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Abstract: The paper reports on market-entry experiments that manipulate both payoff 

structures and payoff levels to assess two stationary models of behaviour: Exploration vs 

Exploitation (EvE, which is equivalent to Quantal Response Equilibrium) and Impulse 

Balance Equilibrium (IBE). These models explain the data equally well in terms of 

goodness-of-fit whenever the observed probability of entry is less than the symmetric Nash 

equilibrium prediction; otherwise IBE marginally outperforms EvE. When assuming 

agents playing symmetric strategies, and estimating the models with session data, IBE 

yields more theory-consistent estimates than EvE, no matter the payoff structure or level. 

However, the opposite occurs when the symmetry assumption is relaxed. The conduct of 

a specification test rejects the validity of the restrictions on entry probabilities imposed by 

EvE for agents with symmetric strategies, in 50 to 75% of sessions and it always rejects it 

in the case of IBE, which indicates that the symmetric variant of these models has little 

empirical support. 
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Many social and economic activities require some degree of coordination in people's actions to 

be enjoyed. Congestion games, in which a group of individuals contemplates participating in an 

event that is enjoyed only if a few participate, characterise such situations well. These games 

have been widely investigated in the social sciences, and laboratory experiments suggest that 

despite the existence of multiple equilibria in pure strategies, participants somehow manage to 

behave almost optimally: overall, the observed participation rates even out the expected profits 

from entry and from no entry (Ochs, 1990, Arthur, 1994, Sundali, Rapoport and Seale, 1995, and 

Zwick and Rapoport, 2002). This pattern was first coined as ‘magic’ (Kahneman, 1988, Meyer, 

Van Huyck, Battalio and Saving, 1992, and Rapoport, 1995), and has subsequently been 

explained in terms of reinforcement learning processes (e.g., Erev and Rapoport, 1998, Rapoport, 

Seale, Erev and Sundali, 1998, Duffy and Hopkins, 2004, and Erev, Ert and Roth, 2010) or 

probability weighting (Rapoport, Seale and Ordonez, 2002). Yet, some investigations report 

persistent deviations (see Camerer and Lovallo, 1999, and Fischbacher and Thöni, 2008) for 

which Goeree and Holt (2005) provide a rationale in terms of Quantal Response Equilibrium 

(QRE, McKelvey and Palfrey, 1995), a stochastic version of the Nash equilibrium that is 

remarkably successful in organising the data of numerous experiments (see Goeree, Holt and 

Palfrey, 2016, and the references therein). 

In this paper, we use an alternative rationale for QRE that evokes the ‘Exploration versus 

Exploitation’ dilemma outlined in Nadal, Chenevez, Weisbuch and Kirman (1996), Kirman 

(2011) and Bouchaud (2013), and which has been formalised as ‘rational inattention’ by Matějka 

and McKay (2015). Unlike QRE which assumes payoff disturbances and noisy best-responding 

agents, ‘Exploration versus Exploitation’ (henceforth EvE) assumes agents to take account of 

the information cost (or the entropy) associated with their choice probabilities when maximising 

their expected payoffs. In a repeated congestion game for example, agents may want to “exploit” 

one option (‘entry’ or ‘no entry’) and sometime “explore” the other to gather information about 

the payoffs associated to it.1 Bouchaud (2013) observes that these models are structurally 

equivalent when agents’ payoff disturbances in quantal response models are assumed i.i.d. or 

equivalently, when agents in EvE models do not interact with each other and take their decisions 

independently. By discarding the possible effects of time-correlated decisions and agents’ 

heterogeneity, these assumptions permit the determination of a stationary equilibrium in terms 

of agents’ payoff responsiveness (in QRE) or their compromise between ‘exploring’ and 

                                                           
1 See Hills, Todd, Lazer, Redish, Couzin, and the Cognitive Search Research Group (2015) for applications of the 

‘Exploration versus Exploration’ dilemma in the social sciences. 



3 
 

‘exploiting’ (in EvE). The modelling of dynamics in such settings quickly becomes intractable 

and the determination of equilibria is confined to special cases, see e.g., Bouchaud (2013) and 

Goeree, Holt and Palfrey (2016).  

On the other hand, the modelling of heterogeneity in game-theoretic contexts raises questions 

about which sort of relaxation of “common knowledge” assumption(s) about what agents believe 

about others can be used and which still allow one to ‘close’ the model. Various answers have 

been proposed, as in e.g., Armantier and Treich (2009), Rogers, Camerer and Palfrey (2009) and 

Camerer, Nunnari and Palfrey (2016).2 Although making these modifications shows that 

assuming heterogeneity in agents’ traits considerably improves the model’s goodness-of-fit, it 

does not address the question of when one should indeed forego the assumption of homogeneous 

agents. This approach, is also reminiscent of modifications that have been made to basic modern 

macroeconomic models to take account of what Angeletos and Lian (2016) describe as “the 

potential fragility of workhorse macroeconomic models to relaxations of common knowledge”.3 

The first goal of this paper is to address the falsifiability of this type of models with regard to 

homogeneity of agents’ behaviour; see Goeree, Holt and Palfrey (2005, 2016) and Haile, 

Hortaçsu and Kosenock (2008) for discussions on the falsifiability of QRE. We provide a 

specification test that checks the consistency of individuals’ behaviour with the model’s 

prediction for homogenously behaving agents. Our approach is somewhat related to that of 

Golman (2011) who determines conditions under which the behaviour of the representative agent 

of a pool of individuals from a heterogeneous population may be rationalised by QRE. These 

conditions refer to the properties of agents’ payoff disturbances that determine whether their 

aggregation fulfils the i.i.d. assumption of QRE. Unlike Golman’s normative approach that is 

suited to QRE and that generates most useful predictions for the QRE analysis of binary-choice 

                                                           
2 See McKelvey, Palfrey and Weber (2000) and Weizsäcker (2003) for earlier investigations of QRE models with 

non-homogenous agents. Rogers et al. (2009) also consider a QRE model with subjective beliefs, i.e., where the 

distributions of others’ traits are not common knowledge but each player believes that the others’ traits are i.i.d. 

from the same distribution as her/his (which is private information). Armantier and Treich (2009) study a setting 

where agents (bidders in first-price auctions) know that their private traits (i.e., agents’ risk aversion and probability 

misperception) are i.i.d. from some commonly known bivariate distribution. In this setting, agents are heterogeneous 

but remain ex ante symmetric, whereas in the non-subjective models of Rogers et al. they are ex ante asymmetric 

so the relaxation of the usual common-prior assumption must additionally be dealt with. 
3 We also note a subtle difference between empiricists and experimentalists regarding the definition of unobserved 

heterogeneity in the structural analysis of game-theoretic models. The former define it as information that is 

available to agents but not to the researcher (Paarsch and Hong, 2006) whereas the latter assume that the researcher 

is aware of this information and uses it to assess the model’s explanatory power (e.g., Armantier and Treich, 2009, 

and Goeree Holt and Palfrey, 2016). See Kirman (2006) for an overview of the role of heterogeneity in economics 

and Branch and McGough (2018) for a discussion of the role of heterogeneous expectations in macroeconomics. 

See also Bookstaber and Kirman (2018) on the difficulties with building both theoretical and computational models 

of heterogeneous agents even when the nature of the heterogeneity is known and understood.  
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asymmetric games, ours is based on the means of observable variables and applies more generally 

to discrete-choice models that assume homogeneous agents. 

The paper’s second goal is to compare the explanatory power of EvE to that of Impulse Balance 

Equilibrium (IBE, Selten, Abbink and Cox, 2005, Ockenfels and Selten, 2005) which assumes 

neither expected profit-maximisation nor best-responding behaviour. IBE basically determines a 

strategy that equalises the foregone expected payoffs associated to each possible action. It 

assumes that if at some stage an alternative option would have yielded a higher payoff, then the 

agent receives an impulse to use this alternative in the next stage. IBE is defined as the long run 

outcome of such stage-to-stage behaviour which is driven by Learning Direction Theory (Selten 

and Buchta, 1999) and like EvE, it entails a trade-off and a stationary equilibrium. The relative 

goodness-of-fit performances of these (and other) models have been investigated in the context 

of 2×2 constant-sum games by Selten and Chmura (2008), Brunner, Camerer and Goeree (2010), 

and Selten, Chmura and Georg (2010). Here we set out to compare these models in a similar 

context, i.e., repeated binary-choice, but with ‘many’ agents and with treatments that manipulate 

payoff levels (i.e., ‘High’ or ‘Low’ payoffs) and structures (i.e., where payoffs from entering 

depend on total attendance). The motivation to analyse a game with ‘many’ (10) agents is to best 

allow the structural assessment of agents’ homogeneity. Controlling the payoff levels allows to 

check whether entry is increasing in payoffs, as expected by McKelvey, Palfrey and Weber 

(2000) and Goeree, Holt and Palfrey (2005), whereas controlling payoff structures aims at 

providing a broader picture of the problem at hand. 

We summarise our findings in the following four points. First, average entry behaviour in the 

experiments is mostly in line with symmetric Nash equilibrium predictions when payoffs are 

Low, no matter the payoff structure or whether we use ‘sessions’ or ‘pooled’ data (of several 

sessions). When payoffs are High, behaviour is characterized by a significant under-entry, 

especially when assuming pooled data or a payoff structure that is non-monotone in entry, i.e., 

first increasing and then decreasing with entry. Second, when the models are estimated by 

maximizing (pseudo-) likelihood functions that assume players with homogenous traits who 

make symmetric choices, IBE yields more consistent estimates than EvE across sessions or when 

using pooled data. Further, EvE and IBE explain the data equally well in terms of goodness-of-

fit if the probability of entry is less than or equal to the symmetric Nash mixed-equilibrium 

prediction. Otherwise, IBE marginally outperforms EvE in terms of goodness-of-fit. The models’ 

pooled estimates also display no particular trends throughout the experiments, which suggests no 

obvious learning pattern. Third, when the estimations relax symmetry, EvE generates more 

consistent estimates than IBE, no matter the payoff structure or level and whether the estimates 
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refer to ‘session’ or ‘pooled’ data. Fourth, our specification test rejects the null of consistency 

with EvE in 50% to 75% of all sessions (mostly with High payoffs), and it rejects the null of 

consistency with IBE in all sessions. 

The next section spells out the EvE and IBE models for Arthur’s (1994) El Farol bar game. 

Section 2 lays out the econometric procedures and our specification test for this type of games. 

The experimental design and procedures are presented in Section 3. Section 4 reports on the 

estimation outcomes, with and without controlling for the symmetry of players' choices and 

Section 5 concludes. 

