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Abstract

This thesis deals with various aspects of X-ray computed tomography (CT)

from non-ideal projection data that do not permit the successful application

of standard image reconstruction methods. A versatile calibration method

was implemented allowing an adequate correction for geometric 
ex e�ects

introduced by non-ideal geometry during data acquisition. A �ltered back-

projection algorithm was modi�ed such that the geometric information from

the calibration can be considered with high accuracy and in a computation-

ally eÆcient way. The methods proposed here were evaluated by means of

computer simulations and measurements using two experimental cone-beam

CT scanners. Results are presented that demonstrate their excellent per-

formance. Furthermore, a new retrospective image restoration scheme was

developed in order to tackle the problem of inconsistent projection data due

to internal organ motion. This scheme was applied to simulated projections

as well as clinical CT data of a beating heart. The results of these investiga-

tions indicate that the image restoration approach is a promising alternative

to existing, well-established image reconstruction methods if considerable

organ motion occurs during data acquisition.

Zusammenfassung

Diese Arbeit behandelt verschiedene Aspekte der R�ontgencomputertomogra-

phie (CT) auf Basis nicht-idealer Projektionsdaten, welche einer erfolgreichen

Anwendung von etablierten Bildrekonstruktionsverfahren nicht zug�anglich

sind. Ein 
exibles Kalibrierverfahren wurde implementiert, um eine ad�aquate

Korrektur der durch geometrisch instabile R�ontgenger�ate verursachten Ef-

fekte zu erm�oglichen. Ein Algorithmus zur ge�lterten R�uckprojektion wurde

derart modi�ziert, da� die von der Kalibrierung zur Verf�ugung gestellte, geo-

metrische Information sowohl sehr genau als auch eÆzient ber�ucksichtigt wer-

den kann. Die ausgezeichnete Leistungsf�ahigkeit der Verfahren wurde durch

deren Evaluation mit Hilfe von Computersimulationen und Messungen an

zwei experimentellen Kegelstrahl-CT-Scannern gezeigt. Dar�uber hinaus wur-

de ein neues, retrospektives Verfahren zur Bildwiederherstellung entwickelt,

um dem Problem inkonsistenter Projektionsdaten, verursacht durch die Be-

wegung innerer Organe, zu begegnen. Das Verfahren wurde an simulierten

Projektionen und an klinischen CT-Daten eines schlagenden Herzens gete-

stet. Die Ergebnisse dieser Untersuchungen lassen erkennen, da� der hier

verfolgte Ansatz eine vielversprechende Alternative zu etablierten Bildrekon-

struktionsverfahren ist, wenn w�ahrend der Datenakquisition nennenswerte

Organbewegungen auftreten.
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Chapter 1

Introduction

The creation of images of a patient's internal anatomy is one of the most

important pillars of modern medical diagnosis. There are few persons in in-

dustrialized countries who have not been subject to one or the other medical

imaging procedure at least once in their life. The use of ultrasound to mon-

itor pregnancies and the acquisition of radiographs to visualize fractures are

only two well-known examples across a wide spectrum of imaging techniques

currently available.

Nowadays it is hardly recognized that there has passed only about a century

since Wilhelm Conrad R�ontgen pioneered the era of medical imaging with

all its fascinating inventions. Before 8 November 1895, the noteworthy day

he discovered the X-rays, the only way to see inside the human body had

been via invasive operation. Such diagnostic interventions often posed a high

risk to the patients. The enormous potential bene�t of non-invasive imaging

to the patient was apparent when R�ontgen presented his discovery. Not

surprisingly, the development of clinical radiology, once initiated, proceeded

with dramatic speed.

Within a year after this breakthrough in clinical diagnosis, the need for three-

dimensional imaging techniques had been voiced. Although planar radio-

graphs were found to be satisfactory for various purposes as, for example,

bone imaging, their lack of depth information was noticed immediately. Early

attempts to overcome this limitation of X-ray imaging were driven by the de-

sire to accurately localize lesions within the patient. The problem of locating

embedded projectiles, escalating during the First World War, was frequently

solved by one of the very �rst imaging methods today collectively referred to

as classical tomography.
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2 CHAPTER 1. INTRODUCTION

This generic term should not hide the fact that there have been proposed nu-

merous di�erent techniques for obtaining some kind of three-dimensional in-

formation about a patient's anatomy. The most obvious classi�cation of these

early attempts is into blurring tomography and stereo-radiography [130]. In

blurring tomography, a single X-ray image is acquired in which a deliberately

chosen plane of interest is more in focus than the others. This is achieved by

introducing a well-de�ned movement of X-ray source and detector relative to

the patient during exposure. The methods labelled as stereo-radiography uti-

lize at least two planar radiographs taken with the X-ray source in di�erent

locations in order to obtain some depth information.

In fact, the techniques summarized above were able to enlarge the range of

diagnostic possibilities signi�cantly, and some of them are still in use. Never-

theless, none of these methods provides truly three-dimensional information.

Using blurring tomography, the contributions of parts of the body other than

the desired cross-section may be confusing, although they are smeared out.

Stereo-radiography relies on the fact that corresponding points can be clearly

identi�ed in di�erent planar X-ray images. This can be cumbersome or even

impossible in practical situations.

For various reasons, it would take almost another 80 years from the discovery

of X-rays until the dream of real section imaging came true. The history of

this period of time regarding tomography is characterized by several inde-

pendent developments. Only the most important milestones selected from

the thorough review by Webb [130] are mentioned in the following.

The Bohemian mathematician Radon proved in 1917 that an N -dimensional

function is uniquely determined if its integral values over all hyperplanes

are available [93]. The two-dimensional case of this general mathematical

framework indicates that, in principle, the linear attenuation coeÆcients of a

body section can be calculated from the integrals along all lines through this

slice of interest. Ignoring, for the moment, some physical problems related

to data acquisition and the fact that an in�nite number of measurements

can never be recorded in practice, these line integrals are provided by X-ray

transmission data. Radon's theory was �rst applied to radioastronomy by

Bracewell in 1956 [8]. Unfortunately, there was little response to his work,

and it did not in
uence the �eld of medical imaging at the time.

The idea of reconstructing the distribution of attenuation coeÆcients within

a human body section from X-ray transmission data was �rst published by

Cormack in 1963 [15]. He postulated that even very small attenuation dif-

ferences of various soft tissue types could be distinguished, but he was never
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able to prove this method in practice. A long time later he heard about

Radon's theory; had he been aware of this earlier, it would have saved him

a lot of e�ort.

The �rst successful implementation of an X-ray computed tomography (CT)

scanner was accomplished by the English engineer Houns�eld. Again, what

seems to be so typical for the history of tomography, he did not know the

previous work at all [50]. However, it would not be worthwhile speculating

how CT developments could have gone otherwise. The use of computer tech-

nology, which had only just become available, was a mandatory precondition

for Houns�eld's success in reconstructing tomograms in practice.

Houns�eld was employed by the British company EMI that had only made

records and electronic devices before. The EMI scanner recorded 180 views

equally spaced over an angular range of 180Æ, each of them comprising 160

transmission measurements along parallel stripes. Scanning time for one

transverse CT slice was about 6 minutes because all of the 28,800 measure-

ments were taken sequentially using one scintillation detector. Images were

reconstructed iteratively into a matrix of 80� 80 pixels [43]. The pixel size

was 3 � 3mm2, the thickness of one transaxial CT slice could be chosen to

be 8mm or 13mm [2].

On 1 October 1971 the �rst clinical CT scan was acquired at the Atkinson

Morley's Hospital in London. The images taken of a 41 year old female,

who was suspected to su�er from a tumour, showed clearly an intracranial

cyst [50, 130]. When these images were presented at the 1972 British Insti-

tute of Radiology Conference, the scienti�c community were amazed at what

had been achieved. The Nobel Prize was awarded to Houns�eld and Cor-

mack in 1979. They are often called the pioneers of computed tomography,

although there were many important contributions by other scientists.

For about two years EMI was the only company selling CT scanners. In 1974,

when Siemens followed by providing a CT device, there were already 60 EMI

installations. By the end of the �rst decade of computed tomography, there

were about 10,000 installations and 18 companies selling CT scanners [50].

Many of these companies, including EMI, were not able to keep up with the

competition. During these years, a lot of patents improving the basic CT

principle were applied for [130]. Very soon Houns�eld proposed to collect

several transmission measurements simultaneously using multiple detectors,

in order to reduce scanning time. It did not take a long time for fan-beam

computed tomography became the state of the art, and iterative reconstruc-

tion techniques were replaced by �ltered backprojection algorithms.
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After this �rst rapid CT boom, the 1980s turned out to be rather silent, since

the peak of developments had seemed to be already reached. In 1990 Kalen-

der suggested the introduction of the helical scanning mode in addition to

the well-established slice-by-slice collection of projection data [53]. The idea

of rotating the X-ray source and moving the table continuously, which results

in a helical trajectory of the focus with respect to the patient, was received

quite sceptically. It took some time until the clinical advantages of reduced

scanning time and continuous volume coverage were realized. Nowadays, the

helical mode is frequently used since it allows, for example, the acquisition

of a thorax scan within a single breath-hold. Meanwhile, the compromise

between avoiding organ motion artefacts at the cost of introducing some new

artefacts due to the approximations required in helical reconstruction algo-

rithms has been thoroughly investigated and is clearly understood [51, 52].

Recently, multi-row detectors became available in modern CT scanners of

various manufacturers [44]. With this technique, projection data for multi-

ple transverse slices can be acquired simultaneously which further decreases

scanning time. The reconstruction algorithms applied to multi-row data are

mostly two-dimensional involving some kind of interpolation into planar pro-

jections. However, these approximations are fairly reasonable, since the axial

opening angle of the X-ray beam exposing, typically, four adjacent transverse

slices is still rather small.

The multi-row technique may be considered an intermediate step towards

truly three-dimensional computed tomography. Although the idea of cone-

beam CT is not new at all, it has only recently become a promising method

due to the development of 
at-panel imagers [135] and cone-beam reconstruc-

tion algorithms that can be used in practice [16]. However, there are still

many technical, physical and mathematical problems to be solved, in order

to implement cone-beam CT clinically. Some of these challenges, especially

those arising if imaging is to be combined with therapeutic intervention, are

introduced more speci�cally in the subsequent chapter.



Chapter 2

Motivation

The role of imaging has become increasingly important, not only in diagnosis,

but also for supporting demanding therapeutic interventions. In numerous

applications, the accuracy of treatment could be improved by means of image-

guided procedures using reliable anatomical models [45, 101].

X-ray computed tomography (CT) exhibits remarkable potential concerning

image guidance due to the high geometric accuracy and spatial resolution

that are achievable. Magnetic resonance imaging (MRI) can provide much

better soft tissue contrast than CT. However, metallic objects close to a

region of interest can cause severe distortions in the images which may be

cumbersome or even impossible to correct for. Furthermore, an MRI scanner

requires a static set-up, whereas a mobile X-ray C-arm device may be easily

moved across di�erent operating theatres. Alternatively, the use of ultra-

sound (US) seems to be very attractive, especially due to its less demanding

hardware and relatively low costs. Unfortunately, the image quality is often

limited by coarse resolution and low signal-to-noise ratio. Typical US arte-

facts can even provide valuable diagnostic information, but are undesired in

image-guided procedures.

To summarize these considerations, CT is expected to become one of the

most important modalities utilized at various treatment sites. In section 2.1,

the role of CT is further emphasized, picking the example of image guidance

in radiotherapy. There are still a lot of technical, physical and mathematical

problems that need to be solved in order to exploit the full potential of CT

guidance. In section 2.2, some of the current challenges regarding image

reconstruction algorithms are explained. Finally, section 2.3 provides an

overview about the aims of this work in facing these challenges.

5



6 CHAPTER 2. MOTIVATION

2.1 Image guidance in radiotherapy

The potential of image-guidance is demonstrated in the following using its

application in radiotherapy. In the next two subsections, some very basic

principles of radiotherapy are explained brie
y. The need for image guidance

in radiotherapy and the rationale for using computed tomography for that

purpose is then outlined in the third subsection.1 Radiotherapy, however, is

only one example for the importance of the implementation of image-guided

procedures.

2.1.1 The principle of radiotherapy

The aim of radiotherapy in oncology is to destroy a local tumour using ioniz-

ing radiation while sparing normal tissue and, in particular, structures that

are very radio-sensitive (organs at risk). There are di�erent biological and

physical principles that enable the use of ionizing radiation to a�ect tumours.

� Most tumour entities are more radio-sensitive than healthy tissue. This

is particularly true for fast growing tumours because cell damage due

to radiation manifest mainly during the replication phase.

� After irradiation, normal tissue recovers faster than tumour tissue be-

cause of more eÆcient repair mechanisms within the cells. Therefore,

it is often advantageous to split the total dose to be delivered into sev-

eral (typically about 30) daily fractions, in order to enable these repair

mechanisms in healthy cells. Such a fractionated scheme also increases

the probability of irradiating tumour cells during replication, which is

the most radio-sensitive phase within a cell cycle.

� Furthermore, the dose delivered to the patient can be spatially con-

formed to the tumour target. This is achieved by choosing multiple

beams which intersect in the tumour, but spare, especially, adjacent

radio-sensitive structures.

The most common form of radiotherapy, which is considered here, utilizes a

linear accelerator delivering photons at mean energies of 1{5MeV. An intro-

duction to the main steps in a typical radiotherapy planning and treatment

procedure is given in the following subsection.

1The reader who is familiar with the �eld of radiotherapy may safely skip to the fol-

lowing section.
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2.1.2 A typical radiotherapy course

Figure 2.1 shows schematically the typical steps of a fractionated course of

radiotherapy (such as implemented in leading research centres and hospitals),

provided the diagnosis has already been made.

First of all, the patient is adequately immobilized. For targets within the

skull, an individually shaped mask made of self-hardening bandages is fre-

quently used. Vacuum pillows are a common tool to immobilize the ex-

tracranial part of the body. Beside these two techniques, numerous other

immobilization methods have been proposed [126].

The images needed for treatment planning are then acquired. X-ray CT is

applied in almost all cases in order to obtain an accurate three-dimensional

model of the patient's anatomy. The tumour target and the organs at risk

are contoured in the CT images. A treatment plan de�ning the delivery

technique is then carried out. Based on a physical model, the dose which

would be delivered according to the plan is calculated. Normally, an iterative

optimization of the treatment plan is necessary in order to achieve a good

compromise between suÆcient target dose coverage and sparing of radio-

sensitive structures.

Prior to each treatment fraction, the patient is immobilized in the same way

as for imaging. Positioning at the linear accelerator is then performed using

mechanical and optical tools. When an accurate set-up has been achieved,

the radiation is delivered according to the treatment plan.
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Figure 2.1: Schematic overview about a fractionated course of radiotherapy.
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2.1.3 The need for image guidance

The treatment plan is normally de�ned once and then used in all fractions as

indicated in �gure 2.1. Safety margins are added to the clinical target volume

(to be treated) in order to account for set-up uncertainties.h e reproducibility

of patient set-up in a fractionated course of radiotherapy is often limited by

the immobilization techniques which are currently available. Furthermore,

the target volume and the organs at risk may move within the patient relative

to bony structures and/or change its shape. These changes can be caused by

gravitational e�ects, by variable �lling of bladder, rectum or bowel as well

as by tissue response to the radiation. Consequently, they a�ect the set-up

from fraction to fraction. Figure 2.2 shows an example of anatomical changes

between several fractions during a prostate treatment.

If organ motion has to be considered, the safety margins are often quite

large to ensure suÆcient dose coverage of the tumour. Consequently, the

possible potential of modern techniques, which allow the delivery of dose

distributions with very steep gradients around the target volume, may not

be fully exploited in these cases. Therefore, various techniques dedicated

to inter-fractional set-up veri�cation have been suggested in the literature.

They are reviewed brie
y in the following paragraphs.

Numerous methods for patient set-up veri�cation are based on (at least two,

often orthogonal) X-ray transmission images taken in treatment position;

see, for example, [74] and references therein. In all of these approaches,

the actual transmission images are compared to digitally reconstructed ra-

diographs which have been pre-calculated from CT planning data. Image

registration algorithms utilized for this comparison involve either an itera-

Figure 2.2: Anatomical changes between several fractions during a prostate treat-

ment. The images were taken in weekly intervals. The contours of rectum, bladder

and target volume overlaid on the CT slices show signi�cant anatomical deviations.
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tive optimization procedure [29] or the calculation of cross-correlation func-

tions [26]. These techniques operating in projection space are well suited to

inter-fractional set-up veri�cation if the tumour and the organs at risk are

not expected to move relatively to bony structures. Unfortunately, they are

not applicable to targets in the abdominal region such as the prostate, since

transmission images do not provide suÆcient soft tissue contrast.

Alternatively, Balter et al. [4, 5] implant several radio-opaque markers tran-

srectally in order to visualize the prostate in transmission images. Although

the implantation of markers may overcome some of the limitations mentioned

above, it cannot fully solve the problem. In many situations, the position,

orientation and shape of the target volume might not be suÆciently deter-

mined by a few reference points.

The most promising method of overcoming the problems of the approaches

described previously is the acquisition of a CT scan of the patient in treat-

ment position, as suggested by Swindell et al. [119] originally. Various studies

on image guidance in radiotherapy were presented recently; see, for example,

[42, 45, 101] and references therein. The authors mention that a CT facility

at a linear accelerator would be a very valuable tool for radiotherapy set-up

veri�cation. The implementation of a CT-guided procedure in fractionated

radiotherapy might enable the use of tighter safety margins as well as dose

escalation with potential bene�t to the patient.

2.2 Problems in CT-guided procedures

X-ray projection data recorded during CT-guided procedures are often, in

some sense, non-ideal. The limitations can be related to the devices used for

data acquisition, to the aim of reducing dose load or to the scanning time

available during an image-guided procedure. This section introduces three

speci�c problems that are investigated in this thesis.

The following considerations are not restricted to radiotherapy, although the

importance of image-guidance is explained for this example in the previous

section. Similar problems arise in many other treatments as, for example,

orthopaedic surgery or cardiac intervention. In all of these applications,

accurate registration of the images employed in therapy planning with the

actual anatomy of a patient is required, but imaging at the treatment site is

subject to certain (technical) constraints.
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2.2.1 Incomplete projection data

In CT-guided procedures, volumes of interest are to be scanned in short pe-

riods of time. The use of cone-beam data acquisition schemes that guarantee

fast volume coverage (such as depicted in �gure 3.1 on page 18) is therefore

attractive.

From the technical point of view, the single-circular scan path in which the

X-ray source rotates in a plane around the patient is often the only feasible

one. Using existing hardware as, for example, angiography devices or linear

accelerators, alternative trajectories would involve movements of a patient.

This is often undesired, since a patient should be scanned exactly in treat-

ment position. Furthermore, a synchronous movement of gantry and patient

support table, as in diagnostic helical CT scanners, is not implemented in

angiography devices or linear accelerators currently available.

Based on the single-circular source trajectory, mathematically exact recon-

struction is possible only in the plane the source rotates in. Increasing the

distance from this central plane, CT image quality is more and more deteri-

orated.

Figure 2.3: E�ect of incomplete projection data. In the bottom row, the projec-

tions g (�; s) are displayed for complete, interior, exterior and limited-angle data

(from left to right). In these sinograms, the view angle � is plotted vertically and

the detector coordinate s is plotted horizontally. The value of each measured line

integral is represented by a grey value from black (zero) to white (maximum line

integral). Missing data are set to zero, i.e., they appear black. The corresponding

images f (r) reconstructed by standard �ltered backprojection are depicted in the

top row.
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Beside this well-known incompleteness of single-circular cone-beam projec-

tions, other problems can occur in X-ray CT imaging. In the following,

typical incomplete data situations are explained for parallel-beam projec-

tions for the sake of simplicity.2 Let f (r) be the object to be reconstructed

and g (�; s) the projection data set, where � is the view angle and s is the

detector coordinate.3

1. The interior problem means that g (�; s) is given only for jsj � smax, i.e.,

the beam does not cover the object completely. This is often denoted

as lateral truncation in medical applications. Of course, f (r) is to be

determined for krk � smax only.
4

2. In the exterior problem (also denoted as bagel problem), g (�; s) is given

only for jsj � smin. This situation occurs if a highly absorbing structure

is located inside the object such that the transmitted radiation cannot

be registered by the detector. In this case, f (r) is to be determined

for krk � smin only.
4

3. The limited-angle problem means that g (�; s) is given only for a set of

view angles � that does not cover a range of at least �. This situation

crops up if the rotation of the X-ray source is physically restricted to

an angular range less than � or consistent projections of an object

temporally changing cannot be collected over this range due to limited

data acquisition speed.

Standard image reconstruction techniques such as �ltered backprojection

cannot be applied to these types of incomplete projections if a signi�cant

amount of data is missing. Figure 2.3 demonstrates the severe artefacts oc-

curring when interior, exterior and limited-angle projections are processed

by �ltered backprojection.

In addition to incompleteness in mathematical sense, projection data ac-

quired during image-guided procedures can be severely under-sampled. Fre-

quently, the number of views recorded is far less than suggested by theoretical

considerations in order to reduce scanning time and/or dose load [134]. As

a consequence, a certain level of (typically streak-shaped) aliasing artefacts

appearing in the CT images has to be accepted.

2Analogous considerations hold for fan-beam and cone-beam data.
3The view angle � utilized here replaces the direction vector n̂ in de�nition A.5 of the

Radon transform; their relation is n̂ = (cos�; sin�)
T
.

4 A generalized investigation of this problem considering non-circular and non-centred

regions in object space is not necessary for the purpose of this introduction.
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2.2.2 Inconsistent projection data

The mathematical model of computed tomography relies on the fact that

the object to be scanned is static. In other words, the three-dimensional

distribution (of linear attenuation coeÆcients) is assumed to be constant

while the transmission measurements are recorded. This condition is violated

if the object moves or parts of the object change their geometric shape during

data acquisition. Reconstructing such inconsistent projection data yields

typically artefacts which are much more diÆcult to detect and interpret than

other types like, e.g., streak artefacts.

In medical applications, movements of a patient can normally be avoided

using adequate immobilization techniques. However, internal organ motion

can be a serious problem if the temporal changes in the patient's anatomy

are signi�cant compared to CT scanning time. Acquisition times have been

dramatically decreased in past years, and probably there is still technical

potential to be exploited.

In modern diagnostic CT scanners, a full rotation of X-ray source (and de-

tector) takes only half a second. Considering the redundancies of fan-beam

geometry, a CT image can be reconstructed from projections collected over

an angular range of 180Æ plus the aperture of the beam [75]. Using such a

short-scan technique, the acquisition time is even reduced to about 300ms.

Current C-arm angiography devices allow to record about 100 cone-beam

projections over a maximum angular range of 180Æ in less than 4 seconds.

A full gantry rotation of a medical linear accelerator takes, depending on

the dose rate chosen, between 1 and 2 minutes, but might be technically re-

duced to about 20 seconds in the future in order to allow reasonable imaging

facilities.

Using up-to-date hardware as described above, a thorax scan can be per-

formed within a single breath-hold, i.e., breathing artefacts can normally be

completely avoided. CT imaging of the beating heart is, however, still one

of the most challenging tasks, not only in image-guided procedures, but also

in diagnostic imaging. Assuming a heart rate of 80 beats per minute,5 the

longest, nearly iso-volumetric phase lasts less than 200ms [105]. This esti-

mation may emphasize that heart motion is still signi�cant with respect to

the (even shortest) acquisition times mentioned above.

5A value of 80 beats per minute may be considered a fairly conservative estimation to

illustrate the problem, since many patients exhibit higher heart rates due to a particular

disease and/or psychological stress caused by the examination.
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2.2.3 Geometric instabilities

Recently, angiography devices as well as linear accelerators combined with


at-panel imagers have been used for CT data acquisition in order to im-

plement image guided procedures; see, for example, [33, 42, 45, 100, 134]

and references therein. The mechanics of such devices is often not com-

pletely stable, especially if they have a C-arm shaped gantry instead of a

ring gantry. There can be signi�cant deviations from the ideal geometry

desired for recording of projection data.

Such geometric misalignments, which are sometimes denoted as 
ex or sag

e�ects, can cause serious artefacts in the reconstructed images if an ideal scan

path is assumed and no corrections are applied. Even geometric uncertainties

that are small compared to the detector pixel size can introduce noticeable

artefacts [3].

Figure 2.4 shows CT slices of a humanoid phantom reconstructed assum-

ing an ideal circular-orbit geometry, i.e., without any geometric calibration.

The underlying X-ray projections were recorded using a 
at-panel imager

attached to the gantry of a therapy simulator such as described in subsec-

tion 4.2.2 in detail. The quality of the images is seriously degraded due to 
ex

e�ects of the data acquisition system. CT slices exhibiting such signi�cant

blurring are unsuitable for image-guided procedures in which high geometric

accuracy is required.

Figure 2.4: Three CT images of a humanoid phantom reconstructed without

geometric calibration from projections taken at a therapy simulator.

The above example may demonstrate that a sophisticated geometric calibra-

tion procedure is required for reconstructing high-quality images from raw

data recorded by geometrically unstable systems.
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2.3 Aims of this work

The aim of this thesis is to investigate image reconstruction and restoration

algorithms and their ability to operate on non-ideal projection data. The

work is focused on fan-beam and cone-beam X-ray computed tomography

using the third-generation scanning mode, since this is the most common

data acquisition scheme in medical applications.6

More speci�cally, the three current challenges mentioned in the previous

section are addressed.

1. A versatile geometric calibration technique that allows the correction

of 
ex e�ects arising during projection data acquisition is implemented

and evaluated. The method is applicable to various systems utilized

in CT-guided procedures such as linear accelerators or angiography

devices. Furthermore, the calibration information can be used in an-

alytical as well as iterative image reconstruction and restoration algo-

rithms. Beside careful simulation studies to analyse its performance,

the calibration method is tested on a real C-arm device.

2. The e�ects caused by incomplete and/or under-sampled projection data

recorded in a single-circular trajectory are investigated. The in
uence

of typical reconstruction artefacts (e.g., due to aliasing, truncation and

missing data) on further processing, particularly registration of various

CT images, is studied.

3. The third aim of this thesis concerns inconsistent X-ray projections

due to internal organ motion occurring during data acquisition. An

investigation is carried out whether these inconsistencies can be cor-

rected for retrospectively during the reconstruction step, in order to

reduce motion artefacts in CT images. This question is studied using

mathematical phantoms and real CT data of a beating heart.

Although there has been much research on CT reconstruction algorithms in

recent years, these problems have not been exhaustively solved yet. This is

outlined in the subsequent chapter in which the state of the art concerning

X-ray computed tomography is described.

6CT scanning modes are introduced in section 3.1.



Chapter 3

State of the art

The purpose of this chapter is a brief literature review to enable comparisons

of the actual results with those of previous work. A short, but more rigorous

introduction to the theory of image reconstruction and image restoration is

provided in appendix A.

As pointed out in chapter 1, di�erent data acquisition schemes have been

developed for X-ray computed tomography (CT), generally decreasing scan-

ning time from one to the next generation. These schemes are sketched in

section 3.1 for the reader who is not familiar with the terminology.

Section 3.2 provides an overview of some analytical image reconstruction

methods. The description is not comprehensive, since a huge number of

algorithms has been proposed in past years. The review is therefore restricted

to historically important or very representative references. Techniques that

are clearly not applicable to the problems of this thesis (such as analytical

series expansion methods) are skipped completely.

As pointed out in the previous chapter, the reconstruction of images from in-

complete projection data can be necessary for various reasons. The standard

techniques such (mentioned in section 3.2) do not yield the desired results if

a signi�cant amount of projection data is missing. In this case, it is necessary

to introduce prior knowledge in order to recover the object from its partial

projections. Such image restoration methods are reviewed in section 3.3.

Section 3.4 deals with techniques for geometric calibration of X-ray imaging

devices that have been utilized to correct for mechanical instabilities occuring

during data acquisition.

15
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3.1 Data acquisition schemes

In X-ray computed tomography, the raw data are recorded sequentially for

di�erent source and detector positions. This procedure is referred to as scan-

ning. The scanning schemes that have been developed are introduced brie
y

in the following subsections. Although the parallel-beam schemes are not em-

ployed for practical X-ray transmission data acquisition any more, they are

still of interest within theoretical framework and related to divergent-beam

schemes via speci�c coordinate transforms.

3.1.1 Parallel-beam scanning

The very �rst X-ray CT scanners recorded a set of two-dimensional parallel-

beam projections for each transverse slice.

