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Chapter 1

Introduction

This thesis consists of three research papers on dynamic games. All the three papers focus on learning
in strategic environments, but each of them is a one-o� exploration of a di�erent topic.

Chapter 2. Sequential Collective Search in Networks. In this paper, I investigate the impact of
costly information acquisition on the process of social learning. Social learning is the study of how
individuals combine their private information with others’ experiences to identify the best course
of action in the face of payo�-relevant uncertainty. In most circumstances of social and economic
interest—from product markets to technology adoption—private information only becomes available
at a cost. When others’ experiences are available, agents’ incentives to collect the relevant information
are ambiguous. On the one hand, the availability of others’ experiences weakens individual motivation
to acquire independent information and encourages the exploitation of others’ wisdom, increasing
the chances of wrong herds. On the other hand, the possibility of wrong herds fosters independent
exploration, reducing the odds of suboptimal behavior.

I propose a model of social learning in networks to understand this trade-o�. In particular, I explore
how the structure of social ties (the network topology) shapes individual incentives to acquire indepen-
dent information and, subsequently, the di�usion of newly created knowledge. To do so, I study a setup
where countably many rational agents act in sequence, observe the choices of their connections, and
acquire private information via costly sequential search. The sequential nature of the problem allows
for a rich characterization of the properties of search technologies and network topologies under which
di�erent positive learning results obtain or fail. The framework also allows for welfare analysis, the
study of convergence rates, and the discussion of policy interventions to alleviate the ine�ciency of
equilibrium outcomes.

I characterize perfect Bayesian equilibria of the model by linking individual search policies to the
probability that agents select the best action. The information structure of the model precludes infor-
mation aggregation via martingale convergence arguments. Besides the technical challenges it raises,
the (negative) result prevents agents from learning via the aggregation of the information contained
in large samples of other agents’ choices. If search costs are not bounded away from zero, however,
imitation, paired with some amount of individual improvement upon it, is su�cient for agents to learn
how to select the best action in the long run. In fact, when search costs are not bounded away from
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zero, asymptotic learning occurs in su�ciently connected networks where the structure of individual
connections does not lead agents astray about the broader network realization. In such networks,
agents can identify the correct social connections to rely on and improvements last long enough for
agents to select the best action at the �rst search. Learning via improvements upon imitation, however,
is fragile: it breaks down as soon as zero is removed from the support of the search cost distribution.
When search costs are bounded away from zero, even a weaker notion of long-run learning fails, except
in ad hoc network topologies. Networks where agents observe the choices of random numbers of
immediate predecessors share many equilibrium properties with the complete network, including the
rate of convergence and the probability of wrong herds. Transparency of past histories has short-run,
but not long-run, implications for welfare and e�ciency. The simple policy intervention of letting
agents observe the relative fraction of previous choices reduces ine�ciencies and welfare losses.

The paper contributes to both the economic theory of social learning and its applications to the
economics of social media and Internet search. The theoretical novelty of the paper is to analyze costly
information acquisition in a model of rational learning over general networks. In turn, the information
acquisition technology—sequential search, which has received much attention in the applied literature—
naturally relates the model to a variety of applications. In particular, the model speaks to the large
evidence that people’s online behavior—what they search on web search engines, the order in which
they do so, and their resulting purchase decisions—is often inspired by what they observe on social
media. Thus, the paper sheds light on the implications of such behavior for social learning, product
di�usion and demand, and on the forces that may lead consumers to herd on inferior items.

Chapter 3. Learning While Bargaining: Experimentation and Coasean Dynamics. Bargain-
ing is ubiquitous. Many economic interactions involve negotiations on a variety of issues. For example,
prices of commodities are often the outcome of negotiations between the concerned parties, wages are
set as an arrangement between �rms and workers, and takeovers require an agreement over the price
of the transaction. As such, bargaining relationships are the cornerstone of many theory of markets,
from industrial organization to labor economics. Classical models of bargaining with incomplete in-
formation are typically presented as bilateral monopolies. Such models posit common knowledge of
gains from trade and assume the relevant information to reach an agreement to be available to parties—
perhaps asymmetrically—since the outset of their negotiations. Yet, in many real-world bargaining
situations, superior outside opportunities may become available to either or both parties during their
negotiations—parties routinely investigating what their best opportunities are, as a large literature on
search documents.

Motivated by these considerations, I develop a framework to understand bargaining relationships
in such an environment in which there is uncertainty about whether and when superior outside op-
portunities are available and parties may want to wait to reach an agreement in order to learn about
their best opportunities during negotiations. In particular, I study dynamic bilateral bargaining with
one-sided incomplete information when superior outside opportunities may arrive during negotiations.
Gains from trade are uncertain: in a good-match market environment, outside opportunities are not
available; in a bad-match market environment, superior outside opportunities stochastically arrive for

2



either or both parties. The two parties begin their negotiations with the same belief on the type of the
market environment. Arrivals are public and learning about the market environment is common. One
party, the seller (he), makes price o�ers at every instant to the other party, the buyer (she). The seller
has no commitment power and the buyer is privately informed about her own valuation.

I show that the option value of waiting to learn about the existence of better opportunities is of
�rst-order importance in shaping the bargaining relationship. It a�ects the timing of agreements, the
dynamics of prices, surplus division, and the seller’s ability to exercise market power. In equilibrium,
there is either an initial period with no trade or trade starts with a burst. Afterward, the seller screens
out buyer types one by one as uncertainty about the market environment unravels. Delay is always
present, but it is ine�cient only if valuations are interdependent. Whether prices increase or decrease
over time depends on which party has a higher option value of learning. The seller may exercise market
power. In particular, when the seller can clear the market in �nite time at a positive price, prices are
higher than the competitive price. Market power, however, need not be at odds with e�ciency.

The model has a number of applications, including durable-good monopoly without commitment,
wage bargaining in markets for skilled workers, and takeover negotiations. On the methodological side,
posing the model in continuous time not only simpli�es the analysis, but also allows for additional
economic insights. Continuous time captures the idea that there are no institutional frictions in the
bargaining protocol (besides incomplete information). Thus, my analysis clearly disentangles the e�ect
of learning about the market environment on equilibrium outcomes from that of other frictions in the
protocol. In addition, closed-form expressions for all the relevant equilibrium outcomes of the game
open the doors to comparative statics as well as to empirical studies and more applied research.

Chapter 4. Dynamic Foundations for Empirical Static Games. This paper is joint work with
Lorenzo Magnol� and Camilla Roncoroni. We propose a simple estimation strategy when data on
strategic interaction are interpreted as the long-run result of a history of game plays. Players interact
repeatedly in an incomplete information game, possibly while learning how to play in such a game.
We remain agnostic on the details of the learning process and only impose a minimal behavioral
assumption describing an optimality condition for the long-term outcome of players’ interaction. In
particular, we assume that play satis�es a property of “asymptotic no regret” (ANR). This property
requires that the time average of the counterfactual increase in past payo�s, had di�erent actions
been played, becomes approximately zero in the long run. The ANR property is satis�ed by a large
class of well-known algorithms for the repeated play of the underlying one-shot game, once they are
appropriately extended to games of incomplete information.

We show that, under the ANR assumption, it is possible to partially identify the structural parameters
of players’ payo� functions. We establish our result in two steps. First, we prove that the time average of
play that satis�es ANR converges to the set of Bayes correlated equilibria of the underlying static game.
To do so, we extend to incomplete information environments prior results on dynamic foundations for
equilibrium play in static games of complete information. Second, we show how to use the limiting
model to obtain consistent estimates of the parameters of interest. Our approach gives rise to non-
standard econometric issues, as it is not possible to fully characterize a single limit distribution of the

3



observables, but only the set it belongs to. Yet, we show that we can use the limiting model to obtain a
consistent estimator for the parameters of interest.

The ANR property is weaker than the one-shot no-ex post-regret property of pure-strategy Nash
equilibrium that is sometimes invoked to motivate the choice of modeling cross-sectional data as equi-
librium outcomes of a static game. Indeed, this descriptive interpretation of static models is often paired
with the assumptions of complete information and pure-strategy Nash equilibrium. The rationale for
these assumptions is that the no-ex post-regret property of pure-strategy Nash equilibria re�ects the
stable nature of long-run outcomes. Although appropriate for some environments, the static notion of
no-ex post regret is a strong requirement: our work is thus complementary to standard equilibrium
models of strategic interaction and provides an alternative whenever Nash equilibrium does not rep-
resent an appropriate restriction on behavior. In fact, Nash equilibrium of the static game is neither a
natural long-run outcome of many simple game dynamics, nor easy to compute in large games.

4



Chapter 2

Sequential Collective Search in Networks1

2.1 Introduction

Social learning is the study of how individuals combine their private information with others’ expe-
riences to identify the best course of action in the face of payo�-relevant uncertainty. When charac-
terizing conditions under which societies e�ciently aggregate dispersed information or, in contrast,
herd on suboptimal behavior, it is routine to assume that agents are born with an exogenous infor-
mation endowment. Contrary to this premise, in most circumstances of social and economic interest
information only becomes available at a cost. Agents’ incentives to collect the relevant information
are ambiguous. On the one hand, the availability of others’ experiences weakens individual motiva-
tion to acquire independent knowledge and encourages the exploitation of others’ wisdom, increasing
the chances of wrong herds. On the other hand, the possibility of wrong herds fosters independent
exploration, reducing the odds of suboptimal behavior.

The resulting trade-o� is largely neglected in social learning models over general networks because
of the technical di�culties that emerge when studying strategic behavior of rational agents in such
environments. Prior work deals with these complications by weakening the rationality assumption so
as to simplify individual decision rules or by focusing on particular network structures. As the topology
of social ties crucially shapes both information �ows and individual incentives to acquire independent
information, it has been repeatedly acknowledged that progress would be desirable within the Bayesian
benchmark (see, e.g., Sadler (2014) and Golub and Sadler (2016)).

In this paper, I address these challenges and develop a tractable model of sequential social learning
where agents (i) are rational, (ii) only observe the choices of their connections over general networks,
and (iii) endogenously acquire private information by costly sequential search.

1I am grateful to Volker Nocke and Emanuele Tarantino for guidance and constant support throughout the project. I
thank Francesco Paolo Conteduca, Takakazu Honryo, Chiara Margaria, Konrad Stahl, and Thomas Tröger for excellent
suggestions that improved the paper. I had valuable conversations with Alessandra Allocca, Daniel Garrett, Bertrand
Gobillard, Amir Habibi, Raphaël Levy, Lorenzo Magnol�, Pauli Murto, Alexei Parakhonyak, Martin Peitz, Evan Sadler, and
Leeat Yariv. I received helpful comments from seminar audiences at the Toulouse School of Economics, the University of
Mannheim, GAMES 2016, EEA–ESEM 2016, the 2016 UECE Lisbon Meetings in Game Theory and Applications, the ENTER
Jamboree 2017 at UCL, the Third Annual Conference in Network Science and Economics at WUSTL, the MaCCI IO Day 2017,
the 2017 Summer School of Econometric Society in Seoul, EARIE 2017, EWMES 2017, and the 6th European Conference on
Networks at Barcelona GSE–UPF. I thank the Department of Economics at Yale University, where part of this research was
conducted, for its support and hospitality. The usual disclaimer applies.
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Countably many Bayes rational agents act in sequence and must each take one of two feasible actions.
The qualities of the two actions are independent draws from the same distribution and agents have no
a priori private information about their realization. Agents wish to select the action with the highest
quality and payo� externalities are absent. Building on Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)
and Lobel and Sadler (2015), each agent observes a subset of previous agents, which I call the agent’s
neighborhood. Neighborhoods are stochastically generated according to a joint distribution, which I
refer to as the network topology. The framework allows for arbitrary correlations among neighborhoods.
After observing his neighbors and their actions, each agent engages in costly sequential search with
recall before selecting his action. Searching an action perfectly (and only) reveals the quality of that
action to the agent, but comes at a cost. After sampling the �rst action, the agent decides whether
to discontinue search or to sample the second alternative. Each agent can only select an action from
those he has sampled. For a single agent, the search problem is a version of that proposed by Weitzman
(1979), and studied by Mueller-Frank and Pai (2016) (hereafter, MFP) in a social learning model with
perfect observation of all previous choices (complete network). Search costs are i.i.d. across agents.
Individual neighborhoods, sampling decisions, and search costs are not observed by subsequent agents.

The model results in a dynamic game of incomplete information where the the network topology
shapes agents’ possibility to learn from others’ behavior and the search technology shapes agents’
possibility to acquire independent information. I characterize conditions on search technologies and
network topologies under which positive long-run learning outcomes obtain or fail. The learning
model I analyze is non-standard for two reasons. First, while the study of long-run outcomes requires
understanding the dynamics of the probability that agents select the best action, agents use their
information to maximize the value of their sequential search program. The two problems are not the
same; that is, maximizing the probability of selecting the best action is not equivalent to determining the
optimal sequential search policy. Second, the information structure of the model precludes information
aggregation via martingale convergence arguments, as no social belief that forms a martingale is of
some use when characterizing equilibrium behavior.

I describe individual sequential search policies in any perfect Bayesian equilibrium of the model
by relating agents’ optimization to the probability that they select the best action. This connection
makes the analysis of long-run learning outcomes tractable. Upon observing his neighbors and their
choices, each agent computes the probability that none of the individuals in his personal subnetwork
relative to each action (i.e., the agents he is directly or indirectly linked to who take that action) has
sampled both actions. This enables the agent to rank the marginal distributions of the quality of the
two actions in terms of �rst-order stochastic dominance. According to Weitzman (1979)’s search rule,
which action to sample �rst is uniquely determined. Next, the agent combines the information about
the quality of the �rst action with his social information to update the above probability and infer the
expected additional gain from the second search. If this gain is larger than his private search cost, the
agent samples the second action and then selects the best one. Otherwise, he stops searching and takes
the �rst action sampled.

In equilibrium, agents with no neighbors have the strongest incentives to generate new information.
These incentives decrease in the quality of the �rst action sampled. Remarkably, the incentives to
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acquire independent information need not be monotonic in the quality of the �rst action sampled for
agents who observe the choices of other individuals. These facts neatly capture how the exploration-
exploitation trade-o� interacts with individual incentives in my setup.

I establish an improvement principle (hereafter, IP) for the present environment. The IP captures
the idea that imitation, paired with some individual improvement upon it, is su�cient to learn how
to select the best action in the long run. It is based on the following heuristic. Upon observing who
his neighbors are, each agent chooses only one neighbor to rely on and determines his optimal search
policy regardless of what others have done. If search costs are not bounded away from zero, there exists a
strict lower bound on the increase in the probability that an agent samples �rst the best action over his
chosen neighbor’s probability. The improvement occurs unless the chosen neighbor already samples
the best action with probability one at the �rst search.

Acemoglu et al. (2011) and Lobel and Sadler (2015) originally develop an IP for the standard sequential
social learning model (henceforth, SSLM) to establish positive learning results in stochastic networks.
In the SSLM agents receive a free private signal, which is informative about the relative quality of all
alternatives, and wish to match their action with an unknown state of nature.2 My results extend the
reach of the IP and of the learning principle it captures to a new informational environment, which
departs from that of the SSLM in three relevant aspects. First, private information is generated by
equilibrium play rather than being exogenously given to the agents. Second, while in the SSLM agents
have imperfect private information about the relative quality of the two alternatives, in my model
sampling an action perfectly reveals the quality of that action only. Finally, the inferential challenge
crucially di�ers: agents maximize the value of a sequential information acquisition program rather than
the probability of matching an underlying state of nature or an ex ante expected utility. The possibility
to describe agents’ sequential search policies in terms of probabilities, however, bridges the search
setting I study to the SSLM. Thus, an IP holds in the two settings in spite of limited comparability of
their informational environments.3

The �rst learning metric I consider is asymptotic learning, which occurs if the probability that agents
take the best action converges to one as the size of the society grows large. I leverage the IP to show
that asymptotic learning obtains in network topologies where arbitrarily long information paths occur
almost surely and are identi�able. That is, if search costs are not bounded away from zero, asymptotic
learning obtains in su�ciently connected networks where individual neighborhood realizations do not
lead agents astray about the broader network realization. In such networks, agents can identify the
correct neighbor to rely on and improvements last long enough for agents to select the best action. The
IP is, however, fragile: if zero is not in the support of the search cost distribution, the IP breaks down
and learning via improvements upon imitation is precluded.

2The SSLM dates back to the seminal work of Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), and Smith
and Sørensen (2000), who propose this class of models, but assume that each agent observes all past actions before making
his choice. Smith and Sørensen (2014) introduce neighbor sampling in the SSLM but, di�erently than in my model, they
assume that individuals ignore the identity of the agents they observe.

3The informational monotonicity we make use of in the IP is related to the (expected) welfare improvement principle
in Banerjee and Fudenberg (2004) and Smith and Sørensen (2014), and to the imitation principle in Bala and Goyal (1998)
and Gale and Kariv (2003).
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For search costs that are bounded away from zero, I introduce a new metric of social learning, which
I dub maximal learning. Maximal learning occurs if, in the long run, agents take the best action with
the same probability as a single agent with the best search opportunities (the lowest search cost type)
and the strongest incentives to explore (no social information). This learning requirement is weaker
than asymptotic learning and represents the best outcome a society can aim for when zero is not in
the support of the search cost distribution.

If search costs are bounded away from zero, maximal learning fails in many common deterministic
and stochastic networks. Thus, when search costs are bounded away from zero, asymptotic learning
fails discontinuously with respect to the learning metric. Therefore, positive learning results are fragile
with respect to perturbations in the support of the search cost distribution.

In a few stochastic networks, maximal (and sometimes also asymptotic) learning obtains despite
zero is not in the support of the search cost distribution. Thus, search costs that are not bounded
away from zero are not, in general, necessary for asymptotic learning. The positive result, however, is
limited to very special network topologies. In fact, the impossibility to develop martingale convergence
arguments severely undermines the ability to learn via the aggregation of the information that large
samples of other agents’ choices contain.

From the viewpoint of selecting the best action, individual search behavior in networks where agents
observe the choices of random numbers of immediate predecessors is equivalent to the search behavior
in the complete network. These network topologies thus inherit several equilibrium properties from the
complete network, including the probability of wrong herds and the speed of learning, which is faster
than polynomial.4 Reducing transparency of past histories, however, leads to ine�cient duplication
of costly search. I compare equilibrium welfare in the complete network and in the network where
each agent only observes his most recent predecessor. The di�erence only vanishes in the limit of an
in�nitely patient society but is signi�cant in the short and medium run. Simple policy interventions,
such as letting agents observe the relative share of previous choices in addition to their neighbors’
choices, reduce ine�ciencies and welfare losses.

This paper contributes to both the economic theory of social learning and its applications to the
economics of social media and Internet search. The theoretical novelty of the paper is to analyze costly
information acquisition in a model of rational learning over general networks. In turn, the information
acquisition technology—sequential search, which has received much attention in the applied literature—
naturally relates the model to a variety of applications. Many real-world information acquisition and
choice problems are well-modeled by sequential search—in particular, situations where taking an action
requires learning about its quality, functioning, existence, or availability. Examples are widespread:
�rms need to be aware of a new technology and assess its merits before adoption; consumers gather in-
formation before purchasing an expensive durable good; investors try to understand di�erent �nancial
instruments before making an investment decision; patients inquire into alternative treatments before
undergoing an invasive surgery.

A compelling motivation for my model comes from the large evidence that people’s online behavior—
what they search on web search engines, the order in which they do so, and their resulting purchase

4I also show that the rate of convergence is logarithmic under random sampling of one agent from the past.
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decisions—is often inspired by what they observe on social media. For instance, suppose we need to
decide which of two recently released comedies to watch. The two movies have a cast and a direction
of comparable reputation so that it is ex-ante unclear which one is better. However, we observe on
Facebook the movie our friends watched through their check-ins or the Facebook pages they liked, but
only have a vague idea of whom they observed in turn. Our friends’ decisions give us a �rst impression
of what �lm is likely to be the best one. We then search on Google for this movie to learn where and
when it is played and to read experts’ reviews. Looking for movie times and reading reviews takes time
and e�ort, and this idiosyncratic cost depends on factors that are our private information (whether we
are in a rush, how much time we can divert from other activities, etc.). Depending on movie times,
reviews, and our opportunity cost, we either watch the movie we �rst learned about, or invest more
time searching for information about the other option.5

Interestingly, the policy interventions I discuss, such as letting agents observe the relative share of
previous choices, are common in online platforms that aggregate individual choices by sorting di�erent
items according to their popularity. For instance, when deciding which comedy to watch, agents also
have access to box o�ce data and ticket sales rankings.

More broadly, Armstrong (2016) argues that others’ choices and aggregate sales rankings may guide
the order in which consumers search for new products and in�uence which items become popular in
the long run. For example, people observe on Spotify what songs their connections listen to, and on
Flickr the cameras that have been used to take the pictures that other users share. In such cases, the
order in which individuals search for a new song or camera is not random, but informed by the previous
choices of their connections, and so is their resulting purchase decision. This paper sheds light on the
implications of such behavior for social learning, product di�usion and demand, and on the forces that
may lead consumers to herd on inferior items.

Road Map. In Section 2.2, I describe the model. In Section 2.3, I de�ne asymptotic learning and
characterize equilibrium strategies. In Section 2.4, I establish the improvement principle and the main
results on asymptotic learning. In Section 2.5, I introduce maximal learning and present the main results
with respect to this metric. In Section 2.6, I present the main results on the rate of convergence, welfare,
and e�ciency. In Section 2.7, I discuss the related literature and conclude. Supporting examples are in
Appendix 2.8 and formal proofs are in Appendix 2.9.

2.2 Model

2.2.1 Collective Search Environment

Agents and Actions. A countably in�nite set of agents, indexed by n ∈ N := {1, 2, . . .}, sequentially
select a single action each, with agent n acting at time n. Each agent has to choose one of two possible
alternatives in the set of available actions X := {0, 1}, which is identical across agents. Restricting

5As we need to know where the movie is played and whether it is available at the desired time, we cannot watch a
movie we have not searched for. Moreover, reading a movie’s review or checking its schedule reveals information about
(the quality of) that movie, but does not directly reveal anything about the other movie.
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attention to two actions simpli�es the exposition, but does not a�ect the results. A typical element
of X is denoted by x, while the action agent n selects is denoted by an. Calendar time is common
knowledge and the order of moves exogenous.

State Process. Actions di�er in their qualities, but are ex-ante homogeneous. I denote with qx the
quality of action x. Qualities q0 and q1 are i.i.d. draws from a probability measure PQ over Q ⊆ R+ :=

{s ∈ R : s ≥ 0}. The state of the world ω := (q0, q1) consists of the realized quality of the two actions
and is drawn once and for all at time zero. The state space is Ω := Q × Q, with product measure
PΩ := PQ × PQ. This formulation captures �nite, and countably and uncountably in�nite state spaces.
The resulting probability space, (Ω,FΩ,PΩ), is the state process of the model and is common knowledge.
Whenever convenient, I denote the state process with (Q,FQ,PQ).

Agents have homogeneous preferences and wish to select the action with the highest quality. To do
so, they have access to two sources of information: social information, which is derived from observing
a subset of other agents’ past actions, and private information, which is endogenously acquired by costly
sequential search. The next two paragraphs describe the two processes in detail.

Network Topology. Agents do not necessarily observe all past actions, but only those of a subset of
previous agents according to the structure of the social network, as �rst modeled in Acemoglu et al.
(2011) and generalized by Lobel and Sadler (2015). The set of agents whose actions are observed by
agent n, denoted by B(n), is called n’s neighborhood. Since agents can only observe actions taken
previously, B(n) ∈ 2Nn , where 2Nn denotes the power set of Nn := {m ∈ N : m < n}. Neighborhoods
B(n) are random variables generated via a probability measure Q on the product space B :=

∏
n∈N 2Nn .

Given a measure Q on B, I refer to the resulting probability space (B,FB,Q) as the network topology.
Particular realizations of the random variables B(n) are denoted by Bn.

This formulation allows for stochastic network topologies with arbitrary correlations between
agents’ neighborhoods, as well as for independent neighborhoods (when B(n)’s are generated by
probability measures Qn’s on 2Nn and the draws from each Qn are independent from each other) and
deterministic network topologies (when Q is a Dirac distribution on a single element of B).

The sequence of neighborhood realizations describes a social network of connections between the
agents. The network topology is common knowledge, whereas the realized neighborhoodBn is private
information of agent n. If n′ ∈ Bn, then n not only observes the choice an′ , but also knows the identity
of this agent (equivalently, the time at which this agent has acted). Crucially, however, n does not
necessarily observe Bn′ or the actions of the agents in Bn′ .

Neighborhood realizations are independent of the qualities of the two actions and the realizations
of private search costs (to be introduced momentarily).

This framework nests most of the network topologies commonly observed in the data and studied in
the literature. Among many others, it accommodates for observation of all previous agents (complete
network), random sampling from the past, observation of the most recentM ≥ 1 individuals, networks
with in�uential groups of agents, and the popular preferential attachment and small-world networks
(see Acemoglu et al. (2011) and Lobel and Sadler (2015)).
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Search Technology. Private information about the quality of the two actions is acquired through
costly sequential search with recall. After observing his neighborhood B(n) and the actions of the
agents in B(n), agent n decides which action s1

n ∈ X to sample �rst.6 Sampling an action perfectly
reveals its quality to the agent. I denote the quality of the �rst action sampled by agent n as qs1n . After
observing qs1n , agent n decides whether to sample the remaining action, s2

n = ¬s1
n, where ¬s1

n denotes
the action in X not sampled initially, or to discontinue searching, s2

n = ns. That is, s2
n ∈ {¬s1

n, ns}.
Let Sn denote the set of actions agent n samples. After sampling has stopped, the agent chooses an
action an. Agents can only select an action they sampled, that is an ∈ Sn. Thus, for a single agent the
model of search is that of Weitzman (1979), and proposed by Mueller-Frank and Pai (2016) to study
observational learning in the complete network.

For simplicity, the �rst action is sampled at no cost, while sampling the second action involves a cost
cn ∈ C ⊆ R+.7 Search costs cn are i.i.d. across agents, are drawn from a commonly known probability
measure PC over C , with associated CDF FC , and are independent of the network topology and the
quality of the two actions. I refer to the probability space (C,FC ,PC), together with the sequential
search rule, denoted byR, as the search technology of the model. An agent’s search cost and sampling
decisions are his private information. That is, for all n ∈ N, agent n’s search cost cn and sampling
decisions are not observed by later moving agents.

Payo�s. The net utility of agent n is given by the di�erence between the quality of the action he takes
and the search cost he incurs. That is,

Un(Sn, an, cn, ω) := qan − cn(|Sn| − 1).

Collective Search Environment. A collective search environment, denoted by S , consists of the set
of agents N, a state process (Ω,FΩ,PΩ), a network topology (B,FB,Q), and a search technology
{(C,FC ,PC),R}. That is,

S := {N, (Ω,FΩ,PΩ), (B,FB,Q), {(C,FC ,PC),R}} .

2.2.2 Information and Strategies

Each collective search environment S results in a dynamic game of incomplete information (henceforth,
game of social learning). For each agent n, I distinguish three di�erent information sets. The �rst
information set I1(n) corresponds to n’s information prior to sampling any action; it consists of his
search cost cn, his neighborhood B(n), and all actions of agents in B(n):

I1(n) := {cn, B(n), ak for all k ∈ B(n)} .

6If neighborhoods are correlated, neighborhood realizations convey information about whom an agent’s neighbors are
likely to have observed.

7It is equivalent if the two searches cost the same amount cn, but each agent has to take an action, i.e. he cannot abstain,
and therefore must conduct at least one search.
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The set I2(n) is the information set agent n has after sampling the �rst action, that is

I2(n) :=
{
cn, B(n), ak for all k ∈ B(n), qs1n

}
,

which also includes the quality of the �rst action sampled. Finally, Ia(n) corresponds to the information
set of agent n once his search ends:

Ia(n) := {cn, B(n), ak for all k ∈ B(n), {qs : s ∈ Sn}} .

I1(n), I2(n), and Ia(n) are random variables whose realizations I denote by I1
n, I

2
n, and Ian . I refer

to I1(n) and I2(n) as agent n’s �rst and second search stage information sets, and to Ia(n) as agent
n’s choice stage information set. The classes of all possible search stage and choice stage information
sets of agent n are denoted by Irn, for r ∈ {1, 2}, and Ian.

A strategy for agent n is an ordered triple of mappings σn := (σ1
n, σ

2
n, σ

a) with components

σ1
n : I1

n → ∆({0, 1}),

σ2
n : I2

n →
({
¬s1

n, ns
})
,

and σan : Ian → ∆(Sn).

A strategy pro�le is a sequence of strategies σ := (σn)n∈N. Let σ−n := (σ1, . . . , σn−1, σn+1, . . .)

denote the strategies of all agents other than n. Given a collective search environment S and a strategy
pro�le σ, the sequence of actions (an)n∈N is a stochastic process with probability measure Pσ generated
by the state process, the network topology, the search technology, and the mixed strategy of each agent.
Formally, for a �xed σ, the sequence (an)n∈N is determined by the realization in the probability space8

Y := Ω × B × C∞ ×D∞. Here, C∞ is the set of possible realizations of search costs for each agent,
(D,FD, λ) is a probability space determining the possible mixed strategy realizations of a given agent,
and Ω and B have been introduced before.

2.2.3 Equilibrium Notion

The solution concept is the set of perfect Bayesian equilibria of the game of social learning.

De�nition 1. Fix a collective search environmentS . A strategy pro�le σ := (σn)n∈N is a perfect Bayesian
equilibrium of the corresponding game of social learning if, for all n ∈ N, σn is an optimal policy for agent
n’s sequential search and action choice problems given other agents’ strategies σ−n.

Hereafter, I use the term equilibria to mean perfect Bayesian equilibria. I denote with ΣS the set of
equilibria of the game of social learning corresponding to S .

In any collective search environment S , given a strategy pro�le for the agents acting prior to n,
and a realization of n’s information sets Irn ∈ Irn for r ∈ {1, 2} and Ian ∈ Ian, the decision problems of
agent n at the search stages and at the choice stage are discrete choice problems. Therefore, they have

8Formal notation about the corresponding event space and probability measure is standard, and thus omitted.

12



a well-de�ned solution that only requires randomizing according to some mixed strategy in case of
indi�erence at some stage (see Section 2.3.2 for a characterization of individual equilibrium decisions).
For given criteria to break ties, an inductive argument shows that the set of equilibria ΣS is nonempty.
I note the existence of equilibrium here.

Proposition 1. For any collective search environment S , the set of equilibria ΣS is nonempty.

In general, however, the game of social learning admits multiple equilibria since some agents may
be indi�erent between the available alternatives at the search or choice stage.

Hereafter, whenever a strategy pro�le or an equilibrium σ is �xed and no confusion arises, I denote
agent n’s decisions according to his (equilibrium) strategy σn := (σ1

n, σ
2
n, σ

a
n) as

s1
n := σ1

n, s2
n := σ2

n, an := σan.

