
Next Steps in Knowledge-Driven Architecture

Composition

Fabian Burzlaff1, Christian Bartelt2 and Heiner Stuckenschmidt3

1 University of Mannheim, 68131 Mannheim, Germany

burzlaff@es.uni-mannheim.de
2 University of Mannheim, 68131 Mannheim, Germany

bartelt@es.uni-mannheim.de
3 University of Mannheim, 68131 Mannheim, Germany

heiner@informatik.uni-mannheim.de

Abstract. Software architecture knowledge management has itself positioned as

a mature research stream over the last years. Superficially, architectural

knowledge management is about documenting design and design decisions. In

software-intensive systems, a concrete application scenario of architectural

knowledge management deals with the question whether a provided functionali-

ty fits a required functionality. To automate the underlying integration process,

various research communities came up with, for example, interface definition

languages and service matchers. However, formalizing the semantics of a soft-

ware interface is in practice currently regarded as a price too high to pay. In this

paper, we provide the status of our incremental case-based integration method

that aims at reducing the effort for formalizing integration knowledge without

losing the ability to compose software components based on interface semantics

automatically.

Keywords: Knowledge-driven Architecture Composition, Interface Definition

Language, Internet-of-Things, Integration Knowledge, Integration Methods

1 Introduction

Agile development methods and micro-services can be regarded as one of the state-

of-practice artefacts when software solutions must scale dynamically. Two-Pizza-

Teams are optimized towards implementing a minimal-viable-product while keeping

the communication quality high. The agile manifesto “working software over com-

prehensive documentation” is present. Although this is a rather extreme example,

software engineers tend to minimize their software documentation effort and ignore

the needs for architectural knowledge management such as information discovery,

sharing or traceability [1], [2].

A concrete example for implicit architectural knowledge can be seen when a sys-

tem integrator examines whether a provided service fulfills the needs of a required

functionality. Due to current trends such as the “Internet-of-Things” or “Industry 4.0”,

mailto:burzlaff@es.uni-mannheim.de

2

more and more physical objects are equipped with software interfaces to make them

“smart”. When connecting such devices with a communication platform (e.g. a com-

munication bus or a client-server architecture), a system integrator must configure or

even implement suitable translation adapters to establish a meaningful connection.

This is needed to connect device services with other software services. The reason for

creating such adapters are twofold: On the one hand, (domain) standards, if available

and applicable, only describe the interface semantics in an informal way (e.g. OPC

UA1 or Swagger2 and [2]). Hence, a human is needed to interpret the interface name

and parameter and then program a software adapter between both endpoints. On the

other hand, semantic interface description for web services (e.g. SAWSDL3 over

SOAP) could be used for formalizing the offered functionality based on ontologies.

However, the creation of such descriptions is perceived as additional documentation

effort and programmers do not know whether there will be a client who requires ex-

actly this service.

As a consequence we have introduced an incremental and use-case specific inte-

gration method that tries to reuse prior formalized integration knowledge [3], [4]. In

this context, formalizing integration knowledge means to make it machine-readable

and does not mean to create a new formal standard incrementally. Hence, our research

question (PhD) can be formulated as follows:

• RQ: How can software components be semantically coupled in an automated way

based on partially incomplete integration knowledge?

2 Knowledge-Driven Architecture Composition

To answer our research question, we outlined a novel composition approach labeled

“Knowledge-Driven Architecture Composition” (see Figure 1). One essential part of

this approach is the usage of knowledge-base(s) for capturing integration knowledge

between two interfaces (see “KB” in Figure 1). Within our method, a knowledge base

contains information about the semantic relationship between two endpoints and their

respective functionality. Overall, the process for capturing integration knowledge

incrementally is as follows:

1. At time t=0, component D requires the provided functionality of component A. As

the knowledge base is empty in the beginning, the system integrator must config-

ure or implement an adapter (e.g. in an imperative programming language). In ad-

dition, he must capture the semantic transformation in a declarative language.

