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1 Introduction

In recent years, many applications related to stochastic differential equations (SDEs) with
discontinuous drift coefficient have emerged. These types of equations typically arise in
mathematical finance and insurance [2, 9, 15, 16], engineering applications [22, 36], eco-
nomy [26, 38], or stochastic control problems (3, 21, 38, 41].

The existence and uniqueness of solutions of SDEs in the standard case, i.e., the case of
sufficiently smooth coefficients, are well understood [17], and the corresponding numeri-
cal analysis is well developed (see, e.g., [19]) providing a variety of different numerical ap-
proximation schemes. A recent numerical comparison of two of them, the Euler scheme
and the Milstein scheme, in the case of nonlinear drift and diffusion coefficients can be
found in [5].

However, the standard theory on SDEs does not apply anymore in case of a disconti-
nuous drift coefficient, e.g., a piecewise constant drift coefficient, and a special theory is
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needed to address the question of existence and uniqueness of solutions of such SDEs
[18, 42, 44]. The same is true for the numerical analysis: The convergence behavior of
approximation schemes needs to be reconsidered and “research on numerical methods
for SDEs with irregular coefficients is highly active” [25, p. 2]. In the case of a sufficiently
smooth drift and a constant diffusion coefficient, the exact strong rate of convergence is 1
for the Euler scheme, see [6, 19]. At the time when the main part of the research presented
here was undertaken, no comparable result was known in the case of a discontinuous,
e.g., piecewise constant, drift coefficient. After many discussions and investigations, also
inspired by a previous version of this manuscript, refined results are now about to be es-
tablished, see Sect. 2.1.

In this work, we focus on numerical approximations of SDEs in the presence of a piece-
wise constant drift and a constant diffusion coefficient. We provide theoretical considera-
tions on the long time behavior of approximated SDE solutions based on the results from
the theory of ergodic Markov chains. Moreover, we provide further insight into the nu-
merical behavior of approximation schemes, in particular the Euler scheme, by analyzing
the numerical convergence rates based on a reference solution. The numerical speed of
convergence heavily depends on the initial value and properties of the drift coefficient, e.g.,
drift direction or jump height. Our tests reveal that for a special class of drift coefficients
the numerical convergence rates are higher and independent of initial conditions due to
the ergodicity of the Euler scheme and the underlying SDE. In addition to focusing on the
numerical convergence rates, we also use the Euler scheme to verify qualitative properties
such as the long time behavior of a rank-based stock market model [4], a prominent model
in finance to describe the evolution of the capital distribution within the market.

The remainder of this manuscript is as follows: In Sect. 2, we introduce some theoretical
and numerical basics and establish the ergodicity of the Euler approximations in the case
of an appropriate, piecewise constant drift coefficient. In Sect. 3, we discuss numerical
convergence properties and further findings of several numerical tests. We conclude this
work in Sect. 4 with the application from mathematical finance mentioned above, where
SDEs with a discontinuity in the drift coefficient naturally arise.

2 Problem description
In this section, we introduce our basic setting, i.e., the type of SDE we are interested in
and some basic terms for the numerical tests. Besides the Euler scheme and its long time
properties in our setting, we also briefly discuss the applicability and performance of some
other numerical schemes.

2.1 The equation
In this manuscript, we consider time-homogeneous SDEs with piecewise constant drift
coefficient and additive noise:

dX, =Y o 1g(X)dt+odW, t>0, Xp=¢&. (1)
j=1

Here, we have s € N, ,0,£ € R and disjoint (possibly infinitely many) intervals B; C R
forall 1 <j <s, and (Wy)se[o,7) is a one-dimensional Brownian motion.

The existence and uniqueness of solutions to this type of SDEs are guaranteed by results
of [42, 44] and [18]. In [42], the conditions on the drift and diffusion coefficient, under
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which the corresponding SDE has a unique strong solution, are derived. As emphasized
therein, those conditions are in particular fulfilled for a bounded drift coefficient and a
constant diffusion coefficient. Thus, the existence and uniqueness of a strong solution for
SDEs of type (1) is ensured.

For the numerical analysis of SDEs with discontinuous drift and/or diffusion coefficient,
the situation is more involved. In this manuscript, we focus on the strong convergence rate

of the Euler scheme, which, for a general SDE
X, =f(X)dt +g(X)dW,, te[0,T],  Xo=&,
where f and g are such that a unique strong solution exists, is given by

AP = PP (0P A + g (7T (Wikena = Waa), k=0,..,m—1, )

e @
The underlying time discretization of the time interval [0, 7] is 0=ty <t; <---<t, =T
with corresponding step size A := %, where 7 + 1 is the number of grid points.

While its behavior is well known for SDEs with Lipschitz continuous coefficients f and
g, much less has been known in more general cases, even for SDEs with additive noise and
a piecewise constant drift coefficient. The first contribution in this area is—up to the best
of our knowledge—the work [12], where almost sure convergence of the Euler scheme has
been established in the case of a one-sided Lipschitz drift coefficient, a locally Lipschitz
diffusion coefficient, and the existence of a Lyapunov function for the SDE. The results
of [13] give strong convergence of the Euler scheme for SDEs with additive noise in the
case of a discontinuous but monotone drift coefficient, while [40] establishes the almost
sure and strong convergence of the Euler scheme for SDEs with additive noise and drift of
the form f(x) = —sign(x). Recent contributions with respect to strong approximations of
SDEs with discontinuous drift coefficient are a series of articles by Ngo and Taguchi [33-
35] and Leobacher and Szolgyenyi [23—25], respectively. Very recently Miiller-Gronbach
and Yaroslavtseva [29] established strong order 1/2 for (2) in the case of a scalar equation
with piecewise Lipschitz drift and non-additive noise, and Neuenkirch et al. obtained the
same convergence order for an adaptive Euler scheme in the multi-dimensional case, see
[31]. The weak approximation of SDEs with discontinuous coefficients has been studied
in [20], where an Euler-type scheme based on an SDE with mollified drift coefficient is
analyzed.

