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Introduction

The thesis has four self-contained chapters and contributes to slightly different topics in
microeconomic theory. The first three chapters have a common theme of learning, or
experimentation. Learning takes place in different environments: when the decisions
are made collectively, when the underlying state is restless, and when consumers deal
with experience goods which are also breakable. The forth chapter is a bit of an outcast:
I study a role of bundling when the monopolist faces strategic buyers.

Chapter 1 titled Collective Experimentation with Breakdowns and Breakthroughs comple-
ments the work already done on collective experimentation and emphasizes the impor-
tance of knowing how learning takes place. I shed light on such questions as: How incen-
tives to implement a reform change as parties responsible for the decision—legislators,
national ministers, or voters—gradually learn about it? What determines the long-term
outcome, that is, whether the reform is implemented or the status quo remains? Which
voting rule is socially optimal?

These questions are not trivial, because voters’ incentives may be in conflict, while
the decision is made collectively via voting. Indeed, because effects of the reform differ
across sectors of the economy or states, there can be both winners and losers from the
reform. For example, think about trade or health reforms, authorization of a certain
technology on a market, and so on. Winners from the reform, of course, want it to be
implemented, while losers are against it. Furthermore, the outcome is uncertain, because
voters do not initially know whether they will be ultimately winners or losers.

I find that voters’ incentives to experiment change as some of them learn that they lose
or win from the reform. Specifically, the incentives increase with the number of losers,
which I refer to as the insurance effect, and decrease with the number of winners, the
anxiousness effect. That is why, for example, even if voters experiment with the reform
at first, the status quo might remain not only if a majority of voters learn that they are
losers, but also if unsure voters become too anxious to experiment. Furthermore, having
a large voting committee might exacerbate the bias toward the status quo, though this
result relies on the learning structure. Finally, the simple majority rule is not generally
socially optimal. Whether there exists a qualified majority rule which is depends, once
again, on how learning takes place.

Chapter 2 titled Restless Strategic Experimentation analyzes an abstract model of learn-
ing in restless, or changing, environments. I aim to answer the following questions: How
do strategic players experiment in restless environments? More specifically, would they
behave myopically, that is, care only about the current outcome, or is there an option
value of learning? Is the predicted players’ behavior socially optimal?

This is the first work that deals with strategic experimentation in restless environ-
ments. The predictions are strong, in the sense that there is a unique symmetric equilib-
rium. The equilibrium is described in closed form, that is, the relevant thresholds and
value functions of players are found in closed form. Furthermore, I find that, if the en-
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vironment changes quickly, then the myopic behavior is socially optimal and this is also
how players choose to behave. Otherwise, if the changes are slow, then there is an option
value to experiment. However, players free ride on each other and experiment too little.

The ideas and techniques presented in this chapter can be used in more applied set-
tings. For example, consider farmers trying out a new seed. Because of changing weather
and soil conditions, farmers can never be absolutely sure if the new seed will bring good
yields or not. Note also that farmers can learn from each other, and so may want to free-
ride on others’ experimentation. Other examples may include hospitals experimenting
with a new drug or decisions of drivers about whether to drink-and-drive.

Chapter 3 is titled Gizmos. The story behind follows these lines: Faced with the ne-
cessity to buy a new phone, should one buy, say, Google Pixie with its advanced camera
or would Nexus 5X be good enough? Unless the buyer is sure that he is a photographer
at heart, the answer is not clear. As a result, it is not clear what the best pricing strategy
for the seller of smartphones should be.

The questions I answer in this chapter are as follows: Is it always a good idea to
sell both versions of a gizmo, or other product? Does the seller find it optimal to plan
obsolescence and, if so, why? Indeed, it is not a secret that phones’ batteries die relatively
fast. In this chapter, I consider a simple pricing mechanism, specifically, a posted-price
mechanism. Therefore, the question which remains to answer and is left for future work
is: What is the optimal pricing strategy for the seller of smartphones?

The seller finds it optimal to offer both basic and advanced versions of the gizmo.
Furthermore, he does plan obsolescence. The seller neither wants the gizmo to break
immediately nor wants it to be a durable good. The optimal breakdown rate captures
the trade-off faced by the seller. On the one hand, buyers with the basic version, who
have learned that they value the advanced features, upgrade their gizmo to the advanced
version only upon a breakdown. That is why a higher breakdown rate increases buyers’
surplus, because they get the preferred version faster, and so it also increases the seller’s
profit. On the other hand, with the higher breakdown rate, buyers must be quite sure
that they need the advanced features, and so the seller extracts less surplus from those
who would potentially value the advanced features.

In Chapter 4 titled Bundling with Strategic Buyers, I want to understand whether and
how a seller can use bundling to increase his revenue. The seller has a finite stock of
the product, which he has to sell before a deadline. He faces buyers who have multi-
unit demand and different valuations for the product, and who are strategic, that is to
say, who are forward-looking and possess some bargaining power. For example, think
about secondary markets for planes or orders of ships, trains, or planes. As I consider a
posted-price mechanism, my model is a very simplified view of these situations, but it
still provides important insights into the role of bundling.

I find that bundling the products can play two roles. First, it allows the seller to
discriminate among buyers with different valuations, for example, by targeting buyers
with a high valuation for the product with a bundle and by selling the product unit-by-
unit to buyers with a low valuation. Interestingly, the price of a two-unit bundle is more
than twice the price of one unit. Second, bundling acts as a precaution when the seller
chooses to target buyers with a high valuation only.

The thesis is structured as follows: The main findings of each chapter and their anal-
ysis are presented in the respective Chapters 1 to 4. The additional results and all the
proofs are gathered in the respective Appendices A to D. All the references are in Bibli-
ography.



Chapter 1

Collective Experimentation with
Breakdowns and Breakthroughs

1.1 Introduction
Unanimity and simple or qualified majority rules are decision rules often used by the leg-
islatures of democratic nations or the council of the European Union. These institutions
are responsible for implementing reforms regarding, for example, trade liberalization,
health care, national security, and environment. Consequences of such reforms are un-
certain, and their effects vary across different sectors of the economy and across states.
Fernandez and Rodrik (1991) and Rodrik (1993) argue that this uncertainty may prevent
reforms that would benefit the majority, and leads to a bias toward the status quo.

This chapter sheds further light on such questions as: How incentives to implement a
reform as parties responsible for the decision—legislators, national ministers, or voters—
gradually learn about it? What determines the long-term outcome, that is, whether the
reform is implemented or the status quo remains? Which voting rule is socially optimal?

The model is an adaptation of Strulovici (2010a) as discussed in Related literature
below. The key features are as follows: First, voters’ incentives may be in conflict, while
the decision is made collectively via voting. As effects of the reform differ across sectors
of the economy or states, there can be both winners and losers from the reform. Winners,
of course, want the reform to be implemented, while losers are against it. Second, the
outcome is uncertain. At the start, voters do not know whether they will be ultimately
winners or losers. If voters are optimistic, then they are willing to experiment with the
reform and find out whether they benefit from it. Learning is gradual and random: via
bad news (or breakdowns) for losers and via good news (or breakthroughs) for winners.
Third, the decision about whether to experiment is made repeatedly. That is why, for
example, even if voters experiment with the reform at first, the status quo remains if a
majority of them learn that they are losers. In contrast, the reform is implemented if the
majority are winners.

It follows that voters always belong to one of three groups: those who have learned
that they are winners or losers, or the remaining unsure voters. As long as neither win-
ners nor losers form a majority, unsure voters are pivotal. They support experimentation
with the reform if they are optimistic. The following are the main findings of this chapter.

First, two effects arise: an insurance effect and a novel anxiousness effect. In other
words, unsure voters’ incentives to experiment with the reform increase with the num-
ber of losers and decrease with the number of winners. Unsure voters cast their votes
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taking into account that choosing to experiment may lead others to learn whether they
benefit from the reform. If there are many losers, then unsure voters are insured against
an adverse outcome of being trapped with the reform while being a loser, because losers
are likely to form a majority and to implement the status quo. In contrast, if there are
many winners, then unsure voters are anxious that they turn out to be losers, while the
reform is implemented forever, because winners form a majority. That is why, even if
voters experiment with the reform at first, the status quo may remain not only if a ma-
jority of voters learn that they are losers, but also if unsure voters become too anxious to
experiment.1

Second, how the size of the voting committee affects unsure voters’ behavior depends
on the learning structure. Unsure voters behave myopically when the number of voters
grows arbitrary large and there are many winners and few losers. That is, having a large
voting committee can exacerbate the bias toward the status quo. With many voters, the
decision power of each is negligible, and so unsure voters are very anxious to experiment
when winners are about to form a majority and thus impose the reform on everyone.
However, if learning is via bad news only, then there does not have to be the bias toward
the status quo. A growing group of losers insures unsure voters against being trapped
with the reform and unsure voters become more optimistic in absence of news. There-
fore, if relative gains from the reform are higher than relative losses, then unsure voters
are always willing to experiment independently of the number of voters.

Third, the simple majority rule does not generally lead to the socially optimal out-
come, but whether there exists a qualified majority rule that does depends on the learn-
ing structure. Unsure voters behave socially optimal under the unanimity rules when-
ever these are socially desirable. Indeed, if all voters must vote for the reform for it to
be implemented, then the insurance effect is strongest, because only one loser is needed
for the status quo to remain. If all voters must vote for the status quo for it to be im-
plemented, then it must be that the relative gains from the reform are significant. This
makes unsure voters willing to take the risk and experiment with the reform. This is no
longer the case under other qualified majority rules if learning is via both bad and good
news, because unsure voters become too anxious to experiment. However, if learning
is via bad news only, then there is no anxiousness effect. As a result, there is always a
qualified majority rule that leads to the socially optimal behavior in equilibrium.

The last two results emphasize the importance of knowing how learning about the
reform takes place. In particular, this implies the importance of this work, which is com-
plementary to Strulovici (2010a), whose focus is on learning via good news only.

Related literature. This chapter contributes to the literature on strategic experimenta-
tion and is closest to Strulovici (2010a).2 I consider an exponential bandit model with

1My work supports Fernandez and Rodrik (1991) in that reforms that benefit the majority may not
be implemented and that there is a bias towards the status quo because of the uncertainty about being
a loser or a winner. Indeed, if voters are pessimistic, then experimentation never takes place and the
status quo remains independently of whether a majority of voters are losers or winners. Moreover, even
if voters experiment with the reform at first, but there happen to be a majority of losers, the status quo
is implemented as soon as they learn about it. In the setting of Fernandez and Rodrik (1991), there is an
infinite number of voters, and they immediately and perfectly learn whether they benefit from the reform.
Therefore, there is no scope for analysis of how bad or good news received by one voter influence other
voters’ incentives to experiment in their paper.

2Bergemann and Välimäki (2008) gives the general idea of where the bandit problems come from and
of main strands in economics up to 2006. Hörner and Skrzypacz (2016) surveys more recent papers of the
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conclusive news, introduced in the strategic setting by Keller, Rady, and Cripps (2005)
and Keller and Rady (2015a). (See also Bolton and Harris (1999) in the Brownian con-
text.) A reform and the status quo correspond to risky and safe arms. The risky arm is
either good or bad, that is, a player either wins or loses from the reform. Players are said
to learn via good news if they receive news when their arm is good. They learn via bad
news if news arrives when the arm is bad.

Keller, Rady, and Cripps (2005) analyzes a game with good news, while Keller and
Rady (2015a) examines the bad news case. Unlike in these two papers, in which players
have the risky arm of the same type and each player individually decides whether to
experiment with the arm, I study a model in which the arm types are independent across
players and decisions to experiment are made collectively. Strulovici (2010a) is the first
and, to the best of my knowledge, only paper to look at such a setting.

This work differs from Strulovici (2010a) in two main aspects, leading to new insights
into incentives for collective experimentation. First, I consider a mixed news case, in
which both good and bad arms bring conclusive news. I focus on the case in which
bad news arrives at a higher rate than good news. This makes it qualitatively similar to
the bad news case, and thus drastically different from the good news case, which is the
benchmark of Strulovici (2010a). Strulovici (2010a) gives some insights for the bad and
mixed news cases, in particular, mentions the insurance effect and alludes to the failure
of smooth-pasting in case of learning via bad news.3,4 However, he refers to numerical
and analytical results that are omitted from both the published and working versions of
the paper (Strulovici, 2007; Strulovici, 2010a).

Keller, Rady, and Cripps (2005) and Keller and Rady (2015a) point out that the bad
news case is not a mirror image of the good news case. For other examples, compare
Bonatti and Hörner (2011) with Bonatti and Hörner (2017) and see Board and Meyer-
ter-Vehn (2013) and Frick and Ishii (2016). The reason is rooted in dynamics of players’
belief about the type of the risky arm.5 In the good news case when no news arrives,
players become more pessimistic and their belief drifts toward the cut-off and thus en-
ters the stopping region smoothly. In contrast, in the bad news case, they become more
optimistic and their belief moves away from the stopping region and enters it only upon
arrival of news with a jump.

Second, I consider a model with no discounting. Bolton and Harris (2000) and Keller
and Rady (2015b) analyze strategic experimentation with no discounting and the com-
mon type of the risky arm. Abstracting away from discounting is most suitable for mod-
eling environments in which decisions are made in a very short time frame and have
long-lasting effects, which is, indeed, the case of implementation of a reform. In other
words, a short exploration phase is followed by a long exploitation phase. This does not

strategic experimentation literature.
3Keller and Rady (2015a) emphasize that the smooth-pasting condition for players’ value functions

does not hold at the cut-off beliefs. It does not hold here either, while players’ value functions in Strulovici
(2010a) are smooth at the cut-offs. However, as noted in Appendix A.1, the smooth-pasting may fail even
in the good news case if there is no discounting.

4See Peskir and Shiryaev (2006) for a reference on smooth-pasting, referred to there as smooth fit.
5In absence of news, the belief of unsure voters pt about the good arm evolves as follows:

ṗt = (λb − λg)pt(1− pt),

where λg and λb are Poisson rates at which good and bad news arrives. In the good news case of Strulovici
(2010a), λg > λb = 0, while λb > λg = 0 and λb > λg > 0 in the bad news and mixed news cases
considered here.
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make the model with independent types less fruitful, because players’ interests may still
be in conflict with the collective decision.

No discounting also makes the model more tractable. I analyze the general case with
mixed news and its special case with bad news analytically. This makes comparative
statics with respect to the number of winners, losers, and voters possible. Furthermore, I
compare different qualified majority rules in terms of social efficiency. Strulovici (2010a)
agrues that there is no time-independent qualified majority rule that implements the util-
itarian policy, but there exists a time-dependent one.6 This is no longer the case if voters
learn via bad news. There always exists a qualified majority rule that does implement
the utilitarian policy. However, more complicated decision rules are required to reach
social efficiency with learning via mixed news, unless the utilitarian policy prescribes
the unanimity rule.

1.2 The Model
Time t ∈ [0,∞) is continuous, and the horizon is infinite. There are an odd number of
playersN ≥ 1 with two arms: a safe arm S (the status quo) and a risky oneR (a reform).
Each player votes for one of the two arms over each interval of time [t, t + dt), and the
arm chosen is determined by (simple) majority voting.7

Independently of any other player’s risky arm, each player’s risky arm can be either
good or bad, that is, the player is either wins or loses from the reform. Formally, there
are N independent random variables ωn ∈ {B,G}, where B and G stand for bad and
good risky arms and n = 1, . . . , N .

The safe arm yields a common flow payoff s. An expected payoff of the risky arm
per unit of time is b := λbhb if a player has the bad arm and is g := λghg if she has the
good arm, where hb and hg are lump-sums that arrive according to Poisson processes
with intensities λb > λg ≥ 0 and referred to as bad and good news received by the player.
I refer to the case with λg = 0 (resp., with λg > 0) as the bad news case (resp., the mixed
news case). For outcomes to be non-trivial, parameters are such that g > s > b. That is,
the risky arm is preferred over the safe one if it is good, and the safe arm is preferred
over the risky arm if the latter is bad.

At the beginning of the game, no player knows the type of her arm. Players share a
prior p0 ∈ (0, 1) that the arm is good. A collective decision rule is a stochastic process
C := {Ct}t≥0 such that Ct depends only on the past observations and takes values in the
action space {S,R}. Formally,Ct is measurable with respect to the filtrationFt generated
by decisions made in the past and news arrived by time t, that is,Ft = σ(Cτ , {Nn

τ }Nn=1, τ ≤
t). News is conclusive. That is, the belief of the player who receives news (and only
hers) jumps to one if she receives good news, and it jumps to zero if she receives bad
news. News and votes are publicly observable. Therefore, at any time t, players who
have not received any news yet share the belief pt that the risky arm is good, where
pt := Pp0,C [ωn = G | Ft] with n = 1, . . . , N .8 The belief is determined by Bayes’ rule and

6Strulovici (2010a) refers to the number of votes required to for the implementation of the reform as a
quorum rather than a qualified majority.

7Qualified majority rules are considered in Section 1.4.
8Henceforth, I add subscript t to probability and expectation functions instead of explicitly condition-

ing on the filtration Ft.
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pt

t0

1

p0

Figure 1.1. Evolution of the belief about having the good arm in absence of news if players experiment
with the risky arm. Parameters: (p0, λb, λg) = (0.3, 2, 1).

evolves as follows in absence of news:

ṗt = (λb − λg)pt(1− pt). (1.1)

Note that the belief increases over time in absence of news, that is, players become more
optimistic about having the good arm (see Figure 1.1).

Players have a common discount rate r > 0. I will focus on the limiting case of perfect
patience, that is, on r → 0. An expected payoff of each player n is determined by a
collective decision rule and is defined by

vn,Ct := Ep0,C
t

[
r

∫ ∞
t

e−r(τ−t)dπn,Cττ

]
,

where, depending on the arm chosen at time τ , either dπn,Rτ = (b1ωn=B + g1ωn=G)dτ or
dπn,Sτ = sdτ .

Because news is publicly observable and conclusive, at any time t, each player belongs
to one of three groups: losers I , winners J , or unsure voters. Losers are those who have
received bad news by time t (and are in sorrow if the reform is implemented). Winners
are those who have had good news (and are joyful if the reform is implemented). Let
i := |I| and j := |J |, then the remaining N − i − j players (if any) are those who are
still “in the dark” and thus referred to as unsure voters. I restrict attention to Markov
strategies.

Definition 1.1 (Markov Strategy). A Markov strategy for player n is a function dn that maps
the set of losers I and winners J , and the common belief p of unsure voters into a decision of player
n:

dn: (I, J, p)→ {S,R}.

A profile of Markov strategies is denoted by d := (d1, . . . , dN).

Definition 1.2 (Markov Collective Decision Rule). Given a profile of Markov strategies d =
(d1, . . . , dN), C represents a Markov collective decision rule and determined the action played,

C(I, J, p) = R ⇔ |{n: dn(I, J, n) = R}| > N
2
.

The collective rule C defines the value function vn,C(I, J, p) of each player n when the current
state is (I, J, p).

Considering Markov strategies makes the game a stopping game. Indeed, ifC(I, J, p) =
S for some (I, J, p), then the safe arm is always chosen after any history that leads to
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(I, J, p), and each player gets s thereafter, that is, vn,C(I, J, p) = s. Keeping in mind that
players follow the Markov collective decision rule, I omit the superscriptC from now on.
Since payoffs of all players in the same group are identical, the value functions of losers,
winners, and unsure voters are l(i, j, p), w(i, j, p), and u(i, j, p), where i and j are the cur-
rent numbers of losers and winners, and p is the belief of unsure voters. The restriction to
Markov strategies also allows me to characterize the optimal strategy of players in terms
of solutions to the Hamilton-Jacobi-Bellman (HJB) equations.

The HJB equation for the value function of unsure voters takes the form

u(i, j, p) = max
{
s, gp+ b(1− p)

+ λb(1−p)
r

[l(i+ 1, j, p)− u(i, j, p) + (N − i− j − 1)(u(i+ 1, j, p)− u(i, j, p))]

+ λgp

r
[w(i, j + 1, p)− u(i, j, p) + (N − i− j − 1)(u(i, j + 1, p)− u(i, j, p))]

+ (λb−λg)p(1−p)
r

∂pu(i, j, p)
}
.

The first part of the maximand corresponds to the safe arm, while the second one to the
risky one. Using the risky arm affects an unsure voter in six ways: (i) it yields her an
expected payoff gp+b(1−p), (ii) she can receive bad news at rate λb with probability 1−p
and become a loser, (iii) other unsure voter can get bad news and increase the number of
losers by one, (iv) she can receive good news at rate λg with probability p and become a
winner, (v) other unsure voter can get good news and make one more winner, and (vi)
when no news arrives, she uses Bayes’ rule to update her belief about having the good
arm.

If the safe arm is chosen, then u(i, j, p) = s, and so the value function is independent
of r. If the risky arm is chosen, then

u(i, j, p) = gp+ b(1− p)
+ λb(1−p)

r
[l(i+ 1, j, p)− u(i, j, p) + (N − i− j − 1)(u(i+ 1, j, p)− u(i, j, p))]

+ λgp

r
[w(i, j + 1, p)− u(i, j, p) + (N − i− j − 1)(u(i, j + 1, p)− u(i, j, p))]

+ (λb−λg)p(1−p)
r

∂pu(i, j, p).

By multiplying both sides by r, taking the limit r → 0, and taking into account that the
value function is normalized, that is, that limr→0 ru(i, j, p) = 0, I obtain

0 = λb(1− p)[l(i+ 1, j, p)− u(i, j, p) + (N − i− j − 1)(u(i+ 1, j, p)− u(i, j, p))]

+ λgp[w(i, j + 1, p)− u(i, j, p) + (N − i− j − 1)(u(i, j + 1, p)− u(i, j, p))]

+ (λb − λg)p(1− p)∂pu(i, j, p).

Therefore, when unsure voters become infinitely patient, that is, when r → 0, the HJB
equation becomes

u(i, j, p) = max
{
s, 1

(N−i−j)(λgp+λb(1−p))

×
(
λb(1− p)[l(i+ 1, j, p) + (N − i− j − 1)u(i+ 1, j, p)]

+ λgp[w(i, j + 1, p) + (N − i− j − 1)u(i, j + 1, p)]
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+ (λb − λg)p(1− p)∂pu(i, j, p)
)}
.

Similarly, the HJB equations for the value functions of losers and winners can be found.
To avoid trivial equilibria, for example, when it is optimal to vote for the safe arm

because all other players do so, I consider undominated Markov strategies only.

Definition 1.3 (Markov Equilibrium in Undominated Strategies). The profile d = (d1, . . . , dN)
is a Markov equilibrium in undominated strategies if, for all (I, J, p, n), dn(I, J, p) = R if and
only if

1
(N−|I|−|J |)(λgp+λb(1−p))

(
λb(1− p)

∑
i′ /∈I∪J

vn(I ∪ {i′}, J, p)

+ λgp
∑
j′ /∈I∪J

vn(I, J ∪ {j′}, p) + (λb − λg)p(1− p)∂pvn(I, J, p)

)
> s.

Given the restriction to undominated strategies, any solution to the HJB equation is
optimal. The risky arm is chosen as long as it yields a strictly higher payoff than the safe
arm. As mentioned above, restriction to Markov strategies implies that, if the safe arm
is used once, it is going to be used thereafter. Therefore, each player votes for the risky
arm until it is optimal for her.

1.3 The Equilibrium
Losers and winners always vote for the safe and risky arms, respectively. Unsure voters
vote for the risky arm if and only if they are optimistic about the type of their arm. How
optimistic they must be depends on the current number of losers and winner, because
choosing the risky arm may lead others to learn the type of their arm and, if losers or
winners form a majority, they impose their preferred arm on unsure voters. Note that
unsure voters are pivotal until losers or winners form a majority.

The unique equilibrium is characterized by cut-offs that reflect unsure voters’ incen-
tives to experiment with the risky arm. Unsure voters choose to experiment in the pres-
ence of i losers and j winners if and only if their belief is above the cut-off p(i, j). The
lower is the cut-off p(i, j), the higher are the incentives, because unsure voters are willing
to experiment for a larger range of beliefs. Given the number of losers and winners, the
equilibrium cut-off is the (largest) belief at which unsure voters are indifferent between
the safe and risky arms. That is, p(i, j) is defined by u(i, j, p(i, j)) = s, where u(i, j, p) is
the value function of unsure voters.

I start with an example that illustrates the results that lead to all the interesting find-
ings in this chapter. Unsure voters’ incentives to experiment change as some of them
learn that they lose or win if the risky arm is implemented. Specifically, the incentives
increase with the number of losers (an insurance effect) and decrease with the number
of winners (a novel anxiousness effect). That is why, even if players experiment with the
risky arm at first, the safe arm may be implemented not only if a majority of players learn
that they are losers, but also if unsure voters become too anxious to experiment.

I continue with the formal statements of the results. I further show that unsure voters
behave myopically when the number of players grows arbitrary large and there are many
winners and few losers. This implies that having a large voting committee can exacerbate
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Figure 1.2. All possible states (i, j) in terms of the number of losers i and winners j, in which neither losers
nor winners have formed a majority and hence unsure voters are decisive. Next to each state (i, j) is the
upper bound p̃(i, j) for the cut-off p(i, j) used by unsure voters. Parameters: (N, g, s, b) = (5, 1, 0,−4).

the bias toward the status quo. The myopic behavior does not occur if losers are about to
form a majority. Furthermore, if players learn via bad news only, that is, if λg = 0, then
the equilibrium cut-offs are non-decreasing with the number of players. Moreover, there
does not have to be the bias toward the status quo at all. If relative gains from the risky
arm are higher than relative losses, that is, if g − s ≥ s− b, then the equilibrium cut-offs
are independent of the number of players and unsure voters experiment for any belief
they may have. This is one of the findings which make the bad news case interesting on
its own right.

1.3.1 An Example
As an example, I consider a game withN = 5 players and the risky and safe arms’ payoffs
equal to g = 1, s = 0, and b = −4. Figure 1.2 shows all possible states in terms of the
number losers and winners, in which neither of these two groups has formed a majority,
and so unsure voters are decisive. There are i losers and j winners in the state (i, j).

At first, no player knows the type of her arm, that is, (i, j) = (0, 0). If unsure voters
are optimistic, that is, if p0 ≥ p(0, 0), then they choose to experiment with the risky arm.
Because unsure voters become more optimistic about the type of their arm in absence of
news, their belief stays above p(0, 0) and they choose the risky arm over the safe one until
one of them learns whether she is a loser or a winner.

Suppose one of unsure voters receives good news and thus learns that she is a winner,
that is, the state becomes (i, j) = (0, 1); see the bold arrow from (0, 0) to (0, 1) in Figure
1.2. If p0 ∈ (p(0, 0), p(0, 1)) and the news arrived before time9

t(0,1) = 1
λb−λg

ln
(

1−p0
p0

p(0,1)
1−p(0,1)

)
,

9The law of motion (1.1) implies that, by time t, unsure voters’ belief reaches pt given by

pt
1−pt = p0

1−p0 e
(λb−λg)t,

where p0 is the prior.
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that is, before unsure voters’ belief reaches p(0, 1), then they vote for the safe arm from
the moment the news arrived on. As a result, four unsure voters vote for the safe arm,
while one winner votes for the risky arm, and so the safe arm is the voting outcome.
It follows that the safe arm will be implemented forever even though losers have not
formed a majority.

If p0 ≥ p(0, 1) or the news arrived after time t(0,1), then unsure voters’ belief is above
p(0, 1) and experimentation continues. Suppose that now one of unsure voters receives
bad news and thus learns that she is a loser; see the bold arrow from (0, 1) to (1, 1) in
Figure 1.2. If experimentation goes on, which is the case if unsure voters’ belief is above
p(1, 1) at the time the news arrived, then one of unsure voters may receive good news
and become a winner; see the bold arrow from (1, 1) to (1, 2) in Figure 1.2. If one more
winner appears, then the risky arm will be implemented forever, because three (out of
five) players who are winners will vote for it.

Figure 1.2 shows the upper bounds p̃(i, j) for the cut-offs p(i, j) used by unsure voters
in the presence of i losers and j winners. These bounds bind if the prior is high, specif-
ically, if p0 > p̃(0, 2) = 1

2
(3 −

√
2) ≈ 0.79; see Section 1.3.2 for details about the upper

bounds and the cut-offs. As can be seen in Figure 1.2, p̃(i, j) decrease with the number
of losers i and increase with the number of winners j. For example, p̃(0, 0) ≈ 0.76 >
p̃(1, 0) = 0.5 > p̃(2, 0) = 0 and p̃(0, 0) ≈ 0.76 < p̃(0, 1) ≈ 0.78 < p̃(0, 2) ≈ 0.79. These
display the insurance effect and the anxiousness effect. Unsure voters cast their votes tak-
ing into account that choosing the risky arm may lead others to learn the type of their
arm. If there are many losers, then unsure voters are insured against an adverse out-
come of being trapped with the risky arm while being losers, because losers are likely
to form a majority and impose the safe arm. In contrast, if there are many winners, then
unsure voters are anxious that they turn out to be losers, while the risky arm will be
implemented forever, because winners form a majority.

1.3.2 Cut-offs
I start with two special cases. They help better understand the role of the collective deci-
sion making, in particular, that unsure voters are forward-looking and take into account
that, if the risky arm is chosen, then some of them may learn the type of their risky arm.

First, the cut-off used by a single decision maker is equal to

pSD = 0.

That is, if a voter is solemnly responsible for the decision, then she experiments with the
risky arm until she learn its type. Indeed, all the decision power belongs to her, which
implies she will not be trapped with the risky arm if she learns that she is a loser. Fur-
thermore, she is patient, and thus can afford to take her time and make a fully informed
decision.

Second, if voters are myopic, that is, if they care only about the current payoff, then
unsure voters choose to experiment with the risky arm if and only if its current expected
payoff is higher than that of the safe arm. Unsure voters with the belief p vote for the
risky arm if and only if gp+ b(1− p) > s, that is, if and only their belief is above

pM = s−b
g−b ,

the myopic cut-off.
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Theorem 1.1 below describes the equilibrium cut-offs p(i, j) and their upper bounds
p̃(i, j), when there are N > 1 strategic and forward-looking players and i (resp., j)
of them have already learned that they are losers (resp., winners). The equilibrium
existence and uniqueness come from a backward induction argument on the number
of losers and winners. The equilibrium cut-offs p(i, j) are pinned down by the value-
matching condition

u(i, j, p(i, j)) = s,

where u(i, j, p) is the value function of unsure voters. The upper bounds on the cut-
offs are found assuming that, if unsure voters choose to experiment for the very first
time when neither of them has learned whether she is a loser or a winner, they stop
experimenting if and only if losers form a majority. The upper bounds p̃(i, j) are pinned
down by the respective value-matching condition

ũ(i, j, p̃(i, j)) = s,

where ũ(i, j, p) is the value function of unsure voters in such a case; see Section 1.3.3. Be-
cause unsure voters can always choose the safe arm rather than the risky arm, u(i, j, p) ≥
ũ(i, j, p) for all p ∈ [0, 1], i ≤ iN , and j ≤ jN , where iN := N−1

2
(resp., jN := N−1

2
) is

the critical number of losers (resp., winners) such that only one loser (resp., winner) is
needed for them to form a majority.

Theorem 1.1 (Equilibrium Cut-offs). There exists a unique equilibrium characterized by cut-
offs p(i, j). The cut-offs are such that p(i, j) ≤ p̃(i, j) for all i ≤ iN and j ≤ jN , with equality if
and only if p0 > maxi≤iN ,j≤jN p̃(i, j). The upper bounds p̃(i, j) satisfy:

– p̃(i+ 1, j) < p̃(i, j) and p̃(i, j + 1) > p̃(i, j) if (s− b)(iN − i) > (g − s)(jN − j + 1),
– p̃(i+ 1, j) = p̃(i, j) = 0 and p̃(i, j + 1) ≥ p̃(i, j) if (s− b)(iN − i) ≤ (g− s)(jN − j + 1).

Furthermore, pM > p̃(i, j) ≥ pSD for all i ≤ iN and j ≤ jN .

The equilibrium cut-offs are equal to their upper bounds, that is, p(i, j) = p̃(i, j) for all
i ≤ iN and j ≤ jN , if and only if experimentation with the risky arm stops only if losers
form a majority. Because unsure voters become more optimistic about having the good
arm in absence of news, they always vote for the risky arm if and only if the prior about
having the good arm is high enough, specifically, if and only if p0 > maxi≤iN ,j≤jN p̃(i, j).
Note that pM > p̃(i, j) ≥ p(i, j) for all i ≤ iN and j ≤ jN , that is, unsure voters care
not only about their current payoff. In other words, there is always an option value to
learning the type of the risky arm. This implies a sufficient condition for the equilibrium
cut-offs to coincide with their upper bounds, which is given in Corollary 1.1.

Corollary 1.1. If p0 ≥ pM , then p(i, j) = p̃(i, j) for all i ≤ iN and j ≤ jN .

Theorem 1.1 states that the upper bounds p̃(i, j) decrease with the number of losers
i (the insurance effect) and increase with the number of winners j (the anxiousness effect).
The example in Section 1.3.1 has already illustrated these effects.

The insurance effect is strongest when there is the critical number of losers, that is,
p̃(iN , j) = pSD = 0 for all j ≤ jN ; and it also follows that p(iN , j) = pSD = 0 for all j ≤ jN ,
because p(iN , j) ≤ p̃(iN , j). Indeed, similar to the single decision maker, each unsure
voter can afford to make a fully informed decision. If she learns that her arm is bad,
then the preferred safe arm will be implemented, because losers will form a majority. In
contrast, if she learns that her arm is good, then she will continue to vote for the risky
arm.
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The anxiousness effect emphasizes the difference between learning with and without
bad news. As I discuss in Appendix A.1, if players learn via good news only, then the
equilibrium cut-offs are independent of the number of winners. If players learn via bad
news as well, then the possibility of becoming one of the losers, who are in minority and
whose interests are opposite to those of optimistic unsure voters and winners, makes
unsure voters more anxious to experiment in the presence of many winners.

Theorem 1.1 also captures what affects unsure voters’ choice between the risky and
safe arms. Unsure voters take into account that, if the risky arm is a voting outcome, some
of them may learn the type of the arm and that losers and winners, if they are in majority,
impose their preferred arm on everyone. The fewer losers are needed for their number to
be critical, the more insured are unsure voters; and the fewer winners are needed for their
number to be critical, the more anxious are unsure voters to experiment. This is captured
by by iN − i and jN − j. Relative gains and losses from the risky arm, that is, g − s and
s− b, matter as well. If the payoff of the good arm is relatively high, alternatively, if the
payoff of the bad arm is relatively small, then the risky arm becomes more attractive.
These explain why (s − b)(iN − i) > (g − s)(jN − j + 1) implies p̃(i, j) ∈ (0, 1), while
(s − b)(iN − i) ≤ (g − s)(jN − j + 1) implies p̃(i, j) = 0.10 In particular, Corollary 1.2
follows.

Corollary 1.2. If (s− b)iN ≤ g − s, then p(i, j) = p̃(i, j) = 0 for all i ≤ iN and j ≤ jN .

If learning is via bad news only, that is, if λg = 0, then no player ever receives good
news and thus immediately learns that she is a winner; each player belong to one of two
groups, either losers or unsure voters. This implies that the equilibrium cut-offs never
increase over time, that is, there is no anxiousness effect. Therefore, if players choose to
experiment with the risky arm when neither of them knows the type of her arm, then
experimentation stops if and only if losers form a majority. It follows from Theorem 1.1
that the equilibrium cut-offs coincide with their upper bounds. Define by

p(i) := p(i, 0)

for all i ≤ iN the cut-offs used by unsure voters in the bad news case. Theorem 1.2
describes the equilibrium cut-offs p(i) in the presence of i losers.

Theorem 1.2 (Equilibrium Cut-offs with Learning via Bad News). If λg = 0, then there
exists a unique equilibrium characterized by cut-offs p(i) satisfying p(i+1) ≤ p(i) for all i ≤ iN .
Furthermore, pM > p(i) ≥ pSD for all i ≤ iN . Moreover, if (s − b)N−1

2
≤ (g − s)N+1

2
, then

p(i) = 0 for all i ≤ iN .

Define by pN(i, j) and p̃N(i, j) the equilibrium cut-off and its upper bound used by un-
sure voters when there are i losers and j winners in the game withN players. Proposition
1.1 below states that, if winners are about to form a majority and no losers are present,
unsure voters behave myopically as the number of players grows arbitrary large. Indeed,
if there are many players, then the decision power of each is negligible, and so unsure
voters become very anxious to experiment with the risky arm and are biased toward

10Technically, if (s− b)(iN − i) > (g−s)(jN − j+1), then the value function of unsure voters when they
always experiment, that is, ũ(i, j, p), is concave for p close to 0; and if (s− b)(iN − i) ≤ (g− s)(jN − j + 1),
then ũ(i, j, p) is convex for p close to 0. Because ũ(i, j, p) is smooth at p = 0, the conditions imply that
ũ(i, j, p) < s and ũ(i, j, p) > s, respectively. These, in turn, imply that p̃(i, j) ∈ (0, 1) and p̃(i, j) = 0. See
Lemma A.7 and the proof of Lemma A.6 in Appendix A.2 for details.
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the safe arm when winners are about to impose the risky arm on everyone. Contrary, if
losers are about to form a majority, then unsure voters are insured against being trapped
with the risky arm if their arm is bad. They behave as though each of them is solemnly
responsible for the decision independently of the number of players and of how many
of them are winners.

Proposition 1.1 (Number of Players). For any odd number of players N , p̃N(iN , j) = 0 for
all j ≤ jN . Furthermore, limN→∞ p̃N(0, jN) = pM .

Proposition 1.1 gives an idea that the learning structure is relevant for how unsure
voters’ incentives to experiment depend on the number of players. I further argue in
Appendix A.1 that, if unsure voters learn via good news only, they are always biased
toward the safe arm when the number players becomes arbitrary large. Contrary, if un-
sure voters learn via bad news only, there does not have to be the bias toward the safe
arm at all. If relative gains from the risky arm are higher than relative losses, that is, if
g − s ≥ s − b, then the equilibrium cut-offs are independent of the number of players
and unsure voters experiment for any belief they may have; see Proposition 1.2 below. In
general, the equilibrium cut-offs pN(i) are non-decreasing with the number of playersN .
Given the number of losers i, losers are less likely to form a majority in the presence of
more players, and so unsure voters are less insured against being trapped with the bad
risky arm.

Proposition 1.2 (Number of Players with Learning via Bad News). If λg = 0, then the
equilibrium cut-offs pN(i) are non-decreasing in the number of players N : pN(i) ≤ pN ′(i) for all
i ≤ iN and all odd N < N ′. Furthermore, if g − s ≥ s− b, then pN(i) = 0 for all i ≤ iN and all
odd N .

As unsure voters are unsure about the type of their risky arm, playoffs of both bad and
good risky arms are relevant for their decision. The higher is the payoff of either type,
the more attractive does the risky arm become. Proposition 1.3 below captures that the
upper bounds for the equilibrium cut-offs are decreasing in both b and g. In contrast, the
higher is the payoff of the safe arm, the less incentives do unsure voters have to take the
risk and experiment with the risky arm. In other words, the upper bounds are increasing
in s.

Proposition 1.3 (Payoffs of Risky and Safe Arms). The upper bounds p̃(i, j) are decreasing
in b and g, and are increasing in s for all i ≤ iN and j ≤ jN .

1.3.3 Value Functions
I find closed forms of bounds on the equilibrium value functions of losers, winners, and
unsure voters. These bounds are tight if and only if p0 > maxi≤iN ,j≤jN p̃(i, j). Advantages
of knowing the shape of the value functions are threefold. First, I can characterize the
equilibrium cut-offs and pin down sets of parameters that correspond to different equi-
librium behavior of unsure voters. Second, I can conduct extensive comparative statics
on how unsure voters’ incentives to experiment change with the number of losers and
winners and as the number of players increases. Finally, I can analyze how unsure vot-
ers’ incentives depend on the voting rule applied and can compare different voting rules
in terms of efficiency; see Section 1.4.

If losers are in majority or unsure voters are pessimistic about the type of their risky
arm, then the safe arm will be the voting outcome and will be implemented forever. As a
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result, losers, winners, and unsure voters get the same payoff s. If winners are in majority
or unsure voters are optimistic, then the risky arm is the voting outcome. Given the
number of losers i and winners j and the belief p of unsure voters, the expected payoffs, or
the value functions, of losers, winners, and unsure voters are given by l(i, j, p), w(i, j, p),
and u(i, j, p). If experimentation starts and if it stops if and only if losers form a majority,
then these value functions are equal to l̃(i, j, p), w̃(i, j, p), and ũ(i, j, p) described in detail
below. Because unsure voters always have a choice to vote for the safe arm rather than the
risky one, u(i, j, p) ≥ ũ(i, j, p). Furthermore, the value functions of losers and winners
satisfy l(i, j, p) ≥ l̃(i, j, p) and w(i, j, p) ≤ w̃(i, j, p), since the safe arm is preferred by
losers, while the risky arm is preferred by winners. All these are summarized in Lemma
1.1 below.

The lower bound for the equilibrium value function of losers is given by

l̃(i, j, p) = bP[R is implemented] + sP[S is implemented], (1.2)

while the upper bound for the equilibrium value function of winners is given by

w̃(i, j, p) = gP[R is implemented] + sP[S is implemented]. (1.3)

The only difference between these two functions is that, if the risky arm is implemented,
losers have to put up with the low payoff b, while winners benefit from the high payoff
g. The lower bound for the equilibrium value function of unsure voters is given by

ũ(i, j, p) = b(1− p)P[R is implemented | being a loser]
+ gpP[R is implemented | being a winner] + sP[S is implemented]. (1.4)

There are two possible outcomes for an unsure voter if the risky arm is implemented.
The unsure voter has to bear the low payoff b if she turns out to be a loser, and she enjoys
the high payoff g otherwise.

The probabilities in (1.2), (1.3), and (1.4) are defined by11

P[R is implemented] :=

iN−i∑
k=0

(
N−i−j

k

)
pN−i−j−k(1− p)k,

P[S is implemented] :=

jN−j∑
m=0

(
N−i−j
m

)
pm(1− p)N−i−j−m.

Each unsure voter is a winner with probability p and a loser with probability 1− p. For
winners to form a majority and so for the risky arm to be implemented forever, there
cannot be more that iN − i losers among the remainingN− i− j unsure voters. Similarly,
the safe arm is implemented forever if a majority of voters happen to be losers, that is, if
no more than jN − j of the remaining unsure voters are winners. Furthermore,

P[R is implemented | being a loser] :=

iN−i−1∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k,

11Note that P[R is implemented] = (1−p)P[R is implemented | being a loser]+pP[R is implemented |
being a winner] and P[R is implemented] + P[S is implemented] = 1.
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P[R is implemented | being a winner] :=

iN−i∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k.

When one of N − i − j unsure voters learns her type, only N − i − j − 1 unsure voters
remain. The risky arm is implemented if no more than iN − i of unsure voters are losers,
including the one who has just learned the type of her risky arm.
Lemma 1.1 (Equilibrium Value Functions). The equilibrium value functions of losers l(i, j, p),
winners w(i, j, p), and unsure voters u(i, j, p) satisfy:

– l(i, j, p) ≥ l̃(i, j, p), w(i, j, p) ≤ w̃(i, j, p), and u(i, j, p) ≥ ũ(i, j, p) for all p > p(i, j),
– l(i, j, p) = w(i, j, p) = u(i, j, p) = s for all p ≤ p(i, j),

for all i ≤ iN and j ≤ jN .

1.4 Qualified Majority and Socially Optimal Rules
I introduce a larger class of voting rules, namely, qualified majority rules or Q-rules for
short, to discuss efficiency. Under the Q-rule, Q votes are required for the safe arm to be
implemented.12 In particular, the safe arm is implemented if there are at least Q losers.
I denote by iQN := Q − 1 (resp., jQN := N − Q) the critical number of losers (resp., win-
ners) such that only one loser (resp., winner) is needed for them to form a majority. The
majority rule obtains for Q = QN := N+1

2
.

I show that unsure voters behave socially optimal under the unanimity rules when-
ever these are socially desirable. This is no longer the case under other qualified majority
rules if learning is via both bad and good news. However, if learning is via bad news only,
then there is always a qualified majority rule that leads to the socially optimal outcome.
This again emphasizes the importance of the bad news case on its own right.

1.4.1 Qualified Majority Rules
All the results in Section 1.3 extend to any game with qualified majority voting, because
any game with the Q-rule can be described as a game with the majority rule by adding
phantom players with a certain type of their risky arm. This makes it straightforward to
find how unsure voters’ incentives to experiment depend on the voting rule applied and
that there may exist a qualified majority rule that leads to the socially optimal outcome. I
give an idea of the procedure next. The reader interested in the implication of the optimal
voting rules may skip this without loss of continuity.

Any game with the Q-rule is solved by backward induction on the number of losers
and winners. To distinguish between games with different Q-rules, I denote by pQ(i, j)
the cut-off used by unsure voters in the presence of i losers and j winners. What actually
drives the choice of the cut-offs pQ(i, j) is the number of unsure votersN − i− j, because
how the game evolves depends on the type of the risky arms of currently unsure vot-
ers and on their belief p. This observation makes it possible to describe the game with
qualified majority voting as a game with simple majority voting.

Suppose i among N players have learned that they are losers and j players have
learned that they are winners (and both groups are still in qualified minority); the cur-
rent belief of the remaining N − i − j unsure voters is p; and players use the Q-rule to

12Strulovici (2010a) refers to the number of votes required for the risky arm to be implemented as a
“quorum.” That is, N −Q+ 1 defines the quorum in his paper.
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decide about the voting outcome. If players use a submajority rule, that is, if Q < QN ,
then incentives of unsure voters are the same as incentives of unsure voters in a game
withN + iQph players, the majority rule, i+ iQph losers, j winners, and the belief p of unsure
voters, where

iQph := 2(QN −Q)

is the number of phantom losers. If players use a supermajority rule, that is, if Q > QN ,
then incentives of unsure voters are the same as incentives of unsure voters in a game
withN+jQph players, the majority rule, i losers, j+jQph winners, and the belief p of unsure
voters, where

jQph := 2(Q−QN)

is the number of phantom winners. I refer to two states in two games as “equivalent” if
unsure voters’ incentives at these states are the same. Lemmata 1.2 and 1.3 follow.

Lemma 1.2 (Submajority Rules). A state (i, j, p) in the game with N players and the Q-rule
with Q < QN is equivalent to a state (i + iQph, j, p) in the game with N + iQph players and the
majority rule.

Lemma 1.3 (Supermajority Rules). A state (i, j, p) in the game withN players and theQ-rule
with Q > QN is equivalent to a state (i, j + jQph, p) in the game with N + jQph players and the
majority rule.

Theorems 1.3 and 1.4 are immediate consequences of Theorems 1.1 and 1.2 and Lem-
mata 1.2 and 1.3. Define by pQ(i) := pQ(i, 0) for all i ≤ iQN the cut-offs used by unsure
voters in the bad news case.

Theorem 1.3 (Equilibrium Cut-offs with the Q-Rule). There exists a unique equilibrium
characterized by cut-offs pQ(i, j). The cut-offs are such that pQ(i, j) ≤ p̃Q(i, j) for all i ≤ iQN
and j ≤ jQN , with equality if and only if p0 > maxi≤iQN ,j≤j

Q
N
p̃Q(i, j). The upper bounds p̃Q(i, j)

satisfy:
– p̃Q(i+ 1, j) < p̃Q(i, j) and p̃Q(i, j+ 1) > p̃Q(i, j) if (s− b)(iQN − i) > (g− s)(jQN − j+ 1),
– p̃Q(i+1, j) = p̃Q(i, j) = 0 and p̃Q(i, j+1) ≥ p̃Q(i, j) if (s−b)(iQN−i) ≤ (g−s)(jQN−j+1).

Furthermore, pM > p̃Q(i, j) ≥ pSD for all i ≤ iQN and j ≤ jQN . Moreover, p̃Q(i, j) are non-
decreasing in the Q-rule: p̃Q(i, j) ≤ p̃Q

′
(i, j) for all Q < Q′, i ≤ iQN , and j ≤ jQ

′

N .

Theorem 1.4 (Equilibrium Cut-offs with the Q-Rule and with Learning via Bad News).
If λg = 0, then there exists a unique equilibrium characterized by cut-offs pQ(i) satisfying pQ(i+

1) ≤ pQ(i) for all i ≤ iQN . Furthermore, pM > pQ(i) ≥ pSD for all i ≤ iQN and, if (s−b)(Q−1) ≤
(g − s)(N − Q + 1), then pQ(i) = 0 for all i ≤ iQN . Moreover, pQ(i) are non-decreasing in the
Q-rule: pQ(i) ≤ pQ

′
(i) for all Q < Q′ and i ≤ iQN .

Theorems 1.3 and 1.4 also state that the equilibrium upper bounds p̃Q(i, j) in the
mixed news case and the equilibrium cut-offs pQ(i) in the bad news case are non-decreasing
with the Q-rule applied. Given the same number of losers and winners, the more losers
are needed for the safe arm to be implemented forever, the less insured are unsure voters
against being trapped with the bad risky arm and the more anxious are they to experi-
ment.
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1.4.2 The Socially Optimal Rule
The utilitarian social planner who is interested in maximizing the sum of players’ ex-
pected payoffs makes a fully informed decision, because players are patient, and so there
is time to make that decision. The social planner chooses the risky arm over the safe one
unless he learns that the safe arm is socially desirable, that is, unless at least i∗ players
receive bad news, where i∗ is the smallest i such that Ns ≥ (N − i)g + ib. That is, i∗ is
defined by13

i∗ :=
⌈
g−s
g−bN

⌉
= d(1− pM)Ne.

Therefore, the socially optimal rule is the Q∗-rule, where Q∗ := i∗. This is summarized by
Lemma 1.4 below. Note that, by definition of the Q∗-rule,

pM ≥ 1− Q∗

N
.

It follows that the higher are the relative gains form the risky arm g − s or the lower are
the relative losses s− b, that is, the lower is the myopic cut-off pM , the more players must
turn out to be losers for the safe arm to be socially desirable.

Lemma 1.4 (Social Planner). The utilitarian social planner chooses the risky arm over the safe
arm for any belief of unsure voters unless Q∗ players learn that they are losers.

For the equilibrium to be socially optimal, two conditions must be satisfied. First, the
Q∗-rule must be applied. Second, unsure voters must vote the risky arm for any belief
they may have, that is, the cut-offs must be pQ∗(i, j) = 0 for all i ≤ iQ

∗

N and j ≤ jQ
∗

N , which
is guaranteed if the upper bounds are p̃Q∗(i, j) = 0 for all i ≤ iQ

∗

N and j ≤ jQ
∗

N .
Theorem 1.3 implies that, with learning via both bad and good news, p̃Q∗(i, j) = 0 for

all i ≤ iQ
∗

N and j ≤ jQ
∗

N if and only if the highest upper bound is p̃Q∗(0, jQ
∗

N ) = 0, that is, if
and only if (s− b)(Q∗− 1) ≤ g− s. This restricts the set of qualified majority rules under
which unsure voters experiment with the risky arm for any belief they may have and thus
behave socially optimal. Theorem 1.5 below states that they do so in equilibrium if one of
the unanimity rules leads to the socially desirable outcome, that is, if Q∗ = 1 or Q∗ = N .
If Q∗ = 1, then the insurance effect is strongest, because the safe arm is implemented if
there is at least one loser. If Q∗ = N , then the relative gains from the risky arm are very
high or the relative losses are very low, and so unsure voters are willing to take the risk
and experiment with the risky arm. Under other qualified majority rules, unsure voters
may be too anxious to experiment for low beliefs, that is, p̃Q∗(0, jQ

∗

N ) > 0 for some i ≤ iQ
∗

N

and j ≤ jQ
∗

N .

Theorem 1.5 (Socially Optimal Rule with Learning via Mixed News). If λg > 0, then the
equilibrium of the game with the Q∗-rule is socially optimal if Q∗ = 1 or Q∗ = N .

If learning is via bad news only, then there is no anxiousness effect and the Q∗-rule
ensures that unsure voters are always willing to experiment with the risky arm. Theorem
1.4 implies that the highest cut-off is pQ∗(0) = 0 if and only if (s−b)(Q∗−1) ≤ (g−s)(N−
Q∗ + 1), which holds strictly by definition of the Q∗-rule. Theorem 1.6 follows.

Theorem 1.6 (Socially Optimal Rule with Learning via Bad News). If λg = 0, then the
equilibrium of the game with the Q∗-rule is socially optimal.

13The ceiling function dxe gives the smallest integer not less than x.
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1.5 Conclusion
The chapter has studied a dynamic problem of collective decision making via voting and
thus has contributed to understanding of collective experimentation, the work started by
Strulovici (2010a). Considering an undiscounted model buys tractability and does not
make it less fruitful, because players’ interests may be in conflict, while the decision has
to be made collectively.