 

1. Two stationary models for congestion games 

Assume 𝑛 agents who independently decide whether to enter a market or not. Agent 𝑖's decision 

is represented by a variable 𝑑𝑖 that takes the value 1 if she enters and 0 if not. The payoff from 

not entering is constant and equal to 𝐻, whereas the one from entering is a function 𝐺(⋅) of the 

number of entrants 𝐴 = ∑𝑖𝑑𝑖. A congestion problem arises if for some values 𝑐 of 𝐴, we have 

𝐺(𝑐) > 𝐻 and for others 𝐺(𝑐) < 𝐻. With such a reward scheme, any vector of decisions 𝑑 such 

that exactly 𝑐 out of 𝑛 agents choose to enter constitutes a pure Nash equilibrium. Thus there are 

exactly (
𝑛
𝑐
) such equilibria: each yielding an aggregate payoff equal to 𝑐𝐺(𝑐) + (𝑛 − 𝑐)𝐻. There 

may also exist symmetric mixed-equilibrium strategies which, by definition, equalize an agent's 

expected payoff from entering, 𝜋𝐸 , to that from not entering, 𝜋𝑁𝐸 = 𝐻. That is, if 𝑝 stands for 

the common probability of entry, then 𝑝𝑁𝑎𝑠ℎ solves: 

 

 

𝜋𝐸(𝑝) ≡ ∑ (
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

𝑝𝑘(1 − 𝑝)𝑛−1−𝑘𝐺(𝑘 + 1) = 𝐻 ≡ 𝜋𝑁𝐸  (1) 

 

where 𝑘 is a realization of the random variable 𝐾 characterizing the number of entrants other 

than oneself. Note that (1) requires that the 𝑛 agents behave symmetrically in that they all choose 

to enter with the same probability 𝑝.4 For reasons that will become clear in Section 2, it is 

convenient to rewrite this expression as being conditional on vector 𝑝−𝑖, the 𝑛 − 1 vector of entry 

probabilities for agents other than agent 𝑖:5 

 

                                                           
4 Clearly, there also are asymmetric mixed-equilibrium strategies which assume that some agents always or never 

enter.  
5 See Appendix 1 for the expression of the probability 𝑃[𝑘 𝑔𝑜| 𝑝−𝑖] that 𝑘 agents enter given the vector 𝑝−𝑖 . 
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𝜋𝑖(𝑑 = 1|𝑝−𝑖) = ∑ 𝑃[𝑘 𝑔𝑜| 𝑝−𝑖]

𝑛−1

𝑘=0

𝐺(𝑘 + 1). 

 

1.1. Exploration vs Exploitation: EvE 

In this framework, agents aim at finding a compromise between maximizing their current payoff 

and keeping themselves informed about market conditions to maximize their future payoffs. In 

our context, we can think of changing market conditions if agents exhibit an irregular or noisy 

entry behaviour. If that is the case, then they may find it worthwhile to sometimes explore the 

alternative option, i.e., entering or not entering the market. While the ‘exploitation’ part of the 

dilemma, i.e., the maximization of current payoffs, is straightforward, the ‘exploration’ part 

hinges upon the maximum entropy principle which captures the agent's variety-seeking behaviour 

(see Anderson, de Palma and Thisse, 1992). In brief, an agent seeking maximal variety in her/his 

decisions would explore each alternative with equal probabilities so that entropy is maximized 

whereas an agent who values minimal variety would avoid exploring and would focus on 

maximizing current payoffs, in which case entropy is minimized. 

With 𝑝𝑖 standing for an agent 𝑖's probability of entry, 𝜋𝐸(𝑝−𝑖) for the expected payoff in terms 

of the probabilities of entry of the 𝑛 − 1 other agents, and with entropy being defined by 𝑆𝑖 =

−𝑝𝑖ln𝑝𝑖 − (1 − 𝑝𝑖)ln (1−𝑝𝑖), the agent's objective function to maximise is given by: 

 

 𝜋𝑖𝑖
 = 𝑝𝑖𝜋

𝐸(𝑝−𝑖) + (1 − 𝑝𝑖)𝐻+𝜎𝑆𝑖 

(2)    

  = 𝑝𝑖𝜋
𝐸(𝑝−𝑖) + (1 − 𝑝𝑖)𝐻 + 𝜎[−𝑝𝑖ln𝑝𝑖 − (1 − 𝑝𝑖) ln(1−𝑝𝑖)]. 

 

where 𝜎 ≥ 0 is a parameter capturing the weight that agent 𝑖 assigns to the preservation of 

information about market conditions for long term profits. Differentiating this expression with 

respect to 𝑝𝑖, we obtain the following first-order condition of maximisation: 

 

𝜋𝐸(𝑝−𝑖) − 𝐻 + 𝜎[−ln𝑝𝑖 + ln(1 − 𝑝𝑖)] = 0, 

 

or equivalently (if 𝑝𝑖 is neither 0 nor 1 and 𝜎 = 1/𝜆) 

 

 
𝑝𝑖 =

1

1 + exp {−𝜆[𝜋𝐸(𝑝−𝑖) − 𝐻]}
. (3) 
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This yields a system of 𝑛 equations if there are 𝑛 agents, and given the homogenous weighting 

parameter 𝜆, this should be solved for the vector 𝑝∗ = (𝑝1, 𝑝2, … , 𝑝𝑛). Note that this exactly 

matches McKelvey and Palfrey's definition of the logit QRE, with 𝜆 standing for agents’ 

homogenous best-responsiveness. Unlike QRE, EvE yields the logit choice function without 

assuming noisy payoffs, which is questionable in this setting, since ‘not entering’ generates a 

sure payoff H. Under the assumption of symmetry, 𝑝−𝑖 has all its components equal to 𝑝𝑖, which 

we simply denote 𝑝, and thus 𝑝 and 𝜆 are related by 

 

𝑝 =
1

1 + exp {−𝜆[𝜋𝐸(𝑝) − 𝐻]}
 

or equivalently 

 

𝜆 =
ln

𝑝
1 − 𝑝

𝜋𝐸(𝑝) − 𝐻
. (4) 

 

Thus, if agents who choose symmetrically are rational and do not explore, then 𝑝 is such that 

𝜋𝐸(𝑝) = 𝐻, i.e., 𝑝 = 𝑝𝑁𝑎𝑠ℎ and 𝜆 → ∞. On the other hand, if they maximise exploration, then 

they choose 𝑝 such that 𝑝 = 1 − 𝑝 = 0.5, so that 𝜆 → 0. If 𝑝 > 0.5, 𝜆 is positive if 𝜋𝐸(𝑝) > 𝐻 

and it is negative otherwise. The Maximum Likelihood estimate of 𝑝, assuming independent 

observations, is the relative frequency of entry, 𝑑𝑛, and the MLE of 𝜆 follows from (4). Note that 

𝑑𝑛 remains a consistent estimator for 𝐸(𝑑) = 𝑝 for less restrictive covariance structures of the 

observations, by various weak laws of large numbers. 

 

1.2. Impulse Balance Equilibrium: IBE 

According to IBE, agents only take account of foregone payoffs. In the context of a congestion 

game, an agent receives an impulse for entry if the payoff received from not entering the market 

is strictly smaller than that from entering. Denoting by 𝐼 the number of other entrants and by 𝑝 

the common probability of entering the market, the expected magnitude of these impulses is 

defined as: 

 

      𝐼𝑀𝑃𝐸(𝑝)) = 𝐸[G(I + 1)𝕀{𝐺(𝐼+1)>𝐻}] 

 

= ∑(
𝑛 − 1

𝑖
)

𝑐−1

𝑖=0

𝑝𝑖(1 − 𝑝)𝑛−1−𝑖𝐺(i + 1)𝕀{𝐺(𝑖+1)>𝐻} 

 

or equivalently in terms of 𝑝−𝑖 rather than 𝑝: 
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𝐼𝑀𝑃𝐸(𝑝−𝑖) =  ∑ 𝑃[𝑘 go |𝑝−𝑖]

𝑐−1

𝑘=0

𝐺(i + 1)𝕀{𝐺(𝑖+1)>𝐻}. (5) 

 

Similarly, an agent would receive an impulse for no entry if the payoff received from entering is 

not larger than that from not entering. The expected magnitude of these impulses is defined as: 

 

      𝐼𝑀𝑃𝑁𝐸(𝑝)) = 𝐻. 𝑃[𝐺(𝐼 + 1) < 𝐻] 

  

 

= 𝐻 [1 − ∑(
𝑛 − 1

𝑖
)

𝑐−1

𝑖=0

𝑝𝑖(1 − 𝑝)𝑛−1−𝑖𝕀{𝐺(𝑖+1)>𝐻}] 

 

or equivalently 

 

𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖) =  𝐻 [1 − ∑ 𝑃[𝑘 go |𝑝−𝑖]

𝑐−1

𝑘=0

𝕀{𝐺(𝑖+1)>𝐻}]. (6) 

 

Note that these impulses are defined relatively to the game's maximin pure strategy of not 

entering the market which yields a sure payoff of 𝐻. Selten and Chmura (2008) further observe 

that receiving a payoff lower than this sure payoff should be perceived as a loss. To this extent, 

and in the light of empirical and experimental evidence of loss aversion in agents' preferences 

(Bernatzi and Thaler, 1995, and Tversky and Kahneman, 1991), Selten and Chmura assume that 

the losses relative to the secured payoff count double. Thus, in the context of a congestion game, 

an IBE could be determined such that agent 𝑖 is indifferent between entering and receiving 

𝐼𝑀𝑃𝐸(𝑝−𝑖) and not entering and receiving 2 × 𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖). Put alternatively, agent 𝑖 would 

choose to enter the market with probability 𝑝𝑖 that equalises her expected impulses; that is 

 

 𝑝𝑖𝐼𝑀𝑃𝐸(𝑝−𝑖) = (1 − 𝑝𝑖) × 2 × 𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖) (7) 

 

Hereafter, we follow Ockenfels and Selten (2005) and consider a parametric version of IBE by 

estimating the impulse weight 𝜅 in the following equation by Maximum Likelihood (as for QRE), 

i.e., the estimator of 𝑝 is 𝑑𝑛 and the MLE of 𝜅 (assuming 𝑝 different from 0) follows from 

 

 
𝜅 =

𝑝𝐼𝑀𝑃𝐸(𝑝)

(1 − 𝑝)𝐼𝑀𝑃𝑁𝐸(𝑝)
. (8) 
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2. A specification test 

When we assume symmetry, i.e., that agents' entry probabilities 𝑝1, 𝑝2, … , 𝑝𝑛 are all equal to 𝑝, 

the models we consider only propose a reparametrization 𝜆(𝑝) for EvE and 𝜅(𝑝) for IBE. Thus, 

under symmetry, there is no scope for discriminating between these models beyond commenting 

on implausible values of 𝜆(𝑝) and 𝜅(𝑝). If we do not impose symmetry, then (3) and (7) can be 

rewritten as systems of linear restrictions on parameters 𝜆 and 𝜅: 

 

 ln
𝑝𝑖

1 − 𝑝𝑖
− 𝜆[𝜋𝑖

𝐸(𝑝−𝑖) − 𝐻] = 0 for 𝑖 = 1,… , 𝑛. (9) 

and  

 

 𝑝𝑖𝐼𝑀𝑃𝐸(𝑝−𝑖) − (1 − 𝑝𝑖)𝜅𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖) = 0 for 𝑖 = 1,… , 𝑛. (10) 

 

Both systems can thus be written in the form 𝑦(𝑝) − 𝜃𝑥(𝑝) = 𝑔(𝑝, 𝜃) = 0, with 𝜃 = 𝜆 or 𝜅, and 

with 𝑦, 𝑥 and 𝑔 vector functions with values in ℝ𝑛. 

