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Chapter I

Introduction

Operations is the part of an organization that is responsible for creating and/or delivering

the organization’s products and services (Slack and Lewis 2015, p. 2). To accomplish

this task, operations has to oversee and improve a large variety of different processes that

span the entire value chain; including the design, procurement, production, delivery, and

recovery of the products and services sold. It is beyond dispute that managing all these

processes is a complex and challenging endeavor, and that any form of mismanagement

may result in adverse outcomes that have a detrimental impact on the organization’s

profits. Yet, even though the coordination of all the different functions that operations

is concerned with is by itself already an intricate mission, there is one feature of many

real-life scenarios that substantially complicates operations management: the presence

of uncertainties.

When uncertainty—be it on the supply, demand, or product side—enters the equa-

tion, then organizations cannot simply plan for how to proceed with their operations in

the future, but instead they have to foresee all the different possible futures and create

contingency plans for each of them (Van Mieghem and Allon 2015, p. 115). Clearly, this

is an utmost daring—if not impossible—task and therefore, operations management has

traditionally been concerned with simplifying this task by eliminating the root causes

of the issue; that is, operations management also focusses on reducing uncertainties.

This view that operations should reduce, or at least control, the organization’s sup-

ply, demand and product uncertainties is well established, and accordingly, managers

in practice routinely deal with operational risk management (Van Mieghem and Allon

2015, p. 369).

However, combatting uncertainties is not always an organization’s most prudent

strategy; in particular when the organization deals with innovative products. As the

famous US physicist Brain Randolph Greene once noted: “Exploring the unknown re-

quires tolerating uncertainty” (Greene 2006). In other words, uncertainty and risk are

the mainsprings of innovation, and when engaging with innovative products, operations
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I. Introduction

management—although going against its very nature—has to embrace uncertainty. Even

more so since access to innovation is a key source of competitive advantage in many in-

dustries. As a result, operations has to find entirely different ways to manage innovative

products as compared to standard products, where risk reduction is a primary concern.

And uncovering these paths is at the heart of this thesis. More specifically, the following

chapters investigate how operations should manage the procurement (Chapters II and

III) and design (Chapter IV) of innovative products.

Chapters II and III are concerned with the design and management of so-called in-

novation or procurement contests, which have established themselves as a predominant

purchasing mechanism for innovative products in practice (Cabral et al. 2006). The key

benefit of using procurement contests as compared to bilateral contracting for research

and development (R&D) is that a contest is an informationally very parsimonious mech-

anism that also spurs substantial innovation efforts in a firm’s supplier base and allows

for an ex post selection of the best innovation (Terwiesch and Xu 2008). Yet, to reap

all these benefits contest holders need to correctly setup their contests and also manage

the contest wisely as it unfolds.

How to manage an ongoing innovation contest is the key focus of Chapter II. In

particular, Chapter II analyzes how feedback—the most practical form of in-contest

interventions—from the contest holder to the contest participants can help in improving

contest outcomes, and it also establishes optimal information structures for a contest

holder’s feedback policy. Specifically, the analysis identifies when, and when not, to give

feedback as well as which type of feedback to give: public (which all participants can

observe) or private (which only the focal participant can observe). The results uncover

a nontrivial relationship between contest characteristics and optimal feedback choices.

Additionally, Chapter II also examines whether the contest holder should mandate in-

terim feedback or instead allow participants to seek feedback at their own discretion,

and discusses how changing the granularity of feedback information affects its value

to participants.

In contrast to Chapter II, Chapter III concentrates on a contest holder’s design

choices before the start of the contest. For rather simple innovations the question of

successful contest design has received considerable attention in the academic literature

(see, e.g., Taylor 1995, Moldovanu and Sela 2001, Terwiesch and Xu 2008), and as a

result, scholars have gathered a sound understanding of how to conceptualize such con-

tests. Unfortunately, many of these findings do not immediately transfer to contests

2



I. Introduction

that aim to source technologically complex products that consist of multiple interacting

components. For such complex innovations, a central question for the buying firm is

whether to procure the full product from a single supplier, or whether to buy the indi-

vidual components from different suppliers. The analysis presented in Chapter III shows

that the answer to this question depends on the magnitude of innovation that is required

to develop the different components as well as the characteristics of the supplier base.

Based on these findings, Chapter III provides managerial advice regarding the optimal

contest format, and it also highlights which suppliers should be invited to participate in

such procurement contests, and which not.

Chapter IV departs from the preceding chapters by considering how a firm should

manage its internal new product development efforts, instead of procuring innovations

only from external parties. In doing so, the analysis presented in this chapter examines

how a firm should operationalize its design testing efforts. It is well known that design

testing is an integral part of nearly all new product development initiatives because

it enables firms to identify the best designs for their new products. Test results are

usually collected by (teams of) experts, who must be incentivized not only to exert

effort in testing the designs but also to report their findings truthfully. Motivated by

this widespread challenge, Chapter IV addresses the following questions: How should a

firm set up its design-testing process so that (i) the experts are adequately incentivized

and, more importantly, (ii) the best design alternative is the one most likely to be

selected? The presented analysis identifies the firm’s optimal testing strategy and the

optimal incentive structures; it also reveals how, exactly, delegation distorts a firm’s

testing process.

Taken together the findings presented in this thesis should be viewed as being two

sides of the same coin. To retain their competitive edge and to improve their market po-

sition, firms have to constantly tap into new and innovative products. Such innovations

can come either from outside parties—in which case procurement contests are an effec-

tive way of gaining access to these innovations—or they may be developed internally.

Both ways of sourcing innovation are frequently used in reality, but unfortunately, both

of them also introduce very challenging problems to a firm’s operations management. It

is the goal of this thesis to provide managerial solutions for some of the most pressing

issues that managers face when trying to gain access to innovation—be it from external

sources or from an internal R&D department.

3
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Chapter II

Feedback in Innovation Contests

with Jürgen Mihm1

2.1 Introduction

Firms have increasingly found it necessary to source their innovation from beyond their

own boundaries (Chesbrough 2003). They often do not have, in house, the expertise

needed to solve all the challenges that arise as a result of their ever more complex research

and development (R&D) activities. Yet success often eludes innovation initiatives that

involve outside parties; much depends on the suitability of the firm’s sourcing mechanism.

One mechanism that has garnered widespread interest is the innovation contest. In

organizing such a contest, the firm specifies its goals at the outset (and often the metric

by which it measures goal achievement) and promises an award to the solver who best

fulfills those goals; at the end of the contest, the award is granted to the solver(s) with the

best solution(s). The contest mechanism offers two key benefits: (i) it offers considerable

flexibility in that the firm can choose a different set of participants for each contest; and

(ii) it equips the firm with powerful incentives, since contestants compete fiercely to win

the contest holder’s approval and thus the award.

In light of these potential benefits, contests have been widely studied in the context

of innovation and also in many other settings (Lazear and Rosen 1981, Moldovanu and

Sela 2001, Siegel 2009, Ales et al. 2016). One consequence of this research interest is

that a theory of contests has emerged. This theory focuses on how a contest holder can

use different aspects of contest design to optimize the intensity of competition among

contestants, thereby maximizing the effort exerted by contestants and, by extension,

1The research presented in this chapter is based on the paper “Sourcing Innovation: On Feedback in
Contests”, coauthored with Jürgen Mihm, which has been accepted for publication in Management
Science.
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II. Feedback in Innovation Contests

the contest’s effectiveness at providing incentives. The theory of contests has offered

solutions for such diverse problems as optimal award structures (Ales et al. 2017), the

optimal number of participants (Taylor 1995, Terwiesch and Xu 2008), and the optimal

way of nesting contests within contests (Moldovanu and Sela 2006).

However, current theory has some gaps with respect to certain critical aspects. We

highlight these gaps by considering Kaggle, an Internet platform that provides firms

with the infrastructure for hosting contests on data-driven problems. When setting up

such a contest, the firm must define its rules of engagement: the relevant metric (usually,

out-of-sample accuracy of the predictions) and the reward(s) offered. After the contest

announcement, data scientists compete against each other in developing—at their own

expense of time and money—algorithms that perform the required task. The group of

scientists that ultimately provides the best-performing algorithm wins the prize. So in

those respects, Kaggle’s approach follows the general template of a contest. In one

respect, however, it adds a fundamentally new feature: During the competition, data

scientists enter preliminary versions of their code and receive feedback on how well it

performs (usually in terms of how accurate its predictions are). Furthermore, Kaggle

not only provides this performance feedback to the team itself but also maintains a

public “leader board” so that each team (or individual participant) can observe its own

performance relative to all competing submissions.

Thus Kaggle can be viewed as exemplifying a central question, faced by many

contest organizers in practice, that has received but cursory attention in the academic

literature: the question of optimal feedback (for notable exceptions, see Aoyagi 2010,

Ederer 2010, Marinovic 2015). Performance feedback is a means by which the firm can

systematically affect the amount of information held by each contestant—in particular,

information about own and rivals’ competitiveness—and thereby influence contestant

behavior during the rest of the contest. Put differently, the firm can augment or diminish

incentives by redistributing information and in this way can manipulate the contest’s

competitiveness. The question that then arises is: How, exactly, should a contest holder

influence the information structure during a contest so that contestants are optimally

incentivized?

Any comprehensive investigation of this issue must provide answers to the following

three questions, which together constitute a feedback policy’s information structure.

(i) Which solvers should receive the feedback information? (ii) Who should decide

6



II. Feedback in Innovation Contests

which solvers receive feedback? (iii) What should be the information content of the

performance feedback?

The importance of the first question rests on the fact that a contest holder can

freely choose the recipients of feedback. More specifically, the firm may retain all infor-

mation about the contest’s competitiveness (no feedback), it may inform solvers about

their respective individual performance but not about the performance of others (pri-

vate feedback), or it may provide information about the performance of all contestants

(public feedback). These information structures naturally induce different levels of com-

petition and hence provide contestants with different incentives. However, it is not clear

which policy is most appropriate for which situation. Real-world contest holders have

experimented extensively with different forms. The default mode for Kaggle is to al-

low all contestants to observe each contestant’s performance feedback. In contrast, the

European Union (EU)—which regulates all major infrastructure, architectural design,

and civil engineering contests organized within its jurisdiction—introduced in 2004 the

“competitive dialogue procedure” (EU 2004) for the specific purpose of establishing a

private feedback channel between contest holder and contestants. In 2010, 9% of the

EU’s entire public procurement budget was spent via this contest mechanism. The use

of private feedback has proven so effective that, in 2016, the World Bank introduced a

similar mechanism in its procurement regulations (World Bank 2016).2

With regard to the second question, it can be either the firm or a contestant who

initiates feedback and hence a redistribution of information. In particular, the contest

holder might mandate feedback or might simply provide a feedback option. In the latter

case, contestants may strategically withhold their performance information to influence

the contest’s information structure. Should the contest holder allow for such strategic

behavior? Again, companies have devised different approaches. Kaggle, for instance,

often (though not always) makes feedback voluntary, whereas performance feedback is

mandatory in any contest subject to the EU’s competitive dialogue procedure.

The third question focuses on the accuracy of performance feedback. Clearly, any

information about contestants’ relative competitiveness will affect their incentives and

thus their behavior. But should the firm divulge all of its available information or only

some of it? Kaggle issues exact rankings of contestants’ performance (i.e., their re-

2Of course, for public institutions such as the EU or the World Bank, the choice of feedback policy will
likely depend also on transparency and compliance rules and thus involve more than pure efficiency
considerations.
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II. Feedback in Innovation Contests

spective prediction accuracy). Yet the annual European Social Innovation Competition,

which solicits ideas for building an inclusive economy, tends to provide less fine-grained

(and thus merely “indicative”) feedback.

In practice, the informational impact of different feedback policies is key to design-

ing a successful contest; hence it is imperative for the contest-staging firm to answer

each of those three questions. Yet the existing academic literature leaves them largely

unanswered by implicitly restricting attention to the role of feedback that is public,

mandatory, and fully informative (Aoyagi 2010, Ederer 2010) or at best to a specific

form of public, mandatory, and noisy feedback (Marinovic 2015). Thus that literature

covers too few of feedback’s dimensions and options within dimensions to have much

relevance for most practical settings. Furthermore, it concentrates exclusively on firms

interested in promoting the average performance of their solvers. In innovation settings,

however, firms are more likely to be interested in the best performance. We contribute to

the literature on contests by offering a more complete and practically relevant descrip-

tion of how feedback can be used in contests—whether to improve average performance

or to obtain the best performance. In so doing, we consolidate the most relevant feed-

back policies observed in practice within a broad framework and thereby deepen our

theoretical understanding of when and how to use them.

The answers we find to our three guiding questions are as follows. First, and

most importantly, contest organizers (and researchers) cannot neglect private feedback.

Whereas public feedback always dominates in average-performance settings, a contin-

gency arises for contests that seek to elicit the best performance: private (resp. public)

feedback is optimal for contests with high (resp. low) uncertainty. This finding is in

stark contrast to the existing literature’s view, based on comparing only the cases of

public and no feedback, that the feedback’s role is the same for routine projects as for

highly innovative projects. Second, public feedback may be underused when it is volun-

tary. Contestants always seek performance feedback under a private-feedback policy but

never do so under a public-feedback policy, and inducing contestants via monetary incen-

tives to ask for public feedback yields suboptimal results. Third, concerning the effect of

information granularity on the value of feedback, we find no evidence that strategically

hiding information—either by reducing the information content of feedback (e.g., provid-

ing rank-only feedback rather than detailed performance feedback) or by promulgating

noise—can be used to improve contest outcomes.

8
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2.2 Related Literature

The question of how best to motivate innovation and creativity is a central topic of

academic inquiry (see, e.g., Erat and Krishnan 2012, Ederer and Manso 2013, Bockstedt

et al. 2015, Erat and Gneezy 2016). Contests as a mechanism for eliciting innovation

opportunities have become a focal point of attention, figuring prominently in both the

economics and the operations management literatures. In the classification of Taylor

(1995), this broad literature examines two different types of contests: (i) innovation

races, in which contestants try to achieve a pre-defined and verifiable performance target

(see e.g., Bimpikis et al. 2016, Halac et al. 2016); and (ii) innovation contests for solving

open-ended problems, in which the firm cannot specify performance targets ex ante and

rather tries to induce the best solution.

Our work falls into the second category because the assumption of a pre-defined

performance target would be antithetical to our main goal: exploring how feedback can

incentivize contestants to achieve optimal output on a given schedule. The literature on

contests (in the narrow sense) was initiated by seminal research of Lazear and Rosen

(1981), Green and Stokey (1983), and Nalebuff and Stiglitz (1983). Over the last decades,

these contests have become an accepted paradigm in the study of settings that include

lobbying, litigation, military conflict, sports, education, and of course R&D management

(for an overview of applications, see Konrad 2009). The extant literature has addressed

many contest design issues. Prominent among these is whether or not the contest should

be open for everybody to enter; a larger number of entrants yields a larger number

of trials (Terwiesch and Xu 2008), but restricting access increases the effort exerted

by individual solvers (Taylor 1995, Fullerton and McAfee 1999, Moldovanu and Sela

2001).3 Bid caps have been studied as a means of limiting access to a contest (Gavious

et al. 2002), and so have more advanced mechanisms such as holding an auction for

the right to participate (Fullerton and McAfee 1999). Another prominent issue is the

optimal award structure (Che and Gale 2003, Siegel 2009, 2010), which depends on

such contingencies as the solvers’ respective cost functions (Moldovanu and Sela 2001),

performance uncertainty (Ales et al. 2017), and whether the firm seeks the best solution

or only to improve the average solution (Moldovanu and Sela 2006). Another major

issue is the contest’s temporal structure. Should the contest designer hold a single,

3This generalization is countered by Ales et al. (2016) and Körpeoğlu and Cho (2017), who give
examples of contests for which individual solution efforts are increasing in the number of competitors.
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II. Feedback in Innovation Contests

overarching contest or rather a series of smaller, “cascading” contests?—see Moldovanu

and Sela (2006) for a discussion. Finally, the literature has also analyzed more dynamic

contest formats such as elimination and round-robin contests (Yücesan 2013) as well as

repeated contests between the same contestants (Konrad and Kovenock 2009).

All of these models presume that the contest holder is relatively passive during the

course of the contest. However, recently, scholarly attention has been shifting toward the

actions that a contest holder could take as the contest unfolds (see, e.g., Gürtler et al.

2013). The most prominent of these actions is providing (or not) interim performance

feedback.

The literature on feedback in contests is sparse.4 Although generally acknowledged

to be the first in this area, the paper by Yildirim (2005) does not address feedback per se

and focuses instead on information disclosure as a strategic choice made by solvers. Ger-

shkov and Perry (2009) are likewise not primarily concerned with feedback as we under-

stand it here; rather, these authors focus on optimally aggregating scores by combining

intermediate and final reviews when the review process itself is noisy. However, there are

four papers that do address feedback during contests in a more narrow sense. Goltsman

and Mukherjee (2011) explore a setting in which solvers compete for a single prize by

fulfilling two tasks at which each solver can either fail or succeed. Closer to our work,

Aoyagi (2010), Ederer (2010), and Marinovic (2015) examine settings in which a firm

provides feedback to solvers who have to make continuous effort choices.

It is noteworthy that past work on feedback in contests has yielded only prelimi-

nary answers to some aspects of the three foundational questions that shape any feedback

policy’s information structure. First, all extant research restricts its attention to public

feedback and neglects the class of private feedback (which is ubiquitous in practice);

hence broader comparisons of different feedback policies have not been made. We solve

the challenging case of private feedback and find nontrivial contingencies accounting

for when private, public, or no feedback is preferable. Our results confirm the im-

portance of private feedback for highly innovative settings and hence challenge extant

research. As an aside, our analysis of private feedback contributes to the mathemati-

cal theory of contests by devising—to the best of our knowledge—the first closed-form

solution of a stochastic contest with asymmetric private information. Second, previous

research has considered only mandatory feedback. In other words, it implicitly assumes

4In the following we concentrate on theoretical work, but it is worth mentioning also the stream of
empirical studies (see e.g., Gross 2017, Wooten and Ulrich 2017).
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that solvers must provide the contest holder with intermediate solutions on which they

receive feedback—an assumption often violated in practice. We examine all types of

feedback with respect to mandatory versus voluntary feedback and establish the circum-

stances under which a firm should (or should not) make feedback mandatory. We also

investigate the role that intermediate prizes designed to induce voluntary feedback play

in this regard. Third, the existing literature simply presumes that the contest holder

divulges all available information to contestants; the only exception is Marinovic (2015),

who considers a specific form of noisy feedback. Yet feedback may in fact convey less

fine-grained information, so we explore the effects of reducing the amount of feedback

information conveyed. Finally, the contest literature on feedback has attended solely to

the average performance of solvers. We answer each of the three central questions not

only for a contest holder aiming to improve average performance but also for one looking

for the best possible performance—a goal more typical of innovation settings. We show

that the optimality of feedback policies hinges on this distinction.

2.3 Model Setup

Let us describe in more detail the characteristics of a typical innovation contest in terms

of both the firm and the solvers so as to establish our base model (voluntary feedback

and reduced information feedback are treated in Sections 2.6 and 2.7, respectively). The

firm understands its own preference structure well enough that, when presented with

a solution, the firm can express how much it values that solution. However, the firm

cannot know the effort level expended by a solver in achieving a given performance

because the link between performance and effort has a stochastic component. In con-

trast, each solver knows how much effort he expends and also realizes that expected

performance increases with effort. Yet solvers still experience uncertainty about how,

exactly, effort links to performance. In addition, solvers are uncertain about the firm’s

preference structure and so, even after devising a solution, they cannot truly evaluate

their performance. This latter uncertainty reflects that, for any true innovation, the firm

cannot fully specify ex ante what criteria it values or how they should be weighted.

These modeling requirements are typical for any innovation and R&D setting, and they

place the foundation of our model squarely in the contest literature with stochastic ef-
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II. Feedback in Innovation Contests

Figure 2.1.: Structure of the Innovation Contest with Feedback.

  

fort consequences which postulates a stochastic link between solvers’ actions and contest

outcomes (Taylor 1995, Fullerton and McAfee 1999, Ales et al. 2016).

Finally, as a means of dynamically influencing the solvers’ effort provision in the

course of a contest, the firm may (partially) resolve the solvers’ uncertainty about their

performance by transmitting interim performance feedback. We classify such feedback

as public, private, or no feedback. The firm employs whichever feedback policy opti-

mizes the contest’s intended outcome—the highest average performance or best possible

performance.

Formal Description of the Base Model.

In order to create a parsimonious model that nonetheless captures the essence of the

scenario just outlined, we consider a firm that hosts a dynamic innovation contest over

two rounds, t ∈ {1, 2}, with two risk-neutral solvers, i and j.5 The primitives of the

contest are common knowledge; its structure is depicted in Figure 2.1.

The process begins when the firm publicly announces the contest, the fixed award A

for which the two solvers compete, and its feedback policy. In order to concentrate on the

role of feedback (and to minimize technical complexity), we treat A > 0 as a parameter.

Our decision variable for the firm at this stage is whether and, if so, how to give feedback.

The firm may choose to give no feedback at all, to offer public feedback (i.e., both solvers

5For notational simplicity, we explicitly define only the parameters for solver i; an identical set applies
to solver j.
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receive the same information about their own and their competitor’s performance), or

to provide private feedback (i.e., solver i receives feedback on his own performance but

not on the performance of solver j, and vice versa).

Next, solver i expends effort ei1 ≥ 06 at private cost ce2
i1, where c > 0. He finds an

initial solution of value vi1 = keei1 + ζi1; here ke > 0 is the sensitivity of effort and ζi1

is a random shock that follows a uniform distribution, ζi1 ∼ Uniform(−a/2, a/2) with

a > 0.

After the first round, each solver hands in his solution and the firm perfectly ob-

serves vi1. However, solver i’s effort is unobservable to the firm (and also to solver j);

hence the firm cannot determine whether a high solution value stems from high effort,

a large random shock, or both. In contrast, solver i knows how much effort he has in-

vested; but since he cannot observe the realization of ζi1, he is uncertain about the true

performance of his solution. To address that uncertainty, the firm provides interim per-

formance feedback in accordance with its own policies. As is customary in the fledgling

research field of feedback in contests, we assume that feedback is pre-committed, truthful

and accurate (Aoyagi 2010, Ederer 2010)—although the “accurate feedback” assumption

is relaxed in Section 2.7. It is clear that, in the absence of pre-committed truthfulness

(i.e., if feedback does not convey a somewhat informative signal in a Bayesian sense),

feedback is utterly meaningless. It is easy to prove that the firm would have a strong

incentive to provide only feedback that maximizes future efforts irrespective of actual

performance; naturally, each solver would anticipate this manipulation and discard the

received information as uninformative.

Upon observing the firm’s feedback, solver i updates his belief about the realization

of first-round performances v1 = (vi1, vj1) in accordance with Bayesian rationality. Then,

solver i expends additional solution effort ei2 ≥ 0 and submits his final solution vi2 =

vi1 + keei2 + ζi2, where ζi2 is again a random shock that follows the same distributional

assumptions as in the first round. Random shocks are independent and identically

distributed across solvers and rounds. For notational simplicity we define ∆ζt = ζit− ζjt
as the difference between the random shocks in round t with associated probability

density function g∆ζt .

6An effort of 0 should be interpreted as the normalized minimal effort necessary to participate in the
contest.
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Finally, after receiving the final solutions, the firm announces the contest winner by

choosing the highest-value solution. Thus solver i wins if vi2 > vj2 (ties can be broken

by invoking any rule).

Model Implications.

A firm will naturally seek to employ the feedback policy that maximizes its expected

profits. The relevant profit function is Πbest = E[max{vi2, vj2}]−A if the firm is interested

in the performance of the best solution only, or Πavg = E[vi2 + vj2]/2 − A if the firm

wishes to maximize the average performance of both solvers.

Whereas the firm—whatever its profit function—is interested in the solvers’ absolute

performance, each solver’s sole interest is in winning the contest. The utility that solver i

receives from winning is A −
∑

t ce
2
it; losing the contest yields a utility of −

∑
t ce

2
it.

Hence solver i’s expected utility of participating in the contest is ui = A · P(vi2 >

vj2) −
∑

t ce
2
it (we assume his outside option to be 0), and the effort he invests in the

contest is determined by maximizing his expected utility.7

We are concerned with Perfect Bayesian Equilibria (PBE) of the contest. To avoid

unnecessary technical complications during the analysis, we assume that κ ≡ (a2c)/

(Ak2
e) > 1. For technical reasons, similar assumptions on the contest’s inherent perfor-

mance uncertainty are made in practically the entire literature on contests (see, e.g.,

Nalebuff and Stiglitz 1983, Aoyagi 2010, Ederer 2010). Clearly, κ increases in the vari-

ance of the random noise and the costs of effort, and it decreases in the size of the award

and the effort sensitivity. Thus, with a higher κ, improvement effort is more expensive

and the solution performance becomes more stochastic.

2.4 Solvers’ Solution Efforts

In this section we analyze, for our base model, the solvers’ solution efforts under each

feedback policy. We can do so without specifying the firm’s objectives because—given a

particular feedback policy—the solvers’ strategies are independent of whether the firm’s

7Note that an outside option of zero ensures that a solver always participates in the contest because
zero effort already guarantees him a nonnegative expected utility and in equilibrium his utility
cannot be worse.
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aim is to improve average performance or rather to attain the best performance. Each

solver simply tries to win the contest.

We start by re-establishing familiar results in the context of our model, characteriz-

ing solvers’ equilibrium efforts in the absence of feedback as a benchmark (Section 2.4.1);

next we describe how providing public feedback affects the solution efforts of solvers (Sec-

tion 2.4.2). In this section’s main contribution, we then determine equilibrium levels of

solution effort under a private-feedback policy (Section 2.4.3). Throughout the text,

initial managerial implications are discussed in passing; however, our systematic com-

parison of feedback policies is deferred until Section 2.5. All mathematical derivations

are presented in Appendix A.

2.4.1. No Feedback

In the benchmark case of no feedback, the firm does not provide any interim performance

information to the solvers. As a result, each solver’s two-stage effort choice problem

reduces to a simultaneous, single-stage utility maximization problem.

Proposition 2.1. The unique PBE under a no-feedback policy is symmetric, with

eno
1 = eno

2 =
Ake
3ac

. (2.1)

Proposition 2.1 parallels previous results of Taylor (1995), Fullerton and McAfee

(1999), and Ales et al. (2016). Since neither solver receives any interim performance

information and since the costs of effort are convex, it follows that solution efforts are

identical across rounds. Moreover, because solvers are symmetric at the start of the

contest, they always choose the same effort in equilibrium; hence they do not try to

leapfrog each other. So under a no-feedback policy, it is the contest’s inherent perfor-

mance uncertainty that ultimately determines the contest winner.

It is instructive at this juncture to examine how our key contextual parameters

affect a solver’s solution efforts. As one would expect, those efforts are increasing in the

size of the award (A) and in the effort sensitivity (ke) but are decreasing in the costs

of effort (c) and in the uncertainty involved (a). Thus, a solver exerts relatively more

effort if effort becomes relatively more rewarding (i.e., if A/c increases) and/or if effort

becomes relatively more important (i.e., if ke/a increases).
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2.4.2. Public Feedback

Next we study the implications of public feedback. In this case, after submitting his

initial solution, each solver learns his own as well as his competitor’s first-round per-

formance. That is, public feedback perfectly reveals the solvers’ first-round performance

difference before the start of the second round, at which point solvers are therefore no

longer symmetric.

Proposition 2.2. The unique PBE under a public-feedback policy is symmetric, with

epub
1 = E∆ζ1 [e

pub
2 (∆ζ1)] =

Ake
3ac

, (2.2)

epub
2 (∆ζ1) =

Ake
2a2c

(a− |∆ζ1|). (2.3)

Mirroring Aoyagi (2010) and Ederer (2010), Proposition 2.2 has two main impli-

cations. First, it shows that each solver cares only about his relative performance and

completely disregards the absolute performance information embedded in public feed-

back. Specifically: if the solvers’ first-round performance difference is small (i.e., the

contest is competitive), then second-round efforts are substantial and the solvers fight

hard to win the contest; but if the first-round performance difference is sizable, then

solvers reduce their solution efforts because the contest is de facto decided. Second,

despite being asymmetric in the second round, both solvers expend the same amount of

effort. In other words, the first-round leader pursues a simple blocking strategy: he tries

to keep the follower at a distance but without trying to increase the performance gap.

At the same time, the follower tries to not fall farther behind but without attempting to

close the gap. The follower just relies on a large positive second-round shock to reverse

his fortune.

2.4.3. Private Feedback

We have just shown that, under a public-feedback policy, solvers set their second-round

solution efforts as a function of their relative first-round performance. Yet that solver

strategy is not viable under private feedback, since each solver receives information only

about his own performance. Thus, only absolute performance information can affect a

solver’s solution effort.
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The absence of relative performance information fundamentally affects the contest’s

information structure. Whereas solvers always possess symmetric and consistent beliefs

under no and public feedback, private feedback introduces an asymmetric and incon-

sistent belief structure which allows for the solvers’ assessments of their chances to win

to not be “coherent”. Suppose, for example, that each solver receives the information

that he performed extremely well in the first round. Then both solvers believe that

their respective chances of winning are much greater than 50%, although in reality those

chances are merely 50%. And in contrast with the public-feedback scenario, solvers are

never entirely certain whether they are ahead or behind their competitor. It is this

asymmetric belief structure that drives asymmetric equilibrium solution efforts.

Proposition 2.3. The unique PBE under a private-feedback policy is symmetric, with

epri1 = Eζi1 [epri2 (ζi1)], (2.4)

epri2 (ζi1) =


−a+ζi1ke

+ 2aκ
ke

ln
(
2
√

γ2
3γ1

sin
(
1
3 sin−1

(√
3γ1γ2

a(1+12κ)+6ζi1
4γ2

)))
if ζi1 ∈ [−a2 , γ3x

2 − aκ],

− ζi1ke + aκ
ke

ln
(
ζ+aκ
γ3

)
if ζi1 ∈ [γ3x

2 − aκ, γ3y2 − aκ],

− ζi1ke + 2aκ
ke

ln
( 3
√
z(ζi1)

6 − 2 γ2γ1
1

3
√
z(ζi1)

)
if ζi1 ∈ [γ3y

2 − aκ, a2 ].

(2.5)

Here z(ζi1) = 12[−9(a(1/6 − 2κ) − ζi1) + (12γ3
2/γ1 + 81(a(1/6 − 2κ) − ζi1)2)1/2]/γ1.

The constants are defined as γ1 = p(ny − x)/(3nx2o), γ2 = py(n3x + y)/(nxo), and

γ3 = p(n2x2+y2)/(2x2o), where m = (1−6κ)/(1+6κ), n = e1/(2κ), o = 3y2−n2x2+4n3xy,

and p = a(1 + 6κ) and where x ∈ [e−1/(4κ), e−(1−1/κ)/(4κ)] and y ∈ [e1/(4κ), e(1+1/κ)/(4κ)] are

the unique solutions to the following system of equations:

mn2x4 − 4mn3x3y − 3(m+ n2)x2y2 − 4n−1xy3 + y4 = 0, (2.6)

1− 6κ2

κ(1 + 6κ)
+m ln(y)− ln(x) +

n2x4 + 8n3x3y + 9(1 + n2)x2y2 + 8n−1xy3 + y4

6x2(3y2 − n2x2 + 4n3xy)
= 0.

(2.7)

This proposition presents—to the best of our knowledge—the first solution of a

contest with asymmetric private information but it is rather unwieldy; we offer a more

tractable approximation in Corollary 2.1. Our numerical analyses indicate that the
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Figure 2.2.: Equilibrium Second-Round Effort under Private Feedback.