In �rst-generation scanning, an X-ray source and a single detector element

are translated in a straight line relative to the object in speci�c steps, while

the line integral at each position is measured. This procedure is repeated for

a large number of orientations (view angles) of the straight line with respect

to the object.

In second-generation scanners, the single detector is replaced by an array of

detector elements that record the transmission simultaneously, in order to

accelerate the data acquisition. The detector array, however, is rather small

such that all lines from the focus to the detector elements at a particular

view angle can be considered parallel.

In a full scan over view angles in the range of 2�, each line integral is mea-

sured twice. The minimal complete short-scan data set, which allows exact

image reconstruction covers an angular range of �.

3.1.2 Fan-beam scanning

A few years after the �rst successful CT implementation, the pencil beam was

replaced by a fan beam that covers the entire object in transverse direction.

In third-generation scanning mode, the X-ray source and the (mostly curved)

detector rotate together around the object. The number of views per full ro-

tation is determined by the angular sampling pitch, whereas the ray sampling

within each projection is given by the spacing of the detector bins.
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Fourth-generation scanners employ a �xed ring of detector elements, within

which the X-ray source rotates. This assembly is referred to as inverse-fan

geometry, since the number of detector elements equals the number of views,

each of them spanning a fan to the angular source positions.

The fourth-generation scanning mode is not generally superior to the third-

generation scheme, as the names might suggest. In fact, most commercial

scanners utilize the third-generation principle. This allows an e�ective re-

jection of scattered photons by using focused collimator septa between the

detector elements. Furthermore, a rotating detector comprises only about a

quarter of the elements of a ring detector to achieve a comparable sampling

and is thus much cheaper.

In a full scan over 2�, each line integral is measured twice like in the parallel-

beam case. The minimal complete fan-beam data set allowing an exact

reconstruction covers a view angle range of � plus the aperture of the fan

beam. Sometimes, this minimum range is extended by a particular over-scan.

In short-scan data sets, some line integrals are measured twice, but others

only once.

3.1.3 Cone-beam scanning

Recently, multi-row detectors have been utilized in diagnostic CT scanners,

in order to further decrease the data acquisition time. For a small number

of detector rows, the geometry can be suÆciently approximated by a stack

of parallel fan beams. There are, however, already various CT applications

employing large-area 
at-panel detectors, which require an accurate consid-

eration of the cone-beam geometry.

In pioneering theoretical work on cone-beam computed tomography the fo-

cus was assumed to meet all points of a (half) sphere around the object.

Practical advances were achieved when data acquisition schemes with a one-

dimensional, bounded trajectory of the focus as shown in �gure 3.1 were

investigated.

Concerning technical feasibility, single-circular and helical source trajectories

in third-generation scanning mode are of major interest. The single-circular

scheme, however, does not allow exact image reconstruction. This is obvi-

ous from the following necessary and suÆcient condition for a complete set

of cone-beam projections. Exact cone-beam reconstruction without analyt-

ical continuation is possible if and only if the focus meets every plane that

intersects the object at least in one point. This completeness condition is
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Figure 3.1: Feasible source trajectories in cone-beam computed tomography.

A single-circular, a double-circular, a helical and a circle-and-line trajectory are

shown schematically (from left to right).

based on the work of Tuy [124], Finch [25], Smith [112] and Grangeat [32].

Chen [13] generalized the completeness condition in order to consider local

region-of-interest reconstructions.

Early investigations of cone-beam scanning schemes assume that all projec-

tions cover the entire object. In medical CT applications, this condition is

clearly violated. The problem of truncated projections needs therefore to

be solved for practical implementations. Furthermore, a particular region

of interest (ROI) is often to be reconstructed. The volume exposed during

scanning should not be larger (or only slightly larger) than the ROI, in order

to minimize the dose load. This is known as the long-object problem.

3.1.4 Conclusion

In this thesis, fan-beam and cone-beam scanning in third-generation scanning

mode are considered, since these are the most common schemes in medical

applications. Current angiography devices or linear accelerators utilized for

imaging at the treatment site provide only single-circular cone-beam projec-

tions if all projections are to be conveniently taken in a single run. The e�ect

of incomplete and truncated projection data needs therefore to be evaluated

for each speci�c application.

3.2 Image reconstruction

This section on image reconstruction algorithms is dedicated to transform

methods. Iterative techniques are considered in the next section in the con-

text of image restoration from partial projection data and the use of prior

information.
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In transform methods, the object f to be reconstructed and its projections g

are primarily considered as functions of continuous variables. Data acquisi-

tion for a particular projection geometry is modelled by an integral transform

such that g = T f . An image reconstruction algorithm can then be derived

by (at least approximate) inversion of the operator T .
Transform methods depend strongly on the particular data acquisition ge-

ometry. This property is therefore used in the following to classify the algo-

rithms into parallel-beam, fan-beam and cone-beam algorithms. Whereas the

mathematics of two-dimensional computed tomography has been intensively

studied previously [41, 77], there is still much current research on cone-beam

techniques [16].

3.2.1 Parallel-beam algorithms

The parallel-beam acquisition scheme in a plane is described by the two-

dimensional Radon transform, which maps a function onto a set of its in-

tegrals over all hyperplanes (see de�nition A.5). Various inversion formulae

for the Radon transform have been derived, which lead to di�erent image

reconstruction algorithms.

The Fourier method, �rst proposed by Bracewell [8], comprises an immediate

application theorem A.5, which is known as the Fourier-slice or projection

theorem. The diÆculty with the Fourier method lies in its practical imple-

mentation. For discrete projection data, the object is sampled on a polar grid

in frequency space. Resampling onto a Cartesian grid is necessary, before an

image can be calculated using an inverse, fast Fourier transform (FFT) al-

gorithm. Stark et al. [116] presented a careful analysis of the interpolation

kernels required for this resampling.

Smith et al. [113] introduced the �ltered-layergram method, which is based on

theorem A.6. The method starts with a backprojection of all parallel projec-

tions into the two-dimensional plane, which yields a very blurred image, the

so-called layergram. The desired image is then obtained by a two-dimensional

deconvolution. The major implementation problem is caused by the backpro-

jection step, which yields an image of in�nite spatial extent. Although the

layergram vanishes in practice, the backprojection and deconvolution have

to be performed on grids several times larger than the object, in order to

achieve suÆciently accurate results.

The idea of image reconstruction by �ltered backprojection was �rst presented

by Bracewell and Riddle [9]. In this type of algorithms, the projections are �l-
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tered independently in one dimension and then backprojected into the image

plane, as shown in theorem A.7. This is the most common image reconstruc-

tion method. Each projection can be processed (�ltered and backprojected)

independently of others, which allows for online reconstruction during data

acquisition. The backprojection can also be performed in a region of interest

in order to save computation time.

3.2.2 Fan-beam algorithms

Fan-beam projection geometry is modelled by the two-dimensional divergent-

beam transform (see de�nition A.7). Reconstruction algorithms for fan-beam

projections can be derived from parallel-beam formulae by using a corre-

sponding coordinate transform.

In parallel rebinning algorithms as proposed by Dreike and Boyd [20], a set of

equivalent parallel-beam projections is obtained from the recorded fan-beam

data. Except for speci�c acquisition geometries, this so-called rebinning step

requires two successive (linear) interpolations for each line integral in the

parallel-beam data set. Spatial resolution is therefore potentially slightly

decreased. Once the parallel projections have been estimated, one of the re-

construction methods described in the previous subsection is applied. Using

the direct Fourier method, the truncation of the theoretically in�nite inter-

polation kernels in practical implementations results in ring artefacts in the

images. Peng and Stark [87], however, proposed a method to correct for this

inevitable truncation.

The �rst development of a �ltered backprojection algorithm that is appro-

priate for direct use on fan-beam data was carried out by Pavkovich [86].

Starting with parallel-beam �ltered backprojection, the transform from par-

allel to fan coordinates results in an additional weighting of the projections

by the fan angle cosine, a change of the �lter kernel (for curved detectors)

and an additional distance weighting factor within the backprojection.

The �rst mathematical treatment of fan-beam short-scan data sets was pre-

sented by Naparstek [75]. In practice, there are three di�erent approaches to

account for redundant line integrals in short-scan sets.

Parallel rebinning algorithms work as described above. For a short-scan data

set, the corresponding parallel-beam projections lie in a view angle range of

�. Redundant information in the input data is usually discarded in the

rebinning step. The noise reduction is therefore not optimal.
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In complementary rebinning techniques, the missing part of the short-scan

projection data set is �lled out using the measured rays. Standard fan-beam

�ltered backprojection is then applied. Complementary rebinning can be

performed without interpolation on discrete data if the view angle pitch is

twice the fan angle pitch. In practice, CT scanners take substantially fewer

projections per turn than suggested by this condition.

In sinogram windowing techniques, a weighting function is applied to the

short-scan data set before �ltering and backprojection. For line integrals

measured once the weight has to be unity, whereas for integrals measured

twice the sum of the corresponding weights must equal one. The weighting

function is furthermore required to be approximately band-limited in order

to avoid streak-shaped aliasing artefacts in the reconstruction of discrete

data. Parker [85] proposed such a smooth weighting function for minimal

complete fan-beam sets, which was recently extended to data sets exhibiting

an over-scan [111, 132].

The full-scan and short-scan reconstruction algorithms mentioned above as-

sume that all fan-beam projections are measured in a plane. They are not

immediately applicable to helical scans as introduced by Kalender [53]. In

this case, a preceeding interpolation onto planar full-scan or short-scan sets

is necessary. Numerous di�erent interpolation schemes have been suggested;

see, for example, [50, 91] and references therein.

3.2.3 Cone-beam algorithms

The choice of an appropriate cone-beam reconstruction algorithm depends

on the particular scanning geometry and on the axial opening angle of the

beam. Approximate algorithms are often applied even to projection data that

satisfy the completeness condition, since exact cone-beam reconstruction is

mathematically and computationally complex.

For small cone angles such as in diagnostic multi-row CT scanners, the combi-

nation of di�erent axial interpolation schemes with two-dimensional �ltered

backprojection algorithms is frequently used. Hu [44] provided a detailed

analysis of various interpolation algorithms and preferable pitch values. Noo

et al. [82] proposed a single-slice rebinning method for helical cone-beam pro-

jections. In this approximation, a short-scan fan-beam sinogram is obtained

from the cone-beam projections for each transaxial slice. The slices are then

reconstructed using a standard �ltered backprojection algorithm involving

Parker weights [85].
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For intermediate cone angles, approximate algorithms employing true three-

dimensional backprojection are preferable to the above methods. Feldkamp,

Davis and Kress [24] proposed a straight-forward extension of fan-beam �l-

tered backprojection to a single-circular cone-beam geometry, which has been

widely used since then.

Grass et al. [33] proposed a parallel rebinning technique, which comprises

the application of the corresponding two-dimensional method to each row

of a planar detector. Compared to the original Feldkamp algorithm [24],

the intensity drop in axial direction due to the missing data is signi�cantly

decreased. An extension of this method considers the short-scan suÆciency

condition for each voxel independently by means of an adaptive weighting

scheme. Consequently, the reconstruction volume is considerably enlarged,

and the noise properties are optimized.

The Feldkamp method [24] was also extended to elliptical, helical and circle-

plus-line scan paths. Using a direct adaption as in [128, 137, 141], the pro-

jection data are not eÆciently utilized. As a consequence, the dose delivered

is not fully exploited, and the pitch of the helix is limited. Recent advances

overcoming these problems are based on �ltered backprojection of short-scan

segments [56] or parallel rebinning techniques [123].

For large cone angles, complete projection data and exact reconstruction al-

gorithms are required to avoid severe artefacts in the images. Tuy [124],

Smith [112] and Grangeat [32] derived formulae that relate the cone-beam

transform to the (Hilbert transform of the) �rst derivative of the three-

dimensional Radon transform. These relations have been used to develop

mathematically exact cone-beam reconstruction algorithms.

In Radon rebinning methods, one of the above intermediate functions is

explicitly calculated from the cone-beam projections. The image is then

reconstructed from the intermediate result by applying a Radon inversion

formula. The �rst Radon rebinning implementations for several source tra-

jectories were presented by Kudo and Saito [57], Weng et al. [131] and Zeng

et al. [140]. Noo et al. [80] proposed a rebinning method for arbitrary data

sets and de�ned a measure of what degree a set of cone-beam projections

satis�es the completeness condition. All of these algorithms assume non-

truncated projections. Kudo et al. [55] modi�ed Grangeat's formula [32]

in order to consider truncated helical data. They did not investigate partial

scans of the object. Tam [122] proposed a solution of the long-object problem

by adding two extra circles at both ends of the helix. A Radon rebinning al-

gorithm that is capable to handle regions of interests in long objects without

this additional requirement was recently presented by Schaller et al. [104].
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The basic cone-beam inversion formulae were also used to derive �ltered back-

projection methods that do not rely on the storage of intermediate Radon

data. They are therefore capable of processing the projections independently

of each other. The algorithms by Defrise and Clack [17] as well as Kudo

and Saito [58, 59] are appropriate for helical, double-circular and circle-and-

line orbits, but assume non-truncated projections and short objects. Kudo

et al. [55] suggested a modi�ed algorithm that is capable of handling trun-

cated projections. Tam et al. [120] presented a technique for region-of-interest

reconstructions of long objects by adding two circles at the ends of a helix

scan segment, as mentioned above. Defrise et al. [19] proposed an approxi-

mate, but very accurate solution to the combination of both of these prob-

lems. Their algorithm does not take the form of pure �ltered backprojection,

but is nevertheless computationally quite eÆcient.

3.2.4 Conclusion

In this thesis, fan-beam algorithms and cone-beam algorithms for interme-

diate cone angles are of particular interest due to the technical limitation of

data acquisition schemes explained above. Exact cone-beam algorithms do

not o�er any advantage when applied to incomplete data. The algorithms

proposed by Defrise and Clack [17] and Kudo and Saito [58, 59], for ex-

ample, reduce to the approximate Feldkamp algorithm [24] when applied to

single-circular cone-beam projections.

3.3 Image restoration

The object f (r) can be reconstructed by means of analytical methods con-

sidered in the previous section if the Radon transform R f (r) is completely

determined and suÆciently sampled by the projection data. In practical

situations, however, the projection data can be incomplete for a number of

reasons.

In subsection 2.2.1, three speci�c types of incomplete projection data are in-

troduced. From the mathematical point of view, the exterior problem and the

limited-angle problem are uniquely solvable, but severely ill-posed. The inte-

rior problem, in contrast, is not uniquely solvable. These general statements

have been proved rigorously [77] using the assumptions listed in appendix A.
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There is a huge literature on limited-data problems, both in two and three

dimensions. However, care should be taken when reviewing the powerful

mathematics that has been brought to tackle them [7]. Image restoration is

often extremely sensitive to noise, but many methods have only been applied

to noise-free simulated projection data. Even if noise is properly included,

computer simulations may not resemble reality very well. Restricting the

object to a narrow range of attenuation coeÆcients, for example, may not be

applicable to clinical data.

An annotated bibliography of earlier work on image restoration from incom-

plete projection data comprising more than 250 references was presented by

Rangayyan et al. [94]. The following subsections attempt to classify the huge

number of techniques and algorithms roughly. Of course, only some selected

publications are mentioned in this review.

3.3.1 Analytical continuation

In this subsection, a class of restoration techniques dedicated to the limited-

angle problem is introduced. The methods reviewed in the following subsec-

tions are more general and therefore, in principle, applicable to all kinds of

incomplete projection data.

The most intuitive understanding of the limited-angle problem is provided

by theorem A.5, which relates the Radon transform to the Fourier transform

of an object. From this theorem it is obvious that two V-shaped regions

are missing in frequency space if parallel-beam projections are collected only

over a limited angular range. This is sketched in �gure 3.2.

This implies that no amount of linear �ltering can ever restore the Fourier

components lost in the data acquisition process. Prior information about the

object, i.e., information that is available before making the measurements, is

therefore the only hope for �lling in the missing parts.

Figure 3.2: Schematic representation of the limited-

angle problem. The dots indicate the area in frequency

space that is covered by a parallel-beam scan over 3
4
�.

Spatial frequencies are given in arbitrary units.
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In real computed tomography applications, the object function f (r) is spa-

tially limited, i.e., for some rmax, f (r) = 0 if krk > rmax. Its Fourier

transform F (�) = F f (r) is therefore an analytical (entire) function. An

analytical function can be continued throughout the whole space from any

�nite, continuous segment [10]. Combining these two theorems yields the

implication that �nite support of the object is suÆcient for the uniqueness of

the limited-angle problem. The part of the Fourier transform of the object

that is missing due to the restricted range of view angles can therefore, in

principle, be always �lled.

Direct continuation techniques based on series expansion of the known part

of the function to be extrapolated su�er from intense noise ampli�cation [27].

Gerchberg [27] and Papoulis [84] proposed therefore an iterative, less noise-

sensitive continuation procedure that comprises successive Fourier and in-

verse Fourier transforms. In each iteration step, the object function is zeroed

outside its a priori known spatial extent, and the spectrum is corrected for

the measured part.1

Louis [66, 77] proposed an analytical continuation technique for parallel-

beam data that operates in projection space. After estimating the missing

projections, a standard �ltered backprojection is applied. The continuation

algorithm requires the solution of a highly ill-conditioned linear system of

equations in order to obtain series expansion coeÆcients for the missing data.

This badly conditioned system indicates once more that the limited-angle

problem is severely ill-posed. The algorithm, however, is not capable of

incorporating further prior information that might regularize the solution.

3.3.2 Projections onto convex sets

The method of projections onto convex sets (POCS) is a powerful tool in

image restoration. The general idea of POCS is as follows.2 Let C be an

operator that enforces all constraints on the function f that is sought.3 A

consistent estimate ~f remains unchanged when the constraint operator acts

1This method can be also employed to extrapolate band-limited functions (analytical

functions exhibiting a �nite frequency spectrum), which follows directly from the unique-

ness of the Fourier transform.
2A thorough introduction to the method of projections onto convex sets can be obtained

from Schafer et al. [103] or Youla and Webb [139]. For the reader's convenience, the theory

of POCS is summarized brie
y in section A.4.
3The term `projection' in POCS refers to the application of a constraint operator C.

This term is not used in this thesis in order to avoid any potential confusion with the

X-ray projections g of an object f .
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on it, ~f = C ~f . This means ~f is a �xed point of the operator C. The desired
estimate can therefore be obtained by one of the standard iterative methods

such as successive substitutions, steepest descent or conjugate gradients.

The �rst application of the theory of POCS to image restoration was re-

ported by Youla [138]. This method allows for the incorporation of all kinds

of prior knowledge as long as this knowledge can be associated with convex

sets in the sense of de�nition A.10. In POCS, there is no di�erence between

enforcing consistency of an object f with its measured X-ray projections g

and other constraints as, for example, �nite spatial extent or non-negativity

of f . The feasibility of various constraints in image restoration from incom-

plete projection data was investigated by Sezan and Stark [107], Lent and

Tuy [61], Oskoi-Fard and Stark [83], Stark et al. [115] and others.

The method of projections onto convex sets reduces to the well-known addi-

tive algebraic reconstruction technique4 (AART) if consistency of a discretized

object with the measured line integrals is employed as the only constraint.

The iterative scheme of AART was originally proposed by Kaczmarz [48] for

solving consistent linear systems of equations.

Using �nite spatial extent of the object and a measured part of its Fourier

transform as constraints yields the Gerchberg-Papoulis algorithm [27, 84]

mentioned above. For complete data, one iteration step is equivalent to

the direct Fourier method (DFM). Image restoration from limited-angle data

using POCS was reported for parallel-beam [88, 102, 108, 121] and fan-

beam [89] projections. In the latter case, parallel rebinning was employed in

order to apply the DFM to fan-beam data.

Due to the projection theorem, the consistency of the object with the mea-

sured line integrals can be enforced in projection rather than in Fourier space.

Such iterative schemes comprising successive �ltered backprojection and re-

projection were proposed by Nassi et al. [76] and Medo� et al. [69]. This

approach is even more general. It can not only be applied to the limited-

angle problem, which corresponds to a particular region missing in frequency

space, but to any kind of incomplete projection data. Kim et al. [54] showed

that the iterative backprojection and reprojection procedure can be com-

pletely realized in Radon space. Potential cumulative interpolation errors

arising from the discrete implementation of backprojection and reprojection

are therefore avoided.

4The name `algebraic reconstruction technique' (ART) is a historical accident; ART is

no more `algebraic' than in other iterative procedures. However, this name is widely used

for the type of algorithms in which all line integrals are accessed successively.
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3.3.3 Optimization methods

Another common approach in image restoration is to de�ne an objective func-

tion O (f) that enforces consistency of the image f with its projection data.

O (f) is, depending on its particular de�nition, maximized or minimized in

order to compute the desired estimate ~f . Prior information can be considered

directly by means of penalty terms in O (f) or indirectly by the introduction

of constraint operators into the iterative optimization. The de�nition of an

additional criterion is required if the objective function does guarantee a

unique solution. Typical secondary criteria such as minimum norm, mini-

mum variance and maximum entropy of f are discussed by Herman [41].

The optimization can be handled conveniently when both the objective func-

tion and the constraints are convex.5 One common approach is to minimize

the mean di�erence between measured and reprojected line integrals. With-

out further constraints, this approach yields the simultaneous iterative recon-

struction technique (SIRT) [28], which is also known as Richardson's method

in numerical analysis. The theory of convex optimization allows the incor-

poration of any convex constraints like in POCS.

A more sophisticated objective function incorporating statistical information

is, in principle, very attractive. The image f and the projection data g are

then considered as samples of corresponding probability distributions.

In the Bayesian approach, a particular estimate ~f is sought that maximizes

the a posteriori conditional probability P (f j g) for the image f given the

measured projection data g. This probability is computed using Bayes' law

in terms of the conditional probability P (g j f) and the a priori probability

distributions P (f) and P (g). Hanson and Wecksung [40] suggested this

framework for the limited-angle problem. The assumptions about the a priori

probability distribution of the images employed in their simulation studies,

however, are quite restrictive. In real applications, it is almost impossible to

obtain reliable statistical information on all objects to be imaged.

To avoid these problems, the conditional probality P (g j f) of observing the
measured projection data g given the image f (the likelihood of f) can be

maximized separately instead. This approach of maximum likelihood ex-

pectectation maximization (MLEM) reduces to the multiplicative algebraic

reconstruction technique (MART) if the Poisson statistics of the projection

data are modelled. In MART, non-negativity of the estimate ~f is guaran-

5The mathematical theory of convex optimization is not explained in detail here; see,

for example, [10] for further information.
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teed. Vollmar et al. [127] demonstrated how other prior information can be

included in an MLEM procedure.

3.3.4 Alternative approaches

Yagle [136] presented a closed-form solution of the discrete limited-angle

problem. The method for extrapolating the projection data is computa-

tionally eÆcient and avoids the solution of a large ill-conditioned system of

equations. A successful application to real data, however, seems question-

able due to quite restricitve assumptions. The amplitude of additive noise

is assumed to be negligible such that it can be completely eliminated by

rescaling the line integrals and rounding them to integer numbers. The view

angles of the parallel-beam projections have to be chosen in such way that

frequency space is sampled along concentric squares, i.e., the projections are

not equiangular.

Brunetti and Golosio [12] proposed a morphological technique for tackling

the limited-angle problem. They applied a novel curve matching algorithm,

which is based on recent advances in computer graphics, for approximating

the missing part of the sinogram. The preliminary results look quite promis-

ing, although no specialized prior knowledge on the objects to be restored

was utilized. This remains a challenge for future research in order to further

improve the performance of the method.

Various other methods have been employed for image restoration from in-

complete projection data. Geometric deconvolution techniques [31] as well

as backpropagation algorithms utilized in neural networks [1] were proposed,

to mention only two of the numerous examples. A detailed discussion of all

of these attempts, however, is beyond the scope of this thesis.

3.3.5 Conclusion

Various image restoration methods have been proposed for computed to-

mography based on incomplete projection data such as demonstrated above.

Several authors considered limited-angle CT to reduce the problem of incon-

sistent projection data due to the heart beat; see for example the annotated

bibliography in [94]. Very little, however, has been published on the applica-

tion of limited-angle algorithms to real data [7]. Clinical CT heart imaging

still uses short-scan �ltered backprojection or combination of data segments

from various heart cycles [47, 50].
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3.4 Geometric calibration

The importance of an accurate geometric calibration in CT imaging is em-

phasized in subsection 2.2.3. There it is demonstrated that even small 
ex

e�ects can cause serious artefacts in the images if they are not adequately

corrected for.

3.4.1 Classi�cation of calibration methods

Several methods for geometric calibration of CT image acquisition devices

have been proposed in past years. These techniques can be roughly classi�ed

in the following manner [96].

1. The principle behind the alignment method is to place the source and

detector assembly in a known position and orientation. This method

is used in diagnostic X-ray CT scanners and in many industrial CT

applications.

2. In global calibration methods, an ideal scanning geometry with unknown

parameters is assumed. This situation occurs, for instance, in micro-

tomography in which the position of the centre of rotation often cannot

be measured with the desired accuracy [3]. Simple phantoms like thin

rods are scanned to estimate the geometric parameters using the co-

herence of the data in all of the projections.

3. In local calibration methods, the projection geometry is estimated for

each view separately. The main advantage of these techniques is that

they do not make any assumptions about the scan path and do not

require �xed source-to-isocentre and source-to-detector distances [96].

The estimation is based on a calibration scan of a dedicated phantom

which comprises a suÆciently large number of �ducial markers.

The alignment method is not well-suited for a calibration of systems that are

under consideration here. A suÆciently accurate alignment of the compo-

nents of a linear accelerator or an angiography device would require major

changes to the hardware, since they were not originally intended for CT imag-

ing. In most cases, not even the global method, but only the local approach

is 
exible enough to handle the calibration of such devices. However, the

global as well as the local estimation techniques which have been published

recently are reviewed in the following two subsections, since they involve

similar mathematical methods.
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3.4.2 Global calibration methods

Theoretically, the geometry of a CT scanner could be estimated in an itera-

tive procedure. Each iteration step would involve image reconstruction and

variation of the unknown parameters. The algorithm would stop if the de-

sired image quality was achieved, i.e., the artefacts caused by the geometric

uncertainties had disappeared. Although mentioned in [3], this method has

probably never been practically used due to several disadvantages. Since a

full image reconstruction is required in each step, the estimation would be

quite time-consuming. The number of unknown scanner parameters had to

be fairly small to be able to handle the optimization practically. Furthermore,

the iterative process would probably involve the user because an automatic

analysis of the artefacts might be impossible to implement.

Azevedo et. al. [3] proposed an elegant algorithm which enables the calcu-

lation of the centre of rotation (COR) from an arbitrary, two-dimensional,

parallel projection data set. The method is based on the observation that

the centre of gravity of an object always lies on a line passing through the

projection centre of gravity and having a slope angle equal to the projection

view angle. Therefore, the COR can be calculated directly from the sinogram

provided that there is suÆcient contrast in the projections, that all projec-

tions have the same COR, that the object is fully covered in all projections,

and that non-linear e�ects like beam hardening, scatter and source intensity


uctuations are negligible. The derivation of a similar method for fan-beam

sinograms is not possible for arbitrary objects.

To overcome this limitation, the imaging of a point object (such as a thin

wire or pin phantom) was suggested by several authors. The location of the

point object is measured in all projections. Analytical expressions are derived

that relate the unknown scanner parameters (such as source-to-isocentre dis-

tance, position and orientation of the detector) and the unknown position of

the calibration object to the respective location in the projections. The equa-

tions are solved in a least squares sense (e.g., using the Levenberg-Marquardt

algorithm [92]), in order to obtain the scanner parameters that are sought.

The formulae describing the standard �ltered backprojection are adapted

to incorporate these parameters. Algorithms of this type were proposed by

Gullberg et al. [37, 39] for fan-beam geometries and by Gullberg et al. [38],

Li et al. [62, 63, 64], Rizo et al. [96] and Wang et al. [129] for cone-beam ge-

ometries. An accurate estimation can be, however, diÆcult to obtain due to

highly non-linear objective functions with multiple local minima and strong

correlations between the desired parameters.
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Rizo et al. [96] split the optimization into two steps. First the intrinsic pa-

rameters describing the detector are estimated using a grid phantom which is

placed in several well-de�ned positions. The extrinsic parameters describing

the projective geometry are then estimated in a non-linear least squares �t.

Due to the reduced number of parameters in the second step, the minimiza-

tion is more stable than in the previously mentioned techniques. Neverthe-

less, the remaining uncertainty of the source-to-detector distance is about

5%. The correct scaling of the image is, therefore, determined by imaging

and reconstructing another test phantom.

