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Abstract—Component models for IoT devices regain popular-
ity. As more and more devices must be semantically connected
within IoT platforms, digital abstractions for these devices are
needed. For this purpose, textual device descriptions which
encapsulate device-specific characteristics are a suitable candi-
date. Such component descriptions formally describe a device’s
information model as well as the offered functionality in a
standardized way. However, smart IoT platforms mainly solve
user goals by composing various IoT devices in a suitable manner.
Current IoT descriptions, such as Eclipse Vorto do not address
this need at all. In this paper, we introduce a formal mapping
language that allows to capture functional interaction semantics
already during device integration time. Our evaluation shows
that only few mapping elements are needed to define functional
mappings between operations as well as to capture the underlying
communication pattern.

Index Terms—Internet of Things, Formal Mapping Language,
Semantic Interoperability

I. INTRODUCTION

Context: Currently, ”Things” start to get increasingly smart
as they get equipped with micro controllers and networking
hardware. As a consequence, the so-called Internet of Things
(IoT) emerged over the last years. The definition of this term
still varies and reaches from ”a galaxy of solutions somehow
related to the world of intercommunicating smart objects” [1]
to ”a network that connects uniquely identifiable ’Things’ to
the Internet” [2]. Overall, IoT specifies networks of devices
which communicate with each other and is a well-known topic
in IoT research communities [3], [4].
Problem: Due to development of IoT, the well-known question
whether a provided interface fits a required interfaces regains
importance progressively. The underlying matching problem
has already been extensively researched in communities such
as component-based software development [5]. In order to au-
tomate component composition, current scientific approaches
rely on the assumption that a common framework-language
as well as top-down standardized ontologies are used by
all parties involved within the IoT integration domain [6],
[7]. However, this is naive to be assumed as standardization
activities are too slow for technology innovation cycles which
are getting faster and faster [8]. At the moment, this results
in programming semantically identical software adapters that
utilize syntactically different interfaces over and over again.
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Fig. 1: Knowledge-driven Architecture Composition

Need: As a consequence, integration knowledge between
provided and required interfaces is only persistent within
software adapters and is currently not being captured, shared
and reused [9]. Therefore, a novel engineering method called
”Knowledge-driven Architecture Composition” (KDAC) for
bottom-up IoT device integration was introduced [10]. The
novelty of this method lies within the incremental formal-
ization of semantic integration knowledge for IoT devices
in addition to programming iterative software adapters. Over
time, shared semantic integration knowledge can be utilized as
a basis to generate adapters for the underlying IoT architecture
[11].
Solution: In this paper, we will introduce a domain-specific
mapping language and tool support that can be used to ex-
press mappings and communication patterns for Vorto device
descriptions. This language is a first technical step towards
operationalizing knowledge-driven architecture composition
(see Figure 1) for broader application scenarios. Therefore,
we will introduce and explain a suitable grammar. As a last
contribution, we will evaluate the proposed language in a
synthetic example to show that it is expressive enough for
simple scenarios.

II. IOT DEVICE INTEGRATION

At the moment, IoT solution developers must necessar-
ily know the underlying information and service model of
common IoT communication protocols (e.g. MQTT, COAP
or OPC UA). Based on their domain experience, they can



usually map between standardized device descriptions (e.g.
Eclipse Vorto) and the use case specific payload which is
transmitted by a communication protocol. Nevertheless, stan-
dardized device descriptions do not necessarily result in less
integration effort. This is due to the circumstance that current
IoT systems (e.g. Apache iota or Eclipse Kura) are usually
not able to realize a complex user goal by invoking only
one service component. Instead, such user goals are fulfilled
by composing multiple service’s components and information
elements in an ordered sequence. Hence, solving the matching
and mapping problem between required and provided interface
requires increasing integration effort if the amount of required
devices increases.