Given the asymptotically normal estimator 𝑝̂𝑇 of 𝑝, the vector of individual entry frequencies, 

with asymptotic variance 𝑉 of which we describe a consistent estimator 𝑉̂𝑇 in Appendix 2, an 

optimal asymptotic least squares estimator of 𝜃 is:6 

 

𝜃𝑇 = arg min𝜃 𝑔′(𝑝̂𝑇 , 𝜃)𝑆̂𝑇
−1𝑔(𝑝̂𝑇 , 𝜃) 

(11)   

 = [𝑥′(𝑝)𝑆̂𝑇
−1𝑥(𝑝)]−1𝑥′(𝑝)𝑆̂𝑇

−1𝑦(𝑝) 

with 𝑆̂𝑇 converging to 

𝑆 =
𝜕𝑔(𝑝, 𝜃)

𝜕𝑝′
𝑉

𝜕𝑔′(𝑝, 𝜃)

𝜕𝑝
. 

 

𝜃𝑇 is thus the GLS estimator in the regression of 𝑦(𝑝) on 𝑥(𝑝), the variance of the error term 

being 𝑆. 

Given a preliminary estimate of 𝜃, say 𝜃̃𝑇 obtained by replacing 𝑆̂𝑇 in (11) with the identity 

matrix, i.e., 𝜃̃𝑇 is the OLS estimator in the regression of 𝑦(𝑝) on 𝑥(𝑝), a consistent estimator of 

𝑆 is 

𝑆̂𝑇 =
𝜕𝑔(𝑝̂𝑇 , 𝜃̃𝑇)

𝜕𝑝′
𝑉̂𝑇

𝜕𝑔′(𝑝̂𝑇 , 𝜃̃𝑇)

𝜕𝑝
 . 

                                                           
6 See e.g. Gouriéroux and Monfort, 1995, for a justification of all the assertions in this section. 
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The asymptotic variance of 𝜃𝑇 is given by 𝑉𝑎𝑠𝑦(𝜃𝑇) = [𝑥′(𝑝)𝑆−1𝑥(𝑝)]−1 and a consistent 

estimator is 𝑉𝑎𝑠𝑦(𝜃𝑇)̂ = [𝑥′(𝑝̂𝑇)𝑆̂𝑇
−1𝑥(𝑝̂𝑇)]−1. Under the null that there exists 𝜃 such that 

𝑔(𝑝, 𝜃) = 0 for the true 𝑝, or in other words that the restrictions on entry probabilities embodied 

by the model are valid, 

 

 𝑇𝑔′(𝑝̂𝑇 , 𝜃𝑇)𝑆̂𝑇
−1𝑔(𝑝̂𝑇 , 𝜃𝑇) ≈ 𝜒2(𝑛 − 1), (12) 

 

and this can be used to test the underlying theory. All we need for the implementation of this 

specification test are thus 𝑉̂𝑇 and the derivatives 𝜕𝑔𝑖(𝑝, 𝜃) 𝜕𝑝𝑖⁄ . The technical details for the 

determination of these expressions are given in Appendix 3. 

As we obtained counter-intuitive results for IBE, with a large number of negative estimates for 

𝜅, we explored some variants. 7 One consists in iterating the FGLS procedure, but this produced 

oscillating results, and thus we turned to optimizing (12) with respect to the argument 𝜃,  with 𝜃 

appearing both in function 𝑔(𝑝̂𝑇 , 𝜃) and in the weighting matrix 𝑆̂𝑇 , which amounts to obtaining 

the limit of iterated FGLS. 

The above test pertains to the analysis of a session with 𝑛 agents. When pooling 𝑘 sessions of 𝑛 

agents, we match agents in different sessions according to their session average entry 

probabilities. Technically, this is done by renumbering the agents in each session in increasing 

order of session average entry probabilities. We then treat the observations as if they resulted 

from the actions of the same 𝑛 agents over the 𝑘 sessions. The only change in the estimation and 

test procedure is that 𝑇 is replaced with 𝑘𝑇. 

 

3. Experimental design and procedures 

The experiments involve groups of 10 participants and a 2×3 factorial design which assumes two 

payoff levels, High and Low, and three payoff structures, a two-step function (DISC) yielding a 

positive payoff 𝐺 from entering if total entry does not exceed the market's capacity 𝑐, and 0 

otherwise, and two non-monotone ones in which payoffs first increase and then decrease with 

attendance (NOM1 and NOM2, the latter implying entry if someone already entered). These 

payoff functions are displayed in Figure 1. There are two things worth mentioning here. First, to 

keep the payoff structures comparable for a given payoff level, the total payoff from entering the 

market, measured by ∑𝑖=1
9 𝐺(𝑖 + 1), and the market capacity 𝑐 have been kept constant across 

                                                           
7 It may appear surprising that regressing the positive variable 𝑝𝑖𝐼𝑀𝑃𝐸(𝑝−𝑖) on the positive variable 

(1 − 𝑝𝑖)𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖) may yield a negative coefficient but this can happen with Feasible Generalized Least Squares 

with a non-diagonal weighting matrix, as is the case here. 
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payoff structures.8 Second, DISC and NOM1 have (
10
6

) = 210 Nash equilibria in pure strategies 

whereas NOM2 has one more in which all agents choose not to enter. 

 

 

 

 

 

 

 

 

 
 

 

  

 

   

 

  

             

             

             

             
FIGURE 1: PAYOFF LEVELS AND STRUCTURES 

 

 

 

             𝑝𝑁𝑎𝑠ℎ = .673 (𝐻), .607 (𝐿)                       𝑝𝑁𝑎𝑠ℎ = .698 (𝐻), .615 (𝐿)                𝑝𝑁𝑎𝑠ℎ = .705 (𝐻) and  .029 (𝐻), 

                         . 628 (𝐿) and .061 (𝐿)   

 

 

Note: Bold (Thin) lines stand for High (Low) payoff levels. 

FIGURE 2: RELATIONSHIP BETWEEN 𝑝 AND 1/𝜆 (in EvE) OR 𝜅 (in IBE). 

 

                                                           
8 The alternative to keep the symmetric Nash mixed-equilibrium prediction constant across payoff levels, as in 

McKelvey, Palfrey and Weber (2001), would require changing either ∑𝑖=1
9 𝐺(𝑖 + 1) or 𝑐 and has therefore not been 

considered. 
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Figure 2 displays the relationships between 𝜎 = 1/𝜆 and 𝑝 in EvE and between 𝜅 and 𝑝 in IBE 

and reports the mixed-equilibrium strategies for EvE. Recall that for EvE, 𝜆 → ∞ if 𝑝 = 𝑝𝑁𝑎𝑠ℎ 

and that the observed probability 𝑝 can be rationalized in terms of EvE only if 𝜆 > 0.9 Note also 

that the presence of the additional ‘no entry’ equilibrium in the NOM2 treatments yields a second 

symmetric Nash equilibrium in mixed strategies with very low probabilities of entry. 

The experiments were conducted at the Laboratory for Experimental Economics of the 

University of Jaume I (Spain). Participants were undergraduate students in Business 

Administration, Law or Engineering and were recruited by public advertisement on campus. We 

conducted eight sessions per payoff structure (DISC, NOM1, NOM2) involving a total of 

(8×3×10=) 240 individuals. For each payoff structure, we conducted four sessions with Low 

payoffs and four sessions with High payoffs. At the outset of the experiment, participants were 

randomly assigned to cubicles equipped with computer terminals and were given instructions 

that were read aloud.10 To avoid framing effects, we presented the game in neutral language by 

asking participants to choose between actions A and B. Each session involved 150 rounds of 

play, and at the end of each round, participants were informed about the total number of players 

in their group who chose B ("No entry"), their own choice (A or B), their own payoff in that 

round and their cumulated payoff. This information was appended to a "History" window that 

could be seen at any time during the experiment. Each session lasted for a maximum of one hour, 

including the time needed to read the instructions, and individual average earnings were €12.77 

(i.e., €11.94 in the Low payoff sessions and €13.60 in High payoff ones). 

 

4. Results 

Figure 3 shows the evolution of average entry in each treatment and reports local linear kernel 

regression estimates of entry and their 95% confidence interval. Overall, although entry is close 

to capacity on average (i.e., 𝑐 = 6), it is typically higher in High payoff treatments than in Low 

payoff ones. The kernel regression estimates also suggest that in most treatments, subjects played 

cautiously at the outset of a session (by refraining from entering the market) and were more 

‘outgoing’ towards the end of it. 

                                                           
9 For the treatments we experimentally investigate, only values of 𝑝 greater than 0.5 are relevant. And in the range 

[0.5,1], the relationship 𝑝 ↦ 1/𝜆 turns out to be monotonic decreasing over at least [0.5,0.705] for all payoff 

structures. The relationship is therefore a bijection over the relevant range of 𝑝, and 𝑝 and 1/𝜆 are equivalent 

parametrisations of the EvE model. 
10 The experiments were conducted with the z-Tree software (Fischbacher, 2007). See Appendix 4 for an English 

transcript of the set of instructions. 
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FIGURE 3: AVERAGE ENTRY BEHAVIOUR. 

 

Table 1 reports on average entry probabilities. Looking first at session outcomes, a comparison 

of the statistics’ 95% confidence intervals to equilibrium predictions suggests that the ‘magic’ of 

an equilibrium-type of behaviour is verified in 16 out of the 24 sessions conducted. Otherwise 

we have a significant under-entry in six out of the 12 sessions with High payoffs and in one 

session out of the 12 sessions with Low payoffs, as well as a significant over-entry in one Low 

payoff sessions. Given a payoff structure, the symmetric mixed-equilibrium strategy is typically 

rejected in only one session out of four; the only exceptions being the NOM2/High treatment 

where under-entry is observed in all sessions and the NOM1/Low treatment where the null of 

equilibrium play cannot be rejected at 𝛼 = 5% in all sessions. This is partially confirmed by 

‘pooled’ data outcomes, as we find under-entry in all High payoff treatments and in NOM2/Low, 

and over-entry is only observed in DISC with Low payoffs. 

