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ABSTRACT

The Internet of Things is one of the principal trends in information technology nowadays.
The main idea behind this concept is that devices communicate autonomously with each
other over the Internet. Some of these devices have extremely limited resources, such as
power and energy, available time for computations, amount of silicon to produce the chip,
computational power, etc. Classical cryptographic primitives are often infeasible for such
constrained devices. The goal of lightweight cryptography is to introduce cryptographic
solutions with reduced resource consumption, but with a sufficient security level. Although
this research area was of great interest to academia during the last years and a large number
of proposals for lightweight cryptographic primitives have been introduced, almost none of
them are used in real-word. Probably one of the reasons is that, for academia, lightweight
usually meant to design cryptographic primitives such that they require minimal resources
among all existing solutions. This exciting research problem became an important driver which
allowed the academic community to better understand many cryptographic design concepts
and to develop new attacks. However, this criterion does not seem to be the most important one
for industry, where lightweight may be considered as "rightweight". In other words, a given
cryptographic solution just has to fit the constraints of the specific use cases rather than to be the
smallest. Unfortunately, academic researchers tended to neglect vital properties of the particular
types of devices, into which they intended to apply their primitives. That is, often solutions
were proposed where the usage of some resources was reduced to a minimum. However, this
was achieved by introducing new costs which were not appropriately taken into account or in
such a way that the reduction of costs also led to a decrease in the security level. Hence, there is
a clear gap between academia and industry in understanding what lightweight cryptography is.
In this work, we are trying to fill some of these gaps. We carefully investigate a broad number of
existing lightweight cryptographic primitives proposed by academia including authentication
protocols, stream ciphers, and block ciphers and evaluate their applicability for real-world
scenarios. We then look at how individual components of design of the primitives influence
their cost and summarize the steps to be taken into account when designing primitives for
concrete cost optimization, more precisely - for low energy consumption. Next, we propose
new implementation techniques for existing designs making them more efficient or smaller in
hardware without the necessity to pay any additional costs. After that, we introduce a new
stream cipher design philosophy which enables secure stream ciphers with smaller area size
than ever before and, at the same time, considerably higher throughput compared to any other
encryption schemes of similar hardware cost. To demonstrate the feasibility of our findings
we propose two ciphers with the smallest area size so far, namely Sprout and Plantlet, and the
most energy efficient encryption scheme called Trivium-2. Finally, this thesis solves a concrete
industrial problem. Based on standardized cryptographic solutions, we design an end-to-end
data-protection scheme for low power networks. This scheme was deployed on the water
distribution network in the City of Antibes, France.
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ZUSAMMENFASSUNG

Das Internet der Dinge ist heutzutage einer der wichtigsten Trends in der Informationstech-
nologie. Die Hauptidee hinter diesem Konzept sind Geräte, die autonom über das Internet
kommunizieren. Einige dieser Geräte haben extrem limitierte Ressourcen, wie zum Beispiel
Strom und Energie, verfügbare Rechenzeit, verfügbare Siliziummenge zur Chip-Produktion,
Rechenleistung usw. Klassische kryptographische Primitive sind auf derart eingeschränkten
Geräten oft nicht realisierbar. Das Ziel der leichtgewichtigen Kryptographie besteht darin,
kryptographische Lösungen mit reduziertem Ressourcenverbrauch, aber ausreichendem Sicher-
heitsniveau einzuführen. Obwohl auf diesem Forschungsgebiet reges akademisches Interesse
bestand in den letzten Jahren und eine große Anzahl neuer Vorschläge für leichtgewichtige
kryptographische Primitive vorgestellt wurden, werden nahezu keine davon in Praxisanwen-
dungen eingesetzt. Wahrscheinlich liegt einer der Gründe darin, dass in der akademischen
Welt normalerweise kryptographische Primitive so entworfen werden sollten, dass sie weniger
Ressourcen als alle existierenden Lösungen benötigen. Dieses spannende Forschungsproblem
entwickelte sich zu einer treibenden Kraft, welche der akademischen Gemeinschaft erlaubte,
viele kryptographische Designkonzepte besser zu verstehen und neue Angriffe zu entwickeln.
In der Industrie hingegen scheint dies keinesfalls das wichtigste Kriterium zu sein, wo leichtge-
wichtig eher als “rechtgewichtig” angesehen werden kann. Mit anderen Worten, eine gegebene
kryptographische Lösung muss lediglich die durch den spezifischen Anwendugsfall vorge-
gebenen Beschränkungen erfüllen anstatt die kleinste zu sein. Leider hat die akademische
Forschung wichtige Eigenschaften der konkreten Arten von Geräten vernachlässigt, auf denen
die entwickelten Primitiven eingesetzt werden sollten. So wurden häufig Lösungen vorgeschla-
gen, die den Verbrauch bestimmter Ressourcen zwar auf ein Minimum reduzierten. Dies wurde
allerdings dadurch erreicht, dass hieraus entstehende neue Kosten nicht ausreichend in Betracht
gezogen worden sind oder eine Reduzierung der Kosten ein niedrigeres Sicherheitsniveau zur
Folge hatte. Es besteht eine klare Kluft zwischen Wissenschaft und Industrie, wenn es darum
geht zu verstehen, was leichtgewichtige Kryptographie ist. In dieser Arbeit schließen wir diese
Lücke. Wir untersuchen sorgfältig eine breite Palette existierender kryptographischer Primitive,
die von der Wissenschaft vorgeschlagen wurden, einschließlich Authentifizierungsprotokollen,
Stromchiffren und Blockchiffren, und evaluieren deren Anwendbarkeit in realen Szenarien.
Dann untersuchen wir die Auswirkungen einzelner Komponenten beim Chiffre-Design hin-
sichlich Kosten und fassen die einzelnen zu berücksichtigenden Schritte zusammen, wenn
man Chiffren entwickelt, die für konkrete Kosten optimiert sein sollen, genauer gesagt für
niedrigen Energieverbrauch. Als Nächstes schlagen wir neue Implementierungstechniken für
existierende Designs vor, wodurch diese effizienter oder kleiner in Hardware werden, ohne
dabei weitere Kosten zu induzieren. Hiernach stellen wir eine neue Chiffrendesign-Philosophie
vor, die sichere Stromchiffren mit kleinerer Fläche als jemals zuvor und gleichzeitig bedeutend
höherem Durchsatz verglichen mit anderen Verschlüsselungsverfahren mit ähnlichen Hardwa-
rekosten ermöglicht. Um die Realisierbarkeit unserer Ergebnisse zu zeigen, schlagen wir zwei
neue Chiffren mit geringstem Platzbedarf, nämlich Sprout und Plantlet, sowie das bislang ener-
gieeffizienteste Verschlüsselungsverfahren namens Trivium-2 vor. Am Ende dieser Arbeit lösen
wir ein konkretes industrielles Problem. Basierend auf standardisierten kryptographischen Lö-
sungen entwickeln wir ein Ende-zu-Ende-Datenschutzkonzept für Niedrigenergie-Netzwerke.
Das System wurde auf dem Wasserleitungsnetz der französischen Stadt Antibes installiert.
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1 Introduction

1.1 Introduction to Lightweight Cryptography

Nowadays, the Internet is already integrated into our daily life almost as much as
electricity. The transmission of information has become so ordinary and simple that it
ceases to be noticeable. Very often data is transmitted wireless over the air which makes
it easy to access by anyone who has appropriate equipment; hence it has to be protected.
Therefore today cryptography is probably more critical than ever.

The Internet of Things (IoT) is seen as one of the most groundbreaking and game-
changing evolutions of information technology in modern times. This comprehensive
term is characterized by many smart devices that use the Internet to communicate with
each other without people being involved. In many cases these devices process sensitive
personal or enterprise data, so care needs to be taken that the communication is secure.
However, because of the tight cost constraints inherent in mass deployments and the
need for mobility these devices often have very limited resources regarding memory,
computing power or battery supply. Therefore, it is often impossible to use classical
cryptographic primitives, as long as their implementation requires more resources than
available.

Lightweight cryptography deals with cryptographic solutions which can be efficiently
implemented on the targeted constrained devices. It implies that this discipline is located
on the crossroads of security, mathematics, computer science, and engineering.

We would like to stress that based on our experience the understanding of lightweight
cryptography is somewhat different for academia and industry. For academia, lightweight
usually means to design cryptographic primitives in such a way that they require mini-
mal resources among the existing solutions. In the best cases, the designers are trying
to reduce some costs, making sure that the other ones are not increased and that the
security level is still high. However, often solutions are proposed where the usage of
some resources was reduced to minimal, but this is achieved by introducing new costs
which are not taken into account or by decreasing the level of security.

For industry, the term lightweight is something different. It may be considered as
”right-weight”, or in other words, a given cryptographic solution just has to fit the
constraints of specific use cases, being at the same time as cheap as possible [Ava18].

Academia usually aims to make sure that the security of a particular primitive is high
enough so that it cannot be practically broken by any means, no matter how much effort
is spent. For industry security is a business decision, where the goal is to make the
attacker’s Return on Investment (ROI) measure negative, meaning that an attacker has
to invest more as compared to what she gets if she manages to break the solution.

1.1.1 Applications of Lightweight Cryptography

To illustrate the topicality of lightweight cryptography nowadays, we discuss it’s most
important applications.
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A typical application example are RFID tags. Radio-Frequency Identification (RFID)
is an emerging technology which uses electromagnetic fields to automatically identify
and track real-world objects. An RFID system consists of a reader device which commu-
nicates with a passive or an active RFID tag - a small microchip attached to an antenna.
Passive tags are powered by the electromagnetic field of the nearby RFID reader. Active
RFID tags have their own power source and do not depend on the reader’s energy. As
a result they may operate hundreds meters away from the reader. Many applications
like supply-chain management, access control, and inventory management already use
RFID technology. In many published articles, however, the missing privacy protection
is an argument against the use of RFID tags. Therefore, integrating security into RFID
systems is inevitable.

Another example are Body Area Networks (BAN). They consist of several miniaturized
sensors that are connected to a human body. The sensors continuously monitor health
conditions like heartbeat or blood pressure. The data is passed wirelessly to a central
device, which in turn forwards it through the network to a doctor or hospital. This
allows for an immediate reaction in the case of emergency (improving health care), while
removing the need for permanent visits to a doctor. For the sake of mobility and comfort,
the sensors should be as minimal as possible. These constraints become even more
severe when the medical devices are to be implanted into the body of a patient in order
to treat, monitor or improve the functioning of some body part. Here it is crucial to make
sure that the energy consumption of such devices is small enough to guarantee that their
life cycle is sufficiently long to avoid the necessity to replace them. Note that additional
constraints may be relevant here. For example, the temperature level of the chip has to
be within the specific ranges, which is mainly achieved by precise control of the device
power consumption and through usage of particular materials. As the communication
is wireless, it might be eavesdropped. Therefore, data protection measures are crucial.

One more example is Wireless Sensor Networks (WSNs), where spatially distributed
autonomous devices equipped with sensors are used to collect data. Nowadays, various
industries actively introduce such systems into their production process: they create
a virtual copy of the physical world in order to monitor physical processes and make
decentralized decisions. Often the nodes of WSNs are low-powered, meaning that the
devices are restricted to consume only very little energy to operate. The technology called
low-powered wide-area networks (LPWANs) or low-power networks (LPNs) is usually
used to achieve connectivity in such scenarios. Nowadays, at the market there exist
several LPN technology solutions, which offer economically viable options to physically
deploy new sensors along with the necessary communications infrastructure in order to
generate, transport and ingest data coming from any industrial assets. However, even if
the connectivity is achieved, low security level of such systems is often a big issue.
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1.2 Summary of Research Contributions and Outline
In most of the lightweight scenarios, the three main security requirements are: authen-
ticity, meaning that we need to be sure that the data is sent by the valid device; integrity,
which ensures that the message has not been modified while in transit; and confidential-
ity, which implies that the data cannot be eavesdropped. To obtain the first two proper-
ties, so-called authentication protocols are employed, while for the third we need to use
encryption schemes (or ciphers). Therefore, in this work, we mainly consider these two
kinds of cryptographic primitives. In the last one and a half decades, there was a huge
number of proposals by academia which introduced many examples of the lightweight
authentication protocols, e.g., HB [HB01], HB+[JW05], HB∗ [DK07], PUF-HB [HS08],
Lapin [HKL+12], and lightweight ciphers, e.g. Midori [BBI+15], PRESENT [BKL+07],
LED [GPPR11], PRINTCipher [KLPR10], CLEFIA [SSA+07], Grain [HJMM08], PRINCE
[BCG+12], Trivium[CP08], Sprout [AM15], Plantlet, [MAM17], LIZARD [HKM17] to
name a few.

Despite a few examples1, most of these proposal were never used in real-world
applications. As was previously mentioned, the reason for this situation is probably due
to the fact that there are gaps between academia and industry in understanding of what
lightweight means. In this work, we are trying to fill some of these gaps.

In a nutshell, the following goals were achieved while working on this thesis:

Understanding constraints: We specified and summarized the real-world limitations
and conditions for different scenarios in which the lightweight protocols are em-
ployed. These results are covered by the publications [AHM14, MAM17].

Evaluation of primitives: We implemented and evaluated numerous proposed crypto-
graphic primitives with respect to their real suitability for the targeted scenarios,
as discussed in [AHM14, MAM17, BMA+18]

Implementation techniques: In [AM14, AM] we proposed a new technique which al-
lowed more efficient implementations of the existing algorithms.

Design approaches: We developed a new design method, discussed in [AM15, MAM17],
which led to secure cryptographic primitives (e.g., stream ciphers) that are more
suitable for lightweight scenarios due to their reduced costs.

New designs: In [AM15, MAM17, MGAM17], we designed new cryptographic primi-
tives and security solutions.

We now provide an overview of these results in further detail.

1We note that PRESENT and CLEFIA were included in the international standard for lightweight
cryptographic methods by The International Organization for Standardization and the International Elec-
trotechnical Commission [ISO12].
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1.2.1 Investigating Real-World Scenarios and Evaluation of Existing
Cryptographic Primitives

While there is quite a good understanding of the security of most of the lightweight
schemes proposed by academia, often only very little is known about their applicability
in practice. One of the main reasons is that without careful investigation of the real-
world systems, it is difficult to understand what amount of resources is available for a
given primitive when it needs to be used in a concrete situation and if there exist any
other scenario-specific constraints which are to be taken into account.

To this end, we examined three different scenarios, where such analysis was missing or
not complete. For each of these scenarios, we focused on understanding their limitations
and on the evaluation of applicability of existing cryptographic primitives to each of
them.

1.2.1.1 Evaluation of Authentication Protocols on low-cost RFID tags.

One of the primary use-cases for RFID tags are authentication solutions, e.g., access
control for buildings or cars, electronic passports or human-implantable chips providing
sensitive medical information about a person. For economical reasons low-cost RFID
tags (e.g., in the production cost range of $0.05 to $0.10) are particularly interesting for
industry. This cost pressure directly translates into severe hardware restrictions for the
targeted devices. Consequently, the search for appropriate lightweight authentication
protocols has become an essential topic in cryptography during the last years with
high relevance for academia and industry, generating a significant number of different
approaches and schemes. However, open literature rarely provides information on what
conditions need to be met by a scheme in practice, hindering a sound development and
analysis of schemes. In [AHM14] we investigated this scenario. Our contributions here
were twofold.

First, we provided a collection of several conditions that should be met by lightweight
authentication schemes if deployed in RFID systems using tags in the mentioned cost
range like Electronic Product Codes (EPCs). These conditions were derived both from
open literature and numerous discussions with various experts from industry and may
be of independent interest. The results are summarized in Table 3.2 page 33 .

The second contribution was an analysis of relevant existing, allegedly lightweight
authentication schemes with respect to these conditions. Here, we focused on the two
most important approaches: (i) based on the hardness of the learning parity with noise
(LPN) problem and (ii) using encryption schemes. Possibly surprising it turned out that
none of the existing (unbroken) LPN-based protocols, which were implemented and
evaluated for various reasonable parameters (see Subsubsection 3.2.4.2) for more details)
complied to these conditions. This can be seen from the rightmost column of Table 3.27
on page 63, where the costs which exceed the constraints together with security issues
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of the protocols are indicated. We showed, however, that for the other approach, namely,
using lightweight encryptions schemes, instantiations do exist which meet the derived
conditions.

1.2.1.2 Reconsideration of Performance of Ciphers that Continuously Access
Non-volatile Key

Due to the increased use of devices with restricted resources such as limited area
size, power or energy, the community has developed various techniques for designing
lightweight ciphers. One approach that is increasingly discussed is to use the cipher key
that is stored on the device in non-volatile memory not only for the initialization of the
registers but during the encryption/decryption process as well. Initially this idea was
used in block ciphers, e.g. KTANTAN [CDK09], LED [GPPR11], PRINTcipher [KLPR10]
and Midori [BBI+15]. Later, in [AM15, MAM17], we demonstrated the advantages of
this approach for stream ciphers as well. This technique may on the one hand help to
save resources, but also may allow for a stronger key involvement and hence higher
security. However, only little is publicly known so far if and to what extent this approach
is indeed practical. Thus, cryptographers without strong engineering background face
the problem that they cannot evaluate whether certain designs are reasonable (from a
practical point of view), which hinders the development of new designs.

We investigated this design principle from a practical point of view in [MAM17].
After a discussion on reasonable approaches for storing a key in non-volatile memory,
motivated by several commercial products we focused on the case that the key is stored
in Electrically Erasable Programmable Read-Only Memory (EEPROM) and . Here, we
highlighted existing constraints and derived that some designs, based on the impact
on their throughput, are better suited for the approach of continuously reading the key
from all types of non-volatile memory.

1.2.1.3 On Energy Consumption of Stream Ciphers

As was mentioned in Subsection 1.1.1, there exist scenarios (for example, implantable
medical devices), where efficient energy consumption is vital. However, since the time
when lightweight cryptography became a hot topic in academia, most of the research
effort was devoted to low-area or low-power designs. Note that though being closely
related, energy and power are two different parameters. Energy, which is the integral
of power over time is much more critical for battery-operated devices. Moreover,
the designs for low energy and low power consumption can be completely different.
Nevertheless, for some reason, the question of low-energy design was mostly ignored
until the first energy-optimized block cipher Midori [BBI+15] was proposed in 2015. On
the other hand, not much is known by now about the energy efficiency of stream ciphers.

We took a detailed look into energy consumption traits of stream ciphers in [BMA+18].
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For several selected stream ciphers, namely, Trivium [CP08], Grain v1 [HJM07], Grain-
128 [HJMM06], Lizard [HKM17], Plantlet [MAM17] and Kreyvium [CCF+16], we exam-
ined all implementation level aspects that are likely to affect the energy consumption of
stream ciphers and then drew necessary conclusions from our studies.

Our principal finding was that although block ciphers are more energy-efficient when
encrypting short data streams, while for longer data streams multiple-round-unrolled
stream ciphers perform better. In particular, stream ciphers with simple update functions
were found to be more energy-efficient unrolling does not lead to a significant increase
in circuit complexity and power consumption.

1.2.2 New Approaches and Techniques

To enhance the theory of lightweight cryptography we presented a new technique which
allows to improve implementations of existing algorithms and a new design approach
enabling new secure stream ciphers with low area size.

1.2.2.1 Technique for Efficient Implementations of Existing Cryptographic
Primitives

A new implementation technique that allows for increasing the maximum throughput of
stream ciphers without any (or only small) increase in the hardware size was introduced
in [AM14] and further investigated in [AM]. Our technique can be used with stream
ciphers that are composed of a very common building block - namely a feedback shift
register (FSR), an external block (which is treated as a black box), and an output function
which combines values from the FSR and the external block. This covers the majority of
stream ciphers proposed so far.

The technique can be seen as a combination of two existing approaches: pipelining
and FSR-transformation. The main idea is to reduce the circuit delay of the output
function by integrating parts of it into several update functions of the FSR.

We provided a detailed technical description for sufficient conditions under which
this technique is applicable and proved that the proposed transformation preserves
the functionality of the cipher. Moreover, we demonstrated the practicability of our
approach by applying it to the stream ciphers Grain-128 in [AM14] and Grain-128a in
[AM].

The transformation allowed an increase of the throughput by about 20% in both cases,
while the area size was almost unchanged. The improvements for both cases (Grain-128
and Grain-128a) are summarized in Table 4.4 on page 112.
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1.2.2.2 Approach Enabling New Lightweight Stream Ciphers with Shorter Internal
State

To be resistant against certain time-memory-data-tradeoff (TMDTO) attacks, a common
rule of thumb says that the internal state size of a stream cipher should be at least twice
the security parameter. As memory gates are usually the most area and power consum-
ing components, this implies a severe limitation with respect to possible lightweight
implementations. We investigated an extension in the common design which allows for
realizing secure lightweight stream cipher with an area size beyond the trade-off attack
bound mentioned above in [AM15] and [MAM17]. To achieve this goal, we suggested
to involve the key into the update process of the internal state of the cipher. We argued
that such a shift in the established design paradigm, namely to involve the fixed secret
key not only in the initialization process but in the keystream generation phase as well,
improves the resistance against the mentioned TMDTO attacks and allows to design
secure stream ciphers with much smaller area size.

1.2.3 New Designs

We designed new lightweight cryptographic schemes in order to prove the feasibility of
our findings and to solve real-life problems with lightweight cryptographic solutions.

1.2.3.1 Low-Area Stream Ciphers Sprout and Plantlet

Our new design principles, discussed in Subsection 4.3.3, were demonstrated by two
concrete keystream generators with keyed update function, namely Sprout [AM15]
and Plantlet [MAM17]. Both ciphers have a similar structure that has been inspired by
Grain-128a [ÅHJM11]. The main differences are the following:

1. Sprout and Plantlet have shorter internal state size compared to any of the Grain
family ciphers [HJMM08].

2. They use the round key function to make the state update key-depended.

As can be seen from Table 5.1 on page 122, Sprout and Plantlet use significantly less
area than comparable existing lightweight stream ciphers. Note that Sprout was broken
while, to the best of our knowledge, Plantlet remains secure.

1.2.3.2 Low-Energy Stream Cipher Trivium-2

We presented the stream cipher Trivium-2. It is based on the design of Trivium, but
provides 128-bit security, whereas Trivium is designed for 80-bit security level. Trivium-2
is optimized for energy consumption. The design was developed together with Sub-
hadeep Banik, Frederik Armknecht, Takanori Isobe, Willi Meier, Andrey Bogdanov,

8



1.2 Summary of Research Contributions and Outline

Yuhei Watanabe and Francesco Regazzoni while working on the paper [BMA+18] and
is going to be published in the full version of the paper. Among stream ciphers that
provide 128-bit security, for encryption of longer data streams the energy consumption
of the cipher is around 2.5 times better than Grain-128 and approximately 15% better
than Kreyvium (see Table 5.5 on page 134 for comparison).

We also argued the security of the cipher by performing extensive cryptanalysis on
reduced round variants of the design.

1.2.3.3 End-To-End Data Protection in Low-Powered Networks

We solved a concrete industrial problem. As was discussed in Subsection 1.1.1, a
significant, emerging trend in the context of the Internet of Things (IoT) are low-power
networks (LPNs), referring to networks that target devices with very limited access
to energy sources. While several approaches allow to comply to these novel power
restrictions, none of them provide a sufficient level of security, in particular concerning
data protection.

In [MGAM17] we proposed a data protection scheme that can be realized on top of
the existing solutions and which ensures end-to-end security from low-power devices
to back-end applications. It meets the technical constraints imposed by LPNs, while
preserving data confidentiality and integrity. Our solution has been deployed on the
water distribution network of the City of Antibes in France. The evaluation of the
overhead introduced by the proposed data protection scheme shows promising results
with respect to energy consumption. Moreover, the results of this work were used in the
exhibit prepared for the German National Digital Summit (Digital-Gipfel) 2017.

1.2.4 Outline
The remainder of this work is organized as follows:

• In Chapter 2, we introduce notions and concepts which are essential for under-
standing the further parts of this thesis.

• Chapter 3 is devoted to the investigation of real-world scenarios where the lightweight
cryptography is applicable. We discuss the limitations and conditions relevant
to these scenarios and evaluate the applicability of the existing cryptographic
primitives to each of them.

• Chapter 4 describes our new techniques and approaches which enhance the theory
of lightweight cryptography.

• In Chapter 5, we use the results of our research to design the new cryptographic
solutions.

• Chapter 6 provides the conclusions of this work.
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2 Preliminaries

2.1 Performance Metrics, Constraints, and Optimization Goals
When designing a lightweight cryptographic primitive, there is always a trade-off
between security, performance, and costs. However, depending on the targeted platform
and the concrete usage scenario, there may be completely different performance metrics
which need to be considered in a given solution. In general, all of the designs can
be classified into two main categories: hardware and software oriented ones. As the
terms already indicate, in the first case, the primitives need to be compact and efficient
when implemented in hardware. In the second case, the primitives are meant to be
implemented in software for example when implemented on the low cost Microcontroller
Units (MCUs).

2.1.1 Hardware-oriented Designs
Nowadays, there exist two main platforms for the hardware-oriented designs. These
are Application-specific Integrated Circuits (ASIC) and Field-Programmable Gate Array
(FPGA). Both platforms are different types of Integrated Circuits. ASICs are factory-
customized for a particular task, meaning that after ASIC cheap is produced, it has a
fixed functionality which can not be altered later. Whereas, an FPGA is intended for
general-purpose usability which can be programmable at any time.

In this work, we mainly focus on the designs targeting ASIC which is the cheaper and
more commonly used platform nowadays. Next, we discuss the hardware costs which
are relevant to this platform.

Area size Area is the amount of silicon used for implementation of the design in ASIC.
Considering that area requirements in µm2 strongly depend on the used fabrication
technological process, it has become common practice to resort to a more general metric
called Gate Equivalents (GEs) instead. In short, one GE is equivalent to the area of
a two-input drive-strength-one NAND gate used in a given technology library. This
allows for a rough comparison of area requirements derived using different technologies.

Clock Frequency This is the clock rate at which the chip is running. This parameter is
selected by the designer but is limited by the maximal possible value for a give design
and technology.

Maximal Clock frequency Upon receiving an input, a circuit processes these values
and eventually produces an output. The time period between getting the input and
producing the output is called its delay. The operations between circuits are synchronized
by clock pulses. Naturally, the time interval between clock pulses must be long enough
so that all the logic gates have time to respond to the changes and their outputs "settle"
to stable logic values before the next clock pulse occurs. As long as this condition is
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met, the circuit is guaranteed to be stable and reliable. Each of the connections between
inputs, registers, and outputs of the implemented algorithm forms a timing path. The
path which has the biggest delay is called critical path. It defines the maximum operating
clock frequency of the circuit.

Throughput The throughput is the rate at which a new output is produced with respect
to time. It is determined as the number of bits-per-cycle multiplied by the clock frequency
[GB08] of the circuit.

Power In complementary metal–oxide–semiconductor (CMOS) technology, commonly
used for constructing integrated circuits, the total power consumption depends on the
static power (mainly depends on the area size) and a dynamic power (which depends
on the probability of a switching event, so called switching activity).

Energy Low power consumption is desired for applications like battery-less/contact-
less devices. However, for battery driven devices, energy rather than power may be a
more relevant parameter to measure the efficiency of a design. It is a measure of the
total electrical work done by the battery source during the execution of any operation
and is equal to the integral of power over time. Hence, it is highly relevant for devices
that run on tight battery budgets like hand-held devices or medical implants.

Non-volatile Memory While the cost of volatile memory is often implicitly included
in the numbers for area in the form of flip-flops/latches (respectively the components
needed to build those), non-volatile memory is commonly not considered, which deter-
mines the data size which can be stored on the device even when it is disconnected from
the energy source. In the case of cryptographic primitives, the NVM is used to store the
secrets (e.g., private key) on the devices.

2.1.2 Software-oriented Designs

For the software-oriented designs, the essential metrics are the following.

Code Size This is the amount of read-only memory (ROM) taken by the machine code
of the implemented algorithm. This is important since embedded systems store all
program code in on-chip ROM whose size directly determines the cost of a device.

Memory Usage This metric determines the maximal amount of Random Access Mem-
ory (RAM) which the program takes during the runtime. This often matters heavily in
case of restricted devices since RAM is a precious resource in many of them, such as
sensor nodes.
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Throughput The throughput measures the amount of data which is processed during
a fixed period of time.

Energy Similar to the case of hardware-oriented primitives, low energy consumption is
of the greatest importance for software implementation at any battery-powered device.

2.2 Stream Ciphers

Ciphers (encryption schemes) are algorithms that allow encrypting data for ensuring it’s
confidentiality. The operation of modern ciphers depends on the key - piece of auxiliary
information that decides the details of encryption in the specific case.

Depending on the way how the keys are used, there are two main types of cryp-
tographic systems - symmetric (or secret-key) and asymmetric (or public key). The
asymmetric security systems are designed in such a way that the key which is used to
encrypt the information (enciphering key) is different from the one used for decryption
(deciphering key). Moreover, the deciphering key cannot be easily obtained from the
enciphering key. Such systems are called public key, since the enciphering key can be
open. That is, everyone can encrypt the message, but only the one who knows the
deciphering key can decrypt it. In symmetric systems the same key is used for both
encryption and decryption. In practice, this information is shared between two or more
communicating parties for providing secure exchange of messages over a public channel.

All symmetric ciphers known so far fall in one of the following two categories: block
ciphers and stream ciphers. As the names already indicate, block ciphers are designed
for encrypting data blocks. Stream ciphers are encryption schemes that are dedicatedly
designed to efficiently encrypt data streams of arbitrary length. In opposite to block
ciphers, stream ciphers operate on the single digits of plain text, one by one to produce
the ciphertext.

2.2.1 Stream Ciphers Design Principles

Stream ciphers attempt to imitate the action of a proven unbreakable cipher the one-time
pad (OTP) [Sha49], originally known as the Vernam cipher. The one-time pad uses a
keystream of completely random digits. The keystream Z = (z0, z1 · · · zn−1) is XORed
with the plaintext M = (m0, m1 · · ·mn−1) digits one at a time to form the ciphertext
C = (c0, c1 · · · cn−1):

ct = mt ⊕ zt, 0 ≤ t ≤ n− 1

To decipher the message the ciphered text is XORed with the same keystream:

mt = ct ⊕ zt, 0 ≤ t ≤ n− 1
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This system was proved to be unbreakable by Claude Shannon in 1949 [Sha49]. However,
the keystream, generated completely at random, must be the same length as the plaintext,
which makes the system infeasible in the real life.

A stream cipher can be viewed as the approximation of OTP. Based on a secret key
and an initialization vector, the stream cipher produces a sequence of bits that is called a
keystream. Similar to OTP, encryption is achieved by bitwise XORing of a keystream
with the plaintext. Hence, a cryptographically strong keystream generator is the primary
element of any additive stream cipher.

2.2.1.1 Keystream Generators

In a nutshell, a keystream generator (KSG) is a finite state machine using an internal
state, an update function, and an output function. At the beginning, the internal state is
initialized based on a secret key and, optionally, an initial value (IV). Given this, the KSG
regularly outputs keystream bits that are computed from the current internal state and
updates the internal state. The majority of existing KSGs are covered by the following
definition:

Definition 1 (Keystream Generator). A keystream generator (KSG) comprises three sets,
namely

• the key space K = GF(2)κ,

• the IV space IV = GF(2)ν,

• the state space S = GF(2)σ,

and the following three functions

• an initialization function Init : IV ×K → S

• an update function Upd : S→ S

• an output function Out : S→ GF(2)

A KSG operates in two phases. In the initialization phase, the KSG takes as input a secret
key k and an IV iv and sets the internal state to an initial state St0 := Init(iv, k) ∈ S. Af-
terwards, the keystream generation phase executes the following operations repeatedly
(for t ≥ 0):

1. Output the next keystream bit zt = Out(Stt)

2. Update the internal state Stt to Stt+1 := Upd(Stt)
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2.2.1.2 Feedback Shift Registers (FSRs).

A Feedback Shift Registers (FSR) is an established building block for designing stream
ciphers as it allows for generating long bit streams based on a short seed. In a nutshell,
an FSR is a regularly clocked finite state machine that is composed of a register and an
update mapping F.

At each clock, an entry of the state is given out and the state is updated according to
the update mapping F.

Definition 2 (Feedback Shift Register (FSR)). An FSR of length n consists of an internal
state of length n and an update functions fi(x0, . . . , xn−1) for i = 0, . . . , n− 1. Given
some initial state St0 = (St0[0], . . . , St0[n− 1]) ∈ Fn, the following steps take place at
each clock t:

1. The value Stt[0] is given out and forms a part of the output sequence.

2. The state Stt ∈ Fn is updated to Stt+1 where Stt+1[i] = fi(Stt).

Depending on the form of the update functions fi(x0, . . . , xn−1) the FSRs are clas-
sified into the following categories. When all update functions fi(x0, . . . , xn−1) for
i = 0, . . . , n− 1 are linear the FSR is called a Linear Feedback Shift Register (LFSR), oth-
erwise it is called Nonlinear Feedback Shift Register (NLFSR). FSRs are usually specified
in the Fibonacci configuration, meaning that at each clock-cycle all but one state entries
are simply shifted or in other words, all update functions except of fn−1 are of the form
fi(x0, . . . , xn−1) = xi+1 for i = 0, . . . , n− 2. Otherwise FSR is in Galois configuration.

2.2.2 Security of Stream Ciphers

2.2.2.1 Generic Attacks

There exist different classifications of cryptanalytic attacks according to different charac-
teristics.

Based on the information available to an attacker, they can be classified into the
following categories [Jön02]:

1. Ciphertext-only attack. In this attack scenario an attacker is given only the cipher-
text.

2. Known-plaintext attack. These attacks are applied when the ciphertext and all or
part of the plaintext is available. For additive stream ciphers this is equivalent of
knowing all or part of the keystream.

3. Chosen-plaintext attack. In this scenario it is assumed that an attacker has access
to an encryption device and can encrypt any number of chosen plaintexts.
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4. Chosen-ciphertext attack. Here an attacker can decrypt any chosen ciphertext and
her aim is to deduce the key.

By the type of access to an encryption/device [BMS06], there exist the following attack
classes:

1. Fixed-key attack. In this scenario it is assumed that an attacker has access to a
black box with one encryption/decryption device. The goal of the attacker is to
find the key which remains unchanged during the attack.

2. Variable key attack . Here an attacker does not only have access to a black box
with the encryption/decryption device, but also to a black box of the key-schedule
device. The attacker is allowed to change the keys of the cipher and her goal is to
find one of these keys.

3. Related key attack. This scenario assumes that the attacker has access to two or
more encryption/decryption devices. Moreover, the keys of these devices have
certain relations, which are chosen to the attacker, who is also allowed to apply
re-keying of the devices.

Another classification is based on the goal of the attack.

1. Key recovery attack. This is a method to recover the key.

2. Prediction attack . A method for predicting a bit or sequence of bits of the
keystream with a probability better than guessing.

3. Distinguishing attack. A method to distinguish the keystream from a truly ran-
dom sequence.

Obviously, the key recovery attack is the most powerful one due to the fact that the
knowledge of the key allows to apply both: the prediction and the distinguishing attack.

We now discuss the most important attacks against stream ciphers based on the way
how they are applied.

The Exhaustive Key Search (Brute-Force Attack) Cryptanalysis often boils down to
the following question. Given a function F : N → N and a value y within the image of
F, find a preimage of y, i.e., determine a value x ∈ N such that F(x) = y. To accomplish
this goal, two extreme cases are considered. One approach would be to use brute force
search, i.e., randomly pick values x ∈ N until F(x) = y does hold. This process would
be repeated whenever the attacker aims to invert F.

Precomputation attack (Table lookup) The other extreme approach would be to
precompute all possible values beforehand and store them in a large table, i.e., to trade
recurring computation effort by memory. This would result in the situation that every
subsequent attack is essentially a simple look-up.
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Time-Memory-Data-Trade-Off Attack We discuss of this type of attack in more details
as they will be used in several parts of this work.

In 1980 Hellman [Hel80] suggested a time-memory-trade-off (TMTO) attack which is
probabilistic and falls somewhere in between a brute force attack and a precomputation
attack. This initiated a long line of research on different trade-off attacks. A typical
trade-off attack consists of two phases: the first is the precomputation phase, often called
the offline phase, while the second is referred to as the real-time, or on-line phase. In the
offline phase, the attacker precomputes a large table (or sets of tables) using the function
F she is trying to invert, while in the online phase the attacker captures a function output
and checks if this value is located in her tables. If this attack is successful the attacker
can learn the value x for which y = F(x). Usually, this type of attacks is evaluated by
looking at the following costs:

• |N | - the size of the search space N

• TP - the time effort of the precomputation phase

• T - the time effort of the online phase

• M - memory cost of the attack.

• D - the number of usable data samples, i.e., outputs of F, during the online phase.

Trade-off attacks usually differ in the relation between these values (often expressed by
a trade-off curve) and conditions that need to be met. A further distinctive feature is the
concrete attack scenario. Here we are interested in two specific scenarios that we term
scenario A and B, respectively, and that we explain below.

In scenario A, an attacker is given one image y ∈ N and tries to find a preimage under
F, that is a value x ∈ N such that F(x) = y. This scenario-A-attacks represent the most
general class of attacks. In table 2.1, we list the effort of existing trade-off attacks in
scenario A. As one can see, all attacks have in scenario A a precomputation effort which
is equivalent to searching the complete search space N . In short, the reason is that a
trade-off attack can only be successful if the given image y has been considered during
the precomputation phase.

This can be relaxed in scenario B. Here, an attacker is given D images y1, . . . , yD of
F and the goal is to find a preimage for any of these points, i.e., a value xi ∈ N such
that F(xi) = yi. The main difference is that for a successful attack, it isn’t any longer
necessary to cover the whole search space N during the precomputation phase. Instead,
it is sufficient that at least one of the outputs yi has been considered. An overview
of time-memory-data-trade-off attacks for scenario B is given in table 2.2. Note that
the parameter R mentioned in the BSW attack stands for the sampling resistance of a
stream cipher. In a nutshell, it is connected to the number of special states that can be
efficiently enumerated. For example, R can be defined as 2−` where ` is the maximum
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Table 2.1: Overview of trade-off attacks for scenario A

Work
Trade-off
curve

Restrictions
Precomputation
time

Hellman [Hel80] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
Oechslin et al. [Oec03] |N |2 = 2TM2 1 ≤ T ≤ |N | TP = |N |
BG [Bab95], [Gol97] |N | = M T = 1 TP = |N |
BS [BS00] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
BSW [BSW01] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
Barkan et al. [BBS06] |N |2 + |N |M = 2TM2 1 ≤ T ≤ N TP = |N |
Dunkelman [DK08] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |

Table 2.2: Overview of trade-off attacks for scenario B

Work
Trade-off
curve

Restrictions
Precomputation
time

BG [Bab95], [Gol97] |N | = TM 1 ≤ T ≤ D TP = M
BS [BS00] |N |2 = TM2D2 D2 ≤ T ≤ |N | TP = |N |/D
BSW [BSW01] |N |2 = TM2D2 (DR)2 ≤ T TP = |N |/D
Barkan et al. [BBS06] |N |2 + |N |D2M = 2TM2 D2 ≤ T ≤ |N | TP = |N |/D

value for which the direct enumeration of all the special states which generate ` zero
bits is possible.

Reuse Key Attack Stream ciphers are vulnerable to this attack if the same key is used
twice. If two messages M1 and M2 are encrypted with the same key κ:

Encκ(M1) = M1 ⊕ κ, Encκ(M2) = M2 ⊕ κ (2.1)

the attacker can XOR these two ciphered texts together:

Encκ(M1)⊕ Encκ(M2) = M1 ⊕ κ ⊕M2 ⊕ κ = M1 ⊕M2 (2.2)

and retrieve the XORed value of the 2 messages.

The Berlekamp-Massey Algorithm is an iterative algorithm that finds one or all of
the [Ber68, Mas69] shortest LFSR capable of generating the given sequence. This algo-
rithm forms a universal attack on keystream generators since it carries the potential of
substituting any keystream generator by its shortest linear equivalent.
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Guess and Determine Attack The basic idea of guess and determine attack is to guess
a few parts of the key, and using the knowledge about the keystream generator to solve
the rest of the key. This attack is the classical way to cryptanalyse FSR-based stream
ciphers, where only the states of a few shortest FSRs are guessed.

Algebraic Attack In an algebraic attack, the attacker is trying to build a system of
algebraic equations in the unknown values, usually key bits or state bits, and the known
output bits. Solving these systems allows to recover the internal state, and as long as the
state update is invertible, also to find the key.

Algebraic attacks [CM03] were described against LFSR-based ciphers. The reason is
that once an equation is found in the current state and output bits, analogous equations
hold for any successive clocks. This results into a system of equations where each
equation has a degree that is at most the degree of the initial equation. Such degree-
bound systems of equations then can be solved using the linearization technique where
each non-linear term is replaced by a new variable.

