
<First name last name [et. al.]>(ed.): < book title>,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn <year> 15

Executing Model-based Software Development for

Embedded I4.0 Devices Properly

Fabian Burzlaff 1, Christian Bartelt 2 and Steffen Jacobs 3

Abstract: Technical interoperability in “Industrie 4.0” scenarios is currently being achieved by

standards such as OPC UA. Such standards allow operators to use a common communication

interface for heterogeneous production devices. However, production flexibility (e.g. self-

configuration or dynamic self-adaptation) can only be achieved if system structure and engineering

processes change. At the moment, traditional engineering processes for embedded systems

generate communication interfaces from software. This stands in stark contrast to component-

based software engineering approaches. In this paper, we introduce a tool-based software

engineering approach that puts models back at the core of embedded system development. This

approach enables flexible production scenarios by bringing together process-oriented software

development and operator-oriented interface construction.

Keywords: Software Engineering Processes; Component-based Software Development;

Knowledge-driven Architecture Composition; Self-Adaptive Systems; Industrial Internet of

Things

1 Motivation and Problem Statement

 As postulated by the RAMI 4.04, future manufacturing lines consist of I4.0-

Components. These I4.0-Components require transactions during their development

phase that externalize program-specific control variables for standardized

communication efforts. Current engineering approaches focus on generating the required

communication layer out of code written in various programming languages. However,

this bottom-up approach cannot deal efficiently with information integration issues (e.g.

incompatible data types or different data semantics). As a consequence, a system

integrator must manually adapt software components of embedded or cyber-physical

systems [Le08] instead of their corresponding models. Hence, they are mainly driven by

individual interface-adaptations without following a sophisticated software engineering

process. Abstractly speaking, the classical model-based software development paradigm

is turned inside out. This means that interface models for communication purposes

between embedded systems are generated from code instead of the other way around.

1 University of Mannheim, Institute for Enterprise Systems, L15 1-6, Mannheim, 68159, burzlaff@es.uni-

mannheim.de
2 University of Mannheim, Institute for Enterprise Systems, L15 1-6, Mannheim, 68159, bartelt@es.uni-

mannheim.de
3 University of Mannheim, L15 1-6, Mannheim, 68159,
4 https://www.zvei.org/themen/industrie-40/das-referenzarchitekturmodell-rami-40-und-die-industrie-40-

komponente/

c b e doi:18.18420/provided-by-editor-02

https://www.zvei.org/themen/industrie-40/das-referenzarchitekturmodell-rami-40-und-die-industrie-40-komponente/
https://www.zvei.org/themen/industrie-40/das-referenzarchitekturmodell-rami-40-und-die-industrie-40-komponente/

16 Fabian Burzlaff et al.

Amalgamating software components into a cohesive system architecture is an everlasting

engineering problem. To ease the integration burden, a lot of successful standards have

been produced in various application fields. For example, the eCl@ss5 standard enables

a company and its suppliers to communicate data in a clear and concise format.

Although such standards facilitate an automated data exchange across company

boundaries, the required manual work for implementing such standards is high.

Furthermore, these standards mostly define technical and syntactical decisions made by a

group of stakeholders at a specific point of time although the semantics of data may

vary. Overall, this standard reduces manual data transformation and enables production

automation as site operatory actively participate in building this standard. Still, this

standard requires predefined rules that transform proprietary data into eCl@ss adequate

information. Then, a communication between programmable logic controllers (PLC) that

support this standard is possible by using a supported communication protocol (e.g.

PROFIBUS6).

Another example is the AUTOSAR7 platform standard. In contrast to eCl@ass, this

standard showed in the automotive domain that formalizing information semantics is

possible. By providing a standardized runtime solution to embedded system developers,

the amount of manual integration effort is reduced to a minimum. Sadly, this approach

seems to be only feasible in a market that is dominated by a few players. This is due to

the circumstance, that all cooperating players have to agree on one common truth at a

time (i.e. technical, syntactical and semantic information characteristics). Here, no

transformation rules are necessary, as program logic must be refactored completely. This

code must comply with the AUTOSAR runtime environment that then handles the

communication of different components (e.g. electronic control units (ECU)).

Currently, there are various research efforts that try to transfer the platform idea to the

industrial manufacturing domain. For example, the research project BaSys 4.08 aims at

inventing an operating system for embedded and cyber-physical systems in various

production scenarios. Their goal is to realize a production process that allows for a high

flexibility in manufacturing scenarios even across company boundaries. Several

demonstrators are used to simulate the ability to efficiently change a production line.