In sum, the data support the prediction of Goeree and Holt (2005) that a significant under-entry 

occurs when 𝑝𝑁𝑎𝑠ℎ > 0.5, but mostly in High payoff sessions, as in NOM2, or when the data is 

pooled over sessions, as in DISC, NOM1 and NOM2 (with either High or Low payoffs). In the 

following section, we check whether EvE and IBE support this finding. 
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TABLE 1: AVERAGE ENTRY PROBABILITIES.  
 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 
DISC 

.673 
.656 

[.631, .681] 
.647 

[.622, .671] 

.651 

[.617, .685] 

.655 

[.632, .678] 
.652 

[.645, .659] 

High 
NOM1 

.698 
.669 

[.640, .697] 

.658 

[.619, .669] 

.677 

[.652, .702] 

.677 

[.655, .699] 
.676 

[.669, .681] 

 
NOM2 

.705 
.669 

[.644, .695] 
.635 

[.609, .660] 
.660 

[.639, .681] 
.673 

[.653, .693] 
.659 

[.653, .665] 

       

 
DISC 

.607 
.630 

[.602, .658] 

.595 

[.577, .614] 
.650 

[.622, .678] 

.621 

[.597, .646] 
.624 

[.618, .630] 

Low 
NOM1 

.615 
.629 

[.605, .654] 

.643 

[.612, .674] 

.620 

[.595, .645] 

.594 

[.566, .622] 

.622 

[.615, .628] 

 
NOM2 

.628 
.628 

[.604, .652] 
.602 

[.581, .623] 

.619 

[.596, .643] 

.634 

[.604, .664] 
.621 

[.615, .627] 

       

Note: Each ‘session’ (‘pooled’) estimate refers to 1500 (6000) observations; Nash mixed-equilibrium prediction in 

italics; Bold figures indicate a rejection of the null of Nash mixed-equilibrium play at 𝛼 = 5%; 95% confidence 

intervals (based on Newey-West variance estimates) in brackets. 
 

 

 

4.1. Structural estimations when imposing symmetry 

Table 2 reports the Maximum Likelihood estimation outcomes for EvE (upper panel) and IBE 

(lower panel). Note that since the models’ log-likelihood values are defined as 𝑇[𝑝̂ ln 𝑝̂ + (1 −

𝑝̂) ln(1 − 𝑝̂)], with 𝑇 standing for the number of observations, they contain no information about 

goodness-of-fit beyond the estimated probability of entry 𝑝̂. In addition, since we correct the 

estimates’ standard deviations for unknown forms of auto-correlation and heteroscedasticity in 

the observations, these pseudo-likelihood values are of doubtful interest and are therefore not 

reported.11 The shaded cells characterize cases that did not reject the mixed-equilibrium 

predictions on the grounds of entry probabilities, cf. Table 1. Looking at EvE’s 𝜆̂-estimates, they 

are not significantly different from zero in the High payoff sessions of DISC and NOM1, which 

suggests maximal exploration and conflicts with the diagnosis of a symmetric mixed-equilibrium 

behaviour in three out of four sessions of either treatment (cf. Table 1). The estimates for 

NOM2/High are significantly positive in all sessions, which suggests a contained exploration 

that is in line with the reported under-entry for this treatment. When payoffs are Low, the 𝜆̂-

                                                           
11 In Appendix 5, we report on the models’ estimation outcomes when assuming i.i.d. observations, as is usually 

done in the literature, so that the models’ log-likelihood values become meaningful. As expected from Footnote 9, 

EvE and IBE generate exactly the same goodness-of-fit when the observed probability of entry 𝑝 lies in 

[0.5,  𝑝𝑁𝑎𝑠ℎ], and for the few cases where 𝑝 lies outside this range, IBE marginally outperforms EvE in terms of 

goodness-of-fit. 
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estimates are typically not significantly different from 0 which suggests maximal exploration (in 

nine out of twelve sessions) or they are significantly negative and thus inconsistent. 

 

TABLE 2: EVE  PARAMETER ESTIMATES (𝜆 ) WHEN IMPOSING SYMMETRY. 

 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
1.258 

[-.773, 3.289] 
.762 

[-.079, 1.602] 
.924 

[-.702, 2.550] 
1.205 

[-.538, 2.948] 

1.000 

[.634, 1.368] 

High NOM1 
1.044 

[-.712, 2.269] 
2.023 

[-1.821, 5.867] 
1.521 

[-.513, 3.555] 
1.577 

[-.358, 3.512] 

1.430 

[.981, 1.879] 

 NOM2 
.812 

[.068, 1.557] 

.305 

[.122, .487] 

.595 

[.220, .971] 

.921 

[.194, 1.649] 

.580 

[.480, .681] 

       

 DISC 
-1.139 

[-2.278, .0004] 
1.660 

[-1.329, 4.649] 

-.711 

[-1.029, -.392] 
-1.698 

[-4.211, .816] 

-1.452 

[-1.905, -1.001] 

Low NOM1 
-2.191 

[-5.577, 1.195] 

-1.236 

[-2.288, -.184] 
-6.006 

[-36.72, 24.71] 
1.016 

[-.668, 2.699] 
-4.504 

[-9.050, .0413] 

 NOM2 
302.621 

[-81383, 81989] 
.806 

[-.044, 1.655] 
2.866 

[-5.417, 11.150] 
-4.864 

[-28.585, 18.86] 

3.509 

[.281, 6.736] 

       

 

IBE PARAMETER ESTIMATES (𝜅) WHEN IMPOSING SYMMETRY 
 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
3.449 

[2.919, 3.978] 

3.652 

[3.109, 4.196] 

3.564 

[2.820, 4.308] 

3.463 

[2.972, 3.954] 

3.531 

[3.386, 3.677] 

High NOM1 
2.511 

[1.986, 3.036] 

1.836 

[1.526, 2.146] 

2.366 

[1.924, 2.808] 

2.354 

[1.961, 2.747] 

2.387 

[2.278, 2.496] 

 NOM2 
2.662 

[2.150, 3.173] 

3.445 

[2.804, 4.087] 

2.856 

[2.415, 3.298] 

2.595 

[2.195, 2.995] 

2.874 

[2.751, 2.998] 

       

 DISC 
2.693 

[2.236, 3.149] 

3.306 

[2.944, 3.667] 

2.386 

[1.974, 2.797] 

2.836 

[2.426, 3.245] 

2.790 

[2.684, 2.892] 

Low NOM1 
2.224 

[1.835, 2.612] 

2.013 

[1.566, 2.460] 

2.374 

[1.956, 2.793] 

2.846 

[2.285, 3.407] 

2.347 

[2.234, 2.459] 

 NOM2 
2.412 

[1.987, 2.837] 

2.908 

[2.463, 3.354] 

2.568 

[2.136, 3.000] 

2.309 

[1.797, 2.821] 

2.541 

[2.426, 2.655] 

       

Note: Each ‘session’ (‘pooled’) estimate refers to 1500 (6000) observations; shaded cells characterize instances 

where the symmetric mixed-equilibrium strategy cannot be rejected at the 5% level, cf. Table 1; bold figures 

indicate instances with maximal exploration in EvE, i.e., 𝜆 not significantly different from 0 at 𝛼 = 5%; 95% 

confidence intervals (based on Newey-West variance estimates) in brackets. 
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Estimating EvE with pooled data supports a contained exploration in all High payoff treatments 

eventhough this is not supported by the session data of DISC and NOM1. When payoffs are Low, 

behaviour is inconsistent in DISC and suggests either maximal exploration (in NOM1) or a 

contained one (in NOM2). 

Overall, this first batch of estimations indicates a dissonance between ‘session’ and ‘pooled’ 

estimates, and between what can be concluded from the observed probabilities of entry and from 

EvE’s estimated parameters: for the 16 sessions that did not reject the null of a symmetric mixed-

equilibrium behaviour, EvE diagnoses a behaviour that is not significantly different from 

maximal exploration for 15 sessions, and that is inconsistent for one session (#2, NOM1/Low). 

Looking at IBE’s 𝜅̂-estimates and their 95% confidence intervals, we find no significant 

differences across sessions of a given payoff structure, no matter the payoff level. The estimates 

are also not significantly different from those pertaining to pooled data, and the latter are 

significantly different across payoff structures, with 𝜅̂𝐷𝐼𝑆𝐶 > 𝜅̂𝑁𝑂𝑀2 > 𝜅̂𝑁𝑂𝑀1, when payoffs are 

High. Pooled estimates are also significantly different across payoff levels in DISC and suggest 

an increased aversion towards (hypothetical) losses from entering when payoffs are High in this 

treatment, i.e., 𝜅̂𝐻𝑖𝑔ℎ > 𝜅̂𝐿𝑜𝑤. Thus, although the 𝜅̂-estimates are all significantly larger than 

Selten and Chmura's benchmark of 𝜅 = 2 in all High payoff treatments (and in six sessions with 

Low payoffs), they display more consistency across sessions, as well as between ‘session’ and 

‘pooled’ data, than EvE’s estimates.  

Before investigating how the relaxation of the symmetry assumption affects our conclusions, 

recall that Figure 3 suggests an increased entry towards the end of an experiment which points 

to a possible non-stationary behaviour. We therefore check for possible trends in the models’ 

estimates of successive batches of 15 rounds. A declining trend in EvE’s 𝜆̂-estimates would 

suggest that participants explore less as they gain experience of the game they play whereas a 

decline in IBE’s 𝜅̂-estimates would suggest a dampening aversion towards the (hypothetical) 

losses attached to entering. The estimates are reported in Appendix 6 (along with average relative 

frequencies of entry) and provide no support for such trend patterns in any treatment, which is in 

line with the findings of McKelvey and Palfrey (1995) for a collection of experiments. 

Interestingly, however, the models’ batch-estimates (which assume 600 observations) reproduce 

the same conflicting patterns as when comparing ‘session’ and ‘pooled’ data estimates in the 

High payoff treatments: (i) EvE’s estimates typically support maximal exploration whereas they 

indicate a contained one at the pooled level (cf. Table 2), (ii) average entry probabilities hardly 

reject the null of symmetric mixed-equilibrium play in DISC and NOM1, whereas EvE reports  
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a contained exploration (under-entry) for the pooled data of these treatments (cf. Table 2), and 

(iii) IBE’s estimates (of all treatments) are very similar to those reported in Table 2 and thus 

appear more consistent across aggregation levels than EvE’s. 

 

4.2. Structural estimations when relaxing symmetry 

 
We now estimate the models without imposing symmetry, i.e., without assuming 𝑝 = 𝑝𝑖 for 𝑖 =

1, . . . , 𝑛, and we run our specification test to assess the consistency of the estimates with the 

models’ predictions. The outcomes reported in the two panels of Table 3 lead to very different 

conclusions. EvE’s 𝜆̂-estimates are significantly positive in all sessions which suggests a 

contained exploration. They are also similar across sessions of a given payoff structure as well 

as across payoff levels, especially in DISC and NOM2, with DISC generating significantly 

smaller estimates than NOM1 and NOM2. ‘Pooled’ estimates are also in line with ‘session’ ones 

and, overall, those for DISC and NOM2 appear to be invariant to payoff levels whereas those for 

NOM1 are significantly smaller when payoffs are High, as if in this treatment participants explore 

less when payoffs are scaled up. Yet, the specification test rejects the null of consistency in 17 

sessions (i.e., ten with High payoffs and seven with Low payoffs), and in all treatments when 

pooling the data. 