The first extension one may consider is the case of inconclusive news, which is bound
to have richer dynamics.14 For example, consider learning via bad news only but with
inconclusive bad news, that is, with bad news arriving not only if a voter is a loser, but
also at a lower rate if she is a winner. Then upon receiving news the unsure voter be-
comes a loser, but she may not be the loser forever for two reasons. On the one hand,
if experimentation continues, then her belief about being a winner increases in absence
of other bad news and may go above the cut-off used by unsure voters. This makes her
willing to experiment with the reform again. On the other hand, because of the insurance
effect, the appearance of another loser increases unsure voters’ incentives to experiment.
As a result, the previous loser may turn out to be optimistic enough now to vote for the
reform.

Another natural extension is to look at players with correlated types of their risky
arms. Indeed, there is often some common ground between voters regarding the reform.
That is why it is plausible that voters learn about whether they benefit from the reform af-
ter observing news received by others. Considering correlated types also makes a bridge
between the work of Keller, Rady, and Cripps (2005) and Keller and Rady (2015a) and
that of Strulovici (2010a) and mine. Working with an undiscounted model may allow
to go beyond a two-player case and a unanimity rule like in Strulovici (2010b), and see
what else can be said besides that players seem to have higher incentives to experiment
and efficiency is improved.

14Keller and Rady (2010) analyzes an exponential bandit model with inconclusive good news and the
same type of the risky arm among players. Keller and Rady (2015a) studies inconclusive bad news.





Chapter 2

Restless Strategic Experimentation

2.1 Introduction
Success of many decisions crucially depends on whether it is taken into account that
environments change over time. A decision about whether to adopt a new seed is of vital
interest, especially in developing countries. There, even a modest improvement of yields
can provide food security to millions of people. Suitability of the new seed depends
on weather and soil conditions, but these conditions change over time. Knowing this
and also being able to learn from experimentation by neighbors, how would and should
farmers behave? Alternatively, think about experimentation with a new drug which is
believed to be effective against a certain virus. Given that viruses mutate over time, even
though the drug may succeed at the moment, it does not mean that it will always perform
better than placebo. How should the experimentation be carried out?

Questions I would like to answer are: How do players experiment in changing, or
restless, environments? Is it always socially optimal to learn the current state? Can players
behave efficiently on their own?

I provide a model of how strategic players experiment in restless environments un-
der free flow of information among players and uncertainty regarding the current state.
Specifically, there is a finite number of players endowed with one unit of perfectly divis-
ible resource each. Each player continuously chooses how to split her resource between
two arms: safe and risky. The risky arm is preferred over the safe one if and only if it is
good. The state of the arm, good or bad, can be learned through experimentation with
it. Learning is either via good news or via bad news. For example, with learning via
good news, players receive so-called news if and only if the state is good. The arrival of
news is publicly observable. The state of the arm changes, or “reboots,” exogenously at
times unobservable to players. Therefore, the arrival of news reveals the current state
only. Allowing for the restless state is the key contribution of this chapter.

The first finding is the social optimality of myopic behavior. Surprisingly, because
players are forward-looking, myopic behavior turns out to be socially optimal when the
state is restless and learning is relatively slow. The learning can be slow, because the state
changes quickly or because there are few players to learn from. Furthermore, this result
holds even when players are patient.

I look for symmetric Markov perfect equilibria in pure strategies. That is, in equilib-
rium, players allocate the same fraction of their resource to the risky arm given the belief
about the state being good. I solve in closed form for such an equilibrium and establish
its existence and uniqueness analytically in some cases and numerically in others. The
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second finding is the efficiency of symmetric equilibrium. I find that the equilibrium is
efficient only if it is myopic when learning is via good news, while the equilibrium does
not have to be myopic for it to be efficient when learning is via bad news.

Related literature. This chapter contributes to the literature on strategic experimenta-
tion with Bolton and Harris (1999) the founding paper. In Bolton and Harris (1999),
news arrives according to a Brownian process rather than a Poisson process.1 It builds
on Keller, Rady, and Cripps (2005) and Keller and Rady (2015a) allowing the underlying
state to change exogenously over time.

Belief dynamics when the state changes over time are qualitatively different from
those with the rested state. The belief about the state of the risky arm evolves even if
players do not experiment. Furthermore, players are only certain about the state upon
arrival of news, that is, they learn about the current state only. In absence of news, play-
ers belief drifts to a certain stationary belief. Inconclusiveness of news about the state
in general is reminiscent of models with inconclusive or imperfect news, in which, for
example, good news arrives not only if the state is good, but also at a slower rate if it
is bad. However, with inconclusive good news, which is analyzed in Keller and Rady
(2010), players are unsure about the state even after the arrival of news. Furthermore,
they also always become more pessimistic about the state in absence of news. Keller and
Rady (2015a) considers a model with inconclusive bad news.

Vasama (2017) extends the model of Bolton and Harris (1999) and allows the state to
change endogenously over time. Specifically, if players experiment, they not only learn
the current state, but also make it more likely that the state is good in the next instant. It
is game of both information and payoff externalities. Vasama (2017) states a system of
differential equations which each player’ value function satisfies and concludes existence
of possibly multiple symmetric Markov equilibria.

Fryer and Harms (2015) studies a general two-armed bandit model in which the ex-
pected return from the risky arm increases if the arm is chosen and decreases otherwise.
They show that the optimal strategy can be described by Gittins index (Gittins, 1979).
Bose and Makris (2016) analyzes a decision problem of whether to undertake a project
which is comprised of several tasks and, if so, whether to put an effort or slack on each
task. Effort is costly, but slacking may lead to more difficult tasks ahead.

Board and Meyer-ter-Vehn (2013) considers a model of firm reputation in which the
reputation is restless from the point of view of consumers and depends on the firm’s
investments in the quality. Board and Meyer-ter-Vehn (2014) analyzes an extension with
the firm not observing the underlying quality either and being allowed to exit the market.
Halac and Prat (2016) studies a two-sided moral hazard model of managerial attention
and agent effort which has similar dynamics.

Keller and Rady (1999) analyzes a model of a monopoly who faces changing demand
curve. Keller and Rady (2003) considers an extension to a duopoly.

Quite a few papers in the literature on operations research and engineering study
restless bandits and mostly focus on the optimality of the Whittle index (Whittle, 1988),
a generalization of the Gittins index. Whittle (1988) considers a model for optimizing
the allocation of effort among m out of n arms and describes how to use the Lagrangian
multiplier approach to assign indices to arms. He conjectures that allocating effort to
m arms with the highest indices is optimal as m and n go to infinity. Weber and Weiss
(1990) provide sufficient conditions for the conjecture to hold. Bertsimas and Niño-Mora

1Hörner and Skrzypacz (2016) surveys the strategic experimentation literature.
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(1996) and Niño-Mora (2001) also provide sufficient conditions for indexability. Gittins,
Glazebrook, and Weber (2011) gathers together different models of multi-armed bandits
and discusses optimality of allocation indices.

2.2 The Model
Players, actions, and states. There are I ≥ 1 players, each endowed with one unit of
perfectly divisible resource per unit of time. Time t ∈ [0,∞) is continuous, and the
horizon is infinite. At each time t, players choose how to split their resource between
two arms: a safe arm S and a risky arm R. Specifically, player i chooses which fraction
xi,t ∈ [0, 1] to allocate to R in the interval [t, t + dt). She then allocates 1− xi,t to S. I say
that player i experiments if xi,t > 0, where i = 1, . . . , I .

At time t, the state of the risky arm is ωt ∈ {0, 1}. The arm is said to be good if
ωt = 1, and it is bad otherwise. The initial state ω0 is exogenously specified. The state
is restless: it changes, or “reboots,” over time. The state reboot is modeled as follows:
First, independently of the current state and actions taken by players, times at which the
state may change are determined by a Poisson process with intensity φ > 0. These are
referred to as the reboot times. Second, if such a time arrives, the arm is good in the next
instant with probability π ∈ [0, 1], referred to as the post-reboot probability. Formally,
the state ωt reboots in the interval [t, t+ dt) with probability φdt, and then ωt+dt = 1 with
probability π:2,3

ωt+dt = 1 ωt+dt = 0
ωt = 1 1− (1− π)φdt (1− π)φdt
ωt = 0 πφdt 1− πφdt

I say that the state is absorbing after the reboot if π is equal to 0 or 1.

Information. Actions are publicly observable. In contrast, players observe neither the
initial state ω0 nor the reboot times. Instead, they learn about the current state through
public news. Given the state ωt and the aggregate resource allocation Xt :=

∑I
i=1 xi,t to

R at time t, news is generated according to a Poisson process with intensity λωtXt, where
λω ≥ 0. I say that learning is via good news if λ := λ1 > λ0 = 0, and it is via bad news if
λ := λ0 > λ1 = 0. Without loss of generality, λ can be normalized to 1.

Payoffs. The safe arm yields a constant flow payoff normalized to 0. In the good news
case, the risky arm has a flow payoff −b. If player i allocates xi,t > 0 to R at time t,

2The state follows a Markov chain. In discrete time with period length 1, the transition matrix takes
the following form:

ωt+1 = 1 ωt+1 = 0
ωt = 1 p11 1− p11

ωt = 0 1− p00 p00

Here, p11 := 1 − (1 − π)φ (resp., p00 := 1 − πφ) is the probability that, if the state is 1 (resp., 0) in period
t, it will be 1 (resp., 0) in the next period t+ 1 as well. The reboot rate φ and the post-reboot probability π
pin down the probabilities p11 and p00.

3Keller, Rady, and Cripps (2005) and Keller and Rady (2015a) are special cases with φ = 0.
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the risky arm also yields a lump-sum g + b at Poisson times with intensity xi,t only if
the current state ωt is 1. In the bad news case, the risky arm has a flow payoff g. If
player i allocates xi,t > 0 to R, the risky arm also yields a lump-sum −(g + b) at Poisson
times with intensity xi,t only if ωt = 0. Normalization of payoffs is without loss and for
notational convenience. In both good news and bad news cases, if player i allocates the
whole resource to R at time t, that is, if xi,t = 1, the expected flow payoff in the interval
[t, t + dt) is g if ωt = 1 and −b if ωt = 0. Parameters are such that g > 0 > −b. Players
prefer the good risky arm over the safe one, but the safe arm over the bad risky one.

Conditional on the state, arrival of lump-sums is independent across players. These
lump-sums are interpreted as news received by players.

Players are risk-neutral and discount future at (common) rate r > 0. Given player i’s
actions {xi,t}t≥0 and the numberNi,t of lump-sums she receives up to time t, her realized
payoff in the good news case is∫ ∞

0

re−rt(−bxi,tdt+ (g + b)dNi,t).

Player i’s realized payoff in the bad news case is∫ ∞
0

re−rt(gxi,tdt− (g + b)dNi,t).

It is a game of informational externalities, there is no payoff externality. There is no com-
mon interest, in the sense that each player would like others to experiment on her behalf,
not to bear the cost herself.

Belief dynamics, strategies, and equilibrium. Players have a (common) prior belief
p0 ∈ [0, 1] that the initial state ω0 is 1. As they share the same information, it is natural to
assume they have a (common) belief pt that ωt = 1 at any time t.

I assume that players’ actions depend on time t and public history only via the left-
sided limit of the belief pt− = limε→0 pt−ε. That is, I consider Markov strategies. A pure
Markov strategy of player i is a measurable function xi: [0, 1] → [0, 1] such that xi,t =
xi(pt−) for each i = 1, . . . , I . To analyze the belief trajectory, suppose each xi is continuous
at p ∈ [0, 1] and define a function X: [0, 1]→ [0, I] by X(p) :=

∑I
i=1 xi(p).

If there is no news in the interval [t, t+ dt), it follows from Bayes’ rule that

pt+dt = φdt · π + (1− φdt) · pt(1−λ1X(pt)dt)
pt(1−λ1X(pt)dt)+(1−pt)(1−λ0X(pt)dt)

+ o(dt).

The term φdt · π reflects the possibility that the state reboots in [t, t + dt) and ωt+dt = 1
with probability π. The second term reflects players learning about the state if no news
arrives in [t, t + dt). Taking dt → 0, the ordinary differential equation that governs the
belief is as follows:

ṗt = φ(π − pt)− (λ1 − λ0)X(pt)pt(1− pt). (2.1)
The second term is standard for experimentation with the rested, or unchanging, state.
It captures that, in absence of news, players become more pessimistic about the state if
learning is via good news, 1 = λ1 > λ0 = 0, and they become more optimistic if learning
is via bad news, 1 = λ0 > λ1 = 0. The term φ(π − pt) captures restlessness of the state.
Even if players do not experiment at time t, that is, even if X(pt) = 0, and unless pt = π,
the belief is not stationary and drifts toward π.
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Let f denote drift in the belief, that is,

f(p) := φ(π − p)− (λ1 − λ0)X(p)p(1− p).

To ensure that ṗ = f(p) has a unique solution, I impose some regularity conditions on
player i’s strategy xi, similar to Klein and Rady (2011). Specifically, xi is admissible at
p∗ ∈ [0, 1] if one of the following three conditions for xi (and so for X and f) is satisfied:

(i) f(p∗) = 0,
(ii) f(p∗) > 0 and xi (and so X and f) is right-continuous at p∗, or
(iii) f(p∗) < 0 and xi (and so X and f) is left-continuous at p∗.
The action xi is called admissible if there is a finite number n of beliefs p∗j , where j =
1, . . . , n, with 0 ≤ p∗1 < · · · < p∗n ≤ 1 such that xi is Lipschitz continuous on each interval
[0, p∗1), . . . , (p∗j , p

∗
j+1), . . . , (p∗n−1, p

∗
n] and xi is admissible at each p∗j .

If news arrives at time t, the belief jumps from pt− to pt defined by Bayes’ rule as
follows:

pt = λ1pt−
λ1pt−+λ0(1−pt−)

.

In the good news case, the belief jumps to 1, and so players learn immediately that the
current state ωt is 1. Unless the post-reboot probability π is equal to 1, the belief does not
stay at 1, but drifts down according to (2.1) in the next instant. In the bad news case, the
belief jumps to 0 and players learn that ωt = 0. Unless π = 0, the belief does not stay at
0, but drifts up according to (2.1) in the next instant. In other words, because the state is
restless, the arrived news is conclusive, but only about the current state.

I look for symmetric Markov perfect equilibria in pure strategies. That is, in equilibrium,
players allocate the same fraction of their resource to the risky arm given the belief.

2.3 Learning with the Restless State

To understand how learning with a restless state affects the social optimum and equilib-
rium, it turns out to be enough to allow for one potential change of the state only. In other
words, the socially optimal and equilibrium behavior with π ∈ (0, 1) is qualitatively the
same as with π = 1 or π = 0. The argument is presented for the social planner’s problem
and is summarized by Lemmata 2.1 and 2.2. A similar reasoning applies for the strategic
problem.

2.3.1 Learning via Good News

Suppose π ∈ (0, 1) and learning is via good news, 1 = λ1 > λ0 = 0. The equation (2.1)
that governs evolution of the belief in absence of news takes the form:

ṗ = φ(π − p)−X(p)p(1− p). (2.2)

If players do not experiment at the belief p, that is, if X(p) = 0, then their belief still
evolves and drifts toward π according to

ṗ = φ(π − p). (2.3)
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f(p) < 0 for all X ∈ [0, I]

Figure 2.1. Dependence of the drift in the belief f(p) on the belief p and the aggregate allocation X if
learning is via good news. Parameters: (I,X, φ, π) = (2, 0.57, 0.75, 0.5).

If players allocate X(p) > 0 to R altogether, then their belief evolves according to (2.2),
which can be rewritten as follows:

ṗ = −X(p)(p− αX(p)) (βX(p) − p)︸ ︷︷ ︸
>0

, (2.4)

where αX and βX are defined in Appendix B.1.1 and are such that αX ∈ (0, π) and βX > 1
for all X ∈ (0, I], αX is decreasing with X , and limX→0 αX = π. It is convenient to define
α0 := π.

The belief αX is the stationary belief for the aggregate allocationX . This is the belief at
which two forces, described next, balance each other out. The first force makes players
more optimistic about the state ofRwhen their belief is below the post-reboot probability
π, because the state may reboot and then it is good with probability π. The second force
makes players more pessimistic in absence of news. The larger is the fractionX allocated
toR, the higher is the rate at which players expect news to arrive. If news does not arrive,
then players become more pessimistic about the state. Hence, the stationary belief is
lower for larger X .

The stationary belief αI and the post-reboot probability π divide the unit interval into
three regions (see Figure 2.1). The drift in the belief p depends on the aggregate alloca-
tion X differently across these regions, as immediately follows from (2.3) and (2.4). If
p < αI , then f(p) > 0 for all X ∈ [0, I]. If p > π, then f(p) < 0 for all X ∈ [0, I]. That
is, the drift is independent of players’ actions. No matter what players do, they become
more optimistic about the state of R in absence of news if p < αI and more pessimistic if
p > π. If p ∈ [αI , π], then f(p) > 0 if p < αX(p), f(p) < 0 if αX(p), and f(p) = 0 otherwise.
That is, the drift depends on players’ actions.

The socially optimal resource allocation has the bang-bang property, as stated in Sec-
tion 2.4 below and Appendix B.1.1. That is, it is optimal to allocated all resources to R
for beliefs above a certain cut-off p∗ and not to experiment for beliefs below p∗. Belief dy-
namics around the cut-off and so the socially optimal behavior depend on the position
of p∗ relative to αI and π. The behavior is qualitatively different for p∗ < αI , p∗ ∈ (αI , π),
and p∗ > π.

Lemma 2.1 (Socially Optimal Experimentation in the Good News Case).
(i) If p∗ < αI , there exists t∗ such that pt ∈ [αI , 1] and X∗(pt) = I for all t ≥ t∗, and

– if p0 < αI , then t∗ is the first time news arrives;
– if p0 > αI , then t∗ = 0.

(ii) If p∗ ∈ (αI , π), there exists t∗ such that pt ∈ [p∗, 1] and X∗(pt) ∈
{
φ(π−p∗)
p∗(1−p∗) , I

}
for all

t ≥ t∗, and
– if p0 < p∗, then t∗ is the time p∗ is reached;
– if p0 > p∗, then t∗ = 0.
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Figure 2.2. The drift in the belief f(p) as a function of the belief p given the aggregate resource al-
location X and with learning via good news. Thick curves in the left and middle panels (resp., in
the right panel) show the socially optimal allocation when π = 1 (resp., when π = 0). Parameters:
(I, φ, r, g, b) = (2, 0.5, 0.1, 1, b) with b = 0.25 (left), b = 4 (middle), and b = 1 (right).

(iii) If p∗ > π, there exists t∗ such that pt ∈ [0, π] or pt ∈ [π, p∗] and X∗(pt) = 0 for all t ≥ t∗,
and

– if p0 < p∗, then t∗ = 0;
– if p0 > p∗, then t∗ is the time p∗ is reached.

With p∗ < αI and independently of the prior, experimentation always starts, and all
resources are allocated to R from that point onward. With p∗ ∈ (αI , π), experimentation
also starts independently of the prior, but now only a fraction of resources is allocated
to R at p∗. If the state is good from the first reboot onward, that is, if π = 1, one of these
two cases arises. In contrast, with p∗ > π, experimentation never starts or ceases in finite
time. This is what is observed if the state is bad after the first reboot onward, that is, if
π = 0.

Suppose π = 1, that is, the state is absorbing and it is good after the reboot onward.
Given the aggregate allocation X to R, the stationary belief αX takes the simple form

αX := min
{
φ
X
, 1
}
.

If p∗ < αI , then f(p∗−) > 0 and f(p∗+) > 0, where f(p∗−) := limε→0 f(p∗ − ε) and f(p∗+) :=
limε→0 f(p∗ + ε) are the left and right limits of drift in the belief. This cut-off is referred
to as permeable.4 If p < p∗, then the belief drifts up toward p∗ due to the possible state
reboot and reaches it in finite time. If p > p∗, then p∗ is never reached. Because the state
may reboot and in absence of news, the belief drifts toward αI . It jumps to 1 and stays
there if news arrives. At p∗, admissibility requires

X(p∗) = X(p∗+) = I,

and so the belief drifts through p∗. It follow that the belief is eventually trapped in [αI , 1].
The left panel in Figure 2.2 illustrates this case.

If p∗ > αI , then f(p∗−) > 0 and f(p∗+) < 0. This cut-off is convergent. If p < p∗, then the
belief drifts up toward p∗ due to the possible state reboot and reaches it in finite time. If
p > p∗, then absence of news reverses the drift direction. The belief drifts down toward
p∗ and reaches it in finite time if no news arrives. If news does arrive, then the belief
jumps to 1 and stays there. The positive drift below p∗ eliminates f(p∗) < 0, while the

4I adopt terminology of Board and Meyer-ter-Vehn (2013). I say that cut-off p∗ ∈ (0, 1) is (i) permeable
if both f(p∗−) > 0 and f(p∗+) > 0, or both f(p∗−) < 0 and f(p∗+) < 0; (ii) convergent if f(p∗−) ≥ 0 ≥ f(p∗+),
with at most one equality; and (iii) divergent if f(p∗−) ≤ 0 ≤ f(p∗+), with at most one equality.
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negative drift above p∗ eliminates f(p∗) > 0. Therefore, admissibility implies f(p∗) = 0,
pinning down

X(p∗) = φ
p∗
.

That is, the belief drift vanishes at p∗. It follows that the belief stays in [p∗, 1]. This case is
illustrated in the middle panel in Figure 2.2.

Suppose π = 0, that is, the state is absorbing and is bad after the reboot. For any
X ∈ [0, I], the stationary belief is equal to 0. For any p∗ ∈ (0, 1), f(p∗−) < 0 and f(p∗+) < 0,
and so p∗ is permeable. If p < p∗, then p∗ is never reached. The belief drifts toward 0 due
to the possible state reboot. If p > p∗, then both the possibility of the reboot and absence
of news push the belief toward p∗. If no news arrives, then the belief reaches p∗ in finite
time. If news arrives, then the belief jumps to 1, whereupon it starts drifting back toward
p∗. At p∗, admissibility requires

X(p∗) = X(p∗−) = 0,

and so the belief drifts through p∗. The right panel in Figure 2.2 illustrates this case.

2.3.2 Learning via Bad News
Suppose π ∈ (0, 1) and learning is via bad news, 1 = λ0 > λ1 = 0. The equation (2.1)
that governs evolution of the belief in absence of news is as follows:

ṗ = φ(π − p) +X(p)p(1− p). (2.5)

If players do not experiment at p, that is, if X(p) = 0, then the belief drifts toward π
according to

ṗ = φ(π − p).

If players allocate X(p) > 0 to R altogether, then the belief evolves according to (2.5),
which can be rewritten as follows:

ṗ = −X(p)(p− αX(p)) (p− βX(p))︸ ︷︷ ︸
>0

, (2.6)

where αX and βX are defined in Appendix B.1.2 and are such that αX ∈ (π, 1) and βX < 0
for all X ∈ (0, I], αX is increasing with X , and limX→0 αX = π. Define α0 := π.

The belief αX is the stationary belief when fractionX is allocated toR. This is the belief
at which two forces, described next, balance each other out. The first force makes players
more pessimistic about the state of R, because the state may reboot and then it becomes
good with only probability π. The second force makes players more optimistic in absence
of news. The larger is the fraction X allocated to R, the higher is the rate players expect
news to arrive. If news does not arrive, then players become more optimistic that the
state is good. Hence, the stationary belief is higher for larger X .

The post-reboot probability π and the stationary belief αI divide the unit interval into
three regions (see Figure 2.3). The drift in the belief depends on X differently across
these regions. If p < π, then f(p) > 0 for all X ∈ [0, I]. If p > αI , then f(p) < 0
for all X ∈ [0, I]. That is, the drift is independent of players’ actions. Whether players
experiment or not, they become more optimistic if p < π and more pessimistic if p > αI .
If p ∈ [π, αI ], then f(p) > 0 if p < αX(p), f(p) < 0 if p > αX(p), and f(p) = 0 otherwise.
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Figure 2.3. Dependence of the drift in the belief f(p) on the belief p and the aggregate allocation X if
learning is via bad news. Parameters: (I,X, φ, π) = (2, 0.57, 0.75, 0.5).

That is, the drift depends on players actions.
As in the good news case, the socially optimal resource allocation has the bang-bang

property; see Section 2.5 below and Appendix B.1.2. Let p∗ be the socially optimal cut-
off. Belief dynamics around the cut-off and so the socially optimal behavior depend on
the position of p∗ relative to π and αI . This behavior is qualitatively different for p∗ < π,
p∗ ∈ (π, αI), and p∗ > αI .

Lemma 2.2 (Socially Optimal Experimentation in the Bad News Case).
(i) If p∗ < π, there exist t∗1 < t∗∗1 < t∗2 < t∗∗2 < t∗3 < t∗∗3 < . . . such that pt ∈ [p∗, αI ] or

pt ∈ [αI , 1] for all t ∈ [t∗1, t
∗∗
1 ], pt ∈ [p∗, αI ] for all t ∈ [t∗n, t

∗∗
n ], n = 2, 3, . . ., X∗(pt) = I

for all t ∈ [t∗n, t
∗∗
n ] and X∗(pt) = 0 for all t ∈ (t∗∗n , t

∗
n+1), n = 1, 2, 3, . . ., and

– if p0 < p∗, then t∗1 = 0;
– if p0 > p∗, then t∗1 is the first time p∗ is reached;
– t∗∗n is the first time news arrives after t∗n;
– t∗n+1 is the first time p∗ is reached after t∗∗n .

(ii) If p∗ ∈ (π, αI), there exists t∗ such that pt ∈ [0, π] or pt ∈ [π, p∗] and X∗(pt) = 0 for all
t ≥ t∗, and

– if p0 < p∗, then t∗ = 0;
– if p0 > p∗, then t∗ is the first time news arrives.

(iii) If p∗ > αI , there exists t∗ such that pt ∈ [0, π] or pt ∈ [π, p∗] and X∗(pt) = 0 for all t ≥ t∗,
and

– if p0 < p∗, then t∗ = 0;
– if p0 > p∗, then t∗ is the first time news arrives or the time p∗ is reached.

With p∗ < π and independently of the prior, experimentation always start and, upon
arrival of news, it ceases only for a while. This behavior is observed if the state is good
after the first reboot, that is, if π = 1. In contrast, with p∗ ∈ (π, αI), experimentation
never starts or ceases as soon as first news arrives. With p∗ > αI , experimentation also
never starts or ceases in finite time. If the state is bad after the first reboot onward, that
is, if π = 0, then one of these two cases arises.

Suppose π = 1. For any X ∈ [0, I], the stationary belief is equal to 1. For any p∗ ∈
(0, 1), f(p∗−) > 0 and f(p∗+) > 0, and so p∗ is permeable. If p < p∗, then the belief drifts
up toward p∗ due to the possible state reboot and reaches it in finite time. If p > p∗,
then both the possibility of the reboot and absence of news push the belief toward 1. If
news arrives, then the belief jumps to 0, whereupon it start drifting toward p∗. At p∗,
admissibility requires

X(p∗) = X(p∗+) = I,

and so the belief drifts through p∗. This case is illustrated in the left panel in Figure 2.4.
Suppose π = 0. Given X , the stationary belief αX takes the simple form

αX := max
{

1− φ
X
, 0
}
.
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Figure 2.4. The drift in the belief f(p) as a function of the belief p given the aggregate resource allocationX
and with learning via bad news. Thick curves in the left panel (resp., in the middle and right panels) show
the socially optimal allocation when π = 1 (resp., when π = 0). Parameters: (I, φ, r, g, b) = (2, 0.5, 0.1, 1, b)
with b = 2 (left), b = 0.7 (middle), and b = 4 (right).

If p∗ < αI , then f(p∗−) < 0 and f(p∗+) > 0. This cut-off is referred to as divergent. If p < p∗,
then p∗ is never reached. The belief drifts toward 0 due to the possible state reboot. If
p > p∗, then the belief does not reach p∗ either. In absence of news, the belief drifts to αI .
If news arrives, then the belief jumps to 0 and stays there. At p∗, multiple values ofX(p∗)
are admitted by admissibility. Specifically, it requires

X(p∗) ∈
{

0, φ
1−p∗ , I

}
.

If X(p∗) = 0 or X(p∗) = I , then the belief drifts from p∗ to the region with no or full ex-
perimentation, respectively. If X(p∗) = φ

1−p∗ , then belief drift vanishes at p∗. The middle
panel in Figure 2.4 illustrates this case with X(p∗) = φ

1−p∗ .

If p∗ > αI , then f(p∗−) < 0 and f(p∗+) < 0. This cut-off is permeable. If p < p∗, then p∗
is never reached. The belief drifts toward 0 because of the possible state reboot. If p > p∗,
then belief drift stays negative even in absence of news. The belief drifts toward p∗ and
reaches it in finite time if no news arrives. The belief jumps to 0 and stays there upon the
arrival of news. At p∗, admissibility requires

X(p∗) = X(p∗−) = 0,

and so the belief drifts through p∗. This case is illustrated in the right panel in Figure 2.4.

2.4 Good News

Surprisingly, because players are forward-looking and learn from others’ experimenta-
tion, I find that behaving myopically can be socially optimal when the state is restless.
Furthermore, the symmetric equilibrium can be efficient. Whenever the myopic behav-
ior is socially optimal, the equilibrium is myopic, and hence it is efficient. With learning
via good news, the equilibrium is efficient only if it is myopic. However, with learning
via bad news and as discussed in Section 2.5, the equilibrium does not have to be myopic
for it to be efficient.
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Figure 2.5. Heuristic explanation of social optimality of the myopic behavior if learning is via good news.
The function vp∗(p) is the average value function when the cut-off p∗ is used, where p∗ = pM − ε (left),
p∗ = pM + ε (middle), and p∗ = pM (right). Parameters: (I, φ, r, g, b, ε) = (2, 0.6, 3, 1, 0.25, 0.075).

2.4.1 Social Planner’s Problem
The myopic cut-off is a belief at which a myopic player, the one who cares about the
immediate payoff only, would stop experimenting. This is the belief pM at which the
expected payoff of R is equal to the flow payoff of S, that is, pMg− (1− pM)b = 0, and so

pM = b
g+b

.

The socially optimal behavior has the bang-bang property, which captures the trade-
off between exploration and exploitation. Let p∗ denote the socially optimal cut-off. It is
optimal not to experiment for beliefs below p∗ and to allocate all resources toR for beliefs
above p∗. Proposition 2.1 below describes the socially optimal behavior with π = 1. In
particular, it states the first interesting result which restlessness brings: it can be optimal
to forgo exploration and behave myopically. That is to say, there is a range of parameters
for which p∗ = pM .

Proposition 2.1 (Social Optimal in the Good News Case with π = 1). The optimal strategy
of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗ and
X∗(p) = 0 for p < p∗, where p∗ and X∗(p∗) are as follows:

(i) if pM < φ
I
, then p∗ = pM and X∗(p∗) = I ;

(ii) if φ
I
< pM , then p∗ < pM and X∗(p∗) = φ

p∗
.

The myopic behavior is socially optimal when learning is relatively slow compared
to how fast the state reboots. This is the case when the reboot rate φ is high or there are
few players I to learn from, and so φ

I
> pM . Note that optimality of the myopic behavior

is independent of the discount rate r and hence of players’ patience.
To understand the result heuristically, consider varying p∗ and its effect on players’

average value function vp∗(p) (see Figure 2.5). Recall that the stationary belief for the
aggregate allocation I is αI := min

{
φ
I
, 1
}

. The value function vp∗(p) is linear for p > p∗

whenever p∗ < φ
I
. If players experiment for all beliefs, that is, if p∗ = 0, then the value

function is v0(p), the dashed line in Figure 2.5. Because players’ belief drifts up no matter
what they do for p < φ

I
, the value function v0(p) is a continuation value for starting

experimentation at p. Hence, its slope captures the marginal benefit of waiting at a given
belief.

Suppose p∗ = pM − ε for some small ε > 0. The value function vpM−ε(p) is given
by the thick curve in the left panel in Figure 2.5. The kink at pM − ε captures that the
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marginal benefit of starting experimentation at pM − ε is still below the marginal benefit
of waiting. Therefore, if players waited for their belief to increase and allocate resources
to S for beliefs slightly above pM − ε, then the average value function would increase.
Suppose p∗ = pM +ε. The value function vpM+ε(p) is shown in the middle panel in Figure
2.5. Players would be better off if they allocated resources to R for beliefs slightly below
pM + ε. At p∗ = pM , the marginal benefit of waiting is equal to the marginal benefit of
starting experimentation, as the right panel in Figure 2.5 shows. Therefore, it is optimal
to experiment if and only if the belief is above the myopic cut-off.

When the state reboots slowly, that is, when the reboot rate φ is low, or when there
are quite a few players I to learn from, learning is relatively fast. In such a case, there is
an option value to experiment, in the sense that p∗ < pM . The optimal cut-off is given by

p∗ = −b(φ−r)+
√

∆
2[br+g(I+r)]

, (2.7)

where
∆ := b2(φ− r)2 + 4bφ[br + g(I + r)].

Because learning is faster with more players, it is socially optimal to experiment for a
larger range of beliefs. In contrast, a higher reboot rate makes learning optimal for a
smaller range of beliefs. Corollaries 2.1 and 2.2 follow.

Corollary 2.1 (Number of Players). If φ
I
< pM , then the socially optimal cut-off p∗ decreases

in the number of players I .

Corollary 2.2 (Reboot Rate). If φ
I
< pM , then the socially optimal cut-off p∗ increases in the

reboot rate φ.

Proposition 2.2 below describes the socially optimal behavior with π = 0. There is
always an option value to experiment.

Proposition 2.2 (Social Optimal in the Good News Case with π = 0). The optimal strategy
of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗ and
X∗(p) = 0 for p < p∗, where p∗ < pM and X∗(p∗) = 0.

If the state is bad after the first reboot onward, then the only chance players get to
benefit from the good arm is when the initial state is good. That is why, p∗ < pM . The
socially optimal cut-off p∗ is defined implicitly by (B.2) in Appendix B.2.1.

2.4.2 Strategic Problem
The symmetric equilibrium either has the bang-bang property or is characterized by two
cut-offs p and p̄ such that p < p̄. With two cut-offs, neither player experiments for beliefs
below p, each players allocates the whole resource to R for beliefs above p̄ and gradually
increases the fraction allocated R for beliefs in between.

Proposition 2.3 below states that the symmetric equilibrium exists and is unique when
π = 1. The second interesting result which restlessness bring from Proposition 2.3: the
symmetric equilibrium can be efficient. That is, there is a range of parameters for which
the equilibrium is bang-bang and the cut-off players use coincides with the socially op-
timal cut-off p∗.
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Figure 2.6. The drift in the belief f(p) as a function of the belief p given the aggregate resource allocationX
and with learning via good news. Thick curve in the left panel (resp., in the right panel) shows the equilib-
rium allocation when π = 1 and α1 < pM (resp., when π = 0). Parameters: (I, φ, r, g, b) = (2, 0.5, 0.1, 1, b)
with b = 4 (left) and b = 1 (right).

Proposition 2.3 (Symmetric Equilibrium in the Good News Case with π = 1). There exists
the (essentially) unique equilibrium such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p,
where p, p̄, and xe(p) for p ∈ [p, p̄] are as follows:

(i) if pM < φ
I
, then p = p̄ = pM and xe(p̄) = 1;

(ii) if φ
I
< pM < φ, then p = p̄ = pM and xe(p̄) = φ

Ip̄
;

(iii) if φ < pM , then p < p̄ < pM and xe(p) increases in p.

Players behave myopically when the reboot rate φ is high, that is, when pM < φ. Note
that players disregard how many of them are present and behave myopically whenever
they would do so if they were alone. Indeed, Proposition 2.1 implies that the socially
optimal cut-off with I = 1, and so the single player’s cut-off, is p∗ = pM when pM < φ.
Recall that the stationary belief for the aggregate allocation 1 is α1 := min{φ, 1}. It also
follows from Proposition 2.1 that myopic behavior is optimal when pM < φ

I
. Corollary

2.3 follows.

Corollary 2.3 (Efficiency). If pM < φ
I
, then the symmetric equilibrium is efficient.

When the state reboots slowly, the equilibrium is characterized by two cut-offs p and
p̄. The lower cut-off is given by

p = −b(φ−r)+
√

∆
2[br+g(1+r)]

, (2.8)

where
∆ := b2(φ− r)2 + 4bφ[br + g(1 + r)],

while the upper cut-off p̄ is defined implicitly by (B.18) in Appendix B.2.2. The fraction
of the resource each player allocates to R for beliefs in (p, p̄) is xe(p) given by (B.19) in
Appendix B.2.2 and gradually increases from 0 to 1. The equilibrium resource allocation
and the corresponding drift in the belief are shown in the left panel in Figure 2.6.

With the low reboot rate φ, there is an option value to experiment, in the sense that
p̄ < pM . However, players experiment too little. Let p∗I denote the socially optimal cut-off
with I players, defined by (2.7). Comparing p defined by (2.8) with p∗1 gives p = p∗1.
Because the socially optimal cut-off p∗I is decreasing with I by Corollary 2.1, players not
only allocate only a fraction of their resource toRwhen it is optimal to allocate the whole
resource, but also do not experiment for beliefs in (p∗I , p

∗
1). Corollary 2.4 follows.

Corollary 2.4 (Free-Riding). If φ
I
< pM , then p = p∗1 > p∗I .
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Whenever exists, the symmetric equilibrium with π = 1 takes the form described in
Proposition 2.4 below. I observe existence of the equilibrium numerically, but it is left to
show this analytically.

Proposition 2.4 (Symmetric Equilibrium in the Good News Case with π = 0). The equi-
librium is such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p, where p < p̄ and xe(p) increases
in p for p ∈ [p, p̄].

The equilibrium is always characterized by two cut-offs p and p̄, which are implicitly
defined by (B.22) and (B.23). The fraction of the resource each player allocates to R for
beliefs in (p, p̄) is xe(p) given by (B.24) in Appendix B.2.2 and gradually increases from
0 to 1. The right panel in Figure 2.6 depicts this case.

2.5 Bad News
With learning via bad news, behaving myopically can also be socially optimal because
of the restless state. Furthermore, the symmetric equilibrium can be efficient not only
when it is myopic.

2.5.1 Social Planner’s Problem
The socially optimal resource allocation is bang-bang. Proposition 2.5 below character-
ized the socially optimal behavior with π = 0. In particular, similar to the good news
case, behaving myopically is optimal when learning is relatively slow compared to how
fast the state reboots, and this is independent of players’ patience.

Proposition 2.5 (Social Optimal in the Bad News Case with π = 0). The optimal strategy
of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗ and
X∗(p) = 0 for p < p∗, where p∗ and X(p∗) are as follows:

(i) if pM > 1− φ
I
, then p∗ = pM and X∗(p∗) = 0;

(ii) if 1− φ
I
> pM , then p∗ < pM and X∗(p∗) ∈

{
0, φ

1−p∗ , I
}

.

To understand the optimality of the myopic behavior heuristically, consider varying
p∗ and its effect on players’ average value function vp∗(p) (see Figure 2.7). Recall that the
stationary belief for the aggregate allocation I is αI := max{1 − φ

I
, 0}, and so players’

belief drifts down no matter what they do for p > 1− φ
I
. Furthermore, if players stop ex-

perimenting at any such belief, their belief continues drifting down and experimentation
never resumes. Because the continuation value at p∗ is equal to 0 and so is the marginal
benefit of stopping, the slope of vp∗(p∗+) captures the marginal benefit of experimenting
at p∗.

Suppose p∗ = pM − ε for some small ε > 0. The value function vpM−ε(p) is given by
the thick curve in the left panel in Figure 2.7. The slope vpM−ε(p∗+) is negative. Therefore,
players would be better off if they stopped experimenting for beliefs slightly above pM−ε.
Suppose p∗ = pM + ε. The value function vpM+ε(p) is the thick curve in the middle panel
in Figure 2.7. The kink at pM + ε captures that the marginal benefit of experimenting at
pM + ε is above the marginal benefit of stopping. Therefore, if players experimented for
beliefs slightly below pM + ε, the average value function would increase. At p∗ = pM ,
the marginal benefit of experimenting is equal to the marginal benefit of stopping, as the
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Figure 2.7. Heuristic explanation of social optimality of the myopic behavior if learning is via bad news.
The function vp∗(p) is the average value function when the cut-off p∗ is used, where p∗ = pM − ε (left),
p∗ = pM + ε (middle), and p∗ = pM (right). Parameters: (I, φ, r, g, b, ε) = (2, 0.6, 1, 1, 4, 0.075).

right panel in Figure 2.7 shows. Therefore, it is optimal to experiment if and only if the
belief is above the myopic cut-off.

When the reboot rate φ is low or there are quite a few players I to learn from, there is
an option value to experiment, in the sense that p∗ < pM . The optimal cut-off is given by

p∗ = b(r+φ)
br+g(I+r)

. (2.9)

It is socially optimal to experiment for a larger range of beliefs when more players are
present, and so learning is faster, or when players are more patient. In contrast, a higher
reboot rate makes learning optimal for a smaller range of beliefs. Corollaries 2.5 to 2.7
follow.

Corollary 2.5 (Number of Players). If 1−φ
I
> pM , then the socially optimal cut-off p∗ decreases

in the number of players I .

Corollary 2.6 (Reboot Rate). If 1 − φ
I
> pM , then the socially optimal cut-off p∗ increases in

the reboot rate φ.

Corollary 2.7 (Patience of Players). If 1− φ
I
> pM , then the socially optimal cut-off p∗ increases

in the discount rate r.

Proposition 2.6 below describes the socially optimal cut-off with π = 1. There is
always an option to experiment.

Proposition 2.6 (Social Optimal in the Bad News Case with π = 1). The optimal strategy
of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗ and
X∗(p) = 0 for p < p∗, where p∗ < pM and X(p∗) = I .

If the state is good after the first reboot onward, it pays off start experimentation even
after arrival of news. Therefore, p∗ < pM . The socially optimal cut-off p∗ is defined
implicitly by (B.10) in Appendix B.2.1.

2.5.2 Strategic Problem
The symmetric equilibrium either has the bang-bang property or is characterized by two
cut-offs p and p̄ such that p < p̄. Proposition 2.7 below states existence and uniqueness
of the symmetric equilibrium and describes this equilibrium. Similar to the good news
case, the symmetric equilibrium can be efficient, but now it does not have to be myopic.
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Figure 2.8. The drift in the belief f(p) as a function of the belief p given the aggregate resource allocation
X and with learning via bad news. Thick curves in the left panel (resp., in the right panel) show the
equilibrium allocation with xe(p) = φ

I(1−p̄) when π = 0 and (I−1−φ)(I+r)
(I−1)(I+r)−φ > pM (resp., when π = 1).

Parameters: (I, φ, r, g, b) = (2, 0.5, 0.1, 1, b) with b = 0.7 (left) and b = 2 (right).

Proposition 2.7 (Symmetric Equilibrium in the Bad News Case with π = 0). There exists
the (essentially) unique equilibrium such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p,
where p, p̄, and xe(p) for p ∈ [p, p̄] are as follows:

(i) if pM > 1− φ
I
, then p = p̄ = pM and xe(p̄) = 0;

(ii) if 1− φ
I
> pM > (I−1−φ)(I+r)

(I−1)(I+r)−φ , then p = p̄ < pM and xe(p) ∈
{

0, φ
I(1−p) ,

φ
(I−1)(1−p)

}
;

(iii) if (I−1−φ)(I+r)
(I−1)(I+r)−φ > pM , then p < p̄ < pM and xe(p) increases in p.

Players behave myopically when it is socially optimal to do so according to Proposi-
tion 2.5, that is, when learning is relatively slow. The equilibrium is also efficient when
it is not myopic. Indeed, if 1− φ

I
> pM > (I−1−φ)(I+r)

(I−1)(I+r)−φ , then

p = p̄ = b(φ+r)
br+g(I+r)

,

which is equal to the socially optimal cut-off p∗ given by (2.9). It follows that p = p̄ ∈(
1− φ

I−1
, 1− φ

I

)
. Recall that the stationary beliefs for the aggregate allocations I − 1 and

I are αI−1 := max
{

1− φ
I−1

, 0
}

and αI := max
{

1− φ
I
, 0
}

. Efficiency is observed, because
experimentation by the I-th player is crucial, in the sense that it reverts the drift in the
belief. If there were I − 1 players, then they would become more pessimistic over time
no matter what they did. If all I players experiment for beliefs in

(
1− φ

I−1
, 1− φ

I

)
, then

they become more optimistic in absence of news. Corollary 2.8 follows.

Corollary 2.8 (Efficiency). If pM > (I−1−φ)(I+r)
(I−1)(I+r)−φ , then the symmetric equilibrium is efficient.

Otherwise, the equilibrium is characterized by two cut-offs p and p̄. The upper cut-off
is given by

p̄ = b(I+r−1)
(g+b)(I+r)−b , (2.10)

while the lower cut-off p is defined implicitly by (B.31) in Appendix B.2.2. In this case,
there is always an option value to experiment, in the sense that p̄ < pM . The fraction
of the resource each player allocates to R for beliefs in (p, p̄) is xe(p) given by (B.32) in
Appendix B.2.2 and gradually increases from φ

(I−1)(1−p) to 1. The equilibrium resource
allocation with xe(p) = φ

I(1−p̄) and the corresponding drift in the belief are presented in
the left panel in Figure 2.8.
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Whenever exists, the symmetric equilibrium with π = 1 takes the form characterized
in Proposition 2.8 below. I observe existence of the equilibrium numerically, but it is left
to show this analytically.

Proposition 2.8 (Symmetric Equilibrium in the Bad News Case with π = 1). The equilib-
rium is such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p, where p < p̄ and xe(p) increases
in p for p ∈ [p, p̄].

The equilibrium is always characterized by two cut-offs p and p̄, which are implicitly
defined by (B.35) and (B.36). The fraction of the resource each player allocates to R for
beliefs in (p, p̄) is xe(p) given by (B.37) in Appendix B.2.2 and gradually increases from
0 to 1. The right panel in Figure 2.8 shows this case.

2.6 Conclusion
A natural variation is to allow news to arrive continuously but with some noise, that is,
according to a Brownian process. I have not solved this variant of the model, though
I suspect that similar results would arise. Specifically, if the state is restless, then the
change in the belief will not be distributed normally with zero mean, as is the case in
Bolton and Harris (1999). If the drift is large, then, independently of players’ actions and
depending on the drift sign, players will become either more optimistic or pessimistic
about the state. As a result, myopic behavior can be socially optimal.





Chapter 3

Gizmos

3.1 Introduction
Consider a recently graduated PhD student who landed at the top university or got a
nice job at the private sector. Should she buy Google Pixie with its advanced camera now
that she can afford it? It may turn out though that there is no time to discover a latent
photographer, and so Nexus 5X is good enough. Alternatively, think about a middle age
researcher who realizes that she should live a more active lifestyle. Suppose the choice
fell on mountain biking. Should she buy an advanced bike like Giant Trance Advanced
right away or start with a basic version of Giant Stance? If she is a quick learner and an
adventurer at heart, then having the advanced bike seems to be the right decision. In
contrast, if she does not venture into the difficult slopes, then the basic version may be a
more reasonable choice.

In turn, what is the optimal pricing strategy for the producer of smartphones or
mountain bikes? Is it always a good idea to sell both versions of the product? If so, should
the price of the advanced version be low enough to tempt unsure buyers? The phone
producers appear to post prices which are high, but reasonably so. No high-ranked em-
ployee at the private sector would think twice about buying the advanced phone on a
whim. In contrast, the sky seems to be the limit for bike prices, which may make a buyer
ponder about getting the advanced version. It is also not a secret that phones’ batteries
die relatively fast and that bikes require a lot of maintenance. The question which arises
is whether the producer resorts to planned obsolescence and, if so, why?

In this chapter, I analyze the optimal behavior of buyers who enter the market unsure
about their own needs and the optimal pricing strategy of a monopolist seller who faces
these buyers. I develop a model in which the seller offers advanced and basic versions
of a product, or a gizmo, to a population of buyers and posts prices she wants to charge
for each version. When a buyer enters the market, he is not sure whether he values the
advanced features the advanced version provides. The buyer learns about his needs as
he experiences either version of the gizmo. The gizmos break, and so the buyer may have
to choose again which version to buy given the acquired experience.

Given the prices of the advanced and basic versions, the optimal strategy for a buyer
takes the simple form of a cut-off. That is, a buyer without the gizmo buys the advanced
version if his belief about needing the advanced features is above the cut-off, and he buys
the basic version otherwise. The seller finds it optimal to offer both versions of the gizmo.
The optimal prices are such that a buyer buys a new gizmo if and only if the one he has
breaks. If the buyer has learned whether he values the advanced features by the time his
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gizmo breaks, then he may choose to buy a different version, which can be an upgrade
or a downgrade over the old one. Depending on parameters, it can be only those who
have learned that they value the advanced features who buy the advanced version.

If the seller were to choose the breakdown rate of the gizmos as well as the prices,
then she would plan obsolescence. The seller neither wants the gizmos to break imme-
diately nor wants them to be a durable good. The optimal breakdown rate captures the
trade-off faced by the seller. On the one hand, because buyers with the basic version who
have learned that they need the advanced features upgrade their gizmo to the advanced
version only upon a breakdown, a higher breakdown rate increases buyers’ surplus, for
they get the preferred version faster. As a result, the higher breakdown rate also in-
creases the seller’s profit. On the other hand, the cut-off used by buyers increases with
the breakdown rate, and so fewer buyers go for the advanced version. Therefore, the
seller extracts less surplus from those who would value the advanced features.

Related literature. This chapter contributes to several strands of literature: experience
goods, planned obsolescence, and learning. In the experience goods literature, the clos-
est paper is Bergemann and Välimäki (2006). Bergemann and Välimäki (2006) considers
a monopoly pricing model, in which buyers are uncertain about their valuations when
the product is introduced. There is only one version of the product and the product
is a durable good. As buyers experience with the product, they learn their valuation
stochastically via perfectly revealing signals. Bergemann and Välimäki (2006) looks for
the optimal dynamic pricing pattern and argues that all markets can be split into niche
markets and mass markets, in which the optimal price patterns are qualitatively differ-
ent. The monopolist finds it optimal to use penetration pricing in the niche markets and
skimming pricing in the mass markets.

Bonatti (2011) also analyzes a dynamic model of monopoly pricing, in which the
monopolist offers a menu of contracts to a population of buyers. Buyers privately know
about their willingness to pay for the product, but are uncertain about its quality. Infor-
mation about the product quality is generated through experimentation with the prod-
uct and is increasing with the total quantity sold. The monopolist is interested in both
generating information and screening buyers. Bonatti (2011) shows that the monopolist
finds it optimal to increase the sales and lower marginal prices compared to the myopic
benchmark. Learning of the product quality is similar to learning of the demand curve
in Keller and Rady (1999).1

Bulow (1986) studies planned obsolescence and argues that, by making the product
less durable, the monopolist can alleviate the commitment problem put forward in Coase
(1972).2 Bulow (1986) uses durability as a proxy for obsolescence, but points out that the
matter of obsolescence is often about introduction of a new product and compatibility of
the new product with its older versions. Waldman (1993) and Choi (1994) analize the
monopolist’s incentives to introduce new versions of the product that are incompatible
with the old versions. Waldman (1996) considers the monopolist who makes the old
versions obsolete by investing in R&D and thus introducing products of superior quality.
Pesendorfer (1995) develops a model of fashion cycles. See also Fudenberg and Tirole
(1998), Lee and Lee (1998), and Ellison and Fudenberg (2000). Fishman and Rob (2000)
considers both technological and physical obsolescence and shows that the monopolist,

1Keller and Rady (2003) considers a duopoly that faces the changing demand curve.
2For formal proofs of the Coase conjecture, see Stokey (1981), Gul, Sonnenschein, and Wilson (1986),

and Ausubel and Deneckere (1989).



3.2. The Model 39

who can shorten the product’s life, introduces technologically advanced versions at the
socially optimal pace.

Deneckere and Liang (2008) considers a monopolist who sells a durable good that
depreciates stochastically over time. Deneckere and Liang (2008) characterizes a com-
plete set of stationary equilibria and finds that, if the durability is sufficiently low, then
the monopoly equilibrium is the unique equilibrium. That is, through planned obsoles-
cence, the monopolist overcomes the commitment problem introduced in Coase (1972)
and does not lose any monopoly power. The following papers suggest other ways to
mitigate the commitment problem. Kühn and Padilla (1996) shows that the Coase con-
jecture fails if the monopolist sells both durable and non-durable goods. Hahn (2006)
argues that it does not hold either if the monopolist introduces a damaged good.3 Board
and Pycia (2014) shows that the conjecture fails if buyers can exercise an outside option.
Nava and Schiraldi (2018) argues that these examples are not failures of classical insights
on Coasian dynamics, but rather the conjecture itself must be revisited. Nava and Schi-
raldi (2018) considers a monopolist who sells different varieties of a durable good and
establishes a revisited Coase conjecture. The conjecture states that the force behind any
Coasian equilibrium is market clearing rather than competition or efficiency.