2.3 Long-Run Learning and Equilibrium Strategies

In this section, I de�ne asymptotic learning, which is the �rst long-run learning metric considered in
the paper. Then, I characterize equilibrium strategies by relating the dynamics of individual sequential
search policies to the dynamics of the probability that agents select the correct action. Finally, I discuss
how the availability of social information a�ects agents’ search behavior—what to search and the order
in which they do so—and their incentives to acquire independent knowledge.

2.3.1 Asymptotic Learning: De�nition

The �rst aim of the paper is to characterize conditions on collective search environments under which
agents asymptotically select the action with the highest quality with probability one. This represents
the most natural benchmark for the social learning process—the same limiting outcome that would
occur if each agent directly observed the private search decisions of all prior agents and (at least) one
of these agents actually sampled both actions.

De�nition 2. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Asymptotic
learning occurs in equilibrium σ if

lim
n→∞

Pσ

(
an ∈ arg max

x∈X
qx

)
= 1.

Studying asymptotic learning requires understanding how the quantity

Pσ

(
an ∈ arg max

x∈X
qx

)
(2.1)

evolves over time. At the same time, agents use their information to optimize the value of their own
sequential search program

Un(Sn, an, cn, ω) := qan − cn(|Sn| − 1),
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a problem which need not be equivalent to maximizing the quantity in (2.1) or the ex ante expected
utility.9 This discrepancy raises some conceptual challenges one needs to address before establishing
the main results. To this purpose, the next subsection characterizes equilibrium search policies by
linking the dynamics of agents’ optimization to the dynamics of the quantity Pσ(an ∈ arg max x∈X qx),
thus making the analysis of long-run outcomes possible.

2.3.2 Equilibrium Strategies

Before characterizing equilibrium strategies, I recall the notion of personal subnetwork from Lobel and
Sadler (2015) and introduce the concept of personal subnetwork relative to action x ∈ X .

Preliminaries

De�nition 3. Fix a collective search environment S , a strategy pro�le σ, and an agent n ∈ N:

(a) Agent m < n is a member of agent n’s personal subnetwork if there exists a sequence of agents,
starting withm and terminating with n, such that each member of the sequence is contained in the
neighborhood of the next. The personal subnetwork of agent n is denoted by B̂(n).

(b) Agentm < n is a member of agent n’s personal subnetwork relative to action x ∈ X ifm ∈ B̂(n)

and am = x. The personal subnetwork of agent n relative to action x ∈ X is denoted by B̂(n, x).

Agentn’s personal subnetwork represents the set of all agents in the network that are connected to n,
either directly or indirectly, as of the time nmust make a decision. Intuitively, the personal subnetwork
of agent n consists of those agents that are, either directly or indirectly (through neighbors, neighbors
of neighbors, neighbors of neighbors of neighbors, and so on) observed by agent n. Agent n’s personal
subnetwork relative to action x consists of those agents that are, either directly or indirectly, observed
by agent n to choose action x. Clearly, B̂(n) = B̂(n, 0)∪ B̂(n, 1). Particular realizations of the random
variables B̂(n) and B̂(n, x) are denoted by B̂n and B̂n,x.

Characterization of Equilibrium Sequential Search Policies

Fix a collective search environment S . In the corresponding game of social learning, equilibrium
behavior is characterized as follows.

Choice stage. To begin, an agent’s optimal policy at the choice stage is mechanical: if he only sampled
one action, he takes that action; if he sampled both, he takes the action with the highest quality,
randomizing according to his mixed strategy whenever the realized quality of the two actions is the
same. Therefore, I omit the formal notation.

To characterize equilibrium search policies, I �rst consider the search problem of an agent with no
social connections and then move to the problem of an agent who observes others’ choices.

Search policy for an agent with empty neighborhood. Consider an agent n who does not observe
any other agent, that is with Bn = ∅. This is, for instance, the case of the �rst agent. Fix a strategy

9An analogous remark applies to maximal learning, introduced in Section 2.5.
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pro�le σ−n for agents other than n. Since an agent’s neighborhood is independent of the qualities
of the two actions and the choices of previous agents, in the absence of any additional information
the marginal distributions of the qualities of the two actions are identical (and equal to the prior PQ).
According to Weitzman (1979)’s optimal search rule, either action might be sampled �rst. Therefore,
the strategy of such agent n is described by two non-negative functions, π0

n(·) and π1
n(·), such that

π0
n(I1

n) + π1
n(I1

n) = 1 for all I1
n ∈ I1

n with Bn = ∅. Here, πxn(I1
n) denotes the probability that agent n

with information set I1
n samples action x �rst.

Suppose the action agent n samples �rst, s1
n, has quality qs1n . Agent n will only sample the second

action if his search cost cn is smaller than the expected additional gain of sampling the second action,
denoted by t∅(qs1n), where the function t∅ : Q→ R+ is de�ned pointwise by

t∅
(
qs1n
)

:= EPQ

[
max

{
q − qs1n , 0

}]
=

∫
q≥q

s1n

(
q − qs1n

)
dPQ(q). (2.2)

If cn = t∅(qs1n), agent n is indi�erent between searching further or not. Again, his strategy is described
by two non-negative functions, π¬s

1
n

n (·) and πnsn (·), such that π¬s
1
n

n (I2
n) + πnsn (I2

n) = 1 for all I2
n ∈ I2

n

with Bn = ∅. Here, π¬s
1
n

n (I2
n) (πnsn (I2

n)) is the probability that agent n with information set I2
n samples

(does not sample) action ¬s1
n ∈ X .10

Search policy for an agent with nonempty neighborhood. Consider next an agent nwho observes
the choices of other agents, that is with Bn 6= ∅. Fix a strategy pro�le σ−n for agents other than n. The
personal subnetwork of agent n contains conclusive information about the relative quality of the two
actions if and only if some agents in the subnetwork have sampled both actions. In particular, consider
agent n’s conditional belief over the state space Ω given his information set I1

n. For each action x ∈ X
only two mutually exclusive cases are possible:

1. At least one agent in B̂(n, x) has sampled both actions. If agent n knew this to be the case, his
conditional belief on Ω would be PΩ|qx≥q¬x , where ¬x denotes the action in X other than x. This
is so because agents sampling both actions select the alternative with the highest quality at the
choice stage.

2. None of the agents in B̂(n, x) has sampled both actions. If agent n knew this to be the case, the
posterior belief on action ¬x would be the same as the prior PQ.

To understand the optimal search policy of agent n, consider the probability space Y := Ω× B×
C∞ ×D∞ and the following events in Y :

Ex
n :=

{
y ∈ Y : s2

k = ns for all k ∈ B̂(n, x)
}

for x = 0, 1. (2.3)

10Henceforth, I omit the formal notation to describe agents’ mixed strategies.
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In words, event Ex
n occurs when none of the agents in the personal subnetwork of agent n relative to

action x samples both actions. Let I1
n := {cn, Bn, ak for all k ∈ Bn} be agent n’s realized information

set prior to sampling any action. Given σ−n, agent n can compute the probabilities

Pn(x) := Pσ−n
(
Ex
n | I1

n

)
for x = 0, 1. (2.4)

These probabilities allow agent n to rank the marginal distributions of the quality of the two actions in
terms of �rst-order stochastic dominance. IfPn(0) < Pn(1), agentn’s belief about the quality of action 0

strictly �rst-order stochastically dominates his belief about the quality of action 1. Therefore, according
to Weitzman (1979)’s optimal search rule, agent n samples �rst action 0: s1

n = 0. If Pn(1) < Pn(0), by
an analogous argument agent n samples �rst action 1: s1

n = 1. Finally, if Pn(0) = Pn(1), the marginal
distributions of the quality of the two actions are identical in the eyes of agent n, who then selects the
action to sample �rst according to his mixed strategy.

To formalize the previous argument, pick anyx ∈ X and qwith min supp (PQ) < q < max supp (PQ),
and note that:

PQ(qx ≤ q) = PQ(q¬x ≤ q), (2.5)

PΩ|q¬x≥qx(qx ≤ q) = PΩ|qx≥q¬x(q¬x ≤ q), (2.6)

and PΩ|q¬x≥qx(qx ≤ q) > PQ(qx ≤ q). (2.7)

Suppose Pn(x) < Pn(¬x). Conditional on I1
n, agent n’s belief about the quality of action x strictly

�rst-order stochastically dominates his belief about action ¬x. In fact,

Pσ−n
(
q¬x ≤ q | I1

n

)
= Pσ−n

(
q¬x ≤ q | Ex

n, I
1
n

)
Pσ−n

(
Ex
n | I1

n

)
+ Pσ−n

(
q¬x ≤ q | Ex

n
C , I1

n

)
Pσ−n

(
Ex
n
C | I1

n

)
= PQ(q¬x ≤ q)Pn(x) + PΩ|qx≥q¬x(q¬x ≤ q)(1− Pn(x))

= PQ(qx ≤ q)Pn(x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(x))

> PQ(qx ≤ q)Pn(¬x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(¬x))

= Pσ−n
(
qx ≤ q | E¬xn , I1

n

)
Pσ−n

(
E¬xn | I1

n

)
+ Pσ−n

(
qx ≤ q | E¬xn

C , I1
n

)
Pσ−n

(
E¬xn

C | I1
n

)
= Pσ−n

(
qx ≤ q | I1

n

)
.

Here, Ex
n
C (E¬xn C) is the complement of Ex

n (E¬xn ), the third equality holds by (2.5) and (2.6), and the
inequality follows from (2.7) and the assumption Pn(x) < Pn(¬x).

Now, let I2
n := {cn, Bn, ak for all k ∈ Bn, qs1n} be agent n’s realized information set after having

sampled a �rst action of quality qs1n . Given σ−n, agent n needs to infer the posterior probability that
action ¬s1

n was not sampled by any of the agents in B̂(n, s1
n), as only in this case he can bene�t from

the second search. That is, he must compute

Pn
(
qs1n
)

:= Pσ−n
(
Es1n
n | I2

n

)
, (2.8)
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where also the information about the quality of the �rst action sampled is used. With remaining
probability, at least one of those agents sampled action ¬s1

n, but nevertheless chose action s1
n, in which

case s1
n is (weakly) superior by revealed preferences. Agent n’s expected bene�t from sampling action

¬s1
n is therefore Pn(qs1n)t∅(qs1n), where t∅(·) is de�ned by (2.2) and describes the gross bene�t of the

second search (the bene�t agent n would have if he did not observe any other agent) when a payo� of
qs1n has already been secured. It follows that he should only sample further if his search cost cn is less
than tn(qs1n), where the function tn : Q→ R+ is de�ned pointwise as

tn
(
qs1n
)

:= Pn
(
qs1n
)
t∅
(
qs1n
)
. (2.9)

If cn = tn(qs1n), agent n is indi�erent between searching further and discontinuing search; consequently,
he resolves the uncertainty according to his mixed strategy.

Unless noted otherwise, hereafter I assume that agents sample the second action in case of indi�er-
ence at the second search stage, and that they break ties uniformly at random whenever indi�erent at
the �rst search stage or at the choice stage. The assumption is consistent with the idea that agents do
not prefer an action over the other because of its label, and that labels do not convey any information
about agents’ behavior. Selecting a particular equilibrium simpli�es the exposition, but the results do
not depend on the tie-breaking criterion which is adopted.

Discussion of Equilibrium Behavior

Remark 1. For all n ∈ N, agent n’s equilibrium sequential search policy is essentially described
by the probabilities Pn(x) and Pn(qx), for all x ∈ X and qx ∈ Q, de�ned by (2.4) and (2.8). This
characterization relates the dynamics of agents’ optimization to the dynamics of the probability that
they select the correct action. Roughly, the intuition is the following.11 For all n ∈ N,

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

({
y ∈ Y : ∃ k ∈ B̂

(
n, s1

n

)
such that s2

k = ¬s1
k

})
= 1− Pσ

({
y ∈ Y : s2

k = ns for all k ∈ B̂
(
n, s1

n

)})
= 1− Pσ

(
Es1n
n

)
.

Here, the �rst inequality holds as agent n takes the action of better quality among those he has sampled.
The second inequality follows because if an agent in B̂(n, s1

n) samples both actions and takes action
s1
n, then s1

n is superior by revealed preferences. In turn, the �rst equality holds as the two events at
issue are one the complement of another, and the second equality holds by de�nition of Es1n

n (see (2.3)).
This link unravels the complications illustrated at the end of Section 2.3.1 and will prove a central tool
to establish long-run learning results in the analysis to come.

Remark 2. Each agent faces a three-way trade-o� between exploration (sampling the second action),
exploitation (using the information revealed by others’ choices to save on the cost of the second search),

11I refer to Appendix 2.9 for the formal details.
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and individual incentives (agents are myopically interested in exploiting the wisdom of their neighbors).
The characterization of the optimal search policies sheds light on how such trade-o� is resolved in
equilibrium.

First, (2.2) and (2.9) imply tn(q) ≤ t∅(q) for all q ∈ Q, as Pn(q) ∈ [0, 1]. That is, given the quality of
the �rst action sampled, the expected additional gain from the second search is lower for an agent with
nonempty neighborhood than for an agent with empty neighborhood. Thus, if an agent with search
cost type c and empty neighborhood discontinues search after sampling an action of quality q, so does
an agent with the same search cost type and nonempty neighborhood after sampling an action of the
same quality. In short, agents with no neighbors have stronger incentives to explore than agents who
exploit the information revealed by their neighbors’ choices.

Second, for agents with empty neighborhood, the expected additional gain from the second search,
and so the incentive to explore, decreases with the quality of the �rst action sampled: t∅(q) ≤ t∅(q′)

for all q, q′ ∈ Q with q ≥ q′. Thus, if an agent with search cost type c and empty neighborhood
discontinues search after sampling an action of quality q, so does an agent with the same search cost
type and empty or nonempty neighborhood after sampling an action of quality q′ ≥ q.

Finally, the quality of the �rst action sampled has ambiguous e�ects on the incentives to explore
of an agent, say n, with nonempty neighborhood. This is so because n’s expected additional gain
from the second search, Pn(qs1n)t∅(qs1n), depends on the probability Pn(qs1n) that none of the agents
in his personal subnetwork relative to action s1

n has sampled action ¬s1
n given that the quality of s1

n

is qs1n . This probability need not be monotonic in qs1n and depends on the network topology as well
as on the properties of the state process and the search technology. On the one hand, an action of
high quality suggests that some individual has explored both feasible alternatives, discarding the one
with low quality to adopt the superior one. On the other hand, precisely this e�ect, combined with the
fact that t∅(q) decreases in q, hints that the incentives to acquire information about the second action
(exploit the information revealed by others’ choices) decrease (increase) with the quality of the �rst
action sampled. This is the central trade-o� in the environment I study. Which force prevails, and so
the e�ect of an increase in the quality of s1

n on Pn(qs1n) and, ultimately, on Pn(qs1n)t∅(qs1n), is unclear.
In Appendix 2.8, I construct two examples to show that Pn(qs1n)t∅(qs1n) can either increase or decrease
as qs1n increases depending on the primitives of the model.

Remark 3. In general network topologies, there is no informational monotonicity property linking
an agent’s equilibrium behavior to the relative fraction of actions he observes or to the actions of his
most recent neighbors. This feature is common in models departing from the assumption that agents
observe the full history of past actions and motivates the approach I adopt to establish positive learning
results in Section 2.4.

Remark 4. In the collective search environments I study, there is no social belief that is a martingale
and, at the same time, is of some use when characterizing equilibrium behavior. Thus, martingale
convergence arguments, which are standard tools to study aggregation of dispersed information in
social learning settings, have no bite in the present setup. As I will formalize in Section 2.5.6, this
feature undermines the possibility to learn via the direct observation of large samples of other agents
and the aggregation of the information that their choices convey.
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2.4 Asymptotic Learning

In a collective search environment, the search technology shapes agents’ possibility to acquire inde-
pendent private information and the network topology shapes agents’ possibility to learn by observing
others’ behavior. In this section and in Section 2.5, I provide conditions on these primitives under
which (di�erent) positive learning results obtain or fail in the long run.

2.4.1 Preliminaries

Since the characterization of learning outcomes will hinge on the properties of the search technology,
I �rst present the relevant terminology and assumptions.

De�nition 4. Let {(C,FC ,PC),R} be a search technology:

(a) The search cost c is said to be the lowest cost in the support of PC if, for all ε > 0, FC(c+ ε) > 0

and FC(c− ε) = 0.

(b) Search costs are bounded away from zero if c > 0; conversely, search costs are not bounded away
from zero if c = 0.

In words, search costs are not bounded away from zero if there is a positive probability of arbitrarily
low search costs.

The next assumption is a joint restriction on the state process and the search technology which is
maintained throughout the paper. It rules out uninteresting learning problems.

Assumption 1 (Non-Trivial Collective Search Environment). There exist q̃, q̃′ in the support of PQ,
possibly with q̃ = q̃′, such that:

1. (a) PQ(q > q̃) > 0;

(b) 1−FC
(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive probability,

an agent n with neighborhood realization Bn = ∅ does not sample another action when the
�rst action sampled has quality q̃ or higher.

2. (a) PQ(q ≤ q̃′) > 0;

(b) FC
(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive probability,

an agent n with neighborhood realizationBn = ∅ samples another action when the �rst action
sampled has quality q̃′ or lower.

When Part 1. of the assumption fails, in equilibrium, an agent with empty neighborhood samples
both actions and takes the one with the highest quality, while an agent, say n, withBn 6= ∅ just follows
the behavior of any of his neighbors. This trivially yields asymptotic learning. When Part 2. fails,
instead, agents never search in equilibrium: each agent samples the �rst action at no cost and takes
that action. As a result, there is no prospect for social learning since both actions must be sampled by
at least one agent in order to evaluate their relative quality. Assumption 1 excludes such trivial search
environments.
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2.4.2 Su�cient Conditions

For asymptotic learning to occur it is key that costs are not bounded away from zero. Under this
premise, I show that an improvement principle holds in the present setup despite the informational
environment signi�cantly di�er from that of the SSLM. This is the main contribution of Section 2.4.
Then, I leverage the improvement principle to show that asymptotic learning obtains if, in the network
topology, arbitrarily long information paths occur almost surely and are identi�able.12

Improvement Principle

The improvement principle benchmarks the equilibrium performance of Bayesian agents against a
heuristic that is simpler to analyze and can be improved upon by rational behavior. This heuristic is
based on the idea that an agent always has the option to imitate one of his neighbors and improve upon
his outcome. It works as follows. Upon observing who his neighbors are, each agent selects only one
neighbor to rely on. After observing the action of his chosen neighbor, the agent determines his optimal
search policy regardless of what other neighbors have done. An improvement principle holds if: (i)
there is a lower bound on the increase in the probability that an agent samples �rst the best action over
his chosen neighbor’s probability; in particular, this improvement is strict unless the chosen neighbor
already samples the best action with probability one at the �rst search; (ii) the learning mechanism
captured by such heuristic and the associated improvements lead to asymptotic learning. For condition
(i) to hold, it is key that search costs are not bounded away from zero. In turn, condition (ii) requires
that, in the network topology: (a) long information paths occur almost surely, so that improvements
last until agents sample the best action with probability one at the �rst search; (b) long information
paths are identi�able, so that agents can single out the correct neighbor to rely on.

To establish these results, I recall some notions on network topologies introduced by Lobel and Sadler
(2015), to which I refer for further discussion. The �rst notion is a connectivity property requiring that
agents are linked, directly or indirectly, to an unbounded subset of other agents.

De�nition 5. A network topology (B,FB,Q) features expanding subnetworks if, for all positive integers
K ,

lim
n→∞

Q
(∣∣B̂(n)

∣∣ < K
)

= 0.

The network topology has non-expanding subnetworks if this property fails.

Under expanding subnetworks, the size of B̂(n) grows without bound as n becomes large. This
condition rules out, for instance, the presence of an excessively in�uential group of individuals, that is,
the existence of in�nite subsequences of agents who, with probability uniformly bounded away from
zero, only observe the choices of the same �nite set of individuals.

De�nition 6. Let (B,FB,Q) be a network topology:

12Formally, an information path for agent n is a sequence (π1, . . . , πk) of agents such that πk = n and πi ∈ B(πi+1)
for all i ∈ {1, . . . k − 1}.
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(a) A function γn : 2Nn → Nn ∪ {0} is a neighbor choice function for agent n if, for all neighborhood
realizations Bn ∈ 2Nn , we have γn(Bn) ∈ Bn when Bn 6= ∅, and γn(Bn) = 0 otherwise. Given a
neighbor choice function γn, we say that γn(Bn) is agent n’s chosen neighbor.

(b) A chosen neighbor topology, denoted by (B,FB,Qγ), is derived from the network topology (B,FB,Q)

and a sequence of neighbor choice functions γ := (γn)n∈N. It consists only of the links in (B,FB,Q)

selected by the sequence of neighbor choice functions (γn)n∈N.

In words, a given neighbor choice function represents a particular way in which agents select a
neighbor. A chosen neighbor topology then represents a network topology in which agents discard all
observations of the neighbors that are not selected by their neighbor choice function.

The next proposition shows that asymptotic learning via the improvement principle occurs if certain
conditions (to be soon clari�ed) hold. For the rest of this subsection, �x a collective search environment
S := {N, (Q,FQ,PQ), (B,FB,Q), {(C,FC ,PC),R}} and an equilibrium σ ∈ ΣS .

Proposition 2. Suppose there exist a sequence of neighbor choice functions (γn)n∈N and a continuous,
increasing function Z : [1/2, 1]→ [1/2, 1] with the following properties:

(a) The corresponding chosen neighbor topology features expanding subnetworks;

(b) Z(β) > β for all β ∈ [1/2, 1), and Z(1) = 1;

(c) For all ε, η > 0, there exists a positive integer Nεη such that for all n > Nεη, with probability at
least 1− η,

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n))

)
> Z

(
Pσ

(
s1
γn(B(n)) ∈ arg max

x∈X
qx

))
− ε. (2.10)

Then, asymptotic learning occurs in equilibrium σ.13

Importantly, one needs to show that Bayesian agents who do not ignore all but one of the indi-
viduals in their neighborhood can at least obtain the improvements described by conditions (b) and
(c) in Proposition 2. While a Bayesian agent has always a higher probability of sampling �rst the
best action than an agent following the heuristic described above, the same conclusion does not hold
true for the probability of taking the best action. This is so because agents use their information to
optimize the value of their sequential search program, which is not equivalent to maximizing the ex
ante probability of selecting the best action. For this reason, I consider improvements with respect
to Pσ(s1

n ∈ arg max x∈X qx), and not with respect to Pσ(an ∈ arg max x∈X qx), although the ultimate
interest is in the evolution dynamics of the latter. However, convergence to one of the probability of
sampling �rst the best action is su�cient for asymptotic learning.

Condition (c) in Proposition 2 requires the existence of a strict lower bound on the increase in the
probability that an individual will sample �rst the best action over his chosen neighbor’s probability
except, possibly, for neighbors that γn selects with vanishingly small probability. Therefore, for an

13The probabilities in (2.10), and in (2.11) below, are random variables.
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improvement principle to hold, one must be able to construct a suitable improvement function Z .
The next proposition shows that this is possible if search costs are not bounded away from zero. The
intuition goes as follows. Consider an agent, say n, and his chosen neighbor, say b < n. Unless b
samples �rst the best action with probability one, b’s expected additional gain from the second search
is positive. Therefore, if search costs are not bounded away from zero, b samples both actions and
compares their quality with positive probability. Thus, as b always takes the best action among those
he samples, there is a positive probability that the action he takes is of better quality than the one
he samples �rst. Since n �nds it optimal to start searching from the action taken by b,14 this results
in a strict improvement in the probability of sampling �rst the best action that agent n has over his
chosen neighbor b, unless b already does so with probability one, in which case the improvement is
non-negative.

Proposition 3. Suppose that the search technology has search costs that are not bounded away from zero,
and let (γn)n∈N be a sequence of neighbor choice functions. Then, there exists an increasing and continuous
function Z : [1/2, 1]→ [1/2, 1], satisfying Z(β) > β for all β ∈ [1/2, 1), Z(1) = 1, and such that

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Z

(
Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

))
for all agents n and b with 0 ≤ b < n.

The improvement principle is introduced by Acemoglu et al. (2011) in the SSLM as a tool to establish
positive learning results in network topologies with independent neighborhoods. Lobel and Sadler
(2015) generalize this principle to networks with arbitrarily correlated neighborhoods. In this paper,
I extend the scope of the improvement principle to a new environment, where private information is
endogenous and fundamentally distinct in nature, which leads to a di�erent inferential problem on the
agents’ side. Section 2.3.2, however, shows that the equilibrium sequential search policies are essentially
described by the probabilities Pn(x) and Pn(qx) de�ned in (2.4) and (2.8). This characterization relates
the dynamics of individual search behavior to the evolution of the quantity Pσ(s1

n ∈ arg max x∈X qx).
This link makes the agents’ inference somewhat comparable to the one faced by the agents in the SSLM,
despite the very di�erent premises on the information structure. Thus, an improvement principle
which is close in spirit holds.

Su�cient Conditions for Asymptotic Learning

To connect Propositions 2 and 3 into a general result, one needs to bound the di�erence between
Pσ(s1

γn ∈ arg max x∈X qx) and Pσ(s1
γn ∈ arg max x∈X qx | γn). Agent n can imitate agent γn only

if γn ∈ B(n). Therefore, if neighborhoods are correlated, agent γn’s probability of sampling �rst
the best action conditional on agent n observing agent γn is not the same as agent γn’s probability
of sampling �rst the best action. That is, by imitation, agent n earns γn’s probability of sampling

14It is intuitive, and formally proven in Appendix 2.9.1, that, when agent n only relies on agent b disregarding what
other agents have done, the marginal distribution of the quality of the action taken by b �rst-order stochastically dominates
the marginal distribution of the quality of the other action in the eyes of n.
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�rst the best action conditional on n choosing to imitate agent γn. If Pσ(s1
γn ∈ arg max x∈X qx) and

Pσ(s1
γn ∈ arg max x∈X qx | γn) are approximately the same for large n, then Propositions 2 and 3

immediately imply asymptotic learning. In other words, long information paths must be identi�able, in
the sense that agents along the path need reasonably accurate information about the network realization.
The next theorem formalizes this last step, which is standard from prior work (see, in particular, Golub
and Sadler (2016)).

Theorem 1. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Suppose that
the following two conditions hold:

(a) The search technology has search costs that are not bounded away from zero;

(b) In the network topology there exists a sequence of neighbor choice functions (γn)n∈N such that the
corresponding chosen neighbor topology features expanding subnetworks, and for all ε, η > 0, there
exists a positive integer Nε such that for all n > Nε, with probability at least 1− η,

Pσ

(
s1
γn(B(n)) ∈ arg max

x∈X
qx
∣∣ γn(B(n))

)
> Pσ

(
s1
γn(B(n)) ∈ arg max

x∈X
qx

)
− ε. (2.11)

Then, asymptotic learning occurs in equilibrium σ.

A variety of conditions on the network topology of S ensure that (2.11) holds in every equilibrium
σ ∈ ΣS . In such cases, if search costs are not bounded away from zero and there exists a chosen neighbor
topology with expanding subnetworks, we say that asymptotic learning occurs in the collective search
environment S . Such conditions have been identi�ed by Acemoglu et al. (2011) and Lobel and Sadler
(2015), to which I refer for further details.

The improvement principle not only serves as a proof technique, but also as a learning principle when
standard informational monotonicity properties do not hold (cf. Remark 3 in Section 2.3.2). In particular,
it captures the idea that a boundedly rational procedure, imitation, combined with some amount of
individual improvement upon it, is su�cient to achieve positive learning outcomes in the long run. The
improvement principle also lies behind information di�usion in the SSLM.15 This explains why, in the
search setting I study, asymptotic learning occurs in networks where information di�uses in the SSLM,
albeit the mechanics behind the two models signi�cantly di�er. Namely, in these network topologies the
heuristic captured by the improvement principle displays good long-run properties: �rst, identi�able
information paths allow agents to pick the right neighbor to imitate; second, long information paths
allow improvements to last as long as they are possible given the information structure of the model.

Theorem 1 also generalizes MFP’s insight that arbitrarily low search costs lead to asymptotic learn-
ing from the complete network to a much broader class of observation structures. From a technical
viewpoint, however, partial observability of past histories considerably changes the characterization
of equilibrium behavior and how positive learning results are obtained.

15In the SSLM, information di�uses if a society asymptotically selects the correct action with the same ex ante probability
as an agent with no social information who has access to the most informative private signals. Di�usion captures the idea
that the strongest signals spread throughout the network. Information aggregates (asymptotic learning occurs) if, in the long
run, agents make the correct choice with probability one. Di�usion is thus a weaker learning requirement than aggregation.
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2.4.3 A Necessary Condition on Network Topologies

Asymptotic learning requires that agents observe, directly or indirectly, the choices of an unbounded
subset of other agents. Thus, asymptotic learning fails with non-expanding subnetworks.

Proposition 4. Let S be a collective search environment where the network topology has non-expanding
subnetworks. Then, there exists no equilibrium σ ∈ ΣS with asymptotic learning.

The idea behind Proposition 4 is simple. Asymptotic learning requires that the probability of no
agent in B̂(n) ∪ {n} sampling both actions converges to zero as n goes to in�nity. Otherwise, there
would be a subsequence of agents who: (i) with probability bounded away from zero, only observe
(directly and indirectly) agents who do not compare the quality of the two actions, as none of the agents
in their personal subnetworks samples both actions; (ii) do not make this comparison either, as agents
in the subsequence do not search for the second alternative. Learning would trivially fail because no
agent in the subsequence conclusively assesses the relative quality of the two actions. Now suppose
that the network topology has non-expanding subnetworks. By Assumption 1 and the characterization
of equilibrium search policies, each single agent, with or without neighbors, does not search for the
second action with positive probability independently of which action he samples �rst. Since non-
expanding subnetworks generate with positive probability an in�nite subsequence of agents, say N ,
with �nite personal subnetwork, the probability of no agent in B̂(n) ∪ {n} sampling both actions
remains bounded away from zero for the agents in N . As a result, asymptotic learning fails.

The negative result obtains because in�nitely many agents remain uninformed about the relative
quality of the two actions with positive probability. The society might well have in�nitely many
perfectly informed agents, but the result of their searches does not spread over the network.

2.5 Maximal Learning

In this section, I focus on search costs that are bounded away from zero. First, I de�ne the notion of
maximal learning, which is the second long-run learning metric considered in the paper. Second, I
explain why the improvement principle breaks down when search costs are bounded away from zero.
Then, I characterize a large class of network topologies where maximal learning fails when search costs
are bounded away from zero. By means of an example, I show that maximal learning obtains in some
special network structures despite zero is not in the support of the search cost distribution. Finally, I
discuss why large samples and martingale convergence arguments are of little use in the search setting
I study.

2.5.1 A Motivating Example

When search costs are bounded away from zero, the acquisition of relevant information may be pre-
cluded even to agents with the best search opportunities (the lowest search cost type) and the strongest
incentives to explore (no social information). In such case, asymptotic learning trivially fails. The
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next example clari�es the point and suggests that asymptotic learning is not the most suitable learning
benchmark when zero is not in the support of the search cost distribution.

