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Abstract 

This thesis addresses the topic of mouse-tracking, that is, the recording and analysis of 

mouse movements in computerized experiments. Mouse-tracking is an increasingly popular pro-

cess tracing method in many psychological disciplines as it allows capturing the temporal devel-

opment of the relative attraction to and conflict between response alternatives. It thus provides 

the opportunity to test psychological theories about factors that influence the conflict involved in 

making a decision, and how this conflict develops over time. So far, researchers have faced a num-

ber of difficulties when conducting mouse-tracking studies: There has been no easy-to-use, flexi-

ble and open software for creating experiments and no general-purpose package for analysis. Re-

searchers also have had to make many choices regarding the study setup, with no evidence-based 

guidelines to support their decisions. This thesis aims to provide solutions for these challenges. 

First, this thesis introduces free and open-source software packages for creating and ana-

lyzing mouse-tracking experiments. The mousetrap plugin enables researchers to implement 

mouse-tracking in their experiments without programming and, through integration with the ex-

periment builder OpenSesame, offers a graphical user interface that makes it easy to create a va-

riety of experiments and designs. The mousetrap R package provides extensive functionality for 

processing, analyzing, and visualizing mouse-tracking raw data of all major formats. It imple-

ments most of the commonly used preprocessing procedures and mouse-tracking indices, as well 

as a set of novel visualization and classification procedures for analyzing trajectory shapes. 

Second, this thesis presents results from a series of experiments that investigate how the 

methodological setup influences mouse-tracking data. In separate experiments, I manipulated the 

design factors starting procedure, mouse sensitivity, and response indication and investigated 

their impact on trajectory curvature and shape. An additional study investigated the effects of the 

starting procedure on movement consistency and also included dynamic analyses. While central 

cognitive effects on trajectory curvature were replicated in all setups, their size varied considera-

bly between some of the setups. In addition, the setup strongly influenced the trajectory shapes 

and dynamic analyses. Based on this evidence, I discuss implications for interpreting mouse-track-

ing data and offer preliminary recommendations for conducting mouse-tracking experiments. 

In sum, I hope this thesis will contribute to advancing mouse-tracking research and making 

the method accessible to a broader audience.  
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1 Articles 

This cumulative dissertation is based on two published articles, one book chapter in press, 

and one manuscript under review. They will be discussed in two sections: The first set of two pa-

pers presents mousetrap, a collection of software packages that I developed during my disserta-

tion. The second section focuses on the results from a series of experiments that address the in-

fluence of methodological choices regarding the study design on mouse-tracking data. 

 

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-track-

ing package. Behavior Research Methods, 49(5), 1652-1667. 

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (in 

press). Mouse-tracking: A practical guide to implementation and analysis. In M. 

Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process 

Tracing Methods. New York, NY: Routledge. 

Kieslich, P. J., Schoemann, M., Grage, T., Hepp, J., & Scherbaum, S. (2018). Design factors in 

mouse-tracking: What makes a difference? Manuscript submitted for publication. 

Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting procedure 

influences mouse-tracking data. Behavior Research Methods, 50(5), 2097-2110. 

 

 

During my dissertation, I have also worked on a number of research projects that used 

mousetrap for running mouse-tracking experiments, analyzing mouse-tracking data, or both. I 

will refer to them in this dissertation since they represent applications of the software. 

 

Kieslich, P. J., & Hilbig, B. E. (2014). Cognitive conflict in social dilemmas: An analysis of 

response dynamics. Judgment and Decision Making, 9(6), 510-522. 

Aczel, B., Szollosi, A., Palfi, B., Szaszi, B., & Kieslich, P. J. (2018). Is action execution part of 

the decision-making process? An investigation of the embodied choice hypothesis. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(6), 918-926. 
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Szaszi, B., Palfi, B., Szollosi, A., Kieslich, P. J., & Aczel, B. (2018). Thinking dynamics and 

individual differences: Mouse-tracking analysis of the denominator neglect task. 

Judgment and Decision Making, 13(1), 23-32. 

Heck, D. W., Erdfelder, E., & Kieslich, P. J. (in press). Generalized processing tree models: 

Jointly modeling discrete and continuous variables. Psychometrika. 

Horwitz, R., Brockhaus, S., Henninger, F., Kieslich, P. J., Schierholz, M., Keusch, F., & Kreu-

ter, F. (in press). Learning from mouse movements: Improving questionnaire and re-

spondents’ user experience through passive data collection. In P. C. Beatty, A. Wilmot, 

D. Collins, L. Kaye, J. L. Padilla, & G. Willis (Eds.), Advances in Questionnaire Design, 

Development, Evaluation and Testing. New York, NY: Wiley. 

 

 

One further article presents software that can be used in combination with mousetrap for 

creating experiments in which participants interact. 

 

Henninger, F., Kieslich, P. J., & Hilbig, B. E. (2017). Psynteract: A flexible, cross-platform, 

open framework for interactive experiments. Behavior Research Methods, 49(5), 1605-

1614. 

 

 

One additional book chapter extends the analysis methods available in mousetrap. 

 

Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (in 

press). Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-

Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing 

Methods. New York, NY: Routledge.  
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2 Introduction 

This thesis is dedicated to the topic of mouse-tracking, which is the recording and analysis 

of mouse cursor movements in computerized experiments (Spivey & Dale, 2006; Spivey, Grosjean, 

& Knoblich, 2005). As a fairly novel technique in psychological research, it complements the 

toolbox of existing process tracing methods like think-aloud protocols, information boards or eye-

tracking (see Schulte-Mecklenbeck et al., 2017, for an overview of process tracing methods). Going 

beyond these previous methods, mouse-tracking aims to provide a more direct measure of how an 

individual’s preference for different response alternatives develops over time. As such, mouse-

tracking allows for decomposing the cognitive processes underlying outcome-based measures 

(i.e., the final decision and total response time), does not require the preference development pro-

cess to be verbalizable (as in think-aloud protocols) and aims to exclude the influence of other 

processes like information acquisition behavior (which are the main focus in eye-tracking and in-

formation boards; see Koop & Johnson, 2011, for a more detailed discussion). 

In the following, I will first give an introduction to the mouse-tracking method and its pre-

vious applications in psychological research. I will then outline the main motivation for and the 

contributions of my dissertation. My first goal was to develop flexible, open-source software for 

creating mouse-tracking experiments, and processing and analyzing the resulting data, thus ena-

bling researchers to easily create and analyze even complex mouse-tracking experiments on their 

own. Second, the thesis systematically investigated how differences in the methodological setup 

can influence mouse-tracking data, as a basis for interpreting data from previous mouse-tracking 

studies that utilized different setups and for formulating guidelines regarding the design of future 

mouse-tracking studies. 

2.1 Mouse-tracking 

Mouse-tracking is becoming an increasingly popular method in psychological research and 

has been used to investigate cognitive processes and test psychological theories in a wide range of 

psychological disciplines (see reviews by Freeman, 2018; Stillman, Shen, & Ferguson, 2018). In 

the most basic mouse-tracking paradigm, participants make a decision between two alternatives 

that are presented as buttons in the top left and top right corners of a computer screen (see Figure 

1). As they indicate their decision by moving the cursor to either of the buttons, its position is 

continuously recorded, resulting in a mouse trajectory for every trial (i.e., a time series of x and y 
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coordinates). Mouse-tracking is based on the assumption that cognitive processes are continu-

ously revealed in motor responses (Freeman, Dale, & Farmer, 2011; Spivey & Dale, 2006), building 

on studies reporting a close link between cognitive and motor processes on a neuronal level (see 

review by Song & Nakayama, 2009). More specifically, the assumption is made that mouse move-

ments are driven by the relative activations of the response options over the course of the decision 

process, in that the mouse cursor tends to be moved more toward the option with the higher acti-

vation at any point in time (Spivey, Dale, Knoblich, & Grosjean, 2010). Accordingly, mouse-track-

ing can be used to infer the degree of conflict between the response options during the decision 

process, with trajectories that deviate more towards the ultimately non-chosen option indicating 

greater amounts of conflict.  

 

 

Figure 1. Setup of the experiment by Dale, Kehoe, and Spivey (2007), including a simulated cursor tra-

jectory (in blue). The trial is initiated by clicking on a start button in the bottom center of the screen 

(not shown) after which the name of the to-be-classified animal is presented and mouse-tracking starts. 

Participants indicate their classification decision by clicking on one of two response buttons. For the 

example trajectory, the maximum absolute deviation (MAD) is depicted (in orange) as the maximum 

deviation from the direct path between its start and end point. 

Whale

Mammal Fish
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Mouse-tracking has thus provided two major opportunities for testing psychological theo-

ries (Freeman, 2018; Stillman et al., 2018): First, by providing indices of the overall amount of 

conflict between response options, mouse-tracking allows for testing the effects of individual dif-

ferences and contextual factors that are theorized to influence the conflict involved in making a 

decision. Second, mouse-tracking enables researchers to assess the development and resolution 

of this conflict over the course of the decision process, making it possible to test temporal predic-

tions of theories about how decisions and judgments unfold. 

To illustrate a typical mouse-tracking study, consider the following experiment by Dale, Ke-

hoe, and Spivey (2007), which I will use as an example throughout this dissertation. The authors 

conducted an experiment in which, at the start of each trial, participants were presented with two 

animal categories as the response alternatives on their screen (e.g., mammal and fish). Next, par-

ticipants clicked on a start button and the name of an animal appeared, which participants had to 

assign to the correct category by clicking on the corresponding button (see Figure 1 for the visual 

setup). The experiment included names of typical animals (e.g., dog for mammal) and atypical 

animals (e.g., whale), the latter of which share features both with the correct (mammal) and in-

correct category (fish). The authors’ main hypothesis regarding the decision process was that atyp-

ical exemplars would activate both response options to some degree, whereas typical animals 

would mostly activate the correct category. Given the assumptions above, this typicality effect 

should be visible in the mouse trajectories, in that trajectories for atypical animals should deviate 

more towards the incorrect response option. This example study incorporates many features of a 

typical mouse-tracking experiment. It includes simple stimuli (i.e., single words), which partici-

pants have to assign to one of two alternatives in a forced-choice design, where one option repre-

sents the correct response. The spatial setup of the study is also quite common, with the two re-

sponse buttons presented in the top left and right screen corners and a start button in the bottom 

center of the screen, that participants click to start the trial screen (in order to align the initial 

cursor position across trials). Finally, mouse-tracking studies often manipulate a within-partici-

pants factor (e.g., in this study, the typicality of the stimulus) with a directed hypothesis regarding 

its influence on mouse trajectories. 

While mouse-tracking was first applied in the domain of language processing (Spivey et al., 

2005; Dale et al., 2007), it has since spread to many other areas of psychological research, and 

studies using the method have covered a broad range of psychological topics. To provide a 
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selection of subfields, research using mouse-tracking spans studies on social cognition (e.g., Free-

man & Ambady, 2009; Freeman, Ambady, Rule, & Johnson, 2008), action control (e.g., Scherbaum, 

Dshemuchadse, Fischer, & Goschke, 2010), numerical cognition (see review by Faulkenberry, 

Witte, & Hartmann, 2018), perception (e.g., Huette & McMurray, 2010; Lepora & Pezzulo, 2015), 

memory (e.g., Koop & Criss, 2016; Papesh & Goldinger, 2012), value-based decision making (e.g., 

Dshemuchadse, Scherbaum, & Goschke, 2013; Kieslich & Hilbig, 2014; Koop & Johnson, 2013), 

judgmental biases (e.g., Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 2018; Travers, Rolison, & Feeney, 

2016), and self-control (e.g., Stillman, Medvedev, & Ferguson, 2017; Sullivan, Hutcherson, Harris, 

& Rangel, 2015). These and many further studies have recently been summarized in two reviews 

on mouse-tracking (Freeman, 2018; Stillman et al., 2018). 

2.2 Software 

Researchers aiming to conduct a mouse-tracking study cannot usually rely on standard ex-

perimental software packages without further modifications, as most do not support the continu-

ous recording of cursor movements out of the box. In addition, mouse-tracking raw data is more 

complex than data collected in standard psychological experiments, and requires a number of pre-

processing operations, which are usually not covered by general-purpose statistical software. 

Therefore, researchers have to rely on specific approaches for creating mouse-tracking experi-

ments and analyzing the resulting data. In the following, I will give a brief overview of the two 

different approaches that researchers have previously used in this regard. Overcoming the limita-

tions of these approaches, I will outline how the software I developed in my dissertation provides 

a third option. 

As a first approach, the pioneers of mouse-tracking, and several research groups since, built 

their own mouse-tracking implementation from scratch in the experimental software or program-

ming environment of their choice (e.g., Koop & Johnson, 2011; Scherbaum et al., 2010; Spivey et 

al., 2005). This approach allowed them to tailor experiments to their specific needs, but also re-

quires thorough knowledge of the experimental software as well as programming skills. In addi-

tion, researchers afterwards had to write their own scripts for preprocessing the collected tracking 

data – requiring yet more advanced programming skills and considerable effort. In both cases, 

these individual implementations were often limited to a specific paradigm and analysis approach, 

and could not easily be adapted to other projects. 
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As a second approach, researchers have used MouseTracker (Freeman & Ambady, 2010), a 

software package dedicated specifically to creating mouse-tracking experiments. It provides a 

graphical user interface for designing the mouse-tracking screen, while the experimental proce-

dure and material is specified in a csv-file. MouseTracker has played an important role in making 

the mouse-tracking method accessible to researchers, allowing them to quickly build simple 

mouse-tracking experiments without programming. However, MouseTracker also imposes signif-

icant constraints on the studies created with it, as it only offers a limited set of options for fine-

tuning experiments and lacks a scripting language that would allow further customization and the 

implementation of complex experimental designs. For data processing and analysis, Mouse-

Tracker supports researchers by visualizing the trajectory data, and providing a built-in set of basic 

preprocessing steps and standard trial-level indicators. However as with the study design, the 

fixed and limited set of analysis options renders MouseTracker relatively inflexible. It cannot per-

form statistical tests, thus requiring that the preprocessed data be imported into another software 

package for further analysis and statistical inference. In addition, the software only processes and 

analyzes data that it collected itself, restricting its potential as a general-purpose analysis tool. 

Finally, while MouseTracker is available free of charge, its source code is not openly available for 

inspection and extension, and it can only be used on Windows systems. 

In sum, researchers conducting mouse-tracking studies have, for the most part, been limited 

to a choice between (a) programming their entire experiment and analysis from scratch, and, (b) 

using the stand-alone software MouseTracker, which makes conducting basic mouse-tracking 

studies easy, but cannot easily accommodate more complex tasks and analyses. To address these 

limitations, together with colleagues I have taken a new approach during my dissertation by ex-

tending general-purpose experimental and statistical software to implement mouse-tracking data 

collection and analysis (Kieslich & Henninger, 2017; Kieslich, Henninger, Wulff, Haslbeck, & 

Schulte-Mecklenbeck, in press). This combines the ease-of-use provided by existing software that 

researchers are already familiar with, and the flexibility of open-source tools that can be extended 

and adapted. 

For creating mouse-tracking experiments, we have developed the mousetrap plugin (Kieslich 

& Henninger, 2017) for the experiment builder OpenSesame (Mathôt, Schreij, & Theeuwes, 2012). 

It allows researchers to easily create mouse-tracking experiments via a graphical user interface 

that does not require programming skills. Through the integration with a general-purpose 
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experiment software, it is very flexible and supports a diverse range of designs. Complex tasks as 

well as advanced features like on-the-fly stimulus generation and feedback can be realized using 

the underlying programming language Python. OpenSesame also allows for the combination of 

mouse-tracking with its other features and additional plugins, including the integration of exter-

nal hardware (such as eye-tracking). 

For processing, analyzing, and visualizing mouse-tracking data, we have developed the 

mousetrap package (Kieslich et al., in press) for the statistical programming language R (R Core 

Team, 2018). This package covers the entire process from importing and preprocessing mouse-

tracking raw data to the computation of many established measures, as well as the visualization 

of individual and aggregate mouse trajectories. Mousetrap supports raw data in a variety of for-

mats, including data collected using MouseTracker and the mousetrap plugin for OpenSesame. 

Since the mousetrap package is integrated into the statistical programming language R, research-

ers can draw upon the many available packages for descriptive statistics, inferential tests, and 

general visualizations, so that they can perform the complete data preparation and analysis pro-

cess in one environment. 

All software I present is open-source and available free of charge for all major platforms 

(Windows, Linux, and MacOS). This is of great importance in light of the current focus on replica-

tion and open science (e.g., Asendorpf et al., 2013; Munafò et al., 2017; Nosek et al., 2015). It 

allows researchers to share their material and experiments with other researchers, who can di-

rectly run them in their own labs, making it easy to perform both direct replications and extensions 

of previous experiments. Similarly, researchers can easily share their raw data alongside the scripts 

used for preprocessing and analysis, which other researchers can immediately reproduce them-

selves, providing full transparency of the analysis process as well as enabling new analyses of pre-

viously published data. Finally, since the complete source code of the software is open-source, 

advanced users can audit and adapt every implemented feature, be it a specific preprocessing op-

eration or the computation of particular mouse-tracking indices. 
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2.3 Design factors 

Given the relative novelty of the mouse-tracking method, no standards for conducting 

mouse-tracking experiments have been established so far. As a result, the methodological setup 

has varied considerably in previous mouse-tracking studies. For example, in some studies partici-

pants indicated their response by clicking on the corresponding button (e.g., Dale et al., 2007; 

Freeman et al., 2008; Koop & Johnson, 2013) while in other studies they would simply move the 

cursor onto the button without clicking (e.g., Dshemuchadse et al., 2013; Huette & McMurray, 

2010). Similarly, some studies have left the mouse sensitivity settings at the system  

defaults (resulting in a medium cursor speed, e.g., Freeman, 2014; Kieslich & Hilbig, 2014; Szaszi 

et al., 2018), while others deliberately reduced cursor speed and disabled acceleration 

(Dshemuchadse et al., 2013; Frisch, Dshemuchadse, Görner, Goschke, & Scherbaum, 2015; Scher-

baum et al., 2010). The starting procedure has also varied between studies, with some studies giv-

ing no instructions to participants regarding the initiation of the mouse movement (e.g., Dale et 

al., 2007; Kieslich & Hilbig, 2014; Koop, 2013), some explicitly instructing participants to start 

moving early in the trial (e.g., Freeman & Ambady, 2009; Papesh & Goldinger, 2012; Yu, Wang, 

Wang, & Bastin, 2012), and others enforcing an initial movement by hiding the critical stimulus 

until participants moved the cursor upwards (e.g., Frisch et al., 2015; Huette & McMurray, 2010; 

Scherbaum et al., 2010). 

The previous examples illustrate a number of design factors that have varied across previous 

mouse-tracking studies, the influence of which has not been investigated so far. This also means 

that researchers creating mouse-tracking experiments face a number of design choices without 

having empirical data available that could guide their decisions. Nevertheless, some researchers 

have provided recommendations regarding the basic setup of mouse-tracking studies (Fischer & 

Hartmann, 2014; Hehman, Stolier, & Freeman, 2015). They suggest that researchers should em-

ploy a starting procedure that increases the likelihood that participants start their mouse move-

ment early in the trial, to ensure that cognitive processing takes place during the movement and 

not before. Regarding the mouse sensitivity settings, Fischer and Hartmann (2014) recommend to 

reduce cursor speed and turn off acceleration to better capture cognitive effects in the mouse tra-

jectories, as participants have to move the hand smoothly across a greater distance. However, 

Hehman et al. (2015) note that “these approaches have not been empirically validated, and instead 

are derived from our previous experience” (p. 388). In other words, while some basic 
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recommendations for the setup of studies exist, they are based largely on theoretical considera-

tions and “lab-lore” without a systematic empirical foundation. 

It is, in my view, of critical importance to investigate and understand the impact of the 

methodological setup on mouse-tracking studies. If design factors influence mouse-tracking data, 

this may impact the theoretical conclusions that can be drawn from mouse-tracking studies. For 

example, as will be discussed later, many studies have used the shape of the mouse trajectories to 

determine which theoretical model accounts best for a particular cognitive process; if this shape 

does not only depend on the cognitive process, but also on the methodological setup, this consid-

erably limits the conclusions that can be drawn solely based on the shape. Furthermore, future 

studies could draw on this knowledge to optimize their paradigm, so that the mouse-tracking pro-

cedure becomes maximally informative regarding the processes it is intended to measure. There-

fore, I conducted a series of experiments as part of my dissertation to systematically investigate 

how design factors influence mouse-tracking data. Specifically, using the previously described 

paradigm by Dale et al. (2007) across a series of experiments, we investigated the impact of the 

starting procedure, mouse sensitivity settings, and response indication on common mouse-track-

ing measures (Kieslich, Schoemann, Grage, Hepp, & Scherbaum, 2018). In another study, we in-

vestigated the influence of the starting procedure on both typical mouse-tracking measures as well 

as more complex dynamic analyses, using a Simon task (Scherbaum & Kieslich, 2018). Before turn-

ing to these studies of the specific methodological setup, I will outline how mouse-tracking ex-

periments can be created in general. 
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3 Mouse-Tracking Software 

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking 

package. Behavior Research Methods, 49(5), 1652-1667. 

Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (in press). 

Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklen-

beck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods. New York, 

NY: Routledge. 

 

In this section, I will give an overview of the software I developed as part of my dissertation. 

This includes the mousetrap plugin for OpenSesame, which is used to create mouse-tracking ex-

periments, and the mousetrap R package for analyzing mouse-tracking data. Kieslich and Hen-

ninger (2017) present a first version of the mousetrap plugin along with a technical validation, an 

example mouse-tracking experiment (replicating Experiment 1 by Dale et al., 2007), and a short 

demonstration of a simple analysis using the mousetrap R package. Kieslich et al. (in press) provide 

an updated version of the mousetrap plugin as well as a more in-depth tutorial covering the 

mousetrap R package. In the following, I will briefly summarize both. 

3.1 Mousetrap plugin for OpenSesame 

The first software I present is dedicated to the creation of mouse-tracking experiments by 

extending the open-source software OpenSesame. OpenSesame is a general-purpose experiment 

builder that can be used for creating experiments via a graphical user interface (Mathôt et al., 

2012). Different functionality is implemented in OpenSesame via different items that are respon-

sible for stimulus display, response collection, and other features. A complete experiment is cre-

ated by combining the different items and arranging them in a temporal order. Complex proce-

dures can be implemented by including Python code at any point in the experiment. OpenSesame 

can be obtained for free for all major platforms from https://osdoc.cogsci.nl/, where it is also doc-

umented in depth. It can also be extended by third-party plugins to implement additional func-

tionality. 

OpenSesame by default collects key presses and mouse clicks. We have extended it by im-

plementing mouse-tracking functionality through the mousetrap plugin (Kieslich & Henninger, 

2017). Mousetrap integrates into OpenSesame’s graphical interface, providing items that allow 

https://osdoc.cogsci.nl/
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researchers to track participants’ mouse movements; it also implements many additional features 

that are commonly used in mouse-tracking experiments. Mousetrap can be obtained along with 

extensive documentation and examples from https://github.com/pascalkieslich/mousetrap-os. 

Mousetrap offers two options for implementing mouse-tracking, reflecting the two major 

ways researchers create visual stimuli in OpenSesame (Kieslich & Henninger, 2017). The easiest 

option is to create the stimulus display via OpenSesame’s graphical user interface (Figure 2) and 

use a mousetrap_response item to track participants’ mouse movements (Figure 3). This way, re-

searchers can create a mouse-tracking experiment without writing any code. Alternatively, a 

mousetrap_form item can be employed to create the stimulus display via a simple script syntax and 

implement mouse-tracking within the same item. 

 

 

 

Figure 2. User interface of OpenSesame. The leftmost panel shows the item toolbar containing the items 

that can be included in an experiment (including the mousetrap items). Next to it, the overview area 

represents the study’s structure. The rightmost panel shows the interface of the sketchpad item that is 

used to create the main stimulus display (resulting in the setup displayed in Figure 1). Variable names 

are placed in square brackets, so that their values will be substituted when the experiment is run.  

https://github.com/pascalkieslich/mousetrap-os
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Figure 3. User interface of the mousetrap_response item (in the right panel). The topmost settings are 

essential for implementing the mouse-tracking procedure and include the number of buttons and the 

name of the buttons (and the sketchpad item that displays them, see Figure 2). The settings below 

provide many options for fine-tuning the mouse-tracking procedure and giving feedback to partici-

pants. The mouse-tracking related options include, among other things, resetting the cursor to exact 

start coordinates at tracking onset, limiting the time participants have to give their answer, and speci-

fying whether participants can indicate their response by clicking or merely moving the cursor onto the 

button. 

 

 

The mousetrap plugin implements many options that are commonly used in mouse-tracking 

studies (Figure 3). For instance, researchers can specify that the cursor position should be reset to 

specific screen coordinates at tracking onset, which simplifies later analyses. Mousetrap also sup-

ports different starting procedures – an issue that will be discussed in more detail in the design 

factors section. Besides, participants can give their response by clicking or by simply moving the 

cursor onto one of the buttons. It is also possible to limit the total time participants have for giving 

a response. Moreover, mousetrap can automatically code the correctness of a response, which can 
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be used to provide feedback to participants or to pay them contingent on their performance. Fi-

nally, the plugin automatically computes the time participants took to initiate any movement in a 

trial and the total response time, both of which can be used during the experiment to display a 

warning message if a predefined threshold is exceeded, in order to encourage early movement 

initiation and fast responding. 

Through integration with OpenSesame, mousetrap allows researchers to create a vast range 

of different designs, since the underlying experimental software supports many different types of 

visual and auditory stimuli and implements many common randomization schemes. Even where 

the interface reaches its limits, almost any conceivable study can be implemented by including 

Python code, such as complex feedback and incentivization schemes, or the random creation of 

visual stimuli for each participant in real-time. Because mousetrap can be combined with other 

plugins, mouse-tracking can be used in yet more complex experiments. This includes the combi-

nation of mouse- and eye-tracking (e.g., Koop & Johnson, 2013, Experiment 3), which can be re-

alized by combining the mousetrap and the PyGaze plugins (Dalmaijer, Mathôt, & Van der Stig-

chel, 2014), as well as mouse-tracking experiments involving real-time interactions between par-

ticipants (such as social dilemmas, as in Kieslich & Hilbig, 2014), which have been implemented 

by combining the mousetrap and the psynteract plugin (Henninger, Kieslich, & Hilbig, 2017). 

To ensure that the mousetrap plugin reliably records the cursor position, we conducted a 

technical validation using external hardware to generate synthetic cursor movements (see Kieslich 

& Henninger, 2017, Appendix). Virtually all changes in cursor position were captured by the 

mousetrap plugin and the recorded positions corresponded to their expected values in almost 

every case. To demonstrate the practical utility of the plugin, we conducted a replication of the 

previously described experiment by Dale et al. (2007) with 60 participants (see Kieslich & Hen-

ninger, 2017, Example experiment). The experiment, raw data, analyses, and results are provided 

at https://github.com/pascalkieslich/mousetrap-resources. The data from this experiment will be 

used in the following section to demonstrate mouse-tracking analyses using the mousetrap R 

package. 

  

https://github.com/pascalkieslich/mousetrap-resources
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3.2 Mousetrap R package 

To analyze mouse-tracking data, we have developed the mousetrap R package (Kieslich et 

al., in press). R is an open-source programming language for statistical analysis (R Core Team, 

2018) that has become popular in many scientific disciplines (Tippmann, 2015) and that is freely 

available from https://www.r-project.org/. Mousetrap can be installed in R with a single command; 

installation instructions, extensive documentation and examples can be found at  

http://pascalkieslich.github.io/mousetrap/. Once installed, mousetrap covers the complete pro-

cess from raw data import and preprocessing to the computation of many established mouse-

tracking measures and (if desired) their aggregation, after which standard R functions and pack-

ages can be used to perform statistical analyses. Besides, mousetrap provides novel functionality 

for the advanced visualization of mouse trajectories (cf. Kieslich et al., in press) as well as offering 

spatial clustering and classification procedures for identifying groups of similar trajectories (cf. 

Wulff, Haslbeck, Kieslich, Henninger, & Schulte-Mecklenbeck, in press). In the following, I will 

discuss mousetrap’s most important functions. A tutorial for using the package can be found in 

Kieslich et al. (in press). 

Before running any analyses, users have to load the collected data into R. Depending on the 

data format, they may use one of R’s standard functions. For the two software packages discussed 

earlier (mousetrap plugin for OpenSesame and MouseTracker), we have developed specific func-

tions that automate and thereby simplify this step.1 After reading the data into R, users need to 

import the data into the mousetrap package. Mousetrap offers different import functions depend-

ing on the type of format that was used to store the collected positions (e.g., long or wide), covering 

all major formats that are used in existing software packages. 

To enable the comparison of trajectories across trials, a set of preprocessing steps are nec-

essary, in particular spatial transformation and resampling (cf. Freeman & Ambady, 2010; Heh-

man et al., 2015; Kieslich et al., in press). Mousetrap covers most of the preprocessing operations 

from the literature and provides them as easy to use functions. Spatial transformations include 

the remapping of trajectories so that the overall direction of all trajectories is the same (e.g., in the 

example experiment all trajectories should end on the left option regardless of which option was 

                                                           
1 We have also developed the readbulk R package (Kieslich & Henninger, 2016) that allows researchers to merge 

data files (of any format) of individual participants into one large dataset. 

https://www.r-project.org/
http://pascalkieslich.github.io/mousetrap/
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chosen) as well as the alignment of trajectories to a constant start position across trials (which is 

relevant if the cursor position was not reset at tracking onset in the experimental software). Most 

studies also perform one of several resampling operations with the aim to represent each trajec-

tory with the same, fixed number of positions, regardless of the number of recorded positions for 

the raw trajectory. This includes time-normalizing trajectories so that the time interval between 

adjacent positions within every resampled trajectory remains constant (Spivey et al., 2005). This 

procedure has been used in many studies to date, especially when creating plots of aggregate tra-

jectories. Alternatively, trajectories can also be spatially normalized to a constant distance between 

adjacent positions in a trial (Wulff et al., in press). While the former procedure ensures that the 

temporal development of the raw trajectory is preserved, the latter procedure emphasizes the tra-

jectory shape, which can be useful if this is the main focus of the analysis (Wulff et al., in press). 

An important feature of mousetrap is that it stores both the original and the different preprocessed 

trajectories and allows researchers to specify explicitly which of these are used in any particular 

analysis, making it possible to explore the consequences of different preprocessing steps and to 

use different types of trajectories in different analyses and visualizations. 

The final step in preprocessing is to condense each trajectory into one numeric value that 

represents a specific property of the trajectory, with the goal of capturing a particular aspect of 

the cognitive process. Mousetrap calculates a multitude of different mouse-tracking indices (see 

Kieslich et al., in press, for an overview of the measures). The most frequently used class of indices 

quantifies the curvature of a trajectory, which aims to assess the degree of conflict present in a 

trial. The idea behind this is that larger deviations towards the non-chosen alternative indicate 

greater conflict between the two options. A number of different indices have been suggested to 

quantify curvature; they differ in their exact computation, but are often highly correlated in prac-

tice (Stillman et al., 2017). One common measure is the maximum absolute deviation (MAD) illus-

trated in Figure 1. In addition to curvature, mouse-tracking studies have also assessed the com-

plexity of the movement as an indicator of response competition and uncertainty. Indices for com-

plexity are x-flips (the number of directional changes along the horizontal axis) or sample entropy 

(Hehman et al., 2015). In a similar vein, other studies have tried to infer how often participants 

change their mind, using measures like x-reversals (the number of crossings of the y axis, cf. Koop 

& Johnson, 2013) or based on areas of interest (specifying areas of interest around each response 

button and counting how often participants move between them, cf. Szaszi et al., 2018). In 
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addition, there are a number of indices related to time, velocity, and acceleration, like movement 

initiation time or maximum velocity (see Freeman & Ambady, 2010; Hehman et al., 2015; Kieslich 

et al., in press; Koop & Johnson, 2011). 

The core analysis in many mouse-tracking studies compares a specific mouse-tracking index 

between different levels of an independent variable (e.g., different experimental conditions). For 

instance, the central hypothesis in the example experiment is that mouse trajectories deviate more 

towards the non-chosen option in atypical than typical trials (in the standard analysis focusing 

only on correctly answered trials). Consequently, in the replication experiment we tested whether 

the MAD is larger in atypical than typical trials, which was the case (Kieslich & Henninger, 2017). 

Many mouse-tracking studies test a hypothesis like this using values that are aggregated per par-

ticipant and condition. Mousetrap provides basic aggregation functions for this purpose, and gen-

eral-purpose R functions can then be used for the statistical test (like t-tests, ANOVAs, or linear 

models in a frequentist or Bayesian implementation). Alternatively, analyses can be performed 

directly on trial-level data using (generalized) linear-mixed models, for which the aggregation step 

can be skipped. 

Instead of analyzing one index value per trial, mouse-tracking studies have also looked at 

the development of a particular characteristic of the mouse trajectory over time, such as the tem-

poral development of the horizontal position, velocity, or movement angle (cf. Hehman et al., 

2015; Scherbaum et al., 2010). This approach provides insights into the temporal dynamics of the 

cognitive processes, for example, the temporal order in which different psychological factors exert 

their influence. Mousetrap can also calculate a number of variables for every time point in the trial 

(such as the velocity, acceleration, and movement angle) and, if desired, can also aggregate these 

values across trials for different conditions. Afterwards, standard R functions like (generalized) 

linear-mixed models can be used for further analysis. 

Another focus in mouse-tracking analyses has been the qualitative shape of the mouse tra-

jectories. The main motivation for this is that different types of movement trajectories would be 

expected for different types of theoretical models; specifically, researchers are often interested in 

disentangling whether a dynamic or a dual-system model accounts best for the data (Freeman & 

Dale, 2013). Dynamic models assume a continuous competition of the response options that is 

gradually resolved over time and, consequently, would expect continuously curved trajectories in 

all trials. Dual-system models assume two distinct systems that can drive a decision and therefore 
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predict a mixture of distinct trajectory shapes with either little or no conflict (where both systems 

agree) or a visible change in preference, when one option is initially favored by system I (which 

provides a quick evaluation), followed by a change of mind driven by system II (whose late evalua-

tion favors the other option and eventually dominates). This would lead to a mixture of relatively 

straight trajectories and change of mind trajectories that first approach the non-chosen option 

before moving to the chosen option. 

Different graphical and numerical methods have been proposed to assess the degree to 

which these and additional types of trajectories are present in the data (Freeman & Dale, 2013; 

Kieslich et al., in press; Wulff et al., in press), the majority of which are implemented in the mouse-

trap package. The simplest graphical method is to plot the aggregate trajectories – usually based 

on time-normalized trajectories, aggregated separately per experimental condition. As can be seen 

in Figure 4 for the example study, the aggregate trajectory for atypical trials displays greater at-

traction to the non-chosen option than the aggregate trajectory for typical trials. Both aggregate 

trajectories look curved, which would be more in line with a dynamic than a dual-systems model. 

 

Figure 4. Aggregate time-normalized trajectories per typicality condition (including boxes representing 

response buttons). After excluding incorrectly answered trials, trajectories were first aligned to a com-

mon start position, remapped to the left, and then aggregated first within and then across participants. 
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Of course, aggregate trajectories are not necessarily representative of individual trajecto-

ries, which is why analyses and visualizations should also take into account the individual trajec-

tories directly (Kieslich et al., in press; Wulff et al., in press). For this purpose, mousetrap provides 

heatmap functions, which plot individual trajectories and can apply varying degrees of smoothing. 

As can be seen in Figure 5 (top and middle panel), the individual trajectories in the example ex-

periment are not represented well by the aggregate trajectories, because there appear to be differ-

ent types of movement trajectories at the trial level. The majority of trajectories move fairly 

straight from the start button to the chosen option, some trajectories are visibly curved, and sev-

eral trajectories display extreme curvature or even a discrete change in direction, moving first all 

the way to the non-chosen alternative and horizontally from there to the chosen option. This latter 

trajectory in particular might suggest a discrete change of mind. Thus, unlike the aggregate tra-

jectories, many individual trajectories are not in line with the assumption of continuous competi-

tion between the response options. Whether this means that they support a dual process model of 

choice is a question that cannot be definitely answered since, as will be discussed in the next sec-

tion, the methodological setup of the study also has a strong influence on trajectory shapes. Fi-

nally, with regard to the effect of the experimental manipulation, a plot of the difference in den-

sities between conditions (Figure 5, bottom) reveals that change of mind trajectories in particular 

occur more frequently in the atypical condition. 

In order to identify different types of trajectories via numerical methods, previous studies 

have often relied on bimodality analyses of curvature indices (Freeman & Ambady, 2010; Freeman 

& Dale, 2013). The idea behind this approach is that a mixture of straight and extremely curved 

(or even discrete) change of mind trajectories should lead to a bimodal distribution of curvature 

indices, whereas a unimodal distribution would be expected if all trajectories are of the same type, 

for example, if all trajectories reflected some degree of continuous competition. Currently, there 

are two predominant bimodality analysis approaches, both of which are implemented in mouse-

trap. First, researchers can compute the bimodality coefficient (SAS Institute Inc, 1990), which 

classifies a distribution as bimodal if it exceeds a threshold derived from simulation studies 

(Pfister, Schwarz, Janczyk, Dale, & Freeman, 2013). Second, researchers can perform an inferential 

test using Hartigan’s dip statistic (Hartigan & Hartigan, 1985), which tests if the distribution de-

viates significantly from unimodality.  
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Figure 5. Heatmap of the (remapped) individual trajectories (top panel), smoothed heatmap indicating 

the density of trajectories at every point on the screen (middle panel) and difference of smoothed 

heatmaps between conditions (bottom panel), where blue indicates higher density in the typical and 

orange higher density in the atypical condition (white indicates comparable density).  
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Figure 6. Set of prototype trajectories included in the mousetrap R package. These comprise straight 

and curved trajectories, as well as three types of change of mind trajectories: Curved change of mind 

(cCoM) trajectories show an initial attraction towards the non-chosen option while maintaining a 

smooth curvature. Discrete change of mind (dCoM) trajectories first move straight to the non-chosen 

option and horizontally from there to the chosen option. Double change of mind (dCoM2) trajectories 

first move to the chosen option, horizontally from there to the non-chosen option and then back to the 

chosen option. 