Notes: The functions are based on the following set of parameters: A = 1, a = 1, ke = 1,
c = 1.01.

corollary yields an exceptionally good approximation even for low κ, which makes it a

good starting point for reflecting on Proposition 2.3.

Corollary 2.1. Define γ̃3 = a(1 + 6κ)e(κ−1)/(2κ2)/(2(1 + 2e1/κ)), and let

ẽ2(ζi1) = −ζi1
ke

+
aκ

ke
ln(ζi1 + aκ)− aκ

ke
ln(γ̃3). (2.8)

Then limκ→∞ e
pri
2 (ζi1)− ẽ2(ζi1) = 0 for all ζi1.

Figure 2.2 plots the equilibrium effort functions epri
1 and epri

2 (ζi1) for different first-

round shocks. The graph makes salient that Proposition 2.3 provides striking managerial

insights for those staging innovation contests. First, as before, each solver splits his

expected solution effort equally between the two rounds. That is: in expectation, the first

and second round contribute equally to a solver’s overall performance. Second, a solver’s

second-round effort epri
2 (ζi1) is not monotonically increasing in ζi1. In fact, epri

2 (ζi1) has an

inverted U-shape; it increases with ζi1 for ζi1 ≤ 0 but decreases with ζi1 for ζi1 > 0. Thus

solvers with a moderate first-round performance (i.e., ζi1 = 0) exert substantial efforts in

the second round, whereas solvers with a very high or very low first-round performance

reduce their second-round efforts. The reason is that a moderately performing solver

perceives the contest as being competitive whereas exceptionally good- or ill-performing

solvers perceive the contest as more or less decided. Most importantly, however, unlike

the public-feedback scenario, under private feedback the bad solvers reduce their efforts
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to a greater extent than do the good solvers; formally, epri
2 (−ζi1) < epri

2 (ζi1) for all ζi1 > 0

(observe the asymmetry in Figure 2.2). This finding stems from the absence of relative

performance information. A solver with a high first-round shock can never be certain

that he is ahead, so he invests more effort to maintain his chances of winning in case

the competitor is equally strong—even though that is unlikely. Hence, private feedback

induces well-performing solvers to invest relatively more effort; it makes them relatively

more risk averse. This asymmetric response to feedback is the central feature that

distinguishes private from public feedback.

But does this mean that less fortunate solvers can leapfrog better solvers by in-

creasing their second-round efforts? The answer is No. To see this, note that solver i’s

final performance vpri
i2 is increasing in ζi1. That is: the more fortunate a solver is in the

first round (i.e., the higher his shock ζi1), the better he performs in the contest. More

interestingly, this intuitive result also sheds light on the strategic behavior of solvers. In

equilibrium, no solver ever allows a less fortunate solver (i.e., one with a lower first-round

shock) to overtake him in the second round through effort alone. So once a solver has

fallen behind his competitor after the first round, he needs a good random shock in the

second round in order to win the contest.

2.5 The Optimal Feedback Policy

Having characterized the solvers’ equilibrium solution efforts under the different feedback

policies, we are now ready to answer our main research question: Which feedback policy

is the best for each of the two stipulated objectives? We first discuss the optimal feedback

policy for maximizing average performance (Section 2.5.1); we then shift our focus to

maximizing the performance of the best solution (Section 2.5.2).

2.5.1. Maximizing Solvers’ Average Performance

Since the firm must set the feedback policy at the outset of the contest and since solvers

are ex ante symmetric, it follows that Πavg = E[vi2 + vj2]/2− A = E
[∑

i,t eit
]
/2− A =

E
[∑

t eit
]
− A. That is, maximizing average performance is equivalent to maximizing

the sum of a solver’s (ex ante) expected first- and second-round equilibrium efforts.

Proposition 2.4 compares the expected first- and second-round effort choices of a solver
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as well as the firm’s expected profits for the cases of no feedback, public feedback, and

private feedback.

Proposition 2.4. The following statements hold:

(i) epri
1 < epub

1 = eno
1 ;

(ii) Eζi1 [e
pri
2 (ζi1)] < E∆ζ1 [e

pub
2 (∆ζ1)] = eno

2 ;

(iii) Πpri
avg < Πpub

avg = Πno
avg.

The first noteworthy result of Proposition 2.4 is that, in each round, the ex ante

expected effort of each solver is identical under a no-feedback and a public-feedback

policy. This result can be explained by public feedback having two opposed effects on

a solver’s second-round effort choice. On the one hand, if the revealed first-round per-

formance difference is low (|∆ζ1| < a/3), then each solver understands that the contest

is highly competitive and is motivated thereby to expend more effort than under a no-

feedback policy. On the other hand, if the performance difference is large (|∆ζ1| > a/3),

then solvers are discouraged from investing effort because they believe that the contest

is practically decided. In equilibrium, these countervailing effects of motivation and

de-motivation offset each other; thus, E∆ζ1 [e
pub
2 (∆ζ1)] = eno

2 . Clearly, when deciding

on his first-round solution effort, each solver anticipates this balance between motiva-

tion and de-motivation effects and therefore chooses to exert the same effort as under a

no-feedback policy: epub
1 = eno

1 .

In contrast, the announcement of private feedback reduces the willingness of solvers

to expend solution effort as compared with both the no-feedback and public-feedback

policies. Two different effects are responsible for this result. First, much as under a

public-feedback policy, private feedback can motivate a solver to expend more effort

than in the no-feedback case if his first-round performance was middling.8 However,

this motivation effect is much less pronounced for private than for public feedback.

To see why, recall that the motivation effect of public feedback is strongest when the

firm communicates a small performance difference. Under private feedback, the firm

never releases relative performance information and so each solver can (and will) form

only a belief about the performance difference. Yet given the inherent randomness of

performance, each solver knows that his competitor is unlikely to have achieved the

8This happens if and only if −aκ(1 + W0(−γ3e−1+1/(3κ2)/(aκ))) < ζi1 < −aκ(1 +

W−1(−γ3e−1+1/(3κ2)/(aκ))), where W0 (resp. W−1) is the upper (resp. lower) branch of the Lambert
W function.
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same performance. For this reason, solvers respond only moderately to the motivation

effect of private feedback.

Second, private feedback has a strong de-motivating effect on relatively low-performing

solvers. As Figure 2.2 illustrates, solvers with a bad first-round performance exert less

effort in the second round than do solvers with a good first-round showing. Put dif-

ferently, the anticipated performance gap between bad and good solvers widens in the

second round because of these asymmetric effort choices. As a result, we observe a phe-

nomenon that does not arise under a public-feedback regime—namely, a solver with a

relatively bad first-round performance realizes that he may face a competitor that he

can never beat. Hence the set of potential competitors against whom the focal solver

can win becomes smaller and so he begins to shirk. In short: private feedback reduces

the contest’s competitiveness, which in turn leads solvers to reduce their effort.

This phenomenon also has a strong effect on a solver’s effort in the first round. Since

effort in the second round is reduced, solvers refrain from wasting effort in the first round;

that is why epri
1 < epub

1 . Thus the mere pre-announcement of private interim performance

feedback has a negative effect on the solvers’ expected behavior. This “strategic” effect

is not observed in a public-feedback contest.

In sum: since maximizing the solvers’ average performance is equivalent to max-

imizing the solvers’ average effort provision, it follows that a private-feedback policy

always generates the lowest expected profits for the firm. It is therefore optimal for the

firm to choose either a no-feedback or a public-feedback policy. And whereas the firm is

indifferent between these two policies, solvers strictly prefer a no-feedback policy.

2.5.2. Finding the Best Solution

In practice, most innovation contests are designed to elicit one exceptional solution that

promises significant value upon implementation. In this case, the firm focuses not on

maximizing the solvers’ average performance but rather on maximizing the performance

of the best solution; that is, the firm maximizes Πbest = E[max{vi2, vj2}]− A. Proposi-

tion 2.5 establishes that, for certain types of innovation contests, private feedback is the

optimal policy.

Proposition 2.5. (i) Πpub
best = Πno

best.

(ii) There exists a κ > 1 such that Πpub
best > Πpri

best for all κ < κ.

(iii) There exists a κ <∞ such that Πpri
best > Πpub

best for all κ > κ.
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Irrespective of whether the firm is interested in the solvers’ average or best perfor-

mance, employing a public-feedback policy generates the same expected profits as does

a no-feedback policy. This result reflects the identity of expected efforts under these two

feedback policies.

The key result of Proposition 2.5 is that public (resp., private) feedback is optimal if

κ < κ (resp., if κ > κ).9 To better understand this result, recall that κ = (a/ke)
2/(A/c).

The numerator is a measure of how uncertain the contest is; if a is large and ke is low, then

effort does not play a large role in winning the contest and hence uncertainty dominates.

The denominator is a measure of profitability; if the prize is large and the cost is low,

then profitability is high. Overall, κ is a measure of how uncertain one unit of gain is for

each of the solvers and thus it is a normalized measure of contest uncertainty. Hence, we

use κ to denote performance uncertainty. Proposition 2.5 implies that, for innovation

contests in which effort is more important than uncertainty (i.e., when κ < κ), public

feedback is optimal. In contrast, for innovation contests with substantial performance

uncertainty (κ > κ), private feedback outperforms public feedback.

Yet how can this result be explained—especially since, according to Proposition

2.4(iii), private feedback induces lower average performance than public feedback (or

no feedback)? We can answer this question by considering Figure 2.3, which compares

solver i’s expected second-round effort conditional on his first-round shock ζi1 under a

private-feedback (solid line) and a public-feedback (dashed line) policy. The figure’s left

(resp. right) panel shows the functions for low (resp. high) performance uncertainty κ.

Two key observations can be made here. First, comparing the solid and the dashed

lines plotted in each panel reveals that public feedback induces a larger effort than does

private feedback for most first-round shocks; this result is consistent with our finding

that private feedback induces a lower ex ante expected effort than does public feedback.

Comparing the two panels reveals also that, for low performance uncertainty κ, the

reduction in average effort under private feedback is much greater than for high κ.

Second, for top-performing solvers (i.e., solvers with a high first-round shock), private

feedback increases effort provision: the solid line surpasses the dashed line for sufficiently

high ζi1. This finding captures the need of top performers to protect their good position

9The complexity of the equilibrium emerging under a private-feedback policy makes it difficult to find
the dominant strategy for κ ≤ κ ≤ κ. However, numerical simulations indicate that κ = κ; hence
there exists a unique threshold for κ above which a private-feedback policy maximizes the firm’s
expected profits.
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Figure 2.3.: Ex ante Expected Second-Round Efforts under Private and Pub-
lic Feedback.

Notes: The graphs compare solver i’s (expected) equilibrium second-round effort conditional
on ζi1 under private feedback (solid line; epri

2 (ζi1), as stated in Proposition 2.3) and under

public feedback (dashed line; Eζj1 [epub
2 (∆ζ1)], with epub

2 (∆ζ1) as in Proposition 2.2); we take
the expectation over ζj1 in the public-feedback case in order to make it directly comparable
to the private-feedback case. In the left panel, performance uncertainty is low (κ = 1.01); in
the right panel, performance uncertainty is high (κ = 4). The vertical dotted line marks the
unique intersection point of the two curves. Parameters are: A = 1, a = 1, and ke = 1 (both
panels); c = 1.01 (left panel); and c = 4 (right panel).

more determinedly under private than under public feedback owing to the lack of relative

performance information. Moreover, Figure 2.3 shows that the fraction of solvers for

whom private feedback increases their effort is small under low performance uncertainty

but is large under high performance uncertainty.

Of course, it is exactly these top performers in whom the firm is interested when

maximizing the performance of the best solution. So when using private feedback, the

firm faces a non-trivial trade-off. On the one hand, private feedback reduces the solvers’

average effort provision; on the other hand, it encourages greater effort from the best

solvers. Thus the optimal feedback policy is the one that best balances the average

effort provision against the likelihood that a top-performing solver participates in the

contest. Consider the left panel of Figure 2.3. For low κ, the decline in average effort

under private feedback is relatively pronounced while the likelihood of a top-performing

solver (i.e., a solver with a first-round shock to the right of the dotted vertical line)

participating in the contest is relatively low. As a result, public feedback dominates
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private feedback. In contrast, the right panel shows that the decline in average effort is

much less pronounced for high κ. Furthermore, the chances that a solver exerts more

effort under private than public feedback are much greater (i.e., the solid line crosses

over the dashed line much farther to the left). In this case, then, private feedback is the

optimal feedback policy.

This finding—that the optimal feedback policy is tightly linked to the relative im-

portance of effort and uncertainty—has not been addressed in the extant literature and

it has two immediate managerial implications. First, when setting up an innovation

contest, it is crucial that the firm identifies the extent to which a solver’s performance

depends on stochasticity. For instance, there is seldom much uncertainty associated

with contests that seek to foster incremental innovation. In such contests, the hosting

firm should provide public feedback. However, private feedback is the preferred choice

for ideation contests that aim to develop novel concepts, new ideas, or breakthrough

research (all of which are associated with high levels of uncertainty). Even more, our

results concern communications between solvers: whenever the effort–performance link

becomes tenuous, idea exchange between solvers becomes detrimental to firm goals and

so the firm should minimize any form of communication between competing solvers. Sec-

ond, if performance uncertainty is substantial then a firm should not focus on improving

the average second-round effort; instead, it should choose a feedback mechanism that

“pampers” potential first-round top performers—even if in realization such top perform-

ers may not be present in the contest.

From the social welfare standpoint, Proposition 2.5 (in conjunction with Proposi-

tion 2.4) provides another important result for contests that are inherently uncertain: the

private-feedback policy is not only optimal for the firm but can also be socially efficient.

More precisely: apart from maximizing the firm’s expected profits, a private-feedback

policy also allows solvers to reduce their expected efforts. As a consequence, both the

firm and the solvers may well prefer private feedback to either public or no feedback in

settings characterized by high performance uncertainty.

2.6 Voluntary Feedback

So far we have assumed that the firm, by dictating the type of feedback, also obliges

solvers to submit intermediate solutions. Those intermediate solutions are the firm’s
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vehicle for providing solvers with interim performance feedback. In reality, however,

instead of enforcing intermediate submissions, a contest holder may also simply offer

an option for feedback. In such cases, feedback is voluntary and it is each solver’s

deliberate choice whether or not to seek feedback. Clearly, a solver will only do so if he

sees a significant benefit in submitting his intermediate solution. We now explore how

different potential benefits affect a solver’s decision.

For concreteness, we extend our base model (as depicted in Figure 2.1) by allowing

each solver to decide—after his first-round efforts—whether or not to submit an interim

solution. The firm then follows its announced feedback policy and provides the solvers

with accurate feedback on any submitted solutions. That is, if feedback is private then

solver i receives feedback on vi1 only if he has submitted his solution beforehand; under

a public-feedback policy, solver i can receive feedback on vj1 also—but only if solver j

has submitted his interim solution. The following proposition characterizes the solvers’

equilibrium behavior.

Proposition 2.6. (i) Under a public-feedback policy, no solver voluntarily discloses his

first-round solution in equilibrium.

(ii) Under a private-feedback policy, each solver submits his first-round solution in

equilibrium.

The key insight here is that a solver’s behavior as regards submitting interim so-

lutions depends critically on the contest holder’s feedback policy. It is intuitive that

under a private-feedback policy, each solver always seeks feedback as there are no neg-

ative externalities from requesting feedback. Without disclosing any information to his

competitors, each solver receives more refined information on his performance, allowing

him to optimally adjust his second-round efforts. In contrast, under a public-feedback

policy, solvers refrain from submitting their interim solutions because the threat of an

escalation of effort provision outweighs any potential benefits. More precisely, public

feedback introduces a relative benchmark that induces solvers to invest exceptionally

high effort levels if the contest is competitive. However, such bold effort choices are

utterly futile because each solver invests the same amount of effort in equilibrium, and

therefore the chances of winning are unaffected. Instead, it is only the costs of effort

that skyrocket.

The same logic continues to hold when accounting for another potential benefit of

feedback: the reduction of uncertainty in the second round. In fact, as Proposition 2.2
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indicates, the problem of effort escalation becomes even stronger because with a lower

performance uncertainty (i.e., a lower a) equilibrium efforts are becoming even higher.

We conclude that whereas pure information incentives are strong enough for a solver

to reveal his first-round performance under private feedback, they are insufficient under

a public-feedback policy. Thus to further strengthen the solvers’ incentives the firm may

need to resort to monetary incentives by granting a so-called “milestone” award to the

solver with the best first-round solution. It is evident that such financial prospectives

will—if large enough—induce each solver to submit his intermediate solution. However,

as the next proposition shows, this is never in the firm’s interest.

Proposition 2.7. Under a public feedback policy, it is never optimal for the firm to

grant a milestone award.

The higher the milestone award the more the firm shifts the solvers’ incentives

away from winning the overall contest towards winning the first round. As a result, the

introduction of a milestone award drastically dilutes a solver’s second-round incentives,

and thus his equilibrium efforts. Per se, however, the firm is not interested in these

intermediate submissions, but it only cares about the final solution qualities. Thus, the

higher the milestone award the more misaligned are the firm’s and the solvers’ objectives.

This is why the firm strictly prefers to not grant any milestone awards.

In conclusion, we have shown that in the absence of monetary rewards, submitting

interim solutions and populating a publicly available leader board are not decisions that

a rational solver would make. It is thus an important alley for future empirical research

to investigate why, in practice, many solvers are nonetheless eager to share their solution

quality with competitors.

2.7 Partial Information Feedback

Until now we have assumed that if the firm provides feedback then this feedback is

perfect; in other words, the firm always reveals fully accurate information on the solvers’

performance. However, the firm may either prefer or (for practical reasons) be required

to provide only partial feedback. Two canonical cases are practically relevant. First,

the firm may provide information that is less detailed—for example, by publishing the

solvers’ rankings but no specific information about their performance. Second, the firm’s

performance feedback may be disturbed by some level of noise.
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2.7.1. Rank-Only Feedback

We first consider the case in which the firm reduces the granularity of feedback by pro-

viding only information on the solvers’ ranking in the contest. Before delving into the

details, it is important to recognize that such rank-only feedback cannot be conceptu-

alized as private information; revealing a rank is inherently public feedback. It is not

material for a solver which other solver holds which rank, but rather that one of the

other solvers holds each of the ranks above or below him.

As compared with a public-feedback policy, rank-only feedback may change solver

behavior in two ways. When first-round performances are extremely close, providing

rank-only feedback reduces competition because the “blurriness” of the rank informa-

tion leaves none of the solvers fully aware of how close the competition actually is.

When first-round performances instead vary widely, rank information results in solvers

underestimating their relative performance difference and so induces them to exert more

second-round effort than actually required by the situation. Our next proposition com-

pares the relative strength of these effects.

Proposition 2.8. The unique PBE under a rank-only feedback policy is identical to the

unique PBE under a no-feedback policy. In particular, er
1 = eno

1 and er
2 = eno

2 .

Proposition 2.8 holds a surprise. In comparison with a no-feedback policy, providing

rank-only feedback has no effect on the equilibrium behavior of solvers; that is, solvers

completely ignore their respective rankings. This outcome is in stark contrast to the

fate of accurate performance feedback, which is always used by solvers to adjust their

second-round behavior. The implications for practice are striking. If a contest holder

wants its feedback to influence the second-round efforts of solvers, then this feedback

must include information about each solver’s actual performance; rank-only feedback

will not have the desired effect.

2.7.2. Feedback with Noise

Next we analyze the implications of noisy feedback, which are important for a firm that

cannot (or prefers not to) guarantee perfectly accurate feedback. Consider again the case

of Kaggle. Some contest holders provide interim performance feedback by using only a

sample of the full data set on which to test the solvers’ algorithms; this approach helps

prevent overfitting of the data during the contest. However, the final ranking is based
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not on that sample but rather on the full data set. So from the solvers’ perspective, the

interim performance feedback is not entirely accurate: it is disturbed by noise.

Two questions arise. First, does the introduction of noise change the balance be-

tween no feedback, public feedback, and private feedback? Second, how does noisy

feedback compare to entirely accurate feedback? Is it possible for the firm to benefit

from introducing noise into the feedback mechanism? Here we set out to start answer-

ing these questions.

Treating all the possible facets of noise is beyond the scope of this paper. Instead,

we investigate a simple example of noisy feedback that nonetheless captures the essence

of masking a solver’s true performance. More specifically, we assume that the firm gives

perfectly accurate feedback with publicly known probability q, and with probability 1−q
it transmits absolutely uninformative feedback (i.e., white noise).

Proposition 2.9. (i) Under a public-feedback policy, the firm’s expected profits Πpub
avg

and Πpub
best are invariant with respect to q.

(ii) For any fixed q > 0, there exists a κ <∞ such that Πpri
best > Πpub

best for all κ > κ.

Part (i) of this proposition establishes that, under a public-feedback policy, noise

does not affect the firm’s expected profits in terms of either average performance or best

performance. The implication is that, under a public-feedback policy, contest holders

cannot use noise strategically to improve contest outcomes. In contrast, noise does affect

the firm’s profits under a private-feedback policy; however, exact analytical expressions

are difficult to derive. Yet our numerical studies reveal that profits are monotonic in q:

for small κ, a no-feedback policy (i.e., q = 0) maximizes the firm’s profits; for large κ,

accurate private feedback (i.e., q = 1) is optimal. It seems once again that noise cannot

be deployed strategically to improve contest outcomes.

Combining Proposition 2.9(i) for public feedback and part (ii) for private feedback

indicates that our results about the preferability of different feedback types are robust

to the introduction of noise. That is, noise does not impact the ranking of the different

feedback policies and hence the selection of a feedback policy should not be affected by

the accuracy of the feedback.
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2.8 Robustness and Extensions

We explored the sensitivity of our conceptual results to key modeling choices. Our re-

sults are exceptionally robust to changes in those assumptions, as we summarize in this

section.

Solver asymmetry. Across solvers, the distribution of random shocks may be asym-

metric. Two possible sources of such asymmetry are differences in mean and differences

in variance; the former (resp., latter) signifies inherent differences in solvers’ capabilities

(resp., innovation processes). A closed-form analysis of an extended model establishes

that our results are robust to both sources of asymmetry; moreover, it seems that our

assumption of solver symmetry is actually conservative with respect to the true value of

private feedback.

Alternative feedback policy. Another form of partial information feedback is to in-

form solvers only of whether (or not) they have surpassed a certain performance thresh-

old. Our formal investigation of such a threshold feedback policy shows that it can never

improve on the performance of a fully informative policy—in accordance with our results

in Section 2.7.

Cost of effort. For some contests, solvers may be more concerned with their total

expended effort than with their respective individual efforts in each round. In such cases,

a more appropriate cost-of-effort function would be c(ei1 + ei2)2. We can demonstrate

analytically that allowing for effort interaction effects between the two rounds does not

alter our results in any meaningful way.

Performance uncertainty. Depending on the contest’s particular context and the

innovation process of solvers, random shocks can follow a multitude of distribution func-

tions. After conducting a large number of numerical experiments with normal and beta

distributions, we can report that our results are robust.

2.9 Conclusions

Contests are a frequently used mechanism for providing incentives when companies and

government agencies source innovation. Prize competitions organized via the Internet (as

hosted by Kaggle) are contests, and so are sourcing efforts organized via the European

Union’s “competitive dialogue procedure” and many of the approaches taken by private
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companies to source custom-engineered innovations. Feedback has been extensively used

in practice to improve both the efficiency and the efficacy of contests. However, a

rigorous understanding of when and how to provide which kind of feedback—and of

when to refrain from giving feedback—is rather limited. The primary goal of this paper

is to begin building a more comprehensive understanding of feedback in contests.

Our main contribution consists of charting a practically relevant landscape—one

that determines how feedback can be used in contests—by addressing three questions

that together define a feedback policy’s information structure: Who receives the feedback

information? Who decides about which contestants receive feedback? What should be

the information content of the performance feedback that is given? Answering these

questions allows us to analyze many forms of feedback that actually are used in contests

and to prescribe beneficial policies for a wealth of settings. In doing so we build new

insights and challenge existing ones.

It is remarkable that—almost irrespective of whether feedback is voluntary and of

whether feedback includes all or only some of the available information—firms need only

focus on two straightforward factors when choosing whom to provide with any feedback:

the contest objective (average versus best performance) and the contest’s inherent per-

formance uncertainty. If the firm is concerned about the solvers’ average performance,

then either no feedback or public feedback is preferable to private feedback. The same

preference obtains if the firm is interested in the best performance, provided that per-

formance uncertainty is low. However, private feedback is the optimal choice if the firm

seeks the best possible performance and performance uncertainty is high. Hence, private

feedback is most suitable for innovation settings.

Our findings have immediate managerial implications. Contest holders that aim to

raise the overall effort level among all solvers should refrain from giving private feedback;

thus, if performance information is released then it should be made public. Incremental

innovation contests likewise do not benefit from private feedback; for such contests, the

relatively low performance uncertainty makes public feedback the preferred policy. In

contrast, contests looking for breakthrough innovation (e.g., completely new algorith-

mic solutions, novel engineering concepts, any problem that requires the exploration of

uncharted territories) should rely solely on private feedback.

As for who should decide on whether feedback is provided, one must bear in mind

that voluntary feedback can function only if the solvers have an incentive to seek it. Gen-

erally speaking, that incentive may be of two different forms: an informational advantage
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or a monetary reward. As regards informational advantages, solvers always (resp. never)

ask for feedback under a private-feedback (resp. public-feedback) policy. That is, the in-

formational advantage outweighs the informational cost with private but not with public

feedback. Monetary rewards intended to induce feedback-seeking behavior do work, but

they are never optimal from the firm’s perspective.

Our results on voluntary public feedback have consequences for practice. If the

contest holder anticipates benefits from having solvers share information about their

performance, then it should find ways to make such feedback mandatory and not leave

feedback up to the solver. Under private feedback, however, the opposite is true. Since

in this case the solvers will always ask for feedback, contest holders should offer feedback

only if they truly want to provide it. Intermediate prizes are never advisable—that is,

from an incentive perspective.

Finally, if the feedback recipients have been identified and if the choice of voluntary

or mandatory feedback has been made, then there remains the question of how gran-

ular the feedback should be. There is no evidence—in the cases examined here—that

reducing feedback granularity and/or accuracy benefits the contest holder. Even more

interestingly, we show that feedback lacking specific performance-related information

(e.g., rank-only feedback) will likely be disregarded by solvers and thus fail to achieve

its intended effect.

One aspect that must be considered when interpreting our results is that we did

not explicitly incorporate the cost of providing feedback. We made this choice for two

reasons. First, in nearly all practical cases the cost differences among no feedback,

public feedback, and private feedback are small compared with the benefits of providing

tailored incentives to solvers (in our Kaggle and EU examples, the cost of giving feedback

is negligible when compared with the potential benefits of an optimal feedback policy).

Second, including such costs would be trivial, both technically and conceptually, because

adding a cost term to the firm’s profits has no effect on the equilibrium analysis. Decision

makers can simply subtract the cost differences between feedback policies from their

respective benefit differences (as derived in this paper) to determine the overall trade-off.

Our model has limitations that should be mentioned. In order to maintain tractabil-

ity and develop a parsimonious model, we made some assumptions about the purpose of

contests; in particular, we focus on the incentive effects of feedback in contests. However,

feedback may be used also to guide solvers in terms of where to direct their search efforts.

Understanding this directional aspect of contest feedback requires an approach that dif-
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fers fundamentally from ours and is a promising avenue for future research. Another

limitation is our focus on a contest’s rational motivation effects, which are amenable

to game-theoretic analysis. Yet real-world contests may also effect their outcomes by

way of psychological inducements. Within the game-theoretically rational framework we

consider only two competing solvers; this assumption ensures tractability but also in-

troduces symmetries that may be absent in contests with three or more solvers. Hence,

there is no guarantee that our results hold for more than two players; thus our results

should be interpreted with some caution for large contests. Finally, we assume an addi-

tive performance relation between effort and uncertainty. This approach can be viewed

as a first-order Taylor approximation of a more general relationship, and adding higher-

order terms could capture additional effects—for example, an increase in uncertainty

with greater solution efforts.

Previous research on contests has not broadly explored the repercussions of many

practically relevant feedback policies. The aim and principal contribution of this paper

is to fill several critical gaps in the literature and to build a deeper understanding of

feedback in contests. It is only by considering the many variants and aspects of feedback

that managers can reasonably hope to make the contest mechanism—a method often

relied upon in practice for sourcing innovation—more efficient and effective.
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Chapter III

How to Procure Complex

Innovation

with Zhi Chen and Jürgen Mihm1

3.1 Introduction

Access to innovative products is a key source of competitive advantage in many indus-

tries (Pisano 2015). Traditionally, firms guaranteed themselves such access by pursuing

internal research and development (R&D) projects and by making substantial invest-

ments into new product development. More recently, however, firms have extensively

tapped into an alternative source of innovation: their suppliers (Cabral et al. 2006). One

industry that stands out in demonstrating how effective such a use of suppliers as source

for innovation can be is the automotive industry. Consider—as a prime example—the

recent advances in the area of automotive lighting systems.

Since its inception in 1898, when the Electric Vehicle Company of Hartford in-

troduced the first electric headlamps for its Columbia Electric Car, electric lighting

systems have become the unquestioned standard for automotive lighting systems. Over

the course of the last century, the initial tungsten filament technology was replaced by

two major innovations—the introduction of Halogen lighting in 1962 and high-intensity

discharge lamps (also known as Xenon lamps) in 1991. These new technologies led to

great improvements in driver and traffic safety, but did not spur much further innova-

tion. It is only with the more recent introduction of LED headlamps in 2003 by Hella—a

leading automotive supplier—that automotive lighting systems have seen a drastic ac-

1The research presented in this chapter is based on a paper entitled “Sourcing Complex Innovation:
Integrated System or Individual Components?”, coauthored with Zhi Chen and Jürgen Mihm.
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celeration in innovation, and most of these innovations were introduced not by the car

manufacturers themselves but by their suppliers.

But why are today’s automotive suppliers developing new technologies at an ever

more rapid pace? One major reason is a shift in the car manufacturers’ procurement

process for complex innovations such as an automotive lighting system. Instead of re-

lying on direct contracting with one of their suppliers, car manufacturers nowadays

frequently organize so-called procurement or innovation contests to simultaneously gain

access to the innovation capabilities of their full supplier base. In hosting such a pro-

curement contest, car manufacturers only announce the minimum specifications for the

innovation to be developed, but detail development rests in the responsibility of each

individual supplier participating in the contest. The promised award—typically a sup-

ply contract for the winning design—incentivizes the suppliers to engage in development

activities and makes them present their solutions to the car manufacturer. The car

manufacturer—after evaluating all submitted designs—can then ex post select the best

design alternative, and award the supply contract accordingly. The advantages of using

a procurement contest are evident: Not only is a procurement contest an informationally

very parsimonious purchasing mechanism, but it also induces high innovation efforts in

the car manufacturer’s supplier base and it allows for an ex post selection of the best

product alternative (Rogerson 1989). Yet to fully reap all these benefits it is imperative

for a car manufacturer to carefully design the setup of his procurement contests. This

is the key challenge that we study in this paper.

Most notably, procurement contests should be tailored towards the properties of

the desired product and the structure of the supplier base. With regard to the product

characteristics, a central feature of complex innovations is that they are made of multiple

components that only together form the full product (or in engineering terminology,

the integrated system). Consider again our example of an automotive lighting system.

Broadly speaking, such lighting systems consist of two components: a light module,

which is part of the car’s exterior design and is responsible for the light emission; and an

electronic control module, which steers the different functionalities of the light module.