Example 1. Suppose that the qualities of the two actions are are drawn uniformly at random from
{0, 1/2, 1} and that the lowest cost in the support of the search cost distribution is c > 1/6. With
probability 2/9, the realized quality of the two actions is (q0, q1) ∈ {(1/2, 1), (1, 1/2)}. In such cases,
in equilibrium an agent with no neighbors and search cost type c never samples the second alternative
whatever action he samples �rst, as his expected additional gain from the second search is at most
1/3(1− 1/2) = 1/6, which is smaller than his search cost. However, this agent only samples the best
action at the �rst search with probability 1/2. In turn, agents with a higher search cost type and/or
nonempty neighborhood do not sample the second action either, independently of which action they
sample �rst (see Section 2.3.2). Therefore, when (q0, q1) ∈ {(1/2, 1), (1, 1/2)}, each agent in the social
network makes the wrong choice with positive probability. �

2.5.2 Maximal Learning: De�nition

Fix a collective search environment S and let c ≥ 0 be the lowest cost in the support of the search cost
distribution of S . De�ne the threshold quality q(c) := inf{q ∈ Q : t∅(q) < c}, and let

Ω(c) := {ω := (q0, q1) ∈ Ω : qi ≥ q(c) for i = 0, 1 and q0 6= q1} .

Consider a hypothetical agent, say an expert located outside of the social network, that wishes to
select the best alternative in X . Suppose he has access to the lowest search cost c in the support of PC .
In the absence of any social information, this agent selects the correct action whenever ω 6∈ Ω(c). On
the contrary, when ω ∈ Ω(c), the qualities of the two actions are di�erent, but the agent never searches
for the second alternative. In such cases, he makes the correct choice only if he samples �rst the best
action, which happens with probability 1/2.

The next de�nition introduces the notion of maximal learning, which obtains if agents asymptotically
select the best action with the same ex ante probability as an expert.

De�nition 7. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Maximal
learning occurs in equilibrium σ if

lim inf
n→∞

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ α(c),

where α(c) := 1− PΩ(Ω(c))/2.

Equivalently, maximal learning obtains in equilibrium σ if, in the long run, agents select the correct
action every time min{q0, q1} < q(c). That is, by de�ning

Ω(c) := {ω := (q0, q1) ∈ Ω : qi ≥ q(c) for i = 0, 1} ,
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maximal learning occurs if

lim
n→∞

Pσ

(
an ∈ arg max

x∈X
qx
∣∣ ω 6∈ Ω(c)

)
= 1. (2.12)

When search costs are not bounded away from zero, maximal learning reduces to asymptotic learn-
ing. In contrast, when search costs are bounded away from zero, maximal learning may or may not
coincide with asymptotic learning. Example 1 suggests that the two notions are distinct. However, this
is not always the case. For instance, if the qualities of the two actions are i.i.d. draws from the discrete
uniform distribution over {0, 1}, and the lowest search cost c in the support of PC is smaller than 1/2,
maximal and asymptotic learning coincide. This is so because an expert with search cost c samples
the second alternative whenever the �rst action sampled has quality 0. In general, maximal learning is
a weaker requirement than asymptotic learning; it represents the best outcome a society can achieve
when zero is not in the support of the search cost distribution.

The next assumption, which parallels Assumption 1, is maintained throughout Section 2.5.

Assumption 2 (Non-Trivial Collective Search Environment Conditional on ω 6∈ Ω(c)). There
exists q̃ in the support of PQ such that:

(a) PQ(q̃ < q < q(c)) > 0;

(b) 1−FC
(
t∅(q̃)

)
> 0. That is, the distribution of search costs is such that, with positive probability, an

agent n with neighborhood realization Bn = ∅ does not sample another action when the �rst action
sampled has quality q̃ or higher.

Assumption 2 rules out uninteresting learning problems where agents with no neighbors always
sample both actions when ω 6∈ Ω(c). If this assumption fails, asymptotic learning trivially obtains for
ω 6∈ Ω(c), and never obtains otherwise.

By the same argument establishing Proposition 4, also maximal learning fails when the network
topology has non-expanding subnetworks.

Proposition 5. Let S be a collective search environment where the network topology has non-expanding
subnetworks. Then, there exists no equilibrium σ ∈ ΣS with maximal learning.

2.5.3 Failure of the Improvement Principle

If search costs are bounded away from zero, improvements upon imitation are precluded to late moving
agents. Thus, maximal (hence, asymptotic) learning via the improvement principle fails.

To formalize the argument, consider a collective search environment S where the lowest cost in
the support of the search cost distribution is c > 0. Assume that ω 6∈ Ω(c). By way of contradiction,
suppose that the improvement principle holds. Then, there must be some chosen neighbor topology
derived from the network topology of S where the probability that none of the agents in B̂(n) ∪ {n}
samples both actions converges to zero as n grows large. Therefore, in the chosen neighbor topology
there is an in�nite subsequence of agents N where, for a su�ciently late moving agent m ∈ N , this
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probability is so small that the expected additional gain from the second search falls below c > 0,
and remains below this threshold afterward. As a result, no agent in N moving after agent m will
sample the second action. At the same time, by Assumption 2, the probability that none of the agents
in B̂(m)∪ {m} samples both actions is positive for all �nite m. But then, this is a contradiction, as the
probability that none of the agents in B̂(n) ∪ {n} samples both actions remains bounded away from
zero for the in�nite subsequence of agents N .

A perturbation of the search technology breaks down the improvement. In contrast, in the SSLM the
strongest available signals, whether bounded or not, are transmitted throughout the network via the
improvement principle if long information paths occur almost surely and are identi�able. Therefore,
information di�uses and the society performs, in the long run, as well as a single agent with no
social information who has access to the most informative signals. This is no longer true in collective
search environments: when search costs are bounded away from zero, a society that only relies on
improvements upon imitation as a learning principle performs strictly worse than a single agent with
no social information and the lowest search cost type.

The improvement principle is not the only method agents may use to learn how to select the correct
action. Therefore, it is natural to inquire whether there exist network topologies where maximal
learning never obtains (i.e., no matter what agents do in order to learn) when search costs are bounded
away from zero. Section 2.5.5 addresses this question.

2.5.4 OIP Networks

Before stating the next results, I introduce some notation and de�ne a class of network topologies
which will be extensively discussed in Section 2.6 as well. For all n ∈ N and ln ∈ Nn, let

Bln
n := {k ∈ Nn : k ≥ n− ln}

be the subset of Nn comprising the ln most immediate predecessors of n. For instance: if ln = 1, then
B1
n = {n− 1}; if ln = n− 1, then Bn−1

n = {1, . . . , n− 1}.

De�nition 8. A network topology (B,FB,Q) features observation of immediate predecessors if, for all
n ∈ N,

Q
( ⋃

ln∈Nn

(
B(n) = Bln

n

))
= 1.

I will often refer to network topologies featuring observation of immediate predecessors as OIP
networks. These represent a fairly large class of network structures, ranging from deterministic network
topologies to stochastic networks with rich correlation patterns between neighborhoods.

Example 2. Here are some examples of OIP networks.

1. If Q(B(n) = Bn−1
n ) = 1 for all n, we have the complete network.

2. If Q(B(n) = B1
n) = 1 for all n, we have the network topology where each agent only observes

his most immediate predecessor.
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3. As an example of stochastic network with independent neighborhoods, consider the following:
for all n ∈ N, Qn(B(n) = B1

n) = (n − 1)/n and Qn(B(n) = Bn−1
n ) = 1/n. In this case, agents

either observe their most immediate predecessor, or all of them, with the latter event becoming
less and less likely as n grows large.

4. Stochastic networks with correlated neighborhoods are also possible. For instance: Q(B(2) =

{1}) = 1, Q(B(3) = {2}) = 1/2 = Q(B(3) = {1, 2}), and, for all n > 3,

B(n) =

{n− 1} if B3 = {2}

{1, . . . , n− 1} if B3 = {1, 2}
. �

2.5.5 Failure of Maximal Learning

When search costs are bounded away from zero, maximal learning fails in all OIP networks and in
network topologies where each agent has at most one neighbor (for example, under random sampling
of one agent from the past).

Theorem 2. Let S be a collective search environment where the search technology has search costs that
are bounded away from zero and the network topology satis�es one of the following conditions:

(a) Observation of immediate predecessors;

(b) Q(|B(n)| ≤ 1) = 1 for all n ∈ N.

Then, there exists no equilibrium σ ∈ ΣS with maximal learning.

The intuition behind the result is the following. Suppose that the lowest cost in the support of the
search cost distribution is c > 0 and that ω 6∈ Ω(c). By way of contradiction, assume that maximal
learning occurs, so that the probability that none of the agents in B̂(n) ∪ {n} samples both actions
converges to zero as n grows large. Then, for a su�ciently late moving agent, say m, this probability is
so small that the expected additional gain from the second search falls below c > 0 and remains below
this threshold afterward. As a result, no agent moving after agent m will sample the second action.
At the same time, however, by Assumption 2, the probability that none of the agents in B̂(m) ∪ {m}
samples both actions is positive for all �nite m. But then, this is a contradiction with maximal learning,
as the probability that none of the agents in B̂(n) ∪ {n} samples both actions remains bounded away
from zero.

The negative result on maximal learning extends beyond the observation structures in Theorem 2.
For instance, maximal learning fails in OIP networks if, in addition, agents observe the choices of the
�rst K agents or the aggregate history of past actions (see Sections 2.6.1 and 2.6.4); it also fails when
each agent n samples M > 1 agents uniformly and independently from {1, . . . , n− 1}.

Theorem 2 characterizes a class of networks where, when search costs are bounded away from zero,
asymptotic learning fails discontinuously with respect to the benchmark learning metric. In fact, even
the second best outcome (maximal learning) breaks down. In contrast, when private beliefs are bounded,
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in the SSLM information di�uses in network topologies satisfying condition (a) or (b). Therefore,
in these networks, while asymptotic learning is precluded with bounded private beliefs, the second
best learning outcome (di�usion) obtains. This is no longer true in collective search environments.
The discontinuity emerges both as an ine�ciency due to costly information acquisition as well as a
consequence of the information structure, which does not allow agents to learn anything about the
relative quality of the two actions unless both are sampled.

Theorem 2 also describes a class of network topologies where search costs that are not bounded
away from zero are necessary and su�cient for asymptotic learning. The theorem thus generalizes
the characterization result of MFP from the complete network to a larger class of network structures.
The novel insight that maximal learning fails as well highlights the fragility of positive learning results
with respect to perturbations in the support of the search cost distribution.

2.5.6 Maximal Learning and the Large-Sample Principle

In this section, I investigate whether there exists some network topology where maximal learning
obtains when zero is not in the support of the search cost distribution. For the SSLM, Acemoglu et al.
(2011) (see their Theorem 4) characterize a class of network topologies where asymptotic learning
obtains with bounded private beliefs. Their �ndings suggest that maximal learning might occur in
some networks despite search costs that are bounded away from zero. The next example shows that
this intuition is correct in some very special cases.

Example 3. Let S be a collective search environment where the lowest cost in the support of the
search cost distribution is c > 0. Assume that the network topology satis�es, for all n ∈ N,

Q(B(n) = ∅) = pn and Q(B(n) = {m ∈ Nn : B(m) = ∅}) = 1− pn,

where the sequence (pn)n∈N is such that 0 ≤ pn ≤ 1 for all n, limn→∞ pn = 0, and
∑∞

n=1 pn =∞. That
is, agent n has empty neighborhood with probability pn, or observes all and only his predecessors with
empty neighborhood with probability 1− pn.

Suppose (q0, q1) 6∈ Ω(c) and, without loss, q0 > q1. Consider �rst an agent, say k, with B(k) = ∅.
By de�nition of Ω(c) and c, k samples the second action with positive probability when he samples
action 1 �rst. Hence, k takes the correct action (ak = 0) with probability α > 1/2.16

Now consider an agent, say l, with B(l) 6= ∅. By the assumptions on the network topology, agent l
only observes the choices of all his predecessors with empty neighborhood. Thus, l’s optimal decision
at the �rst search stage depends on the relative fraction of choices he observes. In particular:

s1
l =

0 if
∣∣B̂(l, 0)

∣∣ > ∣∣B̂(l, 1)
∣∣

1 if
∣∣B̂(l, 0)

∣∣ < ∣∣B̂(l, 1)
∣∣ ,

16Agent k takes the correct action any time he samples �rst action 0, which occurs with probability 1/2, and any time
he samples �rst action 1 and his search cost is smaller that t∅(q1). Since q0 > q1 and (q0, q1) 6∈ Ω(c), q1 < q(c), and so the
latter event occurs with positive probability. Therefore, the overall probability that agent k takes action 0 is larger than
1/2. Providing an expression for α is irrelevant for the following argument.
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and s1
l ∈ ∆({0, 1}) if |B̂(l, 0)| = |B̂(l, 1)|. To see this, note that |B̂(l, x)| > |B̂(l,¬x)| immediately

implies Pl(x) < Pl(¬x), where Pl(·) is the probability de�ned by (2.4).

The assumptions on (pn)n∈N imply that limn→∞ Q(|B̂(n)| < K) = 0 for all positive integers K .
Hence, with probability one, there are in�nitely many agents with no social information. Moreover,
the actions taken by the agents with empty neighborhood form a sequence of independent random
variables. Thus, by the weak law of large numbers, the ratio |B̂(l, 0)|/|B̂(l, 0)| converges in probability
to α > 1/2 as l→∞ (with respect to Pσ, and conditional on B̂(l) 6= ∅). Therefore,

lim
l→∞

Pσ
(∣∣B̂(l, 0)

∣∣ > ∣∣B̂(l, 1)
∣∣ ∣∣ B̂(l) 6= ∅

)
= 1. (2.13)

Finally, for all n ∈ N, note that

1 ≥ Pσ

(
an ∈ arg max

x∈X
qx
∣∣ ω 6∈ Ω(c)

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ ω 6∈ Ω(c)

)
= Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n) = ∅, ω 6∈ Ω(c)

)
Q(B(n) = ∅) (2.14)

+ Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n) 6= ∅, ω 6∈ Ω(c)

)
Q(B(n) 6= ∅)

≥ 1

2
pn + Pσ

(∣∣B̂(n, 0)
∣∣ > ∣∣B̂(n, 1)

∣∣ ∣∣ B̂(l) 6= ∅
)
(1− pn).

Here, the second inequality holds as agent n takes the action of better quality among those he has
sampled; the �rst equality holds by the law of total probability; the third inequality follows by the
properties of the network topology, the fact that q0 > q1, the assumption that agents with no neighbors
select uniformly at random the action to sample �rst, and the optimal policy at the �rst search stage
for agents with nonempty neighborhood.

By (2.13), and since limn→∞ pn = 0, we have

lim
n→∞

[
1

2
pn + Pσ

(∣∣B̂(l, 0)
∣∣ > ∣∣B̂(l, 1)

∣∣)(1− pn)

]
= 1. (2.15)

Together, (2.14) and (2.15) imply

lim
n→∞

Pσ

(
an ∈ arg max

x∈X
qx
∣∣ ω 6∈ Ω(c)

)
= 1,

showing that maximal learning occurs. �

The positive result in Example 3 relies on the assumption that agents with nonempty neighborhood
only observe agents with no social information. Under this premise, the optimal policy at the �rst
search stage for the former group of agents is determined by the relative fraction of choices they
observe. When agents with nonempty neighborhood observe more, however, connecting the optimal
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search policy to the ratio of observed choices is no longer possible. Therefore, it is unclear whether
(and to what extent) the insight of Example 3 extends to a more general characterization.

The positive results in Acemoglu et al. (2011) make an extensive use of large samples and martingale
convergence arguments, which have no bite in collective search environments (see Remark 4). These
arguments are commonly referred to as the large-sample principle and capture the idea that agents
learn by aggregating the information contained in a large sample of others’ choices. The scope of
the large-sample principle is severely hampered in the present environment, emphasizing once more
the distinction between the inferential challenge in the search setting I study and that in the SSLM.
Therefore, if any characterization of networks where maximal learning occurs despite c > 0 is within
reach, it requires a di�erent line of attack.

Recall that maximal and asymptotic learning sometimes coincide despite search costs are bounded
away from zero (see Section 2.5.2). Thus, Example 3 also shows that asymptotic learning may occur
when zero is not in the support of the search cost distribution. In other words, search costs that are
not bounded away from zero are not, in general, necessary for asymptotic learning.

2.6 Rate of Convergence, Welfare, and E�ciency

In this section, I present results on the probability of wrong herds forming, the rate of convergence,
equilibrium welfare, and e�ciency. I also discuss simple policy interventions that enhance welfare in
equilibrium. Most of the analysis will focus on OIP networks. Thus, I begin by describing equilibrium
behavior in this class of network topologies.

2.6.1 Equilibrium Strategies in OIP Networks

Fix a state process and a search technology. From the viewpoint of the probability of selecting the
best action, equilibrium behavior is equivalent across OIP networks. To illustrate the argument, I �rst
introduce some terminology.

De�nition 9. Let S be a collective search environment where the network topology features observation
of immediate predecessors, and let σ ∈ ΣS . We say:

(a) Action x ∈ X is revealed to be inferior to agent n in equilibrium σ if there exist agents j, j + 1 ∈
B(n) such that aj = x and aj+1 = ¬x.

(b) Action x ∈ X is revealed to be inferior by time n in equilibrium σ if there exist agents j, j+ 1 ∈ N,
with j + 1 < n, such that aj = x and aj+1 = ¬x.

(c) Action x ∈ X is inferior by time n in equilibrium σ if there exists an agent j ∈ N, with j < n, who
has sampled both actions and such that aj = ¬x.

If an action is revealed to be inferior to agent n in equilibrium σ, then it is also revealed to be inferior
by time n in the same equilibrium. The converse statement is not generally true, but it is so in the
complete network, where B(n) = {1, . . . , n− 1} with probability one for all n.
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In OIP networks, agent n ≥ 2’s equilibrium behavior is the following.17 At the �rst search stage,
agent n samples the action taken by his immediate predecessor: s1

n = an−1. This is so because n’s
belief about the quality of action an−1 strictly �rst-order stochastically dominates his belief about the
quality of the other action (the result follows by induction). Hence, if an action is revealed to be inferior
by time n in equilibrium σ, it is also inferior by time n in equilibrium σ (the converse statement is not,
in general, true).

At the second search stage, the optimal policy depends on whether action ¬s1
n is revealed to be

inferior to agent n in equilibrium or not. If action ¬s1
n is revealed to be inferior to agent n, then n

discontinues search and takes action s1
n. The reason for not sampling ¬s1

n is straightforward. Suppose
there are agents j, j + 1 ∈ B(n) such that aj = ¬s1

n and aj+1 = s1
n. Since agents start sampling

from the action taken by their immediate predecessor, agent j + 1 must have sampled action ¬s1
n �rst,

and therefore would only select aj = s1
n at the choice stage if he then sampled action s1

n as well, and
qs1n ≥ q¬s1n . That is, action ¬s1

n is revealed to be inferior to action s1
n by agent j + 1’s choice, and so

the expected additional gain from the second search is zero. If instead action ¬s1
n is not revealed to be

inferior to agent n, the expected additional gain from the second search given quality qs1n is the same
as in the complete network for an action of the same quality that is not revealed to be inferior by time
n in equilibrium. The intuition goes as follows. In all OIP networks agent n’s personal subnetwork is
the same, that is {1, . . . , n− 1}, and coincides with agent n’s neighborhood in the complete network.
Moreover, all agents start sampling from the action taken by their most immediate predecessor. Thus,
given qs1n , the probability that none of the agents in n’s personal subnetwork relative to s1

n has sampled
both actions must be the same. But then, if s1

n is not revealed to be inferior to agent n, this agent adopts
the same threshold he would use in the complete network to determine whether to search further or
not after having sampled an action of the same quality that is not revealed to be inferior in equilibrium
by time n.

Remark 5. Fix a state process and a search technology. By the previous argument, the following
equilibrium objects are identical across OIP networks: the order of search; the cuto� for sampling a
second action that is not revealed to be inferior to an agent; the probability that each agent n selects
the best action. Then:

(a) In OIP networks, the density of connections and their correlation pattern do not a�ect equilibrium
inference and several equilibrium outcomes.

(b) Many equilibrium properties of the game of social learning in the complete network immediately
extend to all OIP networks. I will explore this insight in the next subsections.

Remark 6. In all OIP networks actions are always improving; that is, each agent takes a weakly better
action than his predecessors.

These properties distinguish the search environment I study from the SSLM, where equilibrium
dynamics dramatically change as the number of immediate predecessors that are observed varies. For
instance, Celen and Kariv (2004) study the SSLM under the assumption that each agent only observes
his most recent predecessor’s action and show that beliefs and actions cycle inde�nitely.

17I refer to Appendix 2.9.3 for the formal characterization.

32



2.6.2 Probability of Wrong Herds and Rate of Convergence

OIP Networks. Fix a state process and a search technology. Remark 5 implies the following.

Remark 7. In all OIP networks:

(a) The probability of wrong herds forming is the same as in the complete network;

(b) If search costs are not bounded away from zero, so that asymptotic learning occurs, the rate of
convergence is the same as in the complete network.

Consider �rst the probability of suboptimal herds. The next proposition says that we can bound this
probability as a linear function of the lowest cost in the support of the search cost distribution. The
result holds by combining Remark 7–(a) with Proposition 1 in MFP.

Proposition 6. Let S be a collective search environment where the network topology features observation
of immediate predecessors, and let c be the lowest cost in the support of PC . Then, in any equilibrium
σ ∈ ΣS , the quantity

cEQ

[
1

t∅(q0)

∣∣∣ q0 < q1

]
is an upper bound for the probability of a suboptimal herd forming.

By Proposition 6, the probability that agents asymptotically select the correct action converges to
one as c approaches zero. Despite this “continuity” result, however, the probability of wrong herds
may remain sizable if search costs are bounded away from zero. This is so even when maximal and
asymptotic learning coincide, as the next example shows.

Example 4. Suppose the network topology features observation of immediate predecessors. Assume
that the qualities of the two actions are drawn uniformly at random from {0, 1}, and that search costs
are drawn from {1/2, 2/3}, with PC(c = 1/2) = δ and PC(c = 2/3) = 1− δ for some δ ∈ (0, 1). To
simplify the exposition, assume that agents sample the other action in case of indi�erence at the second
search stage. For an agent with no neighbors, the expected additional gain from a second search after
sampling an action of quality 0 is 1/2 = c. Thus, maximal and asymptotic learning coincide, as an
expert would always select the best action.

With probability 1/2, (q0, q1) ∈ {(0, 1), (1, 0)}. In such cases, agent 1 selects the best action with
probability (1+ δ)/2. Therefore, the ex ante probability that agent 1 selects a wrong action is (1− δ)/4.
Moreover, the expected additional gain from a second search for agent 2 (and for all his successors)
after sampling an action of quality 0 is smaller than 1/2 = c, as agent 1 samples both actions with
positive probability. Therefore, no agent moving after agent 1 samples both action. Thus, a suboptimal
herd forms whenever agent 1 selects the wrong action. As δ approaches zero, the latter event occurs
with probability arbitrarily close to 1/4. �

Next, consider the rate of converge. I begin by introducing an important property of search cost
distributions that will a�ect the results on the speed of learning.
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De�nition 10. Let (Q,FQ,PQ) be a state process and {(C,FC ,PC),R} a search technology. Set q :=

min supp
(
PQ
)
. The search cost distribution has polynomial shape if there exist some real constants K

and L, with K ≥ 0 and 0 < L < 2K+1

(K+2)t∅(q)
K , such that

FC(c) ≥ LcK for all c ∈
(
0, t∅

(
q
)
/2
)
.

Convergence to the correct action is faster than a polynomial rate in OIP networks.

Proposition 7. Let S be a collective search environment where the network topology features observation
of immediate predecessors. Suppose also that search costs are not bounded away from zero.

(a) If PC admits a density fC , and fC(0) > 0, then in any equilibrium σ ∈ ΣS ,

Pσ

(
an 6∈ arg max

x∈X
qx

)
= O

(
1

n

)
for n su�ciently large.

(b) If the search cost distribution has polynomial shape, then in any equilibrium σ ∈ ΣS ,

Pσ

(
s1
n 6∈ arg max

x∈X
qx

)
= O

(
1

n
1

K+1

)
.

Part (a) holds by combining Remark 7–(b) with Proposition 1 in MFP. The proof of part (b) (and
Proposition 8 below) builds on a technique developed by Lobel, Acemoglu, Dahleh, and Ozdaglar (2009)
to characterize the speed of learning in the SSLM. This technique consists in approximating a lower
bound on the rate of convergence with an ordinary di�erential equation.

Random Sampling from the Past. Convergence occurs at a logarithmic rate under random sam-
pling of one agent from the past. Thus, the speed of learning is slower than in OIP networks. Intuitively,
this is so because the cardinality of agents’ personal subnetworks grows at a slower rate than in OIP
networks, and so does the probability that at least one agent in the personal subnetworks has sampled
both actions.

Proposition 8. Let S be a collective search environment where the network topology has independent
neighborhoods and is such that Qn(|B(n)| = 1) = 1 for all n ∈ N. Moreover, assume that the search cost
distribution has polynomial shape. Then, in any equilibrium σ ∈ ΣS ,

Pσ

(
s1
n 6∈ arg max

x∈X
qx

)
= O

(
1

(log n)
1

K+1

)
.

2.6.3 EquilibriumWelfare and E�ciency in OIP Networks

In this section, I �rst characterize how transparency of past histories a�ects equilibrium welfare. Then,
I compare equilibrium welfare against a natural e�ciency benchmark where agents are replaced by a
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single decision maker. To aid analysis, I assume throughout this section that the probability measure
PC admits a density fC , and that fC(c) > 0.

EquilibriumWelfare acrossOIPNetworks. Despite in all OIP networks later moving agents take a
weakly better action than their predecessors,18 equilibrium welfare is not the same across OIP networks.
To see this, suppose there exist agents j, j + 1 ∈ N such that aj = x and aj+1 = ¬x. Therefore, action
x is revealed to be inferior by time j + 2 in equilibrium. In the complete network, action x is revealed
to be inferior to any agent n ≥ j + 2, and so it is never sampled again. In other OIP networks, instead,
agent j is not necessarily in the neighborhood of agent n ≥ j + 2, and therefore n fails to realize from
agent j+1’s choice that action x is of lower quality than action ¬x. Thus, agent n ine�ciently samples
action x with positive probability at the second search stage.19

This kind of ine�cient duplication of costly search is more severe the shorter in the past agents can
observe. Therefore, the complete network is the most e�cient OIP network, and the network where
agents only observe their most recent predecessor is the least e�cient in this class. In all other OIP
networks, equilibrium welfare is comprised between these two bounds.

The next proposition shows that welfare losses arising because agents fail to recognize actions that
are revealed to be inferior by the time of their move only vanish in the limit of an arbitrarily patient
society (equivalently, in the long run). These losses, however, remain signi�cant in the short and
medium run. To ease the statement of the result, let S and S ′ be two collective search environments
with identical state process and search technology. Suppose that the network topology of S is the
complete network and that in S ′ agents only observe their most immediate predecessor. Let σ ∈ ΣS

and σ′ ∈ ΣS′ and suppose that agents break ties according to the same criterion in σ and σ′. Assume
that future payo�s are discounted at rate δ ∈ (0, 1).

Proposition 9. For all δ ∈ (0, 1), the average social utility in equilibrium σ is larger than the average
social utility in equilibrium σ′. This di�erence vanishes as δ goes to one.

The Single Decision Maker Benchmark. Suppose that agents are replaced by a single decision
maker (social planner) who has the same search technology available to the agents, draws a new search
cost in each time period, and faces the same structure of connections as the agents in the society. The
social planner discounts future payo�s at rate δ ∈ (0, 1), internalizes future gains of today’s search,
and needs to sample each of the two actions exactly once along the same information path. Since in
OIP networks each agent is (directly or indirectly) linked to all his predecessors, all agents lie on the
same (and unique) information path. Therefore, the social planner achieves the same average social

18This property is lost in general network topologies, where agents may generate long patterns of disagreement before
settling on one action. Disagreement, however, does not necessarily impact welfare in a negative way, as it may foster
exploration and speed up convergence to the right action.

19For the descriptive analysis in this section, assume that search costs are not bounded away from zero. The formal
details are in Appendix 2.9.6.
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utility in all collective search environments with the same state process and search technology, but
where the network topology is any OIP network.20

Equilibrium behavior in OIP networks gives rise to two potential sources of ine�ciency:

(i) The single decision maker internalizes future gains of today’s search, while agents are myopic.
As a result, exploration and convergence to the right action is too slow in equilibrium.

(ii) The single decision maker has more information than the agents in equilibrium and samples each
of the two actions exactly once. By contrast, in equilibrium:

(a) Each agent n fails to recognize an action, say x, that is inferior, and not revealed to be so,
by time n. Therefore, agents sample action x multiple times.

(b) Each agent n fails to recognize an action, say x, that is revealed to be inferior by time n,
i.e. such that aj = x and aj+1 = ¬x for some agents j, j + 1, with j + 1 < n, unless
j, j + 1 ∈ B(n). Again, agents sample action x multiple times.

As a result, equilibrium behavior displays ine�cient duplication of costly search. Note that, while
(a) occurs in all OIP networks, (b) does not in the complete network.

Equilibrium welfare losses disappear in the long run if and only if asymptotic learning occurs. If
search costs are bounded away from zero, or if the focus is on short- and medium-run outcomes, the
average social utility in equilibrium is lower than under the social planner.

Proposition 10. Let S ′′ be collective search environment where the network topology features observation
of immediate predecessors. Then, the average social utility in any equilibrium σ′′ ∈ ΣS′′ converges to the
average social utility implemented by the single decision maker as δ goes to one if and only if search costs
are not bounded away from zero.

Discussion of Probability ofWrong Herds, Rate of Convergence, andWelfare. The results on
OIP networks presented in Sections 2.6.2 and 2.6.3 are surprising for two reasons. First, in OIP networks
the probability of wrong herds, the speed of learning, and the long-run (but not short-run) welfare
neither depend on transparency of past histories nor on the correlation structure among connections.
Second, the rate of convergence can be characterized (and in a simple way) for a large class of networks.
This contrasts with our understanding of the SSLM, for which little is known about learning rates
unless all agents observe the most recent action, a random action from the past, or all past actions (see
Lobel et al. (2009), Rosenberg and Vieille (2017), and Hann-Caruthers, Martynov, and Tamuz (2018)).

Rosenberg and Vieille (2017) consider two measures of the e�ciency of social learning in the SSLM:
the expected time until the �rst correct action and the expected number of incorrect actions (see also
Hann-Caruthers et al. (2018)). They focus on two polar setups and assume that each agent either ob-
serves the entire sequence of earlier actions or only the previous one. In a similar spirit with my results,

20I refer to Section III.A. in MFP for the solution to the single decision maker’s problem in the complete network. As
the single decision maker’s problem is the same in all OIP networks, their analysis applies unchanged to my setting.
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they �nd that whether learning is e�cient is independent of the setup: for every signal distribution,
learning is e�cient in one setup if and only if it is e�cient in the other one. In the search setting I
study, the results on the irrelevance of how far in the past agents can observe is much stronger: �rst, it
holds for the long-run welfare as well as for the probability of wrong herds and the speed of learning;
second, it neither depends on the number of immediate predecessors that agents observe nor on the
dependence structure among connections.