 

 

However, my colleagues and I have recently argued that, to identify different types of tra-

jectories, analyses should not be based on a single numeric value per trial, but should instead take 

into account the complete trajectory shape (Wulff et al., in press; Wulff, Haslbeck, & Schulte-

Mecklenbeck, 2018). Mousetrap provides two approaches that fulfill this requirement (cf. Wulff et 

al., in press)2: First, trajectories can be grouped into a predefined number of clusters based on their 

spatial similarity. Second, trajectories can be assigned to one of several prototype trajectories based 

on their shape, that is, they are assigned to the prototype to which they have the smallest spatial 

distance. Mousetrap includes a default set of five commonly occurring prototype trajectories (Fig-

ure 6) based on a meta-analysis by Wulff et al. (2018).3 Figure 7 shows the frequency with which 

trajectories from the example study were assigned to each of these prototypes, and enables a visual 

assessment of the degree of fit of each trajectory to its assigned prototype.4 The plots for each 

                                                           
2 These approaches were developed by Dirk Wulff, Jonas Haslbeck, and Michael Schulte-Mecklenbeck, and contrib-

uted by Dirk Wulff to the mousetrap R package with my assistance. They are not discussed in the methodological 

papers that make up this dissertation (they are introduced in a second book chapter based on our collaboration, cf. 

Wulff et al., in press). The prototype assignment method is briefly described and used in one of the design factor 

papers in this dissertation (Kieslich et al., 2018). 
3 Other prototypes are of course possible, and the suitable prototypes often depend on the methodological setup 

of the study. Mousetrap makes it easy to modify and extend the set of prototypes if needed. 
4 Mousetrap also quantifies the spatial distance of each trajectory from its prototype. 
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category show that most trajectories are well described by the prototypes, indicating that the pro-

totypes capture the core features of each trajectory concisely.5 The distribution of classifications 

corroborates the impression from the heatmaps (Figure 5) that different types of trajectories are 

present in the data – including straight, curved and change of mind trajectories. 

If different types of trajectories are present in the data, the prototype classification itself 

can also be used as a dependent variable indicating the degree of conflict in a trial (assuming that 

conflict increases with the degree of curvature and the number of horizontal reversals for the dis-

crete change of mind prototypes, i.e., in Figure 6 the inferred conflict would increase from left to 

right). In line with the idea that atypical exemplars should produce more conflict, classifications 

indicating a higher degree of conflict are more frequent in atypical than in typical trials (Figure 7; 

this can be tested using an ordinal mixed regression at the trial level). 

 

 

 

Figure 7. Individual trajectories per assigned prototype separately for each typicality condition. For each 

prototype, the relative frequency of classifications per typicality condition is displayed. 

                                                         
5 A minority of trajectories assigned to the dCoM and dCoM2 prototypes are not well represented by their proto-

type. This is likely due to the fact that in these trajectories participants switch horizontally between the options 

multiple times indicating multiple changes of mind. As a solution, dCoM3 and dCoM4 prototypes can be included 

that extrapolate the logic of the dCoM2 prototype by including additional horizontal switches. Alternatively, these 

trajectories could be excluded.  
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In sum, the mousetrap package implements a multitude of both established and upcoming 

procedures for analyzing and visualizing mouse-tracking data. The package includes extensive 

documentation and examples, making these fairly complex analyses accessible to users of all levels 

of experience with R. A tutorial into using the package can be found in Kieslich et al. (in press). 

Figure 8 provides an exemplary R script that replicates the main processing steps, analyses, and 

visualizations that were presented in this section. 

3.3 Usage 

Since their first release in spring 2016, the mousetrap software packages have been used by 

many researchers from different institutions and research domains. The mousetrap R package has 

been downloaded 7342 times6, and the mousetrap plugin more than 4400 times7. There are already 

a number of published research projects that relied on mousetrap for creating experiments, ana-

lyzing mouse-tracking data, or both (e.g., Aczel, Szollosi, Palfi, Szaszi, & Kieslich, 2018; Calcagnì, 

Lombardi, & Sulpizio, 2017; Horwitz et al., in press; Leontyev, Sun, Wolfe, & Yamauchi, 2018; 

Scherbaum & Kieslich, 2018; Schulz, Speekenbrink, & Krause, 2018; Szaszi et al., 2018). 

The increasing popularity of the mousetrap packages has resulted in many questions and 

discussions around the creation of mouse-tracking experiments and the analysis of the resulting 

data, which have taken place via email, at workshops and conferences. To offer a central place for 

support, we have recently set up a forum for questions about mouse-tracking, which is available 

at http://forum.cogsci.nl/index.php?p=/categories/mousetrap.8 One reoccurring issue that re-

searchers are concerned with is the question of how to ideally setup a mouse-tracking experiment 

to ensure that the cognitive processes of interest are reflected in the mouse movements. While 

some general recommendations for designing mouse-tracking experiments have been discussed 

(Fischer & Hartmann, 2014; Hehman et al., 2015), this question has not previously been addressed 

empirically. In the following section, I discuss this very topic and present results from a series of 

experiments that investigate the impact of different design choices in mouse-tracking studies. 

  

                                                           
6 Downloads of all CRAN releases as of October 11, 2018. 
7 Downloads of all releases from the Python Package Index as of October 11, 2018. The total number of downloads 

is likely considerably higher, as direct downloads from GitHub source code releases cannot be tracked. 
8 We are thankful to Sebastiaan Mathôt, who is hosting the mousetrap forum. 

http://forum.cogsci.nl/index.php?p=/categories/mousetrap
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 # Load libraries 
 library(readbulk) 
 library(mousetrap) 
 
 # Read in and filter raw data (only keep correctly answered trials) 
 raw_data <- read_opensesame("raw_data") 
 raw_data <- subset(raw_data, correct==1) 
 
 # Import and preprocess trajectories 
 mt_data <- mt_import_mousetrap(raw_data) 
 mt_data <- mt_remap_symmetric(mt_data) 
 mt_data <- mt_align_start(mt_data) 
 
 # Compute indices, aggregate and compare MAD values between conditions 
 mt_data <- mt_measures(mt_data) 
 agg_mad <- mt_aggregate_per_subject(mt_data, subject_id = "subject_nr", 
   use_variables = "MAD", use2_variables = "Condition") 
 t.test(MAD~Condition, data = agg_mad, paired = TRUE) 
 
 # Time-normalize trajectories and plot aggregate trajectories per condition 
 mt_data <- mt_time_normalize(mt_data) 
 mt_plot_aggregate(mt_data, use = "tn_trajectories", 
   color = "Condition", subject_id = "subject_nr") 
 
 # Plot heatmaps (raw, smoothed and difference between conditions) 
 mt_heatmap(mt_data) 
 mt_heatmap(mt_data, smooth_radius = 20, n_shades = 10, mean_image = 0.2) 
 mt_diffmap(mt_data, condition = "Condition", 
   smooth_radius = 20, n_shades = 10) 
 
 # Spatially normalize trajectories, map them onto prototypes and plot result 
 mt_data <- mt_spatialize(mt_data) 
 mt_data <- mt_map(mt_data, prototypes = mt_prototypes, save_as = "data") 
 mt_plot(mt_data, use = "sp_trajectories", 
   facet_col = "prototype_label", facet_row = "Condition", alpha = 0.2) 
 

 

Figure 8. Example of a complete analysis script in R, covering the merging of the raw data files, their 

import, typical preprocessing steps, the computation and aggregation of mouse-tracking indices, the 

assignment of trajectories to a set of prototypes, and the visualization of mouse trajectories (as in Fig-

ure 4, Figure 5, and Figure 7). 
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4 Design Factors in Mouse-Tracking 

As previously discussed, mouse-tracking lacks standards for designing and running studies 

and the methodological setup has varied considerably in previous mouse-tracking studies. To un-

derstand the influence of design factors on mouse-tracking data and provide a first step towards 

an evidence-based standard for conducting mouse-tracking studies, we performed a series of ex-

periments, reported in two articles. In the first article (Kieslich et al., 2018), we investigated how 

the design factors starting procedure, mouse sensitivity, and type of response indication influence 

the most frequently used dependent variables in mouse-tracking studies, which are trajectory cur-

vature and shape. In the second article (Scherbaum & Kieslich, 2018), we focused on the influence 

of the starting procedure on both trajectory curvature and dynamic analyses that investigate the 

temporal effects of different cognitive factors on movement direction. In the following, I will 

briefly summarize the main results of each study and then jointly discuss their implications and 

some preliminary recommendations for conducting future mouse-tracking studies. 

 

4.1 Effects of design factors on trajectory curvature 

Kieslich, P. J., Schoemann, M., Grage, T., Hepp, J., & Scherbaum, S. (2018). Design factors in mouse-

tracking: What makes a difference? Manuscript submitted for publication. 

 

In this article, we replicated the example experiment presented earlier (Dale et al., 2007; as 

implemented by Kieslich & Henninger, 2017) while systematically varying a separate design factor 

in each of three experiments. The analyses focused on how design factors impact trajectory cur-

vature and the size of the central cognitive effect (the typicality effect, i.e., greater curvature for 

atypical than for typical exemplars). In addition, we examined how design factors influence tra-

jectory shapes, using both traditional bimodality analyses and the prototype assignment method. 

All experiments, data, preprocessing and analysis code, as well as the results are freely available 

from https://osf.io/xdp7a/. 

In the first experiment, we examined the influence of the response indication procedure. We 

compared a click condition, in which participants had to click on the response button, with a touch 

condition, in which simply moving the cursor onto the button was enough to indicate a response. 

The typicality effect was replicated with both starting procedures. However, it was significantly 

https://osf.io/xdp7a/
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larger in the click condition (the click condition also led to a higher degree of curvature overall). 

This larger effect was related to the occurrence of more extreme trajectory types in the click con-

dition, specifically more discrete change of mind trajectories. In the touch condition, most trajec-

tories were classified as either straight or curved. In line with this, the distribution of the curvature 

index exceeded the cut-off for bimodality in the click condition while it was below it in the touch 

condition. 

In the second experiment, we investigated the influence of mouse sensitivity settings, com-

paring a condition, in which these settings were left at the system defaults (medium speed, accel-

eration enabled, resulting in a relatively fast cursor), with a slow condition, in which cursor speed 

was reduced and acceleration disabled. The typicality effect was replicated in both the default and 

slow conditions, and its size did not differ significantly between conditions. The default condition 

led to greater trajectory curvature on average, which was likely driven by a higher percentage of 

trajectories with extreme movement patterns (such as discrete changes of mind). In both condi-

tions, bimodality coefficients indicated the presence of bimodality in the distribution of the cur-

vature index. 

The third experiment examined four different starting procedures. The baseline was a static 

starting procedure in which the stimulus was presented immediately after the click on the start 

button and participants did not receive any instructions about movement initiation (as in the pre-

ceding two experiments). The static start was compared to three procedures that were used in 

previous mouse-tracking studies to encourage early movement initialization. These included a re-

striction of the total time for responding (rtmax), an instruction to initialize movement early in 

the trial (initmax), and requiring an upwards movement to trigger the stimulus display (dynamic). 

The typicality effect was replicated with all four starting procedures. However, its size differed 

significantly between conditions, with the initmax condition leading to the largest effect (the size 

of the typicality effect did not differ significantly between the rtmax and static condition, nor be-

tween the dynamic and static condition). Regarding trajectory shapes, the majority of trajectories 

in the static and rtmax condition were classified as straight. In the dynamic condition, the majority 

of trajectories were classified as curved. The initmax condition led to a roughly even split of 

straight and curved classifications and a considerable increase of extreme trajectory types, specif-

ically more discrete change of mind trajectories. Somewhat contrary to the impression derived 
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from the trajectory classifications, almost all bimodality coefficients in the third experiment were 

below the cut-off for bimodality, suggesting a unimodal distribution.9 

While these experiments provide a first insight into how central design factors influence 

trajectory curvature and shape, other mouse-tracking analyses could not be covered, especially 

dynamic analyses that focus on the temporal development of trajectories. This is due to the limited 

number of nineteen trials per participant in the paradigm by Dale et al. (2007), which is not suffi-

cient for these analyses. Therefore, we conducted a separate study to explore effects of the starting 

procedure on the temporal development of trajectories. 

 

4.2 Dynamic effects of the starting procedure 

Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting procedure in-

fluences mouse-tracking data. Behavior Research Methods, 50(5), 2097-2110. 

 

In this article, we investigated effects of the starting procedure in a numeric version of the 

Simon task (Scherbaum et al., 2010), in which participants have to repeatedly choose the left ver-

sus right option depending on the size of a number that is presented on the left versus right side 

of the screen in three blocks of 256 trials each. In this task, two cognitive effects are expected: The 

Simon effect predicts that mouse trajectories should deviate more towards the non-chosen option 

if the number’s location on the screen is incongruent with its implied direction. In addition, there 

should be a congruency sequence effect, in that the Simon effect is attenuated if a trial is preceded 

by an incongruent trial. The study also explored the influence of these factors on the temporal 

development of the trajectories. In particular, it investigated whether the congruency sequence 

effect set in together with or after the Simon effect – a finding that can be used to disentangle 

different theoretical accounts of the cognitive processes underlying action control. 

The original implementation of the Simon task in a mouse-tracking experiment by 

Scherbaum et al. (2010, Experiment 2) used a dynamic starting procedure, in which participants 

                                                           
9 One methodological difference from the preceding two experiments was that the cursor speed was reduced in all 

conditions and the stimulus was presented at a higher point of the screen. This was done to accommodate the 

dynamic and inimtax starting procedures which require that the stimulus information can be acquired during the 

upwards movements. These changes may have contributed to overall differences in trajectory shapes between 

studies. 



32  ADVANCING MOUSE-TRACKING RESEARCH  

had to move the mouse upwards for the numerical stimulus to be displayed. The data from this 

experiment was compared to a new experiment that used an identical setup except for changing 

the starting procedure to a static start, in which the stimulus was presented after a short, fixed 

delay and participants could freely decide when to initialize their mouse movement. When looking 

at trajectory curvature, the Simon and the congruency sequence effect were replicated with both 

starting procedures. Besides, there were no significant differences in the size of these effects be-

tween the two starting procedures, although the dynamic starting procedure led to a greater over-

all curvature. Bimodality coefficients suggested a bimodal distribution of trajectory curvature in 

the static condition, but a unimodal distribution in the dynamic condition. 

To analyze the temporal development of movements within a trial, time continuous multi-

ple regression analyses were performed. At each time point, these predicted the movement angle 

(as an indicator of movement towards the chosen vs. non-chosen option) based on the response 

in the preceding trial, the stimulus location (i.e., the Simon effect), and the congruency sequence 

effect. In the dynamic condition, the response of the preceding trial influenced the movement 

angle at the earliest stage of the trial, followed by the location of the stimulus, and the congruency 

sequence effect thereafter. The temporal order was identical in the static condition, but the effects 

of each factor on movement angle showed greater temporal overlap and the effect of the stimulus 

location (Simon effect) was considerably weaker. 

We also performed a number of analyses regarding the consistency of movements. Most im-

portantly, participants in the dynamic condition moved the mouse upwards more continuously 

throughout each trial, while participants in the static condition often stayed at the bottom of the 

screen for the first half of the trial. 

The two starting procedure conditions investigated in Scherbaum and Kieslich (2018) are 

comparable to the static and dynamic condition investigated in the previously summarized Exper-

iment 3 by Kieslich et al. (2018). However, there are a number of methodological differences be-

tween the two studies, which I will discuss in the following. On the one hand, these differences 

are a chance for exploring the generalizability of starting procedure effects to different tasks, set-

ups, and analyses. On the other hand, they decrease the comparability of the two studies. For this 

reason, I have performed a set of additional analyses applying the analytic approach from Kieslich 

et al. (2018) to the data from Scherbaum and Kieslich (2018). I summarize these analyses below.  
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With regard to the study design, the general methodological setup and the specific imple-

mentation of the starting procedures differed (in addition to the task under investigation): 

Scherbaum and Kieslich (2018) used a touch response procedure, restricted the total time partici-

pants had for giving a response, and instructed participants to continuously move upwards once 

they had initiated a movement. Kieslich et al. (2018) used a click response procedure and neither 

imposed a total time limit nor gave more specific instructions regarding the movement. When 

implementing the static starting procedure, Scherbaum and Kieslich (2018) presented the stimulus 

with a fixed delay of 200 ms while Kieslich et al. (2018) presented the stimulus immediately. When 

implementing the dynamic starting procedure, Scherbaum and Kieslich (2018) used an upwards 

movement criterion of 4 px in two consecutive time steps while Kieslich et al. (2018) used an up-

wards movement criterion of 50 px in total, following Frisch et al. (2015). Besides, Kieslich et al. 

(2018) followed an exploratory approach with open research questions regarding the influence of 

the different design factors (outlining possible outcomes depending on previous recommenda-

tions and speculations about potential effects of design factors), while Scherbaum and Kieslich 

(2018) tested specific hypotheses.10  

Concerning trajectory curvature, the dynamic starting procedure led to an overall higher 

degree of curvature than the static starting procedure in both studies, while the size of the cogni-

tive effects on trajectory curvature did not differ significantly between the dynamic and static 

starting procedure. Trajectory curvature was assessed via the average deviation (AD) in Scherbaum 

and Kieslich (2018) whereas trajectory curvature was assessed using the more common MAD meas-

ure in Kieslich et al. (2018). Results in Scherbaum and Kieslich (2018) replicate when using MAD 

instead of AD in the analysis.  

Regarding the shape of the individual trajectories, bimodality coefficients in Scherbaum and 

Kieslich (2018) were below the threshold for a bimodal distribution for the dynamic starting 

                                                           
10 The hypotheses in Scherbaum and Kieslich (2018) comprised larger cognitive effects for the dynamic versus the 

static starting procedure, but specified that the strength of the effect of the starting procedure should depend on 

the level of analysis. That is, cognitive effects on discrete measures (i.e., overall trajectory curvature) were assumed 

to be relatively robust and hence only slightly influenced by the starting procedure. In contrast, stronger effects of 

the starting procedure were expected for continuous within-trial measures (i.e., time continuous multiple regres-

sion analyses). This distinction was not made in Kieslich et al. (2018), where the focus was only on discrete 

measures and on the research question whether starting procedures that induce an early movement initiation gen-

erally lead to larger cognitive effects (based on previous recommendations by Hehman et al., 2015, and Fischer & 

Hartmann, 2014). 
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procedure while they exceeded it for the static starting procedure. Bimodality coefficients in 

Kieslich et al. (2018) were all below the threshold for a bimodal distribution except for typical trials 

in the dynamic condition where the bimodality coefficient slightly exceeded the threshold. How-

ever, the exact computation of the bimodality coefficients differed between the two studies. When 

using the approach by Kieslich et al. (2018) for the data from Scherbaum and Kieslich (2018), bi-

modality coefficients are still higher for the static condition than for the dynamic condition; how-

ever, all bimodality coefficients are below the threshold for a bimodal distribution. This incon-

sistent pattern of results indicates, in line with earlier discussions, that some caution is advisable 

when interpreting results from bimodality coefficients and that analyses directly based on trajec-

tory shapes seem preferable. However, while several visualizations of the individual trajectories 

were included and discussed in Scherbaum and Kieslich (2018), no numeric analysis of trajectory 

shapes at the trial level was conducted. Therefore, I performed a new analysis, classifying trajec-

tories in Scherbaum and Kieslich (2018) based on the same set of prototypes that were used in 

Kieslich et al. (2018). The distribution of classifications differed significantly between the two 

starting procedures: The majority of trajectories in the dynamic condition were classified as 

curved, while the majority of trajectories in the static condition were classified as straight. This is 

in line with the results reported for the two starting procedures in Kieslich et al. (2018). 

In sum, while the implementation and analysis approaches differed substantially between 

the two studies, most results regarding the effects of the starting procedures – except for the bi-

modality analyses – are comparable. 

4.3 Implications for interpreting mouse-tracking data 

This series of studies represents the first systematic investigation of design factors in 

mouse-tracking. Specifically, we investigated the factors starting procedure, mouse sensitivity, 

and type of response indication (Kieslich et al., 2018; Scherbaum & Kieslich, 2018), and found 

them to significantly affect the study results. Thus, the methodological setup needs to be consid-

ered when interpreting mouse-tracking data. The implications of our findings are severalfold. 

First, all setups that we investigated were able to capture the conflict between response op-

tions to at least some extent, and the theoretically predicted cognitive effects on trajectory curva-

ture were replicated in every setup. However, their magnitudes were significantly influenced by 

several of the design factors, implying that effect sizes are not directly comparable between studies 
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with different methodological setups. Moreover, for studies investigating weaker cognitive effects 

some setups might not be sensitive enough to detect them at all. Thus, the sensitivity of a setup 

needs to be taken into account, especially when interpreting null effects. Design factors become 

even more influential in dynamic analyses (such as time continuous multiple regression) which 

are more sensitive to inconsistencies in movements within the trial. 

In addition, the shape of the individual trajectories varied considerably between studies. 

Assuming that the setup does not influence cognitive processing11, this implies that different tra-

jectory shapes can occur for the same cognitive process. Thus, it is not possible to make theoretical 

inferences about the underlying cognitive process based on the trajectory shape without consid-

ering the influence of the design factors. 

In my view, a useful way of understanding the influence of design factors is as moderators, 

that is, in terms of how they change the mapping of the cognitive processes onto mouse move-

ments. The starting procedure likely influences the degree to which the early phase of the decision 

process is reflected in the mouse movement, with starting procedures that explicitly encourage an 

early movement initiation (i.e., dynamic or initmax) increasing the likelihood that early aspects 

are captured. This is not the case when using a static starting procedure, where, in extreme cases, 

the decision process might even be finished before the mouse movement is initiated. A resulting 

straight trajectory would then not necessarily indicate that there was no response conflict, but 

merely that it was not captured in the movement. The type of response indication is likely to influ-

ence the degree to which the attraction of an option is translated into a movement towards that 

option. Requiring a click to indicate a response allows participants to move all the way to an option 

and then redirect the movement to the other option (a prototypical change of mind trajectory). In 

contrast, responding just by moving the cursor onto the response button reduces the likelihood of 

these extreme movements (as participants would have to move below the button if they wanted to 

                                                           
11 In my view, it is generally plausible to assume that the cognitive processes themselves are not affected by most 

of the discussed design factors, especially if they concern a peripheral aspect, such as the speed of the cursor, or 

whether the response is given via click or touch. However, this assumption cannot be tested directly based on the 

mouse-tracking data and, hence, a change in the cognitive process cannot be ruled out. One possible test for this 

could be to look at analyses at the choice level, such as the correctness of participants’ responses. Correctness did 

not differ significantly between the different response indication and mouse sensitivity settings (Experiments 1 

and 2 of Kieslich et al., 2018). However, correctness was affected by some of the starting procedures (in Experiment 

3), specifically those that induce some amount of time pressure (see more details in the manuscript). Thus, based 

on the correctness data in Kieslich et al. (2018), I would conclude that the design factors did not significantly affect 

the cognitive processes, except when they induced some amount of time pressure.  
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be able to correct their response; some participants might even refrain from initializing an early 

cursor movement as they might be afraid of giving an unwanted response by accident). The mouse 

sensitivity influences how movements of the hand are translated into the cursor movement, with 

default settings exaggerating small movements and hence producing more extreme movements 

compared to a mouse cursor with reduced speed and disabled acceleration. Thus, a study with a 

static starting procedure, click response mode, and default mouse sensitivity settings is more 

likely to produce a mix of straight and change of mind trajectories than a study with a dynamic 

starting procedure, touch response mode, and reduced cursor speed (and disabled acceleration). 

In other words, if a mix of straight and change of mind trajectories was observed in the latter setup, 

this would be more convincing evidence for a dual-system model on a process level than if they 

were observed in the former setup. 

Finally, the studies demonstrate the usefulness of methods for visualizing and analyzing the 

trajectory shape at the trial level (Kieslich et al., in press; Wulff et al., in press). They enable un-

packing the effect of a certain manipulation on mouse trajectory curvature. That is, they show 

whether greater curvature is caused by all trajectories being more curved in one of the conditions, 

or whether a certain condition leads to the more frequent occurrence of extreme trajectory types, 

such as discrete changes of mind. With regard to the different analytic methods for identifying 

trajectory types, the newly proposed prototype assignment method and traditional bimodality 

analyses did not always agree. It seems that the bimodality coefficient is less sensitive to detecting 

different types of trajectories, even when visual inspection and the trajectory classification sug-

gest they are present at the trial level. 

4.4 Implications for designing mouse-tracking studies 

The presented studies also have implications for the design of future mouse-tracking stud-

ies. In line with previous recommendations (Fischer & Hartmann, 2014; Hehman et al., 2015), it 

generally seems advisable to use an initmax or dynamic starting procedure that encourages an 

early movement initiation, to ensure that early stages of the decision process are captured in the 

movement. Using one of these starting procedures and thereby enforcing a movement initiation 

as soon as or even before the decision-critical stimulus is presented, has direct implications with 

regard to other design factors: The cursor speed should be reduced and the stimulus presented a 
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considerable distance above the start button to ensure that participants can acquire the stimulus 

information while moving the mouse upwards. 

However, the suitability of the initmax and dynamic starting procedures also depends on the 

type of task under investigation. Both are probably best suited for tasks with simple stimuli that 

can be solved quickly (e.g., the Simon task), for which the time period of the upwards movement 

is sufficient to acquire the stimulus information and complete the task. Conversely, they might be 

challenging to implement in tasks involving more complex stimuli or difficult decisions (such as 

decisions under risk or decisions in social dilemmas) as participants may not be able to acquire all 

stimulus information and reach their decision before finishing their upwards movement (i.e., they 

might already arrive at one of the buttons or the top of the screen). If this is the case, participants 

may stop moving the cursor either already when the stimulus is presented or when they hit the 

upper screen boundary, disrupting the continuous mapping of the cognitive process onto the 

mouse movement. For those tasks, a static starting procedure might be an adequate fallback op-

tion, as it gives participants the opportunity to initialize their movement only after acquiring the 

stimulus information – risking that participants might arrive at their decision before starting their 

movement in some trials. 

With regard to the response indication mode, the click condition led to considerably larger 

cognitive effects than the touch condition. This alone would speak in favor of using a click proce-

dure, but the click procedure was also related to a more frequent occurrence of extreme trajecto-

ries, like discrete change of mind trajectories. This, in turn, suggests that researchers might face a 

trade-off between larger effects which are due to the occurrence of more extreme trajectory types 

and smaller effects with a more homogeneous trajectory distribution. However, the touch proce-

dure resulted in a very large number of straight trajectories in the current study, suggesting that 

participants might have made their decision before initiating a movement in some trials to avoid 

accidentally selecting an unwanted option. This might be particularly relevant in the current 

study, as it implemented the touch condition in combination with a static starting procedure and 

default mouse sensitivity settings (i.e., a relatively high cursor speed). Given these considerations, 

it might make sense to set the response indication mode depending on the starting procedure. 

That is, if an initmax or dynamic starting procedure is used to ensure that participants start mov-

ing early in all trials, a touch response mode could be used to achieve a more homogenous distri-

bution of trajectories and perform traditional mouse-tracking analyses via curvature indices. If a 
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static starting procedure is used, the response mode click might be preferable and analyses should 

be based on prototypes. However, as the response indication mode was only tested for a static 

starting procedure in the current studies, these recommendations are somewhat speculative and 

further research is needed to answer this question. 

With regard to mouse sensitivity, the preferred settings likely depend on the starting proce-

dure used. In the current studies, the effect of mouse sensitivity was investigated with a static 

starting procedure and did not significantly affect the mouse-tracking data (with regard to the 

strength of the typicality effect). This might indicate that, for a static starting procedure, the 

mouse sensitivity settings are not that consequential (although an extremely fast cursor should be 

avoided to prevent chaotic cursor movements, cf. Freeman & Ambady, 2010). However, as dis-

cussed above, for an initmax and dynamic starting procedure, it seems advisable to reduce cursor 

speed and disable acceleration. 

As this summary shows, recommendations regarding the design of future mouse-tracking 

studies are not straightforward. As discussed, the ideal mouse-tracking setup depends on the type 

of task under investigation and the type of analysis that will be conducted. As a rule of thumb, for 

very simple tasks, researchers should use an initmax or dynamic starting procedure, reduce the 

cursor speed, disable acceleration, and use a touch response mode to achieve a more homogenous 

trajectory distribution. Conversely, if the task under investigation is more complex, researchers 

may use a static starting procedure and a click response mode (and the cursor speed is not as crit-

ical). However, in this setup dynamic analyses (e.g., time continuous multiple regression) may not 

be possible as the consistency of the movement over the course of the trial may not be sufficient. 

These recommendations are, of course, preliminary, and require more empirical studies that in-

vestigate the influence of design factors in different psychological tasks. 
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5 Discussion 

In this dissertation, I first presented the mousetrap plugin for OpenSesame, which allows 

researchers to easily create mouse-tracking experiments via a graphical user interface and to run 

them on laboratory computers supporting all major platforms. The mousetrap R package enables 

users to process, analyze, and visualize mouse-tracking data of all major formats. It implements 

most of the commonly used preprocessing procedures and mouse-tracking indices, along with a 

set of novel visualization and classification procedures for analyzing trajectory shapes. All soft-

ware is open-source and freely available, facilitating open and transparent research practices and 

the effortless replication of experiments, which has become a topic of critical importance in psy-

chological science and beyond (Asendorpf et al., 2013; Munafò et al., 2017; Nosek et al., 2015). In 

addition, this dissertation presented results from a first systematic investigation of central design 

factors in mouse-tracking studies. Results showed that the methodological setup had a consider-

able influence on trajectory curvature and shape, and should therefore be taken into account when 

interpreting mouse-tracking data. They also provide a first empirical foundation for informed de-

cisions about future study designs, and I derived some preliminary recommendations. 

In the following, I will first discuss future directions with regard to the implementation of 

mouse-tracking experiments, focusing in particular on limitations of the studies that investigate 

the influence of the methodological setup. Second, I will discuss future directions regarding 

mouse-tracking analyses, focusing on additional methods not covered so far and open questions 

concerning the interpretation of mouse-tracking data. 

5.1 Implementation and study design  

With regard to the implementation of mouse-tracking studies, the mousetrap plugin for 

OpenSesame covers all current designs and methodological setups (a comprehensive set of exam-

ple experiments for different setups is provided with Kieslich et al., 2018). Future releases of the 

plugin will therefore mainly focus on staying up-to-date with OpenSesame, which is continuously 

developed and improved. Going beyond laboratory studies, an important future direction will be 

the ability to conduct mouse-tracking experiments online, and we are currently developing a 

browser-based solution for this in a project led by Felix Henninger (the results of an online study 

using a development version are published in Horwitz et al., in press). Another direction is the use 

of alternative tracking methods that more directly record hand movements (using, e.g., a motion 
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capture system, cf., Awasthi, Friedman, & Williams, 2011) or finger movements (e.g., via touch 

screens, cf., Wirth, Pfister, & Kunde, 2016). The latter approach could, in principle, be imple-

mented in OpenSesame by extending the mousetrap plugin. 

A major concern regarding the creation of mouse-tracking experiments remains the many 

degrees of freedom and open questions regarding the methodological setup. While the current 

dissertation presents a first set of studies that examine the impact of three central design factors 

on mouse-tracking data, these studies have a number of limitations. I will address those and di-

rections for future research in the following (a detailed discussion of more specific limitations and 

open questions concerning specific results is provided in the articles). 

Since Scherbaum and Kieslich (2018) compared data from a previous experiment using a 

dynamic starting procedure (Scherbaum et al., 2010) with a new experiment that employed a static 

procedure, participants were not randomly assigned to the design factor conditions. Hence, we 

cannot rule out that there were systematic differences between the participant groups, even 

though all statistical tests for differences between groups on any of the sample characteristics 

were non-significant. However, the results of Experiment 3 by Kieslich et al. (2018) largely support 

the same conclusions based on a randomized experiment (although there are a number of differ-

ences between the two studies, as previously discussed). Nevertheless, a replication of Scherbaum 

and Kieslich (2018) with a randomized assignment to conditions is warranted. 

To allow for a clear interpretation of the consequences of each design factor, we manipu-

lated each design factor in a separate experiment. However, this approach would not uncover in-

teractions between design factors, some of which are likely to occur, as noted above. Specifically, 

it would be interesting to examine combinations of the response indication procedure and differ-

ent starting procedures. For example, one prediction is that a dynamic or initmax starting proce-

dure reduces the relatively large proportion of straight trajectories that were observed in the touch 

response condition. The mouse sensitivity settings might also play a more important role for these 

starting procedures, as a high cursor speed might make it difficult to acquire the stimulus infor-

mation during the upward movement. While both considerations seem plausible (as discussed in 

the previous section), they should be tested empirically in future studies. 

For each design factor, the studies tested their most common implementations. However, 

the factors can vary beyond the examined levels. For example, some previous studies have reduced 

cursor speed even further than we did in the slow condition (e.g., Huette & McMurray, 2010). 
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Implementations of the initmax and dynamic starting procedures also differed across previous 

studies, especially with regard to the minimum distance that participants need to move upwards 

and the time limit for this upwards movement in the initmax condition (a suitable time limit also 

depends on the complexity of the task, cf. Hehman et al., 2015). 

While the current studies covered three important design factors, there are more that should 

be examined. Several concern the spatial layout of the decision screen, such as the exact stimulus 

position and the horizontal distance between response buttons. An additional factor is whether 

participants receive specific instructions regarding mouse movements (e.g., the instruction to 

continuously move upwards once a movement is initiated, cf., Scherbaum & Kieslich, 2018). To-

gether with different colleagues, I am currently working on projects that address these factors. 

The studies reported in this dissertation examined design factors in two different tasks, a 

Simon task and a semantic categorization task. Both tasks are fairly simple and can be solved rel-

atively quickly. Future studies should examine the effect of design factors in other, more complex 

tasks. As discussed previously, it is likely that different types of setups are suitable for different 

types of tasks. An additional question concerns the effect of design factors for different types of 

stimuli, as several mouse-tracking studies use pictures (e.g., Freeman & Ambady, 2009; Sullivan 

et al., 2015) or auditory stimuli (e.g., McKinstry, Dale, & Spivey, 2008; Spivey et al., 2005). 

The ultimate goal is to provide researchers with a comprehensive set of recommendations 

for designing mouse-tracking studies, once the empirical evidence base is sufficient. These will 

likely depend on the type of task that is examined and the analysis that is intended. For this pur-

pose, several colleagues and I are working on conducting additional studies to investigate design 

factors. Eventually, we want to arrive at a mutually agreed upon standard of how future mouse-

tracking studies should be conducted. 

5.2 Analysis and interpretation 

With regard to the analysis of mouse-tracking data, the mousetrap R package covers most 

of the common preprocessing procedures and established indices from the literature. It also pro-

vides different functions for visualizing individual and aggregate trajectories and the development 

of mouse-tracking variables over time, and covers novel methods for classifying trajectories based 

on their shape. Nevertheless, some advanced analysis and visualization methods are still missing 

in the package. For instance, the time continuous multiple regression approach (described in 
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Scherbaum & Kieslich, 2018) is not yet fully implemented in the package. However, an alternative 

implementation via linear-mixed models can be realized using mousetrap’s data reshaping and 

aggregation functions in combination with the lme4 package (Bates, Mächler, Bolker, & Walker, 

2015). The result of such an analysis is provided in the supplementary material of Scherbaum and 

Kieslich (2018).12 Several more recent methods for analyzing mouse-tracking data, such as ad-

vanced visualizations via decision landscapes (Zgonnikov, Aleni, Piiroinen, O’Hora, & di Ber-

nardo, 2017) and entropy analyses (Calcagnì et al., 2017) are not yet covered in mousetrap, alt-

hough I have discussed plans for their integration with the authors. 

With many different processing and analysis options conveniently packaged, the main chal-

lenge becomes to choose the best approach for a particular research project. This is especially rel-

evant regarding the multitude of different indices, and the different levels of analyses that are 

available to researchers. I will address these issues in the following. 

Many mouse-tracking studies have performed analyses based on aggregate curvature indices 

and aggregate trajectories. As I have shown in this dissertation, these are not necessarily repre-

sentative of what is happening at the trial level and it is, therefore, important to visualize and 

analyze individual trajectories. To assess whether there are different types of trajectories at the 

trial level, traditional analyses have focused on the bimodality coefficient for the distribution of 

curvature indices. However, new approaches have been proposed that take into account the com-

plete shape of the trajectory and assign trajectories to different prototypes (Wulff et al., in press). 

Importantly, the bimodality coefficient and the prototype classifications sometimes differ in their 

conclusions (as in one of the design factor studies reported in this thesis, Kieslich et al., 2018), and 

it seems that the bimodality coefficient is generally less sensitive to detecting different types of 

trajectories. Regardless of the analysis method used, it is also always advisable to plot heatmaps 

of the individual trajectories to get a visual impression of the data. 

One issue which is not completely resolved so far is the best solution in case of a substantial 

number of different trajectory types present in the data. For now, I would recommend using the 

prototype classification itself as the dependent variable in the analysis, for example, as an ordinal 

variable if different amounts of conflict can be clearly assigned to the different prototypes. Gen-

eralized processing trees are another recently proposed method (Heck, Erdfelder, & Kieslich, in 

                                                           
12 The supplementary material is published online together with article or can be downloaded using this link. 

https://static-content.springer.com/esm/art%3A10.3758%2Fs13428-017-0977-4/MediaObjects/13428_2017_977_MOESM1_ESM.pdf
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press) that can be useful in this regard. This method jointly models choices and continuous varia-

bles (such as a trajectory curvature index like MAD) and can hence explain a bimodal distribution 

of trajectory curvature through different underlying cognitive processes. By jointly modeling 

choices and MAD, it also takes into account both correct and incorrect answers – whereas previous 

mouse-tracking studies typically excluded incorrectly answered trials. This method is provided in 

another R package13, which can be used in combination with mousetrap. We have previously ap-

plied it to mouse-tracking (Heck et al., in press) using data from the example experiment presented 

in this dissertation (Kieslich & Henninger, 2017). 

The variety of mouse-tracking indices reflects the manifold opportunities mouse-tracking 

provides for testing various research questions. At the same time, the interpretation of many of 

these indices is still open to debate and the conceptual differences between the measures need to 

be better understood. In general, studies with theoretically founded and targeted manipulations 

are needed that validate the interpretation of specific indices. In this regard, Koop and Johnson 

(2013) provide a useful first step for validating trajectory curvature by demonstrating that a priori 

differences in the pleasantness of visual stimuli (based on pleasantness norms) systematically in-

fluenced the degree of trajectory curvature in preferential decisions. In a similar vein, I am cur-

rently working on a project together with Bence Palfi, Barnabas Szaszi, Dirk Wulff, and Balazs 

Aczel that compares different mouse-tracking indices for quantifying the number of changes of 

mind in a trial, assesses the degree to which they are sensitive to experimental manipulations that 

are expected to induce changes of mind, and quantifies their agreement with human raters.  