2. At time t=1, another functionality required by component D should be coupled

with the provided functionality of component A. Again, the system integrator must

perform both actions, formalizing the additional integration knowledge needed for

1 https://jp.opcfoundation.org/wp-content/uploads/2014/05/OPC-

UA_CollaborationOverview_DE.pdf
2 https://swagger.io/
3 https://www.w3.org/TR/sawsdl/

3

this case and configure/implement the adapter. However, existing declarative inte-

gration knowledge can now be reused. This could be either performed in the sense

of a recommender systems that provides a suitable solution based on previous inte-

gration cases or by generating an adapter template that requires the system integra-

tor only to insert the missing integration knowledge.

3. At time t=n, component A should be replaced by another component C (e.g. due to

efficiency reasons). As both component offer the same semantic interface func-

tionality, now previously formalized integration knowledge can be reused. Fur-

thermore, if enough integration knowledge from other integration cases is present,

a reasoner can derive missing integration knowledge automatically. Thus, previ-

ously unknown components can be integrated in an automated way and an execut-

able adapter could be generated.

Fig. 1. Knowledge-Driven Architecture Composition Method

For supporting the system integrator to formalize the integration knowledge when

executing this method over time, we are currently using the following technologies: 1)

OWL-DL for storing integration knowledge 2) An Eclipse-based Editor for defining

the entities, the object as well as data properties and the use-case specific individuals

and 3) the reasoner Hermit (Version 1.3) as an inference mechanism.

2.1 Capturing Integration Knowledge with OWL-DL Ontologies

At the moment, our knowledge-base consists of three connected ontologies. One on-

tology for describing the data points as well as methods for each endpoint and one

4

abstract integration ontology that imports endpoint ontologies. The integration ontol-

ogy with selected individuals is illustrated in Figure 2.

Fig. 2. Simple Integration Example based on trigger-request communication pattern

As this example originated out of the Industrial Automation context, a few details

about the use-case may be useful: A communication between a drill device (i.e. End-

point_ShopFloor) and a Manufacturing Execution System (i.e. Endpoint_TopFloor)

should be established. Based on a simple trigger-request communication style, a mes-

sage from the device is being sent to the MES-System. This message is sent as soon

as the workpiece is detected by a physical sensor (e.g. Boolean GVL_partForStation

== true). To map the information residing in the drill information model, the varia-

bles Application_drillDepth is read and sent via the MES-specific XML template

Screwing_partRecevied to the TopFloor system. Due to the circumstance that in this

use-case only one MES system as available, the correct individual for the entity End-

point_ShopFloor can be directly selected. Concerning the automatic deduction pro-

cess of new integration knowledge, a simple example could be the transformation of

units of Application_drillDepth (e.g. transforming centimeter and inches).

 As a consequence, if the drill device is now being replaced by another drill with

extended capabilities and no changes in the communication style, the drill can be

theoretically integrated in a plug-and-play manner based on formalized integration

knowledge. Therefore, the system integrator only has to provide a mapping between

concrete device interface and the endpoint entity by creating a new End-

point_ShopFloor individual.

3 Related Work

Automatic interface coupling approaches are not new. Such approaches have been

around within the component-based software engineering community for quite a long

time [5]. In fact, the underlying ideas of information hiding, and modularization have

already been tackled by early programming languages. For example, Modula 2 could

already automatically check for interface compatibility in the year of 1978 [6].

5

The novelty of our approach lies in the idea of focusing on a method for formaliz-

ing integration knowledge that keeps the formalization effort low. This does not

mean, that we ignore standards or build up standards incrementally but to provide a

method and tool for capturing integration knowledge explicitly in a systematic way.

Still, a uniform ontological schema per communication pattern must be used across all

integration cases.

Regarding supporting research streams, case-based reasoning methods as well as

interface matching approaches are relevant.

3.1 Case-based Reasoning

Case-based reasoning methods are based on a problem-based learning method that

derives solutions for unknown problems from existing and known problem-solution

pairs [7]. Their advantages lie in the sophisticated deduction process based in previ-

ous cases and have been successfully applied in the healthcare domain. Hence, reusa-

bility of existing solutions is achieved. However, case-based reasoning methods most-

ly rely on a continuous similarity function meaning that they may adapt a solution in

an incorrect way. This can become a problem regarding interface coupling scenarios

as the proposed solution may be partially incorrect.