In the face of such a complex—or multi-component—innovation, a central question for

any car manufacturer is whether to buy the full product from a single supplier, or whether

to source the different components from different suppliers. In the former case, the car

manufacturer hosts a system contest and requires suppliers to submit full products,
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whereas in the latter case, the car manufacturer hosts a separate component contest for

each individual component.

Answering the question of when to prefer which contest format (system vs. com-

ponent contest) is at the very heart of our research. We conjecture that many different

dimensions—both on the product as well as the supplier side—will have an impact on

a car manufacturer’s optimal choice. One of the key influence factors is certainly the

magnitude of innovation that is required to develop each of the components, and hence

the integrated system. Specifically, are both components rather incremental innovations

or is one of them—or even both—radically new? And what is the technological relation-

ship between the components? That is, are the components technological substitutes

or complements? Besides these product-level features, other important aspects relate

to the size of the supplier base, the degree of heterogeneity in the supplier base as well

as the level of performance correlation exhibited by each supplier. In other words, how

many suppliers can participate in the procurement contest, are there structural per-

formance differences among the suppliers, and is a supplier who is good at developing

one component (e.g., the light module) also likely to be good at developing the other

component (e.g., the control module), or not?

In this paper, we develop a game-theoretic model that takes all these factors into

account, and we investigate how the individual factors impact the optimality of either

contest format (system or component contest). In doing so, we also shed light on the

optimal properties of a contest holder’s supplier base, and we study which kind of sup-

pliers the contest holder should invite to participate in the different contest formats.

Our detailed contributions are as follows.

First, we show that a firm should use a system contest if all product components

are merely incremental innovations and the firm’s supplier base is relatively small. In

all other cases—that is, if at least one component demands radical innovation or the

firm has access to a large supplier base—the firm should opt for hosting a separate

procurement contest for each individual component. For incremental innovation it is

the firm’s key ambition to provide significant incentives for development effort, and

since a system contest offers the highest stakes (i.e., the biggest supply contract) it

is the firm’s preferred option in less innovative environments. However, the benefits

of high effort incentives may be overshadowed if controlling and managing uncertainty

moves to the firm’s center of attention—a situation that arises naturally in the presence

of radical innovation or when the supplier base is large. As an interesting side result
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we find that these general guidelines are independent of the technological relationship

between components as well as the level of heterogeneity and performance correlation

in the supplier base.

Second, we finely delineate how the firm should organize its supplier base, and we

also identify which suppliers should be invited to participate in the different contest

formats. A couple of managerial rules emerge: First, the firm should work towards a

relatively homogeneous supplier base as any form of performance handicaps deters effort

incentives, both for relatively strong as well as relatively weak suppliers. Second, when

hosting component contests the firm benefits from inviting the same set of suppliers to

the individual contests, instead of inviting different sets of suppliers, and these bene-

fits are largest when components are technological complements. Third, in a system

contest, the firm’s optimal choice of suppliers depends on the innovativeness of the de-

sired product. For incremental innovations the firm should seek for suppliers that exhibit

only minor levels of performance correlation across components, whereas the firm should

strive for higher performance correlation when radical innovation is involved.

Finally, we also investigate how systematic differences in performance correlation

across the different contest formats affect our structural results. We find that all our

results are fully robust to such differences, with one notable exception. If the magnitude

of performance correlation in a system contest is substantially larger than in a component

contest, then a system contest is optimal even when the full product requires radical

innovation. The reason for this finding is that with large differences in performance

correlation between system and component contests, a system contest allows the firm to

more effectively exploit the large uncertainties associated with radical innovation, which

otherwise is the key strength of a component contest.

3.2 Related Literature

The design of effective procurement mechanisms has been a longstanding concern in

the academic literature (Vickrey 1961, Rob 1986, Laffont and Tirole 1993, Elmaghraby

2000, Beil 2010). It is beyond dispute among scholars and practitioners alike that any

successful procurement policy must be tailored to the properties of the desired product.

As outlined in Cabral et al. (2006), one product feature that is of paramount importance

when selecting the right procurement policy is the degree of innovativeness. In practice,
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products can be broadly divided into two categories: standard products that are well-

specified and exhibit only minor performance uncertainties; and innovative products

that have yet to be developed and whose final performance is thus merely a speculation.

Most of the existing procurement literature has concentrated on devising optimal

procurement mechanisms for standard products (see, e.g., Che 1993, Cachon and Zhang

2006, Chen 2007, Wan and Beil 2009, Hu et al. 2013, and references therein). Since

the specifications of these products—and thus their performance—are known before the

procurement process is initiated, buyers aim to find the supplier who can deliver the

product most efficiently, and extant research has investigated many such dimensions

of efficiency. More precisely, most of the early literature has primarily concentrated

on how to lower procurement costs (Rob 1986, Dasgupta and Spulber 1990); however,

subsequent work has accounted for such diverse factors as integrating product quality

(Che 1993, Beil and Wein 2003) and delivery lead-time (Cachon and Zhang 2006) into

the procurement process, reducing transportation costs (Chen et al. 2005, Kostamis

et al. 2009), engaging in supplier qualification (Wan and Beil 2009, Wan et al. 2012),

improving supplier reliability (Yang et al. 2009, Chaturvedi and Mart́ınez-de-Albéniz

2011, Yang et al. 2012), anticipating future changes in competitive structures (Li and

Debo 2009), building a stable supplier base in the long run (Chaturvedi et al. 2014), and

motivating suppliers to invest in cost-reduction efforts (Arozamena and Cantillon 2004,

Li 2013, Li and Wan 2016).

All these papers—albeit investigating very different dimensions of procurement

efficiency—agree in their proclamation of auctions as the preferred procurement mecha-

nism. In fact, since its inception by Vickrey (1961) auction theory has become the focal

mechanism in procurement theory, and over the course of time, classical auction models

have been enriched to include the peculiarities of many different operational settings

(see, e.g., Beil and Wein 2003, Kostamis et al. 2009, Wan and Beil 2009). However,

when procuring an innovative product neither the buyer nor the suppliers can envision

the final product’s true performance at the outset of the procurement process. As a

result it is impossible for a supplier to credibly quote his product’s future performance,

let alone that the buyer can identify ex ante (i.e., before product development) which

supplier will deliver the best product. As a result the use of traditional auction formats

is prohibitive for innovative goods, and hence buyers have to resort to alternative pro-

curement mechanisms. Both in theory and practice it is the contest mechanism that

has proven most effective for sourcing innovative products (Lichtenberg 1988, Rogerson
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1989, Elmaghraby 2000, Scotchmer 2004, Cabral et al. 2006). The key advantage of

hosting a procurement contest is its ease of practical implementation. In a procurement

(or innovation) contest, the buyer only sets a prize and a time deadline at the outset

of the contest, and after the deadline awards the prize to the contestant that submitted

the best product (Taylor 1995). In particular, there is no need that the performance of

the submitted products be verifiable, since the buyer has no incentives to manipulate

the outcome of the contest given that he has to pay the award to one of the contestants.

As a result, contests are not only easily implementable, they are also informatively

parsimonious (Cabral et al. 2006).

Inspired by these benefits of contests, a wealth of research has evolved around the

question of how to effectively design and manage innovation contests. Building on the

pioneering work of Lazear and Rosen (1981), Green and Stokey (1983) and Nalebuff

and Stiglitz (1983), the contest literature provides rich insights into such fundamental

contest design issues as the design of optimal award schemes (Che and Gale 2003, Ales

et al. 2017), the restriction of access to the contest (Taylor 1995, Moldovanu and Sela

2001, Terwiesch and Xu 2008), or how to manage the contest as it unfolds (Aoyagi 2010,

Mihm and Schlapp 2017). Taken together, the above mentioned papers have led to a

coherent theory of how to source a single innovative product via contests. In this paper,

however, we are interested in how a buyer should design a procurement contest when

simultaneously sourcing multiple heterogeneous, but dependent products. To the best

of our knowledge, this question has not been addressed in prior work.2

In particular, we make the following contributions to the theory of procurement and

contests. First, we demonstrate how different formats of procurement contests can be

used to source complex innovative products that consist of multiple components, and we

show how the choice of contest format is governed by the level of innovation required and

the size of the supplier base. Also, by considering the technological interactions between

the individual components we are able to answer the above questions for a large variety

of different products commonly found in practice.

2It is worth mentioning that the literature on multi-object auctions is concerned with a similar question,
but only for standard products (see, e.g., Armstrong 2000, Palfrey 1983, Elmaghraby and Keskinocak
2004, Hausch 1986, Avery and Hendershott 2000). As an immediate implication, the tradeoffs
governing the buyer’s choice of procurement format are substantially different. Most notably, for
innovative products the buyer seeks to balance development effort incentives with performance
uncertainty considerations—two aspects that are absent in procurement auctions for standard goods.
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As our second key contribution we shed light on the ideal characteristics of a buyer’s

supplier base when hosting procurement contests. Besides the mere size of the supplier

base, we also consider more subtle factors such as performance correlation across different

component development projects and the heterogeneity of the supplier base, and we

analyze how the optimal supplier base depends on the characteristics of the complex

innovation to be procured.

3.3 The Model

Consider a firm (from hereon “the buyer”) organizing a procurement contest among

n ≥ 2 suppliers with the goal of buying an innovative product that consists of two

components j ∈ {1, 2}. The buyer can choose between two different contest formats to

source the product: a system contest, and a component contest. In a system contest

the buyer asks the suppliers to submit solutions for the full product (i.e., the integrated

system) and promises an award A > 0 to the supplier that delivers the product with

the best performance. On the contrary, in a component contest, the buyer holds a

separate contest for each of the two components, and offers an award A1 = pA (resp.

A2 = (1− p)A) to the supplier that delivers the best performing component j = 1 (resp.

j = 2), with p ∈ [0, 1].

The goal of the buyer is to maximize the performance S of the product to be pro-

cured. Since the full product consists of two components, its performance depends on

two key attributes: (i) the individual performance of each component, and (ii) the tech-

nological relationship t : R2 → R between the two components. Specifically, in line with

extant research, we consider that—depending on the practical context—components can

be either technological substitutes or complements (see, e.g., Bhaskaran and Krishnan

2009, Roels 2014, Gurvich and Van Mieghem 2015, and references therein). In the for-

mer case the buyer can trade off the two components’ individual performances, and the

performance of the integrated system is simply the sum of the individual components’

performances; i.e., t(x, y) = x+ y. To the contrary, in the latter case both components

are essential for the performance of the integrated system, and total performance is thus

the minimum of the two components’ performances; i.e., t(x, y) = min{x, y}.
To answer our research questions, it is imperative to express the performance of

the full product S as a function of the chosen contest format and the technological
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Table 3.1.: Performance of the Integrated System.

System contest Component contest
Tech. substitutes Ssyssub = maxi{vi1 + vi2} Scposub = maxi{vi1}+ maxi{vi2}
Tech. complements Ssyscml = maxi{min{vi1, vi2}} Scpocml = min{maxi{vi1},maxi{vi2}}

relationship between the two individual components. We achieve this by introducing

the variable vij which denotes the performance of component j ∈ {1, 2} as developed by

supplier i ∈ {1, . . . , n}. In a system contest, each supplier i submits an integrated system

with performance Si = t(vi1, vi2), and the buyer eventually procures the product with

the highest performance; that is, Ssys = maxi{Si}. In a component contest, however, the

buyer procures the two best components v̂1 = maxi{vi1} and v̂2 = maxi{vi2} individually,

and the performance of the full product is then Scpo = t(v̂1, v̂2). Table 3.1 summarizes

the performance of the integrated system as a function of the contest format and the

technological relationship between the components. We now elaborate in more detail on

our model setup.

3.3.1. Sequence of Events

The procurement process begins when the buyer publicly announces the contest format

(i.e., system or component contest), the total award A, and in the case of a component

contest the prize split p. To focus on the buyer’s choice of contest format (and to simplify

the mathematical exposition), we treat the total award A as a parameter. As such, the

buyer’s primary decisions are which contest format to choose, and, if applicable, how to

divide the total award between the two different component contests (i.e., the prize split

p).

After the buyer’s public contest announcement, each supplier i ∈ {1, . . . , n} decides

whether to participate in any of the offered contests. When participating, supplier i

invests an unobservable solution effort eij ≥ 0 to develop component j ∈ {1, 2} at pri-

vate costs c(eij), where c is a twice continuously differentiable, increasing, and strictly

convex function with c(0) = 0 and c′(0) = 0. The performance of component j as de-

veloped by supplier i is given by vij = r(eij) + ζij, where r(·) captures the deterministic

effort-performance relationship and ζij represents a stochastic performance component.

We assume that r is a twice continuously differentiable, strictly increasing, and concave

function with r(0) = 0 and limx→∞ c
′(x)/r′(x) =∞. The realization of ζij is unobserv-
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Figure 3.1.: Sequence of Events.

able to all suppliers and the buyer. For each supplier i, ζi = (ζi1, ζi2) follows a bivariate

Normal distribution with marginal distributions ζi1 ∼ N(0, σ2) and ζi2 ∼ N(0, k2σ2)

and correlation ρ ≥ 0, where σ > 0 and k ≥ 1. We assume that ζi is independent across

suppliers.

Finally, after receiving the suppliers’ submissions, the buyer evaluates their perfor-

mances and awards the pre-announced prize to the supplier with the best performance.

In particular, in a system contest, supplier i wins prize A if t(vi1, vi2) > t(vl1, vl2) for all

l 6= i. Analogously, in component contest j, supplier i wins prize Aj if vij > vlj for all

l 6= i. In all cases, ties can be broken by invoking an arbitrary rule. All primitives of

the model are common knowledge and Figure 3.1 summarizes the sequence of events.

3.3.2. Model Implications

The buyer’s goal is to maximize the expected performance of the best integrated system

that can be built based on the suppliers’ submissions; i.e., Π = E[S], where S is as

displayed in Table 3.1. In contrast to the buyer, the suppliers are not concerned with

the absolute performance of their submissions, but instead they are only interested

in their relative performance as compared to their competitors. More precisely, each

supplier’s primary interest is to win any of the contests that he participates in. In

a system contest, supplier i gains a utility of Ui = A − c(ei1) − c(ei2) if he wins the
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contest, and Ui = −c(ei1) − c(ei2) if he loses the contest. Similarly, in a component

contest, supplier i’s utility from winning component contest j is Uij = Aj − c(eij), and

losing leads to a utility of Uij = −c(eij). We normalize the utility of each supplier’s

outside option to zero, which implies that all suppliers find it worthwhile to participate

in any of the offered contests. Additionally, in Section 3.6 we extend our base model

to account for heterogeneities in the suppliers’ award valuations. Specifically, we later

consider scenarios in which each supplier i receives a different utility αiA, αi ∈ (0, 1],

from winning an award of size A.

We are interested in symmetric pure-strategy perfect Bayesian Nash equilibria of the

different contest formats. For such equilibria to exist, we need to invoke two additional

technical assumptions.

Assumption 3.1. For components that are technological substitutes (resp. comple-

ments), we assume that σ > σsub (resp. σ > σcml), where σsub (resp. σcml) is the

smallest σ such that for all σ > σsub (resp. σ > σcml) supplier i’s expected utility func-

tion has a unique maximum for any contest format given that the other supplier’s play

e−i,j = xjI for all j ∈ {1, 2}, where xj ≥ 0 and I is a vector of ones.

In a nutshell, Assumption 3.1 requires that the performance uncertainty involved

in any of the contest formats must be sufficiently large—a condition that is typically

true for innovative products. In addition, it is a common assumption used throughout

the entire contest literature (see, e.g., Nalebuff and Stiglitz 1983, Aoyagi 2010, Ales

et al. 2017, Mihm and Schlapp 2017). To better understand the intuition behind this

assumption suppose to the contrary that performance uncertainty would be negligible.

Then any infinitesimally small additional amount of effort by a supplier would lead to

almost sure winning of the contest, and as a result, no pure-strategy equilibrium could

exist. Moreover, it is straightforward to show that the thresholds σsub and σcml always

exist because each supplier’s utility function becomes strictly concave for large enough

σ.3

Assumption 3.2. 3r′′(x)/r′(x) < (c′′′(x)r′(x)−c′(x)r′′′(x))/(c′′(x)r′(x)−c′(x)r′′(x)) for

all x ≥ 0.

3In fact, when deriving more explicit sufficient conditions for the existence of pure-strategy equilibria,
papers in the contest literature typically focus on verifying concavity of a supplier’s utility function
(Aoyagi 2010, Ales et al. 2017).
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Although Assumption 3.2 looks unwieldy, it has an important managerial interpre-

tation. Specifically, it ensures that the buyer is actually interested in procuring both

components. Without this condition in place, the buyer could find it optimal to buy only

one component, and—at the end of the procurement process—be left with an incomplete

product. We discard such a situation from further consideration as it does not mirror the

practical situations that we are interested in. To gain further intuition for Assumption

3.2 note that a sufficient condition for it to hold is c′′′(x)/c′(x) ≥ r′′′(x)/r′(x) for all

x ≥ 0. That is, each supplier’s marginal cost of effort—compared to the marginal return

on effort—must increase sufficiently quickly. In other words, Assumption 3.2 precludes

situations in which a supplier’s cost-return-ratio improves overly strong as he invests

more effort. Furthermore, besides its managerial relevance, Assumption 3.2 is also tech-

nically only mildly restrictive as many standard functional relationships for r and c that

are used in the contest literature satisfy this condition (such as, e.g., polynomial or

logarithmic r, and polynomial or exponential c).

3.4 The Optimal Contest Format

In this section we characterize the buyer’s optimal choice of contest format, assuming

that each supplier’s performance shocks ζi1 and ζi2 are independent across components

(i.e., ρ = 0). The study of correlated performance shocks is deferred to Section 3.5.

Focussing, for now, on independent performance shocks allows us to clearly elicit how

the two main contextual parameters of our model setup affect the buyer’s choice of con-

test format: (i) the magnitude of innovation involved in developing each component as

measured by σ; and (ii) the relative degree of innovativeness between the two compo-

nents as measured by k. We begin with establishing the optimal contest format for a

product whose components are technological substitutes (Section 3.4.1), and then move

on to characterize the optimal contest format for a product with complementary com-

ponents (Section 3.4.2). Throughout, to facilitate readability and to concentrate on the

managerial implications of our analysis, we do not present any mathematical derivations

in the main body of the manuscript. The technically interested reader is referred to

Appendices B.2 and B.3, where we provide closed form derivations of all equilibrium

results.
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3.4.1. Technological Substitutes

To answer the question of which contest format is superior for the buyer, it is imperative

to understand the main benefits of the different contest formats and how these benefits

are affected by the absolute magnitude of innovation required (i.e., σ) and the relative

degree of innovativeness between components (i.e., k). Recall that the performance of

component j as developed by supplier i, vij, depends on both the supplier’s development

effort eij as well as a technological shock ζij. The optimal contest format is thus the

one that best allows the buyer to incentivize significant development efforts while at

the same time offering him a chance to hedge against harmful technological shocks. A

system contest is particularly strong in the former attribute as the monetary stakes in

this contest format are highest and hence effort incentives are largest. In contrast, a

component contest allows the buyer to choose (and combine) ex post the two best com-

ponents and thus provides an excellent hedge against high technological uncertainties as

found in many innovation projects. How these different benefits influence the suppliers’

development efforts in the different contest formats—and how these efforts change in σ

and k—is the core of Lemma 3.1.

Lemma 3.1. Suppose components are technological substitutes.

(i) For k = 1, the unique symmetric perfect Bayesian Nash equilibrium for both

system and component contest satisfies the following properties: (a) The buyer’s optimal

award split in a component contest is p∗ = 1/2; (b) esys1 = esys2 > ecpo1 = ecpo2 > 0.

(ii) For k → ∞, the unique symmetric perfect Bayesian Nash equilibrium for both

system and component contest satisfies the following properties: (a) The buyer’s optimal

award split in a component contest is p∗ = 1; (b) esys1 = esys2 = 0 and ecpo1 > ecpo2 = 0.

Lemma 3.1(i) is concerned with situations in which both components require an

equaling level of innovation (i.e., k = 1); that is both components bear the same level

of risk during component development. In these cases, both components have ex ante

an equally strong effect on the performance of the integrated system, and this is why

both the buyer (in terms of the award split) as well as the suppliers (in terms of effort)

spread their bets equally across the two components.

To understand the intuition behind this result in more detail, consider initially

the buyer’s and the suppliers’ decisions in a component contest. The buyer seeks to

maximize the performance of the submitted components, and this is akin to maximizing
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the suppliers’ development efforts across the two component contests. Since each supplier

invests the more effort in a contest the higher the promised award is, the buyer has

to carefully balance the distribution of awards between the two different component

contests. But why is it now optimal to split the total award equally (i.e., p∗ = 1/2)?

Recall that each supplier’s marginal return on effort is decreasing, whereas his marginal

costs are increasing. It is thus most efficient for the buyer if the suppliers invest equal

efforts in each of the two component contests. And the only way for the buyer to induce

such a balanced distribution of efforts is to offer the same award in each contest. As a

result, equilibrium efforts are also identical across component contests: ecpo1 = ecpo2 .

A similar reasoning applies to system contests as well. Yet this time it is not the

buyer that is most interested in an efficient distribution of efforts across components

(as the buyer only cares about the integrated system’s final performance), but it is the

suppliers that try to maximize the efficiency of their effort provision. As before, for each

supplier the return on effort is diminishing whereas marginal costs are increasing, and

thus each supplier splits his efforts evenly between components: esys1 = esys2 .

Finally, the result in Lemma 3.1(i) that has the strongest implications on the buyer’s

choice of contest format is the relation between equilibrium efforts in a system as com-

pared to a component contest: When components require a similar magnitude of in-

novation (i.e., k = 1), then suppliers unequivocally invest higher efforts in a system

contest. This monotonicity is noteworthy as a change from system to component con-

test introduces two diametrically opposite effects. On the one hand, the award that the

suppliers compete for is twice as high in a system contest as in each of the individual

component contests (A vs. A/2), and higher financial stakes clearly promote more effort

provision. On the other hand, each supplier encounters more uncertainty in a system

contest than in a component contest, and higher levels of risk deter the suppliers’ to

invest in development effort. Yet, Lemma 3.1(i) reveals that the first effect, which favors

an increase in effort, always dominates the latter effect for components with a similar

degree of innovativeness. Interestingly, Lemma 3.1(ii) reverses this finding when one

component requires a significantly higher level of innovation than the other component

(i.e., k →∞).

Specifically, for components with a sizeable difference in innovativeness the main

benefit of a system contest—inducing higher development efforts—is entirely absent.

This is happening because with a large k, the performance of the integrated system

is primarily determined by the performance of the more innovative (and thus riskier)
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component, and for such a component it is the technological uncertainty that ultimately

determines performance. In other words, development efforts play a subordinate role

in determining the final performance of the integrated system and therefore suppliers

refrain from incurring overly high effort costs.

To the contrary, in a component contest effort still matters. In particular, for

the less innovative component the suppliers’—and also the buyer’s—return on effort is

substantially larger than for the more innovative component, and therefore suppliers

fully dedicate their development efforts to the less innovative component. This explains

why for k → ∞, equilibrium development efforts are higher in a component than a

system contest. We are now well equipped to discuss the buyer’s optimal contest format

choice.

Proposition 3.1. Suppose components are technological substitutes. Then, the following

profit relations hold in equilibrium:

(i) There exists a threshold σsub > 0 such that if σ ∈ (σsub, σsub), there exists a

threshold ksub > 1 such that Πsys
sub > Πcpo

sub if k ∈ [1, ksub). Moreover, σsub → 0 as n→∞.

(ii) For any fixed σ > σsub there exists a threshold ksub < ∞ such that Πcpo
sub > Πsys

sub

if k ∈ (ksub,∞].

(iii) For any fixed k ≥ 1 there exists a threshold σsub <∞ such that Πcpo
sub > Πsys

sub if

σ ∈ (σsub,∞].

Proposition 3.1 establishes—and the left panel of Figure 3.2 visualizes—the buyer’s

optimal contest format choice for a product with substitute components, highlighting

the role that the magnitude of innovation involved plays when choosing the optimal

contest format. A couple of managerial insights abound.

First and foremost, Proposition 3.1 shows that the buyer should use a system contest

to procure the integrated system only if two conditions are simultaneously satisfied: (1)

Both components should be incremental innovations only (i.e., σ < σsub and k < ksub),

and (2) the supplier base should be relatively small (i.e., small n). If either of these

two conditions is violated—that is, if at least one component requires radical innovation

(i.e., high σ or high k) or the buyer’s supplier base is large—the buyer should opt for

a component contest and procure the components individually. The intuition for this

result is instructive. For incrementally innovative components and in the presence of a

small supplier base, it is a supplier’s development efforts that have the biggest impact

on the final product’s performance. As such, the buyer chooses the contest format
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that offers the highest effort incentives, which is a system contest. However, Lemma

3.1 has shown that these effort incentives deteriorate quickly when at least one of the

components requires more radical innovation. Under radical innovation—that is, when

the effort performance link becomes highly tenuous—the possibility to ex post combine

the best components—the key feature offered by a component contest—becomes more

and more valuable, and therefore the buyer implements a component contest in these

cases.

Second, Proposition 3.1 also reveals how the size of the supplier base impacts the

buyer’s contest format choice. Two forces are at work here. From a supplier’s perspec-

tive, the presence of a larger number of competitors diminishes each supplier’s chances

of winning the contest, thereby inducing each supplier to invest less effort into compo-

nent development. From the buyer’s perspective, the probability that a single supplier

develops the best two components drastically shrinks as n increases, and simultaneously,

chances rise that for each of the components one of the suppliers will develop an excep-

tionally good component. Taken together, these implications of a larger supplier base

lead the buyer to implement a component contest when n is sufficiently large, irrespec-

tive of the level of innovation involved in component development. As a side note, this

finding also implies that the buyer should not always choose the contest format that

promises the highest supplier efforts.

From a practical perspective, Proposition 3.1 gives clear advice. When the buyer

has access to a large supplier base, which is oftentimes the case in crowdsourcing en-

vironments, then a separate contest should be dedicated to each required component.

However, for very complex technological products like automotive lighting systems, buy-

ers can typically tap into only a handful of suppliers, and in these situations, it is the

level of innovation that ultimately determines whether a system or component contest

should be used.

3.4.2. Technological Complements

In the previous section, we have established which contest format is optimal for a buyer

wishing to procure a product whose components are technological substitutes. At this

point, it is then still an open question whether the particular form of the technological

relationship between the individual components affects our results—and thus our man-
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Figure 3.2.: The Optimal Contest Format.
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Notes: The buyer’s optimal choice of contest format for technological substitutes (left panel)
and technological complements (right panel). The buyer prefers a component contest in the
white area (region C), and a system contest in the light gray area (region S). No pure strategy
equilibrium exists in the dark gray area (region N). The parameters are: r(x) = x, c(x) = x2,
n = 2, A = 1.

agerial recommendations—or not. Answering this question is the primary purpose of

this section.

As a starting point for our discussion, suppose that the buyer hosts a component

contest—i.e., a separate contest for each component—and consider a supplier participat-

ing in at least one of these contests. In each contest, regardless of whether the supplier

participates in both or only one contest, the supplier entirely focuses on developing the

best component for this contest, without worrying about how this component may con-

tribute to the overall performance of the integrated system. Put differently, the use of a

component contest induces the suppliers to consider each component in isolation, and as

a result, it is irrelevant for their effort choices whether the components are technological

substitutes or complements. Clearly, this is not true for a system contest. The following

Lemma compares the suppliers’ equilibrium efforts between a system and a component

contest for different levels of absolute and relative innovation.

Lemma 3.2. Suppose components are technological complements.

(i) For k = 1, there exists a symmetric perfect Bayesian Nash equilibrium for both

system and component contest that satisfies the following properties: (a) The buyer’s

optimal award split in a component contest is p∗ = 1/2; (b) esys1 = esys2 > ecpo1 = ecpo2 > 0.
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(ii) For k → ∞, the unique symmetric perfect Bayesian Nash equilibrium for both

system and component contest satisfies the following properties: (a) The buyer’s optimal

award split in a component contest is p∗ = 1; (b) ecpo1 > esys1 > ecpo2 = esys2 = 0.

Lemma 3.2 reveals that many of our observations for substitute components immedi-

ately transfer to the case of technological complements. To be concrete, for components

that demand an equaling level of innovation (i.e., k = 1) it remains true that the buyer

and the suppliers split their investments equally across both components, and that the

suppliers always invest more development effort in a system contest. At the same time,

however, Lemma 3.2(ii) indicates that when one of the components requires a signifi-

cantly larger amount of innovation than the other component, then the technological

relationship between components has an impact on supplier efforts. More specifically,

even when the relative degree of innovation becomes very large (i.e., k → ∞), each

supplier continues to invest effort in the less innovative component (i.e., component 1)

during a system contest—a finding that is at odds with our findings for substitutable

components (cf. Lemma 3.1(ii)). Why is this happening? Recall that for a product with

technologically complementary components the performance of the integrated system

is the minimum of the two components’ individual performances. In other words, the

integrated system is only as good as its weakest component. Given that k is large, com-

ponent 2 is associated with a high technological uncertainty, thus making it very likely

that the development of this component results in an extreme success or a severe failure.

In the latter case effort expended into the development of component 1 is futile, but in

the former case the performance of component 1 is the limiting factor for the integrated

system’s performance. Consequently, each supplier sustains an effort investment into

component 1 in order to improve the performance of the component that is likely to be

the weakest link and to increase his chances of winning the contest.

Despite this difference between Lemmas 3.1(ii) and 3.2(ii), a key result from Section

3.4.1 remains valid irrespective of whether components are technological substitutes or

complements: when the relative degree of innovation between components is sizeable,

then the overall effort that a supplier invests into the development of both components

is maximized under a component contest. Based on this observation, it is no longer

surprising that structurally our results regarding the buyer’s optimal contest format

choice carry over from the case of technological substitutes to the case of technological
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complements. Proposition 3.2 and the right panel of Figure 3.2 make this argument

explicit.

Proposition 3.2. Suppose components are technological complements. Then, the fol-

lowing profit relations hold in equilibrium:

(i) There exists a threshold σcml > 0 such that if σ ∈ (σcml, σcml), there exists a

threshold kcml > 1 such that Πsys
cml > Πcpo

cml if k ∈ [1, kcml). Moreover, σcml → 0 as

n→∞.

(ii) For any fixed σ > σcml there exists a threshold kcml <∞ such that Πcpo
cml > Πsys

cml

if k ∈ (kcml,∞].

(iii) For any fixed k ≥ 1 there exists a threshold σcml <∞ such that Πcpo
cml > Πsys

cml if

σ ∈ (σcml,∞].

As in the case of technological substitutes, the buyer uses a system contest when

both components require only incremental innovation and the available supplier base

is limited in size. In contrast, for products that require more radical innovation or in

situations with many potential suppliers the buyer seeks to implement a component

contest. In the latter situation, the buyer sacrifices the suppliers’ solution efforts in

favor of having the option to ex post select the best components out of a large set of

alternatives. This finding is reminiscent of traditional parallel path results as described

in, e.g., Dahan and Mendelson (2001) and Boudreau et al. (2011), but transfers them to

contests involving multiple interacting products.

From a managerial perspective, the most important finding of Proposition 3.2 is

that the buyer’s optimal choice of contest format does not depend on the technological

relationship between components. Specifically, independent of whether an integrated

system consists of technological substitutes or complements, the answer to the question

of which contest format to select depends solely on the components’ absolute and relative

level of innovation and the size of the available supplier base.