Noo et al. [81] proposed an analytical method for scanner calibration in

cone-beam computed tomography, which completely avoids the non-linear

optimization. It is based on a calibration scan involving two small point

objects. The method requires the detector to be aligned parallel to the

rotation axis of the scanner.

3.4.3 Local calibration methods

The estimation of geometric parameters using local methods is mathemati-

cally much more complex than using global techniques described before. For

arbitrary cone-beam projections, there are 11 degrees of freedom for each

view that need to be considered. Sometimes, the problem is reduced to 9

degrees of freedom, assuming that the detector axes are perfectly orthogonal

and do not exhibit signi�cant di�erences in scale.

An iterative optimization of these parameters involving repeated image re-

construction steps would not be feasible at all. Therefore, all local techniques

are based on a calibration phantom which contains a suÆciently large number

of appropriate �ducial markers. The relative position of these markers has

to be accurately known; the corresponding uncertainties should be at least

one magnitude smaller than those of measuring their position in projection

images of the phantom. Using the known geometry of the phantom and its

projections, the projection geometry of a CT scan can be estimated for each

view independently.

On one hand, the projection geometry for each view can be estimated in

terms of geometric parameters such as source-to-isocentre distance, source-

to-detector distance, position and orientation of the detector. These param-

eters are obtained using a non-linear minimization procedure. The objective

function usually calculates the mean square deviation between the marker

positions measured in the calibration images and the corresponding values
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reprojected from the known three-dimensional coordinates in object space.

Rogu�ee et al. [99] proposed the use of such a parametric method for the cali-

bration of X-ray imaging chains. Their approach seems to be very attractive

because parameters that can be clearly interpreted in geometric sense are ob-

tained. The concerns about highly non-linear objective functions mentioned

in the previous subsection do, however, also hold for local techniques.

Wiesent et al. [134] suggested a non-parametric method to avoid the prob-

lems that can occur in the non-linear minimization. In this approach, a

projection matrix is determined for each view that maps three-dimensional

object coordinates onto two-dimensional detector coordinates. The matri-

ces are calculated analytically based on the information that is provided by

scanning a calibration phantom.

The coeÆcients of a projection matrix as provided by the non-parametric

calibration method cannot be interpreted geometrically, which is sometimes

referred as a major drawback of this approach [99]. Melen [70] proposed an

analytical technique for the decomposition of projection matrices, but did

not investigate its accuracy for estimated projection matrices.

3.4.4 Conclusion

In many current implementations of calibration methods, only few degrees

of freedom are considered. Frequently, only a centre-of-rotation correction is

performed for each view [14, 22, 72, 73, 101]. The accuracy of parametric

and non-parametric methods considering arbitrary (linear) cone-beam pro-

jections has not yet been investigated comprehensively. Their applicability

to geometric calibration of X-ray imaging systems is not judged consistently

in the literature; compare, for example, the arguments given in [99] and [134].



Chapter 4

Material and methods

In this chapter, the hardware and the methods utilized for X-ray computed

tomography (CT) are explained in detail. The descriptions do require some

knowledge on the underlying mathematical theory. An introduction to the

basics is therefore given in appendix A. This chapter is organized as follows.

Section 4.1 introduces a geometric model for CT data acquisition and the

concept of projection matrices, each of them containing the geometric infor-

mation for a particular view de�ned by position and orientation of X-ray

source and detector.

Section 4.2 describes the hardware of a commercial fan-beam scanner and

two experimental cone-beam systems that were utilized for projection data

acquisition. Section 4.3 provides an overview of the preprocessing methods

for estimating the line integrals through the spatial X-ray attenuation distri-

bution from the signal captured by the detector.

Section 4.4 deals with the geometric calibration of CT scanners that exhibit

signi�cant deviations from an ideal set-up. The calibration procedure em-

ployed here yields an estimate of the projection matrix for each view.

Sections 4.5 and 4.6 describe the methods used for image reconstruction and

restoration, respectively. Reconstruction denotes the computation of tomo-

graphic images from a complete set of projections, whereas restoration refers

to the recovery of images from partial projection data and prior knowledge of

an object. The algorithms are de�ned for continuous functions of continuous

variables in order to enable a convenient notation. Appendix C, however,

provides information on the implementation of the algorithms on a digital

computer processing discrete projection and image data.

33
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4.1 Divergent-beam geometry

Two-dimensional fan-beam as well as three-dimensional cone-beam computed

tomography are considered in this thesis. The systems used for projection

data acquisition operate in third-generation scanning mode, i.e., X-ray source

and detector rotate together around the object. In this section, a mathe-

matical notation to describe the geometry of such third-generation scanners

is introduced, which is utilized throughout the whole thesis. All explana-

tions are provided for three-dimensional cone-beam geometry, of which two-

dimensional fan-beam geometry is a special case restricted to the plane of

source rotation.

4.1.1 Geometric conventions

The mathematical notation introduced in this subsection is schematically

shown in �gure 4.1. It refers to ideal, third-generation scanners, i.e., geo-

metric 
ex e�ects such as mentioned in subsection 2.2.3 are neglected for the

moment.

X-ray source and detector move together in a plane parallel to z = 0 with

respect to a Cartesian coordinate system �xed in three-dimensional space.

The centre of rotation (isocentre) coincides normally with the origin of this

coordinate system. R is the distance from the focus rfoc = (xfoc; yfoc; zfoc)
T
to

the isocentre riso = (xiso; yiso; ziso)
T
, and D is the focus-to-detector distance.

The view angle � of a particular projection is measured from the positive y

axis to the central ray.

By convention, the rows and columns of the detector are assumed to be

parallel to the u and v axis of the detector coordinate system, respectively.

Due to the �nite size of the detector, the coordinates u and v are restricted

to the range [�umax; umax] and [�vmax; vmax], respectively. The central ray

through the isocentre riso intersects the detector at the view reference point

sfoc = (ufoc; vfoc)
T
. In an ideal divergent-beam geometry, the view reference

point coincides normally with the origin of the detector coordinate system

as depicted in �gure 4.1.

The angles � and 
 measured between the central ray and a particular ray

of interest are de�ned as

� = arctan
u� ufoc

D
and 
 = arctan

v � vfoc

D
(4.1)
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Figure 4.1: Mathematical notation for describing single-circular divergent-beam

geometries. The �gure shows a two-dimensional schema of a fan-beam geometry

within the plane of source rotation (left panel) and a three-dimensional represen-

tation of a cone-beam geometry (right panel).

with respect to the coordinates u and v, respectively. The in-plane angle �

is utilized for detectors that are curved along the u axis. Although detectors

curved in v direction do not exist in practice, the de�nition of 
 is useful to

assess artefacts that worsen with increasing distance from the central plane

independently from particular values for R and D. Even in three dimensions,

� and 
 are often referred to as fan angle and cone angle, respectively, in

order to simplify geometric descriptions. The in-plane and axial aperture of

the X-ray beam are denoted as 2�max and 2
max.

The size of the detector determines the �eld of view (FOV). Here, the FOV

is de�ned as set of those points in three-dimensional space that are projected

on the valid range of detector coordinates in all views. For a single-circular

source trajectory as shown in the left panel of �gure 3.1 on page 18, the

radius of the �eld of view, RFOV, is given by

RFOV (v) = min

 
Rumaxp
D2 + u2max

; R

�
1� v

vmax

�!
(4.2)

in the axial plane z = v or, using fan angle and cone angle, equivalently by

RFOV (
) = min

�
R sin �max; R

�
1� tan 


tan 
max

��
(4.3)

in the axial plane z = R tan 
.
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4.1.2 Conic projections

Using homogeneous coordinates, the mapping from three-dimensional object

space into two-dimensional detector space is written as

� (u; v; 1)
T
= P (x; y; z; 1)

T
; (4.4)

where P is a 3� 4 projection matrix for a particular view [134]. � denotes a

non-zero, overall scaling factor, which can be eliminated by taking the ratios

u =
p11 x+ p12 y + p13 z + p14

p31 x+ p32 y + p33 z + p34
; (4.5)

v =
p21 x+ p22 y + p23 z + p24

p31 x+ p32 y + p33 z + p34
: (4.6)

Due to the scaling factor �, there are 11 degrees of freedom in this mathe-

matical model of conic projections, which are interpreted in geometric sense

in the subsequent subsection. The use of this model implies basically two

assumptions.

� The �nite size of the focus within the X-ray source is negligibly small

and is well approximated by a single point in three-dimensional space.

� Projection data are captured on an ideally planar surface. The detector

does not introduce any non-linear distortion.

The model is primarily intended for 
at-panel detectors. For curved detec-

tors, the planar coordinates need to be transformed using equation (4.1).

4.1.3 Composition of projection matrices

Based on a formula that was introduced previously [70], the projection matrix

P is composed by

P = � V A�1
DSF : (4.7)

The above equation can be interpreted as successive transformations from

the object into the detector coordinate system, where each step has a clear

geometric meaning. Starting from the right,

F =

0
@1 0 0 �xfoc
0 1 0 �yfoc
0 0 1 �zfoc

1
A (4.8)
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is a translation from the origin of the object coordinate system to the source

position. In an ideal cone-beam geometry, the in-plane position of the focus is

given by xfoc = xiso+R sin�, yfoc = yiso�R cos�, and zfoc = ziso determines

the axial position of the plane the focus rotates in.

S =

0
@ cos sin 0

� sin cos 0

0 0 1

1
A
0
@1 0 0

0 cos � sin �

0 � sin � cos �

1
A
0
@ cos� sin� 0

� sin� cos � 0

0 0 1

1
A (4.9)

is a rotation matrix comprised by the Euler angles �, �,  . It ensures that,

in the rotated system, the central projection ray is perpendicular to the

detector. In an ideal cone-beam geometry, the angles are � = �, � = 1
2
� and

 = 0. In homogeneous coordinates, the projection from three-dimensional

object space into two-dimensional detector space is given by

D =

0
@�D 0 0

0 �D 0

0 0 1

1
A ; (4.10)

where D is the focus-to-detector distance with D > 0. Furthermore, the

de�nition of

A =

0
@1 + a1 a2 0

a2 1� a1 0

0 0 1

1
A ; A

�1 =

0
BBBB@

1� a1

1� (a21 + a22)

�a2
1� (a21 + a22)

0

�a2
1� (a21 + a22)

1 + a1

1� (a21 + a22)
0

0 0 1

1
CCCCA

(4.11)

introduces two coeÆcients a1, a2 in order to account for a di�erence in scale

and a lack of orthogonality between the detector axes. These coeÆcients are

usually close to zero. The matrix A is invertible if the constraint a21+a
2
2 < 1

is satis�ed. This inequality implies ja1j < 1 and ja2j < 1, which is reasonable,

since ja1j > 1 would change the direction of one of the detector axes, and

ja2j > 1 would swap the axes. The matrices

V =

0
@1 0 ufoc
0 1 vfoc
0 0 1

1
A ; V

�1 =

0
@1 0 �ufoc
0 1 �vfoc
0 0 1

1
A (4.12)

represent a shift within the detector coordinate system to consider a potential

o�set between its origin and the view reference point (ufoc; vfoc)
T
.
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4.1.4 Decomposition of projection matrices

The algorithm for analytical decomposition of projection matrices described

in this subsection is based on a method proposed previously [70]. It refers to

the set of geometric parameters introduced above.

The left 3� 3 sub-matrix of P is assumed to have full rank three in order to

guarantee a successful execution of the following decomposition steps.

The coordinates xfoc, yfoc, zfoc of the focus are obtained by solving the linear

system of equations0
@p11 p12 p13
p21 p22 p23
p31 p32 p33

1
A
0
@xfocyfoc
zfoc

1
A =

0
@�p14�p24
�p34

1
A : (4.13)

There exists a unique solution of (4.13) because the left sub-matrix of P has

full rank according to the above assumption.

The magnitude of the overall scaling factor � is computed by

j�j =
q
p231 + p232 + p233 ; (4.14)

where j�j 6= 0 because of the above assumption. The left sub-matrix of P is

then normalized, which yields

P
0 =

1

j�j

0
@p11 p12 p13
p21 p22 p23
p31 p32 p33

1
A : (4.15)

The RQ factorization of P 0 is computed using Schmidt's orthogonalization

method [10] or, preferably, using (numerically more stable) successive House-

holder transformations [92],

P
0 = RQ =

0
@r11 r12 r13

0 r22 r23
0 0 r33

1
A
0
@q11 q12 q13
q21 q22 q23
q31 q32 q33

1
A ; (4.16)

where R is an upper triangular and Q is an orthogonal matrix. RQ factor-

ization is not unique, but possible solutions di�er only in signs. Here, the

solution with r11 < 0, r22 < 0 and r33 > 0 is desired. These diagonal elements

of R cannot be zero, since this would indicate a rank de�ciency in P 0. r33 is

unity due to the normalization of P 0 in equation (4.15).
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The matrix G is now de�ned as

G = V A�1
D =

0
@g11 g12 g13
g21 g22 g23
0 0 1

1
A =

0
BBBBB@

�D (1� a1)

1� (a21 + a22)

Da2

1� (a21 + a22)
ufoc

Da2

1� (a21 + a22)

�D (1 + a1)

1� (a21 + a22)
vfoc

0 0 1

1
CCCCCA ; (4.17)

which implies g12 = g21, g11 < 0 and g22 < 0 because of the constraints

ja1j < 1, ja2j < 1 and D > 0 introduced in subsection 4.1.3.

An orthogonal matrix K is then sought such that G = RK. The matrix

K must be composed of the elementary rotation

K =

0
@ cos � sin� 0

� sin� cos � 0

0 0 1

1
A ; (4.18)

where, because of g12 = g21, the angle of rotation is determined by

tan � = � r12

r11 + r22
: (4.19)

The denominator in equation (4.19) cannot be zero due to the conditions

r11 < 0 and r22 < 0 required in the RQ factorization above. The matrix

elements of K can be computed directly by

sin� =
tan�p

1 + tan2 �
and cos � =

1p
1 + tan2 �

: (4.20)

According to the de�nition in equation (4.17), the focus-to-detector distance

D is obtained from G by

D =
�2 (g11 g22 � g212)

g11 + g22
: (4.21)

The coeÆcients a1 and a2, which compensate for a deviation in scale and a

lack of orthogonality between the detector axes, are computed by

a1 =
g22 � g11

g11 + g22
and a2 =

�2 g12
g11 + g22

: (4.22)
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The denominator of equations (4.21) and (4.22) cannot be zero because of

g11 < 0 and g22 < 0. Finally, the coordinates of the view reference point are

directly provided by G,

ufoc = g13 and vfoc = g23 : (4.23)

The decomposition of P 0 = GS = � (RK)
�
K

�1
Q
�
is completed by con-

sidering the correct sign of the scaling factor � by

sign� = det
�
K

�1
Q
�

and S = sign�
�
K

�1
Q
�
; (4.24)

where K�1 = K
T because K is orthogonal. The Euler angles �, �,  are

then obtained from the matrix S by

� = arctan

�
s31

s33
;
�s32
s33

�
;  = arctan

�
s13

s33
;
s23

s33

�
; � = arccos s33 ;

(4.25)

where the arctangent function with two arguments returns an angle between

�� and �, considering the signs of the numerator and denominator. Equa-

tion (4.25) cannot be applied if s33 = �1. This situation, however, does not
occur in practice for the given divergent-beam geometry.

Beside the above decomposition of a projection matrix P into 11 geometric

parameters, the following information can be obtained from P .

A vector ru;v pointing from the focus to the point (u; v)
T
on the detector can

be calculated from P by the vector product

ru;v = (p1 � up3)� (p2 � v p3) ; (4.26)

where pj = (pj1; pj2; pj3)
T
.

The scaling factor � in the relation � (u; v; 1)
T
= P (x; y; z; 1)

T
is propor-

tional to the distance L (r) from the focus to the point r = (x; y; z)
T
pro-

jected onto the central ray. More speci�cally,

� = L (r)
�
p231 + p232 + p233

�
: (4.27)

If P is normalized such that p34 = 1 and R is the focus-to-isocentre distance

as de�ned previously, the relation

� =
L (r)

R
(4.28)
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can be derived from equation (4.7). This is advantageous, since R2=L2 (r)

needs to be calculated in divergent-beam �ltered-backprojection algorithms

for each voxel to be reconstructed.

Provided the object coordinates of the isocentre are known, the view angle

� for a particular projection can be calculated using the result of equa-

tion (4.13) as

� = arctan (xfoc � xiso; yiso � yfoc) : (4.29)

Furthermore, the projection of the isocentre yields the view reference point

in each view without explicit decomposition of P ,

� (ufoc; vfoc; 1)
T
= P (xiso; yiso; ziso; 1)

T
; (4.30)

since the isocentre is the intersection of all central rays. The above equation

simpli�es to

ufoc =
p14

p34
and vfoc =

p24

p34
(4.31)

if the isocentre is located at the origin of the object coordinate system. A

mechanically unstable system such as a C-arm angiography device, however,

may not have a well-de�ned isocentre. The equations (4.29), (4.30) and (4.31)

are then approximate assuming an average isocentre position that �ts best

to the source trajectory.

4.2 Projection data acquisition

For two-dimensional computed tomography, a diagnostic Siemens Somatom

Plus 4 scanner, shown in the left panel of �gure 4.2, was utilized to record

fan-beam projections. Cone-beam projections were acquired at a Siemens

Primus linear accelerator and a Siemens SimView therapy simulator. For

this purpose, a PerkinElmer Optoelectronics RID 256-L 
at-panel imager

was attached to the gantry of these devices such as shown in the right panel

of �gure 4.2. In the following two subsections, the data acquisition hardware

is described from the technical point of view, using the mathematical notation

introduced previously. Furthermore, the scan parameters, that were constant

for all experiments, are listed.
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4.2.1 Fan-beam computed tomography

The Siemens Somatom Plus 4 scanner provides sequential (slice-by-slice) and

helical data acquisition schemes. The X-ray source is placed at a distance R

of 57 cm from the axis of rotation. The distance from the focal spot to the

curved single-row detector, D, equals 100.5 cm.

The maximum tube voltage is 150 kV. Using a 120 kVp beam such as

for many diagnostic CT examinations, the tube current ranges from 50 to

320mA. The size of the focal spot is either 0:6� 0:6mm2 or 0:8� 1:1mm2.

A Somatom Plus 4 scanner records 1056 projections equally spaced over the

full circle. A complete gantry rotation takes 0.75 s or 1.5 s, depending on

the mode which is chosen. Each projection comprises 768 bins at an angular

pitch of 4:06250, resulting in a fan opening angle 2�max of 52
Æ.

Two di�erent technical tricks are implemented that allow ful�lment of the

Nyquist condition for suÆcient sampling of the fan-beam projections.

1. The �rst option is to displace the central ray by a quarter of the bin size.

The e�ective sampling pitch equals then half of the bin size because

each ray is measured twice during a full gantry rotation.

2. Alternatively, the position of the focal spot on the anode can be mod-

ulated electronically. Using this feature, each projection is sampled

twice during continuous gantry rotation at an angular displacement of

half of the bin size. The combined projection for a given view angle

consists then of 1536 samples. Consequently, the Nyquist condition on

suÆcient sampling is ful�lled for each projection and not only for the

complete 2� scan.

The second option is obviously preferable if short-scan approaches are used,

i.e., images are to be reconstructed from a range of projection view angles

less than 2�.

4.2.2 Cone-beam computed tomography

For the Siemens Primus linear accelerator and the Siemens SimView therapy

simulator, the source-to-isocentre distance R equals 100 cm. The 
at-panel

imager was placed at a distance D of about 130 cm from the focal spot.

Using the linear accelerator, an in-house built mechanical support frame was

employed to attach the detector to the gantry, whereas the 
at-panel was

mounted on top of the built-in image intensi�er of the therapy simulator.
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Figure 4.2: Equipment utilized for X-ray projection data acquisition. The left

panel shows a Somatom Plus 4 scanner for diagnostic fan-beam CT. The right

panel shows a Siemens SimView therapy simulator combined with a PerkinElmer

Optoelectronics RID 256-L 
at-panel imager for cone-beam CT.

For kilovoltage imaging at the SimView, a tube voltage of 150 kV and an

exposure per view of 5mAs were chosen to exploit the full dynamic range

of the 
at-panel imager. The megavoltage scans were taken with a 6MV

beam from the Primus linear accelerator. Each view was acquired using one

monitor unit,1 which is the smallest output deliverable for a single �eld.

The projections were normally recorded manually in step-and-shoot mode

because a gating option for synchronizing the X-ray output and the detector

integration window was not available. The control software of the linear ac-

celerator and the therapy simulator allows to select the gantry angle in steps

of 1Æ. This yields a maximum number of 360 projections per full revolution

for the step-and-shoot mode.

The PerkinElmer Optoelectronics RID 256-L 
at-panel imager comprises a

phosphor layer (133mg cm�2 Gd2O2S:Tb) directly coupled to an array of

256 � 256 photodiodes made of amorphous silicon. The pixel pitch in each

direction is 0:8mm resulting in a sensitive area of 20:48 � 20:48 cm2. Mea-

sured data are digitized into 12 bit per pixel. Possible integration times are

80ms, 100ms, 200ms, 400ms, 800ms, 1600ms, 3200ms and 6400ms. Here,

the 3200ms and 6400ms integration times were chosen to allow manual syn-

chronization in the step-and-shoot acquisitions. The 1mm aluminium cover

plate supplied was replaced by a 3mm copper plate for some of the mega-

voltage experiments using the linear accelerator.

1One monitor unit is de�ned as the linear accelerator output needed to deliver a dose

of 1 cGy under reference conditions (source-to-surface distance 100 cm, water depth 5 cm,

�eld size 10� 10 cm2).
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4.3 Projection data preprocessing

The object function f (r) to be reconstructed in X-ray computed tomography

is the distribution of the linear attenuation coeÆcients � (E) at a particular

energy E. The data measured by the detector, however, do not directly

represent the line integrals g (�; u; v) through f (r). They require therefore

some preprocessing steps that consider several physical e�ects and technical

properties of the detector to obtain an estimate of g (�; u; v).

The raw data captured by the diagnostic fan-beam CT scanner described

subsection 4.2.1 are corrected automatically during the acquisition. The

manual preprocessing steps utilized for the experimental cone-beam systems

involving a 
at-panel imager as introduced in subsection 4.2.2 are explained

in the following.

4.3.1 Dark current correction

Flat-panel imagers exhibit a background signal that does not depend on the

amount of X-ray exposure. The dark current is present even when there

is no exposure at all. After a particular warm-up period of the detector,

the dark signal is relatively stable with time, but it varies from pixel to

pixel. This e�ect needs therefore to be considered carefully in order to avoid

reconstruction artefacts.

Before an actual CT scan, a series of about 40 to 50 dark frames is ac-

quired and averaged in order to minimize the introduction of (electronic and

thermal) random noise. The averaged dark image is then subtracted from

each captured projection prior to further processing. The dark and actual

measurements have to be taken using the same integration times.

4.3.2 Bad pixel correction

In 
at-panel imagers, not only the o�set (dark current) varies between pixels,

but also the gain factor. This is taken into account by means of the open

�eld calibration described in the next subsection. A small percentage of pix-

els, however, cannot be calibrated successfully, and may even be completely

defective. Using third-generation CT scanning mode, these pixels cause ring

artefacts in the reconstructed images.
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A 
at-panel detector is therefore characterized by a bad pixel map, which

is obtained once and stored permanently. The few bad pixels are normally

randomly distributed across the �eld and do not occur in large clusters.

It is therefore suÆcient to calculate the value of all bad pixels from their

neighbourhood by median �ltering for each captured frame.

4.3.3 Open �eld calibration

As mentioned above, the gain factor varies from pixel to pixel because of

technical limitations. Furthermore, the incident photon 
uence and mean

energy are not uniform across the whole �eld, and their spatial distributions

are normally unknown.

To consider these e�ects, a calibration measurement is performed (normally

in air), using the same integration time as for the acquisition of the actual

projections of the object. The open frames should be captured immediately

before or after the actual CT scan in order to decrease the in
uence of X-ray

output 
uctuations.

Multiple open frames are recorded in order to minimize the introduction of

additional random noise that is caused by the Poisson photon statistics and

by the read-out electronics of the detector. There are two approaches for the

normalization to obtain an estimate of the line integrals. The open frames

can be taken at a particular view angle �0 and averaged,

g (�; u; v) = � ln

�
Iobj (�; u; v)
�Iair (�0; u; v)

�
: (4.32)

Alternatively, the one or more open frames can be recorded for each view

independently,

g (�; u; v) = � ln

�
Iobj (�; u; v)
�Iair (�; u; v)

�
: (4.33)

Provided the overall number of open frames is equal, both approaches yield

the same signal-to-noise ratio in the reconstructed CT images. The second

method, however, is preferable when the spatial distribution of the source


uence is non-uniform and 
ex e�ects need to be considered.

As a results of this open �eld calibration, the linear attenuation coeÆcient

of air is represented by zero in the CT images, i.e., all reconstructed values

are decreased by �air.



46 CHAPTER 4. MATERIAL AND METHODS

4.3.4 Beam-hardening and scatter correction

The estimation of the line integrals g (�; u; v) by an open �eld calibration

is often not suÆcient, especially, when quantitative information about the

absorption is desired. This is mainly because of two physical e�ects.

1. The linear attenuation coeÆcients to be reconstructed as well as the

eÆciency of the detector depend on the photon energy. Since the output

of an X-ray tube or a linear accelerator is not monoenergetic, the signal

is averaged over the energy spectrum.

2. At the photon energies utilized for X-ray imaging, Compton scattering

is a signi�cant interaction process. Scattered photons do not travel

along the integration lines from the focus to the detector pixels, but

nevertheless they are potentially detected.

Both of these e�ects are non-linear, i.e., they violate the assumptions that

are made in image reconstruction algorithms. The method utilized to correct

the projection images for these e�ects, at least to certain extent, is outlined

in the following.2

The intensity of the scatter component is estimated by means of a super-

position method summing the scatter contribution from each pixel to every

other pixel in the detector. Convolution kernels are pre-calculated for various

object-to-detector air gaps, path lengths and object radii using a dedicated

Monte Carlo code [118]. For each ray through the phantom, the most appro-

priate kernel is selected from this library.

A series of calibration measurements is performed occasionally to account

for the energy spectrum of the primary beam and the response of the de-

tector. For this purpose, transmission images of water-equivalent phantoms

with di�erent, accurately known thickness are acquired. The data are �tted

to a linear-quadratic model, which describes the relation between water-

equivalent thickness and measured intensity suÆciently accurate [117].

Combining the scatter estimation and the detector calibration method yields

a quadratic equation, which needs to be solved for the water-equivalent thick-

nesses of each transmission image of an actual CT scan. Since the scatter

component to be subtracted from the measured intensity is a function of

the water thickness, this equation cannot be solved directly. An iterative

procedure is therefore used, which, in practice, converges to an acceptably

accurate solution within 3 or 4 steps [114].

2This correction was only applied to megavoltage scans.
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4.4 Geometric calibration

The experimental cone-beam CT scanners introduced in subsection 4.2.2 are

comprised of a 
at-panel imager attached to a linear accelerator or a ra-

diotherapy simulator. These devices exhibit signi�cant mechanical instabil-

ities, thus requiring the application of a sophisticated geometric calibration

method. The diagnostic fan-beam CT scanner described in subsection 4.2.1

does not need to be calibrated geometrically, since its components are per-

fectly aligned.

Geometric calibration of the cone-beam scanners was achieved by scanning a

dedicated phantom, which consists of an array of �ducial markers. Based on

the accurately known positions of these markers and their estimated locations

in the recorded images, the projection geometry was calculated for each view

independently.

According to the classi�cation of calibration methods introduced in subsec-

tion 3.4.1, this is a local technique. The following (mathematical) description

is therefore provided for an arbitrary view without referring to a particular

view angle � in order to simplify the formulae.

4.4.1 Calibration phantom

The in-house built phantom shown in �gure 4.3, which was utilized for geo-

metric calibration, is very similar to those introduced by Rogu�ee et al. [99].

It consists of a hollow Perspex cylinder with 37 small ball bearings made

of steel embedded in its wall. These markers are arranged along a helical

trajectory of radius 67.5mm. The axial spacing of the �ducial markers is

6mm. The diameter of the ball bearings equals 3mm, except for the central

one, which has a diameter of 5mm. In addition to the original design sugges-

tions, lines are engraved on the surface of the Perspex cylinder that indicate

its longitudinal axis and its centre.