3.2 Interface Matching Approaches

Interface Matching approaches exist for both, web services as well as software com-

ponent interfaces. For matching SAWSDL descriptions, Klusch et al. [8] developed

the SAWSDL-MX matcher that evaluates if two interfaces can be coupled based on

their semantic interface description. For software component interfaces, hybrid

matching approaches were developed for “on-the-fly” service matching [9]. These

matching approaches are interesting for our approach, as they might provide reasona-

ble results when not enough integration knowledge is present. In other words, they

can be used as a recommendation system. However, a drawback of these matchers is

that they either are too restrictive regarding their description capabilities [8] or that

they only produce a probability score [9] which means that the coupling mechanism

may produce wrong results.

4 Open Questions and Next Steps

In the last year, we have worked on a technical prototype for evaluation purposes of

our integration method. During a first evaluation in the context of Industrial Automa-

tion [10][11], we identified, among others, further questions regarding the underlying

knowledge acquisition, knowledge storing as well as the reasoning process.

• How can a system automatically detect if two interfaces are semantically identical

if they are syntactically different?

• How can we “tell” the system integrator which integration knowledge is missing

during an unknown integration case (e.g. whynot queries)?

6

• How can knowledge bases be maintained if integration knowledge changes over

time (i.e. validation of integration knowledge across context-independent use-

cases)?

• What are other suitable declarative languages and reasoner for capturing compo-

nent composition knowledge besides OWL-DL and HermiT (i.e. functional com-

position in a mathematical sense like λ-Prolog)?

In the future, we will focus on how to support other communication patterns. Fur-

thermore, we will investigate how new integration knowledge can be practically de-

duced and which assumptions must hold for such deduction approaches to work in

practice.

References

[1] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software ar-

chitecture knowledge management: Practice and future,” J. Syst. Softw., vol. 116, pp. 191–

205, Jun. 2016.

[2] “IEEE Recommended Practice for Architectural Description of Software-Intensive Sys-

tems,” IEEE Std 1471-2000, pp. i–23, 2000.

[3] F. Burzlaff and C. Bartelt, “Knowledge-Driven Architecture Composition: Case-Based

Formalization of Integration Knowledge to Enable Automated Component Coupling,” in

2017 IEEE International Conference on Software Architecture Workshops (ICSAW),

2017, pp. 108–111.

[4] F. Burzlaff, Knowledge-driven Architecture Composition. Gesellschaft für Informatik,

Bonn, 2017.

[5] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da M. Silveira Neto, Y. C. Cavalcanti, and S.

R. de L. Meira, “Twenty-eight years of component-based software engineering,” J. Syst.

Softw., vol. 111, pp. 128–148, Jan. 2016.

[6] N. Wirth, “Modula-2 and Oberon,” in Proceedings of the Third ACM SIGPLAN Confer-

ence on History of Programming Languages, New York, NY, USA, 2007, pp. 3–1–3–10.

[7] A. Aamodt and E. Plaza, “Case-based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches,” AI Commun, vol. 7, no. 1, pp. 39–59, Mar. 1994.

[8] M. Klusch, P. Kapahnke, and I. Zinnikus, “SAWSDL-MX2: A Machine-Learning Ap-

proach for Integrating Semantic Web Service Matchmaking Variants,” in 2009 IEEE In-

ternational Conference on Web Services, 2009, pp. 335–342.

[9] M. C. Platenius, W. Schäfer, and S. Arifulina, “MatchBox: A Framework for Dynamic

Configuration of Service Matching Processes,” in Proceedings of the 18th International

ACM SIGSOFT Symposium on Component-Based Software Engineering, New York, NY,

USA, 2015, pp. 75–84.

[10] F. Burzlaff, C. Bartelt, and L. Adler, “Towards automating Service Matching for Manu-

facturing Systems: Exemplifying Knowledge-Driven Architecture Composition,” Proce-

dia CIRP, vol. 72, pp. 707–713, Jan. 2018.

[11] F. Burzlaff & C. Bartelt - I4.0-Device Integration: A Qualitative Analysis of Methods and

Technologies Utilized by System Integrators (ICSAW 2018 - to be published)