I consider the exponential learning structure via conclusive news, introduced in the
strategic setting by Keller, Rady, and Cripps (2005) and Keller and Rady (2015a). (See
also Bolton and Harris (1999) in the Brownian context.) As buyers experiment with
the product, they receive news which reveal whether they value the advanced features
or not. The arrival rate of both types of news is the same, and so buyers’ belief stays
unchanged in its absence.

3.2 The Model
Players and actions. Time t ∈ [0,∞) is continuous, and the horizon is infinite. A mo-
nopolist seller (she) has two versions of a gizmo for sale,A andB. The seller can produce
either version of the gizmo immediately upon demand and at no cost. The A-gizmo is an
advanced version with extra features, while theB-gizmo is a basic version without them.
The seller posts the respective gizmo prices pA and pB once and for all at the beginning
of time. I assume that the prices must be such that the market is covered, that is, all buyers
are willing to buy one of the versions.

A unit mass of buyers (each he) continuously enters the market at rate δ > 0. Buyers
leave the market at rate δ as well. Each buyer buys a gizmo, if he wants to, as he enters
the market. Independent of the version, the gizmo breaks at exogenous Poisson rate β > 0.
(I endogenize the breakdown rate in Section 3.4.) If the current gizmo breaks, then the
buyer decides whether to buy a new one. The buyer can also replace the gizmo he has
and buy a new one at any other time.

Each buyer is of one of two types, L or H . Types are independent across buyers. The
L-type does not care for the extra features theA-gizmo provides, while theH-type values
them, as reflected by the payoffs below.

Information. A buyer who enters the market does not know his type. His prior belief x
that he is theH-type is distributed according to the distribution function F (x) on [0, 1]. I

3Deneckere and McAfee (1996) is the first to analyze how introduction of the damaged good helps the
monopolist price discriminate.
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assume that F admits a positive and differentiable density function f satisfying 2f(x) +
xf ′(x) > 0 for all x ∈ (0, 1). The buyer can learn the type through news only if he owns
a gizmo.

Independent of the gizmo’s version, both the H-type and the L-type receive news
at Poisson rate λ > 0. News is independent across buyers. It follows from Bayes’ rule
that the buyer’s belief remains constant in absence of news. If news does arrive, then the
buyer learns his type perfectly. That is, if the H-type (resp., the L-type) receives news,
then his belief jumps to 1 (resp., 0). Therefore, at each moment in time, the belief of a
buyer who enters the market with the prior x belongs to the set {0, x, 1}.

Payoffs. The seller and buyers are risk-neutral and discount future at (common) rate
r > 0. Independent of his type, if a buyer does not buy a gizmo, then he receives a con-
stant flow payoff normalized to 0. Either version of the gizmo yields a flow payoff w > 0
to either type of the buyer. If theH-type has theA-gizmo, then news is accompanied by a
lump-sumWA > 0. Hence, the lump-sums arrive at rate λ for such a buyer. (Clearly, this
is not a second process.) Define wA := λWA. I assume that w > wA. One interpretation of
this assumption is that the gizmo has been on the market for a while, and even though
there are technological advances, they are incremental rather than radical innovations.
The L-type with the A-gizmo does not receive any lump-sum. No lump-sum arrives if
the buyer has the B-gizmo.

Suppose that a buyer buys the A-gizmo at time t and that the gizmo breaks at time
t + τA. Let NA,s denote the number of lump-sums the buyer receives from t to s, where
s ∈ (t, t + τA). (If the buyer is the L-type, then NA,s = 0 for all s.) The buyer’s realized
payoff is ∫ t+τA

t

e−(r+δ)s[wds+ wAdNA,s]− pA.

Similarly, if the buyer buys the B-gizmo at time t and if the gizmo breaks at time t+ τB,
then his realized payoff is ∫ t+τB

t

e−(r+δ)swds− pB.

Given the structure of the buyer’s payoffs, the buyer may want to buy a new gizmo,
for example, when he enters the market, when his gizmo breaks, or when he learns his
type, in particular, when he learns that he is the H-type. Let MA,t (resp., MB,t) denote
the aggregate mass of buyers who buy the A-gizmo (resp., the B-gizmo) by time t. The
seller’s realized payoff is ∫ ∞

0

e−rt[pAdMA,t + pBdMB,t].

Measures of buyers in stationary environment. Letm(x, t) denote the measure of buy-
ers with the belief x at time t. Let MH(t) (resp., ML(t)) denote the mass of the H-types
(resp., the L-types) who have learned their type by time t. Arrival of news determines
the evolution of m(x, t), MH(t), and ML(t). I focus on the stationary environment, in
which the distributions of m(x, t), MH(t), and ML(t) are independent of t. This requires
specifying the “right” exogenous distributions at time 0; see Lemma 3.1 below. This also
implies that the distributions of MA,t and MB,t are stationary as well.

Now I derive the stationary distributions of m(x, t), MH(t), and ML(t). The balance
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equation for the measure m(x, t) of buyers with the belief x at time t takes the form

dm(x,t)
dt

= δf(x)︸ ︷︷ ︸
inflow

of buyers
with the
belief x

who enter
the market

− δm(x, t)︸ ︷︷ ︸
outflow of

buyers
who leave
the market

−λxm(x, t)︸ ︷︷ ︸
outflow of buyers

who learn that
they are

the H-types

−λ(1− x)m(x, t)︸ ︷︷ ︸
outflow of buyers

who learn that
they are

the L-types

.

In a stationary environment, dm(x,t)
dt

= 0. Therefore,

m(x) := m(x, t) = δ
δ+λ

f(x).

The balance equations for the mass MH(t) of the H-types and the mass ML(t) of the
L-types who have learned their type are as follows:

dMH(t)
dt

= λ

∫ 1

0

xm(x, t)dx︸ ︷︷ ︸
inflow of buyers
who learn that

they are
the H-types

− δMH(t)︸ ︷︷ ︸
outflow of

the H-types
who leave
the market

, dML(t)
dt

= λ

∫ 1

0

(1− x)m(x, t)dx︸ ︷︷ ︸
inflow of buyers
who learn that

they are
the L-types

− δML(t)︸ ︷︷ ︸
outflow of
the L-types
who leave
the market

.

In a stationary environment, dMH(t)
dt

= 0 and dML(t)
dt

= 0. Therefore,

MH := MH(t) = λ
δ

∫ 1

0

xm(x, t)dx = λ
δ+λ

∫ 1

0

xf(x)dx,

ML := ML(t) = λ
δ

∫ 1

0

(1− x)m(x, t)dx = λ
δ+λ

∫ 1

0

(1− x)f(x)dx.

Lemma 3.1 follows.

Lemma 3.1. In stationary environment,
– the measure of buyers with the belief x is m(x) = δ

δ+λ
f(x) for all x ∈ [0, 1];

– the mass of H-types who have learned their type is MH = λ
δ+λ

∫ 1

0
xf(x)dx;

– the mass of L-types who have learned their type is ML = λ
δ+λ

∫ 1

0
(1− x)f(x)dx.

Furthermore,
∫ 1

0
m(x)dx+MH +ML = 1.

Strategies and optimum. A strategy of the seller prescribes which prices pA and pB she
posts at the beginning of time. That is, it is an element σS ∈ R×R.

A buyer best-responds to the prices pA and pB and chooses whether to buy a gizmo
and, if so, which gizmo to buy. Given pA and pB, the best response is a Markov strategy
that maps the buyer’s belief x and whether the buyer has a gizmo and, if so, its version
into his action. In other words, it is a measurable function

σB: [0, 1]× {A,B,no gizmo} → {A,B,no gizmo}.

I look for the profit maximizing prices and focus on the seller-preferred optimum.
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the belief x about
being the H-type0 1x̄

the B-gizmo the A-gizmo

higher pAhigher pB

Figure 3.1. If the prices pA and pB posted by the seller are such that 1
r+δ+βwA ≥ pA − pB ≥ 0, then there

exists a cut-off belief x̄ ∈ [0, 1] such that a buyer prefers the advanced version over the basic version if his
belief x ≥ x̄ and the basic version over the advanced version if x ≤ x̄. The cut-off x̄ increases in pA and
decreases in pB .

3.3 The Seller-Preferred Optimum
I start with the description of the buyers’ optimal strategy. It takes the simple form of
a cut-off. I proceed with the characterization of the seller’s preferred optimum. I find
that both versions of the gizmo are sold at the optimum. The optimal prices are such
that buyers buy a new gizmo if and only if the gizmo they have breaks. Furthermore,
depending on parameters, it may be that only the H-types, who have already learned
their type, go for the advanced version.

3.3.1 What Is Optimal for the Buyers?
Given the prices pA and pB posted by the seller, the optimal strategy for a buyer takes the
simple form of a cut-off (see Figure 3.1). Indeed, buyers are small and so their decisions
affect others only through the prices. It follows that a buyer without a gizmo buys the
advanced version if his belief is above the cut-off and buys the basic version otherwise.
The optimal cut-off is given in Proposition 3.1.

Proposition 3.1. For given pA and pB, a buyer without the gizmo behaves as follows:
– if 0 ≥ pA − pB, then the buyer prefers the A-gizmo over the B-gizmo for all x ∈ [0, 1];
– if 1

r+δ+β
wA ≥ pA − pB ≥ 0, then there exists x̄ ∈ [0, 1] given by

x̄ = pA−pB
1

r+δ+β
wA−

λ
r+δ+β+λ

max
{

1
r+δ+β

wA−pA,0
}

such that the buyer prefers the A-gizmo over the B-gizmo if x ≥ x̄ and the B-gizmo over
the A-gizmo if x ≤ x̄;

– if pA − pB ≥ 1
r+δ+β

wA, then the buyer prefers the B-gizmo over the A-gizmo for all x ∈
[0, 1].

The optimal cut-off x̄ is the belief at which the buyer is indifferent between the two
versions. The cut-off belongs to a unit interval if and only if the difference between prices
of the two versions does not exceed the “discounted” value of the advanced features to
the H-types and the L-types prefer the basic version. That is, x̄ ∈ [0, 1] if and only if

1
r+δ+β

wA ≥ pA − pB ≥ 0. The boundaries on the price difference are determined by
preferences of buyers who have already learned their type. The H-types prefer the ad-
vanced version over the basic one if and only if 1

r+δ+β
wA ≥ pA − pB. In contrast, the

L-types choose the basic version over the advanced one if and only if pA − pB ≥ 0.
Given that buyers’ beliefs do not change in absence of news and gizmos do not depre-

ciate gradually but break at random times, buyers choose to buy a new gizmo only if the
gizmo they have breaks or if they learn their type. If buyers are still unsure about their
type and their gizmo breaks, then they buy the same gizmo as before. Upon learning
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that he is the L-type, the buyer does not buy a new gizmo unless the one he has breaks,
because he gets the same payoff from either version of the gizmo. If his gizmo breaks,
then the L-type buys the basic version. In contrast, upon learning that he is the H-type,
the buyer may immediately replace the basic version with the advanced one if the price
of the latter is relatively low, specifically, if pA ≤ 1

r+δ+β
wA.

Lemma 3.2. The optimal cut-off x̄ increases in pA and decreases in pB.

Dependence of the optimal cut-off x̄ on the prices pA and pB is intuitive. Indeed, the
higher is the price pA of the advanced version, the more optimistic about their type must
buyers be to be willing to pay for it, and so the higher is the cut-off. On the contrary, the
higher is the price pB of the basic version, the more attractive does the advanced version
become, because it gives a higher payoff in case the buyer turns out to be the H-type,
and so the lower is the cut-off.

Lemma 3.3 below states partial effects of the discount rate r, the entry/exit rate δ, the
breakdown rate β, and the learning rate λ on the optimal cut-off x̄. That is, it shows how
the optimal cut-off varies with these rates if the prices posted by the seller stay fixed. The
full effects in case of the uniform distribution of the prior beliefs are discussed in Section
3.3.2 below.

Lemma 3.3. Given pA and pB that satisfy 1
r+δ+β

wA ≥ pA − pB ≥ 0, the optimal cut-off x̄
– increases in r;
– increases in δ;
– increases in β;
– increases in λ if pA < 1

r+δ+β
wA and is independent of λ if pA ≥ 1

r+δ+β
wA.

Fix the prices pA and pB. The more impatient are buyers, that is, the higher is the
discount rate r, the less value do buyers put on what happens after they learn their type.
Buyers without the gizmo go for the advanced version if they are optimistic about being
the H-types and thus about needing the advanced features. The more impatient are
buyers, the more optimistic they must be to buy the advanced version, that is, the higher
is the optimal cut-off x̄.

The only role the entry/exit rate δ plays, when it has no effect on prices, is that of
additional discounting. As a result, it has the same effect on x̄ as r.

With fixed prices, the only role of the breakdown rate β is that of how often buyers
must buy a new gizmo. That is, it “discounts” the value of each version, in particular,
it “discounts” the value of the advanced features the advanced version provides. As a
result, buyers must be more optimistic to choose it over the basic version. The optimal
cut-off x̄ increases with β.

The learning rate λ affects the optimal cut-off only if the price of the advanced version
is low enough and buyers with the basic version replace it with the advanced one imme-
diately upon learning that they are theH-types, that is, only if pA < 1

r+δ+β
wA. This result

relies on the fact that both advanced and basic versions break at the same rate. Indeed, if
the price of the advanced version is high, that is, if pA ≥ 1

r+δ+β
wA, then buyers buy a new

gizmo if the one they have breaks and not if they learn their type. That is why, with the
same breakdown rate and fixed prices, λ has no effect on x̄. If the price of the advanced
version is low, that is, if pA < 1

r+δ+β
wA, then x̄ increases with λ. If buyers learn their type

quickly and the price of the advanced version is low, then buyers might as well wait until
they learn that they are, indeed, the H-types and buy the advanced version then, rather
than buy it when they are not that sure about their type.
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3.3.2 What Is Optimal for the Seller?
The seller is always better off by making both versions of the gizmo acceptable to buyers.
Indeed, if only one of the versions is offered, then, independent of the version, the most
the seller can get from each buyer is the value of the gizmo to the L-types. The seller
would be strictly better off by selling the basic version at that price and the advanced
version at a slightly higher price so that the H-types go for it.

In the optimum, the seller posts a too high price of the advanced version for a buyer
with the basic version to replace it immediately with the advanced one upon learning
that he is theH-type. The buyer always waits until his basic version breaks and only then
buys the advanced version. For the immediate replacement to take place, the price of the
advanced version should not exceed the value its advanced features provide. However,
this value is too low for the seller to be willing to post such a price.

Whether the price of the advanced version is such that only the H-types who have
learned their type buy it depends on parameters of the model, in particular, on how large
the mass of these buyers is. This is summarized in Theorem 3.1.

Theorem 3.1. There exists a unique seller-preferred optimum. The optimum is characterized by
a unique set of prices p∗A and p∗B given by p∗B = 1

r+δ+β
w and

– if β
r+β

MH ≥ δ
r+δ

f(1) + β
r+β

m(1), then p∗A = 1
r+δ+β

(w + wA) and x̄∗ = 1;
– if β

r+β
MH < δ

r+δ
f(1) + β

r+β
m(1), then p∗A = 1

r+δ+β
(w + wAx̄

∗) and x̄∗ ∈ (0, 1).
In the optimum, a buyer buys a new gizmo if and only if the one he has breaks.

If the mass of the H-types who have learned their type is above a certain cut-off, that
is, if MH ≥ M̄H , where

M̄H :=
δ
r+δ

+
β
r+β

δ
δ+λ

β
r+β

f(1),

then it is optimal for the seller to post a high price for the advanced version so that only
theH-types buy it. This way she extracts full surplus from theH-types. This occurs when
the learning rate λ or the breakdown rate β is high or when the entry/exit rate δ is low.
Indeed, if buyers learn their type quickly, then many buyers on the market know their
type and, in particular, there are many H-types. With a high breakdown rate, buyers
often have to buy a new gizmo. That is why the mass of the H-types per se does not
have to be large for the seller to find it optimal to charge a high price for the advanced
version. If the market “refreshes” slowly, that is, if the entry/exit rate is low, then buyers
who know their type accumulate on the marker, and so the mass of the H-types is large.

If MH < M̄H , then the seller finds it optimal to make the advanced version also ac-
ceptable by buyers who are still unsure about their type. The larger is the mass of the
H-types who have learned their type, the higher is the price of the advanced version. As
a result, unsure buyers must be more optimistic to go for the advanced version.

If the prior beliefs are distributed uniformly, that is, if f(x) = 1 for all x ∈ [0, 1], then
x̄∗ = 1 if 1

2
β
r+β

λ
δ+λ
≥ δ

r+δ
+ β

r+β
δ

δ+λ
. In contrast, if 1

2
β
r+β

λ
δ+λ

< δ
r+δ

+ β
r+β

δ
δ+λ

, then x̄∗ ∈ (0, 1)
and is equal to

x̄∗ = 1
2

+ 1
4

β
r+β

λ
δ+λ

δ
r+δ

+
β
r+β

δ
δ+λ

.

The first observation is that x̄∗ > 1
2
, which emphasizes that theH-types who have learned

their type are the primary focus of the seller when choosing the price of the advanced
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version. Dependences of x̄∗ on the discount rate r, the entry/exit rate δ, the breakdown
rate β, and the learning rate λ are stated in the next lemma.

Lemma 3.4. Suppose the distribution of the prior beliefs is uniform, that is, f(x) = 1 for all
x ∈ [0, 1], and that 1

2
β
r+β

λ
δ+λ

< δ
r+δ

+ β
r+β

δ
δ+λ

. The optimal cut-off x̄∗
– decreases in r if β ≤ δ and increases in r if β ≥ δ;
– decreases in δ;
– increases in β;
– increases in λ.

If buyers are likely to leave the market before their gizmo breaks, that is, if β ≤ δ,
then it is likely that the only way they buy the advanced version is upon entering the
market. The more impatient is the seller, that is, the higher is the discount rate, the lower
is the price of the advanced version and hence the lower is the difference between the
two prices. That is to say, x̄∗ is decreasing in r. If β ≥ δ, then the full effect of r coincides
with its partial effect given in Lemma 3.3, and x̄∗ is increasing in r, even though the price
of the advanced version may decrease.

When the dependence of the difference between the optimal prices on the entry/exit
rate δ is taken into account, its effect on the optimal cut-off is reversed. The cut-off x̄∗ is
decreasing in δ; see Lemma 3.3. If the market “refreshes” quickly, that is, if δ is high, then
the advanced version is likely to be bought only by buyers who enter the market. That
is why the seller is willing to lower the price of the advanced version and thus to lower
the difference between the two prices.

Even though the price of the advanced version may decrease with the breakdown
rate β, the full effect of β on the optimal cut-off coincides with its partial effect given in
Lemma 3.3, and x̄∗ is increasing in β. A higher breakdown rate induces the seller to lower
the price of the advanced version for buyers to be willing to buy the gizmo. However,
higher β also implies that buyers often have an opportunity to replace the basic version
with the advanced one if they want to, and so they do not have to buy the advanced
version right away.

The optimal cut-off depends on the learning rate λ only via the prices; recall that
Lemma 3.3 states x̄∗ does not depend on λ directly. Specifically, x̄∗ increases with λ.
If buyers learn their type quickly, then many H-types who have learned their type are
present on the market. As a result, while choosing the price of the advanced version,
the seller focuses on the H-types and buyers who are more optimistic about their type.
The price of advanced version increases with λ, and so does the difference between the
prices of the two versions.

3.4 Planned Obsolescence
As a motivation for planned obsolescence, the seller’s profit as a function of the break-
down rate β is depicted in Figure 3.2. It is single-peaked and is maximized at a certain
rate β∗ ∈ (0,∞). Therefore, in a game in which the seller chooses β at the beginning of
time and commits to it, she picks this β∗ or, in other words, she plans obsolescence. This
is stated in Theorem 3.2.

Theorem 3.2. In the seller-preferred optimum, the seller plans obsolescence, that is, she chooses
the breakdown rate β∗ ∈ (0,∞).
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Figure 3.2. The seller’s profit Π(β) as a function of the breakdown rate β if the prices she posts are p∗A
and p∗B . In the seller-preferred optimum, the seller chooses β∗ ∈ (0,∞). Parameters: (r, δ, λ, w,wA) =
(1, 0.01, 10, 2, 1) and f(x) = 1 for all x ∈ [0, 1], the uniform distribution of the prior beliefs.

The seller does not want the gizmos to break immediately, but she also does not want
them to be a durable good. The optimal breakdown rate β∗ captures the trade-off faced
by the seller. On the one hand, because buyers with the basic version who have learned
that they are theH-types upgrade their gizmo to the advanced version only upon a break-
down, a higher breakdown rate increases buyers’ surplus, for they get the preferred ver-
sion faster. As a result, the higher breakdown rate also increases the seller’s profit. On the
other hand, the cut-off used by buyers increases with the breakdown rate, and so fewer
buyers go for the advanced version. Therefore, the seller extracts less surplus from those
who would appreciate the advanced features.

3.5 Conclusion
I want to conclude by pointing out two questions which naturally arise from the analysis
and are to be answered. First, what is the socially optimal breakdown rate of the gizmos?
The trade-off faced by the social planner is as non-trivial as the one faced by the seller,
and so it is not clear a priori if the breakdown rate chosen by the seller is inefficiently
high or low. Second, what is the optimal dynamic pricing? The answer to the second
question is of particular interest in the non-stationary environment.



Chapter 4

Bundling with Strategic Buyers

4.1 Introduction
I aim to answer the following question: How can a monopolist seller use bundling to in-
crease his revenue when he faces strategic buyers? The seller has a finite stock of the
product, which he has to sell before a deadline. Buyers have multi-unit demand and dif-
ferent valuations for the product. They are forward-looking and posses some bargaining
power. For example, think about secondary markets for planes or orders of ships, trains,
or planes.

The property which helps answer the question is the multi-unit single-crossing prop-
erty. I find that, for given unit and bundle prices, buyers with a high valuation for the
product choose to purchase weakly more than buyers with a low valuation. For example,
if buyers with the low valuation accept the offer of the unit, then buyers with the high
valuation either also accept the offer of the unit or accept the offer of the bundle.

I find that bundling players two roles which may allow the seller to increase his rev-
enue. First, it can be used a tool to discriminate among buyers with high and low valua-
tions by either screening buyers with the high valuation in the first period or by posting
the same-period unit and bundle prices such that buyers with different valuations ac-
cept different offers. Interestingly, the bundle price is higher than double of the unit
price. Buyers are willing to pay such a high bundle price, because they fear that they
will not get any product if they do not accept this offer. Second, bundling can act as a
precaution when the seller chooses to target buyers with the high valuation only and
does so by selling two units as a bundle.

Related literature. This chapter contributes to the revenue management literature and
analyzes the roles bundling can play to increase the seller’s revenue. This is an adaptation
of Hörner and Samuelson (2011). Hörner and Samuelson (2011) considers the seller
with a fixed quantity of the product which he has to sell before a deadline. The seller in
that paper faces buyers who have unit demand for the product, and so there is no scope
for bundling.

Stigler (1963) is the first paper to point out that bundling can be profitable for a mo-
nopolist seller by giving an example of block booking of feature films. Adams and Yellen
(1976) gives a series of examples to illustrate that (mixed) bundling can be a useful price
discrimination strategy.1 They do not give a general condition for optimality of bundling.

1In Adams and Yellen (1976), “pure bundling” implies that the seller commits to selling units of the
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McAfee, McMillan, and Whinston (1989) provides a sufficient condition on the distribu-
tion of buyers’ valuations for bundling to dominate unbundled sales. Chu, Leslie, and
Sorensen (2011) gives numerical examples illustrating that bundling is profitable in a
series of special cases, in particular, shows profitability of bundle-size pricing. Chen and
Riordan (2013) establishes new general conditions for profitability of bundling.

Bundling can be thought of as non-linear pricing. Armstrong (1996) finds an optimal
multi-product non-linear tariff in a special case that puts restrictions on the distribution
of buyers’ valuations. Rochet and Chroné (1998) gives a special example of an optimal
non-linear tariff and also points out non-robustness of examples in Armstrong (1996).
Armstrong (1999) is a complementary paper to Armstrong (1996), which shows that
almost optimal non-linear tariffs can be found in a more general setting if the number
of products is arbitrary large. This is a more general but similar result to Bakos and
Brynjolfsson (1999); see also Bakos and Brynjolfsson (2000). In contrast, Fang and Nor-
man (2006) focuses on a finite number of products and looks for conditions under which
bundling is an attractive pricing strategy. Nocke, Peitz, and Rosar (2011) analyzes the
optimality of advance-purchase discounts.

4.2 The Model
I consider a two-period dynamic game between a single seller (he), with two units of the
same product for sale, and two strategic buyers (both she) who have multi-unit demand.
Both units are sold and consumed at the end of the second period, and have no value
afterward. The seller has two periods to agree with one or two buyers on the purchase
of one or two units.

In each period, the seller posts unit and bundle prices; he posts a unit price only when
there is just one unit for sale in a given period.2 The seller has no commitment power.
That is, prices must be sequentially rational given his beliefs. After observing the prices,
buyers simultaneously and independently decide whether they accept or not an offer of
one or two units at the corresponding posted unit or bundle price. I use the following
tie-breaking assumptions.

Assumption 4.1. If both buyers accept the offer of a bundle (resp., a unit) when two units (resp.,
one unit) are for sale, then the seller randomly selects the buyer who gets the bundle (resp., the
unit).

Assumption 4.2. If one buyer accepts the offer of the unit, while another buyer accepts the offer
of the bundle, then the seller sells both units as a bundle.

The seller’s behavior under Assumption 4.1 is sequentially rational, because he has
to give the bundle or the remaining unit to at least one of the buyers and he is indifferent
among them. Regarding Assumption 4.2, favoring the buyer, who prefers the offer of one
unit, does not bring much to the analysis and allows for an arguably unnatural behavioral
pattern; see Appendix D.1 for details.

Prices and sales are observed by everyone. The game ends if either offers for both
units have been accepted or the second period is over.

product as a bundle only. What they call “mixed bundling” is a strategy of the seller when he does not make
such a commitment and may sell them either separately or together. Because the seller lacks commitment
in my model, it is always the case of mixed bundling here.

2The model can be thought of as a one with non-linear pricing.
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Buyers’ valuations for one unit, or buyers’ types, vi and v−i are privately known, and
independently and identically distributed. They do not change over time. A buyer has
a high valuation, normalized to 1 without loss of generality, for one unit of the product
with probability α, and a low valuation v ∈ (0, 1) with probability 1−α, where α ∈ (0, 1).
A buyer i’s valuation for consuming both units is scaled down by a parameter γ ∈

(
1
2
, 1
)
,

that is, it is 2γvi, where i = 1, 2.
If buyer i ends up with one unit, then her payoff is her valuation vi minus the unit

price she pays for it. If she gets two units, then her payoff is 2γvi minus either the bundle
price or the sum of unit prices if she accepts the offers for each unit in different periods.
Recall that there is no utility flow, and units are consumed in the end of the second period.
If the buyer does not buy anything, then her payoff is 0. The seller has a zero reservation
value for both units, and his revenue is the price or sum of prices at which he sells them.
Hereafter, by buyers’ “payoff” and the seller’s “revenue,” I mean their expected payoff
and revenue. There is no discounting.

Formally, pure strategies of the seller and buyers are as follows: In period t, where
t = 1, 2, the seller posts the unit and bundle prices pt ∈ R and qt ∈ R. After observing the
offers, each buyer picks an action from the set {B,U,N}, where B (resp., U) means that
the buyer accepts the offer of the bundle (resp., the offer of the unit), and N means that
she rejects the offers. Let ht ∈ H t be a non-trivial history when the game is not effectively
over. That is, H1 = {∅} and H2 contains prices posted by the seller and an allocation
of a unit (if the offer for one unit has been accepted) in the first period. It follows that,
in period t, a pure strategy of the seller is σSt : H t → R ×R if two units are for sale; his
strategy is σSt : H t → R if only one unit remains for sale. A pure strategy of buyer i is
σBit : {v, 1} ×H t ×R×R→ {B,U,N}, where i = 1, 2.

At the end of the first period, either both units remain for sale, only one unit remains
for sale, or the game is over. To keep notation simple, I denote by p and q the unit and
bundle prices posted by the seller in the first period, by p′′ and q′′ the prices posted in the
second period if two units remain, and by p′ the unit price posted in the second period
if only one unit remains for sale.

I look for perfect Bayesian equilibria in pure strategies and in which buyers use sym-
metric strategies, that is, buyers of a given type behave identically.3 Therefore, in each
period t, it suffices to look separately at the strategies of buyers with the high and low
valuations only. I denote them by σ̄Bt and σBt . I also make the following tie-breaking
assumptions on the behavior of buyers.

Assumption 4.3 (Intra-Period Indifference). In any period, buyers accept one of the offers if
they are indifferent between accepting and rejecting.

Assumption 4.4 (Inter-Period Indifference). Buyers accept the offer in the first period if they
are indifferent between accepting it and waiting for the second period.

If the two indifference assumptions are relaxed, the number of equilibria increases,
but the number of equilibria in terms of revenue stays the same. As the seller’s revenue
is of interest in this chapter, making such assumptions is without loss.

3The equilibrium beliefs of the seller about buyers’ types and of buyer i about buyer−i’s type have to be
as follows: (i) Even off path, posterior beliefs of the seller are independent, and both types of buyer i have
the same belief. (ii) Bayes’ rule is used to update beliefs whenever possible. (iii) There is “no signaling
what you don’t know.” (iv) The seller and buyer i have the same belief about the type of buyer −i. The
assumptions (i)–(iv) correspond to assumptions B(i)–B(iv) of Fudenberg and Tirole (1991) (Section 8.2.3,
pages 331–332).
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4.3 One Period to Make a Deal
In this section, I show that bundling can make the seller better off even if he has only
one period to make a deal with one or two buyers. Specifically, I show that bundling
can allow the seller to discriminate among buyers with different valuations and that it
can act as a precaution if the seller targets buyers with the high valuation only. It is also
helpful to note that buyers’ equilibrium behavior satisfies the multi-unit single-crossing
property.

4.3.1 Equilibria in the Game between Buyers
A pair of prices (p, q) defines a game between buyers, which is the game I solve here.
The equilibrium behavior of buyers for given unit and bundle prices is summarized by
Lemma 4.1 below. Their reaction depends on parameters of the model: the low valuation
v, the scaling parameter γ, and the probability α that a buyer has the high valuation.

Lemma 4.1 (Multi-Unit Single-Crossing Property). For any pair of prices, buyers with the
high valuation for the product choose to purchase weakly more than buyers with the low valuation.

The lemma is the multi-unit analog of the familiar single-crossing property saying
that higher types are more willing to buy. In other words, for a given pair of prices, if
buyers with the low valuation accept the offer of the bundle, then so do buyers with the
high valuation. If buyers with the low valuation choose the offer of the unit, then buyers
with the high valuation find it optimal to buy the unit or the bundle. Rejection of both
offers by buyers with the low valuation implies that buyers with the high valuation can
accept any of the offers or reject both of them.

Lemma 4.1 implies that, across parameters, there are six kinds of equilibria, that is, six
different pairs (σ̄B, σB) of equilibrium strategies of buyers with high and low valuations;
see Figure 4.1.4 Furthermore, for a given pair of prices (p, q), there are at most three
equilibria among buyers.

Each kind of equilibria has its own pattern or color in Figure 4.1. For example, the
light gray region represents an equilibrium with (U,U), which is the equilibrium in which
buyers with both high and low valuations given the unit and bundle prices. The gray re-
gion corresponds to an equilibrium with (B,U): buyers with the high valuation accept
the offer of the bundle, while buyers with the low valuation accept the offer of the unit.
Regions in which patterns or colors intersect correspond to the prices that support multi-
ple equilibria. For example, the striped region with light gray and gray lines corresponds
to pairs of the unit and bundle prices which support both (U,U) and (B,U) as equilibria.5

4In Figure 4.1, parameters are such that 2γ − 1 > 2γv. If 2γ − 1 ≤ 2γv, then one more case arises.
Specifically, there are unit and bundle prices (p, q) such that (U,U), (B,U), and (B,B) can be supported
as equilibria.

5 To understand how the regions are found, consider, for example, the case when (B,U) is an equilib-
rium. Given (p, q), buyers with the high valuation prefer the offer of the bundle over the offer of the unit
if and only if

α · 1
2 (2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p) ⇔ q ≤ 2γ − 2(1−α)

2−α (1− p).

Furthermore, buyers with the high valuation accept the offer of the bundle rather than reject it if and only
if

α · 1
2 (2γ − q) + (1− α) · (2γ − q) ≥ 0 ⇔ q ≤ 2γ.
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q = 2γv − 2(1−α)
2−α (v − p)
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=
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−

1
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p
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q

0 v 1

2γv

2γ − 1

2γ − 1 + v

2γ

(N,N)(U,N)(U,U)

(B,B)
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Figure 4.1. The equilibrium strategies of buyers (σ̄B , σB) given unit and bundle prices (p, q). Parameters:
(v, γ, α) =

(
1
4 ,

3
4 ,

3
4

)
.

It follows that, by choosing the pair of prices carefully, the seller can induce the buyers’
reaction which brings him the largest revenue. This is explained next.

4.3.2 Equilibria with One Period
Now I analyze the game between all players: the seller and the two buyers. The seller
moves first and posts unit and bundle prices. After observing the prices, buyers simul-
taneously and independently decide whether to accept one of the offers.

The seller’s equilibrium revenueR is is necessarily one of the following four revenues:

RUU = 2v,

RBU = 2α(2− α)γ + 2(1− α)(v − α),

Similarly, buyers with the low valuation prefer the offer of the unit over the offer of the bundle and over
not buying anything if and only if

α · 0 + (1− α) · (v − p) > α · 1
2 (2γv − q) + (1− α) · (2γv − q) ⇔ q > 2γv − 2(1−α)

2−α (v − p)

and
α · 0 + (1− α) · (v − p) ≥ 0 ⇔ p ≤ v.

The inequalities are written taking into account Assumptions 4.1 to 4.4.
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Figure 4.2. The seller’s equilibrium revenue (left) and his largest equilibrium revenue (right) in the game
with one period. Parameters: α = 1

2 .

RUN = 2α,

RBN = 2α(2− α)γ.

That is, in any equilibrium, the revenue the seller gets isRUU ,RBU ,RUN , orRBN , which
one depends on the parameters of the model and the equilibrium behavior of buyers.
This is summarized in Proposition 4.1 below and is illustrated in the left panel in Figure
4.2. For some parameters, there are multiple equilibria with distinct revenues; see the
striped regions in the left panel in Figure 4.2. Therefore, the seller cannot necessarily
secure the largest of the four possible revenues. Which of the four revenues is the largest
depends on the parameters and is illustrated in right panel in Figure 4.2.

Proposition 4.1 (Equilibria with One Period). In any equilibrium of the one-period game, the
seller’s revenue is as follows:

– (Fig. 4.2, “RUU”) if v ≥ α and v ≥ (2− α)γ − 1 + α, thenR = RUU ;
– (Fig. 4.2, “RUU ,RBU”) if (2−α)γ−1 +α ≥ v ≥ α(2−α)γ, thenR ∈ {RUU ,RBU};6,7

– (Fig. 4.2, “RBU ,RBN”) if α(2− α)γ ≥ v ≥ α, thenR ∈ {RBU ,RBN};
– (Fig. 4.2, “RUN”) if α ≥ v and 1

2−α ≥ γ, thenR = RUN ;
– (Fig. 4.2, “RBN”) if α ≥ v and γ ≥ 1

2−α , thenR = RBN .

If the valuation v is high, then the best the seller can do is to sell both units unit-by-
unit at the price which is acceptable by buyers with both high and low valuations; see the
“RUU”-region in Figure 4.2. The seller getRUU with the unit price p = v and by making
sure that buyers prefer the offer of the unit over the offer of the bundle, that is, by setting
a high bundle price, specifically, q > 2γ − 1 + v.

If the valuation v is high and if buyers value having both units, that is, if the scal-
ing parameter γ is high, then there are multiple equilibria in terms of revenue; see the

6Hereafter, by the set of revenues, I mean that all revenues in the set occur for some equilibria.
7The presence of two (not three) equilibria should not come as a surprise, because I am concerned

with equilibria in pure strategies only.
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“RBU”-region in the right panel in Figure 4.2. The seller gets the largest revenue RBU

in equilibrium in which he uses bundling to discriminate among buyers with different
valuations. In such an equilibrium, he posts the unit and bundle prices equal to p = v

and q = 2γ− 2(1−α)
2−α (1− v), which makes buyers with the high valuation willing to accept

the offer of the bundle, while buyers with the low valuation accept the offer of the unit.
If it is likely that buyers have the high valuation, that is, if the probability α is such

that α > v, then the seller is better of by targeting buyers with the high valuation only.
If buyers do not value having both units that much, that is, if the scaling parameter γ is
low, then the seller sells both units unit-by-unit; see the “RUN”-region in Figure 4.2. The
seller post the unit price equal to p = 1 and the bundle price q > 2γ to ensure that buyers
prefer the offer of the unit over the offer of the bundle. This gives him the revenueRUN .
In contrast, if buyers value having both units, that is, if γ is high, then the seller takes
advantage of it and uses bundling as a precaution to increase the likelihood of selling
both units; see the “RBN”-region in Figure 4.2. This brings him the revenueRBN .

4.4 Two Periods to Make a Deal
If the seller has two periods to make a deal with one or two buyers, then he may find it
optimal to screen buyers with the high valuation in the first period. This is another way of
how the seller can use bundling to discriminate among buyers with different valuations.

4.4.1 Equilibria with and without Screening
To screen buyers, the seller can post the first-period unit and bundle prices such that buy-
ers with different valuations accept different offers; I refer to this as a screening strategy.
Given the multi-unit single-crossing property, if a screening strategy is applied, then the
equilibrium reaction of buyers in the first period (σ̄B1 , σ

B
1 ) is one of the following: (B,U),

(B,N), or (U,N). Furthermore, buyers’ valuations become fully and publicly known.
Equilibria with screening exist for some but not all parameters. Lemma 4.2 below

gives not only the equilibrium revenue when such an equilibrium exists, but also a can-
didate revenue if the seller tries to screen buyers.

Lemma 4.2 (Screening of Buyers with a High Valuation). In any equilibrium in which the
seller applies a screening strategy, his revenue isR = RBU .

If the seller does not screen buyers, that is, if he posts unit and bundle prices such that
buyers with different valuations accept the same offer or reject both offers, then the fol-
lowing two observations apply. First, the seller never posts such prices that buyers with
the high and low valuations accept the offer of the bundle, because he would be better
off by selling the product unit-by-unit. Therefore, the equilibrium reaction of buyers in
the first period (σ̄B1 , σ

B
1 ) is either (U,U) or (N,N). Second, if buyers reject the first-period

offers, that is, if (σ̄B1 , σ
B
1 ) = (N,N), then the continuation game is identical to the one-

period game. Indeed, there is no learning, and so the seller has the same belief α that a
given buyer has the high valuation. Similarly, each buyer’s belief that another buyer has
the high valuation stays the same and is equal to α. Lemma 4.3 follows.

Lemma 4.3 (No Screening). In any equilibrium in which the seller does not apply a screening
strategy, his revenue is as in the one-period game.
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Figure 4.3. The seller’s equilibrium revenue in the game with two periods if α < 1
2 (left) and α ≥ 1

2 (right).
Parameters: α = 1

4 (left) and α = 3
4 (right).

4.4.2 Equilibria with Two Periods
Lemmata 4.2 and 4.3 imply that the seller’s revenue in any equilibrium is necessary one
of the same four revenues an in the one-period game: RUU , RBU , RUN , or RBN . How-
ever, multiplicity of equilibria in terms of revenue, which is a feature of that game for
all parameters of the model for which RBU is the largest revenue, disappears for some
parameters. This is captured in Proposition 4.2 below and is illustrated in Figure 4.3.
Proposition 4.2 (Equilibria in the Dynamic Game). In any equilibrium of the two-period
game, the seller’s revenue is as in the one-period game, except for:

– (left Fig. 4.3, “RBU”) if α < 1
2

and either 2(1−α)
1−2α

γ− 1
1−2α

≥ v ≥ α(2−α)γ or α(2−α)γ ≥
v ≥ α, thenR = RBU ;

– (right Fig. 4.3, “RBU”) if α ≥ 1
2

and α(2− α)γ ≥ v ≥ α, thenR = RBU .

Proposition 4.2 implies that, as in the game with one period, if the valuation v is
high, then the best the seller can do is to sell both units unit-by-unit at the price which
is acceptable by buyers with both high and low valuations; see “RUU”-region in Figure
4.3. The seller does it in the first period with the unit price p = v or posts unacceptable
first-period prices and sell both units in the second period with the unit price p′′ = v.

If it is likely that buyers have the high valuation, that is, if the probability α is such
that α > v, then the seller finds it optimal to target buyers with the high valuation only;
see “RUN”-region or “RBN”-region in Figure 4.3. However, because the seller lacks com-
mitment power, he has to wait until the second period to do so. That is, the seller posts
unacceptable first-period unit and bundle prices, and the prices he posts in the second
period are identical to those in the one-period game.

Having two periods to make a deal with one or two buyers can be advantageous
for the seller when RBU is the largest revenue for given parameters. For a subset of
parameters, there is now a unique equilibrium in terms of revenue in which the seller
getsRBU ; see “RBU”-region in Figure 4.3.

The seller can use bundling to get the desired RBU . Specifically, he posts the first-
period unit and bundle prices equal to p = v and q = 2γ− 2(1−α)

2−α (1− v), and buyers with
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the high valuation accept the offer of the bundle, while buyers with the low valuation
accept the offer of the unit. Note that q > 2p for parameters for whichRBU is the equilib-
rium revenue. Buyers with the high valuation are willing to pay such a high price for the
bundle, because they fear that they would end up without the product otherwise. The
seller can also getRBU by posting the unit price p = αγ + (1− α)v and the bundle price
such that buyers with the high valuation accept the offer of the unit in the first period,
while buyers with the low valuation reject both offers. If the offer of the unit is accepted
by one of the buyers, and so if there is only one buyer with the high valuation, then the
seller sells the second unit to the same buyer in the second period. The seller uses this
screening strategy only if buyers value having both units of the product, that is, only if
the scaling parameter γ is such that 2γ − 1 ≥ v.

4.5 To Bundle or not to Bundle
Which seller’s strategy yields him the largest revenue depends on the parameters of the
model: the low valuation v, the scaling parameter γ, and the probability α that a buyer
has the high valuation. In this section, I discuss these dependences in detail.

Lemma 4.4 below states the dependence of the seller’s equilibrium revenue on the
parameters. If buyers with the low valuation are in the picture, then the equilibrium
revenue of the seller is RUU or RBU , and it increases in the valuation v. If the seller
targets buyers with the high valuation only, then his revenue is RUN or RBN , and it is
independent of v, because buyers with the low valuation always reject the offers, and so
their valuation is irrelevant. Whenever the seller takes advantage of buyers’ appreciation
for having both units, his equilibrium revenue is RBU or RBN , and it increases in the
scaling parameter γ. The higher is γ, the higher is, for example, the bundling price the
seller can post, and thus the larger is his revenue. If the seller targets buyers with different
valuations with different offers, then his equilibrium revenue isRBU ,RUN , orRBN , and
it increases in the probability α of having buyers with the high valuation. Indeed, the
seller behaves this way, because he wants to take advantage of buyers’ high valuation for
the product, and so he is better off if he is like to face such buyers.

Lemma 4.4. The seller’s equilibrium revenue depends on the parameters as follows:
– RUN ,RBN are independent of, whileRUU ,RBU increase in v;
– RUU ,RUN are independent of, whileRBU ,RBN increase in γ;
– RUU is independent of, whileRBU ,RUN ,RBN increase in α.

It follows from Lemma 4.4 that he interplay between the low valuation v and the
probability α of having buyers with the high valuation determines whether the seller
targets buyers with the high valuation only or posts such unit and bundle prices that
buyers with both high and low valuations accept one of the offers. Furthermore, the
scaling parameter γ determines whether the seller sells both units as a bundle. Hereafter,
I focus on the strategies which bring the seller the largest revenue for given parameters.

If the valuation v is low, then the seller targets buyers with the high valuation only;
see the left panel in Figure 4.4. He sells the product unit-by-unit and gets RUN if the
probability of having buyers with the high valuation is high. The seller sells the product
as a bundle and getsRBN if buyers value having both units. In contrast, if the valuation
v is high, then the seller is better off by selling the two units unit-by-unit at the price
acceptable by buyers with both high and low valuations. This brings him RUU ; see the
right panel in Figure 4.4.



56 Chapter 4. Bundling with Strategic Buyers

1
2

1+v
2

1 γ0

v

1

α

RUU
RBU

RUN

RBN

γ = 1
2−α

v = (2− α)γ − 1 + α

1
2

1+v
2

1 γ0

v

1

α

RUU

RBU

RUN
RBN

Figure 4.4. The largest equilibrium revenue. Parameters: v = 1
4 (left) and v = 3

4 (right).

0 2γ−1
γ

1 α

2γ − 1

1

v

RUU

RBU

RUN

RBN

v = (2− α)γ − 1 + α

γ = 1
2−α

0 2γ−1
γ

1 α

2γ − 1

1

v

RUU

RBU RUN

RBN

Figure 4.5. The largest equilibrium revenue. Parameters: γ = 5
8 (left) and γ = 7

8 (right).

If buyers do not care for having both units of the product, that is, if the scaling param-
eter γ is low, then the seller is better off by selling the product unit-by-unit; see the left
panel in Figure 4.5. Whether he posts the unit price which is acceptable by buyers with
both high and low valuations or by buyers with the high valuation only depends on how
high is the low valuation and how likely it is that buyers have the high valuation. If the
low valuation is high, then the seller sells to buyers with both high and low valuations
and getsRUU . If the probability of having buyers with the high valuation is high, then he
sells to buyers with the high valuation only, which brings him RUN . In contrast, if buy-
ers appreciate having both units, that is, if the scaling parameter γ is high, then the seller
either uses bundling to discriminate among buyers with different valuations or targets
buyers with the high valuation with the bundle; see the right panel in Figure 4.5. This
yields him RBU or RBN and again depends on the interplay between the low valuation
and the probability of having buyers with the high valuation.

If it is unlikely that buyers have the high valuation, that is, if the probability α is low,
then the seller posts such unit and bundle prices that buyers with both high and low
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Figure 4.6. The largest equilibrium revenue. Parameters: α = 1
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valuations accept one of the offer; see the left panel in Figure 4.6. This brings him RUU

orRBU . The seller chooses to target buyers with the high valuation with the offer of the
bundle if buyers care for having both units. In contrast, if the probability α of having
buyers with the high valuation is high, then the seller sells the product only to these
buyers; see the right panel in Figure 4.6. Whether he sells the two units unit-by-unit
which yieldsRUN or as a bundle which yieldsRBN depends on how much buyers value
having both units.

4.6 Conclusion
A natural extension is to consider buyers with positively correlated valuations. I expect
the seller would more often find it optimal to use bundling to discriminate among buyers
with different valuations, in particular, to screen buyers with the high valuation in the
first period. In contrast, the bundling would be used as a precaution less. Indeed, if the
buyers’ valuations are correlated and it is likely that buyers have the high valuation, then
the seller is better off by selling the product to these buyers unit-by-unit rather than as a
bundle.





Appendix A

Addendum to Chapter 1

A.1 Undiscounted Version of Strulovici (2010a)
The model with learning via good news only is as in Section 1.2 with only few exceptions.
No news arrives if the risky arm is bad, that is, if λb = 0. It follows that the expected
payoff of the bad risky arm is b = 0, and so g > s > 0. Furthermore, there are two groups
of players at any time t: winners and unsure voters. The belief of unsure voters decreases
over time according to ṗt = −λgpt(1 − pt), and so they become more pessimistic about
the type of their risky arm in absence of news. It follows that, if winners do not form
a majority before the belief reaches the cut-off used by unsure voters, experimentation
would cease. I denote by p(j) the cut-off used by unsure voters in the presence of j
winners. Finally, I denote byw(j, p) and u(j, p) the value functions of winners and unsure
voters when there are j winners and unsure voters’ belief is p.

A.1.1 Cut-offs
Theorem A.1 below describes the equilibrium cut-offs p(j), when there areN > 1 strategic
and forward-looking players and j of them have already leaned that they are winners.
The equilibrium existence and uniqueness come from the backward induction argument
on the number of winners. The equilibrium cut-offs p(j) are pinned down by the value
matching condition u(j, p(j)) = s, where u(j, p) is the value function of unsure voters.1

Theorem A.1 (Equilibrium Cut-offs with Learning via Good News). If λb = 0, then there
exists a unique equilibrium characterized by cut-offs p(j). The cut-offs are such that p(j) = p̄ for
all j ≤ jN , where

– p̄ = 0 if g ≥ sN+1
2

,
– p̄ = 1− N+1

N−1

(
1− s

g

)
if g < sN+1

2
.

Furthermore, pM > p(j) ≥ pSD for all j ≤ jN .

Theorem A.1 states that the equilibrium cut-offs p(j) are independent of the number
of winners j. The foremost reason why unsure voters choose to experiment with the risky
arm is that they hope to benefit from the high payoff of the good arm. Because this is

1The value function u(j, p) and the cut-off p(j) are found by solving the respective ordinary differential
equation subject to the value-matching constraint u(j, p(j)) = s and, in case p(j) > 0, the smooth-pasting
constraint ∂pu(j, p(j)) = 0. Note that the smooth-pasting constraint does not hold if p(j) = 0. See the
proof of Lemma A.16 in Appendix A.2 for details.
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also the reason why winners prefer the risky arm and because players are patient, what
determines unsure voters’ choice of the cut-offs is the worst case scenario when they
are about to lose power over decision making, that is, when there is the critical number
of winners jN . In Strulovici (2010a), players discount future payoffs. As a result, the
equilibrium cut-offs are above p̄ and depend on the number of winners. Note though
that, if players learn the type of their risky arm immediately, then p(jN) = p̄; see Corollary
1 in Strulovici (2010a).

Theorem A.1 also states that, if the payoff of the good arm is relatively high, then
even pessimistic unsure voters find it worthwhile to take the risk and experiment with
the risky arm, that is, p̄ = 0. If the payoff of the good arm is not high, then unsure
voters must be optimistic enough to choose the risky arm over the safe one. Specifically,
p̄ satisfies

1− p̄ = N+1
N−1

(1− pM).

Recall that the myopic threshold is pM = s
g
. It follows that p̄ < pM , that is, unsure

voters still care not only about the current payoff. However, if the number of players
grows arbitrary large, then they start behaving myopically; see Proposition A.1 below.
In general, the equilibrium cut-off p̄ increases with the number of players N . Indeed,
if there are many players, then unsure voters are more anxious to experiment with the
risky arm and become more biased toward the safe arm.

Proposition A.1 (Number of Players with Learning via Good News). If λb = 0, then the
equilibrium cut-offs are non-decreasing in the number of players N . Furthermore, limN→∞ p̄ =
pM .

A.1.2 Value Functions

Let q denote a normalized belief of unsure voters, which is defined by

q := p−p̄
1−p̄ ,

where p is the belief of unsure voters. The normalized belief q can be interpreted as a
probability that an unsure voter who actually has the good arm learns about it before
her belief falls to p̄. It is convenient to work with normalized beliefs, because, unless
winners form a majority, experimentation goes on as long as the belief p of unsure voters
is above p̄, that is, as long as q is above 0.

If winners are not in majority when the belief of unsure voters falls to p̄, then the
safe arm is implemented. As a result, winners and unsure voters get the same payoff
s. If winners are in majority or unsure voters are optimistic, then the risky arm is the
voting outcome. Given the number of winners j and the belief p of unsure voters, the
expected payoffs, or the value functions, of winners and unsure voters are given by w(j, p)
and u(j, p). With a slight abuse of notation regarding the dependence on the belief p and
on the normalized belief q, w(j, p) and u(j, p) are equal to w̃(j, q) and ũ(j, q) described in
detail below. All these are summarized in Lemma A.1 below.

The value function of winners is given by

w̃(j, q) = gP[R is implemented] + sP[S is implemented], (A.1)
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where the probabilities are defined by

P[R is implemented] :=

N−1
2∑

k=0

(
N−j
k

)
qN−j−k(1− q)k,

P[S is implemented] :=

jN−j∑
m=0

(
N−j
m

)
qm(1− q)N−j−m.

The value function of unsure voters is given by

ũ(j, q) = gqP[R is implemented | being a winner]
+ p̄g(1− q)P[R is implemented | being a loser] + sP[S is implemented], (A.2)

where the probabilities are defined by

P[R is implemented | being a winner] :=

N−1
2∑

k=0

(
N−j−1

k

)
qN−j−1−k(1− q)k,

P[R is implemented | being a loser] :=

N−1
2
−1∑

k=0

(
N−j−1

k

)
qN−j−1−k(1− q)k

The interpretation of the value functions and the probabilities is as in Section 1.3.3.