This is especially important for production lines that are specialized to produce

multivariate goods. Furthermore, this operating system is designed to be open for

unknown devices. Although it only provides a technical integration platform, standards

such as eCl@ass can be incorporated to ensure syntactic and partially semantic

interoperability. However, these standards still require aforementioned transformation

rules.

All presented examples aim at formalizing the information structure of production

devices. However, engineering processes used for hardware and software parts of I4.0-

5 https://www.eclass.eu/
6 https://www.profibus.com/technology/profinet/
7 https://www.autosar.org/
8 https://www.basys40.de/

https://www.eclass.eu/
https://www.profibus.com/technology/profinet/
https://www.autosar.org/
https://www.basys40.de/

Executing Model-based Software Development for Embedded I4.0 Devices Properly 17

Components are not compatible as they rely on different assumptions for using models.

Based on the current bottom-up engineering approach, the main pain-points from a

business perspective are:

 Technical information models are generated from program code (e.g. increased

adaptation costs if models must be changed)

 Requirements realized by software are restricted by the device hardware early in

the system engineering process (e.g. external consultants are needed to test

early)

 Manual integration effort in the industrial manufacturing context increases as no

standard as a single point of truth is present (e.g. inflexibility hinders new

business models)

In this paper, we will introduce a top-down modelling approach for integrated I4.0

embedded devices based solely on information models. As a consequence, site operator

and system integrator can specify required communication interfaces at the model level.

This will help the involved parties to communicate and choose a suitable hardware

device based on specific use-case requirements rather than creating an information

model from device specific code.

1.1 Running example

Currently, core principles in the industrial manufacturing sector are changing. The so-

called “Industrie 4.0” or “Industrial Internet of Things” is postulated to enable a high

flexibility in production processes across company boundaries. Nonetheless, the required

amount of time to reach a formal agreement for integration and information standards

between all stakeholders may not be viable. Among others, further problems of the

standardization process are standard conform implementations by the stakeholders and

the integration of legacy devices. This is mainly due to the fact that standard creation

processes are slow and the wheel of technical innovations turn fast. As a consequence,

an abstraction layer that decouples software (e.g. code) and hardware (e.g. device model)

is strongly needed in order to be as independent as possible from concrete hardware.

This would allow for hardware exchange without any effect on the software.

The de-facto standard in the industrial automation domain for machine-to-machine

communication is OPC UA9. OPC UA follows the service-oriented architecture principle

and exposes an integrated information model as a public interface to restricted machine

functionality. Despite the fact that technologies such as OPC UA do provide means to

formalize operator-oriented pairs of standards for communication purposes, the desired

end for automating system integration is not reachable as no common ground of truth

between multiple parties exists. Furthermore, it cannot be guaranteed that these

9 https://opcfoundation.org/about/opc-technologies/opc-ua/

https://opcfoundation.org/about/opc-technologies/opc-ua/

18 Fabian Burzlaff et al.

individual agreements are also applicable for other use-cases. In fact, current ways to

make hardware device information available to software reinforces this. Currently, OPC

UA information models are generated from files and then instantiated during runtime.

These files contain externally available program variables that are defined by a program

in a programmable logic controller (PLC).

Figure 1: Generating Communication Interface based on code variables

For example, imagine a drilling machine that can drill a hole in a piece of wood. Assume

that a PLC is attached to it and that the PLC contains two state variables “partReceived”

and “partProcessed”. In addition, there are three configuration variables “speed”,

“depth” and “diameter” which specifies the hole diameter this drill supports. This setup

is visualized in figure 1.

At the moment, the overall engineering process currently includes the following abstract

steps:

1. The system integrator (SI) must deploy application code (see 1+2 in Figure 1)

2. Next, SI must export selected program variables and edit the variable file (3+4)

3. Finally, SI must import the variable file into a communication framework (5)

Executing Model-based Software Development for Embedded I4.0 Devices Properly 19

This information model can be modified in accordance to the standards in use (e.g.

eCl@ss). After instantiating the framework (e.g. OPC UA), the information model is

synchronized at runtime with the application specific variables. In this way, another

system that can speak OPC UA is now able to access information about the drill located

in the model. Furthermore, a variable can serve as a trigger that performs application

specific PLC actions (e.g. drilling a hole into a piece of wood).

