company strategy, humour, and legal
advice. The example from Table A.1 shows the set of globally selected features
and the sets of locally selected features for the labels B.B2 (Forwarded email(s) in-
cluding replies), C.C6 (California energy crisis / California politics), C.C10 (legal
advice), B.B9 (pointers to url). It is particularly noteworthy that the most rele-
vant local features are very different, in fact, the sets of top-10 most relevant local
features for the classes B.B2, C.C6, C.C10 and B.B9 are completely disjoint.

The Enron dataset is an example of a dataset where the local feature selection
approach clearly outperforms the global approach. Different classes require very
different sets of features for the local classifiers, and especially for small numbers
of selected features, the difference in the performance is very significant. The pre-
dictive performance results for classifiers with the local and global feature selection
approaches can be seen in the experiments section in Figure A.1.

A.4.3 Analysis of Local Feature Sets

In this chapter, we define F as the set of all features in a dataset, and Fglobal ⊆ F
as the set of globally selected features. In our setting, all the local feature sets
Ft, t ∈ T , as well as Fglobal have the same number of features k.

In order to measure the differences between the set of globally selected features
and the locally selected features we need to define measures which compare a set
with a collection of set. We propose two similarity measures. The first measure
(D1), c.f. Equation A.3, is the average Jaccard index of the set of global features

2http://bailando.sims.berkeley.edu/enron_email.html

http://bailando.sims.berkeley.edu/enron_email.html

138 APPENDIX A. LOCAL FEATURE SELECTION

Fglobal with each set of local features Ft. The second measure (D2), c.f. Equa-
tion A.4, is the ratio between the number of selected features k and the size of
the union of all local feature sets |⋃t∈T Ft| and it indicates how similar with each
other the local feature sets are.

The D1 measure is bounded by the interval [0, 1], while the D2 measure is
bounded by the interval [1/|C|, 1]. For D1, a value of 1 means that the local sets
are exactly equal to the global set, while a value close to 0 means that local feature
sets and the global feature set have small intersections. For D2, a value of 1 means
that all the local sets are the same, while a value of 1/|C| means that the local
features are completely disjoint.

D1(Fglobal, Flocal) =
1

|C|
∑
t∈T

|Fglobal ∩ Ft|
|Fglobal ∪ Ft|

(A.3)

D2(Flocal) =
k

|⋃t∈T Ft|
(A.4)

A.5 Experiments

In our experiments we make an extensive comparison of global and local feature
selection approaches on standard flat and hierarchical multilabel datasets, as well as
large-scale hierarchical multilabel datasets for type prediction on knowledge bases.
We use binary relevance (BR) for flat multi-label classification, and its counterpart
(i.e., local classifier per node, LCN) for hierarchical multi-label classification. We
also run experiments with different popular binary classifiers as local classifier, and
different feature relevance measures.

We vary the number of features to be selected, perform the feature selection
with equivalent techniques using the local and global approaches, then run the
same transformation classifiers on the different sets of selected features and com-
pare their predictive performance, as well as runtime. We restrict the transfor-
mation approaches to binary relevance, which is a simple, popular, and generally
well performing method, as discussed above. Other transformation methods might
transform the labels in different ways, but at the end one classifier will be trained
for each transformed label similarly to binary relevance. Therefore, for the goal of
comparing the local and global feature selection approaches, the binary relevance
method is sufficient.

The choice of the local binary classifier is an important factor in the evaluation,
as the feature selection can have different impacts on different classifiers. In the
experiments we choose four different popular binary classifiers available in Weka
3.7.10: Naïve Bayes, Decision Tree (J48), K-Nearest Neighbors (IBk), Support
Vector Machine (LibSVM), and AdaboostM1 (with decision stump).

A comparison against popular adaptation methods and the transformation meth-
ods with the adapted methods as local classifier is also performed. We select three
popular adaptation method classifiers for our comparison: Multilabel k-nearest

A.5. EXPERIMENTS 139

neighbors (MLkNN) and Multilabel C4.5 decision tree (MLC4.5). We compare
them with Binary Relevance having their adapted binary classifiers (respectively
k-NN, C4.5 and AdaboostM1) as local classifiers.

For our experiments, we use MULAN 1.5, which is an open-source Java li-
brary for learning from multilabel datasets based on WEKA. It includes a vari-
ety of state-of-the-art multilabel classification algorithms, and offers the global
feature selection methods for binary relevance with Mean, Min and Max aggre-
gation approaches. It also contains multilabel evaluation measures described in
Section A.2.3.

A.5.1 Datasets

We perform our experiments on popular flat and hierarchical multilabel classifica-
tion datasets commonly used in performance benchmarking of multilabel classi-
fiers. Furthermore, we created some additional benchmark datasets for hierarchi-
cal classification, which we extracted from large-scale cross-domain Linked Open
Data sets, such as Wikidata, DBpedia, YAGO and NELL (124), as well as the
smaller domain-specific datasets AIFB portal3 and Mutagenesis.

For creating the benchmark datasets for hierarchical classification, we ran-
domly sampled 10 000 instances from the larger Linked Open Data sets. There,
instances usually come with types, which form a hierarchy in an ontology. Hence,
predicting the type of an instance is a typical hierarchical classification task.4 By
doing the sampling randomly, we ensure that we do not introduce any bias which
could be beneficial for one or the other method.

Multilabel Datasets

The flat multilabel datasets we use were obtained from MULAN datasets reposi-
tory5. The datasets used include bibtex (84), birds (20), cal500 (198), corel5k (53),
emotions (192), enron (165), genbase (50), imdb (163) medical (154), scene (18)
and yeast (55), rcv1 subsets (109), the Yahoo datasets Arts1, Business1, Com-
puters1, Education1, Entertainment1, Heath1, Science1, Social1, Society1 (199),
delicious (195), tmc2007 (184), and slashdot6. Table A.2 show statistics about the
aforementioned datasets, where we state the number of labels, instances, features,
cardinality (the average number of labels an instance has) and label dependency,
which indicates the proportion of label pairs which are dependent (we consider de-

3http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/
Portal

4Note that this approach is only for generating benchmarks for hierarchical classification, and
for comparing approaches to each other. However, we cannot transfer the results trivially to make
a statement about how well the approaches work for the actual type prediction task in the original
datasets.

5http://mulan.sourceforge.net/datasets-mlc.html
6http://meka.sourceforge.net/#datasets

http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://mulan.sourceforge.net/datasets-mlc.html
http://meka.sourceforge.net/#datasets

140 APPENDIX A. LOCAL FEATURE SELECTION

Table A.2: Statistics about the flat datasets used

Dataset Instances Labels Features Cardinality Label Dep

Arts1 7484 26 23146 1.654 0.338
bibtex 7395 159 1836 2.402 0.111
birds 645 19 260 1.014 0.123
Business1 11214 30 21924 1.599 0.230
CAL500 502 174 68 26.044 0.192
Computers1 12444 33 34096 1.507 0.364
Corel5k 5000 374 499 3.522 0.030
delicious 16105 983 500 19.02 0.116
Education1 12030 33 27534 1.463 0.216
emotions 593 6 72 1.868 0.934
enron 1702 53 1001 3.378 0.141
Entertainment1 12730 21 32001 1.414 0.338
flags 194 7 19 3.392 0.381
genbase 662 27 1186 1.252 0.157
Health1 9205 32 30605 1.644 0.192
imdb 120919 28 1001 2 0.487
mediamill 43907 101 120 4.376 0.213
medical 978 45 1449 1.245 0.040
rcv1subset1 6000 101 47236 2.88 0.202
rcv1subset2 6000 101 47236 2.634 0.179
rcv1subset3 6000 101 47236 2.614 0.183
rcv1subset4 6000 101 47236 2.484 0.163
rcv1subset5 6000 101 47236 2.642 0.170
Recreation1 12828 22 30324 1.429 0.455
Reference1 8027 33 39679 1.174 0.169
scene 2407 6 294 1.074 0.934
Science1 6428 40 37187 1.45 0.196
slashdot 3782 22 1079 1.181 0.273
Social1 12111 39 52350 1.279 0.186
Society1 14512 22 49060 1.67 0.402
tmc2007 28596 22 49060 2.158 0.641
yeast 2417 14 103 4.237 0.670

pendent those pairs which fail the χ2 test of independence, and the computation
was performed using MULAN’s UnconditionalChiSquareIdentifier class).

Hierarchical Multilabel Datasets

For the hierarchical mutilabel experiments we use the datasets from the biological
domain which are available at the Clus datasets page7: cellcycle, church, derisi,
eisen, gasch2, pheno and struc. These datasets are available in clus format and were
converted to the Mulan format for our experiments using the converter existent in
the Mulan library.

Additionally, we use datasets from Linked Open Data (11) extracted for the
type prediction task, which is another example of hierarchical multilabel classifi-

7https://dtai.cs.kuleuven.be/clus/hmcdatasets/

https://dtai.cs.kuleuven.be/clus/hmcdatasets/

A.5. EXPERIMENTS 141

Table A.3: Statistics about the hierarchical datasets used

Dataset Instances Labels Features Card. Fanout Depth Label Dep

aifb 27100 57 825 2.189 14.25 2.038 0.083
cellcycle 3757 498 78 8.716 2.846 3.709 0.286
church 3755 498 28 8.702 2.846 3.709 0.286
dbpedia-yago 2886305 474 1946 10.894 1.773 8.050 0.347
derisi 3725 498 64 8.759 2.846 3.709 0.286
eisen 2424 460 80 9.202 2.788 3.685 0.284
gasch2 3779 498 53 8.689 2.846 3.709 0.287
mutagensis 14157 86 132 2.398 7.167 2.486 0.041
NELL 120720 264 505 4.608 5.739 4.298 0.052
pheno 1591 454 70 9.175 2.751 3.682 0.236
struc 3838 498 19629 8.674 2.846 3.709 0.289
Wikidata 19254100 474 1866 2.007 5.386 1.948 0.003

cation problem. The types, which are the labels to be predicted, are organized in
a hierarchy, and various features can be extracted from the knowledge base graph
and textual description of entities which are often available. The datasets we use
are NELL (27), Wikidata (205), DBpedia (12), and YAGO (117), AIFB, and Mu-
tagenesis (167) As features we use binary attributes which indicate the existence
of ingoing and outgoing properties (152; 168) for the first four datasets, and quali-
fied relations (152), which indicate the existence of pairs of outgoing relations and
object type, as well as pairs of ingoing relation and subject type.

For DBpedia, the types assigned to instances are only single-path, so that the
hierarchical classification problem is not multi-label . On the other hand, relation
features extracted from YAGO are too scarce to be meaningful. Therefore, we
combine the two datasets by using types from YAGO and features from DBpedia.
Since there are 384 174 types in YAGO, we select the top-474 most frequent types.
We chose 474 because it was the original number of classes in DBpedia. We also
use Wikidata, from wich we select the top-474 most frequent types, similarly to
what was done to the YAGO types. The NELL dataset (08m.690) we used has only
10.3% of its originally 1 168 998 instances, since the properties are very sparse, and
89.7% of the instances have no features or only have the property haswikipediaurl
which provides no information gain. The AIFB portal dataset describes the AIFB
research institute in terms of its staff, research group, and publications. The data
is an export of the AIFB website and contains around 270 thousand triples. The
type hierarchy is originally a wide and shallow tree with average fanout 14.25 and
average depth 2.04. The MUTAG dataset is distributed as an example dataset for
the DL-Learner toolkit8. It contains information about 340 complex molecules
that are potentially carcinogenic, which is given by the isMutagenic property. The
molecules can be classified as “mutagenic” or “not mutagenic”, and the main entity
types atoms bonds and compounds which define the molecules.