Relatedly, the results from the design factor studies have shown that there is still a need to 

better understand how cognitive processes in general and the preference development in particu-

lar are mapped onto the mouse movement. It seems that the original assumption of a completely 

continuous mapping of the cognitive process onto the mouse movement responses (Freeman et 

al., 2011; Spivey & Dale, 2006) depends on the task and methodological setup of the study, and 

thus cannot be assumed a priori. Future mouse-tracking research therefore should focus more on 

building and validating explicit models of how the preference development is translated into the 

cursor movement, accounting for the influence of the setup. In this regard, it might be fruitful to 

build on promising models that have been proposed for this purpose in the past (e.g., dynamic 

                                                           
13 The R package is called gpt and can be obtained from GitHub (https://github.com/danheck/gpt). 

https://github.com/danheck/gpt


44  ADVANCING MOUSE-TRACKING RESEARCH  

neural field models, cf. Frisch et al., 2015; or bounded-accumulation models, cf. Resulaj, Kiani, 

Wolpert, & Shadlen, 2009). This is especially relevant if one wants to draw inferences about the 

process model underlying a decision (e.g., whether a dual system model is actually supported by 

the data). This being said, if one is mainly interested in assessing the overall level of conflict that 

was present in a decision and is somewhat agnostic about the specific process model, one can still 

rely on trajectory curvature to test theoretical predictions.14 

In sum, while there is an increasing awareness about many issues that need to be addressed 

when analyzing mouse-tracking data, a consensus about what constitutes the best study design 

and analysis approach has yet to be reached. Therefore, when using mouse-tracking to test psy-

chological theories researchers should be transparent in reporting the assumptions they make re-

garding mouse movements, the methodological setup, data processing, and the analyses they per-

formed. The latter is optimally implemented if researchers share their data, preprocessing, and 

analysis code. Besides, researchers may often explore different analyses and measures when using 

mouse-tracking to test theoretical predictions, also to ensure that different approaches arrive at 

similar conclusions. However, once they have settled on a particular approach to test a theory, 

additional preregistered studies should be conducted to meet the requirements of strictly confirm-

atory hypothesis testing (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012). 

5.3 Conclusions 

Mouse-tracking is a promising new method for assessing cognitive processes and testing 

psychological theories. With the software developed in this dissertation I want to make the 

method accessible to researchers from different disciplines and levels of technical experience. The 

presented software should enable researchers to create even complex experiments with ease and 

to use state-of-the-art methods in their analyses. I also hope to have raised awareness regarding 

many open questions concerning study design and analysis, and to have contributed some initial 

steps and recommendations towards resolving them. I am convinced that mouse-tracking will 

prove to be a useful addition to the toolbox of process tracing methods and will provide novel 

insights into different cognitive processes. I am looking forward to further advancing the method 

together with many enthusiastic colleagues.  

                                                           
14 However, researchers have to ensure that the methodological setup is sensitive enough for detecting conflict in 

a given task. As discussed, for the current paradigms all investigated setups seemed to be sufficiently sensitive. 
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Abstract Mouse-tracking – the analysis of mouse movements
in computerized experiments – is becoming increasingly popu-
lar in the cognitive sciences. Mouse movements are taken as an
indicator of commitment to or conflict between choice options
during the decision process. Using mouse-tracking, researchers
have gained insight into the temporal development of cognitive
processes across a growing number of psychological domains.
In the current article, we present software that offers easy and
convenient means of recording and analyzing mouse move-
ments in computerized laboratory experiments. In particular,
we introduce and demonstrate the mousetrap plugin that adds
mouse-tracking to OpenSesame, a popular general-purpose
graphical experiment builder. By integrating with this existing
experimental software, mousetrap allows for the creation of
mouse-tracking studies through a graphical interface, without
requiring programming skills. Thus, researchers can benefit
from the core features of a validated software package and the
many extensions available for it (e.g., the integration with aux-
iliary hardware such as eye-tracking, or the support of interac-
tive experiments). In addition, the recorded data can be
imported directly into the statistical programming language R
using the mousetrap package, which greatly facilitates analysis.

Mousetrap is cross-platform, open-source and available free of
charge from https://github.com/pascalkieslich/mousetrap-os.

Keywords Mouse-tracking . Experimental design .

Software . Response dynamics . Process tracing .

OpenSesame . Python

Introduction

Mouse-tracking – the recording and analysis of mouse move-
ments in computerized experiments – is becoming an increas-
ingly popular method of studying the development of cognitive
processes over time. In mouse-tracking experiments, partici-
pants typically choose between different response options rep-
resented by buttons on a screen, and the position of the mouse
cursor is continuously recorded while participants move to-
wards and finally settle on one of the alternatives (Freeman &
Ambady, 2010). Based on the theoretical assumption that cog-
nitive processing is continuously revealed in motor responses
(Spivey & Dale, 2006), mouse movements are taken as indica-
tors of commitment to or conflict between choice options dur-
ing the decision process (Freeman, Dale, & Farmer, 2011).

Mouse-tracking was first introduced as a paradigm in the
cognitive sciences by Spivey, Grosjean, and Knoblich (2005).
In their study on language processing, participants received
auditory instructions to click on one of two objects (e.g.,
“click the candle”). A picture of the target object was present-
ed together with a picture of a distractor that was either pho-
nologically similar (e.g., “candy”) or dissimilar (e.g., “dice”).
Participants’ mouse movements were more curved towards
the distractor if it was phonologically similar than if it was
dissimilar, suggesting a parallel processing of auditory input
that activated competing representations.
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Following Spivey et al. (2005), mouse-tracking has been
used to gain insight into the temporal development of cognitive
processes in a growing number of psychological domains, such
as social cognition, decision making, and learning (for a review,
see Freeman et al., 2011). More recently, researchers have ex-
tended the initial paradigm, combining mouse-tracking with
more advancedmethods. For example, mouse-tracking has been
used in conjunction with eye-tracking to study the dynamic
interplay of information acquisition and preference development
in decision making under risk (Koop & Johnson, 2013). In an
experiment with real-time interactions between participants,
mouse-tracking uncovered different degrees of cognitive con-
flict associated with cooperating versus defecting in social di-
lemmas (Kieslich & Hilbig, 2014). As these examples show, an
increasing number of researchers with different backgrounds
and demands are using mouse-tracking to study cognitive pro-
cesses. As a tool, mouse-tracking is increasingly combined with
other methods to build complex paradigms and to integrate data
across sources, leading to a richer understanding of cognition.

So far, many researchers conducting mouse-tracking stud-
ies have built their own experiments manually in code (e.g.,
Koop & Johnson, 2013; Scherbaum, Dshemuchadse, Fischer,
& Goschke, 2010). These custom implementations were often
one-off solutions tailored to a specific paradigm, and accom-
panied by custom analysis code to handle the resulting data
specifically and exclusively. Researchers have spent consider-
able effort and technical expertise building these codebases.

As an alternative, other researchers have used MouseTracker
(Freeman & Ambady, 2010), a stand-alone program for mouse-
tracking data collection and analysis. Its ability to build simple
experiments relatively quickly and design the mouse-tracking
screen via a graphical user interface, as well as its integrated
analysis tools have made mouse-tracking studies accessible to a
broader range of researchers. However, researchers choosing
MouseTracker lose the flexibility that general-purpose experi-
mental software provides, in particular the ability to implement
complex experimental designs within a single tool (involving,
e.g., individually generated stimulus material, real-time commu-
nication between participants, and/or the inclusion of additional
devices for data collection). In addition, many experimental soft-
ware packages provide a graphical user interface not only for the
design of single trials but of the entirety of the experimental pro-
cedure. Finally, most experimental software offers a scripting lan-
guage so that its built-in features can be customized and extended.
Although MouseTracker is free of charge (as citation-ware), the
source code is not openly available and thereby not open to ex-
tensions and customization, limiting its features to those provided
by the original authors.Moreover,MouseTracker is only available
for the Windows operating system.

Going beyond custom implementations and stand-alone soft-
ware solutions, there is a third option, namely providing modu-
lar components that extend existing experimental software. By
building on the user-friendliness and flexibility of these existing

tools, complex and highly customized experiments can be cre-
ated easily, often without resorting to code. By using established
open data formats for storage of mouse trajectories alongside all
other data, preprocessing and statistical analyses are possible in
common analysis frameworks such as R (R Core Team, 2016).

In this article, we present the free and open-source software
mousetrap that offers users an easy and convenient way of re-
cording mouse movements. Specifically, we introduce a plugin
that adds mouse-tracking to OpenSesame (Mathôt, Schreij, &
Theeuwes, 2012), a general-purpose graphical experiment
builder. Together, these offer an intuitive, graphical user inter-
face for creating mouse-tracking experiments that requires little
to no further programming. Users can thus not only draw upon
the extensive built-in functionality of OpenSesame for designing
stimuli and controlling the experimental procedure, but also on
additional plugins that extend it further, adding for example eye-
tracking functionality (using PyGaze; Dalmaijer, Mathôt, & Van
der Stigchel, 2014) and real-time interaction between partici-
pants (using Psynteract; Henninger, Kieslich, & Hilbig, in
press). Yet further customization is possible through Python
inline scripts. Like OpenSesame, mousetrap is available across
all major platforms (Windows, Linux, and Mac).

In summary, mousetrap provides a flexible, extensible,
openmouse-tracking implementation that integrates seamless-
ly with the graphical experiment builder OpenSesame and can
be included by drag-and-drop in any kind of experiment. Its
open data format allows users to analyze the data with a soft-
ware of their choice. In particular, the recorded data can be
imported directly into the statistical programming language R
using the mousetrap package (Kieslich, Wulff, Henninger,
Haslbeck, & Schulte-Mecklenbeck, 2016), which allows users
to process, analyze, and visualize the collected mouse-
tracking data.

In the following, we provide a brief introduction to mouse-
trap in combination with OpenSesame, and demonstrate how
a mouse-tracking experiment can be created, what the
resulting data look like, and how they can be processed and
analyzed. In doing so, we create an experiment based on a
classic mouse-tracking study by Dale, Kehoe, and Spivey
(2007). In this study, participants’ mouse movements are re-
corded while they classify exemplars (specifically: animals)
into one of two categories; for example, a participant might be
asked to classify a cat as mammal or reptile. The central inde-
pendent variable in this paradigm is the typicality of the ex-
emplar for its category: Exemplars are either typical members
of their category, as above, or they are atypical (e.g., a whale),
in that that they share both features with the correct (mammal)
and a competing category (fish). The central hypothesis tested
in this paradigm is that there should be more conflict between
response options when classifying an atypical exemplar, and
that mouse movements should therefore deviate more towards
the competing category for atypical as compared to typical
exemplars.
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Building a mouse-tracking experiment

In the following, we provide a brief tutorial for building a
mouse-tracking experiment with mousetrap, demonstrating
the plugin’s major features as we do so. Our final result will
be a simplified version of Experiment 1 by Dale et al. (2007).
This study incorporates many features of a typical mouse-
tracking study: participants are presented with simple stimuli
(here only a single word) in a forced-choice design with two
response alternatives (one of which represents the correct re-
sponse). Besides, a within-participants factor (typicality) is
manipulated with a directed hypothesis regarding its influence
on mouse movements.

Plugin installation and overview

Mousetrap depends on OpenSesame (version ≥ 3.1.0), which
is available free of charge for all major operating systems from
http://osdoc.cogsci.nl/, where it is also documented in depth.
Mousetrap itself is available from GitHub (https://github.com/
pascalkieslich/mousetrap-os), and is added to OpenSesame as
a plugin.1 The plugin includes built-in offline help and docu-
mentation for all features. Additional online resources are
available from the GitHub repository, which offers extensive
documentation and several example experiments, including
the one built in the following (https://github.com/
pascalkieslich/mousetrap-os#examples).

OpenSesame provides a graphical user interface
through which users can create a wide range of exper-
iments without programming. The building blocks of
OpenSesame experiments are different items, from
which an entire experiment can be assembled by drag-
and-drop. For example, one might use a sketchpad item
to present a visual stimulus, a keyboard_response or
mouse_response item to record key presses or mouse
clicks in response to the stimulus, and a logger item
to write the collected data into a log file. Where de-
sired, Python code can be included in an experiment
using inline_script items to add further functionality.
All of these items can be organized into sequences to
run multiple items in direct succession and loops to
repeat the same items multiple times (with variations).
In a typical mouse-tracking experiment, a loop may
contain the list of different stimuli that are presented
in different trials, while a sequence contains all the
items that are needed for each trial.

The items provided by the mousetrap plugin allow
users to include mouse-tracking in any experiment using
the same drag-and-drop operations and with the same
ease. As OpenSesame provides two different ways of

building displays, the mousetrap plugin contains two cor-
responding items: the mousetrap_response and the
mousetrap_form item. Both provide comparable mouse-
tracking functionality, but differ in the way the stimulus
display is designed.

The mousetrap_response item tracks mouse movements
while the stimulus display is provided by another item – typ-
ically by a sketchpad item that offers a graphical user interface
for stimulus design. The mousetrap_response item then mon-
itors the cursor position and registers button clicks.

In comparison, the mousetrap_form item extends the built-
in OpenSesame form_base item to provide both a visual dis-
play as well as mouse-tracking. The visual content (e.g. text,
images, and buttons) can be specified directly from within the
item using a simple syntax and positioned on a user-defined
grid.

Both the mousetrap_response and the mousetrap_form can
be used without writing Python code. For even more flexibil-
ity, both items provide corresponding Python classes which
can be accessed directly from code. Examples as well as doc-
umentation for these are provided online.

Creating a mouse-tracking trial

Figure 1 shows the structure of our example experiment. In the
beginning of the experiment, a form_text_display item la-
belled “instructions” is included to explain the task to partic-
ipants. Next, a loop item called “stimuli” is added, which
repeats the same sequence of items in each trial while varying
the exemplars and response categories in random order (this
data, along with additional metadata, is entered in the loop in
tabular format – see bottom right of Fig. 1, where each row
corresponds to one stimulus and the associated response
options).

A simple way to create a mouse-tracking trial via the graph-
ical user interface is to use a sketchpad item to create the visual
stimulus display and a subsequent mousetrap_response item
to track the mouse movements while the sketchpad is present-
ed. Before creating the individual items, the overall experi-
ment resolution should be set to match the resolution that will
be used during data collection, because sketchpad items run at
a fixed resolution and do not scale with the display size. As
mouse-tracking experiments are normally run in full-screen
mode, the experiment resolution will typically correspond to
the display resolution of the computers on which the experi-
ment will be conducted.

The trial sequence itself begins with a form_text_display
item that contains a start button in the lower part of the screen,
as is typical for mouse-tracking experiments (Freeman &
Ambady, 2010). Participants start the stimulus presentation
by clicking on this button, which also ensures that the start
position of the cursor is comparable across trials. Using a
form_text_display item is the most basic way of implementing

1 Information on installing the plugin is provided at https://github.com/
pascalkieslich/mousetrap-os#installation
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a start screen because it provides a ready-made layout includ-
ing some adaptable instruction text and a centered button
which can be used to start the trial. Further customization of
the start screen is possible, for example, by instead using an
additional sketchpad – mousetrap_response combination (as
was done in the experiment reported below; see also the online
example experiment without forms).

The start item is followed by a sketchpad that defines the
actual stimulus (Fig. 2). In the most general terms, a typical
mouse-tracking task involves the presentation of a stimulus
(e.g., a name or picture of an object), and several buttons. In
the current study, the buttons correspond to different catego-
ries, and the participant’s task is to indicate which category the
presented exemplar (i.e., the name of the animal as text) be-
longs to by clicking on the corresponding button.

The most important part of the mouse-tracking screen is the
exemplar that is to be categorized. It is added to the sketchpad
using a textline element which allows for creating formatted
text. To vary the presented text in each trial and insert the data
from the loop (cf. Fig. 1), the corresponding variable name can
be added in square brackets.

Creating button-like elements on a sketchpad item consists
of two steps. First, the borders of the buttons are drawn using
rect elements. Next, the button labels are inserted using
textline elements (again using the variable names from the

loop in square brackets). When designing the buttons, a sym-
metrical layout is desirable in most cases. Importantly, all
buttons should have the same distance from the starting posi-
tion of the mouse. Typically, the buttons are placed in the
corners of the screen so that participants can easily reach them
without risking overshooting the button, yet the distance be-
tween buttons is maximal.

As the tracking of mouse movements should start immedi-
ately when the sketchpad is presented, the duration of the
sketchpad is set to 0 and a mousetrap_response item is
inserted directly after the sketchpad in the trial sequence (see
Fig. 1, where the mousetrap_response item is labelled
“get_response”). Because the mousetrap_response item is
separated from the stimulus display, the number of buttons2

as well as their location and internal name need to be provided
(see Fig. 3). In our case, and indeed for the majority of exper-
iments, the buttons correspond to the rectangles added to the
sketchpad earlier. Thus, the appropriate values for x and y
coordinates as well as width and height can be copied from
the element script, which can be accessed by double-clicking
on its border (Fig. 2). In addition to the coordinates, each

Fig. 1 Structure of the example OpenSesame experiment (left) and
settings for the stimuli loop (right). The panel on the left provides an
overview of all items in the experiment, organized in a sequential (from
top to bottom) and hierarchical (from left to right) display. On the highest
(i.e., leftmost) level, the experiment sequence contains the instructions,
the stimuli loop that generates the individual trials, and a final feedback
screen. The loop contains a trial sequence, which is subdivided into the
start button screen, a sketchpad that presents the stimulus, a mousetrap_

response item that collects the participant’s response and tracks cursor
movements, and a logger item to save the data into the logfile. On the
right, the details of the loop are visible. The design options at the top
configure the loop such that each stimulus is presented once in random
order, and the table at the bottom contains the actual stimulus data for four
trials, namely the exemplar and response categories to be shown on
screen, the correct response, and the experimental condition for
inclusion in the dataset

2 The mousetrap_response item supports up to four buttons. More can be
added by using the mousetrap_form item or by defining buttons in Python
code.
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button receives a name argument that will be saved as re-
sponse when a participant clicks within the area of the corre-
sponding button. We recommend using the text content of the
button for this purpose (e.g., name = [CategoryLeft] for
the left button in Fig. 2).

When the response options are named, a correct response
can be defined by adding the corresponding button’s name in
the respective field. OpenSesame will then automatically code
the correctness of the response (as 1 or 0) in the variable
labelled correct, which is included in the data for later analysis
and can also be used to provide feedback during the study. As
with the labels, the correct response in each trial is determined
based on the variables specified in the loop (variable
CategoryCorrect, cf. Fig. 1).

In addition to logging the correctness of a single response,
OpenSesame’s global feedback variables (e.g., the overall ac-
curacy) can be updated automatically by selecting the

corresponding option, which makes it easy to, for example,
pay participants contingent on their performance. In the cur-
rent experiment, participants are provided with feedback on
their performance on the last screen of the experiment through
this mechanism.

The cursor position is recorded as long as the
mousetrap_response item is active. The interval in which the
positions are recorded is specified under logging resolution in
the item settings (see Fig. 3). By default, recording takes place
every 10 ms (corresponding to a 100-Hz sampling rate). The
actual resolution may differ depending on the performance of
the hardware (but has proven to be very robust in our studies,
see example experiment below and software validation in the
Appendix).

Finally, a logger item is inserted at the end of the trial
sequence (see Fig. 1). This item writes the current state of all
variables to the participant’s log file, which will later be used

Fig. 2 Exemplary sketchpad item containing two buttons and a stimulus.
The drawing tools used to create the stimulus are shown on the left: The
button labels and the stimulus are created using textline elements. As they
vary for each trial, the experimental variables defined in the stimuli loop
(cf. Fig. 1) are used by enclosing the variable name in square brackets, so
that their values will be substituted when the experiment runs. The button
borders are drawn using rect elements. The underlying element script for

each button can be accessed by double-clicking on the respective
rectangle: the script corresponding to the left button is shown in the
pop-up window. The x, y, w, and h arguments define the left and top
coordinates of the rectangle and its width and height. They can be
copied and pasted into the mousetrap_response item (cf. Fig. 3) to
define the buttons
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in the analysis. The variable inspector can be used to monitor
the current state of the variables in the experiment if it is run
from within OpenSesame. The central mouse-tracking data
recorded through mousetrap items is stored in variables
starting with timestamps, xpos, and ypos.

Alternative implementation using forms

As mentioned above, mousetrap also provides an alternative
way of implementingmouse-tracking via themousetrap_form
item. In contrast to the mousetrap_response item, the display

Fig. 3 Settings of the mousetrap_response item: The topmost settings
define the number of buttons used, as well as their position (using the
arguments from the rect element script, cf. Fig. 2) and internal name (the
button label that was defined in the stimuli loop, cf. Fig. 1). The correct
answer can be specified in the Correct button name option to make use of
OpenSesame’s feedback capabilities. If desired, the mouse cursor can be
reset to exact start coordinates at tracking onset. Optionally, a timeout (in
ms) can be specified to restrict the time participants have to give their

answer. The boundary setting can be used to terminate data collection if
the cursor crosses a specified vertical or horizontal boundary on the
screen. Additional options concern the possibility to restrict the mouse
buttons available for responding, the immediate display of a warning if
cursor movement is not initiated within a given interval, and the
adjustment of the logging resolution, that is, the interval between
subsequent recordings of the cursor position
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is defined directly within the item by using a form. Forms are a
general item type which is used throughout OpenSesame.
They place content (which is referred to as “widgets” and
can include labels, images, buttons and image buttons) on a
grid, which allows forms to scale with the display resolution.
Forms do not provide a graphical interface, but instead use a
simple syntax to define and arrange the content.

In the current example, a mousetrap_form could replace
both the “present_stimulus” sketchpad and the “get_response”
mousetrap_response item. Assuming a grid with 16 columns
and 10 rows, a visual stimulus display similar to Fig. 2 can be
created as follows:

widget 6 7 4 2 label text =" [Exemplar]"
widget 0 0 4 2 button text =" [CategoryLeft]"
widget 12 0 4 2 button text =" [CategoryRight]"

The numbers in the example define the position and extent
of each widget on the grid, followed by the type of element
and its specific settings. The additional mouse-tracking set-
t ings are largely identical to the set t ings of the
mousetrap_response item (see Fig. 3 and the online example
experiment demonstrating a mousetrap_form).

Methodological considerations

With the basic structure of the experiment in place, the
stimulus display designed and the mouse-tracking added,
the experiment would now be ready to run. However,
some additional methodological details should be given
consideration. Mouse-tracking studies in the literature
differ in many methodological aspects, depending on
the implementation and researchers’ preferences. We
can provide no definitive recommendations, but we aim
to cover most common design choices and their imple-
mentation using the mousetrap plugin in the following
(see also Fischer & Hartmann, 2014; Hehman, Stolier,
& Freeman, 2015, for recommendations regarding the
setup of mouse-tracking experiments).

General display organization

One general challenge is the design of the information shown
during the mouse-tracking task. Because mouse movements
should reflect the developing commitment to the choice op-
tions rather than information search, the amount of new infor-
mation that participants need to acquire during tracking should
be minimized. At the same time, some information must be
withheld until tracking begins, so that participants develop
their preferences only during the mouse-tracking task and
not before.

To some degree, this also represents a challenge for the
current example experiment, where in addition to the name

of the exemplar, the information about the two response cate-
gories needs to be acquired. Dale et al. (2007) solved this by
presenting the response categories for 2,000 ms at the begin-
ning of each trial, even before the start button appeared. The
experiment sketched above can be adapted to implement this
procedure by including an additional sketchpad in the begin-
ning of the trial sequence that presents only the buttons and
their labels for a specified duration. This procedure was also
used in the experiment reported below.

Note that other mouse-tracking studies have used an alter-
native approach by presenting the critical information acous-
tically (e.g., Spivey et al., 2005). One advantage of this ap-
proach is that it prevents any artifacts that might be caused
from reading visually presented information. This approach
can be implemented easily in OpenSesame, for example, by
inserting a sampler item between the sketchpad and the
mousetrap_response item.

Starting position

As previously discussed, it is often desirable to have a com-
parable starting position of the cursor across trials, as is
achieved through the start button in our experiment.
However, this method only leads to generally comparable,
but not identical starting positions across trials. Though the
start coordinates can be aligned during the later analysis, the
cursor position can also be reset to exact coordinates by the
experimental software before the tracking starts. This can be
achieved by checking the corresponding option, and the start
coordinates can be specified as two integers (indicating pixel
values in the sketchpad metric where “0;0” represents the
screen center). These values are usually chosen to correspond
to the center of the start button, so that the jump in position is
minimized (the mousetrap_response item by default uses start
coordinates that correspond to the center of the button on a
form_text_display item).

Movement initialization

In many mouse-tracking studies, participants are explicitly
instructed to initiate their mouse movement within a certain
time limit (as described by Hehman et al., 2015) while other
studies refrain from giving participants any instructions re-
garding mouse movement (e.g., Kieslich & Hilbig, 2014;
Koop & Johnson, 2013). If such an instruction is given, com-
pliance will typically be monitored and participants may be
given feedback. The mousetrap items provide several ways of
implementing this. The items automatically compute the
initiation_time variable that contains the time it took the par-
ticipant to initialize any mouse movement in the trial. This
variable can be used to give feedback to the participant after
the task, for example, by conditionally displaying a warning
message if the initiation time is above a predefined threshold.
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Alternatively, it is also possible to display a warning message
while the mouse-tracking task is running. In this case, the time
limits and the customizedwarningmessage can be specified in
the item settings (see Fig. 3). We recommend not using this
second option during the actual mouse-tracking task to avoid
distracting participants. However, it might be useful in initial
practice trials.

Going beyond a mere a priori instruction to initiate move-
ment quickly, some studies have also used a more advanced
procedure implementing a dynamic start condition (e.g.,
Dshemuchadse, Scherbaum, & Goschke, 2013; Frisch,
Dshemuchadse, Görner, Goschke, & Scherbaum, 2015). In
these studies, the critical stimulus information was presented
only after participants crossed an invisible horizontal bound-
ary above the start position, ensuring that movement had
already been initiated. A dynamic start condition can be
implemented by including an additional sketchpad and
mousetrap_response item specifying an upper boundary for
tracking in the item settings (see corresponding online exam-
ple experiment).

In a first attempt to assess the influence of the starting pro-
cedure on mouse-tracking measures, Scherbaum and Kieslich
(2017) compared data from an experiment using such a dynam-
ic start condition to a condition in which the stimulus was
presented after a fixed delay. While results showed that theo-
retically expected effects on trial-level mouse-tracking mea-
sures (i.e., trajectory curvature) were reliably found in both
conditions, effects on within-trial continuous measures were
stronger and more temporally distinguishable in the dynamic
start condition. This was in line with generally more consistent
and homogeneous movements in the dynamic start condition.

Another alternative to ensure a quick initialization of
mouse movements is to restrict the time participants have for
giving their answer. This time limit can be specified (in ms) in
the corresponding option in the item settings (Fig. 3).3

Response indication

An additional methodological factor that varies across
mouse-tracking studies is the way participants indicate
their response. While many studies require participants
to click on the button representing their choice (e.g.,
Dale et al., 2007; Koop, 2013), in other studies merely
entering the area corresponding to the button with the
cursor is sufficient (e.g., Dshemuchadse et al., 2013;
Scherbaum et al., 2010). Both options are available in
mousetrap (see Fig. 3). If a click is required, the
(physical) mouse buttons that are accepted as a response
indication can be specified. By default, mouse clicks are

required and both left and right mouse clicks are
accepted.

Counterbalancing presentation order

A final consideration should be given to potential posi-
tion effects: So as not to introduce confounds between
response alternatives and the position of the correspond-
ing button, the mapping should be varied across trials
and / or across participants. This is especially important
if the response alternatives stay constant across trials
(which is often the case in decision making studies,
e.g., Kieslich & Hilbig, 2014; Koop, 2013). In the cur-
rent study, the position of the correct response and the
foil (left vs. right) should be varied. This can be done
statically by varying their order across trials (see
Fig. 1). To go further, the position of response options
can be randomized at run time using OpenSesame’s ad-
vanced loop operations (as was done in the experiment
reported below, see also shuffle_horiz online example
experiment).

Data collection

After creating the mouse-tracking experiment, it should be
tested on the computers that will later be used to collect the
data. We also recommend importing and analyzing self-
created test data to check that all relevant independent and
dependent variables have been recorded, and to check the
logging resolution (see below). When preparing the study
for running in the lab, a number of methodological factors
need to be considered.

As noted in the previous section, mouse-tracking ex-
periments should be run in full screen mode at the
maximum possible screen resolution. The OpenSesame
Run program, which is included with OpenSesame, can
run the experiment without having to open it in the
editor, making the starting process more efficient, and
hiding the internal structure, conditions, and item names
from participants.

In addition, the mouse sensitivity settings of the operat-
ing system should be checked and matched across labora-
tory computers, in particular the speed and acceleration of
the cursor relative to the physical mouse (these settings
cannot be influenced directly from within OpenSesame).
There is currently no single setting applied consistently
across studies in the literature, and the settings used in
the field are often not reported. Presumably, the settings
will often have been left to the operating system defaults
(under Windows 7 and 10, medium speed with accelera-
tion) or speed will have been reduced deliberately and ac-
celeration turned off (as recommended by Fischer &
Hartmann, 2014).

3 However, introducing a time limit might also induce time pressure which
might lead to other (undesired) effects.
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When preparing the laboratory, it should be ensured
that participants have enough desk space to move the
mouse. In this regard, we have found it useful to move
the keyboard out of the way and design the experiment so
that participants can complete the entire experiment by
using only the mouse. Additionally, heretofore largely un-
explored factors concern the handedness of participants,
the hand used for moving the mouse, and their interplay.
Some authors go as far as to recommend including only
right-handed participants (Hehman et al., 2015). We
would recommend assessing the handedness of partici-
pants, as well as the hand actually used for moving the
mouse in the experiment.

In general, we would like to stress the importance of
documenting mouse-tracking studies in sufficient detail,
both so that fellow researchers can replicate the experiment
and so that potentially differing findings between individ-
ual mouse-tracking studies can be traced back to differ-
ences in their methodological setup. Ideally, each of the
degrees of freedom sketched above should be documented,
as well as the specifics of the lab computers (especially
screen resolution and mouse sensitivity settings). It is also
very useful to provide a screenshot of the actual mouse-
tracking task. Finally, to give interested colleagues the op-
portunity to explore the specific details of the task setup, it
is also useful to provide them directly with the experiment
files. This is particularly easy if mouse-tracking experi-
ments are created in OpenSesame with the mousetrap
plugin, as OpenSesame is freely available for many plat-
forms. OpenSesame also provides the option to automati-
cally save experiments on the Open Science Framework
and share them with other researchers.

Example experiment

Having built and tested the experiment, enterprising col-
leagues could begin with the data collection immediately.
We have done exactly this, and have performed a replica-
tion of Experiment 1 by Dale et al. (2007). In doing so, we
aimed to assess the technical performance of the plugins
(especially with regard to the logging resolution), to dem-
onstrate the structure of the resulting data and how they can
be processed and analyzed, and to replicate the original
result that atypical exemplars lead to more curved trajec-
tories than typical exemplars. The exact experiment that
was used in the study (with German material and instruc-
tions) and a simplified but with regard to the task identical
version (with English example material and instructions)
can be found online at https://github.com/pascalkieslich/
mousetrap-resources, as can the raw data and analysis
scripts.

Methods

We used the 13 typical and 6 atypical stimuli fromDale et al.’s
Experiment 1 (see Table 1 in Dale et al., 2007) translated to
German. Participants first received instructions about their
task and completed three practice trials. Thereafter, the 19
stimuli of interest were presented in random order.
Participants were not told that their mouse movements were
recorded, nor did they receive any specific instructions about
moving the mouse.

Each trial began with a blank screen that was presented
for 1,000 ms. After that, the two categories were displayed
for 2,000 ms in the top left and right screen corners (the
order of the categories was randomized at run time), fol-
lowing the procedure of the original study. Next, the start
button appeared in the bottom center of the screen, and
participants started the trial by clicking on it. Directly
thereafter (the cursor position was not reset in this study),
the to-be-categorized stimulus word was displayed above
the start button and participants could indicate their re-
sponse by clicking on one of the two categories (see
Fig. 2).

The experiment was conducted full screenwith a resolution
of 1,680 × 1,050 pixels. Laboratory computers were running
Windows 7, and mouse settings were left at their default
values (acceleration turned on, medium speed). Cursor coor-
dinates were recorded every 10 ms.

The experiment was conducted as the second part in a
series of unrelated studies. Before the experiment, we assessed
participants’ handedness using the Edinburgh Handedness
Inventory (EHI; Oldfield, 1971). We used a modified version
of the EHI with a five-point rating scale on which participants
indicated which hand they preferred to use for ten activities
(-100 = exclusively left, −50 = preferably left, 0 = no prefer-
ence, 50 = preferably right, 100 = exclusively right) and in-
cluded an additional item for computer mouse usage.

Participants were recruited from a local student participant
pool at the University of Mannheim, Germany, and paid for
their participation (the payment was variable and depended on
other studies in the same session). Participants were randomly
assigned to either an implementation of the study using the
mousetrap plugin in OpenSesame (N = 60, 39 female, mean
age = 22.2 years, SD = 3.5 years) or another implementation (a
development version of an online mouse-tracking data collec-
tion tool) not included in the current article. Participants’mean
handedness scores based on the original EHI items indicated a
preference for the right hand for the majority of participants
(50 of 60 participants had scores greater than 60), no strong
preference for eight participants (scores between −60 and 60)
and preference for the left hand for two participants (below
−60). Interestingly, all participants reported using a computer
mouse preferably or exclusively with the right hand, as indi-
cated by the newly added item.
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Data preprocessing

In the following section, we focus on a simple but frequently
applied comparison of (aggregate) mouse trajectory curva-
ture.4 In doing so, we will go through all analysis steps from
loading the raw data to the statistical tests in the statistical
programming language R (RCore Team, 2016). The complete
analysis script is shown in Fig. 4.

The libraries required for the following analyses can be
installed from CRAN using the following command:
install.packages(c("readbulk","mousetrap")).
T h e r e a f t e r , b o t h l i b r a r i e s a r e l o a d e d u s i n g
library(readbulk) and library(mousetrap)
respectively. We will only touch upon the most basic fea-
tures of both; additional library-level documentation can
be accessed with the command package?mousetrap
(or online at http://pascalkieslich.github.io/mousetrap/),
and help for specific functions is available by prepending
a question mark to any given command, as in ?mt_
import_mousetrap.

OpenSesame produces an individual comma-separated
(CSV) data file for each participant. Because there is a single
logger item in the experiment that is repeated with each trial,
every line corresponds to a trial. Different variables are spread
across different columns. For our purposes, the most impor-
tant columns are those containing the mouse-tracking data,
namely the columns beginning with timestamps, xpos, and
ypos. These columns contain the interval since the start of
the experiment in milliseconds, and the x and y coordinates
of the cursor at each of these time points. The position coor-
dinates are given in pixels, whereby the value 0 for both x and
y coordinates corresponds to the center of the screen and
values increase as the mouse moves toward the bottom right.

As a first step after opening R (or RStudio), the current
working directory should be changed to the location where
the raw data is stored (either using setwd or via the user inter-
face in RStudio). To read the data of all participants into R, we
suggest the readbulk R package (Kieslich & Henninger, 2016),
which can read and combine data from multiple CSV files into
a single dataset. Readbulk provides a specialized function for
OpenSesame data (read_opensesame). Assuming that the raw
data is stored in the subfolder “raw_data” of the working direc-
tory, we can combine all individual files into a single data.frame
using read_opensesame("raw_data").

Next, the raw data are filtered so that only the trials of
interest are retained. Specifically, all trials from the practice
phase are excluded. Besides, we determined which trials were
solved correctly using the correct variable, which was auto-
matically set by the mousetrap_response item. The accuracy

in the current study was 88.9% for atypical and 95.4% for
typical trials – results comparable to those in the original study.
Following Dale et al., only the correctly completed trials were
kept for the analyses.

For preprocessing and analyzing mouse-tracking data, we
have developed the mousetrap R package (Kieslich et al.,
2016). A detailed description of the package and its functions
is provided elsewhere (Kieslich, Wulff, Henninger, Haslbeck,
& Schulte-Mecklenbeck, 2017). In the following, we will fo-
cus on the most basic functions needed for the present
analyses.

As a precondition for further analysis, the raw data must be
represented as a mousetrap data object using the
mt_import_mousetrap function. This function will automati-
cally select the mouse-tracking data columns from the raw
data5 and transform their contents into a data structure ame-
nable to analysis.

Next, several preprocessing steps ensure that the data can be
aggregated within and compared meaningfully between condi-
tions. Trajectories are remapped using mt_remap_symmetric
which ensures that every trajectory starts at the bottom of the
coordinate system and ends in the top left corner (regardless of
whether the left or the right response option was chosen).
Because the mouse cursor was not reset to a common coordi-
nate at the start of tracking,mt_align_start is needed to align all
trajectories to the same initial coordinates (0, 0). Trajectories are
then typically time-normalized so that each trajectory contains
the same number of recorded coordinates regardless of its re-
sponse t ime (Spivey et a l . , 2005) . To this end,
mt_time_normalize computes time-normalized trajectories
using a constant (but adjustable) number of time steps of equal
length (101 by default, following Spivey et al.).

Several different measures for the curvature of mouse tra-
jectories have been proposed in the literature (Freeman &
Ambady, 2010; Koop & Johnson, 2011). One frequently used
measure is the maximum absolute deviation (MAD). The
MAD represents the maximum perpendicular deviation of
the actual trajectory from the idealized trajectory, which is
the straight line connecting the trajectories’ start and end
points.6 The MAD and many additional trial-level measures
can be calculated using the mt_measures function.7 These
measures are then typically aggregated per participant for each
level of the within-part icipants factor. For this ,
mt_aggregate_per_subject can be used (see Fig. 4).

4 These analyses differ from the more elaborate analyses in the original article
by Dale et al. (2007), which we have omitted for reasons of brevity. We
provide an R script for replication of the original analyses online.