Fig. 2: Exemplary IoT Use Case

Let’s consider the example depicted in Figure 2. In this
case, a dimmable light bulb (left side) should be connected
to a switch without dimming functionality (right side). The
goal of the integration process is to toggle the light from
on to off and vice versa whenever the switch is toggled. To
perform this integration task, first, a software engineer needs to
analyze the functionalities and the interfaces of both devices.
The offered functionalities in our example can be found in the
so-called function blocks where configuration, status, events
and operations of the Switch (see Listing 1) and the Light
(see Listing 2) are defined.
[...]
description "A simple boolean switch"
category Generic
functionblock SwitchFunctionality {
configuration {
defaultState as boolean "Default state of the
switch"

}
status {
currentState as boolean with {readable: true}
"Current state of the switch"

}
[...]
events {
stateChanged {

oldState as boolean with {readable: true} "Old
state of the switch"
newState as boolean with {readable: true} "New
state of the switch"

}
}
operations {
set(state as boolean) "Sets the state of the
switch"

toggle() "Toggles the state of the switch"
}

}

Listing 1: Vorto function block of the SwitchFunctionality

Furthermore, several other factors need to work together. This
means, that 1) a stateChanged event should be fired as soon as
the wall switch is toggled. Then 2) this boolean stateChanged
event, originating from the switch must be translated to the
setValue (....) operation offered by the dimmable light bulb.
This results in an operation invocation with the MAX value of
”1.0” to turn on the light. The required integration knowledge
can then be deployed to an IoT platform in the form of
a software adapter (e.g. transformation rule). Nonetheless,
current component models for IoT architectures do not allow
for the explicit definition of such knowledge.

[...]
description "A double-precision dimmer"
category Generic
functionblock DimmerFunctionality {
configuration {
optional defaultValue as double <MIN 0.0, MAX
1.0>
"The default value in percent"

}
status {
currentValue as double with {readable: true}
<MIN 0.0, MAX 1.0> "The current value in percent
"

}
[...]
operations {
setValue(value as double<MIN 0.0, MAX 1.0>) "
Sets the value in percent"

}
}

Listing 2: Vorto function block of the DimmerFunctionality

III. AN ARCHITECTURE FOR FORMALIZING IOT
INTEGRATION KNOWLEDGE

In this work, the main objective of a mapping language – for
the purpose of device integration – is to formalize knowledge
that is required to generate an adapter between integration
endpoints (see System Architecture in Figure 3). Furthermore,
mappings should serve both purposes, a mean to document
knowledge in an explicit way and to be machine-readable so
that existing mappings can be automatically recommended to
the application designer.

A mandatory information of a mapping is a reference to
all involved interfaces. In addition, the mapping should be
uniquely identifiable (i.e. by an ID). The mapping behavior
is defined by the state change, from which source interface
element data is queried and to which destination interface
element data is passed. Hence, a mapping language must offer
the possibility to define the direction of an information flow, as
well as the role (i.e. source or destination) an interface plays
in such a logical or functional mapping.

Given these basic requirements, additional ones may
come along in special cases or because of non-functional
requirements. Such additional requirements could be complex



Fig. 3: High-level System Architecture

control structures or simple call-return models when acting
in environments that include events. Moreover, additional
descriptions of mapping elements could make them easier to
understand. However, we will only outline the trigger-action
interaction style in this work.

Two main challenges for IoT device integration are
interface matching and mapping. Given only their formal
device descriptions, the aforementioned language including
appropriate tool support should facilitate an easy way
to integrate two or more IoT devices within a platform.
Therefore, two concepts, the Matcher and the Mapper, were
developed and implemented and will be further explained in
the next section. The tool that instantiates both components
is called ”InMatch” (see Figure 3).

IV. INTEGRATING VORTO IOT DEVICE DESCRIPTIONS

This section will describe how the concepts of Matcher and
Mapper work. Thereby, the focus lies on the mapping language
and its application.

A. Eclipse Vorto

Eclipse Vorto is an open source project, which offers a
tool set that allows the creation and management of abstract
information models for physical devices [12]. The main project
target is to be completely technology-independent in order to
increase the range of possible usage. In addition, the project
provides an online repository where developers and vendors
can share their information models to emphasize model reuse.
Moreover, Vorto offers a variety of code generators and a
code generator API with which any information model can be
converted into a code skeleton. Furthermore, Vorto includes
a domain-specific language (DSL) which defines the textual
device description syntax.

While many DSLs are designed to be compiled or executed
by an interpreter, the main objective of Vorto’s DSL is to

specify constructs which are translated to a specific program-
ming language via a preprocessor (i.e. code generators). This
way, once created, developers can use device descriptions on
different destination systems by simply using a preexisting
code generator or writing a new one.