In the case of SDE (1), the latest result on the strong convergence rate of the Euler scheme

s
xitplE = xePE + Z(X/ . ]]-B/- (xePE)A + O(VV(/(H)A - WkA)y k= 0, e, 11— 1,
j=1 (3)

x(e)xpE _ %_,
for the approximation of X7, i.e., the solution at time 7, is an L2-convergence order 3/4 —¢
in [30] for arbitrarily small € > 0.

For a better comparison, note that in the standard setting of an SDE with additive noise,
where the drift coefficient is sufficiently smooth, the Euler scheme has an exact strong
convergence order of 1, see, e.g., [6] and [19, p. 350f].
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So to summarize: The Euler scheme for our non-standard setting of SDE (1) has at least
L?-convergence order 3/4 — &. However, observing this convergence order numerically
will be a different story (see Sect. 3). For our theoretical and numerical considerations,
we restrict ourselves to the case of s = 2 in equation (1). This entails that we focus on one

point of discontinuity in the drift coefficient to better work out the arising effects.

2.2 Error measurement

As already mentioned, we are interested in empirically measuring the strong convergence
rate of the Euler scheme. The standard procedure for this is as follows: The root mean
squared error (RMSE) at time T for Euler scheme (1) with step size A = T'/n is given by

e(n) := (IE|XT - xf,XpE |2)1/2. (4)

Since an explicit form of X7 is unknown in general, one needs to replace X7 in our si-
mulation studies by a numerical reference solution X7**, which is computed by the Euler
scheme for an extremely small step size A = T/N with a very large number of N + 1 grid
points such that this approximation can be considered close enough to the true solution.

expE|2

Moreover, also the expectation E|[X7™ —x is not known explicitly, so we will approx-

imate this expectation by the empirical RMSE

)12

€emp (l’l) = Z | Xnum EXPE)

, (5)

with a large number M of Monte Carlo repetitions, i.e., (X7*" xZXPE)( ) i=1,...,M, are
iid copies of X3"™ — x;, ", ¥, Here, X 7 and %" have the same random input. Note that
N has to be chosen sufficiently large to generate the numerical reference solution and to
avoid oscillations in eemy (1), which might occur if N and # are close. If this is the case,
solutions might either be almost identical (differences close to machine accuracy) or obey
a difference as high as the full jump height (not captured drift changes). Those different
scales might lead to oscillations in the error measurement. The number of repetitions M
should also be large enough to have a good approximation of the expectation, i.e., a small
Monte Carlo error.

An alternative error measurement that is often used is based on error increments and
reads as follows:

einC(n) _ Z| z}:plE_ expE)()|2' (6)

In Sect. 3, the numerical investigations are primarily based on error measure (5) and are

supplemented by results obtained for error measure (6).

2.3 Other schemes
A natural idea is of course to consider other schemes than the explicit Euler scheme and

to compare them in our simulation studies.
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2.3.1 The implicit Euler scheme
Implicit schemes have good stability properties, thus they are a natural choice to consider.
For an SDE with additive noise, where the drift coefficient is sufficiently smooth, the im-
plicit Euler scheme has strong convergence order 1 (see, e.g., [1] and [32]).

However, for SDEs of type (1) already the implicit Euler scheme is not well defined. To
see this, consider the SDE

dX; = (o1 - Lcoo0)(Xp) + 03 - L) (X)) dt + 0 d W, £>0,  Xo=§,

with «; > 0 > ap. The implicit Euler scheme

x =+ (e Toon) () + @2 Lo (1)) A

+ 0 (Wisya — Wia), k=0,...,n—-1,
requires to solve, for fixed but arbitrary z € R, the equation

¥ = (1 Licoo0) () + a2 - Ljo,00) () A = 2,

with respect to ¥ € R. This equation does not possess a solution if z € (a1 A, - A), and
hence an implicit Euler scheme is not well defined in this setting.

2.3.2 The Heun scheme

The Heun scheme is another scheme with strong order one for SDEs with additive noise
under appropriate smoothness conditions on the drift coefficient. Adapted from [19,
p. 373] for SDEs of type (1), it is defined by

1 S S
plenn — yHeun 5 (Z o - 1, () + Z‘X/‘ . :H-B/(Fk)> A+ 0 (Wiina — Wia),
j=1 J=1

s
Fe=x" 4+ "oy g (") A + 0 (Wigenya = Wia)y  k=0,..,n— L
j=1

For a closer look at the behavior of this scheme at a discontinuity, assume that the drift
coeflicient is given by a(x) = £sign(x). An increment of the Heun scheme with x,t[e““ =x

is then given by

1
sbleun _ o — E(a(x) +a(x+a®)A+0(Wiina — Wia))) A + 0 (Wiena — Wia).