5 In case that more than one mousetrap item is included in the experiment, the
names of the columns need to be provided explicitly using the corresponding
arguments.
6 If this maximum deviation occurs in the direction of the non-chosen option
(i.e., “above” the idealized trajectory), it receives a positive sign, otherwise a
negative sign.
7 This function uses the raw trajectories by default to avoid the (unlikely)
possibility that relevant spatial information gets lost during time normalization.
In the current sample, the MAD values based on the raw trajectories and on the
time-normalized trajectories correlate to .9999.
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Data quality check

To check whether the intended logging resolution was actually
met, mt_check_resolution can be used to compute the
achieved interval between logs. Across all recorded mouse
positions in all trials that entered the following analyses,
99.4% of the logging intervals were exactly 10 ms, corre-
sponding to the desired logging resolution. An additional
0.5% of intervals were shorter than 10 ms, due to the fact that
every click in the experiment leads to an immediate recording
of the current cursor position, even outside of the defined
logging interval. Finally, 0.1% of logging intervals were great-
er than 10ms, of which 76.2% lagged by 1 additional ms only.
Overall, the mean timestamp difference was 9.98 ms (SD =
0.43 ms).

A more comprehensive technical validation of the mouse-
trap plugin is reported in the appendix. Extending a procedure
by Freeman and Ambady (2010), we used external hardware
(Henninger, 2017) to generate known movement patterns
from the start button to one of the response buttons. An anal-
ysis of the recorded cursor positions revealed that almost ev-
ery change in position was captured on the raw coordinate
level, and that the recorded positions and derived trial-level
measures almost perfectly corresponded to their expected
values.

Results

A quick first visual impression of the effect of the typicality
manipulation on mouse movements can be obtained by
inspecting the aggregate mouse trajectories. Specifically,

mt_plot_aggregate can be used to average the time-
normalized trajectories per condition (first within and then
across participants) and to plot the resulting aggregate trajec-
tories (Fig. 5). In line with the hypothesis by Dale et al., the
aggregate response trajectory in the atypical condition showed
a greater attraction to the non-chosen option than the trajectory
in the typical condition.

To statistically test for differences in curvature, the average
MAD values per participant and condition can be compared.
In line with the hypothesis and the visual inspection of the
aggregate trajectories, the MAD was larger in the atypical
(M = 343.8, SD = 218.6) than in the typical condition (M =

Fig. 4 R script for replicating the main data preparation and analysis
steps. First, the individual raw data files are merged and read into R.
They are then filtered, retaining only correctly solved trials from the
actual task. Next, the mouse-tracking data are imported and
preprocessed by remapping all trajectories to one side, aligning their

start coordinates and computing trial-level summary statistics (such as
the maximum absolute deviation, MAD). The MAD values are
aggregated per participant and condition, and compared using a paired
t-test. Finally, the trajectories are time-normalized, aggregated per
condition, and visualized
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Fig. 5 Average time-normalized trajectories per experimental condition
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172.2, SD = 110.8). This difference was significant in a paired
t-test, t(59) = 6.73, p < .001, and the standardized difference of
dz = 0.87 represented a large effect.

The analyses just described give an initial impression of
what mouse-tracking data look like. While we have provided
a first simple test of our basic hypothesis, the analysis has
barely scratched the surface of what is possible with this data
(and what can be realized using the mousetrap package).
Specifically, we have skipped a number of important prepro-
cessing and analyses steps that are standard procedure in
mouse-tracking studies, such as the inspection of individual
trials to detect anomalous or extreme mouse movements
(Freeman & Ambady, 2010) and analyses to detect the pres-
ence of bimodality (Freeman & Dale, 2013).8 The original
article our study was based upon also contains many more
analyses (see online supplementary material for a replication
of the analyses by Dale et al., 2007, based on the current
dataset).

Several more advanced analyses methods and measures
have also been proposed, such as velocity and acceleration
profiles, spatial disorder analyses via sample entropy, or the
investigation of smooth versus abrupt response competition
via distributional analyses (see, e.g., Hehman et al., 2015,
for an overview). Many of these methods and measures are
implemented in the mousetrap R package, and are described
and explained in the package documentation.We discuss else-
where in detail the methodological possibilities and consider-
ations when processing and analyzing mouse-tracking data, as
well as their implementation in mousetrap (Haslbeck, Wulff,
Kieslich, Henninger, & Schulte-Mecklenbeck, 2017; Kieslich
et al., 2017).

Discussion

In this article, we presented the free and open-source software
mousetrap that offers users easy and convenient means of
recording mouse movements, and demonstrated how a simple
experiment can be built and analyzed. Specifically, we intro-
duced mousetrap as a plugin that adds mouse-tracking to the
popular, open-source experiment builder OpenSesame,
allowing users to create mouse-tracking experiments via a

graphical user interface. To demonstrate the usage of mouse-
trap, we created and replicated a mouse-tracking experiment
by Dale et al. (2007), and analyzed the resulting data using the
mousetrap R package. In line with the original hypothesis and
results, we found that mouse trajectories displayed greater
curvature towards the competing response option for atypical
compared to typical exemplars. Naturally, we have only been
able to discuss the most salient decisions in the construction of
mouse-tracking experiments. However, where possible, we
have noted the additional degrees of freedom and design
choices, and sketched their implementation.

Mousetrap offers an alternative to the two major ways
mouse-tracking studies are currently implemented. First, re-
searchers have built custom code-based implementations of
mouse-tracking for specific paradigms. These custom-built
experiments can be flexibly tailored to the individual re-
searchers’ needs, but their implementation requires extensive
programming skills, and paradigms are often cumbersome to
adapt to new tasks. Secondly, researchers have relied on
MouseTracker (Freeman & Ambady, 2010), a specialized ex-
perimental software for building mouse-tracking experiments
and analyzing the resulting data.While this software has made
mouse-tracking studies accessible to more researchers by pro-
viding a visual interface for designing the mouse-tracking
screen and recording the mouse movements, it forgoes the
flexibility and many useful features of general-purpose exper-
imental software (such as the option to define the structure of
the experiment itself via a graphical user interface, or to di-
rectly include a scripting language for customization and run
time adaptation).

Aiming to combine the advantages while avoiding the dis-
advantages of both approaches, mousetrap extends the general
purpose graphical experiment builder OpenSesame (Mathôt
et al., 2012). Thereby, it allows users to easily create mouse-
tracking experiments via a graphical interface without requir-
ing programming skills. In addition, it makes available the
many useful features of OpenSesame, such as a user-friendly
interface for designing the structure of the experiment and
implementing advanced randomizations, the support for di-
verse audiovisual stimuli, an open data format, extensibility
via Python scripts, and cross-platform availability.

While mouse-tracking is a frequently used method for
assessing response dynamics (Koop & Johnson, 2011), it
should be noted that other methods are also available, such
as the use of remote controllers (e.g., a NintendoWii Remote,
cf. Dale, Roche, Snyder, &McCall, 2008) or the direct record-
ing of hand movements (via a handle, e.g., Resulaj, Kiani,
Wolpert, & Shadlen, 2009, or using a motion capture system,
e.g., Awasthi, Friedman, & Williams, 2011). Another ap-
proach that might become more important in future research
is the tracking of finger (or pen) movements via touchscreens
(e.g., Buc Calderon, Verguts, & Gevers, 2015; Wirth, Pfister,
& Kunde, 2016) due to the increasing availability of tablets

8 A simple bimodality analysis can be conducted by computing bimodality
coefficients (BC). Following Freeman and Ambady (2010), we z-standardized
MAD values per participant and computed the BC separately for the atypical
and the typical condition. In both conditions, the BC was higher than the
recommended cutoff (.555), BCTypical = .608, BCAtypical = .593, indicating a
bimodal distribution. To analyze whether the difference in MAD between
typicality conditions remained significant after excluding outliers, we exclud-
ed all trials with |zMAD| >1.50 and repeated the main analyses (for details, see
online supplementary material). As in the complete dataset, aggregate MAD
was significantly higher in the atypical than in the typical condition, p < .001.
Note, however, that more advanced and comprehensive alternative analyses
are available (Kieslich et al., 2017).
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and smartphones. The mousetrap plugin could be extended to
implement the latter approach in OpenSesame.

With mousetrap, we hope to make mouse-tracking acces-
sible to researchers from many different fields, and thereby to
enable them to gain insights into the dynamics of cognitive
processes. Given the fast-paced development of the mouse-
tracking method, we hope that our modular and open ap-
proach will help users to implement the increasingly complex
designs, to combine mouse-tracking with other process trac-
ing methods such as eye-tracking, and to apply the method in
fields where only few mouse-tracking studies have been con-
ducted so far, such as behavioral economics with real-time
interactive experiments. Similarly, we hope that the open data
format and the close link to open analysis tools such as those
demonstrated herein will make the manifold methods of ana-
lyzing mouse-tracking data widely available.
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Appendix

Software validation

To validate the data collection procedure, we extended the
procedure employed by Freeman and Ambady (2010), who
simulated and processed artificial mouse trajectories. We used
external hardware (Henninger, 2017) to generate two known
movement patterns that connected the start and the top left
response button: either a diagonal line, or a triangular path
leading only upward at first, and then left towards the response
button (Fig. 6). The validation experiment was built in
OpenSesame (version 3.1.6, using the legacy backend9) using
the mousetrap_response item (version 1.2.1). The screen lay-
out and mouse-tracking settings were identical to the example
experiment reported in the main article (cf. Figs. 2 and 3). The
study was run on a laboratory terminal with modest hardware
(Windows 7 Professional, on an Intel Pentium Dual-Core run-
ning at 3 GHz with 4 GB RAM).

In the following simulations, we ventured to perform a
strict test of the software: First, to test the performance of
the data collection procedure under heavy load, we simulated

rapidly changing cursor coordinates. Specifically, in all simu-
lations, the cursor position was updated at the logging resolu-
tion (10 ms) to assess whether data is recorded correctly when
the cursor position changes as fast as data are collected. On
each update, the cursor moved to the next integer pixel loca-
tion on its path, that is, both one pixel up and one left for 800
px for the diagonal trajectory, or first one pixel upwards for
800 px and then one left for 800 px for the triangular path. The
trial was started by a (simulated) click on a start button, which
initiated the display of the response buttons, and ended with a
mouse click on the left response button, with pauses of 110ms
before movement initiation and 100 ms between the end of
movement and the simulated response. This means that the
time between the start and end click was 8,210 ms for the
diagonal path and 16,210 ms for the triangular path. Second,
we validate the resulting data at the lowest possible level, that
is, using the raw trajectory coordinates of each individual
(simulated) trial. In scientific practice, standard mouse-
tracking analyses will compensate for imperfect measurement
to some degree because mouse trajectories are typically time-
normalized and analyses are based on aggregate statistics.

For both the diagonal and the triangular path, we simulated
1,000 trials. The resulting data files were read into R and
processed and analyzed using the mousetrap R package
(Kieslich et al., 2016). All data and analyses scripts can be
found at https://github.com/pascalkieslich/mousetrap-os#
validation.

To determine the temporal alignment between the external
hardware and the data recorded by the mousetrap_response
item, we performed several analyses (based on the absolute
timestamps recorded in OpenSesame): After the click on the
start button, the screen with the response buttons was
displayed with an average delay of 6.9 ms (SD = 0.7 ms) in
both simulations. Mouse-tracking started after an additional
delay of 0.7 ms (SD = 0.5 ms). This means that, on average,
7.6 ms passed between a click on the start screen and tracking
onset on the next screen. Taking this delay into account, the
observed tracking durations10 in both simulations matched the
expected value very closely, with an average duration of
8202.9 ms (SD = 0.9 ms) for the diagonal simulation, and an
average duration of 16203.1 ms (SD = 0.9 ms) for the triangu-
lar simulation.

Next, we assessed whether the specified logging resolution
was met, using the mt_check_resolution function to compute
the time interval between subsequent recorded cursor posi-
tions. In the diagonal simulation, the mean interval was
10.0ms (SD = 0.3 ms) matching the intended logging interval.
Specifically, 99.86% of the logging intervals were exactly

9 OpenSesame provides other backends with superior temporal accuracy.
However, we used legacy in our simulations and the example experiment, as
it is generally more stable, especially when using forms, which are often used
when designing mouse-tracking experiments. More information on general
benchmark results for OpenSesame can be found at http://osdoc.cogsci.nl/
manual/timing/

10 Tracking durations can be obtained via the response_time variable stored in
OpenSesame or by using the RT variable computed from the timestamps using
the mt_measures function of the mousetrap R package. Both approaches lead
to identical results.
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10 ms, corresponding precisely to the desired logging resolu-
tion. An additional 0.12% of intervals were shorter than 10 ms,
due to the fact that each click led to an immediate recording of
the current cursor position, even before the end of a logging
interval (and because logging was not exactly synchronized
with simulated cursor movements and clicks). Finally, 0.02%
of logging intervals were greater than 10 ms, of which 99.3%
lagged by 1 additional ms only. Similar results were obtained
in the triangular simulation, in which the mean timestamp dif-
ference was 10.0 ms (SD = 0.2 ms) and where 99.92% of the
logging intervals were exactly 10 ms, 0.06% were shorter, and
0.02% longer (of which 94.4% lagged by 1 ms only).

To gain a first visual impression of the data, all raw trajec-
tories were plotted separately for the two simulations. As can
be seen in Fig. 6, all trajectory shapes were perfectly aligned
within each simulation and no anomalous positions were
recorded.

Missed position changes due to lags in the logging interval
can be identified simply by computing the distance between
two adjacent cursor positions recorded in each trial. These are
expected to be either 0 px for a period where the cursor did not
move along the respective dimension or 1 px along one (for
the triangular simulation) or both (for the diagonal simulation)
dimensions for a period with movement. Any value greater
than 1 px indicates a missed change in position. In the diago-
nal simulation, 99.9995% of the subsequently recorded posi-
tions were either 0 px or 1 px apart for both x and y coordi-
nates – the remaining 0.0005% differed by 2 px along either
dimension, indicating that a single movement was missed. In
the triangular simulation that involved changes in x coordinate
only for the first, and y coordinate only for the second half of
the trial, for the x coordinates, 99.9949% of the distances were
either 0 px or 1 px, and 0.0051% were 2 px indicating that a
single movement was missed (in only a single additional case

were two changes in position missed). For the y coordinates,
99.9953% of the distances were either 0 px or 1 px, and
0.0047% were 2 px.

To assess the accuracy of the recorded cursor position at each
point during the trial, we computed its expected position for each
set of recorded coordinates (based on the known path generated
by the external hardware, and taking into account the average
tracking onset). We then computed Pearson correlations between
the observed and the expected position separately for the x and y
coordinates. In the diagonal simulation, the correlation was
.99999999996 for both x and y coordinates, and the expected
and observed position were identical in 99.9995% of cases (and
differed by 1 px for the remaining cases). In the triangular sim-
ulation, the correlation was .999999993 for the x coordinates,
and .999999995 for the y coordinates. For the x coordinates,
the observed and expected position were identical in 99.8994%
of cases (and differed by 1 px for all remaining cases except one,
where it differed by 2 px). For the y coordinates, the observed
and expected position were identical in 99.9298% of cases (and
differed by 1 px for the remainder).

Table 1 Expected values, observed mean and standard deviation for
selected mouse-tracking measures per simulation

Diagonal Triangular

MAD AUC AD MAD AUC AD

Expected 0.00 0.00 0.00 565.69 320000.00 279.01

M 0.00 0.00 0.00 565.69 320000.00 279.01

SD 0.00 0.00 0.00 0.00 0.00 0.02

MAD maximum absolute deviation, AUC area under curve, AD average
deviation.

In the diagonal simulation,Ms for MAD and AD were < 9*10-14 and SD
for AD was < 3*10-20
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Fig. 6 Plot of all raw trajectories for each simulation. All trajectories started at the bottom center of the screen and ended at the top left
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Finally, we computed a number of mouse-tracking indi-
ces based on the raw trajectory data , using the
mt_measures function. The descriptive statistics for a se-
lection of the measures can be found in Table 1. In line
with the expected measures based on the predetermined
paths, the maximum absolute deviation (MAD), area under
curve (AUC) and average deviation (AD) were 0 for the
diagonal simulation and did not vary between trials. For
the triangular simulation, the MAD always met the expect-
ed value of 565.69 px (which is the height of a right-angled
triangle where both legs have a length of 800 px) and the
AUC was always 320,000 px2 (which corresponds exactly
to the area of the previously described triangle). The AD
values were on average also as expected (M = 279.01 px)
with a minor variation between trials (SD = 0.02 px) be-
cause the AD takes every logged coordinate value into
account and is therefore most sensitive to variations
therein.

In sum, with regard to both logging resolution and mea-
sured coordinates, the mousetrap plugin for OpenSesame
captures the raw mouse trajectory extremely well. It should
be noted that the current validation was performed under
even stricter conditions than those used in the validation of
another software package (Freeman & Ambady, 2010): in
the current simulation, the cursor was updated at a higher
rate (every 10 ms instead of 30 ms) and more fine-grained
analyses were used, focusing on exact raw trajectories in-
stead of averaged data. When applied to actual data, even
the remaining minute discrepancies will most often be neg-
ligible given that mouse-tracking analyses usually interpo-
late the raw trajectories to some extent (e.g., through time-
normalization) and analyze trial summary statistics such as
the measures reported above. Thus, we are confident that
our software will perform reliably under most conditions.
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Mouse-tracking: A practical guide to implementation and analysis 

The motivation behind process tracing is to go beyond the mere observation of a choice as 

the behavioral outcome and more directly observe the psychological process by collecting addi-

tional variables. A central unobserved quantity in choice tasks is the degree to which each alter-

native received consideration during the choice process, and how commitment to and conflict be-

tween options developed over time. Mouse-tracking is based on the assumption that motor move-

ments in a given time interval contain a signal of the cognitive processes during that period 

(Spivey & Dale, 2006). Specifically, it is assumed that the direction of movement toward or away 

from alternatives reflects their relative attraction at a given time point during the decision process. 

To gain access to this information, mouse-tracking records hand movements indirectly by sam-

pling the cursor position of a computer mouse with a high frequency while participants decide 

between (and move toward) options presented at different locations on the computer screen. 

Mouse-tracking is an increasingly popular process tracing technique that has been applied to a 

wide range of questions throughout many fields of psychology (see Chapters 9-10; see also Free-

man, Dale, & Farmer, 2011; Stillman, Shen, & Ferguson, 2018). 

This chapter provides an introduction to the collection, analysis and visualization of mouse-

tracking data using free, open-source software. We show how to create mouse-tracking experi-

ments using the graphical experiment builder OpenSesame (Mathôt, Schreij, & Theeuwes, 2012) 

in combination with the mousetrap plugin (Kieslich & Henninger, 2017). Analysis and visualiza-

tion rely on the mousetrap package (Kieslich, Wulff, Henninger, Haslbeck, & Schulte-Mecklen-

beck, 2018) for the statistical programming language R (R Core Team, 2016).1  

To illustrate the method and its implementation in mousetrap, we replicate a mouse-track-

ing experiment by Dale, Kehoe, and Spivey (2007). In this study, participants classified exemplars 

(animals) into one of two categories (e.g., mammal or bird) by clicking on the corresponding but-

tons located at the top-left and top-right of the screen. The independent variable was the typical-

ity of each exemplar for its category. The experiment included typical exemplars (e.g., dog for 

mammal) as well as atypical ones that shared features both with the correct and the competing 

                                                                    

1 Note that other options for creating mouse-tracking experiments and analyzing mouse-tracking data are availa-

ble (e.g., MouseTracker, cf., Freeman & Ambady, 2010) and a discussion of the different software packages is pro-

vided elsewhere (Kieslich & Henninger, 2017; Kieslich et al., 2018). 
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category (e.g., a bat, sharing both features with the correct category mammal and the incorrect 

category bird). Dale et al. (2007) hypothesized that for atypical exemplars, both response options 

would receive some degree of activation, whereas for the typical exemplars, activation would 

largely be limited to the correct category. Consequently, for atypical exemplars, the incorrect cat-

egory should exert a stronger attraction, and mouse movements should deviate more in its direc-

tion even if participants finally choose the correct option.2 

Creating mouse-tracking experiments 

In this section we demonstrate how a mouse-tracking experiment can be created in 

OpenSesame (Mathôt et al., 2012). OpenSesame is a free, open-source software for creating ex-

periments via a graphical user interface which additionally allows for full customization of studies 

using Python code.3 To simplify the creation of mouse-tracking experiments inside this frame-

work, we developed the mousetrap plugin (Kieslich & Henninger, 2017) for OpenSesame. Instal-

lation instructions and additional documentation for the plugin are available in its GitHub repos-

itory at https://github.com/pascalkieslich/mousetrap-os. 

Creating an experiment 

The first step is to start OpenSesame and create a new experiment by clicking on File/New 

and selecting the default template. Experiments in OpenSesame are assembled from a set of items, 

for example, a sketchpad item for presenting graphical content on the screen, a keyboard_response 

item for collecting key presses, and a logger item for writing data into log files. Figure 1 shows the 

OpenSesame interface with the item toolbar on the left-hand side. To its right, the overview area 

represents the study’s structure, in that the items therein are run sequentially from top to bottom. 

An experiment is built by dragging and dropping items from the toolbar into the overview area. 

Sequences can be used to run a number of items in succession. In addition, loop items can be used 

to repeatedly run sequences with some degree of variation, for example, trials with varying stimuli 

(Figure 1, right panel). 

  

                                                                    
2 The data for this replication were collected by Kieslich and Henninger (2017); the corresponding material, data, 

analyses, and results are available at https://github.com/pascalkieslich/mousetrap-resources. 
3 OpenSesame can be obtained free of charge from http://osdoc.cogsci.nl/, where a general introduction to the 

program and detailed documentation are also available. 

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-os
http://osdoc.cogsci.nl/
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Figure 1. User interface of OpenSesame, showing the final state of the tutorial experiment. In the left-

most panel, the item toolbar contains the available items, including the mousetrap plugin items visible 

toward the bottom. The overview area represents the study’s structure. The right panel shows the user 

interface of the stimulus loop containing four exemplary stimuli. 

 

Setting up the screen. 

Mouse-tracking experiments are typically run in fullscreen mode. Therefore, before adding 

content to a new experiment, the screen resolution should be adjusted to match that of the com-

puters used for data collection. This is done in the overall experiment settings, which are accessi-

ble by clicking on the topmost item in the study overview area (“example_experiment” in  

Figure 1). 

Creating the study structure. 

The first item in the experiment provides the instructions. For this, we use a form_text_dis-

play item that presents text and a button to continue the study. It can be added to the study by 

dragging it from the item toolbar into the overview area (cf., Figure 1). 

In the central part of our study, participants will make categorization decisions for different 

animal exemplars and pairs of response categories. To accommodate this recurring structure, we 

include a loop item that varies the information presented on each iteration. In the loop options, 

the stimulus material is represented as a table where rows reflect the different stimuli and columns 
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contain the variables that differ for each stimulus (Figure 1, right panel). In our case, the vital 

pieces of information are the name of the exemplar and the response categories, which are con-

tained in the columns Exemplar, CategoryLeft and CategoryRight. The additional columns specify 

the correct response and typicality of each combination; though not presented to participants, 

they are stored in the dataset and facilitate later analysis. Using the default settings shown in Fig-

ure 1, the order of stimuli is randomized, and each stimulus is presented once. 

Nested inside the loop, a sequence item is used to build each trial. It combines several screen 

pages as well as the collection of responses and logging of the stimulus and response information. 

Building a mouse-tracking screen. 

The central part of a mouse-tracking experiment is the stimulus display that presents the 

name of the exemplar and the two response buttons (located in the upper screen corners). We 

create this display by placing a sketchpad item into the trial sequence. In our example, it is named 

“present_stimulus” (Figure 2).4 The content of the sketchpad item is added using the visual editor. 

The available types of elements for creating content are shown in the toolbar to the left of the 

preview. After selecting an element type, the contents can be drawn inside the preview (to move 

or edit them afterwards they can be selected using the topmost option in the toolbar). In our ex-

ample, rectangles (rect elements) of equal size represent the response buttons, placed in the top 

left and right screen corners. Button labels are added in the center of each button using textline 

elements. An additional textline element is used to present the name of the to-be-categorized ex-

emplar in the lower part of the screen. By default, the inserted text is presented verbatim. How-

ever, one can easily vary content across trials by replacing static text with the appropriate variable 

names in square brackets (i.e., “[CategoryLeft]” and “[CategoryRight]” for the button labels and 

“[Exemplar]” for the exemplar name). In every iteration of the loop, OpenSesame will replace the 

variable name with the variable’s current value. To make sure that the button borders are identi-

fiable in the subsequent mousetrap_response item (cf., next section), we must furthermore label 

the two rect elements using the Name field (cf., Figure 2 top row). Each button border is labeled 

using the corresponding variable name (“[CategoryLeft]” and “[CategoryRight]”).  

                                                                    
4 The additional screens that are presented beforehand (“present_categories” and “present_start”) will be described 

in the section Design considerations.  
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Figure 2. Sketchpad item used to create the main stimulus display. The exemplar is displayed using a 

textline element that contains the name of the corresponding variable from the stimulus loop (cf., Fig-

ure 1). The two button borders are created using rect elements. Each button border is labeled using the 

Name field (see top row) and as label the corresponding values from the stimuli loop are used. The 

button labels are displayed using textline elements that are placed in the center of each button. 
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Figure 3. Settings of the mousetrap_response item. 

 

Tracking mouse movements. 

After creating the stimulus presentation, we specify the collection of mouse-tracking data 

and button clicks using the mousetrap_response item, which is inserted directly after the sketchpad 

item and called “get_response”.5 To start recording cursor positions immediately following stim-

ulus presentation, the duration of the sketchpad is set to 0. 

The mousetrap_response item records the cursor position at a constant sampling rate (10 ms 

by default) until the participant clicks on one of the buttons. To register responses, the corre-

sponding buttons need to be defined (Figure 3, upper part): first, the number of buttons is speci-

fied. Then, the name of the sketchpad that presents the buttons is entered (“present_stimulus”). 

                                                                    
5 The mousetrap plugin includes two items for tracking mouse movements. As an alternative to the mousetrap_re-

sponse item, a mousetrap_form item combines stimulus presentation and response collection; its contents are de-

fined using a basic syntax instead of a visual editor. More information is provided in Kieslich and Henninger (2017). 
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Finally, the buttons are specified via the labels of the button borders used on the sketchpad (“[Cat-

egoryLeft]” and “[CategoryRight]”). As a result, if the participant selects the left button, the value 

of the variable CategoryLeft is recorded as their response. 

The mousetrap_response item also provides additional options (cf., lower part of Figure 3). 

For example, if the name of the correct button is specified, OpenSesame will automatically create 

a variable correct that is set to 1 or 0 for correct and incorrect answers, respectively (this is useful 

for analysis, as well as for providing feedback during the study). Additional design options are 

discussed in the section Design considerations. 

Storing data. 

As the final part of the trial sequence, a logger item writes the data from the current trial 

into a log file. This includes variables pertaining to the study as a whole (e.g., the subject_nr), the 

current values of all variables in the stimuli loop (cf., Figure 1) and the response variables. 

OpenSesame stores participants’ responses in two places – global variables (response, re-

sponse_time etc.) that always store the last recorded response and response time in the experiment, 

and item-specific variables named after the item that collected the response (e.g., response_get_re-

sponse in the current example). The recorded mouse positions and associated timestamps are 

stored in item-specific variables only, in order to save memory (xpos_get_response, ypos_get_re-

sponse and timestamps_get_response). 

Design considerations 

When setting up mouse-tracking experiments, researchers are faced with a number of de-

sign choices. These include decisions about the starting procedure, the cursor speed and acceler-

ation settings, and the response mode (click or mouse-over). Each of these choices aims to ensure 

that all cognitive processes relevant to the decision take place while the tracking is active (which 

is, in many cases, the period between the click on a start button and the selection of one of the 

response options), so that the process of interest is captured in the trajectories. In the remainder 

of this section, we discuss available options for a number of important design choices, and their 

potential impact on the recorded mouse trajectories (see also Fischer & Hartmann, 2014; Hehman, 

Stolier, & Freeman, 2015; Kieslich & Henninger, 2017; Scherbaum & Kieslich, 2018, for additional 

discussions about design choices). 
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Start button. 

Virtually all mouse-tracking experiments try to enforce a comparable start position of the 

cursor across trials, thereby ensuring that the cursor is centered horizontally and approximately 

equidistant to all response options at the beginning of each trial. To achieve this, another screen 

with a start button can be added prior to the display of the task stimulus. The button ensures that 

participants have to return to a common area before subsequently initiating mouse movements 

for a new choice. In the current experiment, this is implemented using a sketchpad called “pre-

sent_start” combined with a mousetrap_response item called “get_start_click” (cf., Figure 1). As be-

fore, the screen content is assembled in the visual editor and a start button is placed in the lower 

center of the screen (and labeled “Start”). The name of the start button is entered in the options 

of the mousetrap_response item as the single possible response. As mouse-tracking data prior to 

the stimulus presentation are not of interest, the option save mouse-tracking data can be un-

checked for the “get_start_click” item. While the start button ensures that the cursor position at 

tracking onset is comparable across trials, it does not guarantee that it is identical. If this is de-

sired, one can select “Reset mouse position when tracking starts” and specify coordinates in the 

“get_response” item (cf., Figure 3). 

Information presentation. 

Another key challenge in designing mouse-tracking studies is the temporal order in which 

task-relevant information is presented to the participant. On the one hand, the amount of infor-

mation presented after the onset of tracking should be minimized to ensure that the collected 

mouse-tracking data reflects the decision processes. On the other hand, the decision-critical in-

formation needs to be withheld until tracking begins, to prevent participants from making their 

decision beforehand. In the current example, these considerations are accommodated by present-

ing the information about the two response categories for 2000 ms prior to tracking onset, but 

presenting the to-be-categorized exemplar only after the click on the start button (following the 

original procedure of Dale et al., 2007). We implemented this procedure by including another 

sketchpad item called “present_categories” at the beginning of the trial that presents only the two 

response categories, before the start button is made available to participants (cf., Figure 1). 
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Counterbalancing. 

Another design factor concerns the assignment of response options to the button positions 

on the screen. Specifically, in the current study we would like to ensure that the correct answer is 

not always presented on the same side. One solution for this is counterbalancing the position of 

the correct answer between stimuli, while keeping their position fixed for all participants (cf., Fig-

ure 1). Ideally, however, the position of both response options is drawn anew for each participant 

and stimulus (this can be achieved in OpenSesame through the advanced randomization operation 

shuffle horizontal). 

Starting procedure. 

For mouse-tracking to reflect the cognitive processes underlying the choice, movement 

must occur while the cognitive process is ongoing. It has been shown that the starting procedure 

has a considerable influence on the obtained trajectories (Scherbaum & Kieslich, 2018). 

Many mouse-tracking studies have used a so-called static starting procedure, in which the 

stimulus is shown immediately after participants have clicked on the start button and without any 

specific measures taken to ensure movement during processing (our tutorial experiment following 

Dale et al., 2007, is an example for such a setup). While many mouse-tracking studies that use a 

static starting procedure find theoretically relevant effects in mouse trajectories, this procedure 

does not exclude the possibility that (in some trials) decision-relevant processes take place before 

the mouse movement is initiated and therefore are not captured by mouse trajectories. 

To ensure that the cognitive processes under investigation do not take place before mouse 

movement initialization, some studies have modified the starting procedure. One option is the 

static starting procedure with delay, in which a brief lag of, for example, 500 ms, is inserted be-

tween clicking the start button and stimulus presentation. Previous studies reported that this of-

ten successfully led participants to initialize movement before the stimulus appeared (e.g., Spivey, 

Grosjean, & Knoblich, 2005). Other studies employ a static starting procedure with immediate 

stimulus presentation, but explicitly instruct participants to initiate their mouse movement within 

a certain time limit and display a warning to participants after the trial if the initiation time exceeds 

the threshold. The exact time limit depends on the task (a typical value is 400 ms; see Hehman et 

al., 2015, p. 388–389, for a discussion). 
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A more rigorous option, however, is to implement a dynamic starting procedure that presents 

the stimulus only after participants have moved the mouse upwards for a minimum distance (e.g., 

Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010). The dynamic procedure forces partici-

pants to initiate their movement in order to receive the critical information needed to make the 

choice. It can be implemented by placing an invisible horizontal boundary slightly above the start 

button that triggers the presentation of the stimulus once it is crossed (cf., Frisch, Dshemuchadse, 

Görner, Goschke, & Scherbaum, 2015). This procedure has been shown to lead to more consistent 

movements and larger effects in within-trial temporal analyses (Scherbaum & Kieslich, 2018).6 

Mouse sensitivity. 

Another design choice is the computer’s mouse sensitivity, in particular the cursor speed 

and acceleration. One option is to leave these settings to the operating system defaults (under 

Windows 7 and 10, medium speed with acceleration). However, it is often preferable to reduce 

mouse speed and switch off mouse acceleration (Fischer & Hartmann, 2014). This is particularly 

relevant when using a dynamic starting procedure to ensure that participants can read the dynam-

ically presented stimulus information while continuously moving upwards. The mouse sensitivity 

settings cannot be adjusted directly within OpenSesame, but need to be set in the computer’s sys-

tem preferences. 

Response mode. 

The two main response modes in mouse-tracking studies are clicking on and moving over 

the response buttons. In the mousetrap plugin, users can switch between the two response modes 

by checking or unchecking the option Click required to indicate response, which is enabled by de-

fault (cf., Figure 3). 

Data collection and testing. 

After creating the experiment, it can be run from within OpenSesame for testing or using 

OpenSesame Run for data collection in the laboratory (see Kieslich & Henninger, 2017, for more 

information on running mouse-tracking experiments). Mouse-tracking studies also usually assess 

the handedness of participants and the hand participants use for moving the mouse (with some 

authors recommending only to include right-handed participants, cf., Hehman et al., 2015). 

                                                                    
6 An example experiment implementing this procedure can be found at https://github.com/pascalkieslich/mouse-

trap-os#examples. 

https://github.com/pascalkieslich/mousetrap-os#examples
https://github.com/pascalkieslich/mousetrap-os#examples
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Analyzing mouse-tracking data 

We will now demonstrate the typical steps of a basic mouse-tracking analysis using the data 

from the replication experiment described above (Kieslich & Henninger, 2017). For this analysis, 

we will use the mousetrap package (Kieslich et al., 2018) in the statistical programming language 

R (R Core Team, 2016), which facilitates preprocessing, analysis and visualization of mouse-track-

ing data.7 Once installed, mousetrap functions can then be made available within an R session by 

loading the package via:  

library(mousetrap) 

A detailed overview of its functionality is provided online at  

http://pascalkieslich.github.io/mousetrap/ or within R using the command:  

package?mousetrap 

In the following, we discuss the most important analysis steps, starting with data import 

and preprocessing operations, followed by the computation and analysis of common indices, tem-

poral analyses, and visualizations. 

Import 

First, the raw data need to be read into R’s workspace. OpenSesame stores the data for each 

participant in a separate csv file. To load all csv files from a directory and combine them into a 

single dataset, we use the read_opensesame function from the readbulk package (Kieslich & Hen-

ninger, 2016). The following command assumes that all data files can be found in the folder 

“raw_data” in the working directory and stores the imported data in the dataset “KH2017_raw” 

(this dataset is available once the mousetrap package has been loaded, so no raw data have to be 

imported to follow this tutorial): 

library(readbulk) 

KH2017_raw <- read_opensesame("raw_data") 

                                                                    
7 R is open-source and freely available from https://www.r-project.org/. We recommend using R in combination 

with RStudio (available from https://www.rstudio.com/), which greatly facilitates code development and analysis 

by providing many useful features such as code highlighting, debugging, and tools for data inspection. 

 

https://www.rstudio.com/
https://www.r-project.org/
http://pascalkieslich.github.io/mousetrap/
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Next, the data need to be transformed into a mousetrap data object to perform analyses using 

the mousetrap R package.8 This results in a mousetrap data object (called “mt_data” in the current 

analysis), which is described in detail in Information box 1: 

mt_data <- mt_import_mousetrap(KH2017_raw) 

Using this two-step procedure of reading and importing the mouse-tracking data, the 

mousetrap R package can also be used for data collected in other software. An example for reading 

and importing raw data collected with MouseTracker (Freeman & Ambady, 2010) is given in the 

documentation of the read_mt function, which can be accessed by entering: 

?read_mt 

Preprocessing 

Spatial transformations. 

In a typical two-alternative choice design (as implemented in the example experiment, see 

Figure 2), trajectories end either at the left or the right response option. As the overall spatial 

direction is irrelevant for most analyses (as opposed to the substantive meaning of the response 

button, which varies across trials if the position of alternatives is counterbalanced), all trajectories 

are remapped so that they end on the same side. By default, mousetrap maps the trajectories to 

the left, implying that trajectories that end on the right-hand side are flipped from right to left: 

mt_data <- mt_remap_symmetric(mt_data) 

Similarly, differences in the trajectories’ starting points are often not of substantive inter-

est. If the cursor’s starting position was not reset to exact coordinates during the experiment (as 

is the case for the example data set), it can be aligned by shifting the trajectories in preprocessing: 

mt_data <- mt_align_start(mt_data, start=c(0,0)) 

 

  

                                                                    
8 In case that only one mousetrap item in the experiment collected mouse-tracking data, the mt_import_mousetrap 

function automatically detects the mouse-tracking variables in the raw data. If more than one item stored mouse-

tracking data, the variable names have to be set explicitly once using the xpos_label, ypos_label, and timestamps_la-

bel arguments when importing data via the mt_import_mousetrap function. 



14 MOUSE-TRACKING:  IMPLEMENTATION AND ANALYSIS  

Information box 1. Working with mousetrap data objects 

The mousetrap R package represents mouse-tracking data in a specialized data structure, 

a mousetrap data object. This allows the package to store and process mouse trajectories 

efficiently, and to link them to other information collected during the study. All mousetrap 

analysis functions use mousetrap data objects as input; therefore, the collected data must 

be imported before processing and analysis. A newly imported mousetrap data object con-

sists of a data.frame called data containing the trial information (without mouse trajecto-

ries) and an array called trajectories containing the recorded mouse-tracking data. 

 

The mousetrap data object can hold multiple sets of trajectories (e.g., mt_time_normalize 

adds the time-normalized trajectories as tn_trajectories). In subsequent analyses, the user 

can specify via the use argument whether an analysis (or visualization) should be per-

formed based on the raw trajectories (use="trajectories", which is used by default in 

most functions) or another trajectory array (e.g., use="tn_trajectories"). Other 

functions add new data.frames to the mousetrap object (e.g., mt_measures adds a data.frame 

called measures that contains trial-level indices). 