It has been demonstrated that the algebraic attack is efficient against a series of stream
ciphers based on FSRs.

Correlation Attack The vast body of intensive research literature covers the correlation
attacks. Siegenthaler first introduced the correlation attacks [Sie84] in the middle of the
80s. The basic idea is to divide and conquer when the keystream output is correlated to
the individual FSR output due to the choice of the bad choice of the combining function.
The optimum maximum likelihood decoding strategy results in the answer for the initial
state of the FSR. Apparently, the time complexity of the basic correlation attack [Sie84]
grows exponential in the length of the FSR, which is impractical for a long FSR. The
focus of cryptographers has been on the general problem where the individual FSR may
be arbitrarily long. To speed up the attack for the general setting, Meier and Staelbach
[MS89] used the probabilistic iterative decoding strategy to refine the basic correlation
attack into a so-called fast correlation attack to reconstruct each individual FSR.

Linear Sequential Circuit Approximation The Linear Sequential Circuit Approxima-
tion approach for analyzing keystream generators was suggested in [Gol96] and later
used in [KHK06] for analyzing Trivium cipher. This approach allows for a universal
distinguishing attack, i.e., to identify properties in the keystream sequence that makes it
possible to find the differences from the random bit sequences. To this end, the approach
enables finding a linear equation in the output bits which holds with a probability
different than 1/2.

Fault attack The systematic study of fault attacks against stream ciphers was done in
[HS04]. Usually, it is assumed that the attacker can flip one random FSR bit (without
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knowing its position), produce the required number of keystream bits from this faulted
internal state, and then compare it with the keystream, which was produced without
any faults in internal state. This process of resetting the device and introducing one
fault can be done as many times as it is required for the attacker. This allows to achieve
additional information about the processes happening in the state of the cipher and to
recover this state.

Side-Channel Attack This type of attacks is based on the information leaked from the
implementation, rather than weaknesses of the algorithm itself. For example, timing
information, power consumption, electromagnetic leaks, and even sound can help to
break the actual implementation of the crypto primitive.

2.2.2.2 Cryptographic Properties of Keystream Sequences

To be cryptographically strong, the keystreams produced by a given KSG should have
some indispensable properties. We name and explain those characteristics which are
relevant to this work.

Period For a stream cipher to be secure, its keystream must have a period large enough
so that the same keystream was never used twice. Otherwise, a cipher will be vulnerable
to a “reused attack”.

Linear complexity Linear complexity is the length of the shortest LFSR which can
generate a given binary sequence. As was already mentioned, the Berlekamp-Massey
algorithm [Ber68] [Mas69] is an efficient algorithm to determine the linear complexity.
For a binary sequence with linear complexity L the algorithm finds an LFSR of length L
which generates it, given a subsequence of length 2× L.

There also exist some other measures of complexity: Ziv-Lempel complexity, 2-adic
span, maximum order complexity, etc. See [Nie99] for more details.

Nonlinearity Nonlinearity of an m variables boolean function f is the Hamming dis-
tance from f to the set of affine functions with m variables: it was first studied in
[MS89] as a security measure of cryptographic Boolean functions. A function with low
nonlinearity is vulnerable to the linear attacks.

Correlation Immunity This is the measure which is used to detect if the correlation
attacks are easy to apply. A Boolean function is said to be correlation-immune of order
m if every subset of m or fewer variables in x1, x2. . . xm, is not correlated with the value
of f (x1, x2. . . xm). A balanced m-order correlation immune function is called an m-order
resilient function. [Sie84]
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Algebraic Degree To resist algebraic attacks, the algebraic degree of a Boolean function
should be high. The notion of algebraic immunity was introduced in [CM03], and it is
defined as the minimum degree of all annihilators of the function and of its inverse.

2.3 Authentication Protocols
In a nutshell, an authentication protocol involves two parties, a prover, and a verifier.
The common approach is to use challenge-response protocols based on a secret shared
by these two parties. The prover authenticates itself towards the verifier by implicitly
proving the knowledge of the secret. This is accomplished by answering the challenges
sent by the verifier where the responses depend on the secret.

Due to their hardware restrictions, typical authentication protocols are usually not
suited for embedded devices. Consequently, the search for dedicated lightweight authen-
tication protocols became an important topic in cryptography during the last years with
high relevance for academia and industry, generating a significant number of different
approaches and schemes. In this work we focus on the two common approaches for
constructing lightweight authentication schemes today:

• Cipher-based schemes: protocols which use lightweight encryption schemes as basic
cryptographic operations.

• LPN-based schemes: protocols which are based on the well-known learning parity
in the presence of noise (LPN) problem, and

We shortly explain both approaches in the following.

2.3.1 Cipher-based Protocols

Cipher-based protocols can be seen as a very straightforward approach for enabling
authentication. The basic idea is that the reader chooses a random value and sends
as challenge the encryption of this value to the tag. The task of the tag is to decrypt
the challenge and to send back the chosen value in plaintext. Trivially, the task of
correctly encrypting an unencrypted nonce chosen at random by the verifier is equivalent
here. Obviously, the computational effort is mostly dominated by the execution of the
deployed cipher.

2.3.2 HB-type Protocols

LPN-based protocols all adapt more or less the following principle: given a challenge
a ∈ GF(2)n, n ∈N, the response is computed as f (a)⊕ e, where f : GF(2)n −→ GF(2)
is a secret (linear) function and e some noise bit which takes a value of 1 with a constant
probability p < 1/2. Straightforwardly, the authentication process comprises of running
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the above protocol round many times and accepting finally iff the fraction of wrong
answers remains below a certain threshold. The security of these kinds of protocols w.r.t
passive attackers can be reduced to the widely accepted hardness of the learning parity
in the presence of noise (LPN) assumption. The LPN problem can be shortly stated as
the problem of distinguishing "from random several noisy inner products of random
binary vectors with a random secret vector" [KPC+11].
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3 Evaluation of Existing Cryptographic Primitives in Real-World Scenarios

3.1 Chapter Overview

In this chapter, we evaluate the suitability of different existing cryptographic primitives
for the following three real-life scenarios.

In the first scenario, investigated in [AHM14] and discussed in Section 3.2, it is
assumed that a strong authentication has to be achieved on ultra low-cost RFID tags in
the price range below $0.10. We summarize the constraints applicable for this scenario
and evaluated suitability of different authentication protocols for such constrained
devices.

In the second scenario presented in Section 3.3, we investigate the practical conse-
quences of the recent approach where the ciphers constantly access the key stored on
the device in non-volatile memory. We summarized the existing constraints for various
types of such memory and evaluated the performance of different designs under these
limitations. The results were published in [MAM17].

Section 3.4 which is based on the publication [BMA+18], discusses the third scenario,
where we assume that the only goal of the designer is to optimize the energy consump-
tion when encrypting the data, whereas the other costs are not important. First, we
compare the energy efficiency of block ciphers and stream ciphers. Afterwards, we inves-
tigate different stream cipher design choices and their influence on energy consumption
and summarize the most critical factors.

3.2 On the Suitability of Different Authentication Protocols
for Ultra-constrained RFIDs

3.2.1 Motivation and Overview

As was discussed in Subsection 1.1.1, one of the most common cases where the need for
lightweight cryptographic primitives is crucial are RFID tags. Due to the economical
reasons, these devices are particularly interesting for industry if their price is as low as
possible. This cost pressure directly translates into severe hardware restrictions for the
targeted devices. Consequently, the search for appropriate lightweight authentication
protocols has become an important topic in cryptography during the last years with
high relevance for academia and industry.

In this section, we describe the results of our work [AHM14], written together with
Frederik Armknecht and Matthias Hamann, where we focus on authentication protocols
between an RFID reader and ultra-constrained RFID tags. More precisely, we targeted
devices in the cost range of $0.05 to $0.10. The reasons for this specific choice are twofold:
Firstly, RFID tags which can be produced at costs of $0.1 or cheaper, like (variants
of) Electronic Product Codes (EPCs), have been a common motivation for existing work
(see, e.g., [JW05], [FDW04], [MME+11], [CR08]). Secondly, if one allows for only a few
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additional costs, standard cryptographic primitives like AES become in fact feasible,
thus practically removing the need for alternative solutions altogether (see, e.g., also
Subsection 3.2.3 or [FDW04]).

Set of Conditions. Our first contribution is that we specified and argued several
conditions that need to be satisfied by authentication protocols to be suitable for ultra-
constrained RFID devices. These conditions have been derived partly from open lit-
erature but most importantly from various discussions with experts from industry.
Although these experts were working for different companies and were aiming for RFID-
based authentication in different areas, all of them share more or less the same view
on what “lightweight” means in the context of ultra-constrained devices and when a
scheme can be considered to be relevant for real-world applications. As these conditions
mostly result from long lasting experience in hardware production and have not (or
only partly) been comprehensively described and summarized in the open literature,
we think that this information will be beneficial for assessing the suitability of existing
protocols and for providing guidance in the development of new ones.

Evaluation of LPN-based Protocols. Our second contribution is the application of
the gained knowledge for evaluating the suitability of LPN-based protocols. This branch
of research represents the most prominent non-proprietary approach for designing
lightweight authentication protocols. It has been initiated by HB [HB01] and HB+[JW05],
which became the prototypes for the whole family of protocols that base their security
on the hardness of the learning parity in the presence of noise (LPN) assumption (or
variant problems). To this end, we extracted particular parameter choices for almost
20 proposals in this section and verified whether these comply with the derived set
of conditions. As it turned out, none of the existing LPN-based protocols meet the
requirements, i.e., none of them can run on current low-cost RFID hardware.

In Subsection 3.2.2, we summarize the hardware limitations of currently deployed low-
cost RFID devices like EPC (Gen2) tags and derive according conditions for lightweight
authentication schemes. In Subsection 3.2.3 we show the principle feasibility of cipher-
based approaches at the example of PRESENT [BKL+07]. In Subsection 3.2.4, we then
revisit existing authentication protocols that are based on the (assumed) hardness of the
LPN problem and argue why these, in contrast, do not meet the limitations mentioned
above.

We would like to point out that most of the results related to understanding the hard-
ware limitations of low-cost RFID tags were obtained by Matthias Hamann, whereas the
author of this thesis mostly focused on implementation and evaluation of the protocols.
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3.2.2 Set of Conditions

We are going to discuss the hardware limits imposed on the design of lightweight
cryptographic primitives by typical factors like, e.g., chip size, power consumption,
and clock speed. As a platform, mainly low-cost RFID tags in the range of $0.05 to
$0.10 like Electronic Product Codes (EPCs) are targeted. Due to their prevalence in the
field of lightweight authentication hardware, we focus on Application-specific Integrated
Circuits (ASICs) in this work. As the name suggests, ASICs are (factory-)customized
for a particular task rather than intended for general-purpose usability like the more
expensive class of Field Programmable Gate Arrays (FPGAs). To the best of our knowledge,
low-cost RFID tags are the devices with the most severe limitations, meaning that if a
certain cryptographic primitive is feasible on them, it should be supported by most of the
different platforms based on ASIC as well. We note, however, that there also exist use-
cases, where the cost of the device is less important than the energy consumption (e.g.,
lifetime of battery in body implants) or speed (real-time encryption of large amounts of
data).

3.2.2.1 Area

In 2005 Juels and Weis [JW05] stated the “Security Gate Count Budget” of an EPC tag to
be “200-2,000 gates” and, even today, this upper bound of 2,000 GEs is still commonly
considered to be the magic number for lightweight cryptographic implementations
[AHM14]. From an academic perspective, this conclusion can be drawn based on the
fact that many recent works (see, e.g., [SE12, WZ11, PMK+11, MSGAHJ13]) still assume
2,000 GEs to be the upper bound w.r.t. tag area. Some other works assume between
200 and 4,000 GEs [CR08, REC05] but are sometimes not clear about whether they are
actually referring to the total area of a low-cost RFID tag or just the amount of GEs
available for security purposes. Apart from academic publications, all experts from
industry we spoke to in 2014 confirmed that 2,000 GEs still constitute a plausible security
gate count budged for low-cost RFIDs, nine years after [JW05] was published in 2005.
For comparison, one of the currently smallest known AES implementations due to
Moradi et al. [MPL+11] requires about 2,400 GEs, which implies that newly suggested
approaches requiring even more area should at least be obliged to justify what additional
benefit they bring. This obligation to justify even the need for a single additional gate
has straightforward monetary reasons as, according to [CR08], 1,000 additional gates
of silicon logic increase a tag’s price by $0.01, which amounts to considerable sums
given production volumes of hundreds of millions in the case of low-cost RFID tags. It
should also be noted that in addition to the number and placement of logic gates, other
(security-related) components contribute to the chip area of an RFID tag as well. Most
notably, one way to fix constant bit values (e.g., cryptographic keys) on individual tags is
to use fuses/antifuses and “burn” a corresponding selection of them before a tag leaves
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the factory. As it has to be ensured that no other (i.e., normal logic) components get
damaged during this process of burning fuses, considerable area is needed, rendering
the technique infeasible when it comes to storing large amounts (i.e., thousands) of
constant bits at production time. Finally, providing acceptable side channel security can
also significantly increase the number of required GEs, depending on the structure of
the cryptographic primitive.

3.2.2.2 Throughput and Timing

An important factor when judging any algorithm running on actual (lightweight) hard-
ware is the expected number of clock cycles needed until completion. Trivially, the
higher the underlying clock speed of a device is, the more clock cycles can be safely
consumed by the cryptographic authentication process. But as pointed out in Subsub-
section 3.2.2.3, factors like the power budget of a passively powered RFID tag impose
an upper bound on its clock frequency. In his Ph.D. thesis [Pos09], Poschmann, one of
the designers of the established lightweight block cipher PRESENT, assumes 100 kHz
to be the prevalent clock speed feasible on lightweight hardware. Again, this value
is in line with the information we obtained from the RFID hardware producers who
demanded confidentiality. Hence, given that 150 msec is commonly considered to be
the maximum amount of time available to execute a full authentication process1, a clock
speed of 100 Hz immediately implies that (even without taking the needs of other, i.e.,
non-cryptographic, tag components into account) no more than 15,000 clock cycles are
available on the tag’s side to authenticate successfully. Keep in mind that even for higher
clock rates like 1 MHz (given, e.g., by Jules and Weis in [JW05]), not more than 150,000
clock cycles would be available for cryptographic and other purposes upon contact
between that tag and the reader.

3.2.2.3 Power

Closely related to the amount of required hardware logic is the question of power
consumption. Low-cost RFID tags are commonly powered via an electromagnetic field
radiated by the reader (i.e., passively), limiting the total electric energy available over a
fixed time interval, e.g., a single authentication run. Analyzing the power consumption
of the lightweight authentication protocols is made especially complicated by the fact
that, as compared to the introduction of new lightweight block ciphers like PRESENT
[BKL+07] or KATAN [DDK09], they often fail to come with an extensive assessment of
their real-world hardware cost or, respectively, any reference implementation by their

1Perhaps surprisingly, we were told this same upper timing bound of 150 msec by various hardware
producers on the basis of rather different reasons. These ranged from human interaction in the presence of
additional tag functions to regulations by the automotive industry w.r.t. timing restrictions for component
interaction.
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Table 3.1: Application fields, transfer rates, and range of RFID technology based on
waveband (adapted from [SCU11])

Waveband Utilization Bandwidth Distance

Low Frequency (LF) Animal < 10 kb/s 0.1-0.5 m

30-300 kHz Identification

Medium Frequency (MF) Contactless < 50 kb/s 0.5-0.8 m

300 kHz - 3 MHz Payment

High Frequency (HF) Access < 100 kb/s 0.05-3 m

3-30 MHz Control

Ultra HF (UHF) Range < 200 kb/s 1-5 m

300 MHz - 3 GHz Counting

Super HF (SHF) Vehicle < 200 kb/s ca. 10 m

3 GHz - 30 GHz Identification

authors at all. This is problematic as the amount of power an Integrated Circuit (IC)
consumes depends on multiple design specific factors apart from the afore-mentioned
number of required gates2. Obviously, ceteris paribus, the higher the clock speed (see
Subsubsection 3.2.2.2) of a tag is, the more power must be supplied by the corresponding
reader. Hence, if an algorithm depends on high clock rates to perform its operations
within a reasonable time span and uses, in addition, power demanding components like
EEPROMs, which will be discussed in the following paragraph 2.1.1, the power budget
of a lightweight RFID tag my easily be exhausted. Another design choice which may
heavily influence a tag’s power consumption is the technology library used to implement
it. E.g., in [RPLP08], running PRESENT at 100 kHz is compared for the libraries 0.35µ
AMIS (3.3 V), 0.25µ IHP (2.7 V), and 0.18µ UMC (1.8 V), leading to different power
consumptions of 11.20 µW, 4.24 µW, and 2.52 µW, respectively. These numbers are
consistent with the general upper bound of 10 µW given in [JW05] by Jules and Weis for
low-cost RFID tags.

3.2.2.4 Transmission Bandwidth

The operating frequency of RFID tags and, closely related, their maximum available
transfer rate is determined by several factors. One of the most important is the targeted

2Note that the number of gates required to implement a given algorithm itself can also often be heavily
influenced by design choices like employing a parallel, round-based, or serialized architecture. (see, e.g.,
[Pos09], for more information on this topic at the example of PRESENT)
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reading distance implied by, inter alia, a tag’s purpose. For example, while it may be
desirable to read a complete pallet of products with attached EPC tags over a long
distance, access control should rather be confined to a close environment, e.g., someone
putting his access card right on top of a corresponding reader. Table 3.1 is based on the
data provided in [SCU11], one of whose editors, H. Chabanne, is among the developers
of the HB-type authentication protocol Trusted hB [BC08] (see Subsection 3.2.4 for
further details). It should be noted, however, that there are also many authentication
solutions using Low Frequency (LF) and that, according to the information provided
in Table 3.1, most authentication solutions (i.e., LF- and HF-type implementations)
are limited to exchanging data at a rate of at most 100 kb/s between a tag and a
reader. Bringing to mind now that, as mentioned in the Subsubsection 3.2.2.2, the
whole process of authentication should not take more than 150 msec, this implies
that 15,000 bit can be considered as the upper bound for an authentication protocol’s
communication complexity. Furthermore, this number is even lowered by the fact that,
within those 150 msec, the respective data must be processed by the tag and that, as
outlined in paragraph 2.1.1, not only non-volatile memory but also volatile memory (see
the corresponding data provided by Juels and Weis) is a scarce resource, which heavily
limits buffering incoming data.

Random Number Generator (RNG). The hardware means of generating random num-
bers on a lightweight RFID tag can probably be considered the “magic bullet” with
respect to authentication protocols and are most likely the main reason why all of the
hardware producers we interviewed demanded to remain unnamed. In [JW05], Juels
and Weis state that the random noise bit ν (and probably also the blinding factors re-
quired as part of each protocol round; see Sec. 3.2.4) “can be cheaply generated from
physical properties like thermal noise, shot noise, diode breakdown noise, metastability,
oscillation jitter, or any of a slew of other methods”. While the listed physical proper-
ties can undoubtedly serve as a source for the generation of random bits, ensuring a
sufficient level of entropy in these cases still constitutes a difficult task and is subject to
research areas on its own. For example, [TBM07] presents a metastability-based True
Random Number Generator (TRNG) fabricated in 0.13 µm bulk CMOS technology, which
requires 0.145 mm2 of area and consumes 1 mW of power (at a clock speed of 200 MHz).
Even for lower clock speeds (and, hence, lower power consumptions), the required
area of 0.145 mm2 would still render this TRNG infeasible as a component (i.e., one of
many parts) of a low-cost RFID tag considering that “10 US cents RFID read only chips
have design sizes ranging from 0.16 mm2 to 0.25 mm2” [REC05] and that the RNG’s
“circuit should not occupy more area than 100× 100µm” [BB08].3 TRNGs designed

3In [BB08], a 0.13 µm CMOS process is used. For comparison, the AES implementation in [FWR05]
is based on a 0.35 µm CMOS process and occupies 0.25 mm2, which “compares roughly to 3400 gate
equivalents” in this context.
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particularly for passive RFID tags exist, too, but we are only aware of those like [BB08],
which focus on generating 16-bit-long random numbers mainly meant for resolving col-
lisions during communication. Hence, it is unclear to what extend such low-cost RNGs
are actually suitable for generating large, continuous amounts of random bits (with
sufficient entropy) in time as needed by many HB-type protocols for each authentication
instance. For the sake of completeness, we would like to mention that there are also Pseu-
dorandom Number Generators (PRNGs) aiming at low-cost scenarios, but, e.g., LAMED
[PLHCETR09] still consumes roughly 1,600 GEs, which is about 600 GEs more than
the lightweight block cipher PRESENT [RPLP08], which can be used straightforwardly
to realize (one-way) authentication in the spirit of [FDW04] without the need for any
random numbers at all on tag side. As none of the above TRNG/PRNG solutions seems
to fit the scenario implied by HB-type protcols on ultra-constrained devices, at this point,
we have resort to information provided to us by different experts from industry, who all
agree that generating more than 128 true random bits per authentication on an RFID tag
in the price range of $0.05-$0.10 seems currently implausible. Note, however, that none
of those protocols in appendix B which are currently unbroken were ruled infeasible
only because they require more than 128 bits per authentication and, in addition, many
protocols exceed this number even by magnitudes. Finally, another problem particular
to HB-type protocols is that they depend on a specific probability distribution w.r.t. the
noise bit ν and deriving such a fixed distribution from the aforementioned sources is
also everything but a trivial task.

Non-Volatile Memory (NVM). While the cost of volatile memory is often implicitly
included in the numbers for area in the form of flip-flops/latches (respectively the
components needed to build those), non-volatile memory is commonly provided through
the use of EEPROMs. One drawback, however, to employing EEPROMs is their high
latency. Moreover, from the first EEPROM memory unit on, corresponding charge
pumps have to be included in the design in order to supply the high voltages necessary
for memory programming. Hence, EEPROMs are not only a major cost driver in terms of
money and area but also have a significant impact on a tags power budget when it comes
to ultra-constrained RFID devices. Concretely, Ranasinghe and Cole state in [CR08]
that, for low-cost RFID tags, the power required for a read operation amounts to 5-10
µW while “a write operation to its EEPROM will require about 50 µW or more”, which
would practically allow only read operations (in the field) given the aforementioned
power limitations of, e.g., EPC UHF tags, and, hence, inhibit a tag from keeping values
across a loss of power (for example, between two separate authentication instances).
With respect to area requirements, Nuykin et. al. propose a low-cost 640-bit EEPROM
for passive RFID tags fabricated in a 0.18 µm CMOS process, which requires a total area
of 0.04 mm2. They also compare their design to several other recent suggestions, which
all require at least twice the area and mostly even offer less memory (i.e., 192 bit). It is
therefore not surprising that, as compared to the targeted low-cost EPC-like devices,
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Table 3.2: Conditions to be satisfied by authentication protocols to be suitable for ultra-
constrained RFID devices.

Cost Meaning Max
KC Key storage complexity, expressed in bits 2048

NRn, NRb
# of uniformly distributed random bits (prover’s side),

128
required for noise (NRn) or for blinding factors (NRb)

CC Total communication complexity, expressed in bits 30000
AS Total area size of the implemented protocol, expressed in GEs 2,000
Cycles Total # of clock-cycles required to run one full authentication 150000

even significantly more expensive RFID tags like the HITAG 1 by NXP do not provide
more than 2,048 bit of EEPROM. In line with this, Juels and Weis assume “128-512 bits
of read-only-storage” and “32-128 bits of volatile read-write memory” to be realistic
memory resources available on low-cost RFID tags, not considering non-volatile read-
write-storage at all [JW05]. Finally, our sources from industry also all agreed that 2048
bit constitute a plausible upper bound for current EEPROM sizes on ultra-constrained
RFID tags in the $0.05 to $0.10 range.

3.2.3 Cipher-based Authentication

Before we are going to assess dedicated (HB-type) authentication protocols suggested for
lightweight hardware, first we point out the existence of an intuitive and, in fact, perfectly
feasible approach, which make use of existing encryption schemes: The verifier sends a
random challenge to the prover, asking to encrypt it with a secret key and finally checks
whether the response is correct, ultimately leading to acceptance or rejection. Typically,
due to the harsh resource constraints in lightweight cryptography, only symmetric
variants of encryption schemes are used as primitives for this type of protocols. In order
to exemplify why, as claimed above, cipher-based authentication schemes are actually
feasible in the context of ultra-constrained RFID tags, we will use a (standardized)
lightweight block cipher PRESENT [BKL+07]. Subsection 3.2.4 will show that one of the
main bottlenecks of HB-type protocols is their massive requirement of random numbers.
In contrast, the prover (as compared to the more powerful verifier) does not need to
create any random numbers at all in the case of a cipher-based authentication scheme.4

Similarly, also the communication complexity is much lower (some HB-type protocols
need up to hundreds of thousands of bits per authentication; see Subsection 3.2.4),
as in the case of PRESENT, which has a block length of 64 bit and a key length of 80
bit, a challenge consisting of two blocks, i.e., 128 bit, should be sufficient to provide

4If the tag should feature an RNG anyhow, PRESENT would even allow for mutual authentication at
practically no additional costs as compared to the HB-type protocols assessed in Subsection 3.2.4.
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the maximum possible security (otherwise, the pseudorandomness property of the
underlying block cipher would be violated). A corresponding bandwidth is available
on even the least powerful devices (cf. Subsection 3.2.2). The remaining conditions on
low-cost RFID tags as outlined in Subsection 3.2.2 are satisfied by a PRESENT-based
authentication scheme as well, according to the following numbers taken from [RPLP08].
Concretely, a serialized implementation of PRESENT requires an area of about 1,080 GEs
and 563 clock cycles to process one block, both of which are well below the previously
discussed limits of 2,000 GEs and 15,000 clock cycles, respectively. Finally, also the
limited power budget of a low-cost RFID tag is respected, for by using 0.18µ UMC (1.8
V) as a library it is possible to reach as low as 2.52 µW given a clock speed of 100 kHz (cf.
Subsection 3.2.2).

In summary, the example of PRESENT has shown that it is, in fact, possible to satisfy
the conditions of low-cost hardware as outlined in Subsection 3.2.2 and still provide the
required level of security. After all, PRESENT remains unbroken so far, even without
claiming provable security as several HB-protocols have done in the past (cf. Subsec-
tion 3.2.4), many of which were then shown to be insecure shortly after by considering
slightly different but nonetheless plausible attack scenarios.

3.2.4 LPN-based Authentication

In this section, we revisit existing protocols that are based on LPN (or related problems)
and that have been suggested for lightweight applications. More precisely, we evaluate
their suitability for RFID systems based on the conditions presented in Subsection 3.2.2.
Our respective results for almost 20 HB-type protocols are summarized in tabular form
in Subsection 3.2.5 on page 40 .

We start with a short overview of the most significant proposals for lightweight
authentication protocols based on the LPN problem. As this branch of research has
been initiated by the introduction of HB [HB01] and HB+ [JW05], which became the
prototypes for this family of protocols, these are explained in further detail Subsubsec-
tion 3.2.4.2. Moreover, at the example of HB+, we discuss the main parameters which
influence the security and the hardware characteristics of HB-type protocols. This allows
us to identify the general cost drivers common to the HB family Subsubsection 3.2.4.3.
Subsequently, we present our evaluation results for popular follow-up protocols of HB+

Subsection 3.2.5.

3.2.4.1 Overview of the Considered Protocols

In 2,000, the HB [HB01] protocol was proposed, which is proven to be secure against
passive attacks [KSS10]. In order to resist active attacks, HB+ [JW05] was introduced
that is provably secure in the detection-based model (where the adversary is able to
communicate only with the tag before attempting to authenticate itself to the reader).
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However, if the attacker is given the ability to modify messages which go from the reader
to the tag (GRS model), the HB+ protocol is not secure anymore as it was shown in
[GRS05]. As a result, many new HB-type protocols were proposed in order to overcome
this and other types of man-in-the-middle (MITM) attacks. In 2006, the HB++ protocol
was introduced [BCD06], which can be seen as running HB+ twice with correlated
challenges and independent secrets. Later, [MP07] proposed the HB-MP protocol, which
was designed to be more efficient than HB+ but turned out to be vulnerable w.r.t.
passive attacks [GRS08a], which is why HB-MP+ [LMM08] has been suggested. Another
attempt to improve the performance of HB+ and to make it resistant against GRS-
type MITM attacks was the HB∗ protocol [DK07]. In 2008 the HB# and RANDOM-
HB# protocols were proposed, where the keys were extended from vectors to matrices
[GRS08b]. Another proposal called Trusted hB [BC08] is based on the idea of using a
hardware efficient hash function for verifying the integrity of the data in order to resist
MITM attacks. PUF-HB [HS08] is a construction which relies on Physically Unclonable
Functions (PUFs) as a hardware primitive. In the protocols NLHB [MTSV10] and GHB#
[RG12], the linear functions are replaced by non-linear functions while HBN [BHN11]
can be seen as a bilinear variant of HB. In 2011, AUTH [KPC+11] was proposed, where
the security is based on a modified LPN problem, called the subspace LPN problem [Pie].
One year later, a more efficient proposal building on the ideas from [KPC+11] called
Lapin [HKL+12] was introduced, whose security relies on the assumed hardness of the
Ring LPN-problem.

3.2.4.2 The Procotols HB and HB+ and the Main Parameters

The HB protocol [HB01] was originally developed to be used by humans and with this
aim was designed to be very simple. Both the reader (verifier) and the tag (prover) share
a |x|-bit long secret x ∈ {0, 1}|x|. The protocol is composed of several rounds that are
conceptually all the same. At the beginning of round i, the verifier chooses a random
challenge a(i) ∈ {0, 1}|x| and sends it to the prover, who replies with ωi = (a(i) · x)⊕ νi,
where νi ∈ {0, 1} represents a biased random noise bit satisfying Prob[νi = 1] = η for
a fixed probability η ∈ (0, 0.5). Then the reader verifies whether the received bit ωi is
equal to a(i) · x. If this is the case the response is called correct and otherwise incorrect.
The security of HB against passive attacks relies on the LPN problem.

The HB+ protocol [JW05] was developed to resist active attacks in the detection-based
model. In extension to the HB protocol, the tag and the reader share an additional secret
y of length |y| . At the beginning of round i, the tag generates a random blinding factor
b(i) ∈ {0, 1}|y| and sends it to the reader. Afterwards, similar to the HB protocol, the
reader generates a challenge a(i) ∈ {0, 1}|x| and sends it to the tag. Then the tag computes
ωi = (a(i) · x)⊕ (b(i) · y)⊕ νi and responds with it to the reader for verification. In the
original proposal [JW05], the challenge a(i), the blinding factor b(i) and the secrets x, y all
have the same length |x| = |y|, which is implied by the LPN problem. However, later it
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was shown in [LF06] that, when striving for 80-bit security in the detection-based model,
the x-component of the common secret key (x, y) can be restricted to a length of |x| = 80
bits while the security of HB+ still relies on the hardness of LPN with parameters η and
|y|, where |y| > |x| as we will explain shortly.

As already mentioned, both protocols, HB and HB+, run in r rounds. Each additional
round increases the confidence of the verifier. To this end, both protocols fix a parameter
u ∈ (η, 0.5), such that the authentication is considered to be successful if the number
of incorrect answers is less than t = u · r. Otherwise, the reader rejects the tag. If the
noise probability η is chosen too close to 0.5 then a huge number of rounds is required in
order to make the protocol reliable. At the same time, if η is close to 0, then for obtaining
the necessary level of security of the protocols, extremely large key lengths |x|, |y| are
inevitable. Hence, an appropriate tradeoff needs to be found, which is specified by the
choice of η.

However, besides security considerations, there also practical aspects that impact
reasonable choices for η. Usually, random number generators are assumed to produce
uniformly distributed random bits. In this case, it is much easier to implement instan-
tiations where η = 2−j, j ∈ N, as j uniformly distributed bits are sufficient for the
generation of one noise bit νi. However, for other values of η, many more uniformly
distributed random bits may be needed to realize a corresponding random bit generator
on top of those. Therefore, we restrict η to the values 0.25 and 0.125, which are in fact
typical choices for HB-type protocols [LF06].

The reliability of the protocols depends on the probabilities of the possible errors.
On the one hand, an honest tag may be rejected with probability PFR (false rejection
probability or completeness error). On the other hand, an adversary answering randomly
at each round will be authenticated with probability PFA (false acceptance probability or
soundness error). For HB and HB+ these values are computed as follows [GRS08a]:

PFR =
r

∑
i=t+1

(
r
i

)
ηi(1− η)r−i (3.1)

PFA =
1
2r

t

∑
i=0

(
r
i

)
(3.2)

According to [LF06], PFA should be less than 2−80 for 80-bit security and PFR should be
less then 2−40. In order to achieve such bounds for soundness and completeness errors,
an appropriate combination of the parameters η, r, u needs to be chosen. In [LF06], for
each value of η suitable values for u and r were computed, leading to the following two
choices:

• Variant 1: η = 0.25, u = 0.348, r = 1164

• Variant 2: η = 0.125, u = 0.256, r = 441
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Table 3.3: Parameter choices for the protocol HB+

Variant η |x| |y| Sec r u PFR PFA
1 0.25 80 512 280 1164 0.348 2−45 2−83

2 0.125 80 512 277 441 0.256 2−45 2−83

3 0.125 80 512 277 256 0.1875 0 2−81

In one of the proposed protocols afterwards [GRS08b], the following trick has been
suggested based on ideas from [KS06]: if the tag computes in advance r noise bits and
keeps them only if the number of 1s is less than u · r, then the completeness error PFR
will be equal to 0. The advantage of this approach is that the number of rounds r can be
reduced, while the soundness error is kept small. Our evaluation takes this approach into
account as well and uses the parameters provided in [GRS08b]: r = 256, η = 0.125, u =
0.1875 (variant 3). Summing up, in this work we evaluate, where possible, each protocol
in all three explained variants.

As mentioned above, the protocols’ security relies on the LPN problem. The proofs
of security for HB against passive attacks and for HB+ against active attacks were
simplified by Katz et al. and extended to the parallel versions of the protocols [KS06,
KSS10], which means that several rounds can be performed at the same time. Based on
the state-of-the-art heuristic algorithm for solving the LPN problem [LF06], reasonable
parameter choices for achieving (almost) 80-bit security are |x| = 512 for HB and
|x| = 80, |y| = 512 for HB+. In these cases, solving the LPN-problem would take 289

bytes of memory if η = 0.25 and 277 bytes of memory if η = 0.125. Our parameter
choices for HB+ implementations are summarized in the Table 3.3.

3.2.4.3 Cost Drivers of LPN-based Protocols

In Subsection 3.2.2, we have established a concrete notion of the term lightweight in the
RFID context by providing actual hardware limits for low-cost tags. As our goal is to
assess for (allegedly) lightweight authentication protocols whether they in fact comply
to all of the respective hardware limits, we first need to identify the major cost drivers of
such schemes. In particular, we will discuss for each of the following protocol properties
how it is linked to the hardware properties of RFID tags in the $0.05 to $0.10 cost range
discussed in Subsection 3.2.2.

Symmetric Key. All HB-type authentication protocols use symmetric keys5. Conse-
quently, the full shared secret, must permanently be available on the (passively powered)

5For the sake of simplicity, in this subsection, the term key will always be used to refer to the shared
secret’s unique representation as a binary vector in the corresponding scheme, irrespective of potential
blow-up measures like, e.g., the use of Toeplitz matrices. In particular, the key size lower bounds the size of
the individual key storage required on each tag.
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tag, hence implying the need for some non-volatile key storage. Depending on the de-
ployment scenario, multiple (e.g., batches of) RFID tags might share a single key or, in
other cases, tag-individual secrets may be required.

Closely related, but even more restrictive w.r.t. key storage options, is a potential
need to set or change the secret key of a tag that is already in the field, as compared to
irreversibly fixing the key once at production time. In the latter case, key-dependent
masks may be used in the factory to apply the secret keys directly to so-called wafers
in the process of creating Integrated Circuits (ICs) for low-cost RFID tags. However,
while this can alleviate the need for additional components like EEPROMs or fuses
(cf. Subsection 3.2.2 - Area), it inevitably results in the potentially dangerous situation
that large quantities of tags will now share the same irreversible key. Concretely, as
production costs increase with each new mask (by thousands of U.S. dollars), the size of
per-mask-batches must be big enough (i.e., hundreds of thousands or even millions of
devices) to allow for per-tag savings (e.g., by removing the need for EEPROMs) which
compensate for the additional costs of using multiple masks. At the same time, an
attacker’s outlook on, e.g., counterfeiting large amounts of items who are all protected
by tags using the same key, may now easily justify the costs for retrieving the respective
key by means of reverse engineering (for instance, through etching and the use of an
electron microscope).

Ultimately, if the deployment scenario requires fully individual keys, the use of masks
is clearly not feasible anymore and two other, more flexible options remain: EEPROMs
and fuses, whose major hardware properties and limitations w.r.t. low-cost RFID tags
were summarized in Subsection 3.2.2. These general preconditions will now be compared
to the requirements imposed by how symmetric keys are chosen and used in HB-type
protocols. Clearly, EEPROMs offer the highest degree of flexibility as a key storage,
allowing, e.g., to redeploy existing tags after changing their keys. On contrast, when
resorting to fuses, keys are irreversible and need to be written already at production
time. However, unlike masks, fuses allow for individual keys on a per tag basis. Hence,
as fuses neither suffer from the high power consumption nor from the latency problems
characteristic of EEPROMs, they are a viable option when individual but fixed keys are
required.

Unfortunately, in the context of HB-type authentication protocols, key storage options
are further restricted by the large key size common to these schemes. In [KPC+11],
key sizes for multiple HB-type protocols are specified on the basis of the parameter l
denoting the length of an LPN secret. For example, the key size of the original HB+

protocol, i.e., the variant suggested by Juels and Weis in [JW05], is given by 2l along with
l = 500 described as a “typical parameter”. Please note that the resulting key length
of 1000 bit is even at the lower end of the protocols summarized in [KPC+11] (which
range from l bit for the original HB protocol [HB01], over 4.2 · l bit for AUTH [KPC+11],
up to 80 · l = 40, 000 bit for a MITM-secure protocol also suggested in [KPC+11]; see
Subsection 3.2.5 for further details). However, e.g. due to area requirements, already for
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1,000 bit it seems highly questionable whether fuses can still be considered a feasible
option for storing the secret key on a low-cost RFID tag. Moreover, it is easy to see that,
similar to (or even worse than) masks, fuses fail to provide substantial physical security.
Ultimately, it depends on the deployment scenario whether this is an actual thread,
hence requiring the use of, e.g., EEPROMs instead. Bring to mind, however, that in the
context of low-cost RFID devices, EEPROMs typically do not allow for storing more than
2,048 bit. As a result, it must be suspected that many of the HB-type protocols discussed
in Subsection 3.2.5 are already precluded by their key size from practical application on
RFID tags in the $0.05 to $0.10 range.

Challenges, Blinding Factors, and Noise Bits. Another property characteristic of
HB-type protocols is their heavy use of challenges and what is often referred to as
blinding factors. For most HB-type protocols, the following three phases per round
can be identified: (1) The prover creates a vector of random bits, the so-called blinding
factor, which is then transmitted wirelessly to the verifier. (2) Just alike, the verifier now
also creates a random bit vector and sends it to the tag. (3) Depending on the specific
protocol, the prover deterministically computes some 1-bit value based on the blinding
factor in (1), the challenge in (2), as well as the secret/shared key. Finally, he needs to
produce one more random bit, which, on contrast to the aforementioned challenge and
blinding vectors, is not based on the uniform but some other, fixed distribution. Adding
this so-called noise bit to the 1-bit value yielded by the previous operation is crucial to
the security of HB-type protocols, as described in Subsubsection 3.2.4.2. The resulting bit
is then sent to the verifier, who will check whether it is correct or not. In the following
paragraph, we will denote the number of protocol rounds per authentication run by r
and, for reasons of simplicity, assume that the blinding vector in step (1) as well as the
challenge vector in step (2) are both of length l, i.e., the size of the secret key (as done in
the original HB+ paper [JW05] and popular follow-up works like [KPC+11]).