So, if no drift change occurs in the Euler step x + a(x)A + 6 (Wg11)a — Wka), @ Heun step
and an Euler step coincide. However, if a drift change occurs in the Euler step, the Heun
step reads as

Heun

X =%+ 0 (Wieya — Wra),

i.e., it approximates the drift coefficient by zero and its dynamics are purely diffusion-
based in this case.
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2.3.3 A Wagner—Platen type scheme

A strong order 1.5-scheme for SDEs with smooth drift coefficient and additive noise is
given by a Wagner—Platen type scheme (see, e.g., [19, p. 383]), which reads in our setting
as follows:

Pl gt
xkfl =X 24 akA + U(‘)V(k+1)A — WkA)

1

(k+1)A
——(af —a; / (W, — Wia) du,
2«/Z( k k) kA * ka

+ %(a,ﬁ —2ay +ag)A +
with
IF=x®+arA £ oA, ay = a(x,lzla), ar = zz(]"ki),

with a(x) = ) "o 1p().

j=1

Now, we look again at the case of a drift coefficient given by a(x) = £ sign(x) and step

size A < 2. For a Wagner—Platen step with x,I("a = x, it depends now on whether

x+ax)A + oA, x, x+a(x)A—ovA

have the same sign or not. If this condition is fulfilled, i.e., if x is sufficiently far away from
the discontinuity, then a Wagner—Platen step and an Euler step coincide. If the latter con-
dition is not satisfied, then we have the dynamics

1
x,lzlfl =X+ Ea(x)A + 0 (Wis)a — Wka)

(k+1)A

(a(x+a(x)A+ax/Z)—a(x+a(x)A—o«/K))/ (W — Wia) du.
k

+

A

1
24/ A
So, also here, the diffusive dynamic dominates the scheme when taking values close to the
discontinuity.

2.4 Ergodicity and stability of the Euler scheme
We will now address the long time properties of the Euler scheme based on the results from
the theory of ergodic Markov chains. Within the SDEs of type (1) with s = 2, we distinguish

the equations with respect to the direction in which the drift coefficient is pointing.

Definition 1 We will call a drift coefficient a : R — R inward pointing if there exists x* €
R such that

alx)>0, x<x¥, alx) <0, x>x"
and outward pointing if there exists x* € R such that

a(x) <0, x<x¥, alx)>0, x>x".
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In this subsection, we consider the special case of
dx, = (041  Lcoo,0)(Xp) + 22 - ]]-[O,m)(Xt)) dt+dW;, t>0, Xo=§&,
and assume that
a1 > 0> a,
i.e., an inward pointing drift coefficient towards the discontinuity zero. Clearly, we have
SILI% EXps)Xe =%) =2 + o1 - Lcoo,0) (%) + 2 - L[o,00) (%), £>0, x#0, (7)

i.e., on average, the solution is moving inwards. Moreover, following, e.g., Chap. 6 in [10],

this SDE admits a unique invariant distribution with Lebesgue density

2000%

Poo(®) = €+ €2 - L[g,00) (%) + ¢ - € - Lo 0)(¥), x€R,

where the normalizing constant ¢ > 0 is such that f_fo @Yoo (x) dx = 1. In particular, we have
that

y
lim B(X, <) = / on@ds yeR ®)

—00
and the law of large numbers

oo

.1 [t
lim 7 \ h(Xt)dt:/ h(x)poo(x)dx  as. 9)

L—o0o —00

holds, if # : R — R is measurable and satisfies f_oooo |h(x) | oo (%) dx < 00.
It will turn out that the explicit Euler scheme

APEE AP L () A+ Wina - Waa, k=0,1,..., a5 =g (10)
with

a(x) = a1 - Licoo0)®) + oz - Ljoo)(*), x€R,
will recover these properties. (Here we also indicate the dependence on the initial value

& in our notation.) Euler scheme (10) corresponds to a time homogenous Markov chain
with transition kernel

1
pA(xrA) = [4 ,—27'[A

1
exp(—ﬁ (y—(x+ a(x)A)2) dy, xcR, AcBR),
and satisfies the discrete counterpart to (7), i.e.,

]E(xi)ipl]z’é|xf‘pE'EE =x)=x+a®x)A, k=01,.., xeR. (11)
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Now, we will prove the existence of a unique stationary distribution for the Euler scheme.
In particular, due to the discontinuity at zero, the following Proposition 2 is not covered
by the standard references as, e.g., [27] and [37] for Euler-type discretizations of ergodic
SDEs. Note that the long time properties of (10) have also been heuristically studied in
[39]. Here, using the theory of Markov chains, we obtain the following geometric ergodi-

city result for the Euler scheme.

Proposition 2 Let oy >0 > oy and A > 0 be fixed. Then Euler scheme (10) admits a unique
stationary distribution |1 a, which is independent of the initial value & . Moreover, there exist
Ba €(0,1) and constants M (§),€ € R, such that

S [P PP € A) - paA)] < Ma(®) BY, k=1

Proof We start by verifying that V(x) = e’™, x € R, is an appropriate Lyapunov function
for the above Markov chain if t > 0 is sufficiently small. This is a direct consequence of the

well-known form of the moment generating function for the folded normal distribution,

ie.,
]E(e"’”"wl‘) e 22 +’”[1 D(- ,u/v—vr)]+e#_‘”[1—q§(u/v—vr)], T eR, (12)

where @ is the distribution function of the standard normal distribution and 4 € R, v > 0.