Lemma A.1 (Equilibrium Value Functions with Learning via Good News). The equilib-
rium value functions of winners w(j, p) and unsure voters u(j, p) satisfy:

– w(j, p) = w̃(j, q) and u(j, p) = ũ(j, q) for all p > p̄, where q := p−p̄
1−p̄ ,

– w(j, p) = u(j, p) = s for all p ≤ p̄,
for all j ≤ jN .

A.2 Proofs
Identities defined in Claims A.1 and A.2 are used in the proofs below.

Claim A.1. For a1 ∈ N0, a2 ∈ N0, and q ∈ (0, 1),2

Φq(a1, a2) :=

a2∑
k=0

(
a1+a2
k

) (
1− a1+a2+1

a1+a2+1−kq
)
qa2−k(1− q)k =

(
a1+a2
a2

)
(1− q)a2+1.

Proof. I prove the claim using the induction argument on a2. Let a2 = 0, then both sides
are equal to 1 − q. I assume that the equality holds for a2 − 1, and I show next that it is
also holds for a2. I rewrite Φq(a1, a2) as follows:

Φq(a1, a2) = q

a2−1∑
k=0

(
a1+a2
k

) (
1− a1+a2+1

a1+a2+1−kq
)
qa2−1−k(1− q)k

2The set N0 is a set of natural numbers including zero, that is, N0 := {0, 1, 2, 3, . . .}.
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+
(
a1+a2
a2

) (
1− a1+a2+1

a1+1
q
)

(1− q)a2 .

The sum in the last expression is equal to Φq(a1 + 1, a2−1). Applying the assumption for
a2 − 1 yields

Φq(a1, a2) =
(
a1+a2
a2−1

)
q(1− q)a2 +

(
a1+a2
a2

)
(1− q)a2+1 −

(
a1+a2
a2−1

)
q(1− q)a2

=
(
a1+a2
a2

)
(1− q)a2+1,

which gives the result. �

Claim A.2. For a1 ∈ N0, a2 ∈ N0, and q ∈ (0, 1),

Ψq(a1, a2) :=

a2∑
k=0

(
a1+a2
k

) [
1− (a1+a2+1)(a1+a2+2)

(a1+a2+1−k)(a1+a2+2−k)
q2
]
qa2−k(1− q)k

=
(
a1+a2+1

a2

)
q(1− q)a2+1 +

(
a1+a2
a2

)
(1− q)a2+1.

Proof. I prove the claim using the induction argument on a2. Let a2 = 0, then both sides
are equal to (1 + q)(1 − q). I assume that the equality holds for a2 − 1, and I show next
that it also holds for a2. I rewrite Ψq(a1, a2) as follows:

Ψq(a1, a2) = q

a2−1∑
k=0

(
a1+a2
k

) [
1− (a1+a2+1)(a1+a2+2)

(a1+a2+1−k)(a1+a2+2−k)
q2
]
qa2−1−k(1− q)k

+
(
a1+a2
a2

) [
1− (a1+a2+1)(a1+a2+2)

(a1+1)(a1+2)
q2
]

(1− q)a2 .

The sum in the last expression is equal to Ψq(a1 + 1, a2 − 1). Applying the assumption
for a2 − 1 yields

Ψq(a1, a2) = q
[(

a1+a2+1
a2−1

)
q(1− q)a2 +

(
a1+a2
a2−1

)
(1− q)a2

]
+
(
a1+a2
a2

) [
1− (a1+a2+1)(a1+a2+2)

(a1+1)(a1+2)
q2
]

(1− q)a2 .

Note the following:
(
a1+a2+1
a2−1

)
= (a1+a2+1)a2

(a1+1)(a1+2)

(
a1+a2
a2

)
,
(
a1+a2
a2−1

)
=
(
a1+a2+1

a2

)
−
(
a1+a2
a2

)
, and(

a1+a2+1
a2

)
= a1+a2+1

a1+1

(
a1+a2
a2

)
. Therefore,

Ψq(a1, a2) =
[(

a1+a2+1
a2

)
−
(
a1+a2
a2

)]
q(1− q)a2 +

(
a1+a2
a2

)
q2(1− q)a2 −

(
a1+a2+1

a2

)
q2(1− q)a2 ,

which gives the result. �

For the proofs that follow, it is convenient to define x := iN − i and y := jN − j.
The functions l̃(i, j, p), w̃(i, j, p), and ũ(i, j, p) in (1.2), (1.3), and (1.4) can be rewritten as
follows:

l̃(iN − x, jN − y, p) = bpy+1

x∑
k=0

(
x+y+1
k

)
px−k(1− p)k

+ s(1− p)x+1

y∑
m=0

(
x+y+1
m

)
pm(1− p)y−m, (A.3)
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w̃(iN − x, jN − y, p) = gpy+1

x∑
k=0

(
x+y+1
k

)
px−k(1− p)k

+ s(1− p)x+1

y∑
m=0

(
x+y+1
m

)
pm(1− p)y−m, (A.4)

and

ũ(iN − x, jN − y, p) = bpy+1(1− p)
x−1∑
k=0

(
x+y
k

)
px−1−k(1− p)k

+ gpy+1

x∑
k=0

(
x+y
k

)
px−k(1− p)k + s(1− p)x+1

y∑
m=0

(
x+y+1
m

)
pm(1− p)y−m. (A.5)

Similarly, the functions w̃(j, q) and ũ(j, q) in (A.1) and (A.2) can be rewritten as follows:

w̃(jN − y, q) = gqy+1

N−1
2∑

k=0

(N+1
2

+y

k

)
q
N−1

2
−k(1− q)k

+ s(1− q)
N+1

2

y∑
m=0

(N+1
2

+y
m

)
qm(1− q)y−m, (A.6)

ũ(jN − y, q) = gqy+1

N−1
2∑

k=0

(N+1
2

+y−1

k

)
q
N−1

2
−k(1− q)k

+ p̄gqy+1(1− q)

N−1
2
−1∑

k=0

(N+1
2

+y−1

k

)
q
N−1

2
−1−k(1− q)k (A.7)

+ s(1− q)
N+1

2

y∑
m=0

(N+1
2

+y
m

)
qm(1− q)y−m.

A.2.1 Proof of Theorems 1.1 and 1.2, Corollaries 1.1 and 1.2, and Lemma
1.1

Theorem 1.1 and Lemma 1.1 follow from the next lemmata. Theorem 1.2 is a special case
of Theorem 1.1. Corollaries 1.1 and 1.2 are direct consequences of Theorem 1.1.

Lemma A.2. The equilibrium exists and is unique.

Proof. Similar to Strulovici (2010a), the equilibrium existence and uniqueness come
from a backward induction argument on the number of losers and winners. �

Lemma A.3. The value functions of losers, winners, and unsure voters satisfy l(i, j, p) ≥ l̃(i, j, p),
w(i, j, p) ≤ w̃(i, j, p), and u(i, j, p) ≥ ũ(i, j, p) for all p ∈ [0, 1], i ≤ iN , and j ≤ jN , with equal-
ities if p0 > maxi≤iN ,j≤jN p(i, j).

Proof. Assume that unsure voters start experimenting with the risky arm and stop ex-
perimentation if and only if losers form a majority. In particular, this is the case if p0 >
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maxi≤iN ,j≤jN p(i, j), because the belief of unsure voters is always above the cut-off they
use given the current number of losers and winner, i.e., p ≥ p(i, j) for all i ≤ iN and
j ≤ jN .

Because unsure voters can become either losers or winners, but not other way around,
the sets of losers I and winners J can only grow over time. I proceed with an induction
argument based on the number of losers i and winners j.

If i > iN , then losers form a majority, and so the safe arm is implemented. In particu-
lar, it follows that l(iN+1, jN , p) = w(iN+1, jN , p) = s. If j > jN , then winners form a ma-
jority, and so the risky arm is implemented. In particular, it follows that l(iN , jN+1, p) = b
and w(iN , jN + 1, p) = g.

If x = 0 and y = 0, i.e., if i = iN and j = jN , then N − iN − jN = 1. The value func-
tion of unsure voters, when they experiment, satisfies the following ordinary differential
equation (ODE):

u(iN , jN , p) = 1
λgp+λb(1−p)

[λb(1− p)s+ λgpg + (λb − λg)p(1− p)∂pu(iN , jN , p)] .

The solution to the ODE takes the form:3

u(iN , jN , p) = pg + (1− p)s+ C(1− p)
(

p
1−p

) λb
λb−λg ,

where C is a constant of integration. The value function of unsure voters must satisfy
the boundary condition u(iN , jN , 1) = g. Therefore, C = 0, and so

u(iN , jN , p) = pg + (1− p)s.

Note that u(iN , jN , p) = ũ(iN , jN , p). Similarly, the value functions of losers and winners
must solve:

l(iN , jN , p) = 1
λgp+λb(1−p)

[λgpb+ λb(1− p)s+ (λb − λg)p(1− p)∂pl(iN , jN , p)]

subject to l(iN , jN , 1) = b, and

w(iN , jN , p) = 1
λgp+λb(1−p)

[λgpg + λb(1− p)s+ (λb − λg)p(1− p)∂pw(iN , jN , p)]

subject to w(iN , jN , 1) = g. It follows that l(iN , jN , p) = l̃(iN , jN , p) and w(iN , jN , p) =
w̃(iN , jN , p).

Assume that the lemma holds for all x′ ∈ {0, . . . , x} (i.e., for all i′ ∈ {i, . . . , iN}) and
all y′ ∈ {0, . . . , y} (i.e., for all j′ ∈ {j, . . . , jN}), but not when both x′ = x and y′ = y at
the same time. Next I show that it also holds for x and y (i.e., for i and j).

The value function of unsure voters, when they experiment, satisfies the following
ODE:

u(i, j, p) = 1
(N−i−j)(λgp+λb(1−p))

(
λb(1− p)[l(i+ 1, j, p) + (N − i− j − 1)u(i+ 1, j, p)]

3The solution to the ODE of the form f ′(x) + a(x)f(x) = b(x) is given by

f(x) = e−A(x)

(∫
b(x)eA(x)dx+ C

)
,

where A(x) =
∫
a(x)dx and C is a constant of integration.
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+ λgp[w(i, j + 1, p) + (N − i− j − 1)u(i, j + 1, p)] + (λb − λg)p(1− p)∂pu(i, j, p)
)
,

where u(i+1, j, p) = ũ(i+1, j, p), l(i+1, j, p) = l̃(i+1, j, p), u(i, j+1, p) = ũ(i, j+1, p), and
w(i, j+1, p) = w̃(i, j+1, p) by assumption. Solving the ODE subject to u(i, j, 1) = g yields
u(i, j, p) = ũ(i, j, p). Similarly, the value functions of losers and winners must solve:

l(i, j, p) = 1
(N−i−j)(λgp+λb(1−p))

[λb(1− p)(N − i− j)l(i+ 1, j, p)

+ λgp(N − i− j)l(i, j + 1, p) + (λb − λg)p(1− p)∂pl(i, j, p)]

subject to l(i, j, 1) = b, and

w(i, j, p) = 1
(N−i−j)(λgp+λb(1−p))

[λb(1− p)(N − i− j)w(i+ 1, j, p)

+ λgp(N − i− j)w(i, j + 1, p) + (λb − λg)p(1− p)∂pw(i, j, p)]

subject to w(i, j, 1) = g, where l(i + 1, j, p) = l̃(i + 1, j, p), l(i, j + 1, p) = l̃(i, j + 1, p),
w(i + 1, j, p) = w̃(i + 1, j, p), and w(i, j + 1, p) = w̃(i, j + 1, p) by assumption. It follows
that l(i, j, p) = l̃(i, j, p) and w(i, j, p) = w̃(i, j, p).

The function ũ(i, j, p) is found assuming that, if unsure voters choose to experiment
with the risky arm for the very first time when neither of them has learned whether she is
a loser or a winner, they stop if and only if losers form a majority. Because unsure voters
can always vote for the safe arm instead, their value function satisfies u(i, j, p) ≥ ũ(i, j, p).
Furthermore, the value functions of losers and winners satisfy l(i, j, p) ≥ l̃(i, j, p) and
w(i, j, p) ≤ w̃(i, j, p), since the safe arm is preferred by losers, while the risky arm is
preferred by winners. �

Let p̃(i, j) be such that ũ(i, j, p̃(i, j)) = s and ũ(i, j, p) > s for all p > p̃(i, j). That is,
p̃(i, j) is the largest p for which the value-matching condition holds.

Lemma A.4. p̃(i, j) ≥ p(i, j) for all i ≤ iN and j ≤ jN .

Proof. Because the value function of unsure voters satisfies u(i, j, p) ≥ ũ(i, j, p) for all
p ∈ [0, 1], i ≤ iN , and j ≤ jN , p̃(i, j) are upper bounds for the cut-offs p(i, j). �

Lemma A.5. The function l̃(i, j, p) decreases in p, while the function w̃(i, j, p) increases in p for
all p ∈ [0, 1], i ≤ iN , and j ≤ jN .

Proof. I work with l̃(i, j, p) and w̃(i, j, p) written as (A.3) and (A.4) with x := iN − i and
y := jN − j. The partial derivative with respect to p of l̃(iN − x, jN − y, p) is as follows:

∂pl̃(iN−x, jN−y, p) = b

x∑
k=0

(
x+y+1
k

) [
(x+ y + 1− k)px+y−k(1− p)k − kpx+y+1−k(1− p)k−1

]
+ s

y∑
m=0

(
x+y+1
m

) [
mpm−1(1− p)x+y+1−m − (x+ y + 1−m)pm(1− p)x+y−m] .

Note that
x∑
k=0

(
x+y+1
k

)
kpx+y+1−k(1− p)k−1 =

x∑
k=1

(
x+y+1
k

)
kpx+y+1−k(1− p)k−1
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p

ũ(i, j, p)

s
1

g

p̃(i, j)

p

ũ(i, j, p)

s
1

g

p̃(i, j) p

ũ(i, j, p)

s
1

g

p̃(i, j)

Figure A.1. The shape of ũ(i, j, p) as a function of p. Case 1 (left): ũ(i, j, p) is concave and then convex, and
p̃(i, j) > 0. Case 2 (middle): ũ(i, j, p) is convex, and p̃(i, j) = 0. Case 3 (right): ũ(i, j, p) is convex and then
concave, and p̃(i, j) = 0. Parameters: (N, g, s, b, i, j) = (5, 1, 0, b, 0, 0) with b = −5 (left), b = −1 (middle),
and b = −0.05 (right).

=
x−1∑
k=0

(
x+y+1
k

)
(x+ y + 1− k)px+y−k(1− p)k.

Similarly,

y∑
m=0

(
x+y+1
m

)
mpm−1(1− p)x+y+1−m =

y−1∑
m=0

(
x+y+1
m

)
(x+ y + 1−m)pm(1− p)x+y−m.

Therefore,

∂pl̃(iN − x, jN − y, p) = −(s− b)(x+ y + 1)
(
x+y
x

)
py(1− p)x < 0,

for all p ∈ (0, 1).
The function w̃(i, j, p) is the same as l̃(i, j, p), except b in the latter should be replaced

by g. Thus, the partial derivative with respect to p of w̃(iN − x, jN − y, p) takes the form

∂pw̃(iN − x, jN − y, p) = (g − s)(x+ y + 1)
(
x+y
x

)
py(1− p)x > 0,

for all p ∈ (0, 1). �

Lemma A.6. The function ũ(i, j, p) increases in p for all p ≥ p̃(i, j), i ≤ iN , and j ≤ jN .

Proof. The lemma is proved by exploiting convexity of ũ(i, j, p) as a function of p. De-
pending on parameters, ũ(i, j, p) can take only one of three shapes (see Figure A.1),
which correspond to three cases analyzed in the end of the proof. In particular, ũ(i, j, p)
has at most one inflection point.

I work with ũ(i, j, p) written as (A.5) with x := iN − i and y := jN − j. As it is useful
later on, note that

ũ(iN − x, jN − y, 0) = s,

ũ(iN − x, jN − y, 1) = g,
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for all x ≤ iN and y ≤ jN .

I start with the analysis of particular cases, namely, i = iN (i.e., x = 0) and j = jN
(i.e., y = 0), because they are slightly different from the others (as will be emphasized
in footnote 4). When i = iN , i.e., when x = 0, ũ(iN , j, p) takes the form

ũ(iN , jN − y, p) = s

y∑
m=0

(
y+1
m

)
pm(1− p)y+1−m + gpy+1

= s
(
1− py+1

)
+ gpy+1 = s+ (g − s)py+1.

Its partial derivative with respect to p is as follows:

∂pũ(iN , jN − y, p) = (g − s)(y + 1)(1− p)y > 0,

for all p ∈ (0, 1), i.e., ũ(iN , j, p) is increasing in p for all p ∈ (0, 1). Together with ũ(iN , j, 0) =
s, it implies that p̃(iN , j) = 0 for all j ≤ jN .

When j = jN , i.e., when y = 0, ũ(i, jN , p) takes the form

ũ(iN − x, jN , p) = b(1− p)
x−1∑
k=0

(
x
k

)
px−k(1− p)k + s(1− p)x+1 + gp

x∑
k=0

(
x
k

)
px−k(1− p)x

= b(1− p) (1− (1− p)x) + s(1− p)x+1 + gp = g − (g − b)(1− p) + (s− b)(1− p)x+1.

Its partial derivative with respect to p is as follows:

∂pũ(iN − x, jN , p) = (g − b)− (s− b)(x+ 1)(1− p)x.

In particular, ∂pũ(iN , jN , 1) = g− b > 0. The second order partial derivative with respect
to p yields

∂2
ppũ(iN − x, jN , p) = (s− b)x(x+ 1)(1− p)x−1 > 0,

i.e., ũ(i, jN , p) is convex (or linear if i = iN , i.e., if x = 0) for all p ∈ (0, 1). Therefore,
since ∂pũ(i, jN , 1) > 0 as well as ũ(i, jN , 0) = s, ũ(i, jN , p) is increasing for all p ≥ p̃(i, jN).
Moreover, p̃(i, jN) = 0 whenever

g − b > (s− b)(x+ 1) ⇔ g − s > (s− b)x,

i.e., whenever ũ(i, jN , p) is decreasing for all p ∈ (0, 1). Otherwise, p̃(i, jN) ∈ (0, 1).

Next I look at the case with arbitrary x ∈ {1, . . . , iN} and y ∈ {1, . . . , jN}. I con-
sider partial derivatives with respect to p of each term of ũ(i, j, p) separately. The partial
derivative of the term corresponding to b is as follows:

∂p

(
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k+1

)

=
x−1∑
k=0

(
x+y
k

) [
(x+ y − k)px+y−1−k(1− p)k+1 − (k + 1)px+y−k(1− p)k

]
,
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where
x−1∑
k=0

(
x+y
k

)
kpx+y−k(1− p)k =

x−2∑
k=0

(
x+y
k

)
(x+ y − k)px+y−1−k(1− p)k+1.

Hence,

∂p

(
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k+1

)
= −

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + x

(
x+y
x

)
py(1− p)x.

The partial derivative of the term corresponding to g is as follows:

∂p

(
x∑
k=0

(
x+y
k

)
px+y+1−k(1− p)k

)

=
x∑
k=0

(
x+y
k

) [
(x+ y + 1− k)px+y−k(1− p)k − kpx+y+1−k(1− p)k−1

]
,

where
x∑
k=0

(
x+y
k

)
kpx+y+1−k(1− p)k−1 =

x−1∑
k=0

(
x+y
k

)
(x+ y − k)px+y−k(1− p)k.

Hence,

∂p

(
x∑
k=0

(
x+y
k

)
px+y+1−k(1− p)k

)
=

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + (y + 1)

(
x+y
x

)
py(1− p)x.

As shown in the proof of Lemma A.5, the partial derivative of the term corresponding to
s is as follows:

∂p

(
y∑

m=0

(
x+y+1
m

)
pm(1− p)x+y+1−m

)
= −s(x+ y + 1)

(
x+y
x

)
py(1− p)x.

All in all, the partial derivative with respect to p of ũ(i, j, p) takes the form

∂pũ(iN − x, jN − y, p) = (g − b)
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k

− [−bx+ s(x+ y + 1)− g(y + 1)]
(
x+y
x

)
py(1− p)x.

Note for future reference that4

∂pũ(iN − x, jN − y, 0) = 0,

∂pũ(iN − x, jN − y, 1) = g − b > 0.

To prove the lemma, I exploit convexity of ũ(i, j, p) as a function of p. For this reason,

4Note that ∂pũ(iN , jN−y, 1) = (g−s)(y+1) when x = 0, and ∂pũ(iN−x, jN , 0) = (g−b)−(s−b)(x+1)
when y = 0, which makes these cases slightly different.
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I look at its second order partial derivative with respect to p next. Note that

∂p

(
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k

)

=
x−1∑
k=0

(
x+y
k

) [
(x+ y − k)px+y−1−k(1− p)k − kpx+y−k(1− p)k−1

]
=

x−1∑
k=0

(
x+y
k

)
(x+ y − k)px+y−1−k(1− p)k −

x−2∑
k=0

(
x+y
k

)
(x+ y − k)px+y−1−k(1− p)k

= x
(
x+y
x

)
py(1− p)x−1.

Therefore,

∂2
ppũ(iN − x, jN − y, p) = (g − b)x

(
x+y
x

)
py(1− p)x−1

− [−bx+ s(x+ y + 1)− g(y + 1)]
(
x+y
x

) [
ypy−1(1− p)x − xpy(1− p)x−1

]
,

which simplifies to

∂2
ppũ(iN − x, jN − y, p) =

(
x+y
x

)
py−1(1− p)x−1D(x, y, p),

where D(x, y, p) := [A(x, y) +B(x, y)] p−B(x, y) with

A(x, y) := x [−b(x+ 1) + s(x+ y + 1)− gy] ,

B(x, y) := y [−bx+ s(x+ y + 1)− g(y + 1)] .

Therefore, the sign of ∂2
ppũ(iN − x, jN − y, p) for p ∈ (0, 1) coincides with the sign of

D(x, y, p). Note also that

A(x, y) > 0 ⇔ (s− b)(x+ 1) > (g − s)y,
B(x, y) > 0 ⇔ (s− b)x > (g − s)(y + 1),

and let p̄ := B(x,y)
A(x,y)+B(x,y)

. There are three cases to consider.
Case 1: If (s− b)x > (g − s)(y + 1), i.e., if A(x, y) > 0 and B(x, y) > 0, then

∂2
ppũ(iN −x, jN −y, p) > 0 ⇔ [A(x, y) +B(x, y)] p−B(x, y) > 0 ⇔ p > p̄ ∈ (0, 1).

Hence, ũ(iN − x, jN − y, p) is concave for p ∈ (0, p̄) and convex for p ∈ (p̄, 1).
Case 2: If (s− b)x < (g− s)(y+ 1), but (s− b)(x+ 1) > (g− s)y, i.e., if A(x, y) > 0 and

B(x, y) < 0, then
∂2
ppũ(iN − x, jN − y, p) > 0.

Hence, ũ(iN − x, jN − y, p) is convex for all p ∈ (0, 1).
Case 3: If (s− b)(x+ 1) > (g − s)y, i.e., if A(x, y) < 0 and B(x, y) < 0, then

∂2
ppũ(iN −x, jN −y, p) > 0 ⇔ [A(x, y) +B(x, y)] p−B(x, y) > 0 ⇔ p < p̄ ∈ (0, 1).

Hence, ũ(iN − x, jN − y, p) is convex for p ∈ (0, p̄) and concave for p ∈ (p̄, 1).
Now it is easy to see that the lemma also holds for x ∈ {1, . . . , iN} and y ∈ {1, . . . , jN},
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i.e., for i ≤ iN − 1 and j ≤ jN − 1. First, ũ(i, j, 1) = g and ∂pũ(i, j, 1) = g − b > 0 imply
that ũ(i, j, p) is increasing for large p, and is larger than s. Furthermore, ũ(i, j, 0) = s and
∂pũ(i, j, 0) = 0 imply that ũ(i, j, p) reaches s smoothly. Therefore, in Case 1, ũ(i, j, p) must
reach s at p = 0 from below. Hence, in such a case, the cut-off is p̃(i, j) > 0, and ũ(i, j, p) is
increasing for all p ≥ p̃(i, j). In Cases 2 and 3, ũ(i, j, p) must reach s at p = 0 from above.
It follows that p̃(i, j) = 0 and ũ(i, j, p) is increasing for all p ∈ (0, 1). �

Lemma A.7. The upper bounds p̃(i, j) satisfy:
– p̃(i, j) ∈ (0, 1) if (s− b)(iN − i) > (g − s)(jN − j + 1),
– p̃(i, j) = 0 if (s− b)(iN − i) ≤ (g − s)(jN − j + 1),

for all i ≤ iN and j ≤ jN .

Proof. The lemma follows immediately from the proof of Lemma A.6. �

Lemma A.8. The functions l̃(i, j, p) and w̃(i, j, p) depend on i and j as follows:
– l̃(i+ 1, j, p) > l̃(i, j, p) and w̃(i+ 1, j, p) < w̃(i, j, p) for all i ≤ iN − 1 and j ≤ jN ,
– l̃(i, j + 1, p) < l̃(i, j, p) and w̃(i, j + 1, p) > w̃(i, j, p) for all i ≤ iN and j ≤ jN − 1,

for all p ∈ (0, 1).

Proof. I work with l̃(i, j, p) and w̃(i, j, p) written as (A.3) and (A.4) with x := iN − i and
y := jN − j. I begin with dependence of l̃(i, j, p) on i:

l̃(i+ 1, j, p)− l̃(i, j, p) = l̃(iN − (x− 1), jN − y, p)− l̃(iN − x, jN − y, p)

= b
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + s

y∑
m=0

(
x+y
m

)
pm(1− p)x+y−m

− b
x∑
k=0

(
x+y+1
k

)
px+y+1−k(1− p)k − s

y∑
m=0

(
x+y+1
m

)
pm(1− p)x+y+1−m,

which can be rewritten as

l̃(i+ 1, j, p)− l̃(i, j, p) = bpyΦp(y, x)− b
(
x+y
x

)
py(1− p)x + s(1− p)xΦ1−p(x, y),

where Φq(a1, a2) is defined in Claim A.1. It follows that

l̃(i+ 1, j, p)− l̃(i, j, p) = bpy
(
x+y
x

)
(1− p)x+1 − b

(
x+y
x

)
py(1− p)x + s(1− p)x

(
x+y
y

)
py+1

= (s− b)
(
x+y
x

)
py+1(1− p)x > 0,

for all p ∈ (0, 1).
The function w̃(i, j, p) is the same as l̃(i, j, p), except b in the latter should be replaced

by g. Hence,

w̃(i+ 1, j, p)− w̃(i, j, p) = −(g − s)
(
x+y
x

)
py+1(1− p)x < 0,

for all p ∈ (0, 1).
Next I examine the dependence of l̃(i, j, p) on j:

l̃(i, j + 1, p)− l̃(i, j, p) = l̃(iN − x, jN − (y − 1), p)− l̃(iN − x, jN − y, p)

= b

x∑
k=0

(
x+y
k

)
px+y−k(1− p)k + s

y−1∑
m=0

(
x+y
m

)
pm(1− p)x+y−m
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− b
x∑
k=0

(
x+y+1
k

)
px+y+1−k(1− p)k − s

y∑
m=0

(
x+y+1
m

)
pm(1− p)x+y+1−m,

which can be rewritten as

l̃(i, j + 1, p)− l̃(i, j, p) = bpyΦp(y, x) + s(1− p)xΦ1−p(x, y)− s
(
x+y
y

)
py(1− p)x,

where Φq(a1, a2) is defined in Claim A.1. It follows that

l̃(i, j + 1, p)− l̃(i, j, p) = bpy
(
x+y
x

)
(1− p)x+1 + s(1− p)x

(
x+y
y

)
py+1 − s

(
x+y
y

)
py(1− p)x

= −(s− b)
(
x+y
x

)
py(1− p)x+1 < 0,

for all p ∈ (0, 1).
Applying the same argument as above, yields

w̃(i, j + 1, p)− w̃(i, j, p) = (g − s)
(
x+y
x

)
py(1− p)x+1 > 0,

for all p ∈ (0, 1). �

Lemma A.9. The function ũ(i, j, p) depends on i and j as follows:
– if (s− b)(iN − i) > (g − s)(jN − j), then

– ũ(i+ 1, j, p) > ũ(i, j, p) for all i ≤ iN − 1 and j ≤ jN , and
– ũ(i, j + 1, p) < ũ(i, j, p) for all i ≤ iN and j ≤ jN − 1,

– if (s− b)(iN − i) < (g − s)(jN − j), then
– ũ(i+ 1, j, p) < ũ(i, j, p) for all i ≤ iN − 1 and j ≤ jN , and
– ũ(i, j + 1, p) > ũ(i, j, p) for all i ≤ iN and j ≤ jN − 1,

for all p ∈ (0, 1).
Proof. I work with ũ(i, j, p) written as (A.5) with x := iN − i and y := jN − j. I begin
with the dependence on i:

ũ(i+ 1, j, p)− ũ(i, j, p) = ũ(iN − (x− 1), jN − y, p)− ũ(iN − x, jN − y, p)

= b

x−2∑
k=0

(
x+y−1
k

)
px+y−1−k(1− p)k+1 + s

y∑
m=0

(
x+y
m

)
pm(1− p)x+y−m

+ g
x−1∑
k=0

(
x+y−1
k

)
px+y−k(1− p)k − b

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k+1

− s
y∑

m=0

(
x+y+1
m

)
pm(1− p)x+y+1−m − g

x∑
k=0

(
x+y
k

)
px+y+1−k(1− p)k,

which can be rewritten as follows:

ũ(i+ 1, j, p)− ũ(i, j, p) = bpy(1− p)Φp(y, x− 1)− b
(
x+y−1
x−1

)
py(1− p)x

+ s(1− p)xΦ1−p(x, y) + gpyΦp(y, x)− g
(
x+y−1
x

)
py(1− p)x,

where Φq(a1, a2) is defined in Claim A.1. It follows that

ũ(i+ 1, j, p)− ũ(i, j, p) = bpy(1− p)
(
x+y−1
x−1

)
(1− p)x − b

(
x+y−1
x−1

)
py(1− p)x

+ s(1− p)x
(
x+y
y

)
py+1 + gpy

(
x+y−1
x

)
(1− p)x+1 − g

(
x+y−1
x

)
py(1− p)x
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= 1
x+y

[(s− b)x− (g − s)y]
(
x+y
x

)
py+1(1− p)x,

i.e., the sign of ũ(i+ 1, j, p)− ũ(i, j, p) coincides with the sign of [(s− b)x− (g − s)y].
Next I examine the dependence on j:

ũ(i, j + 1, p)− ũ(i, j, p) = ũ(iN − x, jN − (y − 1), p)− ũ(iN − x, jN − y, p)

= b
x−1∑
k=0

(
x+y−1
k

)
px+y−1−k(1− p)k+1 + s

y−1∑
m=0

(
x+y
m

)
pm(1− p)x+y−m

+ g

x∑
k=0

(
x+y−1
k

)
px+y−k(1− p)k − b

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k+1

− s
y∑

m=0

(
x+y+1
m

)
pm(1− p)x+y+1−m − g

x∑
k=0

(
x+y
k

)
px+y+1−k(1− p)k,

which can be rewritten as follows:

ũ(i, j + 1, p)− ũ(i, j, p) = bpy(1− p)Φp(y, x− 1)

+ s(1− p)xΦ1−p(x, y)− s
(
x+y
y

)
py(1− p)x + gpyΦp(y, x),

where Φq(a1, a2) is defined in Claim A.1. It follows that

ũ(i, j + 1, p)− ũ(i, j, p) = bpy(1− p)
(
x+y−1
x−1

)
(1− p)x + s(1− p)x

(
x+y
y

)
py+1

− s
(
x+y
y

)
py(1− p)x + gpy

(
x+y−1
x

)
(1− p)x+1

= 1
x+y

[−(s− b)x+ (g − s)y]
(
x+y
x

)
py(1− p)x+1,

i.e., the sign of ũ(i, j+ 1, p)− ũ(i, j, p) coincides with the sign of [−(s− b)x+ (g− s)y]. �

Lemma A.10. The upper bounds p̃(i, j) depend on i and j as follows:
– if (s− b)(iN − i) > (g − s)(jN − j + 1), then

– p̃(i+ 1, j) < p̃(i, j) for all i ≤ iN − 1 and j ≤ jN , and
– p̃(i, j + 1) > p̃(i, j) for all i ≤ iN and j ≤ jN − 1,

– if (s− b)(iN − i) ≤ (g − s)(jN − j + 1), then
– p̃(i+ 1, j) = p̃(i, j) for all i ≤ iN − 1 and j ≤ jN , and
– p̃(i, j + 1) ≥ p̃(i, j) for all i ≤ iN and j ≤ jN − 1.

Proof. If (g − s)(jN − j + 1) < (s − b)(iN − i), then p̃(i, j) ∈ (0, 1) by Lemma A.7. It
also follows that (g − s)(jN − j) < (s − b)(iN − i). Therefore, p̃(i + 1, j) < p̃(i, j) and
p̃(i, j + 1) > p̃(i, j) by Lemmata A.6 and A.9 and the definition of p̃(i, j), in particular,
ũ(i, j, p̃(i, j)) = s.

If (g − s)(jN − j + 1) ≥ (s− b)(iN − i), then p̃(i, j) = 0 by Lemma A.7. It also follows
that (g − s)(jN − j + 1) ≥ (s − b)(iN − i − 1). Therefore, p̃(i + 1, j) = 0 by Lemma A.7.
However, (g − s)(jN − (j + 1)− 1) may be greater or smaller than (s− b)(iN − i), and so
p̃(i, j + 1) = 0 or p̃(i, j + 1) ∈ (0, 1) by Lemma A.7. �

Lemma A.11. The upper bounds p̃(i, j) are such that p̃(i, j) < pM for all i ≤ iN and j ≤ jN .

Proof. Lemma A.10 implies that the upper bounds p̃(i, j) are decreasing in i and in-
creasing in j. Therefore, it suffices to compare the highest upper bound p̃(0, jN) with the
myopic cut-off pM .
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The function ũ(0, jN , p) is as follows:

ũ(0, jN , p) = b(1− p)

N−1
2
−1∑

k=0

(N−1
2
k

)
p
N−1

2
−k(1− p)k

+ gp

N−1
2∑

k=0

(N−1
2
k

)
p
N−1

2
−k(1− p)k + s(1− p)

N+1
2 .

It can be rewritten in the following way

ũ(0, jN , p) = b(1− p)
(

1− (1− p)
N−1

2

)
+ gp+ s(1− p)

N+1
2

= gp+ b(1− p) + (s− b)(1− p)
N+1

2 .

Applying the definition of the myopic cut-off, i.e., s = gpM + b(1− pM), yields

ũ(0, jN , pM) = s+ (s− b)(1− pM)
N+1

2 > s.

It follows from ũ(0, jN , p̃(0, jN)) = s and Lemma A.6 that p̃(0, jN) < pM . �

A.2.2 Proof of Proposition 1.1

The first part of Proposition 1.1 is an immediate consequence of Theorem 1.1. As for the
second part, it follows from Theorem 1.1 that the largest upper bound is p̃(0, jN). The
function ũ(0, jN , p) is as follows:

ũ(0, jN , p) = b(1− p)

N−1
2
−1∑

k=0

(N−1
2
k

)
p
N−1

2
−k(1− p)k

+ gp

N−1
2∑

k=0

(N−1
2
k

)
p
N−1

2
−k(1− p)k + s(1− p)

N+1
2 .

It can be rewritten in the following way

ũ(0, jN , p) = b(1− p)
(

1− (1− p)
N−1

2

)
+ gp+ s(1− p)

N+1
2

= gp+ b(1− p) + (s− b)(1− p)
N+1

2 .

Therefore,
lim
N→∞

ũ(0, jN , p) = gp+ b(1− p)

for all p ∈ (0, 1). The definition of the upper bound p̃(0, jN), specifically, ũ(0, jN , p̃(0, jN)) =
s, together with the definition of the myopic cut-off, i.e., gpM + b(1− pM) = s, imply that
limN→∞ p̃(0, jN) = pM .
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A.2.3 Proof of Proposition 1.2

The exposition is simpler for the general setting. I go back to learning via bad news only
in the end of the proof.

Define by pN(i, j) and p̃N(i, j) the cut-off and its upper bound used by unsure voters in
the presence of i losers and j winners in the game withN players. It suffices to compare
the upper bounds p̃N(i, j) and p̃N ′(i, j) in two games with N and N ′ = N + 2 players
and the same number of losers and winners, i ≤ iN and j ≤ jN . Define by ũN(i, j, p) the
function ũ(i, j, p) in the game with N players.

Define Λ(x, y) by
Λ(x, y) := (s−b)(x+1)−(g−s)y

(s−b)x−(g−s)(y+1)
, (A.8)

where x := iN − i and y := jN − j. The proof makes use of the following lemma.

Lemma A.12. LetN be an odd positive integer andN ′ = N+2. The function ũN(i, j, p) depends
on N as follows:

– ũN ′(i, j, p) > ũN(i, j, p) for all 1−p
p
> y+1

x+1
Λ(x, y) if (s− b)x > (g − s)(y + 1),

– ũN ′(i, j, p) < ũN(i, j, p) for all 1−p
p
> y+1

x+1
Λ(x, y) if (s− b)x < (g − s)(y + 1),

for all i ≤ iN and j ≤ jN .

Proof. I work with the function ũN(i, j, p) written as (A.5). It follows that

ũN(i, j, p) = bp
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + g(1− p)

x∑
k=0

(
x+y
k

)
px+y−k(1− p)k

+ sp

y∑
m=0

(
x+y+1
m

)
pm(1− p)x+y−m,

and

ũN ′(i, j, p) = bp
x∑
k=0

(
x+y+2
k

)
px+y+2−k(1− p)k + g(1− p)

x+1∑
k=0

(
x+y+2
k

)
px+y+2−k(1− p)k

+ sp

y+1∑
m=0

(
x+y+3
m

)
pm(1− p)x+y+2−m

for N ′ = N + 2. Therefore,

ũN ′(i, j, p)− ũN(i, j, p) =− bpy+1(1− p)Ψp(y + 1, x− 1) + b
(
x+y+2
x

)
py+2(1− p)x+1

− s(1− p)x+1Ψ1−p(x+ 1, y) + s
(
x+y+3
y+1

)
py+1(1− p)x+2

− gpy+1Ψp(y, x) + g
(
x+y+2
x+1

)
py+2(1− p)x+1,

where Ψq(a1, a2) is defined in Claim A.2. It follows that

ũN ′(i, j, p)− ũN(i, j, p) = bpy+1(1− p)x+1
[(
x+y+2
x

)
p−

(
x+y+1
x−1

)
p−

(
x+y
x−1

)]
+ spy+1(1− p)x+1

[(
x+y+3
y+1

)
(1− p)−

(
x+y+2

y

)
(1− p)−

(
x+y+1

y

)]
+ gpy+1(1− p)x+1

[(
x+y+2
x+1

)
p−

(
x+y+1
x

)
p−

(
x+y
x

)]
.
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Note the following:
(
x+y+1
x−1

)
= x(x+1)

(y+2)(x+y+2)

(
x+y+2
x+1

)
,
(
x+y
x−1

)
= x(x+1)

(x+y+1)(x+y+2)

(
x+y+2
x+1

)
, and(

x+y
x

)
= (x+1)(y+1)

(x+y+1)(x+y+2)

(
x+y+2
x+1

)
. Hence,

ũN ′(i, j, p)− ũN(i, j, p) = b x+1
x+y+2

(
x+y+2
x+1

)
py+1(1− p)x+1

(
p− x

x+y+1

)
+ s
(
x+y+2
x+1

)
py+1(1− p)x+1

(
x+1
x+y+2

− p
)

+ g y+1
x+y+2

(
x+y+2
x+1

)
py+1(1− p)x+1

(
p− x+1

x+y+1

)
,

which can be rearranged as follows:

ũN ′(i, j, p)− ũN(i, j, p) =
(
x+y+2
x+1

)
py+1(1− p)x+1

×
[(
b x+1
x+y+2

− s+ g y+1
x+y+2

)
p− x+1

x+y+2

(
b x
x+y+1

− s+ g y+1
x+y+1

)]
.

The sign of ũN ′(i, j, p) − ũN(i, j, p) coincides with the sign of the expression in brackets,
which, if multiplied by (x+ y + 1)(x+ y + 2), can be written in the following way

−(x+ y + 1) [(s− b)(x+ 1)− (g − s)(y + 1)] p+ (x+ 1) [(s− b)x− (g − s)(y + 1)] ,

which, in turn, can be rewritten as follows:

(x+ 1) [(s− b)x− (g − s)(y + 1)] (1− p)− (y + 1) [(s− b)(x+ 1)− (g − s)y] p.

Therefore, the sign of ũN ′(i, j, p)−ũN(i, j, p) coincides with the sign of the last expression.
The statement of the lemma follows. �

If (s−b)x ≤ (g−s)(y+1), then p̃N(i, j) = 0 by Theorem 1.1 and ũN ′(i, j, p) ≤ ũN(i, j, p)
for all p ≤ p̂ by Lemma A.12, where p̂ is defined by

1−p̂
p̂

= y+1
x+1

Λ(x, y).

It follows that p̃N ′(i, j) ≥ p̃N(i, j).
If (s − b)x > (g − s)(y + 1), then p̃N(i, j) ∈ (0, 1) by Theorem 1.1 and ũN ′(i, j, p) ≤

ũN(i, j, p) for all p ≥ p̂ by Lemma A.12. When y 6= 0, it follows from the proof of Lemma
A.6 that, for p̃N ′(i, j) ≥ p̃N(i, j), it is sufficient to show that p̂ ≤ p̄, where p̄ is the inflection
point of ũN(i, j, p), defined in the proof of Lemma A.6 by

p̄ := B(x,y)
A(x,y)+B(x,y)

where A(x, y) and B(x, y) are as follows:

A(x, y) := x[(s− b)(x+ 1)− (g − s)y],

B(x, y) := y[(s− b)x− (g − s)(y + 1)].

Observe that Λ(x, y) given by (A.8) can be rewritten as

Λ(x, y) = y
x
A(x,y)
B(x,y)

,

and hence
p̂ = x(x+1)B(x,y)

y(y+1)A(x,y)+x(x+1)B(x,y)
.
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Therefore, p̃N ′(i, j) ≥ p̃N(i, j) if

p̂ ≤ p̄ ⇔ x(x+1)B(x,y)
y(y+1)A(x,y)+x(x+1)B(x,y)

≤ B(x,y)
A(x,y)+B(x,y)

⇔ y(y + 1) ≥ x(x+ 1).

With learning via bad news only, there are no winners, i.e., j = 0, and thus y = jN .
Furthermore, the uppers bounds coincide with the cut-offs used by unsure voters, i.e.,
pN(i) := pN(i, 0) = p̃N(i, 0) for all i ≤ iN , and so are the value functions, i.e., uN(i, p) :=
uN(i, 0, p) = ũN(i, 0, p). It follows from the argument above that pN ′(i) ≥ pN(i) forN and
N ′ = N + 2 and for all i ≤ iN . Finally, Theorem 1.2 implies that, if g − s ≥ s − b, then
pN(i) is independent of the number of players N and pN(i) = 0 for all i ≤ iN .

A.2.4 Proof of Proposition 1.3
The upper bounds p̃(i, j) are determined by the value-matching condition ũ(i, j, p̃(i, j)) =
s for all i ≤ iN and j ≤ jN . It follows that

dũ(i,j,p̃(i,j))
db

= ∂bũ(i, j, p̃(i, j)) + ∂pũ(i, j, p̃(i, j))dp̃(i,j)
db

= (1− p̃(i, j))
iN−i−1∑
k=0

(
N−i−j−1

k

)
p̃(i, j)N−i−j−1−k(1− p̃(i, j))k + ∂pũ(i, j, p̃(i, j))dp̃(i,j)

db
= 0,

where ∂pũ(i, j, p̃(i, j)) ≥ 0 by Lemma A.6. Therefore, p̃(i, j) is decreasing in b. Similarly,

dũ(i,j,p̃(i,j))
dg

= ∂gũ(i, j, p̃(i, j)) + ∂pũ(i, j, p̃(i, j))dp̃(i,j)
dg

= p̃(i, j)

iN−i∑
k=0

(
N−i−j−1

k

)
p̃(i, j)N−i−j−1−k(1− p̃(i, j))k + ∂pũ(i, j, p̃(i, j))dp̃(i,j)

dg
= 0,

and so p̃(i, j) is decreasing in g. Finally,

dũ(i,j,p̃(i,j))
ds

= ∂sũ(i, j, p̃(i, j)) + ∂pũ(i, j, p̃(i, j))dp̃(i,j)
ds

=

jN−j∑
m=0

(
N−i−j
m

)
p̃(i, j)m(1− p̃(i, j))N−i−j−m + ∂pũ(i, j, p̃(i, j))dp̃(i,j)

ds
= 1.

Because ∂pũ(i, j, p̃(i, j)) ≥ 0 by Lemma A.6 and

jN−j∑
m=0

(
N−i−j
m

)
p̃(i, j)m(1− p̃(i, j))N−i−j−m ≤ 1,

it follows that p̃(i, j) is increasing in s.

A.2.5 Proof of Lemma 1.2
The evolution of the game withN players and theQ-rule such thatQ < QN from the state
(i, j, p) on is equivalent to the evolution of the game withN+iQph players and the majority
rule from the state (i+ iQph, j, p) on. Recall that iQph := 2(QN−Q) is the number of phantom
losers. Indeed, the number of unsure voters is the same (N+iQph)−(i+iQph)−j = N−i−j
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and so is their belief p. Furthermore, if

(N+iQph)+1

2
− (i+ iQph) = N+1

2
− iQph

2
− i = QN − (QN −Q)− i = Q− i

more players become losers, then the safe arm will be implemented.

A.2.6 Proof of Lemma 1.3

The evolution of the game withN players and theQ-rule such thatQ > QN from the state
(i, j, p) on is equivalent to the evolution of the game withN+jQph players and the majority
rule from the state (i, j+jQph, p) on. Recall that jQph := 2(Q−QN) is the number of phantom
winners. Indeed, the number of unsure voters is the same (N+jQph)−i−(j+jQph) = N−i−j
and so is their belief p. Furthermore, if

(N+jQph)+1

2
− i = N+1

2
+

jQph
2
− i = QN + (Q−QN)− i = Q− i

more players become losers, then the safe arm will be implemented.

A.2.7 Proof of Theorems 1.3 and 1.4

It suffices to compare the upper bounds for the equilibrium cut-offs p̃Q(i, j) and p̃Q′(i, j)
in two games withQ andQ′ such thatQ′ = Q+1. The lower bound for the value function
of unsure voters in the game with the Q-rule is given by

ũQ(i, j, p) = b(1− p)
Q−2−i∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k

+ gp

Q−1−i∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k + s

N−Q−j∑
m=0

(
N−i−j
m

)
pm(1− p)N−i−j−m

for all p ≥ p̃Q(i, j), i ≤ iQN , and j ≤ jQN . Therefore,

ũQ
′
(i, j, p)− ũQ(i, j, p) = b(1− p)

(
N−i−j−1
Q−1−i

)
pN−Q−j(1− p)Q−1−i

+ gp
(
N−i−j−1

Q−i

)
pN−Q−1−j(1− p)Q−i − s

(
N−i−j
N−Q−j

)
pN−Q−j(1− p)Q−i

for all i ≤ iQN and all j ≤ jQ
′

N . It follows that

ũQ
′
(i, j, p)− ũQ(i, j, p) =

(
b Q−i
N−i−j + gN−Q−j

N−i−j − s
) (

N−i−j
N−Q−j

)
pN−Q−j(1− p)Q−i.

The sign of ũQ′(i, j, p)− ũQ(i, j, p) coincides with the sign of

−(s− b)(Q− i) + (g − s)(N −Q− j) = −(s− b)(Q′ − 1− i) + (g − s)(N −Q′ + 1− j).

If (s− b)(iQ
′

N − i) > (g − s)(jQ
′

N − j + 1), then p̃Q′(i, j) ∈ (0, 1) and so p̃Q(i, j) < p̃Q
′
(i, j). If

(s− b)(iQ
′

N − i) ≤ (g − s)(jQ
′

N − j + 1), then p̃Q(i, j) = p̃Q
′
(i, j) = 0.
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A.2.8 Proof of Lemma 1.4
If the social value function is greater than s for all beliefs of unsure voters, then the util-
itarian social planner chooses the risky arm over the safe arm unless Q∗ players receive
bad news. It follows from Lemmata 1.2 and 1.3 that, in the game with the Q-rule, the
bounds on the equilibrium value functions of losers, winners, and unsure voters are
given by

l̃Q(i, j, p) = b

Q−1−i∑
k=0

(
N−i−j

k

)
pN−i−j−k(1− p)k + s

N−Q−j∑
m=0

(
N−i−j
m

)
pm(1− p)N−i−j−m, (A.9)

w̃Q(i, j, p) = g

Q−1−i∑
k=0

(
N−i−j

k

)
pN−i−j−k(1− p)k + s

N−Q−j∑
m=0

(
N−i−j
m

)
pm(1− p)N−i−j−m, (A.10)

ũN,Q(i, j, p) = b(1− p)
Q−2−i∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k

+ gp

Q−1−i∑
k=0

(
N−i−j−1

k

)
pN−i−j−1−k(1− p)k + s

N−Q−j∑
m=0

(
N−i−j
m

)
pm(1− p)N−i−j−m, (A.11)

for all i ≤ iQN and j ≤ jQN . Define V Q∗(i, j, p) by

V Q∗(i, j, p) := il̃Q
∗
(i, j, p) + jw̃Q

∗
(i, j, p) + (N − i− j)ũQ∗(i, j, p) (A.12)

for all p ∈ [0, 1], i ≤ iQ
∗

N , and j ≤ jQ
∗

N . The statement of the lemma follows from Lemmata
A.13 and A.14 below and the observation that l̃Q∗(i, j, 0) = w̃Q

∗
(i, j, 0) = ũQ

∗
(i, j, 0) = s

for all i ≤ iQ
∗

N and j ≤ jQ
∗

N .

Lemma A.13. The social value function is given by V Q∗(i, j, p) for all p ∈ [0, 1], i ≤ iQ
∗

N , and
j ≤ jQ

∗

N .

Proof. It follows from the proof of Lemmata 1.2 and 1.3 and the proof of Lemma 1.1
that, if unsure voters experiment for all beliefs in a game with theQ∗-rule, then the value
functions of losers, winners, and unsure voters are lQ∗(i, j, p) = l̃Q

∗
(i, j, p), wQ∗(i, j, p) =

w̃Q
∗
(i, j, p), and uQ

∗
(i, j, p) = ũQ

∗
(i, j, p) for all p ∈ [0, 1], i ≤ iQ

∗

N , and j ≤ jQ
∗

N . Therefore,
if the utilitarian social planner experiments with the risky arm for all beliefs of unsure
voters, then the social value function is given by V Q∗(i, j, p). �

Lemma A.14. The function V Q∗(i, j, p) increases in p for all p ∈ [0, 1], i ≤ iQ
∗

N , and j ≤ jQ
∗

N .

Proof. The functions l̃Q∗(i, j, p), w̃Q∗(i, j, p), and ũQ
∗
(i, j, p) are given by (A.9), (A.10),

and (A.11). It follows that

l̃Q
∗
(i, j, p)− ũQ∗(i, j, p) = −(g − b)

Q∗−1−i∑
k=0

N−i−j−k
N−i−j

(
N−i−j

k

)
pN−i−j−k(1− p)k

= −(g − b)py+1

x∑
k=0

(
x+y
k

)
px−k(1− p)k
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and

w̃Q
∗
(i, j, p)− ũQ∗(i, j, p) = (g − b)

Q∗−1−i∑
k=0

k
N−i−j

(
N−i−j

k

)
pN−i−j−k(1− p)k

= (g − b)py+1(1− p)
x−1∑
k=0

(
x+y
k

)
px−1−k(1− p)k,

where x := Q∗ − 1− i = iQ
∗

N − i and y := N −Q∗ − j = jQ
∗

N − j. Hence, V Q∗(i, j, p) can be
written as follows:

V Q∗(i, j, p) = −i(g − b)py+1

x∑
k=0

(
x+y
k

)
px−k(1− p)k

+ j(g − b)py+1(1− p)
x−1∑
k=0

(
x+y
k

)
px−1−k(1− p)k +NũQ

∗
(i, j, p).