B. Matcher Component of InMatch

The developed matching approach uses an abstraction layer
and heuristics to analyze whether or not interface elements
potentially match. From another viewpoint, the Matcher com-
ponent is acting like a recommender-system that proposes
matching interfaces to the user based on prior defined map-
pings.

In general, matching approaches rely on different infor-
mation of interface definitions. This information could be
semantic and syntactic. While semantic matching can enhance
the matching process by using additional information on how
an interface element behaves, Vorto only provides syntactic
information. In addition, other heuristics, such as data type
comparison and element name similarity measurement, were
utilized and will be further outlined in the evaluation section.
For this method to work, an interface definition at least needs
to give information on element names, data types, return types
and method signatures of operations.

An adequate semantic model is needed to match different
interface elements. Thus, it is important to know which type
of interaction (i.e. providing data, receiving data) is supported
by an operation. Hence, the developed abstraction layer uses
different sets to cluster the elements of an interface according
to the way they can be accessed or the way they behave:
readset Contains all elements from which data can be re-

trieved. In this context, it does not matter whether data is
the result of a method call or may be accessed directly
as an attribute.

writeset All elements to which data can be provided. Again,
independent of the way it is provided.

triggeringset Consists of all elements that are throwable in
some sense. This means, that one could listen to them
just like to an event and get notified when it is fired.

triggerableset Holds all elements that can be called by an
action. An example for this is a method call.

Within these four sets, the first two of these sets adhere to func-
tional interface matching approaches where mappings ensure
a correct information exchange between two components. In
contrast, the last two sets represent a communication style (i.e.
trigger-action) which then uses functional mappings to express
the data flow. The underlying idea of building an additional
abstraction layer is to add a semantic understanding to an
interface. The different sets can already provide information
on which elements need to be considered when searching for
a potential match.

When working with modeling languages that offer pre-
defined types, data type information can be used to assess
whether some information is exchangeable in the first place.
Therefore, when testing if readable and writable elements
match, the data types of the writable and readable element



must be inspected. Especially data types from the readable ele-
ment are required to be accepted by the writable element. This
analysis can either be done by checking for a perfect match of
data types or by testing whether data types are transformable
into each other. This means, that with a set of transformation
operations provided data types can be converted to required
data types.

C. Mapper Component of InMatch

The Mapper is used to create mappings between IoT devices
and to automatically specify them in the developed mapping
language. The mapping language is defined by an ANTLR
grammar which makes it possible to create a textual definition
of Mappings and MappingBlocks in an unambiguous way.
Furthermore, it allows mapping descriptions to be parsed by a
computer program (e.g. to automatically generate an adapter
from them).

A Mapping is a composition of MappingBlocks. It is de-
signed to contain all MappingBlocks that are required between
certain information models in one particular integration pro-
cess (cf. Listing 3). This means that for a specific integration,
only one Mapping between a certain pair of information
models (and thus devices) should exist.

A Mapping contains basic information, like an ID, a names-
pace and a description, as well as a list of references to the
involved information models. Each used information model
is given a unique ID, so that it can be referenced in the
MappingBlock section. The MappingBlock section contains a
list of references to contained MappingBlocks. Each reference
also specifies the direction of the MappingBlock, i.e. which
information model is the source and which information model
is the destination.

mapping:
’id’ id
’namespace’ namespace
’description’ description
’infoModelReferences’ ’{’

modelReferenceProperty*
’}’
’mappingBlocks’ ’{’

mappingBlockReferenceProperty*
’}’

;
modelReferenceProperty: ’using’ modelReference ’as’

id;
mappingBlockReferenceProperty: ’from’ id ’to’ id ’:’

qualifiedName|mappingBlock;

Listing 3: Grammar for Mapping

1) MappingBlocks: The idea of a MappingBlock is to
define the way elements of different interfaces need to interact
with each other in order to provide one particular function-
ality or service (see Listing 4). Hence, MappingBlocks map
function blocks to each other, regardless of which devices are
equipped with the specific function block. Similar to function
blocks, MappingBlocks should only define one integration at
a time on an atomic level to emphasize their reuse among
different projects or device description pairs.