2.6.4 Policy Interventions

Reducing transparency of past histories in OIP networks leads to ine�cient duplication of costly search.
Straightforward policy interventions, however, can improve e�ciency and equilibrium welfare in the
short and medium run.

Let S and S ′ be two collective search environments with identical state process and search technol-
ogy. Assume S is endowed with the complete network, and let σ ∈ ΣS . Suppose that S ′ is endowed
with any OIP network and that each agent in S ′, in addition to the actions of his neighbors, observes
the aggregate history of past actions or the action of the �rst agent (or both). Let σ′ be an equilibrium
of the game associated to S ′, but where agents also observe the aggregate history of past actions or the
action of the �rst agent. Finally, suppose that in σ and in σ′ agents break ties according to the same
criterion. Then, we have the following.

Proposition 11. For all δ ∈ (0, 1), the average social utility in equilibrium σ′ is the same as the average
social utility in equilibrium σ.

Suppose agents observe, in addition to the actions of their neighbors, the relative fraction of past ac-
tions or the action of the �rst agent. Then, according to Proposition 11, in all OIP networks equilibrium
welfare is the same as in the complete network (the most e�cient network in this class). The intuition
behind the result is simple. First, observing the action of the �rst agent or the aggregate history of past
actions (or both) does not change equilibrium behavior at the �rst search stage: in σ′, each agent starts
sampling from the action taken by his immediate predecessor. Second, if an action is revealed to be
inferior by time n in equilibrium σ′, that action is never sampled again by any agentm ≥ n. To see this,
suppose that there exist agents j, j + 1 ∈ N such that aj = x and aj+1 = ¬x, and consider any agent
n > j + 1. Agent n samples �rst action an−1. Since each agent starts sampling from the action taken
by his immediate predecessor and takes the action of better quality, it must be that an−1 = ¬x. Now, if
agent n observes the choice of the �rst agent or the aggregate history of past actions, he realizes that
q¬x ≥ qx even when j 6∈ B(n). In fact, when n observes a1 = x and an−1 = ¬x, he correctly infers
that some agent j + 1, with 1 ≤ j ≤ n− 2, has sampled both actions and discarded the inferior action
x. Therefore, n stops searching and takes action ¬x. The same inference is possible when agent n
observes the aggregate history of past choices. In this case, n would observe that j agents have taken
action x, while n − j − 1 agents have taken action ¬x. Together with an−1 = ¬x, this implies that
a1 = x and that some agent j + 1, with 1 ≤ j ≤ n − 2, has sampled both actions and discarded the
inferior action x. Therefore, the duplication of costly search that would arise because agents fail to
recognize actions that are revealed to be inferior by time n disappears.
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Interestingly, the remedies that this section suggests are easy to implement and commonly observed
in practice. For instance, online platforms that aggregate past individual choices by sorting di�erent
items according to their popularity or sales rank serve the purpose.21

The Limits of Simple Policy Interventions. The interventions discussed above do not remove the
ine�cient duplication of costly search arising when agents fail to recognize actions that are inferior
(and not revealed to be so) by some time n. Moreover, they do not incetivize exploration; thus, agents
delay search for the second action more than what the single decision maker would do and the rate
of convergence remains too slow. A natural step for future research is to understand how and to
what extent more complex incentive schemes, which make use of monetary transfers or information
management tools, can reduce these other ine�ciencies as well.22

2.7 Related Literature and Concluding Remarks

2.7.1 Related Literature

This paper joins a small but growing literature on costly acquisition of private information in social
learning settings. Burguet and Vives (2000) and Chamley (2004) consider a continuum of agents, each
choosing an action from a continuous space in every period. Agents wish to match an unknown state
of nature in order to minimize a quadratic loss and set the precision of a normally distributed signal
at a cost that increases with the signal’s precision. In Ali (2018) there is an unknown binary state of
nature. Agents select an action from a space, either discrete or continuous, and aim at taking higher
actions in the higher state. They act in sequence, observe the choices of all their predecessors, and
choose how informative a signal to acquire at a cost which depends on the chosen informativeness
about the relative likelihood of the two states. These costs are heterogeneous across agents and are
private information. While I focus on some search cost types obtaining perfect signals in a discrete
action space, these papers study noisy signals with a continuous (or general, in Ali (2018)) action space.
Closer to my setup, Hendricks, Sorensen, and Wiseman (2012) study sequential learning when agents
choose whether to purchase a product or not. Agents have heterogeneous preferences, which are
private information, but identical search costs. At this cost, they can acquire a perfect signal about their
value for the product. In their model, however, agents only observe the aggregate purchase history.23

My model departs from these papers in two relevant ways. First, I consider a game of social learning
which is played over general networks. Thus, I provide conditions on both information acquisition

21Letting agents observe the aggregate history of past actions or the action of the �rst agent are e�ective policy inter-
ventions in network topologies other than OIP networks (e.g., under random sampling of one agent from the past). The
analysis of such cases, however, goes beyond the scope of the paper.

22A recent and growing literature in economics and computer science, including Smith, Sørensen, and Tian (2017),
Kremer, Mansour, and Perry (2014), Che and Hörner (2018), Papanastasiou, Bimpikis, and Savva (2018), Mansour, Slivkins,
and Syrgkanis (2015), and Mansour, Slivkins, Syrgkanis, and Wu (2016), studies optimal design in the SSLM and other
related sequential social learning environments.

23Relatedly, Huang (2017) investigates theoretically and empirically the interplay between observational learning and
costly information acquisition.
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technologies and observation structures that lead to positive or negative learning results. Second,
the parametric structure of private information is substantially di�erent. These distinctions require
di�erent tools to analyze the social learning process and prevent a direct comparison of the results. A
general insight of Ali (2018) and MFP is that, in the complete network, we can trade an assumption of
arbitrarily strong exogenous private signals for an assumption of arbitrarily low information acquisition
costs. My work shows that this insight generalizes to all network topologies where long information
paths occur almost surely and are identi�able.

My model relates to those of sequential information acquisition of Wald (1947), Weitzman (1979), and
Moscarini and Smith (2001), where a single decision maker dynamically chooses how much information
to acquire before taking an action. Weitzman (1979) considers a sequential search environment where
an agent faces a bandit problem, each arm representing a distinct alternative with a random prize, and
characterizes the optimal sampling sequence and the optimal timing to stop the search process. Each
agent in my model faces the same problem and trade-o� between exploration (sampling the second
action) and exploitation (taking the action believed to be the best according to his social information).24

Salish (2017) and Sadler (2017) study learning in networks where a �nite number of agents acquire
private information by strategic experimentation with a two-armed bandit, as in Keller, Rady, and
Cripps (2005b) and Bolton and Harris (1999b), and observe the experimentation of their neighbors.25 In
these models, agents interact repeatedly over time, and so the strategic component of their interaction
is more involved than in my setting. However, this comes at a cost. Sadler (2017) allows for complex
network structures, but agents follow a boundedly rational decision rule. In Salish (2017) agents are
rational, but a sharp characterization only obtains for particular network structures. Taking advantage
of the sequential nature of the problem, I accommodate both for rational behavior and general network
topologies. In a similar spirit, Perego and Yuksel (2016) study a model of learning where a continuum
of Bayesian agents repeatedly choose between learning from one’s own experimentation or learning
from others’ experiences. Connections are heterogeneous across agents and peer-to-peer exchange
of information is subject to frictions. The authors characterize how frictions and heterogeneity in
connections a�ect the creation and di�usion of knowledge in equilibrium, but do not focus on network
properties other than connectivity.

A few papers consider costly observability of past histories in the SSLM (e.g., Kultti and Miettinen
(2006, 2007), Song (2016), Nei (2016), and, in an experimental setting, Celen and Hyndman (2012)). In
these papers private information is free, while which agents’ actions to observe is endogenously deter-
mined. In contrast, I study costly acquisition of private information in exogenous network structures.

The literature on social learning in networks is larger than the work surveyed here. It includes: other
contributions on Bayesian observational learning, such as Mueller-Frank (2013), Arieli and Mueller-
Frank (2018), Mossel, Sly, and Tamuz (2015); word-of-mouth learning models, where agents randomly
sample others’ opinions, as in Banerjee (1993), Ellison and Fudenberg (1995), and Banerjee and Fu-
denberg (2004); recent work on Bayesian communication learning, such as Acemoglu, Bimpikis, and

24The fundamental trade-o� between exploration and exploitation is the distinctive feature of bandit problems. I refer
to Bergemann and Välimäki (2008) for a survey of bandit problems in economics.

25Salish (2017) adopts the discrete-time version of Keller et al. (2005b), as in Heidhues, Rady, and Strack (2015).
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Ozdaglar (2014); models of non-Bayesian learning, including DeGroot (1974), DeMarzo, Vayanos, and
Zwiebel (2003), Acemoglu, Ozdaglar, and ParandehGheibi (2010), Golub and Jackson (2010, 2012), and
Molavi, Tahbaz-Salehi, and Jadbabaie (2018); models where agents’ updating rules combine Bayesian
and non-Bayesian features, as in Bala and Goyal (1998) and Jadbabaie, Molavi, Sandroni, and Tahbaz-
Salehi (2012). art; Goyal (2011), Jackson (2008), Vives (2010), Acemoglu and Ozdaglar (2011), Mobius
and Rosenblat (2014), and Golub and Sadler (2016) contain excellent (and complementary) accounts of
the �eld.

2.7.2 Concluding Remarks

I study observational learning over general networks where rational agents acquire private information
via costly sequential search. When search costs are not bounded away from zero, asymptotic learning
occurs in su�ciently connected networks where information paths are identi�able. The result relies on
two theoretical underpinnings: �rst, I relate agents’ solution to their information acquisition problem to
the equilibrium probability that they select the best action; second, I establish an improvement principle
for a novel informational environment, which signi�cantly departs from that studied by previous models
of social learning. The improvement principle, however, is particularly fragile in collective search
environments: it breaks down as soon as zero is removed from the support of the search cost distribution.
When search costs are bounded away from zero, even the weaker requirement of maximal learning fails
in a large class of networks. Thus, when search costs are bounded away from zero, asymptotic learning
fails discontinuously with respect to the benchmark learning metric. In some stochastic networks
maximal (and sometimes also asymptotic) learning occurs despite search costs that are bounded away
from zero. The impossibility to develop martingale convergence arguments, however, severely prevents
the society from learning via the aggregation of dispersed pieces of information. In contrast with
previous models of sequential learning, many equilibrium properties of the complete network extend to
all networks where agents observe random numbers of immediate predecessors. Reducing transparency
of past histories leads to welfare and e�ciency losses. Simple policy interventions, such as letting agent
observe the relative fraction of previous choices, restore part of the lost welfare.

Several questions remain. First, a general characterization of networks where maximal learning
obtains when search costs are bounded away from zero is missing. Finding the demarcation line
between possibility and impossibility of maximal learning in terms of network properties would be a
valuable addition to this research. Second, quantifying the rate of convergence and e�ciency losses
in general networks is an important, but complex, task. Third, it remains to study the design of more
complex incentives schemes to reduce ine�ciencies and foster social exploration.

More broadly, relaxing the assumptions that agents have homogeneous preferences or that they
can only take an action they have sampled might generate new insights. Lobel and Sadler (2016) study
preference heterogeneity and homophily in the SSLM. They �nd that the improvement principle su�ers,
as imitation no longer guarantees the same payo� that a neighbor obtains when preferences are diverse;
in contrast, the large-sample principle has more room to operate. In the search setting I study, the
improvement principle is the key learning principle, while large-sample arguments have much less
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bite. Therefore, it is unclear what the analysis of preference heterogeneity would look like in collective
search environments. Relaxing the assumption that agents can only take an action they have sampled
is also non-trivial; this is a di�cult question even for the single-agent sequential search problem (see
Doval (2018) for some recent progress).

Alternatively, one might assume that acquiring private information and observing past histories
are both costly activities. If individuals are heterogeneous across these two dimensions, in equilibrium
some agents will specialize in search, while others in networking, thus enabling information to di�use
throughout the society. Studying how individuals make this trade-o�, which network structures en-
dogenously emerge, and the implications for social learning and information di�usion is a promising
direction for future investigation.
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2.8 Examples for Remark 2 in Section 2.3.2

The �rst (resp., second) example shows that the incentives to explore for agents with nonempty neigh-
borhood may increase as the quality of the �rst action sampled increases (resp., decreases).

Example 5. Suppose the qualities of the two actions are drawn uniformly at random from
{

0, 49
100
, 51

100
, 1
}

.
Moreover, let

{
0, 9

100
, 1

8
, 1

3

}
be the support of the search cost distribution, with

PC(c = 0) =
1

200
, PC(c = 9/100) =

1

200
, PC(c = 1/8) =

32

100
, and PC(c = 1/3) =

67

100
.

Assume without loss that a1 = 0 and that agent 2 observes the choice taken by agent 1. By Lemma
13, agent 2 samples �rst action 0: s1

2 = 0. I will show that agent 2’s expected additional gain from the
second search is smaller when q0 = 49/100 than when q0 = 51/100. This implies that the incentives
to explore of agent 2, who has nonempty neighborhood and can exploit his social information, increase
as the quality of the �rst action sampled increases.

Let q0 be the quality of action 0. The expected additional gain form the second search for agent 2 is
P1(q0)t∅(q0), where P1(q0) is the posterior probability that action 1 was not sampled by agent 1 given
that action 0 of quality q0 was taken. Here,

P1(q0) =
N(q0)

D(q0)
,

with

N(q0) := Pσ
(
s1

1 = 0, c1 > t∅(q0)
)

=
1

2
PC
(
c1 > t∅(q0)

)
,

(2.16)

and

D(q0) := Pσ
(
s1

1 = 0, c1 > t∅(q0)
)

+ Pσ
(
s1

1 = 1, c1 < t∅(q1), q0 > q1

)
+ Pσ

(
s1

1 = 0, c1 ≤ t∅(q0), q0 > q1

)
+

1

2
Pσ
(
s1

1 = 0, c1 ≤ t∅(q0), q0 = q1

)
=

1

2

[
PC
(
c1 > t∅(q0)

)
+ PC×Q

(
c1 < t∅(q1), q0 > q1

)
(2.17)

+ PC×Q
(
c1 ≤ t∅(q0), q0 > q1

)
+

1

2
PC×Q

(
c1 ≤ t∅(q0), q0 = q1

)]
.

Above, I denote with PC×Q the product measure PC × PQ and with c1 the search cost of agent 1.
Consistently with the analysis in the rest of the paper, to derive an expression for n(q0) and P1(q0) I
assumed that agent 1 breaks ties uniformly at random at the �rst search stage and at the choice stage.
The chosen tie-breaking rule does not qualitatively a�ect the results.26

26The same remarks apply to Example 6.
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Straightforward calculations yield

t∅(0) =
1

2
, t∅(49/100) =

51

400
, t∅(51/100) =

49

400
, and t∅(1) = 0.

Moreover,
PC
(
c1 > t∅(49/100)

)
=

67

100
and PC

(
c1 > t∅(51/100)

)
=

99

100
,

PC×Q
(
c1 < t∅(q1), q1 < 49/100

)
=

100

400
and PC×Q

(
c1 < t∅(q1), q1 < 51/100

)
=

133

400
,

PC×Q
(
c1 ≤ t∅(49/100), 49/100 > q1

)
+

1

2
PC×Q

(
c1 ≤ t∅(49/100), 49/100 = q1

)
=

99

800
,

and

PC×Q
(
c1 ≤ t∅(51/100), 51/100 > q1

)
+

1

2
PC×Q

(
c1 ≤ t∅(51/100), 51/100 = q1

)
=

5

800
.

Therefore,
P1(49/100) =

536

800
and P1(51/100) =

44

59
.

Note that t∅(49/100) > t∅(51/100), while P1(49/100) < P1(51/100). Then,

P1(49/100)t∅(49/100) =
536

800

51

400
≈ 0.086 and P1(51/100)t∅(51/100) =

44

59

49

400
≈ 0.091.

Since P1(49/100)t∅(49/100) < P1(51/100)t∅(51/100), agent 2’s incentives to sample the second
action increase as the quality of the �rst action sampled increases, as claimed. In particular, if agent
2’s search cost is 9/100, he samples the second action after sampling an action of quality 51/100, but
discontinues search after sampling an action of quality 49/100. �

Example 6. Suppose the qualities of the two actions are drawn uniformly at random from
{

0, 1
3
, 2

3
, 1
}

.
Moreover, let

{
0, 1

15
, 1

3

}
be the support of the search cost distribution, with

PC(c = 0) =
1

4
, PC(c = 1/15) =

1

4
, and PC(c = 1/3) =

1

2
.

As in Example 5, assume that agent 1 takes action 0, and that agent 2 observes agent 1. Thus, agent 2

samples �rst action 0. I will now show that agent 2’s expected additional gain from the second search
is larger when q0 = 1/3 than when q0 = 2/3. This implies agent 2’s incentives to explore increase as
the quality of the �rst action sampled decreases.

Mimicking the analysis in Example 5, we now have

t∅(0) =
1

2
, t∅(1/3) =

1

4
, t∅(2/3) =

1

12
, and t∅(1) = 0.

Moreover,
PC
(
c1 > t∅(1/3)

)
=

1

2
and PC

(
c1 > t∅(2/3)

)
=

1

2
,
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PC×Q
(
c1 < t∅(q1), q1 < 1/3

)
=

1

4
and PC×Q

(
c1 < t∅(q1), q1 < 2/3

)
=

3

8
,

PC×Q
(
c1 ≤ t∅(1/3), 1/3 > q1

)
+

1

2
PC×Q

(
c1 ≤ t∅(1/3), 1/3 = q1

)
=

3

16
,

and
PC×Q

(
c1 ≤ t∅(2/3), 2/3 > q1

)
+

1

2
PC×Q

(
c1 ≤ t∅(2/3), 2/3 = q1

)
=

5

16
.

Therefore,
P1(1/3) =

8

15
and P1(2/3) =

8

19
.

Note that now t∅(1/3) > t∅(2/3) and P1(1/3) > P1(2/3). Then,

P1(1/3)t∅(1/3) =
8

15

1

4
=

2

15
and P1(2/3)t∅(2/3) =

8

19

1

12
=

2

57
.

Since P1(1/3)t∅(1/3) > P1(2/3)t∅(2/3), agent 2’s incentives to sample the second action increase
as the quality of the �rst action sampled decreases, as claimed. In particular, if agent 2’s search cost
is 1/15, he samples the second action after sampling an action of quality 1/3, but discontinues search
after sampling an action of quality 2/3. �

2.9 Proofs

2.9.1 Proofs for Section 2.4.2

Preliminaries

The �rst lemma provides an obvious su�cient condition for asymptotic learning.

Lemma 1. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. If

lim
n→∞

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
= 1,

then asymptotic learning occurs in equilibrium σ.

Proof. In any equilibrium σ ∈ ΣS , each agent takes the action with the highest quality among those
he has sampled. Since each agent must sample at least one action, the claim follows. �

The next lemma shows that each agent does at least as well as the �rst agent in terms of the probability
of sampling �rst the action with the highest quality.

Lemma 2. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. Then,

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
for all n ∈ N.
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Proof. For n = 1, the claim trivially holds. Now �x an arbitrary agent n > 1 and let b, with 0 ≤ b < n,
denote agent n’s chosen neighbor. First, suppose b = 0. Since b = 0 ⇐⇒ Bn = ∅, conditional on
γn(B(n)) = 0 agent n faces the same problem as the �rst agent. Therefore,

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = 0

)
= Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
.

Since agent 1’s decision of which action to sample �rst is independent of the realization of agent n’s
neighborhood, the previous equality is equivalent to

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = 0

)
= Pσ

(
s1

1 ∈ arg max
x∈X

qx
∣∣ γn(B(n)) = 0

)
. (2.18)

Second, suppose 0 < b < n, so that Bn 6= ∅. By the characterization of the equilibrium decision s1
n in

Section 2.3.2,

Pσ
(
Es1n
n | cn, Bn, ak for all k ∈ Bn

)
≤ Pσ

(
Es11
n | cn, Bn, ak for all k ∈ Bn

)
holds true for all realizations of cn ∈ C , Bn ∈ 2Nn \ {∅}, and ak ∈ X for all k ∈ Bn. By integrating
over all possible private search costs and actions of the agents in the neighborhood, we obtain

Pσ
(
Es1n
n | Bn

)
≤ Pσ

(
Es11
n | Bn

)
.

for all Bn ∈ 2Nn \ {∅}. Integrating further over all Bn such that γn(Bn) = b we have

Pσ
(
Es1n
n | γn(B(n)) = b

)
≤ Pσ

(
Es11
n | γn(B(n)) = b

)
.

Therefore, conditional on γn(B(n)) = b, the marginal distribution of the quality of action s1
n �rst-order

stochastically dominates the marginal distribution of the quality of action s1
1. Hence,

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx
∣∣ γn(B(n)) = b

)
. (2.19)

The desired result obtains by observing that

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
=

n−1∑
b=0

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
Q
(
γn(B(n)) = b

)
≥

n−1∑
b=0

Pσ

(
s1

1 ∈ arg max
x∈X

qx
∣∣ γn(B(n)) = b

)
Q
(
γn(B(n)) = b

)
= Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
,

where the two equalities hold by the law of total probability and the inequality holds by (2.18) and
(2.19). �
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Proof of Proposition 2

The proof consists of two parts. In the �rst part, I construct two sequences, (αk)k∈N and (φk)k∈N, such
that for all k ∈ N, there holds

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ φk for all n ≥ αk. (2.20)

In the second part, I show that φk → 1 as k →∞. The desired result follows by combining these facts
with Lemma 1.

By assumptions (a) and (c) of the proposition, for all positive integer α and all ε > 0, there exist a
positive integer N(α, ε) and a sequence of neighbor choice functions (γk)k∈N such that

Q
(
γn((B(n)) = b, b < α

)
<
ε

2
, (2.21)

and

Pσ

(
Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n))

)
< Z

(
Pσ

(
s1
γn(B(n)) ∈ arg max

x∈X
qx

))
− ε
)
<
ε

2
(2.22)

for all n ≥ N(α, ε). Now, set φ1 := 1
2

and α1 := 1, and de�ne (φk)k∈N and (αk)k∈N recursively by

φk+1 :=
φk + Z(φk)

2
, and αk+1 := N(αk, εk),

where the sequence (εk)k∈N is de�ned by

εk :=
1

2

(
1 + Z(φk)−

√
1 + 2φk + Z(φk)

2

)
.

Given the assumptions on Z , these sequences are well-de�ned.

I use induction on the index k to prove relation (2.20). Since the qualities of the two actions are i.i.d.
draws and agent 1 has no a priori information,

Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
=

1

2
. (2.23)

From Lemma 2,
Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
(2.24)

for all n ∈ N. From (2.23) and (2.24) we have

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ 1

2
for all n ≥ 1,
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which together with α1 = 1 and φ1 = 1
2

establishes relation (2.20) for k = 1. Assume that relation
(2.20) holds for an arbitrary k, that is

Pσ

(
s1
j ∈ arg max

x∈X
qx

)
≥ φk for all j ≥ αk, (2.25)

and consider some agent n ≥ αk+1. To establish (2.20) for n ≥ αk+1 observe that

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
=

n−1∑
b=0

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn((B(n)) = b

)
Q
(
γn((B(n)) = b

)
≥ (1− εk) (Z(φk)− εk)

≥ φk+1,

where the inequality follows from (2.21) and (2.22), the inductive hypothesis in (2.25), and the assump-
tion that Z is increasing.

Finally, I prove that φk → 1 as k → ∞. By assumption (b) of the proposition, Z(β) ≥ β for all
β ∈ [1/2, 1]; it follows from the de�nition of φk that (φk)k∈N is a non-decreasing sequence. Since it is
also bounded, it converges to some φ∗. Taking the limit in the de�nition of φk, we obtain

2φ∗ = 2 lim
k→∞

φk = lim
k→∞

[φk + Z(φk)] = φ∗ + Z(φ∗),

where the third equality holds by continuity of Z . This shows that φ∗ = Z(φ∗), i.e. φ∗ is a �xed point
of Z . Since the unique �xed point of Z is 1, we have φk → 1 as k →∞, as claimed. �

Proof of Proposition 3

Proposition 3 follows by combining several lemmas, which I next present.

Hereafter, let a collective search environmentS , a state of the worldω := (q0, q1) ∈ Ω, an equilibrium
σ ∈ ΣS , a sequence of neighbor choice functions (γn)n∈N, and an agent n ∈ N be �xed. Moreover, let
b, with 0 ≤ b < n, be n’s chosen neighbor.

Denote with s̃1
n the coarse optimal decision of agent n at the �rst search stage when he only uses

information from neighbor b.27. The optimal search policy, as characterized in Section 2.3.2, requires

s̃1
n ∈ arg min

x∈X
Pσ
(
Ex
n | γn(B(n)) = b, ab

)
,

where indi�erence is resolved according to agent n’s mixed strategy.
Suppose that the probability that none of the agents in B̂(n, ab) sampled both actions is smaller

than the probability that none of the agents in B̂(n,¬ab) sampled both actions whenever agent n’s
neighbor choice function selects agent b, with 0 ≤ b < n. That is,

Pσ
(
Eab
n | γn(B(n)) = b

)
≤ Pσ

(
E¬abn | γn(B(n)) = b

)
. (2.26)

27By de�nition of neighbor choice function, the �ctitious agent 0 is agent n’s chosen neighbor i� Bn = ∅.
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Then, agent n samples �rst action ab: s̃1
n = ab. Henceforth, I assume that agent n samples �rst action

ab in case of indi�erence. The assumption does not a�ect my results. The next lemma summarizes.

Lemma 3. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b) and γn(B(n)) = b. Then, the

coarse version s̃1
n of agent n’s equilibrium strategy at the �rst search stage is s̃1

n = ab.

Remark 8. Since γn(B(n)) = 0 i� B(n) = ∅, it is without loss of generality to impose s̃1
n = s1

n

conditional on γn(B(n)) = 0. That is, conditional on γn(B(n)) = 0, the coarse version of agent n’s
equilibrium decision of which action to sample �rst coincides with his equilibrium decision.

The next lemma shows that network topologies where Q(|B(n)| ≤ 1) = 1 for all n satisfy condition
(2.26). In particular, this condition is satis�ed by all chosen neighbor topologies.

Lemma 4. Suppose that the network topology (B,FB,Q) satis�es Q(|B(n)| ≤ 1) = 1 for all n ∈ N.
Then, Pσ(Eab

n | B̂(n) = B̂n) ≤ Pσ(E¬abn | B̂(n) = B̂n) for all agents n and b, with 0 ≤ b < n, and
for all realizations B̂n that occurs with positive probability. It follows that Pσ(Eab

n | γn(B(n)) = b) ≤
Pσ(E¬abn | γn(B(n)) = b) for all n and b, with 0 ≤ b < n.

Proof. Proceed by induction. The �rst agent has empty neighborhood. Hence, his personal subnetworks
relative to the two actions are empty and the statement is vacuously true.

Now suppose Pσ(Eab
n | B̂(n) = B̂n) ≤ Pσ(E¬abn | B̂(n) = B̂n) for all n ≤ k and all B̂n that occurs

with positive probability. Given a realization B̂k+1 of B̂(k+ 1), if Bk+1 = ∅, then agent k+ 1 faces the
same situation as the �rst agent, and the desired conclusion follows. IfBk+1 = {b}, take γk+1({b}) = b

and let (π1, . . . , πl) be the sequence of agents in B̂k+1 ∪ {k + 1}. That is, {π1, . . . , πl} is such that
π1 = min B̂k+1, πl = k + 1 and, for all g with 1 < g ≤ l, Bπg = {πg−1}. Moreover, for all g with
1 < g ≤ l, say that agent πg−1 is the immediate predecessor of agent πg in B̂k+1. When B̂k+1 = {b},
the desired result trivially holds. When B̂k+1 contains more than one agent, the desired result follows
by observing that, under the inductive hypothesis and the equilibrium decision rule, each agent in
{π1, . . . , πl−1} samples �rst the action taken by his immediate predecessor. �

The next de�nition introduces the notation that will be used in the following analysis.

De�nition 11. Fix a state of the world ω := (q0, q1) ∈ Ω and an equilibrium σ ∈ ΣS . The following
objects are de�ned:

qmin := min {q0, q1} ,

qmax := max {q0, q1} ,

P σ
b,n(qmin) := Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, qs1b = qmin

)
= Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
,

P σ
b,n(qmax) := Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, qs1b = qmax

)
= Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
,

β := Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
.
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Remark 9. In any equilibrium σ ∈ ΣS , β ≥ 1
2

for all b ∈ N. This is so because the distribution of
the quality of the �rst action sampled by an agent �rst-order stochastically dominates (although not
necessarily strictly so) the distribution of the quality of the other action.

The next two lemmas provide an expression for the probability of agent n sampling �rst the best
action when using s̃1

n, conditional on agent b being selected by agent n’s neighbor choice function, in
terms of the probability β of agent b doing so, the private search cost distribution, the function t∅(·)
de�ned in (2.2), and the thresholds P σ

b,n(qmin) and P σ
b,n(qmax).

Lemma 5. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= Pσ

(
s1
b ∈ arg max

x∈X
qx | γn(B(n)) = b

)
(2.27)

+ Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)(

1− Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

))
.

Proof. By Lemma 3,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
.

Moreover,

Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b, s2

b = ¬s1
b

)
Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

+ Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b, s2

b = ns

)
Pσ
(
s2
b = ns | γn(B(n)) = b

)
= Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
)

+ Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)(
1− Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
))

= Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
+ Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
)(

1− Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

))
.

Here, the �rst equality holds by the law of total probability; the second equality holds because whenever
agent b samples both actions, s2

b = ¬s1
b , he takes the one with the highest quality, so that

Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b, s2

b = ¬s1
b

)
= 1,
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and when agent b only samples one action, s2
b = ns, he takes that action, so that

Pσ

(
ab ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b, s2

b = ns

)
= Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
.

The desired result follows. �

Lemma 6. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= β + (1− β)

[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
.

Proof. By Lemma 5,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= β + Pσ

(
s2
b = ¬s1

b | γn(B(n)) = b
)
(1− β). (2.28)

Moreover, by the law of total probability,

Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

= Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
+ Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
Pσ

(
s1
b 6∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
(2.29)

= β Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
+ (1− β) Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
.

By the characterization of equilibrium strategies in Section 2.3.2 we have, conditional on γn(B(n)) =

b and s1
b ∈ arg max x∈X qx,

s2
b = ¬s1

b ⇐⇒ cb ≤ P σ
b,n(qmax)t∅(qmax)

and, conditional on γn(B(n)) = b and s1
b 6∈ arg max x∈X qx,

s2
b = ¬s1

b ⇐⇒ cb ≤ P σ
b,n(qmin)t∅(qmin),

where we assume that agent n samples the second action in case of indi�erence.28 It follows that

Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
= FC

(
P σ
b,n(qmax)t∅(qmax)

)
,

28This assumption does not a�ect the results.
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and that

Pσ

(
s2
b = ¬s1

b

∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
= FC

(
P σ
b,n(qmin)t∅(qmin)

)
.