It can be seen that this process produces an information model from code. From the

viewpoint of a model-based engineering approach, this is not intended as the level of

abstraction is raised instead of lowered when generating the information model.

Furthermore, the site operator cannot change the information model without changing

the code. Hence, a technician is needed, as the information model requires interventions

at the PLC level and on the information model. We assume that this results in a

unrulable amount of manual integration effort.

2 Supporting Solution Approaches

In order to put our example into the context of software engineering processes for

embedded systems, the abstracted engineering steps (see Figure 2) to be taken are:

Constructing a detailed draft (1), realize the system elements (2) and integrate the

development artefacts into the system environment (3). In the following chapter, we

integrate this these steps into a more sophisticated engineering process.

Figure 2: Derived engineering steps from running example

Overall, various process models have been developed that focus on a close cooperation

between client and contractor. Applications and Information Systems that do not have a

direct influence on their environment are currently being developed by using agile

engineering methods (e.g. SCRUM or DevOps). Such rapid prototyping approaches for

embedded systems or cyber-physical systems with a direct influence on their

environment are in general forbidden by law (e.g. DIN EN ISO 10218 for collaborative

robots). Nevertheless, examples such as the V-Model XT [BA05] also provide agile

solutions for more controlled process models without sacrificing a close cooperation

between client and contractor.

In the context of V-Model XT, the process is as follows: As soon as the project scope is

fixed (see left side of Figure 3), the development of hardware and software components

20 Fabian Burzlaff et al.

is started. At the end of the development phase, all self-sustaining components are put

back together and evaluated by both parties (see right side Figure 3).

Let´s take the classical model-driven software engineering approach for the specification

and decomposition of the system. First, a high-level system architecture is derived from

the results of the system requirements phase. Then, more details are specified over time

until a software engineer can write code. During this process, different supportive tools

are used. For example, the SysML10 modelling language can be used for visualizing

system characteristics from different viewpoints and for the identification problems (e.g.

module incompatibility issues). However, this approach is constrained by the assumption

that all needed components (i.e. software and hardware) are known at design time.

Figure 3: V-Model after Project Scope is fixed (adapted from [BA05])

Although a component refinement throughout the engineering process is possible (e.g. as

realized by SPES XT approach [Po16]), we assume fixed interface definitions in the

beginning.

Comparing this process to our running example (Figure 1), one can see that models of a

system are not serving as a “root”. For instance, if a system engineer needs to change the

OPC UA model, he must actually change the PLC-Code, export the variables and

reimport them to the OPC UA server again. From our point of view, this is violating the

desired principle of top-down, model-based system engineering.

Even worse, the tight coupling between machine-oriented code and its hardware-

dependant information model doesn´t allow for quick changes. In the light of embedded

and cyber-physical systems, this might sound counter-intuitive, as functional safety is

essential for survival not only to machines but also to human operators. However, the

point to be made here is not about incorporating safety requirements into the engineering

process efficiently, but the requirement that hardware independent information models

are needed to facilitate a sustainable integration process. If a site operator has to change

code for changing a model, the amount of manual integration work will increase and

may finally hinder flexible manufacturing plants. Thus, a site operator must be able to

10 http://www.sysml4industry.org/

http://www.sysml4industry.org/

Executing Model-based Software Development for Embedded I4.0 Devices Properly 21

make changes at the software level. Softening the coupling between model and

implementation, a site operator should be furthermore enabled to easily test the software-

layer independently. This is especially important for cases where production devices are

used in dynamic and self-adaptive contexts [Ba05][BRE15].

In the end, the site operator having less technical integration knowledge than the system

integrator or device manufacturer should be able to express his requirements only in

information models. As a consequence, the production equipment manufacturer must

make sure that the models requirements are fulfilled in order to facilitate an easy device

integration between software and hardware components.

3 Solution to our challenge

In favor of shifting back the focus from code to software models, we propose three

adaptations to the engineering steps described in figure 2: First, information models

should server as basis for software development for embedded systems. Second,

software instances realizing these information models should be generated based only on

software and not hardware requirements. Third, these instances should be used to

integrate the system virtually (see figure 4).

In case of an error during the virtual system integration phase, it is also possible to go

back to the information model and remodel the required interface. As soon as the

information model is successfully integrated into the existing production environment,

the needed hardware is equipped with the necessary PLC code.