 

The mousetrap package is designed for processing and visualizing trajectories and the 

computation of indices. For statistical analyses of the computed indices, they can be 

merged with the other trial data via: 

results <- merge(mt_data$data, mt_data$measures, by="mt_id") 

 

Similarly, mouse trajectories can be transformed into a format required for the statistical 

analysis using the mt_export_long or mt_export_wide functions. The resulting data can then 

be analyzed outside of the mousetrap package using any standard analysis method. 
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Resampling. 

The cursor position is typically recorded at a constant sampling rate. The mousetrap plugin 

in OpenSesame records the mouse position every 10 ms by default (corresponding to a sampling 

rate of 100 Hz). Due to variation in trial durations, the number of recorded cursor positions may 

vary considerably across trials. To be able to aggregate trajectories or compare them statistically, 

one often requires an equal number of coordinates for all trajectories. To achieve this, studies 

commonly apply time-normalization: 

mt_data <- mt_time_normalize(mt_data) 

Time-normalization interpolates trajectories so that each is represented by the same num-

ber of positions (101 by default, following Spivey et al., 2005) separated by a (within-trial) constant 

time interval. Mousetrap stores the time-normalized data as a new set of trajectories within the 

mousetrap data object (see Information box 1). 

Another possibility is to interpolate trajectories so that each is represented by the same 

number of spatially equidistant positions (using mt_spatialize). This processing step facilitates the 

comparison of trajectory shapes and is instrumental in type-based analyses of trajectories (cf., 

Chapter 9). 

Data inspection and filtering. 

As a final step prior to analysis, trials are typically screened and filtered based on one or 

more criteria. If choices can be graded as correct, studies often exclude trials with incorrect re-

sponses to ensure a consistent interpretation of curvature across all trials (i.e., that increased cur-

vature always reflects attraction towards the distractor category). The mt_subset function can be 

used to select only correctly answered trials for further analysis (or to apply other filters):  

mt_data <- mt_subset(mt_data, correct==1) 

An additional concern in mouse-tracking analysis is whether the data contain movements 

that are presumably not related to the preference development but to other processes, such as 

information acquisition or slips of the hand. Information acquisition might, for example, be re-

flected by directed movements towards a point where information was presented on the screen. 

Slips of the hand, resulting, for example, from participants placing the mouse device somewhere 

else in order to avoid a physical obstacle (or in order to more comfortably move it), would lead to 

erratic movements and result in movements untypical for this context, for example, comparatively 

large amounts of up and down movements. The challenge is finding precise criteria to differentiate 
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between relevant and irrelevant movements. One possibility is an exploratory approach, for ex-

ample, visually inspecting all trials by plotting them either in a single figure (using mt_plot or 

mt_heatmap, see also top panel of Figure 5 in the section Trajectory types) or separately (using 

mt_plot_per_trajectory). If to-be-excluded movement patterns have been specified, separate plots 

per trajectory might also be provided to human raters who can code whether these are present in 

a trial. Another possibility is to exclude trials based on a numeric criterion, such as trials exceeding 

an absolute or relative reaction time or trials containing several flips along the y-axis (which prob-

ably indicate large amounts of task-irrelevant tracking data). A more detailed discussion is pro-

vided in Kieslich et al. (2018). Especially if exclusion criteria were not defined a priori, the impact 

of the criterion applied should be reported; additional pre-registered studies might be conducted 

to validate the chosen criteria and to replicate the results under strictly confirmatory conditions. 

Analysis 

To analyze effects of the experimental manipulation, a common first step is the visual in-

spection of aggregate time-normalized mouse trajectories. Mousetrap provides the mt_plot_aggre-

gate function, which, if used as below, aggregates the time-normalized trajectories for each con-

dition first within and then across participants and plots the result: 

mt_plot_aggregate(mt_data, use="tn_trajectories", 

  x="xpos", y="ypos", color="Condition",  

  subject_id="subject_nr") 

As can be seen in Figure 4, the aggregate mouse trajectory in the current study is more 

curved towards the non-chosen option for atypical than for typical exemplars – consistent with 

the hypothesis by Dale et al. (2007). Whether the aggregate trajectories are an adequate summary 

of the trial-level trajectories is discussed in the section Trajectory types. 

A wide range of analysis methods are available for mouse-tracking data (for overviews, see 

Hehman et al., 2015; Kieslich et al., 2018). They can roughly be categorized into analyses that 

focus on the temporal development of a certain characteristic over the course of a trial (such as x-

position, velocity or movement direction, see section Temporal analyses) and those that summa-

rize a particular characteristic of each trajectory by computing one index value per trial. Many 

common indices can be computed using the mt_measures function: 

mt_data <- mt_measures(mt_data) 
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Figure 4. Aggregate time-normalized trajectories per typicality condition. Trajectories were first aligned 

to a common start position, remapped to the left, and finally aggregated first within and then across 

participants. Boxes representing the response buttons were added for clarity. 

 

 

 

An overview of the different indices is given in Table 1 and further information about work-

ing with the computed indices is provided in Information box 1. Different types of indices and 

their interpretation will be discussed in the following. 

Curvature. 

The curvature of the response trajectory is used to assess the degree of its attraction to-

wards the non-chosen option. It is assumed to be driven by the difference in activation between 

the non-chosen and the chosen option – in that a smaller difference in activations leads to a 

stronger curvature (Spivey, Dale, Knoblich, & Grosjean, 2010). A number of different indices have 

been suggested to quantify curvature (cf., Table 1). Their exact computation differs, but they are 

often highly correlated in practice (see Kieslich et al., 2018; Stillman et al., 2018). 
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Table 1. Selected mouse-tracking measures, their variable name (in brackets, as used by the 

mt_measures function of the mousetrap R package) and definition. 

Type Measure Definition 

Curvature Maximum absolute deviation 

(MAD) 

Signed maximum absolute deviation of  

observed trajectory from direct path 

 Maximum deviation above 

(MD_above) 

Maximum deviation above direct path 

 Average deviation (AD) Average deviation of observed trajectory  

from direct path 

 Area under curve (AUC) Geometric area between observed trajectory  

and direct path 

Complexity x-flips (xpos_flips) Number of directional changes along x-axis 

 x-reversals (xpos_reversals) Number of crossings of y-axis 

 Sample entropy  

(sample_entropy) 

Degree of unpredictability of movement  

along x-axis 

Time Response time (RT) Time until response is given 

 Initiation time  

(initiation_time) 

Time until first movement is initiated 

 Idle time (idle_time) Total time without movement across trial 

Derivatives Total distance (total_dist) Euclidean distance traveled by trajectory 

 Max velocity (vel_max) Maximum movement velocity 

 Max acceleration (acc_max) Maximum movement acceleration 

Note: The direct path refers to the straight line connecting the start and end point of the observed trajectory. 

Deviations/areas above the direct path receive a positive sign and deviations/areas below receive a negative sign. 

For all derivative measures, it is assumed that movements across both x and y dimensions are taken into account 

(derivatives have to be calculated using mt_calculate_derivatives before calling mt_measures). Sample entropy is 

computed using mt_sample_entropy (based on the time-normalized x-positions by default). 
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In the following, we focus on a frequently used index known as the (signed) maximum abso-

lute deviation (MAD). To compute the MAD, imagine an idealized, direct line between the start and 

end point of the trajectory, and that lines perpendicular to this idealized line are drawn to connect 

it with every point on the original trajectory. The value of the MAD is defined as the length of the 

longest of these lines. The sign of the MAD is positive if the deviation is largest above the direct 

path (in the direction of the non-chosen alternative) and negative if the point of strongest devia-

tion occurs below. 

To assess whether the MAD differs between experimental conditions, mouse-tracking stud-

ies often aggregate the MAD values across trials per participant and condition, and then compare 

the aggregate MAD values between conditions using a paired t-test.9 These operations can be per-

formed using mt_aggregate_per_subject and R’s standard t.test function: 

 

agg_mad <- mt_aggregate_per_subject(mt_data, 

  use_variables="MAD", use2_variables="Condition", 

  subject_id="subject_nr") 

 

t.test(MAD~Condition, data=agg_mad, paired=TRUE) 

 

In line with the hypothesis by Dale et al. (2007), the MAD values indicate larger curvature in 

the atypical (M = 343.8 px, SD = 218.6 px) than in the typical condition (M = 172.2 px, SD = 110.8 

px), t(59) = 6.73, p < .001. A replication of the original analyses by Dale et al. using the current 

dataset can be found online at https://github.com/pascalkieslich/mousetrap-resources. 

Trajectory types. 

While aggregate response trajectories (cf., Figure 4) and curvature indices provide a first 

indication of the average curvature of the trajectories in each condition, they do not necessarily 

represent the shape of the individual trajectories well. Specifically, an aggregate curved trajectory 

might result from different types of trajectories, for example, a mixture of straight lines and tri-

angular “change of mind” trajectories which first head directly to the non-chosen and then to the 

chosen option (cf., Chapter 9). If this is the case, the average trajectory might not be representative 

                                                                    
9 Analyses can also be performed on the trial level using mixed-effects models that can account for individual dif-

ferences between participants as well as trial-level predictors (see https://github.com/pascalkieslich/mousetrap-

resources). 

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
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of the movement patterns observed in the study, but purely an artefact of aggregation. Under these 

circumstances, the shape of the aggregate trajectory would provide only limited (and potentially 

misleading) information about the underlying cognitive processes. 

Several methods have been suggested to assess the degree of heterogeneity of the individual 

trajectories on the trial level. Previous approaches have focused on the distribution of trial-level 

curvature indices (such as area under curve or MAD, cf., Table 1) and tested them for indications 

of bimodality. The assumption behind these approaches is that gradually curved trajectories on 

the trial level should result in a unimodal distribution, while a combination of straight and ex-

tremely curved trajectories should result in a bimodal distribution (Hehman et al., 2015). The bi-

modality of the distribution is frequently assessed by computing the bimodality coefficient (BC; 

Pfister, Schwarz, Janczyk, Dale, & Freeman, 2013) which is interpreted as bimodal for values > .555 

(Freeman & Ambady, 2010). Alternative methods for identifying bimodality have been discussed, 

especially the Hartigan’s dip statistic (Freeman & Dale, 2013). Both methods are implemented in 

the mt_check_bimodality function. 

Instead of attempting to detect mixtures of distinct trajectory types based on the distribu-

tion of curvature indices (which condense each trajectory to a single numeric value), more recent 

analysis methods take into account the complete shape of each trajectory by using every point of 

the trajectory. The shape of individual trajectories can be assessed visually by plotting raw or 

smoothed heatmaps with the mt_heatmap function and by comparing heatmaps between condi-

tions using the mt_diffmap function (code examples are provided at https://github.com/pas-

calkieslich/mousetrap-resources). 

As can be seen in Figure 5 (middle panel), there appear to be different types of trajectories 

on the trial level in the current study, with a large proportion of straight and mildly curved trajec-

tories and a small proportion of extremely curved, “change of mind” trajectories. More im-

portantly, a difference heatmap reveals that the relative occurrence of these types differs between 

conditions, with a higher proportion of extremely curved trajectories in the atypical condition (or-

ange areas in Figure 5, bottom panel). Analyses that go beyond a visual inspection to identify tra-

jectory types and instead use a clustering approach based on spatial similarity (or the assignment 

of trajectories to different prototypes) are also implemented in the mousetrap R package and de-

scribed in Chapter 9 (see also Wulff, Haslbeck, & Schulte-Mecklenbeck, 2018). 

  

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
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Figure 5. Heatmap of the (remapped) individual trajectories (top panel), smoothed heatmap (middle 

panel) and difference of smoothed heatmaps between conditions (bottom panel), where blue indicates 

higher density in the typical and orange higher density in the atypical condition (white indicates com-

parable density).  
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The different trajectory types and their frequency have also been used to distinguish be-

tween different theoretical models (see Chapters 9-10 for more information). When used to this 

end, it is important to keep in mind that the setup of mouse-tracking studies can influence the 

shape of individual trajectories (see section Design considerations). In the current study, the occur-

rence of rather “extreme” trajectory types (straight and “change of mind”) may have been caused 

by the relatively simplistic setup of the study with a static starting procedure, default mouse sen-

sitivity settings and the use of a click instead of a mouse-over response. 

Complexity. 

In addition to curvature, mouse-tracking studies have also used the complexity of the move-

ment as an indicator of response competition. If multiple response options simultaneously attract 

the cursor, this should result in more complex, less smooth trajectories compared to cases where 

only one option exerts an influence (Dale et al., 2007).  

In two-alternative tasks, complexity is typically assessed with regard to movements along 

the horizontal axis, since this is the dimension that separates the options. The most common 

measure of complexity is x-flips, the number of directional changes along the x-axis (Freeman & 

Ambady, 2010), which is calculated by the mt_measures function (Table 1). As response competi-

tion might not always lead to directional changes, other mouse-tracking studies have used sample 

entropy (Dale et al., 2007; McKinstry, Dale, & Spivey, 2008) which quantifies the degree of unpre-

dictability of movement along the x-axis. Sample entropy can be computed using mt_sample_en-

tropy, which uses time-normalized trajectories by default, following the recommendation that 

each trajectory be represented by the same number of positions (Hehman et al., 2015): 

mt_data <- mt_sample_entropy(mt_data, use="tn_trajectories") 

Koop and Johnson (2013) propose a substantive interpretation of complexity-related 

measures in preferential choice tasks, based on the assumption that the x-position at a specific 

point during the trial is a proxy for the current absolute preference. They suggest that x-flips re-

flect changes in the momentary valence whereas x-reversals (i.e., the number of times the cursor 

crosses the vertical axis at the midpoint between the two options) indicate changes of absolute 

preference. Recently, the sequence in which certain areas of interest (one for each choice option) 

are visited with the mouse cursor has also been used to identify how often participants changed 

their mind during the decision-making process (Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 2018; see 

also Travers, Rolison, & Feeney, 2016). 
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As with curvature indices, complexity indices can be analyzed either by aggregating values 

per participant and condition (using mt_aggregate_per_subject) and comparing the result across 

conditions, or on the trial level using mixed-effects models. 

Temporal analyses. 

Although many studies use it in this sense, mouse-tracking is not limited to the analysis of 

aggregate indices that collapse each trajectory to a single value. Analyses of trajectories’ temporal 

development can shed light on the time course of response option activations across the trial and, 

in particular, how and when different cognitive processes influence the trajectory (Hehman et al., 

2015). In the following, we will briefly illustrate some simple use cases. 

 

 

Figure 6. Plot of the average time-normalized x-position over time. For each time step, x-positions were 

first averaged within participants and condition. 

 

One purpose of temporal analyses is to supplement aggregate analyses of trajectory curva-

ture by showing at which point and for how long aggregate trajectories diverge between condi-

tions. Previous studies (e.g., Dale et al., 2007) have examined this by comparing the horizontal 

positions of the time-normalized trajectories at each time step using a series of t-tests between 
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conditions (code examples can be found at https://github.com/pascalkieslich/mousetrap-re-

sources). Using this approach reveals that for time steps from 54 to 95 (of 101 steps) the average 

x- coordinates differed between conditions (Figure 6). If a theory provides specific predictions with 

regard to the temporal development, for example, whether the divergence between conditions 

should occur early or late in the decision-making process, this can be used to test them. Note that 

the comparison of trajectories between conditions can be problematic if response time differences 

between conditions are large, and that temporal analyses can also be conducted based on raw in-

stead of time-normalized trajectories (see also Hehman et al., 2015). 

 

 

Figure 7. Riverbed plot of the distribution of x-positions across time for time-normalized trajectories 

separately for the two experimental conditions. For each time step, the colors indicate the relative fre-

quency with which each bin of x-positions was observed. 

 

As with aggregated trial-level indices, aggregated x-positions may not necessarily represent 

the underlying trial level trajectories well. To inspect whether this is the case it is useful to illus-

trate the full distribution of trial-level x-positions across normalized time using the mt_plot_riv-

erbed function (following an approach by Scherbaum et al., 2010). As can be seen in Figure 7, the 

aggregate x-positions displayed in Figure 6 are a rather poor representation of the individual tra-

jectories, which vary greatly. Specifically, while the majority of trajectories go directly to the even-

tually chosen option, a substantial number of trajectories first moves to the non-chosen option 

(crossing the midline). This means that the data may be better analyzed on the trial level using, 



MOUSE-TRACKING:  IMPLEMENTATION AND ANALYSIS  25  

for instance, mixed-effects models or type-based analyses (Wulff et al., 2018; see also Chapter 9). 

Moreover, Figure 7 reveals that in most trials of both conditions the cursor remained in a neutral 

position (in many cases it stayed on the start button) for more than half of the trial, a behavior 

that is probably related to the use of a static starting condition that did not enforce early move-

ment initiation (cf., Scherbaum & Kieslich, 2018). 

In addition to analyzing the temporal development of the cursor position, previous mouse-

tracking studies have also focused on other variables derived from it, especially velocity, acceler-

ation, and movement angle. The analysis of velocity and acceleration has been used to investigate 

response activation and competition (Hehman et al., 2015). In mousetrap, velocity and accelera-

tion can be computed using mt_calculate_derivatives which attaches velocity and acceleration val-

ues to each of the recorded cursor positions.10 Subsequent analyses can be performed as sketched 

above, using the velocity values instead of x-positions as the dimension of interest. 

Finally, an emerging class of analyses has focused on the movement angle, which quantifies 

the direction of movement over time indicating, for example, whether participants move towards 

or away from a specific response alternative. Previous studies have used movement angles to dis-

entangle when and to which extent different factors influence the movement direction (e.g., 

Dshemuchadse, Scherbaum, & Goschke, 2013; Scherbaum et al., 2010; Sullivan, Hutcherson, Har-

ris, & Rangel, 2015). For details on these approaches, see Scherbaum and Dshemuchadse (2018). 

Summary and conclusion 

In mouse-tracking studies, participants’ cursor movements are recorded as they choose be-

tween different options represented as buttons on a computer screen. Thereby, mouse-tracking 

aims to measure the degree of conflict between the alternatives and the temporal development of 

its resolution. While Chapter 9 provides a detailed look at the types of trajectories revealed in this 

paradigm, and Chapter 10 provides an introduction to this method and its use in the literature, 

this chapter has shown how to construct a mouse-tracking study using the mousetrap plugin for 

the graphical experiment builder OpenSesame, and how to analyze the resulting data in the 

                                                                    
10 Velocity and acceleration can be calculated for raw trajectories (by default) as well as for time-normalized tra-

jectories. In addition, both can be computed based on the Euclidean distance traveled along the x- and y-dimension 

(by default) or for a single dimension only. 
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mousetrap R package. We have covered technical issues surrounding the application of this 

method, and highlighted design considerations and their influence on the collected data. 

The strength of mouse-tracking lies in the ease with which it can be applied. Using only 

standard laboratory hardware, cognitive processes can be tracked at high temporal resolution. It 

is also a flexible tool that can be adapted to many different tasks, and which is even more powerful 

in combination with other process tracing methods (e.g., eye-tracking, cf., Koop & Johnson, 2013; 

Quétard et al., 2016). Data collection and processing as described in this chapter are handled en-

tirely by free, open-source software (Kieslich & Henninger, 2017; Kieslich et al., 2018), making 

mouse-tracking easily accessible to interested researchers and transparent to those looking to rep-

licate findings or adapt and extend the methods described herein. 

As a fairly recent addition to the family of process tracing methods, many aspects of the 

method are not yet fully standardized. Therefore, the degrees of freedom with regard to data col-

lection, processing, and analysis are substantial. Where available, we have pointed to the current 

state of knowledge regarding best practices, which is bound to grow over time. We advise users of 

mouse-tracking to seek convergence between analyses and indices where no standard has been 

established so far. In doing so, they should also consider the effects of aggregation by inspecting 

the distribution of trajectories and indices on the trial level (cf., Chapter 9). While researchers may 

often explore different experimental setups and analyses if they apply mouse-tracking in a new 

domain, (additional) pre-registered studies should be conducted to perform strictly confirmatory 

hypothesis testing (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012). 

In sum, we have demonstrated the potential mouse-tracking has as a process tracing method 

for various areas of decision research. Given the limits of an introductory tutorial, we have only 

covered the most frequently used analyses. Similarly, the current chapter has limited itself to the 

frequently investigated two-option design, but mouse-tracking can easily be extended to situa-

tions with more than two alternatives (e.g., Koop & Johnson, 2011). Lastly, more sophisticated 

analysis methods are being developed to more fully harvest the rich potential of mouse-tracking 

data, such as time continuous multiple regression (Scherbaum & Dshemuchadse, 2018), entropy 

approaches (Calcagnì, Lombardi, & Sulpizio, 2017), generalized processing tree models (Heck, 

Erdfelder, & Kieslich, in press), and decision landscapes (Zgonnikov, Aleni, Piiroinen, O’Hora, & 

di Bernardo, 2017). Thus, we are confident that mouse-tracking will continue to offer researchers 

novel insights into how decision processes unfold over time. 
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Recommended reading list  

• https://github.com/pascalkieslich/mousetrap-resources: resources for creating mouse-

tracking experiments and analyzing mouse-tracking data (including the examples from the 

current chapter). 

• Kieslich and Henninger (2017): an introduction into and validation of the mousetrap plugin 

for OpenSesame, which also provides detailed information about the example study used in 

the current chapter. 

• Kieslich, Wulff, Henninger, Haslbeck, and Schulte-Mecklenbeck (2018): a detailed tutorial 

on analyzing hand- and mouse-tracking data using the mousetrap R package. 

• Hehman, Stolier, and Freeman (2015): a description of several analytic approaches for 

mouse-tracking data. 

  

https://github.com/pascalkieslich/mousetrap-resources
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Abstract 

The investigation of cognitive processes by tracking and analyzing mouse movements has 

become a popular method in many psychological disciplines, including language, social cognition, 

perception, decision-making, and memory. When creating mouse-tracking experiments, research-

ers face a number of design choices, for example, whether participants indicate responses by click-

ing on the corresponding button or by just entering the button area. Hitherto, many different set-

tings have been employed, but little is known about how these methodological differences affect 

mouse-tracking data and their theoretical interpretation. We conducted a series of experiments to 

systematically investigate the influence of three central design factors, using a classic mouse-

tracking paradigm, in which participants classify typical and atypical exemplars into one of two 

categories. In separate experiments, we manipulated the design factors response indication, 

mouse sensitivity, and starting procedure. The core finding that mouse movements deviate more 

towards the non-chosen option for atypical exemplars was replicated in all conditions. However, 

the size of this effect varied considerably depending on the response indication and starting pro-

cedure. Besides, trajectory shapes were influenced by all design factors. In bimodality analyses, 

some setups led to a bimodal distribution of curvature indices and some to a unimodal distribu-

tion. Because trajectory curvature and shape are frequently used to make inferences about psy-

chological theories, such as differentiating between dynamic and dual-system models, this study 

shows that the specific design must be carefully considered when drawing theoretical inferences 

from mouse-tracking data. All methodological designs and analyses were implemented using 

open-source software and are freely available from https://osf.io/xdp7a/. 

 

Key words: mouse-tracking; cognitive processes; experimental design; decision-making; 

response dynamics  

https://osf.io/xdp7a/
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Design Factors in Mouse-Tracking: What Makes a Difference? 

Over the past decade, mouse-tracking – the recording and analysis of computer mouse 

movements – has become an important addition to the toolbox of experimental psychologists. By 

recording mouse trajectories during psychological tasks, mouse-tracking has allowed researchers 

to investigate a range of cognitive processes that unfold in real time while people are making their 

decisions (Freeman, Dale, & Farmer, 2011; Spivey & Dale, 2006). As such, mouse-tracking has 

extended the window into cognition that classic reaction time analyses and newer developments 

such as eye-tracking or electroencephalography have opened (Schulte-Mecklenbeck et al., 2017). 

Though being a relatively new method, mouse-tracking has quickly spread across a broad range of 

psychological fields, as recent reviews demonstrate (Freeman, 2018; Stillman, Shen, & Ferguson, 

2018). 

Yet, despite mouse-tracking’s newfound glory and widespread application in psychology, no 

standard exists for the design of mouse-tracking studies (Scherbaum & Kieslich, 2017). As a result, 

the methodological setup has varied considerably between mouse-tracking experiments, but al-

most nothing is known about the implications of such variation. At the same time, it is probable 

that the methodological setup impacts how cognitive processes are reflected in mouse trajectories. 

If so, the curvature and overall shape of cursor trajectories may vary for different setups. Variation 

in these measures would have far reaching implications for past and future mouse-tracking exper-

iments, since they form the basis for conclusions about psychological theories in these studies. 

Previous evidence potentially affected by methodological choices spans inferences about the in-

fluence of various psychological factors on decision conflict (e.g., semantic representations, ste-

reotypes, self-control, or personality differences; see Stillman et al., 2018), and inferences about 

which theoretical model might best account for the data (e.g., dynamic vs. dual-system models; 

see Freeman, 2018). For this reason, it is a pressing issue to understand how design factors in 

mouse-tracking affect trajectories und ultimately inferences about psychological theories. 

In an effort to provide insight into the consequences of different design factors in mouse-

tracking, we herein report three experiments that assess the impact of the most central design 

choices and discuss how their consequences might influence theorizing in general. We first give 

an overview of previous mouse-tracking research and the varying methodological setups. Next, we 

present the three experiments and report the effects the different design factors have on mouse-
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tracking data. Finally, we discuss implications for the connection of mouse-tracking data and the-

orizing, and will provide recommendations for future mouse-tracking studies. 

Mouse-Tracking: Basic Paradigm and Design Factors 

In typical mouse-tracking experiments, participants decide between two options repre-

sented as buttons on a computer screen while their cursor movements are continuously recorded 

(see Figure 1 for the basic setup and an exemplary mouse cursor trajectory). These cursor move-

ments are taken as an indicator of the relative activation of response options over the course of 

the decision-making process, assuming that the more an option is activated, the more the mouse 

trajectory deviates towards it (Freeman et al., 2011; Spivey & Dale, 2006). Thus, the degree of 

curvature is used as an indicator of the amount of activation of or attraction to this option. 

 

 

Figure 1. Setup of the mouse-tracking experiment including an exemplary cursor trajectory. The trial is 

initiated by clicking on a start button in the bottom center of the screen (not displayed) after which the 

name of the to-be-classified animal is presented. Participants indicate their classification decision by 

clicking on one of two response buttons. For the example trajectory, the maximum absolute deviation 

(MAD) is depicted (in gray) as the maximum perpendicular deviation of the trajectory from a straight 

line connecting the start and end point of the trajectory (dashed line). 

Whale

Mammal Fish
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The recording and analysis of mouse trajectories has offered two major opportunities for 

testing psychological theories (Freeman, 2018; Stillman et al., 2018): First, it provides fine-grained 

measures of the amount of conflict between response options, thus allowing to test predictions 

about individual differences and contextual factors that influence the amount of conflict in a spe-

cific decision. Second, mouse-tracking allows assessing the temporal development and resolution 

of this conflict over the course of the decision process, which makes it possible to test theories 

that make predictions about how decisions and judgments unfold over time. In this regard, a cen-

tral usage of mouse-tracking has been to differentiate between dynamic and dual-system models 

(Freeman & Dale, 2013). Dynamic process models predict a continuous competition of the re-

sponse options that gets gradually resolved over time and should be reflected in continuously 

curved trajectories in all trials. In contrast, dual-system models predict a mixture of trials with 

little conflict and trials where, at first, one option is strongly activated and then a change of mind 

occurs; this should lead to a mix of straight trajectories and trajectories displaying abrupt shifts in 

the movement. 

Mouse-tracking was first applied in the area of language processing little more than a decade 

ago (Spivey, Grosjean, & Knoblich, 2005; Dale, Kehoe, & Spivey, 2007; Dale & Duran, 2011) and 

has since spread to a broad range of psychological disciplines. To date, mouse-tracking has been 

used to study social cognition (e.g., Freeman & Ambady, 2009; Freeman, Ambady, Rule, & John-

son, 2008; Hehman, Carpinella, Johnson, Leitner, & Freeman, 2014; Johnson, Freeman, & Pauker, 

2012), action control (e.g., Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010), numerical cog-

nition (see review by Faulkenberry, Witte, & Hartmann, in press), political beliefs (e.g., Duran, 

Nicholson, & Dale, 2017), perception (e.g., Frisch, Dshemuchadse, Görner, Goschke, & 

Scherbaum, 2015; Huette & McMurray, 2010; Lepora & Pezzulo, 2015), memory (e.g., Koop & 

Criss, 2016; Papesh & Goldinger, 2012), value-based decision-making (e.g., Dshemuchadse, 

Scherbaum, & Goschke, 2013; Kieslich & Hilbig, 2014; Koop & Johnson, 2013), self-control (e.g., 

Stillman, Medvedev, & Ferguson, 2017; Sullivan, Hutcherson, Harris, & Rangel, 2015), and other 

disciplines. Two recent reviews have summarized the myriad ways in which mouse-tracking has 

helped advance psychological theory in some of the aforementioned areas (Freeman, 2018; Still-

man et al., 2018). 

To provide a few examples of mouse-tracking applications in different research areas, we 

have selected three exemplar studies devoted to social categorization, preferential choice, and 
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action control. The first example study used mouse-tracking to investigate social categorization 

(Freeman & Ambady, 2009), asking participants to select which of two adjectives fit with the gen-

der-stereotype for a presented face. The study included two groups of faces: gender typical faces 

(e.g., a face with uniquely female features) and gender atypical faces (e.g., a female face that was 

to some degree morphed with a male face). For atypical faces, mouse trajectories were more curved 

towards the opposite-gender stereotype. For instance, for an atypical female face (compared to a 

typical female face), the mouse trajectory was more curved towards a stereotypically male adjec-

tive such as “aggressive” before ultimately selecting the stereotypically female adjective “caring”. 

The authors also analyzed the time course of the trajectories as well as their shape (via bimodality 

analysis), finding a continuous and unimodal distribution of curvature values. From this, they con-

cluded that a dynamic process model can account best for the data, assuming a simultaneous co-

activation of competing stereotypes that gradually gets resolved over time. 

The second exemplar study used mouse-tracking to examine participants’ preferential 

choices (Koop & Johnson, 2013, Experiment 1), asking them to indicate which of two pictures they 

preferred by clicking on it. Picture pairs were created with systematically varying differences in 

pleasantness as assessed by norming data, and participants’ mouse trajectories reflected these 

differences: the curvature of trajectories systematically increased towards the non-chosen option, 

the smaller the pleasantness difference between the two pictures became. This study was used as 

a first step towards validating mouse-tracking in the area of preferential decision-making, to show 

that trajectory curvature can be used to measure differences in personal preference. 

The third example for mouse-tracking application comes from the area of action control 

(Scherbaum et al., 2010): In a mouse-tracking version of the Simon task, participants had to choose 

the left or right option depending on the direction of an arrow which was presented on the left 

versus right side. Participants’ mouse trajectories reflected the typical Simon effect in that they 

were more curved towards the non-chosen option if the location of the arrow was incongruent 

with its direction. This effect was reduced if a trial was preceded by an incongruent trial, the so-

called congruency sequence effect. In addition, mouse-tracking allowed to disentangle the tem-

poral development of the different effects. Specifically, temporal analyses of the mouse movement 

direction revealed that the congruency sequence effect set in after the Simon effect – a finding 

that allowed for disentangling different theoretical accounts of the cognitive processes underlying 

action control. 
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In all three example experiments, participants had to click on a start button in the bottom 

center of the screen to start the trial (to align the starting position of the cursor across trials), but 

beyond this, the procedures differed substantially. In the experiment by Koop and Johnson (2013), 

the stimuli appeared immediately after the click on the start button and participants could indi-

cate their response by clicking on one of the two buttons. Participants did not receive any specific 

instructions about how to move the mouse. In the experiment by Freeman and Ambady (2009), 

participants were explicitly encouraged to initiate their movement early in the trial and a warning 

message was displayed if the time for movement initiation exceeded a predefined threshold. In 

the experiment by Scherbaum et al. (2010), participants had to move the mouse upwards at the 

beginning of the trial for the stimulus to be displayed and could indicate their response by moving 

the cursor onto the corresponding button (no click was required). Evidently, these three studies 

vary considerably with regard to their methodological setup, having implemented three different 

starting procedures and two different response indication procedures – further hard- and soft-

ware-related factors not even considered (e.g., the cursor speed settings or computer screen reso-

lution). 

The methodological diversity in these exemplar studies illustrates that researchers face a 

number of design choices when creating mouse-tracking experiments, for which there are no em-

pirically-based recommendations. These choices include the examples mentioned above such as 

the starting procedure and type of response indication but also choices pertaining to the screen 

layout as well as hard- and software settings. Given the relative novelty of the method, to date 

there are almost no empirical investigations of how design factors affect mouse-tracking data, but 

some of their potential implications have previously been discussed. Hehman, Stolier, and 

Freeman (2015) and Fischer and Hartmann (2014) provide some recommendations for the basic 

set-up of mouse-tracking studies. Both suggest researchers should install measures that increase 

the likelihood of participants initializing their mouse movement early in the trial, to ensure cog-

nitive processing takes place while participants are moving the mouse and not beforehand. Fischer 

and Hartmann additionally recommend reducing the cursor speed to better capture cognitive ef-

fects in the trajectory measures. Importantly, Hehman et al. (2015) note that “these approaches 

have not been empirically validated, and instead are derived from our previous experience” (p. 

388). 
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In the, to date, only published empirical investigation on the effects of a specific design 

factor on mouse-tracking data, Scherbaum and Kieslich (2017) examined two different starting 

procedures. They compared data from the previously described experiment by Scherbaum et al. 

(2010) that used a dynamic starting procedure (i.e., a procedure in which participants have to move 

the mouse upwards for the stimulus to be displayed) to a new experiment that replicated the same 

study using a different starting procedure, in which the stimulus was presented after a short, fixed 

delay. They found that cognitive effects on trajectory curvature were comparable for both starting 

procedures. However, the dynamic starting procedure led to stronger, more distinguishable effects 

in the temporal analyses of mouse movement direction. While this study provides a first indication 

that design factors may play an important role in mouse-tracking studies, it has only focused on 

two variations of a single design factor (i.e., the starting procedure). Potential effects of other 

starting procedures and the broad range of further design factors still remain unexplored. 

The goal of the present study is therefore to systematically investigate the influence of a set 

of design factors that commonly vary between mouse-tracking studies. For this purpose, we use 

different variations of a classic and simple mouse-tracking paradigm that we describe in the fol-

lowing. In addition, we provide researchers with open-source implementations for all methodo-

logical setups and analyses that we report. These can be run using free and cross-platform software 

(Kieslich & Henninger, 2017) and are available online at https://osf.io/xdp7a/. For the analyses of 

our mouse-tracking data, we focus on a set of traditional mouse-tracking analyses (Freeman & 

Ambady, 2010) as well as a number of recently proposed graphical and spatial analysis approaches 

(Wulff, Haslbeck, Kieslich, Henninger, & Schulte-Mecklenbeck, in press). We provide all raw data 

and analyses codes so that researchers can both replicate our analyses as well as apply them to 

their own data. 

 

Overview of Experiments 

For the purpose of assessing the effects of methodological differences in mouse-tracking 

studies, we conducted three experiments and manipulated a central design factor in each experi-

ment, while keeping the overall paradigm constant across experiments. We chose a classic para-

digm for semantic categorization that was first published by Dale et al. (2007) and marked one of 

the early mouse-tracking applications. In this experiment, participants classify exemplars as 

https://osf.io/xdp7a/
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belonging to one of two categories. Specifically, they are presented with the name of an animal 

that is either typical for its response category (e.g., a lion for mammal) or atypical in that it shares 

both features with the correct and the competing category (e.g., a whale sharing both features with 

the correct category mammal and the incorrect category fish). The experiment by Dale and col-

leagues is in many ways representative of a typical mouse-tracking experiment: Participants re-

peatedly choose between two options, the stimuli are simple and relatively quick to process, and 

a central factor (typicality) is varied between trials with a directed hypothesis regarding its influ-

ence on mouse-tracking data. The central cognitive effect of interest in this experiment is what 

we will henceforth call the typicality effect. It denotes that mouse trajectories deviate more towards 

the non-chosen option for atypical than for typical exemplars (Dale et al., 2007). As stated above, 

one design factor was varied between participants in each of the three experiments, implementing 

the most common variations of this design factor. An overview of all manipulations is given in 

Table 1. The different design factors will be introduced in detail before we report each experiment. 

 

Table 1. Overview of experiments including basic design choices and their manipulation. 

Experiment Response indication Mouse sensitivity Starting procedure 

1 Click vs. touch Default Static 

2 Click Default vs. slow Static 

3 Click Slow Static vs. rtmax vs. 

initmax vs. dynamic 

Note. default = 50% cursor speed (of maximum speed) with acceleration enabled, slow = 30% (Experiment 2) / 40% 

(Experiment 3) cursor speed with acceleration disabled, rtmax = static start with restricted total response time, 

initmax = static start with restricted initiation time. 

 

For analyzing mouse trajectories, we focus on the most frequently used analysis in previous 

mouse-tracking studies, which is the analysis of trajectory curvature (Freeman, 2018; Stillman et 

al., 2018). This analysis aims to quantify the amount of response conflict that was present in a 

given trial. The idea is that the more a participant tended towards the non-chosen option in a trial, 

the more the mouse trajectory deviated toward it. To quantify curvature, different indices have 

been proposed which are highly correlated in practice (Stillman et al., 2018). We will use the max-

imum absolute deviation (MAD), as an easy to interpret and commonly used measure in mouse-

tracking (Freeman & Ambady, 2010; Kieslich & Henninger, 2017; Koop & Johnson, 2011). The 

MAD is defined as the signed maximum deviation of the trajectory from a direct path (straight 
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line, see Figure 1) connecting the start and end position of the trajectory (with maximum devia-

tions above the direct line, i.e., in the direction of the non-chosen option, receiving a positive sign, 

deviations below a negative sign). In line with the typicality effect, MAD values should be higher 

for atypical than for typical exemplars, and indeed this finding was observed in a recent replication 

of the experiment by Dale and colleagues (Kieslich & Henninger, 2017). For the purpose of the 

present study, we examined whether the typicality effect via MAD could be found in the different 

methodological setups and whether particular design choices influenced the occurrence and size 

of the typicality effect. 

Aside from using mouse-tracking to assess response conflict via curvature analyses, many 

researchers have also used mouse-tracking to distinguish between different classes of theoretical 

models (Freeman, 2018; Stillman et al., 2018). For instance, mouse-tracking has been used to de-

termine whether dual-system or dynamic models are better in accordance with the data in a par-

ticular task (Freeman & Dale, 2013). Dual-system models, on the one hand, should produce a mix-

ture of straight trajectories (where both systems agree) and so-called change of mind trajectories 

where the initial response (by system I) favors one of the options (and, as a consequence, the cur-

sor approaches that option) that is later overridden (by system II) and the other option is chosen. 