Using (12) with i = x + a(x) A and v2 = A, we obtain

]E(V(x;)iplEEN expEE ) < eAr(%Jrlaz\) +6At(§—\azl)etx, x>0,

]E(v(x;)ipl[{é)l CXPES )SeAT(%HDqD +eAT(%—\a1|)e—fx’ x<0.

So, we have

]E( (x;XIiEEN expES _ )<e t(grmax{lerlleal)) | pAt(z-min{lalleagrikl o R
+ b )

and choosing T < 2minf|a; |, |az|} gives the desired Lyapunov property

]E( (xfiplEé)| expES _ ) <C+yV(), x€eR,
with C >0, y € (0,1). Since the transition kernel is Gaussian, an application of the quan-
titative Harris theorem (see, e.g., Chap. 15 in [28], or Theorem 3.15 (and the following

example) in [7]) yields the geometric ergodicity result. d

Choosing A = (—00, y], we obtain in particular the counterpart to (8), i.e.,

lim P(x{®™ <y) = ua((-00,91), yeR. (13)

k— o0

Clearly, the limit distribution is independent of the initial value, as for the underlying SDE.
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Moreover, an ergodic theorem as, e.g., Corollary 2.5 in [7] yields also the discrete coun-
terpart to the law of large numbers (9): We have

L
1 o0
tim — () = / hx)palds) as., (14)

L—o0
k=1

for all measurable /: R — R such that f_o; |1(x)| A (dx) < 0.
Finally, note that SDEs with outward pointing drift coefficients do not admit a stationary
solution. For the SDE

dXy = (o1 Lcoo0)Xe) + @2 - L) (X)) dt +dW,, >0, Xo =&,
with o1 < 0 < ay, straightforward calculations using Itd’s lemma yield
EX|P =&+, =0,
and so lim,_, o E|X;|?> = 0o, which excludes the existence of a stationary solution.

3 Simulation studies

This section is concerned with the numerical investigation of one-dimensional SDEs of
type (1) with s = 2. A three-dimensional version of SDE (1) will be numerically analyzed
in Sect. 4 in the context of a financial market model. For the remainder of this section,
we will choose T'=1, M = 10°, N = 2'4, and n = 2" with 71 € {4,...,10} (unless otherwise
mentioned). We then calculate the corresponding Euler approximation and the empirical
RMSE ecpp(n). For simplicity, we omit the upper index of the numerical approximation in-
dicating that the approximation is based on the Euler scheme. The empirical convergence
rate is given by the negative slope of the regression line, which we obtain when plotting
71 =log, (n) versus log, (ecmp (11)). Exemplary, we relate the results obtained using the Euler
scheme to those for the Heun scheme and the Wagner—Platen-type scheme from Sect. 2.3.
In our simulation studies, we focus on the two types of drift coefficients introduced in De-
finition 1: inward and outward pointing drift coefficients.

Our numerical investigations are based on several additional key characteristics: We
consider the average number of drift changes. As the Euler scheme for SDE (1) is exact up
to the first drift change, another quantity of interest is the number of paths with at least
one drift change. To get further insight whether some paths are really far away from the
true solution, we measure the largest error that occurs within the considered time interval
(not necessarily in the end). Besides the error sizes themselves, it is interesting to see what
proportion of errors at final time T is large, medium, or small and how this distribution
of error sizes depends on the step size. Furthermore, we analyze the evolution of the error
over time for a fixed step size. To underline the influence of the drift direction towards or
away from the discontinuity, we generate plots of several solution sample paths. We will
see that the observed empirical® rates of convergence heavily depend on whether the drift
coefficient is inward or outward pointing. Whereas for the latter one, there is a dependency
on the initial value of the SDE, rates in case of an inward pointing drift coefficient seem to
be independent of the initial value, corresponding to Proposition 2. In addition, we analyze
how the jump height (difference in drift values) influences the empirical convergence rate.
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Table 1 Selection of analyzed SDEs

Drift coefficient Corresponding SDE

sign aX; = sgn(Xy) dt + dW;

minusSign Xy = —sgn(Xy) dt + dW;

10sign Xy =10 - sgn(Xy) dt + dW;

minus10sign Xy =-10- sgn(Xy) dt + dW;
elementary_minus34 X = (=3 L(coo.4)X0) +4 - L1400 (X0) dt + dW;
elementary4minus3 AdXe =4 - Lo 4)(Xe) = 3 - 114,00 (X0)) dt + dW;
elementary_minus0.6_1 aXe = (06 L 00,1 4)(Xe) + 114,00 Xp) dt + dW;
elementary1minus0.6 AXe = (Lcoo,1.4)(Xp) = 0.6 - L1 4,00)(X0)) dt + dW;

Table 2 Numerical Euler convergence rates

Initial values -1 0 1 25 3 5
sign 0.69 0.59 068 083 1.01 =
10sign =L 025 - - - -
minusSign 0.81 0.80 0.81 0.82 0.82 0.89
minus10sign 091 091 091 0.91 091 091
Initial values 0 1 1.2 1.25 14 2

elementary_minus34 1.17 0.37 0.38 0.40 0.39 0.31
elementary_minus0.6_1 0.75 0.69 0.69 0.69 0.71 0.70
elementary4minus3 0.87 0.87 0.87 0.87 0.87 0.87
elementary1minus0.6 0.81 0.80 0.80 0.80 0.80 0.80

LErrors close to machine accuracy; no empirical convergence rate calculated (see also equation (18)).

As representatives of the class of SDEs (1), we consider here the SDEs given in Table 1.
In the remainder of this chapter, we present and discuss some key results of the simula-
tion studies.