Looking at IBE’s 𝜅̂-estimates, they are less consistent across sessions of a given treatment and 

they are sometimes significantly negative, mostly in NOM1 and NOM2 with Low payoffs. The 

estimates pertaining to pooled data are broadly in line with those for session data, and those of 

DISC and NOM2 are significantly larger in the High payoff treatments, as if subjects’ impulses 

for entry in these treatments increase with payoffs. However, running the specification test on 

pooled data systematically rejects the null of consistency with IBE’s prediction. In sum, observed 

behaviour corresponds better to EvE than to IBE when the symmetry assumption is relaxed. 

For each session we could also easily test the assumption that the probability of entry is the same 

for all session participants, but the rejection of the IBE specification for all cases makes this 

unnecessary: if the probability of entry is the same for all session participants, the restrictions 

imposed by IBE vanish, and we should not be able to reject them. 
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TABLE 3: EVE PARAMETER ESTIMATES (𝜆) WHEN RELAXING SYMMETRY. 

 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
1.536 

[1.452, 1.619] 

{<10-3} 

1.379 

[1.305, 1.453] 

{<10-3} 

1.464 

[1.415, 1.513] 

{.7937}° 

1.300 

[1.287, 1.313] 

{<10-3} 

1.550 

[1.533, 1.567] 

{<10-3} 

High NOM1 
1.790 

[1.760, 1.820] 

{.0449} 

1.935 

[1.832, 2.038] 

{.0454} 

1.949 

[1.852, 2.046] 

{.0217} 

1.773 

[1.728, 1.817] 

{<10-3} 

1.699 

[1.694, 1.704] 

{<10-3} 

 NOM2 
1.836 

[1.827, 1.845] 

{.1185}° 

1.943 

[1.923, 1.963] 

{<10-3} 

1.754 

[1.736, 1.772] 

{<10-3} 

1.610 

[1.565, 1.655] 

{<10-3} 

1.835 

[1.821, 1.849] 

{<10-3} 

       

 DISC 
1.738 

[1.726, 1.750] 

{.0034} 

1.597 

[1.586, 1.609] 

{<10-3} 

1.669 

[1.621, 1.716] 

{.0015} 

1.572 

[1.550, 1.595] 

{<10-3} 

1.701 

[1.698, 1.705] 

{<10-3} 

Low NOM1 
2.081 

[2.029, 2.133] 

{.0860}° 

2.050 

[1.959, 2.141] 

{.0386} 

2.046 

[1.979, 2.112] 

{.0167} 

2.081 

[2.030, 2.131] 

{.1823}° 

2.063 

[2.056, 2.069] 

{<10-3} 

 NOM2 
1.879 

[1.858, 1.900] 

{.1739}° 

2.115 

[2.046, 2.185] 

{.4252}° 

2.046 

[1.979, 2.112] 

{.0167} 

1.900 

[1.860, 1.940] 

{.4949}° 

1.865 

[1.861, 1.869] 

{<10-3} 

       

 

IBE PARAMETER ESTIMATES (𝜅) WHEN RELAXING SYMMETRY. 
 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
.857 

[.758, .956] 

{<10-3} 

-1.231 

[-1.265, -1.198] 

{<10-3} 

3.042 

[2.612, 3.472] 

{<10-3} 

2.771 

[2.442, 3.100] 

{<10-3} 

2.758 

[2.677, 2.839] 

{<10-3} 

High NOM1 
1.547 

[1.287, 1.807] 

{<10-3} 

.865 

[.745, .984] 

{<10-3} 

-.681 

[-.705, -.658] 

{<10-3} 

-.917 

[-.944, -.891] 

{<10-3} 

.774 

[.740, .809] 

{<10-3} 

 NOM2 
1.823 

[1.582, 2.065] 

{<10-3} 

2.373 

[2.008, 2.738] 

{<10-3} 

-.866 

[-.878, -.855] 

{<10-3} 

-.970 

[-.986, -.954] 

{<10-3} 

1.790 

[1.731, 1.850] 

{<10-3} 

       

 DISC 
2.188 

[1.860, 2.516] 

{<10-3} 

1.967 

[1.832, 2.102] 

{<10-3} 

1.862 

[1.593, 2.131] 

{<10-3} 

1.998 

[1.851, 2.145] 

{<10-3} 

1.870 

[1.810, 1.929] 

{<10-3} 

Low NOM1 
2.217 

[1.931, 2.504] 

{<10-3} 

1.271 

[1.028, 1.513] 

{<10-3} 

2.095 

[1.853, 2.337] 

{<10-3} 

-.141 

[-.217, -.064] 

{<10-3} 

1.668 

[1.598, 1.738] 

{<10-3} 

 NOM2 
1.649 

[1.383, 1.914] 

{<10-3} 

2.421 

[2.161, 2.682] 

{<10-3} 

.030 

[-.048, .107] 

{<10-3} 

1.398 

[1.132, 1.664] 

{<10-3} 

1.613 

[1.546, 1.680] 

{<10-3} 

       

Note: Each ‘session’ (‘pooled’) estimate refers to 1500 (6000) observations; 95% confidence intervals (based on 

Newey-West variance estimates) in brackets; p-value of specification test in curly brackets; °: Non-rejection of 

the null of correct specification at 𝛼 = 5%. 
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Robustness check: We proceed with estimating models with a less rigid specification that allows 

for an additional constant term in the regression of 𝑦(𝑝) on 𝑥(𝑝). In the context of EvE, this 

amounts to replacing (9) with 

𝑔𝑖(𝑝, 𝜁, 𝜆) = ln
𝑝𝑖

1 − 𝑝𝑖
− 𝜁 − 𝜆[𝜋𝑖

𝐸(𝑝−𝑖) − 𝐻]−1, 

and in the context of IBE to replacing (10) with 

 

𝑔𝑖(𝑝, 𝜁, 𝜅) = 𝑝𝑖𝐼𝑀𝑃𝐸(𝑝−𝑖) − 𝜁 − (1 − 𝑝𝑖)𝜅𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖). 

 

The estimation outcomes of these augmented versions are reported in Appendix 7. EvE’s 

estimates are similar to those of Table 3 and several occurrences of the estimated constant term 

(Cste) are not significantly different from zero, this being mostly the case in NOM1 with High 

payoffs and in NOM2 with Low payoffs. As for IBE’s estimates, the constant terms are all 

significantly positive (and rather large) and the 𝜅̂-estimates are all significantly negative which 

renders their interpretation meaningless. In addition, the conduct of our specification test 

confirms the findings of Table 3: it yields seven more non-rejections (at 𝛼 = 5%) for EvE, 

bringing their total to 14 out of 24 sessions, and leaves things unchanged for IBE.12 

 

5. Conclusion 

We analyse behaviour in the El Farol bar game through the lens of stationary models that build 

on different premises. The main outcome of our study is that the assumption of symmetry of 

agents’ behaviour should be taken seriously when estimating structural equilibrium models, as 

its non-fulfilment may dramatically affect conclusions. When the estimations impose symmetry, 

as is typically done in the literature, EvE and IBE ‘explain’ the data equally well in terms of 

goodness-of-fit, with IBE yielding stable estimates (that are typically greater than 2) across 

different levels of data aggregation whereas EvE does not share this property. However, the exact 

opposite holds when symmetry is relaxed: EvE then yields more stable estimates which suggest 

a contained exploration or, in QRE terms, a noisy best-response behaviour. The models’ 

falsifiability regarding the symmetry assumption is addressed with a specification test that rejects 

the null of consistency with EvE (or equivalently QRE) in 50 to 75% of all sessions and rejects 

the null of consistency with IBE in all sessions (and both models overwhelmingly reject the null 

                                                           
12 We also tried the reverse regressions 𝑥(𝑝) on 𝑦(𝑝) both with and without constant terms, but the results turned 

out to be much more unstable. Still, for the case without constant term, we used the reverse regressions as a 

convergence check, since both the direct and the reverse approaches must yield the same optimum when we 

optimize the test statistic (12). 
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when the data is pooled). Thus, our study shows that invoking the oversimplifying (but very 

convenient) assumption of symmetry to analyse game-like situations may be misleading if it is 

not properly dealt with and explicitly assessed when estimating the models. To this extent, it 

confirms that we should be very cautious with results that obtain from gross over-simplifications 

such as invoking symmetry, as we should when invoking a representative agent in mainstream 

economic theory. 
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Appendix 1: Quantal Response Equilibrium. 

 

In this appendix we provide the usual arguments for the derivation of a Quantal Response 

Equilibrium for the congestion game we study. According to QRE, agents make mistakes in 

their best replies and the latter take account of rivals' mistakes. QRE postulates in particular 

that each agent has a random utility of his decision which is the payoff plus a "standard error" 

parameter times a random term. The two random terms corresponding to entering and not 

entering are assumed to take i.i.d. extreme values, and the payoff is computed as expected 

payoff given the vector 𝑝−𝑖 of the probabilities of entering of the other agents. Formally, for 

agent 𝑖, we have: 

 

𝑈𝑖(𝑑 = 1, 𝑝−𝑖) = 𝜋𝐸(𝑝−𝑖) + 𝜎𝜀1 

and  

𝑈𝑖(𝑑 = 0, 𝑝−𝑖) = 𝐻 + 𝜎𝜀0 
 

Thus, if we denote 𝑝𝑖 the probability of entering for agent 𝑖, we have: 

 

𝑝𝑖 = 𝑃[𝑈𝑖(𝑑 = 1, 𝑝−𝑖) − 𝑈𝑖(𝑑 = 0, 𝑝−𝑖) ≥ 0] 
  

 = 𝑃[𝜎(𝜀1 − 𝜀0) ≥ −𝜋𝑖
𝐸(𝑝−𝑖) + 𝐻] 

  

 
=

1

1 + exp {−
1
𝜎 [𝜋𝐸(𝑝−𝑖) − 𝐻]}

 

 

since (𝜀₁ − 𝜀₀) is logistic. Note that the last expression is identical to (4) up to the 

reparametrization 1/𝜎 = 𝜆. 
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Appendix 2: Probability of going conditional on 𝒑−𝒊. 