The latter change of mind response should produce large curvature values while the former should 

result in small curvature values. Thus, across all trials, a bimodal distribution of small and large 

curvature values would be expected. Dynamic models, on the other hand, would expect that both 

response options are simultaneously activated to varying degrees until one of the options is cho-

sen. In this case, a unimodal distribution of continuously varying curvature indices is expected. 

Therefore, researchers have conducted bimodality analyses of curvature indices at the trial level, 

expecting to find a bimodal distribution if a dual-system model accounted for the data, and a uni-

modal distribution for dynamic models (Hehman et al., 2015). Based on a bimodality analysis, the 

original study by Dale et al. (2007) found support for dynamic models in their mouse-tracking data 

as trajectory curvature was classified as being unimodally distributed. 

For the present experiments, we examined whether the distribution of curvature values is 

affected by the methodological setup of the mouse-tracking study. If methodological choices af-

fected bimodality analyses, this would pose a general challenge for mouse-tracking studies, be-

cause then the theoretical implications of mouse trajectories would always have to be interpreted 

relative to the specific design that was employed. That is, if a bimodal distribution was observed 
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in one setup whereas a unimodal distribution was observed in another, it could imply that the 

setup directly influences the underlying cognitive process. However, an alternative (and in our 

view more plausible) interpretation could be that the methodological setup changes how the (un-

affected) cognitive process is mapped onto the mouse movements. For example, one factor might 

ensure a continuous mapping of the complete process while another factor might only capture 

parts of the process. This way, it might miss early stages of the decision process or lead to a dis-

continuous mapping in which the mouse movements are only periodically updated. 

Instead of performing bimodality analyses that are basically designed to answer the question 

whether there are one or two different types of trajectories, it has recently been argued that more 

fine-grained analyses are needed which allow for inferences about a variety of different trajectory 

shapes (Wulff et al., in press; Wulff, Haslbeck, & Schulte-Mecklenbeck, 2018). In this regard, one 

proposed procedure is the mapping of trajectories onto trajectory prototypes. Based on their meta-

analysis of mouse- and hand-tracking studies, Wulff et al. (2018) suggest that a set of few proto-

typical movement trajectories may account for the majority of trajectories in many mouse-track-

ing studies. To examine whether the methodological setup promotes the occurrence of different 

trajectory types, we will supplement our analyses using this recently proposed prototype mapping 

method (details on the method are given in the results section of Experiment 1). 

Experiment 1 

In the first experiment, we examined the effect the response indication procedure has on 

mouse-tracking data. For this, we experimentally varied whether participants had to click on a 

response button to indicate their response (click condition) or whether they could simply move the 

mouse cursor into the area of the response button and no click was required (touch condition). 

Both the click procedure (e.g., Dale et al., 2007; Freeman et al., 2008; Koop & Johnson, 2013; 

Spivey et al., 2005) and the touch procedure (e.g., Frisch et al., 2015; Huette & McMurray, 2010; 

Scherbaum et al., 2010) are commonly employed in the literature. Despite substantial variation in 

response indication procedures in previous studies, how the type of response indication affects 

mouse-tracking data remains an open question. 

As a direct methodological consequence of the procedure, the click condition gives partici-

pants the opportunity to move the cursor onto a response button, hover there, and then either 

click on it or decide to move all the way to the other option. Thus, the click condition allows 
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participants to produce extreme mouse trajectories with switches from one option to the other. 

The occurrence of these movements has recently been demonstrated in a number of empirical 

studies, and they have served as indicators for changes of mind (Freeman, 2014; Szaszi, Palfi, Szol-

losi, Kieslich, & Aczel, 2018; Wulff et al., 2018). In the touch condition, changes of mind could 

theoretically be captured if participants hovered below rather than on top of a response button 

before switching to the other option, but overall the touch condition renders the occurrence of 

these extreme movement types much less likely. As a consequence, larger curvature indices would 

be expected for the click than for the touch condition, and particularly so for trials where a greater 

response conflict is expected. This, in turn, would lead to larger effects of the typicality manipu-

lation in the click condition. However, if mouse trajectories were more in line with the assumption 

of continuously curved mouse trajectories, the response indication procedure should be less rele-

vant for discrete mouse-tracking measures like curvature indices. In this case, the touch condition 

might even be better at capturing cognitive effects in mouse movements as it allows participants 

to indicate their response more smoothly by removing the additional motor process of clicking. 

Methods 

Procedure and materials. The experiment was conducted at the University of Mannheim, 

Germany. After providing written informed consent and answering demographic questions, par-

ticipants first worked on an unrelated experiment which was followed by the experiment currently 

under investigation. Participants received partial course credit for completing the studies. 

The basic setup and procedures followed Experiment 1 from Dale et al. (2007). In each trial, 

participants were asked to classify an animal (presented as a written word, e.g., “whale”) as be-

longing to one of two classes (e.g., “mammal” vs. “fish”). The stimulus material included the same 

13 typical and six atypical animals and their corresponding response categories that were used by 

Dale and colleagues in Experiment 1 (all material was translated into German). 

At the beginning of the experiment, participants were randomly assigned to one of two ex-

perimental conditions (response indication via click vs. touch). Participants received a short set of 

instructions that explained the task to them, including information about the response indication 

procedure. Afterwards, participants worked on three practice trials, followed by another set of 

short instructions summarizing the task. Then, participants classified the 19 actual stimuli, which 

were presented in random order. At the end of the experiment, participants’ handedness was 
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assessed via the Edinburgh Handedness Inventory (EHI; Oldfield, 1971; as implemented by 

Kieslich & Henninger, 2017). 

During each trial, a blank screen was first presented for 1,000 ms, followed by the presenta-

tion of the two response categories for 2,000 ms in the top-left and top-right corners of the screen 

(the order of the categories was randomized at the trial level). Next, a start button appeared in the 

bottom center of the screen, which participants had to click for the animal stimulus to be imme-

diately presented (see Figure 1 for the layout of the decision screen). After the click on the start 

button, the mouse cursor was reset to the exact center of the start button, the stimulus was pre-

sented 85 pixels (px) above it, and the recording of mouse movements commenced. Depending on 

the experimental condition, participants could then indicate their response by clicking on the cor-

responding response button or by touching it (in this case, the response was immediately recorded 

as soon as one of the button areas was entered with the cursor). 

The experiment was created in OpenSesame (Mathôt, Schreij, & Theeuwes, 2012). Mouse 

cursor movements were recorded every 10 ms using the mousetrap plugin (Kieslich & Henninger, 

2017). The experiment was conducted full screen at a resolution of 1,680 x 1,050 px on laboratory 

computers running Windows 7. The mouse sensitivity settings were left at the system defaults 

(cursor speed at 50% of maximum speed with acceleration enabled). 

Participants. To determine the desired sample size, we conducted a power analysis using 

G*Power 3.1.9 (Faul, Erdfelder, Buchner, & Lang, 2009). Across all studies, we aimed to ensure 

that the power to detect a typicality effect of medium size (dz = 0.5) was at least .95 (with α = .05, 

two-tailed) within each experimental condition. This resulted in a desired sample size of 54 par-

ticipants per condition. We therefore recruited a total of 108 participants to complete the experi-

ment (85 female, aged between 18 and 38 years, M = 22.0 years, SD = 3.7). The majority of 81 par-

ticipants indicated a preference for the right hand (EHI score > 60), while another six participants 

indicated a preference for the left hand (EHI score < -60), the remaining 21 participants indicating 

no strong preference. 
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Results 

We focused on a set of typical analyses that are commonly performed in mouse-tracking 

studies. As such, we compared the trajectory curvature and trajectory shapes, both using tradi-

tional analyses at the aggregate level (Freeman & Ambady, 2010) and newly proposed analysis 

procedures at the trial level (Wulff et al., in press). Analyses were performed in R (R Core Team, 

2018) using the mousetrap R package (Kieslich & Henninger, 2017; Kieslich, Henninger, Wulff, 

Haslbeck, & Schulte-Mecklenbeck, in press). The raw data, analysis scripts and results (including 

the supplementary analyses) for this and all following experiments are openly available from 

https://osf.io/xdp7a/. 

Correctness. Before the mouse-tracking analyses, we compared the percentage of correctly 

answered trials between the two design conditions. The number of correctly answered trials did 

not differ significantly between experimental conditions (93.5% correct answers in click condition, 

93.1% in touch condition), χ2(1) = 0.16, p = .693.1 Following Dale et al. (2007), only correctly an-

swered trials were included in the following analyses. 

Aggregate trajectory curvature. Next, we performed a set of analyses focusing on aggre-

gate trajectory curvature. For this, we flipped all trajectories that ended on the right response op-

tion to the left. To visually inspect the shape of the aggregate trajectories, we followed the typical 

mouse-tracking analysis procedures, that is, we performed time-normalization so that each tra-

jectory would be represented by the same number of temporally equidistant points (101, following 

Spivey et al., 2005). Then, we aggregated trajectories per typicality condition first within and then 

across participants and separately for the click and the touch condition. The resulting aggregate 

trajectories are displayed in Figure 2. As expected, the aggregate trajectories deviated more to-

wards the non-chosen option for atypical than for typical exemplars in both experimental condi-

tions. However, this difference was considerably larger in the click condition. 

 

  

                                                           
1 This result was replicated in a generalized linear mixed model at the trial level using a binomial link function and 

including a random intercept per participant (see complete analyses online). 

https://osf.io/xdp7a/
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Table 2. Descriptive statistics of maximum absolute deviation (MAD) values (in pixel) per typicality 

condition and paired t-test results (for the comparison of the atypical and typical condition). 

   Typical Atypical t-test 

Experiment Condition N M SD BC M SD BC t p dz 

1 click 53 142.7 111.5 0.632 287.5 237.0 0.641 4.43 <.001 0.61 

1 touch 55 52.2 78.3 0.442 79.0 91.6 0.500 2.69 .009 0.36 

2 default 59 157.8 158.8 0.558 283.4 225.7 0.576 5.49 <.001 0.71 

2 slow 59 73.4 113.1 0.573 150.9 141.2 0.593 4.52 <.001 0.59 

3 static 59 185.2 134.4 0.520 269.7 172.7 0.548 4.18 <.001 0.54 

3 rtmax 60 189.8 150.8 0.536 301.5 197.8 0.501 4.32 <.001 0.56 

3 initmax 66 304.8 140.7 0.510 470.9 203.2 0.473 7.39 <.001 0.91 

3 dynamic 60 297.0 111.6 0.560 364.1 154.0 0.508 3.95 <.001 0.51 

Note. MAD values were first aggregated per participant and typicality condition.  

BC = bimodality coefficient based on the per participant standardized MAD values. 

 

 

 

 

Figure 2. Aggregate mouse trajectories for Experiment 1 and 2. All individual trajectories were flipped 

to the left, time-normalized and aggregated separately per typicality and experimental condition. 
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Figure 3. Mean of maximum absolute deviation values (MAD, in pixel) for Experiment 1 separately per 

typicality and experimental condition. Error bars indicate 1 SEM. 

 

 

To statistically test these differences in aggregate trajectory curvature, we computed the 

MAD for each trajectory (see Figure 1; Freeman & Ambady, 2010; Kieslich & Henninger, 2017; 

Koop & Johnson, 2011). Following common procedures in mouse-tracking studies, the MAD val-

ues were aggregated per typicality condition separately for each participant. The mean MAD val-

ues for atypical and typical exemplars are reported in Table 2, separately for all experimental con-

ditions and studies. 

A repeated measures ANOVA using the aggregated MAD values per participant with the 

within factor typicality (atypical vs. typical) and the between factor response indication procedure 

(click vs. touch) revealed a significant main effect of typicality, F(1, 106) = 25.96, p < .001, η𝑝
2  = .20, 

90% CI [0.09, 0.30]. In both the click and the touch condition, MAD values were significantly higher 

for atypical than for typical exemplars (Table 2). Besides, there was a significant main effect of the 

response indication procedure, F(1, 106) = 46.88, p < .001, η𝑝
2  = .31, 90% CI [0.19, 0.41], with higher 

MAD values in the click condition. Finally, there was a significant interaction of typicality and 

response indication procedure, F(1, 106) = 12.30, p < .001, η𝑝
2  = .10, 90% CI [0.03, 0.20], with a larger 

typicality effect in the click (dz = 0.61) than in the touch (dz = 0.36) condition (Figure 3). 
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Figure 4. Smoothed heatmaps of the individual trajectories in Experiment 1 and 2 separately per exper-

imental condition. Darker colors indicate higher density. 

 

 

Distribution of trajectory shapes. To examine the influence of the response indication 

procedure on trajectory shapes, we first analyzed the bimodality of the distribution of the MAD 

values at the trial level, following the typical analyses procedures reported in previous mouse-

tracking studies (Freeman & Ambady, 2009, 2010; Freeman & Dale, 2013; Spivey et al., 2005). That 

is, we standardized MAD values per participant and then computed the bimodality coefficient sep-

arately for atypical and typical trials for each experimental condition. As can be seen in Table 2, 

both bimodality coefficients in the click condition were larger than .555, which – based on simu-

lation studies – is used as a cut-off for assuming a bimodal distribution (see Freeman & Ambady, 

2010; Freeman & Dale, 2013). However, in the touch condition, both bimodality coefficients were 

smaller than .555, which is taken as evidence for a unimodal distribution. 

Instead of performing bimodality analyses that are designed to answer the question whether 

there are one or two different types of trajectories, it has recently been argued that mouse-tracking 

researchers should perform more fine-grained analyses to make inferences about the presence or 

absence of different types of trajectory shapes (Wulff et al., in press, 2018). One such analysis is a 

graphical approach that plots a (smoothed) heatmap of all trajectories separately for each experi-

mental condition (Kieslich et al., in press). The resulting plots for each experimental condition are 

displayed in Figure 4. For the click condition, the plot indeed suggests a mix of primarily straight 

trajectories and a number of triangular trajectories that first move to the non-chosen option and 

then horizontally head to the chosen option. In contrast, the latter type of trajectories seems to 

be almost absent in the touch condition which consists of mostly straight and slightly curved tra-

jectories. 
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Figure 5. Set of prototype trajectories used in the current analyses (cCoM = continuous change of mind, 

dCoM = discrete change of mind, dCoM2 = double change of mind). 

 

To quantify and statistically test for differences in the frequency of trajectory types between 

conditions, a recently proposed procedure is the mapping of trajectories onto trajectory proto-

types (Wulff et al., in press). The prototypes used in the current study are depicted in Figure 5. 

They are based on prototype trajectories proposed in the meta-analysis of Wulff et al. (2018). They 

include straight trajectories that move directly from the start button to the chosen option, curved 

trajectories, continuous change of mind (cCoM) trajectories that exhibit a curved attraction toward 

the non-chosen option, discrete change of mind (dCoM) trajectories that first move straight to the 

non-chosen option and from there horizontally to the chosen option, and double change of mind 

(dCoM2) trajectories that first move straight to the chosen option and then horizontally switch 

back and forth between the non-chosen and the chosen option.2 

To assign each trajectory to a prototype, the following analysis steps are employed (follow-

ing Wulff et al., in press): First, trajectories are spatially normalized so that each trajectory is de-

scribed by 20 points, ensuring that the spatial distance between adjacent points remains constant 

across the trajectory (in contrast to time-normalization, it is desirable to use fewer points to put 

an emphasis on the main shape of the trajectory). Then, the trajectory prototypes are spatially 

transformed so that their start and end points match the mean start and end points of the trajec-

tories (separately per experimental condition). Next, the spatial distance between each prototype 

and trajectory is computed (using the Euclidian distance) and each trajectory is assigned to the 

prototype with the smallest distance. 

                                                           
2 There are, of course, also other possible types of trajectories. However, we would argue that, based on the plots 

of individual trajectories per assigned prototype (Figures 6 and 11), this set of prototypes seems to well describe 

the vast majority of trajectories in the current experiments. See Footnote 14 for a reanalysis of Experiment 3, where 

a subset of trajectories seemed to be better accounted for by additional prototypes. 
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Figure 6. Individual trajectories per assigned prototype separately for the different experimental con-

ditions from Experiment 1 and 2. For each prototype, the relative frequency of classifications per ex-

perimental condition is displayed. 

 

 

The results of the prototype assignment and the relative frequency of each prototype clas-

sification are displayed in Figure 6. The majority of individual trajectories seems to be explained 

well by the current set of prototypes. The relative frequency of prototypes differed significantly 

between experimental conditions, χ2(4) = 83.79, p < .001. While most trajectories were classified 

as straight in the touch condition, there were relatively fewer straight classifications in the click 

condition. Besides, a considerably greater percentage of trajectories was classified as discrete 

changes of mind (both dCoM and dCoM2) in the click condition. 
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Table 3. Percentage of trajectories per assigned prototype in each experimental condition separately 

for typical / atypical exemplars. 

  Assigned prototype 

Experiment Condition straight curved cCoM dCoM dCoM2 

1 click 73/60 12/11 7/10 7/16 1/4 

1 touch 84/81 10/12 5/4 2/3 0/0 

2 default 72/61 12/10 6/10 9/16 1/3 

2 slow 80/67 11/15 5/12 3/5 0/2 

3 static 62/49 19/20 12/18 5/10 2/4 

3 rtmax 64/50 15/15 13/18 7/14 1/3 

3 initmax 39/24 33/27 14/17 12/26 2/6 

3 dynamic 28/26 53/45 13/15 6/10 1/4 

Note. cCoM = continuous change of mind, dCoM = discrete change of mind,  

dCoM2 = double change of mind. 

 

 

To test whether the different trajectory types explained the larger typicality effects on cur-

vature in the click condition, we performed an ordinal mixed regression at the trial level. Assuming 

that more extreme deviations of a prototype in the direction of the non-chosen option indicated 

greater amounts of response conflict, we treated the assigned prototype as ordinal variable 

(straight < curved < cCoM < dCoM < dCoM2). We included a random intercept per participant as 

well as the effect-coded predictors typicality (atypical = 0.5, typical = -0.5), experimental condition 

(click = 0.5, touch = -0.5) and their interaction. Atypical trials led to a significantly higher proba-

bility of more extreme trajectories (z = 4.23, p < .001) as did the click condition (z = 5.70, p < .001). 

Especially in the click condition, atypical trials also led to more extreme trajectories as indicated 

by a significant interaction (z = 2.39, p = .017). The relative frequencies of prototype classifications 

per typicality and experimental condition are displayed in Table 3. 

Discussion 

In the first experiment, we examined the influence of the response indication procedure on 

mouse-tracking data. When participants indicated their response by clicking on the corresponding 

option, the typicality effect was significantly larger than when participants could indicate their 

response by simply moving the cursor onto the button. This larger effect was related to more ex-

treme trajectory movements at the trial level, specifically more so-called discrete change of mind 

trajectories that first move straight to the non-chosen option before heading horizontally to the 
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chosen option. In the touch condition, on the contrary, the majority of trials was either straight or 

curved. This was also reflected in the bimodality coefficients which indicated evidence for bimo-

dality in the click condition and evidence for unimodality in the touch condition. 

Importantly, previous mouse-tracking studies have used the shape of trajectories (assessed 

often via bimodality analyses) to draw inferences about whether single or dual decision processes 

are at work in a given decision situation (see reviews by Freeman, 2018; Stillman et al., 2018). This 

experiment demonstrates that using exactly the same task and simply changing a theoretically 

peripheral design aspect (the response indication procedure) can lead to either a bimodal distri-

bution of curvature values, which could be interpreted as evidence for a dual-system model, or a 

unimodal distribution that could be interpreted as evidence for a dynamic model. While it is pos-

sible that changing a design aspect affects the underlying decision process, we deem it more plau-

sible that the decision process remains unaffected and instead the design factor influences the 

mapping of the decision process onto the mouse movement. These findings strongly suggest that 

aspects of the study design have to be carefully considered when interpreting mouse-tracking 

data. This should be particularly important with regard to potential effects of design factors that 

frequently vary between mouse-tracking studies. Extending the above presented findings on ef-

fects of the type of response indication, the following experiments are devoted to two further cen-

tral design factors: the mouse sensitivity settings and starting procedure. 

Experiment 2 

In the second experiment, we focused on the design factor mouse sensitivity. This setting 

includes both the cursor speed and acceleration, which have varied considerably in previous stud-

ies with some studies leaving the settings at the system defaults (which is under Windows 7/8 

medium speed with acceleration enabled, e.g., Kieslich & Hilbig, 2014; Szaszi et al., 2018) and 

other studies that deliberately reduced the cursor speed and disabled cursor acceleration (e.g., 

Dshemuchadse et al., 2013; Frisch et al., 2015; Scherbaum et al., 2010). For this reason, we com-

pared these two commonly used setups, a default condition (medium speed, acceleration enabled) 

and a slow condition (reduced speed, acceleration disabled). One challenging aspect of this design 
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factor is that mouse sensitivity settings have rarely been reported explicitly in previous studies 

(Fischer & Hartmann, 2014).3 

With regard to the mouse sensitivity settings, Fischer and Hartmann (2014) have suggested 

that reducing the cursor speed and turning off acceleration is preferable for capturing cognitive 

effects in mouse trajectories. They argued that these settings ensure a linear relationship between 

hand and cursor movement, such that participants move the hand smoothly across a greater dis-

tance. In contrast, under default settings, small movements of the wrist might already be enough 

to move the cursor to indicate a response due to enabled acceleration. While we, in principle, agree 

with these recommendations, the actual empirical consequences of different mouse sensitivity 

settings remain unknown. It might indeed be the case that, as Fischer and Hartmann (2014) sug-

gest, a slow condition is better for capturing the cognitive effects which would lead, for example, 

to a larger typicality effect, but this has never been demonstrated. Alternatively, it could also be 

the case that the default condition leads to larger average effects by exaggerating small hand 

movements – although Freeman and Ambady (2010) note that extremely high speeds might lead 

to problems as the cursor movements may become ballistic and jerky. By comparing a default and 

a slow cursor setting in this study, we hoped to provide a first empirical basis for researchers to 

make an informed decision about which mouse sensitivity setting is most suitable to their research 

question. 

Methods 

Procedure and materials. The general experimental procedure and all materials were iden-

tical to those in Experiment 1 and the study was again conducted at the University of Mannheim, 

Germany. The setup of the default condition in Experiment 2 was identical with the click condition 

of Experiment 1.4 For the slow condition, the only change was that the cursor acceleration was 

disabled and the cursor speed was reduced from 50% to 30% (of the maximum speed). As the mouse 

                                                           
3 The authors have to admit that this is also the case for some of their own studies, for example, Kieslich and Hilbig 

(2014), which used medium speed (50% of maximum speed) with acceleration enabled, and Scherbaum et al. (2010), 

which used a reduced speed (25%) with acceleration disabled. 
4 One minor change was that the cursor was not reset to the exact center of the start button (x = 0.0 px, y = 85.0 px) 

after participants clicked on it. However, empirically the average start position was close to this center (x: M = -0.2 

px, SD = 45.6 px; y: M = 103.6 px, SD = 32.5 px) and the start position of all trajectories was aligned statistically 

during preprocessing. 
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sensitivity settings cannot be changed from within OpenSesame, we used a simple program to 

efficiently change the mouse sensitivity settings in Windows 7, the Mouse Acceleration Toggler.5 

Participants. After providing written informed consent, participants were randomly as-

signed to the default or the slow condition and then completed the experiment (which was fol-

lowed by another experiment). At the end of the study, participants provided demographic infor-

mation and completed the EHI. They received partial course credit for their participation. Based 

on the power analysis reported in Experiment 1, we intended to ensure a minimum number of 54 

participants per experimental condition. A total number of 118 participants completed the exper-

iment (88 female, aged between 18 and 35 years, M = 22.7, SD = 3.3). The majority of 91 participants 

indicated a preference for the right hand, while seven participants indicated a preference for the 

left hand, the remaining 20 participants indicating no strong preference. 

Results 

The analyses followed those of Experiment 1. In addition, we conducted a manipulation 

check to examine whether the cursor sensitivity settings affected cursor speed and acceleration. 

Correctness. The number of correctly answered trials did not differ significantly between 

experimental conditions (93.5% correct answers in default condition, 94.5% in slow condition), 

χ2(1) = 0.95, p = .329.6 Again, only correctly answered trials were included in the analyses. 

Manipulation check. To determine whether participants actually moved the cursor faster 

in the default than in the slow condition, we computed the maximum velocity (in px/ms) and ac-

celeration (in px/ms2) for every trial. We then averaged the values per participant and compared 

them between conditions. As expected, the maximum velocity was considerably larger in the de-

fault condition (M = 10.0, SD = 2.2) than in the slow condition (M = 4.3, SD = 1.1), t(116) = 18.09,  

p < .001, d = 3.33, 95% CI [2.77, 3.89]. Similarly, the maximum acceleration was also larger in the 

default (M = 0.54, SD = 0.12) than in the slow condition (M = 0.22, SD = 0.06), t(116) = 18.67,  

p < .001, d = 3.44, 95% CI [2.86, 4.00]. 

  

                                                           
5 The program can be obtained for free from http://skwire.dcmembers.com/fp/?page=mat. The settings for the de-

fault condition were “accel=on speed=10”, the settings for the slow condition were “accel=off speed=6”. 
6 This result could be replicated in a generalized linear mixed model at the trial level using a binomial link function 

and including a random intercept per participant (see complete analyses online). 

http://skwire.dcmembers.com/fp/?page=mat
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Figure 7. Mean of maximum absolute deviation values (MAD, in pixel) for Experiment 2 separately per 

typicality and experimental condition. Error bars indicate 1 SEM. 

 

 

Aggregate trajectory curvature. To get a first impression of the effect of the cursor sensi-

tivity manipulation on trajectory curvature, we inspected the aggregate time-normalized trajec-

tories (Figure 2). In both experimental conditions, the aggregate trajectories deviated more to-

wards the non-chosen option for atypical than for typical exemplars. The size of this difference 

seemed to be slightly larger in the default than in the slow condition. 

A repeated measures ANOVA using the aggregated MAD values per participant with the 

within factor typicality (atypical vs. typical) and the between factor mouse sensitivity settings (de-

fault vs. slow) revealed a significant main effect of typicality, F(1, 116) = 50.49, p < .001, η𝑝
2  = .30, 

90% CI [0.19, 0.40], with higher MAD values for atypical than for typical exemplars. The effect of 

typicality was significant in both conditions (Table 2). In addition, there was a significant main 

effect of the mouse sensitivity settings, F(1, 116) = 16.37, p < .001, η𝑝
2  = .12, 90% CI [0.04, 0.22], 

with higher MAD values in the default condition. There was, however, no significant interaction 

of typicality and cursor sensitivity, F(1, 116) = 2.82, p = .096, η𝑝
2  = .02, 90% CI [0.00, 0.09], although 

the typicality effect was descriptively slightly larger in the default (dz = 0.71) than in the slow (dz = 

0.59) condition (Figure 7). 
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Distribution of trajectory shapes. As a first analysis of trajectory shapes, we again com-

puted the bimodality coefficients for the per participant standardized MAD values separately for 

each typicality and experimental condition. Both in the default and in the slow condition the co-

efficients were larger than .555 indicating a bimodal distribution (Table 2). The smoothed 

heatmaps (Figure 4) indicated that in both conditions there were a considerable number of straight 

trajectories but also a number of change of mind trajectories where the cursor was moved all the 

way to the non-chosen option before moving to the chosen option. However, the latter type of 

trajectories seemed to occur less frequently in the slow condition. 

To quantify and statistically test for differences in the frequency of trajectory types between 

conditions, we mapped trajectories on the set of prototypes used in Experiment 1. The majority of 

the individual trajectories was again well explained by the prototypes (Figure 6). The relative fre-

quency of prototypes differed significantly between experimental conditions, χ2(4) = 49.66,  

p < .001. The main difference between conditions was that there were relatively more straight tra-

jectories in the slow and more dCoM trajectories in the default condition. 

We predicted the trajectory type in an ordinal mixed regression including a random inter-

cept per participant and the predictors typicality (atypical = 0.5, typical = -0.5), experimental con-

dition (default = 0.5, slow = -0.5), and their interaction. Atypical trials led to a significantly higher 

probability of more extreme trajectories (z = 7.13, p < .001) as did the default condition (z = 2.80,  

p = .005). The interaction between typicality and condition was not significant (z = -0.24, p = .809). 

The relative frequencies of prototype classifications per typicality condition are provided in Table 

3. 

Stability of effects across studies. The default condition in Experiment 2 was virtually 

identical with the click condition in Experiment 1. Therefore, we performed a set of analyses com-

paring these two conditions to replicate the typicality effect and examine its stability. 

First, we performed a repeated measures ANOVA on the MAD values that were averaged per 

participant. We included the within factor typicality and the between factor study. As theoretically 

expected, there was a significant main effect of typicality, F(1, 110) = 47.34, p < .001, η𝑝
2  = .30, 90% 

CI [0.19, 0.40], with larger values in atypical trials (Table 2). With regard to the differences between 

studies, there was neither a main effect of study, F(1, 110) = 0.03, p = .856, η𝑝
2  = .00, 90% CI [0.00, 

0.02], nor an interaction between study and typicality, F(1, 110) = 0.24, p = .624, η𝑝
2  = .00, 90% CI 

[0.00, 0.04]. 
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The relative frequency of the classified prototypes did not differ significantly between stud-

ies, χ2(4) = 1.01, p = .908. In an ordinal mixed regression predicting the assigned prototype with 

typicality (atypical = 0.5, typical = -0.5), study (study 1 = 0.5, study 2 = -0.5), and their interaction, 

there was a significant effect of the typicality predictor (z = 6.85, p < .001). However, there was no 

significant effect of study (z = 0.10, p = .923) nor was there a significant interaction between typi-

cality and study (z = 0.37, p = .713). 

Discussion 

In this experiment, we examined the influence of the mouse sensitivity settings on mouse-

tracking data. We compared a condition in which these settings were left at the system default 

under Windows 7 (50% of maximum speed, acceleration enabled) with a slow condition in which 

the acceleration was disabled and cursor speed reduced (to 30%). The default condition generally 

led to greater trajectory curvature (on average), which seemed to be driven by a higher percentage 

of trajectories with extreme movement patterns. However, there was no significant difference in 

the size of the typicality effect between conditions. 

The higher percentage of more extreme movement patterns in the default condition is prob-

ably related in particular to the activated acceleration settings, which amplify even small move-

ments towards one of the options. Interestingly, while there was a relatively higher occurrence of 

these extreme movement patterns for atypical than for typical exemplars, this did not lead to a 

significant interaction between mouse sensitivity settings and typicality because there also was 

an increase of more extreme movement types for atypical exemplars in the slow condition. At the 

same time, there was also no evidence that a slow condition would increase the cognitive effects 

in mouse-tracking data, as had been argued by Fischer and Hartmann (2014). 

The second experiment also provided the possibility for an internal replication of the typi-

cality effect across studies, as the default condition was virtually identical with the click condition 

of Experiment 1. Across all analyses, there were no significant differences between studies, point-

ing to the stability of mouse-tracking findings across studies – if the methodological setup is held 

constant. 

The findings from this experiment provide a first empirical insight into the effects of mouse 

sensitivity settings on mouse-tracking data. While the default setting increased the occurrence of 

more extreme mouse movement patterns, these did not affect the strength of cognitive effects 
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reflected in mouse movements, and both settings ultimately produced similar results. However, 

the investigated conditions only reflect two of the most common settings in the literature and do 

not represent an exhaustive sample. Some studies have previously used an even greater reduction 

in speed (e.g., Huette & McMurray, 2010) and it is possible that this produces stronger effects than 

the slow condition herein (or different effects altogether). In addition, acceleration and speed were 

only varied jointly in this experiment, and consequently their relative impact on the observed ef-

fects is not yet clear. Finally, we could only examine the mouse sensitivity settings for one specific 

type of response indication and starting procedure. It could be the case that mouse sensitivity 

settings become more important in other setups, for example, for starting procedures that enforce 

an early movement initiation – a topic that we will return to in the next experiment that compares 

different types of starting procedures. 

Experiment 3 

In this experiment, we investigated the influence of the starting procedure on mouse-track-

ing data. The starting procedure concerns the instructions and settings regarding how participants 

should initiate their mouse movement and how this relates to the stimulus presentation. A num-

ber of starting procedures have been used in previous mouse-tracking studies and the most com-

mon ones will be compared within this experiment. The first and most basic starting procedure we 

termed static start. In this procedure, the stimulus is presented immediately after participants 

have clicked on the start button and participants do not receive any instructions how and when to 

initiate their mouse movements. This procedure has been employed in a number of mouse-track-

ing studies (e.g., Kieslich & Hilbig, 2014; Koop, 2013; Koop & Johnson, 2013), including the orig-

inal experiment by Dale et al. (2007).  

Other mouse-tracking studies have modified the starting procedure in order to ensure that 

participants initiate their movement early in the trial, hoping to ensure that the complete decision 

process is reflected in the movement (Fischer & Hartmann, 2014; Hehman et al., 2015; Scherbaum 

& Kieslich, 2017). We implemented and tested three of these procedures in the following. A simple 

method (termed rtmax) is to restrict the total time participants have for giving a response in a trial 

(e.g., Duran et al., 2017; Szaszi et al., 2018). This indirectly also encourages an early movement 

initiation because participants have to make their choices quickly. A different, frequently em-

ployed procedure (termed initmax) uses a static procedure but explicitly instructs participants to 
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initiate their movement within a certain time limit in each trial and presents a warning after each 

trial if participants initiated their movement too slowly (see Hehman et al., 2015, for a discussion; 

see Freeman & Ambady, 2009, 2011; Stolier & Freeman, 2016; Papesh & Goldinger, 2012; Yu, 

Wang, Wang, & Bastin, 2012, for exemplary applications). The fourth starting procedure that we 

include methodologically ensures a movement initiation even before stimulus presentation. In 

this dynamic starting procedure, participants have to initiate an upwards movement for the stim-

ulus to be displayed. This procedure has been employed by a number of mouse-tracking studies 

(see Scherbaum & Kieslich, 2017, for a discussion; see Scherbaum et al., 2010; Huette & McMur-

ray, 2010; Dshemuchadse et al., 2013; Frisch et al., 2015, for exemplary applications). 

Previous recommendations in the literature have stated that starting procedures which en-

sure that participants initiate the mouse movement early in the trial should help capture cognitive 

effects in trajectories (Fischer & Hartmann, 2014; Hehman et al., 2015). Specifically, encouraging 

participants to start moving the mouse as early as possible may increase the likelihood that im-

portant aspects of the decision process are reflected in the movement, such as the initial response 

tendency, varying activations of the competing options, or changes of mind. If parts of these cog-

nitive processes were already completed before participants even started moving the mouse, these 

processes would not be captured in the trajectories. In the extreme case, a decision might already 

be completed before the movement is initiated, leading to a straight trajectory. A straight trajec-

tory in this case would not necessarily indicate that no conflict was present during the decision 

process but rather that it occurred before movement initialization. Applying this reasoning to the 

present experiment, this implies that all starting procedures that ensure an early movement initi-

ation should lead to a larger typicality effect compared to a static starting procedure. This should 

hold in particular for the dynamic and the initmax starting procedure, which directly aim at en-

suring an early movement initiation. 

So far, only one published study has empirically investigated the influence of different start-

ing procedures on mouse-tracking data (Scherbaum & Kieslich, 2017). This study found that a 

dynamic starting procedure did not lead to significantly larger cognitive effects found in aggregate 

curvature measures than a static starting procedure in which the stimulus was presented after a 

fixed, short delay. However, a dynamic starting procedure led to larger cognitive effects in tem-

poral analyses that assessed how the cursor movement direction was affected by different factors 

at a specific time point. While this study provides a first indication that the starting procedure is 
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an important design aspect of mouse-tracking studies, it only involved a comparison of two con-

ditions across studies (and, as a consequence, without random assignment). Besides, it only con-

sidered two possible starting procedures. Therefore, a study that experimentally compares a larger 

set of commonly used starting procedures is needed. 

Methods 

Procedure and materials. The experiment was again conducted at the University of Mann-

heim, Germany. After providing written informed consent, participants were randomly assigned 

to one of four starting conditions and completed the experiment. At the end of the study, partici-

pants provided demographic information and answered the EHI. After completing the study, par-

ticipants had the chance to win one of several vouchers for local coffee shops (and other busi-

nesses, including a voucher for a German soccer league game) or sweets. 

The basic setup of all conditions was identical with the click condition in Experiment 1, with 

the following modifications: the stimulus (the animal name) was now presented 340 px above the 

center of the start button, the cursor speed was reduced (to 40%) and acceleration was disabled.7 

These changes were introduced in order to ensure that participants in the dynamic and initmax 

conditions could acquire the stimulus information during their upwards movement without stop-

ping, which is facilitated if the stimulus is presented at a higher position and if the mouse cursor 

moves slower. Besides, we increased the number of practice trials to six so participants could bet-

ter acquaint themselves with the more complex starting procedures. 

Apart from the starting procedure that was manipulated between participants (static vs. 

rtmax vs. initmax vs. dynamic), all experimental conditions were identical. In the static condition, 

the stimulus was presented immediately after participants clicked on the start button and partic-

ipants did not receive any information about movement initiation (as in the previous two experi-

ments). The rtmax condition was identical to this, but participants were told that they would have 

to provide their answer within 2.5 s; if participants took longer than 2.5 s, the trial was aborted 

and a reminder to answer within the time limit was presented. The initmax condition was also 

identical to the static condition with the addition that participants were told that they would have 

                                                           
7 The cursor sensitivity was again set via the Mouse Acceleration Toggler (specific settings: “accel=off speed=8”). 

However, for six participants, accidentally the settings were not activated (meaning that they remained at the 

system default) so data for these participants was discarded. 
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to initiate an upwards movement within 0.6 s; if they exceeded this time limit, a warning message 

was displayed (after participants had given their response) that reminded them to initialize their 

upwards movement within the time limit.8 The movement criterion for the dynamic procedure 

followed the setup by Frisch et al. (2015) , that is, participants needed to move the mouse 50 px 

upwards for the stimulus to be presented.9 

Participants. Based on the power analysis reported in Experiment 1, we intended to ensure 

a minimum number of 54 participants per experimental condition. A total number of 245 partici-

pants completed the experiment and was included in the analysis. The sample comprised 162 

women and participants were between 18 and 50 years old (M = 21.9, SD = 3.3). The majority of 

172 participants indicated a preference for the right hand, 16 participants indicated a preference 

for the left hand, and the remaining 57 participants indicated no strong preference. 