8http://dl-learner.org

http://dl-learner.org

142 APPENDIX A. LOCAL FEATURE SELECTION

These hierarchical knowledge bases have a directed acyclic graph (DAG) as
hierarchy. Since the MULAN framework only support trees, we have to sim-
plify the problem and convert the DAGs into trees. It is important to mention
that in the evaluation we ignore the original DAGs and consider only the converted
trees. Therefore, for the nodes which have multiple parents, we retain only the
subsumption relation with the parent class which is most frequent, i.e. the one with
most instances, and remove the other edges. Alternatively, one could replicate the
subtree of a node with multiple parents, leaving each replica with a single parent
node. This, however, may significantly increase the number of classes, and most
importantly generate consistency problems in case a classifier produces different
predictions for the subtree replicas, which is a problem we do not address in this
chapter. Although supporting DAGs instead of converting them to trees can im-
prove results (10), and the aforementioned conversion is an interesting approach to
be considered, in this chapter we restrict ourselves to the first conversion approach
because of its simplicity.

Table A.3 shows the same statistics from the Table A.2 of flat datasets, plus
average fanout, and the average depth of nodes. The average fanout is computed
as the average number of children over all non-leaf nodes, and the average depth
is computed over all the nodes in the hierarchy. For the average depth, we define
depth of root nodes as one and the depth of non-root nodes as the depth of its
parent plus one. The labels dependency is calculated similarly to the flat datasets
case, however, instead of considering all possible label pairs, we consider only
pairs of labels which are siblings.

A.5.2 Scalability

In our experiments, we use the filter method for feature selection because it is a
simple, popular, and highly scalable method. As discussed in Section A.2.4, the
filter method basically consists of the computation of relevance measures for every
feature w.r.t. every label, and the ranking of these features by their relevance value.

For non-hierarchical multilabel classification problems, the computation of rel-
evance measures on the local and global approach have the sample complexity of
O(|C| ∗ |F | ∗ |D|), where |C| is the number of classes, |F | the number of features
(assumed to be binary) and |D| the number of instances. This is because the rele-
vance measure needs to be computed for every pair of a label and a feature, on all
instances in the dataset. In the local case, this is done for a binary class on each
transformed dataset (|C| in the case of binary relevance). In the global case with
aggregation method, the same computation has to be performed before aggregating
the relevance values of each class into global relevance values, while in the multi-
dimensional case, instead of 2-dimensional distributions, distributions over the |C|
needs to be computed. Therefore, in any of the cases mentioned before, the com-
putation time grows linearly with the number of classes. The major difference is
that the local approach has the disadvantage of having to sort the features by their
relevance measure values |C| times, while in the global approach it is performed

A.5. EXPERIMENTS 143

only once. However, this does not change the overall complexity of the whole fea-
ture selection process: the additional effort of sorting the features is |F | ∗ log|F |,
and for almost every dataset, log|F | < |D| holds (otherwise, the dataset would be
very degenerate, having a few orders of magnitude more features than instances).

For hierarchical classification with siblings examples selection policy, the local
feature selection is assumed to scale better since, for labels deeper in the hierarchy,
the binary relevance measures are calculated only on a subset of the data. Typically,
the number of labels in the lower levels of the hierarchy is higher, and the lower
the level of the label node, the smaller is the subset of instances. Assuming that
the labels hierarchy has a fanout b and the instances have a single path only, the
complexity for computing the relevance measures in the local approach would be
O(b∗logb(|C|)∗|D|), since the average transformed dataset size would be |D|∗(b∗
logb(|C|))/|C| instead of |D|. The average size of the transformed datasets also
increases with the cardinality of the multilabel dataset. However, for simplicity
and because the cardinality is normally low in most real datasets, we ignore this
factor when calculating the average size.

It is important to notice that the use of feature selection can reduce the overall
runtime, as the multilabel classifier benefits from the dimensionality reduction.
However, depending on the local classifier used and the feature selection method,
the cost of performing the feature selection may be higher than the benefit of caused
by the dimensionality reduction. Therefore, when employing a simple and highly
scalable local classifier, such as Naïve Bayes, the overall runtime for some datasets
without feature selection may be lower than with feature selection.

A.5.3 Results

Figure A.1 shows a comparison between the local and global feature selection ap-
proaches for different numbers of selected features. The results reported were ob-
tained with J48 as local classifier, the mean aggregation approach for the global
feature selection, and ranking based feature selection with information gain as rel-
evance measure. The reported runtime consists of the sum of feature selection and
training time. The results reported in this section were obtained with 5-fold cross-
validation. Because of space constraints, we show diagrams for only nine of the
evaluated datasets9.

The plots show that the local feature selection approach performs consistently
better than the global approach, with a similar runtime for flat multilabel classi-
fication, and with significantly lower runtime for hierarchical. The difference in
runtime for the hierarchical case is due to the siblings negative examples selection
policy, as discussed above.

The difference in the micro F1-measure is notably higher for smaller sets of
selected features, where the average Jaccard index between locally and globally
selected features is lower. Genbase is an example for a dataset which does not

9The complete set of plots can be found at http://data.dws.informatik.
uni-mannheim.de/hmctp/plots/report.pdf

http://data.dws.informatik.uni-mannheim.de/hmctp/plots/report.pdf
http://data.dws.informatik.uni-mannheim.de/hmctp/plots/report.pdf

144 APPENDIX A. LOCAL FEATURE SELECTION

J48 NaiveBayes AdaBoost kNN LibSVM
Dataset D1 D2 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1

Arts1 0.339 0.237 1.553 1.736 1.135 1.539 1.343 1.549 1.488 1.585 1.572 1.630
bibtex 0.196 0.225 1.159 1.465 1.203 1.321 1.122 1.337 1.057 1.091 1.164 1.773
birds 0.308 0.284 0.996 1.143 1.208 1.174 1.156 1.307 0.996 0.971 1.634 1.218
Business1 0.265 0.238 1.027 1.423 0.998 1.435 1.007 1.306 1.034 1.359 1.023 1.480
CAL500 0.278 0.250 1.008 1.030 1.022 1.025 1.002 1.018 1.026 1.036 0.988 0.977
Computers1 0.242 0.233 1.110 1.448 1.192 1.593 1.079 1.701 1.088 1.287 1.109 1.606
Corel5k 0.168 0.225 2.223 1.054 1.848 1.358 2.942 1.015 1.548 1.093 1.109 1.006
delicious 0.146 0.227 1.736 1.312 1.352 1.543 2.524 1.474 1.297 0.948 2.099 1.518
Education1 0.285 0.245 1.491 1.666 1.062 1.464 1.297 1.422 1.418 1.650 1.579 1.780
emotions 0.386 0.365 1.022 1.044 1.008 1.011 1.030 1.053 1.021 1.023 0.953 0.937
enron 0.162 0.230 1.267 1.326 1.176 1.285 1.161 1.189 1.222 1.228 1.274 1.177
Entertainment1 0.357 0.256 1.754 1.732 1.161 1.539 1.836 1.770 1.512 1.440 1.811 1.744
flags 0.484 0.440 0.996 0.960 1.003 1.000 0.991 0.974 0.996 0.986 0.984 0.965
genbase 0.766 0.729 1.003 1.029 1.008 1.046 1.005 1.026 1.005 1.030 1.004 1.029
Health1 0.439 0.254 1.101 1.313 1.134 1.307 0.978 1.202 1.084 1.315 1.081 1.249
imdb 0.197 0.255 0.989 1.015 1.189 1.205 1.000 1.000 0.974 0.987 0.936 0.896
mediamill 0.117 0.238 1.026 1.063 0.999 1.149 1.025 1.045 1.013 1.013 1.028 1.042
medical 0.435 0.242 1.007 1.042 1.076 1.078 1.016 1.042 0.975 1.032 1.005 1.025
rcv1subset1 0.362 0.229 1.445 1.564 1.485 1.688 1.353 1.467 1.237 1.378 1.138 1.011
rcv1subset2 0.346 0.229 1.213 1.579 1.592 1.814 1.278 1.511 1.198 1.532 1.217 1.031
rcv1subset3 0.339 0.228 1.216 1.478 1.685 1.763 1.291 1.417 1.227 1.476 1.190 1.010
rcv1subset4 0.379 0.229 1.245 1.455 1.562 1.752 1.385 1.436 1.210 1.439 1.452 1.126
rcv1subset5 0.344 0.228 1.197 1.562 1.482 1.778 1.324 1.494 1.216 1.110 1.542 1.052
Recreation1 0.263 0.242 1.409 1.614 1.609 1.804 1.358 1.656 1.359 1.487 1.428 1.697
Reference1 0.464 0.242 1.167 1.210 1.246 1.142 1.095 1.095 1.159 1.285 1.141 1.185
scene 0.258 0.343 1.258 1.293 1.145 1.135 1.366 1.491 1.158 1.153 1.518 1.549
Science1 0.347 0.231 1.616 1.717 1.157 1.753 1.605 1.605 1.611 1.914 1.744 1.621
slashdot 0.381 0.239 1.548 1.289 1.551 1.469 1.213 1.129 1.408 1.319 1.726 1.356
Social1 0.334 0.245 1.022 1.759 1.239 1.666 0.974 1.480 1.029 1.582 1.035 1.765
Society1 0.301 0.251 1.404 2.307 1.313 1.579 1.504 2.007 1.341 1.837 1.374 2.168
tmc2007 0.188 0.241 1.157 1.757 1.145 1.819 1.153 1.843 1.155 1.546 1.157 1.970
yeast 0.164 0.267 1.021 1.056 1.017 1.040 1.030 1.085 0.997 1.003 1.052 1.185
AVG 0.314 0.269 1.262 1.389 1.250 1.415 1.295 1.348 1.189 1.285 1.283 1.337

Table A.4: Comparison of local and global feature selection with mean aggregation
on flat multilabel datasets

significantly profit from the local feature selection. Its average Jaccard index show
that the locally selected features are not very different from the globally selected
ones, converging very rapidly to a average Jaccard index of 1. Only for small num-
bers of selected features, the local approach shows an improvement in comparison
to the global approach.