3.5 Performance Correlation

To clearly elicit the key tradeoffs immanent to a buyer’s contest format choice, we have

so far ignored the effects of performance correlation across components on both, the

suppliers’ solution efforts and the buyer’s choice of contest format. However, given that
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performance correlation between different components developed by the same supplier

is an integral aspect of many product development initiatives in reality, we now set out

to study the implications of performance correlation as represented by the parameter ρ.

For a supplier, performance correlation across development projects for different

components may arise naturally for manifold reasons. For instance, both development

projects might be overseen by the same project manager who imposes his “beauty ideals”

on both components; or the supplier might simply use similar technological approaches

to tackle the different development projects. And whereas each supplier can proactively

influence his own level of performance correlation, the buyer has no lever to directly

control the amount of correlation exhibited by each individual supplier. In other words,

from the buyer’s perspective, performance correlation is a given trait inherent to each

supplier’s development processes. Yet this does not imply that the buyer cannot in-

fluence the amount of performance correlation present in his procurement contest. To

the contrary, he can do so by, e.g, selecting which suppliers are invited to participate in

which contest. For instance, in a component contest, the buyer could decide to allow

each individual supplier to participate in only exactly one component contest, thereby

effectively breaking correlation between the two component contests. Alternatively, he

could oblige each supplier to participate in both component contests, thus introducing

a higher level of performance correlation across the two contests. Similarly, in a sys-

tem contest, the buyer could choose to invite only suppliers with a very focussed or a

more diverse technology base, thereby directly influencing the latent level of performance

correlation in his procurement mechanism.

Many options to influence the level of performance correlation in the procurement

contest abound, but just what amount of performance correlation would be optimal for

the buyer? And how is the buyer’s choice of contest format affected when system and

component contests exhibit different levels of performance correlation? Answering these

questions is the purpose of this section.

3.5.1. Performance Correlation in Component Contest

When hosting a component contest, does the buyer prefer more or less performance

correlation between the two different components? The following Proposition highlights

that the answer to this question critically depends on the technological relationship
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between the components; that is, whether components are technological substitutes or

complements.

Proposition 3.3. In equilibrium, the buyer’s expected profit from hosting a component

contest satisfies the following sensitivities:

(i) Suppose components are technological substitutes. Then, Πcpo
sub is invariant with

respect to ρ.

(ii) Suppose components are technological complements. Then, Πcpo
cml increases in ρ.

The first noteworthy result of Proposition 3.3 is that in a component contest in-

volving an integrated system with substitutable components performance correlation has

no effect on the buyer’s profits. To see why, recall that in a component contest, each

supplier considers each of the two contests in isolation, and therefore his development

efforts are not affected by performance correlation. Also, the substitutable nature of

the components precludes the buyer from exploiting the benefits of correlation on the

overall level of technological uncertainty. Hence, since neither the suppliers’ efforts nor

the overall level of technological uncertainty are affected by performance correlation in

the case of technological substitutes, the buyer’s profits are invariant in ρ. This is not

true for technological complements (Proposition 3.3(ii)). As for technological substi-

tutes supplier development efforts remain unaffected by performance correlation, but

this time the buyer can exploit the effect of correlation on the overall level of technologi-

cal uncertainty in the procurement mechanism. Specifically, the higher the performance

correlation between the individual components, the more similar are their performances.

And since the integrated system is only as good as its weakest component, the buyer

benefits from higher levels of performance correlation.

Proposition 3.3 also has immediate implications for practice. A buyer always

(weakly) benefits from performance correlation in a component contest—and this find-

ing is independent of whether components are incremental or radical innovations, the

technological relationship between components, and the size of the supplier base. But

most importantly, a buyer can take simple, yet effective measures to drive up perfor-

mance correlation in his procurement contest. For instance, the buyer should always

oblige suppliers to participate in both contests, instead of limiting access to only one

contest. Similarly, the buyer should preferably invite only such suppliers that are known

to develop components with well-balanced performances, and forgo inviting suppliers

that are overly specialized on only one component.
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3.5.2. Performance Correlation in System Contest

In the preceding section, we have established that for a component contest the effect

of performance correlation on the buyer’s profits crucially depends on the technologi-

cal relationship between components. Rather surprisingly, it is not the technological

relationship that determines the sensitivity of the buyer’s profits in a system contest;

instead it is the magnitude of innovation required to develop the components as well as

the size of the supplier base that plays a vital role.

Proposition 3.4. (i) Suppose components are technological substitutes. Then, Πsys
sub

increases in ρ if and only if nσ2(1 + k2 + 2kρ) ≥ 2Aη′(Aµ(n)/(nσ
√

1 + k2 + 2kρ)).

(ii) Suppose components are technological complements. Then, Πsys
cml decreases in ρ

if k and σ are sufficiently small, and increases if k or σ are sufficiently large.

The main finding of Proposition 3.4 is as follows. For products that are made of

two incrementally innovative components (i.e., low σ and k) and for which the supplier

base is narrow (i.e., small n) the buyer prefers a low degree of performance correlation,

whereas in any other situation—that is, if at least one component is a radical innovation

or the supplier base is large—the buyer wishes to have substantial levels of performance

correlation in his procurement contest. To better understand this finding, recapitulate

that from the buyer’s perspective, the success of the procurement contest hinges on

two factors: the suppliers’ development efforts and the performance uncertainty. More

specifically, in contests involving low levels of innovation and a small supplier base it

is particularly the supplier effort that drives the performance of the final product. In

contrast, in contests involving radical innovation or a large supplier base the final prod-

uct performance is predominantly determined by the inherent technological uncertainty.

Clearly, in the former case the buyer prefers conditions that lead suppliers to engage

in high development efforts, whereas in the latter case the buyer prefers high levels of

uncertainty—and the higher the performance correlation is, the higher is the overall

technological uncertainty and the lower are the suppliers’ effort incentives.

Proposition 3.4 provides clear advice for managers overseeing the procurement of a

complex innovation that is sourced through a system contest. Whether performance cor-

relation is beneficial for the procurement mechanism, or not, depends on the magnitude

of innovation required and the size of the supplier base, but not on the technological

relationship between components. And the buyer can steer the degree of performance
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correlation in his procurement contest by inviting only those suppliers that offer the right

level of performance correlation; that is, suppliers that employ the right technologies and

that have an appropriate organizational structure.

3.5.3. Heterogeneity in Performance Correlation

We conclude our study of performance correlation by investigating how structural dif-

ferences in correlation between the different contest formats may influence the buyer’s

optimal contest format choice. To be more concrete, we would expect that in a sys-

tem contest—where each supplier develops the full product instead of only an isolated

component—performance correlation is at least as high as in a component contest (for

a given set of suppliers). To include this possibility into our model setup, we let ρsys

and ρcpo be the performance correlation in a system and component contest, respec-

tively, and we now examine how the buyer’s choice of contest format changes with

∆ρ = ρsys − ρcpo ≥ 0.

Proposition 3.5. (i) Suppose components are technological substitutes. Then the same

preference ordering between contest formats as given in Proposition 3.1 applies for any

∆ρ ≥ 0.

(ii) Suppose components are technological complements. Then: (a) For small k and

small σ, Πsys
cml > Πcpo

cml for any ∆ρ ≥ 0. (b) There exists a threshold σρ > 0 such that for

all σ ∈ (σρ,∞] there exists thresholds ∆ρ and ∆ρ, with 0 < ∆ρ < ∆ρ < 1, such that

Πcpo
cml > Πsys

cml for any ∆ρ < ∆ρ and Πsys
cml > Πcpo

cml for any ∆ρ > ∆ρ.

The results presented in Proposition 3.5 emphasize that our initial results regard-

ing the buyer’s optimal contest format choice—as presented in Propositions 3.1 and

3.2—remain valid even when the different contest formats exhibit varying levels of per-

formance correlation. In particular, whereas a system contest is the buyer’s optimal

choice whenever both components are incremental innovations, the component contest

becomes the buyer’s preferred contest format for more innovative components. How-

ever, part (b) of Proposition 3.5(ii) shows that there is one notable exception to this

general rule: When the heterogeneity in performance correlation between system and

component contest becomes sizeable (i.e., ∆ρ > ∆ρ), then the buyer prefers a system

contest even when both components are radical innovations (i.e., large σ). But why is

this happening? Recall that for radical innovations, supplier efforts have only a minor
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influence on product performance; instead it is the technological uncertainty that pre-

dominately determines the performance of the integrated system. And with increasing

∆ρ, relative more correlation—and thus also more uncertainty—is introduced into the

system contest, whereas the component contest exhibits relatively less correlation—and

thus less uncertainty. Eventually, there exists a threshold ∆ρ beyond which the system

contest format displays a higher degree of technological uncertainty than a component

contest, and this is why the system contest becomes the optimal choice for the buyer in

the face of radically innovative components.

3.6 A Heterogeneous Supplier Base

Until now we have assumed a homogeneous supplier base in the sense that each supplier

i ∈ {1, . . . , n} is endowed with an identical effort-performance tradeoff (i.e., identical r

and c across suppliers) and that all suppliers equally value the award A promised by the

buyer. Clearly, such a symmetry assumption is a simplification of reality, and to study

the impact of a heterogeneous supplier base on the buyer’s contest format choice, we

now relax the latter assumption of equal award valuations. In reality, each supplier’s

perceived value of the award A depends on the exact terms of the final procurement

contract, and different suppliers may be more or less effective in adhering to these terms,

which naturally creates asymmetries in their valuation of the contract.

To simplify the exposition we restrict our attention to a setting with two suppliers,

and we assume that supplier 1 is more effective in fulfilling the supply contract than

supplier 2. More precisely, supplier 1 receives a utility of A from winning an award

of size A, whereas supplier 2 only gains αA, with α ∈ (0, 1]. As a result of these

heterogeneous award valuations, the two suppliers invest different amounts of effort

during the procurement contest: Supplier 1, who has a higher valuation for winning

the contest, always invests more development effort than supplier 2, but both suppliers

reduce their efforts as α decreases. In other words, supplier asymmetry has a negative

impact on effort provision. But how does this negative effect influence the buyer’s choice

of contest format?

As Figure 3.3 visualizes, heterogeneity in the supplier base only has a minor im-

pact on the buyer’s preferences across contest formats. In particular, independent of

the magnitude of supplier asymmetry, the buyer implements a system contest if both
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Figure 3.3.: The Optimal Contest Format with a Heterogeneous Supplier
Base.
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Notes: The buyer’s optimal choice of contest format for technological substitutes (left panel)
and technological complements (right panel) for different degrees of heterogeneity in award
valuations α. The buyer prefers a component contest in region C, and a system contest in
region S. No pure strategy equilibrium exists in region N. The parameters are: r(x) = x,
c(x) = x2, n = 2, A = 1.

components are incremental innovations, and chooses a component contest otherwise.

We conclude that our key structural results—as presented in Propositions 3.1, 3.2 and

3.5—seem to be fully robust to the introduction of heterogeneity into the supplier base.

As an aside, our results also indicate that a buyer should always strive for a symmetric

and well-balanced supplier base.

3.7 Conclusions

In practice, procurement contests have become a popular tool for buyers to gain access

to innovative products developed by their supplier base. Yet, tapping into the suppliers’

innovation efforts is a challenging endeavor. In particular, to fully exploit the benefits

of hosting a procurement contest, buyers need to be able to tailor their contests to

the characteristics of the products to be acquired and to their supplier base. This is

particularly true so if the desired innovation is a technologically complex product such

as an automotive lighting system. For such complex products, the most prominent

question for the buyer is whether to procure the entire system from a single supplier,
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or whether to source the product’s individual components from different suppliers. This

question is at the very heart of our research, and clearly, the answer to it also has strong

implications on how the buyer should conceptualize his procurement contest.

First, we find that a buyer should use a system contest whenever all product compo-

nents are merely incremental innovations and the firm’s supplier base is relatively small.

In contrast, in the presence of radical innovation or a large supplier base, the buyer

should choose to implement a component contest. Put differently, when deciding on the

optimal contest format managers only have to consider two dimensions: (i) the magni-

tude of innovation required for each component; and (ii) the size of the supplier base.

Relying only on these two factors significantly reduces the complexity of the managerial

decision problem in practice. Both the required level of innovation and the number of

potential suppliers are well-known to the firm, and at the same time managers need not

worry about more subtle—and less tangible—dimensions such as the exact technological

relationship between components or the degree of heterogeneity and correlation within

the supplier base.

Second, our results give clear advice on how a buyer should conceptualize his sup-

plier base in the long term, and which suppliers he should invite to the different pro-

curement contests. As a general managerial guideline, the buyer should always strive for

a relatively homogeneous supplier base; strong differences in the suppliers’ capabilities

have a severely negative effect on each supplier’s incentives to exert development efforts.

In contrast, whether the buyer prefers higher or lower levels of performance correlation

in his supplier base depends on the contest format as well as the innovativeness of the

product. It is interesting to observe that there are again only two important dimen-

sions that a firm has to consider, and both of them are again relatively easy to observe.

Our results therefore encourage managers to actively engage in the management of their

supplier base when it comes to complex innovations, because this management problem

might be less complex than perceived at first glance.

Our model has limitations that should be mentioned. To develop a parsimonious

model and maintain mathematical tractability we have made some simplifying assump-

tions regarding the characteristics of the considered products. In particular, we restrict

the number of components in the integrated system to be two, thereby disregarding

more complex or more hierarchical product architectures. We believe that incorporat-

ing hierarchical product architectures may lead to important and interesting additional

insights, and we see this as a promising avenue for future research. Also, we have consid-
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ered only the cases of perfectly substitutable and perfectly complementary components,

leaving aside the large class of products that exhibit intermediary forms of technolog-

ical relationship. Lastly, we have assumed that the buyer treats all suppliers equally.

In reality, however, the buyer may strategically handicap certain suppliers to improve

contest outcomes and to influence the evolution of his supplier base.
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Chapter IV

Managing Delegated R&D Testing

with Gerrit Schumacher1

4.1 Introduction

Scholars have long acknowledged the crucial role that design testing plays in the success

of any research and development (R&D) or new product development (NPD) initia-

tive (Simon 1969, Allen 1977, Clark and Fujimoto 1989, Wheelwright and Clark 1992,

Thomke 1998). This view is confirmed by the significant amount of time and resources

that firms invest in activities related to testing their new products. Thus the automotive

industry spent more than $100 billion (US) on R&D activities in 2015, with a large

portion of this budget dedicated to design testing (Jaruzelski and Hirsh 2016); Airbus

spent more than seven years evaluating different design options for its next-generation

A380 aircraft before deciding on the final design (The Economist 2007); and the high-

tech sector is expected to invest 40% of its information technology budget in new testing

processes—such as “virtual” testing and robotics—by 2019 (Buenen and Muthukrish-

nan 2016). These numbers indicate that firms continuously seek to improve their testing

processes, from both a technological and a managerial perspective, as a way of reducing

costs and resource consumption yet without compromising the quality of their testing

efforts.

Prior academic work has identified many aspects that bear on the efficacy of a firm’s

design-testing process—including such diverse factors as test efficiency, testing costs,

lead times, and learning effects—and thus on the firm’s optimal testing strategy (see,

e.g., Weitzman 1979, Dahan and Mendelson 2001, Loch et al. 2001, Erat and Kavadias

1The research presented in this chapter is based on a paper entitled “Delegated Testing of Design
Alternatives: The Role of Incentives and Testing Strategy”, coauthored with Gerrit Schumacher.
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2008). So far, however, one critical aspect has received only scant attention in the

literature: design testing is often delegated to self-interested experts who may pursue

their own respective agendas. It is an organizational reality in many industries that

information asymmetry between senior management and these testing experts distorts

the outcomes of a testing process (Sommer and Loch 2009, Mihm 2010, Schlapp et al.

2015). The goals of this paper are to determine (i) precisely how information asymmetry

affects a firm’s testing process and (ii) how the firm can mitigate the negative effects of

associated agency issues by devising appropriate incentive structures and an adequate

testing strategy.

One can more clearly understand the effect of information asymmetry on a firm’s

testing process by considering a wind turbine manufacturer that seeks to set up a

new “wind farm”—a grid-connected installation of multiple wind turbines—in a pre-

determined location.2 Wind farms are built to convert the wind’s kinetic energy into

electricity (Krohn et al. 2009). A wind farm is a viable (i.e., an economically rational)

contender in the production of electricity only if it satisfies three basic requirements:

“(1) produce energy, (2) survive, and (3) be cost effective” (Manwell et al. 2009, p. 505).

In fact, the “produce energy” requirement has become a moot point. Wind turbine

manufacturers can now produce a variety of wind turbine designs that have proven

their technological effectiveness through standardized testing procedures and widespread

application in practice. Moreover, technical developments are pushing modern wind

turbines closer to the theoretical efficiency limits dictated by Betz’s law3 (Burton et al.

2011, p. 63); hence current wind turbine designs are an excellent choice also for future

wind farms. Yet one crucial question remains: Which turbine design is the best choice

for a given wind farm location?

The answer to this question is closely tied to evaluating Manwell et al.’s requirements

(2) and (3). A wind farm can be cost effective and long-lived only if the wind turbines

used are technically reliable and do not result in strong negative externalities on the

environment. In other words: wind farm builders are looking for the wind turbine designs

that best match site-specific wind conditions, climatic factors, and regulatory constraints

yet have minimal effects on animal wildlife, emit little noise, and do not generate severe

2The siting of wind farms usually proceeds in close collaboration with regulatory bodies. Therefore,
wind turbine manufacturers can influence but not ultimately control decisions about where new
wind farms will be located.

3According to Betz’s law, no turbine can capture more than 59.3% of the wind’s kinetic energy.
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electromagnetic interference (Manwell et al. 2009, pp. 321ff). Unfortunately, many of

these factors are known only imperfectly ex ante, and there are no standardized testing

procedures for evaluating them (in contrast to the purely mechanical testing of the

energy produced by a particular wind turbine design). Instead, wind farm builders must

rely on teams of experts that acquire and deliver information regarding the suitability

of different wind turbine designs for a given location. Since there is no standard testing

procedure, this information acquisition process—and the interpretation of the acquired

information—is a process that creates tacit knowledge and that relies strongly on the

experts’ prior experience and knowledge, the quality of information sources, the synthesis

of implicit information, and often also on gut feeling.

As a result, it is almost impossible for a wind farm builder to assess the qual-

ity of the information on which expert recommendations are based, let alone to verify

that the experts have actually shared their knowledge (and all acquired information)

with senior management. To overcome this information asymmetry, wind farm builders

must adequately incentivize those experts to investigate design suitability in a thorough

manner and to share the test outcomes with senior management in a truthful manner.

These incentives must, of course, be aligned with the firm’s overall testing strategy (e.g.,

parallel vs. sequential testing). Hence the questions that arise are: What is the firm’s

optimal testing strategy, and what are the corresponding optimal incentive structures?

Our paper’s main contribution is development of a game-theoretic model that delivers

answers to these questions.

In particular, this study makes three main contributions to the literature. First we

show that—almost regardless of the firm’s testing strategy—the optimal compensation

schemes that adequately incentivize the experts have a surprisingly simple two-payment

structure: a success bonus; and a consolation award if an expert’s design is not chosen

for development. The optimal balance between these two payments depends on the

informational quality of an expert’s test outcomes. For rather simple designs that can be

tested with high precision, the firm should place a strong emphasis on the success bonus.

Yet designs that are more complex and subject to a less precise testing process demand

more tolerance for failure, so in these cases the firm should offer higher consolation

awards. In short, a one-size-fits-all approach to incentives is not advisable.

Second, we find that the firm’s optimal testing strategy depends primarily on two

parameters: the testing costs and the test efficiency. For low testing costs, the firm prefers

a parallel testing strategy whereby all design alternatives are tested simultaneously; for
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higher testing costs, a sequential testing approach is the firm’s preferred choice. We also

address the question of how best to conceptualize a sequential strategy under delegation;

that is, in which order should the designs be tested, and how many experts should be

hired for the testing process? Our analysis reveals that the greater the heterogeneity

in test efficiency across the design alternatives, the more experts the firm should hire.

The reason is that employing many experts makes it more difficult for any one expert

to extract high information rents—an issue that is most salient when the quality of

testing is unbalanced across designs. With regard to the optimal order in which design

alternatives should be tested, we challenge results in the literature that argue for the

optimality of “reservation price rules” (Weitzman 1979, Adam 2001, Erat and Kavadias

2008). We establish that, when there is information asymmetry, it might be better for

the firm to test less promising designs first in order to reduce agency costs.

Our third main contribution is to show that information asymmetry always results

in a suboptimal testing process; of perhaps even more importance is our finding that the

negative effect of information asymmetry is greater on parallel than on sequential testing

strategies. These results indicate that, under delegation, a parallel testing approach is

less suitable than promised by extant research (Dahan and Mendelson 2001, Loch et al.

2001). This finding likely also explains why so few parallel testing efforts are observed

in practice despite sharply reduced testing costs in recent years: firms simply want to

avoid the high agency costs associated with parallel design testing.

4.2 Related Literature

The challenges associated with managing the design process of a novel product have

been a long-standing and central concern in the NPD literature (Simon 1969, Allen

1977, Clark and Fujimoto 1989, Wheelwright and Clark 1992, Thomke 1998, Loch et al.

2001, Pich et al. 2002, Erat and Kavadias 2008, Sommer et al. 2009). In his foundational

work, Simon (1969, pp. 128f) describes the product design process “as involving, first,

the generation of alternatives and, then, the testing of these alternatives”. This view has

served as the foundation of much of the subsequent academic literature, and as such it

has triggered numerous extensions (see, e.g., Clark and Fujimoto 1991, Wheelwright and

Clark 1992, Thomke 1998, 2003). Following the seminal classification of Simon (1969),

the extant literature can be divided into two broad categories. The first group of studies
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focuses on the search dimension of product design by investigating successful strategies

for finding design alternatives. In contrast, research in the second group emphasizes

the testing dimension of product development by analyzing how best to evaluate the

performance of a given design alternative.

The literature on optimal search dates back to the pioneering work of March and

Simon (1958) and Simon (1969), who were among the first to describe organizational

problem solving as a search process. This notion of viewing the innovation process as

a search over a complex design landscape inspired the subsequent proposal of different

conceptual models to describe the underlying search spaces. The two most influential

models of search spaces are the exploration–exploitation trade-off described in March

(1991) and Manso (2011) and the NK landscape of Kauffman and Weinberger (1989)

and Kauffman (1993). Building on these conceptualizations of a search space, scholars

have extensively investigated how the efficiency of the search process—and thus the

firm’s innovation performance—changes with the complexity of the problem (Ethiraj and

Levinthal 2004, Mihm et al. 2003, Billinger et al. 2014), organizational hierarchy (Rivkin

and Siggelkow 2003, Siggelkow and Rivkin 2005, Mihm et al. 2010), team structure

(Kavadias and Sommer 2009, Girotra et al. 2010), unforeseeable uncertainties (Sommer

and Loch 2009, Sommer et al. 2009), the particular search strategy employed (Sommer

and Loch 2004, Kornish and Ulrich 2011), and competition (Oraiopoulos and Kavadias

2014). More recently, Erat and Krishnan (2012), Lewis (2012), and Ulbricht (2016)

have analyzed how delegation affects both the breadth and overall performance of a

search process. All these cited papers focus on how to discover a set of potentially

promising design alternatives, which is the quintessential first step in an innovation

process. However, we are concerned with the second step in that process: determining

the most reliable way to select the best alternative from among the candidates. As a

consequence of that different focus, the formal model we propose differs considerably

from those in the search literature.

Much closer to our work is the literature on design testing as initiated by Weitzman

(1979). In his terminology, any design alternative can be considered a “black box”, and

uncertainty about its value can be resolved only by costly testing activities. This generic

model of a testing process has become a building block for almost all research on design

testing, and it has proven itself flexible enough to accommodate two very different kinds

of testing processes: feasibility testing and selection testing.
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The primary purpose of feasibility testing is to discover whether (or not) a given

design is technologically feasible. Answering this question requires that the design in

question be repeatedly tested until there is sufficiently strong evidence either for or

against its feasibility. Prime application areas for this testing procedure include the

pharmaceutical industry, where a new molecule is tested and retested during clinical

trials to evaluate whether it reliably produces the desired effects. Research on feasibility

testing seeks to answer such questions as when in the development process to test the

design as well as how many tests to pursue and at what level of fidelity to a real-

world counterpart (see, e.g., Thomke and Bell 2001, Terwiesch and Loch 2004). In

the economics literature, the question of how to motivate an expert’s participation in

this dynamic information acquisition process has recently gained traction (Gromb and

Martimort 2007, Gerardi and Maestri 2012, Hörner and Samuelson 2013), leading to

a theory of optimal incentives for feasibility testing. There are two ways in which our

paper is connected to that stream of literature. First, from previous work on feasibility

testing we borrow the insight that nearly all testing processes are imperfect and so, even

with the most thorough of testing efforts, there will still be uncertainty about a design’s

true value. Second, we answer the question of how the firm should manage delegated

testing activities when it is concerned with selection testing—the second main challenge

in design testing. Thus our work complements the extant literature and broadens our

knowledge about devising optimal incentives and strategies for delegated design testing.

In contrast to feasibility testing, which focuses on the technological feasibility of a

single design, selection testing is concerned with choosing the best alternative out of a

set of different candidate designs. For instance, as explained in the Introduction, wind

farm builders are confronted with such a selection issue when choosing a particular wind

turbine design for a new wind farm. The existing literature describes two diametrically

opposed testing strategies to tackle this issue: sequential and parallel testing. Weitzman

(1979) advocates the use of a sequential testing approach, in which the different designs

are tested in sequence and the testing process can be stopped after each design test. In

his seminal contribution, he establishes the now classical reservation price rule (a.k.a.

“Pandora’s rule”) for determining both the order in which to test the alternatives and

also when to stop testing. Adam (2001) and Erat and Kavadias (2008) study how

these results are affected by the firm’s ability to learn between design tests. In contrast

to those papers, Dahan and Mendelson (2001) promote the use of a parallel testing

approach in which all design alternatives are tested simultaneously. Loch et al. (2001)
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build on these results by directly comparing the performance of sequential and parallel

testing strategies. They find that sequential testing is preferable when design tests are

expensive and test efficiency is low whereas parallel testing is preferable when testing

processes are slow and the firm needs quick results.

It is remarkable that past work on selection testing has not considered the role

played by information asymmetry in the design of an optimal testing process—that is,

given the ubiquity of such asymmetries in practice. Our principal contribution is to

investigate how, exactly, delegation affects a firm’s optimal testing strategy; we derive

simple yet optimal incentive structures that counter the effects of information asymme-

tries. The analysis yields several new insights regarding the management of delegated

testing processes. First, our derivation of the firm’s optimal testing strategy reveals

that information asymmetry is much more detrimental to a parallel than to a sequential

testing strategy. This finding implies that, when testing is delegated, parallel strategies

are probably less effective than advertised (e.g., Dahan and Mendelson 2001, Loch et al.

2001). Second, the existing literature is silent about how to conceptualize a sequential

testing approach; that is, should the firm hire multiple experts to test the different de-

sign alternatives, or should it rather assign all testing activities to a single expert? We

show that the multi-expert approach is preferable when test efficiency varies considerably

across the design alternatives whereas the single-expert approach is preferable when test

efficiency is relatively homogeneous. As a corollary we also find that, under delegation,

the classical reservation price rules (promulgated in Weitzman 1979, Adam 2001, Erat

and Kavadias 2008) no longer generate the optimal order for testing alternative designs.

Finally, we derive the optimal incentive structures for delegated design testing, which

turn out to be extremely simple irrespective of the chosen testing strategy.

4.3 Model Setup

Consider a firm engaged in NPD; it faces the challenge of selecting one out of N ≥ 1

possible design alternatives for the new product being developed. The value that the firm

receives from choosing a certain design depends on two factors: the design’s technological

feasibility, which is uncertain at the outset and can end up being either good or bad;

and the design’s inherent economic potential. The firm’s goal is to choose and develop

the design alternative that offers the highest value upon implementation.
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At the core of our model is a testing phase in which the firm can acquire costly but

imperfect information regarding each design’s technological feasibility and, eventually,

its value. Yet the firm cannot access this information directly. Instead, it must delegate

the desired testing activities to experts who then collect information about the designs’

technological feasibility through experiments, simulations, and/or prototype building.

Each design test gives the corresponding expert more refined information about the

evaluated design’s feasibility, which enables that expert to provide a more informed rec-

ommendation vis-à-vis the firm’s decision on whether or not to develop the focal design.

Once the firm has collected enough recommendations, it develops the most promising de-

sign alternative; if no alternative is sufficiently convincing, then the development process

may be abandoned.

In the real world, the delegated nature of this testing process gives rise to informa-

tion asymmetry between the firm and the experts. Thus it is difficult if not impossible

for the firm to verify the informational quality of an expert’s recommendation. Two

factors are responsible for this adverse situation. First, testing activities are costly for

the expert, who may therefore choose to be less diligent with respect to some tests

than others. However, firms cannot ascertain the diligence of experts because the in-

terpretation of testing outcomes relies critically on an expert’s gathering and synthesis

of information and—most notably, owing to the tacit nature of such knowledge—prior

experience. Second, experts may be reluctant to share their testing outcomes truthfully

with the firm. This form of information asymmetry captures the reality that experts

can use their recommendations strategically to influence the firm’s design choice. So in

practice, delegated design testing involves two different forms of information asymmetry:

moral hazard during the testing phase and adverse selection during the recommenda-

tion phase. It follows that the firm must offer an appropriately designed compensation

scheme if it hopes to incentivize experts to test the focal design(s) thoroughly and then

to communicate the testing outcomes truthfully. This compensation scheme, in turn,

should be carefully coordinated with the firm’s second major decision: the choice of test-

ing strategy. In particular, the firm must decide about whether the design alternatives

should be tested in parallel or in sequence, how many experts to employ, how many

design alternatives to test, and (if tested in sequence) the best order in which to test the

different designs. In the rest of this section we provide more detail on our model setup

and assumptions.
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4.3.1. Delegated Design Testing

The value Vi that the firm receives from developing design i ∈ N = {1, . . . , N} depends

on the design’s technological feasibility Θi ∈ {G,B}, its inherent economic potential

vi > 0, and the development costs K ≥ 0. We assume more specifically that, once

developed, a technologically feasible design (Θi = G) generates a value of vi−K whereas

an unfeasible design (Θi = B) results in a loss of −K. Prior to development, however,

each design’s technological feasibility is uncertain; that is, neither the firm nor the

experts know the design’s true feasibility ex ante. To simplify the presentation, we

assume also that each state is ex ante equally likely.4 Experts engage in costly testing

activities in their efforts to (partially) resolve this uncertainty. We represent the testing

activities for design i by an expert’s testing effort ei, which can be either high (ei = h)

or low (ei = l) and is not observable by the firm. An expert who engages in high-effort

testing incurs a private cost c > 0, whereas the costs of low-effort testing are normalized

to zero. Of course, the chosen testing effort affects the quality of collected information.

Formally, we model testing outcomes for each design i as an imperfect signal si ∈ {g, b},
which is received only by the expert testing design i and that indicates whether the

design is technologically feasible (si = g) or not (si = b). We denote the precision (or

quality) of this signal q(ei) because it depends on the expert’s testing effort: an expert

who exerts high effort receives a signal of quality q(ei = h) = qi ∈ (1/2, 1]; in contrast,

low effort leads to an uninformative signal q(ei = l) = 1/2. We assume that signals are

stochastically independent across designs.