Results 

The analyses of Experiment 3 mostly followed those of the previous experiments. However, 

a few additional analyses were conducted as manipulation checks. Besides, as the experimental 

manipulation now involved more than two conditions, we performed additional contrast analyses 

to trace back potential effects of the starting procedure to specific conditions. In these analyses, 

we used dummy coding and the static starting procedure served as baseline condition.  

Correctness. Across all trials, the number of correctly answered trials differed significantly 

between experimental conditions (static: 94.1%, rtmax: 89.1%, initmax: 89.7%, dynamic: 93.6%), 

χ2(3) = 29.93, p < .001. To contrast the effects of the different conditions, we performed a general-

ized linear mixed model at the trial level using a binomial link function and including a random 

intercept per participant. The starting condition was included as a predictor using dummy coding 

with the static condition serving as the baseline. The dynamic condition did not differ significantly 

from the static condition (z = -0.42, p = .673) while the initmax condition led to a significantly 

lower performance (z = -3.12, p = .002). The rtmax condition also led to a significantly lower 

                                                           
8 To calculate the initiation time, we used the same upwards movement criterion as in the dynamic condition (an 

upwards movement of 50 px). Regarding the time limit, we initially used a time limit of 0.4 s for a set of six partic-

ipants. However, participants reported that they were often not able to initiate their mouse movement within that 

time period so we increased the time limit to 0.6 s and discarded the data for these participants. 
9 Unlike Frisch et al. (2015), we did not impose a time limit for participants for performing this upwards movement 

(in order to keep the setup as simple and understandable as possible). 
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performance (z = -3.53, p < .001); however, when first excluding all trials in the rtmax condition 

that exceeded the time limit (3.8% of trials, which were counted as incorrect in the previous anal-

ysis as participants did not provide an answer) the performance in the rtmax condition (92.6%) no 

longer differed significantly from the static condition (z = -1.18, p = .237). Only correctly answered 

trials were included in the following analyses.10 

Manipulation check. We analyzed a number of time related variables as a manipulation 

check of the starting procedure. For each variable, we first averaged the values per participant and 

then compared them between conditions. The descriptive statistics of the different variables are 

displayed in Table 4. 

 

 

Table 4. Mean (SD) of the per participant aggregated timing variables in Experiment 3 presented sepa-

rately for each condition (in ms). 

Condition RTinitial Initiation time RT 

static 808.5 (324.1) 508.7 (215.6) 2110.4 (654.1) 

rtmax 650.1 (176.6) 437.3 (160.0) 1521.6 (183.4) 

initmax 377.4 (159.5) 243.1 (142.8) 1471.7 (248.6) 

dynamic 773.4 (752.2) 348.7 (233.2) 2805.4 (1199.8) 

Note. RTinitial = Time until cursor was moved 50 px upwards. 

 

 

As a first variable, we computed the time it took participants to move the mouse upwards 

for 50 px (RTinitial). As participants in the initmax condition were specifically instructed to initiate 

their movement within 0.6 s, we expected that the RTinitial should be lower in the initmax compared 

to the static condition. The average RTinitial in the initmax condition was considerably smaller than 

the instructed time limit (although participants still exceeded the time limit in 12.4% of trials). 

                                                           
10 Initially, we planned to exclude trials exceeding the movement initialization time limit in the initmax condition. 

We noticed during pilot trials that meeting this criterion was challenging for some participants. Therefore, we 

decided to slightly oversample the number of participants in this condition to be able to compensate for partici-

pants that would have to be excluded because they did not initiate their movement in time for enough trials. How-

ever, as previous studies using an initmax starting procedure (e.g., Freeman & Ambady, 2011) did not exclude trials 

exceeding the time limit, we eventually decided to follow this procedure. All main results can be replicated when 

excluding trials in the initmax condition where the time limit was not met and excluding, as a consequence, five 

participants for whom no correctly answered trials in either typicality condition remained (see complete analyses 

online). 
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The RTinitial differed significantly in an ANOVA between the different starting conditions, F(3, 241) 

= 13.64, p < .001, η𝑝
2  = .15, 90% CI [0.08, 0.21]. Contrast analyses revealed that the RTinitial was 

significantly smaller in the initmax than in the static condition, t(241) = -5.70, p < .001. It was also 

significantly smaller in the rtmax condition, t(241) = -2.05, p = .042, whereas it was not signifi-

cantly different from the static condition in the dynamic condition, t(241) = -0.45, p = .651.11 

A similar but more traditional mouse-tracking variable is the initiation time, that is, the 

time in the trial until any movement is initiated. The initiation time also differed significantly 

between conditions, F(3, 241) = 22.69, p < .001, η𝑝
2  = .22, 90% CI [0.14, 0.29], with a shorter initia-

tion time in the initmax than in the static condition, t(241) = -7.78, p < .001. The dynamic and 

rtmax conditions also led to significantly shorter initiation times than the static condition, t(241) 

= -4.58, p < .001, and t(241) = -2.05, p = .042.12 

With regard to the total response time (RT) in each trial, we expected that the rtmax condi-

tion would lead to shorter RTs. The starting procedure had a significant influence on the RT, F(3, 

241) = 49.61, p < .001, η𝑝
2  = .38, 90% CI [0.30, 0.44]. Contrast analyses revealed that the rtmax 

condition indeed led to shorter RTs than the static condition, t(241) = -4.63, p < .001. RTs were 

also significantly shorter in the initmax than in the static condition, t(241) = -5.14, p < .001. In the 

dynamic condition, the total RTs were significantly longer than in the static condition, t(241) = 

5.47, p < .001.13 The overall longer RTs in the dynamic condition make sense because in this con-

dition the stimulus is only displayed after the initiation of the upwards movement and, conse-

quently, the processing may start later. Interestingly, if we calculate the RT for the dynamic con-

dition based solely on the part of the trial after the stimulus presentation (which is typically done 

in studies that use a dynamic starting procedure, e.g., Dshemuchadse et al., 2013; Frisch et al., 

2015; Scherbaum et al., 2010), it is on average (M = 2021.1 ms, SD = 671.1 ms) quite comparable to 

the total RT in the static condition. 

  

                                                           
11 As some trials contained extremely large RTinitial values, we repeated the analyses using median instead of mean 

values per participant. The general pattern could be replicated. However, now the dynamic condition also had a 

significantly shorter RTinitial than the static condition (see complete analyses online). 
12 When repeating the analyses using median instead of mean values per participant, the general pattern could be 

replicated. However, now the rtmax condition did not have a significantly shorter initiation time than the static 

condition. 
13 The results pattern was comparable when using median instead of mean values per participant. 
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Figure 8. Aggregate mouse trajectories for Experiment 3. All individual trajectories were flipped to the 

left, time-normalized and aggregated separately per typicality and experimental condition. 

 

Aggregate trajectory curvature. To get a general impression of the effect of the starting 

procedure on trajectory curvature, we inspected the aggregate time-normalized trajectories (Fig-

ure 8). In all experimental conditions, the aggregate trajectories deviated more towards the non-

chosen option for atypical than for typical exemplars. The dynamic and initmax conditions gen-

erally led to prolonged vertical upwards movements compared to the static and rtmax conditions. 

In addition, the typicality effect especially seemed to be more pronounced in the initmax condi-

tion. 

A repeated measures ANOVA using the per participant aggregated MAD values with the 

within factor typicality (atypical vs. typical) and the between factor starting procedure (static vs. 

rtmax vs. initmax vs. dynamic) revealed a significant main effect of typicality, F(1, 241) = 97.72,  

p < .001, η𝑝
2  = .29, 90% CI [0.21, 0.36], with higher MAD values for atypical than for typical exem-

plars. The effect of typicality was significant in all four conditions (Table 2). 

In addition, there was a significant main effect of the starting procedure, F(3, 241) = 18.67, 

p < .001, η𝑝
2  = .19, 90% CI [0.11, 0.25]. Contrast analyses revealed that MAD values were overall 

significantly higher in the initmax than in the static condition, t(241) = 6.53, p < .001, as well as in 

the dynamic compared to the static condition, t(241) = 4.10, p < .001. The MAD values in the rtmax 

condition did not differ significantly from the static condition, t(241) = 0.72, p = .470.  
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Figure 9. Mean of maximum absolute deviation values (MAD, in pixel) for Experiment 3 separately per 

typicality and experimental condition. Error bars indicate 1 SEM. 

 

There also was a significant interaction between typicality and starting procedure, F(3, 241) 

= 4.12, p = .007, η𝑝
2  = .05, 90% CI [0.01, 0.09]. As can be seen in Figure 9, the typicality effect was 

significantly larger in the initmax than in the static condition, t(241) = 2.68, p = .008. There was 

no significant difference in the size of the typicality effect between the dynamic and the static 

condition, t(241) = -0.56, p = .576, nor between the rtmax and the static condition, t(241) = 0.87,  

p = .383. 

Distribution of trajectory shapes. To analyze trajectory shapes, we again computed the 

bimodality coefficients for the per participant standardized MAD values separately for each typi-

cality and experimental condition (Table 2). The bimodality coefficients were smaller than .555 

for all starting procedures, both for typical and for atypical trials, with the exception of the typical 

trials in the dynamic condition where the value of .560 was slightly larger than the cut-off. 

The smoothed heatmaps (Figure 10) indicated that in the static and rtmax conditions there 

were a considerable number of straight trajectories. In the dynamic and the initmax condition 

there were fewer straight trajectories but instead many trajectories that moved upwards for a dis-

tance (longer than the required movement criterion). In all conditions, there also seemed to be a 

number of change of mind trajectories where the cursor was moved all the way to non-chosen 

option before moving to the chosen option. 
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Figure 10. Smoothed heatmaps of the individual trajectories in Experiment 3 separately per experi-

mental condition. Darker colors indicate higher density. 

 

To quantify and statistically test for differences in the frequency of trajectory types between 

conditions, we mapped trajectories on the same set of prototypes that was used in Experiments 1 

and 2. The majority of individual trajectories again seemed to map well onto the set of prototypes 

(Figure 11).14 The relative frequency of prototypes differed significantly between experimental 

conditions, χ2(12) = 535.73, p < .001. In line with the previous experiments, the majority of trials 

in the static condition was classified as straight. Similar results were also obtained in the rtmax 

condition. In the dynamic condition, the majority of trials were classified as curved, while the in-

itmax condition led to a roughly even split of straight and curved classifications and a considerable 

increase of dCoM classifications compared with the other three conditions. 

We again predicted the trajectory type in an ordinal mixed regression including a random 

intercept per participant and the predictors typicality (atypical = 0.5, typical = -0.5) and experi-

mental condition (dummy coded, static serving as baseline condition). Atypical trials led to a sig-

nificantly higher probability of more extreme trajectories in the static condition (z = 5.06, p < .001). 

The rtmax condition did not differ significantly from the static condition, z = 0.31, p = .760. Both 

the initmax and the dynamic condition led to significantly more extreme trajectories compared 

with the static condition, z = 5.99, p < .001, and z = 4.37, p < .001. For the initmax condition both 

more curved and change of mind trajectory types occurred while for the dynamic condition, there 

seemed to be especially more curved trajectories (see Figure 11). With regard to the interaction of 

typicality and condition, there were no significant interactions for the rtmax and initmax 

                                                         
14 Upon closer inspection of the data, we discovered a small number of trajectories in the initmax and dynamic 

condition that were not captured well by the existing prototypes as they went upwards all the way to the top of the 

screen and then either moved left to the chosen option or first right to the non-chosen option and from there left 

to the chosen option (or rarely even twice back and forth). Comparable results were obtained when including those 

movement patterns as additional prototypes and repeating the analyses with this extended set (see complete anal-

yses online). 
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conditions, z = 0.79, p = .427, and z = 1.68, p = .094. The dynamic condition led to a relatively 

smaller increase in extreme trajectories for atypical trials compared to the static condition,  

z = -2.19, p = .029. 

 

 

Figure 11. Individual trajectories per assigned prototype separately for the different experimental con-

ditions from Experiment 3. For each prototype, the relative frequency of classifications per experi-

mental condition is displayed. 

 

Discussion 

In this experiment, we examined the influence of four different starting procedures on 

mouse-tracking data. Several previous mouse-tracking studies have used a static starting proce-

dure in which the stimulus is immediately presented after participants have clicked on the start 

button and participants do not receive any instruction regarding movement initiation. However, 

this poses the risk that participants may make their decision before initiating the movement. 

Therefore, other studies have employed measures to ensure that participants initiate their 
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movement early in the trial, hoping to increase the likelihood that the complete decision process 

is reflected in the movement. These methods include restricting the total response time (rtmax), 

instructing participants to initialize their movement early in the trial (initmax) or requiring an 

upwards for the stimulus to be displayed (dynamic). 

Results showed that the initmax condition, in which participants were instructed to initial-

ize an upwards mouse movement within 0.6 s, led to a significantly larger typicality effect than 

the static condition, as measured via MAD. This was accompanied by an increase of change of mind 

trajectories that moved all the way to the non-chosen option before heading to the chosen option. 

However, participants also made more mistakes in their choices than they did in the static condi-

tion. When implementing the initmax condition, a central challenge is to set an adequate time 

limit for the initiation of the mouse movement (see Hehman et al., 2015, for a discussion). With 

the current setting (move upwards 50 px within 0.6 s), we found that participants could not always 

meet the time limit for initiating their mouse movement. While a slight increase of the time limit 

might seem an easy solution for this issue in future studies, it bears the potential of offsetting the 

above described effects of this starting procedure. This highlights the need of conducting pilot 

studies to determine which initiation time threshold works best for the specific task at hand. 

A dynamic starting procedure, in which participants had to move the cursor upwards 50 px 

for the stimulus to be displayed, did not significantly influence the typicality effect. However, tra-

jectories were overall classified as being more curved than in all other starting procedures, and the 

relative occurrence of more extreme trajectory types in atypical versus typical trials was slightly 

reduced. This indicates that a dynamic starting condition might come closest to the idea of con-

tinuously curved trajectories – potentially even more so if used in combination with a touch in-

stead of a click response, as has been implemented in previous studies (Dshemuchadse et al., 2013; 

Frisch et al., 2015; Scherbaum et al., 2010). These studies also often employed a dynamic starting 

procedure in combination with restrictions regarding the time for initiating the upwards move-

ment as well as the time for giving the total response. Future studies should therefore more closely 

examine the dynamic starting procedure in this setup (see also Scherbaum & Kieslich, 2017).15 

                                                           
15 Older studies used a different movement initiation criterion (moving upwards at least 4 px in each of two con-

secutive time steps, see Scherbaum et al., 2010). However, we think that this does not constitute an important 

difference and would argue in favor of the newer criterion (used, e.g., in Frisch et al., 2015), as its definition is more 

straightforward and easier to implement. 
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Introducing a total time limit of 2.5 s for giving a response in the rtmax condition did not 

have a significant effect in any of the trajectory analyses, compared to the static starting proce-

dure. It is possible that this resulted from the time limit not being strict enough, given that the 

average response time in the static condition was also shorter than 2.5 s (see Table 4). When set-

ting the time limit, we had intended to encourage participants to start moving earlier without 

introducing too much overall time pressure (that could alter basic decision processes, e.g., through 

an introduction of stress). The manipulation generally seemed to be effective, since the average 

response time in the rtmax condition was more than 0.5 s shorter than in the static condition and 

participants initiated their upwards mouse movements earlier in the trial. Still, future studies 

could explore the use of a stricter total time limit, at the risk of altering cognitive processes and 

potentially losing more trials in which participants do not answer within the time limit. 

An interesting observation is that the bimodality coefficients in almost all conditions indi-

cated evidence for a unimodal distribution. This was also the case for the static condition, which 

was quite similar to the slow condition from Experiment 2 (where the bimodality coefficient had 

indicated bimodality). The main methodological difference for the static condition in the current 

study was that the stimulus was presented at a higher point on the screen. This might explain the 

finding, because on average the trajectories headed upward for a longer time in the static condition 

of Experiment 3 compared to the slow condition from Experiment 2 (see Figures 4 and 8). This, in 

turn, led to higher average MAD values (Table 2) and deviations from this higher baseline have a 

smaller effect on the bimodality coefficient. Still, the inspection of the heatmaps and prototype 

classifications indicated that different types of trajectories were present in all starting conditions. 

In sum, this experiment has shown that the starting procedure has considerable influence 

on mouse-tracking data, influencing both the size of the cognitive effects reflected in mouse tra-

jectories as well as their shape. As both have been used to test psychological theories, this under-

scores the importance of taking the methodological setup of the study into account when inter-

preting mouse-tracking data. Specifically, within the same task, a dynamic starting procedure can 

produce a majority of curved trajectories while a static start leads to a majority of straight trajec-

tories. While the former type of trajectories is usually associated with dynamic process models, 

the latter type is rather interpreted as belonging to a low conflict decision in a dual-system model. 

At the same time, change of mind trajectories were present to varying degrees for all starting pro-

cedures which are usually associated with high conflict decisions in a dual-system model. 
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Assuming that the starting procedure does not really change the underlying decision process, this 

implies that the mapping of the decision process onto the mouse movement depends on the start-

ing procedure, with the dynamic and the initmax starting procedures increasing the likelihood 

that the decision process (and especially its early stages) are more continuously mapped onto the 

mouse movement. 

General Discussion 

Over the past decade, mouse-tracking has spread to a multitude of psychological areas and 

was used to examine diverse cognitive processes (Freeman, 2018; Stillman et al., 2018). Given the 

relative novelty of the method, to date no standards for designing and running mouse-tracking 

experiments have been established, and this entailed considerable variation in the methodological 

setup of previous mouse-tracking studies. To improve understanding of the empirical and ulti-

mately also theoretical consequences of methodological differences for mouse-tracking data, the 

present study reported a systematic investigation of three central design factors. In a series of 

experiments, the design factors response indication, starting procedure, and mouse sensitivity 

were varied while the basic experimental setup remained constant and followed a classic mouse-

tracking experiment by Dale and colleagues (2007). In all methodological setups, the postulated 

typicality effect was replicated in that mouse trajectories deviated more towards the non-chosen 

option for atypical than for typical stimuli. However, the size of this effect was influenced by the 

type of response indication and the starting procedure. Besides, trajectory shapes were influenced 

by all design factors: In traditional bimodality analyses, some setups led to the distribution of 

curvature indices being classified as unimodal, while other setups were classified as bimodal. 

When mapping individual trajectories onto a set of prespecified prototypes, the relative frequency 

of the prototypes varied according to the methodological setup and, in many cases, could explain 

differences in the size of the typicality effect between conditions. 

Implications for Interpreting Mouse-Tracking Results 

The findings of the current study have general implications for interpreting results from 

mouse-tracking studies. First, it could be demonstrated that it is possible to find theoretically pre-

dicted effects on mouse trajectories in any methodological setup. Thus, in principle, any setup 

seemed able to capture the conflict between response options to at least some degree. However, 
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the size of this effect varied considerably between setups. Therefore, it is well possible that smaller 

and less robust effects than the typicality effect we investigated would not be detected in certain 

methodological setups. As a consequence, before concluding that a certain manipulation does not 

influence the conflict as measured through mouse trajectories, one should consider whether the 

setup was optimized to detect such effects. More generally, the findings highlight that the com-

parison of effect sizes between mouse-tracking studies with different methodological setups 

might be challenging – given that in the current experiments anything from a small (touch condi-

tion from Experiment 1) to a large effect (initmax condition from Experiment 3) was obtained for 

the exact same task and manipulation (see Table 2). 

Second, previous mouse-tracking studies have used bimodality analyses of curvature indices 

to conclude which theoretical model may account for the cognitive process of interest (Freeman 

& Dale, 2013; Hehman et al., 2015; Stillman et al., 2018). Most often, studies aimed to differentiate 

between dynamic and dual-system models that should lead to a unimodal versus a bimodal distri-

bution, respectively. The current study demonstrates that, depending on the methodological 

setup, both unimodal and bimodal distributions can be obtained in the very same psychological 

task. Assuming that cognitive processing is not influenced by the setup (which we deem unlikely 

but cannot completely rule out based on the current data), this implies that different shapes can 

occur for the same cognitive process. In our view, this indicates that the mapping of cognitive 

processes onto mouse movements can vary depending on the methodological setup and an inter-

pretation of trajectory shapes needs to consider the methodological conditions under which they 

were obtained.  

More specifically, the starting procedure influences the degree to which early aspects of the 

decision process are reflected in the mouse movement, with an initmax and dynamic starting pro-

cedure increasing the likelihood that early aspects are captured, while this is not guaranteed in 

studies that use a static start. In extreme cases, the decision process might even be finished before 

the mouse movement was initiated in setups with a static start. A resulting straight trajectory 

would then not necessarily indicate that there was no response conflict, but possibly that it was 

not captured in the movement. In addition, the response indication probably influences the degree 

to which the attraction of an option is translated into a movement towards that option. The click 

condition allowed participants to move all the way to an option (if this is the currently favored 

option) and then redirect the movement to the other option (a prototypical change of mind 
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trajectory), whereas the touch condition reduced the likelihood of these extreme movements. 

Thus, a study with a static starting procedure and click response mode is more likely to produce a 

mix of straight and change of mind trajectories than a study with a dynamic starting procedure 

and touch response mode. 

Third, the results demonstrate the usefulness of the newly proposed analysis method for 

identifying different types of movement trajectories (Wulff et al., in press, 2018). On the one hand, 

it allows unpacking the effect a certain manipulation has on mouse trajectory curvature. That is, 

it shows whether higher curvature is caused by all trajectories being more curved in one of the 

conditions or whether a certain condition leads to the occurrence of more extreme trajectory 

types, such as discrete changes of mind. In the current experiments, larger effects on aggregate 

curvature were often accompanied by a higher share of these types of movements. On the other 

hand, it offers an alternative way to assess whether different types of trajectories are present in 

the data or not. In Experiment 1 and Experiment 2, the new method generally seemed to agree 

with the traditional bimodality method in that conditions with a bimodal distribution also con-

tained a mix of more extreme trajectory types compared to conditions with a unimodal distribu-

tion. In Experiment 3, bimodality analyses generally suggested unimodal distributions, yet the 

prototype method still seemed to indicate the presence of different types of trajectories in the 

data. Future research will need to address the conditions under which these methods agree, and, 

if not, which method offers the more valid interpretation. 

Implications for Designing Mouse-Tracking Studies 

The findings have implications for the design of future mouse-tracking studies. In line with 

previous recommendations (Fischer & Hartmann, 2014; Hehman et al., 2015), a starting procedure 

that encourages participants to initiate their mouse movement early in the trial led to larger cog-

nitive effects. Interestingly, no larger effects were observed for the dynamic starting procedure, in 

which participants had to move the mouse upwards for the stimulus to be displayed. This, in turn, 

is in line with previous findings by Scherbaum and Kieslich (2017) who also did not find differences 

in the cognitive effects on trajectory curvature when comparing a dynamic and a static starting 

procedure. However, they also showed that a dynamic starting procedure led to larger effects in 

more fine-grained analyses that investigated the temporal development of within trial movements 

in a time-continuous regression framework. 
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The cursor speed and acceleration settings did not have substantial effects on mouse-track-

ing data in the current study. However, we only examined the effect of these settings in a static 

starting procedure. In test runs for the dynamic and initmax starting procedures we observed that 

a fast cursor with enabled acceleration made it extremely difficult to acquire the stimulus infor-

mation during the upwards movement. Specifically, the cursor increased in speed so quickly at the 

beginning of the trial, that it was difficult to read the stimulus word before reaching the upper part 

of the experimental screen. For this reason, we decided to reduce the cursor speed and turn off 

acceleration when comparing the different starting procedures – a setup which we would recom-

mend to anyone using a starting procedure that encourages early movement initiation (in line with 

Fischer & Hartmann, 2014; Freeman & Ambady, 2010). 

With regard to the response indication mode, a response by click led to considerably larger 

effects than a response by touching the button with the cursor. However, this was related to an 

occurrence of more extreme trajectories. Besides, the distribution of curvature values was classi-

fied as bimodal in the click condition and as unimodal in the touch condition. This suggests that 

researchers might face a trade-off between larger effects which are due to the occurrence of more 

extreme trajectory types and smaller effects with a more homogeneous trajectory distribution. 

Another consideration when making design choices for a mouse-tracking study is the ques-

tion which setup is suited for which psychological tasks. While encouraging early mouse move-

ments through the respective starting procedure should work well for studies with stimuli that can 

be processed very quickly and where decisions are relatively easy, it might provide a challenge for 

studies involving more complex tasks (such as decisions between monetary lotteries, e.g., Koop & 

Johnson, 2013, or decisions in the Cognitive Reflection Test, e.g., Travers, Rolison, & Feeney, 

2016). In this case, a static starting procedure may be better suited so participants can initiate the 

movement after acquiring the stimulus information. This is at the risk that they may finish pro-

cessing and arrive at a decision before initiating the mouse movement. This would most likely lead 

to an increase of straight trajectories (which can also be observed in the current study in conditions 

that used a static starting procedure). 
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Limitations 

The current study investigated the influence of design factors on mouse-tracking data by 

replicating a classic mouse-tracking experiment (Dale et al., 2007, Experiment 1) with different 

methodological setups. To investigate the impact of these different setups on mouse-tracking 

data, we had to make a number of choices, each of which entail certain limitations. Specifically, 

we selected a specific set of three central design factors and implemented only specific combina-

tions of these. We also decided to implement all manipulations between participants to avoid 

carry-over effects. Therefore, we could only implement a limited amount of conditions for each 

design factor, to ensure that statistical power was sufficient for each condition. We further only 

used one mouse-tracking paradigm for all three experiments, to ensure comparability between 

experiments. Lastly, we selected only a subset of all potentially available mouse-tracking analyses 

for the present purpose, focusing on the most frequently used analyses. In the following, we dis-

cuss how each of these choices could pose limitations to the present investigation. 

As stated above, we only examined three design factors in total and varied only one of them 

in each experiment. While this allowed for a clear interpretation of the consequences of each de-

sign factor in isolation, it also excluded the possibility of investigating potential interactions be-

tween the different design factors – some of which are likely to occur. For example, while it might 

be the case that a touch response procedure drastically reduces cognitive effects of curvature when 

used in combination with a static start procedure (as implemented in this study), it could well be 

that this is not the case when it is combined with a starting procedure that encourages early move-

ment initiation. Besides, for starting procedures that encourage an early movement initiation, a 

fast cursor speed might lead to problems (as previously discussed). Consequently, the study of 

design factors in mouse-tracking warrants further investigation and extension of the present re-

sults to investigate the effects of each design factor with different combinations of the other fac-

tors. 

Besides, while we intended to cover the most common implementations of each design fac-

tor, we could not cover all possible implementations. With regard to mouse sensitivity, we only 

compared two commonly used settings (one with default settings, i.e., enabled acceleration and 

50% speed, and one with disabled acceleration and 30% speed). There are, of course, many more 

speed settings that could be used – both faster and slower speed – and the effect of speed should 

be explored independently of acceleration. With regard to the starting procedures, several studies 
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have also employed a static starting procedure with delayed stimulus presentation (e.g., Spivey et 

al., 2005) – a condition which was not included in the current study. Besides, the dynamic and 

initmax starting procedures also have been used in combination with a general restriction of the 

total response time (e.g., Dshemuchadse et al., 2013; Freeman & Ambady, 2011). In this regard, 

the previously discussed study by Scherbaum and Kieslich (2017) may offer first insight as it com-

pared a dynamic with a static starting procedure (in which the stimulus presentation was slightly 

delayed) and the total response time was restricted in both conditions. 

We also intended to investigate the most central design factors. However, there are likely 

additional design factors relevant in mouse-tracking studies. One potentially relevant factor is the 

stimulus position. This is already suggested by the fact that the shape of the trajectories differed 

between the slow condition of Experiment 2 and the static condition of Experiment 3, which is 

likely related to the change of stimulus position between studies. Another potentially relevant 

factor concerns the response button position. Research on these and additional factors is currently 

under way (Grage, Schoemann, Kieslich, & Scherbaum, 2018; Schoemann, Lüken, Grage, Kieslich, 

& Scherbaum, 2018). In addition, there are also factors that are more closely related to the task at 

hand, such as the stimulus modality (presented as a written word, a spoken word or a picture). 

Dale et al. (2007), for example, replicated their experiment both with written words and pictures, 

the latter generally leading to larger effects. 

A further potential limitation of the present investigation is that it only used a paradigm 

from one content area (semantic categorization) and that the study was implemented in a rela-

tively simplistic methodological setup. Compared to the paradigm by Dale and colleagues that we 

used herein, other studies have included a considerably higher number of practice and actual trials 

and gave closer instructions to participants with regard to how they should move the mouse (e.g., 

Dshemuchadse et al., 2013; Scherbaum et al., 2010). Nevertheless, we would argue that the basic 

setup of the current study is representative of many mouse-tracking studies and that the effects 

observed in each study were reliable (as indicated by the cross-study comparison of two experi-

mental conditions with identical setups that did not differ significantly in any analyses). Still, all 

of this highlights the need for future studies that examine the effects of the individual design fac-

tors in other mouse-tracking paradigms. 

Finally, in our analyses we focused on the influence design factors have on trajectory curva-

ture and the trajectory shape, assessed through the calculation of MAD values, bimodality analysis 
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and the newly proposed prototype mapping method. We did this because these are the most com-

mon applications of mouse-tracking (Stillman et al., 2018). Nonetheless, the richness of mouse-

tracking data allows for a multitude of further analyses (see Freeman, 2018; Hehman et al., 2015; 

Scherbaum et al., 2010; Stillman et al., 2018) and it is an interesting question how design factors 

may also have an influence in each of these analyses (see Scherbaum & Kieslich, 2017, who per-

form a number of additional analyses in their comparison of two starting procedures). As the data 

for all experiments is freely provided in an open format (along with open-source software for their 

analysis), interested researchers are invited to use it to explore how the design factors in the cur-

rent studies influence data in their particular analysis of interest. 

Conclusion 

We presented one of the first comprehensive investigations of three central design factors 

in mouse-tracking – response indication, mouse sensitivity, and starting procedure – and their 

influence on mouse-tracking data. We demonstrated that these design factors can have consider-

able impact on trajectory curvature and the shape of individual trajectories. Such differences can, 

in turn, bias theorizing and lead to premature conclusions about support for or against certain 

theories, for example, the distinction of dynamic and dual-system accounts. Our results strongly 

suggest that the specific design of a mouse-tracking study must be carefully considered when in-

terpreting mouse-tracking data with respect to testing theories and when planning mouse-track-

ing studies. Lastly, an extension of the present investigation to further setups and tasks seems 

imperative – an endeavor that we would like to encourage further researchers to pursue with help 

of the experiments, analysis code and data that we have made available. 
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Abstract Mouse-tracking is an increasingly popular method
to trace cognitive processes. As is common for a novel meth-
od, the exact methodological procedures employed in an in-
dividual study are still relatively idiosyncratic and the effects
of different methodological setups on mouse-tracking mea-
sures have not been explored so far. Here, we study the impact
of one commonly occurring methodological variation, namely
whether participants have to initiate their mouse movements
to trigger stimulus presentation (dynamic starting condition)
or whether the stimulus is presented automatically after a fixed
delay and participants can freely decide when to initiate their
movements (static starting condition).We compared data from
a previous study in which participants performed a mouse-
tracking version of a Simon task with a dynamic starting con-
dition to data from a new study that employed a static starting
condition in an otherwise identical setup. Results showed re-
liable Simon effects and Congruency Sequence effects on re-
sponse time (RT) and discrete trial-level mouse-tracking mea-
sures (i.e., average deviation) in both starting conditions. In
contrast, within-trial continuous measures (i.e., extracted tem-
poral segments) were weaker and occurred in a more tempo-

rally compressed way in the static compared to the dynamic
starting condition. This was in line with generally less consis-
tent movements within and across participants in the static
compared to the dynamic condition. Our results suggest that
studies that use within-trial continuous measures to assess
dynamic aspects of mouse movements should apply dynamic
starting procedures to enhance the leakage of cognitive pro-
cessing into the mouse movements.

Keywords Mouse-tracking .Methodology . Boundary
conditions . Simon task

Stuck at the starting line: How the starting procedure
influences mouse-tracking data

To understand how the cognitive system brings forth an as-
tonishing spectrum of behavior, the study of cognitive pro-
cesses is a central endeavor. The tracing of cognitive processes
has been an important tool, starting with process tracing
methods such as verbal protocol analyses (Ericsson &
Simon, 1984; Newell & Simon, 1972), complemented later
by objective measures, such as eye-tracking. The latter meth-
od allowed researchers to trace cognitive processes from be-
havior instead of relying on introspective self-reports. In re-
cent years, a further method extended the arsenal of process
tracing methods: Mouse movement tracking offers a simple
way to trace participants’ cognitive processing while they
make choices and execute response movements. The central
assumption behind mouse-tracking is that cognitive process-
ing is continuously revealed in hand (and mouse) movements
(Spivey, 2007; Spivey & Dale, 2006; Spivey, Grosjean, &
Knoblich, 2005). In return, the analyses of mouse movement
data can be used to make inferences about the development of
the cognitive processes leading up to the final decision. The
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advantages of mouse-tracking are manifold: the hardware is
cheap, mouse movement measuring can be implemented in
most experimental software, and most participants are highly
familiar with moving a computer mouse. Hence, mouse-
tracking flourished in recent years (for a review, see
Freeman, Dale, & Farmer, 2011), finding application in stud-
ies of language and semantic processing (Dale, Kehoe, &
Spivey, 2007; Dshemuchadse, Grage, & Scherbaum, 2015;
Spivey et al., 2005), conflict resolution (Scherbaum,
Dshemuchadse, Fischer, & Goschke, 2010), and value-based
decision making (Dshemuchadse, Scherbaum, & Goschke,
2013; Kieslich & Hilbig, 2014; Koop & Johnson, 2013;
Scherbaum, Dshemuchadse, Leiberg, & Goschke, 2013; van
Rooij, Favela, Malone, & Richardson, 2013).

As it is typical for uprising new methods, a variety of
methodological approaches can be found that vary between
application domains and even between research groups within
the same domain. For example, in some mouse-tracking stud-
ies, participants need to start a trial actively by initiating a
mouse movement that, in turn, starts the presentation of the
imperative stimulus (e.g., Dshemuchadse et al., 2013;
Scherbaum et al., 2010), while in other studies, participants
respond by starting their movement after the imperative stim-
ulus has already been presented (e.g., Dale et al., 2007;
Kieslich & Hilbig, 2014; Koop & Johnson, 2011).
Inevitably, such methodological differences pose two chal-
lenges to the community of mouse-tracking users: first,
implementing a study becomes a relatively idiosyncratic pro-
cess in which a researcher has to weigh different methodolog-
ical options to the best of her knowledge. Second, without
systematic investigation, it remains unclear in how far meth-
odological differences influence the results with respect to the
posed research question (Fischer & Hartmann, 2014).
Therefore, it seems of urgent importance to start investigating
how far methodological differences influence results of
mouse-tracking studies, first to allow for a consistent interpre-
tation and comparability of studies employing different meth-
odological setups, and, second, as a basis for developing
methodological standards as they are common for other pro-
cess tracing techniques, for example, electroencephalography
or eye-tracking.

Here, we present a first humble step into this direction by
comparing how differences in the way participants start a trial
influence mouse-tracking data and results. In this regard, two
common approaches are compared: (1) a “dynamic starting
procedure” in which participants have to initiate a movement
first to trigger stimulus presentation, and (2) a “static starting
procedure” in which a stimulus is presented after a fixed time
interval and participants can freely initiate their movement.
The discussion in how far these (and other) differences influ-
ence data quality – especially consistency and reliability – is
an ongoing debate in the community, though still mainly at
conferences and meetings.

To study differences in the starting procedure, we used the
Simon task, a paradigm that is well established in cognitive
psychology. In this task, participants have to select one of two
possible response options depending on the magnitude of a
number shown on the screen (e.g., the left option if the number
is smaller than 5, otherwise right), but have to ignore the
location of the number on the screen (e.g., left or right). This
arrangement can lead to two types of trials. In conflict trials,
the direction indicated by number magnitude (e.g., left) differs
from the location of the number on the screen (e.g., right). In
non-conflict trials, the direction indicated by number magni-
tude corresponds to the location of the number on the screen.
Two reliable effects are commonly observed in the Simon
task. The Simon effect refers to slower response times in con-
flict trials compared to non-conflict trials. The congruency-
sequence effect refers to a decrease in the Simon effect if the
current trial was preceded by a conflict trial compared to a
preceding non-conflict trial. In an original study, we have
investigated these effects and their dynamics via mouse-
tracking using a dynamic starting procedure (Scherbaum
et al., 2010). Participants clicked on a box at the bottom-
center of the screen and then started to move the mouse cursor
upwards. After meeting a movement threshold, the number
was presented so that participants had to select their left-
right response while already moving. We chose this proce-
dure, first, to ensure that the cognitive processes influencing
response selection leaked as strongly as possible into the
mouse movements and, second, to establish a high level of
consistency within and across participants regarding the
movements at the start of the trial. In our study, we found that
the Simon effect and the congruency sequence effect affected
mouse movements, as mouse movements were more curved
toward the incorrect response option in conflict trials and this
conflict effect was reduced if the previous trial also was a
conflict trial. We further analyzed the timing profile of these
influences, determining when and how strongly congruency
and congruency sequence influenced mouse movement direc-
tion. The pattern of results could be replicated across two
consecutive studies speaking for the robustness of both the
effects per se and their dynamics.

Hence, these effects and the results of the original study
offer an ideal platform to investigate in how far differences in
the starting condition, that is, a static versus a dynamic starting
procedure, influence the consistency of movements within
and across participants, and in how far these properties of
the data influence different mouse-tracking measures.
Currently, many mouse-tracking studies rely on discrete mea-
sures of effects on the trial level, calculating initiation times,
movement times, movement deviation, or the number of
changes in movement direction for statistical analysis
(Freeman & Ambady, 2010). As many discrete measures in-
tegrate information over the course of the whole trial they
should be relatively robust against changes in design.
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However, other groups have gone further and analyzed the
movements as time-series within the trial (Dshemuchadse
et al., 2013; Scherbaum et al., 2010, 2013; Sullivan,
Hutcherson, Harris, & Rangel, 2015), similar to the analysis
of EEG. Due to their higher temporal resolution, within-trial
continuous measures should be more prone to changes in the
setup or procedure of mouse-tracking.