Tables A.4 and A.6 show a summary of the results for the datasets used in the
experiments. We computed curves as in Figure A.1 for all the datasets, local clas-
sifiers, i.e., micro/macro average F-measure graphed against the ratio of features
selected. Instead of showing the plots as in Figure A.1, we report the ratio of the
area under the curves of local and global feature selection for the micro-averaged

A.5. EXPERIMENTS 145

J48 NaiveBayes AdaBoost kNN LibSVM
Dataset D1 D2 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1

aifb 0.401 0.383 1.024 1.165 1.187 1.135 1.025 1.234 1.024 1.180 1.023 1.213
cellcycle 0.171 0.224 1.174 1.004 1.092 1.013 1.338 1.006 1.022 1.006 1.501 1.002
church 0.475 0.279 1.416 1.001 1.654 1.004 1.658 1.003 1.034 1.042 1.651 1.002
dbpedia-yago 0.271 0.299 1.010 1.146 1.005 1.210 1.004 1.130 1.014 0.901 0.952 0.336
derisi 0.128 0.228 0.992 1.001 1.095 1.011 1.013 1.002 1.026 0.978 0.609 0.998
eisen 0.085 0.225 1.091 1.001 1.098 0.997 1.178 0.994 1.007 1.012 1.030 1.001
gasch2 0.232 0.224 1.049 0.998 1.014 1.018 1.034 1.002 0.987 1.041 1.045 0.988
mutagenesis 0.203 0.333 1.194 1.130 1.201 1.127 1.190 1.118 1.196 1.139 0.781 1.021
NELL 0.228 0.248 1.022 1.085 1.019 1.036 1.000 1.023 1.019 1.092 1.021 1.040
pheno 0.326 0.256 1.177 1.003 1.094 1.002 1.709 1.007 1.055 1.010 1.017 1.000
struc 0.198 0.224 1.032 0.970 1.088 0.892 1.075 0.998 1.012 0.976 1.581 1.002
wikidata 0.215 0.389 1.004 1.027 1.022 1.150 1.004 1.023 1.006 1.033 1.003 1.009
AVG 0.244 0.276 1.099 1.044 1.131 1.050 1.186 1.045 1.033 1.034 1.101 0.967

Table A.5: Comparison of local and global feature selection with mean aggregation
on hierarchical multilabel datasets

F1-measure (RµF1) and macro-averaged F1-measure (RmF1) . Values greater than
1 for both RµF1 and RmF1 means that the local approach outperforms the global
approach. We report the normalized area under the curve of the D1 and D2 mea-
sures. The closer to 1, the more the local feature sets are similar to the global set.
The last row in the tables (AVG) show the average value of the measures over all
the datasets evaluated.

The averages show that that the vast majority of the reported ratios are larger
than one, indicating that the local feature selection performs better overall. De-
pending on the method used as local classifier, the impact of the local approach can
vary. Adaboost is the method which benefits the most in both flat and hierarchical
datasets, while kNN benefits the least. When comparing the ratios of micro and
macro-averaged F1-measure (RµF1 and RmF1), the ratio of macro-averaged F1-
measure is higher than that of micro-averaged. This reveals that on flat datasets, the
less frequent classes benefit from the local approach more than the more frequent
classes. This can be explained by the fact that global feature selection approaches
prefer features which are relevant to the more frequent classes, which means that,
in general, the set of global features is more relevant to frequent classes than to
infrequent ones.

On the hierarchical datasets, however, the RµF1 is in general greater than
RmF1 , indicating that more frequent classes benefit more strongly from the lo-
cal feature selection. The same fact that global feature selection approaches prefer
features relevant to more frequent classes should apply in the hierarchical case as
well. One possible explanation is that less frequent classes are at lower levels of the
hierarchy, and errors for these classes can be caused by classification errors in the
ascendant classes, since we used the top-down approach in our experiments. That
means the improvement in the local classifier of a leaf-node class, for example, is

146 APPENDIX A. LOCAL FEATURE SELECTION

J48 NaiveBayes AdaBoost kNN LibSVM
Dataset D1 D2 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1

Arts1 0.339 0.237 1.525 1.690 1.176 1.543 1.315 1.450 1.478 1.600 1.537 1.574
bibtex 0.167 0.225 1.119 1.426 1.084 1.247 1.087 1.257 0.987 1.066 1.127 1.670
birds 0.282 0.284 1.048 1.209 1.346 1.343 1.199 1.317 1.022 1.038 1.654 1.270
Business1 0.265 0.238 1.029 1.444 0.994 1.408 1.003 1.240 1.041 1.452 1.021 1.463
CAL500 0.250 0.250 1.010 1.022 1.024 1.042 1.005 1.006 1.014 1.002 0.987 0.957
Computers1 0.242 0.233 1.242 1.824 1.431 1.794 1.178 1.644 1.249 1.660 1.244 2.051
Corel5k 0.113 0.225 1.606 1.033 1.820 1.554 1.130 1.004 1.357 1.053 2.972 1.002
delicious 0.146 0.227 1.872 1.297 1.570 1.642 1.895 1.134 1.650 1.273 1.989 1.295
Education1 0.285 0.245 1.583 1.649 0.853 1.291 1.431 1.461 1.569 1.874 1.622 1.844
emotions 0.380 0.365 1.032 1.047 1.007 1.012 1.040 1.067 1.022 1.023 0.953 0.936
enron 0.150 0.230 1.192 1.280 1.147 1.331 1.082 1.146 1.162 1.232 1.273 1.155
Entertainment1 0.357 0.256 1.703 1.729 1.088 1.472 1.851 1.906 1.492 1.463 1.737 1.728
flags 0.452 0.440 0.998 0.971 1.002 1.005 0.991 0.982 0.989 0.976 0.982 0.968
genbase 0.764 0.729 1.005 1.024 1.005 1.031 1.005 1.022 1.004 1.027 1.004 1.029
Health1 0.439 0.254 1.072 1.298 1.129 1.237 0.959 1.187 1.044 1.338 1.059 1.237
imdb 0.183 0.255 1.045 1.057 1.286 1.293 1.000 1.000 1.020 1.038 0.927 0.879
mediamill 0.144 0.228 1.032 0.866 0.968 0.958 1.007 0.450 0.995 1.045 1.028 1.042
medical 0.300 0.242 0.985 1.009 1.006 0.960 1.008 1.026 0.929 0.976 0.993 1.006
rcv1subset1 0.362 0.229 1.535 1.603 1.893 1.999 1.556 1.513 1.440 1.563 1.005 1.001
rcv1subset2 0.346 0.229 1.268 1.614 2.027 2.180 1.335 1.515 1.333 1.671 1.003 0.974
rcv1subset3 0.339 0.228 1.229 1.502 2.028 2.089 1.300 1.408 1.361 1.654 0.972 0.965
rcv1subset4 0.379 0.229 1.220 1.430 1.831 1.985 1.299 1.385 1.326 1.559 1.064 1.050
rcv1subset5 0.344 0.228 1.140 1.503 1.822 1.947 1.313 1.487 1.284 1.560 1.052 0.998
Recreation1 0.263 0.242 1.460 1.828 1.548 1.925 1.362 1.670 1.422 1.724 1.456 1.810
Reference1 0.464 0.242 1.164 1.177 1.276 1.132 1.085 1.034 1.138 1.207 1.132 1.137
scene 0.244 0.343 1.146 1.178 1.094 1.104 1.174 1.274 1.091 1.093 1.207 1.289
Science1 0.347 0.231 1.452 1.681 1.222 1.660 1.424 1.515 1.437 1.777 1.469 1.504
slashdot 0.381 0.239 1.576 1.293 1.533 1.470 1.214 1.125 1.394 1.295 1.706 1.342
Social1 0.334 0.245 1.041 1.965 1.291 1.736 0.959 1.515 1.058 1.850 1.044 2.000
Society1 0.301 0.251 1.456 2.207 1.245 1.540 1.475 1.873 1.392 1.814 1.448 2.064
tmc2007 0.188 0.241 1.161 1.676 1.133 1.799 1.152 1.749 1.160 1.580 1.145 1.748
yeast 0.168 0.267 1.020 1.059 1.009 1.049 1.038 1.123 0.999 1.003 1.047 1.166
AVG 0.304 0.269 1.249 1.393 1.309 1.462 1.215 1.296 1.214 1.359 1.277 1.317

Table A.6: Comparison of local and global feature selection with max aggregation
on flat multilabel datasets

limited to the cases where the predictions of all the local classifiers of ascendant
classes are correct.

We also compared transformation methods with local feature selection and
their correspondent adaptation methods over all hierarchical and flat multilabel
datasets. The adaptation methods used global feature selection since the local ap-
proach is not applicable. We performed the comparison for MLC4.5 and MLkNN
varying the number of selected features. We also tried to use AdaboostMH imple-
mentation in MULAN, however, the classifier did not seem to work properly, and
the results remained constant over all the different sets of selected features used.
The results obtained were not conclusive about whether the adaptation or transfor-

A.5. EXPERIMENTS 147

J48 NaiveBayes AdaBoost kNN LibSVM
Dataset D1 D2 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1 RµF1 RmF1

aifb 0.346 0.383 1.024 1.166 1.187 1.135 1.025 1.235 1.024 1.180 1.023 1.213
cellcycle 0.163 0.224 1.115 1.002 1.087 1.002 1.385 1.006 1.008 1.005 1.141 1.000
church 0.344 0.279 1.031 0.999 1.226 1.010 1.068 1.000 0.845 1.049 1.141 1.00
dbpedia-yago 0.259 0.299 1.011 1.160 0.998 1.231 1.002 1.121 1.014 0.898 0.953 0.331
derisi 0.151 0.228 1.164 1.002 1.126 1.010 1.098 1.000 1.031 0.990 0.899 1.002
eisen 0.086 0.225 1.117 0.999 1.137 1.001 1.268 0.995 1.019 1.013 1.090 1.003
gasch2 0.192 0.224 1.077 0.997 1.036 1.025 1.079 1.003 1.007 1.034 1.037 0.987
mutagenesis 0.150 0.333 1.194 1.130 1.201 1.127 1.191 1.118 1.196 1.139 0.782 1.022
nell 0.198 0.244 1.021 1.072 1.017 1.027 1.000 1.024 1.019 1.077 1.018 1.034
pheno 0.242 0.256 1.150 1.002 1.306 0.995 1.229 1.003 1.169 1.005 1.202 1.000
struc 0.187 0.224 1.082 0.962 1.053 0.840 1.045 0.998 1.046 0.986 1.260 1.001
wikidata 0.206 0.389 1.009 1.027 1.019 1.148 1.004 1.020 1.011 1.031 1.005 1.009
AVG 0.210 0.276 1.083 1.043 1.116 1.046 1.116 1.044 1.032 1.034 1.045 0.967

Table A.7: Comparison of local and global feature selection with max aggregation
on. popular hierarchical multilabel datasets

mation methods have a better general performance, with no approach consistently
outperforming the other. In order to draw any conclusions, a study dedicated to the
comparison between adaptation methods and transformation methods with local
feature selection would be required, which, however, is out of scope of this work.

A.5.4 Statistical Analysis

After running all the experiments presented in this section, we need to test the
significance of the results. For that we perform the Wilcoxon signed-rank test (212)
comparing micro-averaged and macro-averaged F1-measure of local and global
feature selection approaches with transformation methods. Figure A.2 shows the
p-value of the Wilcoxon test over the 44 datasets reported (flat and hierarchical)
for the five different local classifiers. This is done for different portions of the
features selected, which is represented as percentage of total number of features in
the horizontal axis.

For p-values under 0.05 the difference between local and global feature selec-
tion methods is statistically significant according to the Wilcoxon Test. We can
observe that, for all local classifiers, the difference is highly significant with a p-
value far below the 0.05 line for smaller numbers of features. In particular, for
Naïve Bayes, this difference is the most significant amongst the evaluated local
classifiers. Adaboost, LibSVM, and J48 also benefit significantly from the local
feature selection approach, while IBk profits the least.