Apparently, the protocol scheme we just outlined makes heavy use of at least two
hardware resources previously identified as potential bottlenecks for low-cost RFID
tags: the transmission bandwidth (Subsection 3.2.2) and the generation of random
numbers. Concretely, in each round of the above archetypical example, the commu-
nication complexity amounts to 2l + 1 and the prover needs to obtain l uniformly
random bits and 1 differently distributed random bit from his RNG. Hence, a single
authentication procedure consisting of r rounds has a communication complexity of
at approximately 2 · l · r bit and requires at least r · l random bits on the prover’s side.
As in the previous paragraph about key sizes, let us exemplify the actual consequences
of these complexities for HB-type protocols using parameters described as “typical”
in [KPC+11]: l = 500 and r = 250. Moreover, as justified in Subsection 3.2.2, let us
consider 150 msec to be the maximum time available for a complete authentication. As
a result, at least 2 · 500 · 250 = 250, 000 bit would need to be transmitted within 150
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msec, corresponding to a vastly implausible transmission rate of 250, 000/0.15 bit/s
≈ 1.66 Mbit/s (as compared to actual values between 10,000 bit/s and 200,000 bit/s
as given in Subsection 3.2.2). Similarly far from reality is the idea that an RFID tag
whose production costs are in the $0.05-$0.10 range could actually feature an RNG
delivering as much as 500 · 250 = 125, 000 uniformly distributed random bits within
just 150 msection Apart from the apparent bottlenecks transmission bandwidth and
generation of random numbers, the generalizing description of HB-type protocol at the
beginning of this paragraph contained a third aspect worth investigating. Concretely,
depending on the involved operations, the first computation in step (3) can easily turn
out to consume (possibly too) many clock cycles, especially in view of the fact that
three operands of bit-length 500 are involved. As this is highly protocol-specific and
implementation-dependent (e.g., parallel vs. serial processing in step (3) of HB+) though,
the question of computational complexity will be treated, where of importance, in the
corresponding of Subsection 3.2.5.

3.2.5 Evaluation and Implementation of the Protocols.

In the following, we explain how the evaluation results for the considered protocols have
been derived. To this end, we first provide for each protocol a short description. For
the detailed descriptions of the protocols the readers are referred to the original papers,
where the protocols were proposed. Afterwards, we justify the chosen parameters and
provide the formulas to calculate the costs which do not depend on the implementation
choices (communication complexity, required number of random bits generated by the
tag, key storage complexity). Most of the protocols can be shown to be infeasible on
lightweight RFID hardware already because of these costs. Nevertheless, in order to
evaluate the area size and the clock-cycles required for the protocols we implemented
them. We explain the implementation issues and our choices and provide the imple-
mentation results, which are summarized in the corresponding tables for each of the
protocols. All the costs which violate the limits are underlined and are marked in red
colour. In this section, we use the notations explained in Table 3.2.

3.2.5.1 HB and HB+

The protocols HB and HB+ have been described already in Subsubsection 3.2.4.2 and
the parameters have been justified. Hence, we skip these parts and start with providing
the formulas for computing the costs listed in Table 3.2.

Costs evaluation formulas: In case of HB:

KC = |x|,
NRn = − log2(η) · r,
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NRb = 0,
CC = (|x|+ 1) · r

In the case of HB+, the respective formulas are:

KC = |x|+ |y|,
NRn = − log2(η) · r,

NRb = |y| · r,
CC = (|x|+ |y|+ 1) · r

Implementation Issues: In most HB-like protocols the functions which are to be com-
puted by the tag in order to compute the value of the proof ωi are very simple and can
be divided by many similar independent operations. This makes the protocols to be
easily scalable.

For example, in case of HB protocol, i.e. it is required that the tag computes the binary
product a(i) · x + ν. As it is mentioned in [JW05], it is not necessary to store the whole
vector a(i) on the tag side, instead after d bits of a(i) are received from the reader they
can be multiplied on the fly with the corresponding d bits of x and the intermediate
result of the sum of these d products can be stored in a memory gate. When the last
block of d bits of a(i) is received and is multiplied with the corresponding d key bits, the
results of multiplication are XORed not only with each other but also with the noise bit
νi. Obviously, the smaller d is chosen, the more clock-cycles are required to perform all
the operations required for the computation of the whole binary product. At the same
time, when d is chosen to be bigger more logic gates are necessary to multiply the d bits
of a(i) by the corresponding d bits of the secret x.

In the case of HB+ the two vector multiplications have to be performed on the tag
side b(i) · y and a(i) · x. Again, there is no need to store neither b(i) nor a(i). After the
d random bits are generated they can be multiplied by the corresponding bits of the
key y and sent out. The second stage (multiplying a(i) · x and adding the noise bit νi) is
performed the same way as in HB.

We implemented the protocols HB and HB+ for different values of d. The results are
shown in the Table 3.6 and Table 3.7.

Even though, the computational part of the protocols is very small for the small values
of d, the total area size is rather big. This happens due to the fact that during every
clock-cycle it is required that the corresponding block of d key bits is selected before
these bits pass to the input of the computational part of the circuit. For the small values
of d the selection mechanism requires big number of multiplexers, which increases
the area size. Therefore, the total area size required to implement the protocols (the
similar holds for most of the protocols discussed in this section) does not differ much for
different choices of d ≤ 32. However, increasing d by the factor of 2 halves the number
of clock-cycles required for authentication.
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Although, it is already indicated by the implementation-independent values of CC,
NRb and NRn that the protocols are unrealistic, we implemented them in order to
evaluate the area size and the number of clock-cycles required, assuming that all of the
other problems are somehow solved.

Evaluation and implementation results

Table 3.4: Evaluation results for HB

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 512, r = 1164 512 2328 0 597132 CC > 30000, NRn > 128

for all sets of parameters.
.

η = 0.125, |x| = 512, r = 441 512 1323 0 226233
η = 0.125, |x| = 512, r = 256 512 770* 0 131328
* The average number of random bits is given.

Table 3.5: Evaluation results for HB+

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 592 2328 59568 690252 CC > 30000,

NRb � 128.
η = 0.125, |x| = 80, |y| = 512, r = 441 592 1323 225792 261513
η = 0.125, |x| = 80, |y| = 512, r = 256 592 770* 131072 151808
* The average number of random bits is given.

Table 3.6: Implementaion results of HB for the different number of bits d processed per
clock-cycle

d = 1 d = 8 d = 16 d = 32 d = 512
AS Cycles AS Cycles AS Cycles AS Cycles AS Cycles

r = 256 946 131330 971 16442 971 8450 1017 4354 1876 514
r = 441 946 226235 971 28667 971 14555 1017 7499 1876 884

r = 1164 963 597134 988 75662 989 38414 1034 19790 1893 2330
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Table 3.7: Implementation results of HB+ for the different number of bits d processed per
clock-cycle

d = 1 d = 8 d = 16 d = 512(80)*
AS Cycles AS Cycles AS Cycles AS Cycles

r = 256 946 151810 971 19202 971 9728 2195 594
r = 441 946 261956 971 33077 971 16760 2203 964
r = 1164 963 691418 988 87302 989 44234 2215 2410
* In this case the whole vectors are multiplied b(i) · y and a(i) · x

during one clock-cycle

Suitability and security: Both protocols are infeasible on the lightweight RFID hard-
ware because of the communication complexity and required number of random bits
generated by the prover (RFID tag). Moreover the straightforward implementation (d=1)
also requires infeasible amount clock-cycles to run one authentication of the protocol.
HB protocol is insecure w.r.t. active attacks [HB01] and HB+ is insecure w.r.t. GRS-MITM
attack [GRS05].

3.2.5.2 HB++

Description: In 2006 Bringer et al. [BCD06] proposed the protocol HB++. In this
version the reader and the tag share one secret of 768 bits which is used for generating
session keys. The protocol consists of two steps. During the first step the reader and
the tag exchange 80-bit challenges, which, together with the shared secret, are used as
the inputs for a hash function h. The output of this function are four 80-bit temporary
keys x, y, x′, y′ which are used during the second step. The second step of HB++ can be
considered as running HB+ twice with correlated challenges and blinding factors and
independent temporary keys x, y, x′, y′. Similar to HB+, the tag and the reader exchange
the blinding factor b(i) and the challenge a(i). Afterwards the tag computes and sends
the two values

ωi =
(

a(i) · x
)
⊕
(

b(i) · y
)
⊕ νi

ω′i =
(

roti

(
f
(

a(i)
))
· x′
)
⊕
(

roti

(
f
(

b(i)
))
· y′
)
⊕ ν′i ,

where roti(β) denotes rotation of β by i bits to the left and f is a function with special
properties. A MITM attack against the protocol is presented in [GRS08a].

Parameter choices: [BCD06] gives exact specifications of the hash function which
results in secrets of 80 bits length. However, no concrete values have been recommended
for the noise rate η and the number of rounds r. According to [GRS08a] the completeness

43



3 Evaluation of Existing Cryptographic Primitives in Real-World Scenarios

and soundness errors for HB++ are given by

PFR = 1−
(

t

∑
i=0

(
r
i

)
ηi(1− η)r−i

)2

,

PFA =

(
1
2r

t

∑
i=0

(
r
i

))2

.

We calculated the smallest number of rounds r such that PFR ≤ 2−40 and PFA ≤ 2−80.
The results are the following: r = 282 when η = 0.125, u = 0.285, and r = 731 when
η = 0.25, u = 0.368.

Costs evaluation formulas:

KC = 768,
NRn = − log2(η) · r,

NRb = 81 · r,
CC = 80 · 2 + (|x|+ |y|+ 2) · r

Implementation issues: If the session keys are generated before the second step begins,
they have to be stored. Hence 320 additional flip-flops are needed for this purpose. Please
note that using one flip-flop of the smallest size increases the area by approximately
6 GEs. Another issue which makes HB++ not efficient is that the vectors f

(
a(i)
)

and

f
(

b(i)
)

are to be rotated by i bits, where i is the number of the current round. In order
to rotate these vectors, we had to use additional 80-bits long register. In Table 3.9 we
provide implementation results for the HB++.

Evaluation and implementation results: The evaluation and implementation results
for HB++ are given in the Table 3.8 and Table 3.9 respectively.

Table 3.8: Evaluation results for HB++

Parameters KC NRn NRb CC Suitability
η = 0.25, r = 731 768 2924 58560 118582 CC > 30000,

NRb + NRn > 128.η = 0.125, r = 282 768 1692 22640 45844
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Table 3.9: Implementation results for HB++

d AS Cycles
r = 282 1 6783 57421
r = 731 1 6812 148220

Suitability and security: The communication complexity and the required number of
random bits in HB++ is not feasible on ultra-constrained tags. The area size also signifi-
cantly exceeds 2,000 GE. MITM attack against the HB++ was presented in [GRS08a].

3.2.5.3 HB-MP and HB-MP+

Description: The HB-MP protocol was proposed by Mulilla and Peinado in 2007
[MP07]. In this protocol the reader and the tag share two secrets x, y ∈ {0, 1}|k| whose
length |k| is bigger than the length of the exchanged messages m. During one round of
HP-MP two messages are transmitted instead of three as it is the case for HB+. The tag
receives a challenge a(i) ∈ {0, 1}m from the reader and then generates a random binary
vector b(i) ∈ {0, 1}m. Tag computes the value

ωi = a(i) · |x|(i)m

where |x|(i)m ∈ {0, 1}m denotes m least significant bits of x(i). Afterwards the following
condition is checked:

b(i) · |x|(i)m = ωi (3.3)

At each round i, the secret x(i) can be rotated by one bit or not, depending on the value
of yi:

x(i) = rotyi(x(i−1)).

Here, x(i) denotes the state of the key x during the i-th round and x(0) = x. If condition
(3.3) is satisfied then b(i) is sent to the reader. Otherwise, a new vector b(i) is generated.
The maximum number of such iterations is n. If after n iterations condition (3.3) has still
not been fullfilled, the value b(i) is sent nonetheless.

The HB-MP+ protocol [LMM08] was introduced to resist certain passive attack [GRS08a]
and differs from HB-MP in the way how the round secret |x|(i)m is computed. The authors
suggest to include a special one-way function which takes the challenge a(i) and the
secret y as the inputs and outputs |x|(i)m .

Parameter choices: It was proven in [MP07] that the protocol security relies on the
LPN problem with the parameters m, η, where η = 1/2n+1. Hence to achieve η = 0.25
(see the discussion in Subsubsection 3.2.4.2), the value n has to be equal to 1, meaning
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that the condition (3.3) is tested only one time per round. Consequently for η = 0.125
condition (3.3) testing is performed at most n = 2 times. It is not clear from [MP07] how
large k should be chosen. Hence, to get the best performance, we set it in our evaluation
as small as possible, i.e., k + 1 = 513. Therefore, based on the Table 3.3 we choose the
following parameters:

• for n = 1, we have |k| = 513, m = 512, r = 1164,.

• for n = 2, we have |k| = 513, m = 512, r = 441.

In [LMM08] it is stated that due to the fact that the secrets are new at each authentication
of HB-MP+ it is sufficient to choose keylengh = 512, m = 224, n = 1, r = 1, 164. We
decided to follow these recommendations and provide the costs for HB-MP+ based on
these parameters.

Costs evaluation formulas:

KC = k · 2,
NRn = 0,

NRb = r ·
n

∑
i=0

1
2n m,

CC = 2 ·m · r

Implementation issues: In the HB-MP protocol the computation of ωi can also be done
on the fly similar to the cases of HB and HB+. However, in this protocol the value b(i) has
to be available before and after checking condition (3.3) is checked, and, therefore, b(i)

has to be stored. It requires 512 additional flip-flops which already makes the area size
infeasible in lightweight RFID tags. The second implementation issue of this protocol is
the need to rotate the secret x(i). To this end, we had to use another register composed
of additional 513 flip-flops.

Due to the fact that based on the fulfillment of condition (3.3) during every round the
value of b(i) has to be generated either one, two or three times, the actual number of
clock-cycles is always different. Therefore, we provide the upper and the lower bounds
for this cost.

The exact specifications for the one-way function of HB-MP+ [LMM08] are not pro-
vided. Therefore, we cannot implement the protocol. Nevertheless, taking into account
the chosen parameters |k| = 512, m = 224, it is clear that the area size is several times
larger than available 2, 000 GEs due to the following reasons. Similar to the case of
HB-MP it is required to store the m = 224-bits vector b(i) and to rotate the |k| = 512-long
secret x. Therefore, the minimum number of additional 736 flip-flops are to be used.
This amount of memory already requires more than 4, 000 GEs.
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Evaluation and implementation results: The evaluation and implementation results
for the protocols HB-MP and HB-MP+ are given in Table 3.10,Table 3.11 and Table 3.12.

Table 3.10: Evaluation results for HB-MP

Parameters KC NRn NRb CC Suitability
n = 1, |k| = 513, m = 512, r = 1164 1026 0 893952* 1191936 CC > 30000,

NRb > 128..n = 2, |k| = 513, m = 512, r = 441 1026 0 395136* 451584
* The average number of random bits is given.

Table 3.11: Evaluation results for HB-MP+

Parameters KC NRn NRb CC Suitability
n = 2, |k| = 512, m = 224, r = 1164 1024 0 391104* 521472 CC > 30000, NRb � 128.
* The average number of random bits is given.

Table 3.12: Implementation results for HB-MP

d = 8 d = 16
AS Min Cycles Max Cycles AS Min Cycles Max Cycles

r = 441 9772 57330 113779 9821 29106 45864
r = 1164 9917 151320 225816 9982 76826 114072

Suitability and security: For HB-MP, the communication complexity and the number
of required random bits to be generated on the prover side are infeasible. Moreover, as
one can see from the Table 3.12, in order to have the total number of clock cycles to be
less than 150, 000 unconditionally, the number of bits generated and the number of bits
transmitted during the time of one clock-cycle has to be d = 16, when the number of
rounds r = 1164 and d = 8, when r = 441. The area size is bigger than available 2,000
GEs by approximately factor of 5 in all the cases. For HB-MP+, the situation is similar
w.r.t. the communication complexity and the possibility to generate required number of
random bits. Even though we did not implement it, we expect that the area size will
excess the limit of 2, 000 GE, no matter how efficient the one-way function is chosen (see
implementation issues part). In [GRS08a] a passive attack against HB-MP is indicated.

3.2.5.4 HB∗

Description: In the HB∗ protocol [DK07], that was proposed by Kim and Duc in 2007,
four |k|-bit secrets x, y, v, s are used. The reader generates not only a random challenge
a(i) ∈ {0, 1}|k|, but also an additional random bit γi. The secret s is used for securely
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transmitting the value of γi to the tag. This is done as following: instead of sending a
pair (a(i), γi) the reader transmits (a(i), ωi), where

ωi = (a(i) · v) + γi

The tag computes the value of γi as:

γi = (a(i) · v) + ωi

Afterwards the tag performs the similar actions: generates a random blinding factor
b(i) and a random bit γ′i . If γi = γ′i then the tag computes ωi as:

ωi = (a(i) · x)⊕ (b(i) · y) (3.4)

otherwise the roles of x and y are swapped:

ωi = (a(i) · y)⊕ (b(i) · x) (3.5)

The secret v is used for transmitting the value of γ′i to the reader, i.e. the values b(i), ω′i , ωi
are transmitted, where

ω′i = (b(i) · s) + γ′i (3.6)

The tag is verified if the value of ωi is correct.
Interestingly, the papers [PT07, GRS08a, SKII12], where the attacks against HB∗ are

described, use a different description of the protocol. In fact, in our point of view these
two protocols are not the same. To be on the safe side we considered both descriptions
in our evaluation. To be able to distinguish between the two schemes, we denote
the protocol considered in the papers mentioned above as HB∗1. Although we were
not able to find an official explanation for this fact, we came to the conclusion after a
careful examination that HB∗1 was introduced as an improvement of HB∗. We briefly
justify our conclusion. The first difference between these two protocols is that the
number of secrets in HB∗1 is reduced by one (v is not used anymore) and the step
where the reader generates γi and sends it to the tag is omitted. From our point of
view this step was redundant anyhow. Instead of checking the condition γi = γ′i , it is
sufficient if the tag checks if γ′i = 1. This allows for the same level of security, because
the probability of swapping x and y while computing ωi remains 0.5. The second
improvement is that the noise bit νi is included in the computation of ωi: if γ′i = 1 then
ωi = (a(i) · x)⊕ (b(i) · y)⊕ νi while in the other case ωi = (a(i) · y)⊕ (b(i) · x)⊕ νi. This
obviously improves the security of the protocol.

Parameter choices: The properties of HB∗ allow for setting several parameters to
smaller values. The first important difference to HB+ protocol is that no noise is added
to the value ωi. Hence the tag is accepted only if all the bits z are correct. This results into
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the situation when the completeness error is 0 (it is not possible that the reader rejects
the honest tag). In order to provide 2−80 soundness error, r = 80 rounds are enough.
Moreover, as it is stated in [DK07], due to the fact that the values γi and γ′i are drawn
from the uniform distribution, the protocol’s security relies on two instances of LPN
problem with noise factor η = 0.5. According to the results from [LF06], in this case
one can choose k = 256 for achieving 80-bit security. To sum up, we use the following
parameters for HB∗: k = 256, r = 80;

For the HB∗1 the values of PFA and PFR are computed in the same way (see (3.1) and
(3.2)) as for HB+. Therefore, we evaluated the protocol based on the same parameters as
for HB+ (cf. Table 3.3).

Costs evaluation formulas: For HB∗

KC = |k| · 4,
NRn = r,

NRb = r · |k|,
CC = (2 · |k|+ 3) · r

and for HB∗1

KC = |k| · 3,
NRn = (− log2(η) + 1) · r,

NRb = r · |k|,
CC = (2 · |k|+ 2) · r

Implementation issues: The implementation results are given in the Table 3.15. Due
to the fact that r = 80 rounds is enough for HB∗, even for d = 1 the computational
time doesn’t exceed 150, 000 clock-cycles. It is not the case for the HB∗1, where for both
sets of parameters only choosing d = 8 results in a feasible computation time. The
area size of the HB∗1 protocol is slightly bigger than 2,000 GEs because of the following
reasons. The main factor which leads to the increase of the area compared to HB+ is
that the total shared secret size is much bigger in HB∗1, meaning that more multiplexers
have to be used for the key bits selecting mechanism. The second reason is that, as
mentioned above, in the protocols HB∗ and HB∗1 the value of ωi can be computed in
two different ways (see Equation (3.4), and Equation (3.5)). Therefore we compute the
both expressions simultaneously on the fly and save the intermediate results in two
memory gates, which doubles the number of logic gates, used for computing the value
of ωi. Also, compared to HB+ protocol, additional logic is required in order to calculate
the function (3.6) which serves for secure transmitting of the generated noise bit γ′i to
the reader.
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Evaluation and implementation results:

Table 3.13: Evaluation results for HB∗

Parameters KC NRn NRb CC Suitability
η = 0.5|k|,= 256, r = 80 1024 80 20480 41200 CC > 30000, NRb � 128.

Table 3.14: Evaluation results for HB∗1

Parameters KC NRn NRb CC Suitability
η = 0.25, |k| = 512, r = 1164 1536 3492 595968 598296 CC > 30000, NRb � 128.
η = 0.125, |k| = 512, r = 441 1536 1764 225792 226674

Table 3.15: Implementation results for HB∗ and HB∗1

Variant r d AS Cycles
HB∗ 80 1 1776 41280

HB∗1 441 8 2514 57332
1164 8 2514 151321

Suitability and security: Even-though, HB∗ protocol is significantly more efficient
than HB+, it still cannot be implemented on lightweight RFID hardware due to the
similar reasons, namely the set of parameters violates conditions on the communication
complexity and the required number of random bits. The version HB∗1 appeared to
be even less efficient compared to HB+, and except having the same problems, the
implementation of the protocol requires more than 2,000 GEs. Based on the fact that
even the stronger HB∗1 version of the protocol is broken [GRS08a], we consider HB∗ to
be insecure as well.

3.2.5.5 Trusted HB

Description: The protocol Trusted HB [BC08] consists of two steps. The first step is
equivalent to HB+. If the reader verifies the tag during step 1, then step 2 takes place.
The tag sends a hash value of the concatenation of all blinding factors, challenges b(i), a(i)

and ωi, for every i ∈ [1..r] to the reader in order to guarantee that these values were not
modified and thus protecting from MITM attacks. Nonetheless, the protocol has been
also broken in [FS09].

Parameter choices: According to the recommendations of the authors the following
parameters were chosen: |x| = 80, |y| = 512, η = 0.25, t = 0.348, r = 1, 164, which is
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equivalent to variant 1 from the Table 3.3. We didn’t consider other parameter sets, as it
would have required to modify the hash function used in Trusted HB. It is suggested
in [BC08] that the hash function is constructed from the Toeplitz hash family proposed
in [Kra94]. This function uses an LFSR whose initial state has to be shared between the
reader and the tag, introducing another secret of length 101 bits.

Costs evaluation formulas:

KC = |x|+ |y|+ 101,
NRn = − log2(η) · r,

NRb = |y| · r,
CC = (|x|+ |y|+ 1) · r + 101

Implementation issues: According to [BCD06, FS09] to avoid storing all the values
a(i), b(i), ωi, the hash function in Trusted HB is computed progressively. The speci-
fications of this family of hash functions [Kra94] implies that during i-th round of
Trusted HB the values of a(i), b(i), ωi are fed into the hash function bit by bit, meaning
that choosing d to be larger than 1 does not help to save the time, because the number of
clock-cycles required for the hash function is fixed and is equal to r · (|x|+ |y|+ 1) =
1, 164 · 593 = 690, 252. Moreover, the implementation of this hash function requires two
registers: LFSR and the accumulator each of n = 101 bits long and also rather large
amount of logic gates which significantly increases the area size compared to HB+. The
implementation results are provided in the Table 3.17 :

Evaluation and implementation results:

Table 3.16: Evaluation results for Trusted-HB

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 693 2328 595968 690353 CC > 30000, NRb � 128

Table 3.17: Implementation results for Trusted HB

d AS Cycles
r = 1164 1 4394 691416

Suitability and security: The protocol requires almost the same number of bits to be
transmitted between the reader and the tag during one authentication attempt and the
same number of randomly generated bits on the tag side as HB+. Hence it is infeasible
on ultra lightweight tags. Use of the hash function narrows the implementation choices
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and also results in the significant increase of the area size. The MITM attack against the
protocol is presented in [FS09].

3.2.5.6 Random HB# and HB#

Description: These protocols were developed by Gilbert et al. in 2008 [GRS08b]. Both
protocols require only one round for the whole authentication procedure. The main
difference between Random HB# and HB+ is that the form of the secrets is extended
from |x|- and |y|-bit vectors x, y into |x| · r and |x| · r-binary matrices X, Y. Random
HB# can be considered as r rounds of HB+, where each column of X and Y represents
a different secret x(i) and y(i), respectively. Because of the fact that the whole protocol
runs only for one round, it requires only one pair of challenge a ∈ {0, 1}|x| and blinding
factor b ∈ {0, 1}|y|. After receiving the challenge a and generating b the tag computes
z = a ·X⊕ b ·Y⊕ ν ∈ {0, 1}r and sends the resulting vector to the reader for verification.

Storing secrets of this size |x| · r and |y| · r (which would equal to hundred thousands of
bits for the smallest reasonable values for |x|, |y|) is infeasible in RFID context. Therefore,
in the same paper, a modification of Random HB# was proposed, where the secrets are in
the form of Toeplitz matrices, which can be stored in |x|+ r− 1 and |y|+ r− 1 memory
gates. This variant is called HB#.

Parameter choices: We use the parameters suggested by the authors [GRS08b], which
are in fact equivalent to the ones in Table 3.3, with the difference that r represents the
number of rows in the matrices X, Y and |x|, |y| represent the number of elements in
each row.

Costs evaluation formulas: For Random HB#

KC = |x| · r + |y| · r,
NRn = − log2(η) · r,

NRb = |y|,
CC = |x|+ |y|+ r

and for HB#

KC = |x|+ |y|+ 2 · r− 2,
NRn = − log2(η) · r,

NRb = |y|,
CC = |x|+ |y|+ r
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Implementation issues: Storing 151, 552 (for the smallest value of r = 256) bits of
the shared secrets in Random HB# is clearly infeasible. However, if we assume that a
solution to this problem was found, it is still necessary to implement the mechanism
of selecting the current key bits which are to be multiplied by corresponding values of
a and b. Such enormous key size results in a great amount of multiplexers needed for
this purpose. We tried to implement the protocol under the smallest values of chosen
parameters. However, the compiler was not able to synthesize the design due to the lack
of memory. In order to demonstrate that the area size will be definitely much larger than
the maximum allowed 2, 000 GEs, we implemented the simplified version of Random
HB#, where each key matrix contains only r = 4 rows, meaning that the key size is only
2, 368 bits. The area size required for Random HB# with these parameters is 3, 648 GEs
when d = 1 and 3, 769 GEs when d = 8. Assuming that the multiplexers are evenly
distributed between all raws in the key matrix, one can expect the linear increase of
the area size with the increment of r, hence, for r = 256 the area size will be more than
200, 000 GEs. Based on this result we think that it doesn’t make sense to implement the
protocols, where the key size is of the order of 105 bits, as it is clear that the area size will
exceed the limit of 2, 000 GEs by magnitudes.

The protocol HB# was implemented under various parameter choices. The results are
summarized in the Table 3.20. Compared to Random HB# in HB# the keys are much
smaller, and therefore, less multiplexors are required. However, their number is still
large an none of the implementation choices allow for an area size below 2,000 GEs.

Evaluation and implementation results:

Table 3.18: Evaluation results for Random HB#

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 2328 512 1756 NRb + NRn > 128.

KC > 2048
η = 0.125, |x| = 80, |y| = 512, r = 441 261072 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 770* 512 848
* The average number of random bits is given.

Table 3.19: Evaluation results for HB#

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 2918 2328 512 1756 NRb + NRn > 128.

MITM attacks [OOV08].
η = 0.125, |x| = 80, |y| = 512, r = 441 1472 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 1102 770* 512 848
* The average number of random bits is given.
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Table 3.20: Implementation results for HB#

d = 1 d = 8
AS Cycles AS Cycles

r = 256 3374 151810 3412 19202
r = 441 3877 261956 3501 33077
r = 1164 9836 691418 5129 87302

Suitability and security: The protocol Random HB# cannot be used in ultra constraint
tags due to the extremely high key-storage complexity, which also leads to the enormous
area size. The version HB# shows much better efficiency. However, the area size exceeds
the maximum possible value of 2,000 GE, implemented under all sets of parameters.
Moreover, the number of random bits generated on the tag side, being much more
realistic compared to the previously discussed protocols, still significantly exceeds the
derived limitations. A MITM attack against these protocols was presented in [OOV08].

3.2.5.7 HB-MAC

Description: An improvement of HB# and Random HB# was suggested by Rizomiliotis
in 2009 [Riz09]. The first difference compared to Random HB# is that in this protocol the
identification and the authentication procedures are separated. The second improvement
is the idea to use a message authentication code (MAC) to guarantee the integrity of
the exchanged data, and thus to prevent active attacks. The protocol requires only one
shared secret matrix M, and the authors claim that, the number of bits required to store it
is smaller than in Random HB# by approximately a factor of 4, providing 80-bits security.

Parameter choices: We use the parameters suggested by the authors [GRS08b]: η =
0.25, |k| = 160, r = 1, 164 and η = 0.125, k = 160, r = 441 .

Costs evaluation formulas:

KC = |k| · r,
NRn = − log2(η) · r · 2,

NRb = |k|,
CC = 3 · |k|+ 2 · r

Implementation issues: Although no exact specifications for the MAC has been pro-
vided, the authors mention a MAC scheme based on using hash functions and cites
the paper [Kra94]. The hash function described in this paper is the same as used in
Trusted hB. Therefore one can expect a similar increase in time effort and area increase,
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if the same hash function is used. Moreover, even if a different very lightweight and
efficient hash function is chosen, the shared secret size is still extremely large. The
required number of multiplexers will result to the area size which exceeds available
2,000 GEs by magnitudes (See discussion on the implementation issues of Random HB#

).

Table 3.21: Evaluation results for HB-MAC

Parameters KC NRn NRb CC Suitability
η = 0.25, |k| = 160, r = 1164 186240 4656 160 2808 KC > 2048, NRb + NRn > 128.

MITM attacks [Riz09].η = 0.125, |k| = 160, r = 441 70560 2646 160 1362

Suitability and security: In fact the situation with this protocol is similar to Random
HB#. The storage complexity and the required number of randomly generated bits are
infeasible on lightweight RFID hardware. Moreover, the large key size results in the
situation when the area size is also out of the bounds for ultra constraint tags. According
to [Riz09], the protocol is insecure against the MITM attack explained in [OOV08].

3.2.5.8 HBN

Description: A bilinear version of the HB protocol was proposed by Bosley et al. in
[BHN11]. In the HBN proposal, the shared secret is a square matrix X of the size n · n.
In this protocol it is not important, when the tag sends the randomly generated vector
b(i) ∈ {0, 1}n to the reader. It can be done either before it receives the challenge a(i) from
the reader (as it is the case for HB+) or it can send b(i) together with the value ωi, which
is computed using the noisy bilinear function

ωi = a(i)
>

Xb(i) + νi

The protocol has been proven to be secure against MITM attacks [BHN11].

Parameter choices: The protocol security relies on the Learning Subspaces with Noise
(LSN) problem [BHN11]. The authors claim that "it is possible to show that LSN for an
n-bit secret is at least as hard as LPN with the secret of length n− 1". Hence, we chose
n = 513.

The authors suggest a different probabilistic verification scheme, where the reader
adds some noise mirroring the noise from the tag. It leads to different formulas for the
completeness error PFA and the soundness error PFR. According to [BHN11] the bounds
for these values are the same:

PFA ≤ 2
−r
(

1−4η+4η2

1+4η−4η2

)
,
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PFR ≤ 2
−r
(

1−4η+4η2

1+4η−4η2

)

Therefore, in order to achieve PFR ≤ 280 for η = 0.125, at least r = 522 rounds are
required, and for η = 0.25, the minimal number of rounds r is 3, 921.

Costs evaluation formulas:

KC = n2,
NRn = − log2(η) · r,

NRb = n · r,
CC = (2 · n + 1)r

Implementation issues: Similar to the previous two examples, namely Random HB#

and HB-MAC, because of the extremely large key sizes it is clear that no of the imple-
mentation choices will result to the designs where the area is below 2,000 GEs.

Evaluation results:

Table 3.22: Evaluation results for HBN

Parameters KC NRn NRb CC Suitability
η = 0.25, n = 513, r = 3921 263169 7842 2011473 4026867 KC > 2048, CC > 30000.

NRb � 128η = 0.125, n = 513, r = 522 263169 1566 267786 536094

Suitability and security: In fact this is the most inefficient protocol among the consid-
ered ones. Due to the huge key size and large number of rounds all the costs summarized
in the Table 3.2 are exceeded, in most cases by magnitudes.

3.2.5.9 GHB#

Description: The protocol called GHB# [RG12] was designed by Rizomiliotis et al. as
an improvement of Random HB# [GRS08b]. The authors prove it to be secure against
MITM attacks. Note that although the authors always state that the improvement is done
with respect to HB#, all characterizations are given for Random HB#. In fact, nothing is
said about whether GHB# remains secure against MITM attacks if, analogously to the
approach followed for HB#, Toeplitz matrices are used for reducing the size of the secrets.
The difference to Random HB# is how the value z is computed. It uses a non-linear
function Φ which belongs to the class of Gold functions [Gol68]:

z = Φ(a · X)⊕Φ(b ·Y)⊕ ν.
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Parameter choices: The parameters suggested by the authors [GRS08b] are equivalent
to the ones used in Random HB# proposal and hence are equal to the ones presented in
Table 3.3.

Costs evaluation formulas: for Random HB#:

KC = |x| · r + |y| · r,
NRn = − log2(η) · r,

NRb = |y|,
CC = |x|+ |y|+ r

Implementation issues: As it was already mentioned, the sizes of the secrets, suggested
by the developers of the protocol are equivalent to the Random HB#. For the same
reasons the area size required to implement this protocol is much larger than 2,000 GEs.

Evaluation results:

Table 3.23: Evaluation results for GHB

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 2328 512 1756 KC > 2048,

NRb + NRn > 128.
η = 0.125, |x| = 80, |y| = 512, r = 441 261072 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 770* 512 848
* The average number of random bits is given.

Suitability and security: With this protocol we face the same problems as with Random
HB#: the key storage complexity, required amount of bits randomly generated by tag,
and the area size do not allow for this protocol to be implemented in the low cost tags.

3.2.5.10 HBb

Description: Another attempt to make Random HB# resistant against the MITM attack
presented in [OOV08] was made by the HBb proposal [SKII12]. The following improve-
ment was proposed. After the exchange of the blinding factor b and the challenge a
between the reader and the tag is over, the tag generates a random bit c. Then it is
suggested that if c = 0 then the tag chooses ν such that the number of ones in it is equal
to t = u · r otherwise ν is chosen to have t + 1 ones. The further behaviour of the tag is
the same as in Random HB#. However, the authors do not provide any considerations
of how the mechanism of choosing the vector with the fixed number of ones can be
realized in hardware. Repeating the generation process before the required condition is
true may take unpredictable number of iterations, which would make the protocol to
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be unreliable. However, if such a mechanism exists, the other costs remain equal to the
ones for Random HB#.

While it is unclear how many bits, i.e., the value of NRn, are required for generating
the noise, the other costs can be computed exactly as for Random HB#:

KC = |x| · r + |y| · r, NRb = |y|, CC = |x|+ |y|+ r

Implementation issues: For the same reasons as in the previous several protocols the
area size is extremely huge. Furthermore, the random number generation mechanism is
unclear. Thus the protocol was not implemented.

Evaluation results:

Table 3.24: Evaluation results for HBb

Parameters KC NRn NRb CC Suitability
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 Unclear 512 1756 KC > 2048. Noise

generation
is unclear.

η = 0.125, |x| = 80, |y| = 512, r = 441 261072 Unclear 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 Unclear 512 848

Suitability and security: All the costs except the required number of random bits on tag
side are the same as in Random HB#, which indicates that the protocol HBb is infeasible
on low cost RFID tags due to the key storage complexity and the area size.

3.2.5.11 NL-HB

Description: In 2011 a non-linear version of the HB protocol was suggested called
NL-HB [MTSV10]. The idea is to use a non-linear function for providing a better resis-
tance against passive attacks instead of if a linear function is used. According to the
authors this allows to reduce the key-size by a factor of 4 while preserving the same
level of security. However, shortly after it was shown that this attempt fails [Aby10],
and that the suggested configuration doesn’t provide the claimed level of security. To
the best of our knowledge the only reasonable choice of parameters (with respect to the
security) is the same as for HB.

Costs evaluation formulas: (equivalent to the ones valid for HB:)

KC = |x|, NRn = − log2(η) · r, NRb = 0, CC = (|x|+ 1) · r
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Evaluation results:

Table 3.25: Evaluation results for NL-HB

Parameters KC NRn NRb CC Suitability
η = 0.25, |k| = 512, r = 1164 512 2328 - 597132

Similar to HB, the conditions
CC > 30000, NRb + NRn > 128.

η = 0.125, |k| = 512, r = 441 512 1323 - 226233
η = 0.125, |k| = 512, r = 256 512 770* - 131328
* The average number of random bits is given.

Suitability and security NL-HB has the same communication complexity and requires
the same number of random bits as HB. This already points that it is infeasible on
lightweight hardware. Furthermore, the protocol implementation would clearly require
more area due to a more complicated function involved compared to HB, but would not
provide remarkable advantage in security [Aby10].

3.2.5.12 Tree-HB

Another improvement of the HB like protocols was suggested by Halevi in [HSH11].
The variants are called Tree-HB+, Tree-HB# etc. The aim of the improvements is to
ensure privacy of the tag, meaning that a tag remains anonymous to an attacker during
the authentication process. To this end, this protocol includes a tree-based scheme that
can be used by the reader to identify the tag without receiving the tag ID from it.

Suitability and security: It was shown in [AMM10] that the developers of Tree-HB
didn’t reach their goal, and the level of privacy is much weaker than they expected.
Therefore, from our point of view, it does not make sense to consider it.

3.2.5.13 PUF-HB

Description: The protocol PUF-HB [HS08] is based on the concept of Physically Un-
clonable Functions (PUFs), where the same logical circuits produce different outputs
depending on the physical properties of the exact device. While this is a promising
approach, nothing can be said about its suitability without concretely specifying the
deployed PUF type. Given the fact that the development and analysis of PUFs ongoing
research, the suitability of this approach is still an open question.

3.2.5.14 AUTH, MAC1, MAC2

Kiltz et al. [KPC+11] introduced a new two round authentication protocol called AUTH
which, based on an LPN variant called subset LPN, provably provides active (but not
MITM) security. In addition, two actually MITM-secure protocols were suggested.
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Table 3.26: Complexities of the 2-round authentication protocols suggested in [KPC+11],
with l = 500 (key size), r = 250 (number of rounds) and λ = 80 (security parameter).

Construction Communication Computation Key size

AUTH l · r · 2.1/c Θ(l · r) l · 4.2 · c
MAC1 l · r · 2.1/c Θ(l · r) + PIP l · 12.6 · c
MAC2 l · r · 1.1/c Θ(l · r) + PIP l · λ · c

Suitability and Security: The authors of [KPC+11] provided a precise assessment of
complexities, e.g., for communication, computation, and key size, based on theoretical
considerations. However, when compared to the hardware constraints of low-cost RFID
tags as justified in Subsection 3.2.2, the respective numbers, summarized in Table 3.26,
immediately show that these protocols are not suited for such devices. Again, as in
subSubsubsection 3.2.4.3, l denotes the length of a respective LPN secret and r denotes
the number of protocol rounds. The trade-off parameter c, 1 ≤ c ≤ r, between key size
and communication complexity is due to Gilbert et. al. [GRS08b] and λ is referred to as
a "security parameter". Please note in particular that the term PIP in Table 3.26 subsumes
the additional computational complexity of evaluating a certain pairwise independent
permutation, which, according to the authors, takes Θ(m2) time, where m ≈ 1, 200 for
MAC1 and m ≈ 600 for MAC2. Clearly, the resulting numbers of additionally required
clock cycles are well beyond the limits of what we justified in Subsection 3.2.2 as feasible.
In addition, for AUTH as well as for MAC1 and MAC2, any choice of c in Table 3.26 will
either result in a key size (cf. Subsubsection 3.2.4.3) or in a communication complexity
(cf. Subsection 3.2.2) definitely not feasible in the context of low-cost RFID tags.

3.2.5.15 Lapin

For the sake of completeness, let us finally mention Lapin [HKL+12], which is an
authentication protocol based on the suggestions by Kiltz et. al. which we just discussed,
and whose communication complexity (given as "1,300 bits" in [HKL+12]) is actually
feasible for tags in the $0.05 to $0.10 range.

Suitability and security: The authors themselves state that they are "targeting lightweight
tags that are equipped with (small) CPUs" as compared to "ultra constrained tokens
(such as RFIDs in the price range of few cents targeting the EPC market" Moreover, the
protocol was strongly criticized in [BL13], where the authors come to the conclusion
that Lapin is even less efficient than AES providing less level of security. An FPGA
implementation of Lapin was made in [GLS14]. Note, that this implementation requires
36 kb of buffer random access memory (BRAM), which makes it clearly infeasible when
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transfered to low-cost ASICs. Taking into account all these arguments, we will not
discuss this variant in further detail.