Thus, equation (2.29) can be rewritten as

Pσ
(
s2
b = ¬s1

b | γn(B(n)) = b
)

= βFC
(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)
. (2.30)

The desired result follows by combining (2.28) and (2.30). �

The previous lemma shows that the quantity

(1− β)
[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
acts as an improvement in the probability that agent n samples �rst the best action over his chosen
neighbor’s probability. This improvement term is still unsuitable for the analysis to come because it
depends on P σ

b,n(qmin) and P σ
b,n(qmax), which are di�cult to handle. The next lemma provides a simple

lower bound on the amount of this improvement. It also establishes that this lower bound is uniformly
bounded away from zero whenever β < 1, and that it is non-negative when β = 1.

Lemma 7. Suppose Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ β + (1− β)2FC

(
(1− β)t∅(qmax)

)
.

Proof. Whenever at least one of the agents in the personal subnetwork of agent b relative to action s1
b

samples both actions, s1
b ∈ arg max x∈X qx. Therefore,

β ≥ 1− Pσ
(
E
s1b
b

∣∣ γn(B(n)) = b
)
,

or
1− β ≤ Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b
)
. (2.31)

Moreover, by the law of total probability,

Pσ
(
E
s1b
b

∣∣ γn(B(n)) = b
)

= Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, s1
b ∈ arg max

x∈X
qx

)
Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
+ Pσ

(
E
s1b
b

∣∣ γn(B(n)) = b, s1
b 6∈ arg max

x∈X
qx

)
Pσ

(
s1
b 6∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
(2.32)

= βP σ
b,n(qmax) + (1− β)P σ

b,n(qmin).

Combining (2.31) and (2.32) yields

1− β ≤ βP σ
b,n(qmax) + (1− β)P σ

b,n(qmin), (2.33)
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and therefore
max

{
P σ
b,n(qmin), P σ

b,n(qmax)
}
≥ 1− β. (2.34)

Finally, observe that

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= β + (1− β)

[
βFC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
≥ β + (1− β)

[
(1− β)FC

(
P σ
b,n(qmax)t∅(qmax)

)
+ (1− β)FC

(
P σ
b,n(qmin)t∅(qmin)

)]
= β + (1− β)2 [FC(P σ

b,n(qmax)t∅(qmax)
)

+ FC
(
P σ
b,n(qmin)t∅(qmin)

)]
≥ β + (1− β)2 [FC(P σ

b,n(qmax)t∅(qmax)
)

+ FC
(
P σ
b,n(qmin)t∅(qmax)

)]
≥ β + (1− β)2 max

{
FC
(
P σ
b,n(qmax)t∅(qmax)

)
, FC

(
P σ
b,n(qmin)t∅(qmax)

)}
≥ β + (1− β)2FC

(
(1− β)t∅(qmax)

)
.

Here, the �rst equality holds by Lemma 6; the �rst inequality holds because, as β ≥ 1/2 by Remark 9,
β ≥ (1 − β); the second inequality holds because t∅(qmax) ≤ t∅(qmin) and the CDF FC is increasing;
the third inequality holds because the CDF FC is non-negative; the last inequality follows from

max
{
FC
(
P σ
b,n(qmax)t∅(qmax)

)
, FC

(
P σ
b,n(qmin)t∅(qmax)

)}
≥ FC

(
(1− β)t∅(qmax)

)
,

which holds because of (2.34) and the fact that FC is increasing. The desired result follows. �

The previous lemmas describe the improvement that a single agent can make over her neighbor by
employing a heuristic that discards the information from all other neighbors. To study the limiting
behavior of these improvements, I introduce the function Z : [1/2, 1]→ [1/2, 1] de�ned by

Z(β) := β + (1− β)2FC
(
(1− β)t∅(qmax)

)
. (2.35)

Hereafter, I call (1− β)2FC((1− β)t∅(qmax)) the improvement term of function Z .

Lemma 7 establishes that, when Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b), we have

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= Z

(
Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

))
.

That is, the function Z acts as an improvement function for the evolution of the probability of searching
�rst for the best action. The next lemma presents some useful properties of Z .

Lemma 8. The function Z : [1/2, 1]→ [1/2, 1], de�ned pointwise by (2.35), satis�es the following prop-
erties:

(a) For all β ∈ [1/2, 1], Z(β) ≥ β.

(b) If the search technology features search costs that are not bounded away from zero, then Z(β) > β

for all β ∈ [1/2, 1).
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(c) The function Z is left-continuous and has no upward jumps:

Z(β) = lim
r↑β
Z(r) ≥ lim

r↓β
Z(r).

Proof. SinceFC is a CDF and (1− β)2 ≥ 0, the improvement term of functionZ is always non-negative.
Part (a) follows.

For all β ∈ [1/2, 1), (1 − β)t∅(qmax) > 0 and so, if search costs are not bounded away from zero,
FC((1 − β)t∅(qmax)) > 0.29 Since also (1− β)2 > 0 for all β ∈ [1/2, 1), the improvement term of
function Z is positive and so part (b) holds.

For part (c), set α := (1−β)t∅(qmax). Since FC is a CDF, it is right-continuous and has no downward
jumps in α. Therefore, FC is left-continuous and has no upward jumps in β. Since β and (1− β)2 are
continuous functions of β, and so also left-continuous with no upward jumps, the desired result follows
because the product and the sum of left-continuous functions with no upward jumps is left-continuous
with no upward jumps. �

Next, I construct a related function Z that is monotone and continuous while maintaining the same
improvement properties of Z . In particular, de�ne Z : [1/2, 1]→ [1/2, 1] as

Z(β) :=
1

2

(
β + sup

r∈[1/2,β]

Z(r)

)
. (2.36)

Lemma 9. The function Z : [1/2, 1]→ [1/2, 1] de�ned by (2.36) satis�es the following properties:

(a) For all β ∈ [1/2, 1], Z(β) ≥ β.

(b) If the search technology features search costs that are not bounded away from zero, then Z(β) > β

for all β ∈ [1/2, 1).

(c) The function Z is increasing and continuous.

Proof. Parts (a) and (b) immediately result from the corresponding parts of Lemma 8.
The function supr∈[1/2,β]Z(r) is non-decreasing and the function β is increasing. Therefore, the

average of these two functions, which is Z , is an increasing function, establishing the �rst part of (c).
Finally, I show that Z is continuous. To establish continuity in [1/2, 1), I argue by contradiction. Sup-
pose that Z is discontinuous at some β′ ∈ [1/2, 1). This implies that supr∈[1/2,β]Z(r) is discontinuous
at β′. Since supr∈[1/2,β]Z(r) is a non-decreasing function, it must be that

lim
β↓β′

sup
r∈[1/2,β]

Z(r) > sup
r∈[1/2,β′]

Z(r),

from which it follows that there exists some ε > 0 such that for all δ > 0

sup
r∈[1/2,β′+δ]

Z(r) > Z(β) + ε for all β ∈ [1/2, β′) .

29Note that t∅(qmax) = 0 if qs1b = qmax = max supp
(
PQ
)

whenever such sup exists as a real number. However, in
such cases we would trivially have β = 1, which is not the case considered here.
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This contradicts that the function Z has no upward jumps, which was established as property (c) in
Lemma 8. Continuity of Z at β = 1 follows from part (a). �

The next lemma shows that the function Z is also a improvement function for the evolution of the
probability of searching �rst for the action with highest quality.

Lemma 10. Suppose that Pσ(Eab
n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b). Then,

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Z

(
Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

))
.

Proof. Let again β denote Pσ(s1
b ∈ arg max x∈X qx | γn(B(n)) = b). If Z(β) = β, the result follows

from Lemma 6. Suppose next that Z(β) > β. By (2.36), this implies that Z(β) < supr∈[1/2,β]Z(r).
Therefore, there exists β ∈ [1/2, β] such that

Z(β) ≥ Z(β). (2.37)

I next show that Pσ(s̃1
n ∈ arg max x∈X qx | γn(B(n)) = b) ≥ Z(β). Agent n can always make his

decision even coarser by choosing not to observe the choice of agent b with some probability. Suppose
that instead of considering b’s action directly, agent n bases his decision of which action to sample �rst
on the observation of a �ctitious agent whose action, denoted by ãb, is generated as

ãb =


ab with probability (2β − 1)/(2β − 1)

0 with probability (β − β)/(2β − 1)

1 with probability (β − β)/(2β − 1),

(2.38)

with the realization of ãb independent of the rest of n’s information set. Under the assumption Pσ(Eab
n |

γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b), we have

Pσ
(
E ãb
n | γn(B(n)) = b

)
≤ Pσ

(
E¬ãbn | γn(B(n)) = b

)
. (2.39)

The relation in (2.39), together with the characterization of the equilibrium search policy in Section
2.3.2, implies that agent n samples �rst action ãb upon observing the choice of the �ctitious agent. That
is, denoting with ˜̃s1n the �rst action sampled by agent n upon observing the choice of the �ctitious
agent, ˜̃s1n = ãb. Moreover, the assumption Pσ(Eab

n | γn(B(n)) = b) ≤ Pσ(E¬abn | γn(B(n)) = b) and
(2.38) also imply that Pσ(Eab

n | γn(B(n)) = b) ≤ Pσ(E ãb
n | γn(B(n)) = b). Therefore, the distribution

of the quality of action ab �rst-order stochastically dominates the distribution of the quality of action
ãb. Since s̃1

n = ab and ˜̃s1n = ãb, it follows that

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Pσ

( ˜̃s1n ∈ arg max
x∈X

qx
∣∣ γn(B(n)) = b

)
. (2.40)
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Now denote with s̃1
b the decision of the �ctitious agent about which action to sample �rst. From

(2.38), one can think of s̃1
b as generated as

s̃1
b =


s1
b with probability (2β − 1)/(2β − 1)

0 with probability (β − β)/(2β − 1)

1 with probability (β − β)/(2β − 1).

Therefore,

Pσ

(
s̃1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
= Pσ

(
s1
b ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
2β − 1

2β − 1

+ Pσ

(
0 ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
β − β
2β − 1

+ Pσ

(
1 ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
β − β
2β − 1

= β
2β − 1

2β − 1
+ (β + (1− β))

β − β
2β − 1

= β.

Lemma 7 implies that the �rst action sampled by agent n based on the observation of this �ctitious
agent is the one with the highest quality with probability at least Z(β), that is

Pσ

( ˜̃s1n ∈ arg max
x∈X

qx
∣∣ γn(B(n)) = b

)
≥ Z(β). (2.41)

Since Z(β) ≥ Z(β) (see equation (2.37)), the desired result follows from (2.40) and (2.41). �

It remains to show that the equilibrium search policy s1
n does at least as well as its coarse version s̃1

n

in terms of sampling �rst the action with the highest quality given γn(B(n)) = b. This is established
with the next lemma and completes the proof of Proposition 3.

Lemma 11. For all agents n and any b, with 0 ≤ b < n, we have

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
.

Proof. Fix any n ∈ N. If b = 0, then s̃1
n = s1

n by Remark 8, and the claim trivially holds. Now suppose
0 < b < n, so that Bn 6= ∅. By the characterization of the equilibrium decision s1

n in Section 2.3.2,

Pσ
(
Es1n
n | cn, Bn, ak for all k ∈ Bn

)
≤ Pσ

(
E s̃1n
n | cn, Bn, ak for all k ∈ Bn

)
holds true for all realizations of cn ∈ C , Bn ∈ 2Nn \ {∅}, and ak ∈ X for all k ∈ Bn. By integrating
over all possible private search costs and actions of the agents in the neighborhood, we obtain

Pσ
(
Es1n
n | Bn

)
≤ Pσ

(
E s̃1n
n | Bn

)
(2.42)
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for all Bn ∈ 2Nn \ {∅}. Integrating further over all Bn such that γn(Bn) = b we conclude

Pσ
(
Es1n
n | γn(B(n)) = b

)
≤ Pσ

(
E s̃1n
n | γn(B(n)) = b

)
.

Then, conditional on γn(B(n)) = b, the marginal distribution of the quality of action s1
n �rst-order

stochastically dominates the marginal distribution of the quality of action s̃1
n. Therefore,

Pσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
≥ Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn(B(n)) = b

)
,

as desired. �

2.9.2 Proofs for Section 2.4.3

Preliminaries

De�nition 12. Let qNS , QNS , and ΩNS be de�ned as follows:

• qNS := inf {q̃ ∈ supp (PQ) : 1–(a) and 1–(b) in Assumption 1 hold };

• QNS :=
{
q̃ ∈ Q : q̃ ≥ qNS

}
;

• ΩNS := QNS ×QNS .

In words, ΩNS includes all states of the world ω where, with positive probability, an agent with
empty neighborhood does not sample the second action independently of which action he samples �rst.
By the �rst condition in Assumption 1, there exists some δ > 0 such that PQ(QNS) ≥

√
δ and so, by

de�nition of product measure,

PΩ

(
ΩNS

)
= PQ

(
QNS

)
× PQ

(
QNS

)
≥ δ. (2.43)

When ω ∈ ΩNS , an agent with nonempty neighborhood does not sample the second action either
with positive probability, independently of which action he samples �rst (see the characterization and
discussion of equilibrium behavior in Section 2.3.2). Finally, by Assumption 1, conditional on ω ∈ ΩNS ,
the two actions have di�erent quality with positive probability.

Fix a collective search environment S . Asymptotic learning occurs in equilibrium σ ∈ ΣS only if
the probability of agent n taking the action with the lowest quality converges to zero with respect to
Pσ as n goes to in�nity. Because of Assumption 1, a necessary condition for this to happen is that the
probability of no agent in B̂(n)∪{n} sampling both actions converges to zero as n goes to in�nity with
respect to Pσ. If this were not the case, there would be a subsequence of agents who, with probability
bounded away from zero, only observe (directly and indirectly) agents who have not compared the
quality of the two actions (as none of the agents in their personal subnetworks has sampled both
actions), and do not make this comparison either (as they do not search for the second alternative).
Asymptotic learning would trivially fail as the only way to ascertain the relative quality of the two
actions is to sample both of them. The next lemma follows.
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Lemma 12. Let a collective search environment S and an equilibrium σ ∈ ΣS be given. If asymptotic
learning occurs in equilibrium σ, then

lim
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
= 0.

Proof of Proposition 4

Let σ ∈ ΣS be arbitrary. In view of Lemma 12, to prove Theorem 4 it is enough to show that

lim sup
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0.

Since the network topology has non-expanding subnetworks, there exist some positive integer K ,
some real number ε > 0 ,and a subsequence of agents N such that

Q
(∣∣B̂(n)

∣∣ < K
)
≥ ε for all n ∈ N . (2.44)

For all n ∈ N , by the law of total probability we have

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
= Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
Q
(∣∣B̂(n)

∣∣ < K
)

+ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ ≥ K

)
Q
(∣∣B̂(n)

∣∣ ≥ K
)

(2.45)

≥ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
Q
(∣∣B̂(n)

∣∣ < K
)

≥ εPσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
,

where the last inequality follows from (2.44). By the law of total probability again, we also have

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
= Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
PΩ

(
ω ∈ ΩNS

)
+ Pσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω 6∈ ΩNS

)
PΩ

(
ω 6∈ ΩNS

)
(2.46)

≥ Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
PΩ

(
ω ∈ ΩNS

)
≥ δPσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
,

where the last inequality holds by (2.43). Then, by (2.45) and (2.46),

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
≥ εδPσ

(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

) (2.47)

holds for all agents n ∈ N .
Let Cσ(qNS) denote the set of all private search costs for which an agent h with second search

stage information set I2
h such that Bh = ∅, qs1h = qNS , and ch ∈ Cσ(qNS), adopts strategy s2

h = ns

in equilibrium σ. That is, Cσ(qNS) consists of all search costs for which, in equilibrium σ, an agent
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with empty neighborhood decides not to sample the second action when the �rst action he samples
has quality qNS . For all ω ∈ ΩNS , the results of Section 2.3.2 imply that any agent k with search cost
ck ∈ Cσ(qNS) adopts strategy s2

k = ns at the second search stage independently of his neighborhood
realizationBk, the actions of his neighbors, and the quality of the �rst action sampled (i.e. independently
of the realizations of the random variables in his information set other than his search cost). Then,

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
≥ Pσ

(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
.

(2.48)

Moreover, as individual search costs are independent of the network topology and the realized quality
of the two actions,

Pσ
(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
= Pσ

(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
.

(2.49)

Finally, as
∣∣B̂(n)

∣∣ < K ⇐⇒
∣∣B̂(n) ∪ {n}

∣∣ ≤ K and individual search costs are independent of the
network topology and i.i.d. across agents, we have

Pσ
(
ck ∈ Cσ

(
qNS

)
for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K

)
≥ Pσ

(
c1 ∈ Cσ

(
qNS

))K (2.50)

> 0,

where the strict inequality holds because Pσ(c1 ∈ Cσ(qNS)) > 0 by the �rst condition in Assumption
1. Together, (2.48), (2.49), and (2.50) yield that

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

∣∣ ∣∣B̂(n)
∣∣ < K,ω ∈ ΩNS

)
> 0. (2.51)

As ε, δ > 0, from (2.47) and (2.51) we conclude

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0

for all agents n in the subsequence N , which implies

lim sup
n→∞

Pσ
(
s2
k = ns for all k ∈ B̂(n) ∪ {n}

)
> 0,

as desired. �

2.9.3 Preliminaries for Sections 2.5 and 2.6

Characterization of Equilibrium Strategies in OIP Networks

Part (a) of Theorem 2 and the results in Section 2.6 are largely based on the next lemma, which character-
izes equilibrium sequential search policies in OIP networks. Let P1(q) denote the posterior probability
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that agent 1 did not sample the second action given that the action he takes has quality q. The precise
functional form of P1(q) is irrelevant for the following argument.

Lemma 13. Let S be a collective search environment where the network topology features observation of
immediate predecessors. Then, in any equilibrium σ ∈ ΣS :

(i) At the �rst search stage, each agent n ∈ N, with n ≥ 2, samples �rst the action taken by his
immediate predecessor. That is, s1

n = an−1.

(ii) At the second search stage, each agent n, with n ≥ 2:

(a) Does not sample action ¬an−1 (i.e. s2
n = ns) if ¬an−1 is revealed to be inferior to agent n in

equilibrium σ.

(b) Samples action ¬an−1 (i.e. s2
n = ¬an−1) if ¬an−1 is not revealed inferior to agent n in equilib-

rium σ, and agent n’s search cost cn is smaller than tn(qs1n), where the function tn : Q→ R+

is de�ned pointwise by
tn
(
qs1n
)

:= P1

(
qs1n
)
t∅
(
qs1n
)

(2.52)

for n = 2, and pointwise recursively as

tn
(
qs1n
)

:= P1

(
qs1n
)( n−1∏

i=2

(
1− FC

(
ti
(
qs1n
))))

t∅
(
qs1n
)

(2.53)

for n > 2.30

Proof. To prove part (i), proceed by induction. Consider agent 2 and his conditional belief over Ω given
that the �rst agent has taken action a1. For action ¬a1, two mutually exclusive cases are possible:

1. Agent 1 sampled ¬a1. In this case, q¬a1 ≤ qa1 , as agent 1 picked the best alternative at the choice
stage. If agent 2 knew this to be the case, his conditional belief on Ω would be PΩ|qa1≥q¬a1 .

2. Agent 1 did not sample ¬a1. If agent 2 knew this to be the case, his posterior belief on action ¬a1

would be the same as the prior PQ.

Then, regardless of the beliefs of agent 2 about agent 1’s search decisions, agent 2’s belief about the
quality of action ¬a1 is strictly �rst-order stochastically dominated by his beliefs about the quality of
action a1. To see this, note that agent 2 believes that agent 1 has sampled action ¬a1 with positive
probability: even if agent 1 sampled a1 �rst, by the second condition of Assumption 1, with positive
probability, his search costs are low enough that he searched further. Therefore, s1

2 = a1 is agent 2’s
optimal policy at the �rst search stage.

Now consider any agent n > 2. Suppose that all agents up to n − 1 follow this strategy, and that
agent n− 1 selects action an−1. If action ¬an−1 is revealed inferior to agent n in equilibrium σ, it must
be that q¬an−1 ≤ qan−1 , and so action ¬an−1 is not sampled at all. Now suppose that action ¬an−1 is not
revealed inferior to agent n in equilibrium σ. By the same logic as before, n’s beliefs about the quality

30Hereafter, I assume that agent n samples the second action in case of indi�erence. This assumption does not a�ect
the results, but simpli�es the derivation of closed form expressions for the tn(·)’s and the ensuing analysis.
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of action an−1 strictly �rst-order stochastically dominate his beliefs about the quality of action ¬an−1.
Therefore, s1

n = an−1, i.e. he will sample action an−1 �rst.

To establish part (ii)–(a), consider any agent n ≥ 2, and suppose that ¬an−1 is revealed inferior to
agent n in equilibrium σ. Then, there exist j, j + 1 ∈ B(n) such that aj = ¬an−1 and aj+1 = an−1.
By part (i) we know that s1

j+1 = ¬an−1. Since agents can only take an action they sampled, it follows
that s2

j+1 = an−1, that is, agent j + 1 has sampled both actions. Then, as agents take the best action
whenever they sample both of them, we have qan−1 ≥ q¬an−1 , and so the expected additional gain of
sampling action ¬an−1 is zero. That s2

n = ns is optimal follows.

For part (ii)–(b), consider any agent n ≥ 2 and suppose that ¬an−1 is not revealed inferior to agent
n in equilibrium σ. In OIP networks, the personal subnetwork of agent n, B̂(n), is {1, . . . , n− 1}
with probability one. Moreover, by part (i), each agent samples �rst the action taken by his immediate
predecessor. Therefore, none of the agents in the personal subnetwork of agent n relative to action s1

n

has sampled action ¬s1
n only if none of the �rst n − 1 agents has sampled it; that is, only if s1

1 = s1
n,

and s2
i = ns for 1 ≤ i ≤ n− 1. The thresholds in (2.52) and (2.53) provide an explicit formula for (2.9)

when B̂(n) = {1, . . . , n − 1} with probability one for all n ∈ N. To see this, proceed by induction.
Consider �rst agent 2. By part (i), s1

2 = a1. Let P1(qs12) be the posterior probability that agent 1 did
not sample action ¬s1

2 given that action s1
2 of quality qs12 was taken. Then, agent 2’s expected bene�t

from the second search is P1(qs12)t
∅(qs12), which is the right-hand side of (2.52). Now consider any agent

n > 2, and let s1
n be the action this agent samples �rst. By part (i) and the inductive hypothesis, and

since search costs are i.i.d. across agents, it follows that the probability that no agent in {1, . . . , n− 1}
has sampled action ¬s1

n is

P1

(
qs1n
)( n−1∏

i=2

(
1− FC

(
ti
(
qs1n
))))

.

Therefore, the right-hand side of (2.53) gives agent n’s expected bene�t from the search follows. The
optimality of the proposed sequential search policy follows from the characterization of individual
equilibrium decisions at the second search stage in Section 2.3.2. �

Fix a state process and a search technology. Lemma 13 implies that, from the viewpoint of the
probability of selecting the best action, the individual search behavior is equivalent across all OIP
networks. In particular, we have the following.

Corollary 1. Let S and S ′ be two collective search environments with identical state process and search
technology. Assume that S is endowed with the complete network, while the network topology of S ′ is any
OIP network. Finally, let σ ∈ ΣS and σ′ ∈ ΣS′ , and assume that ties are broken according to the same
criterion in σ and σ′.31 Then, for all n ∈ N,

Pσ

(
an ∈ arg max

x∈X
qx

)
= Pσ′

(
an ∈ arg max

x∈X
qx

)
.

31In particular, assume that agent 1 selects uniformly at random the �rst action to sample, and that agent n samples the
second action in case of indi�erence.
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Proof. In OIP networks, each agent starts sampling from the action taken by his immediate predecessor
(cf. Lemma 13), and so asymptotic learning trivially occurs when agent 1 takes the best action. Moreover,
Pσ(a1 ∈ arg max x∈X qx) = Pσ′(a1 ∈ arg max x∈X qx). Therefore, to establish the result, it su�ces
to show that Pσ(an ∈ arg max x∈X qx) = Pσ′(an ∈ arg max x∈X qx) holds for all n ∈ N, with n > 2,
whenever agent 1 does not sample the best action at the �rst search. In turn, this follows immediately
from Lemma 13, which shows that, for all n, the probability that none of the �rst n agents has sampled
both actions is the same across all OIP networks for any �xed quality of the action taken by agent 1. �

2.9.4 Proofs for Section 2.5.5

Proof of Theorem 2

Proof of part (a). Suppose ω 6∈ Ω(c), and that the lowest cost in the support of PC is c > 0. Maximal
learning requires that the probability that agent n takes the action with the highest quality converges
to one as n→∞ (see the characterization of maximal learning in (2.12)). This, in turn, is equivalent
to saying that the probability of the event “none of the agents in B̂(n) ∪ {n} samples both actions”
converges to zero as n→∞ whenever the quality of the �rst action sampled by agent 1 is lower than
q(c).32 To establish the failure of maximal learning, I show that the probability of this event remains
bounded away from zero when c > 0.

By way of contradiction, suppose that the probability of no agent in B̂(n) ∪ {n} sampling both
actions converges to zero as n→∞ for any quality q, with q < q(c), that the �rst action sampled by
agent 1 can take. That is,

lim
n→∞

P1(q)

( n∏
i=2

(
1− FC(ti(q))

))
= 0

(see the proof of Lemma 13 for how to derive this probability). It follows that the expected additional
gain from the second search for agent n+ 1, given by

P1(q̂)

( n∏
i=2

(
1− FC(ti(q̂))

))
t∅(q̂)

(see 2.53 and the proof of Lemma 13), where q̂ is the quality of the action taken by agent n, also
converges to zero as n→∞ for all q̂ < q(c). Then, there exists an agentNq̂ + 1 for which the expected
additional gain from the second search falls below c.

By Assumption 2, there exists q̃ in the support of PQ such that:

(i) PQ(q̃ < q < q(c)) > 0;

(ii) With positive probability, the �rst agent does not sample another action if qs11 ≥ q̃, that is

1− FC
(
t∅(q̃)

)
> 0.

32By assumption, ω 6∈ Ω(c), and so min{q0, q1} < q(c). Therefore, with positive probability, the quality of the �rst
action sampled by agent 1 is lower than q(c).
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Therefore, with positive probability, agent 1 samples �rst a suboptimal action with quality, say, q, and
does not search further. Now suppose that the �rstNq agents all have costs larger than t∅(q), and again
note that this occurs with positive probability. By Lemma 13, each of these agents will sample the
suboptimal action with quality q �rst, and none of these agents will search further. Therefore, all will
take this suboptimal action. Agent Nq + 1 also samples this action �rst, and does not search further
either because his expected additional gain from the second search is smaller than c. Since the expected
additional gain from the second search in non-increasing in n, there will be no further search by agents
Nq + 1 onward, contradicting that the probability of no agent in B̂(n) ∪ {n} sampling both actions
converges to zero. The desired result follows. �

Proof of part (b). Suppose ω 6∈ Ω(c), and that the lowest cost in the support of PC is c > 0. Again,
I establish that maximal learning fails because the probability of the event “none of the agents in
B̂(n) ∪ {n} samples both actions” remains bounded away from zero as n→∞.

Pick an in�nite sequence of agents (π1, π2, . . . , πk, πk+1, . . .) such thatB(π1) = ∅ and πk ∈ B(πk+1)

for all agents k ∈ N. Such a sequence must exist with probability one; otherwise, the network topology
has non-expanding subnetworks and maximal learning fails. Moreover, by Lemma 4, each agent in this
sequence samples �rst the action taken by his neighbor.

By way of contradiction, suppose that the probability of no agent in B̂(πk) ∪ {πk} sampling both
actions converges to zero as k →∞ for any quality q, with q < q(c), that the �rst action sampled by
agent π1 can take. That is,

lim
k→∞

Pπk+1
(q) = 0,

where Pπk+1
(·) is the function de�ned by (2.8). It follows that the expected additional gain from the

second search for agent πk+1, given by
Pπk+1

(q̂)t∅(q̂),

where q̂ is the quality of the action taken by πk, also converges to zero as k →∞ for all q̂ < q(c). Then,
there exists an agent πKq̂ + 1 for which the expected additional gain from the second search falls below
c, and remains below this threshold for the other agents in the sequence moving after πKq̂ + 1.

By Assumption 2, there exists q̃ in the support of PQ such that:

(i) PQ(q̃ < q < q(c)) > 0;

(ii) With positive probability, agent π1 does not sample another action if qs1π1 ≥ q̃, that is

1− FC
(
t∅(q̃)

)
> 0.

Therefore, with positive probability, agent π1 samples �rst a suboptimal action with quality, say, q, and
does not search further. Now suppose that the �rst πKq̂ agents in the sequence all have costs larger
than t∅(q), and again note that this occurs with positive probability. By Lemma 4, each of these agents
will sample the suboptimal action with quality q �rst, and none of these agents will search further.
Therefore, all will take this suboptimal action. Agent πKq̂ + 1 also samples this action �rst, and does
not search further either because his expected additional gain from the second search is smaller than
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c. Since the expected additional gain from the second search remains smaller than c afterward, there
will be no further search by agents in the sequence moving after agent πKq̂ + 1, contradicting that the
probability of no agent in B̂(πk) ∪ {πk} sampling both actions converges to zero. The desired result
follows. �

2.9.5 Proofs for Section 2.6.2

Proof of Proposition 6

The result follows by combining Corollary 1 with Proposition 1 in MFP. �

Proof of Proposition 7

Proof of part (a). The result follows by combining Corollary 1 with Proposition 2 in MFP.

Proof of part (b). To establish the result, it is enough to construct a function φ̃ : R+ → R such that,
for all n ∈ N,

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

(
1

n
1

K+1

)
.

Consider the sequence of neighbor choice function (γn)n∈N where, for all n ∈ N, γn = n− 1. Under
the assumptions of the proposition, by Lemmas 7 and 13,

Pσ

(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
+

(
1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))2

FC

((
1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))
t∅(qmax)

)
.

(2.54)

If the search cost distribution has polynomial shape, from (2.54) we have

Pσ

(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
+ Lt∅(qmax)

K
(

1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))K+2

.

(2.55)

From this point forward, I build on Lobel et al. (2009) (see their proof of Proposition 2) to construct
the function φ̃. A simple adaptation of their procedure to my setup gives that the function φ̃ we are
looking for is

φ̃(n) = 1−

(
1

(K + 1)Lt∅(qmax)
K(
n+K

)) 1
K+1

,
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where K is some constant of integration (in the construction, φ̃ is found as the solution to an ordinary
di�erential equation).33 �

Proof of Proposition 8

To establish the result, it is enough to construct a function φ̃ : R+ → R such that, for all n ∈ N,

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

(
1

(log n)
1

K+1

)
.