148 APPENDIX A. LOCAL FEATURE SELECTION

J48 Naive Bayes AdaBoost kNN LibSVM AVG

corr(D1,µF1) −0.5364 −0.4791 −0.5348 −0.5273 −0.3909 −0.4937
corr(D2,µF1) −0.5425 −0.4880 −0.5264 −0.5405 −0.4120 −0.5019
corr(D1,mF1) −0.6069 −0.5356 −0.5769 −0.5190 −0.4580 −0.5393
corr(D2,mF1) −0.6341 −0.5427 −0.5849 −0.4982 −0.4905 −0.5501
corr(D1,hamm) 0.3808 0.2178 0.3576 0.3778 0.4476 0.3563
corr(D2,hamm) 0.4119 0.2209 0.3457 0.4299 0.4955 0.3808

Table A.8: Correlations betweenD1 andD2 measures and the ratio between global
and local feature selection approaches for different evaluation measures

Figure A.2: Wilcoxon test on flat and hierarchical multilabel datasets

The results indicate that for all classifiers on a small set of selected features,
the difference is the most significant, while for larger portions of selected features
the significance is slightly lower. With that, we can confirm that when performing
feature selection on transformation methods, the local approach is a better choice
than the global method, especially when the portion of selected features is small.
We also point out that the choice of local classifier can influence the benefits of
local over global feature selection methods.

Another investigation we made is how strong the correlation between the vari-
ance of local feature selection and the performance gain over global selection is.
The hypothesis is that for problems where there are strong differences in the best
local feature sets, local feature selection will lead to a more significant performance
improvement. In order to test that hypothesis, we measure the correlation of D1

and D2, which capture the variety of features in the different local sets, with the
ratio between the performance measures of classifiers with local and global feature
selection approaches. For a given dataset and local classifier we compute the val-
ues of D1, D2, and the values of µF1, mF1 and hamm with local feature selection
divided by the correspondent measure values with global feature selection for the
different numbers of selected features k. Then the correlation is calculated for ev-
ery dataset and with the different local classifiers considered in the experiments.

A.6. CONCLUSION AND FUTURE WORK 149

Table A.8 shows the correlation values across all the datasets with different local
classifiers, and, in the last column, the correlation over all classifiers and datasets.

For µF1 and mF1, ratios greater than one mean that the local approach per-
formed better, for hamm ratios less than one mean that the local approach per-
formed better. For both measures D1 and D2, the smaller the value, the more dis-
tinct the local feature sets are from the global feature sets. Therefore, the negative
values of corr(D1,µF1), corr(D1,mF1), corr(D2,µF1) and corr(D2,mF1), and the
positive values of corr(D1,hamm) and corr(D2,hamm) show that the more local
and global feature sets differ, the better the local approach will be in comparison to
the global approach.

In all cases, the correlations are significant, which confirms the original hy-
pothesis. Furthermore, we have observed that the correlation between D1 and D2

is 0.957, i.e., both measures are essentially very similar in measuring the variety of
the local feature selection.

A.6 Conclusion and Future Work

In this chapter, we have presented an experimental comparison of global and local
feature selection methods on transformation methods for multilabel classification
with flat and hierarchical labels. Although transformation methods are very pop-
ular, and allow the feature selection to be performed locally on each transformed
dataset, this alternative has not been very extensively explored in the literature.
Our experiment results indicate that the local approach performs consistently bet-
ter than the global approach in terms of predictive performance. Both approaches
have similar runtimes and scalability on flat multilabel classification, and for hi-
erarchically structured labels, the local approach scales better than the global ap-
proach. Based on these results, the local feature selection approach is considered
superior to the global approach. When comparing the local feature selection ap-
proach with transformation methods to adaptation methods with global approaches
using a global feature selection method, the results are not generally conclusive.
However, for many of the datasets, the local approach also performs better in that
case.

So far, we have only considered binary relevance as a transformation tech-
nique. Performing a similar comparison with other transformation methods, such
as classifier chains, would be interesting for future work. Furthermore, it would
be interesting if it is possible to compile a better global feature set for adaptation
methods, using local feature selection on a number of transformed problems. An-
other possibility which the use of transformation brings is the use of different local
classifiers for different transformed subproblems.

150 APPENDIX A. LOCAL FEATURE SELECTION

C
o
re

l5
k

101 102
0

5 · 10−2

0.1

% of selected features

M
ic
ro

F
-M

ea
su
re

101 102
0

2

4

6

·105

% of selected features

ru
n
ti
m
e
(m

s)

101 102
0

0.2

0.4

0.6

0.8

1

% of selected features

J
a
cc
a
rd

en
ro

n

102 103

0.4

0.5

% of selected features

M
ic
ro

F
-M

ea
su
re

102 103
0

0.5

1

1.5
·105

% of selected features

ru
n
ti
m
e
(m

s)

102 103
0

0.2

0.4

0.6

0.8

1

% of selected features

J
a
cc
a
rd

g
en

b
a
se

102 103

0.94

0.96

0.98

% of selected features

M
ic
ro

F
-M

ea
su
re

102 103
200

400

600

800

1,000

% of selected features

ru
n
ti
m
e
(m

s)

102 103
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

b
ib

te
x

102 103

0.25

0.3

0.35

0.4

% of selected features

M
ic
ro

F
-M

ea
su
re

102 103
0

1

2

·106

% of selected features

ru
n
ti
m
e
(m

s)

102 103
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

n
el

l

101 102

0.54

0.56

0.58

0.6

0.62

% of selected features

M
ic
ro

F
-M

ea
su
re

101 102
0

0.5

1

1.5
·105

% of selected features

ru
n
ti
m
e
(m

s)

101 102
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

d
b

p
ed

ia

102 103

0.64

0.66

0.68

0.7

0.72

% of selected features

M
ic
ro

F
-M

ea
su
re

102 103
0

0.5

1

1.5
·106

% of selected features

ru
n
ti
m
e
(m

s)

102 103
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

w
ik

id
a
ta

102 103

0.82

0.84

0.86

% of selected features

M
ic
ro

F
-M

ea
su
re

102 103

2

4

6

·105

% of selected features

ru
n
ti
m
e
(m

s)

102 103
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

ce
ll

cy
cl

e

100 101 102
0

5 · 10−2

0.1

0.15

% of selected features

M
ic
ro

F
-M

ea
su
re

100 101 102

1

2

·104

% of selected features

ru
n
ti
m
e
(m

s)

100 101 102
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

ei
se

n

100 101 102

5 · 10−2

0.1

0.15

% of selected features

M
ic
ro

F
-M

ea
su
re

100 101 102

0.5

1

1.5

·104

% of selected features

ru
n
ti
m
e
(m

s)

100 101 102
0

0.2

0.4

0.6

0.8

1

% of selected features

J
ac
ca
rd

Global Local D1 D2

Figure A.1: Global vs local feature selection comparison with J48 and measures
D1 and D2.

Bibliography

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association
rules between sets of items in large databases. SIGMOD Rec., 22(2):207–
216, June 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB, pages 487–499, 1994.

[3] Georgia Albuquerque, Thomas Löwe, and Marcus Magnor. Synthetic gener-
ation of high-dimensional datasets. IEEE Transactions on Visualization and
Computer Graphics (TVCG, Proc. Visualization / InfoVis), 17(12):2317–
2324, Dec 2011.

[4] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas
Neumann, Orri Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin
Kotsev, and Ioan Toma. The linked data benchmark council: A graph and
rdf industry benchmarking effort. SIGMOD Rec., 43(1):27–31, May 2014.

[5] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. Automatic
expansion of DBpedia exploiting Wikipedia cross-language information. In
10th Extended Semantic Web Conference (ESWC 2013), 2013.

[6] Dörthe Arndt, Ben De Meester, Anastasia Dimou, Ruben Verborgh, and
Erik Mannens. Using rule-based reasoning for RDF validation. In Stefa-
nia Costantini, Enrico Franconi, William Van Woensel, Roman Kontchakov,
Fariba Sadri, and Dumitru Roman, editors, Proceedings of the International
Joint Conference on Rules and Reasoning, volume 10364 of Lecture Notes
in Computer Science, pages 22–36. Springer, July 2017.

[7] Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Amrapali
Zaveri. Introduction to linked data and its lifecycle on the web. In Reasoning
Web, pages 1–90, 2013.

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniel Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook. Cam-
bridge University Press, 2003.

151

152 BIBLIOGRAPHY

[9] Liviu Badea and Shan hwei Nienhuys-Cheng. A refinement operator for de-
scription logics. In Proc. of the Int. Conf. on Inductive Logic Programming
(ILP), volume 1866 of LNAI, pages 40–59. Springer, 2000.

[10] Wei Bi and James T. Kwok. Multi-label classification on tree- and dag-
structured hierarchies. In Lise Getoor and Tobias Scheffer, editors, Proceed-
ings of the 28th International Conference on Machine Learning (ICML-11),
pages 17–24, New York, NY, USA, 2011. ACM.

[11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – The Story
So Far. International journal on semantic web and information systems,
5(3):1–22, 2009.

[12] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia - A crystal-
lization point for the Web of Data. Web Semantics, 7(3):154–165, 2009.

[13] Hendrik Blockeel, Luc De Raedt, and Jan Ramong. Top-down induction of
clustering trees. In In Proceedings of the 15th International Conference on
Machine Learning, pages 55–63. Morgan Kaufmann, 1998.

[14] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint
learning of words and meaning representations for open-text semantic pars-
ing. In Neil D. Lawrence and Mark A. Girolami, editors, Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2012, La Palma, Canary Islands, April 21-23, 2012, volume 22 of
JMLR Proceedings, pages 127–135. JMLR.org, 2012.

[15] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 2787–2795. Curran Associates, Inc., 2013.

[16] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio.
Learning structured embeddings of knowledge bases. In Wolfram Burgard
and Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August
7-11, 2011. AAAI Press, 2011.

[17] Fabian Both, Steffen Thoma, and Achim Rettinger. Cross-modal knowledge
transfer: Improving the word embedding of apple by looking at oranges.
2017.

[18] Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown.
Learning multi-label scene classification. Pattern Recognition, 37(9):1757
– 1771, March 2004.

BIBLIOGRAPHY 153

[19] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[20] F. Briggs, Yonghong Huang, R. Raich, K. Eftaxias, Zhong Lei, W. Cukier-
ski, S.F. Hadley, A. Hadley, M. Betts, X.Z. Fern, J. Irvine, L. Neal,
A. Thomas, G. Fodor, G. Tsoumakas, Hong Wei Ng, Thi Ngoc Tho
Nguyen, H. Huttunen, P. Ruusuvuori, T. Manninen, A. Diment, T. Virtanen,
J. Marzat, J. Defretin, D. Callender, C. Hurlburt, K. Larrey, and M. Milakov.
The 9th annual mlsp competition: New methods for acoustic classification
of multiple simultaneous bird species in a noisy environment. In Machine
Learning for Signal Processing (MLSP), 2013 IEEE International Workshop
on, pages 1–8, Sept 2013.

[21] Sergey Brin, Rajeev Rastogi, and Kyuseok Shim. Mining optimized gain
rules for numeric attributes. In Proceedings of the 5th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
135–144. ACM Press, 1999.

[22] Florian Brucker, Fernando Benites, and Elena Sapozhnikova. An Empiri-
cal Comparison of Flat and Hierarchical Performance Measures for Multi-
Label Classification with Hierarchy Extraction, pages 579–589. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[23] Lorenz Bühmann, Daniel Fleischhacker, Jens Lehmann, André Melo, and
Johanna Völker. Inductive lexical learning of class expressions. In Krzysztof
Janowicz, Stefan Schlobach, Patrick Lambrix, and Eero Hyvönen, editors,
Knowledge Engineering and Knowledge Management - 19th International
Conference, EKAW 2014, Linköping, Sweden, November 24-28, 2014. Pro-
ceedings, volume 8876 of Lecture Notes in Computer Science, pages 42–53.
Springer, 2014.