The argument from now on follows the steps of the proof of Lemma A.6. If x = 0, i.e.,
if i = iQ

∗

N , then

V Q∗(iQ
∗

N , j, p) = −iQ
∗

N (g − b)py+1 +N
[
gpy+1 + s

(
1− py+1

)]
= [iQ

∗

N b+ (N − iQ
∗

N )g −Ns]py+1 +Ns,

where iQ
∗

N b+ (N − iQ
∗

N )g > Ns by definition of Q∗. Therefore, the partial derivative with
respect to p is as follows:

∂pV
Q∗(iQ

∗

N , j, p) = (y + 1)[iQ
∗

N b+ (N − iQ
∗

N )g −Ns](1− p)y > 0

for all p ∈ (0, 1).
If y = 0, i.e., if j = jQ

∗

N , then

V Q∗(i, jQ
∗

N , p)

= i(b− g)p− jQ
∗

N (b− g)(1− p) (1− (1− p)x) +N [b(1− p)(1− (1− p)x) + gp+ s(1− p)x+1]

= ib+ (N − i)g − (N − i− jQ
∗

N )(g − b)(1− p)− [(N − jQ
∗

N )b+ jQ
∗

N g −Ns](1− p)x+1,

where (N − jQ
∗

N )b+ jQ
∗

N g < Ns by definition of Q∗. Therefore, the partial derivative with
respect to p is as follows:

∂pV
Q∗(i, jQ

∗

N , p) = (N − i− jQ
∗

N )(g − b) + (x+ 1)[(N − jQ
∗

N )b+ jQ
∗

N g −Ns](1− p)x,

and the second order partial derivative takes the form

∂2
ppV

Q∗(i, jQ
∗

N , p) = −x(x+ 1)[(N − jQ
∗

N )b+ jQ
∗

N g −Ns]px−1 ≥ 0,

with strict inequality unless x = 0 and for all p ∈ (0, 1). Furthermore, ∂pV Q∗(i, jQ
∗

N , 1) > 0

and V Q∗(i, jQ
∗

N , 0) = s. It follows that V Q∗(i, jQ
∗

N , p) increases in p.
If neither x = 0 nor y = 0, then the partial derivative with respect to p is as follows:
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∂pV
Q∗(i, j, p) = −i(g − b)

[
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + (y + 1)

(
x+y
k

)
py(1− p)x

]

+ j(g − b)

[
−

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k + x

(
x+y
k

)
py(1− p)x

]
+N∂pũ

Q∗(i, j, p),

where I use calculations made in the proof of Lemma A.6. As a result,

∂pV
Q∗(i, j, p) = (N − i− j)(g − b)

x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k

− [i(g − b)(y + 1)− j(g − b)x+N (−bx+ s(x+ y + 1)− g(y + 1))]
(
x+y
x

)
py(1− p)x.

As found in the proof of Lemma A.6,

∂p

(
x−1∑
k=0

(
x+y
k

)
px+y−k(1− p)k

)
= x

(
x+y
x

)
py(1− p)x−1.

Therefore,
∂2
ppV

Q∗(i, j, p) =
(
x+y
x

)
py−1(1− p)x−1D(x, y),

where D(x, y, p) := [A(x, y) +B(x, y)]p−B(x, y) with

A(x, y) := x[α(i)y − β(j)(x+ 1)],

B(x, y) := y[α(i)(y + 1)− β(j)x],

where α(i) := Ns− [ib+(N−i)g] < 0 and β(j) := [(N−j)b+jg]−Ns < 0 by definition of
Q∗. Up to the definition of A(x, y) and B(x, y), there are the same three cases to consider
as in the proof of Lemma A.6. However, as shown next, B(x, y) < 0 for all x and y, and
so Cases 2 and 3 are relevant only. Indeed,

α(i)(y + 1)− β(j)x = −[N(g − s)− i(g − b)](y + 1) + [(N − j)(g − b)−N(g − s)]x
= −N(x+ y + 1)(g − s) + [i(y + 1) + (N − j)x](g − b)
= −N(x+ y + 1)(g − s) + [i(x+ y + 1) + (N − i− j)x](g − b).

Observe that N − i− j = x+ y + 1 and x+ i = iQ
∗

N . Therefore,

α(i)(y + 1)− β(j)x = (x+ y + 1)[−N(g − s) + iQ
∗

N (g − b)]
= (x+ y + 1)[Ns− iQ

∗

N b− (N − iQ
∗

N )g] < 0

by definition of Q∗. �

A.2.9 Proof of Theorem 1.5

By definition of the Q∗-rule,

[N − (Q∗ − 1)]g + (Q∗ − 1)b > Ns ⇔ 1− pM > Q∗−1
N

,

(N −Q∗)g +Q∗b ≤ Ns ⇔ 1− pM ≤ Q∗

N
.
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By Theorem 1.3, the upper bounds on the equilibrium cut-offs decrease in i and increase
in j. Therefore, a sufficient condition for the equilibrium in the game with theQ∗-rule to
be socially optimal is pQ∗(0, jQ

∗

N ) = p̃Q
∗
(0, jQ

∗

N ) = 0, that is,

(s− b)(Q∗ − 1) ≤ g − s ⇔ 1− pM ≥ Q∗−1
Q∗

.

The last inequality is satisfied for Q∗ = 1 and Q∗ = N .

A.2.10 Proof of Theorem A.1 and Lemma A.1
Theorem A.1 and Lemma A.1 follow from the following lemmata.
Lemma A.15. The equilibrium exists and is unique.

Proof. Similar to Strulovici (2010a), the equilibrium existence and uniqueness come
from a backward induction argument on the number of winners. �

Lemma A.16. The cut-offs used by unsure voters are p(j) = p̄ for all j ≤ jN , where
– p̄ = 0 if g ≥ sN+1

2
,

– p̄ = 1− N+1
N−1

(
1− s

g

)
if g < sN+1

2
.

The value functions of winners and unsure voters are w(j, p) = w̃(j, q) and u(j, p) = ũ(j, q) for
all p ≥ p̄ and j ≤ jN , where q := p−p̄

1−p̄ .

Proof. Because unsure voters can become winners, but not other way around, the set of
winners J can only grow over time. I proceed with an induction argument based on the
number of winners j. Note that, if j > jN , then winners form a majority, and so the risky
arm is implemented. In particular, it follows that w(jN + 1, p) = g and u(jN + 1, p) = pg.

If y = 0, i.e., if j = jN , thenN − jN = N+1
2

. The value function of unsure voters, when
they experiment, satisfies the following ODE:

u(jN , p) = 1
N+1

2

[
g + N−1

2
pg − (1− p)∂pu(jN , p)

]
.

The solution to the ODE takes the form:

u(jN , p) = pg + C(1− p)
N+1

2 ,

where C is a constant of integration. The value function of unsure voters must satisfy
the value-matching condition u(jN , p(jN)) = s and, if p(jN) > 0, the smooth-pasting
condition ∂pu(jN , p(jN)) = 0. It follows that

u(jN , p(jN)) = p(jN)g + C(1− p(jN))
N+1

2 = s,

∂pu(jN , p(jN)) = g − N+1
2
C(1− p(jN))

N−1
2 = 0,

and so
p(jN) = 1− N+1

N−1

(
1− s

g

)
.

Note that p(jN) > 0 if and only if g < sN+1
2

; p(jN) = 0 otherwise. Therefore, p(jN) = p̄.
The constant of integration follows from the value-matching condition and is equal to

C = (s− p̄g)(1− p̄)−
N+1

2 .
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Therefore,

u(jN , p) = pg + (s− p̄g)
(

1−p
1−p̄

)N+1
2
,

which is equal to ũ(jN , q), where q := p−p̄
1−p̄ is the normalized belief of unsure voters. Sim-

ilarly, the value function of winners must solve:

w(jN , p) = 1
N+1

2

[
N+1

2
g − (1− p)∂pw(jN , p)

]
.

subject to the value-matching condition w(jN , p(jN)) = s. It follows that w(jN , p) =
w̃(jN , q) with q = p−p̄

1−p̄ .
Assume that the lemma holds for all y′ ∈ {0, . . . , y−1} (i.e., for all j′ ∈ {j+1, . . . , jN}).

Next I show that it also holds for y (i.e., for j).
The value function of unsure voters, when they experiment, satisfies the following

ODE:

u(j, p) = 1
N−j [w(j + 1, p) + (N − j − 1)u(j + 1, p)− (1− p)∂pu(j, p)] ,

where u(j + 1, p) = ũ(j + 1, q) and w(j + 1, p) = w̃(j + 1, q) with q = p−p̄
1−p̄ . Solving the

ODE subject to the value-matching condition u(j, p(j)) = s and, if p(j) > 0, the smooth-
pasting condition ∂pu(j, p(j)) = 0 yields p(j) = p̄ and u(j, p) = ũ(j, q) with q = p−p̄

1−p̄ .
Similarly, the value function of winners must solve:

w(j, p) = 1
N−j [(N − j)w(j + 1, p)− (1− p)∂pw(j, p)]

subject to the value-matching condition w(j, p(j)) = s. It follows that w(j, p) = w̃(j, q)
with q = p−p̄

1−p̄ . �

Lemma A.17. The function w(j, p) increases in p for all p ∈ [p̄, 1] and j ≤ jN .

Proof. The function w(j, p) increases in p for all p ∈ [p̄, 1] and j ≤ jN if and only if w̃(j, q)
increases in q for all q ∈ [0, 1] and j ≤ jN , where q := p−p̄

1−p̄ . I work with the function w̃(j, q)

written as (A.6). Because it coincides with w̃(0, j, q) written as (A.4), following the steps
of the proof of Lemma A.5 yields

∂qw̃(jN − y, q) = (g − s)
(
N+1

2
+ y
)(N−1

2
+ y

y

)
qy(1− q)

N−1
2 > 0

for all q ∈ (0, 1), where y := jN − j. �

Lemma A.18. The function u(j, p) increases in p for all p ∈ [p̄, 1] and j ≤ jN .

Proof. The function u(j, p) increases in p for all p ∈ [p̄, 1] and j ≤ jN if and only if ũ(j, q)
increases in q for all q ∈ [0, 1] and j ≤ jN , where q := p−p̄

1−p̄ . I work with the function
ũ(j, q) written as (A.7). It coincides with w̃(0, j, q) written as (A.5), except b should be
replaced by p̄g in the latter. Therefore, following the steps of the proof of Lemma A.6
while keeping in mind that g > s > p̄g yields ∂qũ(jN − y, q) > 0 for all q ∈ (0, 1), where
y := jN − j. �
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A.2.11 Proof of Proposition A.1
It follows from Theorem A.1 that, if g ≥ sN+1

2
, then the equilibrium cut-offs are equal

to p̄ = 0, and so are independent of the number of players N . If g < sN+1
2

, then the
equilibrium cut-offs are equal to

p̄ = 1− N+1
N−1

(1− pM),

where pM = s
g

is the myopic cut-off. Therefore, p̄ increases in N . Furthermore,

lim
N→∞

p̄ = 1− (1− pM) = pM .





Appendix B

Addendum to Chapter 2

B.1 General Case
The results in the general case with the post-reboot probability π ∈ (0, 1) are gathered in
this appendix. Social optimality of the myopic behavior and efficiency of the symmetric
equilibrium are observed here as well. Closed forms of players’ value function and of
the socially optimal and equilibrium cut-offs or equations which implicitly define the
cut-offs can be found in the respective part of Appendix B.2.

B.1.1 Good News
With learning via good news, if players allocateX(p) > 0 toR altogether, then their belief
evolves according to (2.4), which takes the following form

ṗ = −X(p)(p− αX(p))(βX(p) − p),

where

αX := 1
2X

(
X + φ−

√
(X + φ)2 − 4Xφπ

)
,

βX := 1
2X

(
X + φ+

√
(X + φ)2 − 4Xφπ

)
.

Parameters αX and βX are such that αX ∈ (0, π) and βX > 1 for all X ∈ (0, I], αX and βX
are decreasing with X , and limX→0 αX = π.1

Social Planner’s Problem

The socially optimal behavior is bang-bang. Proposition B.1 below describes the socially
optimal behavior with π ∈ (0, 1). The left panel in Figure B.1 shows parameter regions
which correspond to different kinds of the social optima.

1Note that

(αX)′X =
φ
(
−2Xπ+X+φ−

√
(X+φ)2−4Xφπ

)
2X2
√

(X+φ)2−4Xφπ
= φ(αX−π)

X
√

(X+φ)2−4Xφπ
< 0,

(βX)′X =
φ
(

2Xπ−(X+φ)−
√

(X+φ)2−4Xφπ
)

2X2
√

(X+φ)2−4Xφπ
= φ(π−βX)

X
√

(X+φ)2−4Xφπ
< 0.

The limit limX→0 αX = π is obtained applying l’Hôpital rule.
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Figure B.1. Parameter regions of different kinds of the social optima (left) and of the equilibria (right) if
learning is via good news. Regions (i)–(iii) in the left panel correspond to (i)–(iii) in Proposition B.1. Re-
gions (i)–(iv) in the right panel correspond to (i)–(iv) in Proposition B.2. Parameters: (I, φ, r) = (2, 0.6, 1).

Proposition B.1 (Social Optimal in the Good News Case with π ∈ (0, 1)). The optimal
strategy of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗

and X∗(p) = 0 for p < p∗, where p∗ and X∗(p∗) are as follows:
(i) if pM < αI , then p∗ ∈ (0, αI), p∗ = pM , and X∗(p∗) = I ;
(ii) if αI < pM < p̃, then p∗ ∈ (αI , π), p∗ < pM , and X∗(p∗) = φ(π−p∗)

p∗(1−p∗) ;
(iii) if p̃ < pM , then p∗ ∈ (π, 1), p∗ < pM , and X∗(p∗) = 0.

Strategic Problem

The symmetric equilibrium either has the bang-bang property or is characterized by two
cut-offs p and p̄ such that p < p̄. Whenever exists, the symmetric equilibrium with π ∈
(0, 1) takes the form characterized in Proposition B.2 below. I observe existence of the
equilibrium numerically, but it is left to show this analytically. The right panel in Figure
B.1 shows parameter regions which correspond to different kinds of the equilibria. The
dashed line is the line that separates regions (ii) and (iii) in the left panel in Figure B.1.

Proposition B.2 (Symmetric Equilibrium in the Good News Case with π ∈ (0, 1)). The
equilibrium is such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p, where p, p̄, and xe(p) for
p ∈ [p, p̄] are as follows:

(i) if pM < αI , then p ∈ (0, αI), p = p̄ = pM and xe(p̄) = 1;
(ii) if αI < pM < α1, then p ∈ (αI , α1), p = p̄ = pM , and xe(p̄) = φ(π−p̄)

Ip̄(1−p̄) ;
(iii) if α1 < pM < . . ., then p ∈ (α1, π), p < p̄ < pM , and xe(p) is increasing in p;
(iv) if . . . < pM , then p ∈ (π, 1), p < p̄ < pM , and xe(p) increases in p.

B.1.2 Bad News
With learning via bad news, if players allocateX(p) > 0 to R altogether, then their belief
evolves according to (2.6), which takes the following form

ṗ = −X(p)(p− αX(p))(p− βX(p)),

where

αX := 1
2X

(
X − φ+

√
(X − φ)2 + 4Xφπ

)
,
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Figure B.2. Parameter regions of different kinds of the social optima (left) and of the equilibria (right) if
learning is via bad news. Regions (i)–(iii) in the left panel correspond to (i)–(iii) in Proposition B.3. Re-
gions (i)–(iv) in the right panel correspond to (i)–(iv) in Proposition B.4. Parameters: (I, φ, r) = (2, 0.6, 1).

βX := 1
2X

(
X − φ−

√
(X − φ)2 + 4Xφπ

)
.

Parameters αX and βX are such that αX ∈ (π, 1) and βX < 0 for all X ∈ (0, I], αX and βX
are increasing in X , and limX→0 αX = π.2

Social Planner’s Problem

The socially optimal behavior is bang-bang. Proposition B.3 below describes the socially
optimal behavior with π ∈ (0, 1). The left panel in Figure B.2 shows parameter regions
which correspond to different kinds of the social optima.

Proposition B.3 (Social Optimal in the Bad News Case with π ∈ (0, 1)). The optimal
strategy of the social planner is (essentially) unique. It is bang-bang with X∗(p) = I for p > p∗

and X∗(p) = 0 for p < p∗, where p∗ and X∗(p∗) are as follows:
(i) if pM > αI , then p∗ ∈ (αI , 1), p∗ = pM , and X∗(p∗) = I ;
(ii) if αI > pM > π(I+r+φ)

πI+r+φ
, then p∗ ∈ (π, αI), p∗ < pM , and X∗(p∗) ∈

{
0, φ(p∗−π)

p∗(1−p∗) , I
}

;

(iii) if π(I+r+φ)
πI+r+φ

> pM , then p∗ ∈ (0, π), p∗ < pM , and X∗(p∗) = I .

Strategic Problem

The symmetric equilibrium either has the bang-bang property or is characterized by two
cut-offs p and p̄ such that p < p̄. Whenever exists, the symmetric equilibrium with
π ∈ (0, 1) takes the form characterized in Proposition B.4 below. I observe existence
of the equilibrium numerically, but it is left to show this analytically. The right panel
in Figure B.2 shows parameter regions which correspond to different kinds of equilibria.
The dashed line is the line which separates regions (ii) and (iii) in the left panel in Figure
B.2.

2Note that

(αX)′X =
φ
(
−2Xπ+X−φ+

√
(X−φ)2+4Xφπ

)
2X2
√

(X−φ)2+4Xφπ
= φ(αX−π)

X
√

(X−φ)2+4Xφπ
> 0,

(βX)′X =
φ
(

2Xπ−(X−φ)−
√

(X−φ)2+4Xφπ
)

2X2
√

(X−φ)2+4Xφπ
= φ(π−βX)

X
√

(X−φ)2+4Xφπ
> 0.

The limit limX→0 αX = π is obtained applying l’Hôpital rule.
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Proposition B.4 (Symmetric Equilibrium in the Bad News Case with π ∈ (0, 1)). The
equilibrium is such that xe(p) = 1 for p > p̄ and xe(p) = 0 for p < p, where p, p̄, and xe(p) for
p ∈ [p, p̄] are as follows:

(i) if pM > αI , then p ∈ (αI , 1), p = p̄ = pM , and xe(p̄) = 0;
(ii) ifαI > pM > (I+r)αI−1+φπ

IαI−1+r+φ
, then p ∈ (αI−1, αI), p = p̄ < pM , andxe(p̄) ∈

{
0, φ(p̄−π)

Ip̄(1−p̄) ,
φ(p−π)

(I−1)p(1−p)

}
;

(iii) if (I+r)αI−1+φπ

IαI−1+r+φ
> pM > . . ., then p ∈ (π, α1), p < p̄ < pM , and xe(p) is increasing in p;

(iv) if . . . > pM , then p ∈ (0, π), p < p̄ < pM , and xe(p) is increasing in p.

B.2 Proofs

B.2.1 Proofs for the Social Planner’s Problem

The social planner chooses which fraction of all resources X(p) ∈ [0, I] to allocate to R
given the belief p and in order to maximize the sum of players’ expected payoffs, or equiv-
alently the average expected payoff. By the principle of optimality, the social planner’s
problem can written as the solution to the Hamilton-Jacobi-Bellman (HJB) equation:

v(p) = max
X∈[0,I]

{
rdt · X

I
[pg − (1− p)b] + (1− rdt) · E[v(p+ dp) | p]

}
+ o(dt),

where v(p) is the average value function. To find E[v(p+ dp) | p], note that
– with probability λ1Xpdt, good news arrives: the value function jumps to v(1);
– with probability λ0X(1− p)dt, bad news arrives: the value function jumps to v(0);
– with probability p(1− λ1Xdt) + (1− p)(1− λ0Xdt) = 1− λ1Xpdt− λ0X(1− p)dt,

there is no news: assuming differentiability, the value function becomes

v(p) + v′(p)dp = v(p) + [φ(π − p)− (λ1 − λ0)Xp(1− p)]v′(p)dt.

Therefore, the social planner’s problem takes the form:

v(p) = φ
r
(π − p)v′(p) + max

X∈[0,I]

{
X
(
bv(p)− c(p)

I

)}
, (B.1)

where

bv(p) := λ1
r
p[v(1)− v(p)− (1− p)v′(p)] + λ0

r
(1− p)[v(0)− v(p) + pv′(p)],

c(p) := (1− p)b− pg.

The function bv(p) stands for the normalized expected benefit from R. It captures jumps
in the value function upon arrival of good and bad news, v(1)−v(p) and v(0)−v(p), and
the gradual change in value v′(p) in absence of news. The function c(p) is the opportunity
cost of using R.

Propositions 2.1, 2.2, 2.5, 2.6, B.1, and B.3 are proved by applying the verification
argument.
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Proof of Proposition 2.1

Case (i): If pM < φ
I

, then p∗ = pM . If players use the specified strategy, then the average
value function is equal to

v∗(p) =

(g + b)φ+rp
φ+r
− b if p ≥ p∗,

g φ
φ+r

(
1−p∗
1−p

) r
φ if p < p∗.

Case (ii): If φ
I
< pM , then p∗ is given by

p∗ = −b(φ−r)+
√

∆
2[br+g(I+r)]

,

where
∆ := b2(φ− r)2 + 4bφ[br + g(I + r)].

Furthermore, p∗ < pM . If players use the specified strategy, then the average value func-
tion is equal to

v∗(p) =


(g + b)φ+rp

φ+r
− b+ C1(1− p)

(
1−p
p−φI

) r+φ
I−φ if p ≥ p∗,

b φ2(1−p∗)
I(φ+r)(p∗)2

(
1−p∗
1−p

) r
φ if p < p∗,

where

C1(1− p∗)
(

1−p∗
p∗−φI

) r+φ
I−φ

= Ip∗−φ
r+φ

r
I
b−(g+b)p∗

p∗
.

In each case, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p∗) = c(p∗)
I

for the
specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = φ
r
(1− p)v′(p)

is given by
v0(p) = C0

(1−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. It follows that

v′0(p) = r
φ

C0

(1−p)
r
φ

+1
= r

φ(1−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(1−p)
r
φ

+2
= r+φ

φ(1−p)v
′
0(p) = r(r+φ)

φ2(1−p)2v0(p).

If news arrives, then it means that the initial state is good or the reboot has taken place.
Either way the state is good and players allocated all resources toR thereafter. Therefore,
v(1) = v1(1) = g, where v1(p) is defined next. Suppose all resources are allocated to R,
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i.e., X = I . The function v1(p) that solves

v(p) = φ
r
(1− p)v′(p) + I

r
p[g − v(p)− (1− p)v′(p)]− [(1− p)b− pg]

is given by

v1(p) = (g + b)φ+rp
r+φ
− b︸ ︷︷ ︸

=:w1(p)

+C1(1− p)
(

1−p
p−φI

) r+φ
I−φ

,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if X = I for p ≤ φI := φ

I
, then C1 = 0, and so

v1(p) = w1(p). Furthermore,

v′1(p) = (g + b) r
r+φ
− C1

Ip+r
Ip−φ

(
1−p
p−φI

) r+φ
I−φ

,

v′′1(p) = C1
(I+r)(r+φ)

(1−p)(Ip−φ)2

(
1−p
p−φI

) r+φ
I−φ

.

Note that g − w1(p)− (1− p)w′1(p) = 0. Therefore,

g − v1(p)− (1− p)v′1(p) = C1(1− p)
(

1−p
p−φI

) r+φ
I−φ r+φ

Ip−φ .

Case (i): Because bw1(p) = 0 for all p, bw1(p) ≥ c(p) if and only if p ≥ pM , with
equality when p = pM . Therefore, p∗ = pM if pM ≤ φ

I
. The value-matching at p∗ implies

v0(p∗) = v1(p∗), and so
C0

(1−p∗)
r
φ

= (g + b)φ+rp∗

r+φ
− b = g φ

r+φ
.

Case (ii): It follows from bv1(p
∗) = c(p∗)

I
that

C1

(
1−p∗
p∗−φI

) r+φ
I−φ

= Ip∗−φ
(r+φ)(1−p∗)

r
I
b−(g+b)p∗

p∗

and
v′′1(p∗) = b r

I(p∗)2(1−p∗) .

Therefore,
b r
I(p∗)2(1−p∗) = (I+r)(r+φ)

(1−p∗)(Ip∗−φ)2
Ip∗−φ

(r+φ)(1−p∗)
r
I
b−(g+b)p∗

p∗
,

and so
[br + g(I + r)](p∗)2 + b(φ− r)p∗ − bφ = 0.

The discriminant is equal to

∆ := b2(φ− r)2 + 4bφ[br + g(I + r)].

Therefore,
p∗ = −b(φ−r)+

√
∆

2[br+g(I+r)]
.

Note that

(I + r − IpM)p2
M + (φ− r)p2

M − φpM = IpM(1− pM)
(
pM − φ

I

)
> 0,
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whenever pM > φ
I
. This implies that, if pM > φ

I
, then p∗ < pM . Furthermore, the second-

order smooth-pasting at p∗ implies v′′0(p∗) = v′′1(p∗), and so

C0 = b φ2(1−p∗)
I(r+φ)(p∗)2

(1− p∗)
r
φ .

Proof of Proposition 2.2

The cut-off p∗ solves

b r+Ip
∗

Ip∗
= (g + b) r(I+r+φ)

I(r+φ)
+ b φ

r+φ

(
φp∗

I+φ−Ip∗

) r
I+φ

. (B.2)

Such p∗ exists and is unique. Furthermore, p∗ < pM . See details below. If players use the
specified strategy, then the average value function is equal to

v∗(p) =


(
v∗(1) + (g + b) r

I
+ b
)

Ip
I+r+φ

− b+ C1(1 + φI − p)
(

1+φI−p
p

) r
I+φ if p > p∗,

0 if p ≤ p∗,

where
C1(1 + φI − p∗)

(
1+φI−p∗

p∗

) r
I+φ

= b I+φ−Ip
∗

I+r+φ
.

Furthermore, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p
∗) = c(p∗)

I
for the

specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = −φ
r
pv′(p)

is given by
v0(p) = C0

p

r
φ

,

whereC0 is a constant of integration. If players do not experiment, then their belief drifts
down toward 0. It follows that C0 = 0, and so v0(p) = 0.

If the belief is 1, then players allocate all resources toR. Therefore, v(1) = v1(1), where
v1(p) is defined next. Suppose all resources are allocated to R, i.e., X = I . The function
v1(p) that solves

v(p) = −φ
r
pv′(p) + I

r
p[v(1)− v(p)− (1− p)v′(p)]− [(1− p)b− pg]

is given by

v1(p) =
(
v1(1) + (g + b) r

I
+ b
)

Ip
I+r+φ

− b︸ ︷︷ ︸
=:w1(p)

+C1(1 + φI − p)
(

1+φI−p
p

) r
I+φ

,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
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boundary conditions. It follows that

v1(1) = −b+ (g + b) r
r+φ

+ I+r+φ
r+φ

C1φ

I+r+φ
I+φ

I ,

or equivalently that

(
v1(1) + (g + b) r

I
+ b
)

I
I+r+φ

= (g + b) r
r+φ

+ φ
r+φ

C1φ
r

I+φ
I .

Furthermore,

v′1(p) =
(
v1(1) + (g + b) r

I
+ b
)

I
I+r+φ

− C1
r+Ip
Ip

(
1+φI−p

p

) r
I+φ

,

v′′1(p) = C1
r(I+r+φ)

Ip2(I+φ−Ip)

(
1+φI−p

p

) r
I+φ

.

Note that

v1(1)− w1(p)− (1− p)w′1(p) = (v1(1) + b) φ
I+r+φ

+ (v1(1)− g) r
I+r+φ

= C1φ

I+r+φ
I+φ

I .

The value-matching and the smooth-pasting at p∗ imply v1(p∗) = v0(p∗) = 0 and
v′1(p∗) = v′0(p∗) = 0. It follows from bv1(p

∗) = c(p∗)
I

that

v1(1) = r
I
b−(g+b)p∗

p∗
,

or equivalently that
p∗ = br

Iv1(1)+(g+b)r
.

Furthermore, v1(p∗) = 0 and v′1(p∗) = 0 imply

(
v1(1) + (g + b) r

I
+ b
)

Ip∗

I+r+φ
− b+ C1(1 + φI − p∗)

(
1+φI−p∗

p∗

) r
I+φ

= 0,(
v1(1) + (g + b) r

I
+ b
)

I
I+r+φ

− C1
r+Ip∗

Ip∗

(
1+φI−p∗

p∗

) r
I+φ

= 0.

Subtracting from the first equality the second one multiplied by p∗ yields

C1

(
1+φI−p∗

p∗

) r
I+φ

= b I
I+r+φ

,

and so (
v1(1) + (g + b) r

I
+ b
)

I
I+r+φ

= b r+Ip∗

(I+r+φ)p∗
.

All in all, it follows that

b r+Ip∗

(I+r+φ)p∗
= (g + b) r

r+φ
+ b φ

r+φ
I

I+r+φ

(
φp∗

I+φ−Ip∗

) r
I+φ

,
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which can be rewritten as follows:3

b r+Ip
∗

Ip∗
= (g + b) r(I+r+φ)

I(r+φ)
+ b φ

r+φ

(
φp∗

I+φ−Ip∗

) r
I+φ

. (B.3)

Define

hL(p) := b r+Ip
Ip
,

hR(p) := (g + b) r(I+r+φ)
I(r+φ)

+ b φ
r+φ

(
φp

I+φ−Ip

) r
I+φ

.

There exists unique p∗ ∈ [0, 1] that solves (B.3) if and only if hL(p) and hR(p) intersect once
on [0, 1]. The function hL(p) decreases in p. The function hR(p) increases in p, because its
first derivative is equal to

h′R(p) = b φ
r+φ

r
p(I+φ−Ip)

(
φp

I+φ−Ip

) r
I+φ

> 0.

Therefore, if there exists p∗ that solves (B.3), then it is unique. Such p∗ exists. Indeed,
limp→0 hL(p) =∞, while

hR(0) = (g + b) r(I+r+φ)
I(r+φ)

,

and so hL(p) is above hR(p) as p goes to 0. Furthermore, hL(1) = b I+r
I

, while

hR(1) = (g + b) r(I+r+φ)
I(r+φ)

+ b φ
r+φ

= g r(I+r+φ)
I(r+φ)

+ b I+r
I
> b I+r

I
.

Furthermore, p∗ < pM if and only if hL(pM) < hR(pM). Equivalently, this is the case if
and only if

(r + φ)pM − r < φpM

(
φpM

I+φ−IpM

) r
I+φ

. (B.4)

Define

gL(p) := (r + φ)p− r,

gR(p) := φp
(

φp
I+φ−Ip

) r
I+φ

.

The function gL(p) is an increasing, linear function of p. The function gR(p) is increasing
and convex in p. Indeed, its first derivative is equal to

g′R(p) = φ(r+φ+I(1−p))
φ+I(1−p)

(
φp

I+φ−Ip

) r
I+φ

> 0,

and its second derivative is equal to

g′′R(p) = rφ(I+r+φ)
p[φ+I(1−p)]2

(
φp

I+φ−Ip

) r
I+φ

> 0.

Note that gL(1) = gR(1) = φ and g′R(1) = g′L(1) = r + φ. Therefore, gL(p) lies below gR(p)
for all p ∈ (0, 1), and so the condition (B.4) holds.

3Note that (B.3) is a special case with π = 0 of (B.8) below.
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Proof of Proposition B.1

Case (i): If pM < αI , then p∗ = pM . If players use the specified strategy, then the average
value function if equal to

v∗(p) =

(g + b)φπ+rp
r+φ

− b if p ≥ p∗,

[gπ − b(1− π)] φ
r+φ

(
π−p∗
π−p

)φ
r if p < p∗.

Case (ii): If αI < pM and

pM < [r2+r(I+φ)+Iφπ]π

(r+φ)(r+Iπ)−I2π(1−π)
βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI

,

where the right side belongs to (π, 1), then p∗ ∈ (αI , π) and p∗ solves

b [φ(π−p∗)−Ip∗(1−p∗)]2
p∗(1−p∗)

βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI

= b [φ(π−p∗)+r(1−p∗)][φ(π−p∗)−Ip∗(1−p∗)]
p∗(1−p∗) + [r2 + r(I + φ) + Iφπ][b− (g + b)p∗].

Such p∗ exists and is unique. Furthermore, p∗ < pM . See details below. If players use the
specified strategy, then the average value function is equal to

v∗(p) =


(
v∗(1) + (g + b) r

I
+ b
) I(φπ+rp)
r2+r(I+φ)+Iφπ

− b+ C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI if p ≥ p∗,

b φ2(π−p∗)2
(r+φ)(p∗)2(1−p∗)

(
π−p∗
π−p

)φ
r if p < p∗,

where

C1(βI − p∗)
(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = r
I

b−(g+b)p∗

p∗

 βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI +
φ(π−p∗)+r(1−p∗)
I(p∗−αI)(βI−p∗)


.

Case (iii): If
pM > [r2+r(I+φ)+Iφπ]π

(r+φ)(r+Iπ)−I2π(1−π)
βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI

,

then p∗ > π and p∗ solves

b(r + φ)(r + Ip∗)− (g + b)[r2 + r(I + φ) + Iφπ]p∗

= −bI[φ(π − p∗)− Ip∗(1− p∗)] βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI .

Such p∗ exists and is unique. Furthermore, p∗ < pM . See details below. If players use the
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0 1αI π

C0 6= 0 C0 = 0

C1 = 0 C1 6= 0

Figure B.3. Constants C0 and C1 depending on which region p∗ belongs to. Parameters: (I, φ, π) =
(2, 0.75, 0.5).

specified strategy, then the average value function if equal to

v∗(p) =


(
v∗(1) + (g + b) r

I
+ b
) I(φπ+rp)
r2+r(I+φ)+Iφπ

− b+ C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI if p ≥ p∗,

0 if p < p∗,

where

C1(βI − p∗)
(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = b r
r2+r(I+φ)+Iφπ

I(p∗−αI)(βI−p∗)
p∗

.

In each case, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p∗) = c(p∗)
I

for the
specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = φ
r
(π − p)v′(p)

is given by
v0(p) = C0

(π−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. In particular, if X = 0 for p ≥ π, then C0 = 0 (see Figure B.3), and
so v0(p) = 0. It follows that

v′0(p) = r
φ

C0

(π−p)
r
φ

+1
= r

φ(π−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(π−p)
r
φ

+2
= r+φ

φ(π−p)v
′
0(p) = r(r+φ)

φ2(π−p)2v0(p).

If the belief is 1, players allocate all resources to R. Therefore, v(1) = v1(1), where
v1(p) is defined next. Suppose all resources are allocated to R, i.e., X = I . The function
v1(p) that solves

v(p) = φ
r
(π − p)v′(p) + I

r
p[v(1)− v(p)− (1− p)v′(p)]− [(1− p)b− pg]
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is given by

v1(p) =
(
v1(1) + (g + b) r

I
+ b
) I(φπ+rp)
r2+r(I+φ)+Iφπ

− b︸ ︷︷ ︸
=:w1(p)

+C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI ,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if X = I for p ≤ αI , then C1 = 0 (see Figure B.3),
and so v1(p) = w1(p). It follows that

v1(1) = −b+ (g + b) r+φπ
r+φ

+ C1
r2+r(I+φ)+Iφπ

r(r+φ)
(βI − 1)

(
βI−1
1−αI

) r
I

+αI

βI−αI ,

or equivalently that

(
v1(1) + (g + b) r

I
+ b
)

I
r2+r(I+φ)+Iφπ

= (g + b) 1
r+φ

+ C1
I

r(r+φ)
(βI − 1)

(
βI−1
1−αI

) r
I

+αI

βI−αI .

Furthermore,

v′1(p) =
(
v1(1) + (g + b) r

I
+ b
)

Ir
r2+r(I+φ)+Iφπ

− C1
Ip+r

I(p−αI)

(
βI−p
p−αI

) r
I

+αI

βI−αI ,

v′′1(p) = C1
(r+IαI)(r+IβI)
I2(p−αI)2(βI−p)

(
βI−p
p−αI

) r
I

+αI

βI−αI = C1
r2+r(I+φ)+Iφπ
I2(p−αI)2(βI−p)

(
βI−p
p−αI

) r
I

+αI

βI−αI .

Note that

v1(1)− w1(p)− (1− p)w′1(p) = (v1(1) + b) rφ(1−π)
r2+r(I+φ)+Iφπ

+ (v1(1)− g) r(r+φπ)
r2+r(I+φ)+Iφπ

= C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI .

Therefore,

v1(1)− v1(p)− (1− p)v′1(p)

= C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI − C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI + C1
(1−p)(Ip+r)
I(p−αI)

(
βI−p
p−αI

) r
I

+αI

βI−αI .

Case (i): Because bw1(p) = 0 for all p whenever C1 = 0, bw1(p) ≥ c(p) if and only if
p ≥ pM , with equality when p = pM . Therefore, p∗ = pM if pM ≤ αI . Furthermore,

v1(p) = (g + b)φπ+rp
r+φ

− b.

The value-matching at p∗ implies v0(p∗) = v1(p∗), and so

C0

(1−p∗)
r
φ

= (g + b)φπ+rp∗

r+φ
− b = [gπ − b(1− π)] φ

r+φ
.
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Case (ii): It follows from bv1(p
∗) = c(p∗)

I
that

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI + C1
φ(π−p∗)+r(1−p∗)

I(p∗−αI)

(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = r
I
b−(g+b)p∗

p∗
,

and so

C1(βI − p∗)
(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = r
I

b−(g+b)p∗

p∗

 βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI +
φ(π−p∗)+r(1−p∗)
I(p∗−αI)(βI−p∗)


.

Furthermore,
v′′1(p∗) = b r

I(p∗)2(1−p∗) .

Therefore, the second-order smooth-pasting at p∗ implies that v′′0(p∗) = v′′1(p∗), and so

C0 = b φ2(π−p∗)2
(r+φ)(p∗)2(1−p∗)(π − p

∗)
r
φ

and

b r
I(p∗)2(1−p∗) = r2+r(I+φ)+Iφπ

I2(p∗−αI)2(βI−p∗)2
r
I

b−(g+b)p∗

p∗

 βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI +
φ(π−p∗)+r(1−p∗)
I(p∗−αI)(βI−p∗)


.

The last equality can be rewritten as follows:

b [φ(π−p∗)−Ip∗(1−p∗)]2
p∗(1−p∗)

βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI

= b [φ(π−p∗)+r(1−p∗)][φ(π−p∗)−Ip∗(1−p∗)]
p∗(1−p∗) + [r2 + r(I + φ) + Iφπ][b− (g + b)p∗]. (B.5)

Define

hL(p) := b [φ(π−p)−Ip(1−p)]2
p(1−p)

βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI ,

hR(p) := b [φ(π−p)+r(1−p)][φ(π−p)−Ip(1−p)]
p(1−p) + [r2 + r(I + φ) + Iφπ][b− (g + b)p].

There exists unique p∗ ∈ [αI , π] that solves (B.5) if and only if hL(p) and hR(p) intersect
once on [αI , π]. The function hL(p) is positive for all p > αI . Furthermore, it increases in
p for p ∈ [αI , π]. Indeed, its first derivative is equal to

h′L(p) = −bφ(π−p)−Ip(1−p)
p2(1−p)2

βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI

× [φp(1− p) + φ(π − p)(1− p) + φ(1− π)p+ Ip(1− p)2 + rp(1− p)] > 0

for p ∈ (αI , π], where the following identity −I(p− αI)(βI − p) = φ(π − p)− Ip(1− p) is
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used. The function hL(p) is convex in p on [αI , π]. Indeed, its second derivative is equal
to

h′′L(p) = b2[φ(π−p)(1−p)+φ(1−π)p][φ(π−p)(1−p)+φ(1−π)p+r(1−p)2]
p3(1−p)3 + b2φ(π−p)[φ(π−p)+r(1−p)]

p2(1−p)2 > 0.

The first derivative of the first term of hR(p) is as follows:

−b (r+φ)[φ(π−p)−Ip(1−p)]
p(1−p) − b [φ(π−p)+r(1−p)][φ(π−p)(1−p)+φ(1−π)p]

p2(1−p)2 < 0

for p ∈ [αI , p̃) for some p̃ > αI . Because the second term of hR(p) decreases in p, it follows
that the function hR(p) decreases in p for p ∈ [αI , p̃). Furthermore, hL(αI) = 0, while

hR(αI) = [r2 + r(I + φ) + Iφπ][b− (g + b)αI ] ≥ 0

whenever pM ≥ αI , with equality when pM = αI . Therefore, there exists unique p∗ ∈
[αI , π] that solves (B.5) if only if hL(π) ≥ hR(π). That is, this is the case if and only if the
following condition is satisfied

bI2π(1− π) βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI ≥ b(r + φ)(r + Iπ)− (g + b)[r2 + r(I + φ) + Iφπ]π,

or equivalently if and only if

pM ≤ [r2+r(I+φ)+Iφπ]π

(r+φ)(r+Iπ)−I2π(1−π)
βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI

. (B.6)

Note that

Iφπ − I2π(1− π) βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI = I2αI

βI − (1− π)
(
αI
βI

) r
I

+αI

βI−αI

 > 0,

because αI ∈ (0, π) and βI > 0, and so the denominator of

p̃ := [r2+r(I+φ)+Iφπ]π

(r+φ)(r+Iπ)−I2π(1−π)
βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI

,

which features in (B.6) and (B.9) below, is positive. Moreover, p̃ ∈ (π, 1). Furthermore,
p∗ < pM if and only if hL(pM) > hR(pM). Equivalently, this is the case if and only if

[φ(π − pM)− IpM(1− pM)] βI−1
βI−pM

(
βI−1
1−αI

pM−αI
βI−pM

) r
I

+αI

βI−αI < φ(π − pM) + r(1− pM), (B.7)

whenever pM > αI . Define

gL(p) := [φ(π − p)− Ip(1− p)]βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI ,

gR(p) := φ(π − p) + r(1− p).
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The function gR(p) is a decreasing, linear function of p. The function gL(p) is decreasing
and concave in p for p > αI . Indeed, its first derivative is equal to

g′L(p) = −[r + φ+ I(1− p)]βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI < 0,

and its second derivative is equal to

g′′L(p) = − r2+r(I+φ)+Iφπ
I(p−αI)(βI−p)

βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI < 0.

Note that gL(1) = gR(1) = −φ(1 − π) and g′L(1) = g′R(1) = −(r + φ). Therefore, gL(p) <
gR(p) for all p ∈ (αI , 1), and so the condition (B.7) holds.

Case (iii): The value-matching and the smooth-pasting at p∗ imply v1(p∗) = v0(p∗) = 0

and v′1(p∗) = v′0(p∗) = 0. It follows from bv1(p
∗) = c(p∗)

I
that

v1(1) = r
I
b−(g+b)p∗

p∗
,

and so
v1(1) + (g + b) r

I
+ b = b Ip

∗+r
Ip∗

.

Equivalently,
p∗ = br

Iv1(1)+(g+b)r
.

Furthermore, v1(p∗) = 0 and v′1(p∗) = 0 imply

(
v1(1) + (g + b) r

I
+ b
) I(φπ+rp∗)
r2+r(I+φ)+Iφπ

− b+ C1(βI − p∗)
(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = 0,

(
v1(1) + (g + b) r

I
+ b
)

Ir
r2+r(I+φ)+Iφπ

− C1
Ip∗+r

I(p∗−αI)

(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = 0.

Subtracting from the first equality the second one multiplied by φπ+rp∗

r
yields

C1

(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = b Ir
r2+r(I+φ)+Iφπ

p∗−αI
p∗

,

and so

C1(βI − p∗)
(
βI−p∗
p∗−αI

) r
I

+αI

βI−αI = −b r
r2+r(I+φ)+Iφπ

φ(π−p∗)−Ip∗(1−p∗)
p∗

.

All in all, it follows that

b Ip
∗+r
Ip∗

= (g + b) r
2+r(I+φ)+Iφπ

I(r+φ)
− bφ(π−p∗)−Ip∗(1−p∗)

(r+φ)p∗
βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI .

The last equality can be rewritten as follows:

b(r + φ)(r + Ip∗)− (g + b)[r2 + r(I + φ) + Iφπ]p∗
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= −bI[φ(π − p∗)− Ip∗(1− p∗)] βI−1
βI−p∗

(
βI−1
1−αI

p∗−αI
βI−p∗

) r
I

+αI

βI−αI . (B.8)

Define

hL(p) := b(r + φ)(r + Ip)− (g + b)[r2 + r(I + φ) + Iφπ]p,

hR(p) := −bI[φ(π − p)− Ip(1− p)]βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI .

There exists unique p∗ ∈ [π, 1] that solves (B.8) if and only if hL(p) and hR(p) intersect
once on [π, 1]. The function hL(p) is linear in p. The function hR(p) is positive for p > αI ,
because

φ(π − p)− Ip(1− p) = −I(p− αI)(βI − p) < 0.

Furthermore, it increases in p for p > αI . Indeed, its first derivative is equal to

h′R(p) = bI[r + φ+ I(1− p)]βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI > 0.

The function hR(p) is convex in p for p > αI . Indeed, its second derivative is equal to

h′′R(p) = bI r
2+r(I+φ)+Iφπ
I(p−αI)(βI−p)

βI−1
βI−p

(
βI−1
1−αI

p−αI
βI−p

) r
I

+αI

βI−αI > 0.

Furthermore, hR(1) = bIφ(1− π), while

hL(1) = bIφ(1− π)− g[r2 + r(I + φ) + Iφπ] < bIφ(1− π).

Therefore, there exists unique p∗ ≥ π that solves (B.8) if and only if hL(π) > hR(π). That
is, this is the case if and only if

b(r + φ)(r + Iπ)− (g + b)[r2 + r(I + φ) + Iφπ]π ≥ bI2π(1− π) βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI ,

or equivalently if and only if

pM ≥ [r2+r(I+φ)+Iφπ]π

(r+φ)(r+Iπ)−I2π(1−π)
βI−1
βI−π

(
βI−1
1−αI

π−αI
βI−π

) r
I

+αI

βI−αI

. (B.9)

Compare with the condition (B.6). Furthermore, p∗ < pM if and only if hR(pM) > hL(pM).
Divide both sides of (B.8) by (g + b). Then p∗ < pM if and only if

−IpM [φ(π−pM)+r(1−pM)] < −IpM [φ(π−pM)−IpM(1−pM)] βI−1
βI−pM

(
βI−1
1−αI

pM−αI
βI−pM

) r
I

+αI

βI−αI ,

or equivalently if and only if (B.7) holds, whenever pM > αI . As shown above, (B.7)
holds for all pM ∈ (αI , 1).
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Proof of Proposition 2.5

Case (i): If pM > 1 − φ
I
, then p∗ = pM . If players use the specified strategy, then the

average value function is equal to

v∗(p) =

g − ((g + b) r
I

+ g
) I(φ+r(1−p))

(I+r)(φ+r)
+ C1p

(
p

p−(1−φI)

) r+φ
I−φ if p > p∗,

0 if p ≤ p∗,

where

C1p
∗
(

p∗

p∗−(1−φI)

) r+φ
I−φ

= (g + b) rp
∗(Ip∗−I+φ)

(I+r)(φ+r)
.

Case (ii): If 1− φ
I
> pM , then p∗ < 1− φ

I
and p∗ is given by

p∗ = b(r+φ)
br+g(I+r)

.

Furthermore, p∗ < pM . If players use the specified strategy, then the average value func-
tion is equal to

v∗(p) =

{
g −

(
(g + b) r

I
+ g
) I(φ+r(1−p))

(I+r)(φ+r)
if p > p∗,

0 if p ≤ p∗.

In each case, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p∗) = c(p∗)
I

for the
specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = −φ
r
pv′(p)

is given by
v0(p) = C0

p

r
φ

,

whereC0 is a constant of integration. If players do not experiment, then their belief drifts
down toward 0. It follows that C0 = 0, and so v0(p) = 0. If the belief is 0, then players
allocate no resource to R. Therefore, v(0) = v0(0) = 0.

Suppose all resources are allocated to R, i.e., X = I . The function v1(p) that solves

v(p) = −φ
r
pv′(p) + I

r
(1− p)[−v(p) + pv′(p)]− [(1− p)b− pg]

is given by

v1(p) = g −
(
(g + b) r

I
+ g
) I(φ+r(1−p))

(I+r)(φ+r)︸ ︷︷ ︸
=:w1(p)

+C1p
(

p
p−(1−φI)

) r+φ
I−φ

,

where φI := φ
I

and C1 is a constant of integration. The constant C1 is pinned down by
appropriate boundary conditions. In particular, if X = I for p ≤ 1− φ

I
, then C1 = 0, and
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so v1(p) = w1(p). Furthermore,

v′1(p) =
(
(g + b) r

I
+ g
)

Ir
(I+r)(r+φ)

− C1
I+r−Ip
Ip−I+φ

(
p

p−(1−φI)

) r+φ
I−φ

,

v′′1(p) = C1
(I+r)(φ+r)
p(Ip−I+φ)2

(
p

p−(1−φI)

) r+φ
I−φ

.

Note that
−w1(p) + pw′1(p) = b r

I+r
.

Case (i): The value-matching and the smooth-pasting at p∗ imply v1(p∗) = v0(p∗) = 0

and v′1(p∗) = v′0(p∗) = 0. Therefore, bv1(p∗) = 0. It follows from bv1(p
∗) = c(p∗)

I
that

p∗ = pM . Furthermore, v1(p∗) = 0 implies

C1p
∗
(

p∗

p∗−(1−φI)

) r+φ
I−φ

= (g + b) rp
∗(Ip∗−I+φ)

(I+r)(φ+r)
.

Case (ii): The value-matching at p∗ implies w1(p∗) = v0(p∗) = 0, and so

p∗ = b(φ+r)
br+g(I+r)

= pM (φ+r)
I(1−pM )+r

.

Note that p∗ < pM if and only if pM < 1− φ
I
. Furthermore,

bw1(p
∗)− c(p∗)

I
= 1

r
(1− p∗)b r

I+r
− b(1−p∗)−gp∗

I
= b φ

I(I+r)
> 0.

Proof of Proposition 2.6

The cut-off p∗ solves

gφ(1− p∗)
r
φ

+1
= (gφ− br)(1− p∗) + r(I+r+φ)

I
[(g + b)(1− p∗)− g]. (B.10)

Such p∗ exists and is unique. Furthermore, p∗ < pM . See details below. If players use the
specified strategy, then the average value function is equal to

v∗(p) =

g −
(
−C0 + (g + b) r

I
+ g
) I(1−p)
I+r+φ

if p ≥ p∗,
C0

(1−p)
r
φ

if p < p∗,

where
C0 = g φ

φ+r
(1− p∗)

r
φ .

Furthermore, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p
∗) = c(p∗)

I
for the

specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = φ
r
(1− p)v′(p)
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is given by
v0(p) = C0

(1−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. It follows that

v′0(p) = r
φ

C0

(1−p)
r
φ

+1
= r

φ(1−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(1−p)
r
φ

+2
= r+φ

φ(1−p)v
′
0(p) = r(r+φ)

φ2(1−p)2v0(p).

Furthermore, if the belief is 0, then players allocate no resource to R. Therefore, v(0) =
v0(0) = C0.

Suppose all resources are allocated to R, i.e., X = I . The function v1(p) that solves

v(p) = φ
r
(1− p)v′(p) + I

r
(1− p)[C0 − v(p) + pv′(p)]− [(1− p)b− pg]

is given by

v1(p) = g −
(
−C0 + (g + b) r

I
+ g
) I(1−p)
I+r+φ︸ ︷︷ ︸

=:w1(p)

+C1(φI + p)
(
φI+p
1−p

) r
I+φ

,

whereC1 is a constant of integration. If players experiment, then their belief drifts toward
1 in absence of news. It follows that C1 = 0, and so v1(p) = w1(p). Note that

C0 − w1(p) + pw′1(p) = (C0 − g) φ
I+r+φ

+ (C0 + b) r
I+r+φ

.

The value-matching and the smooth-pasting at p∗ imply v1(p∗) = v0(p∗) and v′1(p∗) =
v′0(p), and so

g −
(
−C0 + (g + b) r

I
+ g
) I(1−p∗)
I+r+φ

= C0

(1−p∗)
r
φ

,(
−C0 + (g + b) r

I
+ g
)

I
I+r+φ

= r
φ

C0

(1−p∗)
r
φ

+1
.

It follows that
g − r

φ
C0

(1−p∗)
r
φ

+1
(1− p∗) = C0

(1−p∗)
r
φ

,

and so
C0 = g φ

r+φ
(1− p∗)

r
φ .

All in all, it follows from bv1(p
∗) = c(p∗)

I
that

(C0 − g) φ
I+r+φ

+ (C0 + b) r
I+r+φ

= r
I
b(1−p∗)−gp∗

1−p∗ ,

that is,
g φ
r+φ

(1− p∗)
r
φ r+φ
I+r+φ

− g φ
I+r+φ

+ b r
I+r+φ

= r
I
b(1−p∗)−gp∗

1−p∗ .
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The last equality can be rewritten as follows:4

gφ(1− p∗)
r
φ

+1
= (gφ− br)(1− p∗) + r(I+r+φ)

I
[(g + b)(1− p∗)− g]. (B.11)

Define

hL(p) := gφ(1− p)
r
φ

+1
,

hR(p) := (gφ− br)(1− p) + r(I+r+φ)
I

[(g + b)(1− p)− g].