3.1 Key results

The empirical convergence rates obtained by the Euler scheme for the above stated step
sizes A = T/n with n = 2", 71 € {4,...,10} are given in Table 2 (outward pointing drift co-
efficients highlighted in light gray, the discontinuity in gray).

Our results show that

(i) in general, we loose convergence order one, which the Euler scheme has under
standard assumptions for SDEs with additive noise,

(ii) and that a crucial factor is whether the drift coefficient is inward or outward
pointing: for inward pointing coeflicients the guaranteed convergence order 3/4 is
recovered, which is not always the case for outward pointing coefficients.

(ili) Moreover, empirical convergence rates are less stable with respect to the initial
value for outward pointing drift coefficients. The largest difference amounts to 0.86
for elementary_minus34-.

To address the latter aspect, we supplement the numerical results for the drift coefficient
elementary_minus34 by results obtained using the alternative error measure €"(), in-
troduced in Sect. 2.2. In Table 3, we clearly observe that the estimate of the rate based on
error increments e/"°(r) is more stable. However, the estimate is still far away from the the-
oretically guaranteed convergence rate of 2 —¢ for arbitrarily small & > 0 for an equidistant
time grid (see page 3).

Furthermore, our numerical tests show that neither using the Heun scheme nor using

the Platen scheme yields a different picture. In particular, convergence rates do not im-
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Table 3 Empirical convergence rates, based on step sizes 277,/ € {4,...,10}

Initial values 0 1 1.2 1.25 14 2
elnc(n) elementary_minus34 032 030 032 032 0.28 0.29

Table 4 Numerical Heun convergence rates, based on step sizes 27,7 € {4,...,10}
Initial values 0 1 12 1.25 14 2
elementary_minus34 115 042 038 038 041 040

elementary4minus3 0.77 0.77 0.77 0.77 0.77 0.77

Table 5 Numerical Platen convergence rates, based on step sizes 277 Aef4,...,10}

Initial values 0 1 1.2 1.25 14 2

elementary_minus34 1.22 040 040 040 042 043
elementary4minus3 079 079 079 079 079 079

prove significantly, and the schemes do not yield a better resolution of the discontinuity
(see Tables 4 and 5).

3.2 Drift direction and initial value

For an outward pointing drift coefficient, the numerical convergence order even seems to
depend on the initial value and the spectrum of orders obtained for different initial values
is very broad with values between 0.25 and 1.17 (see Table 2).

On the other hand, for an inward pointing drift coefficient, the convergence order seems
to be independent of the initial value and the spectrum of orders numerically obtained for
different initial values and inward pointing drift coefficients is tight with values between
0.80 and 0.91 (see Table 2). The stability of the estimates is due to the ergodicity of the
SDE and the Euler scheme in this case, see Sect. 2.4. The geometric convergence speed in
Proposition 2 explains why the numerical tests for inward pointing drift coefficients yield
such stable estimates, independently of the initial value: X7*™ and «,, are, for a sufficiently
large number of grid points # + 1, close to their unique stationary distributions, which
stabilizes the Monte Carlo estimates. Also, as pointed out already above, the guaranteed
convergence order 3/4 is recovered here.

For the above equations, the structure of the drift coefficient is directly related to the
number of drift changes. An inward pointing drift coefficient results in many drift changes,
while in the case of an outward pointing drift coefficient, only few drift changes occur. We
can further observe that:

(i) when starting away from the discontinuity, numerical rates for outward pointing
drift coefficients are better than for inward ones;

(ii) when starting close to the discontinuity, outward pointing drift coefficients imply

worse numerical convergence rates than inward ones.
So in the latter case we obtain a positive correlation between the number of drift changes
and the numerical convergence rate, which implies that frequent drift changes are not
necessarily bad for the quality of the approximation—quite the contrary seems to apply,
which is surprising at first glance.

Hence, the type of monotonicity of the drift coefficient is of great importance. Intuitively,
an inward pointing drift coefficient should lead to many drift changes, which suggests that
individual drift changes are not of great importance. An outward pointing drift coefficient
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on the other hand pushes the solution away from the discontinuity implying a low number
of drift changes. Those rare drift changes entail the risk that an approximated path that
missed a drift change in the true solution evolves in the wrong direction leading to large
errors. The occurrence of drift changes and the implication for the approximated solution
will be further elucidated in Sect. 3.4.

3.3 Jump height

The intensity of the effects related to inward and outward pointing drift coefficients de-
pends on the jump height, i.e., the distance between assigned drift values. In case of
elementary_minus34, this distance amounts to 7, whereas it is 1.6 in case of elemen-
tary_minus0.6_1. The empirical convergence rates in Table 2 show the following: The
higher the jump height, the more pronounced are the effects described in Sect. 3.2.
Exemplary, there is a difference of 0.8 in the empirical convergence rates for elemen-
tary_minus34 for initial values 0 and 1, whereas this difference is only 0.06 for elemen-
tary_minus0.6_1. This phenomenon is related to a scaling property. By enlarging the drift
value, the influence of the diffusive part of the SDE is weakened. Consider, e.g., the SDE

dX; = asgn(X;) dt + dW;

with & > 1. Using the new variable Y; = éXt, we have the dynamics

1
ay; =sgn(Y;)dt + —dW,,
o

with a reduced diffusion coefficient. So, for « large and initial values far away from the dis-
continuity, the dynamics of the Euler scheme is almost purely deterministic, which leads
to the observed higher empirical convergence rates.