The axis of rotation of the X-ray source is assumed to be nearly parallel to

the longitudinal axis of the marker helix. Without loss of generality, the rows

of the detector are required to be approximately parallel to the base of the

cylinder. If this requirement is not ful�lled during the calibration scan, the

original projections can be rotated, which then needs to be considered during

the detection of the markers described in the following subsection. The larger

ball bearing serves as a reference and has to appear in all projection images.
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Figure 4.3: Phantom for geometric calibration comprising 37 ball bearings ar-

ranged along a helical trajectory; normalized X-ray projection of the phantom;

alignment of the phantom at the isocentre of a linear accelerator using laser marks

(from left to right).

Due to the phantom design and the assumptions mentioned above, the ball

bearings show up along a sine-shaped path in each projection image as shown

in �gure 4.3.

In summary, the calibration phantom exhibits the following advantageous

properties.

� The number of �ducial markers is suÆciently large, and they are well

distributed in three-dimensional space, in order to obtain an accurate

estimation of the projection geometry for each view.3

� In none of the views can the ball bearings hide each other, which sim-

pli�es their automatic detection in the X-ray projections.

� The order of the markers along the axis of the cylinder is in agreement

with their order by column index in all projection images. In the case

of axial truncation, absolute numbering can be achieved by using the

larger ball bearing as reference.

� The phantom can be aligned with respect to a particular frame of

reference using laser marks and the engraved lines. This is shown for

the linear accelerator in �gure 4.3.

The basic design of the calibration phantom is well-suited to be used with

all source trajectories depicted in �gure 3.1 on page 18.

3This statement is corroborated in subsection 5.1.3 via computer simulations.
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4.4.2 Detection of �ducial markers

Based on the properties of the calibration phantom, an algorithm for the

detection of the ball bearings in each projection image was designed. The

algorithm works as follows.

1. In a preprocessing step, the background of the projection image is re-

moved along the axis of the cylinder. This is done by low-pass �ltering

of each column vector of the detector and subtracting the result from

the original one. The image then exhibits a uniform background (ex-

cept for noise). In particular, the walls of the Perspex cylinder are

eliminated by this procedure.

2. A threshold for the segmentation of the ball bearings is chosen as cer-

tain percentage of the maximum value, which is de�nitely above the

background noise. Image regions that potentially represent a ball bear-

ing because of high absorption are labelled by applying this threshold.

3. All labelled regions are checked for their size and their shape. Regions

that are non-circular, too small or too large are excluded based on

approximate, prior knowledge of the imaging geometry.

4. For all regions remaining after the previous step, the centre of gravity

is calculated in order to estimate the location of the centre of each ball

bearing in the X-ray projection. These positions are denoted as uk, vk
(k = 1; : : : ; K).

5. All K detected ball bearings are �nally sorted by their column coor-

dinate vk. The largest region is sought in order to obtain the desired

absolute correspondence to the known three-dimensional coordinates

xk, yk, zk of the ball bearings within the phantom.

This algorithm works automatically in many cases. A manual de�nition of

a particular region of interest can be necessary if structures other than the

cylinder phantom are imaged.

4.4.3 Parametric calibration method

Based on the known positions xk, yk, zk of the K markers and their locations

uk, vk in the X-ray projection obtained in the previous step, a set of parame-

ters describing the particular projection geometry can be estimated. The

eleven geometric parameters ! = (xfoc; yfoc; zfoc; �; �;  ;D; a1; a2; ufoc; vfoc)

utilized here refer to equation (4.7) on page 36.
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The geometric parameters are estimated by minimizing the mean quadratic

deviation between the position of the markers in the X-ray image and their

reprojected locations,

�s2 (!) =
1

K

KX
k=1

�
�u2

k
(!; xk; yk; zk; uk) + �v2

k
(!; xk; yk; zk; vk)

�
; (4.34)

where

�uk =
p11 (!) xk + p12 (!) yk + p13 (!) zk + p14 (!)

p31 (!) xk + p32 (!) yk + p33 (!) zk + p34 (!)
� uk ; (4.35)

�vi =
p21 (!) xk + p22 (!) yk + p23 (!) zk + p24 (!)

p31 (!) xk + p32 (!) yk + p33 (!) zk + p34 (!)
� vk (4.36)

and the projection matrix P is composed from ! according to equation (4.7).

The minimization of �s2 (!) is performed using Powell's method [92] in order

to obtain the desired parameter vector !.

4.4.4 Non-parametric calibration method

As an alternative to the parametric calibration approach described in the

previous subsection, the elements p31; : : : ; p34 of the projection matrix P can

be calculated analytically. Each of the K �ducial markers provides three

equations of the form

�

0
@ukvk

1

1
A =

0
@p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

1
A
0
BB@
xk
yk
zk
1

1
CCA : (4.37)

The unknown scaling factor � is eliminated from the system of 3K equations,

resulting in the equivalent system of 2K equations

Lp = 0 ; (4.38)

where the vector

p =

0
B@
p11
...

p34

1
CA
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is comprised of the desired elements of the projection matrix, 0 denotes the

zero vector and

L =

0
BBB@

...
...

...
...

...
...

...
...

...
...

...
...

xk yk zk 1 0 0 0 0 �xk uk �yk uk �zk uk �uk
0 0 0 0 xk yk zk 1 �xk vk �yk vk �zk vk �vk
...

...
...

...
...

...
...

...
...

...
...

...

1
CCCA :

The matrix L is singular independent of the number K of markers, since

an additional constraint is needed to determine the overall scaling. In other

words, there are 12 variables, namely the elements of the projection matrix

P , but only 11 degrees of freedom in the mathematical model of a conic

projection.

One approach is to choose an arbitrary, but non-zero, value for one of the

elements of P . The traditional choice is the constraint p34 = 1 that turns

equation (4.38) into another system, which can be solved in linear least-

squares sense by means of its normal equations [70].

At least K = 6 markers are necessary to ensure the full rank 11 of this

system. In fact, seven or more markers should be used, since no geometric

distribution of six points guarantees the full rank for arbitrary positions of

the focal point [70]. The system of equations is singular independent of the

number of points if they are badly distributed in three-dimensional space,

e.g., if they all lie in the same plane.

Apart from the number and distribution of markers, the constraint p34 = 1

considered above introduces a singularity if the correct value of p34 is (close

to) zero. The alternative constraint p231 + p232 + p233 = 1, however, is free

of singularities [70]. Furthermore, this condition follows directly from the

composition of P in equation (4.7) for j�j = 1. If the original system (4.38)

is written as

L1 p1 +L2 p2 = 0 (4.39)

with

L1 =

0
BBB@

...
...

...
...

...
...

...
...

...

xk yk zk 1 0 0 0 0 �uk
0 0 0 0 xk yk zk 1 �vk
...

...
...

...
...

...
...

...
...

1
CCCA ; p1 =

0
BBB@
p11
...

p24
p34

1
CCCA
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and

L2 =

0
BBB@

...
...

...

�xk uk �yk uk �zk uk
�xk vk �yk vk �zk vk

...
...

...

1
CCCA ; p2 =

0
@p31p32
p33

1
A ;

the least-square solution for the desired coeÆcients in p1 and p2 is obtained

as the eigenvector corresponding to the smallest eigenvalue of the matrix

L3 =
�
L

T
2 L2

�
�
�
L
T
1 L2

�T �
L

T
1 L1

��1 �
L
T
1 L2

�
; (4.40)

for p2 and then by

p1 = �
�
L
T
1 L1

��1 �
L
T
1 L2

�
p2 (4.41)

as proved previously [70].

4.5 Image reconstruction

The algorithm proposed by Feldkamp, Davis and Kress [24] was employed for

approximate image reconstruction of cone-beam data recorded using a single-

circular source trajectory. The original method was modi�ed to account

for 
ex e�ects. These modi�cations are based on the geometric calibration

procedure explained in the previous section.

Two versions of the cone-beam reconstruction algorithm are explained in the

following, one for planar detectors such as 
at-panel imagers and one for

cylindrical detectors such as utilized in diagnostic multi-row CT scanners.

The modi�cation of these algorithms that is necessary to process short-scan

data sets is then described. Furthermore, some well-known properties of the

Feldkamp algorithm [24] are listed.

Fan-beam reconstruction algorithms are not explicitly mentioned, since they

can be easily derived as special case for z = 0 from the three-dimensional

problem. In this section, the mathematical notation is based on continuous

variables. In appendix C, however, the eÆcient practical implementation of

the formulae on a digital computer using discrete data is addressed.
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4.5.1 Algorithm for planar detectors

Step 1. The projection data g (�; u; v), preprocessed as explained in sec-

tion 4.3, are weighted to account for the divergent beam,

g1 (�; u; v) = g (�; u; v)
D (�)q

D2 (�) + (u� ufoc (�))
2
+ (v � vfoc (�))

2
: (4.42)

The weighting term in the above equation is slightly modi�ed compared to the

original one to correct for 
ex e�ects. The o�sets ufoc (�) and vfoc (�) account

for a non-centred detector. These values as well as the source-to-detector

distance, D (�), are considered for each view angle, �, independently.4

Step 2. The weighted projections g1 (�; u; v) are �ltered one-dimensionally

along lines parallel to the plane of source rotation,

g2 (�; u; v) =

umaxZ
umin

g1 (�; u
0; v) h (u� u0) du0 : (4.43)

The kernel h (u) is one of the well-known parallel-beam �lters as introduced

in appendix A. The convolution integral does not change if o�sets along

the detector axes, u and v, are introduced. Potential tilts of the detector

with respect to the plane of source rotation are not considered in the above

equation.5

Step 3. A cone-beam backprojection of the �ltered projections g2 (�; u; v) into

the reconstruction volume is �nally performed to obtain the object function

f (r) =
1

2

�maxZ
�min

R2 (�)

L2 (�; r)
g2 (�; u (�; r) ; v (�; r)) d� : (4.44)

The functions u (�; r) and v (�; r) map the object coordinates r = (x; y; z; )
T

onto detector coordinates u, v for a particular view angle �. L (�; r) is the

distance from the focus to the point r to be reconstructed, projected onto the

central ray and R (�) is the source-to-isocentre distance. All these geometric

parameters are conveniently obtained from the projection matrices P � using

equations (4.5), (4.6) and (4.28).

4This mathematically rigorous treatment of geometric misalignments has minor impact

on the reconstruction result. For the cone-beam geometry speci�ed in subsection 4.2.2,

the weighting term varies only by 1%. The correction is therefore almost negligible, since

the geometric uncertainties usually do not exceed a few detector pixels.
5Typical 
ex e�ects do not result in signi�cant tilts. It is therefore fairly reasonable to

keep this step unchanged.
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4.5.2 Algorithm for cylindrical detectors

A cone-beam reconstruction algorithm for cylindrical detectors can be de-

rived from those for planar projections by introducing the coordinate trans-

form from u to � using equation (4.1). This subsection is intended to em-

phasize only the corresponding changes compared to the previous one.

Step 1. The projections g (�; �; v) are weighted to account for the cone-beam

geometry,

g1 (�; �; v) = g (�; �; v)
R (�) cos �q

R2 (�) + (v � vfoc (�))
2
: (4.45)

Step 2. The weighted projections g1 (�; �; v) are �ltered one-dimensionally

along lines parallel to the plane of source rotation,

g2 (�; �; v) =

�maxZ
�min

g1 (�; �
0; v) h (� � � 0) d� 0 ; (4.46)

where h (�) is a �lter kernel known from fan-beam algorithms for curved

detectors.

Step 3. The �ltered projections g2 (�; �; v) are backprojected to yield the

desired object function f (r),

f (r) =
1

2

�maxZ
�min

R2 (�)

L02 (�; r)
g2 (�; � (�; r) ; v (�; r)) d� : (4.47)

Whereas v (�; r) is provided by M� as explained previously, the fan angle

� (�; r) cannot be directly obtained from the projection matrix, but needs

to be calculated separately using equation (4.1). The distance L0 (�; r) from

the focus to the point r to be reconstructed projected onto the plane z = 0

is also not immediately delivered by M�.

Step 2a. The latter problem concerning the distance L0 (�; r) can be avoided

if the post-�ltering weighting

g2a (�; �; v) = g2 (�; �; v) cos
2 � (4.48)

is added. In the backprojection of g2a (�; �; v) in step 3, the distance L
0 (�; r)

is then replaced by L (�; r) introduced in the previous subsection.
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4.5.3 Short-scan algorithms

For short-scan data sets with a view angle range of �+2�max � �max��min <

2� and an over-scan �� = �max � �min � � � 2�max, the weighting term

w (�; �) = S

�
�

2�max � 2� + ��
� 1

2

�
� S

�
�� � + 2�

2�max + 2� + ��
� 1

2

�
(4.49)

proposed by Parker [85] is introduced additionally into equation (4.42) or

equation (4.45), respectively. For cylindrical detectors, the fan angle � is

given directly. For planar detectors, � is calculated using equation (4.1).

The function S is de�ned by

S (q) =

8><
>:
0 if q � �1

2
;

1 + sin (� q) if jqj < 1
2
;

2 if q � 1
2
:

(4.50)

An alternative weighting function and a general discussion on short-scan

reconstruction was presented by Wesarg et al. [132].

4.5.4 Properties

Feldkamp, Davis and Kress [24] proved the following three properties of their

approximate �ltered-backprojection algorithm.

� The reconstruction is exact in the mid-plane, z = 0. This is obvious,

since the above equations reduce to the well-known fan-beam recon-

struction formulae for z = 0.

� The reconstruction is exact for objects that are homogeneous in z direc-

tion, i.e., when f (x; y; z) = f (x; y). In this case, the divergent-beam

geometry is completely compensated by the pre-weighting step such

that g1 (�; u; v) = g1 (�; u). The algorithm reduces therefore again to

two-dimensional fan-beam reconstruction.

� The integral value of the object function along lines parallel to the z

axis,
R
f (x; y; z) dz, is preserved, since the three-dimensional Radon

transform can be computed for all planes perpendicular to z = 0 from

the cone-beam projections of a single-circular scan.

The third property implies that the main degradation of image quality due

to missing data is blurring in the axial direction. This blurring a�ects only

those parts of the object that are not homogeneous in z direction, since the

cone-beam transform is linear.
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4.6 Image restoration

This section describes the method of projections onto convex sets (POCS)

utilized for image restoration from incomplete projection data and prior in-

formation. A thorough introduction to the method of projections onto con-

vex sets was presented by You-la and Webb [139]. Section A.4 provides a

summary of the POCS theory.

The object function f (r) is estimated in POCS from an initial image f (0) (r)

(frequently the zero image) by means of the iterative procedure6

f (t+1) (r) = CK CK�1 : : : C1 f (t) (r) ; t = 0; 1; 2; : : : ; (4.51)

where the Ck (k = 1; : : : ; K) denote constraint operators that enforce consis-

tency of the function f (r) with its measured projections and prior informa-

tion. The application of Ck to some function yields its nearest neighbour,7

that is an element of a particular constraint set Ck. The purpose of the fol-

lowing subsections is to introduce various constraint sets Ck and associated

operators Ck rigorously.

In particular, the set Cgm of functions that are consistent with a measured

line integral gm is de�ned below. Using a discrete version of m = 1; : : : ;M

such constraints and no other conditions, the POCS procedure

f (t+1) (r) = CgM : : : Cg2 Cg1 f (t) (r) ; t = 0; 1; 2; : : : (4.52)

becomes equivalent to the well-known additive algebraic reconstruction tech-

nique (AART). Furthermore, the set C
 of functions that are zero outside

the region 
 and the set CF of functions that exhibit a particular Fourier

spectrum within the range F in frequency space are de�ned in the following.

Applying only these two constraints yields the Gerchberg-Papoulis algorithm

for analytical continuation [27, 84] that reads as

f (t+1) (r) = CF C
 f (t) (r) (4.53)

in POCS notation. These two examples show that POCS is a quite general

approach that covers a whole class of iterative image restoration methods,

although not all possible techniques.

6This iterative scheme is a simpli�ed version of equation (4.51) obtained by setting all

relaxation parameters to unity. Relaxation is ignored for the moment.
7The nearest neighbour is meant in the sense of minimum norm, which is explained in

section A.4 in detail.
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4.6.1 Consistency with projection data

Each parallel-beam projection g (�; s) determines the Fourier transform along

a line through the origin of frequency space as shown in theorem A.5. A

potentially useful constraint is therefore the set

CF =
�
f (r) : F (�) = F f (r) = G (�) 8� 2 F

	
(4.54)

of functions f (r) that exhibit a particular Fourier spectrum G (�) within a

certain range F of frequency space. The corresponding constraint operator is

de�ned by

CF f (r) = F�1 F 0 (�) ; F 0 (�) =

(
G (�) for � 2 F ;
F (�) for � =2 F :

(4.55)

Although this operator is closely related to the method of direct Fourier

reconstruction, it can be implemented by means of �ltered backprojection

and reprojection as well.

As an alternative to the Fourier constraint, the information from the pro-

jection data can be considered by introducing a separate constraint for each

single measurement8 gm = g (�m; um; vm) that is de�ned by

gm = Dm f (r) =

Z
RN

f (r) �m (r) dNr : (4.56)

�m (r) is a characteristic function for the line or strip integration correspond-

ing to measurement gm. The set

Cgm =
�
f (r) : Dm f (r) = gm

	
(4.57)

contains all functions f (r) that are consistent with this particular measure-

ment gm. The constraint operator is then given by

Cgm f (r) = f (r) +
gm �Dm f (r)

k�m (r)k �m (r) : (4.58)

This means that the di�erence between the measurement gm and the value

Dm f (r) reprojected from the actual image f (r) is scaled by k�m (r)k, back-
projected and added to the previous image. If �m (r) describes the integra-

tion along an in�nitely thin line, then k�m (r)k is the length of the corre-

sponding line segment.

8The following constraint is demonstrated for the functionals Dm of the N -dimensional

divergent-beam transform D. The formulae can be easily adapted for the parallel-beam

transform P .
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4.6.2 Consistency with general prior information

The image f (r) is known a priori to be zero outside a particular region 
,

since every object to be considered is of �nite spatial extent. f (r) is therefore

contained in the set

C
 =
�
f (r) : f (r) = 0 8 r =2 


	
(4.59)

of all functions that are compactly supported in 
. The operator restricting

a function to this set is

C
 f (r) =
(
f (r) if r 2 
 ;

0 if r =2 
 :
(4.60)

In X-ray transmission computed tomography, the desired image f (r) is the

distribution of the linear attenuation coeÆcients of the object. It belongs

therefore clearly to the set

C�0 =
�
f (r) : f (r) � 0

	
: (4.61)

of all non-negative functions. The constraint operator for this set is given by

C�0 f (r) =
(
f (r) if f (r) � 0 ;

0 if f (r) < 0 :
(4.62)

The range of possible solutions can be further restricted if the values of f (r)

are known to lie in a particular interval I = [fmin; fmax], i.e., if it is contained

in the set

CI =
�
f (r) : fmin � f (r) � fmax

	
: (4.63)

This constraint generalizes the non-negativity condition introduced above by

adding an upper limit. In X-ray CT, the attenuation coeÆcient of compact

bone or metal (to account for implants) would be a reasonable assumption

for an upper limit.

CI f (r) =

8><
>:
fmin if f (r) < fmin ;

f (r) if fmin � f (r) � fmax ;

fmax if f (r) > fmax

(4.64)

is the constraint operator for the set CI.
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4.6.3 Consistency with reference images

One of the most powerful constraints restricting the space of possible solu-

tions in image restoration is to enforce consistency of the desired function

f (r) with a reference image �f (r). The set

C �f =
�
f (r) : jf (r)� �f (r)j � " (r) ; " (r) > 0

	
(4.65)

contains all functions that are within distance " (r) from the reference image.

The corresponding constraint operator is de�ned by

C �f f (r) =

8><
>:

�f (r)� " (r) if f (r)� �f (r) < �" (r) ;
f (r) if jf (r)� �f (r)j � " (r) ;

�f (r) + " (r) if f (r)� �f (r) > " (r) :

(4.66)

The reference image constraint C �f can be considered to be a generalization

of CI introduced previously for a minimum value fmin (r) = �f (r)� " (r) and
a maximum value fmax (r) = �f (r) + " (r) that vary spatially.

The appropriate choice of " (r) is crucial for the successful application of

reference images. If " (r) is too large, the space of possible solutions is not

very much restricted. On the other hand, if " (r) is too small, the intersection

of C �f with the other constraint sets may be empty, i.e., there may be no

solution consistent with all constraints.





Chapter 5

Results

In this chapter, the results from various computer simulations and experi-

ments on X-ray computed tomography (CT) using non-ideal projection data

are presented. It is organized as follows.

Section 5.1 deals with the geometric calibration of cone-beam X-ray devices.

It comprises comparisons of the parametric and non-parametric technique

for estimating the projection geometry for each view introduced in subsec-

tion 4.4.3 and 4.4.4, respectively. Results of computer simulations concerning

the eÆcacy of the decomposition algorithm described in subsection 4.1.4 are

also presented. Furthermore, the evaluation of the reproducibility of 
ex

e�ects is demonstrated for a linear accelerator.

In section 5.2, the image quality obtained with the approximate reconstruc-

tion algorithm from section 4.5 and the experimental cone-beam CT scanners

introduced in subsection 4.2.2 is assessed. The performance of the 
ex cor-

rection, spatial resolution and various types of artefacts are considered.

Image restoration results from limited-angle projection data and prior knowl-

edge about the object are presented in section 5.3. Various constraints are

compared by means of computer simulations. The in
uence of noisy trans-

mission data on the iterative restoration procedure is demonstrated. A clin-

ical example of imaging a beating heart is also shown.

Section 5.4 comprises results of a phantom study on rigid-body registration

of three-dimensional image data sets. These results indicate whether approx-

imate cone-beam reconstruction can be considered a feasible basis for further

image processing. Section 5.4, however, does not provide a comprehensive

investigation of matching tools.

61
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5.1 Geometric calibration

The geometric calibration methods and the decomposition algorithm intro-

duced in subsections 4.4.3, 4.4.4 and 4.1.4, respectively, were investigated by

means of computer simulations. The assessment of their eÆcacy given here

refers only to geometric accuracy. The impact of the calibration on image

quality is addressed in the following section. In addition to the computer

simulations, the performance of the calibration technique was studied for

cone-beam imaging using a linear accelerator.

5.1.1 Simulation and evaluation design

The computer simulations were carried out for the cone-beam geometry de-

scribed in subsection 4.2.2. In this geometry, the distance from the source to

the isocentre and the detector are 100 cm and 130 cm, respectively. The 
at

detector exhibits a sensitive area of 20:48 � 20:48 cm2, and the pixel pitch

equals 0.8mm along its rows and columns.

A virtual calibration phantom similar to the real one introduced in subsec-

tion 4.4.1 was represented analytically. The virtual phantom comprises 30

ball bearings arranged along a helical trajectory with a radius of 6.75 cm.

The length of the helix segment was chosen to be 14 cm to �t onto the vir-

tual 
at-panel detector in all views. The diameter of the ball bearings equals

3mm, except for the central reference marker, which has a diameter of 4mm.

A speci�c tolerance for the positions of the ball bearings within the cali-

bration phantom was considered, as it is inevitable when a real calibration

phantom is built. For this purpose, the positions were varied randomly ac-

cording to a Gaussian distribution with zero mean and standard deviation

� = 0:05mm. The distribution was truncated at �3�, since a particular level
is not exceeded in reality.

The projections of the virtual calibration phantom were calculated using the

formulae in section B.1, where 15�15 line integrals were averaged for each de-
tector pixel. Photon statistics and beam hardening were not simulated. Dose

considerations that might limit the signal-to-noise ratio in the projections do

not play a role at all when the calibration is performed o�-line. However,

these e�ects are negligible even for dose-limited (online) calibration scans.

Due to the high absorption of the steel ball bearings, their positions in the

projections can be obtained with similar accuracy in all practical situations.
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The geometric accuracy of the calibration procedure was assessed by compar-

ing, for each view at angle �, the actual projection matrix P �;act obtained

from a calibration scan with the reference matrix P �;ref utilized to simu-

late the corresponding projection. For this purpose, points r = (x; y; z)
T

in three-dimensional object space were reprojected onto the detector using

equations (4.5), (4.6), and the corresponding deviations

�s (�; r) =

q
(uact (�; r)� uref (�; r))

2
+ (vact (�; r)� vref (�; r))

2
(5.1)

between actual and the reference values were calculated. To calculate the

mean reprojection deviation, the results for 10,000 object points randomly

distributed with the �eld of view were averaged for each projection, because

a closed-form analytical integration is cumbersome to handle.

The accuracy of attenuation coeÆcients reconstructed by �ltered backpro-

jection depends strongly on the accuracy of the distance weighting factor

��2 (�; r) = R2 (r) =L2 (�; r) in equation (4.44). This factor is also conve-

niently obtained from the projection matrix as shown in equation (4.28). The

actual weighting factors calculated from an estimated projection matrix were

compared to the corresponding reference values using the de�nition

Æ��2 (�; r) =
��2act (�; r)� ��2ref (�; r)

��2ref (�; r)
: (5.2)

The mean deviation was computed for 10,000 random object points per view

as above.

5.1.2 Parametric versus non-parametric method

The parametric and non-parametric calibration methods were compared in

terms of the reprojection deviation �s using the simulation design explained

in the previous subsection.

The parametric technique was found to rely strongly on suÆciently accurate,

initial estimates of the geometric parameters. Otherwise, the iterative pro-

cedure frequently converged on a local minimum of the objective function

that does not re
ect the true projection geometry at all. For the simulation,

the a priori known, geometric parameters were randomly varied according

to a Gaussian distribution to serve as initial estimate. The corresponding

standard deviation was 0.25 cm for the length parameters (xfoc, yfoc, zfoc, D,

ufoc, vfoc), 0.5
Æ for the angular parameters (�, �,  ) and 10�4 for the scale co-

eÆcients (a1, a2) as de�ned in subsection 4.1.3. These values are reasonable
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assumptions of the accuracy that could be obtained in practical applications.

The Gaussian distribution was truncated at two standard deviations because

the initial estimates would not exceed a particular threshold in reality. The

(analytical) non-parametric method, in contrast, does not require any initial

estimates.

Figure 5.1 and �gure 5.2 show the spatial distribution of the reprojection

deviation �s in terms of one-dimensional and two-dimensional cross-sections

for the parametric and non-parametric calibration methods. This spatial

distribution is, in general, highly non-uniform as can be seen in the two-

dimensional contour plots in both �gures. Its shape depends on the con�g-

uration of markers comprising the calibration phantom.

Using the parametric method, the reprojection deviation increases almost

linearly with increasing distance from the isocentre along the x, y and z axes,

as shown in the one-dimensional cross-sections. In contrast, using the non-

parametric calibration technique, the deviation is less than 0.1mm almost

everywhere within the volume that is covered by the marker helix (indicated

by the dashed-dotted lines in the plots), but increases dramatically outside

this volume. A maximum deviation of 0.1mm is suÆciently small compared

to the detector pixel pitch of 0.8mm. Altogether, the non-parametric method

exhibits desirable features if the projections of the marker helix cover the

sensitive area of the detector almost completely.

The parametric and non-parametric methods were compared rigorously by

means of a statistical test. For both methods, the radial reprojection devia-

tion �s was computed in 120 views equally spaced over the full revolution.

In each view, 10,000 test points randomly distributed within the �eld of view

(FOV) were evaluated. The FOV is the volume covered by the (virtual) CT

scan using equation (4.2), which is slightly larger than the volume covered by

the marker helix. The number of points that exhibit a reprojection deviation

less than a particular threshold was then determined. Using this measure,

a �2 test at signi�cance level 0.01 was performed for thresholds between

0.08mm and 0.8mm, i.e., between a tenth and one detector pixel pitch. In

all of these cases, the number of points within the speci�ed threshold was

signi�cantly larger for the non-parametric method than for the parametric

method.