There exists unique p∗ ∈ [0, 1] that solves (B.11) if and only if hL(p) and hR(p) intersect
once on [0, 1]. The function hL(p) decreases in p. Indeed, its first derivative is equal to

h′L(p) = −g(r + φ)(1− p∗)
r
φ < 0

for p < 1. The function hL(p) is convex in p. Indeed, its second derivative is equal to

h′′L(p) = g r(r+φ)
φ

(1− p)
r
φ
−1
> 0

for p < 1. The hR(p) is a decreasing, linear function of p. Furthermore, hL(0) = gφ, while

hR(0) = gφ+ b r(r+φ)
I

> gφ.

Moreover, hL(1) = 0, while
hR(1) = −g r(I+r+φ)

I
< 0.

Therefore, there exists and is unique p∗ ∈ (0, 1) that solves (B.11).
It is left to show that p∗ < pM , which is the case if and only if hL(pM) > hR(pM).

Equivalently, when divided by (g + b)(1− pM), this is the case if and only if

φ(1− pM)
r
φ

+1
> φ− (r + φ)pM . (B.12)

Define

gL(p) := φ(1− p)
r
φ

+1
,

gR(p) := φ− (r + φ)p.

The function gL(p) is a decreasing, convex function of p with the first derivative equal to

g′L(p) = −(r + φ)(1− p)
r
φ .

The function gR(p) is a decreasing, linear function of p with the first derivative equal to

g′R(p) = −(r + φ) ≤ −(r + φ)(1− p)
r
φ ,

with equality at p = 0. That is, gR(p) decreases in p faster than gL(p). Note that gL(0) =
gR(0) = φ and g′L(0) = g′R(0) = −(r + φ). Therefore, gL(p) > gR(p) for all p ∈ (0, 1), and
so the condition (B.12) holds.

4Note that (B.11) is a special case with π = 1 of (B.14) below.
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Proof of Proposition B.3

Case (i): If pM > αI , then p∗ = pM . If players use the specified strategy, then the average
value function is equal to

v∗(p) =

g −
(
(g + b) r

I
+ g
) I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

+ C1(p− βI)
(
p−βI
p−αI

) r
I

+1−αI
αI−βI if p > p∗,

0 if p ≤ p∗,

where

C1(p∗ − βI)
(
p∗−βI
p∗−αI

) r
I

+1−αI
αI−βI = (b+ g) rp∗(Ip∗−I+φ)

r2+r(I+φ)+Iφ(1−π)
.

Case (ii): If αI > pM > π(I+r+φ)
πI+r+φ

, then p∗ ∈ (π, αI) and p∗ is given by

p∗ = b[r+φ(1−π)]−gφπ
Ig+(g+b)r

.

Furthermore, p∗ < pM . If players use the specified strategy, then the average value func-
tion is equal to

v∗(p) =

{
g −

(
(g + b) r

I
+ g
) I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

if p > p∗,

0 if p ≤ p∗.

Case (iii): If π(I+r+φ)
πI+r+φ

> pM , then p∗ < π and p∗ solves

gφπ
(
π−p∗
π

) r
φ

+1
= gφπ(1− p∗)− b[r + φ(1− π)](1− p∗)

+ r2+r(I+φ)+Iφ(1−π)
I

[(g + b)(1− p∗)− g].

Such p∗ exists and is unique. Furthermore, p∗ < pM . See details below. If players use the
specified strategy, then the average value function is equal to

v∗(p) =


g −

(
− C0

π

r
φ

+ (g + b) r
I

+ g

)
I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

if p > p∗,

C0

(π−p)
r
φ

if p ≤ p∗,

where
C0 = g φ(π−p∗)

(r+φ)(1−p∗)(π − p
∗)
r
φ .

In each case, bv∗(p) > c(p)
I

for p > p∗, bv∗(p) < c(p)
I

for p < p∗, and bv∗(p∗) = c(p∗)
I

for the
specified v∗. Therefore, v∗ solves the HJB equation (B.1), and so it is the value function for
the social planner’s problem. Because the strategy specified in the proposition achieves
the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated to R, i.e., X = 0. The function v0(p) that
solves

v(p) = φ
r
(π − p)v′(p)
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0 1αIπ

C0 6= 0 C0 = 0

C1 = 0 C1 6= 0

Figure B.4. Constants C0 and C1 depending on which region p∗ belongs to. Parameters: (I, φ, π) =
(2, 0.75, 0.5).

is given by
v0(p) = C0

(π−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. In particular, if X = 0 for p ≥ π, then C0 = 0 (see Figure B.4), and
so v0(p) = 0. Furthermore,

v′0(p) = r
φ

C0

(π−p)
r
φ

+1
= r

φ(π−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(π−p)
r
φ

+2
= r+φ

φ(π−p)v
′
0(p) = r(r+φ)

φ2(π−p)2v0(p).

Note that, if the belief is 0, then players allocate no resource to R. Therefore, v(0) =
v0(0) = C0

π

r
φ

.

Suppose all resources are allocated to R, i.e., X = I . The function v1(p) that solves

v(p) = φ
r
(π − p)v′(p) + I

r
(1− p)[v(0)− v(p) + pv′(p)]− [(1− p)b− pg]

is given by

v1(p) = g −
(
−v0(0) + (g + b) r

I
+ g
)

I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)︸ ︷︷ ︸

=:w1(p)

+C1(p− βI)
(
p−βI
p−αI

) r
I

+1−αI
αI−βI ,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if X = I for p ≤ αI , then C1 (see Figure B.4), and so
v1(p) = w1(p). Furthermore,

v′1(p) =
(
−v0(0) + (g + b) r

I
+ g
)

Ir
r2+r(I+φ)+Iφ(1−π)

− C1
I(1−p)+r
I(p−αI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI ,

v′′1(p) = C1
(r+I(1−αI))(r+I(1−βI))

I2(p−αI)2(p−βI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI = C1

r2+r(I+φ)+Iφ(1−π)
I2(p−αI)2(p−βI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI .

Note that

v0(0)− w1(p) + pw′1(p) = (v0(0) + b) r(r+φ(1−π))
r2+r(I+φ)+Iφ(1−π)

+ (v0(0)− g) rφπ
r2+r(I+φ)+Iφ(1−π)

.

Case (i): The value-matching and the smooth-pasting at p∗ imply v1(p∗) = v0(p∗) = 0

and v′1(p∗) = v′0(p∗) = 0. Therefore, bv1(p∗) = 0. It follows from bv1(p
∗) = c(p∗)

I
that
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p∗ = pM . Furthermore, v1(p∗) = 0 implies

C1(p∗ − βI)
(
p∗−βI
p∗−αI

) r
I

+1−αI
αI−βI = (b+ g) rp∗(Ip∗−I+φ)

r2+r(I+φ)+Iφ(1−π)
.

Case (ii): The value-matching at p∗ implies w1(p∗) = v0(p∗) = 0, and so

p∗ = −Iv0(0)(r+φ(1−π))+br(r+φ(1−π))−grφπ
Ir(−v0(0)+(g+b)

r
I

+g)
.

Because v0(0) = 0,

p∗ = b[r+φ(1−π)]−gφπ
Ig+(g+b)r

= pM [r+φ(1−π)]−(1−pM )φπ
I(1−pM )+r

= pM (r+φ)−φπ
I(1−pM )+r

.

It follows that p∗ ≤ pM if and only if

0 ≤ φ(π − pM) + IpM(1− pM) = −I(pM − αI)(pM − βI).

That is, p∗ ≤ pM if and only if pM ≤ αI , with equality when pM = αI . Note that p∗ ≥ π if
and only if

pM ≥ π(I+r+φ)
πI+r+φ

. (B.13)
Furthermore,

bw1(p
∗)− c(p∗)

I
= 1

r
(1− p∗)

(
b r(r+φ(1−π))
r2+r(I+φ)+Iφ(1−π)

− g rφπ
r2+r(I+φ)+Iφ(1−π)

)
− b(1−p∗)−gp∗

I

= (g + b)φ[pM (Iπ+r+φ)−π(I+r+φ)]
I[r2+r(I+φ)+Iφ(1−π)]

,

and bw1(p
∗)− c(p∗)

I
≥ 0 if and only if

pM ≥ π(I+r+φ)
πI+r+φ

.

Case (iii): The value-matching and the smooth-pasting at p∗ imply w1(p∗) = v0(p∗)
and w′1(p∗) = v′0(p∗), and so

g −
(
− C0

π

r
φ

+ (g + b) r
I

+ g

)
I(φ(1−π)+r(1−p∗))
r2+r(I+φ)+Iφ(1−π)

= C0

(π−p∗)
r
φ

,(
− C0

π

r
φ

+ (g + b) r
I

+ g

)
Ir

r2+r(I+φ)+Iφ(1−π)
= r

φ
C0

(π−p∗)
r
φ

+1
.

It follows that
g − C0[φ(1−π)+r(1−p∗)]

φ(π−p∗)
r
φ

+1
= C0

(π−p∗)
r
φ

,

and so
C0 = g φ(π−p∗)

(r+φ)(1−p∗)(π − p
∗)
r
φ .

It follows from bw1(p
∗) = c(p∗)

I
that

(v0(0) + b) r[r+φ(1−π)]
r2+r(I+φ)+Iφ(1−π)

+ (v0(0)− g) rφπ
r2+r(I+φ)+Iφ(1−π)

= r
I
b(1−p∗)−gp∗

1−p∗ ,
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that is,

g φ(π−p∗)
(r+φ)(1−p∗)

(
π−p∗
π

) r
φ r+φ
r2+r(I+φ)+Iφ(1−π)

+ b r+φ(1−π)
r2+r(I+φ)+Iφ(1−π)

− g φπ
r2+r(I+φ)+Iφ(1−π)

= 1
I
b(1−p∗)−gp∗

1−p∗ .

The last equality can be rewritten as follows:

gφπ
(
π−p∗
π

) r
φ

+1

= gφπ(1− p∗)− b[r + φ(1− π)](1− p∗) + r2+r(I+φ)+Iφ(1−π)
I

[(g + b)(1− p∗)− g]. (B.14)

Define

hL(p) := gφπ
(
π−p
π

) r
φ

+1
,

hR(p) := gφπ(1− p)− b[r + φ(1− π)](1− p) + r2+r(I+φ)+Iφ(1−π)
I

[(g + b)(1− p)− g].

There exists unique p∗ ∈ [0, π] that solves (B.14) if and only if hL(p) and hR(p) intersect
once on [0, π]. The function hL(p) decreases in p for p ≤ π. Indeed, its first derivative is
equal to

h′L(p) = −g(r + φ)
(
π−p
π

) r
φ < 0

for p < π. The function hL(p) is convex in p for p ≤ π. Indeed, its second derivative is
equal to

h′′L(p) = g r(r+φ)
φπ

(
π−p
π

) r
φ
−1
> 0

for p < π. The function hR(p) is a decreasing, linear function of p. Furthermore, hL(0) =
gφπ, while

hR(0) = gφπ + b r(r+φ)
I

> gφπ.

Therefore, there exists p∗ ∈ [0, π] that solves (B.14) if and only if hL(π) ≥ hR(π). That is,
this is the case when the following condition is satisfied

0 ≥ gφπ(1− π)− b[r + φ(1− π)](1− π) + r2+r(I+φ)+Iφ(1−π)
I

[(g + b)(1− π)− g],

or equivalently if and only if
pM ≤ π(I+r+φ)

πI+r+φ
. (B.15)

Compare with the condition (B.13). It is left to show that such p∗ is below pM . If pM ≥ π,
then it is done, because p∗ ≤ π. If pM < π, then this is the case if and only if hL(pM) >
hR(pM). Equivalently, when divided by (g + b)(1− pM), this is the case if and only if

φπ
(
π−pM
π

) r
φ

+1
> φπ − (r + φ)pM . (B.16)

Define

gL(p) := φπ
(
π−p
π

) r
φ

+1
,

gR(p) := φπ − (r + φ)p.
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The function gL(p) is a decreasing, convex function of p with the first derivative equal to

g′L(p) = −(r + φ)
(
π−p
π

) r
φ .

The function gR(p) is a decreasing, linear function of p with the first derivative equal to

g′R(p) = −(r + φ) ≤ −(r + φ)
(
π−p
π

) r
φ ,

with equality at p = 0. That is, gR(p) decreases in p faster than gL(p). Note that gL(0) =
gR(0) = φπ and g′L(0) = g′R(0) = −(r + φ). Therefore, gL(p) > gR(p) for all p ∈ (0, 1), and
so the condition (B.16) holds.

Note that
p̃ := π(I+r+φ)

πI+r+φ
,

which features in conditions (B.13) and (B.15), is below αI . Indeed, p̃ ≤ αI if and only if

π(I+r+φ)
πI+r+φ

≤ I−φ+
√

(I−φ)2+4Iφπ

2I
,

i.e., if and only if

(I − φ)2 + 4Iφπ −
(

2I π(I+r+φ)
πI+r+φ

− (I − φ)
)2

= 4I2π(1−π)[r2+r(I+φ)+Iφ(1−π)]
(πI+r+φ)2

≥ 0.

B.2.2 Proofs for the Strategic Problem

Player i chooses which fraction of her resource xi(p) ∈ [0, 1] to allocate to R given the
belief p and in order to maximize her expected payoff vi(p), where i = 1, . . . , I . By the
principle of optimality, her problem can be written as the solution to the HJB equation:

vi(p) = max
xi∈[0,1]

{rdt · xi[pg − (1− p)b] + (1− rdt) · E[p+ dp | p]}+ o(dt).

Let X−i :=
∑

j 6=i xj be the aggregate resource allocation to R by all players but player i.
To find E[v(p+ dp) | p], note that

– with probability λ1(X−i + xi)pdt, good news arrives: the value function jumps to
vi(1);

– with probability λ0(X−i + xi)(1− p)dt, bad news arrives: the value function jumps
to vi(0);

– with probability

p(1− λ1(X−i + xi)dt) + (1− p)(1− λ0(X−i + xi)dt)

= 1− λ1(X−i + xi)pdt− λ0(X−i + xi)(1− p)dt,

there is no news: assuming differentiability, the value function becomes

v(p) + v′(p)dp = v(p) + [φ(π − p)− (λ1 − λ0)(X−i + xi)p(1− p)]v′(p)dt.

Therefore, player i’s problem takes the form:

vi(p) = φ
r
(π − p)v′i(p) +X−ibvi(p) + max

xi∈[0,1]
{xi (bvi(p)− c(p))}, (B.17)
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where

bvi(p) := λ1
r
p[vi(1)− vi(p)− (1− p)v′i(p)] + λ0

r
(1− p)[vi(0)− vi(p) + pv′i(p)],

c(p) := (1− p)b− pg.

The function bvi(p) stands for the normalized expected benefit fromR. It captures jumps
in the value function upon arrival of good and bad news, vi(1)−vi(p) and vi(0)−vi(p), and
the gradual change in value v′i(p) in absence of news. The function c(p) is the opportunity
cost of using R.

As I look for a symmetric equilibrium, the subscript i is omitted hereafter. Proposi-
tions 2.3, 2.4, 2.7, 2.8, B.2, and B.4 are proved by applying the verification argument.

Proof of Proposition 2.3

Cases (i) and (ii): If pM < φ, then p = p̄ = pM . If players use the specified strategy, then
each player’s value function is equal to

ve(p) =

(g + b)φ+rp
φ+r
− b if p ≥ p̄,

g φ
φ+r

(
1−p̄
1−p

) r
φ if p < p̄.

Case (iii): If φ < pM , then p < p̄ and p is given by

p = −b(φ−r)+
√

∆
2[br+g(1+r)]

,

where
∆ := b2(φ− r)2 + 4bφ[br + g(1 + r)],

while p̄ solves

g + gr − b rp+φ
p2

(1− p̄)− bφ p̄−p
pp̄

(1− p̄)− b(r + φ)(1− p̄) ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.18)

Such p̄ exists and is unique. Furthermore, p̄ < pM . See details below. If players use the
specified strategy with

xe(p) =
g+gr−b

rp+φ

p2
(1−p)−bφ

p−p
pp

(1−p)−b(r+φ)(1−p) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] . (B.19)

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


(g + b)φ+rp

φ+r
− b+ C1(1− p)

(
1−p
p−φI

) r+φ
I−φ if p > p̄,

g + gr − br (r+φ)p+φ

(r+φ)p2
(1− p)− br(1− p) ln

(
1−p
p

p
1−p

)
if p ∈ [p, p̄],

b
φ2(1−p)
(φ+r)p2

(
1−p
1−p

) r
φ if p < p,
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where

C1(1− p̄)
(

1−p̄
p̄−φI

) r+φ
I−φ

= Ip̄−φ
r+φ

r b−(g+b)p̄
p̄

.

In each case, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for
p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = φ
r
(1− p)v′(p)

is given by
v0(p) = C0

(1−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. It follows that

v′0(p) = r
φ

C0

(1−p)
r
φ

+1
= r

φ(1−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(1−p)
r
φ

+2
= r+φ

φ(1−p)v
′
0(p) = r(r+φ)

φ2(1−p)2v0(p).

If news arrives, then it means that the initial state is good or the reboot has taken
place. Either way the state is good and players allocate the whole resource toR thereafter.
Therefore, v(1) = v1(1) = g, where v1(p) is defined next. Suppose each player allocates
the whole resource to R, i.e., x = 1. The function v1(p) that solves

v(p) = φ
r
(1− p)v′(p) + I

r
p[g − v(p)− (1− p)v′(p)]− [(1− p)b− pg]

is given by

v1(p) = (g + b)φ+rp
φ+r
− b︸ ︷︷ ︸

=:w1(p)

+C1(1− p)
(

1−p
p−φI

) r+φ
I−φ

,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if x = 1 for p ≤ φI := φ

I
, then C1 = 0, and so

v1(p) = w1(p). Furthermore,

v′1(p) = (g + b) r
φ+r
− C1

Ip+r
Ip−φ

(
1−p
p−φI

) r+φ
I−φ

,

v′′1(p) = C1
(I+r)(r+φ)

(1−p)(Ip−φ)2

(
1−p
p−φI

) r+φ
I−φ

.

Note that g − w1(p)− (1− p)w′1(p) = 0. Therefore,

g − v1(p)− (1− p)v′1(p) = C1(1− p)
(

1−p
p−φI

) r+φ
I−φ r+φ

Ip−φ .

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
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function vx(p) that solves bv(p) = c(p), i.e.,

1
r
p[g − v(p)− (1− p)v′(p)] = (1− p)b− pg,

is given by
vx(p) = g + gr + br(1− p) ln

(
1−p
p

)
+ C(1− p),

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = −br ln
(

1−p
p

)
− br 1

p
− C,

v′′x(p) = b r
p2(1−p) .

Cases (i) and (ii): Because bw1(p) = 0 for all p, bw1(p) ≥ c(p) if and only if p ≥ pM , with
equality when p = pM . Therefore, p = p̄ = pM if pM ≤ φ. The value-matching condition
at p̄ implies v0(p̄) = w1(p̄), and so

C0

(1−p̄)
r
φ

= (g + b)φ+rp̄
r+φ
− b = g φ

r+φ
.

Case (iii): It follows from bv1(p̄) = c(p̄) that

C1

(
1−p̄
p̄−φI

) r+φ
I−φ

= Ip̄−φ
(r+φ)(1−p̄)r

b−(g+b)p̄
p̄

.

The second-order smooth-pasting condition at p implies v′′0(p) = v′′x(p), and so

r(r+φ)
φ2

C0

(1−p)
r
φ

+2
= b r

p2(1−p) ,

and so

C0 = b φ2

r+φ

(1−p)
r
φ

+1

p2
.

It follows from bv0(p) = c(p) that

g − C0

(1−p)
r
φ

− (1− p) r
φ

C0

(1−p)
r
φ

+1
= r

b−(g+b)p

p
,

g − r+φ
φ

C0

(1−p)
r
φ

= r
b−(g+b)p

p
.

Therefore,
[g + r(g + b)]p2 + b(φ− r)p− bφ = 0.

The discriminant is equal to

∆ := b2(φ− r)2 + 4bφ[g + r(g + b)].

Therefore,
p = −b(φ−r)+

√
∆

2[g+r(g+b)]
. (B.20)
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Note that

(1− pM + r)p2
M + (φ− r)p2

M − φpM = pM(1− pM)(pM − φ) > 0,

whenever pM > φ. This implies that, if pM > φ, then p < pM . The smooth-pasting
condition at p implies v′x(p) = v′0(p), that is,

−br ln
(

1−p
p

)
− br 1

p
− C = r

φ
C0

(1−p)
r
φ

+1
,

and so
C = −br 1

p
− br φ

r+φ
1
p2
− br ln

(
1−p
p

)
.

Therefore,
vx(p) = g + gr − br (r+φ)p+φ

(r+φ)p2
(1− p)− br(1− p) ln

(
1−p
p

p
1−p

)
,

and so

vx(p)− φ
r
(1− p)v′x(p)

= g + gr − b rp+φ
p2

(1− p)− bφp−p
pp

(1− p)− b(r + φ)(1− p) ln
(

1−p
p

p
1−p

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(1− p)v′x(p) = (I − 1)x(p)c(p),

and so

x(p) =
g+gr−b

rp+φ

p2
(1−p)−bφ

p−p
pp

(1−p)−b(r+φ)(1−p) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

Note that x(p) = 0. The allocation x(p) increases in p on [p, p̄]. Indeed, its first derivative
is equal to

x′(p) =
b
rp+φ

p2
−b rp+φ

p2
+bφ

p−p
pp

+b(r+φ) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] + g+b

[b(1−p)−gp]x(p) ≥ 0,

with equality when p = p. Furthermore, x(p̄) = 1 implies

g + gr − b rp+φ
p2

(1− p̄)− bφ p̄−p
pp̄

(1− p̄)− b(r + φ)(1− p̄) ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.21)

Fix p. Define

hL(p) := g + gr − b rp+φ
p2

(1− p)− bφp−p
pp

(1− p)− b(r + φ)(1− p) ln
(

1−p
p

p
1−p

)
,

hR(p) := (I − 1)[b(1− p)− gp].

Given p, there exists unique p̄ ∈ [p, 1] that solves (B.21) if and only if hL(p) and hR(p)
intersect once on [p, 1]. The function hR(p) decreases in p. The function hL(p) increases
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in p, because its first derivative is equal to

h′L(p) = b
rp+φ

p2
− b rp+φ

p2
+ bφ

p−p
pp

+ b(r + φ) ln
(

1−p
p

p
1−p

)
> 0

for p > p. Therefore, if there exists p̄ that solves (B.21), then it is unique. Such p̄ exists.
Indeed, hL(p) = 0, while

hR(p) = (I − 1)[b(1− p)− gp] = (I − 1)(g + b)(pM − p) > 0,

because p < pM . Furthermore, hL(1) = g(1 + r) > 0, while hR(1) = −(I − 1)g < 0. It is
left to show that p̄ < pM . Because hL(p) increases in p, hL(p) = 0, and p < pM , it follows
that hL(pM) > 0. In contrast, hR(pM) = 0.

Proof of Proposition 2.4

The cut-offs are p < p̄, where p and p̄ solve(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r+φ
I+r+φ

− (g + b) r
I

= r[b(1−p̄)−gp̄]

p̄

1+
r−(r+φ)p̄

φp̄

(
1+φI−p̄
φI p̄

) r
I+φ

 (B.22)

and
b(r + φ)

p̄−p
p
− b[r − (r + φ)p̄] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.23)

Such p and p̄ exists and are unique. Furthermore, p̄ < pM . See details below. If players
use the specified strategy with

xe(p) =
b(r+φ)

p−p
p
−b[r−(r+φ)p] ln

(
1−p
p

p
1−p

)
(I−1)(b(1−p)−gp) (B.24)

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


(
ve(1) + (g + b) r

I
+ b
)

Ip
I+r+φ

− b+ C1(1 + φI − p)
(

1+φI−p
p

) r
I+φ if p > p̄,

br
p−p
p
− br(1− p) ln

(
1−p
p

p
1−p

)
if p ∈ [p, p̄],

0 if p < p,

where
C1φ

1+
r

I+φ
I =

(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r+φ
I+r+φ

− (g + b) r
I
.

Furthermore, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for
p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = −φ
r
pv′(p)
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is given by
v0(p) = C0

p

r
φ

,

whereC0 is a constant of integration. If players do not experiment, then their belief drifts
down toward 0. It follows that C0 = 0, and so v0(p) = 0.

If the belief is 1, then players allocate the whole resource toR. Therefore, v(1) = v1(1),
where v1(p) is defined next. Suppose each player allocates the whole resource to R, i.e.,
x = 1. The function v1(p) that solves

v(p) = −φ
r
pv′(p) + I

r
p[v(1)− v(p)− (1− p)v′(p)]− [(1− p)b− pg]

is given by

v1(p) =
(
v1(1) + (g + b) r

I
+ b
)

Ip
I+r+φ

− b︸ ︷︷ ︸
=:w1(p)

+C1(1 + φI − p)
(

1+φI−p
p

) r
I+φ

,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. It follows that

v1(1) = −b+ (g + b) r
r+φ

+ I+r+φ
r+φ

C1φ
1+

r
I+φ

I ,

or equivalently

(
v1(1) + (g + b) r

I
+ b
)

I
I+r+φ

= (g + b) r
r+φ

+ I
r+φ

C1φ
1+

r
I+φ

I .

Therefore,
C1φ

1+
r

I+φ
I =

(
v1(1) + (g + b) r

I
+ b
)

r+φ
I+r+φ

− (g + b) r
I
.

Furthermore,

v′1(p) =
(
v(1) + (g + b) r

I
+ b
)

I
I+r+φ

− C1
r+Ip
Ip

(
1+φI−p

p

) r
I+φ

,

v′′1(p) = C1
r(I+r+φ)

Ip2(I+φ−Ip)

(
1+φI−p

p

) r
I+φ

.

Note that

v1(1)− w1(p)− (1− p)w′1(p) = (v1(1) + b) φ
I+r+φ

+ (v1(1)− g) r
I+r+φ

= C1φ
1+

r
I+φ

I .

Therefore,

v1(1)− v1(p)− (1− p)v′1(p) = C1φ
1+

r
I+φ

I + C1
r−(r+φ)p

Ip

(
1+φI−p

p

) r
I+φ

.

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
function vx(p) that solves bv(p) = c(p), i.e.,

1
r
p[v(1)− v(p)− (1− p)v′(p)] = (1− p)b− pg,



116 Appendix B. Addendum to Chapter 2

is given by
vx(p) = v1(1) + gr + br(1− p) ln

(
1−p
p

)
+ C(1− p),

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = −br ln
(

1−p
p

)
− br 1

p
− C,

v′′x(p) = b r
p2(1−p) .

It follows from bv1(p̄) = c(p̄) that

C1φ
1+

r
I+φ

I = r[b(1−p̄)−gp̄]

p̄

1+
r−(r+φ)p̄

φp̄

(
1+φI−p̄
φI p̄

) r
I+φ

 .

The value-matching and the smooth-pasting at p imply vx(p) = v0(p) = 0 and v′x(p) =
v′0(p) = 0. It follows from bv0(p) = c(p) that

v1(1) = r
b−(g+b)p

p
,

or equivalently that
p = br

v1(1)+r(g+b)
.

Therefore,
v1(1) + (g + b) r

I
+ b = r

b−(g+b)p

p
+ (g + b) r

I
+ b.

It follows that

C1φ
1+

r
I+φ

I =
(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r+φ
I+r+φ

− (g + b) r
I
.

Therefore,(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r+φ
I+r+φ

− (g + b) r
I

= r[b(1−p̄)−gp̄]

p̄

1+
r−(r+φ)p̄

φp̄

(
1+φI−p̄
φI p̄

) r
I+φ

 . (B.25)

Furthermore, v′x(p) = v′0(p) = 0 implies

C = −br ln
(

1−p
p

)
− br 1

p
.

Therefore,

vx(p) = v1(1) + gr − br 1−p
p
− br(1− p) ln

(
1−p
p

p
1−p

)
= br

p−p
p
− br(1− p) ln

(
1−p
p

p
1−p

)
,

and so
vx(p) + φ

r
pv′x(p) = b(r + φ)

p−p
p
− b[r − (r + φ)p] ln

(
1−p
p

p
1−p

)
.
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It follows from bvx(p) = c(p) that

vx(p) + φ
r
pv′x(p) = (I − 1)x(p)c(p),

and so that

x(p) =
b(r+φ)

p−p
p
−b[r−(r+φ)p] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

Note that x(p) = 0. The allocation x(p) increases in p on [p, p̄]. Indeed, its first derivative
is equal to

x′(p) =
b(r+φ)

(
1
p
−1
p

)
+bφ

1
p(1−p) +b(r+φ) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] + g+b

[b(1−p)−gp]x(p) ≥ 0,

with equality when p = p. Furthermore, x(p̄) = 1 implies

b(r + φ)
p̄−p
p
− b[r − (r + φ)p̄] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.26)

Equations (B.25) and (B.26) pin down p and p̄. It is left to argue that the solution to
(B.25) and (B.26) exists and is unique. It is also left to argue that p̄ < pM .

Proof of Proposition B.2

Cases (i) and (ii): If pM < α1, then p = p̄ = pM . If players use the specified strategy, then
each player’s value function is equal to

ve(p) =

(g + b)φπ+rp
r+φ

− b if p ≥ p̄,

[gπ − b(1− π)] φ
r+φ

(
π−p̄
π−p

) r
φ if p < p̄.

Case (iii): If α1 < pM < . . ., then p < p̄, where p ∈ (α1, π) and p with p̄ solve5

(
b
φ(π−p)[φ(π−p)+r(1−p)]

(r+φ)p2(1−p) + r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I

= r b−(g+b)p̄

p̄

1−
φ(π−p̄)+r(1−p̄)
φ(π−p̄)−Ip̄(1−p̄)

βI−p̄
βI−1

(
βI−p̄
p̄−αI

1−αI
βI−1

) r
I

+αI

βI−αI


.

and

b
[rp̄−φ(π−p̄)](p̄−p)

pp̄
+ b

φ(π−p)(p̄−p)
p2(1−p) − b[φ(π − p̄) + r(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄].

Such p with p̄ exist and are unique. Furthermore, p̄ < pM . See details below. If players
use the specified strategy with

xe(p) =
b

[rp−φ(π−p)](p−p)
pp

+b
φ(π−p)(p−p)
p2(1−p) −b[φ(π−p)+r(1−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp]

5The upper bound for pM , i.e., the precise range of parameters for this case, is to be found.
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for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


(
ve(1) + (g + b) r

I
+ b
) I(φπ+rp)
r2+r(I+φ)+Iφπ

− b+ C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI if p > p̄,

b
r(p−p)
p

+ b
φ(π−p)[φ(π−p)+r(p−p)]

(r+φ)p2(1−p) − br(1− p) ln
(

1−p
p

p
1−p

)
if p ∈ [p, p̄],

b
φ2(π−p)2

(r+φ)p2(1−p)

(
π−p̄
π−p

) r
φ if p < p,

where

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI

=
(
b
φ(π−p)[φ(π−p)+r(1−p)]

(r+φ)p2(1−p) + r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I
.

Case (iv): If . . . < pM , then p < p̄, where p > π and p with p̄ solve6

(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I

= r b−(g+b)p̄

p̄

1−
φ(π−p̄)+r(1−p̄)
φ(π−p̄)−Ip̄(1−p̄)

βI−p̄
βI−1

(
βI−p̄
p̄−αI

1−αI
βI−1

) r
I

+αI

βI−αI


.

and

b
[rp̄−φ(π−p̄)](p̄−p)

pp̄
− b[φ(π − p̄) + r(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄].

Such p with p̄ exist and are unique. Furthermore, p̄ < pM . See details below. If players
use the specified strategy with

xe(p) =
b

[rp−φ(π−p)](p−p)
pp

−b[φ(π−p)+r(1−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp]

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


(
ve(1) + (g + b) r

I
+ b
) I(φπ+rp)
r2+r(I+φ)+Iφπ

− b+ C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI if p > p̄,

b
r(p−p)
p
− br(1− p) ln

(
1−p
p

p
1−p

)
if p ∈ [p, p̄],

0 if p < p,

where

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI =
(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I
.

In each case, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for

6The lower bound for pM , i.e., the precise range of parameters for this case, is to be found.
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0 1αI α1 π

C0 6= 0 C0 = 0

C1 = 0 C1 6= 0

Figure B.5. Constants C0 and C1 depending on which region p belongs to. Parameters: (I, φ, π) =
(2, 0.75, 0.5).

p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = φ
r
(π − p)v′(p)

is given by
v0(p) = C0

(π−p)
r
φ

,

where C0 is a constant of integration. The constant is pinned down by appropriate
boundary conditions. In particular, if x = 0 for p ≥ π, then C0 = 0 (see Figure B.5),
and so v0(p) = 0. Furthermore,

v′0(p) = r
φ

C0

(π−p)
r
φ

+1
= r

φ(π−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(π−p)
r
φ

+2
= r+φ

φ(π−p)v
′
0(p) = r(r+φ)

φ2(π−p)2v0(p).

If the belief is 1, then players allocate the whole resource toR. Therefore, v(1) = v1(1),
where v1(p) is defined next. Suppose each player allocates the whole resource to R, i.e.,
x = 1. The function v1(p) that solves

v(p) = φ
r
(π − p)v′(p) + I

r
p[v(1)− v(p)− (1− p)v′(p)]− [(1− p)b− pg]

is given by

v1(p) =
(
v1(1) + (g + b) r

I
+ b
)

I(φπ+rp)
r2+r(I+φ)+Iφπ

− b︸ ︷︷ ︸
=:w1(p)

+C1(βI − p)
(
βI−p
p−αI

) r
I

+αI

βI−αI ,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if x = 1 for p ≤ αI , then C1 = 0 (see Figure B.5), and
so v1(p) = w1(p). Furthermore,

v1(1) = −b+ (g + b) r+φπ
r+φ

+ C1
r2+r(I+φ)+Iφπ

r(r+φ)
(βI − 1)

(
βI−1
1−αI

) r
I

+αI

βI−αI ,
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or equivalently

(
v1(1) + (g + b) r

I
+ b
)

I
r2+r(I+φ)+Iφπ

= (g + b) 1
r+φ

+ C1
I

r(r+φ)
(βI − 1)

(
βI−1
1−αI

) r
I

+αI

βI−αI .

Therefore,

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI =
(
v1(1) + (g + b) r

I
+ b
) r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I
.

It also follows that

v′1(p) =
(
v1(1) + (g + b) r

I
+ b
)

Ir
r2+r(I+φ)+Iφπ

− C1
Ip+r

I(p−αI)

(
βI−p
p−αI

) r
I

+αI

βI−αI ,

v′′1(p) = C1
(r+IαI)(r+IβI)
I2(p−αI)2(βI−p)

(
βI−p
p−αI

) r
I

+αI

βI−αI .

Note that

v1(1)− w1(p)− (1− p)w′1(p) = (v1(1) + b) rφ(1−π)
r2+r(I+φ)+Iφπ

+ (v1(1)− g) r(r+φπ)
r2+r(I+φ)+Iφπ

= C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI .

Therefore,

v1(1)− v1(p)− (1− p)v′1(p) = C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI + C1
φ(π−p)+r(1−p)

I(p−αI)

(
βI−p
p−αI

) r
I

+αI

βI−αI .

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
function vx(p) that solves bv(p) = c(p), i.e.,

1
r
p[v(1)− v(p)− (1− p)v′(p)] = (1− p)b− pg,

is given by
vx(p) = v1(1) + gr + br(1− p) ln

(
1−p
p

)
+ C(1− p),

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = −br ln
(

1−p
p

)
− br 1

p
− C,

v′′x(p) = b r
p2(1−p) .

Cases (i) and (ii): Because bw1(p) = 0 for all p whenever C1 = 0, bw1(p) ≥ c(p) if
and only if p ≥ pM , with equality when p = pM . Therefore, p = p̄ = pM if pM ≤ α1.
Furthermore,

v1(p) = (g + b)φπ+rp
r+φ

− b.
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The value-matching condition at p̄ implies v0(p̄) = v1(p̄), and so

C0

(π−p̄)
r
φ

= (g + b)φπ+rp̄
r+φ

− b = [gπ − b(1− π)] φ
r+φ

.

Case (iii): It follows from bv1(p̄) = c(p̄) that

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI = r b−(g+b)p̄

p̄

1−
φ(π−p̄)+r(1−p̄)
φ(π−p̄)−Ip̄(1−p̄)

βI−p̄
βI−1

(
βI−p̄
p̄−αI

1−αI
βI−1

) r
I

+αI

βI−αI


.

The second-order smooth-pasting at p implies v′′0(p) = v′′x(p), i.e.,

r(r+φ)
φ2

C0

(π−p)
r
φ

+2
= b r

p2(1−p) ,

and so
C0 = b

φ2(π−p)2

(r+φ)p2(1−p)(π − p)
r
φ .

It follows from bv0(p) = c(p) that

v1(1)− C0

(π−p)
r
φ

− (1− p) r
φ

C0

(π−p)
r
φ

+1
= r

b−(g+b)p

p
,

v1(1)− φ(π−p)+r(1−p)

φ(π−p)
r
φ

+1
C0 = r

b−(g+b)p

p
.

Therefore,
v1(1) = b

φ(π−p)[φ(π−p)+r(1−p)]
(r+φ)p2(1−p) + r

b−(g+b)p

p
.

It follows that(
b
φ(π−p)[φ(π−p)+r(1−p)]

(r+φ)p2(1−p) + r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I

= r b−(g+b)p̄

p̄

1−
φ(π−p̄)+r(1−p̄)
φ(π−p̄)−Ip̄(1−p̄)

βI−p̄
βI−1

(
βI−p̄
p̄−αI

1−αI
βI−1

) r
I

+αI

βI−αI


. (B.27)

The smooth-pasting at p implies v′x(p) = v′0(p), that is,

−br ln
(

1−p
p

)
− br 1

p
− C = r

φ
C0

(π−p)
r
φ

+1
,

and so
C = −br ln

(
1−p
p

)
− br 1

p
− b rφ(π−p)

(r+φ)p2(1−p) .

Therefore,

vx(p) = v1(1) + gr − br 1−p
p
− br(1− p) φ(π−p)

(r+φ)p2(1−p) − br(1− p) ln
(

1−p
p

p
1−p

)
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= b
r(p−p)
p

+ b
φ(π−p)[φ(π−p)+r(p−p)]

(r+φ)p2(1−p) − br(1− p) ln
(

1−p
p

p
1−p

)
and

v′x(p) = b
r(p−p)
pp

+ b
rφ(π−p)

(r+φ)p2(1−p) + br ln
(

1−p
p

p
1−p

)
.

It follows that

vx(p)− φ
r
(π − p)v′x(p)

= b
[rp−φ(π−p)](p−p)

pp
+ b

φ(π−p)(p−p)
p2(1−p) − b[φ(π − p) + r(1− p)] ln

(
1−p
p

p
1−p

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(π − p)v′x(p) = (I − 1)x(p)c(p),

and so that

x(p) =
b

[rp−φ(π−p)](p−p)
pp

+b
φ(π−p)(p−p)
p2(1−p) −b[φ(π−p)+r(1−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

Note that x(p) = 0. It is left to argue that x(p) increases in p on [p, p̄]. Its first derivative is
equal to

x′(p) =
b(r+φ)

(
1
p
−1
p

)
+b

φ(π−p)
p2(1−p)−b

φ(π−p)
p2(1−p) +b(r+φ) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] + g+b

[b(1−p)−gp]x(p).

Furthermore, x(p̄) = 1 implies

b
[rp̄−φ(π−p̄)](p̄−p)

pp̄
+ b

φ(π−p)(p̄−p)
p2(1−p) − b[φ(π − p̄) + r(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.28)

Equation (B.27) and (B.28) pin down p and p̄ in this case. In this case, p ∈ (α1, π). It is
left to argue that the solution to (B.27) and (B.28) exists and is unique. It is also left to
show that p̄ < pM .

Case (iv): The value-matching and the smooth-pasting at p imply vx(p) = v0(p) = 0
and v′x(p) = v′0(p) = 0. It follows from bv0(p) = c(p) that

v1(1) = r
b−(g+b)p

p
,

or equivalently that
p = br

v1(1)+r(g+b)
.

Therefore,

C1(βI − 1)
(
βI−1
1−αI

) r
I

+αI

βI−αI =
(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I
.

It follows that
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(
r
b−(g+b)p

p
+ (g + b) r

I
+ b
)

r(r+φ)
r2+r(I+φ)+Iφπ

− (g + b) r
I

= r b−(g+b)p̄

p̄

1−
φ(π−p̄)+r(1−p̄)
φ(π−p̄)−Ip̄(1−p̄)

βI−p̄
βI−1

(
βI−p̄
p̄−αI

1−αI
βI−1

) r
I

+αI

βI−αI


. (B.29)

The smooth-pasting at p implies v′x(p) = v′0(p) = 0, and so

C = −br ln
(

1−p
p

)
− br 1

p
.

Therefore,

vx(p) = v1(1) + gr − br 1−p
p
− br(1− p) ln

(
1−p
p

p
1−p

)
= b

r(p−p)
p
− br(1− p) ln

(
1−p
p

p
1−p

)
,

v′x(p) = b
r(p−p)
pp

+ br ln
(

1−p
p

p
1−p

)
,

and so

vx(p)− φ
r
(π − p)v′x(p) = b

[rp−φ(π−p)](p−p)
pp

− b[φ(π − p) + r(1− p)] ln
(

1−p
p

p
1−p

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(π − p)v′x(p) = (I − 1)x(p)c(p),

and so that

x(p) =
b

[rp−φ(π−p)](p−p)
pp

−b[φ(π−p)+r(1−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

Note that x(p) = 0. The allocation x(p) increases in p on [p, p̄]. Indeed, its first derivative
is equal to

x′(p) =
b(r+φ)

(
1
p
−1
p

)
−b

φ(π−p)
p2(1−p) +b(r+φ) ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] + g+b

[b(1−p)−gp]x(p) ≥ 0,

because p > π, and with equality when p = p. Furthermore, x(p̄) = 1 implies

b
[rp̄−φ(π−p̄)](p̄−p)

pp̄
− b[φ(π − p̄) + r(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.30)

Equations (B.29) and (B.30) pin down p and p̄ in this case. Note that (B.27) and (B.28)
coincide with (B.29) and (B.30) when p = π. In this case, p > π. It is left to argue that
the solution to (B.29) and (B.30) exists and is unique. It is also left to show that p̄ < pM .

Proof of Proposition 2.7

Case (i): If pM > 1− φ
I
, then p = p̄ = pM . If players use the specified strategy, then each

player’s value function is equal to

ve(p) =

g − ((g + b) r
I

+ g
) I(φ+r(1−p))

(I+r)(φ+r)
+ C1p

(
p

p−(1−φI)

) r+φ
I−φ if p > p̄,

0 if p ≤ p̄,
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where

C1p̄
(

p̄
p̄−(1−φI)

) r+φ
I−φ

= (g + b) rp̄(Ip̄−I+φ)
(I+r)(φ+r)

.

Case (ii): If 1− φ
I
> pM > (I−1−φ)(I+r)

(I−1)(I+r)−φ , then p = p̄ ∈
(
1− φ

I−1
, 1− φ

I

)
and

p = p̄ = b(φ+r)
br+g(I+r)

.

Furthermore, p̄ < pM . If players use the specified strategy, then each player’s value func-
tion is equal to

ve(p) =

{
g −

(
(g + b) r

I
+ g
) I(φ+r(1−p))

(I+r)(φ+r)
if p > p̄,

0 if p ≤ p̄.

Case (iii): If (I−1−φ)(I+r)
(I−1)(I+r)−φ > pM , then p < p̄, where p < 1− φ

I−1
and p̄ is given by

p̄ = b(I+r−1)
(g+b)(I+r)−b ,

while p solves

− br + b(r + φ) p̄
p
− gφ p̄

1−p̄ − g(r + φ)p̄ ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.31)

Such p exists and is unique. Furthermore, p̄ < pM . See details below. If players use the
specified strategy with

xe(p) =
−br+b(r+φ)

p
p
−gφ p

1−p−g(r+φ)p ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] (B.32)

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


g −

(
(g + b) r

I
+ g
) I[φ+r(1−p)]

(I+r)(φ+r)
if p > p̄,

br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
if p ∈ [p, p̄],

0 if p < p.

In each case, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for
p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = −φ
r
pv′(p)

is given by
v0(p) = C0

p

r
φ

,

whereC0 is a constant of integration. If players do not experiment, then their belief drifts
down toward 0. It follows that C0 = 0, and so v0(p) = 0. If the belief is 0, then players
allocate no resource to R. Therefore, v(0) = v0(0) = 0.
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Suppose each player allocates the whole resource to R, i.e., x = 1. The function v1(p)
that solves

v(p) = −φ
r
pv′(p) + I

r
(1− p)[−v(p) + pv′(p)]− [(1− p)b− pg]

is given by

v1(p) = g −
(
(g + b) r

I
+ g
) I(φ+r(1−p))

(I+r)(φ+r)︸ ︷︷ ︸
=:w1(p)

+C1p
(

p
p−(1−φI)

) r+φ
I−φ

,

where φI := φ
I

and C1 is a constant of integration. The constant C1 is pinned down by
appropriate boundary conditions. In particular, if x = 1 for p ≤ 1− φ

I
, then C1 = 0, and

so v1(p) = w1(p). Furthermore,

v′1(p) =
(
(g + b) r

I
+ g
)

Ir
(I+r)(r+φ)

− C1
I+r−Ip
Ip−I+φ

(
p

p−(1−φI)

) r+φ
I−φ

,

v′′1(p) = C1
(I+r)(φ+r)
p(Ip−I+φ)2

(
p

p−(1−φI)

) r+φ
I−φ

.

Note that
−w1(p) + pw′1(p) = b r

I+r
.

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
function vx(p) that solves bv(p) = c(p), that is,

1
r
(1− p)[−v(p) + pv′(p)] = (1− p)b− pg,

is given by
vx(p) = −br + grp ln

(
1−p
p

)
+ Cp,

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = gr ln
(

1−p
p

)
− gr 1

1−p + C,

v′′x(p) = −g r
p(1−p)2 .

Case (i): The value-matching and the smooth-pasting at p = p̄ imply v1(p̄) = v0(p̄) = 0
and v′1(p̄) = v′1(p̄) = 0. Therefore, bv1(p̄) = 0. It follows from bv1(p̄) = c(p̄) that p̄ = pM .
Furthermore, v1(p̄) = 0 implies

C1p̄
(

p̄
p̄−(1−φI)

) r+φ
I−φ

= (g + b) rp̄(Ip̄−I+φ)
(I+r)(φ+r)

.

Case (ii): The value-matching at p = p̄ implies w1(p̄) = v0(p̄) = 0, and so

p̄ = b(φ+r)
br+g(I+r)

= pM (φ+r)
I(1−pM )+r

.
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Note that p̄ ≤ pM if and only if pM ≤ 1− φ
I
. It follows that

bw1(p̄)− c(p̄) = 1
r
(1− p̄)b r

I+r
− [b(1− p̄)− gp̄] = b2 φ(I+r−1)

(I+r)(br+g(I+r))
− gb I−1−φ

br+g(I+r)

Therefore, bw1(p̄)− c(p̄) ≥ 0 if and only if

bφ(I + r − 1)− g(I − 1− φ)(I + r) ≥ 0,

or equivalently
[(I − 1)(I + r)− φ]pM ≥ (I − 1− φ)(I + r).

In this case, 1 − φ
I
≥ p̄ ≥ 1 − φ

I−1
. Therefore, it must be the case that I − φ ≥ 0, and so

(I − 1)(I + r)− φ > 0. It follows that bw(p̄)− c(p̄) ≥ 0 if and only if

pM ≥ (I−1−φ)(I+r)
(I−1)(I+r)−φ . (B.33)

Case (iii): It follows from bw1(p̄) = c(p̄) that

1
r
(1− p̄)b r

I+r
= (1− p̄)b+ p̄g,

and so that
1− p̄ = g(I+r)

(g+b)(I+r)−b

or
p̄ = b(I+r−1)

(g+b)(I+r)−b = pM (I+r−1)
I+r−pM

.

It follows that p̄ ≤ pM . Note that w1(p̄) ≥ 0 if and only if

g −
(
(g + b) r

I
+ g
) I(φ+r

g(I+r)
(g+b)(I+r)−b

)
(I+r)(φ+r)

≥ 0.

Multiplying both side by (I+ r)(φ+ r)[(g+ b)(I+ r)− b] > 0 and simplifying the left side
yield

br(bφ+ (I + r)[g(I − 1)− (g + b)φ]) ≥ 0.

Therefore,
bφ+ (I + r)[g(I − 1)− (g + b)φ] ≥ 0,

or equivalently
(I − 1− φ)(I + r) ≥ [(I − 1)(I + r)− φ]pM .

In this case, p̄ ≤ 1− φ
I−1

. Therefore, it must be that I−1−φ ≥ 0, and so (I−1)(I+r)−φ > 0.
It follow that w(p̄) ≥ 0 if and only if

pM ≤ (I−1−φ)(I+r)
(I−1)(I+r)−φ .

Compare with the condition (B.33). The value-matching at p implies vx(p) = v0(p) = 0,
and so

C = br 1
p
− gr ln

(
1−p
p

)
.

Therefore,
vx(p) = br

p−p
p
− grp ln

(
1−p
p

p
1−p

)
,
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and so

vx(p) + φ
r
pv′x(p) = −br + b(r + φ)p

p
− gφ p

1−p − g(r + φ)p ln
(

1−p
p

p
1−p

)
.

It follows from bvx(p) = c(p) that

vx(p) + φ
r
pv′x(p) = (I − 1)x(p)c(p),

and so that

x(p) =
−br+b(r+φ)

p
p
−gφ p

1−p−g(r+φ)p ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

It is left to show that x(p) increases in p for p ∈ [p, p̄]. Note that

x(p) = φ
(I−1)(1−p) > 0.

At p̄, x(p̄) = 1, i.e.,7

− br + b(r + φ) p̄
p
− gφ p̄

1−p̄ − g(r + φ)p̄ ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.34)

Fix p̄. Define

hL(p) := −br + b(r + φ) p̄
p
− gφ p̄

1−p̄ − g(r + φ)p̄ ln
(

1−p
p

p̄
1−p̄

)
,

hR(p) := (I − 1)[b(1− p̄)− gp̄].

Given p̄, there exists unique p ∈ [0, p̄] that solves (B.34) if and only if hL(p) and hR(p) in-
tersect once on [0, p̄]. The function hR(p) is constant for all p. The function hL(p) decreases
in p for p ≤ p̄ ≤ pM . Indeed, its first derivative is equal to

h′L(p) = −(r + φ)p̄ b(1−p)−gp
p2(1−p) < 0

for p < p̄ ≤ pM . Furthermore, limp→0 hL(p) =∞, and so hL(p) is above hR(p) as p goes to
0. Moreover,

hL(p̄) = φ b(1−p̄)−gp̄
1−p̄ < hR(p̄)

for p̄ ≤ pM and p̄ ≤ 1 − φ
I−1

. Therefore, there exists and is unique p ∈ (0, p̄) that solves
(B.34).

Proof of Proposition 2.8

The cut-offs are p < p̄, where p and p̄ solve

1− p̄ = gr(I+r+φ)
(g+b)r(I+r+φ)+(g+b)φ−(C0+b)(r+φ)

(B.35)

and

b
r(p̄−p)−φ(1−p̄)

p
+ gφ− g[rp̄− φ(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
7Note that (B.34) is a special case with π = 0 of (B.44) below.
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+ C0 + C0
rp̄−φ(1−p̄)

rp

(
−1 + 1

(1−p)
r
φ

)
= (I − 1)[b(1− p̄)− gp̄], (B.36)

where
C0 =

b(1−p)−gp
1−p

r

1+
rp−φ(1−p)

φ(1−p)
r
φ

+1

.

Such p and p̄ exist and are unique. Furthermore, p̄ < pM . See details below. If players
use the specified strategy with

xe(p) =

b
r(p−p)−φ(1−p)

p
+gφ−g[rp−φ(1−p)] ln

(
1−p
p

p
1−p

)
+C0+C0

rp−φ(1−p)
rp

−1+
1

(1−p)
r
φ


(I−1)[b(1−p)−gp] (B.37)

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


g −

(
−C0 + (g + b) r

I
+ g
) I(1−p)
I+r+φ

if p > p̄,

C0 + br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
− C0

p
p

+ C0

(1−p)
r
φ

p
p

if p ∈ [p, p̄],

C0

(1−p)
r
φ

if p < p.

Furthermore, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for
p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = φ
r
(1− p)v′(p)

is given by
v0(p) = C0

(1−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. It follows that

v′0(p) = r
φ

C0

(1−p)
r
φ

+1
= r

φ(1−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(1−p)
r
φ

+2
= r+φ

φ(1−p)v
′
0(p) = r(r+φ)

φ2(1−p)2v0(p).

Furthermore, if the belief is 0, then players allocate no resource to R. Therefore, v(0) =
v0(0) = C0.