3.4 Case study of an inward versus outward pointing drift coefficient
In this subsection, we analyze the pattern described in 3.2 in more detail, exemplary for
the drift coefficients elementary4minus3 and elementary _minus34.

3.4.1 Drift changes

Figure 1 shows the average number of drift changes for both coefficients. The behavior
goes along with the intuitive understanding described above. Here, 7 is the exponent of
the dyadic step size A = 27", Note that for step sizes 27* to 27® and elementary_minus34
the number of drift changes stays below 2.

3.4.2 Comparison of solution sample paths
Figure 2 shows 100 sample paths of the numerical reference solution (A = 271%). The black
line represents the discontinuity in the drift coefficient.

In the situation of Fig. 2(b), where the solution drifts away from the discontinuity, it is of
tremendous importance whether a drift change is captured by the approximation or not:
the solution does not stay close to the discontinuity, and thus, there are not many chances
for a drift correction to take place, see Fig. 3. For the SDE,

dX; = (01 - Licoo0)(Xe) + 02 - Lo,0) (Xp)) dE+dW,,  £>0, X =§, (15)



Gottlich et al. Advances in Difference Equations (2019) 2019:429 Page 13 of 21

a5
o
=)

Il c/lementary4minus3
(| elementary_minus34

(]

a

o
T

(]
o
s)
T
L

n
a
o
T
L

o
o
T
L

Average number of drift changes
3 S
o o
L L

o
o
T
L

4 5 6 7 8 9 10 14
Time exponent 7o

Figure 1 Average number of drift changes for £ = 1.4: elementary4minus3 vs. elementary_minus34
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Table 6 Largest and smallest Euler errors

Initial values 0 1 1.2 1.25 14 2

elementary_minus34 max  0.045 1.331 2614 3.087 4508 0.335
min 00002 0179 0331 0383 069% 0059

elementary4minus3 max  1.223 0934 0968 0981 1.013 1271

min  0.005 0.005 0.005 0.005 0.005  0.005

with @1 <0 < a3 and & > 0 the conditional probability p(§,6, A) that the exact solution
changes its drift over [0, A] given that the approximation x; at t = A has value 6 > 0 (and
thus has not changed its drift) satisfies

ol B ) §0
p&,0,A):= P(zel[r(},fA]Xt < 0|X0 =£,x1 = 6) = exp(—2K>, (16)

see, e.g., [11, p. 169]. So the (conditional) probability of missing drift changes is not ne-
gligible and even close to one for small £ or 6. Due to the very small probability (16) of a
drift change for outward pointing drift coefficients, the empirical convergence rate might
be subject to rare event simulation effects. The topic of rare events and their implications
for the empirical convergence rate will be further addressed in Sect. 3.5.

3.4.3 Largest error

The latter observation is also reflected in the largest distance for 10* sample paths be-
tween the approximation based on step size 27'° and the numerical reference solution,
see Table 6. The largest distances amount to 1.271 for elementary4minus3 and 4.508 for

elementary_minus34-.

3.4.4 Evolution of the error over time

To gain even more insight, we compare the empirical RMSE for increasing time ¢ of ele-
mentary4minus3 and elementary _minus34 when starting in the discontinuity & = 1.4 for
step sizes 274, 278, and 271 by plotting the base-2 logarithm of the RMSE against the time
(see Fig. 4). We have added in these figures the following additional information: If the
number is not zero, the most frequent times of drift changes corresponding to the chosen
step size are indicated. The number of plotted drift change times is based on the average
number of drift changes over the simulated sample paths.

Furthermore, if in the corresponding cases drift changes occur, we add the very first drift
change (of all simulated paths) of the numerical reference solution and the Euler schemes.
They are generated by finding the time at which the first drift change occurs for 10* saved
paths and then taking the minimum over all that times. The time is registered as the point
of discretization at which a drift change that took place was detected. The very first drift
change of the reference solution is marked at a height of zero for a better distinguishability.
RMSE over time and drift change times are calculated on a basis of 10* simulation paths.

We can extract from Fig. 4 at least two features:

(i) The error stays constant or even decreases over time for elementary4minus3 in
contrast to a strong error accumulation over time for elementary _minus34. (Note
that the ordinate has a base-2 log scale.)

(i) In the inward pointing drift coefficient case, the error is by several magnitudes

smaller than for an outward pointing drift coefficient.
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Figure 4 Comparison of the error evolution over time for £ = 1.4 for different step sizes: elementary4minus3
vs. elementary_minus34

This illustrates again the stabilizing effect of an inward pointing drift coefficient and the
importance of capturing the first drift changes correctly in case of an outward pointing

drift coefficient.