[24] Lorenz Bühmann and Jens Lehmann. Universal owl axiom enrichment for
large knowledge bases. In Proceedings of the 18th International Conference
on Knowledge Engineering and Knowledge Management, EKAW’12, pages
57–71, Berlin, Heidelberg, 2012. Springer-Verlag.

[25] Lorenz Bühmann and Jens Lehmann. Pattern based knowledge base enrich-
ment. In 12th International Semantic Web Conference, 21-25 October 2013,
Sydney, Australia, 2013.

[26] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R.
Hruschka, and Tom M. Mitchell. Toward an architecture for never-ending
language learning. In In AAAI, 2010.

[27] Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hr-
uschka Jr, and Tom M Mitchell. Coupled semi-supervised learning for infor-
mation extraction. In Proceedings of the third ACM international conference
on Web search and data mining, pages 101–110. ACM, 2010.

154 BIBLIOGRAPHY

[28] Rose Catherine and William Cohen. Personalized recommendations using
knowledge graphs: A probabilistic logic programming approach. In Pro-
ceedings of the 10th ACM Conference on Recommender Systems, RecSys
’16, pages 325–332, New York, NY, USA, 2016. ACM.

[29] Ricardo Cerri, Gisele L. Pappa, André Carlos Ponce de Leon Ferreira de
Carvalho, and Alex Alves Freitas. An extensive evaluation of decision tree-
based hierarchical multilabel classification methods and performance mea-
sures. Computational Intelligence, 31(1):1–46, 2015.

[30] Nicolò Cesa-bianchi, Luca Zaniboni, and Michael Collins. Incremental al-
gorithms for hierarchical classification. In Journal of Machine Learning
Research, pages 31–54. MIT Press, 2004.

[31] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Chris Meek. Typed tensor
decomposition of knowledge bases for relation extraction. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Process-
ing. ACL – Association for Computational Linguistics, October 2014.

[32] Dipak Chaudhari, Om P. Damani, and Srivatsan Laxman. Lexical co-
occurrence, statistical significance, and word association. In EMNLP, pages
1058–1068. ACL, 2011.

[33] Sanjay Chawla and Aristides Gionis. k-means-: A unified approach to clus-
tering and outlier detection. In Proceedings of the 13th SIAM International
Conference on Data Mining, Austin, Texas, USA., pages 189–197. SIAM,
2013.

[34] Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat, Daniel Faria, Al-
fio Ferrara, Giorgos Flouris, Irini Fundulaki, Roger Granada, Valentina
Ivanova, Ernesto Jiménez-Ruiz, et al. Results of the ontology alignment
evaluation initiative 2015. In 10th ISWC workshop on ontology matching
(OM), pages 60–115, 2015.

[35] Lydia B. Chilton, Greg Little, Darren Edge, Daniel S. Weld, and James A.
Landay. Cascade: Crowdsourcing taxonomy creation. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13,
pages 1999–2008, New York, NY, USA, 2013. ACM.

[36] A. Clare and R. D. King. Predicting gene function in saccharomyces cere-
visiae. Bioinformatics, 19:42–49, 2003.

[37] Amanda Clare and Ross D. King. Knowledge discovery in multi-label phe-
notype data. In Proceedings of the 5th European Conference on Principles
of Data Mining and Knowledge Discovery, PKDD’01, pages 42–53, Lon-
don, UK, 2001. Springer-Verlag.

BIBLIOGRAPHY 155

[38] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko Paul-
heim. Global RDF vector space embeddings. In The Semantic Web - ISWC
2017 - 16th International Semantic Web Conference, Vienna, Austria, Octo-
ber 21-25, 2017, Proceedings, Part I, pages 190–207, 2017.

[39] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko Paul-
heim. Global rdf vector space embeddings. In International Semantic Web
Conference, 2017. to appear.

[40] William W. Cohen and Haym Hirsh. Learnability of description logics. In
Proceedings of the Fourth Annual Workshop on Computational Learning
Theory. ACM Press, 1992.

[41] William W. Cohen and Haym Hirsh. Learning the CLASSIC description
logic. In Proc. of the Int. Conf. on Principles of Knowledge Representation
and Reasoning, pages 121–133. Morgan Kaufmann, 1994.

[42] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.
Learn., 20(3):273–297, September 1995.

[43] Eduardo P. Costa, Ana C. Lorena, André C. P. L. F. Carvalho, Alex A. Fre-
itas, and Nicholas Holden. Comparing several approaches for hierarchi-
cal classification of proteins with decision trees. In Proceedings of the 2nd
Brazilian Conference on Advances in Bioinformatics and Computational Bi-
ology, BSB’07, pages 126–137, Berlin, Heidelberg, 2007. Springer-Verlag.

[44] E.P. Costa, A.C. Lorena, A.C.P.L.F. Carvalho, and A.A. Freitas. A review of
performance evaluation measures for hierarchical classifiers. In C. Drum-
mond, W. Elazmeh, N. Japkowicz, and S.A. Macskassy, editors, Evaluation
Methods for Machine Learning II: papers from the AAAI-2007 Workshop,
AAAI Technical Report WS-07-05, pages 182–196. AAAI Press, July 2007.

[45] Om P. Damani. Improving pointwise mutual information (pmi) by incorpo-
rating significant co-occurrence. CoRR, abs/1307.0596, 2013.

[46] Manoranjan Dash and Huan Liu. Feature selection for classification. Intel-
ligent data analysis, 1(3):131–156, 1997.

[47] Gael de Lannoy, Damien Francois, and Michel Verleysen. Class-specific
feature selection for one-against-all multiclass svms. In ESANN, 2011.

[48] Jeremy Debattista, Christoph Lange, and Sören Auer. A preliminary inves-
tigation towards improving linked data quality using distance-based outlier
detection. In Yuan-Fang Li, Wei Hu, Jin Song Dong, Grigoris Antoniou,
Zhe Wang, Jun Sun, and Yang Liu, editors, Semantic Technology - 6th Joint
International Conference, JIST 2016, Singapore, Singapore, November 2-4,
2016, Revised Selected Papers, volume 10055 of Lecture Notes in Computer
Science, pages 116–124. Springer, 2016.

156 BIBLIOGRAPHY

[49] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Saso Dzeroski.
Hierarchical annotation of medical images. Pattern Recognition, 44(10-
11):2436–2449, 2011.

[50] Sotiris Diplaris, Grigorios Tsoumakas, Pericles A. Mitkas, and Ioannis P.
Vlahavas. Protein classification with multiple algorithms. In Panayiotis
Bozanis and Elias N. Houstis, editors, Panhellenic Conference on Informat-
ics, volume 3746 of Lecture Notes in Computer Science, pages 448–456.
Springer, 2005.

[51] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’14, pages 601–610, New York, NY, USA,
2014. ACM.

[52] Gauthier Doquire and Michel Verleysen. Feature selection for multi-label
classification problems. In Joan Cabestany, Ignacio Rojas, and Gonzalo Joya
Caparrós, editors, Advances in Computational Intelligence - 11th Inter-
national Work-Conference on Artificial Neural Networks, IWANN 2011,
Torremolinos-Málaga, Spain, June 8-10, 2011, Proceedings, Part I, volume
6691 of Lecture Notes in Computer Science, pages 9–16. Springer, 2011.

[53] P. Duygulu, Kobus Barnard, J. F. G. de Freitas, and David A. Forsyth. Object
recognition as machine translation: Learning a lexicon for a fixed image
vocabulary. In Proceedings of the 7th European Conference on Computer
Vision-Part IV, ECCV ’02, pages 97–112, London, UK, UK, 2002. Springer-
Verlag.

[54] Roman Eisner, Brett Poulin, Duane Szafron, Paul Lu, and Russ Greiner.
Improving protein function prediction using the hierarchical structure of the
gene ontology. In Proc. IEEE CIBCB, 2005.

[55] André Elisseeff and Jason Weston. A kernel method for multi-labelled clas-
sification. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Ad-
vances in Neural Information Processing Systems 14 (NIPS-01), pages 681–
687, 2002.

[56] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and
Denny Vrandečić. Introducing Wikidata to the linked data web. In Pe-
ter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A.
Knoblock, Denny Vrandečić, Paul T. Groth, Natasha F. Noy, Krzysztof
Janowicz, and Carole A. Goble, editors, Proceedings of the 13th Interna-
tional Semantic Web Conference (ISWC’14), volume 8796 of LNCS, pages
50–65. Springer, 2014.

BIBLIOGRAPHY 157

[57] Tiziano Fagni and Fabrizio Sebastiani. On the selection of negative ex-
amples for hierarchical text categorization. In In Proceedings of The 3rd
Language Technology Conference, pages 24–28, 2007.

[58] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL: Con-
cept learning in description logics. In F. Zelezný and N. Lavrac, editors,
Proc. of the 18th Int. Conf. on Inductive Logic Programming (ILP), volume
5194 of LNAI, pages 107–121. Springer, 2008.

[59] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. Induction of con-
cepts in web ontologies through terminological decision trees. In José L.
Balcázar et al., editors, Proceedings of ECML PKDD 2010, Part I, volume
6321 of LNCS/LNAI, pages 442–457. Springer, 2010.

[60] Henning Fernau. Algorithms for learning regular expressions from positive
data. Information and Computation, 207(4):521 – 541, 2009.

[61] J.R. Firth. A synopsis of linguistic theory 1930-1955. Studies in linguistic
analysis, pages 1–32, 1957.

[62] Daniel Fleischhacker, Heiko Paulheim, Volha Bryl, Johanna Völker, and
Christian Bizer. Detecting errors in numerical linked data using cross-
checked outlier detection. In Peter Mika, Tania Tudorache, Abraham Bern-
stein, Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble, editors, The Semantic Web –
ISWC 2014, pages 357–372, Cham, 2014. Springer International Publishing.

[63] J.L. Fleiss et al. Measuring nominal scale agreement among many raters.
Psychological Bulletin, 76(5):378–382, 1971.

[64] A.A. Freitas and Andre C.P.F.L. de Carvalho. A Tutorial on Hierarchical
Classification with Applications in Bioinformatics., volume Research and
Trends in Data Mining Technologies and Applications, chapter VII, pages
182–196. Idea Group, January 2007.

[65] Luis Galárraga, Simon Razniewski, Antoine Amarilli, and Fabian M.
Suchanek. Predicting completeness in knowledge bases. CoRR,
abs/1612.05786, 2016.

[66] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M.
Suchanek. AMIE: association rule mining under incomplete evidence in
ontological knowledge bases. In WWW 2013, Rio de Janeiro, Brazil, 2013,
pages 413–422. ACM, 2013.

[67] Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Presutti, Francesco
Draicchio, Alberto Musetti, and Paolo Ciancarini. Automatic typing of
dbpedia entities. In The 11th International Semantic Web Conference
(ISWC2012), pages 65–81, 2012.

158 BIBLIOGRAPHY

[68] Alberto García-Durán and Mathias Niepert. KBLRN : End-to-end learn-
ing of knowledge base representations with latent, relational, and numerical
features. CoRR, abs/1709.04676, 2017.

[69] Matt Gardner and Tom M. Mitchell. Efficient and expressive knowledge
base completion using subgraph feature extraction. In Lluís Màrquez, Chris
Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
pages 1488–1498. The Association for Computational Linguistics, 2015.

[70] José Emilio Labra Gayo, Eric Prud’hommeaux, Harold R. Solbrig, and
Iovka Boneva. Validating and describing linked data portals using shapes.
CoRR, abs/1701.08924, 2017.