3.2.6 Summarizing Results
Table 3.27 summarizes the results of evaluation of all the discussed HB-type protocols.
We shortly explain the content of the table:

• For each protocol, we give in the second column (labeled “parameters”) the param-
eter choices our evaluation is based on. These choices have been mostly derived
from literature or, whenever necessary, been calculated on our own. In the lat-
ter case, the parameters have always been chosen in favour of the protocol. A
detailed explanation of how the parameters have been derived is given in Sub-
subsection 3.2.4.2 for the protocols HB and HB+ and in Subsection 3.2.5 for the
remaining considered protocols.

• In columns 3–6, four6 different cost factors are displayed: key storage complexity,
the numbers of random bits required for generating the noise and blinding factors,
respectively, and the total communication complexity (see also Table 3.6). Here
too, we will later explain in detail how these have been computed.

• The determination of the cost factors now allows to verify whether the conditions
explained in Subsection 3.2.2 are fulfilled. If some of these are violated for a
certain protocol, this is explicitly stated in the last column. As the bounds given
in Subsection 3.2.2 are certainly not tight, we indicate here a violation only if the
induced costs would be way above these bounds (often by magnitudes). In these
cases, we think that it is very improbable that small changes or the application
of implementation tricks would be sufficient to make these protocols suitable. In
addition, if man In the middle (MITM) attacks are known against the respective
protocol, a reference is given as well.

The conclusion one can draw from these results is that each of the considered protocols
would induce costs that are significantly outside of the derived bounds. Furthermore,
most of the protocols are insecure against MITM attacks. Although one may debate
whether MITM attacks are actually relevant in low-cost use cases, note that there are
straightforward authentication schemes on the basis of prevalent lightweight ciphers
(cf.Subsection 3.2.3) which are perfectly feasible and do not only provide active but also
MITM security.7 Summing up, it remains an open question to design a protocol based

6Please note, that in order to keep the presentation simple we omit from the table the costs (area size
and required number of clock-cycles) which were evaluated using implementations of the protocols.

7The popular argument that, unlike for cipher-based schemes, active security can actually be “proved”
for HB-type authentication protocols is only convincing to a limited extent as this “proof” in fact relies on
the assumed hardness of the LPN problem.
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on LPN (or a related problem) which is secure against MITM attacks and, at the same
time, complies to the hardware constraints justified in Subsection 3.2.2.
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Table 3.27: Evaluation results for the considered HB-type protocols.

Protocol Parameters KC NRn NRb CC Suitability and Security

HB
η = 0.25, k = 512, r = 1164 512 2328 0 597132 CC ≥ 30000, NRb + NRn ≥ 128

for all sets of parameters.
Active attacks.

η = 0.125, |k| = 512, r = 441 512 1323 0 226233
η = 0.125, |k| = 512, r = 256 512 770* 0 131328

HB+
η = 0.25, |x| = 80, |y| = 512, r = 1164 592 2328 59568 690252 CC ≥ 30000, NRb + NRn ≥ 128.

MITM attacks.
η = 0.125, |x| = 80, |y| = 512, r = 441 592 1323 225792 261513
η = 0.125, |x| = 80, |y| = 512, r = 256 592 770* 131072 151808

HB++ η = 0.25, r = 731 768 2924 58560 118582 CC ≥ 30000, NRb + NRn ≥ 128.
MITM attacks.η = 0.125, r = 282 768 1692 22640 45844

HB-MP
n = 1, |k| = 513, m = 512, r = 1164 1026 0 893952* 1191936 CC ≥ 30000, NRb + NRn ≥ 128.

Passive attacks.n = 2, |k| = 513, m = 512, r = 441 1026 0 395136* 451584
HB-MP+ n = 2, |k| = 512, m = 224, r = 1164 1024 0 391104* 521472 CC ≥ 30000, NRb + NRn ≥ 128.

HB∗ η = 0.5, |k| = 256, r = 80 1024 80 20480 41200 CC ≥ 30000, NRb + NRn ≥ 128.

HB∗1 η = 0.25, |k| = 512, r = 1164 1536 3492 595968 598296 CC ≥ 30000, NRb + NRn ≥ 128.
MITM attacks [PT07, GRS08a].η = 0.125, |k| = 512, r = 441 1536 1764 225792 226674

Trusted
HB

CC ≥ 30000, NRb + NRn ≥ 128.
≈ 7 · 105 clock-cycles (max. available
1, 5 · 105). MITM attacks .

η = 0.25, |x| = 80, |y| = 512, r = 1164 693 2328 595968 690353

RND-HB#
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 2328 512 1756 NRb + NRn ≥ 128.

MITM attacks.
η = 0.125, |x| = 80, |y| = 512, r = 441 261072 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 770* 512 848

HB#
η = 0.25, |x| = 80, |y| = 512, r = 1164 2918 2328 512 1756 NRb + NRn ≥ 128.

MITM attacks.
η = 0.125, |x| = 80, |y| = 512, r = 441 1472 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 1102 770* 512 848

HB-MAC
η = 0.25, |k| = 160, r = 1164 186240 4656 160 2808 KC ≥ 2048, NRb + NRn ≥ 128.

MITM attacks [Riz09].η = 0.125, |k| = 160, r = 441 70560 2646 160 1362

GHB#
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 2328 512 1756

KC ≥ 2048, NRb + NRn ≥ 128.η = 0.125, |x| = 80, |y| = 512, r = 441 261072 1323 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 770* 512 848

HBN η = 0.25, n = 513, r = 3921 263169 7842 2011473 4026867 KC ≥ 2048, NRb + NRn ≥ 128,
CC ≥ 30000.η = 0.125, n = 513, r = 522 263169 1566 267786 536094

HBb
η = 0.25, |x| = 80, |y| = 512, r = 1164 689088 Unclear 512 1756 KC ≥ 2048. Noise generation

mechanism is unclear.
η = 0.125, |x| = 80, |y| = 512, r = 441 261072 Unclear 512 1033
η = 0.125, |x| = 80, |y| = 512, r = 256 151552 Unclear 512 848

NL-HB
η = 0.25, |k| = 512, r = 1164 512 2328 - 597132 Similar to HB, CC ≥ 30000,

NRb + NRn ≥ 128.
Active attacks.

η = 0.125, |k| = 512, r = 441 512 1323 - 226233
η = 0.125, |k| = 512, r = 256 512 770* - 131328

AUTH
Depending on trade-off parameter c,
either CC, KC, or both not feasible
(cf. [KPC+11] and [GRS08b]).

MAC1

Same as AUTH + CompC of Θ
(
m2),

m = 600, imposed by pairwise
independent permutation (cf. [KPC+11]).

MAC2

Same as AUTH + CompC of Θ
(
m2),

m = 1200, imposed by pairwise
independent permutation (cf. [KPC+11]).

KC - Key storage complexity;
NRn - Number of uniformly distributed random bits required for noise
NRb - Number of uniformly distributed random bits required for blinding factors
CC - The total communication complexity
CompC - The total computational complexity
∗ - Is used when the average number of random bits is given
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3.3 On the Performance of Ciphers which Continuously Access
the Non-volatile Key

3.3.1 Motivation

The community has developed various techniques for designing lightweight ciphers.
One approach which is more and more considered is the idea of using the cipher key
that is stored on the device not only for initialization of the registers but also to involve it
continuously in the encryption/decryption process. Examples include the block ciphers
Midori [BBI+15], KTANTAN [CDK09], PRINTcipher [KLPR10], and LED [GPPR11]
as well as the stream ciphers A2U2 [DRL11], Sprout and Plantlet. The later two are
discussed in Section 5.2. Moreover, this approach is used in practice: the cipher and the
authentication protocol of the Megamos Crypto transponder [VGE15] also utilize this
principle.

To understand the basic idea, recall that a device incorporating a cipher usually needs
to access a key. This key, however, is not dynamically received from an an external entity,
but it is already stored on the device in non-volatile memory. We refer to this key as being
a non-volatile key. Here, the term non-volatile stresses the property that this key cannot
be changed by the cipher itself. That is, in most cases the work flow is as follows. After
the encryption or decryption process is started, the key is retrieved from the location
where it is stored and loaded into registers, i.e, from non-volatile memory NVM into
volatile memory VM. For block ciphers, these may be separate registers intended for the
key schedule, while for stream ciphers, this is usually the internal state. Adopting the
terminology from above, one could say that the value in VM now represents a volatile
value which changes during the encryption/decryption process whereas the value stored
in NVM, the non-volatile key, remains fixed.

It holds for most designs that after the key has been loaded from NVM into VM, the
NVM is usually not involved anymore (unless the key schedule or the initialization
process needs to be restarted). However, recently several ciphers [BBI+15, CDK09,
KLPR10, GPPR11, DRL11, AM15, MAM17], were proposed which require access to
the non-volatile key, not only for initialization but also during encryption/decryption
process.

One of the main motivations for this approach is that using the values stored in the
NVM may allow to reduce the VM, and hence, result in an overall reduction of the area
size since NVM is needed for storing the key on the device anyway. Hence, if re-using the
key stored in NVM allows to reduce the amount of volatile memory, this would provide
a direct benefit. In other words, one could say that non-volatile memory that needs to be
present anyhow is “traded” for volatile memory so that in total, the area consumption is
reduced.

In this context, we want to point out that a similar approach may be considered for
block ciphers to reduce the logic. Block ciphers usually deploy a key schedule to derive
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several round keys from the secret key. Instead of loading the key into VM and to
run the key schedule, one may consider to precompute these round keys once and to
store them in NVM, effectively trading it in for volatile memory and logic. While this
is certainly an interesting approach with its own benefits, it is not completely in scope
of our work as we are mainly looking at ciphers which re-use NVM that needs to be
present anyway, while storing the round keys would increase the amount of required
non-volatile memory. Furthermore, any potential measures applied to NVM to protect it
against physical attacks would also require appropriate extensions to remain effective.
Finally, this approach makes only sense for block ciphers with a fixed and relatively
small number of round keys and is completely impractical for stream ciphers. This is
contrary to the idea of re-accessing the same key in NVM, which has been considered for
block and stream ciphers and hence is more general. Nonetheless, the idea of storing
precomputed keys is another reason why cipher designs where NVM is continuously
accessed can be of interest.

Apart from reducing the demand for resources such as area size, power and energy
consumption, the continuous involvement of the key may also result in a higher security
level. For example, in Section 4.3 we show that this may increase the resistance of stream
ciphers against time-memory-data-tradeoff attacks.

Summing up, the idea of continuously using the key stored in NVM seems to be a
promising design approach for several reasons, at least in theory. In practice however,
only little is known how this impacts the practicability of the cipher. In fact, most papers
treat NVM as “free” memory from which can be read in “zero” time or at least with the
same speed as it is possible to access VM. This is certainly not given in practice and raises
the question if and to what extent such designs really help to reduce the consumption of
resources. The main problem here is that hardly any information is publicly available.
That is, cryptographers without a strong engineering background face the problem that
they cannot evaluate whether such designs are indeed reasonable and promising or
rather represent “cheating”.

In [MAM17] we revisited the design of ciphers that continuously involve the non-
volatile key during the encryption process and discuss these results in the current section.
More precisely, our contributions are as follows:

Discussion on Non-volatile Memory: We discuss several use cases and explain what
types of NVM are practically relevant for the considered scenario. Here, we have to
distinguish between the case that the key is set once and forever or that it is rewritable.
For the first case, certain types of NVM can be used, e.g., Mask Read-Only Memory
(MROM) and Programmable Read-Only Memory (PROM), where accessing the keybits
induces no overhead. That is, in such cases very efficient ciphers are possible but
key management is very limited. In the second case, i.e., cases which require the key
being rewritable, certain timing limitations for accessing the NVM need to be respected.
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Motivated by commercially employed schemes like KeeLoq [Mic01], Hitag (S) [NXP14],
or Mifare [NXP11] we then put our focus on the case that EEPROM is used for storing
the rewritable key and explain practical implications when aiming for low-area ciphers
using EEPROM.

Re-evaluation of Ciphers: Based on our findings, we evaluate existing lightweight
ciphers within this scenario with respect to the practical consequences. In case that
the NVM needs to be reprogrammable, some ciphers are better suited for this approach
than others, which depends on how the key stored in NVM needs to be accessed. We
examine for several existing ciphers that continuously access the key stored in non-
volatile memory how the use of, on the one hand, various standard serial EEPROM
modules using the most common interfaces (see Table 3.29), and on the other hand,
customized ASIC EEPROMs (see Table 3.30), would impact performance.

In Subsection 3.3.2, we discuss different technical realizations for NVM and analyze
the effort to read from them. Subsection 3.3.3 analyzes the impact on different ciphers
which use the non-volatile key “trick” if the cipher would be implemented with various
types of NVM.

3.3.2 On Reading from Non-volatile Memory

In this section, required technical background pertaining to NVM is presented. First
of all, common implementation approaches for NVM are described with a focus on
programmability. Then, prominent serial interfaces suitable for accessing NVM are
introduced as well as an effort estimation particularly for reading operations. This
section also includes a brief summary of the different interfaces’ required number of
clock cycles for reading from NVM.

3.3.2.1 Approaches

Generally speaking, there are three different categories regarding NVM production
approaches.

The first category comprises technologies where the memory content has to be pro-
grammed already by the manufacturer and cannot be changed afterwards. In case of
lightweight devices this can be realized either by using MROM—where the information
is added to so-called wafers—or by realizing lookup tables (using tie-high and tie-low
cells) in standard ASIC library. Utilizing tie-high and tie-low cells has the benefit of not
incurring any overhead for accessing the memory. The full key is instantly available and
its usage comes at no performance overhead, while the area demand of such a logic is
also relatively small.

The second category covers techniques where likewise the key can be set only once.
The difference however lies in the time of programming, which in this case happens after
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manufacture. This PROM is typically produced with fuses and antifuses that are blown
appropriately during the programming process.

The third category differs significantly from the former two in the sense that the key
can be freely rewritten, allowing for a higher level of flexibility.

With respect to the effort of accessing the bits during the encryption/decryption
process, the first two approaches would certainly be the preferred option, as each key bit
can be directly accessed without any particular overhead.

However, the price one has to pay is the loss of flexibility. More precisely, the first
approach means that the key has to be known already before the IC chip is produced.
Moreover, this approach becomes cheap only if a large amount of devices share the
same key, since the production of individual wafers, from which chips are produced,
is rather expensive. In the works [KLPR10] and [DRL11] utilizing a technology called
integrated circuit printing is suggested, claiming that for a printer there will be no
costs for changing the circuit while producing each of the new devices, thus enabling
individual keys. However, according to [KLPR10] the IC printing technology is not yet
fully understood. In any case, if this approach is used it holds that once the key is set it
can never be changed, which is true for the second approach as well. That is the process
of setting the key cannot be reversed and hence has to be settled before a device leaves
the factory which enormously complicates key management.

We conjecture that this is one of the main reasons why the third, yet more expensive
approach is often used in practice. That is, the key is stored in some NVM which allows
to change the key afterwards. Here, different techniques are imaginable. In case of
lightweight devices, EEPROM seems to be the favored choice8 (for more details, see
e.g. [AHM14]). In fact, in many commercial products EEPROM is used for storing
the secret key. Examples include MIFARE [NXP11], Hitag [NXP14], KeeLoq [Mic01],
CryptoRF [Atm14] and Megamos Crypto transponder [VGE15]. We would like to stress
that using EEPROM does not necessarily imply very high costs. For instance, the Hitag
µ advanced transponder [NXP15] offers 1760 bit of EEPROM memory can be purchased
for the price of a few cents per unit from a major retailer. In this section therefore, we
focus on a scenario where the key is stored in EEPROM which is continuously accessed
by the cipher during the encryption/decryption process and where the goal is to reduce
the area size of the cipher without increasing the size of the EEPROM. To this end, we
investigate different interfaces for accessing EEPROM in the following and discuss how
this impacts the performance of the cipher. As another type of EEPROM-like memory,
flash memory is presented in form of a short overview and comparison with a focus on
its suitability to lightweight applications in contrast to EEPROM.

3.3.2.1.1 Accessing EEPROM.
In principle, two different options exist for using EEPROM in constrained devices:

8We consider the devices with the lowest price available on the market and assume that the more
expensive technologies like FRAM are out of the scope of this work.
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(i) commercially available external EEPROMs which communicate with the device via
certain standard interfaces and (ii) NVM cells, e.g. EEPROM, that are directly integrated
into an ASIC by design. Although, the first approach may be much cheaper, it is
susceptible to side channel attacks. That is, the data lines between the EEPROM module
and the device may be easily eavesdropped on. Nevertheless, this approach may be
realistic for a scenario, in which physical access to the device is considered infeasible
for an attacker, e.g., medical implants. Since our intention is not to promote commercial
EEPROMs, but to provide a holistic view on available memory technologies, excluding
commercial EEPROMs from the discussion would render it incomplete. Conversely,
integrating EEPROM cells into the ASIC is more expensive, but it also offers a higher
level of security and more flexibility pertaining to the interfaces. Although most of the
commercially available constrained devices use the second approach, we discuss both
alternatives for the sake of completeness.

Standard EEPROMs. In the following, we focus on commercially available EEPROMs
and denote these as standard EEPROMs. Standard EEPROMs can be accessed using
serial or parallel interfaces. EEPROM modules with serial interfaces have a smaller
footprint and lower power consumption compared to EEPROM with parallel interfaces
of an equivalent density [PSS+08]. As we examine the use of EEPROM in the context of
lightweight ciphers, we consider parallel interfaces, such as those used e.g. in the ARM
AMBA protocol, out of the scope of this work.

With respect to commercial EEPROMs with serial interfaces, we examined the data
sheets of several low-budget EEPROM devices produced by different manufacturers
such as NXP Semiconductors, Microchip Technology Inc, Atmel Corporation, On Semi-
conductor, Renesas Electronics Corporation. According to these, the following serial
interfaces are the most commonly used:

1. I2C [On 14]: If the I2C interface is used, the memory is usually organized in memory
words with a size of 8 bits. For accessing bits from the EEPROM, the following
types of readings are relevant:

Random (Selective) Reading: This type of reading allows to “jump” to a specific
EEPROM address for extracting the values stored there. This allows for the
highest level of flexibility, but also incurs additional costs. To perform this
type of read operation, first the word address must be reset (which usually
requires 19 clock cycles). Then, the control byte has to be sent to the EEPROM
which in turn has to acknowledge its receipt. This takes 10 clock cycles. Only
if this is accomplished, the EEPROM starts to send the data of the requested
memory word (8 clock cycles) and waits for the acknowledgment bit (1 clock
cycle) and the STOP signal (1 clock cycle). Therefore, reading a word of 8-bits
from a freely chosen address requires 39 clock cycles in total.
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Current Address Reading: The current address reading uses an internal address
counter that is increased after each reading. To initiate the read operation,
a control byte preceded by a START signal is sent to the EEPROM and gets
acknowledged (10 clock cycles). Then, the current memory word is sent (8
clock cycles) and the address counter is increased. The read operation is
terminated by a NoACK signal followed by a STOP signal (additional 2 clock
cycles). In total, a current address read, i. e., reading 8 bits from the current
memory address, requires 20 clock cycles.

Sequential Reading: Similar to current address reading, sequential read allows
to read a memory word from the current address and increases the address
afterwards. The main difference is that it keeps on doing so until instructed
otherwise. That is sequential read outputs memory words from EEPROM
one by one starting at the current address and is preceded by a random
or a current address read. After each sent memory word, the EEPROM
expects an acknowledgement bit. The read operation continues by increasing
the address counter and sending the next memory word until the device
receives a NoACK followed by a STOP. Therefore, reading one memory word
sequentially requires an additional clock cycle for the acknowledgement, i. e.,
9 clock cycles. Considering the condition that a preceding current address or
random read must occur, reading n memory words requires 10 + 9n + 1 or
29 + 9n + 1 clock cycles, respectively.

2. Serial Peripheral Interface (SPI) [Mic14]: Usually, the memory is organized in 8-bit
words. To read from EEPROM using SPI, the host sends a READ instruction (8 bits)
followed by a memory address, which may consist of 8, 16, or even 24 bits, to the
EEPROM device. After receiving the last address bit, the EEPROM responds by
shifting out data on the serial output data pin. Sequentially stored data can be
read out for as long as the clock signal is provided. After each provided memory
word, the internal address pointer is automatically incremented to point to the
next address. If the highest memory address is reached, the address counter “rolls
over" to the lowest, and the read cycle can be continued indefinitely. Thus, using
an address width of a, reading n memory words requires 8 + a + 8n clock cycles,
e. g., 16 + 8n clock cycles are required in the a = 8 case.

3. Microwire [Atm15]: This interface is a predecessor of SPI and provides only a
subset thereof. The EEPROM is organized in either 8-bit or 16-bit memory words.
A READ instruction consists of a start bit, a 2-bit op-code, and 7 or 6 address bits
for the requested 8-bit or 16-bit memory word, respectively. After receiving and
decoding, the data is transferred from the memory to an output shift register.
At first, a dummy 0 bit is sent, followed by the memory word, while each next
bit is indicated by the rising edge of the clock signal. The device automatically
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Table 3.28: Overview of required clock cycles for reading n consecutive memory words
using different interfaces and read operations for 8-bit memory words and addresses. SPI
and Microwire only offer selective reading. Sequential reading is therefore not directly
available, indicated by ‘n/a’.

Interface Selective Reading Sequential Reading

I2C 30 + 9n 11 + 9n
SPI 16 + 8n n/a
Microwire 11 + 8n n/a
UNI/O 50 + 10n 30 + 10n

increments the internal address register and sends subsequent memory words
until indicated to stop. However, the dummy 0 bit is only sent once, subsequent
memory words are output as a continuous stream of data. If the highest memory
address is reached, the address counter rolls over and points to the lowest memory
address. Reading n words from memory results in 3 + a + 1 + 8n, a ∈ {6, 7} clock
cycles, e. g., 11 + 8n for memory organized in 8 bits.

4. UNI/O [Mic11]: Memory accessible via this interface type is usually organized in
8-bit memory words. Before a read operation can be performed, a Start Header
and a memory address of 8 bits each are transmitted, which are followed by an
acknowledgement phase in which both the host and the EEPROM device send 1
bit each. Altogether, this setup phase consumes 20 clock cycles. Then, the actual
read command comprising 8 bits is sent and acknowledged in the same way.
Immediately, the requested memory address is transmitted. A memory address
consists of two 8-bit parts, whereas an acknowledgement phase takes place after
each part is sent, thus requiring 30 clock cycles for the command and memory
address. Besides this selective read operation, a current read command can be
used which relies on an internal address pointer that is automatically increased
after each read operation. Using this command, the memory address is omitted
and only 10 clock cycles for the command and subsequent acknowledge bits
are required. Nonetheless, both read operations allow for continuously reading
consecutive memory words. The internal address counter rolls over to the lowest
memory address after the highest was reached. Each memory word is followed
by 2 acknowledge bits, i. e., reading n consecutive bytes from memory requires
50 + 10n and 30 + 10n for selective and current read operations, respectively.

Although these techniques differ in several details, one can observe that two principal
reading methods are possible: accessing the content by providing the address or read-
ing the next word of the EEPROM based on an address counter that is automatically
increased. Adopting the terminology of I2C, we refer to these types as selective reading
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and sequential reading, respectively. That is, when we speak about sequential reading we
will refer to this mode of operation and not necessarily to I2C.

Table 3.28 shows the number of required clock cycles to read n consecutive 8-bit
memory words assuming the underlying memory and addressing scheme are as well
8-bit based (or 7 bits as in the Microwire case). One clearly sees that selective reading, i.e.,
reading from a chosen address, incurs a higher overhead than just reading sequentially
the words from the EEPROM. This shows that non-volatile key ciphers that sequentially
read the key bits from the EEPROM better match this technology than ciphers that
repeatedly have to read from different addresses.

EEPROMs Integrated into ASIC. When a designer develops an ASIC, he can integrate
EEPROM cells directly so that he has not to rely on any standard interfaces. By doing
so, he can achieve that practically almost no limitations on retrieving key bits from an
integrated EEPROM apply. In such cases, any cipher design would be equally good with
respect to the effort of accessing the key bits.

However, these benefits do not come for free. First of all, developing an ASIC tailored
for certain use cases takes more effort than using standard building blocks. Moreover,
it seems that certain ASIC EEPROM designs are favorable compared to others. More
precisely, in existing work [BL08, CZDL13, NKTZ12, NXDH06, LCK10] that discusses
the construction of ASIC EEPROM designs for restricted devices like passive RFID
transponders, the access to the EEPROM is organized word-wise where typical memory
word sizes are 8, 16, or 32 bits. According to [NKTZ12], the choice of word size is one of
the most important factors with direct impact on the area size of the resulting EEPROM.
Obviously, this choice also affects the effectiveness of the procedure that involves the
key during encryption/decryption.

Although accessing EEPROM on a word-by-word basis is a common technique, de-
signs utilizing bit-by-bit reading may provide a more conservative power consumption
[CZDL13, NXDH06]. Such a customized bit-by-bit interface allows to retrieve any de-
sired bit per clock-cycle. Thus, in addition to 8-, 16-, and 32-bit based parallel interfaces,
we consider this type of bit-by-bit interface, as we suppose that it implies realistic limi-
tations on the flexibility of reading from customized EEPROM and can be pertinent in
practice.

3.3.2.1.2 Accessing Flash Memory
After investigating cheap candidate devices for lightweight ciphers, e.g., passive RFID

tags, flash memory does not seem to be used commonly. However, since this technology
is gaining in popularity and decreasing in cost, it may be used for these kinds of devices
in the near future. Therefore, for the sake of completeness, we also shortly discuss flash
memory.

Technically, flash memory is another type of EEPROM with higher storage density than
‘traditional’ EEPROM, sacrificing bit alterability for area [Cyp15], such that minimum
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erasable data units are organized in blocks of several kilobytes [KKN+02], e.g., 64, 128,
or 256 kilobytes. Therefore, flash is typically used for applications with high memory
demand, i.e., in the range of megabits to several gigabits. Also, different architectures
(NOR or NAND), data transfer (serial or parallel), and approaches (external or directly
integrated) are prevalent, leading to different characteristics and read protocols.

On the one hand, NOR flash memory offers random read access on a byte level making
it a suitable EEPROM alternative [Mic]. On the other hand, NAND flash is page-oriented,
whereas several pages, typically 512 [KKN+02], 2, 048, or 4, 096 bytes in size, form one
block, and it requires a dedicated memory controller. Usually, NAND flash is used for
mass storage, e.g., more than 64 megabits [Cyp15, Mac14].

Having compared several data sheets of available low-price external flash memory
ICs, it appears that mostly similar serial interfaces are used for reading as in the case of
EEPROM [Fre14, Ade16]. We note that external modules suffer from similar weaknesses
as EEPROM, e.g., side channel attacks.

Since the structure of the memory cells is similar to EEPROM, integrating NOR flash
into ASIC yields a read process organized on either a bit or word basis and therefore,
similar limitations as for integrated EEPROM.

All in all, since these two memory technologies use similar read interfaces in cases
where flash memory constitutes a potential replacement of EEPROM, we do not further
consider flash as a substantially different additional technology with respect to the
timing limitations of the ciphers and limit our focus to EEPROM.

3.3.3 Impact of Different EEPROM Types on Throughput of Existing
Ciphers

In this section, we examine for several existing ciphers that continuously access the key
stored in non-volatile memory how the use of standard serial EEPROM on the one hand
and of customized ASIC EEPROM on the other hand would impact performance. This
is motivated by the question on how different designs perform with respect to available
standard building blocks. As the concrete throughput depends on many parameters
unrelated to the deployed EEPROM, we do not state these values but compare them with
the case that the same implementation is used but under the assumption that accessing
the key incurs no overhead at all.

The considered ciphers are the block ciphers Midori128 and Midori64 [BBI+15], LED
[GPPR11], KTANTAN [CDK09] and PRINTcipher [KLPR10] as well as the stream ciphers
A2U2 [DRL11], Sprout and Plantlet9.

9The designs of Sprout and Plantlet are discussed in Section 5.2

72



3.3 On the Performance of Ciphers which Continuously Access the Non-volatile Key

3.3.3.1 Key Selection Functions of Considered Ciphers

In our analysis we focused on the key selection functions, i.e., the part of the cipher
that continuously accesses the key stored in non-volatile memory as we expect here the
most significant impact. This means for example that we ignore the initialization process
which is invoked much less frequently. Therefore, we provide only a description of the
key selection function and refer to the respective papers for a full description.

Due to the fact that sequential reading allows for a higher throughput than selective
reading, we opt for the first whenever possible when discussing standard interfaces.
With respect to sequential reading, we distinguish between two cases that we call
wrap case and no-wrap case, respectively. In the wrap case, it holds that if the last key
bit of the EEPROM is read, the internal address counter automatically wraps around
such that it points to the first bit of the key again. In contrast if the no-wrap case holds,
the internal address counter does not automatically wrap around but has to be reset
manually to the start address of the key. Furthermore, we make the assumption that at
the beginning of the encryption/decryption process, the address already points to the
beginning of the key.

Midori. Midori [BBI+15] is a cipher that targets low-energy applications and provides
a block size of 64 or 128 bits, i. e., Midori-64 and Midori-128, with a key size of 128 bits
for both variants. It does not employ any dedicated key schedule function due to energy
consumption concerns. Similar to AES, it consists of a state of 64 bits (or 128 bit for
Midori-128) which is transformed by 15 (or 19) rounds of substitution, permutation,
and (round) key addition layers. Additionally, key whitening resulting in two extra key
additions is performed before the first and after the last round. Note that any round
key is obtained by XORing the supplied key with pre-defined round constants, in the
64-bit case however, the supplied 128-bit key is reduced to 64 bits by XORing its most
significant and least significant half beforehand.

Thus, for encryption of one 64-bit (or 128-bit) block of data, 1, 088 (or 2, 688) key bits
are required. In other words, 136 (or 336) 8-bit memory words need to be retrieved,
which results in equally many EEPROM read accesses in the wrap case. In the no-wrap
case, at least 9 (or 19) read operations would be selective, while all remaining ones could
be performed sequentially. Considering round key precomputation, this approach is
almost equivalent to the wrap case except for the obvious non-negligible increase in
memory demand.10

10To the advantage of the cipher, we assume that the length of memory addresses covers exactly the
NVM and that no additional effort incurs when addressing higher memory regions.
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LED. LED [GPPR11] is a block cipher targeting a low hardware footprint with a block
size of 64 bits, two primary11 key sizes of 64 or 128 bits, respectively, and no dedicated
key schedule. Similar to AES, the cipher consists of several rounds of substitution,
permutation, and key addition layers but are applied to a state of 64-bit only. By design,
the actual number of rounds depends on the key size. A peculiarity is that 4 rounds
constitute one step while the key addition is only performed once before each step plus
one additional key addition after the last step. For 64-bit keys, 32 rounds or 8 steps are
performed, which amounts to a total of 9 key additions versus 48 rounds or 12 steps and
13 key additions in the 128-bit case.

For processing one 64-bit block of data, hence, 576 versus 832 key bits or 72 versus 104
8-bit memory words are required, respectively. Due to the absence of any key schedule,
storing the key bits redundantly, i. e., in extended form, is essentially equivalent to the
wrap case.12 In the no-wrap case however, after reading all key bits, the memory address
needs to point to the first memory word again; this happens 8 times in the 64-bit key
case and 6 times in the 128-bit key case. Consequently, 64 versus 98 read operations may
be performed sequentially.

KTANTAN. The KTANTAN family [CDK09] represents a set of block ciphers provid-
ing 3 different block sizes, i. e., 32, 48, 64. Independent of the chosen block size, the
family uses an 80-bit key and utilizes a key schedule that relies on the current internal
state to choose 5 bits from this key. By design, the key is treated as 5 consecutive 16-bit
words and the selected bits have the same relative position inside each 16-bit word.
Finally, only 2 of these 5 bits are used, whereas the selection is also based on the current
internal state. Occasionally, it may happen with a probability of 1/4 that the same key
bit is picked twice. We consider this to be the best case with respect to the throughput
and hence assume in favor of the cipher that this always happens. As the selection of
the key should not follow any easily predictable pattern, we furthermore assume that
each time a key bit is needed, the device has to initiate a selective reading. For sure,
one may increase the throughput by for example buffering the recently read key word
and checking whether the same key word is needed again. We do not consider such
improvements in our analysis here for two reasons. First, this would require additional
logic and registers. Second, different selection patterns may result into different timing
behavior and hence may allow for side-channel attacks. Thus, we leave it as an open
question if and how the throughput of the KTANTAN family could be increased without
consuming too much additional area and without compromising the security.

According to [CDK09], KTANTAN uses 254 rounds in which the key schedule is
involved, that is, in each round one access to the key is necessary. In other words, for

11In fact, any key size from 64 bits up to 128 is imaginable as stated in [GPPR11] by extending keys of
more than 64 bits to 128 bits.

12We note that the situation is different for any key sizes other than 64 or 128 bits due to the way such
keys are handled during the process as of the updated version of the LED specification [GPPR12].
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processing 1 block of input data, 254 EEPROM read operations and 254 clock cycles are
required.

Of course if one aims to avoid the overhead incurred by selectively accessing the
key bits, one could deploy the following approach. Recall that during each of the 254
rounds of KTANTAN, 2 key bits are required that are taken from the 80-bit key. Hence,
instead of storing the 80-bit key in EEPROM and being forced to apply selective reading,
one could instead store all necessary key bit values in the exact order as required by the
cipher. That is, given that encryption involves accessing the key 254 times and to extract
two bits each, this would result into storing a total of 508 precomputed key bit values.
Obviously, this yields a storage overhead since additional 428 bits would be stored in
EEPROM compared to storing the 80-bit key only. Any logic responsible for key bit
selection can however be omitted. That is logic is traded for EEPROM area in this case.
Assuming such a precomputation approach, KTANTAN requires 508 key bits retrieved
from EEPROM, i. e., 63.5 sequential read operations for 8-bit memory words.13 For the
sake of comparison, the throughput for this approach is also given in Table 3.29.

PRINTcipher. The PRINTcipher [KLPR10] is a block cipher which is available with
different block sizes. PRINTcipher-48 uses a block size of 48 bits with an 80-bit key,
whereas PRINTcipher-96 uses a block size of 96 bits with a 160-bit key. The number of
encryption rounds per input block is defined by the block size, e. g., PRINTcipher-48
performs 48 rounds, on which we focus in the following.

During encryption, the key is used in two different ways. In each round, the first 48
bits are directly used by XORing them with the current state. This state is then shuffled
and combined with a round constant. After this, the state and the remaining 32 key bits
are used in the key-dependent permutation layer which takes 3 bits from the state and 2
bits from the remaining 32 key bits to produce the input to an S-box. All these operations
can be realized by reading the key bits sequentially from the non-volatile memory in
each round.

Obviously, this design would fit best into the wrap case. In the no-wrap case, addi-
tional effort needs to be taken to restart reading the key bits from the beginning. Of
course, this could be circumvented if the expanded key is stored in EEPROM (similarly
as discussed for KTANTAN above). This would result into an increased throughput
similar to the wrap case, but at the cost of requiring significantly more EEPROM storage
(3, 840 bits instead of 80).

A2U2. The stream cipher A2U2 [DRL11] uses a 56-bit key. For each generated output
bit, 5 consecutive key bits are used in the process. This implies that sometimes it is
sufficient to retrieve one memory word only (if all five bits are within the same word),
but sometimes two words are necessary (if some of the bits fall into the current memory

13Technically, 64 read operations would be performed.
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word and the remaining ones in the subsequent word). This is independent of the
underlying memory word size. As eight bits are a common size for memory words, we
assume this value in the following. Thus, producing 8 output bits requires retrieving
40 key bits from memory which translates to 4 1-word and 4 2-word EEPROM read
operations. Additionally, only 1 of 8 read cases may be performed as a current address
read, in all other cases a previously requested memory address has to be read again
which requires a selective read. On average, one has to read 1.5 memory words per
output bit where a fraction of 1

7 can be realized as current address reads.
Table 3.29 provides an overview of the achievable throughput for different interfaces

considering both the wrap case and the no-wrap case with an underlying memory word
size of 8. Additionally, if provided by the interface, we assume to utilize the current
address read which is possible for generating 1 out of 8 output bits. Note that it may
happen that the last and first memory word are required to produce an output bit which
in the no-wrap case requires 2 selective read operations requesting the 2 memory words
separately instead of only 1. However, this occurs 4 times per 56 generated output bits.
Hence, there is only a slight difference noticeable between those cases.

Sprout and Plantlet. The stream ciphers Sprout and Plantlet use an 80-bit key and
almost identical round key function. In a nutshell, for both ciphers, each of the key
bits is accessed in a sequential fashion, i.e., starting with the first bit followed by the
subsequent bit and so forth. Although in Sprout, this bit is not necessarily considered
for further processing, it is reasonable to assume that 1 key bit is required per produced
output bit in both designs. Considering a memory word size of 8 bits, 10 EEPROM read
operations are required for producing 80 output bits.

This is particularly useful for the wrap case, as this implies that the read operation
needs only be initiated once, while the current key bit is available immediately, e.g., to
produce output of more than 80 bits.

In the no-wrap case on the other hand, after the 80th key bit is used, a selective read
operation is needed to continue output production which then requires reading the first
key bit again. This affects the achievable throughput and limits it to different values
for the considered interfaces as presented in Table 3.29. Contrary to A2U2, there is an
absolute difference noticeable between the wrap case and the no-wrap case.

3.3.3.2 Evaluation of the Ciphers’ Throughput

The results of the analysis are summarized in Table 3.29. It displays the throughput
of the respective cipher using the respective standard serial EEPROM in comparison
to the same implementation where no effort is assumed for accessing the key which
represents 100% throughput. For example, in case of Midori64 the throughput decreases

14Serialized implementation
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Table 3.29: Impact of different standard serial interfaces for EEPROM access on the through-
put for several ciphers relative to the original throughput i. e., higher is better.

Cipher Approach I2C SPI Microwire UNI/O

Midori64
wrap 1.4% 1.5% 1.5% 1.2%
no-wrap 1.2% 1.4% 1.4% 0.9%

LED-12814 wrap/no-wrap 81% 82% 82% 81%

KTANTAN32/48/64
std 2.5% 4% 5% 1.6%
ext 45% 50% 50% 40%

PRINTcipher-4814 wrap 17.8% 20% 20% 16%
no-wrap 13.3% 16.7% 17.6% 10.7%

A2U2
wrap 4.8% 7.1% 8.7% 3%
no-wrap 4.7% 6.8% 8.4% 3%

Sprout and Plantlet
wrap 88.9% 100% 100% 80%
no-wrap 66.67% 83.33% 87.91% 53.33%

from 100% to 1.4%, i.e., by a factor of almost 72 when switching from an implementation
where accessing the key incurs no overhead compared to using I2C in wrap case. One
exception is KTANTAN where the key bits are accessed in random order. Here, the
distinction between wrap case and no-wrap case would not make sense. Instead we
distinguish between standard and the extended key approach). Standard approach
means that the cipher applies selective reading, i.e., each time the next key bit has to
be accessed, the read address needs to be configured before. In the extended approach,
the key bits are duplicated and stored in the order they need to be accessed during
encryption. This allows to use sequential reading and hence achieves higher throughput,
but at the cost of increased area. These two approaches are denoted by std. and ext.,
respectively.

Furthermore, we investigated for the same ciphers the impact of different EEPROM
integrations into ASIC on the throughput. The results are displayed in Table 3.30. Here,
we consider different customized EEPROM types where “custom x1” means that it
requires one clock to read one bit, “custom x8” that eight-bit words can be read in one
clock cycle, and so on. Analogously to above, we do not state concrete values but state
the throughput in comparison to an idealized version where the access to the key creates
no overhead at all.
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Table 3.30: Impact of different ASIC EEPROM realizations on the throughput for several
ciphers, i. e., higher is better.

Cipher Custom x1 Custom x8 Custom x16 Custom x32

Midori64 1.5% 12.5% 25% 50%

LED-128 82% 100% 100% 100%

KTANTAN32/48/64
std. 57% 57% 57% 62.5%
ext. 57% 100% 100% 100%

PRINTcipher-48 20% 72% 84% 89%

A2U2 20% 67% 77.8% 88.9%

Sprout and Plantlet 100% 100% 100% 100%

3.3.3.3 Discussion of the Results

At this point, we would like to stress that our goal is to show the impact on the through-
put of lightweight ciphers that continuously access the non-volatile key in the presence
of different realizations of NVM. This is by no means intended as an evaluation, neither a
judgement, of the ciphers themselves. Whenever possible we did choose the implemen-
tations mentioned in the original publication. However, it may well be that for several
ciphers, different implementations would result into a lower or higher decrease of the
throughput, e.g., the serialized version of Midori would probably be much less affected
by the limitations.