The results of the �2 test con�rm the assessment of both calibration meth-

ods obtained by visual inspection of the reprojection maps in �gure 5.1 and

�gure 5.2. They demonstrate clearly that the non-parametric calibration

method is preferable in terms of geometric accuracy.
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Figure 5.1: Accuracy of the parametric calibration method in terms of the spatial

distribution of the radial reprojection deviation �s [mm] averaged over 120 equian-

gular views. The diagrams are plotted for a calibration phantom with N = 30

markers and a tolerance level of � = 0:05mm. The detector pixel pitch along both

axes is upitch = vpitch = 0:8mm. The dashed-dotted lines indicate the outline of

the helix phantom. The contour lines in the two-dimensional plot visualize the

levels �s = 0:1mm; 0:25mm; 0:5mm, from centre to periphery. The dashed lines

in the one-dimensional cross-sections along the coordinate axes refer to the single

standard deviation of �s with respect to all view angles of a full scan.
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Figure 5.2: Accuracy of the non-parametric calibration method in terms of the

spatial distribution of the radial reprojection deviation �s [mm] averaged over 120

equiangular views. The diagrams are plotted for a calibration phantom with N =

30 markers and a tolerance level of � = 0:05mm. The detector pixel pitch along

both axes is upitch = vpitch = 0:8mm. The dashed-dotted lines indicate the outline

of the helix phantom. The contour lines in the two-dimensional plot visualize

the levels �s = 0:1mm; 0:25mm; 0:5mm; 1:0mm, from centre to periphery. The

dashed lines in the one-dimensional cross-sections along the coordinate axes refer

to the single standard deviation of �s with respect to all view angles of a full scan.
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5.1.3 Sensitivity analysis

The sensitivity of the calibration methods were investigated with respect to

the number N of markers comprising the calibration phantom, the tolerance

level � and the detector pixel pitch upitch; vpitch. These parameters can be

expected to have an in
uence on the uncertainties remaining after geometric

calibration. The default values introduced in subsection 5.1.1 were varied

independently from each other in successive simulations.

The results of this analysis are presented in detail for the non-parametric

technique, since this is preferable in terms of geometric accuracy as known

from the previous subsection. At the end of this subsection, however, the

results for the parametric calibration method are mentioned brie
y.

Figure 5.3 shows the mean reprojection deviation for randomly distributed

test points remaining after non-parametric calibration as function of the

number of markers. These values were calculated for an ideal calibration

phantom, i.e., for the tolerance level � = 0mm. The detector pixel pitch

was upitch = vpitch = 0:8mm as before. The mean value and the standard

deviation of the �s drops signi�cantly between 6 (the theoretical minimum)

and 18 markers. No further improvement is observed for N > 18. The mean

reprojection deviation oscillates then slightly with an increasing number of

markers.

Figure 5.3: Mean reprojection devi-

ation �s of randomly distributed test

points remaining after non-parametric

calibration as function of the number N

of markers for � = 0mm and upitch =

vpitch = 0:8mm.

Figure 5.4: Mean reprojection devi-

ation �s of randomly distributed test

points remaining after non-parametric

calibration as function of the detector

pixel pitch upitch, vpitch for N = 30

markers and � = 0mm.



68 CHAPTER 5. RESULTS

Figure 5.4 shows the mean reprojection deviation of random test points for

the non-parametric calibration method and data sets simulated at various

detector pixel pitch values upitch, vpitch. For this simulation, a phantom with

N = 30 markers and � = 0mm was employed. For pitches between 0.6mm

and 1.2mm, the geometric accuracy decreases almost linearly with increasing

pitch. The pixel pitch is relevant for the �rst step of the calibration algorithm,

in which the positions of the ball bearings in the projections are estimated by

calculating their centre of gravity. It is obvious that the accuracy of this step

is determined by the ratio between the size of the markers (which was kept

constant in the simulation) and the size of the detector pixels. In practice,

the size of the ball bearings could be increased (as far as possible) in order

to improve the accuracy for a given detector.

The reprojection deviations remaining after non-parametric calibration are

plotted for di�erent tolerance levels � in �gure 5.5. These values were cal-

culated for a phantom with N = 30 markers and a detector pixel pith of

upitch = vpitch = 0:8mm. The diagram shows that there is no signi�cant

di�erence in geometric accuracy up to a tolerance level of 0.01mm. The

accuracy for � = 0:05mm can still be considered acceptable. This simu-

lation result suggests therefore a maximum tolerance of 3� = 0:15mm (or

preferably a little bit less than that) when a real calibration phantom is to

be built. Of course, this consideration is strictly true only for the particular

cone-beam geometry employed in this simulation.

Figure 5.5: Mean reprojection devi-

ation �s of randomly distributed test

points remaining after non-parametric

calibration as function of the tolerance

level � for N = 30 markers and upitch =

vpitch = 0:8mm.

Figure 5.6: Mean relative deviation

Æ�
�2 of the backprojection weighting

factor remaining after non-parametric

calibration as function of the tolerance

level � for N = 30 markers and upitch =

vpitch = 0:8mm.



5.1. GEOMETRIC CALIBRATION 69

For the parametric calibration method, the mean radial reprojection devi-

ation �s remains larger than 0:1mm for N � 30 markers, � = 0mm and

upitch = vpitch = 0:8mm. This is about a factor of 5 worse than correspond-

ing values for the non-parametric calibration method. For the parametric

method, the reprojection uncertainty drops only for a large number of mark-

ers. The parametric calibration method is, in relative terms, less sensitive

to changes in the tolerance level � and the detector pixel pitch upitch, vpitch
than the non-parametric technique. For all parameter combinations that

were investigated, however, the mean radial reprojection deviation �s is sig-

ni�cantly larger for the parametric technique than for the non-parametric

technique.

The uncertainty of the weighting factor ��2 (�; r) = R2 (�) =L2 (�; r) was

studied only for the parametric method. Its sensitivity was investigated for

the same sets of parameters as utilized above. Varying the number N of

markers and the detector pixel pitch upitch, vpitch within the ranges shown

in �gure 5.3 and �gure 5.4, the mean relative deviation Æ��2 remains in the

interval �10�3. It depends, however, signi�cantly on the tolerance level �

as shown in �gure 5.6. Although the correct mean value averaged over all

random object points is maintained for a large range of �, the corresponding

standard deviation increases dramatically for � > 0:01mm. From this point

of view, the tolerance level should be de�nitely less than 3� = 0:1mm for a

real calibration phantom.

5.1.4 Accuracy of geometric parameters

In the previous subsections, the calibration methods were compared based on

the projection matrices delivered. Geometric parameters describing arbitrary

linear cone-beam projections can be estimated from a calibration scan either

by using the parametric method or by using the non-parametric method

with successive decomposition of the projection matrices. These approaches

were investigated for di�erent tolerance levels �, a calibration phantom with

N = 30 markers and a detector pixel pitch of upitch = vpitch = 0:8mm.

The results for the parametric method are presented in table 5.1. They

indicate that the accuracy does not signi�cantly depend on the phantom tol-

erance �, provided � is kept in a reasonable (realistic) range. The accuracy

with which the parameters can be obtained, however, is generally limited.

This is particularly true for the source-to-detector distance D and the coor-

dinates of the view reference point ufoc, vfoc.
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Parameter � (� = 0mm) � (� = 0:05mm) � (� = 0:1mm)

xfoc [cm] �0:1398 � 0:9751 �0:0851 � 0:7269 �0:2341 � 0:9207

yfoc [cm] �0:0121 � 0:2740 �0:0113 � 0:5587 0:0163 � 0:4597

zfoc [cm] �0:0202 � 0:3321 0:0164 � 0:2117 0:0063 � 0:2308

� [deg] 0:0289 � 0:1782 �0:0071 � 0:1601 �0:0246 � 0:1726

� [deg] 0:0229 � 0:1200 0:0038 � 0:1486 0:0149 � 0:1465

 [deg] �0:0002 � 0:0768 0:0012 � 0:0476 �0:0051 � 0:0594

D [cm] 0:0944 � 1:3522 0:0573 � 1:2051 �0:0917 � 1:3719

a1

�
10�3

�
�0:0362 � 1:6703 �0:2618 � 1:0120 �0:4574 � 1:1574

a2

�
10�3

�
0:0128 � 1:3889 �0:0123 � 1:0298 0:1318 � 1:1758

ufoc [cm] �0:0194 � 0:2559 �0:0398 � 0:3001 �0:0363 � 0:3177

vfoc [cm] 0:0263 � 0:2685 0:0304 � 0:2662 0:0429 � 0:2540

Table 5.1: Accuracy of the parametric calibration method. The geometric pa-

rameters listed in the left column are de�ned in subsection 4.1.3. The deviation

� of these parameters from the a priori known values are given in terms of mean

and single standard deviation for a full scan comprising 120 views. The simulation

results are provided for a calibration phantom with N = 30 markers and di�erent

tolerance levels �. The detector pixel pitch is upitch = vpitch = 0:8mm.

Parameter � (� = 0mm) � (� = 0:05mm) � (� = 0:1mm)

xfoc [cm] 0:0047 � 0:1302 �0:2891 � 0:7798 �0:5545 � 1:5930

yfoc [cm] �0:0077 � 0:1128 0:8127 � 0:5886 1:6130 � 1:1827

zfoc [cm] 0:0033 � 0:0160 0:0028 � 0:0433 0:0032 � 0:0837

� [deg] 0:0099 � 0:0972 0:0083 � 0:7323 �0:0029 � 1:4451

� [deg] �0:0350 � 0:3109 0:8028 � 0:4887 1:6931 � 0:9429

 [deg] �0:0009 � 0:0069 0:0015 � 0:0121 0:0083 � 0:0261

D [cm] �0:0123 � 0:2235 �0:3125 � 1:6852 �1:1279 � 3:3078

a1

�
10�3

�
�0:0127 � 0:1136 �0:3578 � 0:1450 �0:7943 � 0:3522

a2

�
10�3

�
0:0419 � 0:2146 0:0037 � 0:4889 �0:0337 � 1:2160

ufoc [cm] �0:0242 � 0:2257 �0:0148 � 1:6572 0:0260 � 3:2454

vfoc [cm] �0:0751 � 0:7094 1:8196 � 1:1120 3:7996 � 2:1274

Table 5.2: Accuracy of the algorithm for the decomposition of projection ma-

trices. The geometric parameters listed in the left column are de�ned in subsec-

tion 4.1.3. The deviation � of these parameters from the a priori known values

are given in terms of mean and single standard deviation for a full scan com-

prising 120 views. The simulation results are provided for a calibration phantom

with N = 30 markers and di�erent tolerance levels �. The detector pixel pitch is

upitch = vpitch = 0:8mm.
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Table 5.2 summarizes the results for the analytical decomposition algorithm.

This method works well for � = 0mm, i.e., for an ideal calibration phantom.

In this case, the discretization of the projections is considered to be the

only source of uncertainties. For non-zero tolerance levels �, however, the

accuracy of the method decreases signi�cantly with increasing �. The source-

to-detector distance D, the Euler angle � and the coordinates ufoc, vfoc of the

view reference point are most a�ected by these numerical problems.

A comparison of table 5.1 and table 5.2 shows that the non-parametric

method with successive decomposition of the projection matrix performs

better than the parametric technique for � = 0mm. For realistic toler-

ance levels, however, the parametric method performs better, especially for

ufoc and vfoc, although it delivers generally less accurate projection matrices

as shown before.

The source-to-isocentre distance R and the view angle � can be obtained

from the above set of parameters, provided the coordinates of the isocentre

are known a priori. This can be achieved by aligning the calibration phantom

using laser marks, for example. Figure 5.7 shows the mean deviation of the

source-to-isocentre distance �R and the mean deviation of the view angle ��

as function of the phantom tolerance level �. These values were calculated

by means of the non-parametric calibration with successive decomposition.

The results indicate that the view angle can be accurately determined from

the corresponding projection matrix, even for large tolerance levels. This is

of particular interest for continuous gantry rotations with varying velocity if

no angle sensor is available (provided the variations are reproducible).

Figure 5.7: Mean deviation of the source-to-isocentre distance �R (left diagram)

and mean deviation of the view angle �� (right diagram) as function of the toler-

ance � for N = 30 markers and upitch = vpitch = 0:8mm.
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5.1.5 Reproducibility measurements

The reproducibility of mechanical 
ex e�ects was investigated for the cone-

beam system employing a linear accelerator as described in subsection 4.2.2.

A careful analysis of repeatability is important in order to decide if an o�-line

calibration is suÆcient or whether an online calibration is required.

Various scans were compared in terms of the reprojection deviation �s for

test points randomly distributed within the �eld of view such as introduced

in subsection 5.1.1. This allows an appropriate evaluation of the impact the


ex e�ects have on backprojection and reprojection algorithms. The di�er-

ence between these measurements and the computer simulation described

previously is simply that two (or more) actual scans are compared rather

than an actual scan with a (theoretical) reference scan.

Ten full scans of the helix phantom were acquired in step-and-shoot fashion

in view angle steps of 45Æ. The rotation direction of the gantry was reversed

after each scan, i.e., the �rst scan was taken from �180Æ to +180Æ, the second
one from +180Æ to �180Æ, the third one again from �180Æ to +180Æ and so

forth. The reprojection deviations of 10,000 test points randomly distributed

within the �eld of view were compared for each view independently.

Figure 5.8 shows the results of this investigation. In the axial direction along

the detector columns, the reprojection deviation is always smaller than a

tenth of the detector pixel pitch, even when the rotation direction of the

gantry is changed. In the lateral direction along the detector rows, however,

the deviation reaches up to half the detector pixel pitch in some views. This

e�ect is probably mainly due to the uncertainty in selecting the gantry angle.

Changing the rotation direction, lateral reprojection di�erences up to 3mm

are observed. These large deviations are clearly not caused by the gantry

itself. This can be concluded from the geometric set-up and from the fact

that the uncertainty of gantry angle selection1 is de�nitely less than 1Æ.

The above considerations were con�rmed by another experiment. The 
at-

panel imager was kept �xed at 0Æ, where the largest deviation occurred,

instead of attaching it to the gantry. The gantry was rotated using the same

steps as before in order to be able to compare the result to the previous

ones. The projection images of the calibration phantom, however, were only

acquired at � = 0Æ.

1The control software allows the choose the gantry angle in steps of 1Æand displays the

actual gantry angle with an accuracy of 0.1Æ. The exact tolerance due to the technical

speci�cation is unfortunately unknown.
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Figure 5.8: Reproducibility of 
ex e�ects of a linear accelerator. The reprojection

deviation along the detector rows (left diagrams) and along the detector columns

(right diagrams) is plotted as a function of the view angle. The values are plotted

in terms of the standard deviation between 5 scans taken in clockwise direction

(top), 5 scans taken in anticlockwise direction (middle) and between all of these

scans (bottom). The error bars refer to the standard deviation of 10,000 random

test points per view.
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Figure 5.9: Gantry positioning uncertainty of a linear accelerator measured at

a view angle of � = 0Æ with �xed detector. The reprojection deviation along the

detector rows (left diagram) and along the detector columns (right diagram) is

plotted for a series of clockwise (cw) scans, a series of anticlockwise (acw) scans

and the combination of these (both).

The results of this experiment are depicted in �gure 5.9. In lateral direction,

the reprojection deviation is less than 0.08mm for all acquisition modes

(clockwise, anticlockwise and both). In axial direction, the di�erences are

even less than 0.02mm. The smallest uncertainties occur when the gantry

is rotated anticlockwise. There is, however, no signi�cant di�erence between

rotating the gantry in only one or in both directions as observed in the pre-

vious experiment. In summary, the results show clearly that the positioning

tolerance of the gantry is about one order of magnitude smaller than the

uncertainties caused by the mechanical detector support frame.

In continuous gantry rotation mode, �ve full scans were acquired in clock-

wise direction, each of them comprising about 316 views. The mean angular

spacing of the views was consequently about 1.14Æ. 200MU were delivered

per scan at an output rate of 167MUmin�1. The detector integration time

was 100ms. The reprojection deviation of 10,000 test points randomly dis-

tributed within the �eld of view was compared between these scans such as

in the step-and-shoot mode. The scans could not be started synchronously

because a gating option was not available. The view angles were therefore

calculated from the projection matrices using equation (4.29). To compare

the results for a speci�c view angle, the nearest one was chosen.

Figure 5.10 shows the results of this experiment. The mean reprojection

deviation along the detector rows is comparable to the values obtained in

step-and-shoot mode. For view angles above +60Æ, however, the repeatability

drops signi�cantly. The reprojection deviation along the detector columns
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Figure 5.10: Reproducibility of 
ex e�ects of a linear accelerator in continuous

gantry rotation mode. The reprojection deviation along the detector rows (left

diagram) and along the detector columns (right diagram) is plotted as a function

of the view angle. The values are plotted in terms of the standard deviation

between 5 scans taken in clockwise direction. The error bars refer to the standard

deviation for 10,000 random test points per view.

does not depend on the view angle, but is about a factor of 3 larger than

for the step-and-shoot acquisition. This is a preliminary result due to the

limitation that projections with maximum di�erence in view angle of almost

0.6Æ had to be compared. The experiment should be repeated when a gating

option is available. The reproducibility is expected to be much better if the

scans are started synchronously.

5.2 Image reconstruction

In this section, the performance of cone-beam reconstruction using the modi-

�ed Feldkamp algorithm [24] introduced in section 4.5 is assessed. The X-ray

transmission data were recorded by the experimental scanners described in

subsection 4.2.2 and preprocessed such as explained in section 4.3.

The results obtained with these systems and algorithms in terms of 
ex

correction, spatial resolution and artefacts are presented in the following

subsections. After CT reconstruction, none of the images present here is

processed further, except for the application of an appropriate grey-scale

window for maximizing visual contrast. Although some postprocessing might

improve image quality for speci�c applications, the aim of this section this

to demonstrate the eÆciency of pure cone-beam reconstruction.



76 CHAPTER 5. RESULTS

5.2.1 Correction of 
ex e�ects

The e�ect of geometric 
ex e�ects occurring during projection data acqui-

sition was assessed qualitatively for various data sets. The cone-beam data

sets were recorded using a 
at-panel imager attached to a linear accelerator

and a therapy simulator, respectively, as explained in subsection 4.2.2. In

this subsection, the results for non-calibrated and calibrated reconstructions

are compared.

Figure 5.11 shows reconstructions of the helix phantom employed for ge-

ometric calibration. The non-calibrated reconstruction assuming an ideal

single-circular source trajectory yields blurred images, which is particularly

obvious looking at the ball bearings. The blurring is completely eliminated

by the geometric calibration procedure.

Figure 5.11: Performance of online geometric calibration. The �gure shows

transverse (left column) and sagittal (middle column) slices of the helix phantom

used for geometric calibration and transverse slices of a disc directly attached to the

top of the phantom (right column). The cone-beam projections were acquired using

a linear accelerator. The non-calibrated reconstruction assuming an ideal single-

circular source trajectory yields blurred images (top row), which is completely

eliminated by the calibration procedure (bottom row).
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This experiment demonstrates the best possible performance of the method

for real data using an online calibration, since the calibration phantom itself

is reconstructed. Figure 5.11 shows also transverse slices of a disc directly

attached to the end of the phantom. Although the image quality is generally

limited in this case due to the relatively large cone angle 
 of about 5.7Æ (at

the centre of the slice), the e�ect of the calibration is clearly visible.

CT images of a Rando Alderson head phantom are shown in �gure 5.12 in

order to demonstrate the performance of an o�-line calibration. The projec-

tions were acquired using a radiotherapy simulator at an angular sampling

pitch of 1Æ. The blurring caused by mechanical instabilities of the gantry

is greatly reduced by applying the calibration procedure o�-line. This ob-

servation suggests that the therapy simulator behaves quite reproducibly. A

rigorous analysis of the reproducibility, however, is not presented here.

Figure 5.12: Performance of o�-line geometric calibration. The �gure shows

transverse images of a Rando Alderson head phantom reconstructed without (top

row) and with geometric calibration (bottom row). The projections were acquired

using a therapy simulator.
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5.2.2 Spatial resolution

The spatial resolution of the kilovoltage and megavoltage cone-beam CT

systems described in subsection 4.2.2 was measured using a Perspex disc

containing rows of holes of various diameters. For each row, the spacing of

the holes is twice their diameter. The disc was placed at an axial distance

of 7 cm from the mid-plane, which corresponds to a cone angle 
 of about 4Æ

(at the centre of the disc).

Reconstructions of the phantom were carried out using the modi�ed Feld-

kamp algorithm [24] described in subsection 4.5.1 and the Shepp-Logan �lter

kernel [109]. The pixel size of the transverse slices was 0:3� 0:3mm2, which

is clearly below the resolution limit that can be expected for the cone-beam

scanners investigated here. The slice thickness was 1:5mm.

The results of the measurements are shown in �gure 5.13. Visual inspection

of the images suggests that the spatial resolution for high-contrast objects

is between 1.3mm and 1.6mm for the megavoltage scanner and between

1.0mm and 1.3mm for the kilovoltage scanner. Using these experimental

cone-beam scanners, the size of the focal spot is the most important factor

limiting spatial resolution. For the linear accelerator, the full width at half

maximum (FWHM) is about 1.2mm. The focus of the therapy simulator is

also signi�cantly larger than in diagnostic CT scanners.

Figure 5.13: Reconstruction of a Perspex disc to measure spatial resolution for

high-contrast objects. The diameters of the drill holes in each row are 1.0mm,

1.3mm, 1.6mm, 2.0mm and 2.5mm (from top to bottom). The spacing of the

holes is twice their diameter. The projections were recorded using a linear accel-

erator (left) and a therapy simulator (right image).
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5.2.3 Assessment of artefacts

Figure 5.14 shows a transverse, a frontal and a sagittal CT image of a Rando

Alderson head phantom. The voxel size for the reconstruction volume was

1:0 � 1:0 � 1:0mm3. The X-ray transmission data were recorded using a

linear accelerator and a video-based detector comprising 512� 512 pixels at

a pitch of 0.6mm in each direction. The detector was placed at a distance of

117.8 cm from the focus. The CT scan did not require a geometric calibration

because the phantom was rotated on a turn-table instead of the gantry. This

experimental set-up was chosen because the 
at-panel imager employed for

the other investigations is too small to capture projections of the whole head

phantom without lateral truncation.

The CT images depicted in �gure 5.14 su�er from streak-shaped artefacts

caused by the angular under-sampling. The same type of artefact can be

observed in �gure 5.13 for kilovoltage and megavoltage tomograms at about

three times higher resolution. Comparing these images reconstructed from

only 120 projections to those in the bottom row of �gure 5.12 reconstructed

from 360 projections, the bene�t of using more projections is obvious. Using

120 projections, the peak-to-peak artefact level reaches up to 10% from the

local mean, whereas it is about 4% for 360 projections.

The streak artefacts that show up particularly in the right column of �g-

ure 5.12 are caused by beam hardening due to small metal pieces embedded

in the phantom. The assessment of beam-hardening e�ects, however, is be-

yond the scope of this thesis.

The frontal and sagittal slices in �gure 5.11 and �gure 5.14 exhibit typical

artefacts due to axial truncation of the projections. These artefacts can be

Figure 5.14: Transverse, frontal and sagittal megavoltage CT image of a Rando

Alderson head phantom (from left to right).
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considered relatively mild. They do not require any correction attempts if

the region of interest is close to the centre of the �eld of view.

The distortions due to the incompleteness of cone-beam projections acquired

in a single-circular scan are not directly visible in �gure 5.14. They are

obvious in the transverse image of the resolution disc depicted in �gure 5.11,

which corresponds to a cone angle 
 of about 5.7Æ. At moderate cone angles

up to �4Æ, single-circular scans yield images that are suÆcient for most

medical applications. In this range, the well-known intensity drop in axial

direction is less than 1.5% for the cone-beam geometry considered here.

5.3 Image restoration

This section deals with image restoration from limited-angle projections using

the method of projections onto convex sets (POCS) introduced in section 4.6

and section A.4. Various constraints modelling prior knowledge about the

object are compared using computer simulations of the Shepp-Logan phan-

tom [49]. The performance of iterative image restoration on noisy data is

characterized for a simple phantom comprising realistic attenuation values.

The methods are also applied to a clinical example of ECG-correlated imag-

ing of a beating heart. No postprocessing was applied to the images shown

below in order to demonstrate the eÆciency of the pure algorithms.

5.3.1 Comparison of constraints

Images of the two-dimensional Shepp-Logan phantom such as de�ned in sec-

tion B.3 were restored by various iterative schemes in order to assess the

performance of the corresponding constraints. Fan-beam projections were

calculated analytically as described in section B.1. The views were sampled

in increments of 0.5Æ, each of them comprising 512 bins at a pitch of 0.0085

(lengths and attenuation coeÆcients are given in arbitrary units according

to the de�nition of the phantom). The focus-to-isocentre distance was 6.0,

and the virtual 
at detector was placed at a distance of 9.0 from the focus.

The images were restored on a grid of 512� 512 pixels at a spacing of 0.0038

in each direction. The grey-scale window is [0:95; 1:05] in all �gures shown

below, i.e., the attenuation coeÆcients between 0.95 and 1.05 are scaled

linearly to the grey levels available between black and white.
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Figure 5.15 depicts images of the Shepp-Logan phantom obtained by stan-

dard �ltered backprojection from limited ranges of view angles between 60Æ

and 120Æ. These images are included for comparison with the results from

restoration algorithms considered below.

The left image shown in �gure 5.16 was obtained after 10 iterations of the

Gerchberg-Papoulis algorithm [27, 84], which reads as

f (t+1) (r) = C
 CF f (t) (r) (5.3)

in the notation of section 4.6. In the above equation, CF enforces consistency
of the image f (r) with the part F of its Fourier spectrum that is known from

the measured projections at view angles between 0Æ and 120Æ. This constraint

operator was implemented by reprojection of the missing line integrals and

�ltered backprojection of the short-scan data set. The constraint operator

C
 restricting the image to �nite spatial extent was considered implicitly,

i.e., the region 
 was assumed to be the entire rectangular reconstruction

area. The �rst iteration of this scheme is therefore equivalent to standard

�ltered backprojection.

The middle image in �gure 5.16 shows the result from restricting the at-

tenuation coeÆcients to the interval I = [0:0; 3:0] in addition to the above

constraints,

f (t+1) (r) = CI C
 CF f (t) (r) : (5.4)

A reference image �f (r) comprising only the two outer ellipsoids of the Shepp-

Logan phantom was then introduced into the iterative procedure. The al-

lowed distance from this reference image was chosen spatially constant as

" (r) = 0:3. In this particular case, the constraint CI is completely contained

Figure 5.15: Images of the Shepp-Logan phantom reconstructed from fan-beam

projections for view angle ranges of 60Æ, 90Æ and 120Æ (from left to right).
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in C �f . The image restored by this iterative algorithm

f (t+1) (r) = C �f CI C
 CF f (t) (r) (5.5)

is depicted in the right panel of �gure 5.16.

The images restored by the iterative schemes explained above su�er from se-

vere streak artefacts that are introduced in the very �rst iterations because of

the discretization. A `smooth' combination of measured and reprojected line

integrals comparable to short-scan sinogram weighting (such as explained in

subsection 4.5.3) does not eliminate these artefacts. There is a preferred

direction of the streaks that depends on the particular range of view an-

gles. An adaptive smoothing �lter that operates orthogonally to the streak

direction was therefore introduced between �ltered backprojection and re-

projection. The modi�ed operator (that is not necessarily convex according

to the POCS theory) is denoted as CF;as in the following. Adaptive smooth-

ing, however, does not signi�cantly improve the visual image quality such as

shown in �gure 5.17 for various view angle ranges.

The reconstruction-reprojection algorithms exhibit a semi-convergence be-

haviour that is typical for ill-posed inverse problems. The image quality

improves within the �rst few iterations, but is more and more degraded in

further steps. Early termination of the iteration is therefore essential to reg-

ularize the solution [67]. The optimum number of iterations was found to be

about 10 for the simulations described above. After 10 steps, however, the

densities within the phantom were not properly restored.

Figure 5.16: Images of the Shepp-Logan phantom restored by 10 iterations of

the Gerchberg-Papoulis algorithm [27, 84] (left), with additional restriction of the

attenuation coeÆcients to the interval [0:0; 3:0] (middle) and using the two big

ellipses of the phantom as a priori known reference image with a spatially constant

tolerance of �0:3 additionally (right image).
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As an alternative to the Fourier constraint CF, the transmission measure-

ments were utilized separately to enforce consistency of the image with the

projections of the object. The operator CF was consequently replaced by

the sequence Cg
M
0
: : : Cg2 Cg1 , which is equivalent to one step of the additive

algebraic reconstruction technique (AART). Considering all of the previous

constraints, this yields

f (t+1) (r) = C �f CI C
 CgM0
: : : Cg2 Cg1 f (t) (r) ; (5.6)

where g1; g2; : : : ; gM 0 denote M 0 line (or strip) integrals estimated from the

measurements. The support constraint C
 was accounted for implicitly by

restoration on a �nite rectangular grid as explained before.