[71] Andrea Giovanni, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini.
Type inference through the analysis of wikipedia links. In Linked Data on
the Web (LDOW), 2012.

[72] Bart Goethals and Jan Van den Bussche. Relational Association Rules: Get-
ting Warmer, pages 125–139. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2002.

[73] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl
knowledge base systems. Web Semant., 3(2-3):158–182, October 2005.

[74] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[75] Marti A. Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In COLING, pages 539–545, 1992.

[76] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Morgan & Claypool, 1st edition, 2011.

[77] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL
class descriptions on very large knowledge bases. International Journal on
Semantic Web and Information Systems, 5(2):25–48, 2009.

[78] Shamsul Huda, John Yearwood, and Andrew Stranieri. Hybrid wrapper-
filter approaches for input feature selection using maximum relevance-
minimum redundancy and artificial neural network input gain measurement
approximation (annigma). In Proceedings of the Thirty-Fourth Australasian
Computer Science Conference - Volume 113, ACSC ’11, pages 43–52, Dar-
linghurst, Australia, Australia, 2011. Australian Computer Society, Inc.

BIBLIOGRAPHY 159

[79] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based
on counterfactuals for concept learning in the semantic web. Applied Intel-
ligence, 26(2):139–159, 2007.

[80] Rodolphe Jenatton, Nicolas L. Roux, Antoine Bordes, and Guillaume R
Obozinski. A latent factor model for highly multi-relational data. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25, pages 3167–3175.
Curran Associates, Inc., 2012.

[81] Qiu Ji, Zhiqiang Gao, and Zhisheng Huang. Reasoning with noisy semantic
data. In The Semanic Web: Research and Applications (ESWC 2011), Part
II, pages 497–502, 2011.

[82] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base com-
pletion: Baselines strike back. CoRR, abs/1705.10744, 2017.

[83] Dimitris Karampinas and Peter Triantafillou. Crowdsourcing taxonomies. In
Elena Simperl, Philipp Cimiano, Axel Polleres, Oscar Corcho, and Valentina
Presutti, editors, The Semantic Web: Research and Applications, pages 545–
559, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[84] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel
text classification for automated tag suggestion. In In: Proceedings of the
ECML/PKDD-08 Workshop on Discovery Challenge, 2008.

[85] Kenji Kira and Larry A. Rendell. The feature selection problem: Traditional
methods and a new algorithm. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, AAAI’92, pages 129–134. AAAI Press,
1992.

[86] Svetlana Kiritchenko, Stan Matwin, and A. Fazel Famili. Functional an-
notation of genes using hierarchical text categorization. In in Proc. of the
BioLINK SIG: Linking Literature, Information and Knowledge for Biology
(held at ISMB-05, 2005.

[87] Svetlana Kiritchenko, Stan Matwin, Richard Nock, and A. Fazel Famili.
Learning and evaluation in the presence of class hierarchies: Application
to text categorization. In Proceedings of the 19th International Conference
on Advances in Artificial Intelligence: Canadian Society for Computational
Studies of Intelligence, AI’06, pages 395–406, Berlin, Heidelberg, 2006.
Springer-Verlag.

[88] Tomáš Kliegr. Linked hypernyms: Enriching dbpedia with targeted hyper-
nym discovery. Web Semantics: Science, Services and Agents on the World
Wide Web, 31:59 – 69, 2015.

160 BIBLIOGRAPHY

[89] Ron Kohavi and George H John. Wrappers for feature subset selection.
Artificial intelligence, 97(1):273–324, 1997.

[90] Aris Kosmopoulos, Georgios Paliouras, and Ion Androutsopoulos. The ef-
fect of dimensionality reduction on large scale hierarchical classification. In
Information Access Evaluation. Multilinguality, Multimodality, and Inter-
action - 5th International Conference of the CLEF Initiative, CLEF 2014,
Sheffield, UK, September 15-18, 2014. Proceedings, pages 160–171, 2014.

[91] Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Georgios Paliouras, and
Ion Androutsopoulos. Evaluation measures for hierarchical classification: a
unified view and novel approaches. Data Mining and Knowledge Discovery,
29(3):820–865, 2015.

[92] L. F. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of a
random vector. Probl. Inf. Transm., 23(1-2):95–101, 1987.

[93] Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens
Lehmann, and Asja Fischer. Incorporating literals into knowledge graph
embeddings. CoRR, abs/1802.00934, 2018.

[94] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

[95] Yannis K Labrou. Yahoo as an Ontology - using Yahoo categories to de-
scribe documents,. In Proceedings of the 1999 ACM Conference on Infor-
mation and Knowledge Management (CIKM’99), November 1999.

[96] J. Richard Landis and Gary G. Koch. The measurement of observer agree-
ment for categorical data. Biometrics, 33(1):pp. 159–174, 1977.

[97] Dustin Lange, Christoph Böhm, and Felix Naumann. Extracting structured
information from wikipedia articles to populate infoboxes. In Proceedings
of the 19th ACM International Conference on Information and Knowledge
Management, CIKM ’10, pages 1661–1664, New York, NY, USA, 2010.
ACM.

[98] Ni Lao and William W. Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine Learning, 81(1):53–67, Oct 2010.

[99] Jens Lehmann. Hybrid learning of ontology classes. In Proc. of the 5th Int.
Conference on Machine Learning and Data Mining (MLDM), volume 4571
of LNCS, pages 883–898. Springer, 2007.

[100] Jens Lehmann. Dl-learner: Learning concepts in description logics. Journal
of Machine Learning Research, 10:2639–2642, 2009.

[101] Jens Lehmann. DL-Learner: learning concepts in description logics. Jour-
nal of Machine Learning Research (JMLR), 10:2639–2642, 2009.

BIBLIOGRAPHY 161

[102] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. Class
expression learning for ontology engineering. Journal of Web Semantics,
9:71 – 81, 2011.

[103] Jens Lehmann and Christoph Haase. Ideal downward refinement in the EL
description logic. In Proc. of the Int. Conf. on Inductive Logic Programming,
volume 5989 of LNCS, pages 73–87. Springer, 2009.

[104] Jens Lehmann and Pascal Hitzler. A refinement operator based learning
algorithm for the ALC description logic. In ILP 2007, volume 4894 of
LNCS, pages 147–160. Springer, 2008.

[105] Jens Lehmann and Pascal Hitzler. Concept learning in description logics
using refinement operators. Machine Learning journal, 78(1-2):203–250,
2010.

[106] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, and Christian Bizer. DBpedia – A large-scale, mul-
tilingual knowledge base extracted from Wikipedia. Semantic Web Journal,
2014.

[107] Jens Lehmann and Johanna Voelker. An introduction to ontology learning.
In Jens Lehmann and Johanna Voelker, editors, Perspectives on Ontology
Learning, pages ix–xvi. AKA / IOS Press, 2014.

[108] Jens Lehmann and Johanna Völker, editors. Perspectives on Ontology
Learning. Studies on the Semantic Web. AKA Heidelberg, 2014.

[109] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new
benchmark collection for text categorization research. J. Mach. Learn. Res.,
5:361–397, December 2004.

[110] Yankai Lin, Zhiyuan Liu, and Maosong Sun. Modeling relation paths for
representation learning of knowledge bases. CoRR, abs/1506.00379, 2015.

[111] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learn-
ing entity and relation embeddings for knowledge graph completion. In
Proceedings of AAAI, pages 2181–2187, 2015.

[112] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pages 2181–2187. AAAI Press, 2015.

[113] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag New
York, Inc., New York, NY, USA, 1984.

162 BIBLIOGRAPHY

[114] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta. Evalu-
ating question answering over linked data. Web Semantics: Science, Services
and Agents on the World Wide Web, 21:3–13, 2013.

[115] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and SašO Deroski. An
extensive experimental comparison of methods for multi-label learning. Pat-
tern Recogn., 45(9):3084–3104, September 2012.

[116] Alexander Maedche and Steffen Staab. Ontology learning for the semantic
web. IEEE Intelligent systems, 16(2):72–79, 2001.

[117] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3:
A Knowledge Base from Multilingual Wikipedias. In Conference on Inno-
vative Data Systems Research, 2015.

[118] J. Mata, J.L. Alvarez, and J.C. Riquelme. An evolutionary algorithm to dis-
cover numeric association rules. In In Proceedings of the ACM symposium
on Applied computing (SAC), pages 590–594, 2002.

[119] André Melo. Learning rules with numerical and categorical attributes from
linked data sources. Master’s thesis, Universität des Saarlandes, Saar-
brücken, March 2013.

[120] André Melo and Heiko Paulheim. An approach to correction of erroneous
links in knowledge graphs. In Proceedings of the Quality Engineering
Meets Knowledge Graph (QEKGraph) workshop, co-located with the In-
ternational Knowledge Capture Conference, K-CAP 2017, volume 2065 of
CEUR Workshop Proceedings, pages 54–57. CEUR-WS.org, 2017.

[121] André Melo and Heiko Paulheim. Detection of relation assertion errors in
knowledge graphs. In Óscar Corcho, Krzysztof Janowicz, Giuseppe Rizzo,
Ilaria Tiddi, and Daniel Garijo, editors, Proceedings of the Knowledge Cap-
ture Conference, K-CAP 2017, Austin, TX, USA, December 4-6, 2017, pages
22:1–22:8. ACM, 2017.

[122] André Melo and Heiko Paulheim. Local and global feature selection for
multilabel classification with binary relevance. Artificial Intelligence Re-
view, May 2017.

[123] André Melo and Heiko Paulheim. Synthesizing knowledge graphs for link
and type prediction benchmarking. In Eva Blomqvist, Diana Maynard, Aldo
Gangemi, Rinke Hoekstra, Pascal Hitzler, and Olaf Hartig, editors, The Se-
mantic Web, pages 136–151, Cham, 2017. Springer International Publish-
ing.

[124] André Melo, Heiko Paulheim, and Johanna Völker. Type prediction in rdf
knowledge bases using hierarchical multilabel classification. In Proceedings

BIBLIOGRAPHY 163

of the 6th International Conference on Web Intelligence, Mining and Seman-
tics, WIMS ’16, pages 14:1–14:10, New York, NY, USA, 2016. ACM.

[125] André Melo, Martin Theobald, and Johanna Völker. Correlation-based re-
finement of rules with numerical attributes. In William Eberle and Chutima
Boonthum-Denecke, editors, Proceedings of the Twenty-Seventh Interna-
tional Florida Artificial Intelligence Research Society Conference, FLAIRS
2014, Pensacola Beach, Florida, May 21-23, 2014. AAAI Press, 2014.

[126] Andre Melo, Johanna Völker, and Heiko Paulheim. Type prediction in noisy
rdf knowledge bases using hierarchical multilabel classification with graph
and latent features. International Journal on Artificial Intelligence Tools,
26(02):1760011, 2017.

[127] Stoyan Mihov and Klaus U. Schulz. Fast approximate search in large dic-
tionaries. Comput. Linguist., 30(4):451–477, December 2004.

[128] Tom M. Mitchell. Generalization as search. Artificial Intelligence,
18(2):203–226, 1982.

[129] Luis Carlos Molina, Lluís Belanche, and Àngela Nebot. Feature selection
algorithms: A survey and experimental evaluation. In International Confer-
ence on Data Mining (ICDM), pages 306–313. IEEE, 2002.

[130] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo. DBpedia SPARQL Benchmark—Performance Assessment with
Real Queries on Real Data. In ISWC 2011, 2011.