Suppose each player allocates the whole resource to R, i.e., x = 1. The function v1(p)
that solves

v(p) = φ
r
(1− p)v′(p) + I

r
(1− p)[C0 − v(p) + pv′(p)]− [(1− p)b− pg]
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is given by

v1(p) = g −
(
−C0 + (g + b) r

I
+ g
) I(1−p)
I+r+φ︸ ︷︷ ︸

=:w1(p)

+C1(φI + p)
(
φI+p
1−p

) r
I+φ

,

whereC1 is a constant of integration. If players experiment, then their belief drifts toward
1 in absence of news. It follows that C1 = 0, and so v1(p) = w1(p). Note that

C0 − w1(p) + pw′1(p) = (C0 − g) φ
I+r+φ

+ (C0 + b) r
I+r+φ

.

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
function vx(p) that solves bv(p) = c(p), i.e.,

1
r
(1− p)[C0 − v(p) + pv′(p)] = (1− p)b− pg,

is given by
vx(p) = C0 − br + grp ln

(
1−p
p

)
+ Cp,

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = gr ln
(

1−p
p

)
− gr 1

1−p + C,

v′′x(p) = −g r
p(1−p)2 .

It follows from bw1(p̄) = c(p̄) that

1
r
(1− p̄)

(
C0

r+φ
I+r+φ

+ b r
I+r+φ

− g φ
I+r+φ

)
= (1− p̄)b− gp̄,

and so that
1− p̄ = gr(I+r+φ)

(g+b)r(I+r+φ)+(g+b)φ−(C0+b)(r+φ)
,

i.e.,

p̄ = br(I+r+φ)+(g+b)φ−(C0+b)(r+φ)
(g+b)r(I+r+φ)+(g+b)φ−(C0+b)(r+φ)

=
pMr(I+r+φ)+φ−

(
C0

g+b
+pM

)
(r+φ)

r(I+r+φ)+φ−
(
C0

g+b
+pM

)
(r+φ)

. (B.38)

Note that the right side of (B.38) decreases inC0. The value-matching at p implies v0(p) =
vx(p), i.e.,

C0

(1−p)
r
φ

= C0 − br + grp ln
(

1−p
p

)
+ Cp,

and so
C = br 1

p
− gr ln

(
1−p
p

)
− C0

1
p

+ C0

(1−p)
r
φ

1
p
.

The smooth-pasting at p implies v′0(p) = v′x(p), i.e.,

r
φ

C0

(1−p)
r
φ

+1
= gr ln

(
1−p
p

)
− gr 1

1−p + C,
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and so
C = −gr ln

(
1−p
p

)
+ gr 1

1−p + r
φ

C0

(1−p)
r
φ

+1
.

It follows that

C0 =
b(1−p)−gp

1−p
r

1+
rp−φ(1−p)

φ(1−p)
r
φ

+1

= (g + b)
pM−p
1−p

r

1+
rp−φ(1−p)

φ(1−p)
r
φ

+1

. (B.39)

Note that C0 decreases in p. Indeed, the first derivative of C0

g+b
with respect to p is equal

to
− 1−pM

(1−p)2
r

1+
rp−φ(1−p)

φ(1−p)
r
φ

+1

− pM−p
1−p

r1+
rp−φ(1−p)

φ(1−p)
r
φ

+1


2

r(r+φ)p

φ2(1−p)
r
φ

+2
< 0

for p < pM . Furthermore,

vx(p) = C0 + br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
− C0

p
p

+ C0

(1−p)
r
φ

p
p
,

v′x(p) = br 1
p
− gr 1

1−p − gr ln
(

1−p
p

p
1−p

)
− C0

1
p

+ C0

(1−p)
r
φ

1
p
,

and so

vx(p)− φ
r
(1− p)v′x(p) = b

r(p−p)−φ(1−p)
p

+ gφ− g[rp− φ(1− p)] ln
(

1−p
p

p
1−p

)
+ C0 + C0

rp−φ(1−p)
rp

(
−1 + 1

(1−p)
r
φ

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(1− p)v′x(p) = (I − 1)x(p)c(p),

so that

x(p) =

b
r(p−p)−φ(1−p)

p
+gφ−g[rp−φ(1−p)] ln

(
1−p
p

p
1−p

)
+C0+C0

rp−φ(1−p)
rp

−1+
1

(1−p)
r
φ


(I−1)[b(1−p)−gp] .

It is left to show that x(p) is increasing in p for p ∈ [p, p̄]. Note that x(p) = 0. At p̄, x(p̄) = 1,
i.e.,

b
r(p̄−p)−φ(1−p̄)

p
+ gφ− g[rp̄− φ(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
+ C0 + C0

rp̄−φ(1−p̄)
rp

(
−1 + 1

(1−p)
r
φ

)
= (I − 1)[b(1− p̄)− gp̄],

which can be rewritten as follows:

pM
r(p̄−p)−φ(1−p̄)

p
+ (1− pM)φ− (1− pM)[rp̄− φ(1− p̄)] ln

(
1−p
p

p̄
1−p̄

)
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+ C0

g+b
+ C0

g+b
rp̄−φ(1−p̄)

rp

(
−1 + 1

(1−p)
r
φ

)
= (I − 1)(pM − p̄), (B.40)

Given C0 defined by (B.39), equations (B.38) and (B.40) pin down p and p̄. It is left to
argue that the solution to (B.38) and (B.40) exists and is unique.

Proof of Proposition B.4

Case (i): If pM > αI , then p = p̄ = pM . If players use the specified strategy, then each
player’s value function is equal to

ve(p) =

g −
(
(g + b) r

I
+ g
) I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

+ C1(p− βI)
(
p−βI
p−αI

) r
I

+1−αI
αI−βI if p > p̄,

0 if p ≤ p̄,

where

C1(p̄− βI)
(
p̄−βI
p̄−αI

) r
I

+1−αI
αI−βI = (b+ g) rp̄(Ip̄−I+φ)

r2+r(I+φ)+Iφ(1−π)
.

Case (ii): If αI > pM > (I+r)αI−1+φπ

IαI−1+r+φ
, then p = p̄ ∈ (αI−1, αI) and

p = p̄ = b[r+φ(1−π)]−gφπ
Ig+(g+b)r

.

Furthermore, p̄ < pM . If players use the specified strategy, then each player’s value func-
tion is equal to

ve(p) =

{
g −

(
(g + b) r

I
+ g
)

I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

if p > p̄,

0 if p ≤ p̄.

Case (iii): If (I+r)αI−1+φπ

IαI−1+r+φ
> pM and

pM
φ(π−p̄)2

πp̄
− pM r(π−p̄)

π
− (1− pM)[rp̄− φ(π − p̄)] ln

(
1−π
π

p̄
1−p̄

)
> (pM − p̄)φ(π−p̄)+(I−1)p̄(1−p̄)

p̄(1−p̄) ,

which gives the lower bound on pM , then p < p̄, where p ∈ (π, αI−1) and p̄ is given by

p̄ = b[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)
(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)

= pM [r2+r(I+φ)+Iφ(1−π)]+φπ−pM (r+φ)
r2+r(I+φ)+Iφ(1−π)+φπ−pM (r+φ)

,

while p solves

b
r(p̄−p)−φ(π−p̄)

p
+ g φ(π−p̄)

1−p̄ − g[rp̄− φ(π − p̄)] ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄].

Such p exists and is unique. Furthermore, p̄ < pM . See details below. If players use the
specified strategy with

xe(p) =
b
r(p−p)−φ(π−p)

p
+g

φ(π−p)
1−p −g[rp−φ(π−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp]
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for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =


g −

(
(g + b) r

I
+ g
) I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

if p > p̄,

br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
if p ∈ [p, p̄],

0 if p < p.

Note that xe(p) > 0.

Case (iv): Otherwise, p < p̄, where p < π and p with p̄ solve

1− p̄ = g[r2+r(I+φ)+Iφ(1−π)]

(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−

 C0

π

r
φ

+b

(r+φ)

and

b
r(p̄−p)−φ(π−p̄)

p
+ g φ(π−p̄)

1−p̄ − g[rp̄− φ(π − p̄)] ln
(

1−p
p

p̄
1−p̄

)
+ C0

π

r
φ

+ C0

π

r
φ

rp̄−φ(π−p̄)
rp

(
−1 +

(
π
π−p

) r
φ

)
= (I − 1)[b(1− p̄)− gp̄],

where
C0

π

r
φ

=
b(1−p)−gp

1−p
r

1+
rp−φ(π−p)
φ(π−p)

(
π
π−p

) r
φ

.

Such p and p̄ exist and are unique. Furthermore, p̄ < pM . See details below. If players
use the specified strategy with

xe(p) = 1
(I−1)[b(1−p)−gp]

[
b
r(p−p)−φ(π−p)

p
+ g φ(π−p)

1−p − g[rp− φ(π − p)] ln
(

1−p
p

p
1−p

)
+ C0

π

r
φ

+ C0

π

r
φ

rp−φ(π−p)
rp

(
−1 +

(
π
π−p

) r
φ

)]

for p ∈ [p, p̄], then each player’s value function is equal to

ve(p) =



g −
(
− C0

π

r
φ

+ (g + b) r
I

+ g

)
I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)

if p > p̄,

C0

π

r
φ

+ br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
− C0

π

r
φ

p
p

+ C0

π

r
φ

(
π
π−p

) r
φ p
p

if p ∈ [p, p̄],

C0

(π−p)
r
φ

if p < p.

In each case, bve(p) > c(p) for p > p̄, bve(p) < c(p) for p < p, and bve(p) = c(p) for
p ∈ [p, p̄] for the specified ve. Therefore, ve solves the HJB equation (B.17), and so it is the
value function in the strategic problem. Because the strategy specified in the proposition
achieves the maximum in the HJB equation, this strategy is optimal.
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0 1αIπ

C0 6= 0 C0 = 0

C1 = 0 C1 6= 0

Figure B.6. Constants C0 and C1 depending on which region p belongs to. Parameters: (I, φ, π) =
(2, 0.75, 0.5).

Details. Suppose no resource is allocated toR, i.e., x = 0. The function v0(p) that solves

v(p) = φ
r
(π − p)v′(p)

is given by
v0(p) = C0

(π−p)
r
φ

,

where C0 is a constant of integration. The constant C0 is pinned down by appropriate
boundary conditions. In particular, if x = 0 for p ≥ π, then C0 = 0 (see Figure B.6), and
so v0(p) = 0. Furthermore,

v′0(p) = r
φ

C0

(π−p)
r
φ

+1
= r

φ(π−p)v0(p),

v′′0(p) = r(r+φ)
φ2

C0

(π−p)
r
φ

+2
= r+φ

φ(π−p)v
′
0(p) = r(r+φ)

φ2(π−p)2v0(p).

Note that, if the belief is 0, then players allocate no resource to R. Therefore, v(0) =
v0(0) = C0

π

r
φ

.

Suppose each players allocates the whole resource toR, i.e., x = 1. The function v1(p)
that solves

v(p) = φ
r
(π − p)v′(p) + I

r
(1− p)[v(0)− v(p) + pv′(p)]− [(1− p)b− pg]

is given by

v1(p) = g −
(
−v0(0) + (g + b) r

I
+ g
) I(φ(1−π)+r(1−p))
r2+r(I+φ)+Iφ(1−π)︸ ︷︷ ︸

=:w1(p)

+C1(p− βI)
(
p−βI
p−αI

) r
I

+1−αI
αI−βI ,

where C1 is a constant of integration. The constant C1 is pinned down by appropriate
boundary conditions. In particular, if x = 1 for p ≤ αI , then C1 = 0 (see Figure B.6), and
so v1(p) = w1(p). Furthermore,

v′1(p) =
(
−v0(0) + (g + b) r

I
+ g
)

Ir
r2+r(I+φ)+Iφ(1−π)

− C1
I(1−p)+r
I(p−αI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI ,

v′′1(p) = C1
(r+I(1−αI))(r+I(1−βI))

I2(p−αI)2(p−βI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI = C1

r2+r(I+φ)+Iφ(1−π)
I2(p−αI)2(p−βI)

(
p−βI
p−αI

) r
I

+1−αI
αI−βI .
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Note that

v0(0)− w1(p) + pw′1(p) = (v0(0) + b) r(r+φ(1−π))
r2+r(I+φ)+Iφ(1−π)

+ (v0(0)− g) rφπ
r2+r(I+φ)+Iφ(1−π)

.

Suppose each player allocates only a fraction of her resource to R, i.e., x ∈ (0, 1). The
function vx(p) that solves bv(p) = c(p), i.e.,

1
r
(1− p)[v(0)− v(p) + pv′(p)] = (1− p)b− pg,

is given by
vx(p) = v0(0)− br + grp ln

(
1−p
p

)
+ Cp,

where C is a constant of integration. The constant C is pinned down by appropriate
boundary conditions. It follows that

v′x(p) = gr ln
(

1−p
p

)
− gr 1

1−p + C,

v′′x(p) = −g r
p(1−p)2 .

Case (i): The value-matching and the smooth-pasting at p = p̄ imply v1(p̄) = v0(p̄) = 0
and v′1(p̄) = v′0(p̄) = 0. Therefore, bv1(p̄) = 0. It follows from bv1(p̄) = c(p̄) that p̄ = pM .
Furthermore, v1(p̄) = 0 implies

C1(p̄− βI)
(
p̄−βI
p̄−αI

) r
I

+1−αI
αI−βI = (b+ g) rp̄(Ip̄−I+φ)

r2+r(I+φ)+Iφ(1−π)
.

Case (ii): The value-matching at p = p̄ implies w1(p̄) = v0(p̄) = 0, and so

p̄ = −Iv0(0)(r+φ(1−π))+br(r+φ(1−π))−grφπ
Ir(−v0(0)+(g+b)

r
I

+g)
.

Because v0(0) = 0,
p̄ = b[r+φ(1−π)]−gφπ

Ig+(g+b)r
= pM (r+φ)−φπ

I(1−pM )+r
.

It follows that p̄ ≤ pM if and only if

0 ≤ φ(π − pM) + IpM(1− pM) = −I(pM − αI)(pM − βI).

That is, p̄ ≤ pM if and only if pM ≤ αI , with equality when pM = αI . Note that p̄ ≥ π if
and only if

pM ≥ π(I+r+φ)
πI+r+φ

.

Note that p̄ ≥ αI−1 if and only if

pM ≥ (I+r)αI−1+φπ

IαI−1+r+φ
. (B.41)

Furthermore,

bw1(p̄)− c(p̄) = 1
r
(1− p̄)

(
b r(r+φ(1−π))
r2+r(I+φ)+Iφ(1−π)

− g rφπ
r2+r(I+φ)+Iφ(1−π)

)
− [b(1− p̄)− gp̄]

= (g + b)φ[pM (Iπ+r+φ)−π(I+r+φ)]
I[r2+r(I+φ)+Iφ(1−π)]

− (g + b) I−1
I

φ(π−pM )+IpM (1−pM )
I(1−pM )+r

,
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and bw1(p̄)− c(p̄) ≥ 0 if and only if

p2
M [−Iφ(Iπ + r + φ) + I(I − 1)[r2 + r(I + φ) + Iφ(1− π)]]

+ pM [(I + r)φ(Iπ + r + φ) + Iφπ(I + r + φ) + (I − 1)(φ− I)[r2 + r(I + φ) + Iφ(1− π)]]

− φπ(I + r)(I + r + φ)− (I − 1)φπ[r2 + r(I + φ) + Iφ(1− π)] ≥ 0.

Divided by

− Iφ(Iπ + r + φ) + I(I − 1)[r2 + r(I + φ) + Iφ(1− π)] > 0, (B.42)

where the sign must be shown, the last inequality can be rewritten as follows:8(
pM − (I+r)αI−1+φπ

IαI−1+r+φ

)(
pM − (I+r)βI−1+φπ

IβI−1+r+φ

)
≥ 0.

It follows from footnote 8 that
(I+r)αI−1+φπ

IαI−1+r+φ
∈ (αI−1, αI),

(I+r)βI−1+φπ

IβI−1+r+φ
< 0.

Therefore, bw1(p̄)− c(p̄) ≥ 0 if and only if

pM ≥ (I+r)αI−1+φπ

IαI−1+r+φ
.

Case (iii): It follows from bw1(p̄) = c(p̄) that

1
r
(1− p̄)

(
b r(r+φ(1−π))
r2+r(I+φ)+Iφ(1−π)

− g rφπ
r2+r(I+φ)+Iφ(1−π)

)
= (1− p̄)b− gp̄,

and so that
1− p̄ = g[r2+r(I+φ)+Iφ(1−π)]

(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)
,

8Define
h(x) := (I+r)x+φπ

Ix+r+φ .

The function h(x) increases in x. Indeed, its first derivative is equal to

h′(x) = r(r+φ)+I[r+φ(1−π)]
(Ix+r+φ)2 > 0.

Furthermore, h(x) ≥ x if and only if φ(π − x) + Ix(1 − x) = −I(x − αI)(x − βI) ≥ 0, or equivalently if
and only if x ∈ [βI , αI ]. Because αX ∈ [π, αI ] for all X ∈ [0, I], it follows that h(αX) ∈ [π, αI ]. Note that
h(x) ≤ 0 if and only if

x ≤ x1 := − φπ
I+r ,

where x1 ≥ βI . Indeed, x1 ≥ βI if and only if

− φπ
I+r ≥

I−φ−
√

(I−φ)2+4Iφπ

2I ,

i.e., if and only if

(I − φ)2 + 4Iφπ −
(
I − φ+ 2I φπ

I+r

)2

= 4Iφπ[r2+r(I+φ)+Iφ(1−π)]
(I+r)2 ≥ 0.

Because βX is increasing in X , it follows that h(βX) ≤ 0 for all X ∈ [0, I].
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i.e.,

p̄ = b[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)
(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)

= pM [r2+r(I+φ)+Iφ(1−π)]+φπ−pM (r+φ)
r2+r(I+φ)+Iφ(1−π)+φπ−pM (r+φ)

. (B.43)

It follows that p̄ ≤ pM if and only if

(1− pM)
(

φπ
r+φ
− pM

)
≤ 0.

That is, p̄ ≤ pM if and only if pM ∈
[
φπ
r+φ

, 1
]
. Note that φπ

r+φ
< π. Furthermore, p̄ ≤ αI−1 if

and only if
pM ≤ αI−1[r2+r(I+φ)+Iφ(1−π)]−(1−αI−1)φπ

r2+r(I+φ)+Iφ(1−π)−(1−αI−1)(r+φ)
= (I+r)αI−1+φπ

IαI−1+r+φ
.

Compare with the condition (B.41). Note that w1(p̄) ≥ 0 if and only if

g −
(
(g + b) r

I
+ g
) I(φ(1−π)+r

g[r2+r(I+φ)+Iφ(1−π)]
(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)

)
r2+r(I+φ)+Iφ(1−π)

≥ 0.

The last inequality can be rewritten as follows:

g − [Ig + (g + b)r]
(

φ(1−π)
r2+r(I+φ)+Iφ(1−π)

+ gr
(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−b(r+φ)

)
≥ 0,

or equivalently

(1− pM)− [I(1− pM) + r]
(

φ(1−π)
r2+r(I+φ)+Iφ(1−π)

+ r(1−pM )
r2+r(I+φ)+Iφ(1−π)+φπ−pM (r+φ)

)
≥ 0.

It follows that w1(p̄) ≥ 0 if and only if

p2
M [(I + r + φ)(r + φ)− I[r2 + r(I + φ) + Iφ(1− π)]]

+ pM [−(I + r + φπ)(r + φ)− (I + r + φ)φπ + (I − φ)[r2 + r(I + φ) + Iφ(1− π)]]

+ [r2 + r(I + φ) + Iφ(1− π) + I + r + φπ]φπ ≥ 0.

Divide the last inequality by

(I + r + φ)(r + φ)− I[r2 + r(I + φ) + Iφ(1− π)] < 0,

which can be rewritten as follows:

−φ(Iπ + r + φ) + (I − 1)[r2 + r(I + φ) + Iφ(1− π)] > 0.

Compare with (B.42). The inequality is to be shown. It follows thatw1(p̄) ≥ 0 if and only
if (

pM − (I+r)αI−1+φπ

IαI−1+r+φ

)(
pM − (I+r)βI−1+φπ

IβI−1+r+φ

)
≤ 0.

Therefore, taking into account footnote 8, w1(p̄) ≥ 0 if and only if

pM ≤ (I+r)αI−1+φπ

IαI−1+r+φ
.
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The value-matching at p implies vx(p) = v0(p) = 0, and so

C = br 1
p
− gr ln

(
1−p
p

)
.

Therefore,

vx(p) = br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
,

v′x(p) = br 1
p
− gr 1

1−p − gr ln
(

1−p
p

p
1−p

)
,

and so

vx(p)− φ
r
(π − p)v′x(p) = b

r(p−p)−φ(π−p)
p

+ g φ(π−p)
1−p − g[rp− φ(π − p)] ln

(
1−p
p

p
1−p

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(π − p)v′x(p) = (I − 1)x(p)c(p),

so that

x(p) =
b
r(p−p)−φ(π−p)

p
+g

φ(π−p)
1−p −g[rp−φ(π−p)] ln

(
1−p
p

p
1−p

)
(I−1)[b(1−p)−gp] .

It is left to show that x(p) increases in p for p ∈ [p, p̄]. Note that

x(p) = − φ(π−p)
(I−1)p(1−p) ≥ 0

for p ≥ π, with equality when p = π. At p̄, x(p̄) = 1, i.e.,

b
r(p̄−p)−φ(π−p̄)

p
+ g φ(π−p̄)

1−p̄ − g[rp̄− φ(π − p̄)] ln
(

1−p
p

p̄
1−p̄

)
= (I − 1)[b(1− p̄)− gp̄]. (B.44)

Fix p̄. Define

hL(p) := b r(p̄−p)−φ(π−p̄)
p

+ g φ(π−p̄)
1−p̄ − g[rp̄− φ(π − p̄)] ln

(
1−p
p

p̄
1−p̄

)
,

hR(p) := (I − 1)[b(1− p̄)− gp̄].

Given p̄, there exists unique p ∈ [π, p̄] that solves (B.44) if and only if hL(p) and hR(p)
intersect once on [π, p̄]. The function hR(p) is constant for all p. The function hL(p) de-
creases in p for p ≤ p̄ ≤ pM . Indeed, its first derivative is equal to

h′L(p) = −[rp̄− φ(π − p̄)] b(1−p)−gp
p2(1−p) < 0

for p < p̄ ≤ pM and p̄ > φπ
r+φ

, in particular for p̄ ≥ π. Furthermore,

hL(p̄) = −φ(π−p̄)
p̄(1−p̄) [b(1− p̄)− gp̄] < hR(p̄)

p̄ ≤ pM and p̄ ≤ αI−1, because

0 ≤ φ(π − p̄)− (I − 1)p̄(1− p̄) = −I(p̄− αI−1)(p̄− βI−1).
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Therefore, there exists p ∈ [π, p̄] that solves (B.44) if and only hL(π) > hR(π). That is, this
is the case if and only if the following condition is satisfied

bφ(π−p̄)2
πp̄

− b r(π−p̄)
π
− g[rp̄− φ(π − p̄)] ln

(
1−π
π

p̄
1−p̄

)
≥ [b(1− p̄)− gp̄]φ(π−p̄)+(I−1)p̄(1−p̄)

p̄(1−p̄) ,

which can be rewritten as follows:

pM
φ(π−p̄)2

πp̄
− pM r(π−p̄)

π
− (1− pM)[rp̄− φ(π − p̄)] ln

(
1−π
π

p̄
1−p̄

)
≥ (pM − p̄)φ(π−p̄)+(I−1)p̄(1−p̄)

p̄(1−p̄) , (B.45)

where p̄ is given by (B.43). It is left to argue that (B.45) is the condition that bounds pM
below for this case.

Case (iv): It follows from bw1(p̄) = c(p̄) that

1
r
(1− p̄)

(
v0(0) r(r+φ)

r2+r(I+φ)+Iφ(1−π)
+ b r(r+φ(1−π))

r2+r(I+φ)+Iφ(1−π)
− g rφπ

r2+r(I+φ)+Iφ(1−π)

)
= (1− p̄)b− gp̄,

and so that
1− p̄ = g[r2+r(I+φ)+Iφ(1−π)]

(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−(v0(0)+b)(r+φ)
,

that is,

p̄ = b[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−(v0(0)+b)(r+φ)
(g+b)[r2+r(I+φ)+Iφ(1−π)]+(g+b)φπ−(v0(0)+b)(r+φ)

=
pM [r2+r(I+φ)+Iφ(1−π)]+φπ−

(
v0(0)
g+b

+pM

)
(r+φ)

r2+r(I+φ)+Iφ(1−π)+φπ−
(
v0(0)
g+b

+pM

)
(r+φ)

. (B.46)

Compare with (B.43). Note that the right side of (B.46) decreases in v0(0). The value-
matching at p implies v0(p) = vx(p), that is,

v0(0)
(

π
π−p

) r
φ

= v0(0)− br + grp ln
(

1−p
p

)
+ Cp,

and so
C = br 1

p
− gr ln

(
1−p
p

)
− v0(0)1

p
+ v0(0)

(
π
π−p

) r
φ 1
p
.

The smooth-pasting at p implies v′0(p) = v′x(p), i.e.,

v0(0) r
φπ

(
π
π−p

) r
φ

+1

= gr ln
(

1−p
p

)
− gr 1

1−p + C,

and so
C = −gr ln

(
1−p
p

)
+ gr 1

1−p + v0(0) r
φπ

(
π
π−p

) r
φ

+1

.

It follows that

v0(0) =
b(1−p)−gp

1−p
r

1+
rp−φ(π−p)
φ(π−p)

(
π
π−p

) r
φ

= (g + b)
pM−p
1−p

r

1+
rp−φ(π−p)
φ(π−p)

(
π
π−p

) r
φ

. (B.47)



B.2. Proofs 139

Note that v0(0) decreases in p. Indeed, the first derivative of v0(0)
g+b

with respect to p is equal
to

− 1−pM
(1−p)2

r

1+
rp−φ(π−p)
φ(π−p)

(
π
π−p

) r
φ

− pM−p
1−p

r1+
rp−φ(π−p)
φ(π−p)

(
π
π−p

) r
φ

2

r(r+φ)p

φ2(π−p)2

(
π
π−p

) r
φ
< 0

for p < pM . Furthermore,

vx(p) = v0(0) + br
p−p
p
− grp ln

(
1−p
p

p
1−p

)
− v0(0)p

p
+ v0(0)

(
π
π−p

) r
φ p
p
,

v′x(p) = br 1
p
− gr 1

1−p − gr ln
(

1−p
p

p
1−p

)
− v0(0)1

p
+ v0(0)

(
π
π−p

) r
φ 1
p
,

and so

vx(p)− φ
r
(π − p)v′x(p) = b

r(p−p)−φ(π−p)
p

+ g φ(π−p)
1−p − g[rp− φ(π − p)] ln

(
1−p
p

p
1−p

)
+ v0(0) + v0(0) rp−φ(π−p)

rp

(
−1 +

(
π
π−p

) r
φ

)
.

It follows from bvx(p) = c(p) that

vx(p)− φ
r
(π − p)v′x(p) = (I − 1)x(p)c(p),

so that

x(p) =

b
r(p−p)−φ(π−p)

p
+g

φ(π−p)
1−p −g[rp−φ(π−p)] ln

(
1−p
p

p
1−p

)
+v0(0)+v0(0)

rp−φ(π−p)
rp

−1+

(
π
π−p

) r
φ


(I−1)[b(1−p)−gp] .

It is left to show that x(p) increases in p for p ∈ [p, p̄]. Note that x(p) = 0. At p̄, x(p̄) = 1,
i.e.,

b
r(p̄−p)−φ(π−p̄)

p
+ g φ(π−p̄)

1−p̄ − g[rp̄− φ(π − p̄)] ln
(

1−p
p

p̄
1−p̄

)
+ v0(0) + v0(0) rp̄−φ(π−p̄)

rp

(
−1 +

(
π
π−p

) r
φ

)
= (I − 1)[b(1− p̄)− gp̄],

which can be rewritten as follows:

pM
r(p̄−p)−φ(π−p̄)

p
+ (1− pM)φ(π−p̄)

1−p̄ − (1− pM)[rp̄− φ(π − p̄)] ln
(

1−p
p

p̄
1−p̄

)
+ v0(0)

g+b
+ v0(0)

g+b
rp̄−φ(π−p̄)

rp

(
−1 +

(
π
π−p

) r
φ

)
= (I − 1)(pM − p̄), (B.48)

Given v0(0) defined by (B.47), equations (B.46) and (B.48) pin down p and p̄. It is left
to argue that the solution to (B.46) and (B.48) exists and is unique, and to show that the
condition on parameter is the opposite to (B.45).





Appendix C

Addendum to Chapter 3

C.1 A Buyer’s Problem

Proposition 3.1 and Lemmata 3.2 and 3.3 follow from the following analysis. Suppose
the buyer with the belief x has the A-gizmo. Because the gizmo breaks at rate β and the
buyer learns that he is theH-type at rate λx and that he is the L-type at rate λ(1−x), the
buyer’s value function satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

(r + δ)VA(x, pA, pB) = w + wAx

+ β[max{VA(x, pA, pB)− pA, VB(x, pA, pB)− pB} − VA(x, pA, pB)]

+ λx[max{VA(1, pA, pB), VB(1, pA, pB)− pB} − VA(x, pA, pB)]

+ λ(1− x)[max{VA(0, pA, pB), VB(0, pA, pB)− pB} − VA(x, pA, pB)],

(r + δ + β + λ)VA(x, pA, pB) = w +wAx+ βmax{VA(x, pA, pB)− pA, VB(x, pA, pB)− pB}
+ λxmax{VA(1, pA, pB), VB(1, pA, pB)− pB}

+ λ(1− x) max{VA(0, pA, pB), VB(0, pA, pB)− pB}.

Similarly, for the buyer with the belief x and theB-gizmo, the HJB equation is as follows:

(r + δ)VB(x, pA, pB) = w

+ β[max{VA(x, pA, pB)− pA, VB(x, pA, pB)− pB} − VB(x, pA, pB)]

+ λx[max{VA(1, pA, pB)− pA, VB(1, pA, pB)} − VB(x, pA, pB)]

+ λ(1− x)[max{VA(0, pA, pB)− pA, VB(0, pA, pB)} − VB(x, pA, pB)],

(r + δ + β + λ)VB(x, pA, pB) = w + βmax{VA(x, pA, pB)− pA, VB(x, pA, pB)− pB}
+ λxmax{VA(1, pA, pB)− pA, VB(1, pA, pB)}

+ λ(1− x) max{VA(0, pA, pB)− pA, VB(0, pA, pB)}.

Consider the H-type (who has learned his type) with the A-gizmo. Because the
gizmo breaks at rate β, the buyer’s value function satisfies

(r + δ)VA(1, pA, pB)
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= w + wA + β[max{VA(1, pA, pB)− pA, VB(1, pA, pB)− pB} − VA(1, pA, pB)],

(r + δ + β)VA(1, pA, pB) = w + wA + βmax{VA(1, pA, pB)− pA, VB(1, pA, pB)− pB}.

The value function of the L-type (who has learned his type) with the A-gizmo satisfies

(r + δ)VB(1, pA, pB)

= w + β[max{VA(1, pA, pB)− pA, VB(1, pA, pB)− pB} − VB(1, pA, pB)],

(r + δ + β)VB(1, pA, pB) = w + βmax{VA(1, pA, pB)− pA, VB(1, pA, pB)− pB}.

It follows that VA(1, pA, pB) > VB(1, pA, pB), and so max{VA(1, pA, pB), VB(1, pA, pB) −
pB} = VA(1, pA, pB). Note that the H-types prefers the A-gizmo over the B-gizmo if
and only if VA(1, pA, pB)− pA ≥ VB(1, pA, pB)− pB, i.e., if and only if 1

r+δ+β
wA ≥ pA − pB.

In such a case,

VA(1, pA, pB) = 1
r+δ

(w + wA)− β
r+δ

pA,

VB(1, pA, pB) = 1
r+δ

w + β
(r+δ)(r+δ+β)

wA − β
r+δ

pA.

Note that VB(1, pA, pB) ≥ VA(1, pA, pB)− pA if and only if pA ≥ 1
r+δ+β

wA.
Consider the H-type (who has learned his type) with the B-gizmo. Because the

gizmo breaks at rate β, the buyer’s value function satisfies

(r + δ)VA(0, pA, pB)

= w + β[max{VA(0, pA, pB)− pA, VB(0, pA, pB)− pB} − VA(0, pA, pB)],

(r + δ + β)VA(0, pA, pB) = w + βmax{VA(0, pA, pB)− pA, VB(0, pA, pB)− pB}.

The value function of the L-type (who has learned his type) with the B-gizmo satisfies

(r + δ)VB(0, pA, pB)

= w + β[max{VA(0, pA, pB)− pA, VB(0, pA, pB)− pB} − VB(0, pA, pB)],

(r + δ + β)VB(0, pA, pB) = w + βmax{VA(0, pA, pB)− pA, VB(0, pA, pB)− pB}.

It follows that VA(0, pA, pB) = VB(0, pA, pB), and so max{VA(0, pA, pB), VB(0, pA, pB) −
pB} = VA(0, pA, pB) and max{VA(0, pA, pB)− pA, VB(0, pA, pB)} = VB(0, pA, pB). Note that
the L-types prefers the B-gizmo over the A-gizmo if and only if VB(0, pA, pB) − pB ≥
VA(0, pA, pB)− pA, i.e., if and only if pA − pB ≥ 0. In such a case,

VA(0, pA, pB) = VB(0, pA, pB) = 1
r+δ

w − β
r+δ

pB.

The optimal cut-off x̄ is the belief at which a buyer without the gizmo is indifferent
between the two versions given the prices pA and pB. If 1

r+δ+β
wA ≥ pA − pB ≥ 0, then

VA(x̄, pA, pB)− pA = VB(x̄, pA, pB)− pB at

x̄ = (r+δ+β+λ)(pA−pB)
wA+λ[VA(1,pA,pB)−max{VA(1,pA,pB)−pA,VB(1,pA,pB)}]

= (pA−pB)(r+δ+β+λ)
wA+λ[VA(1,pA,pB)−VB(1,pA,pB)−max{VA(1,pA,pB)−VB(1,pA,pB)−pA,0}]

= pA−pB
1

r+δ+β
wA−

λ
r+δ+β+λ

max
{

1
r+δ+β

wA−pA,0
} .
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Suppose x ≥ x̄, and so VA(x, pA, pB)− pA ≥ VB(x, pA, pB)− pB. The value function of
a buyer with the belief x who has the A-gizmo is given by

VA(x, pA, pB) = 1
r+δ

(w + wAx)− β
r+δ+λ

pA − βλ
(r+δ)(r+δ+λ)

[xpA + (1− x)pB]. (C.1)

Note that
dVA(x,pA,pB)

dx
= r+δ+β+λ

(r+δ+β)(r+δ+λ)
wA + βλ

(r+δ)(r+δ+λ)

[
1

r+δ+β
wA − (pA − pB)

]
> 0

if 1
r+δ+β

wA ≥ pA−pB. The value function of a buyer with the belief xwho has theB-gizmo
is given by

VB(x, pA, pB) = 1
r+δ

w + β
(r+δ)(r+δ+β)

wAx− β
r+δ+λ

pA − βλ
(r+δ)(r+δ+λ)

[xpA + (1− x)pB]

+ λ
r+δ+β+λ

xmax
{

1
r+δ+β

wA − pA, 0
}
.

Note that

dVB(x,pA,pB)
dx

= β
(r+δ+β)(r+δ+λ)

wA + βλ
(r+δ)(r+δ+λ)

[
1

r+δ+β
wA − (pA − pB)

]
+ λ

r+δ+β+λ
max

{
1

r+δ+β
wA − pA, 0

}
> 0

if 1
r+δ+β

wA ≥ pA − pB. Furthermore,

VA(x, pA, pB)− VB(x, pA, pB) = 1
r+δ+β

wAx− λ
r+δ+β+λ

xmax
{

1
r+δ+β

wA − pA, 0
}
≥ 0,

with equality if and only if x = 0.

Suppose x ≤ x̄, and so VB(x, pA, pB)− pB ≥ VA(x, pA, pB)− pA. The value function of
a buyer with the belief x who has the A-gizmo is given by

VA(x, pA, pB) = 1
r+δ

(w + wAx)− β
(r+δ+β)(r+δ+λ)

wAx− β
r+δ+λ

pB

− βλ
(r+δ)(r+δ+λ)

[xpA + (1− x)pB] + βλ
(r+δ+λ)(r+δ+β+λ)

xmax
{

1
r+δ+β

wA − pA, 0
}
.

Note that

dVA(x,pA,pB)
dx

= 1
r+δ+β

wA + βλ
(r+δ)(r+δ+λ)

[
1

r+δ+β
wA − (pA − pB)

]
+ βλ

(r+δ+λ)(r+δ+β+λ)
max

{
1

r+δ+β
wA − pA, 0

}
> 0

if 1
r+δ+β

wA ≥ pA−pB. The value function of a buyer with the belief xwho has theB-gizmo
is given by

VB(x, pA, pB) = 1
r+δ

w + βλ
(r+δ)(r+δ+β)(r+δ+λ)

wAx

− β
r+δ+λ

pB − βλ
(r+δ)(r+δ+λ)

[xpA + (1− x)pB]

+ λ
r+δ+λ

xmax
{

1
r+δ+β

wA − pA, 0
}
. (C.2)
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Note that

dVB(x,pA,pB)
dx

= βλ
(r+δ)(r+δ+λ)

[
1

r+δ+β
wA − (pA − pB)

]
+ βλ

(r+δ+λ)(r+δ+β+λ)
max

{
1

r+δ+β
wA − pA, 0

}
≥ 0

if 1
r+δ+β

wA ≥ pA − pB. Furthermore,

VA(x, pA, pB)− VB(x, pA, pB) = 1
r+δ+β

wAx− λ
r+δ+β+λ

xmax
{

1
r+δ+β

wA − pA, 0
}
≥ 0,

with equality if and only if x = 0.

C.2 The Seller’s Problem

Theorems 3.1 and 3.2 and Lemma 3.4 follow from the following analysis. Let Π(pA, pB)
define the seller’s profit when she posts prices pA and pB. The seller’s problem can be
divide into two subproblems depending on whether, given the prices pA and pB, buyers
with the B-gizmo replace it immediately with the A-gizmo upon learning that they are
the H-types. There is no immediate replacement if pA ≥ 1

r+δ+β
wA.

C.2.1 No Replacement

The seller’s subproblem takes the form

max
pA,pB

Π(pA, pB) =

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)]
pA

+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
pB

sub. to pA − pB ≤ 1
r+δ+β

wA, (ICA
1 )

pA − pB ≥ 0, (ICB
0 )

pA ≥ 1
r+δ+β

wA, (NR)
VA(x̄, pA, pB)− pA ≥ 0, (IRA

x̄ )
VB(0, pA, pB)− pB ≥ 0, (IRB

0 )

where x̄ := x̄ = pA−pB
1

r+δ+β
wA

by Proposition 3.1. The incentive constraint (ICA
1 ) (resp., (ICB

0 ))

says that the H-types (resp., the L-types) prefer the A-gizmo (resp., the B-gizmo) over
the B-gizmo (resp., the A-gizmo). The constraint (NR) captures that the A-gizmo price
is too high for buyers with theB-gizmo to replace it immediately with theA-gizmo upon
learning that they are the H-types. Given the monotonicity of the value functions, the
individual rationality constraint (IRA

x̄ ) (resp., (IRB
0 )) says that buyers with the beliefs

above x̄ (resp., with any belief, including the L-types) prefer to have theA-gizmo (resp.,
the B-gizmo) over not having a gizmo at all.

Given the value function of the buyer with theA-gizmo in (C.1), the constraint (IRA
x̄ )
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pA

pB0

(ICA1 )

(ICB0 )

(NR)

(IRB0 )

1
r+δ+βwA

1
r+δ+βw

1
r+δ+β (w + wA)

1
r+δ+βwA

Figure C.1. The feasibility set of the seller’s subproblem if buyers do not replace the B-gizmo with the
A-gizmo immediately upon learning that they are theH-types. Parameters: (r, δ, β, w,wA) = (1, 1, 1, 2, 1).

is equivalent to

pA ≤ 1
r+δ+β

(w + wAx̄) + βλ
(r+δ+β)(r+δ+λ)

(1− x̄)(pA − pB).

Given the value function of the buyer with the B-gizmo in (C.2), the constraint (IRB
0 ) is

equivalent to
pB ≤ 1

r+δ+β
w ⇔ pA ≤ 1

r+δ+β
(w + wAx̄),

taking into account the definition of x̄. Therefore, (IRA
x̄ ) is redundant. The feasibility set

is the shaded area in Figure C.1.
The Lagrangian takes the following form

L(pA, pB, α1, α2, α3, α4) =

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)]
pA

+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
pB

+α1

(
1

r+δ+β
wA − (pA − pB)

)
+α2(pA− pB) +α3

(
pA − 1

r+δ+β
wA

)
+α4

(
1

r+δ+β
w − pB

)
.

The Kuhn-Tucker conditions are necessary for the optimum and are as follows:

L′pA = δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
−
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄− α1 + α2 + α3 = 0,

L′pB = δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)
+
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄+ α1 − α2 − α4 = 0,
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α1

(
1

r+δ+β
wA − (pA − pB)

)
= 0, α1 ≥ 0,

α2(pA − pB) = 0, α2 ≥ 0,

α3

(
pA − 1

r+δ+β
wA

)
= 0, α3 ≥ 0,

α4

(
1

r+δ+β
w − pB

)
= 0, α4 ≥ 0.

It follows from L′pB = 0 and αi ≥ 0 for i = 1, . . . , 4 that α2 > 0 or α4 > 0. If α2 > 0,
then pA = pB, and so x̄ = 0 and α1 = 0. This implies that L′pA > 0, a contradiction.
Therefore, α∗2 = 0 and α∗4 > 0, and so p∗B = 1

r+δ+β
w. That is, the constraint (IRB

0 ) binds.

Given p∗B = 1
r+δ+β

w and the definition of x̄, the seller’s profit is equal to

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)]
1

r+δ+β
(w + wAx̄)

+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
1

r+δ+β
w

=

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)]
1

r+δ+β
wAx̄+

(
δ
r+δ

+ β
r+β

)
1

r+δ+β
w.

The seller’s subproblem can be rewritten as follows:

max
x̄∈[0,1]

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)]
1

r+δ+β
wAx̄+

(
δ
r+δ

+ β
r+β

)
1

r+δ+β
w.

The first-order derivative with respect to x̄ and divided by 1
r+δ+β

wA is equal to

δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
−
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄.

Define

H(y) := δ
r+δ

∫ 1

y

f(x)dx+ β
r+β

(∫ 1

y

m(x)dx+MH

)
−
(

δ
r+δ

f(y) + β
r+β

m(y)
)
y.

Note that H(0) > 0 and

H ′(y) = −2
(

δ
r+δ

f(y) + β
r+β

m(y)
)
−
(

δ
r+δ

f ′(y) + β
r+β

m′(y)
)
y

= −
(

δ
r+δ

+ β
r+β

δ
δ+λ

)
[2f(y) + yf ′(y)] < 0

if 2f(y) + yf ′(y) > 0. Assume 2f(y) + yf ′(y) > 0 for all y ∈ [0, 1]. If H(1) ≥ 0, i.e., if

β
r+β

MH ≥ δ
r+δ

f(1) + β
r+β

m(1),

then x̄∗ = 1 solves the seller’s subproblem. That is, p∗A = 1
r+δ+β

(w + wA). If H(1) < 0,
then there exists a unique x̄∗ ∈ (0, 1) that solves H(x̄∗) = 0. This x̄∗ solves the seller’s
subproblem and pins down p∗A = 1

r+δ+β
(w + wAx̄

∗) ∈
(

1
r+δ+β

w, 1
r+δ+β

(w + wA)
)

.
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If β
r+β

MH ≥ δ
r+δ

f(1) + β
r+β

m(1), then the seller’s profit is equal to

Π(NR) := Π(p∗A, p
∗
B) = β

r+β
λ
δ+λ

∫ 1

0

xf(x)dx · 1
r+δ+β

wA +
(

δ
r+δ

+ β
r+β

)
1

r+δ+β
w.

If β
r+β

MH < δ
r+δ

f(1) + β
r+β

m(1), then the profit is

Π(NR) := Π(p∗A, p
∗
B) =

(
δ
r+δ

+ β
r+β

δ
δ+λ

)
(x̄∗)2f(x̄∗) 1

r+δ+β
wA +

(
δ
r+δ

+ β
r+β

)
1

r+δ+β
w.

Uniform distribution of priors. Suppose the prior belief of buyers who enter the mar-
ket is uniformly distributed on [0, 1], i.e., f(x) = 1 for all x ∈ [0, 1]. If 1

2
β
r+β

λ
δ+λ

≥
δ
r+δ

+ β
r+β

δ
δ+λ

, then x̄∗ = 1. If 1
2

β
r+β

λ
δ+λ

< δ
r+δ

+ β
r+β

δ
δ+λ

, then

x̄∗ = 1
2

+ 1
4

β
r+β

λ
δ+λ

δ
r+δ

+
β
r+β

δ
δ+λ

.

The optimal cut-off x̄∗ depends on parameters β, λ, δ, and r as follows:

x̄∗′β = 1
4

δ
r+δ

λ
δ+λ(

δ
r+δ

+
β
r+β

δ
δ+λ

)2
r

(r+β)2
> 0,

x̄∗′λ = 1
4

β
r+β

(
δ
r+δ

+
β
r+β

)
(

δ
r+δ

+
β
r+β

δ
δ+λ

)2
δ

(r+δ)2
> 0,

x̄∗′δ = −1
4

β
r+β

λ
δ+λ(

δ
r+δ

+
β
r+β

δ
δ+λ

)2

[
1

δ+λ

(
δ
r+δ

+ β
r+β

δ
δ+λ

)
+ r

(r+δ)2
+ β

r+β
λ

(δ+λ)2

]
< 0,

x̄∗′r = 1
4

β
r+β

λ
δ+λ(

δ
r+δ

+
β
r+β

δ
δ+λ

)2
δ(β−δ)

(r+δ)2(r+β)
,

where x̄∗′r > 0 if β > δ and x̄∗′r < 0 if β < δ.

C.2.2 Replacement
The seller’s subproblem takes the form

max
pA,pB

Π(pA, pB)

=

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
+ λ

r+λ

∫ x̄

0

xm(x)dx

]
pA

+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
pB

sub. to pA − pB ≤ 1
r+δ+β

wA, (ICA
1 )

pA − pB ≥ 0, (ICB
0 )

pA ≤ 1
r+δ+β

wA, (R)
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pA

pB0

(ICA1 )

(ICB0 )
(R)1

r+δ+βwA

1
r+δ+βw

1
r+δ+βwA

Figure C.2. The feasibility set of the seller’s subproblem if buyers replace the B-gizmo with the A-gizmo
immediately upon learning that they are the H-types. Parameters: (r, δ, β, w,wA) = (1, 1, 1, 2, 1).

VA(x̄, pA, pB)− pA ≥ 0, (IRA
x̄ )

VB(0, pA, pB)− pB ≥ 0, (IRB
0 )

where x̄ := x̄ = pA−pB
1

r+δ+β
wA−

λ
r+δ+β+λ

(
1

r+δ+β
wA−pA

) by Proposition 3.1. Note that

x̄′pA =
1

r+δ+β
wA−

λ
r+δ+β+λ

(
1

r+δ+β
wA−pB

)
[

1
r+δ+β

wA−
λ

r+δ+β+λ

(
1

r+δ+β
wA−pA

)]2 =
1− λ

r+δ+β+λ
x̄

1
r+δ+β

wA−
λ

r+δ+β+λ

(
1

r+δ+β
wA−pA

) ,

x̄′pB = − 1
1

r+δ+β
wA−

λ
r+δ+β+λ

(
1

r+δ+β
wA−pA

) .
The seller gets λ

r+λ

∫ x̄
0
xm(x)dx · pA from buyers with the B-gizmo who learn that they

are the H-types and immediately replace their gizmo with the A-gizmo. The constraint
(R) captures that the price of the A-gizmo is relatively low for these buyers to be willing
to replace their B-gizmo immediately. The remaining constraints are similar to those of
the previous subproblem.

Given the value function of the buyer with theA-gizmo in (C.1), the constraint (IRA
x̄ )

is equivalent to

pA ≤ 1
r+δ+β

(w + wAx̄) + βλ
(r+δ+β)(r+δ+λ)

(1− x̄)(pA − pB).

Given the value function of the buyer with the B-gizmo in (C.2), the constraint (IRB
0 ) is

equivalent to

pB ≤ 1
r+δ+β

w ⇔ pA ≤ 1
r+δ+β

w + x̄
[

1
r+δ+β

wA − λ
r+δ+β+λ

(
1

r+δ+β
wA − pA

)]
,

taking into account the definition of x̄. It follows from (IRB
0 ) and (R) that (IRA

x̄ ) is re-
dundant. The constraint (R) also implies (ICA

1 ). Furthermore, (R) implies (IRB
0 ) when

w > wA. The feasibility set is the shaded area in Figure C.2.

The Lagrangian takes the following form

L(pA, pB, α1, α2)

=

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
+ λ

r+λ

∫ x̄

0

xm(x)dx

]
pA
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+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
pB

+ α1(pA − pB) + α2

(
1

r+δ+β
wA − pA

)
.

The Kuhn-Tucker conditions are necessary for the optimum and are as follows:

L′pA = δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
+ λ

r+λ

∫ x̄

0

xm(x)dx

+ λ
r+λ

x̄m(x̄)
1− λ

r+δ+β+λ
x̄

1
r+δ+β

wA−
λ

r+δ+β+λ

(
1

r+δ+β
wA−pA

)pA
−
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄
(

1− λ
r+δ+β+λ

x̄
)

+ α1 − α2 = 0,

L′pB = δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)
− λ

r+λ
x̄m(x̄) 1

1
r+δ+β

wA−
λ

r+δ+β+λ

(
1

r+δ+β
wA−pA

)pA +
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄− α1 = 0,

α1(pA − pB) = 0, α1 ≥ 0,

α2

(
1

r+δ+β
wA − pA

)
= 0, α2 ≥ 0.

Suppose pA < 1
r+δ+β

wA, and so α2 = 0. It follows that L′pA + L′pB = 0 is equivalent to

δ
r+δ

+ β
r+β

+ λ
r+λ

∫ x̄

0

xm(x)dx− λ
r+δ+β+λ

λ
r+λ

x̄2m(x̄) 1
1

r+δ+β
wA−

λ
r+δ+β+λ

(
1

r+δ+β
wA−pA

)pA
+ λ

r+δ+β+λ

(
δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄2 = 0,

which implies

λ
r+δ+β+λ

x̄L′pB = λ
r+δ+β+λ

x̄

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
− δ

r+δ
− β

r+β
− λ

r+λ

∫ x̄

0

xm(x)dx− λ
r+δ+β+λ

x̄α1 < 0,

a contradiction. Therefore, p∗A = 1
r+δ+β

wA. That is, the constraint (R) binds.

Given p∗A = 1
r+δ+β

wA and the definition of x̄, the seller’s subproblem can be rewritten
as follows:

max
x̄∈[0,1]

[
δ
r+δ

∫ 1

x̄

f(x)dx+ β
r+β

(∫ 1

x̄

m(x)dx+MH

)
+ λ

r+λ

∫ x̄

0

xm(x)dx

]
1

r+δ+β
wA

+

[
δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
1

r+δ+β
wA(1− x̄).
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The first-order derivative with respect to x̄ divided by 1
r+δ+β

wA is equal to

λ
r+λ

x̄m(x̄)−
(

δ
r+δ

f(x̄) + β
r+β

m(x̄)
)
x̄

−
[

δ
r+δ

∫ x̄

0

f(x)dx+ β
r+β

(∫ x̄

0

m(x)dx+ML

)]
< 0,

because

λ
r+λ

m(x̄)− δ
r+δ

f(x̄) =
(

λ
r+λ

δ
δ+λ
− δ

r+δ

)
f(x̄) = − δ(rδ+λ2)

(r+λ)(δ+λ)(r+δ)
f(x̄).

It follows that x̄∗ = 0, and so p∗B = 1
r+δ+β

wA. In particular, this implies that only the
L-types who have learned their type buy the B-gizmo.

The seller’s profit is equal to

Π(R) := Π(p∗A, p
∗
B) =

[
δ
r+δ

+ β
r+β

δ
δ+λ

(
1 + λ

δ

∫ 1

0

xf(x)dx

)]
1

r+δ+β
wA.

Note that Π(R) < Π(NR) when w > wA.

C.2.3 Planned Obsolescence
The optimal cut-off x̄∗ = 1. If β

r+β
MH ≥ δ

r+δ
f(1) + β

r+β
m(1), then the seller’s profit as a

function of the breakdown rate β is equal to

Π(β) := 1
r+δ+β

[
β
r+β

MHwA +
(

δ
r+δ

+ β
r+β

)
w
]
.