Figure 5.18 shows the results obtained with this algorithm. The overall image

quality is much better compared to the scheme based on successive reprojec-

tion and �ltered backprojection. All details of the Shepp-Logan phantom,

even the small ones at the bottom, are clearly distinguishable from the back-

ground. The images su�er from mild streak artefacts, which are introduced

because of numerical errors. Another disadvantage of the method is the slow

convergence. As shown in �gure 5.18, it takes almost 100 iterations to re-

store an image of acceptable quality. A discussion of the inevitable tradeo�

between accuracy of the restored image and convergence speed is presented

in the subsequent subsection.

Beside visual inspection, the actual results fact (r) obtained by the algorithms

described above were compared with the de�nition fdef (r) of the Shepp-

Logan phantom in terms of four common measures [41, 65]. These measures

emphasize di�erent aspects of image quality. They are de�ned for functions

Figure 5.17: Images of the Shepp-Logan phantom restored by 10 iterations of

the Gerchberg-Papoulis algorithm [27, 84] with attenuation range and reference

images constraint such as in �gure 5.16 and additional adaptive smoothing for

view angle ranges of 90Æ, 120Æ and 150Æ (from left to right).
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Figure 5.18: Images of the Shepp-Logan phantom restored by an ART-like pro-

cedure after 30, 60 and 90 iterations (from left to right) using the two big ellipses

of the phantom as reference image with a tolerance of �0:3.

of continuous variables in the following notation for convenience. In practice,

the measures were calculated on a discrete reconstruction grid.

c =

Z �
fact (r)� f act

� �
fdef (r)� fdef

�
dNrrZ �

fact (r)� f act
�2

dNr

Z �
fdef (r)� fdef

�2
dNr

(5.7)

is the correlation coeÆcient between fact (r) and fdef (r), where fact and fdef
denote the mean intensity of the original phantom and the actual image.

Æfrms =

vuuuuut
Z

(fact (r)� fdef (r))
2
dNrZ �

fdef (r)� fdef
�2

dNr

(5.8)

is a normalized root mean square distance. The value of Æfrms is equal to

unity if fact (r) is a uniformly dense image with the correct average density.

A large di�erence in few small regions causes Æfrms to be large.

Æfabs =

Z
jfact (r)� fdef (r)j dNrZ

jfdef (r)j dNr
(5.9)

is a normalized mean absolute distance, which emphasizes a lot of small devi-

ations rather than a few large deviations between fact (r) and fdef (r). Æfabs
is equal to unity if the actual image has a value of zero everywhere.

�fmax = maxjfact (r)� fdef (r)j (5.10)
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is the absolute maximum deviation between fact (r) and fdef (r). This mea-

sure assesses the worst case.

All measures are de�ned within the �eld of view determined by the geometry

of the (virtual) CT scan.2 The results of these computations are summarized

in table 5.3 for various algorithms and ranges of view angles. It is, of course,

not feasible to provide the results for all possible combinations of basic algo-

rithms and additional constraints. Table 5.3 is therefore restricted to some

combinations that were found to be representative. The support constraint

C
 was implicitly accounted for in all algorithms because of the �nite grid.

The �rst section of table 5.3 shows the values obtained by standard �ltered

backprojection (FBP) using the Shepp-Logan �lter kernel [109] for various

view angle ranges. These values correspond to the �rst iteration of the plain

Gerchberg-Papoulis (GP) algorithm [27, 84]. The correlation coeÆcient c

increases and the normalized distances Æfrms, Æfabs decrease when the projec-

tion data set approaches the minimal complete one. Although the maximum

error �fmax decreases, it is still quite large for a data set covering 180
Æ (which

lacks the aperture of the fan beam of about 27Æ compared to the minimal

complete set of projections).

The measures for the Gerchberg-Papoulis algorithm [27, 84] are listed in the

second section of table 5.3. After 10 iterations, all values are signi�cantly

better compared to straight-forward FBP, even for the scheme without addi-

tional constraints. Restricting the interval of `valid' attenuation coeÆcients

by CI yields only slightly better results. The introduction of the reference

image constraint C �f improves the correlation coeÆcient and the root mean

squared error signi�cantly, which indicates that the main features of the im-

age are properly restored. The normalized mean absolute distance, however,

does not drop below 0.1, which is quite large compared to other iterative

schemes addressed below. This emphasizes the occurrence of a lot of small

errors. This is in agreement with the observations from �gure 5.16, which

shows the basic shape of the phantom, but with a lot of streak artefacts.

The third section of table 5.3 shows that the performance of the constrained

GP method improves with a growing range of view angles as expected. The

maximum absolute deviation �fmax keeps constant at a level of 0.3, since

this is the maximum distance from the reference image that was allowed in

the simulation.

The fourth section of table 5.3 deals with the algebraic technique and ad-

ditional constraints. The restriction of the range of attenuation coeÆcients

2The corresponding limits are omitted in the above formulae for the sake of simplicity.
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improves the performance only slightly such as also observed for the GP al-

gorithm. Using the constraints C
 and CI, the root mean squared deviation

and the mean absolute deviation are only slightly better compared to the GP

algorithm, and the maximum deviation is even larger in this case. The ref-

erence image constraint, however, turns out to be very useful in the AART

scheme. This is demonstrated by the correlation coeÆcient close to unity

and the small mean deviations Æfrms and Æfabs. The value of the maximum

deviation is signi�cantly smaller than " (r) = 0:3, whereas this maximum

Algorithm t �max c Æfrms Æfabs �fmax

FBP C
 60Æ 0.7003 1.6957 0.8879 2.8402

90Æ 0.7246 0.9290 0.6752 1.9372

120Æ 0.8162 0.4151 0.4626 1.7937

150Æ 0.9229 0.1508 0.2796 1.7672

180Æ 0.9751 0.0523 0.1657 1.1611

GP C
 CF 10 120Æ 0.9245 0.1477 0.2217 1.3817

CI C
 CF 10 120Æ 0.9402 0.1218 0.1660 1.3673

C �f CI C
 CF 10 120Æ 0.9894 0.0272 0.1005 0.3000

C �f CI C
 CF;as 10 120Æ 0.9894 0.0272 0.1003 0.3000

GP C �f CI C
 CF 10 60Æ 0.9767 0.0562 0.1676 0.3000

10 90Æ 0.9825 0.0466 0.1458 0.3000

10 120Æ 0.9894 0.0272 0.1005 0.3000

10 150Æ 0.9954 0.0121 0.0552 0.3000

10 180Æ 0.9989 0.0018 0.0131 0.3000

AART C
 Cg
M
0
: : : Cg1 100 120Æ 0.9248 0.1451 0.2187 1.5673

CI C
 Cg
M
0
: : : Cg1 100 120Æ 0.9408 0.1164 0.1527 1.5823

C �f CI C
 Cg
M
0
: : : Cg1 100 120Æ 0.9998 0.0001 0.0071 0.0890

AART C �f CI C
 Cg
M
0
: : : Cg1 100 60Æ 0.9999 0.0001 0.0062 0.0370

100 90Æ 0.9998 0.0001 0.0045 0.0369

100 120Æ 0.9998 0.0001 0.0071 0.0890

100 150Æ 0.9998 0.0001 0.0046 0.0369

100 180Æ 0.9999 0.0001 0.0046 0.0370

Table 5.3: Quantitative assessment of various iterative image restoration schemes

and standard image reconstruction algorithms regarding limited-angle data sets.

Correlation coeÆcient c, normalized root mean square distance Æfrms, normalized

mean absolute distance Æfabs and absolute maximum deviation �fmax such as

de�ned in equations (5.7){(5.10) are listed for the standard Shepp-Logan phantom

and various view angle ranges [0Æ; �max]. t denotes the number of iterations.
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allowed distance from the reference image is reached by the GP algorithm.

The maximum deviation, however, is almost a factor of nine larger than the

minimum attenuation variation within the Shepp-Logan phantom. This in-

dicates some severe artefacts in the images. The root mean square error

of 10�4, on the other hand, demonstrates that these large deviations occur

only in very few places. These interpretations of the image quality measures

con�rm the conclusion obtained by visual inspection of the �nal image in

�gure 5.18.

The performance of the algebraic restoration scheme using a reference image

is assessed in the last section of table 5.3 for various view angle ranges. The

values of c and Æfrms indicate a good restoration, even for a data set covering

only 60Æ. The other two measures do not constantly worsen with decreasing

range of view angles.

5.3.2 Optimization of convergence

The convergence speed of AART depends signi�cantly on the order in which

the constraints Cg
M
0
: : : Cg2 Cg1 are applied in each iteration [36]. An appropri-

ate choice of the relaxation parameter � (such as introduced in theorem A.8)

is also important for the properties of the algorithm [78].

Two di�erent projection access schemes were utilized, namely the sequential

access scheme (SAS) and the random permutation scheme (RPS). Various

simulation studies were performed in order to investigate the in
uence of the

relaxation parameter for these schemes. The results showed that the choice

of a relatively small parameter of the order of 0.05 is essential for obtain-

ing suÆciently accurate results. The application of RPS enables the use of

relaxation parameters about ten times higher, but does not signi�cantly ac-

Algorithm � c Æfrms Æfabs �fmax

AART/SAS 0.05 0.9999 0.0001 0.0062 0.0370

AART/RPS 0.50 0.9996 0.0003 0.0154 0.0343

MART 0.9995 0.0007 0.0083 0.5171

Table 5.4: Performance of the additive algebraic reconstruction technique

(AART) with sequential access scheme (SAS) and random permutation scheme

(RPS) and of the multiplicative algebraic reconstruction technique (MART). The

values are listed for an image of the Shepp-Logan phantom restored from projec-

tions within 60Æ using a reference image constraint.
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celerate convergence, particularly if the range of view angles is very narrow.

Table 5.4 shows the performance measures de�ned in the previous subsection

for a view angle range of 60Æ. The data demonstrate that there is no great

di�erence in image quality after a speci�c number of iterations using SAS or

RPS with optimized relaxation parameters.

Themultiplicative algebraic reconstruction technique (MART) was also tested

on limited-angle data, although this kind of iterative correction is not a valid

POCS constraint operator. The correlation coeÆcient and the root mean

squared error are of the same order as for AART as shown in table 5.4. The

maximum error is signi�cantly larger than in the images restored by AART.

5.3.3 Noise characteristics

The iterative procedure in equation (5.6) was also applied to a water disc

phantom as shown in �gure B.2. This phantom comprises seven circular

inserts that represent typical attenuation coeÆcients of various tissue types.

The seven inserts refer (relative to water) to lung (0.25), fat (0.91), pancreas

(1.04), heart (1.05), liver (1.06), spongy bone (1.13) and compact bone (1.80).

The water disc phantom is formally de�ned in table B.2.

The geometry of the diagnostic CT scanner speci�ed in subsection 4.2.1 was

utilized for the simulations, except the single-row detector was modelled as


at instead of curved. Line integrals through the phantom were calculated

analytically using the formulae in section B.1. For each sample, 15 line

integrals were averaged in order to approximate the integration over the

�nite detector bin size.

The photon statistics were considered as explained in section B.2 in order to

investigate the in
uence of noisy projection data on the convergence. Other

potential sources of noise (e.g., the read-out electronics) were neglected be-

cause modern CT scanners are well designed to be almost quantum-noise

limited [36]. A slice thickness of 3mm, an e�ective source 
uence of 106 pho-

tons per detector bin and a linear attenuation of 0:19 cm�1 for water were

assumed. These are typical values for diagnostic CT examinations [36, 50].

An image of the disc phantom was restored by means of the algebraic re-

construction technique from projections covering a view angle range of 120Æ.

This image comprises 512�512 pixels at a pitch of 0:8mm along its columns

and rows. A uniform water disc was utilized as reference image �f (r), allow-

ing a maximum distance " (r) = 1 inside the disc and " (r) = 0 outside the

disc. No further constraints were applied, since the known spatial support
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of the object and the interval [0:0; 2:0] of relative attenuation coeÆcients are

implicitly considered by the de�nition of the reference image constraint.

Table 5.5 lists the mean attenuation coeÆcients and the corresponding signal-

to-noise ratios (SNR) determined from the restored image. The values for the

image obtained by full-scan �ltered backprojection using the Shepp-Logan

�lter kernel [109] are included for comparison. The SNR for the limited-angle

image was normalized with respect to the full-scan in order to enable a direct

comparison of the data. This normalization yields a factor of
p
3 because

the SNR is inversely proportional to the square root of the exposure [50].

The ART procedure yields mean attenuation coeÆcients that are not as

accurate as those reconstructed by full-scan �ltered backprojection. The

deviations are relatively small for soft tissues (pancreas, heart, liver), but

more substantial at the bottom (fat) and top (compact bone) end of the

scale. The overall correlation coeÆcient between true and ART-restored

values is quite high (0.9985). The o�set of the regression line (0.0591) is

close to zero, but its slope (0.9368) deviates signi�cantly from unity.

The signal-to-noise ratio generally increases for �ltered backprojection with

increasing attenuation coeÆcient, except the value for water, which was mea-

sured at the centre of the slice. The SNR values for ART are substantially

lower and do not show this strict tendency. A main contribution to these

SNR values comes from structured (typically streak-shaped) artefacts that

are introduced in the limited-angle image restoration.

Tissue type True value FBP ART

Mean SNR Mean SNR

lung 0.25 0.2499 21.9 0.2835 8:6

fat 0.91 0.9100 61.5 0.8983 28:7

water 1.00 1.0002 52.5 0.9871 30:1

pancreas 1.04 1.0399 64.6 1.0306 38:4

heart 1.05 1.0501 64.0 1.0372 49:2

liver 1.06 1.0600 65.5 1.0630 45:8

spongy bone 1.13 1.1302 66.6 1.1554 42:4

compact bone 1.80 1.8000 84.9 1.7226 48:8

Table 5.5: Accuracy of full-scan �ltered backprojection (FBP) and image restora-

tion from 120Æ limited-angle data (ART) using noisy projection data. The table

lists the mean attenuation coeÆcients and signal-to-noise ratios (SNR) determined

from images of the water-disc phantom.
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5.3.4 Reduction of motion artefacts

The ART-like image restoration procedure was also applied to clinical data

of a beating heart. The projections were acquired using a diagnostic CT

scanner as described in subsection 4.2.1. The helical scan mode was applied

in order to enable fast volume coverage.

The electrocardiogram (ECG) of the patient was recorded simultaneously

during the thorax scan using a sampling frequency of 250Hz. This sampling

does not preserve all information content contained in the ECG signal [71],

but is suÆcient for the analysis required here. The algorithm developed

by Sennst [106] was employed for detecting the R-peaks of the ECG with

respect to the start of the CT scan. An example of such an ECG signal with

its correlation to the view angle is depicted in �gure 5.19.

An initial estimate was reconstructed by means of standard �ltered backpro-

jection (FBP) using the contangent �lter kernel. This is the equivalent of the

Shepp-Logan �lter [109] for a curved detector. No axial interpolation of the

helical into planar data was performed in order to reduce the combination of

data from di�erent heart phases to a minimum. The image was reconstructed

on a grid comprising 512� 512 pixels at a pitch of 1:0mm in each direction.

Figure 5.19: Electrocardiogram of a patient recorded synchronously with the

projection view angle during a thorax CT scan for identifying raw data segments

with few heart motion. The ECG signal is plotted in arbitrary unit because the

absolute range is not relevant for detecting the R-peaks.
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Based on this initial image, an ART-like restoration was performed using

a view angle range of 90Æ. The data segment ending directly before the

corresponding R-peak in the ECG was chosen for the restoration. This heart

phase is nearly iso-volumetric [105] and provides therefore the most consistent

data. The initial image was also used as reference image allowing a maximum

distance of 0:3 cm�1. In each iteration step, all pixels outside the �eld of view

were set to zero to consider the a priori known support constraint.

The results of this procedure are presented in �gure 5.20. A comparison of

the initial estimate and the image after 100 iterations shows that the heart

motion artefacts are removed to some extent, altough the di�erences between

the two images are not very large. However, the small calci�cation shows up

more clearly in the ART than in the initial FBP image. On the other hand,

some mild streak artefacts are introduced due to numerical errors occurring

during the iterative procedure.

In various experiments, it was found important to consider all objects within

the �eld of view (including the patient support table) in the image restoration

algorithm. The parts outside a particular region of interest (ROI) could, in

theory, be initially reprojected and subtracted from the measured data. This

would allow for performing the iterative procedure only within the ROI, thus

saving computation time. In practice, however, this yields often undesired

artefacts at the edges of the ROI.

Figure 5.20: CT images of a beating heart. Initial estimate obtained from stan-

dard �ltered backprojection (left) and result after 100 ART iterations (right). After

image restoration, the small calci�cation shows up a little bit more clearly.
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5.4 Image registration

A phantom study was performed in order to assess the feasibility of employing

C-arm X-ray devices such as considered above in image-guided procedures.

More speci�cally, the potential of cone-beam CT to detect and quantify pa-

tient set-up uncertainties was investigated. Such set-up uncertainties can

occur between therapy planning and treatment or between several treatment

phases.

5.4.1 Experimental set-up

For the feasibility study, three slices from the neck region of a Rando Alder-

son head phantom were mounted to a dedicated mechanical support system.

This system allows to deliberately introduce well-de�ned translations and

rotations in order to simulate patient set-up errors.

Several kilovoltage and megavoltage cone-beam CT scans of the humanoid

phantom were recorded using the hardware and the acquisition protocol de-

scribed in subsection 4.2.2. The non-parametric technique for geometric cal-

ibration was applied by scanning the helix phantom o�-line. All projections

were preprocessed as explained in section 4.3. The actual, transverse images

of the phantom were reconstructed employing the modi�ed Feldkamp algo-

rithm [24] such as described in subsection 4.5.1 and the standard �lter kernel

proposed by Shepp and Logan [109]. The in-plane pixel pitch in each direc-

tion as well as the spacing of the transverse images was 0:7mm, resulting in

an isotropic reconstruction volume.

The outline of the phantom was delineated in each transverse image auto-

matically by applying an appropriate threshold. The attenuation coeÆcients

outside the phantom were then set to zero in order to minimize the impact of

streak-shaped view aliasing artefacts due to the low number of projections.

No further postprocessing was performed on the image data sets.

5.4.2 Registration accuracy

A mutual information (MI) matching algorithm was utilized for the rigid-

body registration of the three-dimensional image data sets. The concept

of this algorithm was described by Maes et al. [68] originally. Powell's

method [92] was employed to maximize the mutual information as function
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of three translational and three rotational parameters, in order two align two

image data sets geometrically.

In the implementation of the matching algorithm, a certain number of ran-

domly distributed samples is taken from the 
oating image instead of in-

volving all pixels in the MI calculation in order to decrease computation

time. Changing the number of samples, the registration result varies there-

fore slightly. For a reasonable number between 4 � 104 and 5 � 105, however,
these random variations were found to be less than 0:2mm for translations

and less than 0:3Æ for rotations. All data sets were therefore registered us-

ing 5 � 104 samples in order to ensure stable results and as well as short

computation time.

The uncertainties remaining after mutual information matching of two data

sets were compared to the reference values known from the design of the

mechanical support system. For translations, the mean and maximum dif-

ference between reference and calculated values were �0:24mm and 1:13mm,

respectively. The corresponding, single standard deviation was 0:58mm. The

mean and maximum angular di�erence for the three rotational parameters

were 0:19Æ and 1:25Æ, respectively. The standard deviation of the angular

di�erence was 0:46Æ.





Chapter 6

Discussion

X-ray transmission computed tomography (CT) is a well-established tech-

nique, which is crucial for modern clinical diagnosis. CT is furthermore a

valuable tool in individual (radiotherapy or surgical) treatment planning in

order to locate pathologic lesions and particularly sensitive structures, since

it provides a reliable anatomical model. For treatment, however, the images

have to be registered with the actual anatomy of the patient.

For neurosurgery [95] or radiotherapy [60] of the brain, this registration can

be performed very accurately by means of stereotaxy. This method relies

on rigid immobilization of a patient for de�ning a frame of reference that

is �rmly related to the anatomy. Stereotactic accuracy is limited when a

region of interest is diÆcult to immobilize or substantial organ motion occurs

between planning and treatment.

This limitation is currently being tackled by the the implementation of ap-

propriate imaging facilities at treatment site that enable the acquisition of

images of the actual anatomy in the treatment position. X-ray computed to-

mography is quite a promising imaging modality concerning this aim, since

it provides images with high spatial resolution and does not introduce geo-

metric distortions. Cone-beam CT enables the scanning of large volumes of

interest in reasonably short time. The patient does not need to be moved for

imaging when (mobile) open C-arm devices are utilized for the acquisition of

X-ray projections.

The implementation of cone-beam CT at the treatment site introduces, on

the other hand, new problems compared to the well-established diagnostic

CT. Some of the current challenges that were investigated in this thesis will

be discussed in the following.

95
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6.1 Geometric calibration

Conventional C-arm gantries such as employed in angiography devices and

linear accelerators exhibit signi�cant geometric uncertainties, i.e., the projec-

tion geometry at each particular view (from the X-ray source to the detector)

is not known exactly [21, 34, 134]. The example in subsection 2.2.3 demon-

strates that tomographic reconstruction yields images of very poor quality

when the data acquisition geometry is not accurately taken into account.

A geometric calibration procedure was implemented in order to correct for

these uncertainties. The method utilizes a dedicated phantom containing

an array of �ducial markers [99]. The phantom de�nes a coordinate system

for image reconstruction. This coordinate system can be related to another

frame of reference (�xed in three-dimensional space) by aligning it prop-

erly, for example, using laser marks. For each view, an X-ray image of the

calibration phantom is taken in order to estimate the particular projection

geometry.

The relative arrangement of the markers within the phantom needs to be

very exact. This has been referred to as major drawback of such a calibration

procedure previously [96]. A simulation study showed that, for a typical cone-

beam geometry in medical imaging, the maximum tolerance of the marker

positions should be less 0.1mm in each direction. This can be guaranteed

when a real calibration phantom is built in a sophisticated workshop. Even

considering the use of such an accurate phantom, the calibration method is

much less demanding (and expensive) than exact tracking of position and

orientation of X-ray source and detector.

The information obtained in the calibration procedure covers all degrees of

freedom of an arbitrary, linear cone-beam projection. In numerous previ-

ous applications of C-arm devices, only a centre-of-rotation correction was

performed [14, 22, 72, 73, 101]. Although this correction may be suÆcient

in many practical cases, the additional geometric information that is easily

available from a calibration scan should not be discarded.

The X-ray detector itself is assumed to be free of any non-linear geomet-

ric distortion. This assumption is perfectly adequate for 
at-panel imagers.

Image intensi�ers, which introduce signi�cant in-plane distortions, are ex-

pected to be replaced by this new generation of detectors in near future.

Various techniques for correcting in-plane distortions, however, are available

elsewhere [23, 35]. They could be applied prior to the geometric calibration

procedure proposed here.
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Two di�erent methods were implemented for estimating the projection ge-

ometry from the calibration images. The parametric method provides a

set of eleven geometric parameters for each view. In the non-parametric

technique, a 3� 4 projection matrix mapping three-dimensional object into

two-dimensional detector coordinates is calculated for each view. Both ap-

proaches were carefully compared by means of computer simulations. The

reprojection error of test points randomly distributed within the �eld of view

was chosen as criterion for the comparison because this is an adequate mea-

sure for geometric accuracy. Using the non-parametric method, the mean

radial reprojection error is about a tenth of the detector pixel size. The

parametric method yielded substantially larger (statistically signi�cant) de-

viations. This �nding supports the argumentation of Wiesent et al. [134]

who prefer a non-parametric method.

Rogu�ee et al. [98] obtained the opposite result, although they employed the

same measure. Comparing some one-dimensional cross-sections through the

�eld of view, they observed slightly larger reprojection errors for the non-

parametric technique than for the parametric one, especially for a low num-

ber of �ducial markers. The key for understanding this contradiction is

the di�erence in simulation design. In this thesis, X-ray projections of the

(virtual) calibration phantom were computed analytically in order to simu-

late the discretization due to the �nite detector pixel size properly. Rogu�ee

et al. [98] calculated the centre positions of the markers analytically and var-

ied them by samples drawn from a non-truncated Gaussian distribution of

zero mean and speci�c standard deviation. This results (even for a small

standard deviation) in some very inaccurate estimates for the marker posi-

tions. It is well known that a linear least-squares �t (such as utilized in the

non-parametric method) is extremely sensitive to (even a few) large errors in

the input data [92]. Uncertainties larger than the detector pixel size, how-

ever, do not occur in practice, except when the algorithm determining the

marker positions fails (for example, because of artefacts). The occurrence of

few large errors in detecting the markers translates, in this sense, to a very

inaccurate set-up of few markers within the calibration phantom. This is in

agreement with the observation that the parametric method is, in relative

terms, less sensitive to increasing marker tolerance than the non-parametric

one. However, the simulation design utilized in this thesis resembles reality

better than the design employed by Rogu�ee et al. [98].

The above considerations emphasize another the desirable feature of the non-

parametric technique. The goodness of the �t (the �2 value) can be used for

uncovering errors in the detection step reliably, since a particular �2 threshold

is not exceeded when all markers have been detected correctly.
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The estimation of geometric parameters is related to the minimization of a

highly non-linear objective function. This function is not necessarily convex,

i.e., it can exhibit multiple local minima. Some of the desired parameters

can be signi�cantly correlated. Because of these problems observed previ-

ously [38, 39, 64, 96], there is no guarantee of �nding the global minimum of

the objective function [81]. The parametric method can deliver completely

unrealistic results when it is trapped in a local minimum of the objective

function. Various heuristic approaches such as successive variation of di�er-

ent parameters [38] or distinction of intrinsic and extrinsic parameters [96]

have been proposed to stabilize the minimization, but none of the authors

present a rigorous mathematical analysis of the objective function.

The non-parametric method, on the other hand, lacks an intuitive geometric

interpretation of the results, i.e., the projection matrices cannot be easily

checked for plausibility. Their decomposition into geometric parameters by

means of non-linear (least-squares) �tting would introduce the same prob-

lems as considered above. An analytical decomposition procedure proposed

previously [70] was therfore implemented and analysed by computer simula-

tions. The most critical parameters, namely the source-to-detector distance

and the coordinates of the view reference point, are generally estimated even

less accurately than for the parametric calibration method. The decomposi-

tion of projection matrices is therefore of limited use, but might be at least

employed to check the correct orientation of particular views.

The estimation of geometric parameters, however, is not essential for suc-

cessfully accounting for the calibration information within backprojection

and reprojection. The projection matrices can be processed without explicit

decomposition using the algorithm described in appendix C in detail. This

algorithm is computationally slightly more eÆcient than the one presented

by Wiesent et al. [134] previously. Its implementation does not require the

interpolation of the acquired projections to an ideal data set as it has been

proposed by Fahrig et al. [22]. This is quite advantageous, since each addi-

tional interpolation step potentially degrades spatial resolution.

The reproducibility of the 
ex e�ects was carefully investigated for a lin-

ear accelerator combined with a 
at-panel imager. The experiments were

performed in step-and-shoot as well as in continuous gantry rotation mode.

The results indicate that the 
ex e�ects are very reproducible. As a conse-

quence, the geometric calibration procedure discussed above can be applied

o�-line. This is desired because an online calibration by placing �ducial mark-

ers around the patient such as demonstrated by Navab et al. [79] may not be

feasible in all cases. This is particularly true for imaging at the treatment
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site when easy access to the patient is required. The results on 
ex repro-

ducibility are valid only for the one experimental cone-beam system that was

investigated. Similar behaviour, however, may be expected for most C-arm

shaped gantries. Nevertheless, a careful investigation, for example by using

the protocols described in subsection 5.1.5, should be performed for every

device separately.

6.2 Image reconstruction

The cone-beam projections were always recorded using a single-circular scan.

Although this data acquisition scheme does not yield complete projection

data [25, 32, 112, 124], it is often the only feasible one at treatment site. Exact

reconstruction is then possible only in the mid-plane. Increasing the distance

from this plane, the image quality is more and more degraded, mainly by

blurring in the axial direction. In medical applications, the projections are

furthermore truncated in the axial direction, which introduces additional

artefacts at the inferior and superior edges of the �eld of view.

The images presented in this thesis indicate that the artefacts are normally

acceptable if a region of interest is close to the mid-plane. This can be guar-

anteed in most applications. The investigations of the experimental cone-

beam systems described in subsection 4.2.2 suggest that a spatial resolution

of about 1.3mm can be achieved for high-contrast objects, if only 120 projec-

tions per full revolution are used. Wiesent et al. [134] obtained a resolution

between 0.1 and 0.3mm using 50{100 cone-beam projections recorded by an

angiography device. It is not clear whether the values refer to pure spatial

resolution or to the accuracy with which the centre of an object (e.g., a ves-

sel �lled with contrast agent) can be determined. Such a high resolution,

however, could not not be obtained using a linear accelerator and a therapy

simulator because of the relatively large focal spots.