Under the assumptions of of the proposition,

Pσ

(
s1
n+1 ∈ arg max

x∈X
qx

)
=

1

n

n∑
b=1

Pσ

(
s1
n+1 ∈ arg max

x∈X
qx | B(n+ 1) = {b}

)
=

1

n

[
Pσ

(
s1
n+1 ∈ arg max

x∈X
qx | B(n+ 1) = {n}

)
+ (n− 1)Pσ

(
s1
n ∈ arg max

x∈X
qx

)]
(2.56)

because conditional on observing the same b < n, agents n and n + 1 have identical probabilities of
making an optimal decision. By Lemmas 7 and 4, and since the search cost distribution has polynomial
shape, we obtain that

Pσ

(
s1
n+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
+
Lt∅(qmax)

K

n

(
1− Pσ

(
s1
n ∈ arg max

x∈X
qx

))K+2

.

(2.57)

As for the proof of Proposition 7-part (b), from this point forward, I build on Lobel et al. (2009)
(see their proof of Proposition 3) to construct the function φ̃. A straightforward adaptation of their
procedure to my setup gives that the function φ̃ we are looking for is

φ̃(n) = 1−

(
1

(K + 1)Lt∅(qmax)
K(

log n+K
)) 1

K+1

,

where K is some constant of integration (in the construction, φ̃ is found as the solution to an ordinary
di�erential equation).34 �

33To apply a construction in the spirit of Lobel et al. (2009), the right-hand side of (2.55) must be increasing in Pσ(s1n ∈
arg max x∈X qx). This is so under the assumption 0 < L < 2K+1

(K+2)t∅
(
q
)K maintained in the proposition.

34To apply a construction in the spirit of Lobel et al. (2009), the right-hand side of (2.57) must be increasing in Pσ(s1n ∈
arg max x∈X qx). This is so under the assumption 0 < L < 2K+1

(K+2)t∅
(
q
)K maintained in the proposition.
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2.9.6 Proofs for Section 2.6.3

Preliminaries

First, I de�ne the objects and the notation that will be used in the proofs of Propositions 9 and 10.

. Let S and S ′ be two collective search environments with identical state process (Q,FQ,PQ) and
search technology {(C,FC ,PC),R}. Suppose that the network topology of S is the complete network
and that in S ′ agents only observe their most immediate predecessor. Let σ ∈ ΣS and σ′ ∈ ΣS′ . Suppose
that agents break ties according to the same criterion in σ and σ′. In particular, assume that agent 1

selects uniformly at random which action to sample �rst, and that all agents sample the other action
whenever indi�erent at the second search stage.35 Suppose also that the �rst action sampled by the
�rst agent in σ and σ′, say x, has the same quality qx. Let δ ∈ (0, 1) be the discount rate, and let the
function t1 : Q→ R+ be de�ned pointwise by t1(q) := t∅(q).36 Hereafter, q¬x is a random variable with
probability measure PQ.

. The expected discounted social utility normalized by (1− δ) in equilibrium σ, denoted by Uσ(qx; δ),
is

Uσ(qx; δ) = qx + t1(qx)− (1− δ)
∞∑
n=1

δn
( n∏

i=1

(
1− FC

(
ti
(
qx
))))

t1(qx)

− (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
(2.58)

− (1− δ)PQ(q¬x ≤ qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)).

To see this note that the �rst term is the quality of the �rst action sampled, and the second term is
the additional gain from the second unsampled action. From this, we subtract the sum of the period n
discounted gain from the unsampled action times the probability it was not sampled from period 1 to n.
Further, we subtract the expected discounted cost of search, which consists of two parts. The �rst part,

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
,

is the expected discounted cost of search when q¬x > qx. In this case, after agent n samples both
actions, action x is revealed to be inferior in equilibrium to all agents moving after agent n. Therefore,
no agent m > n will sample action x again. The second part,

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)),

35This assumption simpli�es the notation, but does not qualitatively a�ect the results.
36Rede�ning function t∅ with t1 simpli�es the notation in the following analysis.
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is the expected discounted cost of search when q¬x ≤ qx. In this case, after agent n samples both
actions, action ¬x is inferior in equilibrium, but not revealed to be so to the agents moving after agent
n. Therefore, all agents m > n with cm ≤ tm(qx) will sample action ¬x again.

The expected discounted social utility normalized by (1−δ) in equilibrium σ′, denoted by Uσ′(qx; δ),
is

Uσ′(qx; δ) = qx + t1(qx)− (1− δ)
∞∑
n=1

δn
( n∏

i=1

(
1− FC

(
ti
(
qx
))))

t1(qx)

− (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
− (1− δ)PQ(q¬x > qx)

∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
(2.59)

·
(

1−
n−1∏
i=1

(
1− FC(ti(qx))

))
− (1− δ)PQ(q¬x ≤ qx)

∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx)).

Uσ′(qx; δ) has the same interpretation as Uσ(qx; δ), except for the expected discounted cost of search
when q¬x > qx, which is now

(1− δ)
∞∑
n=1

δnEPC

[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
+ (1− δ)

∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

](
1−

n−1∏
i=1

(
1− FC(ti(qx))

))
.

When agents only observe their most immediate predecessor, they also fail to recognize actions that
are revealed to be inferior in equilibrium by the time of their move. Therefore, in contrast with what
happens in the complete network, even if agent n samples both actions and q¬x > qx, all agents m > n

with cm ≤ tm(q¬x) will now sample action x again. Since the quality of action ¬x is unknown (qx is
�xed, but q¬x is a random variable), the expected cost of this additional search is

EPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
.

. Now consider a third collective search environment S ′′ with the same state process and search
technology as in S and S ′, but where the network topology is any OIP network. Let σ′′ ∈ ΣS′′ , and
suppose that indi�erences are resolved in σ′′ according to the same tie-breaking criterion as in σ and
σ′. Assume also that the �rst action sampled by agent 1 in σ′′, say x, has the same quality qx as the
action sampled at the �rst search by agent 1 in σ, σ′. Denote with Uσ′′(qx; δ) the expected discounted
social utility normalized by (1 − δ) in equilibrium σ′′. Again, assume that the single decision maker
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selects the �rst action to sample uniformly at random, and that he samples the second action in case
of indi�erence. The next lemma is immediate from the discussion in Section 2.6.3.

Lemma 14. For all qx ∈ Q and δ ∈ (0, 1), we have

Uσ(qx; δ) ≥ Uσ′′(qx; δ) ≥ Uσ′(qx; δ).

. Finally, denote with UDM(qx; δ) the expected discounted social utility normalized by (1 − δ) that
is implemented by the single decision maker in any OIP network after sampling an action, say x, of
quality qx at the �rst search at time period 1. Again, assume that the single decision maker selects the
action to sample �rst uniformly at random at time period 1, and that he samples the second action
whenever indi�erent. I refer to Section III.A. in MFP for the derivation of UDM(qx; δ). Since the single
decision maker’s problem is the same in all OIP networks, of which the complete network is an example,
the same analysis applies unchanged in my setting.

Proof of Proposition 9

The di�erence in average social utilities is

Uσ(qx; δ)− Uσ′(qx; δ)

= (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
(2.60)

·
(

1−
n−1∏
i=1

(
1− FC(ti(qx))

))
.

The right-hand side of (2.60) is positive for all δ ∈ (0, 1). ThatUσ(qx; δ) > Uσ′(qx; δ) for all δ ∈ (0, 1)

follows.
To show that

lim
δ→1

[
Uσ(qx; δ)− Uσ′(qx; δ)

]
= 0,

we need to show that the right-hand side of (2.60) converges to zero as δ → 1. To do so, it is enough to
argue that

∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
is �nite. Notice that

0 ≤
∞∑
n=1

δnEPQ

[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
≤

∞∑
n=1

δnEPQ

[
tn(q¬x)FC(tn(q¬x)) | q¬x > qx

]
≤

∞∑
n=1

δn sup
q>qx

tn(q)FC(tn(q))
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≤
∞∑

n=n̄+1

δn sup
q>qx

tn(q)FC(tn(q)) + n̄ sup
q>qx

t∅(q)

≈
∞∑

n=n̄+1

δn sup
q>qx

(
tn(q)

)2
fC(0) + n̄ sup

q>qx

t∅(q)

≈
∞∑

n=n̄+1

δn sup
q>qx

(
t∅(q)

)2 1

fC(0)t2
+ n̄ sup

q>qx

t∅(q),

where n̄ is large enough for tn(q) to be close to 0. Since
∑∞

n=n̄+1
1
n2 and n̄ supq>qx t

∅(q) are �nite, the
desired result follows. �

Proof of Proposition 10

First, suppose c = 0. Wee need to show that limδ→1 Uσ′′(qx; δ) = limδ→1 UDM(qx; δ). By Proposition
9, limδ→1 Uσ(qx; δ) = limδ→1 Uσ′(qx; δ). Moreover, by Lemma 14, Uσ(qx; δ) ≥ Uσ′′(qx; δ) ≥ Uσ′(qx; δ)

Therefore, by the sandwich theorem for limits of functions,

lim
δ→1

Uσ′′(qx; δ) = lim
δ→1

Uσ(qx; δ). (2.61)

By Proposition 3 in MFP,
lim
δ→1

Uσ(qx; δ) = lim
δ→1

UDM(qx; δ). (2.62)

Then, by (2.61) and (2.62), and the uniqueness of the limit of a function, we have

lim
δ→1

Uσ′′(qx; δ) = lim
δ→1

UDM(qx; δ),

which gives the desired result.

Now suppose that limδ→1 Uσ′′(qx; δ) = limδ→1 UDM(qx; δ). We need to show that c = 0. Since the
complete network is an OIP network, it follows that limδ→1 Uσ(qx; δ) = limδ→1 UDM(qx; δ). That c = 0

immediately follows by Proposition 3 in MFP. �

2.9.7 Proofs for Section 2.6.4

Proof of Proposition 11

An inductive argument analogous to the one establishing part (i) of Lemma 13 shows that each agent
starts sampling from the action taken by his immediate predecessor. Then, the result follows directly
from the discussion in Section 2.6.4. �
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Chapter 3

Learning While Bargaining:
Experimentation and Coasean Dynamics1

3.1 Introduction

Bargaining is ubiquitous. Many economic interactions involve negotiations on a variety of issues. For
example, prices of commodities are often the outcome of negotiations between the concerned parties,
wages are set as an arrangement between �rms and workers, and takeovers require an agreement over
the price of the transaction. As such, bargaining relationships are the cornerstone of many theories
of markets, from industrial organization to labor economics. Classical models of bargaining with
incomplete information are typically presented as bilateral monopolies. These models posit common
knowledge of gains from trade and assume the relevant information to reach an agreement to be
available to parties—perhaps asymmetrically—since the outset of their negotiations. Yet, in many real-
world bargaining situations, superior outside opportunities may become available to either or both
parties during their negotiations—parties routinely investigating what their best options are, as a large
literature on search documents. This paper characterizes bargaining dynamics in such an environment
in which there is uncertainty about whether and when superior outside opportunities are available and
new information about these opportunities may arrive during negotiations. In such an environment,
gains from trade are ex ante uncertain and parties may want to wait to reach an agreement in order to
learn about their best opportunities during negotiations.

I address this question in a one-sided incomplete information bargaining model between a seller
who is unable to commit to future prices and a privately informed buyer. I show that the option value
of waiting to learn about the existence of superior outside opportunities is of �rst-order importance in
shaping the bargaining relationship. It a�ects the timing of agreements, the dynamics of prices, surplus

1I am grateful to Volker Nocke, Martin Peitz, Emanuele Tarantino, and Thomas Tröger for guidance and constant
support throughout this project. I thank Vincenzo Denicolò, Francesc Dilmé, Georg Dürnecker, Daniel Garrett, Andreas
Gulyas, Johannes Hörner, Bruno Jullien, Stephan Lauermann, Konrad Mierendor�, Marco Pagnozzi, Sven Rady, Patrick
Rey, Nicolas Schutz, Ernst-Ludwig von Thadden, Veikko Thiele, and Jean Tirole for excellent suggestions that improved
the paper. I received helpful comments from seminar audiences at the Center for Studies in Economics and Finance in
Naples, University College London, the University of Bologna, the Toulouse School of Economics, the University of Bonn,
the University of Mannheim, IIOC 2018, and the 2017 Bonn–Mannheim Economics Ph.D. Workshop. The usual disclaimer
applies.
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division, and the seller’s ability to exercise market power. In equilibrium, there is either an initial period
with no trade or trade starts with a burst. Afterward, the seller screens out buyer types one by one as
uncertainty about the existence of superior outside opportunities unravels. Delay is always present, but
not necessarily ine�cient; ine�ciently timed transactions only occur if valuations are interdependent.
Whether prices increase or decrease over time depends on which party has a higher option value of
waiting to learn. When the seller can clear the market in �nite time at a positive price, prices are higher
than the competitive price. Market power, however, need not be at odds with e�ciency.

For concreteness, consider a capacity-constrained supplier of a leading technology making price
o�ers to a downstream buyer which is privately informed about its own valuation for the technology.
If the two �rms were to negotiate in isolation, they could do no better than reaching a immediate
agreement, at least in terms of joint surplus to share. In innovative industries, however, the supplier’s
competitors may develop a new disruptive technology in the future. The downstream buyer has then
the option to wait for a new technology to arrive and so may only be willing to accept favorable trading
conditions. Uncertainty about outside opportunities may also be present for the supplier. At some
point, a new buyer with a higher valuation for the technology or without the time to engage in lengthy
negotiations may approach the supplier. In this case, the supplier has the chance to conclude a favorable
deal, whereas the downstream buyer loses the opportunity to trade. Parties are unlikely to know for
sure whether such opportunities will arrive. The two parties, however, may learn by waiting. For
instance, as time elapses with no breakthrough from the supplier’s competitor, the original parties
revise downward their beliefs about the chances of such an R&D success. They reach a corresponding
conclusion about the existence of buyers interested in the technology if no new buyer shows up for a
while. This snapshot of economic activity raises a number of questions. How do parties choose their
bargaining posture in the face of market uncertainty? How do strategies depend on which party hopes
for superior outside opportunities to arrive? Does the option to wait for the uncertainty to unravel
lead to ine�ciently late agreements? Or, rather, does the threat to leave the negotiation empty-handed
leads the supplier (resp., buyer) to propose (resp., accept) a particularly favorable (resp., unfavorable)
deal to (resp., from) the counterparty, to the e�ect that negotiations conclude ine�ciently early?2 Will
the supplier exercise market power as uncertainty unravels in its favor? How will the supplier price its
technology over time? How do learning about market opportunities and learning about the downstream
buyer’s private valuation interact in equilibrium?

In this paper, I develop a framework to answer these questions. Formally, I study a dynamic bar-
gaining game between two risk-neutral players: a long-lived seller (he) and a long-lived buyer (she).
Time is continuous and the time horizon is in�nite. The seller has an indivisible durable good (or asset)
to sell. His valuation for the good is normalized to zero. The buyer has a positive private valuation
for the good (her type). There is uncertainty about whether and when superior outside opportunities
become available. Negotiations take place in a market that can be of two types. In a market of type 0,
no outside opportunity is available (bad-match market environment). In a market of type 1, superior
outside opportunities arrive stochastically on either or both sides according to a Poisson process with

2When the option value of waiting to learn is high enough, the e�cient benchmark is not immediate agreement but
rather calls for an optimal degree of delay.
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commonly known intensity (good-match market environment). From the viewpoint of time zero, gains
from trade are uncertain. Bargaining begins with a common prior about the type of the market. The
arrival of a superior outside opportunity is public and concludes the game. Thus, learning about the
type of the market environment is common. As time elapses with no event, the two parties’ belief that
the market is of type 1 drifts downward and an agreement with the current trading partner becomes
more attractive. The seller has no commitment power and makes price o�ers to the buyer at every
instant. The buyer accepts or rejects.

Without arrivals (i.e., when it is common knowledge that the market is of type 0) the model reduces to
the standard bargaining game with one-sided incomplete information. By the classic Coase Conjecture
argument (Coase (1972)) the seller prices at the lowest buyer valuation as soon as negotiations begin;
thus, trade occurs “in the twinkling of an eye”, with the seller being unable to extract any rent from the
transaction, and the market outcome is e�cient. The intuition for the result is simple. For any given
price, high valuation buyers are more likely to purchase than low valuation buyers, leading to negative
selection in the demand pool. Accordingly, the seller cuts his price over time. A forward-looking buyer
expects prices to fall, so she is unwilling to pay a high price in the �rst place. The seller’s inability
to commit thus leads its later selves to exert a negative externality on its former selves, reducing its
overall pro�t to the lowest buyer valuation. The formalization of this argument is due to the seminal
contributions by Stokey (1981), Bulow (1982), Fudenberg, Levine, and Tirole (1985), Gul, Sonnenschein,
and Wilson (1986), and Ausubel and Deneckere (1989), among others.

Equilibrium bargaining dynamics drastically change when learning about the availability of superior
outside opportunities is taken into account. Such a natural extension of the baseline model allows me
to gain new insights on the original problem and to establish a set of novel results. To begin, I show
that trade occurs over time in equilibrium, with the seller serving di�erent (groups of) buyer types
at di�erent points in time. In particular, trade begins with a burst or following a silent period with
no agreement. Afterward, the seller slowly screens out buyer types one by one as uncertainty about
outside opportunities unravels. Absent outside opportunities or learning about their existence, the two
parties would either trade immediately, upon meeting, or never reach an agreement.

When parties have the option of waiting to learn whether superior outside opportunities are avail-
able, immediate agreement is, in general, not e�cient. Under e�ciency, trade occurs when the joint
bene�t of market experimentation, as measured by the sum of the two players’ option value of waiting
to learn, equals its joint cost, as measured by the foregone gains from trade in terms of discounting.
The optimal delay is di�erent for di�erent (groups of) buyer types. Thus, periods with no trade, as well
as bursts of trade, followed by periods where di�erent types trade one by one, are possible as e�cient
outcomes.

Whether players’ incentives point toward ine�cient hurry or ine�cient delay is unclear. I show that
delay is always present in equilibrium. Learning alone, however, only accounts for delay, but not for
ine�ciently timed agreements. Ine�ciently late agreements only arise when the seller’s payo� from
the outside opportunity is correlated with the buyer type. This dependence endogenously creates a
bargaining environment with interdependent values, as in Evans (1898), Vincent (1989), and Deneckere
and Liang (2006). The main economic intuition behind the delay is similar to that in those papers. There
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is, however, an important di�erence between my �ndings and those of Deneckere and Liang (2006).
In the setting without arrivals of Deneckere and Liang (2006), delay occurs because the equilibrium
is characterized by burst of trade followed by periods of delay. During a period of delay, the sellers’
belief must be exactly such that the Coasean desire to speed up trade is absent. With the addition of
learning, the seller’s belief cannot remain constant at such a belief over any time interval after trade
begins. As a result, dynamics where bursts of trade alternate with periods of delay countably many
times do not arise in my model, independently of whether there is a gap between the seller’s valuation
and the support of buyer valuations or not. Rather, the seller smoothly screens out buyer types one by
one after trade begins.3

These results yield three main takeaways. First, they provide a novel and particularly natural
rationale for both equilibrium delay and non-trivial trade dynamics in one-sided incomplete information
bargaining environments. As striking as it is, the Coase Conjecture is at odds with how negotiations
often occur in practice.4 Second, as ine�cient delay only arises when additional frictions are present in
the trading environment (namely, interdependent values), the Coasean force toward e�ciency remains
overwhelming when parties are learning about the bargaining environment. Third, the result questions
the view that long disputes result in ine�cient outcomes: in markets with search and learning, examples
of which are countless, this need not be true.

There is price discrimination in equilibrium. Prices smoothly decrease or increase over time depend-
ing on which party has the higher option value of waiting to learn. In particular, if superior outside
opportunities may only arrive for the buyer, the price schedule is increasing. If, instead, superior
outside opportunities may only arrive for the seller, the price schedule decreases over time.

The seller exercises market power if he has the option to clear the market in �nite time at positive
prices. In this case, prices are higher than the competitive price and the seller’s payo� is higher than
what he would get if he were: (i) awaiting for the possible arrival of a superior outside opportunity; (ii)
unable to screen using prices; (iii) selling to a market in which all buyers had the lowest valuation.

My framework has a number of applications. A prominent application sees the bargaining game as
the problem of a monopolist who is selling a perfectly divisible and in�nitely durable good to a demand
curve of atomless buyers and is unable to commit to future prices. The connection obtains because to
every actual buyer type in the durable goods model, there corresponds an equivalent potential buyer
type in the bargaining model. With this interpretation, my results shed new light on the dynamics
of sales and the determinants of market power in monopolistic industries. Other applications include
takeover negotiations, wage bargaining in markets for skilled workers, and negotiations in the housing
market. In addition, we can interpret the model as a job search problem where an unemployed worker
sets his reservation wage while learning about employment opportunities.

On the methodological side, posing the model in continuous time not only simpli�es the analysis,
but also allows for additional economic insights. Continuous time captures the idea that there are

3See also Daley and Green (2018) for a result in a similar spirit to mine.
4For instance, Ausubel, Cramton, and Deneckere (2002) argue that the Coase Conjecture “has the unfortunate implication

that real bargaining delays can only be explained by either exogenous limitations on the frequency with which bargaining
partners can make o�ers, or by signi�cant di�erences in the relative degree of impatience between the bargaining parties.”
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no institutional frictions in the bargaining protocol (in addition to incomplete information). Thus,
my analysis clearly disentangles the e�ect of learning about the market environment on equilibrium
outcomes from that of other frictions in the protocol. In addition, optimality conditions, equilibrium
strategies, and equilibrium outcomes have a clean characterization in continuous time. These conditions
are described by means of Hamilton-Jacobi-Bellman equations and (solutions to) partial and ordinary
di�erential equations with a clear economic interpretation. Closed-form expressions for all the relevant
equilibrium outcomes of the game open the doors to comparative statics as well as to empirical studies
and more applied research.5

Road Map. In Section 3.2, I introduce the general bargaining game and formalize the equilibrium
notion. In Section 3.3, I describe two benchmark cases: e�cient trade and the bargaining game without
arrivals. I present the main results in Section 3.4. To gain insight, I develop the analysis in two steps:
In Section 3.4.1, I characterize equilibrium bargaining dynamics with independent private valuations;
in Section 3.4.2, I analyze equilibrium bargaining dynamics when valuations are interdependent. In
Section 3.5, I discuss extensions of the general model and robustness checks. There, I also present
the two other relevant benchmarks: the complete information outcome and the bargaining game with
arrivals but no learning about the market environment. In Section 3.6, I discuss the related literature
and conclude. In the main text, I provide a detailed account of the equilibrium characterization and
develop the intuition behind the main results. The more technical proofs and additional details of the
analysis are in Appendix 3.7.

3.2 Model and Equilibrium Notion

In this section, I �rst present the general bargaining game and discuss the main assumptions of the
model. Then, I formalize players’ strategies and the equilibrium notion.

3.2.1 The General Bargaining Game

Players and Values. There are two players, a seller (he) and a buyer (she). The seller has an indivisible
durable good (or asset) to sell. His valuation for the good is normalized to zero. The buyer has a
privately known type v ∈ [v, v] that represents her valuation for the good. I assume v > v ≥ 0. Type
v is distributed according to a c.d.f. F , which is an atomless distribution with full support and density
f . Following the standard terminology in the literature, if v > 0 (resp., v = 0), I refer to the model as
the “gap” case (resp., “no gap” case) bargaining game. Hereafter, I use the words type and valuation
interchangeably.

Time and Payo�s. Time, denoted by t, is continuous. The game starts at time zero and has a potentially
in�nite horizon: t ∈ R+ ∪{+∞}. Players are long-lived, risk-neutral expected utility maximizers with
common discount rate r > 0. The seller has no commitment power and makes a price o�er pt to the

5Fuchs and Skrzypacz (2010, 2013b), Ortner (2017), Daley and Green (2018), and Chaves Villamizar (2018) achieve a
similar simpli�cation. I refer to Section 3.6.1 for further discussion.
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buyer at every instant t. If the buyer accepts the price o�er pt at time t, trade is executed and the game
ends. If so, the seller’s payo� is e−rtpt and the buyer’s payo� is e−rt(v − pt).

Market Environment and News. Negotiations take place in a market of type m ∈ {0, 1}. If m = 1,
an event stochastically occurs according to a Poisson process with intensity λ > 0. If m = 0, such
event never occurs. The type of the market realizes once and for all before negotiations begin and is
unknown to both players, who share a common prior µ0 ∈ (0, 1) on m = 1 at the beginning of the
game. The type of the market and the Poisson process governing the arrival of the event when m = 1

are independent of all other stochastic elements in the model. The arrival of the event at time t is public
and concludes the game with (possibly) type-dependent payo�s e−rtOS(v) for the seller and e−rtOB(v)

for the buyer. For now, think of the event as a reduced-form of some continuation play, and of OS(v)

and OB(v) as the reduced-form payo�s associated to it. More structure will be imposed momentarily.
The joint surplus conditional on the arrival of the event is O(v) := OS(v) +OB(v).

Remark 10. The model has independent private values (IPV) if the functionOS(v) is constant. IfOS(v)

is not constant in v, instead, the correlation of the seller’s payo� from the outside opportunity with
the buyer type endogenously gives rise to a bargaining environment with interdependent values (IV).

Either a transaction or the occurrence of an event conclude the game. Hereafter, whenever I refer
to time t, I do so with the understanding that the game is still in place by then.

For future reference, let

OS(k) := E
[
OS(v) | v ≤ k

]
=

∫ k

v

OS(v)
f(v)

F (k)
dv

be the seller’s expected payo� conditional on the arrival of the event and the buyer type being distributed
according to the right-truncation of F over [v, k].

Learning. Since the arrival of the event is public, the seller and the buyer always share the same belief
about the type of the market. To derive the law of motion of the common belief, suppose the two
players start with the belief µt at time t and no event occurs in the interval [t, t+ dt). By Bayes’ rule,
the updated belief at the end of the time interval is

µt + dµt =
µt(1− λdt)

1− µt + µt(1− λdt) .

Simplifying, we obtain that, as long as no event occurs, the common belief changes by dµt = −λµt(1−
µt)dt; its law of motion is described by the ordinary di�erential equation (henceforth, ODE)

µ̇t = −λµt(1− µt), µ0 = µ0, (3.1)

with solution
µt =

µ0e−λt

µ0e−λt + (1− µ0)
.6 (3.2)

6Here, e−λt is the probability that the event has not occurred by time t if the market is of type m = 1.
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Thus, if the event does not occur, the common belief on m = 1 drifts downward over time. Once the
event occurs, instead, the belief jumps to 1 and the game ends. Denote with tµ the time at which the
common belief µt equals µ ∈ [0, µ0], with the convention that t0 = +∞. Since µt strictly decreases
over time, tµ is well-de�ned.

Heuristic Timeline. Let t ∈ R+. The heuristic timeline within “period” [t, t+ dt) is the following:

(i) The period begins with a common belief µt on m = 1.

(ii) If the market is of type m = 1, the event occurs with instantaneous probability λdt, terminating
the game, and players collect payo�s; with complementary probability, no event occurs. If the
market is of type m = 0, no event occurs. From the agents’ viewpoint, the event occurs with
subjective probability µtλdt.

(iii) If no event occurs, the seller makes a price o�er pt, which the buyer accepts or rejects:

(a) If the buyer accepts, the game ends and players collect payo�s.

(b) If the buyer rejects, players update their belief about the market environment to µt + dµt,
and the game moves to the next period.7

Interpreting the Event. The event corresponds to an outside opportunity arriving for either or both players.
I will assume that the outside opportunity is superior to an agreement with the current counterparty in
terms of joint surplus to share, at least for some buyer types. In practice, the event may correspond to
one of the two parties being rematched to an alternative trading partner or �nding a more satisfactory
use of his/her resources, thus disappearing from the original negotiation. It may also capture the arrival
of a new agent o�ering better terms of trade to one of the two players. The event may represent a
breakthrough in some underlying (on-the-market) search activity that parties are engaged in in parallel
to their negotiations. Alternatively, it may correspond to a major technological step forward rendering
obsolete the object that is originally for sale. Additionally, the event may correspond to favorable
information arriving for either or both players. Finally, to capture the complexity of market interactions
and bargaining relationships, the event may even correspond to the realization from some probability
distribution over the previous cases. In short, many natural interpretations of the event—and of the
associated learning process—are possible.

7The results of the paper hold unchanged under the following alternative timeline within “period” [t, t+ dt):
(i) The period begins with a common belief µt on m = 1.
(ii) The seller makes a price o�er pt, which the buyer accepts or rejects.
(iii) If the buyer accepts, the game ends and players collect payo�s.
(iv) If the buyer rejects:

(a) If the market is of type m = 1, the event occurs with probability λdt, terminating the game, and players collect
payo�s; with complementary probability, no event occurs.

(b) If the market is of type m = 0, no event occurs.
From the agents’ viewpoint, the event occurs with subjective probability µtλdt. If no event occurs, players update
their belief about the market environment to µt + dµt and the game moves to the next period.

Under the timing convention I adopt, however, the notation and the analysis are cleaner.
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The focus of this paper, however, is not to model what the event stands for or the strategic interaction
it gives rise to upon its arrival. Rather, it is to investigate how uncertainty about whether and when
superior outside opportunities are available and learning about their availability during negotiations
a�ect the bargaining relationship. In this spirit, I replace the event with the continuation payo�sOS(v)

and OB(v) that would arise upon its arrival. Assumption 3 below introduces the relevant restrictions
on the payo�s OS(v) and OB(v). These restrictions only re�ect the motivation of the paper and are
minimal. Therefore, the framework is �exible enough to capture a variety of applications.8

Assumption 3. Throughout the paper, I assume the following.

A1 OS(v) and OB(v) are non-negative di�erentiable functions.

A2 v −OB(v) is non-decreasing on [v, v].

A3 OS(v) is either a constant or increasing on [v, v].

A4 v/O(v) is increasing on [v, v].

A5 Learning is non-trivial. That is, there exists v∗ > v such that

µ0λ

µ0λ+ r
O(v) > v for all v < v∗.

Part A1 is a technical requirement that simpli�es the exposition. It does not impose restrictions
a�ecting the main insights of the model. Part A4 ensures that there is non-trivial heterogeneity in
buyer types.

To understand A2, note that v − OB(v) is a measure of how eager to trade the buyer of type v is.
When v −OB(v) is non-decreasing, higher types are more eager to trade and the skimming property
holds (see Section 3.2.2 for the details). For part A3, note that OS(v) is a measure of how attractive to
the seller the outside opportunity is. Assumption A3 states that the seller’s payo� upon the arrival of
the event either does not depend on the buyer’s type or, if it does, the seller prefers higher v’s upon
the arrival of the event.