 

To provide an expression for 𝑃[𝑘 go|𝑝−𝑖], we introduce the notation 𝑞 = 𝑝−𝑖. Clearly, we then 

have: 

 

 

𝑃[0 go|𝑞] = ∏(1 − 𝑞𝑗)

𝑛−1

𝑗=1

 

and    

 

𝑃[𝑛 − 1 go|𝑞] = ∏𝑞𝑗

𝑛−1

𝑗=1

 

   

 
𝑃[𝑛 − 2 go|𝑞] 

 
= ∏(1 − 𝑞𝑗)

𝑛−1

𝑗=1

∏𝑞𝑙

𝑛−1

𝑙≠𝑗,
𝑙=1

 

   

 

𝑃[𝑛 − 3 go|𝑞] = ∏(1 − 𝑞𝑗1)

𝑛−2

𝑗1=1

∑

[
 
 
 
(1 − 𝑞𝑗2) ∏ 𝑞𝑙

𝑛−1

𝑙≠𝑗2,𝑗1
𝑙=1 ]

 
 
 𝑛−1

𝑗2=𝑗1+1

 

 

and for the intermediate cases 0 < 𝑘 < 𝑛 − 1, we have: 

 

 
𝑃[1 goes|𝑞] 

 
= ∑ 𝑞𝑗

𝑛−1

𝑗=1

∏(1 − 𝑞𝑙)

𝑛−1

𝑙≠𝑗,
𝑙=1

 

   

 

𝑃[2 go|𝑞] = ∑ 𝑞𝑗1

𝑛−2

𝑗1=1

∑ 𝑞𝑗2

𝑛−1

𝑗2=𝑗1+1

∏ (1 − 𝑞𝑙)

𝑛−1

𝑙≠𝑗1,𝑗2,
𝑙=1

 

 

and more generally: 

 

𝑃[𝑘 go|𝑞] = ∑ 𝑞𝑗1

𝑛−𝑘

𝑗1=1

… ∑ 𝑞𝑗𝑘

𝑛−1

𝑗𝑘=𝑗𝑘−1+1

∏ (1 − 𝑞𝑙)

𝑛−1

𝑙≠𝑗1,..,𝑗𝑘
𝑙=1

. 
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Appendix 3: Technical details. 

 

Here we provide the technical details for the implementation of our specification test; namely 

the estimation of 𝑉̂𝑇 and the derivatives 𝜕𝑔𝑖(𝑝, 𝜃) 𝜕𝑝𝑖⁄  and 𝜕𝑔𝑖(𝑝, 𝜃) 𝜕𝑝𝑗⁄  with 𝑗 ≠ 𝑖. 

 

Estimation of 𝑽̂𝑻. 
 

𝑝̂𝑇 = ∑ 𝑑𝑡 𝑇⁄𝑛−1
𝑡=1 = 𝑑̂𝑇, with 𝑑𝑡 the entry vector at 𝑡, with dimension 𝑛. We assume 

independence between agents in each round, thus the variance matrix is diagonal. We estimate 

each diagonal term using the heteroskedasticity and autocorrelation robust estimator of Newey 

and West (1987, 1994) with automatic lag selection, using the R program of Zeileis (2004). 

 

A problem arises for participants in a session that choose a constant response (entry or non-

entry). For them the frequency estimate of entry probability is 0 or 1 and the corresponding 

variance estimate is 0. For sessions where this occurred (i.e., NOM1/High/Session 2), we chose 

to model only the entry probabilities of agents who show some variation in their response, 

adapting the number of degrees of freedom in (12) accordingly. For the conditional entry 

probabilities described in Appendix 2, nothing changes. Another possibility would be to depart 

from the frequency estimator in those cases (see, e.g. He, 2009). 

 

Determination of derivatives. 
 

For EvE, we have: 

 
𝜕𝑔𝑖(𝑝, 𝜆)

𝜕𝑝𝑖
 =

1

𝑝𝑖(1 − 𝑝𝑖)
 

  

𝜕𝑔𝑖(𝑝, 𝜆)

𝜕𝑝𝑗
 = −𝜆

𝜕𝜋𝑖
𝐸(𝑝−𝑖)

𝜕𝑝𝑗
 

 

and it is fairly easy to compute 𝜕𝜋𝑖
𝐸(𝑝−𝑖) 𝜕𝑝𝑗⁄  analytically: for 𝑖 ≠ 𝑗, 

 

𝜕𝜋𝑖
𝐸(𝑝−𝑖)

𝜕𝑝𝑗
= ∑ 𝐺(𝑘 + 1)

𝑛−1

𝑘=0

𝜕𝑃[𝑘 go|𝑝−𝑖)

𝜕𝑝𝑗
      

 

For IBE, we have: 
𝜕𝑔𝑖(𝑝, 𝜅)

𝜕𝑝𝑖
 = 𝐼𝑀𝑃𝐸(𝑝−𝑖) + 𝜅𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖) 

  

𝜕𝑔𝑖(𝑝, 𝜅)

𝜕𝑝𝑗
 = 𝑝𝑖

𝜕𝐼𝑀𝑃𝐸(𝑝−𝑖)

𝜕𝑝𝑗
− 𝜅(1 − 𝑝𝑖)

𝜕𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖)

𝜕𝑝𝑗
 

 

where: 

𝜕𝐼𝑀𝑃𝐸(𝑝−𝑖)

𝜕𝑝𝑗
 = ∑

𝜕𝑃[𝑘 go|𝑝−𝑖]

𝜕𝑝𝑗

𝑛−1

𝑘=0

𝐺(𝑘 + 1)𝕀{𝐺(𝑘+1)>𝐻}, 
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and  

𝜕𝐼𝑀𝑃𝑁𝐸(𝑝−𝑖)

𝜕𝑝𝑗
 = −𝐻 ∑

𝜕𝑃[𝑘 go|𝑝−𝑖]

𝜕𝑝𝑗

𝑛−1

𝑘=0

𝕀{𝐺(𝑘+1)>𝐻}. 

 

So the only ingredient still needed is 𝜕𝑃[𝑘 go|𝑝−𝑖]/𝜕𝑝𝑗. The general expression for this is 

rather inelegant but it is fairly easily programmed once a program for computing 𝑃[𝑘 go|𝑝−𝑖] 
is available. 
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Appendix 4: Experimental Instructions 

A. Treatment DISC (Low) 

    You are about to participate in an experiment on decision-making. In this experiment, there 

are 2 groups of 10 people. You are in one of those 2 groups and you do not know who else is 

in the same group as you. You will be in the same group of people for the whole experiment. 

 Please do not communicate in any way with other participants during the experiment. 

    The experiment is made of 150 rounds of a game that proceeds as follows: 

    1.   In each round, you are asked to choose action A or action B. Once all participants have 

chosen their actions, the computer will calculate the total number of participants in your group 

who chose B. 

    2.   The payoff you receive from choosing A or B is determined the following way: 

    •   If you chose A, you will earn 400 points, whatever the other participants in your group 

have chosen. 

    •   If you chose B and the total number of participants in your group who chose B is less than 

or equal to 6, then all participants in your group who chose B earn 800 points. 

    •   If you chose B and the total number of participants in your group who chose B is more 

than 6, then all participants in your group who chose B will earn 0 points. 

    3.   At the end of each round, you will be given the following information/feedback about 

the round you just played (the round number, the choice you made, how many times action B 

was chosen in your group, the profit you made in that round and the total profits you made so 

far), 

    4.   At any time during the experiment, the outcomes of all previous rounds in which you 

played are displayed on the lower part of your terminal screen. 

    5.   You are allowed to use the calculator we provide you with at the outset of the experiment. 

    6.   The payoffs you earn in each round are quoted in terms of "points". Your reward from 

participating in this experiment is determined by the sum of your payoffs in points. Your total 

payoff in points will be exchanged for Euros (€) and paid in cash to you at the end of the 

experiment at the rate of 0.02 € per 100 points. 

    7.   All other participants in this room received the same instruction sheet. 

 

 Please raise your hand if something is unclear or if you have a question to ask. 
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B. Treatment NOM1 (Low) 

You are about to participate in an experiment on decision-making. In this experiment, there are 

2 groups of 10 people. You are in one of those 2 groups and you do not know who else is in 

the same group as you. You will be in the same group of people for the whole experiment. 

 Please do not communicate in any way with other participants during the experiment. 

    The experiment is made of 150 rounds of a game that proceeds as follows: 

    1.   In each round, you are asked to choose action A or action B. Once all participants have 

chosen their actions, the computer will calculate the total number of participants in your group 

who chose B. 

    2.   The payoff you receive from choosing A or B is determined the following way: 

 If you chose A, you will earn 400 points, whatever the other participants in your group 

have chosen. 

 If you chose B and the total number of participants in your group who chose B is equal 

to:  

1. Then all participants in your group who chose B will earn 467 points, 

2. Then all participants in your group who chose B will earn 733 points, 

3. Then all participants in your group who chose B will earn 867 points, 

4. Then all participants in your group who chose B will earn 1067 points, 

5. Then all participants in your group who chose B will earn 800 points, 

6. Then all participants in your group who chose B will earn 467 points, 

7. Then all participants in your group who chose B will earn 200 points, 

8. Then all participants in your group who chose B will earn 132 points, 

9. Then all participants in your group who chose B will earn 67 points, 

10. Then all participants in your group who chose B will earn 0 points, 

 
 

    3.   At the end of each round, you will be given the following information/feedback about 

the round you just played (the round number, the choice you made, how many times action B 

was chosen in your group, the profit you made in that round and the total profits you made so 

far), 

    4.   At any time during the experiment, the outcomes of all previous rounds in which you 

played are displayed on the lower part of your terminal screen. 

    5.   You are allowed to use the calculator we provide you with at the outset of the experiment. 

    6.   The payoffs you earn in each round are quoted in terms of "points". Your reward from 

participating in this experiment is determined by the sum of your payoffs in points. Your total 

payoff in points will be exchanged for Euros (€) and paid in cash to you at the end of the 

experiment at the rate of 0.02 € per 100 points. 

    7.   All other participants in this room received the same instruction sheet. 

 

 Please raise your hand if something is unclear or if you have a question to ask. 
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C. Treatment NOM2 (Low) 

You are about to participate in an experiment on decision-making. In this experiment, there are 

2 groups of 10 people. You are in one of those 2 groups and you do not know who else is in 

the same group as you. You will be in the same group of people for the whole experiment. 

 Please do not communicate in any way with other participants during the experiment. 

    The experiment is made of 150 rounds of a game that proceeds as follows: 

    1.   In each round, you are asked to choose action A or action B. Once all participants have 

chosen their actions, the computer will calculate the total number of participants in your group 

who chose B. 

    2.   The payoff you receive from choosing A or B is determined the following way: 

 If you chose A, you will earn 400 points, whatever the other participants in your group 

have chosen. 

 If you chose B and the total number of participants in your group who chose B is equal 

to:  

1. Then all participants in your group who chose B will earn 133 points, 

2. Then all participants in your group who chose B will earn 667 points, 

3. Then all participants in your group who chose B will earn 1000 points, 

4. Then all participants in your group who chose B will earn 1267 points, 

5. Then all participants in your group who chose B will earn 867 points, 

6. Then all participants in your group who chose B will earn 467 points, 

7. Then all participants in your group who chose B will earn 200 points, 

8. Then all participants in your group who chose B will earn 132 points, 

9. Then all participants in your group who chose B will earn 67 points, 

10. Then all participants in your group who chose B will earn 0 points. 

 
 

    3.   At the end of each round, you will be given the following information/feedback about 

the round you just played (the round number, the choice you made, how many times action B 

was chosen in your group, the profit you made in that round and the total profits you made so 

far), 

    4.   At any time during the experiment, the outcomes of all previous rounds in which you 

played are displayed on the lower part of your terminal screen. 