In current C-arm cone-beam CT systems such as mentioned above, only

about 100 projections are recorded per full rotation, compared to about

1000 views taken by a diagnostic scanner comprising a ring gantry. The low

number of projections causes a signi�cant level of streak-shaped background

artefacts [21, 134] because the condition for optimum raw data sampling [46]

is severely violated. Future technical improvements may help to overcome

this limitation. For kilovoltage imaging, the main reason for using few pro-

jections is, in many cases, a reduction of the data acquisition time rather

than concerns about the dose delivered to the patient.
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The �ltered-backprojection method proposed by Feldkamp et al. [24] was

employed for approximate image reconstruction from single-circular cone-

beam projections. The original algorithm was modi�ed in order to account

for 
ex e�ects. Information obtained from a calibration scan is considered

exactly within the backprojection step, which is the most crucial part of

the algorithm concerning geometric accuracy. The �ltering step was not

corrected. This approximation is perfectly adequate considering typical 
ex

e�ects of C-arm devices [21, 34]. The modi�ed Feldkamp algorithm yields

good image quality; the level of blurring and streak artefacts due to 
ex

e�ects is signi�cantly reduced.

In theory, a mathematically exact reconstruction without introducing addi-

tional interpolations could be obtained by the �ltered-layergram method [113].

In this method, the order of backprojection and deconvolution is swapped

compared to �ltered backprojection. Applying exact backprojection (ac-

counting for all geometric uncertainties) into a regular grid before decon-

volution would not require any changes to the �lter kernel, provided the

irregular sampling due to geometric instabilities is still dense enough. How-

ever, the �ltered-layergram is computationally very demanding as explained

in detail in subsection 3.2.1.

The Feldkamp algorithm [24] is currently the method of choice for most

single-circular cone-beam computed tomography applications because it is

very eÆcient [21, 34, 134]. The algorithm exploits the projection data that

are available in a mathematically rigorous manner. This is obvious from the

fact that the exact cone-beam reconstruction formula suggested by Defrise

and Clack [17] reduces to the Feldkamp formula for a single-circular source

trajectory. For discrete data, Feldkamp reconstruction of single-circular pro-

jections is, close to the mid-plane, even more accurate than potentially exact

shift-variant �ltered backprojection of complete cone-beam data because it

involves fewer interpolations [18]. This is also true for potentially exact

Radon rebinning methods.

The Feldkamp algorithm [24] does not necessarily yield the optimum recon-

struction result. Various modi�cations have been applied in order to improve

the image quality. Grass [33], for example, showed that the well-known inten-

sity drop in axial direction can be reduced by partial parallel rebinning of the

cone-beam projections. Unfortunately, a method that accounts for geometric

calibration information within the rebinning (without introducing additional

interpolations) is not yet available. For this reason, modi�ed Feldkamp al-

gorithms were not considered here. The development of a corresponding

concept would be interesting for future research.
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6.3 Image restoration

There are various reasons for only measuring partial projection data, particu-

larly in medical imaging at treatment site. The incompleteness of cone-beam

projections recorded in a single-circular scan is discussed in the previous sec-

tion and not considered here. This section deals with situations in which

mathematically exact image reconstruction without analytical continuation

of the projection data is not even possible in the mid-plane.

Subsection 2.2.1 introduces the interior problem (lateral truncation), the

exterior problem (`total' absorption within a part of the object) and the

limited-angle problem (restricted range of view angles). In this thesis, the

limited-angle problem was investigated explicitly in order to account for in-

ternal organ motion that is signi�cant compared to the data acquisition time,

thus not allowing to record a complete set of consistent projections. The

concepts employed here, however, are quite general. Much of the discussion

following applies also to the interior and the exterior problem.

Although limited-angle projection data sets of spatially �nite objects can

be, in theory, completed by means of analytical continuation [66, 77], these

attempts su�er from intense noise ampli�cation in practice [27]. This is not

surprising, since it has been proved previously that limited-angle computed

tomography is a severely ill-posed inverse problem [77].

The theory of projections onto convex sets (POCS) [103, 138, 139] was ap-

plied in this thesis for restoring images from incomplete projection data. This

mathematical framework covers numerous iterative schemes that enforce con-

sistency of the image with measured data and prior knowledge by successive

application of constraint operators.

Various iterative procedures were investigated regarding their capability for

image restoration from limited-angle projection data sets. Noise-free as well

as noisy, analytically generated phantom data were utilized in these stud-

ies. The results were visually assessed and mathematically compared with

the phantom de�nition by means of four standard measures. Correlation

coeÆcient, root mean square error, mean absolute error and maximum er-

ror emphasize di�erent aspects of image quality such as structured artefacts

versus small large-area deviations [41, 65].

Iterative reconstruction-reprojection procedures that are based on the origi-

nal Gerchberg-Papoulis algorithm [27, 84] did not deliver satisfactory results.

The correct local mean values were not restored in all parts of the image.

The images su�er furthermore from severe streak artefacts. Neither adaptive
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�ltering nor `smooth combination' of measured and reprojected line inte-

grals comparable to `smooth sinogram weighting' for short-scan CT recon-

struction [85] reduced these streaks signi�cantly. Restricting the attenuation

coeÆcients to a reasonable (non-negative) range improved the results only

slightly. Introducing a reference image constraint increased the correlation

coeÆcient and decreased the root mean square error substantially, but did

not avoid the problem of structured artefacts. The latter observation is con-

�rmed by the fact that the maximum error remained at the maximum allowed

distance from the reference image.

The reconstruction-reprojection algorithms exhibited a a semi-convergent be-

haviour. This means that the image quality improves within the �rst iter-

ations, but is more and more deteriorated in further steps. This typical

for (severely) ill-posed inverse problems and requires the determination of

the optimum number of iterations for regularizing the solution [67]. The

performance measures and visual inspection of the images showed that the

algorithm should be terminated after about 10 steps. However, this did not

yield suÆciently accurate results.

Iterative image restoration algorithms based on the algebraic reconstruc-

tion technique (ART) [48] yielded much more accurate results. In almost

all cases, the performance measures exhibited better values than obtained

by reconstruction-reprojection methods. Adding only an attenuation-range

constraint to plain ART did not increase its performance considerably. The

introduction of reference images is very promising for improving the conver-

gence of ART. In the simulations, the maximum deviation from the phantom

de�nition dropped by a about factor of ten below the maximum allowed dis-

tance from the reference image.

The simulations demonstrated that it usually takes about 100 iterations to

restore a reasonable image by means of an ART-like procedure. The speed of

convergence depends signi�cantly on the relaxation parameter and on the or-

der in which the projections are processed. A rigorous mathematical analysis

of the full-scan case suggests quite a small relaxation parameter (of the order

of 0.05) for the sequential access scheme (SAS) because consecutive projec-

tions are highly correlated [41, 78]. Convergence can be accelerated using

the random permutation scheme (RPS) when choosing a relaxation param-

eter close to unity [78]. Various simulation studies indicated that the latter

statement does not hold for limited-angle data sets. A general advantage of

one of these schemes was not found. More sophisticated orderings such as

the multi-level scheme (MLS) [36] have been developed for speci�c full-scan

geometries and are not applicable to limited-angle computed tomography.
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The POCS theory yields an additive ART algorithm for enforcing consistency

of an image with the measured projection data [89]. The implementation of

a multiplicative correction in each iteration step was also tested, although

this is not covered by the POCS convergence theorem. The performance

measures discussed above showed that the multiplicative version results in

comparable values for the correlation coeÆcient and the root mean square

error, but tends to produce more structured artefacts.

Quadratic optimization methods form another class of image restoration algo-

rithms, which includes the well-known simultaneous iterative reconstruction

technique (SIRT) [28]. These methods allow any type of convex constraint

to be applied in a similar way to the POCS algorithm. Because of two dis-

advantages they were not subject to a detailed investigation regarding the

limited-angle problem in this thesis. Quadratic optimization techniques are

known to converge very slowly and require additional storage for an interme-

diate image or projection data set [41].

Constraint operators connecting object and projection space were realized by

(�ltered) backprojection and reprojection techniques [76, 69]. For this reason,

all iterative schemes considered here are capable of accounting for geomet-

ric information obtained from the calibration procedure discussed previously.

The application of Fourier methods [88, 89] would not provide advantages

compared to backprojection-reprojection methods. An extension of the cal-

ibration procedure enabling an implementation of the Gerchberg-Papoulis

algorithm [27, 84] iteration step in Radon space [54] might avoid some of the

numerical problems observed in the simulation. Successive backprojection

and reprojection, however, cannot be avoided if constraints are to be applied

to the image in order to enforce its consistency with prior knowledge of the

object.

Studies on the computational complexity of the iterative schemes are not

presented in this thesis. Backprojection and reprojection, which turned out

to be the most time-consuming parts of the algorithms, have been analysed

in detail previously. The computation time required for the application of

additional constraint operators is negligible compared to backprojection and

reprojection.

Based on the above considerations, a new iterative restoration scheme was

proposed for improving images that su�er from organ motion artefacts. In

particular, imaging of a beating heart was considered in this context. The

procedure starts with a standard (short-scan) �ltered backprojection pro-

viding accurate attenuation coeÆcients in regions that are not a�ected by

the heart beat. This can be easily concluded from the properties of the
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Radon transform [77]. This initial estimate serves as reference image for an

ART-like iterative procedure considering only the most consistent part of

the projection data set. An appropriate range of view angles is selected from

evaluating electrocardiogram (ECG) data, which need to be recorded syn-

chronously with the CT scan. The algorithm is capable of restoring details

that are otherwise blurred by organ motion. The images, however, su�er

from mild (streak) artefacts introduced by the iterative procedure.

Although further research (on additional constraints) is necessary to improve

the image quality, the iterative scheme should be considered as an interest-

ing alternative compared to current methods of ECG-correlated heart imag-

ing [47]. Short-scan data sets often do not provide consistent measurements.

The combination of data segments from various heart cycles, on the other

hand, reduces motion artefacts, but introduces new errors [47]. Data combi-

nation does not work perfectly because even successive heart cycles exhibit

slight variations. This is particularly true for patients su�ering from heart

disease. These patients are most likely to be subject to a dedicated CT

examination.

The problem of organ motion during CT imaging will probably remain a chal-

lenge for the next years. Although scanning times have been continuously

decreased, they are not expected to drop by an order of magnitude in near fu-

ture. Alternative concepts have been proposed for decreasing scanning time.

Using electron beam scanners, the raw data for one slice can be acquired

within 50{100ms, which is about a tenth of the rotation time of modern CT

gantries. The dynamic spatial reconstructor comprises 14 X-ray tubes thus

allowing fast volume coverage. Both concepts could not be clinically estab-

lished because of technical problems and the immense costs [50]. It seems

therefore worthwhile to continue research on image restoration algorithms in

order to tackle the problem of organ motion.

6.4 Image registration

A phantom study was performed in order to assess the potential of cone-beam

computed tomography using a C-arm device for image-guided procedures.

The results of this investigation indicate that mutual information matching

could be a useful tool for patient set-up veri�cation at the treatment site.

Even data sets containing streak artefacts due to angular under-sampling as

well as beam-hardening artefacts were registered fairly well.
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Mutual information matching as proposed by Maes et al. [68] does not require

any user interaction except of de�ning a reasonable number of samples in the


oating image. This is an important criterion for real-time applications. The

registration of two data sets took between 2 and 5 minutes on a DEC Alpha

workstation at 500MHz. The current implementation could be optimized for

speed and parallelized in order to reach a clinically acceptable computation

time.

Although the performance of the mutual information matching was good

for the cases investigated, there is no (theoretical) guarantee of success. In

principle, the algorithm can be trapped in a local minimum of the objective

function due to the non-linear nature of the optimization problem. A vi-

sual inspection of any registration result obtained automatically is therefore

essential in medical applications. Using a sophisticated image fusion tool

that displays both data sets, such an inspection can be easily performed.

Moreover, the tool should allow eÆcient, manual corrections.

Applying a registration algorithm in three-dimensional object space has some

advantages compared to the approaches based on transmission images as re-

viewed in subsection 2.1.3. A small number of transmission images (typi-

cally an orthogonal pair) do not contain complete information on the three-

dimensional anatomy of the patient. Ambiguities can therefore occur in clin-

ical routine, which cause two-dimensional registration algorithms, like those

proposed by Gilhuijs et al. [29], to fail. Moreover, a visual inspection of the

registration result is much easier in object than in projection space.

Considering images reconstructed from a low number of projections, a suc-

cessful registration relies on suÆcient high-contrast information such as from

the outline, bones and/or air cavities. A rigid-body registration based on

high-contrast structures can be useful to determine the overall patient set-

up at the treatment site. The preliminary results on the accuracy obtained

in this thesis look quite promising. Nevertheless, the methods need to be

investigated more in detail in order to enable their clinical implementation.

The issue of organ motion and deformation has not been addressed. Using a

larger number of (kilovoltage) X-ray projections than in this phantom study,

however, would o�er the opportunity to detect such changes in the patient's

anatomy. Furthermore, mutual information matching can be extended to

include elastic deformations, see, for example, [11] and references therein.

The evaluation of elastic registration tools for their use in image-guided pro-

cedures still remains as a challenge for the future.



106 CHAPTER 6. DISCUSSION

6.5 Conclusion

Cone-beam computed tomography using open C-arm devices is a promising

technique for supporting therapeutic interventions. Three-dimensional im-

age data sets taken directly at the treatment site would be very helpful if

considerable organ motion occurs between treatment planning and the actual

therapy.

The methods for geometric calibration of X-ray devices and approximate im-

age reconstruction from single-circular cone-beam data sets investigated in

this thesis are suÆcient for most applications. Further research and careful

clinical evaluation, however, is necessary in order to enable image restora-

tion from partial projections in practice. The application of an existing

rigid-body registration algorithm to images reconstructed from a relatively

low number of cone-beam projections can be considered an encouraging ex-

ample. Of course, elastic registration needs to be implemented in order to

tackle the problem of organ motion mentioned above. For this purpose, more

projections and therefore improvement of current C-arm devices is required

to enable the reconstruction of images with suÆcient soft-tissue contrast.



Chapter 7

Summary

This thesis deals with X-ray transmission computed tomography (CT) from

non-ideal projection data sets that do not allow the application of standard

image reconstruction methods, such as �ltered backprojection. Various spe-

ci�c problems with non-ideal projections were investigated, namely geometric

uncertainties due 
ex e�ects of the X-ray device, incomplete projections due

to technical limitations within the scanning process and inconsistent mea-

surements due to internal organ motion occurring during data acquisition.

The problem of geometric uncertainties was solved by the implementation of

a calibration procedure. The technique proposed here is based on the o�-

line or online scan of a dedicated calibration phantom. In order to achieve

high 
exibility, the projection geometry is estimated for each view separately

considering all degrees of freedom of an arbitrary, linear cone-beam projec-

tion. Two di�erent algorithms for the actual estimation were compared using

computer simulations. This study shows that the direct calculation of a pro-

jection matrix that maps object onto detector coordinates is very accurate.

The estimation of geometric parameters (such as the orientation of the de-

tector) does not yield suÆciently accurate results, neither using non-linear

optimization nor analytical decomposition of the projection matrix. It was

demonstrated, however, that the projection matrix provides all information

needed in (�ltered) backprojection and reprojection algorithms without ex-

plicit decomposition into a set of geometric parameters. The repeatability of


ex e�ects was investigated for a linear accelerator combined with a 
at-panel

imager. The system was found to behave very reproducibly, thus allowing an

o�-line calibration, as desired for most applications. This result is speci�c

for the particular system studied. The protocol suggested here, however, can

be applied to any cone-beam scanner.
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A well-known �ltered backprojection algorithm was utilized for approximate

image reconstruction from cone-beam projections acquired in a single-circular

scan. The algorithm was slightly extended in order to account for geometric

calibration information in a computationally eÆcient way. The feasibility of

this approach was demonstrated for two experimental cone-beam scanners

employing a linear accelerator and a radiotherapy simulator, respectively,

in combination with a 
at-panel imager. The spatial resolution achieved

with these scanners is about 1.3mm for high-contrast objects. This value

is close to the limit determined by the size of the focal spot in these de-

vices. Artefacts and blurring arising in the images because of geometric 
ex

e�ects are excellently removed by the method presented in this thesis. The

experiments suggest furthermore that artefacts due to incompleteness of the

single-circular cone-beam projections and artefacts due to their axial trunca-

tion are tolerable for a wide range of medical applications, provided the cone

angle does not exceed about �4Æ.
The problem of inconsistent X-ray projections was tackled by the application

the method of projections onto convex sets (POCS), which has previously

been utilized for image restoration from partial projection data sets and

prior knowledge. Computer simulations were carried out in order to evaluate

various constraints on the image to be restored. The results of this study show

that, in particular, the combination of the additive algebraic reconstruction

technique (AART) with an adequate reference image constraint is promising.

It was furthermore demonstrated that, in case of spatially limited, internal

organ motion, an appropriate reference image can be obtained by standard

�ltered backprojection of the (minimal) complete set of projections. This

approach was applied to diagnostic fan-beam CT data of a human heart. The

most consistent subset of the measured projections was determined from the

electrocardiogram (ECG) that was recorded synchronously with the CT scan.

This example of ECG-correlated heart imaging indicates that the restoration

method proposed here is, in principle, capable of reducing artefacts caused

by internal organ motion. Further investigation, however, would be required

before clinical implementation of this technique.

A phantom study was carried out in order to assess the potential of cone-

beam computed tomography using a C-arm device for image-guided proce-

dures. A rigid-body registration of various three-dimensional data sets ob-

tained from the experimental cone-beam scanners performed very well. The

uncertainties remaining after matching were about 0.6mm for translations

and 0.5Æ for rotations (single standard deviations).



Appendix A

Mathematical background

The basic mathematical theory of computed tomography is presented more

rigorously in the following than in chapter 3 and chapter 4 for the convenience

of the reader. Derivations or proofs of the theorems utilized in this thesis,

however, are beyond the scope of this brief summary. The reader is referred

to standard literature such as [6, 41, 67, 77] for more detailed information on

image reconstruction and image restoration from projections.

The theoretical framework is presented for continuous functions of continuous

variables for the sake of simplicity. Some important aspects of the implemen-

tation of the techniques for discrete image and projection data, however, are

discussed in appendix C. As far as possible, the mathematical de�nitions

and theorems are provided for the N -dimensional case, i.e., they apply to

two-dimensional as well as three-dimensional computed tomography.

Section A.1 introduces some assumptions that apply to the entire appendix.

Most of the mathematical theory presented here can be derived for much

weaker restrictions. The assumptions utilized here, however, are perfectly

adequate for the purpose of this appendix.

Section A.2 de�nes several integral transforms that are important mathemat-

ical models in the context of computed tomography. This is quite important,

since the de�nition of even basic operators such as the Fourier transform is

not unique in the literature.

Based on these de�nitions, section A.3 and section A.4 describe methods of

image reconstruction from complete projection data and image restoration

from partial projection data using prior information, respectively.
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A.1 Basic assumptions

The function f (r) denotes the desired spatial distribution of the linear atten-

uation coeÆcients (or any other object property). Let f (r) be an element

of the Hilbert space H (with inner product and norm de�ned below) con-

sisting of real-valued, square-integrable functions that have compact support

within a particular, �nite subset 
 of the N -dimensional Euclidian space RN

(
 � R
N).

A rigorous de�nition of the Hilbert space H, the N -dimensional Euclidian

space RN and any other mathematical terminology that is not explained

here (such as inner product and norm) can be obtained from Bronstein and

Semendjajew [10]. Some speci�c de�nitions, however, are provided in the

following.

De�nition A.1. A function f (r) is square-integrable over RN if the integral

over its squared absolute values exists,Z
RN

jf (r)j2 dNr <1 : (A.1)

De�nition A.2. A function f (r) is said to exhibit compact support within

the set 
 if f (r) = 0 8 r =2 
.

De�nition A.3. The inner product of two functions f1 (r) ; f2 (r) 2 H de-

noted as hf1 (r) ; f2 (r)i is de�ned as the integral over their product,

hf1 (r) ; f2 (r)i =
Z
RN

f1 (r) f2 (r) d
Nr : (A.2)

The above integral always exists, since the elements of the Hilbert space H

are square-integrable and compactly supported in 
.

De�nition A.4. The norm of a function f (r) in the Hilbert space H is

de�ned as the square-root of the inner product with itself,

kf (r)k =
p
hf (r) ; f (r)i : (A.3)

The support constraint for f (r) introduced above is quite reasonable, since

all real objects to be imaged by means of computed tomography are of �-

nite spatial extent. In the literature, the set 
 is often de�ned as the N -

dimensional unit ball 
N = fr : krk � 1g in order to achieve a convenient

notation of some of the derivations and proofs. This does not imply a loss of

generality, since each problem can be scaled accordingly.
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A.2 Integral transforms

The principle of X-ray computed tomography is to reconstruct an object

function f (r) from a set of its projections. In the following, three integral

transforms modelling the acquisition of projection data are de�ned. The

Fourier transform and its inverse, that play an important role in the theory

of computed tomography, are also introduced.

De�nition A.5. The Radon transform R maps a function f (r) into the set

of its integrals over the hyperplanes of the Euclidean space RN . This can be

written as

gR (n̂; s) = R f (r) =

Z
r�n̂=s

f (r) dNr ; (A.4)

where n̂ is an element of the unit sphere SN�1 =
�
r 2 RN : krk = 1

	
in RN ,

and s 2 R1 is the signed distance of the hyperplane perpendicular to n̂ from

the origin.1

De�nition A.6. The parallel-beam transform P maps f (r) into the set of

its line integrals. More speci�cally, if n̂ 2 SN�1 and r 2 RN , then

gP (n̂; r) = P f (r) =

+1Z
�1

f (r + t n̂) dt (A.5)

is the integral of f (r) over the line through r with direction n̂. The vector

r is normally restricted to the subspace perpendicular to n̂, since gP (n̂; r)

does not change if r is moved in the direction of n̂.

Theorem A.1. The Radon transform R can be expressed as an integral

over the parallel-beam X-ray transform P,

R f (r) = gR (n̂; s) =

Z
r�n̂=s

gP (n̂; r) d
Nr : (A.6)

Radon transform and X-ray transform coincide for N = 2, except for the

notation of the arguments. In this case, they both model the data acquisition

scheme of a �rst-generation CT scanner.

1
f (r) and gR (n̂; s) are both of the same dimension N because the direction vector n̂,

which is an element of the unit sphere, is uniquely determined by N � 1 parameters.
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De�nition A.7. The divergent-beam transform D maps f (r) into a set of

integrals along the half-line with endpoint a (�) and direction n̂ 2 S
N�1.

The parameter � 2 R
1 describes the trajectory of the focus a 2 R

N . This

can be written as

gD (n̂; �) = D f (r) =

1Z
0

f (a (�) + t n̂) dt : (A.7)

D is referred to as the fan-beam transform and the cone-beam transform for

N = 2 and N = 3, respectively. Feasible cone-beam source trajectories a (�)

are schematically depicted in �gure 3.1 on page 18.

A general formula that relates D to the Radon transform R does not exist,

since this relation depends on the particular source trajectory. The following

necessary and suÆcient condition for complete divergent-beam projection

data given by Tuy [124], Finch [25], Smith [112] and Grangeat [32] plays an

important role in three-dimensional image reconstruction.

Theorem A.2. The Radon transform R can be completely obtained from

the divergent-beam transform D without analytical continuation if and only

if the source trajectory meets every hyperplane that intersects the object at

least in one point.

De�nition A.8. The N -dimensional Fourier transform F and its inverse

F�1 are de�ned by

F (%) = F f (r) =

Z
RN

f (r) e�2�ir % dNr ; (A.8)

f (r) =F�1 F (%) =

Z
RN

F (%) e2�i r % dN% : (A.9)

Theorem A.3. The Radon transform R, the parallel-beam transform P,
the divergent-beam transform D, the Fourier transform F and its inverse

F�1 are linear, i.e., 8 f1 (r) ; f2 (r) 2 HN and 8 c1; c2 2 R1

T
�
c1 f1 (r) + c2 f2 (r)

�
= c1 T f1 (r) + c2 T f2 (r) ; (A.10)

where T denotes one of the above transforms.
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A.3 Image reconstruction

The previous section shows clearly that image reconstruction in computed

tomography is an inverse problem. The desired object function f can be

determined from its projections g if the integral transform that de�nes g is

invertible. In the following, some well-known inversion formulae are given

for the Radon transform R. The lower index of g referring to the particular

integral operator is therefore omitted in order to simplify the notation.

Theorem A.4. The objection function f (r) can be obtained by (N � 1)

partial di�erentiations of its Radon transform g (n̂; s) with respect to the

variable s,

g0 (n̂; s) =
@N�1

@sN�1
g (n̂; s) ; (A.11)

followed by backprojection of the Hilbert transform of the di�erentiated data

g0 (n̂; s) over all directions n̂,

f (r) =
(�1)N=2+1

(2�)
N

Z
SN�1

Z
R1

g0 (n̂; s)

r � n̂� s
ds dN�1n̂ : (A.12)

These equations are closely related to the original inversion formula derived

by Radon [93]. They are, however, of limited use for the practical implemen-

tation of an image reconstruction algorithm.

Theorem A.5. The one-dimensional Fourier transform of the projection

data gR (n̂; s) with respect to the variable s at a particular direction n̂,

which is denoted as G (n̂; �), equals the N -dimensional Fourier transform

F (�) of the object function f (r) along a line at direction n̂ in frequency

space,

F (� n̂) = G (n̂; �) : (A.13)

This fundamental formula, which is referred to as the projection theorem,

the Fourier slice theorem and the central slice theorem in the literature, is

the basis for the method of direct Fourier reconstruction for two-dimensional

parallel-beam projection data.

Theorem A.6. The object function f (r) can be obtained by N -dimensional

backprojection of the projection data g (n̂; s),

~f (r) =

Z
SN�1

g (n̂; r � n̂) dN�1n̂ ; (A.14)
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followed by N -dimensional �ltering of the so-called layergram ~f (r) with a

�lter kernel h (r) = F�1H (�) to be de�ned below,

f (r) =

Z
RN

~f (r) h (r0 � r) dNr0 = F�1H (�) F ~f (r) : (A.15)

Applying this theorem immediately to image reconstruction of parallel-beam

projections is denoted as �ltered-layergram method. Before de�ning the �lter

kernel, the technique of �ltered backprojection is introduced in the following

theorem.

Theorem A.7. The function f (r) can be calculated by one-dimensional

�ltering of the projections g (n̂; s) with respect to the variable s employing

a kernel h (s) = F�1H (�) to be de�ned later,

g0 (n̂; s) =

+1Z
�1

g (n̂; s) h (s0 � s) ds0 = F�1H (�) F g (n̂; s) ; (A.16)

and N -dimensional backprojection of the �ltered projections g0 (n̂; s) over all

directions n̂,

f (r) =

Z
SN�1

g0 (n̂; r � n̂) dN�1n̂ : (A.17)

The frequency spectrum of the one-dimensional �lter kernel omitted in the

previous theorem is given by

H (�) = w

�
�

�max

�
rect

�
�

�max

�
j�j : (A.18)

The N -dimensional �lter H (�) employed in equation (A.15) equals the one-

dimensional �lter introduced in equation (A.18) along all lines through the

origin, i.e., for � = k�k. The introduction of the ideal low-pass �lter

rect (�̂) =

(
1 if j�̂j � 1 ;

0 if j�̂j > 1
(A.19)

is necessary for the existence of the inverse Fourier transform in equation

(A.16) and (A.15), respectively, because the Fourier transform of the pro-

jections G (n̂; �) = F g (n̂; s) cannot vanish strictly (unless they are zero

everywhere). This follows from the assumption that f (r) exhibits compact
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wRL (�̂) = 1

wSL (�̂) = sinc
�
�

2
�̂

�

wBW (�̂) =
1

1 + �̂2k
; k = 1; 2; : : :

wGH (�̂) = � + (1� �) cos (� �̂) ;

0:5 � � � 1

Figure A.1: Ramp �lter for image reconstruction regularized by various window

functions. From top to bottom, the window proposed by Ramachandran and

Lakshminarayanan (RL), the window suggested by to Shepp and Logan (SL), the

Butterworth (BW) window for k = 1 and the generalized Hamming (GH) window

for � = 0:54 are considered. The GH window is denoted as Hamming window for

� = 0:54 and as Hanning window for � = 0:5.

support and from the de�nition of the Radon transform.2 This regulariza-

tion is furthermore suÆcient for the calculation of the real-space �lter kernels

h (r) and h (s), which also involves an inverse Fourier transform.