[131] S. Muggleton. Inverse Entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[132] Stephen Muggleton. Learning from positive data. In 6th International Work-
shop on Inductive Logic Programming, pages 358–376. Springer-Verlag,
1997.

[133] Emir Muñoz and Matthias Nickles. Mining cardinalities from knowledge
bases. In DEXA (1), volume 10438 of Lecture Notes in Computer Science,
pages 447–462. Springer, 2017.

[134] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, March 2001.

[135] Thomas Neumann and Gerhard Weikum. The RDF-3x engine for scalable
management of RDF data. The VLDB Journal, 19(1):91–113, February
2010.

[136] Jennifer Neville and David Jensen. Iterative classification in relational data.
In Proc. AAAI Workshop on Learning Statistical Models from Relational
Data, pages 13–20, 2000.

164 BIBLIOGRAPHY

[137] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich.
A review of relational machine learning for knowledge graphs. Proceedings
of the IEEE, 104(1):11–33, 2016.

[138] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic
embeddings of knowledge graphs. CoRR, abs/1510.04935, 2015.

[139] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Lise Getoor and
Tobias Scheffer, editors, Proceedings of the 28th International Conference
on Machine Learning (ICML-11), ICML ’11, pages 809–816, New York,
NY, USA, June 2011. ACM.

[140] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of inductive
logic programming, volume 1228. Springer, 1997.

[141] Mathias Niepert. Discriminative gaifman models. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 3405–3413. Curran As-
sociates, Inc., 2016.

[142] David W. Opitz. Feature selection for ensembles. In In Proceedings of 16th
National Conference on Artificial Intelligence (AAAI, pages 379–384. Press,
1999.

[143] Eyal Oren, Sebastian Gerke, and Stefan Decker. Simple algorithms for pred-
icate suggestions using similarity and co-occurrence. In European Semantic
Web Conference (ESWC 2007), pages 160–174. Springer, 2007.

[144] Fernando E. Otero, Alex A. Freitas, and Colin G. Johnson. A hierarchical
classification ant colony algorithm for predicting gene ontology terms. In
Proceedings of the 7th European Conference on Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics, EvoBIO ’09, pages
68–79, Berlin, Heidelberg, 2009. Springer-Verlag.

[145] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres,
George Paliouras, Eric Gaussier, Ion Androutsopoulos, Massih-Reza Amini,
and Patrick Galinari. Lshtc: A benchmark for large-scale text classification.
CoRR, abs/1503.08581, march 2015.

[146] Heiko Paulheim. Exploiting linked open data as background knowledge in
data mining. In International Workshop on Data Mining on Linked Data
(DMoLD, 2013.

[147] Heiko Paulheim. Identifying wrong links between datasets by multi-
dimensional outlier detection. In WoDOOM, pages 27–38, 2014.

BIBLIOGRAPHY 165

[148] Heiko Paulheim. Data-driven joint debugging of the dbpedia mappings and
ontology. In European Semantic Web Conference, pages 404–418. Springer,
2017.

[149] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017.

[150] Heiko Paulheim and Christian Bizer. Type inference on noisy rdf data.
In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris Bie-
mann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty,
and Krzysztof Janowicz, editors, International Semantic Web Conference
(1), volume 8218 of Lecture Notes in Computer Science, pages 510–525.
Springer, 2013.

[151] Heiko Paulheim and Christian Bizer. Improving the quality of linked data
using statistical distributions. Int. J. Semant. Web Inf. Syst., 10(2):63–86,
April 2014.

[152] Heiko Paulheim and Johannes Fürnkranz. Unsupervised generation of data
mining features from linked open data. In Proceedings of the 2nd inter-
national conference on web intelligence, mining and semantics, page 31.
ACM, 2012.

[153] Heiko Paulheim and Aldo Gangemi. Serving dbpedia with dolce–more than
just adding a cherry on top. In International Semantic Web Conference,
pages 180–196. Springer, 2015.

[154] John P. Pestian, Christopher Brew, PawełMatykiewicz, D. J. Hovermale,
Neil Johnson, K. Bretonnel Cohen, and Wlodzislaw Duch. A shared task
involving multi-label classification of clinical free text. In Proceedings
of the Workshop on BioNLP 2007: Biological, Translational, and Clinical
Language Processing, BioNLP ’07, pages 97–104, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics.

[155] Aleksander Pohl. Classifying the wikipedia articles in the opencyc taxon-
omy. In Web of Linked Entities Workshop (WoLE 2012), 2012.

[156] Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we
ever catch up with the web? Semantic Web Journal, 1(1,2):45–52, 2010.

[157] Jedrzej Potoniec, Piotr Jakubowski, and Agnieszka Lawrynowicz. Swift
linked data miner: Mining owl 2 el class expressions directly from on-line
rdf datasets. Web Semantics: Science, Services and Agents on the World
Wide Web, 46(1), 2017.

[158] Valentina Presutti, Francesco Draicchio, and Aldo Gangemi. Knowledge
extraction based on discourse representation theory and linguistic frames.

166 BIBLIOGRAPHY

In Knowledge Engineering and Knowledge Management, volume 7603 of
LNCS, pages 114–129. Springer, 2012.

[159] Huaqiao Qu, Shichao Zhang, Huawen Liu, and Jianmin Zhao. A multi-label
classification algorithm based on label-specific features. Wuhan University
Journal of Natural Sciences, 16(6):520–524, 2011.

[160] J. Ross Quinlan. Learning logical definitions from relations. Machine
Learning, 5:239–266, 1990.

[161] Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggleton,
editors. Probabilistic Inductive Logic Programming - Theory and Applica-
tions, volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

[162] Jesse Read. A pruned problem transformation method for multi-label classi-
fication. In In: Proc. 2008 New Zealand Computer Science Research Student
Conference (NZCSRS, pages 143–150, 2008.

[163] Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Scalable
and efficient multi-label classification for evolving data streams. Machine
Learning, 88(1-2):243–272, 2012.

[164] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier
chains for multi-label classification. In Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery in Databases: Part
II, ECML PKDD’09, pages 254–269, Berlin, Heidelberg, 2009. Springer-
Verlag.

[165] Jesse Read, Bernhard Pfahringer, and Geoffrey Holmes. Multi-label classi-
fication using ensembles of pruned sets. In ICDM, pages 995–1000. IEEE
Computer Society, 2008.

[166] Daniel Ringler and Heiko Paulheim. One knowledge graph to rule them all?
analyzing the differences between dbpedia, yago, wikidata & co. In 40th
German Conference on Artificial Intelligence, 2017. to appear.

[167] Petar Ristoski, Gerben Klaas Dirk de Vries, and Heiko Paulheim. A collec-
tion of benchmark datasets for systematic evaluations of machine learning
on the semantic web. In ISWC. Springer, 2016.

[168] Petar Ristoski and Heiko Paulheim. A comparison of propositionalization
strategies for creating features from linked open data. In Linked Data for
Knowledge Discovery, 2014.

[169] Petar Ristoski and Heiko Paulheim. RDF2Vec: RDF Graph Embeddings
for Data Mining, pages 498–514. Springer International Publishing, Cham,
2016.

BIBLIOGRAPHY 167

[170] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. Matching html
tables to dbpedia. In Proceedings of the 5th International Conference on
Web Intelligence, Mining and Semantics, WIMS ’15, pages 10:1–10:6, New
York, NY, USA, 2015. ACM.

[171] Sebastian Rudolph. Acquiring Generalized Domain-Range Restrictions,
pages 32–45. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[172] Yvan Saeys, Thomas Abeel, and Yves Peer. Robust feature selection using
ensemble feature selection techniques. In Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery in Databases - Part
II, ECML PKDD ’08, pages 313–325, Berlin, Heidelberg, 2008. Springer-
Verlag.

[173] Ansaf Salleb-Aouissi, Christel Vrain, and Cyril Nortet. Quantminer: A
genetic algorithm for mining quantitative association rules. In Manuela M.
Veloso, editor, IJCAI, pages 1035–1040, 2007.

[174] Behrokh Samadi, Alan Cipolone, Pengyue J. Lin, Rui Xiao, Daniel R. Jeske,
Douglas Holt, Carlos Rend, and Sean Cox. Development of a synthetic data
set generator for building and testing information discovery systems. Third
International Conference on Information Technology, pages 707–712, 2006.

[175] Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system
for text categorization. Machine Learning, 39(2/3):135–168, 2000.

[176] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the
Linked Data Best Practices in Different Topical Domains, pages 245–260.
Springer International Publishing, Cham, 2014.

[177] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
Sp2bench: A SPARQL performance benchmark. CoRR, abs/0806.4627,
2008.

[178] Baoxu Shi and Tim Weninger. Proje: Embedding projection for knowledge
graph completion, 2017.

[179] Carlos N. Silla, Jr. and Alex A. Freitas. A survey of hierarchical classi-
fication across different application domains. Data Min. Knowl. Discov.,
22(1-2):31–72, January 2011.

[180] Ivica Slavkov, Jana Karcheska, Dragi Kocev, Slobodan Kalajdziski, and
Saso Dzeroski. Relieff for hierarchical multi-label classification. In An-
nalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio
Masciari, and Zbigniew W. Ras, editors, New Frontiers in Mining Complex
Patterns - Second International Workshop, NFMCP 2013, Held in Conjunc-
tion with ECML-PKDD 2013, Prague, Czech Republic, September 27, 2013,

168 BIBLIOGRAPHY

Revised Selected Papers, volume 8399 of Lecture Notes in Computer Sci-
ence, pages 148–161. Springer, 2013.

[181] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems 26, pages 926–934.
Curran Associates, Inc., 2013.

[182] Newton Spolaôr and Grigorios Tsoumakas. Evaluating feature selection
methods for multi-label text classication. In Axel-Cyrille Ngonga Ngomo
and George Paliouras, editors, Proceedings of the first Workshop on Bio-
Medical Semantic Indexing and Question Answering, a Post-Conference
Workshop of Conference and Labs of the Evaluation Forum 2013 (CLEF
2013) , Valencia, Spain, September 27th, 2013., volume 1094 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[183] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association
rules in large relational tables. SIGMOD Rec., 25(2):1–12, 1996.

[184] Ashok Srivastava and Brett Zane-Ulman. Discovering recurring anomalies
in text reports regarding complex space systems. In Proceedings of the 2005
IEEE Aerospace Conference, 2005.

[185] Fabian M. Suchanek, David Gross-Amblard, and Serge Abiteboul. Wa-
termarking for ontologies. In Lora Aroyo, Chris Welty, Harith Alani,
Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva
Blomqvist, editors, The Semantic Web – ISWC 2011, pages 697–713, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[186] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 697–706. ACM, 2007.

[187] Aixin Sun, Ee-Peng Lim, Wee Keong Ng, and Jaideep Srivastava. Blocking
reduction strategies in hierarchical text classification. IEEE Trans. Knowl.
Data Eng., 16(10):1305–1308, 2004.

[188] Yannis Theodoridis and Mario A. Nascimento. Generating spatiotemporal
datasets on the www. SIGMOD Rec., 29(3):39–43, September 2000.

[189] Steffen Thoma, Achim Rettinger, and Fabian Both. Towards holistic concept
representations: Embedding relational knowledge, visual attributes, and dis-
tributional word semantics. In The Semantic Web - ISWC 2017 - 16th Inter-
national Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part I, pages 694–710, 2017.