3.4.5 Distribution of error sizes

Besides the empirical RMSE itself, the empirical distribution of the errors in ¢ = T is of
interest. The error at final time T is quantified by |xy —x,,| for step size A = T/n = 27", The
histograms in Fig. 5 are based on M = 10* simulations for different step sizes and highlight
again the different magnitudes of the empirical RMSE (abscissa with a base-2 logarithm

scale). Another feature, which we can extract from the histograms, is a non-negligible part



Gottlich et al. Advances in Difference Equations (2019) 2019:429 Page 16 of 21

10000 T T T T T 8000
-
9000 =8 7000
gooo | |__1n=10
6000
» 7000 >
g g
g S 5000
% 6000 :';
< 5000 < 4000
2 2
é 4000 —é 3000
= B3
< 3000 <
2000
2000
1000 | 1000
N ] || .
-60 -50 -40 -30 -20 -60 -50 -40 -30 -20 -10 0 10
log,-error at time T log,-error at time T
(a) elementary4minus3 (b) elementary_minus34
Figure 5 Distribution of the error at time T for different step sizes for elementary4minus3 and
elementary_minus34 with £ =14

N slope=1.1741 slope=0.37061 .

log,-RMSE at time T
log,-RMSE at time T'

10 9 8 7 6 5 4 -10 -9 8 7 6 5 4
Time exponent 7 Time exponent 7

(a) €=0 ) =1
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of simulated paths with an error of machine accuracy size for elementary_minus34. We

will discuss this feature in more detail in the next subsection.

3.5 Rare events and goodness of the regression fit
In case of an outward pointing drift coefficient the empirical RMSE and the linear regres-
sion estimates become unreliable or at least questionable.

For initial values close to the discontinuity, the observed empirical convergence order
are in some cases far away from the guaranteed 3/4, although the linear regression typically
produces stable results, see Fig. 6(b). A possible explanation for this is again the first drift
changes. When starting close to the initial value, the first drift changes seem to be very
sensitive to the step size, which results in rather different trajectories of the Euler scheme.

Furthermore, if the initial value is far away from the discontinuity, only very few drift
changes occur in the underlying SDE (if at all). Hence, if the step size of the Euler scheme
is sufficiently small, these changes are captured and the error drops drastically. Figure 6
illustrates this by comparing the regressions for an initial value £ = 0 away from the discon-
tinuity in 1.4 and an initial value & = 1, which is closer to the discontinuity. (In Fig. 6(a),
the regression also has to deal with two different regimes.) Note that, for (1), the Euler

scheme is always exact up to the time of the first drift change.
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Moreover, for an outward pointing drift coefficient, the Euler scheme and the exact so-
lution coincide with high probability, which explains, e.g., the errors close to machine
accuracy for the drift coefficient sign and the initial value £ = 5. Note that in this setting
the number of paths with at least one drift change is even zero over all saved 10* solution
paths.

To explain this phenomenon, consider again the SDE

dX, = (o1 - Licoo0)Xe) + 02 - Lo0)(Xp)) dE+dW,, >0, Xo =&, (17)
with @3 < 0 < a3. An application of formula (5.13) in Chap. 3.5.C in [17] gives

P(ingpm > o) -1 gtnE 2w e g (18)
t=>

Note that an initial value £ # 0 is not a restriction as we analyze the case of an initial value
far away from the discontinuity. So, for drift values —; = a3 = 1, and an initial value & = 5,
the Euler scheme is exact with a probability of at least 1 — e71° ~ 0.99995460....

To summarize: Standard Monte Carlo simulations for testing convergence rates seem
to be unreliable in the case of outward pointing coefficients. No stable asymptotic regime
seems to be reached by our estimators. Smaller step sizes or a larger Monte Carlo sample
might be a remedy for this problem, similar to [14] where moment explosions of the Euler
scheme for SDEs with superlinear coefficients are observed in a numerically asymptotic
setting. Another remedy might be the usage of a rare event simulation technique such as
the one used in [43] in the context of power flow reliability, where the probability of an
outage is very small. But this is beyond the scope of the present manuscript.

Instead, we supplement our numerical study of the convergence rate by numerical in-
vestigations of the qualitative behavior of the Euler scheme applied to a multi-dimensional
SDE with a similar structure to equation (1). Those are used in a financial market model,
the so-called Atlas model, to describe the evolution of the capital distribution. Having
addressed the long time properties of the Euler scheme on a theoretical basis for a partic-
ular one-dimensional SDE in 2.4, the aim is now to recover this aspect of the long-time
behavior numerically also for a multi-dimensional SDE.

4 The Euler scheme for the Atlas model

In this section, we use the Euler scheme to simulate the so-called Atlas model, which is a
particular first-order market model [4]. In such models, the asset dynamics depend on the
size (measured in terms of market capitalization) of the corresponding firm, which results
in an SDE model with discontinuous coefficients.

4.1 First-order market models
A first-order model [4] is defined as follows: Let y,g1,...,2s € R and o7,...,04 € (0,00)
such that

g1 <0, g1+& <0, cee g1+ +841<0, gi+---+g4=0.

Consider now stocks for which the market capitalizations are given by Xj, ..., X, where
the index i € {1,2,...,d} indicates the name of the firm, and that follow the dynamics

dlog Xi(¢) = yi(t) dt + o:(t) AWi(t), te[0,00), i=1,...,d. (19)
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Here, W1, ..., W, are independent Brownian motions and the growth rates y; : [0,00) — R
and volatilities o; : [0, 00) — (0, 00) are given by

d

d
vi®)=y+> g@liw-, o)=Y oxliw-n- (20)
k=1 k=1

The ranks r;(¢) for the stock X;(¢) at time ¢ arise from the reverse order-statistics:

IIEiEE(dXi(t) = X)) = X)) = -+ = Xa-1)(t) = Xg)(t) := 1I£15i<IldXi(t)' (21)
Ties in the ranking are resolved by giving the firm with a lower index i the better ranking.
So in such a model, the kth largest firm is assigned a growth rate of y + gr and a volatility
of o over the whole time horizon.
According to [4], the simplest among the first-order models is the so-called Atlas model,
which was introduced in [8, Ex. 5.3.3]. Within the setting of (19) and (20), choosing

y=¢g>0, g=-g k=1,...,d-1,
(22)
gi=(d-1)g, and oi(t)=0>0, i=1,...,d,

leads to the Atlas model. Here, only the smallest stock in the market—called the Atlas
stock—has a nonzero but positive growth rate (for its log-dynamics).