Part A5 is central to the paper. It says that at time zero the value of waiting for outside opportunities
is larger than the value of trading, at least for a positive measure of buyer types. Thus, gains from trade
are ex ante uncertain. The uncertainty unravels over time if players postpone reaching an agreement
and engage in market experimentation. Therefore, some delay in the transaction may be bilaterally
e�cient. Importantly, while players may individually learn over time that there are gains from trade,
this fact does not necessarily become common knowledge. Whether it does so in equilibrium depends
on the speci�c assumptions on the model and a�ects trading dynamics and other equilibrium outcomes.
I will discuss this point extensively in the next sections. Note, however, that Part A5 is silent with

8The same argument justi�es the assumption that the arrival of the event is public and concludes the game. In particular,
this paper neither studies the role of transparency of outside options on bargaining dynamics (see, e.g., Hwang and Li (2017)),
nor bargaining dynamics in the shadow of preexisting outside options that players may decide to exercise (see, e.g., Lee
and Liu (2013) and Board and Pycia (2014)) during their negotiations.
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respect to the two parties’ individual incentives to actually postpone or advance the transaction in time.
Finally, part A5 implies that the joint surplus associated to the arrival of the event is larger than the
joint surplus from the transaction for a positive measure of buyer types. That is, in a market of type
m = 1 there are superior opportunities available to the two players, at least in terms of joint surplus
to share.

The analysis will make clear the role of the restrictions in Assumption 3. Meanwhile, note that
they are natural in the settings this paper models. In Section 3.5, I extend the analysis to situations
where A1–A5 fail and discuss the robustness of the main insights of the model with respect to these
assumptions.

Finally, I assume that the game is common knowledge among the players, which is standard.

Example 7. There are three natural benchmark speci�cations of the general model, each of them
corresponding to a di�erent market con�guration.
Sellers’ Market. When OB(v) = 0 for all v ∈ [v, v], the buyer does not reap any bene�t from the
potential arrival of the event. This is an extreme form of a sellers’ market, where superior opportunities,
if existing, only bene�t the seller.
Buyers’ Market.WhenOS(v) = 0 for all v ∈ [v, v], the seller does not reap any bene�t from the potential
arrival of the event. This is an extreme form of a buyers’ market, where superior opportunities, if
existing, only bene�t the buyer.
General Market. In a general market, post-arrival payo�s are non-trivial for both parties. One way
to think of a general market is to assume that the arrival of the event alters both parties’ payo�s at
the same time. Alternatively, one may assume that, upon arrival, the event is favorable to the seller
with probability α and to the buyer with probability 1 − α. Since players are risk neutral, this is a
parsimonious way to model the possibility that either side of the transaction may bene�t from the
existence of superior opportunities independently of the other side.

Example 8. Here are a few examples of what the event may represent.

1. The event may correspond to the arrival of a new buyer coming to o�er the seller price c. In
this case, OS(v) = c and OB(v) = 0 for all v. As long as µ0λc/(µ0λ + r) > v, Assumption
3 is satis�ed. Similarly, the event may correspond to the arrival of a short-lived buyer with
high valuation, say V . This valuation is known to the seller who can then charge the buyer her
willingness to pay V upon arrival. In this case, OS(v) = V and OB(v) = 0 for all v. As long as
µ0λV/(µ0λ+ r) > v, Assumption 3 is satis�ed.

2. The event may correspond to the arrival of a new seller leaving all buyer types with a surplus of
V > v (e.g, by o�ering an upgraded version of the good). In this case,OS(v) = 0 andOB(v) = V

for all v. As long as µ0λV/(µ0λ+ r) > v, Assumption 3 is satis�ed. Alternatively, the new seller
may leave the buyer of type v with surplus v + V for some V > 0. In this case, OS(v) = 0 and
OB(v) = v + V . As long as µ0λ(v + V )/(µ0λ+ r) > v, Assumption 3 is satis�ed.

3. The event may correspond to the arrival of a new short-lived buyer replacing the original byers.
The new buyer’s valuation ṽ is uniformly distributed over [v, v+ 1], whereas the original buyer’s
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valuation v is uniformly distributed over [0, 1]. Let F̃ be the c.d.f. of ṽ. In this case, the seller
o�ers price (1+v)/2 = arg max p p(1−F̃ (p)) to the new buyer and trade occurs with probability
1 − F̃ ((1 + v)/2) = (1 + v)/2. In this case, OB(v) = 0 and OS(v) = (1 + v)2/4. As long as[
µ0λ(1 + v)2/4

]
/(µ0λ+ r) > v, Assumption 3 is satis�ed.

4. Finally, the event may correspond to the realization from some probability distribution over the
previous cases.

The Bene�ts of Continuous Time. I formulate the model directly in continuous time for two rea-
sons. First, continuous time captures the idea that the seller loses all his commitment power and/or
that there are no institutional frictions in the bargaining protocol besides private information.9 As
a consequence, my analysis clearly disentangles the implications of learning about the existence of
(possibly superior) outside opportunities for bargaining dynamics from that of other frictions in the
trading environment. Second, equilibrium strategies in discrete-time bargaining games are in general
analytically intractable. In contrast, they are easier to characterize in continuous time. Moreover,
continuous-time methods are particularly suitable to perform the option value calculations that arise
when studying learning problems of this kind. As a result, I will be able to describe optimality condi-
tions, as well as equilibrium strategies and outcomes, by means of Hamilton-Jacobi-Bellman equations
and (solutions to) partial and ordinary di�erential equations which carry a clear economic intuition.
Closed-form solutions and relatively simple expressions for all equilibrium outcomes open the doors to
comparative statics. In addition, when the model is specialized to particular applications, closed-form
solutions yield sharp predictions for empirical studies and more applied research.

3.2.2 Strategies and Equilibrium Notion

Preliminaries

There are well-known technical issues that arise when modeling games in continuous time (see, in
particular, Simon and Stinchcombe (1989) and Bergin and MacLeod (1993)). To address these issues,
I introduce an ad hoc equilibrium concept for the bargaining game I study. The equilibrium notion,
which builds on Daley and Green (2018) and Ortner (2017), captures a set of basic properties that would
hold in any perfect Bayesian analysis of a discrete-time counterpart of the model.10 These properties
are the following.

Property 1. The buyer solves an optimal stopping problem. Given her type, the evolution of the
common belief on the type of the market, the seller’s pricing rule, and conditional on the event not
having occurred, the buyer decides when to accept the o�er and conclude the bargaining process.

Property 2. The buyer types remaining at the end of each time “period” are a truncated sample of
the original distribution. This is the so called skimming property. By Assumption 3–A2, v −OB(v) is
non-decreasing on [v, v], which implies that it is more costly for the high types to delay trade than

9The two interpretations are mathematically equivalent
10See also Chaves Villamizar (2018).
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it is for the low types. Thus, at the end of each time “period”, the pool of remaining buyer types is a
right-truncation of the original type distribution, implying that negative selection in the poll of buyer
types occurs in equilibrium.11

Property 3. The current truncation of the original type distribution describes the seller’s current belief
on the buyer type. Therefore, given Property 2, the type de�ning the current truncation (hereafter, the
cuto� type), together with the current belief on the type of the market, describe the payo�-relevant
state of the game on which players can condition their strategies. In particular, this is so for stationary
strategies, where the seller (resp., the buyer) conditions his price o�ers (resp, her acceptances) at each
point in time only on the current cuto� type and the current belief.

Property 4. To any given equilibrium price history, there corresponds a history of realized cuto�
types. Thus, along the equilibrium path, the seller can be thought of as choosing his own future beliefs
on buyer types (as described by the future path of cuto� types) as a function of his current belief (as
described by the current cuto� type). That is, the seller can be thought of as choosing how quickly to
screen through buyer types instead of choosing prices.

Property 5. At each point in time, the willingness to pay of the buyer of type v is the di�erence
between her valuation and the current present discounted value of waiting for the outside opportunity.
At time t this di�erence is

v − µtλO
B(v)

λ+ r
. (3.3)

In any perfect Bayesian analysis of a discrete-time counterpart of the model, it is straightforward to
show that if the seller proposes at time t a price that is smaller than (3.3) for all buyer types that have
not traded by time t, then all remaining types accept the price o�er and the game concludes.12 However,
such a time and non-negative price combination need not exist. When v = 0, (3.3) is negative for a
positive-measure subset of buyer types at any time t ∈ R+. Therefore, there is no �nite time at which
the seller can make a non-negative price o�er that all remaining buyer types accept.13

In the next two subsections I build on the previous insights to introduce the equilibrium notion.
Formalizing consistently players’ strategies and equilibrium conditions in continuous time requires the
introduction of some technical concepts and notation. Before moving to the next subsections, I note
the following.

• Let (ΩA,A,PA) be the (su�ciently rich) probability space where the Poisson process governing
the arrival of the event when m = 1 is de�ned. Moreover, let A := (At)t≥0 be the natural
�ltration of (ΩA,A,PA) associated to the process.

For all t ∈ R+, if neither the event nor trade has occurred by time t, the two players share a
common belief µt on m = 1. This common belief is derived by Bayes rule given the information

11Under Assumption 3-A2, the skimming property follows by standard arguments, which I thus omit. See, for instance,
Fudenberg et al. (1985).

12I refer to Fudenberg and Tirole (1991) for an argument along these lines. A similar reasoning applies here, once
extended to the setting I consider.

13A negative price o�er that is accepted by a positive-measure subset of buyer types can never be part of an equilibrium.
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available at the time. Formally, the process (µt)t≥0 is a time-homogeneous At-Markov process
adapted to A. It is càdlàg and piecewise di�erentiable, with a random jump time T de�ned by the
arrival of the event, and satis�es the ODE in (3.1) for all t < T , with initial condition µ0 = µ0;
the common belief µt on m = 1 is given by (3.2) for all t < T , with µt = 1 for t ≥ T .14

From the viewpoint of the two players, the arrival of the event follows a Poisson process with
subjective intensity function t 7→ λt := µtλ. Denote with Tµ the �rst jump time associated to this
Poisson process with initial condition λ0 = µλ. The distribution of Tµ is uniquely determined
by the law of the process (µt)t≥0 and Tµ is adapted to the �ltration A.

• For technical convenience, consider the auxiliary �ltered probability space (ΩF ,F ,F,PF ) where:
(i) the underlying probability space (ΩF ,F ,PF ) is complete; (ii) the �ltration F := (Ft)t≥0 of the
probability space (ΩF ,F ,PF ) is both complete and right-continuous. Assume that the �ltration
F is independent of all other stochastic elements in the model (namely, the buyer type and the
arrival of the event).

• Let
{

(Kt)t≥0, k ∈ [v, v]
}

be a class of non-increasing càdlàg stochastic processes adapted to the
�ltration F, describing the possible paths of the cuto� type, one path for each initial cuto� type
K0 = k ∈ [v, v].

• I refer to any realization (k, µ) ∈ [v, v] × [0, µ0] of the process
(
(Kt, µt)

)
t≥0

as the state of the
game.

Equilibrium Conditions

To begin, I lay out the components of and requirements for equilibrium.

Stationarity. In keeping with the literature, I focus on behavior that is stationary, using the current
cuto� type and the current belief about the type of the market as state variables. Stationarity requires
that, as long as the game is still in place, both the current price o�er and the evolution of the cuto�
type depend only on the current state of the game. Formally, we have the following.

Equilibrium Condition 1 (Stationarity). The seller’s price o�er in state (k, µ) is given by P (k, µ),
where P : [v, v] × [0, µ0] → R is a Borel-measurable function and (Kt)t≥0, Kt = k, is a time-
homogeneous Ft-Markov process.

De�ne the �ltered probability space (Ω,G,G,P) :=
(
ΩF ×ΩA,F ⊗A, (Ft ⊗At)t≥0,PF ×PA

)
, and

let Gt := Ft⊗At for all t ≥ 0. Note that
{

(Kt, µt)t≥0, k ∈ [v, v]
}

is a class of processes de�ned over the
probability space (Ω,G,P) and adapted to the �ltration G. By stationarity,

{(
(Kt, µt)

)
t≥0
, k ∈ [v, v]

}
is a class of time-homogeneous Gt-Markov processes.

14As the arrival of the event concludes the game, any time t > T does not play any role in the analysis, neither does so
any belief µt = 1.
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Buyer’s Problem. The buyer takes the price o�er function P and the law of motion for
(
(Kt, µt)

)
t≥0

as given. A pure strategy for the buyer of type v is a Gt-adapted stopping time (when to accept) τ v : Ω→
R+ ∪ {+∞}. Let T be the set of all Gt-adapted stopping times. For all states (k, µ) ∈ [v, v] × [0, µ0],
the buyer of type v solves the following optimal stopping problem:

sup
τ∈T

EK(k,µ)

[
1{τ<Tµ}e

−rτ(v − P (Kτ , µτ )
)

+ 1{τ≥Tµ}e
−rTµOB(v)

]
, (BPv)

where EK(k,µ) is the expectation with respect to the law of the process
(
(Kt, µt)

)
t≥0

induced by
{

(Kt)t≥0, k ∈ [v, v]
}

,
conditional on (K0− , µ0−) = (k, µ). Henceforth, when the random jump time Tµ appears as the argu-
ment of the expectation EK(k,µ), it has to be interpreted as the �rst jump time of a Poisson process with
intensity function t 7→ λt := µtλ and initial condition λ0− = µλ. Here, the �rst term in the expectation
re�ects the surplus from trading before the arrival of the event, and the second part stands for the
possibility that the event occurs before time τ .

Given any price o�er function P and process
(
(Kt, µt)

)
t≥0

, when v − OB(v) is non-decreasing
(Assumption 3-A2), the buyer’s objective satis�es increasing di�erences in (−τ, v), and any selection
of maximizers of the above problem will be decreasing in v. Therefore, higher types will accept sooner,
and at any time t, for any history of prices o�ers and Tµ0 > t, there will exist some cuto� type kt such
that all v ≥ kt would have accepted weakly before t. In particular, if the seller were to observe the buyer
respond to any P according to (BPv), then his beliefs about v at time t conditional on no acceptance
would be right-truncation of F at kt. In short, the skimming property always holds in equilibrium.
Therefore, it is without loss to restrict attention to pure strategies.

Equilibrium Condition 2 (Buyer’s Optimality). Let τ v be the Gt-adapted stopping time chosen by
the buyer of type v. Given the price o�er function P and the law of the process

(
(Kt, µt)

)
t≥0

, τ v solves
the optimal stopping problem (BPv).15

Given stationarity, the buyer’s value function depends only on the current state. In particular, the
expected payo� of the buyer of type v when the game is in state (k, µ), denoted by Bv(k, µ), is

Bv(k, µ) := EK(k,µ)

[
1{τv<Tµ}e

−rτv(v − P (Kτv , µτv)
)

+ 1{τv≥Tµ}e
−rTµOB(v)

]
. (3.4)

Consistency. If neither the event nor trade has occurred by time t, the seller’s belief about the buyer
type is conditioned on the fact that the buyer has rejected all past o�ers. This belief is summarized by
the current cuto� type, where “cuto� type at time t” should be interpreted to mean before observing
the buyer’s decision at time t. Consistency simply requires that the cuto� type is derived from the
buyer’s optimal strategy.

Equilibrium Condition 3 (Consistency). For all t < T ,

Kt = v +

∫ v

v

1{τv≥t}dv. (3.5)

15Note that τv does not specify how to handle o�-path price o�ers. This will be addressed by Equilibrium Condition 5.
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Option for Immediate Trade. The next condition says that if the seller o�ers a price that is smaller
than the willingness to pay of all buyer types that have not yet traded, then all remaining types accept
the price o�er and the game concludes.

Equilibrium Condition 4 (Option for Immediate Trade). Let (Kt− , µt−) = (k, µ). If

P (k, µ) ≤ v − µλOB(v)

λ+ r
,

for all v ∈ [v, k], then τ v = t for all v ∈ [v, k].

Seller’s Problem. Instead of writing the seller’s problem in terms of price o�ers, I will write it as an
“optimal stopping + impulse control problem” over the seller’s beliefs about the buyer type.16 In this
case, the seller’s problem is to choose a stopping time T S : Ω→ R+ ∪ {+∞} at which he exercises the
option for immediate trade, and a class of processes for cuto� types,

{
(Qt)t≥0, k ∈ [v, v]

}
, one path for

each initial cuto� type Q0− = k ∈ [v, v], for the intensity of trade at any time t ≤ min
{
Tµ0 , T S

}
.17

One way to interpret this formulation is to think of the seller as setting quantities instead of prices:
rather than choosing prices that induce rejections leading to belief cuto�s, the seller can choose cuto�s,
evaluating them according to the prices that would be consistent with those cuto�s.18

Let the game be in state (k, µ). I refer to the pair γk :=
(
T S,

{
(Qt)t≥0, Q0− = k

})
as a policy. A

policy γk is feasible if T S is a Gt-adapted stopping time and (Qt)t≥0, Q0− = k, is a non-increasing,
càdlàg, and Gt-adapted process on [v, k]. Let Γk denote the set of such feasible policies and de�ne
T

min

µ := min
{
Tµ, T S

}
.

Equilibrium Condition 5 (Seller’s Optimality). For all states (k, µ) ∈ [v, v]× [0, µ0], given the price
o�er function P and the law of the process (µt)t≥0,

(
TS,
{

(Kt)t≥0, k ∈ [v, v]
})

solves

sup
γk∈Γk

EQ(k,µ)

[∫ T
min
µ

0

e−rtP (Qt, µt)dF (Qt) + e−rT
min
µ OS

(
Q
T

min
µ

)]
, (3.6)

where EQ(k,µ) is the expectation with respect to the law of the process
(
(Qt, µt)

)
t≥0

induced by
{

(Qt)t≥0, k ∈ [v, v]
}

,
conditional on (Q0− , µ0−) = (k, µ).

Given stationarity, the seller’s value function depends only on the current state. In particular, the
seller’s expected payo� when the game is in state (k, µ), denoted by S(k, µ), is

S(k, µ) := EQ(k,µ)

[∫ Tmin
µ

0

e−rtP (Kt, µt)dF (Kt) + e−rT
min
µ OS

(
KTmin

µ

)]
,

where Tmin
µ := min

{
Tµ, TS

}
.

16For a standard reference on impulse control problems, see Harrison (2013).
17The seller’s problem can also be stated as an impulse control problem only. However, the formulation as an “optimal

stopping + impulse control problem” simpli�es the exposition.
18Formally dealing with continuation play following deviations from P poses well-known existence problems in a

continuous-time setting (again, see Simon and Stinchcombe (1989) and Bergin and MacLeod (1993)). Thus, it would require
a substantially more complicated set of available strategies for the seller.
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Reservation Price Strategies. Suppose that the game is in state (k, µ) at time t. The intensity of
trade at time t, dKt, determines the belief about the buyer type conditional on rejection according to
condition (3.5). Therefore, the price at time t must be the expected payo� of the cuto� type at time t
conditional on accepting the o�er; that is,

P (k, µ) = k −Bv=k(k, µ), (3.7)

where Bk(k, µ) is de�ned by (3.4). Implicitly, (3.7) assumes that the seller can resolve buyers’ indif-
ference in his favor. In other words, P (k, µ) is not only the price o�er in state (Kt, µt) = (k, µ), but
also the reservation price strategy for the buyer of type v = k. Given the interpretation of Kt as a
“quantity”, P has a corresponding interpretation as an (endogenous) inverse demand curve faced by
the seller. Formally, we have the following.

Equilibrium Condition 6 (Reservation Price Strategies). For all (k, µ) ∈ [v, v]× [0, µ0], P (k, µ) is an
optimal reservation price strategy for the buyer of type v = k, taking as given the law of the process(
(Kt, µt)

)
t≥0

and future prices given by
(
P (Kt, µt)

)
t≥0

induced by
{

(Kt)t≥0, k ∈ [v, v]
}

, conditional
on (K0− , µ0−) = (k, µ); that is, P (k, µ) = k −Bk(k, µ).

Note that the equilibrium condition on P only really species that the marginal type (the one whose
type equals the state, v = k) is stopping optimally at Kt = k. However, since the buyer’s problem
satis�es a single-crossing property in type and stopping time, whenever v = k wants to stop atKt = k,
so will any type v′ > k, while all v′′ < k will want to continue. Therefore, all buyer types will be
stopping optimally at all histories if P (k, µ) is an optimal reservation price for every v = k, and one
can derive optimal stopping times at all states and for all types from P .

Remark 11. The �ltration F and, ultimately, G, serve as a public correlation device. In my model,
however, the scope for randomization is limited. In particular, the only scope for randomization is in the
seller’s choice of paths for the cuto� types. As I will show below, the equilibria of the bargaining game
mostly evolve deterministically along the path of play. Therefore, the main purpose of the �ltration G is
to allow me to de�ne strategies and the equilibrium notion without incurring in the usual non-existence
problems that arise when modeling games in continuous time.

Remark 12. Even though the buyer and the seller can in principle condition their strategies on the
public correlation device Gt, their equilibrium payo�s will depend on Gt only through (Kt, µt). Condi-
tional on no event, the seller’s future payo� depend on Gt only through

(
(Kt+s, µt+s)

)
s≥0

. The seller
chooses (Kt+s)s≥0 taking Kt = k as given and (µt+s)s≥0 evolves exogenously given µt = µ. Therefore,
the seller’s value function depends on Gt only through the current state (Kt, µt) = (k, µ). Likewise for
the buyer, at any time t v’s future payo� depend on Gt only through

(
(Kt+s, µt+s)

)
s≥0

, and the future
law of motion for

(
(Kt+s, µt+s)

)
s≥0

depends only on the current state (Kt, µt) = (k, µ). Therefore, v’s
value function depends on Gt only through (Kt, µt) = (k, µ).

Remark 13. The “optimal-stopping + impulse-control” formulation of the seller’s problem allows me
to identify three qualitatively di�erent dynamics: time intervals during which the probability mass
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of trade is in�nitesimal, so that the seller screens buyer types one by one; bursts of trade, so that the
seller screens through a positive mass of buyer types in an instant; and periods of silent trade, where
no buyer type trades.

Regular Stationary Equilibria

De�nition 13 (Stationary Equilibrium). A stationary equilibrium is a pair((
TS,
{

(Kt)t≥0, k ∈ [v, v]
})
, P
)

that satis�es Equilibrium Conditions 1-6.

I focus on a subset of stationary equilibria with the property that the seller alternates between
periods of su�ciently gradual trade and a few instants with bursts of trade.

De�nition 14 (Regular Stationary Equilibrium). A stationary equilibrium is regular if, for any initial
condition k ∈ [v, v],

Kt = Kabs
t +Kjump

t ,

where Kabs
t is absolutely continuous in t and Kjump

t is a step function with �nitely many jumps. The
acronym RSE denotes a regular stationary equilibrium.

Hereafter, I use the term equilibrium to mean regular stationary equilibrium, thus omitting the
“regular stationary” quali�er. Before discussing the equilibrium restriction, I introduce the following
terminology.

De�nition 15. Let s, s, s ∈ R+, with s < s. In the RSE
((
TS,
{

(Kt)t≥0, k ∈ [v, v]
})
, P
)
:

(i) Trade is smooth over the time interval [s, s) if Kt is absolutely continuous over [s, s);

(ii) Smooth trade is silent over the time interval [s, s) if, in addition, Ks −Ks = 0;

(iii) There is a burst of trade at time s if Kjump
s− 6= Kjump

s .19

If trade is smooth over the time interval (s, s) and s ∈ (s, s), I refer to K̇s ∈ (−∞, 0] as the speed
of trade at time s. If there is a burst of trade at time t, I write K̇t ∈ {−∞,+∞}.

By the skimming property, the function Kt is monotone. Thus, it has a Lebesgue decomposition of
the form Kt = Kabs

t +KJump
t +Ksing

t , where Kabs
t is an absolutely continuous function (in t), KJump

t

is a piecewise constant jump function, and Ksing
t is a singular continuous function (i.e., a non-constant

continuous function with �rst derivative equal to zero almost everywhere). Imposing regularity on Kt

introduces two additional restrictions. First, it says that there are only �nitely many jumps, implying
that there are only �nitely many bursts of trade in equilibrium. Second, it says that the continuous
part of Kt is su�ciently smooth, implying that over a smooth trade region the buyer sees the price
changing gradually over time, rather than Kt only moving in twitches.

19I use the convention that Kjump
0− = v.
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Remark 14. In principle, the restriction to regularity rules out potential dynamics. However, it is
worth noting the following.

• When values are interdependent and v > 0 (“gap” case), one may worry that the continuous-
time limit of the discrete-time analog of the model may exhibit dynamics that do not satisfy my
equilibrium restriction. In particular, these dynamics may neither be regular nor generated by
stationary strategies (see Deneckere and Liang (2006)).20 In the spirit of Daley and Green (2018),
however, one can show that singular dynamics do not arise in my setup even when v > 0. In
fact, for equilibrium to alternate between bursts of trade and silent periods, during a silent period
the sellers’ belief must be exactly such that the Coasian desire to speed up trade is absent. With
the addition of learning, the seller’s belief cannot remain constant at such a belief over any time
interval. As a result, in contrast with Deneckere and Liang (2006)’s �ndings, singular dynamics
do not arise in my model.

• The restriction to regularity is weaker than taking the continuous-time atomless limit of a selec-
tion of perfect Bayesian stationary equilibria of the corresponding discrete-time model. Such an
exercise, in fact, would exclude bursts of trade (see, e.g., Fuchs and Skrzypacz (2010)).

Consequently, it is unclear whether the restriction to regularity rules out interesting dynamics, if any
at all.

3.3 Benchmarks

In this section, I �rst characterize the bilaterally e�cient trading dynamics, where the transaction
occurs so as to maximize the sum of the two players’ payo�s. Then, I present the stationary perfect
Bayesian equilibria of the bargaining game where the event never occurs (i.e., where it is common
knowledge that the market is of type m = 0). The two cases serve as natural benchmarks for the
analysis to come.

3.3.1 E�cient Trading Dynamics

Consider a social planner who knows the buyer type and wishes to maximize the sum of the two players’
payo�s from the transaction.21 The planner has to choose the surplus-maximizing time at which parties
stop waiting for outside opportunities and the seller serves the buyer. The planner’s optimal stopping
problem can be written as a dynamic programming problem where the planner’s current belief on
m = 1 serves as state variables. Formally, we have the following.

Fix a buyer type v ∈ [v, v]. First, suppose that O(v) ≤ v. As the planner becomes increasingly
pessimistic over time that the market is of type m = 1, under e�ciency the transaction with such a
buyer type occurs at belief µ0 (equivalently, at time t = 0).

20Fuchs and Skrzypacz (2013a) show that equilibria become stationary and regular as v → 0.
21Here, the benchmark I consider is �rst-best e�ciency.
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Next, suppose that O(v) > v and let µ be the planner’s current belief on m = 1. The expected joint
surplus from delaying trade so as to learn about the market environment, which I denote by L(µ; v),
satis�es the continuous-time recursion

L(µ; v) = µλO(v)dt+ e−rdtE
[
L(µ+ dµ; v) | µ

]
. (3.8)

Here, the �rst term on the right-hand side is the expected instantaneous surplus from waiting for news,
where the event with associated joint payo� O(v) occurs with subjective instantaneous probability
µλdt; the second term is the discounted expected continuation surplus from waiting for news.22 As to
the latter, with subjective probability µλdt the event occurs and the game ends, so that the expected
surplus from waiting jumps to L(1; v) = 0; with subjective probability µ(1−λdt)+(1−µ) = 1−µλdt,
no event occurs and, assuming that the function L(µ; v) is di�erentiable, the expected surplus from
waiting changes to L(µ; v) + L′(µ; v)dµ = L(µ; v)− λµ(1− µ)L′(µ; v)dt. Using these expectations,
together with 1 − rdt as an approximation to e−rdt as dt → 0, I replace the second term in equation
(3.8), simplify, and rearrange, to obtain that L(µ; v) satis�es the �rst-order ODE

(µλ+ r)L(µ; v) + λµ(1− µ)L′(µ; v) = µλO(v).

This has solution23

L(µ; v) =
µλO(v)

λ+ r
+ Ce(1− µ)

(
1− µ
µ

)r/λ

, (3.9)

where Ce is the constant of integration.24

At any belief µ on m = 1, the joint surplus from the transaction with the buyer is v. Thus, by
imposing the optimality conditions L(µ; v) = v (value matching) and L′(µ; v) = 0 (smooth pasting)
we obtain

µλ
[
O(v)− v

]
= rv. (3.10)

De�ne µ̂(v) := rv/λ
(
O(v)−v

)
. If µ̂(v) < µ0, then µ̂(v) is the belief at which the planner stops waiting

for the arrival of the event and the transaction takes place. If instead µ̂(v) ≥ µ0, it is never e�cient to
engage in market experimentation, and the transaction takes place at belief µ0. That is, if we denote
with µ(v) the e�cient trading belief with the buyer, who has type v, we have

µ(v) = min
{
µ0, µ̂(v)

}
.25

The left-hand side of (3.10) is the expected value of a jump in the joint surplus from v toO(v) should
the event occur. This is the �ow bene�t of market experimentation at belief µ. The right-hand side is

22Henceforth, I refer to subjective instantaneous probabilities as subjective probabilities, omitting the instantaneous
quali�er.

23I refer to Polyanin and Zaitsev (2003) for the closed-form solutions to the ODEs that appear in the paper.
24The closed-form solution to the ODE shows that L(µ; v) is di�erentiable in µ, and so it was legitimate to assume

di�erentiability.
25Optimality of the planner’s strategy follows by standard veri�cation arguments. To justify smooth pasting, it is enough

to determine the constant of integration C from value matching and to check that µ(v) maximizes the planner’s objective
with respect to µ.
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the �ow cost, due to discounting, of postponing a transaction whose joint value is v. This is the cost of
market experimentation. Condition (3.10) is thus intuitive: as long as there is su�cient optimism on
the market being of type m = 1, the parties engage in costly experimentation. As soon as the bene�t
of waiting for the event equates the cost of delaying trade, however, the transaction occurs.

The previous characterization determines the buyer types that trade at belief µ < µ0 (equivalently,
at time tµ > 0). These are all types v ∈ [v, v] such that µλ(O(v)− v) = rv or, equivalently,

µλ

µλ+ r
=

v

O(v)
. (3.11)

By Assumption 3–A4, the ratio v/O(v) is increasing, implying that at most one v ∈ [v, v] solves (3.11)
for tµ > 0. The next proposition summarizes.

Proposition 12 (E�cient Trading Dynamics). Suppose trade is e�cient. Then:

(i) At time t = 0, trade occurs with all buyer types v ∈ [v, v] for which µ0λO(v) ≤ (µ0λ + r)v. At
time tµ > 0, trade occurs with the buyer type v ∈ [v, v] satisfying

µλ

µλ+ r
=

v

O(v)
or, equivalently, k =

µλO(k)

µλ+ r
. (3.12)

(ii) The e�cient trading time with the buyer of type v ∈ [v, v], denoted by t(v), is

t(v) =

0 if v ≥ µ0λO(v)
µ0λ+r

Tv if v < µ0λO(v)
µ0λ+r

, (3.13)

where Tv solves µtλO(v) = (µtλ+ r)v for t.

The next remarks follow immediately from Proposition 12 and describe the main properties of the
e�cient trading dynamics.

(a) The left-hand side of (3.11) strictly decreases over time. Thus, as v/O(v) is strictly increasing
by assumption A4, learning endogenously gives rise to negative selection in the buyer type
distribution.