Furthermore, since most of the discussed ciphers are available in different variants
with different properties, we decided to evaluate area-conservative implementations
as provided in the original publications. As our assessments show, the ciphers LED,
Sprout and Plantlet keep almost maximum performance regardless of the NVM type
due to sequential processing of key bits which makes them suitable for various target
applications. Also the cipher KTANTAN shows high performance if the extended key
approach is used. However, applying such approach would expand the key storage
effort for KTANTAN from 80 bits to 508 bits, which may lead to additional costs. This
does not hold for the ciphers LED, Sprout and Plantlet.

The approach of constantly accessing the key from rewritable non-volatile memory
is practical but in certain cases negative impacts may occur. With respect to area size,
there is no big difference if the key has to be read only once or continuously during
encryption, since the logic for reading the key (at least once) has to be implemented
anyway. Small extra logic may be needed for synchronization with NVM—cipher should
not be clocked unless key material is ready.This approach often leads to significantly
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decreased speed and is thus undesirable for use cases with timing or energy constraints.
However, designs with round key functions that require sequential access to the key bits
are almost unaffected irrespective of the underlying NVM type.

3.4 On the Energy Consumption of Stream Ciphers

3.4.1 Motivation

Some previous works have investigated the energy efficiency of block ciphers. In
[BDE+13, KDH+12], an evaluation of several lightweight block ciphers with respect to
various hardware performance metrics, with a particular focus on the energy cost was
done. In [BBR15], the authors looked at design strategies like serialization and round
unrolling and the effect it has on the energy consumption required to encrypt a single
block of data. Serialization stretches out the execution of each round function over
a number of clock cycles and hence was found to be unsuitable for energy efficiency.
The authors then proposed a formal model for energy consumption in any r-round
unrolled block cipher architecture. The authors concluded that the energy consumed
for encrypting one block of plaintext, for any r-round unrolled implementation had a
quasi-quadratic form (a, b, c are constants and R is the number of iterations of the round
function prescribed for the design):

Er = (ar2 + br + c) ·
(

1 + dR
r
e
)

. (3.7)

Although an r-round unrolled cipher consumes more energy per cycle for increasing
values of r, it takes fewer cycles to complete the encryption operation itself. So to
determine the value of r at which the design consumes least energy is an interesting
optimization problem. The authors concluded for block ciphers with lightweight round
functions like PRESENT and SIMON, r = 2 was the optimal configuration, whereas for
“heavier” round functions like in AES and Noekeon, r = 1 was optimal. Building on
these ideas, the block cipher family Midori was proposed in [BBI+15] that optimized the
energy consumption per encryption. Such a study for stream ciphers was not available
in literature as far as we know.

All the previous works in this field [BBR15, BBI+15, BDE+13, KDH+12] have focused
on energy per encryption, which is the energy required to encrypt one block of data.
However it makes more sense to consider the energy consumption required to encrypt a
large number of data blocks taken together, since there is seldom any real world protocol
that require encrypting one single block of data. In [BMA+18] we showed that when
it comes to encrypting significantly large data, a stream cipher may be energy-wise a
better solution than a block cipher. Stream ciphers like Grain [HJM07] and Trivium
[CP08] use extremely simple state update operation that typically involves computing
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multiple boolean functions and state rotation. As a result, unrolling multiple rounds of
a stream cipher usually only involve accommodating additional copies of the boolean
function circuit (if the number of rounds unrolled is small). This means that the power
consumption in stream cipher circuits increases very slowly as additional rounds are
unrolled. On the other hand, the number of clock cycles required to encrypt a given
amount of plaintext drops linearly with such unrolling, and hence, so does the energy
required to perform the encryption operation.

As an instructive example it is interesting to compare the energy consumptions of
the single and two-round unrolled Grain v1 circuits. A single round implementation of
the Grain v1 circuit synthesized with the standard cell library of the STM 90nm logic
process, takes around 1164 GE and has an average power consumption of 40.567 µW at
a clock frequency of 10 MHz. In order to encrypt 64 bits of data the circuit has to operate
for 1 (loading the Key-IV) + 160 (for Key-IV mixing) + 64 = 225 clock cycles. Therefore
the energy required for the operation is approximately 40.567 ∗ 225 ≈ 912.8 pJ. On the
other hand a two-round unrolled Grain v1 circuit, which performs 2 round operations
in one clock cycle, has an area of around 1200 GE and an average power consumption of
around 41 µW. However this circuit requires only 1+80+32=113 clock cycles to encrypt
64-bit data, and so the energy requirement is only around 463 pJ. So a 2x unrolling
results in approximately a 2x reduction in energy as well. For a cipher like Grain v1
which was specifically designed to allow for efficient unrolling of upto 16 rounds we
expect the trend to persist for at least up to 16th degree of unrolling and perhaps beyond
that as well. These results were published in [BMA+18].

Table 3.31: Best cipher configurations with respect to energy consumption

Cipher Security level Optimal configuration Energy (nJ) 1000 blocks
PRESENT 80 bits 2x 155.2
Plantlet 80 bits 16x 64.98
Grain v1 80 bits 20x 33.02
Trivium 80 bits 160x 10.15
Lizard 80 bits 16x 80.34
Midori64 128 bits 2x 90.5
Grain 128 128 bits 48x 25.29
Kreyvium 128 bits 128x 11.29
Trivium-2 128 bits 320x 9.77

3.4.2 Evergy Variations in Stream Ciphers
In this section, we investigate factors that may affect the energy consumption of stream
ciphers. The aim is to identify parameters that a designer can choose to increase/de-
crease the energy consumption. To this end, we perform several experiments and draw
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necessary conclusions about the characteristics that an energy efficient stream cipher
should possess. In [BBI+15], it was pointed out that for any given block cipher, the three
main factors that determine the quantity of energy dissipated in the circuit:

(a) The clock Frequency,

(b) The architecture of the individual components, and

(c) the number of unrolled rounds.

Since stream ciphers possess the same basic architecture as block ciphers (see Fig-
ure 3.1), the same is likely to be true to some extent for a stream cipher as well. Two
components characterize the amount of energy dissipated in a CMOS circuit :

• Dynamic dissipation Edynamic due to the charging and discharging of load capaci-
tances and the short-circuit current,

• Static dissipation Estatic due to leakage current and other current drawn continu-
ously from the power supply.

Thus the total energy dissipation for a CMOS gate can be written as Egate = Edynamic +
Estatic. In this section, we investigate various factors that can affect the energy perfor-
mance of implementations of stream ciphers. In our experiments, we considered the
above three factors that would likely affect the energy metric of the encryption algorithm.
In all the simulations reported in this work, we maintained the following design flow.
The design was implemented at RTL level. A functional verification of the VHDL code
was then done using Mentorgraphics ModelSim. Thereafter, Synopsys Design Compiler was
used to synthesize the RTL design. The switching activity of each gate of the circuit was
collected by running post-synthesis simulation. The average power was obtained using
Synopsys Power Compiler, using the back annotated switching activity. The energy was
then computed as the product of the average power and the total time taken for the
encryption process.

3.4.2.1 Frequency of Operation

As already pointed out in [KDH+12, BBR15], the energy consumption required to com-
pute an encryption operation should be independent of the frequency of operation,
as energy is a quantity which is a measure of the total switching activity of a circuit
during the process. This is true for sufficiently high frequencies, where the total static
energy Estatic consumed by the system is low across the total number of cycles required
for encryption. However it was shown in [BBR15] that for circuits designed with the
standard cell library of the STM 90nm low leakage CMOS process, at frequencies lower
than 1 MHz, the static energy naturally starts to play a significant role, thereby increas-
ing the energy consumption and that for frequencies higher than 1 MHz, the energy
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Figure 3.1: n round unrolled implementation of a stream cipher

consumption is more or less invariant with respect to frequency. So in our experiments,
we fixed the frequency of operation to 10 MHz (this corresponds to a clock period of 100
ns), so that the leakage power plays minimal role in the energy consumption.

3.4.2.2 Architecture

Often, there are various ways of implementing stream ciphers. We will take a detailed
look at a few of them:

A. Scan Flip-Flops vs Regular Flip-Flops Figure 3.1 depicts the diagram of a stream
cipher which has been unrolled n times. Unrolling in stream ciphers refers to
implementations where we include logic gates for multiple round update functions
in the same circuit, so that it is possible to do multiple round computations in
a single clock cycle. The storage element of the design is usually preceded by
a multiplexer, which in the initial clock cycle filters a combination of the key
and IV on to the register and the output of the round function thereafter. The
combination of the flip-flop and multiplexer can be replaced with a scan flip-flop
which logically achieves the same functionality, while occupying less area and less
power. Hence the intuition was that designs using scan flip-flops would be more
energy-efficient. This was confirmed by simulations tabulated in Table 3.32. The
table shows simulation results for the six hardware-based stream ciphers Grain v1,
Grain 128, Trivium, Plantlet, Lizard and Kreyvium synthesized with the standard
cell library of the STM 90nm logic process. It displays the energy consumptions
for encrypting for both 1 and 1000 blocks of plaintext where one block is taken to
be equal to 64 bits.

For example, Grain v1, takes 1 (loading key-IV) + 160 (initialization) + 64 = 225
cycles to encrypt 1 block of plaintext. So as given in the table, using regular flip-
flops, the energy required is given as 225× 100 ns × 40.6 uW ≈ 912.8 pJ. Similarly,
161 + 64, 000 = 64, 161 cycles are required to encrypt 1,000 blocks, and so the
energy required for it can be estimated as 64, 161× 100 ns × 40.6 uW ≈ 260.28 nJ.
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Table 3.32: A comparison of energy consumptions for Regular and Scan flip-flops R:
Regular flip-flop, S: Scan flip-flop

# Cipher FF Area Power* (uW) Energy (pJ) Energy (nJ)
(GE) @ 10 MHz 1 block 1000 Blocks

1 Grain v1 R 1164 40.6 912.8 260.28
S 1005 38.9 874.8 249.47

2 Grain 128 R 1700 71.5 2287.1 459.23
S 1455 57.8 1855.4 371.41

3 Trivium R 1870 78.4 9527.6 510.48
S 1584 75.6 9194.9 492.26

4 Plantlet R 886 35.4 1364.7 227.99
S 785 34.4 1363.1 227.73

5 Lizard15 R 1481 51.8 1663.2 332.93
S 1360 50.4 1617.5 323.78

6 Kreyvium R 3433 146.2 17792.5 952.53
S 2892 140.8 17135.4 917.35

*The figures are given for the average power consumption

Main Conclusions: We can draw the following conclusions from the results re-
ported in Table 3.32. First, designs implemented with scan flip-flops are shown to
be better both with respect to energy consumption and circuit area. Since all other
factors remain equal, reduced area when using scan flip-flops results in reduced
power consumption. Since energy is simply the time integral of the power, this
also results in reduced energy consumption.

B. Fibonacci vs Galois Configuration Stream ciphers like Grain v1, Grain 128 and Triv-
ium were designed having the Fibonacci configuration of the deployed LFSR. As
shown in Figure 3.2A, a Fibonacci shift register updates its states by a one bit
shift at each clock cycle. Only the final bit is updated with a round function value
computed on the current state. In comparison, in the Galois shift register, each
state bit is updated with function fi computed on the current state, as shown in
Figure 3.2B. Note that although it is not shown explicitly in Figure 3.2, each of the
functions fi are computed over the entire state and not just the preceding bit. Galois
equivalent circuits for Grain v1 and Grain 128 were proposed in [Dub10, Dub09].
The authors showed that Galois configurations usually have lower circuit latency
and thus can be used to make faster throughput designs. In Table 3.33, we tabulate

15We use the implementation of Lizard that loads key-IV in one clock cycle
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Figure 3.2: Fibonacci and Galois configurations for shift registers

results for a comparison between Galois and Fibonacci configurations. Note that
for the Plantlet stream cipher, the non linear register update function takes inputs
from the 39-th which is its last bit. As a result it is not possible to realize a Galois
configuration for the non-linear register [Dub09]. Also the linear register operates
in the Fibonacci mode, and requires its 60-th bit to be held at logic HIGH till
the key-initialization is over. As such it is is difficult to realize the exact Galois
representation for the linear register. So we omit Plantlet from the list of results in
Table 3.33.

Securitywise, both configurations do not offer any significant advantages over the
other with respect to classical cryptanalysis. However in [CMM14], it was shown
that that Galois registers were more vulnerable to power attacks as compared to its
Fibonacci counterpart. The authors performed thresholding results over various
sample window lengths of successive clock cycles in case of both the register
configurations. They were able to find the initial state of the Galois register using
approximately half the number of power traces as compared to Fibonacci registers.

Main Conclusions: Energy and area-wise, a Galois configuration does not seem
to offer any significant advantage over its Fibonacci counterpart. With respect
to all the ciphers that were primarily designed in the Fibonacci mode, Galois
configurations have another significant disadvantage. We will see later that for a
stream cipher to be energy efficient, it needs to be unrolled multiple number of
times. Galois equivalents of these ciphers that were primarily designed for the
Fibonacci mode, cannot be unrolled beyond a certain limit as shown in [Dub09].
This also makes Galois configurations unattractive for low-energy designs.
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Table 3.33: Results for Fibonacci vs Galois configurations, 1 block=64 bits, G: Galois, F:
Fibonacci configuration

# Cipher Conf Area (GE) Power* (uW) Energy (pJ) Energy (nJ)
@ 10 MHz 1 block 1000 Blocks

1 Grain v1 G 1016 39.8 894.4 255.05
F 1005 38.9 874.8 249.47

2 Grain 128 G 1466 58.9 1890.9 378.52
F 1455 57.8 1855.4 371.41

3 Trivium G 1592 76.0 9253.6 495.40
F 1584 75.6 9194.9 492.26

4 Lizard G 1366 50.7 1626.0 325.49
F 1360 50.4 1617.5 323.78

5 Kreyvium G 2898 141.3 17196.2 724.16
F 2892 140.8 17135.4 917.35

*The figures are given for the average power consumption

C. Architecture of Round Function The round functions Fi in hardware-based stream
ciphers (as shown in Figure 3.1) are generally very simple. These round functions
generally involve one bit shift (that can be efficiently implemented by shift regis-
ters) and one or multiple small boolean functions to update the terminal bit of the
register. We look at three possible ways of approaching these.

1. The first approach is to use a look-up table. For an n-variable boolean function
this is a table of 2n × 1 entries. For obvious reasons, although effective for
small n, this kind of circuit style is inadvisable, for larger values of n.

2. This approach is to feed the functional description (in terms of the algebraic
normal form) of the boolean function to the synthesizer and instructing it to
optimize for area and power. In this approach, we depend on the ability of
the circuit synthesizer to optimize the circuit according to the requirements
of the design.

3. The third approach is to use a Decoder-Switch-Encoder (DSE) style config-
uration. This approach was previously considered in [BBR15, BBI+15] for
designing the 8-bit Rijndael S-box and was shown to be energy efficient in
[BBR15, BBI+15]. For implementing boolean functions we have to improvise
the corresponding circuit for an S-box. The first step is the same as in the
S-box circuit: we implement the decoder first i.e., from an n-bit input, we
implement a set of 2n wires such that only one of them would result in a
logical HIGH for any particular input value. It is easy to see that there would
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be one wire corresponding to each input value, and we simply logically OR
all the wires whose inputs result in a logical HIGH in the truth table of the
function we are implementing. In fact it is clear, that we don’t even need to
expend hardware for constructing wires whose inputs result in a logical LOW
in the truth table.

However, the circuit size is still exponential in the length of input and such
circuits are also not advisable for large n. Since in both the DSE or the LUT
construction, the circuit size is exponential in the number of input variables,
we adopted a simple tweak. Whenever the number of input variables of a
function exceeded 10, we broke up the function as the GF(2) sum of roughly
equal sized component functions of input size less than 10, and constructed
the circuits for each of the component functions. Breaking up a function into
components is straightforward for some ciphers. For example, in Plantlet, the
NFSR update function g is given as

g = n0 + n13 + n19 + n35 + n39 + n2 · n25 + n3 · n5 + n7 · n8 + n14 · n21+

n16 · n18 + n22 · n24 + n26 · n32 + n33 · n36 · n37 · n38+

n10 · n11 · n12 + n27 · n30 · n31

Although this is a function of 29 variables, each variable occurs only once and
hence there is no intersection of terms between any 2 monomials. Hence it
is easy to break up g as a sum of five functions (say g1 to g5) each of 5 or 6
variables, such that no two component functions depend on the same input
variable. However, this is not always the case. The NFSR update function of
Grain v1 for instance, has 13 variables, and breaking it up into functions of
disjoint variables is not straightforward. However the DSE construction does
not explicitly require that the inputs of the component functions be disjoint.
For example, the Grain v1 NFSR function can be written as the sum of four
non-disjoint functions of 8, 7, 6, 3 variables each.

Main Conclusions: In Table 3.34 we list the simulation results for all the 3 architectures
of the round function. It is clear from the table that LUT or DSE style constructions of
the boolean function have no significant advantage over the circuit optimized by the
synthesizer.

3.4.2.3 Unrolling Rounds

Unrolling rounds is a design technique, which essentially serves the purpose of speeding
up the circuit throughput at the cost of area. For example, a two round unrolled AES
circuit consists of two sequentially placed circuits for the round functions, that computes
the ciphertext in only 5 clock cycles (i.e. half the time as compared to a single round
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Table 3.34: Results for varying architecture of round functions, Lut: Lookup table, Fun:
Functional synthesis using Synopsys tool, Dse: DSE configuration

# Cipher Conf Area (GE) Power (uW)* Energy (pJ) Energy (nJ)
@ 10 MHz 1 block 1000 Blocks

1 Grain v1 Lut 1071 43.3 973.7 277.68
Fun 1005 38.9 874.8 249.47
Dse 1088 41.7 938.4 267.61

2 Grain 128 Lut 1449 57.9 1858.3 371.98
Fun 1455 57.8 1855.4 371.41
Dse 4165 76.3 2449.0 490.23

3 Trivium Lut 1589 75.7 9211.1 493.12
Fun 1584 75.6 9194.9 492.26
Dse 1680 78.4 9542.8 510.88

4 Plantlet Lut 785 34.5 1326.3 221.58
Fun 785 34.4 1324.6 221.30
Dse 1143 42.7 1644.1 274.68

5 Lizard Lut 1327 49.9 1601.8 320.64
Fun 1360 50.4 1617.5 323.78
Dse 1946 58.5 1878.5 376.03

6 Kreyvium Lut 2897 141.2 17184.0 919.96
Fun 2892 140.8 17135.4 917.35
Dse 2988 144.0 17524.8 938.20

*The figures are given for the average power consumption
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Figure 3.3: Upto 16x implementation of Grain v1

circuit). In [BBR15], a comprehensive analysis of the energy consumption of round
unrolled circuits was given.

For stream ciphers, we have already seen that we expect round unrolling to be highly
beneficial with respect to energy consumption. Most hardware stream ciphers have
very simple round functions (consisting of a logical shift and a boolean function com-
putation). Thus, for the first rounds of unrolling, we do not expect significant increase
in algebraic and hence hardware complexity (i.e. lesser number of logic gates) of
the circuit . This would naturally limit transient switching activity (signal glitches)
from one round to the next [BBR15]. Since less glitches lead to lower power consump-
tion, it is quite often the case that unrolling stream ciphers by one round does not
really increase the power consumption by much, whereas it always decreases the
number of clock cycles required to encrypt a given amount of data and so the en-
ergy consumption decreases with unrolling. A good example of this is the Grain v1
circuit we were alluding to in the introduction. The single round and the 2 round
unrolled circuits have an average power consumptions of 40.567 and 41 µW respec-
tively, at a clock frequency of 10 MHz. Since the number of clock cycles required to
encrypt data in the 2 round circuit is approximately half as compared to the single
round circuit, a 2x unrolling results in approximately a 2x reduction in energy as well.

Unrolling in RTL.
Stream ciphers like Grain v1, Grain 128 and Trivium were specifically designed to

allow easy unrolling. In Grain v1 for example, the last 16 bit positions in both the linear
and non-linear register are used neither in the round update function nor the output
keystream function. This implies that a 16x unrolling of Grain v1 is straightforward
[HJM07], and only requires 16 additional copies of the round and update functions to be
added to the circuit as shown in Figure 3.3. The same is true for Grain 128 upto 32x and
Trivium for upto 64x.

For degrees of unrolling higher than that specified in the design, the algebraic structure
of the round update function gets more and more complicated, since simply adding
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more copies of round functions will no longer lead to correct functionality.
With increased degree of unrolling, the hardware structure of the circuit gets more

complicated and hence so do the transient signals produced in the circuit. This leads
to a higher power consumption in the circuit. But since each extra unrolling increases
the number of keystream bits produced per cycle, it decreases the total number of clock
cycles required to encrypt a given amount of data. So for smaller degrees of unrolling,
the decrease in the time taken to encrypt outweighs the increase in power, and the energy
consumed to encrypt a given amount of data decreases with unrolling. At some point of
time, more and more unrolling makes the circuit complex enough to increase the power
consumption beyond the leeway provided by the decrease in time to encrypt, and so the
energy consumption would increase steadily after this point. The point at which this
happens would of course depend on the architecture of the cipher in question.

In Table 3.35, we list the simulation results for energy consumptions for different
degrees of unrolling. We use scan based flip-flops to construct the memory element and
use functional optimization of the round function circuit. We also compare the results
with the corresponding energy performances of lightweight block ciphers PRESENT and
Midori64 in the ECB mode. There are several important issues we can observe from the
simulation results. We list them one by one.

Block ciphers: We compare our results with block ciphers PRESENT and Midori64.
PRESENT has been included as a standard in ISO/IEC 29192-2 and was shown in
[BBR15] to be extremely energy efficient. On the other hand the Midori block
cipher family was designed specifically for low energy consumption. Although a
subspace attack [GJN+16, TLS16] that exploits a class of weak keys of Midori64
has been reported, we use this cipher in our comparisons, as it signifies a lower
energy limit achievable with block cipher encryption. Note that, for the block
ciphers, in the last column we tabulate the energy required for encrypting data
in ECB mode, which is the lowest possible energy the system can consume while
encrypting multiple blocks. Usually CBC or CTR mode will include the energy
consumption for an additional 128 bit xor gate, but we report the consumption in
the ECB mode since we just aim to make a comparison.

Secondly, it is difficult to express the energy consumption of an r-round unrolled
stream cipher, in the same way that was done for an r-round block cipher in
Equation (3.7). Unlike block ciphers, unrolling a stream cipher by an additional
round does not increase the circuit complexity uniformly. As a result the transient
signals do not increase uniformly across round functions as in block ciphers, and
so it is difficult to algebraically model the energy consumption.

Shorter vs longer data lengths: Note that while for encrypting a single block of data,
block cipher based solutions outperform stream ciphers, the opposite is true for
larger lengths of data. For shorter lengths of data, the energy consumed by the
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stream cipher is dominated by the key initialization phase. For example, the 1x
implementation of Trivium would take 1217 clock cycles to encrypt 64 bits, of which
1152 is used up by the key initialization function. A one round implementation of
Midori64 would take only 17 cycles to encrypt 64 bits. For longer data, the effect
of key initialization on the energy consumption becomes less significant, since it
is computed only once. To encrypt 1000 blocks (64,000 bits) of data, Trivium 1x
would require only 64, 000 + 1, 152 + 1 = 65, 153 cycles. Clearly 1, 152 is a much
smaller fraction of 65, 153 than of 1, 217. Multiple unrolling decreases the time
to encrypt even further. For example, the 160x implementation of Trivium can
encrypt 160 bits in a single clock cycle, and so around 1 + d 64,000+1,152

160 e = 409
cycles are required for 1000 blocks. On the other hand, the most energy-efficient
version of Midori (2x) would take 9 ∗ 1, 000 = 9, 000 cycles to encrypt 1,000 blocks.
As a result we see that for the most energy-efficient configuration of Trivium (160x)
is around 9 times more energy efficient than the most energy efficient version of
Midori64. In Figure 3.5 we plot the energy consumptions for encrypting upto 10
blocks of data with the most energy efficient unrolled configurations of the ciphers.
Although for a single block of data, Midori64 performs best, whereas for 6 blocks
of data or more Trivium performs best.

Parabolic behavior with unrolling With respect to unrolling, the energy consumption
for stream ciphers follows the same parabolic behavior as block ciphers [BBR15],
particularly for longer lengths of data. Which is to say that for smaller degrees of
unrolling the energy consumption is very high, the energy consumption comes to a
minimum at some fixed degree of unrolling, and the energy consumption increases
again if the cipher is unrolled beyond this point. Two contradicting reasons are
responsible for the shape of this plot. For lower degrees of unrolling, the energy
consumption is obviously high due to 1) large number of initialization rounds in
stream ciphers, as already mentioned, and 2) lower number of bits encrypted per
clock cycle. A single round unrolled version of Grain v1, would encrypt one bit
of plaintext per clock cycle. This means that to encrypt one bit, the design has to
pay for the energy consumption of the 160-bit register and the associated logic
functions per clock cycle. Thus the total electrical work that the battery source
would need to do to encrypt 1,000 blocks is significantly large.

For the same reasons, the energy consumption starts to decrease, when the degree
of unrolling is increased. Larger degree of unrolling implies less time spent in
initialization and more bits encrypted per cycle. For example, a 32x unrolled
version of Grain v1, would need only 5 clock cycles for initialization. To encrypt
32 bits of data, the system would have to pay for the energy consumption of the
160-bit register per clock cycle. However, the logic functions in a 32x unrolled
version are more than 32 times more complex than in a 1x design, and it is true
that more power is consumed in the hardware circuit of the logic functions. Inspite
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Figure 3.4: Power consumption shares of Grain v1 for 1, 32, 64 degrees of unrolling

of that, we can see that a 32x implementation of Grain v1 is around 6.5 to 7 times
more energy efficient than the 1x version for short data lengths, and around 7.5
times better for longer data lengths.

After a certain point of time, increased unrolling results in increased energy con-
sumption. The reason for that is the power consumed in the logic functions
increases sharply at that point. This happens due to the reasons which are similar
for block ciphers [BBI+15]. In [BBI+15, Figure 2], it was shown that power con-
sumption in sequentially placed logic functions increases uniformly because of
increased circuit latency which leads to increased glitch propagation. As a result,
unrolling the round functions beyond a fixed number usually proves counter-
productive. Figure 3.4, demonstrates the increasing share of power consumed by
the logic functions in Grain v1 over 1, 32 and 64 degrees of unrolling. It is easy to
see that at 64x, the most power hungry element of the design is the round function.

Light/heavy round function A comparison of the energy consumptions given in Ta-
ble 3.35, especially for longer data length, is interesting as the results show that the
behavior in stream ciphers is similar to block ciphers, when compared with respect
to the “lightness” of round functions. It was shown in [BBR15], that block ciphers
with light round functions like PRESENT, Twine, SIMON produce less glitches
when the circuits for more than one round function are connected serially. Hence,
block ciphers with light round functions achieve energy optimality when unrolled
twice, in contrast with heavy round functions whose single round versions are
most energy efficient. In Table 3.35, it is seen that in ciphers like Grain v1, Lizard
and Plantlet whose update functions are more algebraically complex, the energy
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Table 3.35: Comparison of energy for different degrees of unrolling.

# Cipher r Area Avg. Power (uW) Energy (pJ) Energy (nJ) Energy/bit
(GE) @ 10 MHz 1 block 1000 Blocks (pJ)

1 Grain v1 1 1005 38.9 874.8 249.47 3.90
16 2673 86.6 129.9 34.73 0.54
20 2888 102.9 133.8 33.02 0.52
24 3293 129.4 142.3 34.61 0.54
28 3711 156.5 140.8 35.88 0.56
32 3934 165.1 132.1 33.12 0.52
48 5751 343.1 205.9 45.91 0.72
64 7474 561.3 280.7 56.30 0.88

2 Grain-128 1 1455 57.8 1855.4 371.41 5.80
32 3579 126.8 139.4 25.47 0.40
40 4178 158.1 142.3 25.42 0.40
48 4749 188.8 151.0 25.29 0.40
56 5321 235.2 164.6 27.02 0.42
64 6336 282.7 169.6 28.41 0.44
80 7078 407.7 203.7 32.81 0.51

3 Trivium 1 1870 78.4 9527.6 510.48 7.97
64 3051 128.7 257.4 13.11 0.20
80 3457 148.1 251.7 12.08 0.19
96 3839 169.4 237.1 11.51 0.18
128 4593 207.1 227.8 10.56 0.17
160 5409 248.2 223.4 10.15 0.16
192 6179 306.2 244.9 10.44 0.16
256 7755 419.5 251.7 10.73 0.17
288 8584 490.0 294.0 11.17 0.17

4 Plantlet 1 785 34.4 1324.6 221.30 3.46
8 1630 88.5 433.7 71.15 1.11
16 2254 161.6 404.0 64.98 1.02
32 3451 651.5 847.0 131.02 2.05

5 Lizard 1 1360 50.4 1617.5 323.78 5.06
8 2565 101.7 417.0 81.70 1.28
16 3954 200.0 420.0 80.34 1.26
32 6778 672.4 739.6 135.09 2.11

6 Kreyvium 1 2892 140.8 17135.4 917.35 14.33
64 4579 202.8 405.6 20.66 0.32
80 5045 224.0 380.8 18.28 0.29
96 5480 248.8 348.3 16.92 0.26
128 5050 221.4 243.5 11.29 0.18
160 7268 364.7 328.2 14.92 0.23
192 8149 430.7 344.6 14.69 0.23
256 8612 452.6 271.6 11.59 0.18
288 10836 696.1 417.7 15.87 0.25

7 PRESENT 1 1440 52.2 172.3 172.3 2.69
2 1968 91.3 155.2 155.2 2.43
3 2500 149.0 178.8 178.8 2.79

8 Midori64 1 1542 60.6 103.0 103.0 1.61
2 2017 100.6 90.5 90.5 1.41
3 2826 273.8 191.7 191.7 3.00
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Figure 3.5: Energy consumptions for upto 10 blocks for most energy-efficient implementa-
tions

optimality is achieved at smaller degrees of unrolling. This is in contrast with
Trivium which has an extremely simple round update function consisting of 3 and
gates and 6 xor gates. Trivium achieves energy optimality at 160x unrolling.

Also there seems to be a distinct advantage for unrolled stream ciphers with simple
update functions like Trivium, especially for encryption of longer data streams.
For example, Trivium unrolled at 160x, would for the encryption of 160 bits in
every clock cycle, pay for only the power consumed in the 288 bit register and the
circuit for the logic function. Unlike Grain v1, the logic update of Trivium is very
simple, and this ensures that even at 160x, the algebraic and hardware complexity
of the round update is not significant. At 160x, the round function in Trivium
consumes only 134 µW which is only around 54% of the total power. This is in
contrast with the 64x Grain v1 implementation, which consumes around 460 µW,
which is 82 % of the total power.

Comparison with Kreyvium Since Kreyvium builds upon the Trivium structure by
adding two additional registers for key and IV rotation, and two additional xor
gates, we have seen that 1x unrolled versions of Kreyvium consume 1.5 to 2 times
more energy as Trivium even for longer data lengths. This trend is also seen in
higher round unrolled versions except for implementations where the number of
unrolled rounds is a multiple of 128. These versions do not need additional regis-
ters to implement key and IV rotation since they can be assumed to be available
on the wires, and hence these implementations have lower energy consumption.
Inspite of these the additional complexity of 2 xor gates in the round function
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implies that even for multiples of 128, the most energy-efficient configuration of
Kreyvium consumes around 10% more energy than Trivium.

From the discussion in this section, it is clear that in the longer run (encryption of
longer streams) stream ciphers with simpler update functions have a distinct advantage.
These are easier and more energy-efficient to unroll for higher degrees of unrolling.
Higher degrees of unrolling allows to encrypt more bits in one clock cycle, which is
crucial in bringing down the number of clock cycles required to encrypt a given length of
data, and hence the energy consumption. On the other hand, higher degree of unrolling,
does imply that the logic for the update function becomes more complex and hence
needs more power to operate, but if the update function is kept simple enough, it ensures
that the additional power consumption is small enough not to outweigh the natural
advantages obtained from unrolling. Lastly, the number of initialization rounds does
affect the energy numbers for shorter data packets, but its effect becomes minimal with
the increase in the length of plaintext to be encrypted.
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4 Proposed Approaches and Techniques

4.1 Chapter Overview

This chapter is devoted to new implementation techniques and approaches which lead
to the more lightweight security solutions.

In Section 4.2, we discuss an implementation technique for increasing the throughput
of stream ciphers without usage of additional memory. The technique adapts the well-
known principle of pipelining of the output function. The core difference however is
that we identify “unused” regions within the FSR and use them for storing intermediate
values, hence mitigating the need for additional memory. Here, “unused” means regis-
ters of the FSRs that are only used for storing values and that are neither involved in the
update function nor the output function. We consisely describe sufficient conditions for
the applicability of this technique and demonstrate it on the stream ciphers Grain-128
and Grain-128a. The results presented in the section are based on the papers [AM14]
and [AM].

In Section 4.3 we explore an extension in the common design approach for stream
ciphers which allows to reduce their area size. There exists a well-known rule of thumb
which says that the internal state size of a stream cipher should be at least twice the
security parameter, otherwise, the cipher can be broken. This makes it difficult to realize
stream ciphers with low area size, as long as memory is usually the most expensive part
of the design. In this section, we demonstrate that a simple shift in the common design
paradigm, namely, involving the key into the update process of the internal state of a
cipher, allows to improve its resistance against certain attacks, and hence, to develop
secure designs with lower internal state size. Section 4.3 is based on the paper [AM15].

4.2 On Increasing the Throughput of Stream Ciphers

4.2.1 Motivation

A common approach for increasing the maximum throughput of a circuit which im-
plements a given function is the pipelining technique. In order to reduce the delay of
the critical path of the circuit, it is divided into several parts which are computed in
parallel. Pipelines can be implemented at a number of layers. During each clock cycle,
the output of each block is stored in a memory stage. At the next layer the values from
the previous layer are combined to new blocks and so on until the last layer outputs the
result of the function. However, each layer of the pipelining except the last one requires
additional memory for storing the intermediate results, which is the most expensive
part in terms of the area size and power consumption and, according to [MD10, MD13],
induces additional latency.
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4.2.2 High Level Description

Before we explain the proposed transformation in detail, we provide a high level de-
scription.

Our technique can be seen as a special case of pipelining but where existing structures
are cleverly re-used for avoiding additional memory as much as possible. It is motivated
by the observation that FSRs are usually implemented in the Fibonacci configuration.
This means that at each clock, all but one state entries are simply shifted while only the
remaining entry requires more involved computations.

The idea is now that some of the computations that should take place in the output
function are ”outsourced” to the FSR update functions and to store the intermediate
results in the FSR. Assume that the output function Out (see Equation 4.2) can be written
as

zt = Out(Stt, Bt) = Sttβ + Out1(Stt, Bt) + Out2(Stt, Bt) (4.1)

with Bt = (bt, . . . , bt+`−1). In principle, the transformation removes Out1 from Out and
inserts it into the update function fβ:

( fβ, Out = Stt[β] + Out1 + Out2)
Transf.⇒ ( f ′β := fβ + Out1, Out′ = Stt[β] + Out2)

Observe that the overall computational effort has not been increased. Moreover, it is not
necessary to insert additional memory for storing the intermediate value Out1(Stt, Bt)
as it is stored in the FSR register with index β. Finally, one sees that Out′ produces the
same output as Out but its complexity has been reduced. If possible, one may repeat
this step several times for different parts of Out so that eventually the output function
becomes a linear function where simply a selection of FSR state entries is added.

Of course, care needs to be taken that the transformation is preserving. To ensure
that the FSR output, i.e., the value at index 0, is not affected by the transformation, we
apply the following trick: we integrate Out1 into two different update functions fα and
fβ for α < β. The modification of fβ insert the value Out1(Stt, Bt) as explained above
such that it can be used directly in the output function. In the subsequent clocks, this
value is simply shifted until it reaches position α. Here the modification of fα has been
such that the value is canceled out again. The consequence is that the transformation
possibly changes the FSR entries at indexes α . . . β but leaves the state entries outside of
this interval unchanged, including the value at index 0 which defines the FSR output.
This property is proven for different variants of the transformation (see the proofs of
Theorem 1, Lemma 1, and Theorem 2).

While the approach is conceptually simple, several aspects need to be considered:

1. It may not be sufficient to ensure that the FSR output is preserved. If the cipher
uses functions where part of the inputs are taken from the interval α . . . β, then
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the output of this function would be altered as well. To avoid such effects, we
focus on intervals of state entries such that all other values are independent of this
interval in a certain sense. This is made precise by the notion of isolated intervals
(see Definition 4).

2. For canceling out the change at position α, one cannot simply replace fα to fα +
Out1. The reason is that Out1 would use state entries that are β− α clocks later
than when the change at index β has been introduced. Thus it is necessary that
the value Out1(Stt, Bt) can still be reproduced β− α clocks later. We capture this
formally by saying that a function has sustainable outputs (Definition 5).

In fact, the concrete transformation (including the prerequisites and the proof of cor-
rectness) is technically involved. Therefore we split the technical treatment into two
parts. In section 4.2.3 we introduce a preserving transformation for FSRs where an
external bit stream is integrated into some of the update functions (Theorem 1). As we
make no assumptions on this bitstream, the transformation might be of independent
interest. Afterwards we explain an extension where this bitstream may depend on the
FSR itself (Lemma 1). This requires a careful argumentation why the FSR-transformation
is still preserving. For practical reasons, we restrict to bitstreams that depend on values
only which are accessible over several clocks without requiring additional memory.
These transformations represent the basic building block for the cipher transformation
presented and discussed in section 4.2.4.

4.2.3 New Preserving FSR-Transformation

4.2.3.1 Feedback Shift Registers with External Input.

While stream ciphers commonly use a discussed specific type of FSRs (See definition 1),
we consider the following, significantly broader class of FSRs:

Definition 3 (FSR with External Input). A FSR with external input FSRE of length n
consists of an internal state of length n, an external source which produces a bit sequence
(bt)t≥0, and update functions fi(x0, . . . , xn−1, y0, . . . , y`) for i = 0, . . . , n− 1. Given some
initial state St0 = (St0[0], . . . , St0[n− 1]) ∈ Fn, the following steps take place at each
clock t:

1. The value Stt[0] is given out and forms a part of the output sequence.

2. The state Stt ∈ Fn is updated to Stt+1 where Stt+1[i] = fi(Stt, bt, . . . , bt+`−1).

We denote by seq(FSRE, St0, (bt)t≥0) the output sequence of FSRE given an initial state
St0 and an external bit sequence (bt)t≥0.
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Observe that we make no restrictions on the update functions whereas stream ciphers
commonly deploy FSRs which are in Fibonacci configuration. A further relaxation is
that the update of the state depends on the current assignment and possibly on bits from
an external source. Observe however that the bits (bt)t of the external source are not
affected by the state bits.

Two FSRs FSRE and FSRE
′ of the same length with access to the same external source

are called equivalent, denoted by FSRE ≡ FSRE
′, if for any initial state St0 for FSRE there

exists an initial state St′0 for FSRE
′ (and vice versa) such that both produce the same

output sequence for any external bit sequence (bt)t≥0. A transformation which takes as
input some FSR FSRE (and possible other inputs) and outputs a FSR FSRE

′ such that
FSRE ≡ FSRE

′ is called preserving.
The majority of stream ciphers can be characterized as follows: They deploy one

or several regularly clocked finite state machines, typically including at least one FSR.
At each clock several values of these components are fed into an output function Out
which eventually produces the current keystream bit. We assume that the keystream
bit is computed before the FSRs are updated. In principle we investigate if and how
certain computations that would take place in Out can be shifted to one of the deployed
FSRs such that (i) the resulting cipher remains equivalent but (ii) the throughput is
increased. Consequently to keep the description as simple and readable as possible and
to cover a maximally broad class of stream ciphers, we consider stream ciphers which
contain three components only: an FSR FSRE of length n, an output function Out, and an
external block EB. Here we make no restrictions on the processes running inside of EB
but consider it as a black box which may contain further FSRs, additional memory, etc.
The only assumption we make is that a bitstream (bt)t≥0 can be specified which contains
all bits produced within EB which are relevant for the state updates of FSRE and/or
for computing the next keystream bit. Observe that this does not exclude the case that
EB may contain several components, each producing its own bitstream. For example
if we consider ` components where the i-th component produces a bitstream (b(i)t )t≥0,
these bitstreams can be joined to one bitstream as follows: (bt)t≥0 = b(1)0 , . . . , b(`)0 , b(1)1 , . . ..
Adopting the notation from Definition 3, the output function Out is defined over some
variables Out(x0, . . . , xn−1, y0, . . . , y`) and the t-th keystream bit is

zt = Out(Stt, bt, . . . , bt+`−1). (4.2)

We adopt the notions of equivalence and preserving transformation from the topic of FSRs
for ciphers in a straightforward manner.