The first-order derivative with respect to β is

Π′β(β) = 1
(r+β)2(r+δ+β)2

[
(r(r + δ)− β2) (MHwA + w)− δ

r+δ
(r + β)2w

]
.

Note that Π′β > 0 for β ∈ [0, β∗) and Π′β < 0 for β ∈ (β∗,∞), where

β∗ :=

√
rC[rC+δ(C+D)]−rD

C+D

withC := MHwA+w andD := δ
r+δ

w.1 It follows that the seller’s profit Π(β) is maximized
at β = β∗.

1Consider a quadratic equation in β

[r(r + δ)− β2]C − (r + β)2D = r(r + δ)C − r2D − 2rDβ − (C +D)β2 = 0.

The determinant is equal to ∆
4 = r2D2 + (C +D)[r(r + δ)C − r2D] = rC[rC + δ(C +D)]. The solution to

the equation above is as follows:

β1 =
rD+
√
rC[rC+δ(C+D)]

−(C+D) , β2 =
rD−
√
rC[rC+δ(C+D)]

−(C+D) .

For C := MHwA + w and D := δ
r+δw, note that β1 < 0, while β2 > 0 because C > D.
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The optimal cut-off x̄∗ ∈ (0, 1). If β
r+β

MH < δ
r+δ

f(1) + β
r+β

m(1), then the seller’s profit
as a function of the breakdown rate β is equal to

Π(β) := 1
r+δ+β

[[
δ
r+δ

∫ 1

x̄∗
f(x)dx+ β

r+β

(∫ 1

x̄∗
m(x)dx+MH

)]
wAx̄

∗ +
(

δ
r+δ

+ β
r+β

)
w

]
.

Applying the Envelope theorem, the first-order derivative with respect to β is

Π′β(β) = 1
(r+β)2(r+δ+β)2

[
(r(r + δ)− β2)

[(∫ 1

x̄∗
m(x)dx+MH

)
wAx̄

∗ + w

]
− δ

r+δ
(r + β)2

(∫ 1

x̄∗
f(x)dx · wAx̄∗ + w

)]
.

Note that Π′β > 0 for β ∈ [0, β∗) and Π′β < 0 for β ∈ (β∗,∞), where

β∗ :=

√
rC[rC+δ(C+D)]−rD

C+D

with C :=
(∫ 1

x̄∗
m(x)dx+MH

)
wAx̄

∗ + w and D := δ
r+δ

(∫ 1

x̄∗
f(x)dx · wAx̄∗ + w

)
.2 It fol-

lows that the seller’s profit Π(β) is maximized at β = β∗.

2See footnote 1. For C :=
(∫ 1

x̄∗ m(x)dx+MH

)
wAx̄

∗ + w and D := δ
r+δ

(∫ 1

x̄∗ f(x)dx · wAx̄∗ + w
)

, note
that β2 > β1 and β1 < 0, while β2 > 0 when w > wA. Indeed, if w > wA, then 0 ∈ (β1, β2) because

r(r + δ)C − r2D > r

[
(r + δ)w − rδ

r+δ

(∫ 1

x̄∗
f(x)dx · wAx̄∗ + w

)]
> r

[
(r + δ)w − rδ

r+δ · 2w
]

= r(r−δ)2
r+δ w ≥ 0.





Appendix D

Addendum to Chapter 4

D.1 Another Tie-Breaking Rule
I show that, if the seller uses an alternative tie-breaking assumption, then the equilibrium
behavior of buyers for given unit and bundle prices seems unnatural. In particular, the
multi-unit single-crossing property does not hold anymore.

Assumption D.1. If one buyer accepts the offer of the unit, while another buyer accepts the offer
of the bundle, then the seller sells one unit.

Lemma D.1 (No Single-Crossing Property). Under Assumptions 4.1, D.1, and 4.3, there are
unit and bundle prices such that buyers with the high valuation accept the offer of the unit, while
buyers with the low valuation accept the offer of the bundle.

Figure D.1, which is a counterpart of Figure 4.1, shows the equilibrium strategies of
buyers with high and low valuations for given unit and bundle prices under Assumption
D.1 rather than under Assumption 4.2. If 1− 1

2
(2γ − q) ≥ p > v and q ≤ 2γv, then there

is an equilibrium in the game between buyers, in which buyers with the high valuation
accept the offer of the unit, while buyers with the low valuation accept the offer of the
bundle, that is, (σ̄B, σB) = (U,B).

D.2 Proofs

D.2.1 Proof of Lemma 4.1
Individual rationality of the seller implies that p ≥ 0 and q ≥ 0. Furthermore, because
only equilibria in pure strategies are of interest here, there are nine equilibrium candi-
dates (σ̄B, σB) for given unit and bundle prices: (N,N), (U,N), (N,U), (U,U), (B,N),
(N,B), (B,U), (U,B), or (B,B). I consider each pair (σ̄B, σB) separately, and look for
prices (if any), for which the pair of strategies forms an equilibrium. While writing the
inequalities which capture buyers’ preferences over the offers, I take into account that the
seller uses the tie-breaking rules given by Assumptions 4.1 and 4.2, and buyers behave
according to Assumption 4.3 in case of indifference.

Case with (σ̄B, σB) = (N,N). Buyers with both high and low valuations reject both
offers.

– Preferences of buyers with the high valuation:
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p = 1− 2−α
2 (2γ − q)

p = 1− (1− α)(2γ − q)

p = 1− 1
2 (2γ − q)

p = 1− 1−α
2 (2γ − q)

p = v − 1−α
2 (2γv − q)

p

q

0 v 1

2γv

2γ

(N,N)(U,N)(U,U)

(U,B)

(B,B)

(B,N)

Figure D.1. The equilibrium strategies of buyers (σ̄B , σB) given unit and bundle prices (p, q) and under
Assumption D.1 rather than under Assumption 4.2. Parameters: (v, γ, α) =

(
1
2 ,

3
4 ,

3
4

)
.

– N � B:
0 > 2γ − q ⇔ q > 2γ;

– N � U :
0 > 1− p ⇔ p > 1.

– Preferences of buyers with the low valuation:
– N � B:

0 > 2γv − q ⇔ q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy p > 1 and
q > 2γ.

Case with (σ̄B, σB) = (U,N). Buyers with the high valuation accept the offer of the
unit, while buyers with the low valuation reject both offers.

– Preferences of buyers with the high valuation:
– U � B:

1− p > 2γ − q ⇔ q > 2γ − 1 + p;
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– U � N :
1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
– N � B:

0 > 2γv − q ⇔ q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Note that 2γ − 1 + p > 2γv if and only if 2γ(1 − v) > 1 − p, which is always the case for
γ ∈

(
1
2
, 1
)

and p > v. Therefore, this is an equilibrium when the unit and bundle prices
satisfy 1 ≥ p > v and q > 2γ − 1 + p.

Case with (σ̄B, σB) = (N,U). Buyers with the high valuation reject both offers, which
buyers with the low valuation accept the offer of the unit.

– Preferences of buyers with the high valuation:
– N � U :

0 > 1− p ⇔ p > 1.

– Preferences of buyers with the low valuation:
– U � N :

v − p ≥ 0 ⇔ p ≤ v.

Because v ∈ (0, 1), this gives a contradiction. Therefore, this is never an equilibrium.

Case with (σ̄B, σB) = (U,U). Buyers with both high and low valuations accept the offer
of the unit.

– Preferences of buyers with the high valuation:
– U � B:

1− p > 2γ − q ⇔ q > 2γ − 1 + p;

– U � N :
1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
– U � B:

v − p > 2γv − q ⇔ q > (2γ − 1)v + p;

– U � N :
v − p ≥ 0 ⇔ p ≤ v.

Observe that 2γ − 1 + p > (2γ − 1)v+ p if and only if 2γ − 1 > (2γ − 1)v, which is always
a case for γ ∈

(
1
2
, 1
)

and v ∈ (0, 1). Therefore, this is an equilibrium when the unit and
bundle prices satisfy p ≤ v and q > 2γ − 1 + p.

Case with (σ̄B, σB) = (B,N). Buyers with the high valuation accept the offer of the
bundle, while buyers with the low valuation reject both offers.

– Preferences of buyers with the high valuation:
– B � U :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p),
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q ≤ 2γ − 2(1−α)
2−α (1− p);

– B � N :
α · 1

2
(2γ − q) + (1− α) · (2γ − q) ≥ 0 ⇔ q ≤ 2γ.

– Preferences of buyers with the low valuations:
– N � B:

0 > α · 1
2
(2γv − q) + (1− α) · (2γv − q) ⇔ q > 2γv;

– N � U :
0 > α · 0 + (1− α) · (v − p) ⇔ p > v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy the four in-
equalities above.

Case with (σ̄B, σB) = (N,B). Buyers with the high valuation reject both offers, while
buyers with the low valuation accept the offer of the bundle.

– Preferences of buyers with the high valuation:
– N � B:

0 > α · (2γ − q) + (1− α) · 1
2
(2γ − q) ⇔ q > 2γ.

– Preferences of buyers with the low valuation:
– B � N :

α · (2γv − q) + (1− α) · 1
2
(2γv − q) ≥ 0 ⇔ q ≤ 2γv.

Because v ∈ (0, 1), this gives a contradiction. Therefore, this is never an equilibrium.

Case with (σ̄B, σB) = (B,U). Buyers with the high valuation accept the offer of the
bundle, while buyers with the low valuation accept the offer of the unit.

– Preferences of buyers with the high valuation:
– B � U :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p),

q ≤ 2γ − 2(1−α)
2−α (1− p);

– B � N :
α · 1

2
(2γ − q) + (1− α) · (2γ − q) ≥ 0 ⇔ q ≤ 2γ.

– Preferences of buyers with the low valuation:
– U � B:

α · 0 + (1− α) · (v − p) > α · 1
2
(2γv − q) + (1− α) · (2γv − q),

q > 2γv − 2(1−α)
2−α (v − p);

– U � N :
α · 0 + (1− α) · (v − p) ≥ 0 ⇔ p ≤ v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy p ≤ v and
2γ − 2(1−α)

2−α (1− p) ≥ q > 2γv − 2(1−α)
2−α (v − p).
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Case with (σ̄B, σB) = (U,B). Buyers with the high valuation accept the offer of the
unit, while buyers with the low valuation accept the offer of the bundle.

– Preferences of buyers with the high valuation:
– U � B:

α · (1− p) + (1− α) · 0 > α · (2γ − q) + (1− α) · 1
2
(2γ − q),

q > 2γ − 2α
1+α

(1− p).

– Preferences of buyers with the low valuation:
– B � U :

α · (2γv − q) + (1− α) · 1
2
(2γv − q) ≥ α · (v − p) + (1− α) · 0,

q ≤ 2γv − 2α
1+α

(v − p).

Note that 2γ − 2α
1+α

(1 − p) > 2γv − 2α
1+α

(v − p) if and only if 2
(
γ − α

1+α

)
> 2

(
γ − α

1+α

)
v,

which is always the case for v ∈ (0, 1), γ ∈
(

1
2
, 1
)
, and α ∈ (0, 1) because α

1+α
∈
(
0, 1

2

)
. It

is a contradiction. Therefore, this is never an equilibrium.

Case with (σ̄B, σB) = (B,B). Buyers with both high and low valuations accept the offer
of the bundle.

– Preferences of buyers with the high valuation:
– B � U and B � N :

1
2
(2γ − q) ≥ 0 ⇔ q ≤ 2γ.

– Preferences of buyers with the low valuation:
– B � U and B � N :

1
2
(2γv − q) ≥ 0 ⇔ q ≤ 2γv.

Therefore, this is an equilibrium for any unit price p and the bundle price that satisfies
q ≤ 2γv.

D.2.2 Proof of Proposition 4.1

It follows from Lemma 4.1 that, for given unit and bundle prices, the equilibrium pair
of strategies (σ̄B, σB) is necessary one of the following six: (N,N), (U,N), (U,U), (B,N),
(B,U), and (B,B).

Candidate Revenue

I consider each pair of the six strategies separately. I look for the largest revenue the seller
can get by posting prices that support such a pair of strategies in an equilibrium.

Case with (σ̄B, σB) = (N,N). For p > 1 and q > 2γ,

R = 0.
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Case with (σ̄B, σB) = (U,N). For 1 ≥ p > v and q > 2γ − 1 + p,

R = α2 · 2p+ 2α(1− α) · p = 2αp.

The revenue is the largest for p = 1 and q > 2γ, and is equal to

RUN = 2α.

Case with (σ̄B, σB) = (U,U). For p ≤ v and q > 2γ − 1 + p,

R = 2p.

The revenue is the largest for p = v and q > 2γ − 1 + v, and is equal to

RUU = 2v.

Case with (σ̄B, σB) = (B,N). For p > v, q ≤ 2γ − 2(1−α)
1−α (1− p), q ≤ 2γ, and q > 2γv,

R = [α2 + 2α(1− α)] · q = α(2− α)q.

The revenue is the largest for p ≥ 1 and q = 2γ, and is equal to

RBN = 2α(2− α)γ.

Case with (σ̄B, σB) = (B,U). For p ≤ v and 2γ− 2(1−α)
2−α (1−p) ≥ q > 2γv− 2(1−α)

2−α (v−p),

R = [α2 + 2α(1− α)] · q + (1− α)2 · 2p = α(2− α)q + 2(1− α)2p.

The revenue is the largest for p = v and q = 2γ − 2(1−α)
2−α (1− v), and is equal to

RBU = 2α(2− α)γ + 2(1− α)(v − α).

Case with (σ̄B, σB) = (B,B). For any p ≥ 0 and q ≤ 2γv,

R = q < RUU = 2v.

Therefore, the pair of strategies (σ̄B, σB) = (B,B) never occurs in equilibrium.

Equilibrium Revenue

It follows that the equilibrium revenue is necessary one of the following four revenues:
RUU , RBU , RUN , and RBN . If the seller can post unit and bundle prices that result in a
unique reaction of buyers and give him the largest revenue for given parameters, then
this is the unique equilibrium in terms of revenue. This is the case wheneverRUU ,RUN ,
or RBN is the largest for given parameters. There are multiple equilibria in terms of
revenue, specifically, wheneverRBU the largest revenue for given parameters.

RUU vs.RBU . The seller is better off by selling the product unit-by-unit to buyers with
both high and low valuations rather than selling the bundle to buyers with the high
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valuation and the unit to buyers with the low valuation if and only if

RUU > RBU ,

2v > 2α(2− α)γ + 2(1− α)(v − α),

αv > α(2− α)γ − α(1− α),

v > (2− α)γ − 1 + α.

RUU vs.RUN . The seller is better off by selling the product unit-by-unit to buyers with
both high and low valuations rather than only to buyers with the high valuation if and
only if

RUU > RUN ⇔ 2v > 2α ⇔ v > α.

RUU vs.RBN . The seller is better off by selling the product unit-by-unit to buyers with
both high and low valuations rather than selling the bundle to buyers with the high
valuation only if and only if

RUU > RBN ⇔ 2v > 2α(2− α)γ ⇔ v > α(2− α)γ.

RBU vs.RUN . The seller is better off by selling the bundle to buyers with the high val-
uation and the unit to buyers with the low valuation rather than selling the product
unit-by-unit to buyers with the high valuation only if and only if

RBU > RUN ,

2α(2− α)γ + 2(1− α)(v − α) > 2α,

(1− α)v > −α(2− α)γ + α(2− α),

v > α
1−α(2− α)(1− γ).

RBU vs. RBN . The seller is better off by selling the bundle to buyers with the high
valuation and the unit to buyers with the low valuation rather than selling the bundle to
buyers with the high valuation only if and only if

RBU > RBN ,

2α(2− α)γ + 2(1− α)(v − α) > 2α(2− α)γ,

(1− α)(v − α) > 0,

v > α.

RUN vs.RBN . The seller is better off by selling the product unit-by-unit to buyers with
the high valuation only rather than selling them the bundle if and only if

RUN > RBN ⇔ 2α > 2α(2− α)γ ⇔ 1
2−α > γ.

D.2.3 Proof of Lemma 4.2
If the seller wants to screen buyers, then he must post the first-period prices such that
buyers with different valuations react differently. Because I focus on equilibria in pure
strategies only, there are six equilibrium candidates (σ̄B1 , σ

B
1 ) given the unit and bundle
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prices: (U,N), (N,U), (B,N), (N,B), (B,U), or (U,B). I consider each pair (σ̄B1 , σ
B
1 ) sep-

arately, and look for prices (if any), for which the pair of strategies forms an equilibrium.
While writing the inequalities that capture buyers’ preferences over the offers, I take into
account that the seller uses the tie-breaking rules given by Assumptions 4.1 and 4.2, and
that buyers behave according to Assumptions 4.3 and 4.4 in case of indifference. I find
that the first-period equilibrium behavior of buyers (σ̄B1 , σ

B
1 ) is necessary one of the fol-

lowing three: (U,N), (B,N), and (B,U). Furthermore, the seller’s revenue is always
RBU .

Case with (σ̄B1 , σ
B
1 ) = (U,N). Buyers with the high valuation accept the offer of the unit

in the first period, while buyers with the low valuation reject both offers. If the second
period is reached, then beliefs of the seller (and of buyers) are as follows:

(i) if one unit is left for sale, then the buyer with the unit has the high valuation, while
the buyer without the unit has the low valuation;

(ii) if two units remain for sale, then both buyers have the low valuation.

In (i), if the buyer with the high valuation rejects the second period offer, then her
payoff is 1−p, where p is the price she paid for one unit of the product in the first period.
If she accepts the offer, while another buyer does not, then she gets 2γ − (p + p′) =
1 − p + (2γ − 1) − p′. If she accept the offer and so does another buyers, then she gets
1
2
(1 − p) + 1

2
(2γ − (p+ p′)) = 1 − p + 1

2
((2γ − 1)− p′). Therefore, she accept the offer

if and only if 2γ − 1 ≥ p′. If only the buyer with the low valuation accepts the second-
period offer, then her payoff is v − p′. If both buyers accept the offer, then the buyer
with the low valuation gets 1

2
(v − p′). Therefore, she does accept the offer if and only if

v ≥ p′. To maximize his revenue, the seller posts p′ = max{v, 2γ − 1}. It follows that
the continuation payoff of the deviating buyer with the high valuation (and without the
unit) is equal to 1− v if v > 2γ − 1 (note that p′ = v) and to 1− γ if 2γ − 1 ≥ v (note that
p′ = 2γ−1); indeed, she gets the remaining unit and so gets 1− (2γ−1) with probability
1
2
. The payoff of non-deviating buyers is always 0, because either they reject the offers or

the seller extracts full surplus from them.
In (ii), the seller can gain 2v at most. For this to happen, buyers with the low valuation

have to prefer the offer of the unit over the offer of the bundle when the unit price is
p′′ = v. This is the case whenever v − p′′ > 2γv − q′′ and p′′ = v. Therefore, the bundle
price must satisfy q′′ > 2γv. It follows that, for (p′′, q′′) to be a part of an equilibrium, the
following must hold. In case with (σ̄B2 , σ

B
2 ) = (U,U), preferences of the deviating buyer

with the high valuation are
– U � B:

1− v > 2γ − q′′ ⇔ q′′ > 2γ − 1 + v;

– U � N :
1− v ≥ 0.

Therefore, q′′ > 2γ−1+v and the seller’s revenueR = 2v independently of whether there
is a deviating buyer or not. In case with (σ̄B2 , σ

B
2 ) = (B,U), preferences of the deviating

buyer with the high valuations are
– B � U :

2γ − q′′ ≥ 1− v ⇔ q′′ ≤ 2γ − 1 + v;
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– B � N :
2γ − q′′ ≥ 0 ⇔ q′′ ≤ 2γ.

To maximize his revenue

R = [α2 + 2α(1− α)] · q′′ + (1− α)2 · 2v,

the seller posts q′′ = 2γ−1+v, which gives himR = 2v+α(2−α)(2γ−1−v). All in all, if
v ≥ 2γ−1, then the seller posts p′′ = v and q′′ > 2γ−1+v, which lead to (σ̄B2 , σ

B
2 ) = (U,U)

in the continuation game. If v ≤ 2γ − 1, then he posts p′′ = v and q′′ = 2γ − 1 + v, which
lead to (σ̄B2 , σ

B
2 ) = (B,U). Therefore, the deviating buyer with the high valuation always

gets 1− v in the second period with two units.
Next I look for the first-period unit and bundle prices that support (σ̄B1 , σ

B
1 ) = (U,N)

in equilibrium.
– Preferences of buyers with the high valuation:

– U � B:

(1− α) · (1− p) + (1− α) · (1− p) > α · (2γ − q) + (1− α) · (2γ − q),
q > 2γ − 1 + v;

– U � N if v > 2γ − 1 (i.e., if p′ = v):

1− p ≥ α · (1− v) + (1− α) · (1− v),

p ≤ v;

– U � N if 2γ − 1 ≥ v (i.e., if p′ = 2γ − 1):

1− p ≥ α · 1
2
(1− (2γ − 1)) + (1− α) · (1− v) = α(1− γ) + (1− α)(1− v),

p ≤ αγ + (1− α)v.

– Preferences of buyers with the low valuation:
– N � B:

0 > α · (2γv − q) + (1− α) · (2γv − q),
q > 2γv;

– N � U :

0 > α · (v − p) + (1− α) · (v − p),
p > v.

Therefore, (σ̄B1 , σ
B
1 ) = (U,N) can occur in equilibrium only if 2γ − 1 ≥ v. In such a case,

γ > 1+v
2
> v and αγ + (1− α)v > v.

The seller wants to maximize his revenue

R = α2 · 2p+ 2α(1− α) · (p+ p′) + (1− α)2 · 2p′′.

Therefore, the equilibrium unit and bundle prices are as follows:

p = αγ + (1− α)v and q > 2γ − 1 + αγ + (1− α)v,
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p′ = 2γ − 1,

p′′ = v and q′′ > 2γ − 1 + v, if 2γ − 1 = v,

p′′ = v and q′′ = 2γ − 1 + v, if 2γ − 1 ≥ v.

The equilibrium revenue is equal to

RBU = 2α(2− α)γ + 2(1− α)(v − α).

Case with (σ̄B1 , σ
B
1 ) = (N,U). Buyers with the high valuation rejects both offers in the

first period, while buyers with the low valuation accept the offer of the unit. If the second
period is reached, then beliefs of the seller (and of buyers) are as follows:

(i) if one unit is left for sale, then the buyer with the unit has the low valuation, while
the buyer without the unit has the high valuation;

(ii) if two units remain for sale, then both buyers have the high valuation.

In (i), the buyer with the low valuation is of no interest to the seller, because he can
get at most (2γ− 1)v from her. Indeed, if the buyer buys the second unit, then her payoff
is 2γv− (p+ p′) = v− p+ (2γ− 1)v− p′. In contrast, the seller can get 1 > (2γ− 1)v from
the high-type buyer by posting p′ = 1.

In (ii), the seller does best by selling the product unit-by-unit at the unit price p′′ = 1
and the bundle price q′′ such that buyers with the high valuation prefer the offer of the
unit over the offer of a bundle, i.e.,

1− p′′ = 0 > 2γ − q′′ ⇔ q′′ > 2γ.

It follows that the seller always extracts full surplus from buyers with the high val-
uation in the second period. Therefore, their continuation payoff is 0. The continuation
payoff of the deviating buyer with whichever valuation is also 0, because she does not
buy anything.

For (σ̄B1 , σ
B
1 ) = (N,U) to occur in equilibrium, the first-period unit and bundle prices

must satisfy the following.
– Preferences of buyers with the high valuation:

– N � U :
0 > 1− p ⇔ p > 1.

– Preferences of buyers with the low valuation:
– U � N :

v − p ≥ 0 ⇔ p ≤ v.

Because v ∈ (0, 1), this gives a contradiction. Therefore, (σ̄B1 , σ
B
1 ) = (N,U) can never

occur in equilibrium.

Case with (σ̄B1 , σ
B
1 ) = (B,N). Buyers with the high valuation accept the offer of the

bundle in the first period, while buyers with the low valuation reject both offers. If the
second period is reached, then beliefs of the seller (and of buyers) are as follows:

(i) if one unit is left for sale (which occurs off path only), then the buyer without the
unit has the low valuation, while the deviating buyer with the unit has the high
valuation with probability α;
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(ii) if two units remain for sale, then both buyers have the low valuation.

In (i), if the deviating buyer with the unit has the high valuation, then she is willing
to pay at most 2γ − 1 for the second unit. If she has the low valuation, then she does not
pay more than (2γ − 1)v. The buyer without the unit has the low valuation, and so she
will pay at most v for the remaining unit. Therefore, the seller can get v with probability
1, and he can get 2γ−1 with probability α if 2γ−1 > v or with probability 1 if 2γ−1 ≤ v.
The seller posts p′ equal to v or 2γ − 1 depending on which price yields him a higher
revenue, i.e., on whether v or α(2γ − 1) is greater. Therefore, the continuation payoff of
the deviating buyer with the high valuation (and with the unit) is as follows:

– 0 if v ≥ 2γ − 1 (i.e., if p′ = v) or if α(2γ − 1) ≥ v (i.e., if p′ = 2γ − 1);
– 1

2
(2γ − 1− v) if 2γ − 1 > v ≥ α(2γ − 1) (i.e., if p′ = v).

The continuation payoff of the deviating buyer with the low valuation (and with the
unit) is 0.

In (ii), the seller posts the same unit and bundle prices which he would post if (σ̄B1 , σ
B
1 ) =

(U,N) were expected in the first period. That is, he posts p′′ = v and q′′ > 2γ − 1 + v if
v ≥ 2γ − 1 and p′′ = v and q′′ = 2γ − 1 + v if v ≤ 2γ − 1, which lead to (σ̄B2 , σ

B
2 ) = (U,U)

and (σ̄B2 , σ
B
2 ) = (B,U), respectively. Therefore, the continuation payoff of buyers with

the low valuation is 0, while the deviating buyer with the high valuation obtains 1− v.
Next I look for the first-period unit and bundle prices that support (σ̄B1 , σ

B
1 ) = (B,N)

in equilibrium.
– Preferences of buyers with the high valuation:

– B � U if their off-path continuation payoff is 0:

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p),

2−α
2

(2γ − 1) ≥ (1− α)(1− p),
q ≤ 2γ − 2(1−α)

2−α (1− p);

– B � U if their off-path continuation payoff is 1
2
(2γ − 1− v):

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) ·

(
1− p+ 1

2
(2γ − 1− v)

)
,

q ≤ 2γ − 2(1−α)
2−α (1− p)− 1−α

2−α(2γ − 1− v),

q ≤ 2γ − 2(1−α)
2−α (1− v) + 2(1−α)

2−α

(
p− 1

2
(2γ − 1 + v)

)
;

– B � N :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− v),

q ≤ 2γ − 2(1−α)
2−α (1− v).

– Preferences of buyers with the low valuation:
– N � B:

0 > α · 1
2
(2γv − q) + (1− α) · (2γv − q),

q > 2γv;

– N � U :

0 > α · 0 + (1− α) · (v − p),
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p > v.

Note that 2γ− 2(1−α)
2−α (1− v) > 2γv if and only if 2γ(1− v) > 2(1−α)

2−α (1− v), which is always
the case for γ ∈

(
1
2
, 1
)
, v ∈ (0, 1), and α ∈ (0, 1).

The seller wants to maximize his revenue

R = [α2 + 2α(1− α)] · q + (1− α)2 · 2p′′.

Therefore, the equilibrium unit and bundle prices are as follows:

p > v and q = 2γ − 2(1−α)
2−α (1− v), if v ≥ 2γ − 1 or α(2γ − 1) ≥ v,

p ≥ 1
2
(2γ − 1 + v) and q = 2γ − 2(1−α)

2−α (1− v), if 2γ − 1 > v ≥ α(2γ − 1),

p′ = v, if v ≥ α(2γ − 1),

p′ = 2γ − 1, if α(2γ − 1) ≥ v,

p′′ = v and q′′ > 2γ − 1 + v, if v ≥ 2γ − 1,

p′′ = v and q′′ = 2γ − 1 + v, if 2γ − 1 ≥ v.

The equilibrium revenue is equal to

RBU = 2α(2− α)γ + 2(1− α)(v − α).

Case with (σ̄B1 , σ
B
1 ) = (N,B). Buyers with the high valuation rejects both offers in the

first period, while buyers with the low valuation accept the offer of the bundle. If the
second period is reached, then beliefs of the seller (and of buyers) are as follows:

(i) if one unit is left for sale (which occurs off path only), then the buyer without the
unit has the high valuation, while the deviating buyer with the unit has the high
valuation with probability α;

(ii) if two units remain for sale, then both buyers have the high valuation.

In (i), if the deviating buyer with the unit has the high valuation, then she is willing
to pay at most 2γ − 1 for the second unit. If she has the low valuation, then she does
not pay more than (2γ − 1)v. The buyer without the unit has the high valuation, and so
she will pay at most 1 for the remaining unit. Therefore, the seller does best by targeting
the buyer without the unit and by posting p′ = 1. It follows that the continuation payoff
of the deviating buyer (with the unit) is 0, because she does not buy the second unit
independently of which valuation she has.

In (ii), the seller is better off by selling the product unit-by-unit at the unit price equal
to p′′ = 1, just as she does in the case with (σ̄B1 , σ

B
1 ) = (N,U). For buyers to prefer the

offer of the unit over the offer of the bundle, the seller must post a high enough bundle
price, i.e.,

1− p′′ = 0 > 2γ − q′′ ⇔ q′′ > 2γ.

Therefore, he extracts full surplus form buyers with the high valuation in the second pe-
riod. Furthermore, the continuation payoff of the deviating buyer with the low valuation
is 0, because she does not buy anything at such prices.

For (σ̄B1 , σ
B
1 ) = (N,B) to occur in equilibrium, the first-period unit and bundle prices

must satisfy the following.
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– Preferences of buyers with the high valuation:
– N � B:

0 > α · (2γ − q) + (1− α) · 1
2
(2γ − q),

q > 2γ.

– Preferences of buyers with the low valuation:
– B � N :

α · (2γv − q) + (1− α) · 1
2
(2γv − q) ≥ 0,

q ≤ 2γv.

Because v ∈ (0, 1), this gives a contradiction. Therefore, (σ̄B1 , σ
B
1 ) = (N,B) can never

occur in equilibrium.

Case with (σ̄B1 , σ
B
1 ) = (B,U). Buyers with the high valuation accept the offer of the

bundle in the first period, while buyers with the low valuation accept the offer of the
unit. Note that it is never the case that two units remain for sale in the second period,
neither on nor off path. Furthermore, the second period with one unit remaining for sale
is reached off path only. If the second period is reached, then beliefs of the seller (and of
buyers) is as follows: the buyer with the unit has the low valuation, while the deviating
buyer without the unit has the high valuation with probability α.

The buyer with the low valuation and with the unit is of no interest to the seller,
because he can get at most (2γ − 1)v from her, while he can always get v > (2γ − 1)v
from the deviating buyer. If the buyer without the unit has the high valuation, then the
seller can get 1 by posting p′ = 1. Therefore, the seller posts p′ = v if v ≥ α and p′ = 1
if v ≤ α. It follows that p′ ≥ v and the continuation payoff of the deviating buyer with
the low valuation is 0, while the continuation payoff of the deviating buyer with the high
valuation is at most 1− v.

Next I look for the first-period unit and bundle prices that support (σ̄B1 , σ
B
1 ) = (B,U)

in equilibrium.
– Preferences of buyers with the high valuation:

– B � U :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p),

q ≤ 2γ − 2(1−α)
2−α (1− p);

– B � N :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ α · 0 + (1− α) · (1− p′),

q ≤ 2γ − 2(1−α)
2−α (1− p′).

– Preferences of buyers with the low valuation:
– U � B:

α · 0 + (1− α) · (v − p) > α · 1
2
(2γv − q) + (1− α) · (2γv − q),

q > 2γv − 2(1−α)
2−α (v − p);
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– U � N :

α · 0 + (1− α) · (v − p) ≥ 0,

p ≤ v.

Because p′ ≥ v and p ≤ v, what matters is that the bundle price is satisfies 2γ− 2(1−α)
2−α (1−

p) ≥ q > 2γv − 2(1−α)
2−α (v − p). Note that, if p = v, then the inequalities take form: 2γ −

2(1−α)
2−α (1− v) ≥ q > 2γv. Because 2γ − 2(1−α)

2−α (1− v) > 2γv, there does exist such q.
The seller wants to maximize his revenue

R = [α2 + 2α(1− α)] · q + (1− α)2 · 2p.

Therefore, the equilibrium unit and bundle prices are as follows:

p = v and q = 2γ − 2(1−α)
2−α (1− v),

p′ = v, if v ≥ α,

p′ = 1, if α ≥ v,

p′′ ≥ 0 and q′′ ≥ 0.

The equilibrium revenue is equal to

RBU = 2α(2− α)γ + 2(1− α)(v − α).

Case with (σ̄B1 , σ
B
1 ) = (U,B). Buyers with the high valuation accept the offer of the unit

in the first period, while buyers with the low valuation accept the offer of the bundle.
Note that it is never the case that two units remain for sale in the second period, neither
on nor off path. Furthermore, the second period with one unit remaining for sale is
reached off path only. If the second period is reached, then beliefs of the seller (and of
buyers) is as follows: the buyer with the unit has the high valuation, while the deviating
buyer without the unit has the high valuation with probability α.

The buyer with the high valuation and the unit is willing to pay at most 2γ − 1 for
the second unit. If the deviating buyer has the high valuation, then she pays at most 1
for the remaining unit. If she has the low valuation, then she pays at most v. Therefore,
the seller can get 2γ − 1 or v with probability 1, and he can get 1 with probability α. The
seller posts p′ = max{2γ − 1, v} if max{2γ − 1, v} ≥ α and p′ = 1 if max{2γ − 1, v} ≤ α.
It follows that the continuation payoff of the deviating buyer with the low valuation is 0,
while the continuation payoff of the deviating buyer with the high valuation is at most
1− v.

For (σ̄B1 , σ
B
1 ) = (U,B) to occur in equilibrium, the first-period unit and bundle prices

must satisfy the following.
– Preferences of buyers with the high valuation:

– U � B:

α · (1− p) + (1− α) · 0 > α · (2γ − q) + (1− α) · 1
2
(2γ − q),

q > 2γ − 2α
1+α

(1− p).

– Preferences of buyers with the low valuation:
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– B � U :

α · (2γv − q) + (1− α) · 1
2
(2γv − q) ≥ α · (v − p) + (1− α) · 0,

q ≤ 2γv − 2α
1+α

(v − p).

Note that 2γ − 2α
1+α

(1 − p) > 2γv − 2α
1+α

(v − p) if and only if 2γ − 2α
1+α

>
(
2γ − 2α

1+α

)
v,

which is always the case for v ∈ (0, 1), γ ∈
(

1
2
, 1
)
, and α ∈ (0, 1). Therefore, this gives a

contradiction. It follows that (σ̄B1 , σ
B
1 ) = (U,B) is never a part of an equilibrium.

D.2.4 Proof of Lemma 4.3
If the seller does not screen buyers, then he must post the first-period prices such that
buyers with different valuations react the same. Because I focus on equilibria in pure
strategies only, there are three equilibrium candidates (σ̄B1 , σ

B
1 ) given the unit and bun-

dle prices: (N,N), (U,U), or (B,B). I consider each pair (σ̄B1 , σ
B
1 ) separately, and look

for prices (if any), for which the pair of strategies forms an equilibrium. While writing
the inequalities that capture buyers’ preferences over the offers, I take into account that
the seller uses the tie-breaking rules given by Assumptions 4.1 and 4.2, and that buyers
behave according to Assumptions 4.3 and 4.4 in case of indifference.

Case with (σ̄B1 , σ
B
1 ) = (N,N). Buyers with both high and low valuations reject the offers

in the first period. It follows that one unit remains for sale in the second period only off
path. Furthermore, buyers’ valuations stay unknown. That is, the seller (and buyers)
believes that either buyer has the high valuation with probability α.

If the deviating buyer with the unit has the high valuation, then she is willing to pay at
most 2γ− 1 for the second unit. If she has the low valuation, then she does not pay more
than (2γ − 1)v. If the buyer without the unit has the high valuation, then she is willing
to pay 1 for the remaining unit. If she has the low valuation, then she does not pay more
than v. Therefore, the seller expects to get v with probability 1, 1 with probability α, and
2γ − 1 with probability α2 + 2α(1 − α) = α(2 − α) if 2γ − 1 > v or with probability 1 if
v ≥ 2γ−1. The seller posts p′ equal to v, 1, or 2γ−1 depending on which price yields him
a higher revenue, i.e., on whether v, α, or α(2 − α)(2γ − 1) is greater; see Figure D.2. It
follows that the continuation payoff of the deviating buyer with the high valuation (and
with the unit) is as follows:

– 1
2
(2γ − 1− v) if 2γ − 1 ≥ v ≥ α(2−α)(2γ − 1) and v ≥ α (i.e., if p′ = v); indeed, the

deviating buyer has to compete with another buyer (whichever valuation she has)
for the remaining unit;

– 0 if v ≥ 2γ−1 and v ≥ α (i.e., if p′ = v), ifα(2−α)(2γ−1) ≥ v andα(2−α)(2γ−1) ≥ α
(i.e., if p′ = 2γ − 1), or if α ≥ v and α ≥ α(2− α)(2γ − 1) (i.e., if p′ = 1).

The continuation payoff of the deviating buyer with the low valuation (and with the
unit) is 0.

The second period with two units remaining for sale is reached on path. The contin-
uation game is identical to the one-period game. Therefore, as follows from Proposition
4.1, the continuation payoff of buyers with the low valuation is 0, while the continuation
payoff of buyers with the high valuation is as follows:

– 1− v if (σ̄B2 , σ
B
2 ) = (U,U);

– (1− α)(1− v) if (σ̄B2 , σ
B
2 ) = (B,U); indeed, it is 2(1−α)

2−α (1− v) with probability 1
2
α +

(1− α) and 0 with probability 1
2
α;
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v = 2γ − 1

v = α(2− α)(2γ − 1)

γ1
2

1

v

0

α

1

Figure D.2. The unit price in the off-path second period with one unit left for sale if the first-period
expected behavior is (σ̄B1 , σ

B
1 ) = (N,N): p′ = v (white), p′ = 2γ − 1 (light gray), and p′ = 1 (gray). The

off-path continuation payoff of the deviating buyer with the high valuation is different from 0 and is equal
to 1

2 (2γ − 1− v) in the hatched region. Parameters: α = 1
2 .

– 0 if (σ̄B2 , σ
B
2 ) = (U,N) or (σ̄B2 , σ

B
2 ) = (B,N).

Next I look for the first-period unit and bundle prices that support (σ̄B1 , σ
B
1 ) = (N,N)

in equilibrium. Figure D.3 shows the largest equilibrium revenue of the continuation
game. The hatched region in Figure D.3 is the same as in Figure D.2 and corresponds to
the set of parameters for which the off-path payoff of the deviating buyer with the high
valuation is different from 0 and is equal to 1

2
(2γ − 1− v).

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 1

2
(2γ − 1− v) and their on-path continuation payoff is 1− v:

– N � B:
1− v > 2γ − q ⇔ q > 2γ − 1 + v;

– N � U :

1− v > 1− p+ 1
2
(2γ − 1− v),

p > 1
2
(2γ − 1 + v).

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 1

2
(2γ − 1− v) and their on-path continuation payoff is (1− α)(1− v):

– N � B:

(1− α)(1− v) > 2γ − q ⇔ q > 2γ − 1 + v + α(1− v);

– B � U :

(1− α)(1− v) > 1− p+ 1
2
(2γ − 1− v),

p > α(1− v) + 1
2
(2γ − 1 + v).

– Preferences of buyers with the high valuation if their off-path continuation payoff
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Figure D.3. The largest equilibrium revenue of the seller in the continuation game if the first-period ex-
pected behavior is (σ̄B1 , σ

B
1 ) = (N,N) and if α < 1

2 (left), α = 1
2 , and α > 1

2 (right). The off-path continu-
ation payoff of the deviating buyer with the high valuation is different from 0 and is equal to 1

2 (2γ− 1− v)
in the hatched region. Parameters: α = 1

4 (left), α = 1
2 (middle), and α = 3

4 (right).

is 1
2
(2γ − 1− v) and their on-path continuation payoff is 0:

– N � B:

0 > 2γ − q ⇔ q > 2γ;

– N � U :

0 > 1− p+ 1
2
(2γ − 1− v),

p > 1− v + 1
2
(2γ − 1 + v).

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 0 and their on-path continuation payoff is 1− v:

– N � B:
1− v > 2γ − q ⇔ q > 2γ − 1 + v;

– N � U :
1− v > 1− p ⇔ p > v.

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 0 and their on-path continuation payoff is (1− α)(1− v):

– N � B:

(1− α)(1− p) > 2γ − q ⇔ q > 2γ − 1 + v + α(1− v);

– N � U :
(1− α)(1− v) > 1− p ⇔ p > v + α(1− v).

– Preferences of buyers with the high valuation if their off-path and on-path contin-
uation payoffs are 0:
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– N � B:
0 > 2γ − q ⇔ q > 2γ;

– N � U :
0 > 1− p ⇔ p > 1.

– Preferences of buyers with the low valuation:
– N � B:

0 > 2γv − q ⇔ q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Therefore, the equilibrium first-period prices are determined by preferences of buyers
with the high valuation, and the seller’s revenue is as in the one-period game.

Case with (σ̄B1 , σ
B
1 ) = (U,U). Buyers with both high and low valuations accept the

offer of the unit. Note that the second period with two units remaining for sale is never
reached, neither on nor off path. One unit remains for sale in the second period only off
path. Furthermore, buyers’ valuations stay unknown. That is, the seller (and buyers)
believes that either buyer has the high valuation with probability α. As in the case with
(σ̄B1 , σ

B
1 ) = (N,N), the seller expects to get v with probability 1, 1 with probability α,

and 2γ − 1 with probability α(2 − α) if 2γ − 1 > v or with probability 1 if v ≥ 2γ − 1.
The seller posts p′ equal to v, 1, or 2γ − 1 depending on which price yields him a higher
revenue, i.e., on whether v, α, or α(2−α)(2γ−1) is greater; see Figure D.2. Therefore, the
continuation payoff of the deviating buyer with the high valuation (and with or without
the unit) is as follows:

– 1− v if v > 2γ − 1 and v ≥ α (i.e., if p′ = v);
– 2−α

2
(1 − v) if 2γ − 1 ≥ v ≥ α(2 − α)(2γ − 1) and v ≥ α (i.e., if p′ = v); indeed, she

gets the remaining unit, and so gets 1− v with probability 1
2
α+ (1− α) and 0 with

probability 1
2
α;

– (2 − α)(1 − γ) if α(2 − α)(2γ − 1) ≥ v and α(2 − α)(2γ − 1) ≥ α (i.e., if p′ =
2γ−1); indeed, she gets the remaining unit, and so gets 1−(2γ−1) with probability
1
2
α + (1− α) and 0 with probability 1

2
α;

– 0 if α ≥ v and α ≥ α(2− α)(2γ − 1) (i.e., if p′ = 1).
The continuation payoff of the deviating buyer with the low valuation is always 0, be-
cause p′ ≥ v.

For (σ̄B1 , σ
B
1 ) = (U,U) to occur in equilibrium, the first-period unit and bundle prices

must satisfy the following.
– Preferences of buyers with the high valuation if their off-path continuation payoff

is 1− v:
– U � B:

1− p > 2γ − q ⇔ q > 2γ − 1 + p;

– U � N :
1− p ≥ 1− v ⇔ p ≤ v.

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 2−α

2
(1− v):

– U � B:
1− p > 2γ − q ⇔ q > 2γ − 1 + p;
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– U � N :
1− p ≥ 2−α

2
(1− v) ⇔ p ≤ v + α

2
(1− v).

– Preferences of buyers with the high valuation if their off-path continuation payoff
is (2− α)(1− γ):

– U � B:
1− p > 2γ − q ⇔ q > 2γ − 1 + p;

– U � N :
1− p ≥ (2− α)(1− γ) ⇔ p ≤ 1− (2− α)(1− γ).

– Preferences of buyers with the high valuation if their off-path continuation payoff
is 0:

– U � B:
1− p > 2γ − q ⇔ q > 2γ − 1 + p;

– U � N :
1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
– U � B:

v − p > 2γv − q ⇔ q > (2γ − 1)v + p;

– U � N :
v − p ≥ 0 ⇔ p ≤ v.

Note that 1 − (2 − α)(1 − γ) > α(2 − α)(2γ − 1). Therefore, the unit price must satisfy
p ≤ v.

The seller wants to maximize his revenue

R = 2p.

Therefore, the equilibrium unit and bundle prices are as follows:

p = v and q > 2γ − 1 + v,

p′ = v, if v ≥ α(2− α)(2γ − 1) and v ≥ α,

p′ = 2γ − 1, if α(2− α)(2γ − 1) ≥ v and α(2− α)(2γ − 1) ≥ α,

p′ = 1, if α ≥ v and α ≥ α(2− α)(2γ − 1),

p′′ ≥ 0 and q′′ ≥ 0,

The equilibrium revenue is equal to

RUU = 2v.

Case with (σ̄B1 , σ
B
1 ) = (B,B). Buyers with both high and low valuations accept the offer

of the bundle. Note that the second period is never reached, neither on nor off path.
For (σ̄B1 , σ

B
1 ) = (B,B) to occur in equilibrium, the first-period unit and bundle prices

must satisfy the following.
– Preferences of buyers with the high valuation:

– B � U and B � N :
1
2
(2γ − q) ≥ 0 ⇔ q ≤ 2γ.
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– Preferences of buyers with the low valuation:
– B � U and B � N :

1
2
(2γv − q) ≥ 0 ⇔ q ≤ 2γv.

Therefore, the seller’s revenue is as follows:

R = q < RUU = 2v.

Because the seller can always post unacceptable first-period unit and bundle prices (e.g.,
p > 1 and q > 2γ) and getRUU in the second period, (σ̄B1 , σ

B
1 ) = (B,B) is never a part of

an equilibrium.

D.2.5 Proof of Proposition 4.2
Proposition 4.2 follows from Lemmata 4.2 and 4.3.

D.2.6 Proof of Lemma 4.4
Dependence of RUU and RUN on the parameters of the model is trivial. As for RBU

and RBN , they both increase in γ, RBU increases in v, while RBN is independent of v.
Furthermore,

∂RBU
∂α

= 2[(2− α)γ − 1 + α− v + (1− γ)α] > 0

ifRBU is the equilibrium revenue, i.e., if (2− α)γ − 1 + α > v. Finally,

∂RBN
∂α

= 4(1− α)γ > 0,

because α ∈ (0, 1).

D.2.7 Proof of Lemma D.1
Individual rationality of the seller implies that p ≥ 0 and q ≥ 0. Furthermore, because
only equilibria in pure strategies are of interest here, there are nine equilibrium candi-
dates (σ̄B, σB) for given unit and bundle prices: (N,N), (U,N), (N,U), (U,U), (B,N),
(N,B), (B,U), (U,B), or (B,B). I consider each pair (σ̄B, σB) separately, and look for
prices (if any), for which the pair of strategies forms an equilibrium. While writing the
inequalities which capture buyers’ preferences over the offers, I take into account that the
seller uses the tie-breaking rules given by Assumptions 4.1 and D.1, and buyers behave
according to Assumption 4.3 in case of indifference.

Case with (σ̄B, σB) = (N,N). Buyers with both high and low valuations reject both
offers.

– Preferences of buyers with the high valuation:
– N � B:

0 > 2γ − q ⇔ q > 2γ;

– N � U :
0 > 1− p ⇔ p > 1.
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– Preferences of buyers with the low valuation:
– N � B:

0 > 2γv − q ⇔ q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy p > 1 and
q > 2γ.

Case with (σ̄B, σB) = (U,N). Buyers with the high valuation accept the offer of the
unit, while buyers with the low valuation reject both offers.

– Preferences of buyers with the high valuation:
– U � B:

1− p ≥ α · 0 + (1− α) · (2γ − q),
p ≤ 1− (1− α)(2γ − q);

– U � N :
1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
– N � B:

0 > α · 0 + (1− α) · (2γv − q),
q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy the four in-
equalities above.

Case with (σ̄B, σB) = (N,U). Buyers with the high valuation reject both offers, while
buyers with the low valuation accept the offer of the unit.

– Preferences of buyers with the high valuation:
– N � U :

0 > 1− p ⇔ p > 1.

– Preferences of buyers with the low valuation:
– U � N :

v − p ≥ 0 ⇔ p ≤ v.

Because v ∈ (0, 1), this gives a contradiction. Therefore, this is never an equilibrium.

Case with (σ̄B, σB) = (U,U). Buyers with both high and low valuations accept the offer
of the unit.

– Preferences of buyers with the high valuation:
– U � B and U � N :

1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
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– U � B and U � N :
v − p ≥ 0 ⇔ p ≤ v.

Therefore, this is an equilibrium for the unit price that satisfies p ≤ v and for any bundle
price q.

Case with (σ̄B, σB) = (B,N). Buyers with the high valuation accept the offer of the
bundle, while buyers with the low valuation reject both offers.

– Preferences of buyers with the high valuation:
– B � U :

α · 1
2
(2γ − q) + (1− α) · (2γ − q),
p > 1− 2−α

2
(2γ − q);

– B � N :

α · 1
2
(2γ − q) + (1− α) · (2γ − q) ≥ 0,

q ≤ 2γ.

– Preferences of buyers with the low valuation:
– N � B:

0 > α · 1
2
(2γv − q) + (1− α) · (2γv − q),

q > 2γv;

– N � U :
0 > v − p ⇔ p > v.

Therefore, this is an equilibrium when the unit and bundle prices satisfy the four in-
equalities above.

Case with (σ̄B, σB) = (N,B). Buyers with the high valuation reject both offers, while
buyers with the low valuation accept the offer of the bundle.

– Preferences of buyers with the high valuation:
– N � B:

0 > α · (2γ − q) + (1− α) · 1
2
(2γ − q),

q > 2γ.

– Preferences of buyers with the low valuation:
– B � N :

α · (2γv − q) + (1− α) · 1
2
(2γv − q) ≥ 0,

q ≤ 2γv.

Because v ∈ (0, 1), this gives a contradiction. Therefore, this is never an equilibrium.

Case with (σ̄B, σB) = (B,U). Buyers with the high valuation accept the offer of the
bundle, while buyers with the low valuation accept the offer of the unit.
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– Preferences of buyers with the high valuation:
– B � U :

α · 1
2
(2γ − q) + (1− α) · 0 > 1− p,

p > 1− α
2
(2γ − q).

– Preferences of buyers with the low valuation:
– U � B:

v − p ≥ α · 1
2
(2γv − q) + (1− α) · 0,

p ≤ v − α
2
(2γv − q).

Note that 1− α
2
(2γ−q) > v− α

2
(2γv−q) if and only if 1−αγ > (1−αγ)v, which is always

the case for γ ∈
(

1
2
, 1
)
, v ∈ (0, 1), and α ∈ (0, 1). This gives a contradiction. Therefore,

this is never an equilibrium.

Case with (σ̄B, σB) = (U,B). Buyers with the high valuation accept the offer of the
unit, while buyers with the low valuation accept the offer of the bundle.

– Preferences of buyers with the high valuation:
– U � B:

1− p ≥ α · 0 + (1− α) · 1
2
(2γ − q),

p ≤ 1− 1−α
2

(2γ − q);

– U � N :
1− p ≥ 0 ⇔ p ≤ 1.

– Preferences of buyers with the low valuation:
– B � U :

α · 0 + (1− α) · 1
2
(2γv − q) > v − p,

p > v − 1−α
2

(2γv − q);

– B � N :

α · 0 + (1− α) · 1
2
(2γv − q) ≥ 0,

q ≤ 2γv.

Therefore, this is an equilibrium when the unit and bundle prices satisfy v − 1−α
2

(2γv −
q) < p ≤ 1− 1−α

2
(2γ − q) and q ≤ 2γv.

Case with (σ̄B, σB) = (B,B). Buyers with both high and low valuations accept the offer
of the bundle.

– Preferences of buyers with the high valuation:
– B � U :

1
2
(2γ − q) > 1− p ⇔ p > 1− 1

2
(2γ − q),

– B � N :
1
2
(2γ − q) ≥ 0 ⇔ q ≤ 2γ.
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– Preferences of buyers with the low valuation:
– B � U :

1
2
(2γv − q) > v − p ⇔ p > v − 1

2
(2γv − q),

– B � N :
1
2
(2γv − q) ≥ 0 ⇔ q ≤ 2γv.

Note that 1− 1
2
(2γ − q) > v − 1

2
(2γv − q) if and only if 1− γ > (1− γ)v, which is always

the case for γ ∈
(

1
2
, 1
)
, and v ∈ (0, 1). Therefore, this is an equilibrium when the unit and

bundle prices satisfy p > 1− 1
2
(2γ − q) and q ≤ 2γv.
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Birkhäuser.
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