After receiving the signal si, the expert updates—in accordance with Bayesian

rationality—her belief about design i’s technological feasibility. Using this refined in-

formation, the expert gives the firm an unverifiable recommendation ri ∈ {g, b}, which

states whether design i is considered to be technologically feasible (ri = g) or unfeasible

(ri = b).

4.3.2. The Firm’s Decisions

The ultimate goal of a firm is to maximize expected profits by selecting the most valuable

design for its product while minimizing the costs of a delegated testing process. For this

problem to be relevant, we assume that qivi ≥ K ≥ (1− qi)vi for all i ∈ N . Otherwise,

4The sole purpose of this assumption is to reduce the complexity of our mathematical exposition.
From a structural standpoint, all our results continue to hold for arbitrary prior probabilities.
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the firm’s decision would be a trivial one: if qivi < K then the firm could safely exclude

design i from consideration because of the economic irrationality of developing such a

design; at the other extreme, if (1 − qi)vi > K then design i is so promising that the

firm would develop it even without prior testing.

Designing an optimal testing process requires that the firm determine the testing

strategy and also a scheme for compensating the experts. With regard to the former

decision, we assume that the firm can select among three different testing strategies:

parallel testing, multi-expert sequential testing, and single-expert sequential testing.

Under a parallel testing strategy, the firm first decides on the number |IP | and identity

IP ⊆ N of design alternatives to test; it then assigns a separate expert to each design i ∈
IP , and all testing processes are carried out simultaneously. After reviewing the experts’

recommendations, the firm decides which design (if any) to develop. Under a multi-

expert sequential testing strategy, the firm again decides on the number (here, |IM |) and

identity (IM ⊆ N ) of design alternatives to test—but it also determines the order in

which the different designs will be tested. The firm then assigns a different expert to

each design i ∈ IM and the designs are tested, one after the other, in the order specified.

After each design test, the firm can choose to stop the testing process and develop the

latest design alternative; we assume that the firm always does so after receiving a good/

feasible recommendation for the current design alternative. An intuitive consequence of

this assumption is that, once a firm in this position continues with the testing process,

it can no longer implement any previously tested design.5 Throughout the modeled

testing process, all payments are discounted at a constant rate of δ ∈ (0, 1] after each

design test. Under a single-expert sequential testing strategy, the firm makes the same

decisions as in the multi-expert case (viz., deciding on |IS|, on IS ⊆ N , and on the

order of tested designs); the only difference here is that just one expert is assigned to

perform all the tests. As before, the firm can stop the testing process after each design

test and develop the latest design alternative (which always occurs if the firm is given a

good recommendation) yet does not have the option of developing any formerly tested

design.

5As discussed in Sections 4.4.2 and 4.6, this assumption greatly reduces mathematical complexity yet
has almost no bearing on the generalizability of our results. Furthermore, if the firm were unwilling
to develop favorably recommended designs, then experts would have no motive to expend effort
testing design alternatives.
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As regards the firm’s schemes for compensating the experts, we allow the firm to

offer asymmetric and nonlinear contracts that include any combination of action- and

evidence-based payments.6 An action-based payment is contingent on a specific action

taken by the firm—for instance, developing design i.7 In contrast, an evidence-based

payment depends on a design’s true technological feasibility Θi. In practice, any pay-

for-performance contract must be action-based and/or evidence-based; the reason is that

only such criteria are verifiable and thus enforceable by courts. In our model, then, an

expert who is testing design i is eligible for the following payment types: (i) a “success

bonus” uig if the firm successfully develops design i (i.e., Θi = G); (ii) an “allowance” uib

if the firm’s development of design i fails (i.e., Θi = B); (iii) a “consolation award” uia

if the expert tested design i but the firm did not choose it for development; and (iv) a

“termination bonus” uit if none of the available design alternatives is chosen for develop-

ment. We assume throughout that the firm must make all wage payments immediately

when due; that is, it cannot hold back any wages. It is intuitive that the evidence-based

payments uig and uib incentivize an expert to test the design thoroughly and also to

recommend the design’s development in the event of a favorable signal. In contrast, uia

and uit reflect the firm’s tolerance for failure. That is to say, the firm appreciates an

expert’s testing efforts even in the case of negative testing outcomes; hence this payment

incentivizes experts to refrain from recommending a bad design for development.

Given such compensation schemes, the utility πi received by an expert for testing

design i is the (discounted) sum of all his wage payments net of his effort costs. We

follow the principal–agent literature in assuming that all experts are risk neutral and

protected by limited liability; in other words, the compensation of each expert must

be nonnegative at all times. The firm is risk neutral, too, and its profit Π consists of

the realized value of the developed design (net of any development costs) minus the

compensation paid to experts.

4.4 Incentives for Delegated Testing

In this section we characterize the optimal compensation schemes, for the different test-

ing strategies, given that the set of design alternatives I ⊆ N (with |I| = n ≥ 1)

6Note that, without loss of optimality, we do not need to consider fixed wages because in optimum,
such a fixed wage must be zero as experts are shielded by limited liability.

7Payments cannot depend on the expert ’s action because such actions cannot be verified.
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is exogenously fixed.8 In line with the revelation principle, we limit our attention to

contracts that incentivize all experts to evaluate design(s) thoroughly and to reveal

test outcomes truthfully. We begin by identifying the optimal compensation scheme for

parallel testing (Section 4.4.1), after which we characterize the optimal contract for

multi-expert sequential testing and derive the optimal testing order (Section 4.4.2). Fi-

nally, we examine the optimal incentive scheme and testing order for the single-expert

sequential testing strategy (Section 4.4.3).

4.4.1. Parallel Testing

Under a parallel testing strategy, the firm assigns a different expert to each design i ∈
I = {1, . . . , n}, and all experts then perform their testing activities simultaneously. This

setup allows the firm to receive refined information on each design’s value and to use this

information to select, ex post, the most promising alternative for development. The firm’s

overarching goal is to maximize expected profits, which amount to the expected market

value of the developed design net of development costs and compensation paid to experts.

Formally, the firm solves the following optimization problem P (whose mathematical

derivation, along with all other formal proofs, has been relegated to Appendix C):

P : max
u,y

Π :=
n∑
j=1

1

2j

(
n∑
i=1

[y
(j)
i (qivi − qiuig − (1− qi)uib − (2j − 1)uia − 2j−nuit)]−K

)

(4.1)

s.t. y
(j)
i (qiuig + (1− qi)uib) ≥ y

(j)
i (uia + 2j−nuit) ∀i, j ∈ I (4.2)

y
(j)
i ((1− qi)uig + qiuib) ≤ y

(j)
i (uia + 2j−nuit) ∀i, j ∈ I (4.3)

y
(j)
i (uig − uib) ≥ y

(j)
i 2j+1c/(2qi − 1) ∀i, j ∈ I (4.4)

y
(j)
i [qi(vi − uig)− (1− qi)uib −

∑
k 6=i

uka]

≥ y
(j)
i

n∑
l=1

y
(j+1)
l [ql(vl − ulg)− (1− ql)ulb −

∑
k 6=l

uka] ∀i ∈ I, j ∈ I\{n}

(4.5)

8We endogenize the firm’s choice of design alternatives in Section 4.5.1.
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n∑
i=1

y
(j)
i = 1,

n∑
j=1

y
(j)
i = 1, y

(j)
i ∈ {0, 1} ∀i, j ∈ I (4.6)

uig, uib, uia, uia + uit ≥ 0 ∀i ∈ I (4.7)

Although complex at first sight, this optimization problem P has an intuitive struc-

ture. As a starting point, note that y
(j)
i is an indicator variable that reflects whether

design i is the firm’s jth most preferred alternative (constraint (4.6) ensures that this

mapping is indeed one-to-one). That is, if y
(j)
i = 1 then the firm chooses design i for

development only if it receives an unfavorable recommendation for all designs with a

lower ranking j′ < j. Clearly, a design’s attractiveness is not exogenously given and in-

stead depends endogenously on the offered compensation scheme. This fact is reflected

by (4.5), which guarantees that the firm makes an ex post optimal selection decision.

Conditions (4.2)–(4.4) represent each expert’s incentive compatibility constraints, which

depend on the relative attractiveness of the design she has been assigned to evaluate.

Thus (4.2) and (4.3) ensure that each expert truthfully reveals, respectively, a “good”

and a “bad” signal. These constraints eliminate the adverse selection problem during

the recommendation phase. Condition (4.4) similarly negates the moral hazard problem

during the design-testing phase because it ensures that each expert prefers high-effort to

low-effort testing. Finally, experts are protected by limited liability; hence (4.7) ensures

that all wage payments are nonnegative. The following proposition characterizes—under

mild conditions on the properties of designs in I—the optimal incentive structures for

parallel testing and the resulting firm profits.9

Proposition 4.1. Suppose the designs in I can be ordered such that qivi ≥ qi+1vi+1 +

2i+1c[qi/(2qi− 1)− 2qi+1/(2qi+1− 1)]+ for all i ∈ I\{n}, where [x]+ = max{0, x}. Then

the following statements hold.

(i) Under a parallel testing strategy, the optimal contract that induces truth telling

and high-effort testing for each design satisfies uig = 2i+1c/(2qi − 1), uib = 0, uia = 0,

and uit = 2n+1(1 − qi)c/(2qi − 1) for all i ∈ I. Moreover, uit/uig = 2n(1 − qi)/2
i <

2n−i−1 ≤ 2n−2 for all i ∈ I.

(ii) Ex ante, the firm’s expected profit is ΠP =
∑n

i=1((qivi −K)/2i − 2c/(2qi − 1)).

9The condition in Proposition 4.1 holds unless I contains a design for which the test is of exceptionally
low efficiency.
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Perhaps the most remarkable aspect of this proposition is the simplicity of the

optimal contract’s structure. For each design (and thus for each expert) i ∈ I, the firm

need offer only two payments: a success bonus uig if design i is successfully developed,

and a termination bonus uit if none of the design alternatives is chosen for development

(i.e., if test outcomes indicate that all designs are technologically unfeasible). But what

respective roles do these payments play in the firm’s incentive system? As (4.4) reveals,

the primary purpose of uig is to motivate expert i to engage in high-effort testing. Put

differently, uig is a purely individual incentive that resolves each expert’s moral hazard

concern. In contrast, uit is a common (or shared) incentive that collectively compensates

the experts if all designs are considered to be technologically unfeasible. It therefore

decreases the likelihood of an expert giving a positive recommendation despite receiving

a negative test outcome—and thereby induces truth telling; see constraint (4.3).

It is intuitive that, when effort becomes less rewarding (i.e., effort costs c increase)

and recommendations become less reliable (the signal quality qi decreases), expert i

becomes more reluctant to invest high effort and to report test outcomes truthfully.

Under these circumstances, the firm must provide stronger incentives; this explains why

uig and uit are increasing in c and decreasing in qi. Conversely, in the extreme case

of perfect testing (qi = 1), expert i has no incentive to misrepresent the test outcomes

because such a false recommendation would be easily detected by the firm and so would

not benefit him. It follows that if testing is perfect then the firm can forgo payment of

any shared incentives (uit = 0).

Whereas neither uig nor uit depends directly on a design’s inherent economic po-

tential vi, these terms are affected by the total number n of designs to be tested and by

a design’s relative value, which we also index via i. In particular, uig increases with i

because, with a higher index i, it becomes more likely for tests to indicate that a design

with a smaller index is technologically feasible—which would render futile the expert’s

testing efforts. Similarly, with a higher n it becomes less likely that all n designs are

technologically unfeasible; hence the termination bonus uit is correspondingly less likely

to be paid out. To compensate the experts for this reduced payment probability, the

firm must offer a higher uit.

Proposition 4.1(i) also sheds light on the severity of adverse selection—as compared

with moral hazard—when the firm employs a parallel testing strategy. For designs that

are extremely promising ex ante (i.e., those with a small index i), the ratio uit/uig is

high; the implication is that, for these designs, the firm’s central concern is to incentivize
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truth telling. For ex ante less promising designs (those with a large index i) the ratio is

low; in that event, the firm becomes relatively more concerned with incentivizing experts

to exert high effort. This shifting priority of the optimal compensation scheme has an

appealing explanation. From an expert’s perspective, admitting that her own testing

outcome is bad increases the odds of receiving no payments. This conclusion follows from

the extreme unlikelihood of all tested designs being pronounced technologically unfeasi-

ble. The firm’s concern on this point is especially strong for designs that show the most

promise. At the same time, an expert assigned to a promising design has a significant

intrinsic motivation to exert high effort because the potential rewards from receiving a

good test outcome are high. In contrast, an expert assigned to a less promising design

fears that her efforts are futile because, in all probability, a more promising design will

receive a good recommendation and so the results of her testing could be irrelevant to

the firm. Therefore, relatively higher individual incentives must be offered to the experts

who are assigned to test less promising designs.

Finally, Proposition 4.1(ii) reveals that the firm’s expected profit is decreasing in c

and increasing in qi. The reason is that, with a higher c and a lower qi, expert i is

less willing to exert high effort and to disclose the test outcomes truthfully. Hence the

incentive misalignment between the firm and expert i widens, which enables the expert

to extract higher information rents.

4.4.2. Multi-Expert Sequential Testing

Under a multi-expert sequential testing strategy, the firm assigns a different expert to

test each design i ∈ I = {1, . . . , n} and announces the testing sequence; then the experts

carry out their design tests one after the other. A sequential testing approach allows the

firm to stop the testing process when it receives a positive recommendation (i.e., so it

can start developing that design) or to test the next viable alternative when it receives

a negative recommendation.

For a given I and any testing order, the firm must solve the following optimization

problem to derive the optimal compensation schemes. For expositional simplicity, we

relabel the design alternatives such that a design’s index i is identical to its position

in the testing order; thus design i = 1 is tested first, i = 2 second, and so on. The
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optimization problem M is expressed formally as follows:

M : max
u

Π(u) :=
n∑
i=1

δi−1

2i
(qivi −K)−

n∑
i=1

δi−1

2i
(qiuig + (1− qi)uib + uia + 2i−nδn−iuit)

(4.8)

s.t. qiuig + (1− qi)uib ≥ uia + 2i−nδn−iuit ∀i ∈ I (4.9)

(1− qi)uig + qiuib ≤ uia + 2i−nδn−iuit ∀i ∈ I (4.10)

uig − uib ≥
4c

2qi − 1
∀i ∈ I (4.11)

uig, uib, uia, uit ≥ 0 ∀i ∈ I\{n}, ung, unb, una + unt ≥ 0 (4.12)

The structure of the optimization problem M is similar to the firm’s optimization

problem P under a parallel testing strategy. Specifically, constraints (4.9) and (4.10)

ensure that all experts truthfully reveal their testing outcomes, (4.11) guarantees that

each expert engages in high-effort testing, and (4.12) accounts for the experts’ limited

liability. In the next proposition we derive the firm’s optimal compensation schemes,

describe the optimal testing order, and state the resulting firm profits for a multi-expert

sequential testing strategy.

Proposition 4.2. (i) Under a multi-expert sequential testing strategy and for any given

testing order, the optimal contract that induces truth telling and high-effort testing by

all experts satisfies, for all i ∈ I: uig = 4c/(2qi − 1), uib = 0, uia = 4(1− qi)c/(2qi − 1),

and uit = 0. In addition, uia/uig = 1− qi < 1/2.

(ii) It is optimal to test the designs in I in decreasing order of Ri ≡ qivi−4c/(2qi−1).

(iii) Ex ante, the firm’s expected profit is ΠM =
∑n

i=1 δ
i−1(qivi−K−4c/(2qi−1))/2i.

As in the optimal contract for parallel testing, there are only two payments in

the optimal compensation scheme for multi-expert sequential testing. To resolve each

expert’s moral hazard, the firm must again reward expert i with a success bonus uig in

the event design i is developed successfully. Yet in this case the firm does not rely on

shared incentives to induce truth telling; that is, uit = 0. Instead the firm provides an

individual consolation award uia to reimburse expert i for his effort costs whenever the

firm dismisses the design he tested owing to the subsequent unfavorable recommendation.
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This focus on purely individual incentives has two immediate consequences. First,

the optimal payments depend not on a design’s position in the testing order but only

on its informational quality qi: the higher the informational quality, the more aligned

are the interests of firm and experts and so the lower is the compensation offered.

Second, as the ratio uia/uig indicates, if testing is sequential then moral hazard is a

much greater concern than adverse selection, especially when qi is high. This finding may

be better understood if one notes that, from an expert’s perspective, recommending a

technologically unfeasible design for development leads to zero income (uib = 0). So once

an expert has invested high effort in testing, there is hardly any point in trying to pass

off a technologically unfeasible design as a good one. Even so, motivating the expert to

engage in high-effort testing at the outset requires a high effort incentive (high uig).

The optimal testing order is given in part (ii) of Proposition 4.2, the essence of

which is that the firm should test designs in decreasing order of their expected net

contribution Ri. This result is in the spirit of Weitzman’s (1979) reservation price rule

but extends it to include the costs of delegation. That is, the testing order depends not

only on the designs’ expected values qivi but also on the experts’ information rents. Since

these information rents are decreasing in qi and invariant with respect to vi, it follows

that the firm—as compared to the reservation price rules advocated by Weitzman (1979),

Adam (2001), and Erat and Kavadias (2008)—more strongly prefers first to test designs

of high informational quality. The structure of Ri indicates that the firm’s optimal testing

order is myopic: a design’s expected net contribution depends only on its own properties

and so is independent of other design alternatives.

Recall our argument that an expert’s information rents are decreasing in the quality

of her information and increasing in her effort costs. From these relations it clearly

follows that the firm’s expected profit should be increasing in qi and decreasing in c.

Proposition 4.2(iii) confirms this intuition and also underscores how the firm’s profit is

adversely affected when δ, the time value of money, is low.

Finally, we emphasize that the compensation scheme and testing order presented in

Proposition 4.2 remain optimal even if the firm is allowed to develop formerly tested (yet

rejected) design alternatives, that is, if the firm can test “with recall”. To see this, note

that if the firm receives a good recommendation for some i ∈ I then it can immediately

realize an expected profit of qivi−K−4qic/(2qi−1) by developing design i right away. If

instead the firm chooses to test the next design alternative, then the optimal ordering in

Proposition 4.2(ii) implies that the firm’s expected continuation profit is strictly smaller.
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We conclude that, as soon as the firm receives a good recommendation for a particular

design, it is optimal to develop this design at once—rendering a recall option superfluous.

4.4.3. Single-Expert Sequential Testing

Under a single-expert sequential testing strategy, the firm assigns a single expert to test

in sequence the design alternatives in I. It is easy to see that—as compared with a multi-

expert strategy—such reliance on the testing efforts of only a single expert will have a

strong bearing on the required incentives. On the one hand, a single expert is much more

inclined (than is one in a group of experts) to acknowledge an unfavorable test outcome

because there is always the chance of finding a technologically feasible design later in the

testing process. On the other hand, it is extremely difficult to continue incentivizing an

expert to exert high testing efforts. Thus an expert’s behavior during the testing process

is strongly affected by his anticipation of future actions and payments.

For a given I and any testing order, the firm’s incentive design problem is as follows.

As in the preceding section, we relabel the design alternatives such that a design’s index i

is identical to its position in the testing order. The incentive design problem S is then

S : max
u

Π(u) :=
n∑
i=1

δi−1

2i
(qivi −K)−

n∑
i=1

δi−1

2i
(qiuig + (1− qi)uib + uia) (4.13)

s.t. qiuig + (1− qi)uib ≥ uia + δπ̂i ∀i ∈ I (4.14)

(1− qi)uig + qiuib ≤ uia + δπ̂i ∀i ∈ I (4.15)

uig − uib ≥
4c

2qi − 1
∀i ∈ I (4.16)

π̂i−1 = (qiuig + (1− qi)uib + uia − 2c+ δπ̂i)/2 ∀i ∈ I

π̂n = 0
(4.17)

uig, uib, uia ≥ 0 ∀i ∈ I (4.18)

Some peculiarities of the optimization problem S warrant further discussion. First,

with a single expert it is unnecessary to have an additional termination bonus ut that

compensates her when none of the design alternatives is developed. In fact, such a

payment can—without loss of optimality—be folded into the expert’s consolation award

76



IV. Managing Delegated R&D Testing

for testing the last design alternative (una). This follows because both payments have the

same requirements and are executed simultaneously. Second, π̂i−1 as defined in (4.17) is

the expert’s expected continuation utility immediately before testing design i. Since the

expert’s decision-making process accounts for her own future utility, it is only natural

for π̂i to become an integral part of her incentive constraints; see (4.14) and (4.15).

More precisely: as compared with a multi-expert sequential testing strategy, a single

sequentially testing expert is more (resp. less) likely to report an unfavorable (resp.

favorable) signal truthfully. Our explanation is that the expert may enjoy additional

information rents by artificially keeping the testing process alive (i.e., by concealing

a signal of feasibility). As shown by Proposition 4.3, that possibility has important

consequences for the optimal compensation scheme.

Proposition 4.3. (i) Under a single-expert sequential testing strategy and for any given

testing order, the optimal contract that induces truth telling and high-effort testing for

all designs satisfies, for all i ∈ I: uig = 4c/(2qi − 1) + [δπ̂i/qi − 4c/(2qi − 1)]+, uib = 0,

and uia = [4(1− qi)c/(2qi − 1)− δπ̂i]+. Moreover, uia/uig ≤ 1− qi < 1/2.

(ii) If the design alternatives in I can be ordered such that qivi ≥ qi+1vi+1, qi ≥ qi+1,

and (1 − qi)4c/(2qi − 1) ≤ δπ̂i ≤ 4qic/(2qi − 1) for all i ∈ I\{n}, then it is optimal to

test in increasing order of i.

(iii) Ex ante, the firm’s expected profit is ΠS =
∑n

i=1 δ
i−1(qivi−K−max{4qic/(2qi−

1), δπ̂i, 4c/(2qi − 1)− δπ̂i})/2i.

Although the optimal contract for a single-expert sequential testing strategy is struc-

turally similar to that for a multi-expert strategy, there are some important differences.

First of all, under single-expert sequential testing, the firm needs to place more empha-

sis on motivating high-effort testing and less on inducing experts to report truthfully.

Correspondingly, the success bonus uig is higher under single-expert than multi-expert

sequential testing while the consolation award uia is substantially lower. In fact, it may

be optimal for the firm to offer no consolation award at all (uia = 0). That would be

the case for sufficiently large values of π̂i, the expert’s expected continuation utility.

Here the single expert anticipates substantial future payments if the testing process

continues; therefore, under sequential testing, that expert will always truthfully report

an unfavorable signal. This dynamic has the effect of eliminating the adverse selection

problem.
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Second, and in contrast to the multi-expert strategy detailed previously, the optimal

payments related to each design i are not myopic in the single-expert setting; instead

those payments depend on the informational quality of all designs tested after design i.

This result is a natural and direct consequence of the expert’s strategic behavior, and as

such it bears implications for the optimal testing order. Following the logic of Weitzman

(1979) and Proposition 4.2(ii), one might well suppose that it is still optimal to test the

designs in decreasing order of their expected net contribution. However, that supposition

is not true in general. We can see from Proposition 4.3(ii) that such a testing order is

optimal only if the expert anticipates a moderate level of continuation utilities (i.e., only

if (1 − qi)4c/(2qi − 1) ≤ δπ̂i ≤ 4qic/(2qi − 1)). However, if continuing with the testing

process promises continuation utilities that are exceptionally high or low, then the firm

should not test the designs in decreasing order of attractiveness. It might rather be

optimal to test the least promising designs first—with the goal of reducing the expert’s

strategic rent extraction.

Finally, Proposition 4.3(iii) gives the firm’s expected profit under a single-expert

sequential testing strategy and yields a rather surprising result. Unlike the other testing

strategies, under single-expert sequential testing the firm’s expected profit need not

increase with quality qi. Because of the expert’s strategic behavior, a higher qi for one

design might result in the expert extracting higher information rents from the other

designs being tested; this would, of course, reduce the firm’s overall profits.

4.5 Comparison of Testing Strategies

So far, we have characterized the optimal incentive structure for the three different

testing strategies given that the set of design alternatives was exogenously fixed. As

a next step, we relax this assumption and determine the optimal number and identity

of designs to test for each of the three testing strategies (Section 4.5.1). We then build

on these results by deriving the optimal testing strategy as a function of our main

contextual parameters (Section 4.5.2). Finally, we offer some insights regarding the

question of how delegation, which entails information asymmetry, alters the relative

ranking of testing strategies—that is, from the ranking in an otherwise identical setting

but without information asymmetry (Section 4.5.3).
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4.5.1. Optimal Set of Design Alternatives

In Section 4.4 we derived optimal compensation schemes for the different testing strate-

gies while assuming that the firm intended to test a fixed set I ⊆ N of design alterna-

tives. A more realistic scenario is one in which the set of designs to test is not given

exogenously but instead is chosen by the firm. In this section, then, we characterize the

optimal sets of designs to be tested for the different testing strategies. Our results reveal

that these sets vary considerably across those strategies.

Proposition 4.4. (i) Under a multi-expert sequential testing strategy, the optimal set

of designs to be tested is IM = {i ∈ N | qivi −K − 4c/(2qi − 1) ≥ 0}.
(ii) Under a parallel testing strategy, the optimal set of designs to be tested satisfies

IP ⊆ IM .

(iii) Let IS be the optimal set of designs to be tested under a single-expert sequential

testing strategy, and let n be the last design in the optimal testing order. If qnvn −K −
4c/(2qn − 1) ≥ 0 and if qnvn ≤ qivi and qn ≤ qi for all i ∈ IS\{n}, then IS ⊆ IM .

Part (i) of this proposition offers a detailed characterization of the optimal identity

(i ∈ IM) and number (|IM |) of designs to test under a multi-expert sequential testing

strategy. In particular, the firm should test any design i ∈ N for which the expected

value qivi exceeds the sum of (a) the expert’s information rents 4c/(2qi− 1) and (b) the

development costs K. That is, the firm should test only those designs that promise

ex ante a positive contribution margin.

A similar argument applies to the optimal set of designs to be tested under a

parallel testing strategy IP . However, as indicated by Proposition 4.1(iii) and Proposi-

tion 4.2(iii), the experts’ information rents under parallel testing are much higher than

under sequential testing, which explains why the firm always tests fewer designs than

under a multi-expert sequential testing strategy. There are two reasons for this differ-

ence. First, under parallel testing the firm does not have the option to stop the testing

process prematurely. Second, experts testing a relatively undesirable design know that

the firm will probably consider their recommendations to be irrelevant; it is therefore

costly for the firm to motivate these experts to exert high testing efforts. Whereas the

first dynamic has been well established by previous academic work (see, e.g., Loch et al.

2001), little attention has been paid to the second source of inefficiency.
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Finally, Proposition 4.4(iii) derives some properties of the optimal set of designs

to be tested under a single-expert sequential testing strategy. A few observations merit

discussion here. We note that if the last design in the testing order is also the least

promising alternative—yet still offers a positive contribution margin—then the firm al-

ways tests fewer designs than under a multi-expert sequential testing strategy. In other

words, the expert’s strategic behavior induces the firm to make reductions in the number

of designs to test. Yet this generalization does admit some exceptions. In some instances,

it might be profitable for the firm to include an ex ante unprofitable design in its test

set IS for the sole purpose of influencing the expert’s continuation utility and thereby

reducing his strategic behavior. In such cases, qnvn −K − 4c/(2qn − 1) < 0 and so the

firm may find it optimal to increase the number of designs to test: IS ⊃ IM .

In sum: the firm tests only ex ante profitable designs under both the parallel and

multi-expert sequential testing strategy; under single-expert sequential testing, however,

it may be optimal for the firm to test ex ante unprofitable designs in order to curtail

rent extraction by experts.

4.5.2. Optimal Testing Strategy

Given the optimal contract structures and the optimal set of design alternatives for the

different testing strategies, we can now turn to our main research question: What is

the firm’s optimal testing strategy under delegation? Propositions 4.1–4.3 have already

indicated that the answer to this question depends mainly on two contextual parameters:

the costs of effort (c) and the informational quality of test outcomes (qi). It seems clear

that these two parameters determine how much information rent the firm must sacrifice

in order to align the experts’ interests with the firm’s agenda. The next proposition

confirms this intuition.

Proposition 4.5. Let Π∗P = ΠP (IP ), Π∗M = ΠM(IM), and Π∗S = ΠS(IS). Then the

following statements hold.

(i) If δ < 1, then there exists a c > 0 such that Π∗P > max{Π∗M ,Π∗S} for all c < c.

(ii) Let IP be the optimal set of designs to be tested under a parallel testing strategy.

If those designs can be ordered such that qivi ≥ qi+1vi+1+2i+1c[qi/(2qi−1)−2qi+1/(2qi+1−
1)]+ for all i ∈ IP\{n}, then max{Π∗M ,Π∗S} > Π∗P provided that c > c ≡

∑
i∈IP ((1 −

δi−1)(qivi −K)/2i)/
∑

i∈IP ((2(1− (δ/2)i−1)/(2qi − 1)).
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(iii) Let IM be the optimal set of designs to be tested under a multi-expert sequen-

tial testing strategy, and let those designs be optimally ordered according to Proposi-

tion 4.2(ii). Then Π∗S ≥ Π∗M provided that qi+1 ≥ q
i
≡ 1/2 + δ(2qi− 1)/(4qi− δ(2qi− 1))

for all i ∈ IM\{n}. Moreover, q
i
≤ min{qi, 5/6}.

In Figure 4.1, the left panel illustrates the key properties of the optimal testing

strategy. First, a parallel testing strategy is undertaken only when the testing costs are

sufficiently small (c < c). Otherwise, the burden of paying all experts immediately for

their testing efforts is greater than the value of information received; in that case, the

firm decides to implement a sequential testing strategy. Thus design tests that are more

expensive—and the resulting higher information rents—make sequential testing more

economical. In this respect, parts (i) and (ii) of Proposition 4.5 extend previous findings

of Loch et al. (2001) to testing processes that are prone to information asymmetry.

However, it remains an open question exactly how the firm should implement a

sequential testing strategy. That is, should the firm hire multiple experts to test the

different design alternatives, or should it rather assign all testing activities to a single

expert? Proposition 4.5(iii) shows that this question’s answer is closely tied to the test

efficiency, qi, of the different designs. Relying on a single expert is especially beneficial

when the informational quality of the different design tests is relatively homogeneous

(i.e., when qi+1 ≥ q
i
). In contrast, if test efficiency is heterogeneous across designs then

the firm is better-off assigning a different expert to each design alternative. The explana-

tion for this finding is instructive. When the designs’ test efficiencies are very different,

then the firm prefers testing the designs of highest informational quality first and testing

those of lowest quality last (cf. Proposition 4.3(ii)). However, the informational rents

extracted from the firm by a single expert increase with any decline in the informational

quality of a design test. Hence the expert tries to keep the testing process alive as long

as possible—even if that requires reporting a negative assessment of what is actually

a good design. There can be no question that exposure to such strategic behavior is

suboptimal for the firm, which should therefore rely instead on multi-expert sequential

testing.

The left panel of Figure 4.1 also shows the role that the discount factor δ plays in the

firm’s choice of an optimal testing strategy. As expected, sequential testing strategies

are preferable when the time factor is less critical for the firm—that is, as δ increases.

Less obvious, though, is δ’s effect on the firm’s preferred sequential testing strategy. We
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Figure 4.1.: The Firm’s Optimal Testing Strategy.