Taken together, in a mouse movement version of the Simon
task, we will investigate to what extent a specific change in the
methodological setup influences the consistency of mouse-
tracking data. Specifically, we will examine to what degree a
static starting condition, in which the stimulus is presented
automatically after a fixed delay and participants can freely
decide when to initiate their movements, might decrease data
quality compared to a dynamic starting condition that requires
participants to initiate mouse movements in order to trigger
stimulus presentation. We combined data from our original
study (Scherbaum et al., 2010, Experiment 2) in which we
used the dynamic starting condition, with data from a new
sample of participants who performed the identical task, ex-
cept that we used a static starting condition. We expected (1)
that cognitive effects on discrete movement measures would
only slightly be influenced by differences in the starting con-
dition whereas (2) cognitive effects on within-trial continuous
movement measures would be larger and more reliable in the
dynamic starting condition compared to the static starting con-
dition. Underlying this latter phenomenon, we expected (3)
that the consistency of movements within trials, across trials,
and across participants would be higher in the dynamic
starting condition than in the static starting condition.

Method

Participants

Twenty right-handed students (17 female, mean age = 20.5
years) of the Technische Universität Dresden, Germany, par-
ticipated in the experiment. In the original study, 20 right-
handed students (17 female, mean age = 21.1 years) of the
Technische Universität Dresden had participated. All partici-
pants had normal or corrected-to-normal vision. They gave
informed consent to the study and received either class credit
or 5€ payment.

Apparatus and stimuli

The apparatus and stimuli in the new experiment were identi-
cal to the apparatus and stimuli in the original experiment.
Target stimuli (numbers 1–4 and 6–9) were presented in white
on a black background on a 17-in. screen running at a resolu-
tion of 1,280 × 1 024 pixels (75 Hz refresh rate). They had a
width of 6.44° and a horizontal distance to the screen center of

20.10°. Except for one procedural difference (see below), the
setup of the current study was the same as in the original study.
Response boxes (11.55° in width) were presented at the top
left and top right of the screen. As presentation software, we
used Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997)
in Matlab 2006b (the Mathworks Inc., Natick, MA, USA),
running on a Windows XP SP2 personal computer.
Responses were carried out by moving a standard computer
mouse (Logitech Wheel Mouse USB). In the driver settings,
non-linear acceleration (“optimize movements” option) was
switched off to enable a linear ballistic arm movement and
to ensure that the upwards movement (within the trial) and
the downwards movement (in the inter-trial interval) cancelled
out each other. Furthermore, the mouse speed was set to one-
quarter of maximum speed, a setting that ensured that partic-
ipants could reach the target box with one continuous upwards
movement while at the same time ensuring that the movement
range was as large as possible. Mouse trajectories were sam-
pled with a frequency of 92 Hz and recorded from stimulus
presentation until response in each trial.

Procedure

The procedure in the new experiment was identical to the
procedure of the original experiment, with the exception of
the starting condition. Participants were asked to move the
cursor into the upper left response box for digits smaller than
five and into the upper right response box for digits larger than
five. Each trial consisted of three stages: the alignment stage,
the start stage, and the response stage. In the alignment stage,
participants had to click on a red box (11.55° in width) at the
bottom of the screen within a deadline of 1.5 s. This served to
align the starting area for each trial. After clicking on this box,
the start stage began and two response boxes in the right and
left upper corner of the screen were presented. The procedure
of the start stage differed between the new experiment, in
which we implemented a static starting condition, and the
original experiment, in which we had implemented a dynamic
starting condition. In the static starting condition, the start
stage simply lasted 200 ms (this was the average duration of
the start stage in the original experiment that used the dynamic
starting condition) and participants simply had to wait for the
start of the response stage. In contrast, in the dynamic starting
condition, participants were required to start the mouse move-
ment upwards within a deadline of 1.5 s. Specifically, the
response stage only started after participants moved the mouse
upwards for at least 4 pixels in each of two consecutive time
steps. Usually, this procedure is applied to force participants to
be already moving when entering the decision process to as-
sure that they do not decide first and then only execute the
final movement (Scherbaum et al., 2010). In the response
stage, the imperative stimulus (the number) was presented.
For this stage, participants in both starting conditions were
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instructed to respond as quickly and accurately as possible and
to move the mouse continuously upwards once they had ini-
tialized their movement.

The trial ended after moving the cursor into one of the
response boxes within a deadline of 2 s (see Fig. 1). If subjects
missed the respective deadline in one of the three stages, the
next trial started with the presentation of the red start box.
Response times (RTs) were measured as the duration of the
response stage, reflecting the interval between the onset of the
target stimulus and the arrival of the mouse cursor in the re-
sponse box area.

After onscreen instructions and demonstration by the ex-
perimenter, participants practiced 40 trials (10 trials with feed-
back and no deadline for any stage of a trial, 10 trials with
feedback and deadline, and 20 trials without feedback about
timing errors and with deadline).

Design

The Simon task used here is based on the conflict between the
direction indicated by the number (left vs. right) and the po-
sition on screen where the number was presented (left vs.
right). Hence, we varied these properties orthogonally for
the current trial and for the preceding trial resulting in the
following independent variables: the direction and location
of the number in the current trial (directionN [left vs. right]
and locationN [left vs. right]), and the direction and location of
the number in the previous trial (directionN-1 [left vs. right]
and locationN-1 [left vs. right]). This resulted in four combina-
tions for the current trial and four combinations for the previ-
ous trial. The sequence of trials was balanced within each
block by pseudo randomization resulting in a balanced
TrialN (4) × TrialN-1 (4) × trial repetition (16) transition matrix.
This way, we obtained a balanced sequence of 256 trials with
systematically manipulated congruency of direction/ location
within the current trial (congruencyN), congruency of
direction/location within the previous trial (congruencyN-1),
and sequences of designated responses. Three such sequences
were generated, resulting overall in three blocks and 256 trials
per block.

Data preprocessing and statistical analyses

We excluded erroneous trials and trials following an error
(4.2 %). To avoid any bias in data analysis of the two meth-
odologically different sets, we refrained from outlier analysis
as performed in the original study. Mouse trajectories were
remapped so that all trajectories would end in the left response
box and horizontally aligned for common starting position
(horizontal middle position of the screen corresponds to 0
pixels, and values increase towards the right, i.e., the non-
chosen option). Each trajectory was normalized into 100 equal
time steps (following Spivey et al., 2005).

Data preprocessing and aggregation was performed in
Matlab 2010a (the Mathworks Inc.) and in R (R Core Team,
2016) using the mousetrap R package (Kieslich, Wulff,
Henninger, Haslbeck, & Schulte-Mecklenbeck, 2016).
Statistical analyses were performed in Matlab, R, and JASP
0.7.5.6 (JASP Team, 2016).

Results

Comparison of groups

Since our analysis builds on two independent groups of par-
ticipants from different studies, we first checked for differ-
ences between these groups other than the start condition.
All tested individuals were right-handed, and groups showed
no significant differences in age, t(38) = 0.881, p = .384 or in
sex (both groups contained 17 female and 3 male partici-
pants). All other descriptive variables also showed no signif-
icant differences (all p > 0.125, see Supplementary Material).
To check for general differences in speed in the task, we ana-
lyzed the inter-trial interval (ITI), that is, the time between
reaching the response box in the previous trial and clicking
into the start box to begin the next trial. As we do not see a
methodological reason why a difference in the setup of the
starting condition should affect the ITI, we used it as a general
indicator of speed differences in the task that are related to
differences between participant groups. We found no signifi-
cant differences between groups for the ITI, t(38) = 1.51,
p = .140. Taken together, we found no significant differ-
ences between the two groups on indicator variables that
should (or could) not be affected by the starting condition.

Cognitive effects

Next, we were interested in how far the study of cognitive
processes via mouse movements would be influenced by the
starting condition. We expected that discrete measures –
which describe the whole movement in a trial by one value
– would be relatively robust against differences in the starting
condition (hypothesis 1), whereas effects for continuous mea-
sures – which capture the variation of the movement at each
time point – would be weaker in the static starting condition
compared to the dynamic starting condition (hypothesis 2).

Discrete effects

We first inspected discrete measures for the Simon effect (con-
gruent vs. incongruent trials reflected in the factor
congruencyN) and congruency sequence effects (the modula-
tion of the Simon effect by the previous trial’s congruency
reflected in the interaction congruencyN × congruencyN-1).
As dependent variables, we computed the response time and
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the average deviation (AD) per condition and participant. AD
is the average perpendicular deviation between the actual
movement and a hypothetical straight line from the start to
the end point of the movement. For both measures, we con-
ducted repeated measures analyses of variance (ANOVA)
with the within subject factors congruencyN and
congruencyN-1 and the between-subject factor starting condi-
tion (dynamic vs. static).

ANOVA on AD revealed a significant main effect of the
starting condition, F(1,38) = 59.08, p < .001, η2p = 0.61, with
higher AD values in the dynamic than in the static condition.
In addition, the main effects for congruencyN, F(1,38) =
77.84, p < .001, η2p = 0.67, and congruencyN-1, F(1,38) =
23.35, p < .001, η2p = 0.38, were significant as well as the
interactions congruencyN × congruencyN-1, F(1,38) = 94.05, p
< .001, η2p = 0.71 and congruencyN-1 × starting condition,
F(1,38) = 8.17, p = .007, η2p = 0.18. With regard to the var-
iability of the theoretically important effects, both the Simon
effect (congruencyN) and the congruency sequence effect
(congruencyN × congruencyN-1) did not significantly interact
with the starting condition, congruencyN × starting condition,
F(1,38) = 3.07, p = .09, η2p = 0.07, and congruencyN ×
congruencyN-1 × starting condition, F(1,38) = 0.65, η2p =
0.02, p = .43. However, both effects were descriptively larger
in the dynamic starting condition (congruencyN: η

2
p = 0.73;

congruencyN × congruencyN-1: η
2
p = 0.77) than in the static

starting condition (congruencyN: η
2
p = 0.59; congruencyN ×

congruencyN-1: η
2
p = 0.68). Hence, in both conditions, mean

AD showed the expected Simon effects and congruency

sequence effects, though with descriptively lower effect sizes
in the static starting condition than in the dynamic starting
condition (Fig. 2, top panels).

Response time (RT) was calculated as the time difference
between the moment of stimulus onset and the moment when
the mouse cursor reached the response box (note that else-
where this measure is also called movement time. Since in
the dynamic starting condition participants are already mov-
ing, we chose referring to this measure as RT as it includes the
whole process of response selection).

ANOVA revealed signif icant main effects for
congruencyN, F(1,38) = 108.03, p < .001, η2p = 0.74,
congruencyN-1,F(1,38) = 4.93, p = .03, η

2
p = 0.11, and starting

condition, F(1,38) = 8.30, p = .006, η2p = 0.18, and a signif-
icant interaction congruencyN × congruencyN-1, F(1,38) =
156.95, p < .001, η2p = 0.81. The other interactions were not
significant, congruencyN × starting condition, F(1,38) = 0.07,
p = .79, congruencyN-1 × starting condition, F(1,38) = 3.12, p
= 0.09, and congruencyN × congruencyN-1 × starting condi-
tion, F(1,38) = 1.36, p = .25. Looking at the effect sizes in
each starting condition for the Simon effect (congruencyN)
and congruency sequence effects (congruencyN ×
congruencyN-1) indicates similar effect sizes for the dynamic
starting condition (congruencyN: η

2
p = 0.71; congruencyN ×

congruencyN-1: η
2
p = 0.80) and the static starting condition

(congruencyN: η
2
p = 0.77; congruencyN × congruencyN-1:

η2p = 0.81). Hence, in both conditions, RT showed the expect-
ed Simon effects and congruency sequence effects with sim-
ilar effect sizes (Fig. 2, bottom panels).
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Fig. 1 Setup of the experiment: Participants had to click with the mouse
cursor on a red box at the bottom of the screen. After clicking, response
boxes appeared at the upper edge of the screen. In the static starting
condition, the stimulus was presented 200 ms afterwards. In the
dynamic starting condition, participants had to move the cursor

upwards, in order to start stimulus presentation – only after reaching a
movement threshold, the stimulus was presented. To respond, participants
had to move the mouse cursor to the left or the right response box
depending on the magnitude of the number (left response if < 5, right
response if > 5)



Taken together, the discrete measures show the expected
robustness against differences in the starting condition, though
for AD descriptively weaker effect sizes were found in the
static starting condition.

Continuous effects

In the next step, we inspected continuous mouse-tracking
measures. We expected these measures to be more strongly
influenced by differences in the starting condition compared
to discrete measures, since they do not integrate information
across the whole trial but are based on the instantaneous in-
formation in each time step. Hence, if one starting condition
leads to lower consistency of movements, this should increase
the noise in the data and particularly influence measures with a
higher temporal resolution. Hypothesis 2 stated that effects on
continuous measures will be weaker and less reliable in the
static starting condition compared to the dynamic starting con-
dition. Several mechanisms are assumed to contribute to this
effect in the static starting condition: First, influences on
mouse movements should show a time-lag and be compressed
at the end of the trial due to the prolonged start of the main
movement. Second, effects of cognitive processes should be
weaker, because these processes can take place before the
movement is initiated and hence only partly leak into the

movement. Third, the lower data quality further decreases
reliability by inducing noise into the strength and the timing
of processes.

Visual inspection of heatmaps (Fig. 3) of mouse move-
ments along the X-axis over time reveals a smoother, though
wider spread distribution of movements in the dynamic
starting condition (Fig. 3, left) for both, congruent and incon-
gruent trials, compared to the trials in the static starting con-
dition (Fig. 3, right). Averaged mouse movements for
congruencyN and congruencyN-1 indicate a similar pattern of
effects in the dynamic and the static starting condition, though
time-lagged and less pronounced in the static starting condi-
tion compared to the dynamic starting condition (Fig. 4).

For the statistical analysis of movement dynamics, we per-
formed time continuous multiple linear regression on mouse
movement angles on the X/Y plane as done in the original
study (for an analysis with linear-mixed models leading to
comparable results, see Supplementary Material). Based on
the remapped, time-normalized trajectory data, movement an-
gle was calculated as the angle relative to the Y-axis for each
difference vector between two time steps. This measure has
two advantages over the raw trajectory data. First, it better
reflects the instantaneous tendency of the mouse movement
since it is based on a differential measure compared to the
cumulative effects in raw trajectory data. Second, it integrates
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trial congruency separately for the dynamic and static starting condition. Error bars indicate 1 SE
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the movement on the X/Y-plane into a single measure. Based
on this angle, we then dissected the influences of the indepen-
dent variables on mouse movements within a trial. We applied
a three step procedure. In the first step, we coded for each
participant three predictors for all trials: locationN (congru-
ent/incongruent), congruency sequence (same/different), and
previous response (same/different). LocationN reflects the in-
fluence of the current stimulus location – the information that
should be ignored and that induces the Simon effect.
Congruency sequence reflects the expected influence of the
previous trial’s congruency on the strength of the potentially
conflict inducing locationN influence of the current trial.
Hence, it reflects the interaction of congruencyN ×
congruencyN-1, predicting how strong the mouse trajectory is
deflected into the direction of the current stimulus location
depending on the previously induced conflict. Previous

response reflects a potential bias by the previously performed
response. To provide comparable beta weights in the next step,
we coded the predictors with values of -1 and 1. In the second
step, we calculated multiple regressions with these predictors
(angles were available for 99 time steps leading to 99 multiple
regressions) on the trajectory angle that had also been stan-
dardized for each participant from -1 to 1 to provide compa-
rable results. This yielded three time-varying beta weights (3
weights × 99 time steps) for each participant. Finally, in the
third step, we computed grand averages of these three time-
varying beta weights yielding a time-varying strength of in-
fluence curve for each predictor (Fig. 5).

We analyzed the dynamics of these three influences in two
ways. First, we performed peak analysis, extracting strength
and timing of peaks of the three influences via a jack-knifing
procedure as has been used previously, for example, for peak

Fig. 3 Heatmaps of pooled mouse movements along the X-axis as a function of time and current trial congruency separately for each starting condition

Fig. 4 Average X coordinate per time step depending on congruency and starting condition. Coordinates were first averaged within and then across
participants. Confidence bands indicate 1 SE



detection in lateralized readiness potentials (Miller, Patterson,
&Ulrich, 2001).We tested peak values and timing statistically
with one-sided t-tests corrected for jack-knifing. Second, we
detected significant temporal segments of influence by calcu-
lating t-tests against zero for each time step of the three time-
varying beta-weights (Dshemuchadse et al., 2013; Scherbaum
et al., 2010). We compensated for multiple comparisons of
temporally dependent data by only accepting segments of
more than ten consecutive significant t-tests (see Dale et al.,
2007; Scherbaum, Gottschalk, Dshemuchadse, & Fischer,
2015, for a Monte Carlo analysis on this issue).

Results of peak analysis are shown in Table 1. With regard
to peak timing, the static and the dynamic starting condition
show the same order of peaks of influences. However, the
peaks in the static starting condition show a significant lag
compared to the dynamic starting condition, for locationN,
tj(38) = 3.61, pj < .001, d = 0.57, and the previous response,
tj(38) = 2.19, pj = .02, d = 0.35, but not for congruency se-
quence, tj(38) = 0.71, pj = .15. Furthermore, the static starting
condition shows a higher amount of noise. Hence, a repeated-
ly found effect (Scherbaum et al., 2010; Scherbaum, Frisch,
Dshemuchadse, Rudolf, & Fischer, in press), the timing dif-
ference between the peaks for locationN and congruency se-
quence, cannot be replicated in the static starting condition,

tj(19) = 0.96, pj = .12, while it is significant for the dynamic
starting condition, tj(19) = 3.57, pj < 0.01.

Concerning peak strength, the static starting condition
showed a lower beta weight than the dynamic starting condi-
tion for locationN, tj(38) = 2.06, pj = .025, d = 0.33, but not for
congruency sequence, tj(38) = 1.09, pj = .11 and the previous
response, tj(38) = 1.36, pj = .16.

Results of time segment analysis are shown in Table 2. In
concordance with peak analysis, the dynamic starting condi-
tion yields more distinct time windows for all influences, es-
pecially showing less overlap between locationN and congru-
ency sequence (29 time steps, 186 ms) than the static starting
condition (36 time steps, 231 ms). The larger overlap in the
static starting condition is mainly caused by the pronounced
time-lag of locationN in the static starting condition compared
to the dynamic starting condition. A similar lag is present for
the influence of the previous response.

Movement consistency

The measures of process dynamics show a pronounced influ-
ence of the starting condition on all three cognitive effects, the
Simon effect (as reflected in the influence of the current stim-
ulus’ location), the congruency sequence effects, and biases

Table 1 Results from peak analysis on beta weights from continuous regression analysis separately for each starting condition. Segment times
represent the projection of time steps to each participant’s mean RT. SE represent jack-knifed standard errors of the mean (see main text)

Dynamic start Static start

LocationN Congruency sequence Previous response LocationN Congruency sequence Previous response

M SE M SE M SE M SE M SE M SE

Strength 0.41 0.06 0.10 0.01 0.11 0.03 0.26 0.04 0.08 0.01 0.06 0.02

Time step 38.95 1.67 49.95 3.77 1.00 0.00 48.10 1.90 57.10 9.34 23.85 10.43

Time (ms) 250 11 320 24 6 0 309 12 366 60 153 67
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Fig. 5 Results of time continuous regression analysis. Beta weights
indicate the strength of influence of each regressor on the mouse
movement angle in the dynamic condition (left) and the static condition
(right). Peaks are marked by diamonds indicating jack-knifed standard

errors. Lines above the graphs indicated segments of beta-weights that
were significantly greater than zero (t-test, minimum of ten consecutive
significant time steps)



due to the previously performed response. This indicates that
within-trial continuous measures are less robust against
changes in the starting condition than discrete measures. As
stated in our third hypothesis, we expected mouse movements
to be less consistent within trials, across trials, and across
participants in the static starting condition compared to the
dynamic starting condition.

To check whether the manipulation of the starting condi-
tion led to different starts of participants’ movements and less
consistent mouse movements within trials, we visually
inspected heatmaps of mouse movements along the Y-axis
and velocity profiles – the speed of movement at each time
step (measured as the Euclidean distance traveled [in px] di-
vided through the time passed [in ms]) – both pooled across all
participants (Fig. 6). Heatmaps of movements along the Y-
axis indicated that participants in the dynamic starting condi-
tion moved smoothly and consistently upwards, whereas par-
ticipants in the static starting condition often stayed at the
bottom of the screen for more than half of the trial before
moving upwards quickly in the second half of the trial.
Velocity profiles corroborated this interpretation, with low,
but consistent movement speed in the dynamic starting con-
dition, and, in contrast, a strongly increasing and inconsistent
movement speed in the static starting condition.

To quantify the consistency of movements within trials, we
created a continuous movement index. This index is calculat-
ed for each trial as the correlation of the actual Y-axis position
at each time step and a projected Y-axis position assuming a
constant straight upwards movement from the first to the last
point of the trial. An index of 1 hence indicates a smooth and
constant upwards movement. In concordance with the visual
impression from the heatmaps, the movement index was sig-
nificantly higher in the dynamic starting condition (M = 0.94,
SE = 0.01) than in the static starting condition (M = 0.80, SE =
0.02), t(38) = 5.21, p < .001, d = 1.65. This indicates that the
different start instructions indeed influenced how consistently
participants moved at the start and across the whole trial.

So far, all mouse movement analyses were based on the
mouse movements recorded from stimulus presentation until
response. However, given that in the static starting condition
participants could freely decide when to initialize their move-
ment, the movement could also have started after the stimulus
was already presented (and, consequently, after tracking on-
set). Therefore, an alternative analysis approach in the static

starting condition could only focus on the part of each trial
after movement has already been initiated (Buetti & Kerzel,
2008). This could, in principle, increase the similarity of the
analyzed parts between the dynamic and the static starting
condition for the movement index and potentially also for
the continuous measures. While restricting each trial only on
the part after movement initiation indeed improved the move-
ment index in the static condition (M = 0.89, SE = 0.01), it still
was significantly smaller than the movement index in the dy-
namic starting condition, t(38) = 1.97, p = 0.028, d = 0.62.
Analyzing the restricted movements in the time-continuous
regression analysis yielded worse results than the analysis of
unrestricted movements reported above, with wider spread
peaks for the Simon effect and a loss of the influence of the
previous response (see Supplementary Material).

To check the consistency of data across participants, we
calculated the movement initiation time, a frequently used
measure in mouse-tracking studies. Specifically, in the dy-
namic starting condition, movements were initiated before
stimulus presentation and triggered stimulus presentation
when the movement criterion was fulfilled (4 pixels in two
consecutive time steps). We hence took the time difference
between the click on the start box and the triggering of stim-
ulus presentation by the mouse movement as initiation time.
In the static starting condition, the stimulus was presented
200 ms after the click on the start box and participants could
freely decide when to initiate their movement. We hence de-
termined initiation time for each trial as the first time step after
stimulus presentation in which participants had moved the
mouse by more than 8 pixels (matching the criterion of the
dynamic starting condition). We averaged the initiation times
of each trial per participant and compared them between con-
ditions. Initiation times in the dynamic starting condition (M=
0.19, SE = 0.01) were comparable to the static starting condi-
tion (M= 0.21, SE= 0.02), as also indicated by a t-test, t(38) =
0.51, p = .611. However, the static starting condition showed a
significantly higher variance (SD = 0.09) than the dynamic
starting condition (SD = 0.04), as indicated by Levene’s test,
F(1, 38) = 8.64, p = .01. This indicates a lower consistency in

1 Given the significant difference in variances between groups, we repeated
the statistical analysis for different means of initiation times based on Welch’s
t. Again, we found no statistical differences, t(26.1) = 0.51, p = 0.61.

Table 2 Significant segments of beta weights from continuous regression analysis separately for each starting condition

Dynamic start Static start

LocationN Congruency sequence Previous response LocationN Congruency sequence Previous response

Time step [14, 58] [29, 67] [1, 19] [29, 65] [26, 71] [1, 41]

Time (ms) [89, 372] [186, 429] [0, 121] [186, 417] [166, 455] [0, 263]
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movement initiation strategies across participants in the static
compared to the dynamic starting condition.

To assess the consistency of movements across trials, we
calculated the bimodality coefficient of the distributions of
AD and checked in how far this index differed between
groups. Specifically, we calculated the bimodality coefficient
of each participant’s distribution of AD which indicates how
broadly and potentially bimodally distributed AD is across
trials of a participant.

Distributions of AD differed between conditions, as the bimo-
dality index was higher in the static starting condition (M= 0.57,
SE = 0.03) than in the dynamic starting condition (M= 0.41, SE
= 0.02), t(38) = 4.92, p < .001, d = 1.56 (see Supplementary
Material for histograms of AD per condition). This is also
reflected in the plot of individual response trajectories in which
the dynamic starting condition shows a more coherent distribu-
tion of movements than the static condition, where many single
movements leave the main area of movement (Fig. 7). More

Fig. 6 Heatmaps of movements along the Y-Axis (upper figures) and of movement speed (lower figures) as a function of time separately for each
starting condition. Colors show the log-scaled probability of movements to cross the respective bin at a specific time step

Fig. 7 Plot of individual time-normalized trajectories per starting condition. Movements start in the bottom center of the screen and end in the upper left
target box (as all trajectories were remapped to the left and their starting position was horizontally aligned)



precisely, the dynamic condition shows a smooth spread of
movements while the static condition shows a combination of
mainly straight movements and a few strongly curved
trajectories.

Taken together, our analysis of consistency of movements
within trials, across trials, and across participants indicates that
the static starting condition yielded less consistent movements
within a trial, across trials, and across participants. This is in
line with, and may indeed be the underlying cause of, the
weaker cognitive effects on the continuousmeasures observed
in the static starting condition.

Discussion

The present study investigated in how far methodological dif-
ferences in the setup of mouse-tracking studies influence the
consistency of mouse movements as well as the theoretically
expected effects on mouse-tracking measures. In a mouse-
tracking version of the Simon task, participants indicated their
response by moving a computer mouse to a response box on
the screen. The current study compared data from two exper-
iments that varied in the way participants initialized their
mouse movement. In a previously published experiment, a
dynamic starting procedure was employed in which partici-
pants had to initialize their mouse movement in order to trig-
ger the stimulus presentation. In a new experiment, a static
starting procedure was used in which the stimulus was pre-
sented after a fixed delay and participants could freely decide
when to initialize their mouse movement. As expected, we
found that the static starting procedure yielded less consistent
movements than the dynamic starting procedure. Concerning
the influence of the starting procedure on theoretically predict-
ed effects, we split our analysis in discrete measures that sum-
marize the mouse movement in each trial in a single value, and
continuous measures that examine the development of a spe-
cific movement characteristic within a trial over time. Effects
on discrete measures (i.e., average deviation) were relatively
robust against influences of the starting condition. In contrast,
effects on continuous measures examined in the time contin-
uous multiple regression analysis were weaker and more tem-
porally compressed in the static condition compared to the
dynamic condition.

Our results indicate that differences in the setup of mouse-
tracking studies – here, specifically, in the starting condition –
can indeed influence mouse movements and to some degree
also the theoretically important effects investigated in such
studies. The Simon task produces relatively robust experi-
mental effects and hence all dynamic effects were present in
both starting conditions – though they were much smaller and
temporally compressed in the static starting condition.
However, more subtle effects, for example, in value-based
decision making (Dshemuchadse et al., 2013; Scherbaum

et al., 2016) or semantic judgments (Dshemuchadse et al.,
2015) might be more strongly affected when one studies them
using a static starting condition, especially with within-trial
continuous measures.

Does this mean that a dynamic starting procedure should
always been applied? Our results indicate that at least for strong
behavioral effects, a static starting procedure could be used
(even for continuous measures). Such a static start setup might
even be indispensable, if the logic of the experiment dictates
strict sequences of stimulus timing which do not allow for par-
ticipants starting the stimulus presentation themselves, for ex-
ample, in priming experiments. Besides, other methodological
considerations (with currently largely unknown consequences)
might play a role when deciding whether the implementation of
a dynamic starting procedure is feasible: This includes the ques-
tion whether explicit instructions about the mouse movement
should be provided as they might increase participants’ aware-
ness of mouse-tracking, which might be especially relevant
when studying behaviors where influences of social norms
might be expected. Besides, the requirement of a continuous
upwards movement might be challenging if the stimulus infor-
mation is more complex and its acquisition more time-
consuming (though stimuli with a high amount of decision
critical information per trial represent a general challenge for
mouse-tracking studies, cf. Kieslich & Hilbig, 2014); this chal-
lenge is also amplified as a dynamic starting procedure is typ-
ically implemented in combination with limited time for
responding. Finally, depending on what constitutes the
mouse-tracking variable of interest a different methodological
setup might be desirable (see Fischer & Hartmann, 2014).

It is hence in the judgment of the experimenter, whether the
implementation of a dynamic starting procedure is desired and
feasible in a study and, if not, whether an additional explicit
instruction to start moving as quickly as possible might be
sufficient (Freeman & Ambady, 2010), especially when the
pursued effects are robust enough for a static starting proce-
dure. Besides, the implementation of a dynamic starting pro-
cedure typically is methodologically more demanding and
requires extensive pretesting to determine the exact spatial
and temporal setup – although mouse-tracking studies in gen-
eral require careful design and pretesting. Regarding the meth-
odological implementation, a recently presented open-source
software (mousetrap) can be used that allows creating mouse-
tracking experiments via a graphical user interface without
programming (Kieslich & Henninger, 2017) and that also al-
lows implementing a dynamic starting procedure by specify-
ing tracking boundaries.

Integration

The present work adds to the emerging discussion about
boundary conditions and standards for mouse-tracking studies
(e.g., Faulkenberry & Rey, 2014; Fischer & Hartmann, 2014),
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but could also be applied to hand movement tracking studies
in general (e.g., Buetti & Kerzel, 2008; Song & Nakayama,
2008, 2009). The basic idea of these studies is that cognitive
processing leaks into the execution of the movements and
hence cognitive processes become accessible to investigation
by studying the differences in movements between different
conditions. Our study indicates that the setup of the study
influences the link between cognitive processing and mouse
movements: Participants’ upwards movements were less con-
sistent within trials, across trials, and across participants when
participants were not forced by the setup to start moving. In
this regard, another methodological precaution that has been
helpful in our experience is watching participants during prac-
tice trials and – if necessary – reminding them to keepmoving.

On a general level, our study has two implications for fu-
turemouse-tracking studies: first, researchers should provide a
detailed description of the methodological setup of the mouse-
tracking task to enable researchers to compare findings from
different mouse-tracking studies (cf. Fischer & Hartmann,
2014). Second, if a study aims to interpret mouse movements
as the continuous tracking of response selection (in cognitive
tasks) or the preference development (in value-based decision
tasks), it should strive to maximize the likelihood of “process-
ing while moving” through the appropriate methodological
setup, for example, by using a dynamic starting procedure
(if feasible). If response selection or preference development
is (partly) performed before the movement is started by the
participants, this might weaken the direct link between cogni-
tive processing and mouse movements, and the duration of the
initial period without mouse movement (the initiation time)
might also contain information about the competition between
response alternatives that is not visible in the actual mouse
movement (Fischer & Hartmann, 2014). More importantly,
when participants act inconsistently within a study and some-
times think before moving while at other times move before
thinking, the effect under study could be split up and found
partially in initiation times and partially in movement mea-
sures. Such a split up might decrease the chances of studies
to find the predicted effects in the movement measures.
Furthermore, the split up might lead to more bimodally dis-
tributed movement measures. This bimodal distribution, in
turn, could be interpreted as evidence for two distinct cogni-
tive processes taking place in the psychological task that is
studied. However, following the reasoning outlined previous-
ly, this might be (partially) methodologically confounded with
the fact that in a static start condition people sometimes think
before moving (leading to a straight line) while other times
they think while moving. Both cases, thinking before moving,
and inconsistent movements, might considerably complicate
dynamic analyses of the ongoing processes.

Surprisingly, the application of dynamic analyses of mouse
movements (regression analysis, e.g., Dshemuchadse et al.,
2013; Scherbaum et al., 2010; Sullivan et al., 2015; decision

spaces, e.g., O’Hora, Dale, Piiroinen, & Connolly, 2013) is
still in its infancy and most published studies so far focus on
discrete measures of movements, which might raise the ques-
tion what exactly is gained when using AD or maximum de-
viation of movements (MAD) instead of RT of key presses.
Some studies indicate that AD might be more sensitive to
certain influences (e.g., Scherbaum et al., 2015) or might in-
deed reflect different processes, as indicated by dissociations
of RT and MAD (compare Koop & Johnson, 2011). In addi-
tion, Koop and Johnson (2013) argue that discrete mouse-
tracking measures can provide researchers with more specific
indicators for aspects of the preference development, such as
changes of the absolute preference (which – in a typical two-
choice mouse-tracking task – may be captured through cross-
ings of the Y-axis) and changes of the momentary valence (via
directional changes along the X-axis). Our study indicates that
to uncover the full potential of mouse-tracking studies and to
fully harvest the dynamics of decision processes by using
dynamic analyses of mouse movements, a thorough design
of the starting condition, including a dynamic start, might be
necessary. Otherwise, one risks losing potentially present ef-
fects in the noise of inconsistent movements.

Limitations

Our study is a first attempt to assess the influence of the
starting condition on movements and theoretically important
effects in mouse-tracking studies. It faces several limitations
that we discuss in the following.

First, as we compared data from a previous study with data
from a new study, participants were not randomly assigned to
the starting condition. By nature of such a design, we cannot
fully exclude that participants in the first sample (dynamic
starting condition from the original study) were simply differ-
ent to participants in the second sample (static starting condi-
tion from the new experiment). However, we found no signif-
icant differences in any of the sample characteristics that were
assessed for each participant in both studies. Besides, the the-
oretically expected effects could be replicated in both starting
conditions, and the pattern of differences between conditions
was specific and mostly as expected from a methodological
point of view. This makes us confident that the found pattern
in the data is not due to inherent group differences, but caused
by the difference in the starting condition between groups.
Still, a future study that randomly assigns participants to either
starting condition could be used to experimentally ensure full
comparability between groups. Of course, the ideal design to
avoid any differences between the two groups would have
been a within-subjects design. However, in such a design it
cannot be excluded that participants carry over a certain mode
of movement from one condition to the other one, so that a
between-subjects design seems preferable.
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Second, an unexpected finding was that RT in the static
starting condition was shorter than in the dynamic starting
condition. A look at the speed profiles of both conditions
(Fig. 6) indicates that the dynamic condition shows a more
consistent movement speed across time. Participants start their
movements and do not accelerate much even in the end phase
of their movement. In contrast, the static starting condition
shows considerable variation in movement speed across time.
Participants start slowly but sharply increase their speed in the
end phase of the movement. In our view, this pattern indicates
that in the dynamic condition, participants permanently coor-
dinate the processing of information and the movement of the
mouse cursor, while in the static condition, participants al-
ready start response selection before initiating their movement
and hence after initiating their movement quickly finish re-
sponse selection and execute their movement directly to the
target box. The latter strategy could easily yield the found
advantage of approximately 50 ms for the static condition
compared to the dynamic one. However, it also underlines that
in the static condition cognitive processing does not always
continuously leak into the mouse movements. Instead, in sev-
eral trials cognitive processing might take place before move-
ment initiation reducing the effects onmouse movements. The
initially slow upwards movement in the static starting condi-
tion presumably also contributes to an on average lower AD in
the static than in the dynamic starting condition as does the
requirement in the dynamic condition to initially move
upwards even before stimulus onset. The differences in
AD between the starting conditions certainly questions
the validity of absolute comparisons of AD between the
two conditions. However, here we performed relative
comparisons of the Simon effect and the congruency
sequence effect. Our approach is also bolstered by the
fact that both effects did not interact with the starting
condition: Hence, in principle, the effects were equal
irrespective of the starting condition.

Third, a comparison of initiation times revealed no signif-
icant differences between the starting conditions. However,
given the different procedures for movement initiation in the
two conditions, it is difficult to create a measure for initiation
time that is comparable across conditions. In the dynamic
starting condition, the initiation time was defined as the time
it took participants to fulfill the upwards movement criterion
(to trigger stimulus presentation) after clicking on the start
box. In the static starting condition, the stimulus was present-
ed automatically 200 ms after the click on the start box; there-
fore, the initiation time was defined as the time it took partic-
ipants to fulfill the upwards movement criterion (as in the
dynamic starting condition) after stimulus presentation.
Whether these twomeasures are indeed comparable is an open
question (e.g., one could also argue that the initiation time is
underestimated in the static starting condition as participants
can also prepare and start moving the mouse before the

stimulus is presented, and, as a consequence, the initiation
time should also be computed starting with the click on the
start box). Hence, the results from this comparison should be
handled with care and not be over generalized.

Fourth, given that in the static starting condition partici-
pants could freely decide when to initialize their movement,
an alternative analyses approach for the static condition could
only focus on the part of each trial after movement has already
been initiated (cf. Buetti & Kerzel, 2008). While restricting
each trial only on the part after movement initiation indeed
improved the movement index, time continuous regression
analysis revealed less reliable results and hence a loss in data
quality for continuous analyses. Hence, we conclude that even
the exclusion of the initial non-movement period cannot fully
compensate for the lack of leakage of cognitive processing
into the mouse movements in the static starting condition.

Finally, it should be stressed that aside from the starting
condition a lot of other methodological factors often vary be-
tween mouse-tracking studies, for example, whether partici-
pants have unlimited time (e.g., Kieslich & Hilbig, 2014) for
responding or whether there is a time limit (e.g.,
Dshemuchadse et al., 2013), whether participants have to click
on a button (e.g., Koop & Johnson, 2013) to indicate a re-
sponse or simply “touching” the button without a click suf-
fices (e.g., Scherbaum et al., 2010), or whether participants
receive explicit instructions about continuously moving up-
wards (e.g., Scherbaum et al., 2015) or no instructions about
mouse movements (e.g., Kieslich & Hilbig, 2014; Koop &
Johnson, 2013) are given. So, in order to enable a comparison
of findings across different mouse-tracking, the influence of
these and other additional methodological factors needs to be
investigated.

Conclusion

The present study is a first step in assessing the impact of
methodological differences between mouse-tracking studies.
We found that a static starting condition that did not enforce
participants to initiate mouse movements before stimulus pre-
sentation led to less consistent mouse movements. While this
did not have significant consequences for the investigation of
effects with discrete mouse-tracking measures, effects on
within-trial continuous measures were reduced. Moving to a
higher ground in the studies of cognitive processes hence re-
quires that experimenters understand the consequences of the
individual methodological setup of a study and that they en-
sure methodologically (if desired) that the processes continu-
ously leak into the movements of their participants.
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