BIBLIOGRAPHY 169

[190] Gerald Töpper, Magnus Knuth, and Harald Sack. DBpedia Ontology En-
richment for Inconsistency Detection. In Proceedings of the 8th Interna-
tional Conference on Semantic Systems, pages 33–40, New York, 2012.
ACM. http://dx.doi.org/10.1145/2362499.2362505.

[191] Kristina Toutanova and Danqi Chen. Observed versus latent features for
knowledge base and text inference. In 3rd Workshop on Continuous Vector
Space Models and Their Compositionality. ACL – Association for Compu-
tational Linguistics, July 2015.

[192] Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioan-
nis P. Vlahavas. Multi-label classification of music into emotions. In
Juan Pablo Bello, Elaine Chew, and Douglas Turnbull, editors, ISMIR, pages
325–330, 2008.

[193] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guil-
laume Bouchard. Complex embeddings for simple link prediction. CoRR,
abs/1606.06357, 2016.

[194] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. Int J Data Warehousing and Mining, 2007:1–13, 2007.

[195] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and
efficient multilabel classification in domains with large number of labels.
In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data
(MMD’08), 2008.

[196] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-
labelsets for multi-label classification. IEEE Transactions on Knowledge
and Data Engineering, 99(1), 2010.

[197] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and
Ioannis Vlahavas. Mulan: A java library for multi-label learning. Journal
of Machine Learning Research, 12:2411–2414, 2011.

[198] Douglas Turnbull, Luke Barrington, David A. Torres, and Gert R. G. Lanck-
riet. Semantic annotation and retrieval of music and sound effects. IEEE
Transactions on Audio, Speech and Language Processing, 16(2):467–476,
2008.

[199] Naonori Ueda and Kazumi Saito. Parametric mixture models for multi-
labeled text. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15, pages 737–744. MIT Press,
2003.

[200] Marieke van Erp, Pablo Mendes, Heiko Paulheim, Filip Ilievski, Julien Plu,
Giuseppe Rizzo, and Jörg Waitelonis. Evaluating entity linking: An analysis

http://dx.doi.org/10.1145/2362499.2362505

170 BIBLIOGRAPHY

of current benchmark datasets and a roadmap for doing a better job. In of
the Language Resources and Evaluation Conference. ELRA, 2016.

[201] Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik
Blockeel. Decision trees for hierarchical multi-label classification. Mach.
Learn., 73(2):185–214, November 2008.

[202] Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of OWL
DL axioms from lexical resources. In ESWC, pages 670–685, 2007.

[203] Johanna Völker and Mathias Niepert. Statistical schema induction. In Proc.
of the Extended Semantic Web Conference (ESWC), pages 124–138, 2011.

[204] Johanna Völker and Mathias Niepert. Statistical schema induction. In Pro-
ceedings of the 8th Extended Semantic Web Conference on The Semantic
Web: Research and Applications - Volume Part I, ESWC’11, pages 124–
138, Berlin, Heidelberg, 2011. Springer-Verlag.

[205] Denny Vrandečić and Markus Krötzsch. Wikidata: a Free Collaborative
Knowledge Base. Communications of the ACM, 57(10):78–85, 2014.

[206] Chengyu Wang, Rong Zhang, Xiaofeng He, and Aoying Zhou. Error link
detection and correction in wikipedia. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management,
CIKM ’16, pages 307–316, New York, NY, USA, 2016. ACM.

[207] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge
and Data Engineering, PP(99):1–1, 2017.

[208] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In AAAI, pages 1112–1119.
AAAI Press, 2014.

[209] Gabriel Weaver, Barbara Strickland, and Gregory Crane. Quantifying
the accuracy of relational statements in wikipedia: a methodology. 2006
IEEE/ACM 6th Joint Conference on Digital Libraries, 00:358, 2006.

[210] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul
Gupta, and Dekang Lin. Knowledge base completion via search-based ques-
tion answering. In Proceedings of the 23rd International Conference on
World Wide Web, WWW ’14, pages 515–526, New York, NY, USA, 2014.
ACM.

[211] Dominik Wienand and Heiko Paulheim. Detecting incorrect numerical
data in dbpedia. In European Semantic Web Conference, pages 504–518.
Springer, 2014.

BIBLIOGRAPHY 171

[212] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1(6):80–83, December 1945.

[213] Wilson Wong, Wei Liu, and Mohammed Bennamoun. Ontology learning
from text: A look back and into the future. ACM Comput. Surv., 44(4):20,
2012.

[214] Fei Wu, Raphael Hoffmann, and Daniel S. Weld. Information extraction
from wikipedia: Moving down the long tail. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’08, pages 731–739, New York, NY, USA, 2008. ACM.

[215] Feihong Wu, Jun Zhang, and Vasant Honavar. Learning Classifiers Us-
ing Hierarchically Structured Class Taxonomies, pages 313–320. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

[216] Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. Transg : A generative
mixture model for knowledge graph embedding. CoRR, abs/1509.05488,
2015.

[217] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Learning multi-relational semantics using neural-embedding models. CoRR,
abs/1411.4072, 2014.

[218] Zhenglu Yang, Jianjun Yu, and Masaru Kitsuregawa. Fast algorithms for
top-k approximate string matching. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI’10, pages 1467–1473.
AAAI Press, 2010.

[219] Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart, Marc Spaniol, and
Gerhard Weikum. HYENA: hierarchical type classification for entity names.
In COLING 2012, 24th International Conference on Computational Lin-
guistics, Proceedings of the Conference: Posters, 8-15 December 2012,
Mumbai, India, pages 1361–1370, 2012.

[220] Amrapali Zaveri, Dimitris Kontokostas, Mohamed A Sherif, Lorenz Büh-
mann, Mohamed Morsey, Sören Auer, and Jens Lehmann. User-driven qual-
ity evaluation of dbpedia. In Proceedings of the 9th International Confer-
ence on Semantic Systems, pages 97–104. ACM, 2013.

[221] Min-Ling Zhang, José M. Peña, and Victor Robles. Feature selection
for multi-label naive bayes classification. Inf. Sci., 179(19):3218–3229,
September 2009.

[222] Min-Ling Zhang and Lei Wu. Lift: Multi-label learning with label-specific
features. IEEE Trans. Pattern Anal. Mach. Intell., 37(1):107–120, 2015.

172 BIBLIOGRAPHY

[223] Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with ap-
plications to functional genomics and text categorization. IEEE Trans. on
Knowl. and Data Eng., 18(10):1338–1351, October 2006.

[224] Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach
to multi-label learning. Pattern Recogn., 40(7):2038–2048, 2007.

[225] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algo-
rithms. IEEE Trans. Knowl. Data Eng., 26(8):1819–1837, 2014.

[226] M.L. Zhang and Z.H. Zhou. Multi-label neural networks with applications to
functional genomics and text categorization. IEEE Transactions on Knowl-
edge and Data Engineering, 18:1338–1351, 2006.

[227] Zexuan Zhu, Yew-Soon Ong, and Manoranjan Dash. Wrapper-filter fea-
ture selection algorithm using a memetic framework. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 37(1):70–76, 2007.

Ehrenwörtliche Erklärung

Ich versichere, dass ich die beiliegende Dissertation ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt und
die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen. Ich bin mir bewusst, dass eine falsche Er-
klärung rechtliche Folgen haben wird.

Mannheim, August 27, 2018 Unterschrift

	Abstract
	Table of Contents
	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Structure

	2 Fundamentals
	2.1 Knowledge Graphs in the Semantic Web
	2.2 Linked Open Data
	2.3 Knowledge Graph Construction
	2.4 Incompleteness and Noise
	2.5 Knowledge Graph Lifecycle
	2.6 Ontology Learning
	2.7 Automatic ABox Refinement Approaches
	2.7.1 Error Detection vs. Graph Completion
	2.7.2 Internal vs. External Methods
	2.7.3 Latent vs. Graph Feature Models

	2.8 Evaluation of Knowledge Graph Refinement Methods

	3 Related Work
	3.1 Synthesis of Knowledge Graphs for Benchmarking
	3.2 Type Prediction
	3.3 Relation Assertion Error Detection
	3.4 Correction of Confusions in Knowledge Graphs
	3.5 Relation Constraints Learning
	3.6 Inductive Lexical Learning of Class Expressions
	3.7 Learning Rules With Numerical Attributes
	3.8 Summary

	I ABox Refinement
	4 Synthesizing Knowledge Graphs for Refinement Benchmarking
	4.1 Introduction
	4.2 Knowledge Graph Model
	4.3 Synthesis Process
	4.4 Experiments
	4.5 Conclusion

	5 Type Prediction using Hierarchical Multilabel Classification
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Multilabel Classification Approaches
	5.2.2 Hierarchical Multilabel Classification Approaches
	5.2.3 Evaluation Measures

	5.3 Problem Definition
	5.4 Approach
	5.4.1 Algorithm
	5.4.2 Features

	5.5 Experiments
	5.5.1 Datasets
	5.5.2 SLCN Base Classifier and Parameter Settings
	5.5.3 Graph Features vs. Latent Features
	5.5.4 Scalability Experiments
	5.5.5 Large-Scale Experiments on SW Datasets

	5.6 Conclusion

	6 Detection of Relation Assertion Errors
	6.1 Introduction
	6.2 Problem Definition
	6.3 Approach
	6.3.1 Extracted Features
	6.3.2 Learning the Model

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Evaluation Measures
	6.4.3 Parameter Settings
	6.4.4 Comparison
	6.4.5 Manual Evaluation

	6.5 Conclusion

	7 Correction of Confusions Between Entities
	7.1 Introduction
	7.2 Proposed Approach
	7.2.1 Type Prediction
	7.2.2 Retrieving Candidates
	7.2.3 Correcting Wrong facts

	7.3 Experiments
	7.4 Conclusion

	II TBox Refinement
	8 Generation of SHACL Relation Constraints
	8.1 Introduction
	8.2 Generating SHACL constraints
	8.2.1 SHACL
	8.2.2 Generation Process

	8.3 Experiments
	8.4 Conclusion

	9 Inductive Lexical Learning of Class Expressions
	9.1 Introduction
	9.2 Preliminaries
	9.3 Approach
	9.4 Evaluation
	9.4.1 Experimental Setup
	9.4.2 Results
	9.4.3 Discussion

	9.5 Conclusion

	10 Learning Rules With Numerical Attributes
	10.1 Introduction
	10.2 Problem Definition
	10.3 Interestingness Measure
	10.4 Correlation Lattice
	10.4.1 Independence Test
	10.4.2 Scalability

	10.5 ILP Algorithm
	10.6 Experiments
	10.7 Conclusion

	11 Thesis Conclusion
	11.1 Part I: ABox Refinement
	11.2 Part II: TBox Refinement
	11.3 Open Issues and Limitations
	11.4 Future Work
	11.4.1 General Perspective

	A Local vs. Global Feature Selection in Multilabel Classification
	A.1 Introduction
	A.2 Background
	A.2.1 Multilabel Classification
	A.2.2 Hierarchical Multilabel Classification
	A.2.3 Evaluation Measures
	A.2.4 Feature Selection Methods

	A.3 Related Work
	A.4 Feature Selection on Transformed Multilabel Classification
	A.4.1 Global Feature Selection
	A.4.2 Local Feature Selection
	A.4.3 Analysis of Local Feature Sets

	A.5 Experiments
	A.5.1 Datasets
	A.5.2 Scalability
	A.5.3 Results
	A.5.4 Statistical Analysis

	A.6 Conclusion and Future Work

	Bibliography