Notes: The graphs plot, for an example with N = 2 design alternatives, the firm’s optimal
testing strategy under delegation (left panel) and first-best (right panel) conditions. Under a
parallel testing strategy it is optimal to test both designs simultaneously. Under any sequential
testing strategy (i.e., multi-expert, single-expert, or first-best) it is optimal to test design i = 1
first and i = 2 second. The other parameter values are v1 = 1000, v2 = 400, q1 = 0.9, K = 200,
and δ = 0.9.

find that a higher δ facilitates the single expert’s strategic extraction of rent because

prolonging the testing process is then less costly for her. It follows that the size of the

region in which the firm prefers multi-expert to single-expert sequential testing increases

with δ (cf. the sensitivity of q
i

as given in Proposition 4.5(iii)).

Finally, Proposition 4.5 and Proposition 4.4 together reveal an interesting non-

monotonicity in the optimal number of designs to test. For very low testing costs c, the

firm pursues a parallel testing strategy and simultaneously tests a moderate number |IP |
of designs. As c increases, the firm moves to a sequential testing strategy and, in so doing,

increases the number of designs to test (recall that |IM | ≥ |IP | by Proposition 4.4(ii)).

Yet when c becomes too large, design testing becomes so costly that the firm is impelled

to reverse course and reduce the number of design tests. These results contradict the

conventional wisdom—which is true in the absence of information asymmetry—that

lower testing costs unequivocally lead to more design tests.

82



IV. Managing Delegated R&D Testing

4.5.3. Costs of Delegation

Our aim in this section is to discover precisely how information asymmetries distort

the firm’s design-testing process. We start by describing, as a basis for comparison, the

firm’s first-best testing strategy: one in which both experts and firm behave as a single

entity. Then, in Proposition 4.6, we compare this first-best strategy with the optimal

testing strategy under delegation.

If the incentives of experts and the firm are aligned, then the latter need not pay

any action- or evidence-based bonuses to motivate the former to engage in high-effort

testing and to reveal their testing outcomes truthfully. So absent incentive misalignment,

the firm can simply reimburse the experts for their testing efforts by paying them their

effort costs c for each design test conducted. Given the resulting lack of information

asymmetry, the firm’s first-best (fb) expected profit under a sequential (seq) testing

strategy is given by Πfb
seq =

∑
i∈Ifbseq

δi−1(qivi − K − 2c)/2i; here I fb
seq = {i ∈ N | qivi −

K − 2c ≥ 0} is the optimal set of designs to be tested, and the firm tests the designs

in decreasing order of qivi. Analogously, the firm’s first-best expected profit under a

parallel (par) testing strategy is Πfb
par =

∑
i∈Ifbpar

((qivi − K)/2i − c); here the designs

in I fb
par are ordered in decreasing order of qivi, and I fb

par ⊆ I fb
seq. Our final proposition

leverages these insights to identify how information asymmetry affects the firm’s optimal

testing strategy.

Proposition 4.6. (i) Under delegated sequential testing, the optimal set of designs to

be tested is a subset of the first-best set : IS, IM ⊆ I fb
seq.

(ii) Under delegated parallel testing, the firm may choose a completely different set of

designs to test than under first-best conditions; thus there are cases in which IP∩I fb
par = ∅.

(iii) Suppose qi = q for all i ∈ N . If Πfb
seq ≥ Πfb

par, then max{Π∗M ,Π∗S} ≥ Π∗P ;

however, the converse is not true in general.

The main finding of Proposition 4.6 is that information asymmetry has fundamen-

tally different effects on parallel than on sequential testing. Consider first the implica-

tions of delegation on the optimal design of a sequential testing strategy. Part (i) of the

proposition shows that—as expected—the presence of information asymmetry results

in a suboptimal testing process. In particular, the firm is testing too few designs and

therefore stops the testing process too early; that is, IS, IM ⊆ I fb
seq. This result reflects
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that an expert’s information rent makes design testing unequivocally more expensive

(for the firm) than under first-best conditions.

One might suppose a similar reasoning to apply also with regard to parallel testing.

In this respect, however, part (ii) of Proposition 4.6 holds a surprise. Note that even

though the firm tests too few designs under a sequential testing strategy, it does still

test those designs that are also the most promising ones under first-best conditions.

Yet this statement does not necessarily hold for a parallel testing strategy. In fact,

Proposition 4.6(ii) reveals that the optimal sets of designs to be tested with and without

information asymmetry may be disjoint; under delegation, then, the firm may test an

entirely different set of design alternatives. How can we explain this split? Recall from

our discussion after Proposition 4.1 that the information rents extracted from the firm by

experts are decreasing in the quality of those experts’ information. Hence the firm never

tests designs that offer relatively poor information quality—that is, with almost complete

disregard for their economic potential vi. In contrast, under first-best conditions the

firm’s testing costs are constant and thus do not depend on a design’s informational

quality; in that case, it makes sense for the firm always to test those designs promising

the highest expected value qivi. Evidently, these different priorities under first-best and

delegated testing can lead to disjoint optimal test sets. This phenomenon is most likely

to occur when some design alternatives are of exceptionally high economic value vi but

low test efficiency qi.

Finally, Proposition 4.6(iii) hints at an important managerial insight: delegation

strongly favors sequential testing. This result is also clearly illustrated in the right panel

of Figure 4.1, which plots the firm’s optimal testing strategy vis-à-vis the first-best

benchmark. Under symmetric test efficiencies (qi = q for all i ∈ N ), we can demonstrate

formally that if the firm prefers sequential testing under first-best conditions then it does

so under delegation as well. Although we are unfortunately not able to generalize this

result analytically to heterogeneous test efficiencies, our numerical experiments confirm

that the claim does indeed hold much more generally; see the right panel of Figure 4.1,

which allows for such heterogeneity. Our finding has implications both for the academic

literature and for practice. It questions at a fundamental level the claims of those (e.g.,

Dahan and Mendelson 2001, Loch et al. 2001) who have praised the effectiveness of

parallel testing strategies. In the presence of information asymmetry, the benefits of such

a parallel approach may be outweighed by high agency costs. This result finds further

support in practice. In recent years, testing costs have declined significantly owing
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to technological advancements in the realms of robotics, virtualization, and computer-

assisted test systems (among others). Following conventional wisdom—and previous

academic insights—these developments should have led firms to focus more strongly on

parallel testing strategies. However, there is no substantial evidence to date that such

a general trend is underway (though the software industry is a notable exception). Our

results offer a plausible and straightforward explanation for this observation: firms are

reluctant to incur the high costs of delegation that come with parallel testing.

4.6 Conclusions

Design testing is an integral part of virtually any new product development initiative

because it enables firms to identify the best possible designs for their new products. In

reality, however, managing such testing processes is a daunting challenge. The reason

is that in most cases the firm does not itself conduct the desired testing activities and

so has no direct accesses to the precious information; the firm must instead rely on the

recommendations of experts, who may be pursuing their own agendas. This delegated

nature of the testing process gives rise to information asymmetry between the firm and

the experts, which can result in a worrisome misalignment of objectives. The primary

goal of this paper is to understand how the firm can set up an effective testing process

that will reliably select the best design alternative—that is, notwithstanding the adverse

consequences of delegation. More precisely, our main contribution is to provide insights

on the questions of (i) which testing strategy the firm should choose and (ii) how the

firm can optimally incentivize the experts it hires.

It is remarkable that, regardless of the chosen testing strategy, the optimal com-

pensation scheme—one that motivates experts to test their designs with high effort and

to reveal their test outcomes truthfully—always involves but two payments: a success

bonus if an expert’s design is developed and turns out to be technologically feasible,

and a reward that reimburses an expert for his efforts in case the firm dismisses the

design he is testing or terminates the testing process altogether. We show in addition

that the balance between these two payments is fundamentally different for designs with

different levels of test efficiency. Designs that can be tested with high precision require

a strong focus on individual success bonuses, whereas designs that are evaluated with

lower quality demand a stronger emphasis on consolation awards.
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Our findings have immediate managerial implications. Although design testing is

a complex organizational process, the structure of the optimal compensation schemes is

fairly simple. As a result, the optimal contracts derived in this paper should be relatively

easy to implement in practice. Regarding the relative sizes of the two payments, we

emphasize that the firm must carefully adjust its contracts to reflect the quality of

test outcomes. Firms that adopt a one-size-fits-all approach cannot help but sacrifice,

eventually, their testing effectiveness.

As for the firm’s optimal testing strategy, we find that two parameters critically

determine the firm’s optimal choice: testing costs and the quality of information. In line

with previous research, we show that a parallel testing strategy is optimal only when

testing costs are sufficiently small. In contrast, the higher the testing costs, the more

beneficial a sequential testing strategy becomes. Yet it is an unanswered question just

how the firm should set up its sequential testing strategy. Should it mandate a single

expert to carry out all test activities, or should it rather assign a different expert to

each design test? Our results indicate that the former approach is optimal when the

informational quality of the different design tests is relatively homogeneous. When test

efficiency is very heterogenous across designs, however, the firm should hire multiple

experts because in that case a single expert might artificially keep the testing process

alive in order to receive ongoing payments—to the firm’s obvious detriment.

These results have clear consequences for practice. We identify two levers the firm

can use when designing an effective testing strategy: the order of the different design

tests (parallel vs. sequential), and the number of experts to employ. Whereas the former

option has been extensively discussed in the academic literature, the latter option has yet

to receive serious attention. It is important to recognize that the two levers address two

different concerns. The choice of whether to use a parallel or sequential testing strategy

depends on the testing costs, whereas the ideal number of experts depends on the extent

to which the efficiency of tests (for the different designs) is heterogeneous.

Finally, we show how the presence of information asymmetry affects the various

testing strategies. Overall, our results point to the same conclusion: the delegation of

testing leads to a suboptimal testing process whose information asymmetries are signif-

icantly more harmful to parallel than to sequential testing strategies. In other words,

our findings indicate that parallel testing may be less effective than usually claimed in

the academic literature (Dahan and Mendelson 2001, Loch et al. 2001) when the testing

process involves information asymmetries. This finding may also explain the practical
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observation that, even though technological advancements have lowered testing costs in

recent years, no significant shift toward parallel testing efforts is evident.

To maintain tractability and develop a parsimonious model, we necessarily made

some assumptions about the specific trade-offs inherent to a sequential testing strategy.

In particular, we assumed that the design alternatives are sufficiently different that the

firm cannot exploit any between-design learning effects. Also, we did not allow the

firm to choose previously tested designs for development. Both assumptions clearly lead

to an underestimate of the performance of sequential testing strategies, from which it

follows that relaxing these assumptions could only strengthen our main message that

delegation favors sequential testing. Furthermore, one can readily verify that the opti-

mal contract structures would remain relatively intact even without these assumptions;

hence our results are applicable to a wide range of practical scenarios. With regard to

the firm’s choice of testing strategy, we focused on “polar” cases: fully parallel versus

fully sequential testing, and a single expert versus n experts. In reality, firms are free to

use any mixture of parallel and sequential testing strategies, and they may also hire any

arbitrary number of experts. Whether such hybrid strategies can improve the efficacy of

delegated testing processes is an important question for future research. Another inter-

esting research possibility is for empirical studies to examine the relationship between a

firm’s chosen testing strategy and the severity of its agency issues. Our own theoretical

results lead us to conjecture that firms (and industries) with relatively strong agency

problems are much more likely to use sequential than parallel testing strategies.
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Appendix A

Proofs of Chapter II

Lemma A.1. There exists a unique pure-strategy second-round equilibrium for any feed-

back policy.

Proof of Lemma A.1. Observe that each Nash equilibrium satisfies ei2 ∈ [0,
√
A/c] be-

cause ui2(0, ej2) ≥ 0 ≥ ui2(
√
A/c, ej2) > ui2(ei2, ej2) for any ej2 and all ei2 >

√
A/c.

Hence to prove existence and uniqueness of the second-round equilibrium, we can replace

the original contest by a modified contest where each solver’s effort choice is restricted

to [0,
√
A/c]. These two contests have the same Nash equilibria because each Nash equi-

librium satisfies ei2 ∈ [0,
√
A/c], ui2 is continuous, and each solver’s strategy space is an

interval of R. Also, straightforward differentiation shows that ui2 is strictly concave in

ei2 for given ej2. Hence, by Theorem 1.2 in Fudenberg and Tirole (1991), there exists a

pure-strategy Nash equilibrium in the original contest.

It remains to show that this equilibrium is also unique. However, once we observe

that ∂2ui2/∂e
2
i2 +2c = −∂2ui2/∂ei2∂ej2, and ∂Eζ1 [g∆ζ2(vi1 + keei2 − vj1 − keej2)|fi] /∂ei2

∈ [−ke/a2, ke/a
2] for any feedback fi, this is just a simple application of Theorems 2

and 6 in Rosen (1965).

Proof of Proposition 2.1. Without feedback between round one and two, solver i’s opti-

mization problem is equivalent to a utility maximization problem with simultaneous

decisions on ei1 and ei2. Moreover, since performance is linear in effort, while the

costs are strictly convex, equilibrium effort levels must be the same in both rounds.

Thus, in equilibrium, ei1 = ei2 = eno
i , and solver i’s equilibrium effort has to solve

eno
i ∈ argmaxei A · Eζ1 [G∆ζ2(2keei + ζi1 − 2keej − ζj1)] − 2ce2

i . Since this is a strictly

concave maximization problem, eno
i is given by the following first-order optimality con-

dition:

2Ake · Eζ1
[
g∆ζ2(2kee

no
i + ζi1 − 2kee

no
j − ζj1)

]
= 4ceno

i . (A.1)
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By the symmetry of g∆ζ2 around zero, it follows readily that the unique solution to the

solvers’ optimality conditions is symmetric; that is eno
i = eno

j . Inserting this information

in (A.1) yields eno
i = Ake/(2c) · Eζ1 [g∆ζ2(ζi1 − ζj1)] = Ake/(2c) ·

∫ a
−a g∆ζ2(z)g∆ζ1(z)dz =

Ake/(2c) ·
∫ a
−a g∆ζ1(z)2dz = Ake/(3ac).

Proof of Proposition 2.2. Given public feedback, solvers perfectly learn v1 after round

one. As such, solver i’s second-round equilibrium effort solves epub
i2 ∈ argmaxei2 A ·

G∆ζ2(vi1 + keei2 − vj1 − keej2) − ce2
i2, and the corresponding necessary and sufficient

first-order optimality condition is given by

Ake · g∆ζ2(vi1 + kee
pub
i2 − vj1 − kee

pub
j2 ) = 2cepub

i2 . (A.2)

By the symmetry of g∆ζ2 around zero, the unique second-round equilibrium is symmetric:

epub
i2 = epub

j2 .

In the first round, solver i’s equilibrium effort has to solve epub
i1 ∈ argmaxei1 A ·

Eζ1 [G∆ζ2(keei1 + ζi1 − keej1 − ζj1)]− ce2
i1 −Eζ1

[
c(epub

i2 )2
]
, and the corresponding neces-

sary first-order optimality condition is given by

Ake · Eζ1
[
g∆ζ2(kee

pub
i1 + ζi1 − keepub

j1 − ζj1)
]
− 2cepub

i1 −
∂

∂ei1
Eζ1
[
c(epub

i2 )2
]

= 0. (A.3)

Note that the first two terms in (A.3) capture the direct effect of epub
i1 on solver i’s

expected utility, whereas the third term captures the indirect effect of epub
i1 on i’s second-

round effort epub
i2 . In equilibrium, this indirect effect must be zero. To see this, note that

(A.3) reveals that epub
i1 has no strategic effect on epub

j2 . By the symmetry of the second-

round equilibrium, this implies that, in equilibrium, the strategic effect of epub
i1 on epub

i2 has

to be zero as well. Yet, this is true if and only if epub
i1 = epub

j1 ; i.e., first-round equilibrium

efforts are symmetric. Inserting this information in (A.2) and (A.3) shows that the

unique PBE under public feedback is given by epub
i2 (∆ζ1) = Ake/(2c) · g∆ζ2(∆ζ1) =

Ake/(2a
2c) · (a− |∆ζ1|), and epub

i1 = Eζ1
[
epub
i2 (∆ζ1)

]
= Ake/(3ac).

Proof of Proposition 2.3. Given private feedback, solver i perfectly learns vi1 after round

one, but receives no additional information on vj1. As such, solver i’s second-round

equilibrium effort solves epri
i2 ∈ argmaxei2 A ·Evj1 [G∆ζ2(vi1 +keei2−vj1−keej2)|vi1]− ce2

i2,

and the corresponding necessary and sufficient first-order optimality condition is given

90



A. Proofs of Chapter II

by

Ake · Evj1 [g∆ζ2(vi1 + kee
pri
i2 − vj1 − kee

pri
j2 )|vi1] = 2cepri

i2 . (A.4)

Lemma A.1 ensures that the second-round equilibrium defined by (A.4) is unique. Next,

we establish the uniqueness of the first-round equilibrium. In the first round, solver i’s

equilibrium effort has to solve epri
i1 ∈ argmaxei1 A ·Eζ1 [G∆ζ2(ke(ei1 + epri

i2 ) + ζi1− ke(ej1 +

epri
j2 ) −ζj1)]− ce2

i1−Eζ1
[
c(epri

i2 )2
]
, and the corresponding necessary first-order optimality

condition is given by

Ake·Eζ1

[
g∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1 − ke(epri
j1 + epri

j2 )− ζj1) ·

(
1 +

∂epri
i2

∂ei1
−
∂epri

j2

∂ei1

)]
−2cepri

i1

− Eζ1

[
2cepri

i2 ·
∂epri

i2

∂ei1

]
= 0. (A.5)

Clearly, solver j’s second-round effort cannot be influenced by solver i’s first-round ef-

fort, because solver j does not receive any information on vi1. Therefore, ∂epri
j2 /∂ei1 =

0. Rewriting (A.5) yields AkeEζ1 [g∆ζ2(ke(e
pri
i1 + epri

i2 ) + ζi1 − ke(e
pri
j1 + epri

j2 ) − ζj1)] −
2cepri

i1 + Eζ1 [(Akeg∆ζ2(ke(e
pri
i1 + epri

i2 ) + ζi1 − ke(epri
j1 + epri

j2 )− ζj1)− 2cepri
i2 ) · ∂epri

i2 /∂ei1] = 0,

where the third term is zero because Eζ1 [(Akeg∆ζ2(ke(e
pri
i1 + epri

i2 ) + ζi1 − ke(epri
j1 + epri

j2 )−
ζj1)− 2cepri

i2 )∂epri
i2 /∂ei1] = Evi1 [Evj1 [(Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1 − ke(epri
j1 + epri

j2 )− ζj1)−
2cepri

i2 )∂epri
i2 /∂ei1|vi1]] = Evi1 [∂e

pri
i2 /∂ei1 ·Evj1 [Akeg∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1− ke(epri
j1 + epri

j2 )−
ζj1)−2cepri

i2 |vi1]] = Evi1 [∂e
pri
i2 /∂ei1 ·(AkeEvj1 [g∆ζ2(vi1+kee

pri
i2 −vj1−kee

pri
j2 ))|vi1]−2cepri

i2 )] =

0. The first equality follows from the law of iterated expectations, the second equality

is true because solver i’s second-round effort choice is independent of vj1, the third

equality follows from rearranging terms, and the last equality follows from solver i’s

second-round optimality condition (A.4). Thus, the first-order optimality condition

of solver i is Ake · Eζ1
[
g∆ζ2(ke(e

pri
i1 + epri

i2 ) + ζi1 − ke(epri
j1 + epri

j2 )− ζj1)
]
− 2cepri

i1 = 0,

and by the symmetry of g∆ζ2 around zero, it follows readily that the unique solu-

tion to the solvers’ optimality conditions is symmetric; that is epri
i1 = epri

j1 . Moreover,

epri
1 = Evi1

[
epri
i2 (vi1)

]
= Eζi1

[
epri
i2 (ζi1)

]
.

We now proceed with deriving the solvers’ second-round equilibrium effort. We

conjecture that the unique second-round equilibrium is symmetric in the sense that

epri
i2 (ζi1) = epri

2 (ζi1) and epri
j2 (ζj1) = epri

2 (ζj1), and that vpri(ζi1) = ζi1 + kee
pri
2 (ζi1) increases
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in ζi1. We will demonstrate in retrospective that these claims are true. Together with

(A.4), the above properties imply that the equilibrium effort function epri
2 (·) solves the

following integral equation: Ake · Eζj1 [g∆ζ2(ζi1 + kee
pri
2 (ζi1) − ζj1 − kee

pri
2 (ζj1))|ζi1] =

2cepri
2 (ζi1), or equivalently,

Ak2
e · Eζj1 [g∆ζ2(v

pri(ζi1)− vpri(ζj1))|ζi1] = 2c
(
vpri(ζi1)− ζi1

)
. (A.6)

Because g∆ζ2(v
pri(ζi1) − vpri(ζj1)) is positive only if vpri(ζi1) − vpri(ζj1) ∈ [−a, a], we

distinguish three cases:

(I) If vpri(ζi1) − vpri(ζj1) ∈ [−a, a] for all ζj1, then ζi1 ∈ [ζu, ζo]. In this case, (A.6)

is given by∫ ζi1

−a
2

(a− vpri(ζi1) + vpri(ζj1))dζj1 +

∫ a
2

ζi1

(a+ vpri(ζi1)− vpri(ζj1))dζj1

= 2aκ(vpri(ζi1)− ζi1),

(A.7)

and differentiating both sides with respect to ζi1 leads to the first-order ordinary differen-

tial equation
(
vpri(ζi1)

)′
= aκ/(ζi1 + aκ), with canonical solution vpri(ζi1) = aκ ln((aκ+

ζi1)/γ3). It is easy to verify that vpri(a/2)− vpri(−a/2) = aκ ln((2κ+ 1)/(2κ− 1)) > a,

implying that [ζu, ζo] ⊂ [−a/2, a/2].

(II) For ζi1 ∈ [−a/2, ζu], (A.6) becomes

∫ ζi1

−a
2

(a− vpri(ζi1) + vpri(ζj1))dζj1 +

∫ v−1(vpri(ζi1)+a)

ζi1

(a+ vpri(ζi1)− vpri(ζj1))dζj1

= 2aκ(vpri(ζi1)− ζi1),

(A.8)

and differentiating both sides with respect to ζi1 leads to the differential equation

(vpri(ζi1))′[2ζi1 + 2aκ + a/2 − v−1(vpri(ζi1) + a)] = 2aκ, which is a Bernoulli equation

in v−1(·) whose implicit solution is

v−1(vpri) = Ce
1
aκ
vpri − a

(
κ+

1

4

)
− 1

2aκ
e

1
aκ
vpri
∫
e−

1
aκ
vpriv−1(vpri + a)dvpri. (A.9)
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(III) In a similar vein, we can show that for ζi1 ∈ [ζo, a/2], the implicit solution to

(A.6) is given by

v−1(vpri) = C ′e
1
aκ
vpri − a

(
κ− 1

4

)
− 1

2aκ
e

1
aκ
vpri
∫
e−

1
aκ
vpriv−1(vpri − a)dvpri. (A.10)

Combining (A.9) and (A.10) allows us to derive closed-form solutions. With (A.10),

(A.9) becomes v−1(vpri) = Ce
1
aκ
vpri − a

(
3
2
κ+ 1

8

)
− C ′ 1

2aκ
e

1
κ e

1
aκ
vprivpri

+
(

1
2aκ

)2
e

1
aκ
vpri
∫∫

e−
1
aκ
vpriv−1(vpri)d(vpri +a)dvpri. Note that v−1(vpri)−2aκ(v−1(vpri))′+

(aκ)2(v−1(vpri))′′ = v−1(vpri)/4 − a(3κ/2 + 1/8). This is an equation of damped vi-

brations with canonical solution v−1(vpri) = γ4e
3

2aκ
vpri + γ5e

1
2aκ

vpri − a
(

1
6

+ 2κ
)
. In

an identical way, we can derive the canonical solution for ζi1 ∈ [ζo, a/2]: v−1(vpri) =

γ1e
3

2aκ
vpri + γ2e

1
2aκ

vpri + a
(

1
6
− 2κ

)
. Thus, the canonical solution to (A.6) is given by

v−1(vpri) =


γ4e

3
2aκ

vpri + γ5e
1

2aκ
vpri − a

(
1
6

+ 2κ
)

if vo − a ≤ vpri < vu

γ3e
1
aκ
vpri − aκ if vu ≤ vpri ≤ vo

γ1e
3

2aκ
vpri + γ2e

1
2aκ

vpri + a
(

1
6
− 2κ

)
if vo < vpri ≤ vu + a,

(A.11)

where vu = vpri(ζu), vo = vpri(ζo), vo− a = vpri(−a/2), and vu + a = vpri(a/2). With the

substitution u = exp (v/(2aκ)) we can represent v−1(vpri) as a set of cubic equations,

which we can solve for vpri(ζi1) with standard mathematical tools (Olver et al. 2010, p.

131) to gain

vpri(ζi1) =


2aκ · ln

(√
−4γ5

3γ4
· sin

(
1
3
· sin−1

(√
−3γ4

γ5
· a(1+12κ)+6ζi1

4γ5

)))
if − a

2
≤ ζi1 < ζu

aκ · ln
(
ζi1+aκ
γ3

)
if ζu ≤ ζi1 ≤ ζo

2aκ · ln
(

1
6
· 3
√
z(ζi1)− 2 · γ2

γ1
· 1

3
√
z(ζi1)

)
if ζo < ζi1 ≤ a

2
.

(A.12)

It remains to determine the integration constants. From (II), it follows readily that γ4 =

−γ1n
3 and γ5 = γ2n. Moreover, (A.6) satisfies all requirements of the Implicit Function

Theorem. Therefore, vpri(ζi1) is continuously differentiable. From the continuity of(
vpri(ζi1)

)′
, it follows that γ2n = 2γ3xy(n3x + y)/(n2x2 + y2), and 3γ1n = 2γ3(ny −

x)/(n2x2 + y2). Additionally, the continuity of vpri(ζi1) implies that ζu = γ3x
2 − aκ,

ζo = γ3y
2 − aκ, γ3 = 3a(κ + 1/6)(n2x2 + y2)/(x2(3y2 − n2x2 + 4n3xy)), and γ3 =
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3a(κ− 1/6)n(n2x2 + y2)/(y2(3n3x2− ny2 + 4xy)). Equating these two expressions leads

to (2.6). Finally, the integral equation (A.6) becomes a/(6κ)− a(κ− 1/6) ln(y)− a(κ+

1/6) ln(x) − aκ + 2γ1((y/n)3 − x3)/3 + γ3(y2 + x2)/2 = 0, which is the same as (2.7).

As a last step, we need to verify that our initial conjecture that vpri(ζi1) increases in ζi1

is true. Note that because 0 < x < y, and n > 1, we have γ1, γ2, γ3 > 0. Thus, it is

obvious that vpri(ζi1) increases in ζi1 for ζi1 ≥ ζu. For ζi1 < ζu, we have (v−1(vpri))′ > 0

if 3γ4x
2 + γ5 = 2γ3x > 0, which is true. Therefore, vpri(ζi1) increases in ζi1, which

concludes the proof.

Note on our solution methodology : The crucial step is to transform the integral

equation (A.6) into an ordinary differential equation (ODE) by differentiating both sides

of the equality with respect to ζi1. Clearly, the unique solution to (A.6) also solves the

ODE. However, the ODE may have solutions that do not solve (A.6). To circumvent this

problem, we identify the ODE’s canonical solution (A.11), which defines the solution to

(A.6) up to certain constants. These constants are, in turn, uniquely defined by the

properties of (A.6).

Proof of Corollary 2.1. Let x̃ = e−(κ−1)/(4κ2) = n−(κ−1)/(2κ) and ỹ = e(κ+1)/(4κ2)

= n(κ+1)/(2κ). We now show that (x̃, ỹ) is the solution to the system of equations

(2.6)-(2.7) as κ → ∞. Inserting x̃ and ỹ in (2.6) reveals that the left-hand side is

equal to −2n2/κ · (2 + n2 +m(1 + 2n2)), which converges to zero as κ → ∞ because

limκ→∞ n = 1, and limκ→∞m = −1. Similarly, the left-hand side of (2.7) is given by

(1− 6κ2)/(κ(1 + 6κ)) + (m + 1)/(4κ) + (m− 1)/(4κ2) + 3(1 + n2)/(2(1 + 2n2)), which

clearly converges to zero as κ→∞. Moreover, limκ→∞ vu = limκ→∞ 2aκ ln(x̃) = −a/2,

and limκ→∞ vo = limκ→∞ 2aκ ln(ỹ) = a/2. From (2.5), it follows that only the middle

sector persists as κ → ∞. Also, by inserting x̃ and ỹ in the formula for γ3 in Propo-

sition 2.3, limκ→∞ γ̃3 = limκ→∞ γ3. Taken together, this implies that limκ→∞ ẽ2(ζi1) =

limκ→∞ e
pri
2 (ζi1) for all ζi1.

Proof of Proposition 2.4. (i) From Propositions 2.1 and 2.2, it follows readily that eno
1 =

epub
1 . It remains to show that eno

1 > epri
1 . Note that (A.4) reveals that epri

2 (ζi1) <

Ake/(2ac) for all ζi1. Thus, 0 ≤ epri
1 = Eζi1

[
epri

2 (ζi1)
]
< Ake/(2ac). It follows that

lima→∞ e
no
1 = lima→∞ e

pri
1 = 0. Furthermore, ∂eno

1 /∂a = −eno
1 /a, and ∂epri

1 /∂a =

−epri
1 /a + ∂(aepri

1 )/∂a > −epri
1 /a. As a result, eno

1 = epri
1 = 0 for a→∞, but ∂epri

1 /∂a >

∂eno
1 /∂a; i.e., epri

1 decreases less steeply than eno
1 . This implies that eno

1 > epri
1 if a becomes

an ε > 0 smaller. But if eno
1 > epri

1 , then epri
1 decreases even less steeply compared to eno

1 .
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By an inductive argument, it follows that eno
1 − e

pri
1 > 0, and this difference decreases in

a.

(ii) The result is a direct consequence of (i) in combination with Propositions 2.1 -

2.3.

(iii) By (i) and (ii), it follows that Πpub
avg = E[vpub

i2 + vpub
j2 ]/2 − A =

(epub
1 + E∆ζ1 [e

pub
2 (∆ζ1)])− A = (eno

1 + eno
2 )− A = Πno

avg > Πpri
avg = (epri

1 + Eζi1 [e
pri
2 (ζi1)])−

A.

Proof of Proposition 2.5. (i) The result follows directly from comparing the firm’s ex-

pected profits under the two different feedback policies: Πno
best =

E [maxi{ζi1 + ζi2 + 2kee
no
i }]−A = 2kee

no
1 +E [maxi{ζi1 + ζi2}]−A = a(2/(3κ)+7/30)−A;

and Πpub
best = E[maxi{ζi1 + ζi2 +kee

pub
1 +kee

pub
2 (ζ1)}]−A = 2kee

pub
1 +E [maxi{ζi1 + ζi2}]−

A = Πno
best, where we made use of the well-known fact that max{a, b} = (a+b+ |a−b|)/2.

(ii) Let κ = 1. Then, Πpri
best ≈ 0.889a−A < 0.9a−A = Πpub

best, and by the continuity

of Πpub
best and Πpri

best, it follows that there exists a κ > 1, such that Πpri
best < Πpub

best for all

κ < κ.

(iii) The proof proceeds in two steps. First, we establish a lower bound for the

firm’s expected profits under a private feedback policy, Πpri
best < Πpri

best, and show that

Πpri
best > Πpub

best if γ3 is sufficiently low. Last, we verify that there exists a κ such that γ3

becomes sufficiently low for all κ > κ.