The projections, however, are assumed to be essentially band-limited with

bandwidth �max, i.e., G (n̂; �) is negligible for � > �max. Essentially band-

limited functions admit similar mathematical interpretation as strictly band-

limited functions.3 Theorem A.6 and theorem A.7 are valid in this sense.

Furthermore, various window functions w (�̂) have been utilized in order to

control the tradeo� between spatial resolution and noise propagation directly

within the image reconstruction procedure. Some of the standard windows

are depicted in �gure A.1, which also provides their mathematical de�nitions.

The Radon inversion formulae presented above may be suÆcient for a short

introduction into the basic principles of image reconstruction from projec-

tions. The numerous methods that have been derived to invert the fan-beam

and the cone-beam transform are not presented here. Details on the approxi-

mate cone-beam reconstruction technique proposed by Feldkamp, Davis and

Kress [24], however, are provided in section 4.5.

2For this reason, the reconstruction of �nite images is only approximate, even if a

complete, continuous projection data set without any noise was available.
3In real computed tomography applications, this essential band-limitation comes quite

naturally from the �nite detector pixel size.
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A.4 Image restoration

This section sketches the theory of projections onto convex sets (POCS) that

is employed for image restoration from incomplete projection data and a

priori information. The general idea of POCS is as follows.

Every known property of the unknown object function f (r) 2 H restricts it

to lie in some set Ck � H. These constraint sets are assumed to be closed

and convex.

De�nition A.9. A subset C of H is said to be closed if it contains all limit

elements of sequences
�
f (t) (r)

	
existing for t = 0; 1; 2; : : :, f (t) (r) 2 C and

f (t) (r) 6= f (0) (r).

De�nition A.10. A subset C of H is said to be convex if, together with two

arbitrary elements f1 (r) and f2 (r), it contains also their linear combination

� f1 (r) + (1� �) f2 (r) for all 0 � � � 1.

Then for K known properties of the desired object function f (r), there are

K closed, convex sets Ck, and f (r) must lie in their intersection

C =

K\
k=1

Ck ; (A.20)

provided C is not empty, i.e., all constraints are consistent. The problem

is now to �nd an f (r) 2 C given the constraints Ck. For this purpose,

constraint operators Ck are de�ned that project4 a function f (r) onto the

nearest neighbour fk (r) in Ck,

fk (r) = Ck f (r) ; min
f 0(r)2C

k

kf (r)� f 0 (r)k = kf (r)� fk (r)k : (A.21)

The assumption of closed and convex sets Ck guarantees that there exist

unique nearest neighbours fk (r).

The desired function f (r) could be, in principle, restored in one step by ap-

plication of the constraint operator C corresponding to the intersection set C.

The operator C, however, is often diÆcult to derive from the Ck analytically.

An iterative restoration procedure is therefore employed in practice that is

based on the following important theorem.

4The application of such constraint operators is referred to as `projections' in the theory

of POCS. This term is not used in the following in order to avoid potential confusion with

the measured projections of an object to be restored.
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Theorem A.8. Let there be K closed and convex sets Ck � H. Let Ck be

the constraint operators that map an arbitrary element of H onto its nearest

neighbours (in the sense of the norm) within the Ck. Let furthermore be

C 0
k
= I + �k (Ck � I), where I is the identity operator and 0 < �k < 2. The

sequence
�
f (t) (r)

	
with f (0) (r) 2 H de�ned by

f (t+1) (r) = C 0
K
C 0
K�1 : : : C 01 f (t) (r) (A.22)

converges weakly (to be de�ned below) to an element f (r) that lies within

the intersection C of all sets Ck for t ! 1. The sequence of normed errors

kf (t) (r)� f (r)k is non-increasing with t.
The �k referred to as relaxation parameters can be adjusted within the above

limits in order to control the tradeo� between convergence speed and accu-

racy of the iterative procedure.

De�nition A.11. The sequence
�
f (t) (r)

	
is said to converge weakly to f (r)

if for every f 0 (r) 2 H

lim
t!1

hf (t) (r) ; f 0 (r)i = hf (r) ; f 0 (r)i : (A.23)

The sequence
�
f (t) (r)

	
is said to converge strongly to f (r) if

lim
t!1

kf (t) (r)� f (r)k = 0 : (A.24)

Theorem A.9. For every Hilbert space H, strong convergence of a sequence

implies weak convergence of this sequence. The converse is true if and only

if H is a �nite-dimensional linear vector space.

Practical constraints that have been utilized to force consistency of the object

function f (r) with the measured projection data and prior knowledge are

described in section 4.6. The proof that these constraints are closed and

convex was given previously [83, 139]. The reference image constraint (such

as de�ned in this thesis) is investigated in the following theorems because it

is not considered in the publications cited above.

Theorem A.10. The set C �f =
�
f (r) : jf (r)� �f (r)j � " (r) ; " (r) > 0

	
is

closed (in the sense of de�nition A.9).

Proof. Let
�
f (t) (r)

	
be a sequence of elements contained in the set C �f , and

let f (r) be the strong limit of this sequence,

L = lim
t!1

kf (t) (r)� f (r)k = lim
t!1

Z



�
f (t) (r)� f (r)

�2
dNr = 0 : (A.25)
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Assume there would exist a subset � � 
 in which f (r)� �f (r) < " (r) or

f (r)� �f (r) > " (r), i.e., it would be f (r) =2 C �f . In this case,

L = lim
t!1

Z

��

�
f (t) (r)� f (r)

�2
dNr + lim

t!1

Z
�

�
f (t) (r)� f (r)

�2
dNr ;

(A.26)

where the second term is larger than zero, which is obvious when writing

f (t) (r)� f (r) =
�
f (t) (r)� �f (r)

�
�
�
f (r)� �f (r)

�
: (A.27)

If the second term in equation (A.26) is larger than zero, then also L > 0,

which contradicts the de�nition of f (r) in equation (A.25). Therefore, a

function f (r) that is not contained in the set C �f cannot be a strong limit of

the sequence
�
f (t) (r)

	
. This completes the proof that C �f is closed.

Theorem A.11. The set C �f =
�
f (r) : jf (r)� �f (r)j � " (r) ; " (r) > 0

	
is

convex (in the sense of de�nition A.10).

Proof. Let f1 (r) and f2 (r) two arbitrary functions that are contained in the

set C �f . Furthermore, let � be an arbitrary scalar factor with 0 � � � 1 and

f (r) = � f1 (r) + (1� �) f2 (r) : (A.28)

Then the distance "0 (r) = jf (r) � �f (r)j of f (r) from the reference image
�f (r) is given by

"0 (r) = j� f1 (r) + (1� �) f2 (r)� �f (r)j (A.29)

= j� f1 (r)� � �f (r) + (1� �) f2 (r)� (1� �) �f (r)j : (A.30)

Using the triangle inequality results in

"0 (r) � � jf1 (r)� �f (r)j+ (1� �) jf2 (r)� �f (r)j : (A.31)

Since f1 (r) and f2 (r) are elements of C �f , their distance from the reference

image such as occurring in the above equation is equal or smaller than " (r).

This yields "0 (r) � " (r) and therefore f (r) 2 C �f .



Appendix B

Analytical phantoms

The assessment of the eÆcacy of reconstruction algorithms is often based

on mathematical phantoms. Computer simulations o�er the opportunity to

investigate various phenomena such as photon statistics and beam hardening

independently, which cannot be separated physically in real measurements.

There are basically two methods for simulating X-ray projections.

1. The phantom is represented as voxel model. The projections are then

calculated by ray tracing through the discrete volume. To avoid unde-

sired aliasing e�ects in the simulation, the phantom voxels should be

signi�cantly smaller than the detector pixels [30].

2. The phantom is represented as continuous function. The line integrals

through the phantom comprising an X-ray projection are then calcu-

lated analytically.

The �rst technique is very 
exible for handling arbitrary phantoms. In this

thesis, however, the second method was chosen to compute the projections

because it avoids discretization errors. The phantoms considered here are

composed by superposition of homogeneous ellipsoids. This approach, which

has been widely used, is suÆcient for most theoretical investigations.

Section B.1 describes the calculation of line integrals through ellipsoids. The

simulation of photon statistics and poly-energetic beams is explained in sec-

tion B.2. Compton scattering is not considered. This e�ect could be simu-

lated by a convolution of the projection data with a scatter kernel as proposed

in [41]. For more complex phantoms, however, the generation of phantom

projections by Monte Carlo would be preferable. Section B.3 provides the

parameters of the phantoms employed in this thesis.
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B.1 Calculation of line integrals

Due to the linearity of the cone-beam transform (see theorem A.3), line

integrals can be calculated for each ellipsoid separately.

Let r be an arbitrary vector in a coordinate system that is aligned with

respect to a particular ellipsoid, i.e., its origin is located at the centre and

its axes are in agreement with the half axes A, B, C of this ellipsoid. Fur-

thermore, let be E = (A�2; B�2; C�2) I, where I is the identity matrix.

Using these de�nitions, the ellipsoid with linear attenuation coeÆcient � is

represented by the object function

f (r) =

(
� if

�
r
T
E r

�2 � 1 ;

0 otherwise.
(B.1)

Let T be a 4 � 4 transformation matrix that maps the coordinates of r =

(x; y; z)
T
with respect to the ellipsoid system onto object coordinates as de-

�ned previously. T is composed of a translation and three rotations to ac-

count for the position and the orientation of the ellipsoid with respect to the

object coordinate system. For a particular view at angle �, the cone-beam

geometry is given by the projection matrix P � that maps object onto detec-

tor coordinates; see subsection 4.1.3 for further details. The mapping from

ellipsoid coordinates onto detector coordinates is then given by

� (u; v; 1)
T
= (P � T ) (x; y; z; 1)

T
: (B.2)

For a 
at-panel imager, the normalization of the detector coordinates can be

directly considered in the above formula as explained in appendix C.

The position rfoc of the focus and the unit vector r̂�;u;v pointing from the

focus to the point (u; v)
T
on the detector are obtained from (P � T ) according

to equation (4.13) and (4.26), respectively. Provided the focus and the point

(u; v)
T
are located outside of the ellipsoid, the desired line integral can be

calculated by

g (�; u; v) =

(
2�
p
q (�; u; v) if q (�; u; v) � 0 ;

0 otherwise,

where q (�; u; v) =

 
r̂
T
�;u;v

E rfoc;�

r̂
T
�;u;v

E r̂�;u;v

!2

+
r
T
foc;�E rfoc;� � 1

r̂
T
�;u;v

E r̂�;u;v

: (B.3)
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The analytically exact line integration provided here exhibits signi�cant devi-

ations from the approximation in [49], especially for those lines that intersect

an ellipsoid close to its edge. These deviations may even result in di�erent

assessments of cone-beam artefacts based on phantom data.

The integration of equation (B.3) over the �nite pixel size, however, is im-

practical to implement. The data acquisition process is therefore simulated

by averaging multiple line integrals within each detector pixel.

B.2 Simulation of photon statistics

The simulation of the quantum character of X-rays is based on the following

theorem, which is proved, for example, in [41].

Theorem B.1. Let N0 (E;�; u; v) denote the average number of photons at

energy E that are emitted by a stable X-ray source along a line from the

focus at view angle � to the point (u; v) on the detector in one unit of time.

Let t (E;�; u; v) be the transmittance of the material between the focus and

the detector position (u; v) at energy E. Let � (E) denote the eÆciency of

the detector at energy E. The number of photons at energy E which reach

the point (u; v) without having been absorbed or scattered and are counted

by the detector in one unit of time is a sample of a Poisson random variable

with parameter � (E) N0 (E;�; u; v) t (E;�; u; v).

The transmittance t (E;�; u; v) is obtained from the line integral g (E;�; u; v)

calculated previously for a particular energy E by

t (E;�; u; v) = exp
�
�g (E;�; u; v)

�
: (B.4)

The signal I (E;�; u; v) that is detected is then drawn from a Poisson distri-

bution with the above parameter using the implementation described in [92].

The e�ective source 
uence is estimated for a speci�c dose according to the

conversion factors provided in [97].

The method is capable of simulating poly-energetic X-ray beams. The cal-

culations described above are then carried out for di�erent, discrete energy

levels, considering the energy spectrum of the primary beam and the energy-

dependent eÆciency of the detector. Using such polychromatic phantom

data, the e�ect of beam hardening can be investigated.
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B.3 Phantom speci�cations

The two-dimensional phantom proposed by Shepp and Logan [49], which

models a transverse head section, is speci�ed in table B.1 and depicted in

�gure B.1. This quasi-standard phantom has been widely used in the liter-

ature for demonstrating the performance of image reconstruction and image

restoration algorithms on ideal, low-contrast data. In various publications,

however, the parameters vary slightly.

Number Centre coordinates Axis lengths Tilt Attenuation

x y A B � [deg] �=�water

1 0:0 0:0 0:69 0:92 0:0 2:00

2 0:0 �0:0184 0:6624 0:874 0:0 �0:98

3 0:22 0:0 0:31 0:11 �72:0 �0:02

4 �0:22 0:0 0:41 0:16 72:0 �0:02

5 0:0 0:35 0:21 0:25 0:0 0:01

6 0:0 �0:1 0:046 0:046 0:0 0:01

7 0:0 0:1 0:046 0:046 0:0 0:01

8 �0:08 �0:605 0:046 0:023 0:0 0:01

9 0:06 �0:605 0:023 0:046 0:0 0:01

10 0:0 �0:605 0:023 0:023 0:0 0:01

Table B.1: Parameters of the two-dimensional head phantom. Lengths are given

in arbitrary units. The attenuation coeÆcients resulting from a superposition of

all shapes are normalized to the attenuation coeÆcient of water.

Figure B.1: Two-dimensional phantom suggested by Shepp and Logan. The

attenuation range [0:95; 1:05] is linearly scaled to the grey levels available.
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Figure B.2 shows a `water disc' phantom, which is formally de�ned in ta-

ble B.2. This phantom comprises 7 circular inserts that represent typical

average attenuation coeÆcients of various tissue types. These value refer

(relative to water) to lung (0.25), fat (0.91), pancreas (1.04), heart (1.05),

liver (1.06), spongy bone (1.13) and compact bone (1.80). The disc phantom

can be used for quantitative simulations considering the photon statistics if

the normalized attenuation coeÆcients are multiplied with the attenuation

coeÆcient of water at a particular energy.

Corresponding Centre coordinates Axis lengths Tilt Attenuation

tissue type x [cm] y [cm] A [cm] B [cm] � [deg] �=�water

water 0:00 0:00 15:0 15:0 0:0 1:00

lung 0:00 �9:00 3:0 3:0 0:0 �0:75

fat 7:04 �5:61 3:0 3:0 0:0 �0:09

pancreas 8:77 2:00 3:0 3:0 0:0 0:04

heart 3:90 8:11 3:0 3:0 0:0 0:05

liver �3:90 8:11 3:0 3:0 0:0 0:06

spongy bone �8:77 2:00 3:0 3:0 0:0 0:13

compact bone �7:04 �5:61 3:0 3:0 0:0 0:80

Table B.2: Parameters of the two-dimensional water disc phantom. The atten-

uation coeÆcients normalized to the attenuation coeÆcient to water are (after

superposition of the shapes) typical average values for the tissue types listed in

the left column.

Figure B.2: Two-dimensional water disc phantoms. The seven circular inserts

represent lung (0.25), fat (0.91), pancreas (1.04), heart (1.05), liver (1.06), spongy

bone (1.13) and compact bone (1.80), clockwise from 12 o'clock. The values in

the brackets are the attenuation coeÆcients normalized to those of water. The

grey-scale range is [0:8; 1:2].





Appendix C

Implementation details

In chapter 4, the methods utilized in this thesis are described mathematically

based on continuous variables. This appendix provides some details on the

eÆcient practical implementation of the algorithms for discrete data. For a

convenient notation, all sampling indices are de�ned one-based. Zero-based

indexing, which might be preferable for a practical computer program, would

cause only minor and obvious changes to the algorithms and equations. The

following notation is utilized throughout this appendix.

Let f [i; j; k] be a three-dimensional array that stores I � J �K samples of

the image f (xi; yj; zk) to be reconstructed. The sampling steps �x, �y and

�z are assumed to be constant to enable eÆcient implementations.

Let g [l; m; n] be a three-dimensional array that stores L projections, each of

them comprising M �N samples g (�l; um; vn) or g (�l; �m; vn) for planar or

cylindrical detectors, respectively. g [l; m�] refers to the projections as one-

dimensional vectors concatenating all detector rows. The constant sampling

steps within each projection are denoted as ��, �u and �v. The view

angles �l are not required to be equally spaced. Although the view index

l is always written explicitly, the projections are processed independently

whenever possible to decrease the memory load.

Section C.1 explains the normalization of continuous coordinates to obtain

the corresponding array indices. The implementation of pre-weighting and

�ltering of the projections is demonstrated in section C.2. Various back-

projection algorithms are introduced section C.3 and discussed concerning

their computational eÆciency. Section C.4 mentions a few aspects regarding

the implementation of reprojection algorithms such as required for iterative

reconstruction techniques.
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C.1 Normalization of coordinates

Normalized detector coordinates that consider the discretization of the pro-

jections are denoted as �̂, û and v̂. They are treated as continuous variables,

but their integral part refers to the corresponding pixel indices,

m = bûc or m = b�̂c and n = bv̂c : (C.1)

For 
at detectors, the normalization of the detector coordinates u, v can be

considered within the projection matrix such that

� (û; v̂; 1)
T
= P̂ (x; y; z; 1)

T
; P̂ = E�1

P ; P = E P̂ ; (C.2)

where

E =

0
@�u 0 u0

0 �v v0
0 0 1

1
A ; E

�1 =

0
@�u�1 0 �u0�u�1

0 �v�1 �v0�v�1
0 0 1

1
A : (C.3)

The matrixE is de�nitely invertible, since the pixel pitch along both detector

axis is positive, i.e., �u > 0 and �v > 0. The o�sets for one-based indexing

of the detector matrix are

u0 = �1
2
(M + 1) �u and v0 = �1

2
(N + 1) �v : (C.4)

The normalization of the projection matrices enables eÆcient implementa-

tions of backprojection and reprojection algorithms to be discussed below.

The normalized matrices can be also used in the calculation of line inte-

grals through analytic phantoms described in section B.1 in quite a similar

manner.

The normalized projection matrix P̂ can be calculated directly by the geo-

metric calibration procedure described in section 4.4 if the positions of the

markers in the projections are measured in terms of normalized detector

coordinates.

For the decomposition algorithm explained in subsection 4.1.4, the original

projection matrix P has to be used. If P̂ is given, the normalization has to

be reversed before according to equation (C.2). The pixel pitch values �u,

�v as well as the o�sets u0, v0 are then assumed to be known with suÆcient

accuracy. They are, however, not independent of the geometric parameters

D, ufoc, vfoc to be considered in the decomposition.
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For cylindrical detectors, the coordinate v is handled as described above, but

the fan-angle � needs to be calculated separately according to equation (4.1).

The normalization is given by

�̂ =
� � �0

��
; (C.5)

where the o�set for one-based indexing is

�0 = �1
2
(M + 1 + a) �� ; a 2

�
�1

4
; 0; 1

4

	
: (C.6)

The introduction of a non-zero alignment a is one way to ful�l the Nyquist

condition for suÆcient sampling of the projection rays; see subsection 4.2.1

for further explanation.

In practice, the mapping from u into �̂ by successive application of equa-

tion (4.1) and (C.5) is often implemented by means of a single look-up table

in order to save computation time.

For the use within voxel-driven backprojection algorithms, such as introduced

in section C.3, the projection matrix is normalized using the equation

P̂ = E�1

�
1

p34
P

�
T ; (C.7)

where T is a 4 � 4 matrix that maps the voxel indices i, j, k onto the

corresponding object coordinates xi, yj, zk. The element-wise division of the

original projection matrix by p34 is necessary to obtain the backprojection

weights eÆciently as shown in equation (4.28).

For a reconstruction grid comprising I � J � K voxels at pitch values �x,

�y, �z that is aligned and centred with respect to the object coordinate

system, the mapping T is given by

T =

0
BBBB@
�x 0 0 �1

2
(I + 1)�x

0 �y 0 �1
2
(J + 1)�y

0 0 �z �1
2
(K + 1)�z

0 0 0 1

1
CCCCA : (C.8)

Any desired rotations and o�sets, however, can be considered in the de�nition

of the matrix T .
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C.2 Weighting and �ltering

The implementation of the projection data weighting operations is straightfor-

ward from a discretization of equation (4.42), (4.45), (4.48) and (4.49). The

weights, which vary only in one or two dimensions, can be pre-calculated and

stored in corresponding arrays if 
ex e�ects do not need to be considered.

The one-dimensional �ltering of the projections along their rows in equa-

tion (4.43) and equation (4.46) can be implemented as discrete convolution,

g2 [l; m; n] =

MX
m0=�M

g1 [l; m
0; n] h [m�m0] ; (C.9)

where h [m] stores the coeÆcients of the discretized �lter kernel h (m�u) or

h (m��), respectively. The convolution sum has, of course, to be truncated

to account for the �nite length of the arrays. This is omitted for the sake of

simplicity in the above formula.

Using the convolution theorem, the �ltering step for each detector row can

also be implemented in frequency space. In this case, the one-dimensional

fast Fourier transform (FFT) of the projection data is �rst calculated. The

actual �ltering is then a multiplication with the (analytically pre-calculated)

discretized spectrum of the �lter kernel. The �ltered row is �nally obtained

by an inverse FFT. This approach, however, requires excessive zero-padding

of the input data in order to avoid cyclic convolution.

C.3 Backprojection

Algorithm C.1 describes the implementation of the cone-beam backprojec-

tion. The algorithm works voxel-driven, i.e., for each voxel within the �eld of

view, the contributions from each projection considering the distance weight

are calculated successively. The projections are processed independently

while all contributions are summed into the image array f [i; j; k]. This al-

gorithm is based on the method by Wiesent et al. [133, 134], but it handles

the distance weight in a computationally more eÆcient way.

The innermost loop of algorithmC.1 comprises four additions, seven multipli-

cations and one division except the calculation of ~g, which is discussed below.

The division 1=z1 can be realized by a look-up table if �xed-point arithmetic

is used. The access of the image array can be considered one-dimensional,

since only the index i changes within the innermost loop.
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The number of multiplications can be reduced to four as shown in algo-

rithm C.2, provided the successive incrementation of the x, y, z values is

suÆciently accurate. Further optimizations such as, for example, the re-

moval of the division from the innermost loop, are possible for ideal cone-

beam geometries. Such optimizations, however, are not generally applicable

when geometric 
ex e�ects need to be accounted for. They are therefore not

explained here.

Two-dimensional fan-beam backprojection is a special case of algorithm C.1

or C.2, in which P̂ is only a 2 � 3 matrix. The number of operations is

then reduced correspondingly. For parallel-beam backprojection, z1 is always

unity, i.e., the division and four multiplications can be removed.

In algorithms C.1 and C.2, the valid range of voxels [imin; imax] within a image

row j; k is calculated separately for each projection. Alternatively, look-up

tables imin [j; k] and imax [j; k] could be pre-calculated in order to process only

those voxels that are within the �eld of view in all projections.

Algorithm C.3 shows the estimation of the contribution from each projection

by bilinear interpolation such as usually employed in voxel-driven backprojec-

tion techniques. For cylindrical detectors, this algorithm has to be extended

by an additional access of a pre-calculated look-up table in order to obtain

the index m as discussed above.

Nearest-neighbour interpolation such as shown in algorithm C.4 is normally

not suÆcient if high-quality images are desired. However, the projections

can be pre-interpolated onto a �ner grid prior to backprojection in order to

apply then a nearest-neighbour interpolation. A computationally eÆcient

implementation of this stretching method was presented by Peters [90]. The

normalization of the projection matrix in equation C.7 has to be replaced by

P̂ =

0
@1 0 0

0 M �M
0 0 1

1
A E

�1

�
1

p34
P

�
T (C.10)

in order to be utilized with algorithm C.4. The leftmost, additional normal-

ization matrix accounts for the one-dimensional access of the projections by

the index m�. This eÆcient form of projection data access cannot be applied

to bilinear interpolation, since in this case the normalized detector coordi-

nates are needed (rather than an array index) to calculate the interpolation

weights. From this point of view, the stretching method seems to be quite

attractive. A detailed comparison of the performance of both methods in

terms of computation time and image quality, however, is beyond the scope

of this thesis.
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Algorithm C.1. Voxel-driven backprojection template employing a multi-

plicative processing scheme of the projection matrices.

8 i; j; k : f [i; j; k] := 0

for l := 1; : : : ; L do

calculate P̂ by equation (C.7)

for k := 1; : : : ; K do

x000 := p̂13 k + p̂14
y000 := p̂23 k + p̂24
z000 := p̂33 k + p̂34

for j := 1; : : : ; J do

x00 := p̂12 j + x000

y00 := p̂22 j + y000

z00 := p̂32 j + z000

calculate imin and imax
y

for i := imin; : : : ; imax do

x0 := p̂11 i + x00

y0 := p̂21 i+ y00

z0 := p̂31 i+ z00

��1 := 1=z1

û := x0 ��1

v̂ := y0 ��1

calculate ~g by algorithm C.3 or C.4

f [i; j; k] := f [i; j; k] + ~g (��1)
2

end for i

end for j

end for k

end for l

yThe interval [imin; imax] comprises the indices of all image samples that are

projected onto the valid detector range [umin; umax]�[vmin; vmax]. This interval

(of maximum width) is determined from P̂ such that 8 i; imin � i � imax

1 � i � I ;

p̂31 i+ z00 > 0 ;

ûmin � (p̂11 i+ x00)= (p̂31 i + z00) � ûmax ;

v̂min � (p̂21 i+ y00)= (p̂31 i + z00) � v̂max :
(C.11)

The ranges [ûmin; ûmax] and [v̂min; v̂max] are calculated according to the nor-

malization of the original projection matrix P . This transform is straight-

forward and therefore not documented here.
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AlgorithmC.2. Voxel-driven backprojection template employing an additive

processing scheme of the projection matrices.

8 i; j; k : f [i; j; k] := 0

for l = 1; : : : ; L do

calculate P̂ by equation (C.7)

x000 := p̂13 + p̂14
y000 := p̂23 + p̂24
z000 := p̂33 + p̂34

for k := 1; : : : ; K do

x00 := p̂12 + x000

y00 := p̂22 + y000

z00 := p̂32 + z000

for j := 1; : : : ; J do

calculate imin and imax
y

x0 := p̂11 imin + x00

y0 := p̂21 imin + y00

z0 := p̂31 imin + z00

for i := imin; : : : ; imax do

��1 := 1=z1

û := x0 ��1

v̂ := y0 ��1

calculate ~g by algorithm C.3 or C.4

f [i; j; k] := f [i; j; k] + ~g (��1)
2

x0 := x0 + p̂11
y0 := y0 + p̂21
z0 := z0 + p̂31

end for i

x00 := x00 + p̂12
y00 := y00 + p̂22
z00 := z00 + p̂32

end for j

x000 := x000 + p̂13
y000 := y000 + p̂23
z000 := z000 + p̂33

end for k

end for l
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Algorithm C.3. Bilinear interpolation of the discrete projection data uti-

lized in the backprojection templates of algorithm C.1 and algorithm C.2

m := bûc
n := bv̂c
~u := û�m

~v := v̂ � n

g11 := g [l; m; n]

g12 := g [l; m + 1; n]

g21 := g [l; m; n + 1]

g22 := g [l; m + 1; n+ 1]

g1 := g11 + ~u (g12 � g11)

g2 := g21 + ~u (g22 � g21)

~g := g1 + ~v (g2 � g1)

Algorithm C.4. Nearest-neighbour interpolation of the discrete projection

data employed in the backprojection templates of algorithm C.1 and algo-

rithm C.2

m� := bûc+ bv̂c
~g := g [l; m�]

C.4 Reprojection

The standard ray-tracing method proposed by Siddon [110] is utilized to

implement the reprojection step in iterative image reconstruction or restora-

tion algorithms. Combining a voxel-driven backprojection with a ray-driven

reprojection is an eÆcient technique that avoids cumulative discretization

errors in iterative procedures [142].
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