Figure 4: Adapted engineering process for the running example

By consulting our running example once again, the site operator (SO) and the system

integrator (SI) can now perform the following steps:

1. First, SO/SI defines the required communication interface

2. Next, SO/SI can directly generate a test instance an integrate the system

virtually

3. Finally, SI can continue the classical development process as in fig. 2

22 Fabian Burzlaff et al.

However, simplifying the technical realization of provided and requested device

communication interfaces is only one aspect of integration issues in this context.

Another aspect is the realignment of responsibility. Site operators should be in charge of

defining the required interfaces, not the device manufacturer. As a consequence, site

operators should also be able to test interface information models out of the box. This

allows for selecting hardware devices that can perform the required functionality based

on models. Overall, this role shift can serve as an initial basis for (automated) device

integration in a flexible production scenario that is realized by heterogeneous and

changing machines.

In order to execute our adapted top-down and model-based software development

process, an integrated toolchain is beneficial. Based on our example, this toolchain

should support code generation from models, automated component instantiation and at

least support the following user requirements:

 Graphical CRUD-Operations of (existing/new) interface information models

 Fast set-up of test scenarios for testing the generated instances

 Easy adaptation of required and provided interface in case of production line

reconfiguration

From the viewpoint of model-based software engineering, models are now back at their

place.

Furthermore, not only the system integrator but also the site operator can quickly set up

new scenarios, as no initial coding is needed anymore. Now, the process enables the site

operator to specify the required communication interfaces without paying attention to

device specific hardware parameters. This definition can then be handed over to the

device manufacturer who must support the required functionality. On the other side, the

site operator can also test the adaptations immediately by simulating a new

communication interface. In the end, the site operator can independently define what is

needed and the device producer must comply with these needs.

Nevertheless, this conceptual approach is particularly limited in two ways: First, the site

operator must come up with an adequate interface definition almost out of thin air. This

may require a comprehensible modelling language and engineers geared towards this

task. Second, the required production functionality specified within the model must be

connected manually to device specific application code. This application code may be

unknown at the time of interface creation and must be manually adapted when a device

is put into production in the first place.

Executing Model-based Software Development for Embedded I4.0 Devices Properly 23

4 Technical Realization

We implemented our suggested approach within the Eclipse Platform11. Therefor we

designed a modelling plugin that can be used for creating new interface specifications or

import them from running embedded devices. The models are based on the OPC UA12

standard and the communication is handled by the Eclipse Milo13 framework. An OPC

UA test server can be started by importing the (adapted) information model from the

modelling plugin into the Milo framework. This framework has been extended with an

OPC UA standard conform XML-parser that instantiates the model elements.

Figure 5: Tool support for adapted engineering process

The prototype displayed in figure 5 supports our adapted engineering approach (cp.

figure 4). First, the engineer either creates a new communication interface or can import

an existing model either from file or from a running OPC UA Server. Next, the

information model can be adapted (e.g. adding a new node called distance or renaming

the loaded node speed into torque). Next, the engineer can automatically generate an

OPC UA Server from the edited model. An example of a generated and instantiated

interface information model is displayed in figure 6. Otherwise, the engineer can

continue with the traditional engineering process. Please note that during the virtual

system integration phase, the information model cannot only be used for testing the

software. It can also serve as a specification document that can be handed to various

device manufacturers so that they can provide different solutions that realize the required

functionality.

11 http://help.eclipse.org/kepler/index.jsp?nav=%2F2
12 https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model/
13 https://github.com/eclipse/milo

http://help.eclipse.org/kepler/index.jsp?nav=%2F2
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model/
https://github.com/eclipse/milo

24 Fabian Burzlaff et al.

Figure 6: Generated OPC UA interface information model

Although there exist other tools like UaModeler14 or

FreeOpcUa15, none of these tools are based on an

open source development platform, can import OPC

UA models and include an automated server

instantiation feature. In addition, the conceptual

challenge of connecting information models with

embedded system code has been realized by attaching

generic setters to all externalized variables. Hence,

simple device functionality (e.g. writing values to a

database for testing purposes) can be executed out of

the box. However, more sophisticated device

simulations based on methods represented in the

information model or other behavioural aspects of

embedded systems are currently not supported. Aside

the mentioned practical advantages realized by the

modelling tool, we spotted three major technical

limitations. First, OPC UA is not well suited for

specifying the required functionality of production

devices accurately. Second, this prototype only allows changes to the interface at design

and not at runtime. Furthermore, the code generation from an information model to PLC-

skeleton code is currently not available but required when integrating software and

hardware components. Third and last, the integration of legacy devices using a different

communication standard is currently not supported by our tool.