Lower bound. The firm’s expected profit is Πpri
best = kee

pri
1 + E[maxi{ζi1 + ζi2 +

kee
pri
2 (ζi1)}]−A. Clearly, for any effort function e2(ζi1) with e2(ζi1) ≤ epri

2 (ζi1) for all ζi1,

we have Πpri
best = kee

pri
1 + E [maxi{ζi1 + ζi2 + kee2(ζi1)}] − A ≤ Πpri

best. In the remainder,

we set e2(ζi1) ≡ − ζi1
ke

+ aκ
ke

ln(ζi1 + aκ) − aκ
ke

ln(γ3). To see that this is indeed a lower

bound on epri
2 (ζi1), note that e2(ζi1) solves the integral equation (A.7) for all ζi1. By

doing so, however, we ignore the fact that for some ζi1 and ζj1, we have ζi1 + kee2(ζi1)−
ζj1 + kee2(ζj1) /∈ [−a, a]. This implies that the left-hand side of (A.7) is extended by

negative terms compared to the correct solution outlined in Proposition 2.3. Now, since

the left-hand side is smaller, it follows by equality that the right-hand side is smaller as

well, thereby implying e2(ζi1) ≤ epri
2 (ζi1).

With e2(ζi1), Πpri
best = a · (−κ3(κ2 + 1

4
)(e

1
κ − e−

1
κ ) + κ4(e

1
κ + e−

1
κ ) + κ(κ2 − 2κ +

1
4
) ln(2κ−1

2κ+1
)+ 1

2
κ ln(a4(2κ−1)(2κ+1)3)+ 5

6
κ2−2κ(1+ln(2)+ln(γ3))+ 1

12
), and Πpri

best > Πpub
best
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if and only if γ3 < γ
3
, with

γ
3

=
a

2
e
−κ

2

2 (κ2+ 1
4)

(
e
1
κ−e−

1
κ

)
e
κ3

2

(
e
1
κ+e−

1
κ

)

·
(

2κ− 1

2κ+ 1

) 1
2(κ2−2κ+ 1

4)
4
√

(2κ− 1)(2κ+ 1)3e
5
12
κ−1− 3

40κ
− 1

3κ2 .

(A.13)

Taking the limit. To test whether γ3 < γ
3
, we will first derive an upper bound on γ3,

and then show that this upper bound is smaller than γ
3
. As a preliminary step, define

the function Γ(x, y) = 2γ3/(a(1 + 6κ)) = (n2x2 + y2)/(x2(3y2 − n2x2 + 4n3xy)), which

decreases in x and y. Since x ∈
[
e−1/(4κ), e−1/(4κ)·(1−1/κ)

]
and y ∈

[
e1/(4κ), e1/(4κ)·(1+1/κ)

]
,

it follows that Γ(x, y) ∈ [Γ,Γ] = [e1/(2κ)/((1 + 2e1/κ)e1/(2κ2)), e1/(2κ)/(1 + 2e1/κ)]. Given

the monotonicity of Γ(x, y), we can build the inverse function of Γ(x, y) with respect to

y:

y(x,Γ) =
nx

1− 3Γx2
·
(

2n2Γx2 −
√

4(1 + n4)Γ2x4 − (Γx2 − 1)2
)
. (A.14)

Inserting (A.14) in (2.6) and (2.7) allows us to eliminate y from the system of equations,

and to represent it in variables x and Γ. Now, Πpri
best ≤ Πpub

best if and only if the transformed

system of equations has a solution for Γ in the interval [Γ3,Γ], and x arbitrary, where

Γ3 = 2γ
3
/(a(1 + 6κ)). We proceed to show that for sufficiently large κ, such a solution

does not exist; but before doing so, we derive some important properties.

Let l1(x, y) be the left-hand side of (2.6), and l2(x, y) be the left-hand side of

(2.7). Straightforward differentiation verifies that there exists a κ such that for all

κ > κ, l1(x, y) increases in x and decreases in y, whereas l2(x, y) decreases in x and

y. Furthermore, denote by x1(y) (resp. x2(y)) the solution to l1(x1(y), y) = 0 (resp.

l2(x2(y), y) = 0) for any y. Applying the Implicit Function Theorem reveals that

x1(y) increases in y, while x2(y) decreases in y for κ > κ. In a next step, we transfer

these results to the transformed system of equations, which we denote by l′1(x,Γ) = 0

and l′2(x,Γ) = 0. Analogously to above, let x′1(Γ) (resp. x′2(Γ)) be the solution to

l′1(x′1(Γ),Γ) = 0 (resp. l′2(x′2(Γ),Γ) = 0) for any Γ. Moreover, note that by the Inverse

Function Theorem, y(x,Γ) decreases in Γ, because Γ(x, y) decreases in y. Therefore,

by total differentiation, it follows that ∂x′1(Γ)/∂Γ = ∂x1(y)/∂y · ∂y(x,Γ)/∂Γ < 0, and

∂x′2(Γ)/∂Γ = ∂x2(y)/∂y · ∂y(x,Γ)/∂Γ > 0 for κ > κ.
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We are now well-equipped to complete the proof. We want to show that there

exists a κ such that for all κ > κ, the transformed system of equations l′1(x∗,Γ∗) = 0

and l′2(x∗,Γ∗) = 0 admits no solution with Γ∗ ∈ [Γ3,Γ]. We do so by verifying that for all

κ > κ, l′2(x,Γ) > 0 for any x and Γ ∈ [Γ3,Γ]. Note that for κ > κ, l′2(x,Γ) decreases in

x, and increases in Γ. This is true because ∂l′2(x,Γ)/∂Γ = ∂l2(x, y)/∂y ·∂y/∂Γ > 0, and,

by the Implicit Function Theorem, ∂l′2(x,Γ)/∂x = −(∂l′2(x,Γ)/∂Γ)/(∂x′2(Γ)/∂Γ) < 0.

Therefore, for κ > κ, l′2(x,Γ) ≥ l′2(x,Γ3), where x = e−1/(4κ)·(1−1/κ). It remains to

demonstrate that l′2(x,Γ3) > 0, or equivalently, l2(x, y(x,Γ3)) > 0 for κ > κ. We will

conclude this final step with the help of a two-step Taylor series expansion. As a starting

point, we substitute 1/κ by z. This substitution allows us to develop the Taylor series at

ẑ = 0. Now, as a first step, the Taylor series of y(x,Γ3) at ẑ = 0 is given by yTaylor(z) =

1 + z/4− 3z2/32− 1177z3/4480− 611z4/14336 +O(z5). In a second step, we can now

derive the Taylor series of l2(x, y(x,Γ3)) = l2(x, yTaylor(z)) at ẑ = 0. After resubstitution,

this Taylor series becomes lTaylor
2 (x, y(x,Γ3)) = 11/(3360κ2) − 23/(960κ3) + O(1/κ4).

Since the first term is positive, we can conclude that there exists a κ < ∞ such that

lTaylor
2 (x, y(x,Γ3)) > 0 for all κ > κ.

Proof of Proposition 2.6. (i) Suppose that both solvers have invested arbitrary first-

round efforts e1. Each solver will make his submission decision so as to maximize his

expected continuation utility.

Case (a): If both solvers submit their intermediate solutions, they perfectly learn

v1. According to (A.2), each solver will invest a second-round effort of ess2 (v1) = Ake/2c ·
g∆ζ2(vi1−vj1). As a result, each solver’s expected continuation utility before submission

is ussic = A · Ev1 [G∆ζ2(vi1 − vj1)]− Ev1 [cess2 (v1)2].

Case (b): If only solver i submits his intermediate solution, both solvers only learn

vi1. The solvers’ equilibrium second-round effort is esn2 (vi1) = Ake/2c · Evj1 [g∆ζ2(vi1 −
vj1)|vi1], and each solver’s expected continuation utility is usnic = A ·Ev1 [G∆ζ2(vi1−vj1)]−
Evi1 [cesn2 (vi1)2].

Case (c): If no solver submits his solution, then no feedback is transmitted and ac-

cording to (A.1), the solvers’ equilibrium second-round effort is enn2 = Ake/2c·Ev1 [g∆ζ2(vi1−
vj1)], which yields the following expected continuation utility for solver i: unnic = A ·
Ev1 [G∆ζ2(vi1 − vj1)]− c(enn2 )2.

By symmetry, case (c) is an equilibrium if and only if unnic > usnic , or equiva-

lently, Evi1 [esn2 (vi1)2] > (enn2 )2. This is true because Jensen’s inequality implies that
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Evi1 [esn2 (vi1)2] > (Evi1 [esn2 (vi1)])2 = (enn2 )2. To show that case (c) is the unique equilib-

rium we verify that case (a) is not an equilibrium: usnjc > ussjc follows from Jensen’s

inequality because Evi1 [esn2 (vi1)2] = Evi1 [Evj1 [ess2 (v1)|vi1]2] < Evi1 [Evj1 [ess2 (v1)2|vi1]] =

Ev1 [ess2 (v1)2].

(ii) In the case of private feedback, a solver’s submission decision is unobservable

to the other solver. Hence it is sufficient to verify that a solver’s expected utility from

submitting is larger than from not submitting for any mixed strategy of solver j and

arbitrary e1. Let qj be solver j’s probability of submitting, and let esj2 and enj2 be his

second-round efforts if he submits or not, respectively (Lemma A1 guarantees unique-

ness).

Solver i’s expected utility when submitting his intermediate solution and receiving

feedback vi1 is usi2(ei2, vi1) = qj(A · Evj1 [G∆ζ2(vi1 + keei2 − vj1 − keesj2)|vi1]− ce2
i2) + (1−

qj)(A · Evj1 [G∆ζ2(vi1 + keei2 − vj1 − keenj2)|vi1]− ce2
i2). Let usi2(ei2) = Evi1 [usi2(ei2, vi1)] be

his corresponding expected continuation utility, and note that his expected continuation

utility from not submitting is uni2(ei2) = qj(A ·Ev1 [G∆ζ2(vi1 +keei2−vj1−keesj2)]−ce2
i2)+

(1− qj)(A · Ev1 [G∆ζ2(vi1 + keei2 − vj1 − keenj2)]− ce2
i2). Furthermore, let esi2(vi1) and eni2

be solver i’s optimal effort choices if he submits or not, respectively, his intermediate

solution. Then it is true that usi2(esi2(vi1)) = Evi1 [usi2(esi2(vi1), vi1)] > Evi1 [usi2(eni2, vi1)] =

uni2(eni2), which proves the claim.

Proof of Proposition 2.7. Let A1 = αA and A2 = (1−α)A, α ∈ [0, 1], be the awards for

the first- and second-round winner, respectively, and note that Proposition 2.6 implies

that α must be sufficiently large to incentivize solvers to submit their intermediate

solutions. Clearly, if α is not large enough then a milestone award only reduces the

overall contest incentives, which cannot be optimal. In contrast, if α is large enough,

then solvers submit their intermediate solutions. In this case, following the same steps

as in the proof of Proposition 2.2, it is straightforward to show that the unique PBE

is symmetric and that the solvers’ equilibrium efforts are eint
1 = (1 + α/2)epub

1 and

eint
2 (∆ζ1) = (1−α)epub

2 (∆ζ1). It follows that eint
1 +E[eint

2 (∆ζ1)] = (2−α/2)epub
1 , implying

that the firm’s expected profits decrease in α. Thus the firm always chooses α = 0 in

optimum.

Proof of Proposition 2.8. Suppose that after round one, the firm truthfully reveals the

solvers’ ranking, but not v1; and wlog suppose that solver i is currently the leader.

Hence both solvers know that ∆v1 = vi1 − vj1 > 0. Solver i’s second-round equilibrium
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effort solves er
i2 ∈ argmaxei2 A · Ev1 [G∆ζ2(vi1 + keei2 − vj1 − keej2)|∆v1 > 0] − ce2

i2,

and the corresponding necessary and sufficient first-order optimality condition is Ake ·
Ev1 [g∆ζ2(vi1 +kee

r
i2−vj1−keer

j2)|∆v1 > 0] = 2cer
i2. By the symmetry of g∆ζ2 around zero,

the unique second-round equilibrium is symmetric, er
i2 = er

j2. In the first round, solver

i’s equilibrium effort solves er
i1 ∈ argmaxei1 A ·Eζ1 [G∆ζ2(ζi1 +keei1− ζj1−keej1)]− ce2

i1−
Eζ1 [c(er

i2)2], with necessary optimality condition Ake ·Eζ1 [g∆ζ2(ζi1 +kee
r
i1−ζj1−keer

j1)]−
2cer

i1 − ∂
∂ei1

Eζ1 [c(er
i2)2] = 0. By the very same argument as in the proof of Proposition

2.2, the first-round equilibrium is also unique and symmetric; that is er
i1 = er

j1. Hence,

er
1 = Ake/(2c) · E∆ζ1 [g∆ζ2(∆ζ1)] = Ake/(3ac) and er

2 = Ake/(2c) · E∆ζ1 [g∆ζ2(∆ζ1)|∆ζ1 >

0]. Since g∆ζ1|∆ζ1>0(u) = 2g∆ζ1(u) for u > 0 and 0 otherwise, it follows that er
2 =

Ake/(3ac).

Proof of Proposition 2.9. (i) Upon learning v1 under a noisy public-feedback policy,

solver i chooses his second-round equilibrium effort by solving enoi
i2 ∈ argmaxei2 qA ·

G∆ζ2(vi1 + keei2 − vj1 − keej2) + (1 − q)A · Ev1 [G∆ζ2(vi1 + keei2 − vj1 − keej2)] − ce2
i2.

Applying Lemma A1 shows that the second-round equilibrium is unique and symmet-

ric. Hence, by the same argument as in the proof of Proposition 2.2, the first-round

equilibrium is also unique and symmetric. In particular, equilibrium efforts are given

by enoi
1 = E∆ζ1 [e

noi
2 (∆ζ1)] = Ake/(3ac), and enoi

2 (∆ζ1) = Ake/(2c) · (qg∆ζ2(∆ζ1) + (1 −
q)E∆ζ1 [g∆ζ2(∆ζ1)]). Finally, using the same methodology as in the proofs of Proposition

4A(ii) and 4B(i) shows that Πpub
avg and Πpub

best are invariant in q.

(ii) In a way identical to the proof of Proposition 2.3, it can be shown that the

equilibrium under a noisy private-feedback policy is unique and symmetric. Moreover,

enoi
1 = Eζi1 [enoi

2 (ζi1)], and enoi
2 (ζi1) solves qEζj1 [g∆ζ2(ζi1 + kee

noi
2 (ζi1)− ζj1 − keenoi

2 (ζj1))] +

(1 − q)Eζ1 [g∆ζ2(ζi1 + kee
noi
2 (ζi1) − ζj1 − keenoi

2 (ζj1))] = 2cenoi
2 (ζi1)/(Ake). Let epri2 (ζi1, κ)

be the effort function defined in (2.5) for given κ. Then, enoi
2 (ζi1) = epri2 (ζi1, κ/q) +

(1 − q)Ake/(2c) · Eζ1 [g∆ζ2(ζi1 + kee
pri
2 (ζi1, κ/q) − ζj1 − keepri2 (ζi1, κ/q))]. Having derived

the equilibrium efforts we can follow exactly the same procedure as in the proof of

Proposition 4B(iii) to gain the required Taylor series lTaylor
2 (x, y(x,Γ3)) = 11q/(3360κ2)−

23/(960κ3) +O(1/κ4). Since the first term is positive: for any fixed q > 0, there exists

a κ <∞ such that lTaylor
2 (x, y(x,Γ3)) > 0 for all κ > κ.
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Appendix B

Proofs of Chapter III

Appendix B contains three different parts. Section B.1 discusses some preliminary tech-

nical results which are essential for our analysis. Section B.2 characterizes the Perfect

Bayesian equilibria of the different contest formats. Last, Section B.3 provides the de-

tailed proofs for our mathematical results.

B.1 Technical Preliminaries

The Skew-Normal Distribution.

Following Azzalini (1985), we refer to a random variable X with probability density func-

tion ψ(x;α) = 2Φ(αx)φ(x), x ∈ R, as a Skew-Normal random variable with parameter

α ∈ R. The cumulative distribution function of X is given by Ψ(x;α) =
∫ x
−∞ ψ(y;α)dy.

Below we derive some important properties of Skew-Normal random variables.

Lemma B.1. (i) ψ(x; 0) = φ(x) for all x ∈ R.

(ii) Define Ik(α) ≡
∫∞
−∞Ψ(x;α)kψ(x;α)2dx for k ≥ 0. Then, Ik(α) strictly de-

creases in α for α < 0 and strictly increases for α > 0.

(iii) (k + 1)(k + 2)Ik(0) = µ(k+2) for all k ≥ 0.

Proof of Lemma B.1. (i) See Property A in Azzalini (1985).

(ii) Taking the first-order derivative and exploiting properties of the Normal distri-

bution yields

dIk(α)

dα
=

2α

π(1 + α2)

∫ +∞

−∞
φ(
√

2 + α2x)Ψ(x;α)k (αxΦ(αx) + φ(αx)) dx. (B.1)

Since αxΦ(αx) + φ(αx) > 0 for all x, α ∈ R, we have dIk(α)/dα < 0 for α < 0 and

dIk(α)/dα > 0 for α > 0.

(iii) Ik(0) =
∫∞
−∞(k + 1)Φ(x)kφ(x)2dx/(k + 1) =

∫∞
−∞ xφ(x)Φ(x)k+1dx/(k + 1) =∫∞

−∞ x(k + 2)φ(x)Φ(x)k+1dx/((k + 1)(k + 2)) = µ(k+2)/((k + 1)(k + 2)).
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A Generalization of Slepian’s Inequality.

In this section, we establish a generalization of Slepian’s Inequality, whose basic formu-

lation can be found in, e.g., Theorem 2.1.1. in Tong (1980).

Lemma B.2. Let X = (X1, X2), Y = (Y1, Y2) follow a bivariate Normal distribution

with marginal distributions X1, Y1 ∼ N(µ1, σ
2
1), X2, Y2 ∼ N(µ2, σ

2
2) and correlation ρX ,

ρY , where ρY > ρX . Then,

(i) P(X1 ≤ u1, X2 ≤ u2) < P(Y1 ≤ u1, Y2 ≤ u2) for all u1, u2 ∈ R.

(ii) P(X1 ≥ u1, X2 ≥ u2) < P(Y1 ≥ u1, Y2 ≥ u2) for all u1, u2 ∈ R.

Proof of Lemma B.2. (i) P(X1 ≤ u1, X2 ≤ u2) = P(X1 ≤ u1 − µ1, X2 ≤ u2 − µ2) <

P(Y 1 ≤ u1 − µ1, Y 2 ≤ u2 − µ2) = P(Y1 ≤ u1, Y2 ≤ u2) for all u1, u2 ∈ R, where the

strict inequality follows from Theorem 2.1.1. in Tong (1980) and the fact that Xj, Y j,

j = 1, 2, are centered Normal random variables.

(ii) This result is an immediate consequence of part (i).

B.2 Derivation of Perfect Bayesian Equi-

librium

In this section, we derive symmetric Perfect Bayesian equilibria (PBE) for the most

general version of our model; that is, k ≥ 1 and ζi = (ζi1, ζi2) follows a bivariate Normal

distribution with correlation ρ ∈ [0, 1) and marginal distributions ζi1 ∼ N(0, σ2) and

ζi2 ∼ N(0, k2σ2). We start with the case of technological substitutes and then proceed

to technological complements.

B.2.1. PBE for Technological Substitutes

Note that given our assumption of a sufficiently large performance shock (i.e., σ >

σsub), each supplier i always participates in any contest. This is true because supplier

i can always guarantee himself a strictly positive expected utility by participating and

exerting zero effort. Hence we can derive the suppliers’ equilibrium efforts by solving

their incentive compatibility (IC) constraints.
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System contest.

In a system contest, supplier i’s IC constraint is:

(esysi1 , e
sys
i2 ) ∈ argmax

ei1,ei2

ui(ei1, ei2)

≡ AEζi1,ζi2

∏
k 6=i

Fζk1+ζk2

 ∑
j∈{1,2}

r(eij) + ζij − r(ekj)

− c(ei1)− c(ei2).

(B.2)

Using straightforward differentiation and the law of iterated expectations, we find that

any symmetric pure-strategy PBE satisfies the following optimality condition for j = 1, 2:

c′(esysj )

r′(esysj )
=
A(n− 1)In−2(0)

σ
√

1 + k2 + 2kρ
=

Aµ(n)

nσ
√

1 + k2 + 2kρ
, (B.3)

where µ(n) is the expected value of the maximum order statistic of n standard Normal

random variables. Since c′/r′ is strictly increasing, c′(0) = 0 and c′(∞)/r′(∞) = ∞, it

follows that (esys1 , esys2 ) is the unique solution to (B.3). Define η(x) = (r ◦ (c′/r′)−1)(x)

for all x ≥ 0. Then the buyer’s equilibrium expected profit is

Πsys
sub = 2η

(
Aµ(n)

nσ
√

1 + k2 + 2kρ

)
+ σµ(n)

√
1 + k2 + 2kρ. (B.4)

Component contest.

Given p, supplier i’s IC constraint in each component contest j ∈ {1, 2} is:

ecpoi1 ∈ argmax
ei1

ui(ei1) ≡ pAEζi1

[∏
k 6=i

Fζk1 (r(ei1) + ζi1 − r(ek1))

]
− c(ei1) (B.5)

ecpoi2 ∈ argmax
ei2

ui(ei2) ≡ (1− p)AEζi2

[∏
k 6=i

Fζk2 (r(ei2) + ζi2 − r(ek2))

]
− c(ei2), (B.6)
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yielding the following optimality conditions for a symmetric PBE:

c′(ecpo1 )

r′(ecpo1 )
=
pA(n− 1)In−2(0)

σ
=
pAµ(n)

nσ
(B.7)

c′(ecpo2 )

r′(ecpo2 )
=

(1− p)A(n− 1)In−2(0)

kσ
=

(1− p)Aµ(n)

nkσ
. (B.8)

Again, since c′/r′ is strictly increasing, c′(0) = 0 and c′(∞)/r′(∞) = ∞, (ecpo1 , ecpo2 ) is

the unique symmetric PBE. Given suppliers’ equilibrium efforts, the buyer chooses p to

maximize expected profits:

p∗ ∈ argmax
p

Πcpo(p) = η

(
pAµ(n)

nσ

)
+ η

(
(1− p)Aµ(n)

nkσ

)
+ σµ(n)(1 + k). (B.9)

Assumption 3.2 ensures that η is a strictly concave function, and therefore Πcpo(p) is

strictly concave in p, implying that p∗ is unique. Moreover, the necessary and sufficient

first-order condition ∂Πcpo(p)/∂p = 0 reveals that p∗(k = 1) = 1/2 and limk→∞ p
∗(k) =

1, and we let Πcpo
sub ≡ Πcpo(p∗).

B.2.2. PBE for Complementary Components

As before, the assumption that σ > σcml ensures that each supplier i always participates

in any contest. Hence we can derive the suppliers’ equilibrium efforts by solving their

incentive compatibility (IC) constraints.

System contest.

In a system contest, supplier i’s IC constraint is:

(esysi1 , e
sys
i2 ) ∈ argmax

ei1,ei2

ui(ei1, ei2) ≡ AEζi1,ζi2

[∏
k 6=i

Fsk(si)

]
− c(ei1)− c(ei2), (B.10)
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where si = min{vi1, vi2}, and since vi1 ∼ N(r(ei1), σ2) and vi2 ∼ N(r(ei2), k2σ2) we have

fsi(x) =
2∑
j=1

1

kj−1σ
φ

(
x− r(eij)
kj−1σ

)
Φ

(
1

σ
√

1− ρ2

(
ρ(x− r(eij))

kj−1
− x− r(ei,3−j)

k2−j

))
,

(B.11)

Fsi(x) = Φ

(
x− r(ei1)

σ

)
+

∫ ∞
(x−r(ei1))/σ

Φ

(
x− r(ei2)− ρkσu

kσ
√

1− ρ2

)
φ(u)du (B.12)

by eq. (46.77)-(46.78) in Kotz et al. (2000). Using straightforward differentiation and

the law of iterated expectations, we find that any symmetric pure-strategy PBE satisfies

the following optimality condition for j = 1, 2:

c′(esysj )

r′(esysj )
= A(n− 1)

·
∫ ∞
−∞

fs(r(e
s
j) + x)Fs(r(e

s
j) + x)n−2(1− Fζ3−j |ζj(r(esj)− r(es3−j) + x))fζj(x)dx.

(B.13)

Case A: k = 1. If k = 1, then there exists a solution to (B.13) with esys1 = esys2 , and

this solution is given by

c′(esysj )

r′(esysj )
=
A(n− 1)

2σ
· In−2

(
−
√

1− ρ
1 + ρ

)
, (B.14)

j = 1, 2.

Case B: k →∞. By (B.13), we have the following upper bound on esys2 :

c′(esys2 )

r′(esys2 )
≤ A(n− 1)

∫ ∞
−∞

fs(r(e
s
2) + x)fζ2(x)dx (B.15)

≤ A(n− 1)

σ2

∫ ∞
−∞

(
φ

(
r(es2)− r(es1) + x

σ

)
+

1

k
φ
( x
kσ

)) 1

k
φ
( x
kσ

)
dx (B.16)

≤
√

2A(n− 1)

kσ
√
π

. (B.17)
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It follows that limk→∞ c
′(esys2 )/r′(esys2 ) = 0, and thus, given the properties of c and r,

limk→∞ e
sys
2 = 0. We now turn to esys1 :

lim
k→∞

c′(esys1 )

r′(esys1 )
=
A(n− 1)

σ

·
∫ ∞
−∞

[
Φ

(
ρy√

1− ρ2

)
φ(y)

]2 [
Φ(y) +

∫ ∞
y

Φ

(
− ρu√

1− ρ2

)
φ(u)du

]n−2

dy

(B.18)

=
A(n− 1)

2nσ

∫ ∞
−∞

[
1 + Ψ

(
y;

ρ√
1− ρ2

)]n−2

ψ

(
y;

ρ√
1− ρ2

)2

dy (B.19)

=
A(n− 1)

2nσ

n−2∑
l=0

(
n− 2

l

)
Il

(
ρ√

1− ρ2

)
, (B.20)

where the first equality is an application of Lebesgue’s Dominated Convergence Theorem.

We note that the solution (esys1 , esys2 ) is unique as k →∞.

Component contest.

Equilibrium efforts in a component contest (ecpo1 , ecpo2 ) are again given by (B.7) and

(B.8) because each component contest is run separately, so the technological relationship

between components does not affect the suppliers’ equilibrium behavior. The buyer’s

optimal choice of p solves:

p∗ ∈ argmax
p

Πcpo(p) = E[min{r(ecpo1 ) + max
i
{ζi1}, r(ecpo2 ) + max

i
{ζi2}}]. (B.21)

By Assumption 3.2, r(ecpoj ), j = 1, 2, is strictly concave in p, and since concavity is

preserved under the pointwise minimization and expectation operators, it follows that

Πcpo(p) is strictly concave in p. Moreover, the necessary and sufficient first-order con-

dition ∂Πcpo(p)/∂p = 0 reveals that p∗(k = 1) = 1/2 and limk→∞ p
∗(k) = 1, and we let

Πcpo
cml ≡ Πcpo(p∗).
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B.3 Proofs

Proof of Lemma 3.1. (ia) The result follows directly from (B.9) and the discussion there-

after.

(ib) For k = 1 and ρ = 0, (B.3) implies that c′(esys1 )/r′(esys1 ) = c′(esys2 )/r′(esys2 ) =

Aµ(n)/(
√

2nσ), and (B.7)-(B.8) imply that c′(ecpo1 )/r′(ecpo1 ) = c′(ecpo2 )/r′(ecpo2 ) =

Aµ(n)/(2nσ). Since c′/r′ is a strictly increasing function, it follows that esys1 = esys2 >

ecpo1 = ecpo2 .

(iia) The result follows directly from (B.9) and the discussion thereafter.

(iib) For ρ = 0, as k → ∞, (B.7)-(B.8) together with p∗ = 1 imply that

c′(ecpo1 )/r′(ecpo1 ) = Aµ(n)/(nσ) and c′(ecpo2 )/r′(ecpo2 ) = 0, yielding ecpo1 > 0 and ecpo2 = 0.

Furthermore, (B.3) reveals that limk→∞ c
′(esys1 )/r′(esys1 ) = limk→∞ c

′(esys2 )/r′(esys2 ) = 0,

and thus limk→∞ e
sys
1 = limk→∞ e

sys
2 = 0 by the properties of r and c.

Proof of Proposition 3.1. For ρ = 0, the buyer’s expected equilibrium profits in a system

and component contest regime are Πsys
sub = 2η(Aµ(n)/(

√
1 + k2nσ)) +

√
1 + k2σµ(n) and

Πcpo
sub = η(p∗Aµ(n)/(nσ)) + η((1− p∗)Aµ(n)/(nkσ)) + (1 + k)σµ(n), respectively (see (B.4)

and (B.9)). Define ∆(σ, k) = Πsys
sub −Πcpo

sub, which is a continuous function in σ and k for

σ > 0 and k ≥ 1.

(i) Given k = 1, ρ = 0 and the results of Lemma 3.1 the buyer’s expected equilibrium

profits in a system and component contest regime simplify to Πsys
sub = 2η(Aµ(n)/(

√
2nσ))+√

2σµ(n) and Πcpo
sub = 2η(Aµ(n)/(2nσ))+2σµ(n), respectively. Since η is strictly increasing

and η(0) = 0, it follows that limσ→0 ∆(σ, k = 1) > 0 and limσ→∞∆(σ, k = 1) < 0. By the

Intermediate Value Theorem, there exist thresholds σsub, σsub, with 0 < σsub ≤ σsub <∞,

such that ∆(σ, k = 1) > 0 for all σ ∈ (0, σsub), and ∆(σ, k = 1) < 0 for all σ > σsub. The

result now follows from the continuity of ∆(σ, k), the fact that a continuous mapping

from a connected subset of a metric space to another metric space yields a connected

image set (Ok 2007, p. 220), and by integrating our assumption that σ > σsub (note that

σsub may be larger than σsub, in which case the interval (σsub, σsub) is empty). To see

how σsub behaves for large n, note that limn→∞∆(σ, k = 1) = −(2−
√

2)σ limn→∞ µ
(n),

and therefore σsub → 0.

(ii) Fix any σ > σsub. Then, limk→∞∆(σ, k) < 0, and thus, by the Intermediate

Value Theorem, there exists a threshold ksub <∞ such that ∆(σ, k) < 0 for all k > ksub.
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(iii) Fix any k ≥ 1. Then, limσ→∞∆(σ, k) < 0, and thus, by the Intermediate Value

Theorem, there exists a threshold σsub <∞ such that ∆(σ, k) < 0 for all σ > σsub.

Proof of Lemma 3.2. (ia) The result follows directly from (B.21) and the discussion

thereafter.

(ib) For k = 1 and ρ = 0, (B.7)-(B.8) imply that c′(ecpo1 )/r′(ecpo1 ) = c′(ecpo2 )/r′(ecpo2 ) =

A(n − 1)In−2(0)/(2σ), and (B.14) implies that c′(esys1 )/r′(esys1 ) = c′(esys2 )/r′(esys2 ) =

A(n− 1)In−2(−1)/(2σ). By Lemma AB.1(ii), In−2(−1) > In−2(0), and therefore esys1 =

esys2 > ecpo1 = ecpo2 > 0.

(iia) The result follows directly from (B.21) and the discussion thereafter.