4.2.3.2 Preserving FSR transformation

We now provide a detailed technical description of a new preserving transformation for
FSRs which is an integral part of the cipher transformation in section 4.2.4. It requires
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that the FSR state contains an isolated interval, meaning a part of the state which has
almost no impact on the update of the remaining part and, if existent, is independent of
some output function Out. The formal definition is as follows:

Definition 4 (Isolated Interval). Consider an FSR-based stream cipher, being composed
of an FSR FSRE of length n with update mapping F = ( f0, . . . , fn−1), an external block
with bit stream (bt)t≥0, and a function Out(x0, . . . , xn−1, y0, . . . , y`). Interval [α . . . β] with
0 ≤ α ≤ β ≤ n− 1 of the FSR-state is isolated with respect to F and Out if the following
conditions are met:

1. The feedback functions fα−1, . . . , fβ−1 have all the form

fi(x0, . . . , xn−1, y0, . . . , y`−1) = x(i+1) mod n + gi(x0, . . . , xn−1, y0, . . . , y`−1)

with supp(gi) ∩ {xα, . . . , xβ} = ∅. That is, these feedback functions depend on the
values at indices in [α, β] but only in the sense that these values are shifted.

2. The remaining feedback functions f0, . . . , fα−2, fβ, . . . , fn−1 and the output function
Out are completely independent of the values at indices [α, β], that is supp( fi) ∩
{xα, . . . , xβ} = ∅ for all i ∈ [n− 1] \ [α, β].

We now describe and prove a basic preserving transformation where an external bit
stream (bt)t≥0 is integrated into some update functions:

Theorem 1 (Preserving FSR Transformation). Consider an FSR FSRE with update mapping
F = ( f0, . . . , fn−1) and an external source producing a bitstream (bt)t≥0. Let [α, . . . , β] be an
interval which is isolated with respect to F. We define an FSR FSRE

′ with update mapping
F′ = ( f ′0, . . . , f ′n−1) which is derived from F as follows:

f ′α−1 := fα−1 + yβ−α, f ′β := fβ + y1, f ′i := fi for all i 6= α, β

Then both FSRs are equivalent, i.e, FSRE ≡ FSRE
′.

Proof of Theorem 1. We have to show that for any initial state St0 ∈ Fn there exists a
corresponding initial state St′0 ∈ Fn such that the output sequences (Stt[0])t≥0 and
(St′t[0])t≥0 are equal for any assignment of (bt)t≥0. This is an immediate consequence of
the following claim:

Claim: We define for each t ≥ 0 the vector

∆t := (0α−1, bt+β−α, bt+β−α−1, . . . , bt+1, bt, 0n−β)

where 0r denotes r-times the value zero. Let St0 ∈ Fn be an arbitrary initial state
and define St′0 := St0 + ∆0. Then it holds that for each clock t that Stt + St′t = ∆t.
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It follows from the claim that Stt[0] + St′t[0] = ∆t[0] = 0 for each clock if St0 + St′0 = ∆0.
That is both produce the same output bitstream which proves the theorem.

It remains to prove the claim which we do by induction. For t = 0, the claim holds by
definition of St′0. Next assume that Stt + St′t = ∆t for some clock t ≥ 0. Recall that by
definition of isolated intervals (see Definition 4) that the functions gi for i ∈ [α− 1, β− 1]
and fi for i 6∈ [α− 1, β− 1] are all independent of the variables xα, . . . , xβ. Moreover,
we have Stt[i] = St′t[i] for all i 6∈ [α− 1, β− 1]. Hence, we have gi(Stt) = gi(St′t) for
i ∈ [α− 1, β− 1] and fi(Stt, bt, . . . , bt+`−1) = fi(St′t, bt, . . . , bt+`−1) for i 6∈ [α− 1, β− 1].
We investigate now the difference Stt+1 + St′t+1 index by index.

For i ∈ [0, . . . , α− 2, β + 1, . . . , n− 1], we have

Stt+1[i] = fi(Stt, bt, . . . , bt+`−1) = fi(St′t, bt, . . . , bt+`−1)

= f ′i (St′t, bt, . . . , bt+`−1) = St′t+1[i],

showing the zeros at the beginning and the end of Stt+1 + St′t+1.
For i = α, . . . , β− 1, it holds

Stt+1[i] = fi(Stt, bt, . . . , bt+`−1) = Stt[i + 1] + gi(Stt, bt, . . . , bt+`−1)

= St′t[i + 1] + ∆t[i + 1] + gi(St′t, bt, . . . , bt+`−1)

= St′t[i + 1] + gi(St′t, bt, . . . , bt+`−1) + ∆t[i + 1] = St′t+1[i] + ∆t+1[i].

In the last equation we made use of the fact that by definition it holds that ∆t[i] = bt+β−i
for all i = α, . . . , β and hence ∆t[i + 1] = ∆t+1[i] for i = α, . . . , β− 1.

For i = α− 1, we have

Stt+1[α− 1] = fα−1(Stt, bt, . . . , bt+`−1) = Stt[α] + gα−1(Stt, bt, . . . , bt+`−1)

= St′t[α] + ∆t[α] + gα−1(St′t, bt, . . . , bt+`−1)

= St′t[α] + gα−1(St′t, bt, . . . , bt+`−1) + yt+β−α

= f ′α−1(St′t, bt, . . . , bt+`−1) = St′t+1[α− 1].

Finally, it holds that

Stt+1[β] = fβ(Stt) = fβ(St′t, bt, . . . , bt+`−1) = fβ(St′t, bt, . . . , bt+`−1) + bt+1 + bt+1

= f ′β(St′t, bt, . . . , bt+`−1) + bt+1 = St′t+1[β] + bt+1.

Hence Stt+1[β] + St′t+1[β] = bt+1 which concludes the claim.

Summing up Theorem 1 ensures that XORing an external value to the state entry
which marks the beginning of an isolated interval preserves the FSR as long as this value
is cancelled out later before it ”leaves” this interval. In practice this requires to have
access to the same value at two different clocks. Certainly, a simple solution would be to
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store this value in some external memory until it is not longer needed but this would
increase the hardware area. Hence, in practice, it is preferable to use values which can
be reconstructed several clocks later without the need for additional memory. To this
end, we introduce the notion of sustainability:

Definition 5 (Function with Sustainable Output). Consider an FSR-based stream cipher,
being composed of an FSR FSRE of length n with update mapping F = ( f0, . . . , fn−1),
an external block with bit stream (bt)t≥0, and a function Out(x0, . . . , xn−1, y0, . . . , y`).
We say that Out produces values which are r-sustainable if there exists a supplemental
function Out∗(x0, . . . , xn−1, y0, . . . , y`) such that

Out(Stt, bt, . . . , bt+`−1) = Out∗(Stt+r, bt+r, . . . , bt+r+`−1) ∀t ≥ 0.

Remark 1. Informally the definition means that the output of Out at some clock t can like-
wise be computed r clocks later by Out∗ without requiring additional storage. Although
it may seem like an artificial and strong assumption at the first sight, it is in fact quite
often naturally given for FSRs in Fibonacci configuration: as soon as a new state entry is
computed, it is only shifted until it forms the output. In particular it remains part of the
state for n− 1 clocks.

We can now extend the transformation considered in Theorem 1 by replacing the
external bits bt by the outputs of a function that produces (β− α)-sustainable outputs:

Lemma 1 (Preserving FSR Transformation based on Sustainable Functions). newline
Consider a FSR-based stream cipher, being composed of an FSR FSRE of length n with update
mapping F = ( f0, . . . , fn−1), an external block with bitstream (bt)t≥0, and an output function
Out(x0, . . . , xn−1, y0, . . . , y`). Let [α, . . . , β] be an interval which is isolated with respect to F
and Out. Moreover assume that Out produces (β− α)-sustainable outputs with Out∗ being
the corresponding supplementary function. We define an FSR FSRE

′ with update mapping
F′ = ( f ′0, . . . , f ′n−1) which is derived from F as follows:

f ′α−1 := fα−1 + Out∗, f ′β := fβ + Out, f ′i := fi for all i 6= α− 1, β

Then both FSRs are equivalent, i.e, FSRE ≡ FSRE
′.

Proof of Lemma 1. We define b̃t := Out(Stt, bt, . . . , bt+`−1) for each t ≥ 0. Assume for a
moment that (b̃t)t≥0 is an independent from the FSR and (bt)t≥0. We define an FSR
FSRE

′′ with update mapping F′′ = ( f ′′0 , . . . , f ′′n−1) which is derived from F as follows:

f ′′α−1 := fα−1 + ỹβ−α, f ′′β := fβ + ỹ1, f ′′i := fi for all i 6= α− 1, β

Here, ỹi represents a variable which takes the value b̃t+i at each clock t. It follows directly
from Theorem 1 that FSRE and FSRE

′′ are equivalent. Moreover the proof shows that at
each clock t ≥ 1, the state Stt and S′′t of FSRE and FSRE

′′, respectively, differ by

∆t := (0α−1, b̃t+β−α, b̃t+β−α−1, . . . , b̃t+1, b̃t, 0n−β).
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if the initial states differ by ∆0 (what we assume in the following). As the interval
[α, . . . , β] is isolated with respect to Out by assumption, hence, Out(Stt, bt, . . . , bt+`−1) =
Out(S′′t , bt, . . . , bt+`−1) and Out∗(Stt+r, bt+r, . . . , bt+r+`−1) = Out∗(S′′t+r, bt+r, . . . , bt+r+`−1)
for r = β− α. Therefore we can rephrase the definitions of the update functions f ′′α−1
and f ′β := fβ + Out by f ′′α−1 := fα−1 and f ′′β := fβ + Out, respectively. As this results into
the exact definition of FSRE

′, we have FSRE
′ = FSRE

′′ and in particular FSRE ≡ FSRE
′,

showing the claim.

4.2.4 A Preserving Cipher-Transformation

4.2.4.1 Technical Description

We now present the proposed preserving cipher transformation. The idea is to identify
appropriate terms of the output function and to integrate them into the update functions
of the FSR. This way the delay of the output function can be decreased without any
(or very small) increase of the delay of the FSR. More precisely the transformation is as
follows:

Theorem 2 (Preserving Cipher Transformation). Consider a FSR-based stream cipher SC,
being composed of an FSR FSRE of length n with update mapping F = ( f0, . . . , fn−1), an
external block with bit stream (bt)t≥0, and an output function Out(x0, . . . , xn−1, y0, . . . , y`).
Assume that Out can be written as

Out(x0, . . . , xn−1, y0, . . . , y`) = xβ + Out1(x0, . . . , xn−1, y0, . . . , y`) +
Out2(x0, . . . , xn−1, y0, . . . , y`) (4.3)

such that the outputs of Out1 could be computed one clock earlier as well. Formally, this means
that there exists a function g((x0, . . . , xn−1, y0, . . . , y`)) such that it holds for all clocks t ≥ 1:

Out(Stt, bt, . . . , bt+`−1) = Stt[β] + g(Stt−1, bt−1, . . . , bt+`−2) + Out2(Stt, bt, . . . , bt+`−1)

Moreover, the following conditions need to be met:

1. There exist integers 1 ≤ α < β < n− 1 such that the interval [α, . . . , β] is isolated with
respect to F and Out2 and the interval [α + 1, . . . , β + 1] is isolated with respect to g.

2. g produces (β− α)-sustainable outputs with g∗ being the corresponding supplementary
function.

A second cipher is defined as SC ′ with an FSR FSRE
′ and an output function Out′ which are

derived from FSRE and Out, respectively. The update mapping F′ = ( f ′0, . . . , f ′n−1) of FSRE
′ is

defined as
f ′α−1 := fα−1 + g∗, f ′β := fβ + g, f ′i := fi for all i 6= α, β
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and the output function Out′ of SC ′ as

Out′(x0, . . . , xn−1, y0, . . . , y`) = xβ + Out2(x0, . . . , xn−1, y0, . . . , y`).

Then both ciphers are equivalent.

Remark 2 (On the Relation between Out1 and g). As elaborated before, the goal of the
transformation is to remove parts of the output function (here Out1) and to integrate it
into the update functions of the FSRs. Here one needs to carefully pay attention to the
order of the computations. By definition, at each clock t the output function first computes
the output and the FSRs are updated afterwards. Hence, when the modified output
function is invoked it is necessary that the output of Out1 is already present in the FSR
state. The only possibility is that this computation of Out1 has been executed at least one
clock before, which is accomplished by the function g.

Proof of Theorem 2. We show that for any initial state of SC, there exists a corresponding
initial state of SC ′ such that both ciphers produce the same keystream.1 We assume
that in both ciphers, the same external block EB is used, producing the same bitstream
(bt)t≥0. Let St0 be an arbitrary initial state of FSRE. We define for each t ≥ 0 the vector

∆t := (0α−1, g(Stt+r, bt+r, . . . , bt+r+`−1), . . . , g(Stt, bt, . . . , bt+`−1), 0n−β)

with r = β− α. Assume now that FSRE
′ is initialized with St′0 := St0 + ∆0. It follows

from Lemma 1 (and the arguments used in its proof) that at each clock t ≥ 1, the
states Stt and St′t of FSRE and FSRE

′, respectively, differ by ∆t. As the interval [α, β] is
assumed to be isolated with respect to F, and Out2, and the interval [α + 1, . . . , β + 1]
is isolated with respect to g, it follows that for all t it holds that fβ(St′t, bt, . . . , bt+`−1) =
fβ(Stt, bt, . . . , bt+`−1) and likewise for g and Out2. We compare now the keystream bits
(zt)t≥0 and (z′t)t≥0 of SC and SC ′, respectively. For each t ≥ 0:

z′t = Out′(St′t, bt, . . . , bt+`−1) = St′t[β] + Out2(St′t, bt, . . . , bt+`−1)

= f ′β(St′t−1, bt−1, . . . , bt+`−2) + Out2(St′t, bt, . . . , bt+`−1)

= fβ(St′t−1, bt−1, . . . , bt+`−2) + g(St′t−1, bt−1, . . . , bt+`−2) + Out2(St′t, bt, . . . , bt+`−1)

= fβ(Stt−1, bt−1, . . . , bt+`−2) + g(Stt−1, bt−1, . . . , bt+`−2) + Out2(Stt, bt, . . . , bt+`−1)

= Stt[β] + Out1(Stt, bt, . . . , bt+`−1) + Out2(Stt, bt, . . . , bt+`−1) = zt.

This shows that both ciphers produce the same keystream.

1The other direction can be shown analogously.
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4.2.4.2 Discussion

On the Preconditions. We shortly argue why one might expect in general that the
preconditions of Theorem 2 are fulfilled. In a nutshell these conditions are that the output
function contains a linear term xβ such that β represents the endpoint of an interval [α, β]
which is isolated with respect to update functions fi with i 6∈ [α, β] and the remainder of
the output function. First observe that already isolated intervals of length 1, i.e., where
β = α, are sufficient for "outsourcing" Out1 to the FSR. Second ciphers often deploy
FSRs in Fibonacci configuration, meaning that all but one update functions are simple
(i.e., only shift a value) and in particular depend on one value only. Moreover these
FSRs have high length (for security reasons) and the only non-simple update function is
sparse (for efficiency reasons). Thus we found several examples where our approach
could be applied, Grain-128 being one of them (cf. section 4.2.5). For example in the case
of Grain-128 the relation between Out1 and g (see Remark 2) is only a shift in the indices
of the variables.

Analysis. In the following, we analyze the change of the delay induced by our transfor-
mation. As the exact delay strongly depends on the technology used, we discuss from a
qualitative point of view how the delay of the cipher depends on the cipher components
and under which conditions the transformation increases of the throughput. As our
approach considers transformations in the output function and the FSR, no gain can be
expected if the critical path goes through the external block EB. Hence we exclude this
case in the following and assume that the delay of EB is always smaller than the delay of
the output function and of the FSR, i.e, we ignore the delay of EB for simplicity. In fact all
expressions can be easily adapted to take Del(EB) into account as well. Observe in this
context that if the cipher contains more than one FSR, we can apply the transformation
with respect to that FSR which is the most appropriate and consider the others as part of
the external block.

For the analysis, we distinguish between two different cases. We start with the simpler
mode A where the update of FSRE is independent of the output of Out. This implies both
two components can operate in parallel and hence Del(SC) = max{Del(FSRE), Del(Out)}.
As the transformation aims for decreasing Del(Out), we restrict to the case of Del(Out) >
Del(FSRE) as otherwise the transformation would not bring any gain. Let Out′ and
FSRE

′ denote the output function and the FSR, respectively, after the transformation.
To apply the transformation explained in Theorem 2, it is necessary that Out can be

split accordingly, i.e., Out = xβ + Out1 + Out2. Observe that after the transformation the
output function becomes smaller, i.e., Out′ = xβ + Out2 and therefore likely has smaller
delay. In general we have

Del(Out′) = Del(xβ + Out2) ≤ Del(xβ + Out1 + Out2) = Del(Out).

While the concrete delay of a function depends on the deployed technology, a good
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approximation is the delay of a depth-optimal tree of 2-input AND and 2-input XOR
gates implementing this function. In particular terms with the highest algebraic degree
tend to induce the biggest delay. Hence preferable choices of Out1 should contain terms
with high algebraic degree.

An FSR of length n is composed of n stages and update functions f0, . . . , fn−1 which
are implemented by flip-flops and logical gates, respectively. The update functions are
computed simultaneously but at each clock-cycle, the two steps have to be performed
sequentially:

• the values of the update functions have to be computed

• the stages have to be updated with the new values

Therefore the delay of a FSR is the sum of the delay of a flip-flop Del f l and of the delay
of the slowest of the update functions:

Del(FSRE) = max{Del( f0), Del( f1) · · ·Del( fn−1)}+ Del f l

= Del( fµ) + Del f l (4.4)

if µ denote the index of the slowest update function. Observe that the update functions
within the isolated interval [α, β] are simply the shift operators. Hence we can assume
that µ 6∈ [α, β].2 Recall that the transformation only changes the update functions fα and
fβ. Hence it follows

Del(FSRE
′) = max{Del( fµ), Del( fα + g∗), Del( fβ + g)}+ Del f l .

Because of Del(SC ′) = max{Del(FSRE
′), Del(Out′)} and Del( fµ) +Del f l < Del(Out), the

transformation decreases the overall delay if

max


Del(xβ + Out2),
Del( fα + g∗) + Del f l ,
Del( fβ + g) + Del f l

 < Del(xβ + Out1 + Out2). (4.5)

Next we consider mode B where some of the update functions of FSRE depend on the
output of Out. We denote by FOut the part of the circuit that implements FSRE which
requires the output of Out as input and by F \ FOut the remaining part of the FSRE circuit.
In this case it implies that

Del(SC) = max{Del(FOut) + Del(Out), Del(F \ FOut)}.

Again if Del(F \ FOut) ≥ Del(FOut) + Del(Out), no gain can be expected by shifting
computations from Out to the FSR. Hence we restrict to the case that Del(F \ FOut) <

2Otherwise the whole FSR would consists only of a cyclic shift of its internal state, rendering it useless
for cryptographic purposes.
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Del(FOut) + Del(Out). Recall that by definition, the update functions within the isolated
interval simply shift the preceding state entry. Hence, we can assume that fα, fβ 6∈ FOut.
In particular, Del(FOut) will not change after the transformation. Analogouesly to mode
A, we define by µ the index of the slowest update function in F \ FOut. Thus, after the
transformation, the delay in the set of update functions which are independent of Out is
given by max{Del( fα + g∗), Del( fβ + g)}, Del( fµ)}. An increase of the delay in this set
is tolerable as long as it stays below Del(SC) = Del(FOut) + Del(FSRE) which is given
for Del( fµ). A further condition for an improvement is (as in mode A) that the delay of
the resulting output function Out′ is indeed less than the delay of the original output
function Out. Taking both conditions together yields the following condition for an
improvement of the throughput:

max


Del( fα + g∗) + Del f l −Del(FOut),
Del( fβ + g) + Del f l −Del(FOut),
Del(xβ + Out2)}

 < Del(Out). (4.6)

Observe that if none of the update functions depend on Out, it holds that FOut = ∅.
Then, Eq. 4.6 simplifies to Eq. 4.5 and we are back in mode A.

We want to stress that our approach is applicable in both modes while it is stated in
[MD13] that the pipelining method cannot be used in mode B (at least for Grain-128a).
However, the resulting SC ′ requires the additional computation of g∗ (compared to the
original cipher SC) which may induce a (preferably small) increase in the area size.

4.2.5 Application to Grain-128 and Grain-128a

In this section, we demonstrated our technique by applying it to the stream ciphers
Grain-128 [HJMM06] presented in [AM14] and Grain 128a [ÅHJM11] provided in [AM].
Both ciphers have a very similar structure with the main difference in the update and
output functions. Since all the steps of our technique are similar in both cases, for the
sake of simplicity and in order to avoid overloading this work with technical details,
we focus on one cipher, namely Grain-128, and use it as an example to demonstrate the
application of the transformation. However, we present the implementation results for
both ciphers in Subsubsection 4.2.5.7.

Grain-128 consists of an 128-bit LFSR, an 128-bit NLFSR, and an output function Out.
In the original description of Grain-128 both FSRs are used in Fibonacci configuration,
meaning that all bits except the 127th are updated just by shifting the adjacent value.
The concrete updates and the output function are given in Subsubsection 4.2.5.4. Similar
to most of the existing stream ciphers Grain-128 uses two different modes: initialization
and keystream generation. During the initializing mode the cipher does not produce
any output for 256 clock-cycles. Instead the outputs of Out are fed back to the LFSR and
NLFSR. In the keystream generation mode, the result of Out forms the output.
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4.2.5.1 Setup.

To the best of our knowledge, the previously most efficient implementation of Grain-128
with the currently highest throughput was given in [MD10]. Following [MD10] we
used the Cadence RTL Compiler3 for synthesis and simulation. Two implementations
with different compiler settings were examined: optimizing the output for timing and
optimizing for area size, respectively. It is well known that changing the compiler
setting can lead to unpredictable effects. For example, although our transformation
includes additional computations, the area size of the time-optimized solution reduced
from 1794 GE to 1748 GE. We assume the following reason: when the compiler is set
to optimize timing, bigger functions are implemented by gates which consume more
area. It seems that such tricks are not necessary anymore (or at least to a lesser extent)
after our transformation. In other words, routing of the gates becomes easier for the
transformed version of the cipher which outweights the slightly increased logic count.
To minimize such effects as far as possible and to get a preferably unbiased view on the
results of our transformation, our implementation contains only these blocks that are
affected by the transformation. For example, we excluded on purpose the counter that is
used in the initialization mode for counting the 256 cycles.

4.2.5.2 Preparation.

Recall that our transformation aims for reducing the delay of the output function.
Unfortunately, in the original specification of Grain-128 the critical path goes through the
FSRs. Hence, before we applied our transformation, we modified the FSRs to decrease
their delays. More precisely, we changed the configurations of the FSRs from Fibonacci to
Galois. The idea is to spread the monomials of one update function amongst the others,
in order to make them being computed in parallel. The new update functions together
with initial state mappings are given in Appendix 4.2.5.5. This transformation increased
the maximal frequency from 1.03 GHz to 1.11 GHz in the initialization mode (approx.
+8%), from 1.29 GHz to 1.45 GHz in the keystream generation mode (approx. +12%) for
the timed-optimized solution. For the area-optimized solution the improvement is from
0,42 GHz to 0,60 GHz by 42 % in the initialization mode and from 0,89 GHz to 0,90 GHz
in the keystream generation mode. In particular the transformation led to the critical
path going through the output function, making our approach applicable. Of course we
used this configuration as the benchmark for estimating the gain of our transformation.

4.2.5.3 Transformation.

For getting the preferably best results from the transformations, we used the following
strategy. Originally, the output function Out contains several linear and quadratic terms

3See http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
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and one cubic term (degree 3). As the terms with the highest degree tend to induce
the highest delay, we aimed for shifting all monomials with degree bigger than 1 to
the FSRs. The exact transformation is explained in App. 4.2.5.6. Observe that we took
both FSRs into account, i.e., some monomials have been integrated into the LFSR and
others into the NLFSR. As both FSRs deploy update functions of degree 2 or less, there
was no increase in the delay of the FSRs when the quadratic monomials from Out have
been integrated. For the single cubic term of Out, the situation is different as this may
increase the delay of the FSRs. Therefore we implemented both variants, i.e., the cubic
term remaining in Out or being moved to the FSRs, and it turned out that moving the
term yielded the better result.

4.2.5.4 Specification of Grain-128

Grain-128 consists of an 128-bit LFSR L with update mappings F = ( f0, . . . , f127), an
128-bit NLFSR N with update mappings Q = (q0, . . . , q127), and an output function Out.
In the original description of Grain-128 both FSRs are used in Fibonacci configuration,
meaning that all bits except the 127th are updated just by shifting the adjacent value. We
denote at clock t the state of the LFSR to be At = (At[0], · · · , At[127]) and the state of
the NLFSR as Bt = (Bt[0], · · · , Bt[127]). The updates of L and N are as follows:

At+1[i] = At[i + 1] and Bt+1[i] = Bt[i + 1] for i = 0, . . . , 126
At+1[127] = At[0] + At[7] + At[38] + At[70] + At[81] + At[96]
Bt+1[127] = At[0] + Bt[0] + Bt[26] + Bt[56] + Bt[91] + Bt[96] + Bt[3]Bt[67] +

Bt[11]Bt[13] + Bt[17]Bt[18] + Bt[27]Bt[59] + Bt[40]Bt[48] +
Bt[61]Bt[65] + Bt[68]Bt[84]

The output function Out of Grain-128 is:

Out = Bt[2] + Bt[15] + Bt[36] + Bt[45] + Bt[64] + Bt[73] + At[93] + Bt[89] +
Bt[12]At[8] + At[13]At[20] + Bt[95]At[42] + At[60]At[79] +
Bt[12]Bt[95]At[95]

4.2.5.5 Specification of the Change of the FSR Configurations

We specify the update functions of the FSRs after changing the configuration from
Fibonacci to Galois. To distinguish the original update functions from the update func-
tions after the change, we use the upper index (g). That is ( f0, . . . , f127) and (q0, . . . , q127)
denote the original update functions of the LFSR L and the NLFSR N, respectively, while
( f g

0 , . . . , f g
127) and (qg

0 , . . . , qg
127) refer to the update functions after changing the configura-

tion. Likewise we denote at clock t the state of the LFSR to be Ag
t = (Ag

t [0], · · · , Ag
t [127])

and the state of the NLFSR as Bg
t = (Bg

t [0], · · · , Bg
t [127]). The update functions of the
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Table 4.1: The update functions of the FSRs after yransforming into Galois configuration

LFSR Lg:
f g
127 = Ag

t [0] f g
111 = Ag

t [112] + Ag
t [80]

f g
123 = Ag

t [124] + Ag
t [3] f g

103 = Ag
t [104] + Ag

t [46]
f g
119 = Ag

t [120] + Ag
t [30] f g

97 = Ag
t [98] + Ag

t [51]
qg

j = Bg
t [j + 1], 0 ≤ j ≤ 127, j /∈ {127, 123, 119, 111, 103, 97}

NLFSR Ng:
qg

127 = Ag
t [0] + Bg

t [0] qg
113 = Bg

t [114] + Bg
t [77]

qg
125 = Bg

t [126] + Bg
t [1]B

g
t [65] qg

111 = Bg
t [112] + Bg

t [80]
qg

123 = Bg
t [124] + Bg

t [7]B
g
t [9] qg

100 = Bg
t [101] + Bg

t [34]Bg
t [38]

qg
121 = Bg

t [122] + Bg
t [20] qg

99 = Bg
t [100] + Bg

t [40]Bg
t [56]

qg
119 = Bg

t [120] + Bg
t [9]B

g
t [10] qg

98 = Bg
t [99] + Bg

t [11]Bg
t [19]

qg
117 = Bg

t [118] + Bg
t [17]Bg

t [49] qg
97 = Bg

t [98] + Bg
t [26]

qg
i = Bg

t [i + 1], 0 ≤ i ≤ 127, i /∈ {127, 125, 123, 121, 119, 117, 113, 111, 100, 99, 98, 97}

FSRs of Grain-128 in Galois configuration are given in the Table 4.1. In order to get
the same output after this transformation as in original Grain-128, the initial state has
to be changed. A general treatment of this topic can be found in [Dub10]. For our
configuration the initial state needs to be changed as follows.

Ag
0 [i] = A0[i], 0 ≤ i ≤ 97

Ag
0 [i] = A0[i] + f g

i−1(A0) + f g
i−2|+1

(A0) + · · ·+ f g
97|+i−98

(A0), 98 ≤ i ≤ 127

Bg
0 [j] = B0[j], 0 ≤ j ≤ 97

Bg
0 [j] = B0[j] + qg

j−1(B0) + qg
j−2|+1

(B0) + · · ·+ qg
97|+j−98

(B0), 98 ≤ j ≤ 127

were q f
i|+k

and f f
i|+k

denote that every index in the arguments of the functions q f
i|+k

and

f f
i|+k

is increased by k.
For example consider the following initial state of Grain-128:

A0 = (1010010111100011110011000101000110010111011101111100110100011001
1010011001110100110101000111000100101001011100011100011001001100)

B0 = (1100100100010001001011111100110000010111000100101101011011101101
1010100010101100101001111011110101101001101100100001101101100001)
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Table 4.2: The update and output functions after our transformation

qT
89 = BT

t [90] + BT
t [3] qT

87 = BT
t [88] + BT

t [1]
qT

73 = BT
t [74] + BT

t [13]AT
t [9] qT

71 = BT
t [72] + BT

t [11]AT
t [7]

qT
64 = BT

t [65] + AT
t [14]AT

t [21] qT
62 = BT

t [63] + AT
t [12]AT

t [19]
qT

36 = BT
t [37] + BT

t [96]AT
t [43] qT

34 = BT
t [35] + BT

t [94]AT
t [41]

qT
15 = BT

t [16] + BT
t [13]BT

t [96]AT
t [96] qT

13 = BT
t [14] + BT

t [11]BT
t [94]AT

t [94]
f T
93 = AT

t [94] + AT
t [61]AT

t [80] f T
91 = AT

t [92] + AT
t [59]AT

t [78]
OutT = BT

t [15] + BT
t [36] + BT

t [45] + BT
t [64] + BT

t [73] + BT
t [89] + AT

t [93]

Table 4.3: Mapping of the initial states after our transformation

BT
0 [89] = Bg

0 [89] + Bg
0 [2] BT

0 [88] = Bg
0 [88] + Bg

0 [1]
BT

0 [73] = Bg
0 [73] + Bg

0 [12]Ag
0 [8] BT

0 [72] = Bg
0 [72] + Bg

0 [11]Ag
0 [7]

BT
0 [64] = Bg

0 [64] + Ag
0 [13]Ag

0 [20] BT
0 [63] = Bg

0 [63] + Ag
0 [12]Ag

0 [19]
BT

0 [36] = Bg
0 [36] + Bg

0 [95]Ag
0 [42] BT

0 [35] = Bg
0 [35] + Bg

0 [94]Ag
0 [41]

BT
0 [15] = Bg

0 [15] + Bg
0 [12]Bg

0 [95]Ag
0 [95] BT

0 [14] = Bg
0 [14] + Bg

0 [11]Bg
0 [94]Ag

0 [94]
AT

0 [93] = Bg
0 [93] + Ag

0 [60]Ag
0 [79] AT

0 [92] = Bg
0 [92] + Ag

0 [59]Ag
0 [78]

Then the corresponding initial states after transformation to Galois configuration would
be:

Ag
0 = (1010010111100011110011000101000110010111011101111100110100011001

1010011001110100110101000111000100110011101100010001100011011010)
Bg

0 = (1100100100010001001011111100110000010111000100101101011011101101
1010100010101100101001111011110101100110100000011000110100111111)

4.2.5.6 Specification of Our Transformation

We use the upper index (T) to indicate that the FSR states and the update function corre-
spond to the configuration after our transformation is done. The exact transformations
are provided in the Table 4.2. All the other update functions are the same as in the
configuration explained in App. 4.2.5.5. Observe that the modified output function OutT

is linear as opposed to the cubic output function Out of original Grain-128.
In Tab. 4.3, we provide the concrete mapping between initial states of FSRs before and

after the transformation and before it, which is necessary to get the same output. All the
other initial state entries are also the same as in the previous configuration.

We would like to remark that the same transformation was applied to Grain-128a
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[ÅHJM11] which is a recent improvement of Grain-128. The concrete transformation
details are not included as they are similar to the case of Grain 128. We refer to [AM] for
more details.

4.2.5.7 Results and Discussion.

Table 4.4: The performance results for Grain-128 [AM14] and Grain-128a[AM]

Grain-128
Area-opimizing Time-optimizing

Config. Initialization Keystream gen. Initialization Keystream gen.
Area size* Througput** Througput Area size Througput Througput

Original 1626 0,42 0,89 1853 1,03 1,29
Galois 1627 0,60 (+42%) 0,90 1794 1,11 (+8 %) 1,45 (+12 %)

Our 1656 0,73 (+20 %) 1,06 (+18 %) 1748 1,31 (+18 %) 1,8 (+24 %)

Grain-128a
Area-opimizing Time-optimizing

Config. Initialization Keystream gen. Initialization Keystream gen.
Area size Througput Througput Area size Througput Througput

Original 1640 0,57 0,84 1888 1,02 1,23
Galois 1632 0,61 (+7%) 0,90 (+7%) 1816 1,17 (+15 %) 1,51 (+22 %)

Our 1652 0,73 (+20 %) 1,06 (+18 %) 1736 1,3 (+11 %) 1,78 (+18 %)
* Area size is given in gate equivalents (GE)
** Throuhput is given in gigahertz (GHz)

The results are provided in the table 4.4. We presented a new approach for parallelizing
computations in stream ciphers based on feedback shift registers (FSRs). As opposed to
the common pipelining technique, existing structures are re-used for avoiding (or at least
reducing) an increase of memory. The transformation has been applied to Grain-128
and Grain-128a ciphers, where the throughput for a time-optimized implementation is
increased in the initialization mode by 18% and 11% and in the keystream generation
mode by 24% and 18% correspondingly. When the compiler was set to optimize the area
size the throughput of both ciphers is increased by 20 % in initialization mode and by
18% in the keystream generation mode. As opposed to other solutions, no additional
memory is required.

An interesting problem is to automate this approach, i.e., finding an algorithm which
automatically finds a (nearly) optimal solution. Our technique is tailored for improv-
ing the throughput of FSR-based stream ciphers with a non-linear output function by
transforming it into a cipher with linear output function. Interestingly many recently
proposed stream ciphers use a linear output function already in their original configura-
tion. Our transformation may be an indication that when designing FSR-based stream
ciphers, it is sufficient to restrict to designs that use a linear output function. In general
we expect that the presented technique and theory may be helpful in the design phase
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already. As the idea is to re-use existing memory, these ideas might be used right from
the start for developing new stream ciphers with further decreased hardware size.

4.3 On Lightweight Stream Ciphers with Shorter Internal State
This section is based on the paper [AM15].

4.3.1 Motivation

Stream ciphers usually allow for a higher throughput but require a larger area size
compared to block ciphers. The latter is mainly caused by time-memory-data trade-off
(TMDTO) attacks which aim to recover the internal state of the stream cipher [Gol97,
Bab95, BS00]. The attack effort is in O(2σ/2), where σ denotes the size of the internal
state of a stream cipher. This results into a rule of thump that for achieving κ-bit security
level, the size of internal state should be at least σ = 2 · κ. It means that in order to
implement such a cipher at least 2 · κ memory gates are required which is usually the
most area and power-consuming resource.

We investigated an extension in the common design for stream ciphers which allows
to realize secure lightweight stream cipher with an area size beyond the trade-off attack
bound mentioned above.

The core idea is to split the set of internal states into 2κ equivalence classes such that a
TMDTO attack has to consider each of these classes at least once. To achieve this goal,
we suggest to involve the key into the update process of the internal state.

Theoretically, the overall approach is still to have a sufficiently large internal state
which determines the keystream bits. The main difference though is that part of this
state is the secret key itself and not only a state that has been derived from this key. If one
considers the case that the key is fixed for the device, one can make use of the fact that
storing a fixed key is significantly less area consuming than deploying a register of the
same length. In fact, a similar idea has been used in the design of KATAN/KTANTAN
[CDK09]. Moreover, the approach may allow for designs where the overall state size is
smaller than 2κ.

4.3.2 Trade-off Attacks against KSGs

To explain the idea of the proposed approach let us first take a deeper look into Time-
Data-Memory trade-off attacks (see paragraph 2.2.2.1) with respect to their application
against keystream generators. In principle, two different approaches can be considered
here, depending on what function the attacker aims to invert.

Recovering the Key. The most obvious approach is to invert the whole cipher. That is
one considers the process which takes as input a secret key k ∈ K = GF(2)κ and outputs
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the first κ keystream bits as a function FKSG : GF(2)κ → GF(2)κ. The search space would
be N = K = GF(2)κ in this case. As already explained, trade-off attacks for scenario A
would require a precomputation time which is equivalent to exhaustive search in the
key space. If we say that a security level of κ expresses the requirement that a successful
attack requires at least once a time effort in O(2κ), then such attacks do not represent a
specific threat.

Observe that although an attacker may have knowledge of significantly more than
κ bits, scenario B trade-off attacks are not applicable here (at least not in general). To
see why, let Ft

KSG : GF(2)κ → GF(2)κ be the function that takes as input the secret
key and outputs the keystream bits for clocks t, . . . , t + κ − 1. That is it holds that
F0

KSG = FKSG from above. Then, the knowledge of D + κ − 1 keystream bits translates to
knowing images of F0

KSG, . . . , FD−1
KSG and in fact, inverting one of these would be sufficient.

However, these functions are all different. In particular, any precomputation done for
one of these, e.g., Fi

KSG, cannot be used for inverting another one, e.g, Fj
KSG with i 6= j.

Recovering the Internal State. An alternative approach is to invert the output function
Out only, that is used in the keystream generation phase. More precisely, let FOut :
GF(2)σ → GF(2)σ be the function that takes the internal state Stt ∈ GF(2)σ at some
clock t as input and outputs the σ keystream bits zt, . . . , zt+σ−1. The search space would
be N = S. A scenario-A trade-off attack would again require a precomputation time
equal to |N | = |S| which implies that σ ≥ κ if one aims for a security level of κ.

As each keystream segment zt, . . . , zt+σ−1 is an output of the same function FOut and
as the knowledge of one internal state Stt allows to compute all succeeding keystreams
bits zr for r ≥ t (and as Upd is assumed to be reversible, the preceeding keystream bits
as well), scenario B attacks are suitable. As can be seen from table 2.2, each attack would
require at least once a time effort of about

√
|S| = 2σ/2. This implies the already rule of

selecting σ ≥ 2κ.

4.3.3 The Proposed Design Approach
In this section, we discuss a conceptually simple adaptation of how keystream generators
are commonly designed (see definition 1). The goal is to make stream ciphers more
resistant against TMDTO attacks such that shorter internal states can be used. To this
end, let us take another look at trade-off attacks. An attacker who is given a part of
the keystream aims to find an internal state which allows to compute the remaining
keystream. Let Fcompl.

Out denote the function that takes as input the initial state and outputs
the complete keystream. Here, ”complete” refers to the maximum number of keystream
bits that are intended by the designer. If no bound is given, then we simply assume that
2σ keystream bits are produced as this refers to the maximum possible period. From an
attacker’s point of view, any internal state that allows for reconstructing the keystream
is equally good. This brings us to the notion of keystream-equivalent states:
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Definition 6 (Keystream-equivalent States). Consider a KSG with a function Fcompl.
Out that

outputs the complete keystream. Two states St, St′ ∈ S are said to be keystream-equivalent
(in short St ≡kse St′) if there exists an integer r ≥ 0 such that Fcompl.

Out (Updr(St)) =

Fcompl.
Out (St′). Here, Updr means the r-times application of Upd.