    5.   You are allowed to use the calculator we provide you with at the outset of the experiment. 

    6.   The payoffs you earn in each round are quoted in terms of "points". Your reward from 

participating in this experiment is determined by the sum of your payoffs in points. Your total 

payoff in points will be exchanged for Euros (€) and paid in cash to you at the end of the 

experiment at the rate of 0.02 € per 100 points. 

    7.   All other participants in this room received the same instruction sheet. 

 

 Please raise your hand if something is unclear or if you have a question to ask. 
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D. High Payoff treatments. 

The instructions for the High payoff treatments were identical to those used for the Low payoff 

treatments but used the High payoff figures listed below. 

 

   
Payoff Data 

   

No entry Attendance 
DISC 
High 

DISC 
Low 

NOM1 
High 

NOM1 
Low 

NOM2 
High 

NOM2 
Low 

400 1 1200 800 700 467 200 133 

400 2 1200 800 1100 733 1000 667 

400 3 1200 800 1300 867 1500 1000 

400 4 1200 800 1600 1067 1900 1267 

400 5 1200 800 1200 800 1300 867 

400 6 1200 800 700 467 700 467 

400 7 0 0 300 200 300 200 

400 8 0 0 200 132 200 132 

400 9 0 0 100 67 100 67 

400 10 0 0 0 0 0 0 
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Appendix 5: Estimation outcomes assuming i.i.d. observations. 

 

EVE PARAMETER ESTIMATES AND GOODNESS-OF-FIT. 

 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
1.258 

[-.712, 3.227] 

965.48 

.762 

[-.072, 1.595] 

974.23 

.924 

[-.229, 2.077] 

970.55 

1.205 

[-.622, 3.032] 

966.12 

1.000 

[.340, 1.662] 

3876.57 

High NOM1 
1.044 

[.012, 2.077] 

952.68 

1.770 

[-.746, 4.285] 

941.06 

1.521 

[-.414, 3.456] 

944.03 

1.577 

[-.483, 3.637] 

943.29 

1.430 

[.559, 2.302] 

3781.29 

 NOM2 
.812 

[.109, 1.516] 

951.97 

.305 

[.130, .479] 

984.64 

.595 

[.157, 1.033] 

961.55 

.921 

[.063, 1.780] 

948.41 

.580 

[.369, .791] 

3849.52 

       

 DISC 
∞ 

[n.a.] 

990.12 

1.660 

[-2.326, 5.646] 

1012.29 

∞ 

[n.a.] 

977.09 

∞ 

[n.a.] 

995.77 

∞ 
[n.a.] 

3975.69 

Low NOM1 
∞ 

[n.a.] 

989.59 

∞ 

[n.a.] 

979.73 

∞ 

[n.a.] 

996.17 

1.016 

[-.457, 2.488] 

1013.05 

∞ 
[n.a.] 

3979.97 

 NOM2 
∞ 

[n.a.] 

990.02 

.806 

[-.177, 1.788] 

1008.29 

2.866 

[-5.857, 11.58] 

996.58 

∞ 

[n.a.] 

985.30 

3.509 

[-2.839, 9.857] 

3981.93 

       

Note: Each ‘session’ (‘pooled’) estimate refers to 1500 (6000) observations; shaded cells characterize instances 

where the symmetric mixed-equilibrium strategy cannot be rejected at the 5% level, cf. Table 1; bold figures 

indicate instances with maximal exploration, i.e., 𝜆 not significantly different from 0 at 𝛼 = 5%; 95% confidence 

intervals (assuming i.i.d. observations) in brackets; -Log-Likelihood statistics in italics. 
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IBE PARAMETER ESTIMATES AND GOODNESS-OF-FIT. 

 

Level Structure Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

       

 DISC 
3.449 

[2.936, 3.962] 

965.48 

3.652 

[3.113, 4.192] 

974.23 

3.564 

[3.036, 4.092] 

970.55 

3.463 

[2.948; 3.978] 

966.12 

3.531 

[3.269, 3.793] 

3876.57 

High NOM1 
2.511 

[2.069, 2.954] 

952.68 

2.319 

[1.906, 2.732] 

941.06 

2.366 

[1.946, 2.786] 

944.03 

2.354 

[1.936, 2.773] 

943.29 

2.387 

[2.175, 2.598] 

3781.29 

 NOM2 
2.662 

[2.179, 3.145] 

951.97 

3.445 

[2.833, 4.058] 

984.64 

2.856 

[2.342, 3.371] 

961.55 

2.595 

[2.122, 3.067] 

948.41 

2.874 

[2.616, 3.133] 

3849.52 

       

 DISC 
2.693 

[2.299, 3.087] 

988.43 

3.306 

[2.823, 3.788] 

1012.29 

2.386 

[2.033, 2.739] 

971.17 

2.836 

[2.422, 3.249] 

995.11 

2.790 

[2.585, 2.992] 

3971.93 

Low NOM1 
2.224 

[1.840, 2.607] 

988.96 

2.013 

[1.664, 2.362] 

977.21 

2.374 

[1.966, 2.783] 

996.10 

2.846 

[2.355, 3.377] 

1013.05 

2.347 

[2.145, 2.549] 

3979.45 

 NOM2 
2.412 

[1.984, 2.840] 

990.02 

2.908 

[2.393, 3.423] 

1008.29 

2.568 

[2.113, 3.023] 

996.58 

2.309 

[1.899, 2.720] 

985.19 

2.541 

[2.315, 2.766] 

3981.93 

       

Note: Each ‘session’ (‘pooled’) estimate refers to 1500 (6000) observations; 95% confidence intervals (assuming 

i.i.d. observations) in brackets; -Log-Likelihood statistics in italics. 
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Appendix 6: Experience effect and entry probabilities for successive batches of 15 rounds. 

 

 EXPERIENCE EFFECT – ENTRY PROBABILITIES FOR SUCCESSIVE BATCHES OF 15 ROUNDS.  
 

 
Batch →  

Treatment ↓ 

 

1 2 3 4 5 6 7 8 9 10 

            

 
DISC 

.625 

[.586, .664] 

.655 

[.617, 693] 

.663 

[.626, .701] 

.663 

[.626, .701] 

.672 

[.634, .709] 

.643 

[.605, .682] 

.650 

[.612, .688] 
.623 

[.585, .662] 

.652 

[.614, .690] 

.675 

[.638, .712] 

High 
NOM1 

.658 

[.620, .696] 

.665 

[.627, .703] 

.663 

[.626, .701] 

.677 

[.639, .714] 

.680 

[.643, .717] 

.693 

[.656, .730] 

.678 

[.641, .716] 

.668 

[.631, .706] 

.682 

[.644, .719] 

.690 

[.653, .727] 

 
NOM2 

.608 

[.569, .647] 
.667 

[.629, .704] 
.660 

[.622, .698] 
.635 

[.596, .674] 

.690 

[.653, .727] 
.652 

[.614, .690] 

.672 

[.634, .709] 

.677 

[.639, .714] 
.647 

[.608, .685] 

.685 

[.648, .722] 

            

 DISC 
.600 

[.561, .639] 

.630 

[.591, .669] 

.627 

[.588, .665] 

.625 

[.586, .664] 

.643 

[.605, .682] 

.622 

[.583, .660] 

.627 

[.588, .665] 

.613 

[.574, .652] 

.622 

[.583, .660] 

.633 

[.595, .672] 

Low NOM1 
.597 

[.557, .636] 

.603 

[.564, .642] 

.618 

[.579, .657] 

.598 

[.559, .638] 

.645 

[.607, .683] 

.590 

[.551, .629] 

.623 

[.585, .662] 

.647 

[.608, .685] 

.618 

[.579, .657] 

.677 

[.639, .714] 

 NOM2 
.598 

[.559, .638] 

.618 

[.579, .657] 

.615 

[.576, .654] 

.608 

[.569, .647] 

.648 

[.610, .687] 

.613 

[.574, .652] 

.633 

[.595, .672] 

.612 

[.573, .651] 

.628 

[.590, .667] 

.633 

[.595, .672] 

            

Note: Each estimate refers to 600 observations; bold figures indicate a rejection of the null of Nash mixed-equilibrium play at 𝛼 = 5%; 95% confidence intervals (assuming 

i.i.d. observations) in brackets. 
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 EXPERIENCE EFFECT – EVE’S SUCCESSIVE 15-ROUND BATCH ESTIMATES. 
 

 
Batch →  

Treatment ↓ 

 

1 2 3 4 5 6 7 8 9 10 

            

 
DISC 

.352 

[-.05, .75] 
1.180 

[-1.60, 3.97] 
2.300 

[-7.02, 11.6] 
2.300 

[-7.02, 11.6] 
14.489 

[-312, 341] 
.660 

[-.38, 1.70] 
.893 

[-.83, 2.61] 
.335 

[-.04, .71] 
.974 

[-1.02, 2.97] 

∞ 

[n.a.] 

High 
NOM1 

.714 

[-.18, 1.61] 
.903 

[-.39, 2.20] 
.849 

[-.32, 2.02] 
1.521 

[-1.54, 4.58] 
1.843 

[-2.43, 6.11] 
7.470 

[-50, 65] 
1.669 

[-1.92, 5.26] 
1.030 

[-.06, 2.63] 
2.053 

[-3.11, 7.22] 
4.370 

[-16, 25] 

 
NOM2 

.171 

[.03, .31] 
.739 

[-.22, 1.70] 
.595 

[-.10, 1.29 ] 

.307 

[.03, .59] 
2.305 

[-4.19, 8.80] 
.468 

[-.02, .96 ] 
.886 

[-.39, 2.16] 
1.087 

[-.69, 2.86] 

0.409 

[.00, .82] 
1.653 

[-1.95, 5.26] 

            

 DISC 
2.914 

[-14.7, 20.6] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

Low NOM1 
1.196 

[-1.85, 4.24] 
2.002 

[-5.38, 9.38] 

∞ 

[n.a.] 
1.338 

[-2.33, 5.01] 

∞ 

[n.a.] 
.816 

[-.83, 2.47] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

∞ 

[n.a.] 

 NOM2 
.678 

[-.51, 1.87] 
2.548 

[-8.6, 13.7] 
1.838 

[-4.34, 8.01] 
1.138 

[-1.57, 3.85] 

∞ 

[n.a.] 
1.603 

[-3.26, 6.46] 

∞ 

[n.a.] 
1.416 

[-2.51, 5.34] 

∞ 

[n.a.] 

∞ 

[n.a.] 