(iib) For ρ = 0, as k → ∞, (B.8) and (B.17) reveal that ecpo2 = 0 and esys2 = 0,

respectively. By (B.20) and (B.7), we have

lim
k→∞

c′(esys1 )

r′(esys1 )
=
A(n− 1)

2nσ

n−2∑
l=0

(
n− 2

l

)
Il(0) =

A

n2nσ

n−2∑
l=0

(
n

l + 2

)
µ(l+2) (B.22)

<
Aµ(n)

n2nσ

n∑
l=2

(
n

l

)
=
Aµ(n)

nσ

(
1− n+ 1

2n

)
<
Aµ(n)

nσ
= lim

k→∞

c′(ecpo1 )

r′(ecpo1 )
. (B.23)

Since c′/r′ is strictly increasing it follows readily that limk→∞ e
sys
1 < limk→∞ e

cpo
1 . Last,

we note that as k → ∞, (B.22) reveals that the right-hand side of the optimality

condition does not depend on esys1 and esys2 . Taken together with the properties of c′/r′,

this implies that (esys1 , esys2 ) is unique as k →∞.

Proof of Proposition 3.2. For ρ = 0, the buyer’s expected equilibrium profits in a system

and component contest regime are Πsys
cml = E[maxi∈{1,...,n}{minj∈{1,2}{r(esysj ) + ζij}}] and

Πcpo
cml = E[minj∈{1,2}{maxi∈{1,...,n}{r(ecpoj ) + ζij}}], respectively. Define ∆(σ, k) = Πsys

cml −
Πcpo
cml, which is a continuous function in σ and k for σ > 0 and k ≥ 1.

(i) Given k = 1, ρ = 0 and the results of Lemma 3.2, the buyer’s expected

equilibrium profits in a system and component contest regime are Πsys
cml = η(A(n −

1)In−2(−1)/(2σ)) + σE[maxi∈{1,...,n}{minj∈{1,2}{Xij}}] and Πcpo
cml =

η(A(n−1)In−2(0)/(2σ))+σE[minj∈{1,2}{maxi∈{1,...,n}{Xij}}], respectively, where Xij are

independent standard normal random variables. Since η is strictly increasing, η(0) = 0,

In−2(−1) > In−2(0), and E[minj∈{1,2}{maxi∈{1,...,n}{Xij}}] >

E[maxi∈{1,...,n}{minj∈{1,2}{Xij}}], it follows that limσ→0 ∆(σ, k = 1) > 0 and

limσ→∞∆(σ, k = 1) < 0. By the Intermediate Value Theorem, there exist thresholds
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σcml, σcml, with 0 < σcml ≤ σcml <∞, such that ∆(σ, k = 1) > 0 for all σ ∈ (0, σcml), and

∆(σ, k = 1) < 0 for all σ > σcml. The result now follows from the continuity of ∆(σ, k),

the fact that a continuous mapping from a connected subset of a metric space to another

metric space yields a connected image set (Ok 2007, p. 220), and by integrating our as-

sumption that σ > σcml (note that σcml may be larger than σcml, in which case the inter-

val (σcml, σcml) is empty). To see how σcml behaves for large n, note that limn→∞∆(σ, k =

1) = −σ limn→∞[E[minj∈{1,2}{maxi∈{1,...,n}{Xij}}] − E[maxi∈{1,...,n}{minj∈{1,2}{Xij}}]],
and therefore σcml → 0.

(ii) Fix any σ > σcml. For k → ∞, Lemma 3.2 implies that Πcpo
cml =

E[minj∈{1,2}{maxi∈{1,...,n}{r(ecpoj ) + ζij}}] > E[minj∈{1,2}{maxi∈{1,...,n}{r(esysj ) + ζij}}] >
E[maxi∈{1,...,n}{minj∈{1,2}{r(esysj ) + ζij}}] = Πsys

cml. Thus, limk→∞∆(σ, k) < 0, and by the

Intermediate Value Theorem, there exists a threshold kcml < ∞ such that ∆(σ, k) < 0

for all k > kcml.

(iii) Fix any k ≥ 1, and define r = minj∈{1,2}{r(ecpoj )} and r = maxj∈{1,2}{r(esysj )}.
It follows that Πcpo

cml ≥ r + σE[min{maxi∈{1,...,n}{Xi1},maxi∈{1,...,n}{kXi2}}] and Πsys
cml ≤

r+ σE[maxi∈{1,...,n}{min{Xi1, kXi2}}], where Xij are independent standard normal ran-

dom variables. Since E[min{maxi∈{1,...,n}{Xi1},maxi∈{1,...,n}{kXi2}}] >

E[maxi∈{1,...,n}{min{Xi1, kXi2}}], and r as well as r are bounded in value, it follows

that limσ→∞∆(σ, k) < 0, and thus, by the Intermediate Value Theorem, there exists a

threshold σcml <∞ such that ∆(σ, k) < 0 for all σ > σcml.

Proof of Proposition 3.3. (i) This result follows immediately from (B.9) and the fact

that µ(n) and thus also p∗ do not depend on ρ.

(ii) To prove the result, we need to show that the buyer’s equilibrium expected

profit Πcpo
cml(p

∗(ρ); ρ) increases in ρ, where p∗(ρ) is the optimally chosen p for given ρ, and

equilibrium efforts are given by (B.7)-(B.8). We do so by verifying that Πcpo
cml(p

∗(ρ1); ρ1) ≤
Πcpo
cml(p

∗(ρ1); ρ2) ≤ Πcpo
cml(p

∗(ρ2); ρ2) for any fixed 0 ≤ ρ1 < ρ2 < 1. Clearly, the last

inequality follows from the optimality of p∗, so it remains to prove the first inequality.

For any given p, Πcpo
cml(p; ρ) = E[minj∈{1,2}{maxi∈{1,...,n}{vcpoij }}], where vcpoi =

(vcpoi1 , v
cpo
i2 ) follows a bivariate Normal distribution with correlation ρ and marginal distri-

butions vcpoi1 ∼ N(r(ecpo1 ), σ2) and vcpoi2 ∼ N(r(ecpo2 ), k2σ2) for all i. To conclude the proof,

we need to show that Πcpo
cml(p; ρ) increases in ρ for any fixed p. This is true if the random

variable V (ρ) ≡ minj∈{1,2}{maxi∈{1,...,n}{vcpoij }} first-order stochastically increases in ρ;

a property that we verify in the next step. Let Vj ≡ maxi∈{1,...,n}{vcpoij } for j = 1, 2.

109



B. Proofs of Chapter III

For any y ∈ R and fixed p, P(V (ρ) > y) = P(V1 > y) − P(V1 > y|V2 < y)P(V2 < y).

Clearly, only the term P(V1 > y|V2 < y) depends on ρ, and thus V (ρ) stochastically

increases in ρ if and only if this term decreases in ρ. Note that P(V1 > y|V2 < y) =

1− P(vcpoi1 < y, vcpoi2 < y)n/P(vcpoi2 < y)n, where the denominator is independent of ρ and

P(vcpoi1 < y, vcpoi2 < y) increases in ρ by Lemma B.2(i). Hence P(V1 > y|V2 < y) decreases

in ρ.

Proof of Proposition 3.4. (i) By (B.4), the buyer’s expected equilibrium profits are

Πsys
sub(ρ) = 2η(Aµ(n)/(nσ

√
1 + k2 + 2kρ)) + σµ(n)

√
1 + k2 + 2kρ. Taking the first-order

derivative of Πsys
sub(ρ) with respect to ρ leads to dΠsys

sub(ρ)/dρ = kµ(n)(nσ2(1 + k2 + 2kρ)−
2Aη′(Aµ(n)/(nσ

√
1 + k2 + 2kρ)))/(nσ(1 + k2 + 2kρ)3/2), and the result follows by com-

paring this expression to zero.

(ii) For given ρ, the buyer’s expected equilibrium profits are Πsys
cml(ρ) =

E[maxi∈{1,...,n}{min{vsysi1 , vsysi2 }}], where (vsysi1 , vsysi2 ) follows a bivariate Normal distribu-

tion with marginal distributions vsysi1 ∼ N(r(esys1 ), σ2), vsysi2 ∼ N(r(esys2 ), k2σ2) and cor-

relation ρ for all i ∈ {1, . . . , n}. To prove the claim, we will show that for k = 1 and σ

small, Πsys
cml(ρ) decreases in ρ, and that Πsys

cml(ρ) increases in ρ for k →∞ or σ →∞. The

result follows then directly from the continuity of Πsys
cml(ρ) and the Intermediate Value

Theorem.

Case A: k = 1. By (B.14) we have esys1 = esys2 , and hence Πsys
cml(ρ) = r(esys1 ) +

σE[maxi∈{1,...,n}{min{Xi1, Xi2}}], where (Xi1, Xi2) follows a standard bivariate Normal

distribution with correlation ρ for all i ∈ {1, . . . , n}. In addition, (B.14) together with

Lemma B.1(ii) implies that equilibrium efforts decrease in ρ, and thus dr(esys1 )/dρ < 0.

Therefore, limσ→0 dΠsys
cml(ρ)/dρ < 0.

Case B: k →∞ or σ →∞. Πsys
cml(ρ) = E[maxi∈{1,...,n}{min{vsysi1 , vsysi2 }}] increases in

ρ if the random variable W (ρ) ≡ maxi∈{1,...,n}{min{vsysi1 , vsysi2 }} stochastically increases

in ρ, or equivalently, P(W (ρ) < u) = (1 − P(vsysi1 ≥ u, vsysi2 ≥ u))n decreases in ρ for all

u ∈ R. This is true if P(vsysi1 ≥ u, vsysi2 ≥ u) = P(vi1 ≥ u − r(esys1 ), vi2 ≥ u − r(esys2 ))

increases in ρ for all u ∈ R, where vi1 and vi2 are centered Normal random variables. For

fixed esys1 and esys2 , this probability increases in ρ by Lemma B.2(ii); and for fixed ρ, it

increases obviously in esys1 and esys2 . Since both sensitivities point in the same direction,

it remains to verify that esys1 and esys2 weakly increase in ρ as k → ∞ (resp. σ → ∞).

For k → ∞, this is true because esys1 increases in ρ by (B.20) and Lemma B.1(ii), and
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esys2 = 0 by (B.17). For σ → ∞, esys1 = esys2 = 0 by (B.13), thereby concluding the

proof.

Proof of Proposition 3.5. (i) The proof follows by considering Πsys
sub and Πcpo

sub as given in

(B.4) and (B.9), respectively, and applying exactly the same argument as in the proof

of Proposition 3.1.

(iia) For k = 1 and σ small, Propositions 3.3(ii) and 3.4(ii) imply that Πcpo
cml increases

in ρ whereas Πsys
cml decreases in ρ. Hence to verify that Πsys

cml(ρ
sys) ≥ Πcpo

cml(ρ
cpo) for any

∆ρ ≥ 0 it is sufficient to establish that Πsys
cml(ρ = 1) ≥ Πcpo

cml(ρ = 1). By (B.7), (B.8)

and (B.14) it follows that for k = 1 and ρ = 1, esys1 = esys2 = ecpo1 = ecpo2 . As a result,

Πsys
cml(ρ = 1) = r(esys1 ) + E[maxi∈{1,...,n}{ζi1}] = r(ecpo1 ) + E[maxi∈{1,...,n}{ζi1}] = Πcpo

cml(ρ =

1), which proves the claim.

(iib) For σ → ∞, (B.7), (B.8) and (B.14) imply that esys1 = esys2 = ecpo1 =

ecpo2 = 0. It follows that Πsys
cml(ρ

sys) = E[maxi∈{1,...,n}{min{ζi1, ζi2}}] and Πcpo
cml(ρ

cpo) =

E[minj∈{1,2}{maxi∈{1,...,n}{ζij}}]. Clearly, if ρsys = ρcpo then Πcpo
cml(ρ

cpo) ≥ Πsys
cml(ρ

sys); and

if ρsys = 1 and ρcpo = 0 then Πsys
cml(ρ

sys) = E[maxi∈{1,...,n}{ζi1}] > Πcpo
cml(ρ

cpo). The result

now follows immediately from the continuity of all involved functions in conjunction

with the fact that a continuous mapping from a connected subset of a metric space to

another metric space yields a connected image set (Ok 2007, p. 220).
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Appendix C

Proofs of Chapter IV

Proof of Proposition 4.1. To prove the claim, we first derive the firm’s optimization

problem P and then solve P to determine the optimal compensation scheme and the

firm’s expected profits.

The Optimization problem: By the revelation principle, we restrict attention to the

optimal contract that induces high-effort testing and truth telling by all experts. This,

however, requires several incentive constraints to be satisfied. To derive those, we need to

ensure that high-effort testing and truth telling is indeed optimal for each expert i ∈ I,

given the assumptions that all other experts exert high effort and report truthfully, and

that the firm chooses the ex post optimal design alternative.

After having received all recommendations, the firm chooses the design alternative

for development that offers the highest ex post expected net contribution and for which

there is a good recommendation (in case there is no good recommendation at all, the firm

develops none of the designs). Given ri = g, design i’s ex post expected net contribution

is qi(vi − uig) − (1 − qi)uib −
∑

k 6=i uka. Constraint (4.5) orders the designs according

to their maximum ex post expected net contribution and thus ranks them according to

their relative attractiveness to the firm; represented by the index j in y
(j)
i .

We now derive the incentive compatibility constraints for design i that is the jth

most attractive alternative. Given ei = h and upon receiving a good signal (si = g),

expert i receives an expected utility of πggij = (qiuig + (1− qi)uib)/2j−1 + (1− 1/2j−1)uia

when making a good recommendation (ri = g), and πbgij = uia + uit/2
n−1 when making

a bad recommendation (ri = b). Similarly, given ei = h and upon receiving a bad signal

(si = b), expert i receives an expected utility of πgbij = ((1 − qi)uig + qiuib)/2
j−1 + (1 −

1/2j−1)uia when making a good recommendation (ri = g), and πbbij = uia+uit/2
n−1 when

making a bad recommendation (ri = b). Also, given truth telling, expert i’s expected

utility from exerting high effort is πij(h) = (qiuig+(1−qi)uib)/2j+(uia+(1/2)n−juit)/2
j+

(1−1/2j−1)uia−c, and πij(l) = (uig/2+uib/2)/2j+(uia+(1/2)n−juit)/2
j+(1−1/2j−1)uia

from exerting low effort. The incentive compatibility constraints follow from setting
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πggij ≥ πbgij , πbbij ≥ πgbij , and πij(h) ≥ πij(l) for all i, j ∈ I, and multiplying these inequalities

with y
(j)
i . Finally, because wages must be non-negative, we require uig, uib, uia, uia+uit ≥

0, and (4.6) follows from noting that each design i must be assigned to exactly one

attractiveness rank, and each rank j is hold by exactly one design.

The firm’s expected profit consists of the expected market value of the chosen design

net of development costs and the experts’ expected wages. Given y
(j)
i = 1, the firm

develops design i with probability 1/2j and receives an expected value of qivi −K. The

expected wage payments to expert i are uig with probability qi/2
j, uib with probability

(1− qi)/2j, uia with probability 1− 1/2j, and uit with probability 1/2n. Summing over

i, j ∈ I gives the firm’s expected profit Π.

(i) Suppose the designs in I can be ordered such that qivi ≥ qi+1vi+1+2i+1c[qi/(2qi−
1)− 2qi+1/(2qi+1− 1)]+ for all i ∈ I\{n}. To solve the optimization problem P , we first

derive the solution of a relaxed variant of P by dropping constraints (4.5), and then

show that this solution is also feasible—and thus optimal—in P .

Given the structure of P without (4.5), maximizing the firm’s expected profit is

equivalent to separately minimizing the wage payments associated with each design

i ∈ I whenever y
(j)
i = 1. Obviously, (4.4) implies that uig > uib, which allows us to

rewrite (4.2) and (4.3) as qiuig + (1 − qi)uib ≥ uia + 2j−nuit ≥ (1 − qi)uig + qiuib. It

follows that wage payments for design i with relative attractiveness j are minimized

when uia + 2j−nuit = (1 − qi)uig + qiuib, and uig and uib are chosen as low as possible.

By (4.4) and (4.7), these minimal payments are uig = 2j+1c/(2qi − 1) and uib = 0.

Moreover, (4.1) reveals that the firm prefers paying uit over uia; therefore uia = 0 and

uit = 2n+1(1 − qi)c/(2qi − 1). Inserting these payments into (4.1) and using (4.6) gives

ΠP =
∑n

j=1

∑n
i=1 y

(j)
i (qivi/2

j)−
∑n

i=1 2c/(2qi−1)−
∑n

j=1K/2
j. By the assumed ordering,

we have qivi ≥ qi+1vi+1, and it follows that in optimum y
(i)
i = 1 for all i ∈ I, and y

(j)
i = 0

for all i 6= j. Moreover, this candidate optimal solution satisfies (4.6) and is thus feasible.

It remains to show that the solution also satisfies (4.5). However, this is obvi-

ous because we can rewrite this condition by qivi − (2i+1qic/(2qi − 1)) ≥ qi+1vi+1 −
(2i+2qi+1c/(2qi+1 − 1)), which is true by assumption.

(ii) This result follows directly from (i).

Proof of Proposition 4.2. The optimization problem M can be derived in a similar way

to the proof of Proposition 4.1. In particular, for each i ∈ I, πggi = qiuig + (1 − qi)uib,
πbgi = πbbi = uia + P (sj = b ∀j > i)δn−iuit, π

gb
i = (1− qi)uig + qiuib, πi(h) = (qiuig + (1−

114



C. Proofs of Chapter IV

qi)uib)/2 + (uia + P (sj = b ∀j > i)δn−iuit)/2− c, and πi(l) = (uig/2 + uib/2)/2 + (uia +

P (sj = b ∀j > i)δn−iuit)/2. Since for design i = n, una and unt are paid simultaneously,

we only require una + unt ≥ 0 to ensure non-negative wages.

As for the firm’s profits, the firm develops design i with probability P (ri = g, rj =

b ∀j < i) and receives a discounted expected value of δi−1(qivi − K). The expected

wage payments to expert i are δi−1uig with probability P (Θi = G|si = g)P (si = g, sj =

b ∀j < i), δi−1uib with probability P (Θi = B|si = g)P (si = g, sj = b ∀j < i), δi−1uia

with probability P (si = b, sj = b ∀j < i), and δn−1uit with probability P (si = b, sj =

b ∀j 6= i). Summing over i ∈ I gives the firm’s expected profit Π.

(i) Given the structure of M , maximizing the firm’s expected profit is equivalent

to separately minimizing the wage payments associated with each design i. Note that

(4.11) implies that uig > uib, which allows us to rewrite (4.9) and (4.10) as qiuig + (1−
qi)uib ≥ uia + 2i−nδn−iuit ≥ (1− qi)uig + qiuib. It follows readily that uia + 2i−nδn−iuit =

(1 − qi)uig + qiuib, and uig and uib should be chosen as low as possible. By (4.11) and

(4.12), these minimal payments are uig = 4c/(2qi − 1) and uib = 0. Moreover, the firm

is indifferent between paying uia or uit, so without loss of optimality we can choose

uia = 4(1− qi)c/(2qi − 1) and uit = 0. Finally, uia/uig = 1− qi < 1/2 because qi > 1/2.

(ii)-(iii) Given the optimal contract, we can rewrite the firm’s expected profit as

ΠM =
∑n

i=1(δi−1/2i)(qivi−K− 4c/(2qi− 1)). Since (δi−1/2i) is decreasing in i, the firm

maximizes ΠM by testing the designs in decreasing order of qivi − 4c/(2qi − 1).

Proof of Proposition 4.3. Define the expert’s expected continuation utility before testing

design i ∈ I by π̂i−1 = (qiuig + (1 − qi)uib + uia − 2c + δπ̂i)/2, with π̂n = 0. With

this definition, the derivation of S is identical to that of M as given in the proof of

Proposition 4.2. In particular, for each i ∈ I, πggi = qiuig + (1 − qi)uib, π
bg
i = πbbi =

uia + δπ̂i, π
gb
i = (1 − qi)uig + qiuib, πi(h) = (qiuig + (1 − qi)uib)/2 + (uia + δπ̂i)/2 − c,

and πi(l) = (uig/2 + uib/2)/2 + (uia + δπ̂i)/2, and limited liability enforces non-negative

wage payments.

As for the firm’s profits, the firm develops design i with probability P (ri = g, rj =

b ∀j < i) and receives a discounted expected value of δi−1(qivi − K). The expected

wage payments to expert i are δi−1uig with probability P (Θi = G|si = g)P (si = g, sj =

b ∀j < i), δi−1uib with probability P (Θi = B|si = g)P (si = g, sj = b ∀j < i), and

δi−1uia with probability P (si = b, sj = b ∀j < i). Summing over i ∈ I gives the firm’s

expected profit Π.
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(i) Using the definition of π̂0, we can rewrite the firm’s expected profit as ΠS =∑n
i=1(δi−1/2i)(qivi−K− 2c)− π̂0. Thus, maximizing ΠS is equivalent to minimizing π̂0,

which we do in the following. As a first step, we derive the minimum feasible π̂i−1 for

given fixed π̂i.

Case (a): δπ̂i < 4(1− qi)c/(2qi − 1). The optimal payments are uig = 4c/(2qi − 1),

uib = 0, and uia = 4(1−qi)c/(2qi−1)−δπ̂i, and it follows that π̂i−1 = (3−2qi)c/(2qi−1).

Case (b): 4(1 − qi)c/(2qi − 1) ≤ δπ̂i ≤ 4qic/(2qi − 1). The optimal payments are

uig = 4c/(2qi − 1), uib = 0, and uia = 0, and it follows that π̂i−1 = c/(2qi − 1) + δπ̂i/2.

Case (c): δπ̂i > 4qic/(2qi − 1). The optimal payments are uig = δπ̂i/qi, uib = 0,

and uia = 0, and it follows that π̂i−1 = δπ̂i − c
Taken together, Cases (a)-(c) imply that π̂i−1 is non-decreasing in π̂i for all i ∈ I.

As such, minimizing π̂0 is equivalent to separately minimizing π̂i for each i ∈ I, starting

with π̂n = 0 and using Cases (a)-(c) for backwards induction. Thus, the optimal contract

satisfies uig = 4c/(2qi−1) + [δπ̂i/qi−4c/(2qi−1)]+, uib = 0, and uia = [4(1− qi)c/(2qi−
1)− δπ̂i]+ for all i ∈ I.

(ii) If the designs in I can be ordered such that qivi ≥ qi+1vi+1, qi ≥ qi+1 and

(1 − qi)4c/(2qi − 1) ≤ δπ̂i ≤ 4qic/(2qi − 1) for all i ∈ I\{n}, then Cases (a) and (b)

imply that qiuig + (1− qi)uib +uia < qi+1ui+1g + (1− qi+1)ui+1b +ui+1a for all i ∈ I\{n}.
By (4.13) and the assumption that qivi ≥ qi+1vi+1 it follows readily that it is optimal to

test the designs in increasing order of i.

(iii) This result follows directly from inserting Proposition 4.3(i) in (4.13) and rear-

ranging terms.

Proof of Proposition 4.4. (i) By Proposition 4.2(iii), ΠM =
∑n

i=1(δi−1/2i)(qivi − K −
4c/(2qi − 1)), which reveals that the sign of the net profit contribution of each design

i ∈ N is independent of the number and identity of the other designs to be tested. As a

result, the firm finds it optimal to include all designs i ∈ N into the testing set IM for

which qivi −K − 4c/(2qi − 1) ≥ 0.

(ii) Consider the optimization problem P . By (4.2)-(4.4), we have uig ≥ 2j+1c/(2qi−
1) and uia + 2j−nuit ≥ (1 − qi)uig for all i, j ∈ I such that y

(j)
i = 1. Hence, the profit

contribution of design i with relative attractiveness j is Π
(j)
i ≤ (qivi −K − qiuig − uia −

2j−nuit)/2
j ≤ (qivi −K − uig)/2j ≤ (qivi −K)/2j − 2c/(2qi − 1). A necessary condition

for i ∈ IP is that (qivi −K)/2j − 2c/(2qi − 1) ≥ 0 for some j ∈ IP . However, this can
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only be true if qivi−K−4c/(2qi−1) ≥ 0. Comparing this condition with IM completes

the proof.

(iii) By Proposition 4.2 (ii) and (iii), it is optimal to have design n in the optimal

set of designs for testing since it is profitable to test and eventually develop this design

due to the stated condition qnvn − K − 4c/(2qn − 1) > 0. Furthermore, all designs

j with qj ≥ qn and vj ≥ vn belong to this optimal set because then, we also have

qjvj −K − 4c/(2qj − 1) > 0.

Proof of Proposition 4.5. (i) Suppose δ < 1. For c = 0, we have IP = IM = IS = N
and designs are tested in decreasing order of qivi. By Propositions 4.1-4.3, it follows

readily that Π∗P > Π∗M = Π∗S. Thus, by continuity of the expected profits in c, there

exists c > 0 such that Π∗P > max{Π∗M ,Π∗S} for all c < c.

(ii) Let IP be the optimal set of designs to be tested under a parallel testing strat-

egy, and assume that the designs in IP can be ordered such that qivi ≥ qi+1vi+1 +

2i+1c[qi/(2qi− 1)− 2qi+1/(2qi+1− 1)]+ for all i ∈ IP\{n}. Then, by Proposition 4.1(iii),

Π∗P =
∑

i∈IP ((qivi−K)/2i−2c/(2qi−1)). Now, if the firm fixes the identity and ordering

of designs, but instead uses a multi-expert sequential testing strategy, then ΠM(IP ) =∑
i∈IP δ

i−1(qivi − K − 4c/(2qi − 1))/2i. By comparing the different profits, we have

ΠM(IP ) > Π∗P if c > c ≡
∑

i∈IP ((1−δi−1)(qivi−K)/2i)/
∑

i∈IP ((2(1−(δ/2)i−1)/(2qi−1)).

Moreover, since IP need not be optimal under a multi-expert sequential testing strategy,

it follows that if c > c, then Π∗P < ΠM(IP ) ≤ Π∗M ≤ max{Π∗M ,Π∗S}.
(iii) Let IM be the optimal set of designs to be tested under a multi-expert sequential

testing strategy, with IM optimally ordered according to Proposition 4.2(ii). By Propo-

sition 4.2(iii) and 4.3(iii), we have Π∗M =
∑

i∈IM (δi−1/2i)(qivi −K − 4c/(2qi − 1)) and

ΠS(IM) =
∑

i∈IM δ
i−1(qivi −K −max{4qic/(2qi − 1), δπ̂i, 4c/(2qi − 1)− δπ̂i})/2i ≤ Π∗S.

Clearly, a sufficient condition for ΠS(IM) ≥ Π∗M is that δπ̂i ≤ 4qic/(2qi − 1) for all

i ∈ IM .

By (4.17), we have δπ̂n = 0 and δπ̂i−1 increases in δπ̂i for all i ∈ IM . Moreover,

if δπ̂i = 4qic/(2qi − 1), then δπ̂i−1 = δ(4qic/(2qi − 1) − c). Thus, by induction, if

δπ̂i ≤ 4qic/(2qi − 1), then δπ̂i−1 ≤ δ(4qic/(2qi − 1) − c), and δ(4qic/(2qi − 1) − c) ≤
4qi−1c/(2qi−1 − 1) if qi ≥ q

i−1
. Finally, it is easy to show that q

i
≤ qi and q

i
≤ 5/6.

Proof of Proposition 4.6. (i) Note that I fb
seq = {i ∈ N | qivi −K − 2c ≥ 0}. Comparing

this with IM as given in Proposition 4.4(i) immediately yields IM ⊆ I fb
seq. We next

show that for any i ∈ IS, qivi − K − 4qic/(2qi − 1) ≥ 0; implying that IS ⊆ I fb
seq.
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Consider an arbitrary design i ∈ IS. By Proposition 4.3(i), if the firm receives a good

recommendation for this design, the expected value of developing it is given by qivi−K−
qiuig−(1−qi)uib ≤ qivi−K−4qic/(2qi−1). Obviously, the firm only develops design i if

the development generates a nonnegative expected value; i.e., qivi−K−4qic/(2qi−1) ≥
qivi − K − qiuig − (1 − qi)uib ≥ 0. Suppose to the contrary that there exists a design

i ∈ IS such that qivi − K − qiuig − (1 − qi)uib < 0. Obviously, the firm would never

develop this design as the firm’s outside option has zero, and thus greater value. In

equilibrium, the expert anticipates the firm’s development decision, and as a result, it is

impossible for the firm to motivate the expert to exert high testing efforts. Hence, since

design i will never be tested anyways, it is optimal for the firm to erase it from the set

of designs to be tested.

(ii) We prove the claim by example. Consider a setting with three design alternatives

and the following parameters: q1 = 0.55, q2 = 0.64, q3 = 1, v1 = 100, v2 = 85, v3 = 53,

K = 50, and c = 0.6. In this case, the optimal set of designs to be tested under first-

best conditions is I fb
par = {1, 2}, leading to an expected profit of Πfb

par = 2.4. In contrast,

under delegation, we have IP = {3} with an expected profit of Π∗P = 0.3. It follows that

IP ∩ I fb
par = ∅.

(iii) For brevity, let |IM | = nM , |IP | = nP , |I fb
seq| = nseq, and |I fb

par| = npar. With

symmetric test efficiencies (i.e., qi = q for all i ∈ N ), under any sequential testing strat-

egy it is always optimal to test designs in decreasing order of vi, and under any parallel

testing strategy the designs attractiveness decreases in vi. It follows from Propositions

4.1-4.4 that IP ⊆ I fb
par, IM ⊆ I fb

seq, and consequently, nP ≤ npar, nM ≤ nseq. Without

loss of generality, we relabel the designs such that vi ≥ vi+1 for all i ∈ N . Given these

preliminaries, we prove the result by showing that for any nP ≥ 0, Πfb
seq ≥ Πfb

par implies

Π∗M ≥ Π∗P .

Case (a): nP = 0. Since it always holds that Π∗P = 0 ≤ Π∗M , the claim is trivially

satisfied.

Case (b): nP = 1. By Proposition 4.1(iii) and 4.2(iii), we have Π∗P = (qv1−K)/2−
2c/(2q − 1) = ΠM(n = 1) ≤ ΠM(nM) = Π∗M , where the inequality follows from the

optimality of nM .

Case (c): nP ≥ 2. Define ∆Π(x, y) = Π(x) − Π(y). With this notation, we can

rewrite the firm’s first-best expected profits as Πfb
seq(nseq) = ΠM(nM)+∆ΠM(nseq, nM)+∑nseq

i=1 (c(δ/2)i−1(3−2q)/(2q−1)), and Πfb
par(npar) = ΠP (nP )+∆Πfb

par(npar, nP )+
∑np

i=1(c(3−
2q)/(2q−1)). Hence Πfb

seq ≥ Πfb
par is equivalent to ΠM(nM) ≥ ΠP (nP )+∆Πfb

par(npar, nP )−
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∆ΠM(nseq, nM)+c(3−2q)/(2q−1)(nP −(1−(δ/2)nseq)/(1−(δ/2))). The right-hand side

of this inequality is larger than ΠP (nP ), which proves the claim. To see this, note that

by optimality of npar and nM , we have ∆Πfb
par(npar, nP ) ≥ 0 and ∆ΠM(nseq, nM) ≤ 0, and

finally, nP − (1− (δ/2)nseq)/(1− (δ/2)) ≥ nP − 2 ≥ 0 because nP ≥ 2 by assumption.

Last, we prove that the converse statement is not always true. We do this by

example. Consider a scenario with the following parameters: N = 4, v1 = 10, v2 = 8,

v3 = 6, v4 = 4, q = 1, δ = 0.8, K = 2, c = 0.2. Then Π∗P = 3.6 ≤ Π∗M = 3.82, but

Πfb
par = 4.2 ≥ Πfb

seq = 4.14.
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