5 Related work

In the last decades, a lot of work has been done in the fields of software development

(e.g. component- and model based-development [Va16]), cyber-physical systems as well

as dynamic and self-adaptive systems. Hence, this section only provides selected key

resources corresponding to the running example context, but is far from complete.

Crnkovic, Chaudrin and Larsson introduce in their work about “Component-based

Development Process and Component Lifecycle” [CCL06] a general engineering

viewpoint for systems that are based on software components. Their work is seen as a

basis for our prototypical implementation.

Hehenberger et al. used component-based development methods it in the context of

cyber-physical systems [He16]. Furthermore, the authors provide recommendations for

model-driven engineering for self-adaptive (i.e. self-configured), agent-based cyber-

14 https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uamodeler.html
15 https://github.com/FreeOpcUa/opcua-modeler

https://www.unified-automation.com/de/produkte/entwicklerwerkzeuge/uamodeler.html
https://github.com/FreeOpcUa/opcua-modeler

Executing Model-based Software Development for Embedded I4.0 Devices Properly 25

physical systems. This work is providing further guidelines for elaborating on the

engineering process.

An example of a full-fledged toolchain are the engineering tools developed by Harrison,

Vera and Ahmad [HVA16]. They introduce component-based software development

principles in a use-case that includes industrial robots. Their solution package “vueOne”

is based on virtual simulation and virtual integration techniques for production

equipment. Approaches that enable dynamic and self-adaptive systems have been

successfully researched in the automotive context. For example, Braun et al. [Br12]

introduced a formal approach that can be used to model evolution in automation

engineering (i.e. component upgrading and an interdisciplinary compatibility supervision

technique).

6 Conclusion

In this paper, we have justified that software engineering processes known from

component-based software development are currently not applied in practical “Industrie

4.0” projects, especially for collaborative embedded systems. For example, current

interface descriptions are primarily driven by code and not by models (e.g. OPC UA).

However, such engineering approach makes it hard to change production setups quickly.

As production life cycles get shorter each year and technological advances reduce the

“time-to-live” for software and hardware, current engineering processes are not

supporting future requirements efficiently. Hence, an adapted top-down engineering

process has been suggested that places models as a device independent abstraction back

at the core of embedded systems engineering. As a consequence, production lines are

integrated from upside down. Nevertheless, current interface description techniques are

not designed to support such processes. To realize dynamic and self-adaptive production

lines efficiently, this paper introduces first ideas towards fulfilling such system qualities.

Bibliography

[BA05] Broy, M., and Andreas R., "Das neue v-modell® xt." Informatik-Spektrum 28.3 (2005).

S. 220-229.

[Ba05] Bartelt, C., et al. Dynamic integration of heterogeneous mobile devices. In: ACM

SIGSOFT Software Engineering Notes. ACM, 2005. S. 1-7.

[Br12] Braun, S., et al. Requirements on evolution management of product lines in automation

engineering. IFAC Proceedings Volumes, 2012, 45. Jg., Nr. 2, S. 340-345.

[BRE15] Bartelt, C.; Rausch, A.; Rehfeldt, K., Quo vadis cyber-physical systems: research areas

of cyber-physical ecosystems: a position paper. In: Proceedings of the 1st International

Workshop on Control Theory for Software Engineering. ACM, 2015. S. 22-25.

26 Fabian Burzlaff et al.

[CCL06] Crnkovic, I.; Chaudron, M.; Larsson, S. Component-based development process and

component lifecycle. In: Software Engineering Advances, International Conference on.

IEEE, 2006. S. 44-44.

[He16] Hehenberger, P., et al. Design, modelling, simulation and integration of cyber physical

systems: Methods and applications. Computers in Industry, 2016, 82. Jg., S. 273-289.

[HVA16] Harrison, R.; Vera, D.; Ahmad, B. Engineering methods and tools for cyber–physical

automation systems. Proceedings of the IEEE, 2016, 104. Jg., Nr. 5, S. 973-985.

[Po16] Pohl, K., et al. "Advanced Model-Based Engineering of Embedded Systems." Advanced

Model-Based Engineering of Embedded Systems. Springer International Publishing,

2016. S. 3-9.

[Va16] Vale, T., et al. Twenty-eight years of component-based software engineering. Journal of

Systems and Software, 2016, 111. Jg., S. 128-148.