            

Note: Each estimate refers to 600 observations; bold figures indicate instances with maximal exploration, i.e., 𝜆 not significantly different from 0 at 𝛼 = 5%; 95% confidence 

intervals (assuming i.i.d. observations) in brackets; shaded cells characterize instances where the null of mixed-equilibrium play cannot be rejected at the 5% level (according 

to the entry probabilities reported in Appendix 5). 
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 EXPERIENCE EFFECT – IBE’S SUCCESSIVE 15-ROUND BATCH ESTIMATES. 

 
 

Batch → 

Treatment ↓ 

 

1 2 3 4 5 6 7 8 9 10 

            

 
DISC 

4.161 

[3.20, 5.12] 

3.470 

[2.65, 4.27] 

3.295 

[2.51, 4.08] 

3.295 

[2.51, 4.08] 

3.126 

[2.38, 3.87] 

3.727 

[2.86, 4.60] 

3.579 

[2.74, 4.42] 

4.203 

[3.23, 5.17] 

3.542 

[2.71, 4.37] 

3.060 

[2.32, 3.80] 

High 
NOM1 

2.709 

[1.96, 3.46] 

2.580 

[1.86, 3.30] 

2.612 

[1.89, 3.34] 

2.366 

[1.70, 3.03] 

2.307 

[1.66, 2.96] 

2.084 

[1.49, 2.68] 

2.336 

[1.68, 2.99] 

2.517 

[1.82, 3.22] 

2.278 

[1.64, 2.92] 

2.138 

[1.53, 2.75] 

 
NOM2 

4.167 

[3.00, 5.33] 

2.716 

[1.94, 3.49] 

2.856 

[2.04, 3.67] 

3.437 

[2.47, 4.40] 

2.267 

[1.60, 2.93] 

3.040 

[2.18, 3.90] 

2.615 

[1.86, 3.37] 

2.516 

[1.79, 3.24] 

3.155 

[2.26, 4.05] 

2.358 

[1.67, 3.05] 

            

 
DISC 

3.216 

[2.48, 3.96] 

2.693 

[2.07, 3.32] 

2.747 

[2.11, 3.38] 

2.774 

[2.13, 3.42] 

2.485 

[1.91, 3.06] 

2.830 

[2.18, 3.48] 

2.747 

[2.11, 3.38] 

2.973 

[2.29, 3.66] 

2.830 

[2.18, 3.48] 

2.640 

[2.03, 3.25] 

Low 
NOM1 

2.794 

[2.03, 3.56] 

2.667 

[1.94, 3.39] 

2.402 

[1.75, 3.06] 

2.762 

[2.01, 3.51] 

1.989 

[1.44, 2.54] 

2.926 

[2.13, 3.73] 

2.320 

[1.69, 2.95] 

1.966 

[1.43, 2.51] 

2.402 

[1.75, 3.06] 

1.578 

[1.14, 2.02] 

 
NOM2 

2.985 

[2.15, 3.82] 

2.587 

[1.86, 3.11] 

2.650 

[1.91, 3.39] 

2.779 

[2.00, 3.56] 

2.078 

[1.49, 2.67] 

2.681 

[1.93, 3.43] 

2.320 

[1.67, 2.97] 

2.714 

[1.95, 3.47] 

2.406 

[1.73, 3.08] 

2.320 

[1.67, 2.97] 

   

Note: Each estimate refers to 600 observations; 95% confidence intervals (assuming i.i.d. observations) in brackets. 
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Appendix 7: Estimation outcomes of two-parameter models. 

 

EVE TWO-PARAMETER ESTIMATION RESULTS WHEN RELAXING SYMMETRY 

 

Level Structure 
 

Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

        

 DISC Cste 
1.218 

[-.039, 2.474] 

2.381 

[1.070, 3.691] 
.225 

[-1.173, 1.623] 

1.269 

[.117, 2.421] 

1.266 

[.889, 1.644] 

  𝜆̂ 
1.630 

[1.490, 1.771] 

1.715 

[1.608, 1.822] 

1.479 

[1.367, 1.591] 

1.526 

[1.426, 1.625]  

1.645 

[1.612, 1.678] 

   {<10-3} {<10-3} {.7221}° {<10-3} {<10-3} 

        

High NOM1 Cste 
-1.158 

[-1.881, -.435] 
.241 

[-.576, 1.058] 
.527 

[-.133, 1.187] 
.225 

[-.786, 1.236] 

.841 

[.625, 1.057] 

  𝜆̂ 
1.535 

[1.404, 1.667] 

1.935 

[1.760, 2.110] 

2.063 

[1.856, 2.271] 

2.010 

[1.765, 2.255] 

2.106 

[2.055, 2.157] 

   {.0563}° {.0382} {.0377} {.0920}° {<10-3} 

        

 NOM2 Cste 
-.159 

[-.688, .370] 

-2.434 

[-3.219, -1.648] 

1.241 

[.416, 2.067] 

2.213 

[1.485, 2.940] 

-.827 

[-.989, -.665] 

  𝜆̂ 
1.792 

[1.635, 1.948] 

1.231 

[1.103, 1.359] 

2.173 

[2.015, 2.331] 

2.347 

[2.159, 2.535]  

      1.503 

[1.466, 1.540] 

   {.0958}° {.0968}° {<10-3} {<10-3} {<10-3} 

        

 DISC Cste 
2.039 

[.811, 3.266] 

.758 

[.162, 1.354] 

3.013 

[1.788, 4.237] 

3.003 

[1.871, 4.136] 

1.561 

[1.282, 1.840] 

  𝜆̂ 
1.882 

[1.805, 1.960] 

1.587 

[1.573, 1.601] 

1.977 

[1.854, 2.101] 

2.076 

[1.965, 2.188] 

1.791 

[1.775, 1.806] 

   {.4354}° {<10-3} {.1583}° {<10-3} {<10-3} 

        

Low NOM1 Cste 
1.985 

[.952, 3.017] 

2.629 

[1.217, 4.041] 

1.364 

[.189, 2.540] 
.148 

[-.921, 1.217] 
.032 

[-.228, .291] 

  𝜆̂ 
2.581 

[2.398, 2.764] 

2.527 

[2.259, 2.795] 

2.348 

[2.177, 2.520] 

2.080 

[1.971, 2.189] 

2.066 

[2.030, 2.103] 

   {.5058}° {.3663}° {.3970}° {.1408}° {<10-3} 

        

 NOM2 Cste 
-.095 

[-1.017, .828] 

-.117 

[-.905, -.671] 
.035 

[-.777, .848] 
.138 

[-.995, 1.270] 
-.147 

[-.368, .074] 

  𝜆̂ 
1.868 

[1.730, 2.005] 

2.115 

[1.971, 2.260] 

1.849 

[1.722, 1.977]  

1.916 

[1.740, 2.093] 

1.861 

[1.829, 1.893] 

   {.1238}° {.3623}° {.0277} {.4062}° {<10-3} 

        

Note: Each estimate refers to 1500 observations. Bold figures indicate instances with maximal exploration at 𝛼 = 

5%; 95% confidence intervals in squared brackets; p-value of specification test in curly brackets; °: Non-rejection 

of the specification test at 𝛼 = 5%. 
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IBE TWO-PARAMETER ESTIMATION RESULTS WHEN RELAXING SYMMETRY 

 

Level Structure 
 

Session 1
 

Session 2
 

Session 3
 

Session 4
 

Pooled
 

        

 DISC Cste 
6.201 

[5.784, 6.618] 

6.266 

[5.970, 6.553] 

6.279 

[6.099, 6.459] 

5.936 

[5.722, 6.150] 

6.398 

[6.351, 6.446] 

  𝜆̂ 
-2.872 

[-3.025, -2.718] 

-1.936 

[-2.006, -1.867] 

-2.841 

[-2.989, -2.692] 

-2.283 

[-2.381, -2.186] 

-2.284 

[-2.310, -2.257] 

   {<10-3} {<10-3} {<10-3} {<10-3} {<10-3} 

        

High NOM1 Cste 
3.776 

[3.427, 4.125] 

4.163 

[3.990, 4.336] 

4.408 

[4.225, 4.592] 

3.982 

[3.645, 4.319] 

4.079 

[4.024, 4.135] 

  𝜆̂ 
-1.805 

[-1.847, -1.763] 

-1.903 

[-1.947, -1.860] 

-1.932 

[-1.982, -1.881] 

-1.884 

[-1.985, -1.782] 

-1.899 

[-1.909, -1.888] 

   {<10-3} {<10-3} {<10-3} {<10-3} {<10-3} 

        

 NOM2 Cste 
5.098 

[4.675, 5.522] 

5.669 

[5.345, 5.992] 

5.878 

[5.527, 6.230] 

2.109 

[1.993, 2.226] 

4.708 

[4.612, 4.804] 

  𝜆̂ 
-2.138 

[-2.265, -2.011] 

-2.447 

[-2.526, -2.368] 

-1.976 

[-2.038, -1.913] 

-1.815 

[-1.853, -1.776] 

-1.890 

[-1.915, -1.866] 

   {<10-3} {<10-3} {<10-3} {<10-3} {<10-3} 

        

 DISC Cste 
4.020 

[3.914, 4.126] 

5.680 

[5.526, 5.834] 

3.578 

[3.409, 3.748] 

5.275 

[5.167, 5.383] 

4.498 

[4.470, 4.526] 

  𝜆̂ 
-1.827 

[-1.921, -1.734] 

-2.474 

[-2.557, -2.390] 

-1.710 

[-1.793, -1.628] 

-1.928 

[-2.006, -1.851] 

-1.898 

[-1.922, -1.874] 

   {<10-3} {<10-3} {<10-3} {<10-3} {<10-3} 

        

Low NOM1 Cste 
3.043 

[2.843, 3.242] 

3.475 

[3.317, 3.633] 

4.223 

[4.015, 4.431] 

4.886 

[4.665, 5.108] 

3.839 

[3.799, 3.878] 

  𝜆̂ 
-1.115 

[-1.180, -1.050] 

-1.630 

[-1.692, -1.567] 

-1.759 

[-1.835, -1.683] 

-3.142 

[-3.303, -2.981] 

-1.823 

[-1.847, -1.801] 

   {<10-3} {10-3} {<10-3} {<10-3} {<10-3} 

        

 NOM2 Cste 
3.931 

[3.780, 4.081] 

3.936 

[3.749, 4.122] 

4.722 

[4.571, 4.872] 

3.766 

[3.609, 3.923] 

4.121 

[4.094, 4.149] 

  𝜆̂ 
-1.998 

[-2.089, -1.907] 

-1.689 

[-1.770, -1.608] 

-2.835 

[-2.897, -2.773] 

-1.825 

[-1.889, -1.762] 

-2.059 

[-2.075, -2.043] 

   {<10-3} {<10-3} {<10-3} {<10-3} {<10-3} 

        

Note: Each estimate refers to 1500 observations. 95% confidence intervals in squared brackets; p-value of specification 

test in curly brackets. 

 

 