Observe that keystream-equivalence is an equivalence relation.4 For any state St ∈ S,
we denote by [St] its equivalence class, that is

[St] = {St′ ∈ S|St ≡kse St′}
To see why this notion is important for analyzing the effectiveness of a TMDTO attack,
let us consider an arbitrary KSG with state space S. As any state is member of exactly
one equivalence class, the state space can be divided into ` distinct equivalence classes:

S =
[
St(1)

] .∪ . . .
.∪
[
St(`)

]
Now assume a TMDTO attacker who is given some keystream (zt), based on an un-
known initial state St0. Recall that the strategy of a trade-off attack is not to exploit any
weaknesses in the concrete design but to efficiently cover a sufficiently large fraction of
the search space. In this case if none of the precomputations were done for values in
[St0], the attack cannot be successful unless the online phase searches all equivalence
classes that have been ignored during the precomputation phase. This leads to the
following observation: a TMDTO attack on the KSG will be a union of TMDTO attacks,
one for each equivalence class. That is we have ` TMDTO attacks with search spaces
Ni =

[
St(i)

]
, i = 1, . . . , `, respectively. As each of these attacks has a time effort of at

least 1, we get a lower bound of ` for the attack effort. Now, if one designs a cipher such
that ` ≥ 2κ, then one has achieved the required security level against trade-off attacks.
This is exactly the idea behind the design approach discussed next.

We are now ready to discuss our proposed design. The basic idea is to achieve a
splitting of the internal state space in sufficiently many equivalence classes. To achieve
this, we divide the internal state into two parts: a variable part that may change over time
and a fixed part. For practical reasons the fixed part will be realized by simply re-using
the secret key (more on this later). The main difference to a KSG as given in definition 1,
the update function Upd will compute the next variable state from the current variable
state and the fixed secret key. We call such a construction a KSG with keyed update
function, to be defined below. Observe that this definition is in fact covered by definition
given in [MVO96].

Definition 7 (Keystream Generator With Keyed Update Function). A keystream genera-
tor (KSG) with keyed update function comprises three sets, namely

4This is due to the fact that for any state St ∈ S, the sequence (Updr(St))r≥0 is cyclic and that Upd is
reversible by assumption.
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• the key space K = GF(2)κ,

• the IV space IV = GF(2)ν,

• the variable state space S = GF(2)σ,

and the following three functions

• an initialization function Init : IV ×K → S

• an update function Upd : K × S → S such that Updk : S → S, Updk(St) :=
Upd(k, St), is bijective for any k ∈ K, and

• an output function Out : S→ GF(2).

The internal state ST is composed of a variable part St ∈ S and a fixed part k ∈ K.
Initialization and keystream generation work analogously to definition 1 with the only
difference that the state update also depends on the fixed secret key.

Let us take a look at the minimum time effort for a TMDTO attack against a KSG
with keyed update function. We make in the following the assumption that any two
different states ST = (St, k) and ST′ = (St′, k′) with k 6= k′ never produce the same
keystream, that is Fcompl.

Out (ST) 6≡kse Fcompl.
Out (ST′). Hence, we have at least 2κ different

equivalence classes. As the effort grows linearly with the number of equivalence classes,
we assume in favor of the attacker that we have exactly 2κ equivalence classes. This
gives a minimum time effort of 2κ.

Observe that similar techniques are present in stream cipher modes for block ciphers
like OFM or CTR. However, as far as we know it has never been discussed for directly
designing stream ciphers with increased resistance against TMDTO-attacks. In this
context, we think that this approach has two interesting consequences with respect to
saving area size in stream cipher implementations:

1. Apparently one can achieve a security level of κ independent of length σ of the
variable state. This allows to use a shorter internal state which directly translates
to saving area size.5

2. For technical reasons, storing a fixed value (here: the key) can be realized with
significantly less area size than is necessary for storing a variable value. This effect
has been used for example in the construction of the block cipher KTANTAN
([CDK09]). It allows for further savings compared to KSGs with an register of
length ≥ 2κ.

5Of course, σ shouldn’t be too small. Otherwise, the period of the KSG may become too short and the
cipher may also become vulnerable for other attacks like guess-and-determine.
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We demonstrate the feasibility of this approach by proposing concrete ciphers named
Sprout and Plantlet see section 5.2. Our implementations showed that these ciphers need
significantly less area size than existing ones with comparable efficiency and claimed
security level.
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5.1 Chapter Overview
This chapter discusses the new proposed cryptographic solutions.

In Section 5.2 we describe low-area stream ciphers Sprout and Plantlet. These ci-
phers were developed following the design approach discussed in Section 4.3 which
allows to realize secure KSGs with shorter internal state. Both ciphers are based on
the Grain[HJMM08] family of ciphers and have similar structure. Plantlet has several
improvements which were included in order to resist the attacks found against Sprout.
These ciphers use the approach of continuously accessing the non-volatile key discussed
in section Section 3.3 in such a way that their throughput is almost unaffected, no matter
what type of non-volatile is used. After describing the specifications of the design, we
explain the design rationale, provide security analysis and the implementation results.
This section is based on the papers [AM15] and [MAM17].

Section 5.3 is devoted to the new low-energy stream cipher Trivium-2 which was
designed based on findings provided in Section 3.4. Trivium-2 has almost identical
structure with Trivium [CP] but has two times larger internal state size and uses 128-bit
keys, whereas the key size of Trivium is 80 bit. The goal of this design was to develop
the most energy-efficient cipher among the existing ones with the same level of security.
After providing the full specifications of Trivium-2, we describe design rationale and
discuss security of the cipher. The implementation results are presented at the end of the
section. Trivium-2was developped together with Subhadeep Banik, Frederik Armknecht,
Takanori Isobe, Willi Meier, Andrey Bogdanov, YuheiWatanabe and Francesco Regazzoni
while working on the paper [BMA+18]. Although the design of Trivium-2 was not
included, we plan to publish these results in the full version of the paper.

Section 5.4 presents a data protection scheme which was designed to enhance the
security of Low-Power Networks (LPNs). The scheme follows the NIST recommenda-
tions and can be embedded into the application level of LPNs in order to guarantee
data confidentiality and authenticity. This solution has been deployed on the water
distribution network of the City of Antibes in France. The section is based on the paper
[MGAM17].

5.2 Low-Area Stream Ciphers Sprout and Plantlet

5.2.1 Overview
In this section we describe two concrete keystream generators with keyed update func-
tion, namely Sprout [AM15] and Plantlet[MAM16].

Sprout was first purposed in [AM15] and was designed to demonstrate the feasibility
of the approach discussed in Section 4.3 of realizing stream ciphers with shorter internal
state by continuously involving the key into the state update during the keystream
generation phase. Sprout builds upon the Grain 128a [ÅHJM11] cipher but uses shorter
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registers. Unfortunately, there were weaknesses mistakenly included in the design
which leaded to the serious attacks [Ban15, LN15, EK15, MSBD15, LYR15, ZG15].

Plantlet is an improvement of Sprout which has several security enhancements. In
particular, it inherits the overall structure from Sprout depicted in figure 5.1, adopts
the continuous key involvement, but at the same time implements fixes for discovered
vulnerabilities, e. g., stronger round key function and avoiding the all-zero state.

The way how both ciphers access the key is well-aligned with the different types of
NVM as discussed in Section 3.3.

After describing the specifications of the design, we explain the design rationale,
provide security analysis and the implementation results. This section is based on the
papers [AM15] and [MAM17].
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Figure 5.1: The overall structure of Sprout and Plantlet ciphers.

We use the following notation:

• t - the clock-cycle number

• Lt = (lt
0, lt

1, · · · , lt
|L|−1) - state of the |L|-bit LFSR during the clock-cycle t

• Nt = (nt
0, nt

1, · · · , nt
39) - state of the NLFSR during the clock-cycle t

• Ct = (ct
0, ct

1, · · · , ct
8) - state of the counter during the clock-cycle t

• k = (k0, k1, · · · , k79) - key

• iv = (iv0, iv1, · · · , iv|iv|−1) - initialization vector of length |iv|

• k∗ - the round key bit generated during the clock-cycle t
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Table 5.1: Area size of the eStream finalists, lightweight block ciphers and Sprout

Cipher Area size (GE) Throughput (Kb/s)* Logic process Source
Block ciphers

PRESENT 80 1570 200 0.18µm [BKL+07]
PRESENT 80 1000 11.4 0.35µm [RPLP08]

KATAN32 802 12.5 0.13µm [CDK09]
KATAN48 927 18.8 0.13µm [CDK09]
KATAN64 1054 25.1 0.13µm [CDK09]

KTANTAN32 462 12.5 0.13µm [CDK09]
KTANTAN48 588 18.8 0.13µm [CDK09]
KTANTAN64 688 25.1 0.13µm [CDK09]

Stream ciphers
Mickey 3188 100 0.13µm [GB08]
Trivium 2580 100 0.13µm [GB08]
Grain 80 1294 100 0.13µm [GB08]
Grain 80 1162 100 0.18µm This work
Sprout* 813 100 0.18µm This work
Plantlet* 928 100 0.18µm This work

*- The throughput is given for the clock frequency of 100KHz

• zt - the keystream bit generated during the clock-cycle t

Note that we use the index (s) when we refer to Sprout and the index (p) when referring
to Plantlet. We use none of the indexes when a corresponding notation holds in both
cases.

5.2.2 Design Specifications

Both ciphers are composed of an LFSR (40-bit long in Sprout and 61-bit long in Plantlet),
a 40-bit NLFSR, a 9-bit counter, a round key function (RKF), and an output function.
80-bit key is used in both cases. Sprout uses the iv of length |iv|(s) = 70, whereas Plantlet
of length |iv|(p) = 90.

As can be seen from Table 5.1 both ciphers use significantly less area than comparable
existing lightweight stream ciphers and have higher throughput as compared to the
existing block ciphers.

Initialization Phase. In the initialization phase the 40 NLFSR stages of both ciphers
are loaded with the first 40 IV bits, i.e., ni = ivi, 0 ≤ i ≤ 39, and the remaining IV bits
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are loaded into the first LFSR stages. That is, in case of Sprout: l(s)i−40 = ivi, 40 ≤ i ≤ 69.;

and in case of Plantlet: l(p)
i−40 = ivi for 40 ≤ i ≤ 89. The last bits of the LFSR are filled

with ’0’ and ’1’ as follows. In Sprout: l(s)i = 1, 30 ≤ i ≤ 38, l(s)39 = 0; and in Plantlet:

l(p)
i = 1, 50 ≤ i ≤ 58, l(p)

59 = 0, l(p)
60 = 1.

Then, both ciphers are clocked 320 times without producing any keystream bits.
Instead, the output is fed back and XORed with the LFSR and NLFSR inputs. In the
initialization phase, the first 60 LFSR bits of Plantlet are updated, while the bit l60
remains fixed to 1, i.e., it is not involved in the LFSR update. After 320 clock cycles, the
initialization phase is complete and the ciphers start to generate keystream bits. Here,
the update function of the Plantlet LFSR is changed such that l60 is also updated.

LFSR of Sprout uses the primitive feedback polynomial which guarantees a period of
240 − 1:

P(x) = x40 + x35 + x25 + x20 + x15 + x6 + 1 (5.1)

Double-Layer LFSR of Plantlet. Plantlet utilizes 2 different phase-dependent LFSRs,
i. e., a 60-bit LFSR during the initialization phase and a 61-bit LFSR during the keystream
generation phase. The novel aspect is that in both phases, the LFSR is instantiated with
almost the same hardware. That is the LFSR used in the keystream generation phase
reuses significant parts of the LFSR from the initialization phase. More precisely, in
the initialization phase the LFSR uses a feedback polynomial PI , whereas during the
keystream generation phase, another polynomial PK is used. However, both polynomials
are almost the same which allows to reuse the same register and almost all of the taps.
To ensure maximum period, both polynomials PI and PK are primitive and defined as
follows:

PI(x) = x60 + x54 + x43 + x34 + x20 + x14 + 1

PK(x) = x61 + x54 + x43 + x34 + x20 + x14 + 1

This means that during the initialization phase, the update function of the LFSR works
as follows:

0 ≤ t ≤ 319 : l(p)t+1
60 = 1

l(p)t+1
59 = l(p)t

54 + l(p)t
43 + l(p)t

34 + l(p)t
20 + l(p)t

14 + l(p)t
0 + zt

l(p)t+1
i = l(p)t

i+1 , 0 ≤ i ≤ 58

Afterwards when the keystream generation phase starts, the LFSR is updated as follows:

t ≥ 320 : l(p)t+1
60 = l(p)t

54 + l(p)t
43 + l(p)t

34 + l(p)t
20 + l(p)t

14 + l(p)t
0

l(p)t+1
i = l(p)t

i+1 , 0 ≤ i ≤ 59
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NLFSR and Counter. The NLFSR and the counter have the same specifications in both
ciphers. Their respective lengths are 40 and 9 bits. The NLFSR is updated as defined in
the following:

nt+1
39 = g(Nt) + k∗ + lt

0 + ct
4

= k∗ + lt
0 + ct

4 + nt
0 + nt

13 + nt
19 + nt

35 + nt
39 + nt

2nt
25 + nt

3nt
5 + nt

7nt
8 + nt

14nt
21 + nt

16nt
18

+ nt
22nt

24 + nt
26nt

32 + nt
33nt

36nt
37nt

38 + nt
10nt

11nt
12 + nt

27nt
30nt

31

nt+1
i = nt

i+1, 0 ≤ i ≤ 39

The counter is a simple 9 bit register where the value is continuously increased as
follows. The first seven bits (ct

0 · · · ct
6) of the counter are used to count cyclically from 0

to 79, i. e., it resets to 0 after 79 is reached. The two most significant bits realize a 2-bit
counter to determine the number of elapsed clock cycles in the initialization phase, i. e.,
it is triggered by the resets of the lower 7 bits. Hence, it is reset to 0 after 4× 80 = 320
clock cycles and indicates the end of the initialization phase.

Round Key Function. The RKF is responsible for making the update function key
dependent. In Sprout at each clock t, RKF computes one round key bit k∗t as follows:

k∗(s)t = kt, 0 ≤ t ≤ 79;

k∗(s)t = (kt mod 80) · (ls
4 + ls

21 + ls
37 + ns

9 + ns
20 + ns

29), t ≥ 80;

As it turned out (see Section 5.2.4 for details), the RKF of Sprout appeared to be the
most important weakness of the cipher. Therefore, it was improved and in Plantlet
where it simply cyclically selects the next key bit which is provided as input to the
NLFSR. That is, it holds

k∗(p)
t = k(t mod 80), t ≥ 0

Output Function. Both ciphers use the same output function. It has a nonlinear part
h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8 where x0, · · · , x8 correspond to the state
variables nt

4, lt
6, lt

8, lt
10, lt

32, lt
17, lt

19, lt
23, nt

38, respectively. The entire output function is
determined by

zt = h(x) + lt
30 + ∑

j∈B
nt

j

where B = {1, 6, 15, 17, 23, 28, 34}.

5.2.3 Design Rationale
We explain some aspects of the design rationale behind the suggested ciphers. We focus
on the stream cipher Plantlet as long as there are several weaknesses in Sprout and the
design rationale had flaws. We explain the main security problems of Sprout and argue
why we introduced changes when designing Plantlet.
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Choice of General Design As already mentioned, both ciphers adopt the generic idea
behind the Grain family. This has been done for several reasons. First of all, our primary
goal was to show the feasibility of the approach discussed in section 4.3. Therefore,
we decided against designing a new cipher from scratch (which may have eventually
turned out to be vulnerable against other attacks) but rather to build upon an existing
established design. To this end, our focus was to pick a stream cipher that is already
lightweight, is scalable (at least to some extent), and has undergone already some
cryptanalysis.

Internal State Size Our goal was to show that is possible to develop a secure stream
cipher that uses a register of size σ significantly below 2κ. For Sprout we decided to
have the internal state size to be equal to the key size. However, there have been several
indications that the internal state size of Sprout is too small. When designing Sprout
we believed that the key cannot be easily found even when the entire internal state is
known because the round key bits influence the internal state before they propagate
to the output function and can be recovered. However, it was shown in [EK15] that if
the cipher is clocked backwards, then the key bits can be recovered from the output
sequence if the internal state is known. Therefore, having an internal state size equal to
the security parameter is a design flaw in this context. In general, all the attacks against
Sprout exploit the property of the internal state being too short. Yet, the main reason for
increasing the internal state size in Plantlet is to rule out attacks based on the guess and
determine technique. Possible ramifications were to increase the size of the LFSR, the
NLFSR, or both of them. We chose to increase the size of the LFSR by 21 bits what at the
same time allowed for a higher period of the output sequences.

The choice of the size was driven by the attack discussed in [Ban15]. Our analysis
revealed that increasing the LFSR by 15 bits already made the attack less efficient than
a brute-force attack. We added further 6 bits to the total length to increase the security
margin.

Double-Layer LFSR The main reason for involving an LFSR in the Grain family is
to ensure a minimum period. Consequently, the feedback polynomials of the LFSRs
used in Sprout and Plantlet are primitive to guarantee a maximum period of 240 − 1 and
261 − 1 respectively. A further design criteria was to choose a polynomial with not too
few terms in order to increase the resistance of the cipher against correlation attacks.
However, in the initialization phase both ciphers use do not output any keystream, but
feed it back to the NLFSR and to the LFSR inputs. This is done in order to assure both
registers depend on all the key and IV bits. Unfortunately, for Sprout, where the normal
LFSR of length 40 is used, it may lead to the case that the LFSR falls into an all-zero
state after the initialization phase. As long as during the keystream generation phase the
feedback from the output function is not used, the LFSR would remain in the all-zero
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state during the entire encryption process which would result in existence of keystream
sequences with very short period. In [Ban15], a key recovery attack against Sprout was
suggested based on this weakness.

Therefore, this weakness was improved in Plantlet. A typical countermeasure is to set
one LFSR bit to 1 once the initialization phase is complete. However, this means that
there are always two inputs to the cipher that lead to the same initial state, representing
another weakness.

To avoid this problem, in Plantlet, we use two different LFSRs in different phases, such
that the LFSR used in the keystream generation phase is obtained from the LFSR used in
the initialization phase by extending it with one additional bit set to 1. With respect to the
lightweight hardware implementation, it is preferable that the two update polynomials
of these LFSRs share as many terms as possible. To achieve this, we found two primitive
polynomials of degrees 60 and 61 which only differ in the maximum-degree term. In
hardware, a mechanism to decide how the stages with indexes 60 and 61 are updated
depending on the current phase can be easily implemented by using two multiplexers.
We call this approach a double-layer LFSR and consider it of independent value.

NLFSR Update Function Plantlet and Sprout use ths same NLFSR. The update func-
tion of the NLFSR g(N) is XORed with the LFSR output lt and round key bit k∗t . Each of
these parts has different purpose and we will discuss them separately.

g(N) is the nonlinear function which has the same form as in Grain 128a, where it
was carefully selected in order to resist against different types of attacks [ÅHJM11]. As
the used NLFSR is shorter than the one of Grain 128a, different indexes had to be chosen.
Nonetheless, the relevant cryptographic properties remained: It is balanced, has a
nonlinearity of 2, 674, 03264, a resiliency of 4, and the set of the best linear approximations
is of size 214. Each of the functions from this set has a bias of 63 · 2−15 [ÅHJM11]. This
function hasn’t revealed any unexpected weaknesses over the time why we decided to
stick to it.

The LFSR output is XORed with the NLFSR update function the same way as it is
done in Grain family so that each of the NLFSR state bits is balanced.

Output Function The output function has the same form as the one used in Grain 128a.
This function has nonlinearity of 61, 440. The best linear approximation of the nonlinear
part h has a bias of 2−5, and there are 28 such linear approximations [ÅHJM11].

Round Key Function The task of the round key function is to generate a round key
bit that has to be involved in the update function. From a security perspective, one
may prefer involved, non-linear functions that compute the round key bit from several
key bits. However, more involved functions usually require more logic which increases
the area size and often the power consumption as well. Hence, for practical reasons
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simpler designs should be preferred. Moreover, as elaborated in Subsection 3.3.2, the
use of EEPROM for storing the key advocates solutions where the key bits are cyclically
taken from the full key. With this respect, the round key functions of Sprout and Plantlet
are perfectly suited for reading the key from EEPROM. In both ciphers, the round key
function also cyclically steps through the key, but in Sprout it is only included into the
NLFSR update with a probability of 0.5, i. e., only if the linear combination of several
state bits is equal to 1. This has been exploited by several attacks [LN15, Ban15, EK15],
for example by looking for longer periods where no key bit is involved. This imbalanced
key involvement turned out to be a major weakness in Sprout. To avoid such attacks,
Plantlet simply incorporates a key bit during each clock cycle. The modified linear key
update function utilized by Plantlet balances key involvement such that the key always
influences the state, which is also in accordance with the mitigation strategies suggested
in [LN15, Ban15, EK15].

5.2.4 Security

Since several weaknesses were indicated in Sprout [MSBD15, LYR15, ZG15, LN15, EK15,
Hao15, Ban15], in this section, we focus on discussing the security of Plantlet and
explain which countermeasures were involved into the design in order to overcome the
weaknesses of Sprout. Plantlet is designed for a small area size, the maximum possible
period has to be shorter in comparison to other ciphers that deploy a larger internal
state. Hence, we assume that distinguishing attacks might be possible but consider them
only applicable to scenarios that are less relevant in the context of lightweight devices,
e.g., encrypting long data streams. Nonetheless, we will shortly discuss distinguishing
attacks at the end of this section. Moreover, as we consider that the key is fixed, variable-
key attacks (including related-key attacks) attacks are also out of scope.

Similar to Sprout, our goal for Plantlet is to achieve 80-bit security against key-recovery
attacks in the single-key but chosen IV scenario.

In this section, we discuss the attacks that were found against Sprout [AM15], and
explain what countermeasures we introduced in Plantlet to render these attacks inappli-
cable and argue why.

5.2.4.1 Merging and Sieving Technique

The first key recovery attack against Sprout was published in [LN15]. The basic idea of
this attack is to cleverly enumerate possible states of the two registers used in Sprout.
Then, given the observed keystream a sieving technique is applied which allows to
discard states that cannot produce the observed bits. It was shown that during the
process of sieving, it is feasible to not only reduce the number of possible states, but also
to recover some of the key bits. The attack allows for recovering the whole key with a
time effort equivalent to roughly 269 of Sprout encryptions. We note that the sieving
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is viable mainly due to the nonlinear influence of the key on the update function, in
other words, due to the fact that the key bits do not affect the internal state in every
clock cycle. Therefore, with the new round key function of Plantlet, which takes one
key bit every clock cycle and uses it in the state update process, this approach is not
applicable anymore. Moreover, the complexity of this attack against Sprout is around
269 encryptions and it directly depends on the sizes of the shift registers. Consequently,
even if a sieving attack with similar efficiency would be possible, due to the increase of
the internal state size by 21 bits, the total effort would exceed the effort of a brute force
attack.

5.2.4.2 Guess-and-Determine Attacks

In a guess-and-determine attack, the attacker guesses part of the internal state and
aims to recover the remaining parts with an overall effort lower than brute force. In
[MSBD15] it is shown that if the attacker partially guesses the internal state of Sprout,
it is possible to create a system of nonlinear equations which can be solved by a SAT
solver in reasonable time to recover the key and remaining state bits. The paper does
not provide the complexity of solving such systems, however, some experimental results
are provided. For example, when 54 out of 80 bits of the internal state are known, the
SAT solver finds 6.6 key candidates on average within approximately 77 seconds. In
addition, this paper presents a fault attack on Sprout.

An improved guess-and-determine attack has been described in [Ban15]. It likewise
demonstrates the possibility to recover the key from partial knowledge of the cipher state,
yet in a more efficient way compared to the attack explained in [MSBD15]. According
to the experiments conducted by the author, it holds that if 50 bits of the internal state
are guessed, the remaining bits and the key can be found in around 31 seconds on an
average PC. In [EK15] it was estimated that the time complexity of this attack equals
roughly 270 Sprout encryptions and hence would constitute an attack. Observe however
that no theoretical analysis of the effort has been given.1 Consequently, to estimate the
susceptibility of Plantlet to this attack, we conducted several lines of experiments on our
own, which were performed using the Cryptominisat 2.9.10 [Cry] solver in combination
with SAGE 6.9 [Sag] and the same source code as the author of [Ban15]. In the first line
of experiment, we repeated the experiments reported in [Ban15] to establish a base line
for comparison. In our case, when 50 bits of the internal state were guessed for different
key/internal state values, the solver needed 30 to 430 seconds for finding the key and the
remaining state bits. In order to understand how the new round key function of Plantlet
influences the complexity of this attack, we performed a second line of experiments on
Sprout but replaced the round key selection mechanism with the one used in Plantlet.
In this case, the unknown bits could be determined in 1300 seconds on average, which

1In fact, the author of [Ban15] referred to his result as an observation rather than an attack.
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is significantly longer compared to the unmodified round key function as defined in
Sprout.

Finally, we conducted a third line of experiments and performed the attack against
Plantlet directly. For different numbers of guessed bits, we measured the time to set up
the equations and to compute the solutions. The results are given in Table 5.2.

Table 5.2: Time required (in seconds) for applying the attack from [Ban15] against Plantlet.

Guessed
bits

Set up time Solve time Total time

Min Max Avg Min Max Avg Min Max Avg

95 0.057 0.096 0.075 0.549 0.949 0.764 0.61 1.04 0.83
90 0.058 0.097 0.078 0.877 1.559 1.193 0.935 1.652 1.271
85 0.089 0.150 0.112 6.400 23.36 12.95 6.49 23.45 13.06
80 0.087 0.095 0.091 33.73 1416.99 669.45 33.81 1417.08 664.05
75 0.095 8992.36 8992.45

For all cases except for the case where 75 bits are guessed, we conducted five experi-
ments for different randomly selected key and state values. For the case of 75 guessed
bits, we only carried out one experiment as already this case turned out to be quite
time consuming2. Observe that one can perform within one second around 210 Plantlet
encryptions on the same PC with a non-optimized Sage implementation of the cipher.
Hence, the results indicate that each of the considered variants of the attack is much
more expensive than exhaustive key search.

Another guess-and-determine attack is reported in [LYR15]. The first step of the attack
is to transform the NLFSR used in Sprout to an equivalent NLFSR with a simplified
output function, but a more involved update function. More precisely, the goal of this
transformation is to decrease the number of variables used in the output function and
to introduce several update functions into the NLFSR (Galois configuration). Then, for
several rounds at each clock cycle, the attacker guesses all but one bit of the internal
state which go into the output function. The last one, which was not guessed can be
computed directly from the output function because the keystream bit is known. Then,
this process is continued. At some clock cycles, it is possible to compute the bits using
not only the output function, but also the feedback functions. As soon as the state is
known, the key can be found very efficiently. This attack projects an average number of
guesses of around 270.87. However, we expect that the increase of the internal state size
incurs an effort beyond 280 which is thus worse than exhaustive key search.

2In our experiment, the attack required 8992 seconds which is about 2.5 hours.
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5.2.4.3 Trade-off Attacks

The authors of [EK15] demonstrated the first practical key recovery attack against Sprout.
It allows to find the key in 233 encryption time if the attacker is given data of 240 bits
of the keystream output with a memory requirement of 770 terabytes in total. The
offline phase requires solving of approximately 242 systems of linear equations with
20 unknowns each. The attack idea is to look for sequences where the key bits are not
involved in the update function and to apply the common birthday paradox trade-off
attack to these sequences.

A further trade-off attack on Sprout is given in [ZG15]. The time of the attack is
279−x−y with memory complexity of [c · (2x + 2y− 58) · 271−x−y] and data complexity
of 29+x+y, where x and y are the numbers of forward and backwards clockings of the
cipher under the assumption that there is no involvement of the key bits in the state
update.

Both trade-off attacks [EK15, ZG15] against Sprout require the existence of keystream
sequences of certain lengths which are generated without any influence of the key.
However, due to the fact that in Plantlet one key bit is involved in the state update at
every clock cycle and hence propagates to the keystream, we do not see a possibility for
these attacks to still be effective.

5.2.4.4 All-zero LFSR State

In [Ban15] it is shown that for every key approximately 230 IVs exist for which the LFSR
gets into the all-zero state during the keystream generation phase. This allows to find
Key-IV pairs which result in the sequences which have a period equal to 80 and also to
mount a key recovery attack with the complexity equivalent to 266.7 Sprout encryptions
with negligible memory requirements.

Such a situation cannot occur in Plantlet due to the use of the double-layer LFSR. That
is, one of the LFSR bits of the longer LFSR is definitely set to “1” before the keystream
generation phase begins. Moreover, the LFSR update polynomial is primitive, hence
excluding the all-zero state.

5.2.4.5 Distinguishing Attacks

As explained at the beginning, we are aware that similar to Sprout distinguishing
attacks are probable due to the relatively short period (although Plantlet should provide
higher periods because of the use of a longer LFSR). From our point of view, it is a
general problem that decreasing the area size makes it more and more difficult to ensure
high periods. Moreover, one may argue that common scenarios deploying resource-
constrained devices do not require the encryption of very long data streams. Nonetheless,
we take a short look at existing distinguishing attacks against Sprout and discuss if and
how they would apply to Plantlet as well.
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In fact the first attack on Sprout was a related-key distinguishing attack presented in
[Hao15]. However, we consider such attacks less relevant in the case of hardware ciphers
as changing the key takes significant effort or is even impossible. Observe that attacks
that use related IVs in the sense that initialization involves the same key but different, yet
related public values do not apply here either as the internal update procedure depends
on the (fixed) key.

However, Plantlet may also be subject to the distinguishing attack explained in [Ban15]
against Sprout. The attack looks for two IVs that result in (80 · P)-bit shifted keystreams,
where P is a positive integer. This attack is possible due to the simplicity of the round
key function. It would be possible to make the design resistant against this attack by
either choosing a more complicated key-selection function or by further increasing
internal state size. The first countermeasure would by all means result in a lower
throughput because of the timing issues inherent to reading from serial EEPROM, the
second would result in higher area size. On the other hand, the memory complexity of
this distinguishing attack against Plantlet is at least 258 which is about 32, 768 terabytes.
As long as we are aiming for ultra lightweight devices, we think that it is not reasonable
to introduce countermeasures against this attack at the cost of area and performance
characteristics.

5.2.5 Implementation Results

Next, we explain and discuss our implementation of Plantlet. The implementation
results for Plantlet are provided in Table 5.3. We do not consider any costs for storing the
key in the EEPROM memory because we assume that it has to be provided by the device
anyway, independent of whether it needs to load the key only once for initialization or
requires constant access to the EEPROM. However, we do consider the costs incurred by
the control logic which is required to synchronize the cipher with commercial EEPROM
modules. That is, for the clock cycles when the key bits are not output by the EEPROM,
we switch off the clocking of the cipher.

For the implementations discussed in this section, we used Cadence RTL Compiler4

for synthesis and simulation, and the technology library UMCL18G212T3 (UMC 0.18µm
process). We considered the same clock frequency of 100 kHz which is the most com-
mon rate for lightweight devices and supported by most of the existing commercial
EEPROMs.

In such a scenario and due to the fact that Plantlet simply reads out the key bits
sequentially, there is no need for using multiplexers for selecting the round key bits
as this is directly provided by the discussed serial interfaces. Thus, we consider it as
reasonable and fair approach to re-use the existing mechanisms when designing a cipher.

3By hard-wired we mean all the techniques which do not allow for changing the key, i.e. MROM or
PROM

4See http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
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Table 5.3: Implementation results for Plantlet considering that the key is continuously read
from different types of NVM.

Hard-wired3 Integrated EEPROM

Area (in
GE)

Throughput
(in kbit/s)

Area (in GE) Throughput
(in kbit/s)x1 x8 x16 x32

928 100 807 852 897 929 100

Commercial serial EEPROM modules

Interface
wrap case no-wrap case

Area (in
GE)

Throughput
(in kbit/s)

Area (in
GE)

Throughput
(in kbit/s)

I2C 822 88.9 885 66.7
SPI 807 100 860 83.3
Microwire 807 100 860 87.9
UNI/O 831 80 898 53.3

Depending on the chosen interface, our implementations of Plantlet require a minimum
of 807 GE (e.g. for SPI in the wrap case) and a maximum of 898 GE (e.g. for UNI/O in
the no-wrap case).

We also investigated cases in which the key is stored in customized EEPROM. The
most common architectures convey the possibility to read either one bit from a random
memory location or an n-bit word with a given address per memory access. Here,
typical word sizes are 8, 16, and 32 bits. Our smallest implementation with respect to
these different word sizes requires mere 807 GE. As another alternative, we examined
using a lower frequency for accessing the EEPROM compared to the clock-frequency
of the cipher itself for which then buffer registers are used. The resulting area sizes are
also shown in Table 5.3. From our point of view, this approach might be practically
relevant as it could potentially allow for reducing the power consumption of reading
from EEPROM considerably.

For the case of Sprout, assuming that the key is read directly from EEPROM, and no
additional logic is required, it needs 692 GE.

We contrast this scenario to the case when the key is stored in PROM (i.e. using
fuses and antifuses) or MROM, which incurs additional logic for retrieving the current
key bit as required by the respective round. The Sprout implementation assuming the
key being burnt into the device needs 813 GE. The corresponding implementation for
Plantlet results in 928 GE. For comparison, Table 5.4 provides information on several
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lightweight stream and block ciphers and their respective area requirements, however,
since in the previously published papers the authors were not considering the approach
of constantly reading from rewritable non-volatile memory, the figures are given for
fixed keys where applicable.

Table 5.4: Overview of different lightweight ciphers regarding key and block size, through-
put at 100 kHz, the logic process (denoted Tech.), and the required area size. The figures are
given for the case, when the key is stored in non-rewritable memory (e.g. MROM or PROM).
Note that for A2U2, no logic process information is given and the area size is an estimate
as reported in [DRL11]. As there were no throughput figures given for Midori in [BBI+15],
we computed them based on the number of rounds and the block size as described for the
original implementation.

Cipher
Key Block Throughput Tech. Area
size size [ kbit/s] [µm] [GE]

Stream ciphers

A2U2 [DRL11] 56 1 100 – 300
Sprout [AM15] 80 1 100 0.18 810
Grain 80 [AM15] 80 1 100 0.18 1162
Trivium [GB08] 80 1 100 0.13 2580
Plantlet 80 1 100 0.18 928

Block ciphers

32 12.5 462
KTANTAN [CDK09] 80 48 18.8 0.13 588

64 25.1 688

LED [GPPR12]
64

64
5.1

0.18
688

128 3.4 700

Midori [BBI+15] 128
64 400

0.09
1, 542

128 640 2, 522

PRESENT-80 [BKL+07] 80 64 200 0.18 1, 570

PRINTcipher [KLPR10]
80 48

100 0.18
503

160 96 967
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5.3 Low-Energy Cipher Trivium-2

5.3.1 Motivation

Our principal finding from the experiments discussed in Section 3.4 was that the 160x
unrolled implementation of Trivium is about 9 times more energy efficient than any
block cipher based solution for encrypting long data streams, and that unrolled stream
ciphers in general outperform block ciphers in this domain. Since Trivium only offers
80-bit security, our motivation was to find a design that is both energy efficient for longer
data streams and provides 128-bit security. We present the stream cipher Trivium-2
(based on the Trivium design) that in addition to providing 128-bit security is optimized
with respect to energy consumption. Among stream ciphers that provide 128-bit security,
for encryption of longer data streams the energy consumption of the cipher is around
2.5 times better than Grain-128 and around 15% better than Kreyvium (see Table 5.5 for
comparison).

Table 5.5: Best cipher configurations with respect to energy consumption

Cipher Security level Optimal configuration Energy (nJ) 1000 blocks
PRESENT 80 bits 2x 155.2
Plantlet 80 bits 16x 64.98
Grain v1 80 bits 20x 33.02
Trivium 80 bits 160x 10.15
Lizard 80 bits 16x 80.34
Midori64 128 bits 2x 90.5
Grain 128 128 bits 48x 25.29
Kreyvium 128 bits 128x 11.29
Trivium-2 128 bits 320x 9.77

We also argue the security of the cipher by performing extensive cryptanalysis on
reduced round variants of the design.

5.3.2 Design Specifications

The design of Trivium-2 is similar to Trivium [CP08] but includes several changes
to allow for a higher energy efficiency. The probably most notable difference is that
Trivium-2 uses a 576-bit internal state, being two times larger than the state size of Triv-
ium. Trivium-2 is composed of three NFSRs of sizes 186, 168 and 222 bits respectively.
Trivium-2 uses 4,032 initialization rounds compared to Trivium that has 1,152 initial-
ization rounds. Both ciphers effect three quadratic updates per round. For Trivium this
gives 12 quadratic updates per state bit in average, while for Trivium-2 we get around
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21 quadratic updates per state bit during initialization. The structure of Trivium-2 is
depicted in the figure 5.2.

Naturally, the use of Trivium-2 starts with an initialization phase where an internal
state is derived from a 128-bit secret key and a 96-bit public IV, followed by the keystream
generation phase. As both phases deploy the same state update procedure, we explain it
first before describing the two different phases.

 

Figure 5.2: The structure of Trivium-2 .

State Update We denote the internal state by St = (s0, . . . , s575). The state update
function updates St to St′ = (s′0, . . . , s′575) as follows:

s′0 ← s484 + s575 + s570 · s571 + s136

s′186 ← s130 + s185 + s180 · s181 + s340 (5.2)
s′354 ← s322 + s353 + s348 · s349 + s526

s′i ← si−1, 0 ≤ i ≤ 575, i /∈ {0, 186, 353}
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As can be seen, the tap locations for Trivium-2 have been chosen at locations that are
roughly two times the locations used in Trivium. Some tap locations were adjusted for
the following reasons:

a) We used (185, 353, 575) as tap locations instead of 2× (92, 176, 287) so that the state
update function is one-to-one and invertible.

b) As in Trivium, we ensured that the tap locations feeding the AND gates were taken
from successive register indices.

Since, Trivium-2 has twice the register length but the same number of tap locations
as Trivium, the main concern was whether there existed linear approximations of the
update function that resulted in any statistically significant bias in the distribution of
any linear combination of the output keystream bits. However, after analyzing the
design using the matrix method in [KHK06], we found that the maximum bias in the
distribution in any linear combination of the keystream is 2−72. This is low enough to
prevent a linear attack for a 128 bit key. We refer to Section 5.3.4.2 for more details.

Initialization Phase At the beginning of the initialization phase, the 128-bit secret key
(k0, . . . , k127) and the publicly known 96-bit IV (iv0, . . . , iv96) are loaded into the internal
state as follows:

(s0, . . . s127) ← (k0, . . . , k127)

(s128, . . . , s223) ← (iv0, . . . , iv95)

(s224, . . . , s255) ← (iv0, . . . , iv31)

(s256, . . . , s383) ← (k0, . . . , k127) (5.3)
(s384, . . . , s447) ← (1, . . . , 1)
(s448 . . . s511) ← (iv32 . . . iv95)

(s512, . . . s572, s573, s574, s575) ← (1, . . . , 1, 0, 0, 0)

Then the state is updated 4,032 times, using the state update function (cf. (5.2)). While
designing the Initialization Phase, we were mindful of three principal considerations:

a) Key-IV mixing should occur as early as possible: Fast diffusion of key and IV bits to
all bits of the internal state is a desirable characteristic of any shift register based
cryptosystem. The initialization phase ensures that all the 576 bits of the internal
state is a function of all the 128 bits of the key and 96 bits of the IV after 1062
initialization rounds.

b) Diffusion of differences: We ensure that for every difference introduced by the IV,
there are 2 bit differences introduced into the internal state. After experimenting
with single bit differences we found that: when a difference is introduced in the
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54th IV bit, then it affects all bits of the internal state after 1067 initialization rounds.
This is the longest any single bit difference propagates without affecting atleast
one state bit.

c) Cube/Conditional differential attacks: We discuss this issue in detail in Section
5.3.4.5, 5.3.4.6. The initialization ensures that the maximum number of rounds that
can be attacked is 1,684.

We choose the number of initialization rounds equal to 4,032 to give us enough security
margin, in keeping with the above observations. We choose an asymmetric 128-bit
initialization constant (164||161||03) to prevent slide attacks reported in [CKP08]. Also
a large initialization constant prevents easy enumeration of key-IV pairs that generate
correlated keystreams [BMS12b, Ban15].

Keystream Generation Phase After the initialization phase is over, the cipher state is
continuously updated with the state update function explained above. In addition, after
each update the cipher outputs a keystream bit zt as follows:

zt = s130 + s185 + s322 + s353 + s484 + s575

The maximum amount of keystream bits generated under the same (key, IV) pair is 264.
Then the IV has to be changed and the cipher needs to be reinitialized.

5.3.3 Design Rationale
The main design principle was to enable a high degree of unrolling such that each copy
of the update and output functions are as simple as possible. Theoretically, the most
simple approach to achieve this goal is probably to use just one NFSR, possibly of large
size, that uses conceptually simple update and output functions. Unfortunately, our
internal analysis has shown that such a construction is very vulnerable to the attacks
based on the linear approximation technique [KHK06]. A natural countermeasure is to
deploy more complicated update and output functions but this would directly violate
our main design goal mentioned above.