MappingBlocks hold information on which function blocks
act as inputs and which as outputs. Furthermore, metadata and
identifiers are contained to ensure references within Mappings.

mappingBlock:
’id’ id
’namespace’ namespace
’description’ description
’sources’ ’{’
sources

’}’
’destinations’ ’{’
destinations

’}’
(flowBlock | logicBlock)

;
sources : qualifiedName*;
destinations : qualifiedName*;

Listing 4: Grammar for MappingBlock

The information on which interface elements should be com-
bined needs to be specified as well. During integration, this
depends on the desired functionality and the component inter-
action pattern. Hence, a mapping language should enable the
definition of different interaction patterns. In this work, two
types of interactions were implemented. One is an information
exchange between function blocks and the other is a trigger-
action pattern.

To represent these different types, two specific realizations
of a MappingBlock (i.e. the FlowBlock and the LogicBlock as
depicted in Listing 5) were created:

FlowBlock A FlowBlock defines a data flow between two
interface elements. Besides the common information
contained in the general MappingBlock, the FlowBlock
must specify a list of readable input and writable output
elements as well as a rule on which and how information
should be exchanged. Furthermore, JavaScript is used
to define the information transformation rules. This is a
design choice as it is expressive enough (e.g. containing
conditionals and loops) and provides native support for
working with objects and methods. Overall, applicabil-
ity among various use cases increases. Moreover, many
JavaScript engines for integrating predefined script exist
and function composition is a first-class citizen.

LogicBlock In comparison to the FlowBlock which does
not specify any interaction pattern intrinsically, the Log-
icBlock represents a trigger-action pattern. This means
that it explicitly defines when the action (also specified
in JavaScript code) is performed. A LogicBlock has a
set of triggering inputs which specify when an action
is executed. In addition, a set of writable or triggerable
outputs are specified as a LogicBlock which is not limited
to an information exchange only.

The difference between Flow- and LogicBlocks can be best
illustrated by imagining how corresponding adapters would
look like. A FlowBlock can be represented by a simple
method. This method executes JavaScript code. In contrast, a
LogicBlock would be represented as a listener which is added
to each trigger. Hence, it is required to define the specific, use



case dependent interaction pattern of a FlowBlock when the
adapter is deployed.
flowBlock:

’flowblock:’
’inputs’ ’{’

inputs
’}’
’outputs’ ’{’
outputs

’}’
’code’ code

;
inputs: qualifiedName*;
outputs: qualifiedName*;
logicBlock:

’logicblock:’
’trigger’ ’{’
trigger

’}’
’outputs’ ’{’
outputs

’}’
’action’ code

;
trigger: qualifiedName*;
code: ’{’ (code |.*) ’}’

;

Listing 5: Grammar for Flow- and LogicBlock

D. Evaluation
In order to evaluate the presented language a synthetic

integration case was performed by using the implemented
tools. This example should show how the semantic analysis
of involved interfaces, the interface matching, the low-level
mapping (MappingBlocks) and the high-level mapping (Map-
pings) can be realized by using the InMatch-Protoype (see
Figure 4). For the case study, our motivating example (see
Figure 2) serves as a basis. Hence, the integration task is still
to toggle the state of a light depending on a switch.

The first integration step is to retrieve or create Vorto
representations of all IoT devices involved. As a consequence,
the Vorto repository is queried for device descriptions or
function blocks which could be reused (not shown in the
system architecture).
using de.ma.fb.SwitchFunctionality; 1.0.0
writeset {

de.ma.fb.SwitchFunctionality.operation.set
}
readset {
de.ma.fb.SwitchFunctionality.status.currentState

}
triggerableset {
de.ma.fb.SwitchFunctionality.operation.set
de.ma.fb.SwitchFunctionality.operation.toggle

}
triggeringset {
de.ma.fb.SwitchFunctionality.event.stateChanged

}

Listing 6: Semantic abstraction of SwitchFunctionality

As a next step, the semantic abstraction needs to be performed.
The goal of this process is to identify how different elements
of interfaces can interact with each other. This process can be
either done automatically or manually.
using de.ma.fb.DimmerFunctionality; 1.0.0
writeset {

de.ma.fb.DimmerFunctionality.operation.setValue
}
readset {
de.ma.fb.DimmerFunctionality.status.currentValue

}
triggerableset {

de.ma.fb.DimmerFunctionality.operation.setValue
}
triggeringset {}

Listing 7: Semantic abstraction of DimmerFunctionality

Having done that, interface elements which need to be mapped
to enable the desired service must be identified. Without the
support of the Matcher and an explicit abstraction, this step had
to be done manually for each integration case. This means that
an IoT solution developer needed to scan all interface elements
of the switch to find the correct event that is triggered when the
switch is toggled and all elements of the light to find a way for
(de-)activation. With the help of the Matcher, this process can
be done tool-supported. Given the function block abstraction,
the Matcher creates a list of MappingBlock recommendations
from which an developer can select the needed one based
on prior defined integration cases (i.e. formalizing semantic
integration knowledge incrementally).