By setting Y;(¢) := log X;(¢), i = 1,...,d, as well as plugging in the Atlas parameters (22)
in our first-order model (19)—(20), we obtain the Atlas model in compact form as follows:

AY,(t) = (@ @)Ly y-qy dt + 0 AW(E), i=1,...,d. (23)

As stated in [4, Prop. 2.3], the solution of (23) satisfies the ergodic relation
.17 1 .
lim — Ly 0=k At = p as., Lk=1,...,d, (24)
0

i.e., all stocks in the market asymptotically spent at each rank approximately the same
amount of time. Similar ergodic relations also hold for general first-order market models.

4.2 Numerical results

For simulations of the Atlas and general first-order models, one has to rely on discretiza-
tion schemes such as the Euler method. In this subsection, we test whether the Euler
scheme is able to recover the long time behavior (24), i.e., whether the discrete occupation

rates

1 T/IA
?Z:ﬂ_(r‘i(ZA):k}, i,/(:1,...,d,
=1

where 7; is the discretized counterpart of (21) based on the Euler scheme and T/A € N,
converge to the analytical value.

Here, we consider a three-dimensional model with initial log-capitalizations Y (0) =
[3.4,4.1,5.7] and 17(0) =[1.2,3.5,10.8], ¥ = 0.1 as market drift, and o = 0.09 as market
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Table 7 Discrete occupation rates for the discretized Atlas model

T Firm 1 Firm 2 Firm 3 Quadratic deviations

Y(0) 100 Rank 1 0.2911 0.2895 04194 0.0030 0.0031 0.0111
Rank 2 0.3425 0.3662 0.2913
Rank 3 0.3664 0.3443 0.2892

250 Rank 1 03156 0.3161 0.3683 0.0005 0.0005 0.0018
Rank 2 0.3375 0.3463 0.3162
Rank 3 0.3469 0.3376 0.3155

500 Rank 1 0.3238 0.3246 03517 0.0001 0.0001 0.0005
Rank 2 0.3357 0.3400 0.3243
Rank 3 0.3406 0.3354 0.3240

750 Rank 1 03273 0.3273 0.3454 0.0001 0.0001 0.0002
Rank 2 0.3347 0.3379 0.3274
Rank 3 0.3380 0.3348 0.3272

1000 Rank 1 0.3288 0.3287 0.3425 0.0000 0.0000 0.0001
Rank 2 0.3344 0.3368 0.3288
Rank 3 0.3368 0.3345 0.3287

V(O) 100 Rank 1 0.1464 0.1447 0.7089 0.0554 0.0562 02116
Rank 2 0.3883 04654 0.1463
Rank 3 04653 0.3899 0.1448

250 Rank 1 0.2581 0.2579 04840 0.0090 0.0090 0.0341
Rank 2 0.3555 0.3863 0.2582
Rank 3 0.3864 0.3558 0.2577

500 Rank 1 0.2949 0.2956 0.4096 0.0023 0.0023 0.0087
Rank 2 0.3448 0.3599 0.2953
Rank 3 0.3603 0.3446 0.2951

750 Rank 1 0.3082 0.3079 0.3840 0.0010 0.0010 0.0038
Rank 2 0.3407 0.3513 0.3081
Rank 3 03511 0.3409 0.3080

1000 Rank 1 03143 0.3142 03715 0.0006 0.0006 0.0022
Rank 2 0.3391 0.3467 0.3143
Rank 3 0.3467 0.3391 03143

volatility.” Table 7 presents the discrete occupation rates (averaged over M = 10° repeti-
tions) for A = 2714 and different values of T as well as the sum of the squared deviations
from the analytical asymptotic occupation rate. As expected, the discrete occupation rates
converge to the analytical asymptotic occupation rate of 1/d = 1/3 with increasing time
horizon.

Furthermore, results suggest that less varying initial capitalizations imply that the nu-
merical values are closer to the analytical result already for shorter time horizons, which
coincides with the intuitive understanding. We also simulated the above scenarios with
A = 2719 instead of A = 27!*: all occupation times were equal with an accuracy of four
digits and one third of the 90 occupation rates differed in the fifth digit. This suggests
that—as soon as the step size is small enough—a further refinement of the step size is no
longer beneficial and the crucial simulation parameter is T, the endpoint of the considered
time horizon.

5 Conclusion and outlook

We have seen that the numerical approximation of solutions of SDEs with discontinuous
drift coefficients is a challenging task, where several particularities arise. We were able to
identify two main classes of discontinuous drift coefficients: outward and inward poin-
ting drift coefficients. For the latter class, we analyzed stability properties. It turned out
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that the main difficulty in measuring the empirical convergence rates is how to appropri-
ately capture drift changes. For inward pointing coefficients, we obtained stable estimates,
which are in accordance with the theoretical results. For outward pointing cases, the es-
timates seem to be unreliable, no stabilizing asymptotic regime seems to be reached for
the estimates. We tested two higher-order numerical schemes that are frequently used in
a setting where coefficients are sufficiently smooth. However, both schemes did not lead
to an improved behavior.
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