Thus, the next logical step is to use two NFSRs instead of one. Unfortunately, also
here we faced problems similar to the case of one NFSR. For example, we considered
variants of the cipher Bivium [Can06], which is a reduced variant of Trivium using two
NFSRs only and has a similar structure as Trivium but with a shorter internal state. We
were investigating extensions of Bivium with a considerably larger internal state and
with more complicated update functions. But also here, either the designs were subject
to linear approximation attacks or resulted into too complicate functions. While our
research does not exclude the existence of secure and energy efficient designs based on
one or two NFSRs, it seemed to be most promising to adopt the general structure of
Trivium with three NFSRs.
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Given this, the next question was how the design of Trivium should be modified to
achieve a higher level of energy efficiency. At first, we investigated to slightly shift the
taps of the update functions of the registers in order to make unrolling easier. However,
all variants of Trivium that we found that would significantly improve the energy
consumption were likewise vulnerable to linear approximation attacks.

Therefore, our next attempt was to increase the state size of Trivium. This not only
allowed us designs that achieve better energy performance, but also to use a 128-bit key
instead of an 80-bit key as used by Trivium. Note that Trivium itself would not provide
128-bit security even if the key length would be increased from 80-bits to 128-bits. The
reason is the state recovery attack proposed in [MB07] where the complexity of this
attack does not depend on the key length, but only on the state size (see Section 5.3.4.3
for more details). We note that using the structure of Kreyvium[CCF+16] instead of
Trivium, which includes protection mechanisms against this attack, wouldn’t be the
optimal decision because Kreyvium always consumes more energy than Trivium due to
the slightly more complex update function (see table 3.34).

We considered different designs which use the same Trivium structure with increased
state sizes, with identical update functions in which we scale the location of the tap
positions5, and the number of initialization rounds. By doing so, we got scaled versions
of Trivium which we call Trivium-i. Trivium-i has a state size of 288 · i and the charac-
teristics described above. As will be shown in the Section 5.3.5, Trivium-2 has the best
energy performance.

5.3.4 Security

In this section we discuss the security of Trivium-2 with respect to known attacks
against stream ciphers. The security of Trivium-2 was analyzed against various attack
paradigms reported in literature. In Table 5.6, we summarize the main security results.

5.3.4.1 Period

Although the use of NFSRs is considered since several years for cryptographic designs,
there is still only little known about the period of NFSRs. Since Trivium-2 is mainly
composed of NFSRs, we cannot assure a minimum period6. Due to the similarity
between the designs and the fact that the internal state of Trivium-2 is twice as large as
the one of Trivium, we expect the cycle lengths of Trivium-2 to be at least as large as
the ones of Trivium. To the best of our knowledge, there have been no indications that
Trivium may have short periods.

5After indexes of the tap positions for both output and feedback functions were multiplied by i,
they were continuously decremented by the value of 1, step by step unless designs secure against linear
approximation attacks [KHK06] were found.

6However, note that this likewise applies to Trivium.
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Table 5.6: Summary of security analysis for Trivium-2.

# Attack type Security Margin Comments
1 Linear Approximation Maximum linear bias

=2−72
Key recovery attack using
a Fast Walsh transform
will take atleast 2144 time

2 Guess and Determine Complexity atleast 2148.3 Using the technique in
[MB07], the initial stage
requires guessing 148 bits

3 TMD tradeoff attack Not feasible in time less
than brute force due to
large state size

4 Conditional Differential
attack

Maximum attacked
rounds =1431

We use a 20 bit differ-
ential and impose addi-
tional 20 conditions on
the IV bits

5 Cube attack Maximum attacked
rounds =1684

We use a 46 dimensional
cube and use the tech-
niques of [Liu17]

Moreover, since 128 bits of the initial state are fixed (see (5.3)) an attacker has only
partial control over the internal state. Therefore, even if short cycles exist, we believe, it
will be difficult to find such Key/IV pairs which fall into these.

5.3.4.2 Linear Approximation

We applied this approach from [KHK06] to Trivium-2. The state update functions of
Trivium-2 have 3 quadratic terms, where each of them can be approximated using 4
different linear functions: for example, the term s180 · s181 can be approximated as 0 or
s180 or s181 or s180 + s181. Therefore, in total there exist 43 = 64 possible linear circuit
approximations. The best results were given when all three quadratic monomials in
the state update function (see (5.2)) were approximated with the constant zero function,
yielding:

Pr(z576 + z439 + z421 + z403 + z284 + z266 + z248 + z177 + z146 + (5.4)
z122 + z111 + z91 + z86 + z55 + z31 + z0 = 0) = 1/2 + 2−72 (5.5)

To use this property for distinguishing a keystream sequence from a purely random bit
sequence, the common [KHK06] approach would be to use a chi-square test. However,
this would result into a time complexity of about (272)2 = 2144 which would take more
time than exhaustive key search.
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5.3.4.3 Guess and Determine

The best guess-and-determine attack against Trivium was proposed in [MB07]. It has
a time effort of c · 283.5, where c is the complexity of solving a system of 192 sparse
linear equations. The attack is actually applicable against a whole family of Trivium-like
ciphers which can be described as a combination of three NFSRs with certain properties:
each NFSR is composed of three building blocks, where each has a size divisible by 3.
These building blocks are connected to each other as shown in the Figure 5.3.

Figure 5.3: Alternative representation of trivium-like ciphers [MB07] .

Although this condition does not hold for Trivium-2, e.g. A1 is equal to 131, which
is not divisible by 3, we expect that this attack could still be applied with some minor
modifications. This makes it necessary to discuss the lower bound on the complexity.
The attack consists of two phases.

1. During the first phase, every third bit of each block of the register is determined.
Most of these bits are found by guessing. However due to the very simple output
function, it is possible to obtain d = min{A1, B1, D1} linear equations on these
bits. This allows to reduce the number7 of guesses to (|S| −min{A1, B1, C1})/3
where |S| denotes the state size. In case of Trivium-2, it would be required to guess
(576− 131)/3 = 148.3 state bits.

7In case of Trivium-2 , this number is not an integer since the size of the block A1 is not divisible by
3. However, this fact would only lead to additional effort for the attacker, so that we can keep this for
estimating a lower bound.
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2. At the second phase, these bits are used for recovering the remaining state bits.

Since during the first phase it is already required to guess at least 148 bits, the overall
complexity will be higher than of a brute force attack.

5.3.4.4 TMD Tradeoff Attacks

The classical time-memory-data tradeoff attack (BG attack) has a lower bound on the
complexity of O(

√
S) known data, memory and time, where the S is the size of the set

of all possible internal states of the cipher. Hence in order to avoid this attack, the state
size has to be at least two times larger than the key size, which is the case for Trivium-2 .

The same holds for the improvement (BS attack) suggested in [BS00] which gives the
tradeoff curve of

T ·M2 · D2 = S2,

with the constraint of D2 ≤ T, where T, M, D are the time, memory, and data complexity,
respectively. Obviously, it needs to holds that min{T, M, D} ≥ 5

√
(2512)2 ≥ 2204. Thus,

the effort of this attack is far beyond the effort of a brute force attack.

5.3.4.5 Conditional Differential Cryptanalysis

Conditional differential cryptanalysis is a variation of differential attacks for NFSR-based
ciphers [KMNP10]. Typically the attacker introduces some differences, and imposes
some conditions on the values of public variable IV to control the propagation of dif-
ferences. Depending whether these conditions involve secret variables or not, she can
mount key-recovery or distinguishing attacks. The technique extends to higher-order
differential cryptanalysis.

We evaluate conditional differential cryptanalysis using higher-order differential
characteristics against Trivium-2 by investigating the probability to find a zero-sum
distinguisher. To be more precisely, we check whether ∑c∈L(e1,...,ed)

f (k, iv⊕ c) = 0, where
f is the update function of the stream cipher, and L(e1, . . . , ed) is the set of all 2d linear
combinations of e1, . . . , ed.

We carefully choose arrangements of differences and conditions in the initial state
to control propagation of differences in the AND operations. The best result of our
experiments is a 1, 431-round (out of 4, 032) zero-sum distinguisher, obtained when the
following 20-bit differences and 20-bit conditions are imposed on IV:

Differences: iv2i for 0 ≤ i ≤ 19.

Conditions : iv2i+1 = 0 for 0 ≤ i ≤ 19.

We also search several such distinguishers (i.e. not only zero-sum) by considering
differences and conditions in IV. As a result, the zero-sum distinguisher was best with
respect to the number of round.
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Table 5.7: Comparison with Trivium and Trivium-2 with respect to the security of cube
attacks. LB of #round (key/IV) and LB of #round (IV) are lower bounds on the maximum
number of rounds of NOT achieving maximum degree for Trivium-2 with all the key and
IV bits as variables and all the IV bits as variables, respectively. #round of CT is the lower
bound of attacked round by the cube tester.

Cipher LB of #round (key/IV) LB of #round (IV) #round of CT (cube size)
Trivium 907 [Liu17] 793 [Liu17] 837 (37) [Liu17]

Trivium-2 1869 1635 1684 (46)

Thus, full round Trivium-2 should provide a sufficient security margin against the
conditional differential cryptanalysis.

5.3.4.6 Cube Attacks

The cube attack [DS09], which is an extension of the higher-order differential crypt-
analysis, exploits low-degree polynomial equations in the output of stream ciphers. To
evaluate the security of cube attacks, we use a method for estimating the algebraic degree
of NFSR-based cryptsystem which is recently proposed by Liu [Liu17]8. Specifically,
we implemented Algorithm 2 in their paper [Liu17] to obtain lower bounds on the
maximum number of rounds of not achieving maximum degree for Trivium-2 with all
the key and IV bits as variables for cube attacks. We found that Trivium-2 does not
achieve the maximum degree 224 after an initialization of 1869 rounds. We also obtain
lower bounds on the maximum number of rounds of not achieving maximum degree
for Trivium-2 with only all the IV bits as variables, and found that Trivium-2 does not
achieve the maximum degree 96 after an initialization of 1635 rounds. As shown in Table
5.7, Trivium-2 requires twice number of rounds than Trivium to achieve the required
maiximum degree. Since the number of initialization of Trivium-2 is 3.5 times larger
than Trivium, we consider that Trivium-2 has sufficient security margin.

In addition, to obtain the lower bound on the number of attacked rounds by cube
tester [ADMS09], we did an exhaustive search on the sets of input variables which have
size of around half length of the IV by ithm 2 as with Liu’s evaluation of Trivium [Liu17].
As a result, the output of 1,684-round Trivium-2 has degree strictly less than 46 over a
subset of IV bits with size 46, and thus the outputs of 1,684-round Trivium-2 over this
cube always sum to 0.

8Todo et al. [TIHM17] also proposed a new method for evaluating cube attacks based on a division
property. Since Liu’s method is more efficient than their method and does not requires any solver, we use
Liu’s methods. We think that there is no much diffrence in the number of requierd rounds between these
methods.
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5.3.4.7 Algebraic Attacks

The classical algebraic attacks are normally not applicable in those cases where non-
linear update functions are used. In fact, all algebraic attacks against Trivium discussed
so far [MCP08, SFP08, TWB+14] did apply to reduced-size versions only and could not
be extended to the full version. Since Trivium-2 is likewise using a non-linear update
function and has an even much larger internal state size, we do not expect that this type
of attacks is feasible against Trivium-2.

5.3.4.8 Side Channel Attacks

Fault attacks on stream ciphers is a well researched topic as is apparent from numerous
papers in literature [BMS12a, HR08, BM13]. Trivium itself is vulnerable from such
attacks [HR08], and if the attacker is able to apply time synchronized bit flipping faults
to the state register, he may be able to determine the internal state of the cipher by
comparing the faulty and fault-free keystream bits and formulating enough equations to
solve for the internal state, and so we do not claim security from fault attacks. As far
as power attacks are considered, we could mount a differential power analysis (DPA)
attack on Trivium-2, using the same techniques as in [FGKV07]. However, due to the low
multiplicative complexity of the round function, threshold implementations as reported
in [BGN+14] could be designed in a similar manner.

5.3.5 Implementation Results
We simulated the energy performance of different versions of Trivium-i. In Table 5.8, we
tabulate the energy figures for i = 1, 2, 4, where we have used an initialization of 1, 152,
4, 032 and 8, 064 rounds respectively. As in Trivium-2, the tap locations for Trivium-i
were placed at register bits i×A, whereA denotes the set of tap locations for the original
Trivium stream cipher, with the above listed modifications required to make the state
update one-to-one and to ensure that successive bit locations feed the AND gates. Due
to the fact that the best performance for Trivium is at 160x, intuitively we guess that the
optimal energy efficient configuration of Trivium-i will be at i · 160x.
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Table 5.8: Comparison of energy consumptions for Trivium-i, r denotes # unrolled rounds,
Energy/bit figure calculated over 1000 blocks.

Cipher r Area (GE) Power (uW) Energy (pJ) Energy (nJ) Energy/bit
10 MHz 1 block 1000 Blocks (pJ)

Trivium 128 4593 207.1 227.8 10.56 0.17
160 5409 248.2 223.4 10.15 0.16
256 7755 419.5 251.7 10.73 0.17

Trivium-2 128 5811 246.4 813.1 13.13 0.21
256 9172 412.0 700.4 11.00 0.17
320 10136 456.5 639.1 9.77 0.15
512 14488 768.2 691.4 10.29 0.16

Trivium-4 256 12424 511.7 1688.6 13.76 0.22
512 19177 864.5 1469.7 11.67 0.18
640 22513 1089.8 1525.7 11.87 0.19

The implementation results show that at the optimum configuration (320x) Trivium-2
performs slightly better than Trivium itself. Thus Trivium-2 seems to be a good candidate
w.r.t. to energy efficiency to provide 128 bit security. Compared with the optimal
configuration (48x) of Grain 128, which also provides 128 bit security, Trivium-2 is
around 2.5 times more energy efficient and is around 15% more efficient than Kreyvium
(see Table 5.5).

5.4 End-to-End Encryption Scheme for Low-Power Networks

5.4.1 Overview of LPNs
More and more enterprises are nowadays aiming to connect both new and legacy
physical assets to their system landscapes in order to capture the data from these
assets, generate insights and derive value out of the latter. This requires to retrofit
existing physical assets in order to leverage them as part of the (connected) physical
(IoT) infrastructure.

A major part of this growing amount of ”things” (devices) is expected to be low-
powered, i.e., devices which are restricted to consume only very little energy to operate
(and therefore to communicate). This has numerous consequences in practice; for
instance, one cannot expect these devices to hold an active link but rather to communicate
on-demand only. To this effect, these devices will have to communicate not only with
a reduced packet size, but to embrace both a higher latency and a lower throughput
at run-time. This takes us to the concept of Low-Power Connectivity, materialized as
Low-Powered Wide-Area Networks (LPWANs) or Low-Power Networks (LPNs). LPNs
offer an economically viable option to physically deploy new sensors along with the
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necessary communications infrastructure in order to generate, transport and ingest
data coming from any type of asset. This means that part of the great potential of the
LPNs rely on the cost effectiveness of retrofitting “old” assets with new (low-power)
sensors and (low-power) connectivity, making this type of approach the first choice
when targeting legacy assets and landscapes.

However, even if the connectivity is achieved, security is often an equally important
requirement - in particular end-to-end data protection from the devices (i.e. the first end)
all the way to the backend applications (i.e. the second end). The involvement of multiple
actors in an IoT scenario (e.g. device, network, platform, application, professional
services providers, etc) together with LPN constraints makes the fulfillment of an end-
to-end data protection (i.e. confidentiality and integrity) a challenging endeavor.

5.4.2 Security Goals

We now discuss the requirements for the security solution which need to be fulfilled
so that the solution was applicable in broad class of scenarios and use-cases. One
of the most important needs is that the content of the data has to be concealed all
the way from the time the data is generated (device) to the time the data consumed
(application/dashboard). This requirement is driven by the need to be compliant to
the EU General Data Protection Regulation [Com17]. A further natural requirement is
that the integrity of the data has to be ensured as it strongly determines the reliability
of distribution network. For practical reasons, it is also often required that part of the
encrypted data is of the same format as the plaintext data. This allows to store the
encrypted data in the same data-bases, where previously plain-text data was located,
hence there is no need to make changes to the data-base, and therefore such a scheme
can be used with higher flexibility.

Based on these discussions and own experience, we came up with the following list of
security requirements for a LP-WAN security solution:

• It has to guarantee end-to-end confidentiality, authenticity, and integrity of the
data.

• All components have to follow NIST recommendations i.e. [BR12, Dwo01, Dwo05,
Dwo16].

• It has to be applicable to different existing low-power networks, even if the maxi-
mal payload size is as small as 12 bytes (e.g. SIGFOX).

• It needs to be deployable on the low-power devices.

• It must be applicable in scenarios which are not (yet) supporting bidirectional
communication.
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• It must be compliant with different encryption algorithms while meeting the
compute power restrictions of constrained devices.

5.4.3 Use Case
We now discuss the concrete use case, for which this solution was developed.

The City of Antibes, France, instruments 300 kms of water pipelines with 2000+
sensors that capture a variety of data, e.g. debit, temperature, pressure, water storage
levels. The collected information is sent over an ultra-narrow band network, and pushed
to a central application (a predictive maintenance dashboard), depicted in Figure 5.4.
The latter implements a hydraulic model of the network with the purpose of predicting
disruptions in the water supply of the city. This application enables the City of Antibes
to optimize their operational budget and to better allocate its work force (as well as
external contractors) on the field.

Given that the sensor data carries critical information for a number of operational
levels of the city, it is of the utmost importance to meet specific security requirements,
being confidentiality and integrity of the sensor data the top priority.

Figure 5.4: Predictive maintenance dashboard, city of Antibes

5.4.4 Design Specifications
Within this section, we propose a concrete solution that fulfills the security requirements
formulated in Section 5.4.2. We first explain the underlying reference architecture and
describe afterwards the data protection scheme.
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5.4.4.1 Reference Architecture

 

Figure 5.5: Reference architecture, secure end-to-end communications

As depicted in Figure 5.5, our reference architecture is organized end-to-end i.e., from
the edge to the backend. Edge refers to those devices that are not under direct control of
the backend system. Within the edge, a device connected to the actual sensors provides
an entry point of data into the landscape. At the edge, devices have three basic data
services: acquisition, protection, and communication of the data toward either the edge
gateway or directly to the backend system. Gateways are in this context the bridges
between rather constrained devices and the backend systems, enabling the required
connectivity. The protection of sensor data is realized by a Data Protection Service. The
data is sent from sensors over a LPN to a low-power gateway which then forwards it to
the backend.

On the backend, the central application uses this Data Protection Service to check the
validity of the protected data. That is, it detects and reports any attempts for data
injection or replay attacks. Once data validity is confirmed, the data is decrypted.

On both, the device and backend, the Data Protection Service delegates the task of key
management to the Key Management component. In our architecture, the device stores
only one master key that is used for enabling both encryption and authentication. On
the backend, the Key Management maintains a list of the master keys of all the devices
involved.

5.4.4.2 Data Protection Scheme

Next we provide the full specification of the proposed data protection scheme. The used
notation is summarized in Table 5.9.

147



5 New Designs

Table 5.9: Notation

Key Management

Kmaster
Master key. A 128-bit key preshared between the user application and the device.
This key is never changed and is used to generate intermediate keys.

i Intermediate key index. An integer value used for computing the next intermediate key.
This value is updated by being incremented by 1 every SNmax times.

Ki
Intermediate key. A 128-bit key generated from the current intermediate key index and
the master key, used for generating encryption and authentication keys.

KEnc Encryption key. A 128-bit key used for encrypting the data

KMAC
Message authentication code key. A 128-bit key used for computing message authentication
code tags.

Data

M Message. The sensor value that has to be transmitted from the node to the backend
application.

C Ciphertext
T Authentication tag

Meta data
ID Device ID. The unique identifier of a device.
SN The sequence number of the packet generated using the current intermediate key.

Algorithms

Enc(KEnc, M)
An algorithm that encrypts a message M using a secret key KEnc and produces a
ciphertext C.

DecKEnc, C An algorithm that decrypts a ciphertext C using the secret key KEnc and outputs a
plaintext message M.

MAC() An algorithm that computes a message authentication code for some data using
authentication key KMAC.

CMAC() Cipher-based message authentication code. [Dwo05]

Parameters

SNmax
The maximum value for the sequence number. Represents the maximum number
of packets to be processed using the same intermediate key Ki.

L Length of the authentication tag T.

nmax The maximal number of invalid packets with the same meta-data (ID,SN)
for current intermediate key index i.

Backend stored values

S i The list of sequence numbers already used with the same key index i for a given
device.

ni
SN

The number of packets with the same meta-data (ID,SN) for the intermediate key
index i currently received by the backend side.

Decrypted[ID, SN, i] Boolean value which is true if a packet with the given meta-data (ID, SN) for
intermediate key index i was already decrypted.

In a nutshell, the scheme can be divided into two parts: the key management part and
the data protection part. As explained above, the scheme builds on master keys that are
pre-shared between each of the devices and the backend application. With respect to
key management, the scheme generates single-use keys which are applied to encrypt

148



5.4 End-to-End Encryption Scheme for Low-Power Networks

and authenticate every new packet to be sent. To achieve synchronization, it implements
intermediate keys and sequence numbers.

The encryption and authentication processes are independent from each other. In
order to keep the communication complexity low, we are using format preserving
encryption algorithms where the ciphertext size equals the plaintext size, e.g. AES in
counter mode [Dwo01] and FF1 [Dwo16]. Authentication is realized by computing a
message authentication code (MAC) of the cipher text.

Data Protection Scheme on the Device Here we describe the operations performed
on each of the devices. The pseudo code is given in algorithm 1.

Prerequisites :

• encryption scheme Enc();

• master key Kmaster;

• intermediate key index i;

• sequence number SN;

• Device Id ID.

Input :Plaintext message M
Output :Payload PL
if ( SN 6= SNmax) then

SN ← SN + 1;
else

SN ← 0;
i← i + 1 ;
Ki ← CMAC(Kmaster, i)

end
KEnc ← CMAC(Ki, SN ‖ ID ‖ 0) ;
KMAC ← CMAC(Ki, SN ‖ ID ‖ 1) ;
C ← Enc(KEnc, M);
T ← CMAC(KMAC, C));
PL← (C ‖ T ‖ SN ‖ ID);
Return(PL);

Algorithm 1: Data protection scheme: encryption and authentication on the con-
strained device side

Each device stores its device ID ID and a master key Kmaster in protected (access
controlled) memory. These values are set during the deployment of the devices into a
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landscape and are known to the central application. The master key is used implicitly
for both, encryption and authentication, by deriving appropriate intermediate keys from
the master key; more precisely, the data sent to the backend is divided into packets
and those are protected by applying different keys. Packets are grouped in sequences of
length SNmax each. Our scheme uses a different intermediate key Ki for each sequence.
When ever the sequence number reaches SNmax, a new sequence is started using a new
intermediate key.

Moreover, the device keeps track of the sequence number, referring to the number
of the packet in the current sequence. For each packet within a given sequence, an
encryption key KEnc and an authentication key KMAC are derived from the current
intermediate key Ki. Then the message is encrypted and the ciphertext is authenticated.
The payload to be sent is composed of the ciphertext C, authentication tag T, sequence
number SN, and device ID ID.

Data Protection Scheme on the Backend Next we explain the operations which take
place on the backend. To distinguish between the values received from the nodes and
those ones which are computed, we use the upper indexes rec and com respectively. For
example, Trec denotes the value of the authentication token in a received packet, while
Tcom denotes the token computed at the backend side.

Let Kmaster, i,S i, ni
SN be the values used by the device with identifier ID. The scheme

is shown in Algorithm 2. At first it is checked if packets with the same meta data were
already processed by the algorithm, if one of them was already verified and decrypted
Decrypted[ID, SN, i], or if the number of attempts exceeded the maximum nmax. In all
these cases the algorithm returns corresponding errors. Otherwise, the authentication
tag is verified. In case that the tag is valid the decryption process begins.

Encryption Algorithms We consider two different variants of encryption algorithms,
which allow to preserve the size9 of the plaintext while computing the ciphertext. These
are:

• AES encryption in counter mode [Dwo01]:
C = Enc(KEnc, M) = M⊕ AES128(KEnc, IV0)

where IV0 is a 16-byte zero vector;

• the format preserving encryption scheme:
FF1enc[Dwo16].C = Enc(KEnc, M)
= FF1enc(KEnc, TW, M).

The tweak TW is computed as the concatenation of the device ID and sequence
number: TW = (ID ‖ SN).

9This is required to adapt the packet size to possible length restrictions.
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Prerequisites :For each of the devices which communicate with the application:

• encryption scheme Enc();

• master key Kmaster;

• current intermediate key index, i;

• all sequence numbers S i already used for current intermediate key index i

• information if corresponding packets were already verified and decrypted
Decrypted[ID, SN, i];

• the number of messages received with the same sequence number ni
SN

Input :Payload PL; length of MAC L
Output :Device ID ID, Sequence number SN, Message M, or error

(Crec, TAGrec, SN, ID)← PL // splitting payload
Use Kmaster, i, S i, ni

SN for the device ID = ID;
if (SN ∈ S i) then

if (Decrypted[ID, SN, i]) then
Return(Error: replay attack detected);

end
ni

SN ← ni
SN + 1;

if (ni
SN > nmax) then

Return(Error: too many attempts);
end

else
S i ← S i ∪ {SN}.

end
Ki ← CMAC(Kmaster, i) ;
KMAC ← CMAC(Ki, SN ‖ ID ‖ 1);
Tcom ← CMAC(KMAC, Cr));
if (Trec 6= Tcom) then

Return(Error: Injection detected);
else

KEnc ← CMAC(Ki, SN ‖ ID ‖ 0);
Mcom ← DecKEnc, Crec

end
Decrypted[ID, SN, i]⇐ true;
if SN =SNmax then

i← i + 1
end
Return(M);

Algorithm 2: Data protection scheme: authentication check and decryption at the
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5.4.5 Design Rationale
The goal was to design a scheme that meets the requirements in section 5.4.2.

5.4.5.1 Key Management

Master Key The master key is a preshared 128-bit secret value which has to be stored
in the secure memory of the device. It has to be properly generated for each of the
unique device identifiers. From the master key all the other keys are derived. We note
that most of the existing LPN technologies/providers offer a possibility to equip the
devices with master keys.

Key Generation Approach For the generation we are using the cipher-based message
authentication code CMAC [Dwo05], as it is recommended by the NIST for secure key
generation from preshared secrets [BR12].

Intermediate Keys Intermediate keys are used together with sequence numbers to
make sure that no two messages are encrypted and/or authenticated using the same
secret keys KEnc, KMAC.

Sequence Number The reasons to include a sequence number are the following. First
of all, it allows each time to generate different authentication and encryption keys, even
under the same intermediate key. Due to this property, we do not need to update the
intermediate key index and to write to the non-volatile memory every time, which is a
rather energy consuming operation. Moreover, the sequence number is included into
the payload to increase the reliability of the communication. For example, if a packet is
lost or delayed, the backend will immediately get this information from the value of the
sequence number of the next packet. Since the sequence number has to be included into
the payload, we want to keep its size as small as possible. For example, in our current
setting we use 16-bit long sequence numbers. This allows us to achieve both: update the
intermediate key only rarely, while reducing to the outmost the increase of the payload.

Frequency of Intermediate Keys Update Every SNmax times of being used, the inter-
mediate key is updated. The value SNmax depends on the length of the sequence number.
For example, if the sequence number is 16 bit long, we set SNmax to be equal to 65535.
This is done in order to avoid the situation when the same (i,SN) pair are used twice on
the same device.

In addition, when the device is reset10, the intermediate key index is incremented and
the sequence number is zeroed before any other computations begin. This allows that

10Resetting the device may be easily done by an attacker, e.g., by interrupting the power supply or even
by using a hard-reset button, which is available/accessible on most devices.
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pairs (intermediate key / sequence number) are only used once.

Frequency of Encryption and Authentication Keys Update We use new encryption
and authentication keys for every packet to be sent. This ensures that an attacker cannot
collect multiple data connected to the same keys. Moreover, even if one of the packets
and its corresponding keys are compromised, this does not hint to get information about
the other packets. Although, it may seem that such approach would require a lot of
computational effort, our experiments show that the scheme is efficient as demonstrated
in section 5.4.7.

5.4.5.2 Authentication and Encryption

Different Keys for Authentication and Encryption A standard solution for achieving
authentication and encryption with symmetric cryptography is to use CCM mode as
recommended by the NIST[Dwo04]. It would probably be more efficient compared to
the solution presented in this paper because it allows to achieve authentication and
encryption using the same key for both. However, this mode is not flexible and does
not support different encryption algorithms, contradicting our agnostic principles. As
we need that the data protection scheme is compatible with other encryption schemes
such as FF1, we realize authentication and encryption separately based on different
single-time keys.

Encrypt then Authenticate We first encrypt and then apply a chosen MAC on the
encrypted data rather than computing MAC of the plaintext. This option provides the
integrity of both the plaintext and the ciphertext [BN00]. If the ciphertext is wrong, it is
filtered out immediately and there is no need for decryption.

AES in Counter Mode In most of the real-life cases we use AES in CTR mode to have
short payload and low computational complexity (one call of AES per packet for sensor
data size below 128-bit). We note that this mode is among the ones recommended by
the NIST [Dwo01]. We keep the initialization vector constant IV0 since we change the
encryption key KEnc with every new packet.

Format Preserving Encryption Scheme FF1enc For the cases when it is required that
the ciphertext not only has the same size as the plaintext but also has to be stored in
the same format on the backend side, we are using the FF1 algorithm recommended by
the NIST [Dwo16]. In comparison with the second recommended alternative called FF3,
FF1 is more flexible as it accepts more formats of the input data and uses size tweaks.
Moreover, there are recent indications of weaknesses in the FF3 algorithm [DV17].
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5 New Designs

Tweak Generation for FF1enc The main recommendation for the FF1 tweak generation
[Dwo16] is that it should vary with each instance of the encryption as much as possible.
Note that, the tweak has to be associated with the given plaintext and doesn’t necessarily
need to be secret. To fulfill these requirements, we use the meta-data of a given packet,
which is associated with each plaintext per se, and generate the tweak by concatenating
the sequence number and the device ID.

Choice of Message Authentication Codes We follow the NIST recommendations
[Dwo05] and use CMAC for the authentication.

5.4.6 Security

Attacker Model In our security model we assume that an attacker has full access to the
communication channel between the device and the backend. That is, an attacker can
eavesdrop all the exchanged messages and modify them freely. We also give an attacker
the possibility to reset a device as many times as needed. However, we do not consider
side-channel attacks, as these depend on concrete devices and implementations.

Authentication of the Sender Each message to be sent by the device contains a cryp-
tographic token (authentication tag) that is computed based on the single-time used
authentication key. Relying on the NIST [Dwo05] we assume that without knowing the
authentication key the chances of an attacker to apply the forgery attack against a given
packet with the same meta-data(ID,SN for current i) is not higher than 2−L · nmax.

To keep the payload size low, in our most lightweight implementation we consider L
to be as low as 32 bits and fix nmax to 1, meaning that if a packet with the given meta-data
is rejected, all the other similar packets are rejected without further verification. This
leads to a risk of 2−32 which is sufficient for our desirable securtiy level. However, we
note that increasing the length of the tag would allow to achieve higher security levels
for the cost of higher communication complexity.

Data Integrity Similar discussions apply to the integrity of the message. If it is cor-
rupted or changed it will be accepted as a valid one only with probability 2−L.

Data Confidentiality Both encryption schemes that we discuss in the paper, namely
AES 128 in counter mode and the format preserving encryption FF1 were selected strictly
following the recommendations by the NIST[Dwo01, Dwo16]. Relying on these, we
assume that there are no attacks with a complexity lower than 2128 which would break
any of these encryption schemes.
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5.4 End-to-End Encryption Scheme for Low-Power Networks

Replay Attacks Each message contains a sequence number which is verified by the
backend in order to discard replay attempts. If the message contains a sequence number
which is repeated for the same intermediate key index and the same device, the replay
attack is detected. We recall that the described data protection scheme excludes the
possibility of using the same pair (key index, sequence number) twice.

Side-Channel Attacks The security of the scheme with respect to side-channel attacks
depends on the concrete implementation. Therefore, no general arguments can be given
about vulnerability. We use primitives from the TinyCrypt library where certain generic
side-channel attack countermeasures are implemented 11.

5.4.7 Implementation

For reading the data from the sensors and applying protection mechanisms, our nodes
are equipped with Intel Quark C1000 Microcontroller Units (MCUs) connected through
LoRaWan modules. At the backend side we are using a decryption service implemented
in Java and deployed in the SAP Cloud Platform.

We evaluate the performance of the proposed data protection scheme on Intel Quark
C100012, an Intel Microcontroller Unit (MCU). This MCU is equipped with 8 KB of cache,
32 MHz clock speed, 80 KB SRAM, and 384 KB integrated Flash. In our experiments the
MCU was powered with 5.07V.

As depicted in Figure 5.5, data is collected by the C1000, protected using the Data
Security Service, and are sent over LoRa to a gateway. On C1000, the Data Security Service
is implemented in C, hosted on ZephyrOS13. We use cryptographic primitives from its
TinyCrypt library.

Protected data is then forwarded to the SAP Cloud Platform14. On the backend, the
Data Security Service, implemented in Java, checks the validity of the protected data
against replay attacks and injections. Once the validity of the protected data is confirmed,
data is decrypted by the Data Security Service.

5.4.8 Evaluation

In this section, we discuss the overhead on battery (power consumption), memory, and
time introduced by the data protection scheme. We consider the overhead on a cloud
backend as negligible, as long as the resources are theoretically unlimited there. Our

11See http://zephyr-docs.s3-website-us-east-1.amazonaws.com/online/dev/crypto/
tinycrypt.html

12See http://www.intel.com/content/www/us/en/embedded/products/quark/mcu/se-soc/
overview.html

13See https://www.zephyrproject.org/
14See https://cloudplatform.sap.com/

155

http://zephyr-docs.s3-website-us-east-1.amazonaws.com/online/dev/crypto/tinycrypt.html
http://zephyr-docs.s3-website-us-east-1.amazonaws.com/online/dev/crypto/tinycrypt.html
http://www.intel.com/content/www/us/en/embedded/products/quark/mcu/se-soc/overview.html
http://www.intel.com/content/www/us/en/embedded/products/quark/mcu/se-soc/overview.html
https://www.zephyrproject.org/
https://cloudplatform.sap.com/


5 New Designs

Table 5.10: Battery and CPU performance on 10K data

Data Acquisition Data Protection LoRa Communication
AES-CTR FFX

Battery <1 mAh 3 mAh 4 mAh 16 mAh
CPU 13.44 s 46.16 s 69.44 s 68 s

evaluations have been conducted for the two mentioned encryption algorithms: AES in
counter mode, and FF1.

5.4.8.1 Battery and Time Consumption

In Table 5.10, we summarize the results on the battery and time consumption over 10k
temperature data. We distinguish between three steps in this evaluation: (i) data acquisi-
tion, (ii) data protection, and (iii) data transmission over LoRaWAN. At data acquisition,
we read temperature data from the sensor attached to the C1000. At data protection,
we protect the data using the proposed scheme. We have here two implementations of
encryption: AES in counter mode and FF1. At data transmission over LoRaWAN, we
send data through the C1000 LoRa built-in module to an Intel LoRa gateway.

On 10k data the overall process takes 150.88s, and consumes 21mAh with FF1, and
127.6s and 20mAh with AES-CTR. The impact of data protection scheme with AES in
counter mode is overall 36.17% on time and 15% on battery consumption. In case of FF1,
the overall impact is 45.06% on time and 19.04% on battery consumption.

5.4.8.2 Memory Consumption

Regarding the total flash memory consumption, the data protection scheme occupies
0.56% while 15.49% is reserved for the cryptographic libraries, TinyCrypt, and 1.56% for
LoRaWAN communication.

5.4.9 Discussion
Overall, the estimated overhead incurred on time and battery is at most 33%. The flash
memory footprint overhead is negligible.

For a regular 16,750mAh battery, 6.700k sensor data can be acquired and then en-
crypted with AES in counter mode and sent over LoRaWAN. It allows to process 12 years
of data when data is sent every minute, or 190 years of data if sent every 15 minutes.

156



CHAPTER6
Conclusion

157



6 Conclusion

In this thesis, we investigated several problems which refer to the field of lightweight
cryptography.

In Chapter 3, we explored different real-life scenarios and evaluated how suitable
the existing cryptographic solutions for these scenarios are. In Section 3.2 we revisited
lightweight authentication schemes and discussed their suitability for RFID systems
which use tags in the cost range of 0.05 to 0.10. The evaluation was based on a set
of conditions that need to be satisfied by real-world applications. These conditions
have been derived from open literature but mostly from numerous discussions with
hardware experts from industry. As our analysis reveals the probably most prominent
approach for designing lightweight authentication schemes, i.e., basing the security on
the hardness of the famous LPN problem, has, so far, not lead to any practical solutions
feasible for ultra-constrained devices. While this neither questions the significance nor
the security of such designs, it indicates that for real-world applications in the context of
low-cost RFID tags other approaches should be considered. As we argue, one possibility
is the rather straightforward approach using lightweight encryption schemes. However,
this immediately raises the question whether other approaches exist that are explicitly
tailored to lightweight authentication and may enable even more efficient solutions. We
think that this is an interesting and open question for both academia and industry.

In Section 3.3, we investigated the limitations and consequences of the design ap-
proach when ciphers continuously access the key from the non-volatile memory. After
a discussion on reasonable approaches for storing a key in non-volatile memory, moti-
vated and validated by several commercial products, we focus on the case that the key
is stored in EEPROM. Here, we highlight existing constraints and conclude that some
designs are better suited for reducing the area size than others.

In Section 3.4 we looked at some of the issues related to low-energy encryption.
We experimented with various design parameters that affect the energy consumption
of the encryption process and were able to draw several conclusions out of it. Our
investigations showed that although block ciphers are more energy-efficient solutions
for encryption of short data streams, for longer data streams, multiple round unrolled
stream ciphers perform better. Stream ciphers with simple update functions are found
to be more energy-efficient since these are easy to unroll. More degrees of unrolling lets
us encrypt a higher number of bits in one clock cycle, which is crucial for bringing down
the number of clock cycles required to encrypt a a data of a given length, and hence
the energy consumption. We found that the Trivium structure was best suited for this
purpose. The 160x unrolled implementation of Trivium was not only around 9 times
better than the best block cipher based solution in terms of energy consumption of 1000
data blocks, but also the cipher easily avoids linear approximations which can become
an issue with ciphers with lightweight update functions.

In Chapter 4, we proposed new approaches. In Section 4.2, we presented a technique
for reducing the critical path of a circuit while implementing stream ciphers based
on feedback shift registers (FSRs) in ASICs. As opposed to the common pipelining
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technique, existing structures are re-used for reducing the memory increase. The trans-
formation has been applied to Grain-128 and Grain-128a where the maximal throughput
is increased by around 20% . As opposed to other solutions, no additional memory is
required.

In Section 4.3, we discussed a different approach for realizing keystream generators.
The core idea is to design a cipher where the set of internal states is split into a large
number of equivalence classes such that any trade-off attack has to consider every class
at least once. As a concrete approach for realizing this property, we suggest to involve
the secret key not only in the initialization process but also in the update procedure.
Although the change is conceptually simple, it may allow to avoid the rule of thumb
that the internal state size needs to be at least twice the desired security level.

In Chapter 5, we presented new cryptographic solutions. Exploiting the fact that
storing fixed values consumes less area than using registers, in Section 5.2, we were able
to present two new stream ciphers named Sprout and Plantlet which have significantly
smaller area size than existing ciphers of the same security level and providing the same
throughput. While Sprout was broken by multiple attacks, Plantlet which was designed
to improve the weaknesses of Sprout remains secure to the best of our knowledge at the
time of writing.

Following our findings on low energy ciphers discussed in Section 3.4, in Section 5.3
we presented the Trivium-2 design. It has the similar structure as Trivium but has a
double state size. Increasing the internal state allowed us to achieve 128-bit security.
We showed that the new cipher performed slightly better than Trivium with respect to
energy performance when encrypting long data streams.

We also proposed a secure end-to-end data protection scheme for low-power networks
in Section 5.4. Our solution provides data confidentiality and integrity from (IoT) devices
to central backend applications by relying on established cryptographic schemes and
frequent key updates. Moreover, it respects the technical constraints imposed by low-
power devices (e.g. CPU, memory) and low-power connectivity (e.g. high latency,
low throughput). Our solution has been implemented on industrial IoT devices and
deployed on the water distribution network of the City of Antibes. The results show
that the data protection scheme incurs an increase in battery consumption which is four
times less than what is required for transmitting the data over LoRaWAN.
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