Fig. 4: InMatch Prototype utilized as tool-support for Mapping
Language

In Figure 4, the ”MappingBlock Suggestions” is realized.
This component is essential for reusing incrementally defined
integration knowledge. Here, the following comparison fea-
tures are implemented for readset ↔ writeset and triggerset
↔ triggerableset: data types, data type transformations and
language transformation (e.g. english to german) of signature
elements. It is important to note that all suggestions are based
on prior defined working integration cases and are not based
on a formal standard.

id Switch2Dimmer
namespace de.ma.mappingblocks
description "Sets a dimmer value according to a

switch."
sources {
de.ma.fb.SwitchFunctionality

}
destinations {
de.ma.fb.DimmerFunctionality

}
logicblock:
trigger {
de.ma.fb.SwitchFunctionality.event.stateChanged

}
outputs {
de.ma.fb.DimmerFunctionality.operation.setValue

}
action {



var t = de.ma.fb.SwitchFunctionality.event.
stateChanged;

if(t.newState) {
de.ma.fb.DimmerFunctionality.operation.setValue
(1.0);

} else {
de.ma.fb.DimmerFunctionality.operation.setValue
(0.0);

}
}

Listing 8: Switch- to DimmerFunctionality MappingBlock

The next integration step is the creation of a mapping between
the light’s DimmerFunctionality and the switch’s SwitchFunc-
tionality. Therefore, a mapping between these function blocks
needs to be specified. Vorto itself does not offer any mapping
language which supports the mapping between function blocks
or information models. Hence, an integrator would need to
specify the mapping directly in a platform-dependent way (e.g.
by programming an adapter for Amazon AWS). By using the
presented mapping language, the mapping definition can be
formalized by creating a MappingBlock in a platform- and
technology-independent way. The result of this step can be
found in Listing 8.

The last integration step is to use the mapping between func-
tion blocks to create the mapping between information models.
Therefore, a mapping needs to be created and formalized. In
the Mapping, the involved information models as well as the
required MappingBlocks are combined to define how the IoT
devices need to interact. The resulting Mapping can be seen
in Listing 9.

id Switch2Light
namespace de.ma.mappings
description "A mapping which connects a switch to a

light so that the light is toggled by the switch
"

infoModelReferences {
using de.ma.informationmodels.Switch;1.0.0 as

Switch
using de.ma.informationmodels.Light;1.0.0 as Light

}
mappingBlocks {
from Switch to Light: de.ma.mappingblocks.

Switch2Dimmer
}

Listing 9: Switch to Light Mapping

Limitations: Although the presented case study does not
seem to improve the overall integration process in the given
example a lot, the proposed language is a first technical
step towards facilitating the presented, bottom-up integration
methods based on incomplete integration knowledge [10] [13].
This means that with a high number of already integrated
function blocks the described integration process can be
automated based use-case specific semantics. The resulting
efficiency gains are mostly due to reusing previously created
MappingBlocks instead of creating new software adapters for
every integration task. However, the proposed mapping lan-
guage currently assumes that types per programming language
are similar (e.g. 1 is always true and 0 is always false).
Furthermore, the proposed language may not scale for 1:n or

even n:m mappings as they can be proposed by the matcher
component but must be eventually confirmed by the system
integrator.

V. CONCLUSION AND FUTURE WORK

In this paper a novel mapping language for IoT device de-
scriptions has been introduced. By using a mapping language
functional integration knowledge can be defined explicitly in
a formal way. In order to reuse already captured integration
knowledge, semantic abstractions were defined. In addition,
logical as well as functional MappingBlocks have been intro-
duced, which describe the interaction between function block
elements. Our case study shows, that a mapping language with
a moderate expression complexity is applicable for simple
smart home scenarios. It can be seen that the proposed map-
ping language only requires a moderate formalization effort as
existing mappings can be captured and reused incrementally.
In the future, we plan to replace Vorto device descriptions with
a formal component model that suits a broader range of IoT
scenarios [8].
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