(b) Trade may begin with a burst or after a silent period with no trade. There is a burst of trade at
t = 0 if v ≥ µ0λO(v)/(µ0λ + r) holds for buyers types in a positive-measure subset of [v, v].
Trade begins silently if, instead, v < µ0λO(v)/(µ0λ+ r) for all buyer types. After trade begins,
it proceeds smoothly until the end, as v/O(v) is strictly monotone. Finally, trade may also begin
smoothly (and proceed so afterward), This happens when v = µ0λO(v)/(µ0λ + r). The latter
case, however, is non-generic in the space of parameters.

(c) The market may or may not clear in �nite time. In particular, whether the market clears in �nite
time depends on whether the lowest buyers valuation is positive (“gap” case) or not (“no gap”
case). If v > 0, the last instant of trade is at the �nite time T ev at which µT ev /(µT evλ+r) = v/O(v);
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if, instead, v = 0, the market does not clear in �nite time, as the right-hand side of (3.11) is equal
to zero when evaluated at v = 0, whereas its left-hand side is positive at any �nite time.

The rich trading dynamics under e�ciency are entirely driven by learning. Without arrivals (i.e.,
µ0 = 0) or without learning (i.e., µ0 = 1) the e�cient benchmark is trivial and interesting dynamics
are absent. In particular, if there are no arrivals, under e�ciency all buyer types trade at time t = 0. If,
instead, there is no learning, e�ciency prescribes that trade occurs at time t = 0 with all buyer types v
for which v ≥ λO(v)/(λ+ r), and never occurs with all types v for which v < λO(v)/(λ+ r) (when
v < λO(v)/(λ+ r), it is e�cient to wait for the joint surplus to grow).

3.3.2 The Bargaining Game without Arrivals

Assume that µ0 = 0 (or, equivalently, λ = 0), but that the bargaining game remains otherwise the same.
In this case, the event never arrives and learning plays no role. Suppose that time is continuous but
that the seller makes price o�ers at times t = 0,∆, 2∆, . . ., so that the model reduces to the canonical
bargaining game with one-sided incomplete information studied in the seminal contributions of Stokey
(1981), Bulow (1982), Fudenberg et al. (1985), Gul et al. (1986), and Ausubel and Deneckere (1989).26 In
any stationary perfect Bayesian equilibrium of the game, as ∆→ 0 (i.e., in the frictionless, continuous-
time limit of arbitrarily frequent o�ers, where the seller loses all his commitment power):

(i) The initial price o�er converges to v, the lowest buyer type;

(ii) The expected time to trade converges to zero (no delay);

(iii) All buyer types are served at the same time and at the same price (there is neither intertemporal
nor price discrimination);

(iv) The outcome of “freestyle” bargaining is e�cient;

(v) The seller’s pro�t converges to v and so the seller is unable to extract rents from the buyer with
higher valuations.

These are the classic Coase Conjecture dynamics, named so after Coase (1972).27 The result holds
because a monopolist seller lacking the ability to commit to future prices faces the competition of his
own future selves, thereby dissipating all of his own monopoly power. After the buyer rejects the initial
price o�er, the seller would necessarily bene�t by lowering prices so as to sell to the buyer with lower
valuations who did not yet purchase. Thus, prices would decline after each o�er. A forward-looking
buyer expecting prices to fall would then be unwilling to pay the initial high price. Consequently, if

26The assumption that the seller makes o�ers only at times t = 0,∆, 2∆, . . . is made for a direct comparison with the
results in the existing literature, which considers the bargaining game in discrete time and takes the limit of the period
length to zero.

27In the “gap” case (i.e., v > 0), for any ∆ > 0, there exists a unique perfect Bayesian equilibrium (generically) and
this equilibrium is stationary. In the “no gap” case (i.e., v = 0), a stationary equilibrium exists, but there may be perfect
Bayesian equilibria which are not stationary. The Coase Conjecture fails when consumers use non-stationary strategies
(see Ausubel and Deneckere (1989)). As I focus on the stationary equilibria of my model, I compare my results to those that
arise in the stationary equilibria of prior models.
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the time between o�ers were to vanish, the opening price would converge to the lowest buyer type
and the transaction would occur at the opening of the negotiations.

As I will argue in the next sections, bargaining dynamics signi�cantly depart from the Coasean
benchmark if parties are uncertain about whether and when superior outside opportunities become
available. Some Coasean forces, however, will still be present; I will explain how they generalize to or
need to be reinterpreted in the present environment.

3.4 Equilibrium Characterization

In this section, I characterize the regular stationary equilibria of the bargaining game. To gain insights,
I proceed in two steps: in Section 3.4.1, I consider the case of independent private values; in Section
3.4.2 I consider the case of interdependent values.

I proceed by construction. To begin, I characterize bargaining dynamics over smooth trade regions.
By the de�nition of RSE, there is at least one such region in equilibrium, unless all buyer types trade
in a single instant. A simple argument, however, excludes that equilibrium consists of a single burst
of trade. I then show that there exists a unique candidate RSE. In the candidate RSE, bargaining
dynamics are mostly determined by smooth trade. I characterize when trade is smooth, when it is
smooth and silent, and when a burst of trade occurs. To identify the unique candidate RSE I only rely
on the necessary optimality conditions for the seller’s and the buyer’s problems. A standard veri�cation
argument shows that the candidate is indeed an equilibrium. While I carefully explain the steps of
equilibrium construction in the main text, I refer to Appendix 3.7 for the more technical details of the
analysis.

3.4.1 Bargaining with Independent Private Values

Seller’s Problem. Consider any state (k, µ) in the interior of a smooth-trade region. Since the
probability of leaving the interior of such a region in the next dt is negligible, the seller’s expected
payo� in state (k, µ), S(k, µ), satis�es the Hamilton-Jacobi-Bellman (hereafter, HJB) equation

rS(k, µ) = sup
K̇∈(−∞,0]

{
µλ
[
OS − S(k, µ)

]
+
[
P (k, µ)− S(k, µ)

] f(k)

F (k)

(
− K̇

)
+ S1(k, µ)K̇ + S2(k, µ)µ̇

}
,

(3.14)

where S1(k, µ) (resp., S2(k, µ)) denotes the partial derivative of S(k, µ) with respect to its �rst (resp.,
second) argument.28 Condition (3.14) has a direct interpretation. The left-hand side is the seller’s
expected equilibrium payo� expressed in �ow terms. The right-hand side represents the possible
sources of the �ow: upon arrival of the event, which happens with a subjective probability �ow µλ, the

28I provide below the closed-form expression for S(k, µ), which is di�erentiable. Thus, it is legitimate to assume
di�erentiability. Hereafter, I omit to state this argument when taking (partial) derivatives of a (payo�) function whose
closed-form solution is derived throughout the analysis.
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game ends with the seller earning OS and forgoing S(k, µ). With a �ow probability [f(k)/F (k)](−K̇)

the buyer accepts the current o�er, P (k, µ), which also ends the game with the seller earning P (k, µ)

and forgoing S(k, µ). Finally, if the game does not end immediately, the continuation payo� changes
by S1(k, µ)K̇ + S2(k, µ)µ̇.

The right-hand side of (3.14) is linear in K̇ . This linearity is the source of Coasean dynamics when
outside opportunities or learning about their existence are absent. In that case, for any non-decreasing
price o�er function, the seller wants to run down the demand function as fast as possible. In particular,
without outside opportunities (µ0 = 0 or, equivalently, λ = 0), the equilibrium P (k) becomes �at at v
and trade happens immediately (see Section 3.3.2); similarly, without learning (µ0 = 1), the equilibrium
P (k) becomes �at at p := λOS/(λ + r) and either trade happens immediately (if v ≥ p) or parties
wait for the arrival of the event (if v < p) (see Section 3.5.2). In contrast, in the setting I study, the two
parties’ option value of waiting to learn about the existence of superior outside opportunities act as a
counterbalance to the seller’s temptation to run down the demand curve instantaneously. Interestingly,
the force against immediate trade is present in all market con�gurations (buyers’, sellers’, and general
market). One may conjecture that, in a buyers’ market, the seller’s incentives to reach an immediate
agreement are even stronger than in the standard bargaining model. This is so because the arrival
of the event prevents the seller from concluding any transaction and from reaping any bene�t from
the relationship. In contrast with this intuition, however, the equilibrium analysis will show that the
buyer’s option value of waiting to learn prevents agreements with all types at time zero.

Since the right-hand side of (3.14) is linear in K̇ , the sum of the coe�cients on K̇ must be non-
negative on the interior of a smooth-trade region. In fact, if the coe�cients on K̇ in (3.14) added up
to something negative, the seller would maximize his payo� by trading as fast as possible, that is by
setting K̇ = −∞, which is incompatible with smooth trade. Thus, the coe�cients on K̇ either add
up to zero or to something positive. The seller �nds it optimal to set K̇ = 0 (i.e., silent trade) if the
coe�cients on K̇ add up to something positive. The next lemma, whose proof also uses the necessary
conditions for the buyers’ problem (see below), shows that K̇ = 0 cannot occur after a positive measure
of buyer types has traded.

Lemma 15. In any RSE of the bargaining game with independent private values, if Kt = k < v, then
K̇s < 0 for all s ≥ t.

Suppose that K̇ < 0. In this case, the coe�cients on K̇ must add up to zero, which means that the
seller must be indi�erent between speeds of trade. Setting the coe�cients on K̇ to zero in (3.14) yields
the partial di�erential equations (hereafter, PDEs)

S1(k, µ) =
[
P (k, µ)− S(k, µ)

] f(k)

F (k)
, (3.15)

S2(k, µ)µ̇ = (µλ+ r)S(k, µ)− µλOS, (3.16)
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which describe the seller’s best response problem on the interior of a smooth-trade region where K̇ < 0

of any candidate equilibrium. The PDE in (3.16) has general solution

S(k, µ) =
µλOS

λ+ r
+ Cipv

(1− µ)(λ+r)/λ

µr/λ
, (3.17)

where Cipv is the constant of integration. Note that, by (3.17), the seller’s expected payo� in state (k, µ)

does not depend on the current cuto� type k; therefore,

S1(k, µ) = 0. (3.18)

As f(k)/F (k) > 0 by assumption, (3.15) and (3.18) yield

P (k, µ) = S(k, µ), (3.19)

that is, on the interior of a smooth trade region, equilibrium prices coincide with the seller’s expected
payo�. Therefore, by (3.16) and (3.19), the price o�er function must satisfy the PDE

P2(k, µ)µ̇ = (µλ+ r)P (k, µ)− µλOS, (3.20)

where P2(k, µ) denotes the partial derivative of P (k, µ) with respect to its second argument. The next
lemma summarizes the previous discussion.

Lemma 16. In any RSE of the bargaining game with independent private values, smooth-trade prices are
determined by the seller’s indi�erence between speeds of trade. In particular,

P (k, µ) =
µλOS

λ+ r
+ Cipv

(1− µ)(λ+r)/λ

µr/λ
, (3.21)

for some constant of integration Cipv. Moreover, the seller’s expected payo� is equal to the price; that is,

S(k, µ) = P (k, µ).

Remark 15. An immediate consequence of Lemma 16 is that the path of prices and the seller’s expected
payo� are independent of the distribution of buyer types and of the buyer type that trades at any given
instant. Notably, equilibrium prices only depend on the two players’ common belief on the type of the
market environment, which evolves exogenously. By Equilibrium Condition 6, P (k, µ) is not only the
price o�er in state (Kt, µt) = (k, µ), but also the reservation price strategy for the buyer of type v = k;
it follows that reservation prices of di�erent buyer types are also independent of the distribution of
buyer types and of the buyer type that trades at any given instant. Hence, in the bargaining game with
independent private values, there is a strong sense in which the equilibrium structure is robust to the
details of the distribution of values.
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Buyer’s Problem. The buyer’s indi�erence between accepting and rejecting price o�ers helps to
pin down the speed of smooth trade. At any state (k, µ) in the interior of a smooth-trade region, the
expected payo� of the buyer of type v = k (i.e., the current cuto� type) satis�es the HJB equation

rBk(k, µ) = µλ
[
OB(k)−Bk(k, µ)

]
−
[
Bk

1 (k, µ)K̇ +Bk
2 (k, µ)µ̇

]
, (3.22)

where Bk
1 (k, µ) (resp., Bk

2 (k, µ)) is the partial derivative of Bk(k, µ) with respect to its �rst (resp.,
second) argument. Again, condition (3.22) has a direct interpretation. The left-hand side is the buyer’s
expected equilibrium payo� expressed in �ow terms. The right-hand side represents the possible
sources of the �ow: upon arrival of the event, which happens with a subjective probability �ow µλ, the
game ends with the buyer earningOB(k) and forgoingBk(k, µ). If the game does not end immediately,
the continuation payo� changes by −

[
Bk

1 (k, µ)K̇ +Bk
2 (k, µ)µ̇

]
. In the HJB equation in (3.22) there is

no term corresponding to the �ow payo� from accepting the o�er, k−P (k, µ), and foregoingBk(k, µ).
This is so because, by Equilibrium Condition 6, the equilibrium price at any time is equal to the payo�
of the cuto� type at that time conditional on accepting the price o�er: P (k, µ) = k −Bk(k, µ). That
k − P (k, µ)−Bk(k, µ) = 0 follows.

Taking the total derivative of the equilibrium condition

Bk(k, µ) = k − P (k, µ) (3.23)

with respect to time yields

Bk
1 (k, µ)K̇ +Bk

2 (k, µ)µ̇ = P1(k, µ)K̇ + P2(k, µ)µ̇ = P2(k, µ)µ̇, (3.24)

where the second equality follows from Lemma 16, which shows that smooth trade prices do not depend
on the buyer type that trades at any given instant (see Remark 15), so that P1(k, µ) = 0. Replacing
(3.23) and (3.24) into the HJB equation in (3.22) gives

P2(k, µ)µ̇ = (µλ+ r)P (k, µ)− (µλ+ r)k + µλOB(k). (3.25)

Trade Dynamics. Together, the necessary equilibrium conditions (3.20) and (3.25) determine the
speed of smooth trade. In particular, (3.20) and (3.25) imply that the buyer type that trades at time tµ
on the interior of a smooth trade region satis�es

µλ

µλ+ r
=

k

O(k)
or, equivalently, k =

µλO(k)

µλ+ r
, (3.26)

which corresponds to the e�ciency condition (3.11). That is, smooth trade is e�cient.
Since trade proceeds smoothly after it begins (see Lemma 15), there are only two candidate RSE.

One in which all types trade at the same instant and one in which trade is e�cient. The next lemma
says that the seller can pro�tably deviate from any price schedule that sustains trade with all buyer
types in a single instant. Thus, the latter case can never be part of a RSE.
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Lemma 17. There is no RSE of the bargaining game with independent private values where all buyer
types trade in a single instant.

Moreover, a standard veri�cation argument shows that the unique candidate RSE is indeed an
equilibrium. The next proposition follows.

Proposition 13 (Equilibrium Uniqueness and E�cient Trade – IPV). The bargaining game with inde-
pendent private values has a unique RSE. In the unique RSE, trade is e�cient.

With IPV, equilibrium trade dynamics inherit the properties of the e�ciency benchmark. Trade is
not immediate, but rather occurs over time, with the seller serving di�erent (groups of) buyer types at
di�erent times. In particular, trade may begin with a burst at time t = 0 or after a silent period with
no trade. There is a burst of trade at t = 0 if v ≥ µ0λO(v)/(µ0λ+ r) for a positive-measure subset of
buyer types; trade begins silently if, instead, v < µ0λO(v)/(µ0λ + r) for all buyer types. After trade
begins, it proceeds smoothly until the end, with the seller screening out buyer types one by one as the
uncertainty about the market environment unravels.

The result in Proposition 13 yields three main takeaways. First, the result provides a novel and
natural rationale for equilibrium delay, intertemporal discrimination of buyer types, and non-trivial
trading dynamics in bargaining games with one-sided incomplete information. Second, the result
suggests that the Coasean force toward e�cient agreements remains overwhelming when parties
are learning about what their best market opportunities are during their negotiations. Third, the
result questions the view that long disputes result in ine�cient outcomes: in markets with search and
learning—examples of which are countless—this need not be true.

In equilibrium, the market may or may not clear in �nite time. In particular, whether the market
clears in �nite time or not depends on whether the lowest buyer valuation is positive or not. If v > 0,
the last instant of trade is at the �nite time T vipv at which

µT vipvλ

µT vipvλ+ r
=

v

O(v)
. (3.27)

If, instead, v = 0, the market does not clear in �nite time, as the right-hand side of (3.26) is equal to
zero when evaluated at k = v = 0, whereas its left-hand side is positive at any �nite time.

Remark 16 (Market Clearing and Common Knowledge of Gains from Trade – IPV). In the unique RSE
of the bargaining game with independent private values, the market clears in �nite time if and only if
gains from trade become common knowledge in �nite time. When the market clears in �nite time, it
does so precisely at the instant at which gains from trade become common knowledge.

Price Dynamics, Market Clearing, and Market Power. For future reference, let Ωipv(µ) be the
function de�ned pointwise as

Ωipv(µ) :=

(
µT vipv
µ

)r/λ(
1− µ

1− µT vipv

)(λ+r)/λ

. (3.28)
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When v > 0, along the equilibrium path the seller knows that only the buyer of type v has still
to trade at time T vipv. Therefore, the asymmetric information vanishes at time T vipv and the seller can
charge the last remaining buyer type v her willingness to pay at that time. That is, the seller exercises
the option for immediate trade at time TS = T vipv (Equilibrium Condition 4) with

P
(
v, µT vipv

)
= v −

µT vipvλO
B(v)

λ+ r
> 0.29 (3.29)

Now, (3.29) can be used as the terminal condition to determine the constant of integration in (3.21) and
provide an exact expression for the equilibrium price schedule. Together, (3.21), (3.28), and (3.29) imply
that equilibrium prices must satisfy

P (k, µ) =
µλOS

λ+ r
+

(
v −

µT vipvλO(v)

λ+ r

)
Ωipv(µ).

If, instead, v = 0, the seller cannot exercise the option for immediate trade at any �nite time and
non-negative price. Therefore, equilibrium prices must satisfy

P (k, µ) =
µλOS

λ+ r
.

The next proposition follows.

Proposition 14 (Price Dynamics and Seller’s Payo� – IPV). In the unique RSE of the bargaining game
with independent private values, the price o�er function and the seller’s payo� are:

(i) If v = 0,

P (k, µ) = S(k, µ) =
µλOS

λ+ r
;

(ii) If v > 0,

P (k, µ) = S(k, µ) =
µλOS

λ+ r
+

(
v −

µT vipvλO(v)

λ+ r

)
Ωipv(µ).

The previous results provide several interesting insights. To begin, note that µλOS/(λ+ r) is both
the seller’s option value of waiting to learn about the existence of superior outside opportunities and
the competitive price at belief µ on the type of the market environment. When v = 0, prices and the
seller’s expected payo� equal µλOS/(λ + r); in this case, the seller cannot do anything better than
trading at his “marginal cost”. When, instead, v > 0, prices are higher than the competitive price and

29To see that the right-hand side of the equality in (3.29) is strictly positive, note that

0 = v −
µTv

ipv
λO(v)

µTv
ipv
λ+ r

≤
µTv

ipv
λOB(v)

µTv
ipv
λ+ r

< v −
µTv

ipv
λOB(v)

λ+ r
,

where: the equality holds by (3.27), the weak inequality holds because O(v) := OB(v) +OS and OS ≥ 0, and the strict
inequality holds because µTv

ipv
< 1.
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the seller’s expected payo� is larger than what he would get if he were awaiting for the possible arrival
of the outside opportunity. The markup over the competitive price and expected payo�s is(

v −
µT vipvλO(v)

λ+ r

)
Ωipv(µ),

which increases over time.

In short, the seller may or may not exercise market power. Prices are competitive when the seller
cannot credibly commit to clear the market in �nite time at a positive price. When, instead, the seller
can clear the market in �nite time at a positive price, prices are higher than under competition. When
v > 0, what provides the seller with a credible commitment not to lower further the price o�er is the
fact that, at some �nite future date, it becomes common knowledge that there exist gains from trade
and the information asymmetry vanishes. The next corollary follows.

Corollary 2 (Market Clearing and Market Power – IPV). In the unique RSE of the bargaining game
with independent private values, the market clears in �nite time if and only if market clearing prices are
positive. Moreover:

(i) If the market does not clear in �nite time, prices are competitive and the seller’s expected payo�
equals what he would get if he were awaiting for the possible arrival of the outside opportunity.

(ii) If market clearing prices are positive, prices are higher than the competitive price and the seller’s
payo� is larger than what he would get if he were awaiting for the possible arrival of the outside
opportunity.

Price discrimination and market power, however, do not prevent the bargaining outcome from being
e�cient. In fact, although trade occurs over time and the seller may gain from the ability to screen
using prices, the Coasean force toward e�cient agreements remains overwhelming. The e�ciency
result obtains because the seller screens out buyer types by conditioning his price o�ers only on the
two parties’ common belief about the type of the market environment, which evolves exogenously over
time, and not directly on the current cuto� type.

Although in equilibrium di�erent (groups of) buyer types are served at di�erent points in time, price
discrimination may or may not be present. In particular, in a buyers’ market with v = 0, the price o�er
function is identically equal to zero. In all other cases, di�erent (groups of) buyer types are served at
di�erent prices.

Finally, whether equilibrium prices increase or decrease over time depends on which party has a
higher option value of waiting to learn. In particular, prices decrease over time in a sellers’ market and
increase over time in a buyers’ market (except when v = 0, in which case prices are identically equal
to zero).

95



3.4.2 Bargaining with Interdependent Values

Seller’s Problem. Consider any state (k, µ) in the interior of a smooth-trade region. Since the
probability of leaving the interior of such a region in the next dt is negligible, the seller’s expected
payo� in state (k, µ), S(k, µ), satis�es the HJB equation

rS(k, µ) = sup
K̇∈(−∞,0]

{
µλ
[
OS(k)− S(k, µ)

]
+
[
P (k, µ)− S(k, µ)

] f(k)

F (k)

(
− K̇

)
+ S1(k, µ)K̇ + S2(k, µ)µ̇

}
.

(3.30)

The interpretation of (3.30) is analogous to that of equation (3.14), but with an important di�erence.
Now, the sellers’ expected payo� upon arrival of the event, OS(k), is not constant but depends on the
current cuto� type. This is the source of interdependency between the two players’ payo�s.

Again, as the right-hand side of (3.30) is linear in K̇ , the sum of the coe�cients on K̇ must be
non-negative on the interior of a smooth-trade region. The seller �nds it optimal to set K̇ = 0 (i.e.,
silent trade) if the coe�cients on K̇ add up to something positive. The next lemma parallels Lemma
15 and shows that K̇ = 0 cannot occur after a positive measure of buyer types has traded.

Lemma 18. In any RSE of the bargaining game with interdependent values, ifKt = k < v, then K̇s < 0

for all s ≥ t.

Suppose that K̇ < 0. In this case, the coe�cients on K̇ must add up to zero, which means that the
seller must be indi�erent between speeds of trade. Setting the coe�cients on K̇ to zero in (3.30) yields
the PDEs

S1(k, µ) =
[
P (k, µ)− S(k, µ)

] f(k)

F (k)
, (3.31)

S2(k, µ)µ̇ = (µλ+ r)S(k, µ)− µλOS(k), (3.32)

which describe the seller’s best response problem on the interior of a smooth-trade region where K̇ < 0

of any candidate equilibrium. The PDE in (3.32) has general solution

S(k, µ) =
µλOS(k)

λ+ r
+ CS

iv

(1− µ)(λ+r)/λ

µr/λ
, (3.33)

where CS
iv is the constant of integration. Moreover, note that (3.31) is equivalent to

P (k, µ) =
∂
∂k

[S(k, µ)F (k)]

f(k)
. (3.34)

Together, (3.33) and (3.34) imply that equilibrium prices must satisfy

P (k, µ) =
µλOS(k)

λ+ r
+ CP

iv

(1− µ)(λ+r)/λ

µr/λ
,
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for some constant of integration CP
iv . The next lemma summarizes the previous discussion.

Lemma 19. In any RSE of the bargaining game with independent private values, smooth-trade prices are
determined by the seller’s indi�erence between speeds of trade. In particular,

P (k, µ) =
µλOS(k)

λ+ r
+ CP

iv

(1− µ)(λ+r)/λ

µr/λ
, (3.35)

for some constant of integration CP
iv . Moreover, the seller’s expected payo� is

S(k, µ) =
µλOS(k)

λ+ r
+ CS

iv

(1− µ)(λ+r)/λ

µr/λ
, (3.36)

for some constant of integration CS
iv.

As an immediate consequence of Lemma 19, the price o�er function must satisfy the PDE

P2(k, µ)µ̇ = (µλ+ r)P (k, µ)− µλOS(k). (3.37)

Remark 17. By Lemma 19, the seller’s expected payo� always depends on the distribution of buyer
types; so does the path of prices, unless OS(v) is independent of the distribution of values. The result
contrasts with the �ndings for the bargaining game with independent private values, where the path
of prices and the seller’s expected payo� neither depend on the distribution of buyer types nor on the
buyer type that trades at any given instant. (cf. Remark 15)

Buyer’s Problem. Again, the buyer’s indi�erence between accepting and rejecting price o�ers helps
to pin down the speed of smooth trade. Note that the buyer’s problem is the same as that for the case
of independent private values. Thus, at any state (k, µ) in the interior of a smooth-trade region, the
expected payo� of the buyer of type v = k satis�es the HJB equation in (3.22).

Taking the total derivative of the equilibrium condition (3.23) with respect to time yields

Bk
1 (k, µ)K̇ +Bk

2 (k, µ)µ̇ = P1(k, µ)K̇ + P2(k, µ)µ̇. (3.38)

Now, as prices depend on the buyer type that trades at any given instant, the term P1(k, µ)K̇ does not
disappear from the right-hand side of (3.38) (cf. 3.24). Replacing (3.23) and (3.38) into the HJB equation
in (3.22) gives

P2(k, µ)µ̇ = (µλ+ r)P (k, µ)− (µλ+ r)k + µλOB(k). (3.39)

Trade Dynamics. Together, the necessary equilibrium conditions (3.37) and (3.39) determine the
speed of smooth trade. In particular, (3.37) and (3.39) imply that the buyer type that trades at time tµ
on the interior of a smooth trade region satis�es

k =
µλO(k)

µλ+ r
− P1(k, µ)K̇

µλ+ r
. (3.40)
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Note that K̇ < 0 and P1(k, µ) = µλOS ′(k)/(λ+r) > 0 (by Assumption 3–A3). Thus, by comparing
(3.40) to the e�ciency condition (3.11), it follows immediately that smooth trade is ine�ciently slow
when valuations are interdependent. That is, in the bargaining game with interdependent values, there
is ine�cient delay.

Since trade proceeds smoothly after it begins (see Lemma 18), there are only two candidate RSE.
One in which all types trade at the same instant and one in which trade is e�cient. The next lemma,
paralleling Lemma 17, says that the seller can pro�tably deviate from any price schedule that sustains
trade with all buyer types in a single instant. Thus, the latter case can never be part of a RSE.

Lemma 20. There is no RSE of the bargaining game with interdependent values where all buyer types
trade in a single instant.

Moreover, a standard veri�cation argument shows that the unique candidate RSE is indeed an
equilibrium. The next proposition follows.

Proposition 15 (Equilibrium Uniqueness and Ine�cient Trade – IV). The bargaining game with inter-
dependent values has a unique RSE. In the unique RSE, trade is ine�ciently slow.

Similarly to the case with independent private values, trade may begin with a burst at time t = 0 or
after a silent period with no trade; after trade begins, it proceeds smoothly until the end, with the seller
screening out buyer types one by one as the uncertainty about the market environment unravels. The
market clears in �nite time if and only if the lowest buyer valuation is positive, that is, if and only if
gains from trade become common knowledge in �nite time. However, when the market clears in �nite
time, it does so after the instant at which gains from trade become common knowledge.

Price Dynamics, Market Clearing, andMarket Power. The remaining part of the analysis closely
mimics that for the bargaining game with independent private values. I refer to Section 3.4.1 for the
details that I omit.

For future reference, let Ωiv(µ) be the function de�ned pointwise as

Ωiv(µ) :=

(
µT viv
µ

)r/λ(
1− µ

1− µT viv

)(λ+r)/λ

. (3.41)

When v > 0, along the equilibrium path the seller knows that only the buyer of type v has still to
trade at time T viv . Therefore, the asymmetric information vanishes at time T viv and the seller can charge
the last remaining buyer type v her willingness to pay at that time. That is, the seller exercises the
option for immediate trade at time TS = T viv (Equilibrium Condition 4) with

S
(
v, µT viv

)
= P

(
v, µT viv

)
= v −

µT vivλO
B(v)

λ+ r
. (3.42)

Now, (3.42) can be used as the terminal condition to determine the constants of integration in (3.35)
and (3.36) and provide an exact expression for the equilibrium price schedule and the seller’s expected
payo�s. If, instead, v = 0, the seller cannot exercise the option for immediate trade at any �nite time
and non-negative price. The next proposition follows.
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Proposition 16 (Price Dynamics and Seller’s Payo� – IV). In the unique RSE of the bargaining game
with interdependent values, the price o�er function and the seller’s payo� are:

(i) If v = 0,

P (k, µ) =
µλOS(k)

λ+ r
and S(k, µ) =

µλOS(k)

λ+ r
;

(ii) If v > 0,

P (k, µ) =
µλOS(k)

λ+ r
+

(
v −

µT vivλO(v)

λ+ r

)
Ωiv(µ)

and

S(k, µ) =
µλOS(k)

λ+ r
+

(
v −

µT vivλO(v)

λ+ r

)
Ωiv(µ).

When v = 0, S(k, µ) has the property that at any point in the game the expected payo� of the
seller is equal to his payo� from waiting for the possible arrival of the outside opportunity. With
interdependent values, although the Coase conjecture does not hold any longer in terms of e�cient
trade, the Coasean dynamics force down the seller’s pro�t to his outside option; that is, the seller
cannot do anything better than trading at his “marginal cost”. Moreover, for each state (k, µ), P (k, µ)

is exactly the expected present value the seller would have earned from type k if he waited for the
possible arrival of the outside opportunity—a kind of no-ex post regret property—and upon the price
being accepted the seller does not regret not slowing down the trade.30 When, instead, v > 0, prices are
higher than the competitive price and the seller’s expected payo� is larger than what he would get if
he were awaiting for the possible arrival of the outside opportunity. The markup over the competitive
price and expected payo�s is (

v −
µT vivλO(v)

λ+ r

)
Ωiv(µ),

which increases over time.
Again, the seller may or may not exercise market power. Prices are competitive when the seller

cannot credibly commit to clear the market in �nite time at a positive price. When, instead, the seller
can clear the market in �nite time at a positive price, prices are higher than under competition. The
next corollary follows.

Corollary 3 (Market Clearing and Market Power – IV). In the unique RSE of the bargaining game with
interdependent values, the market clears in �nite time if and only if market clearing prices are positive.
Moreover:

(i) If the market does not clear in �nite time, prices are competitive and the seller’s expected payo�
equals what he would get if he were awaiting for the possible arrival of the outside opportunity.

(ii) If market clearing prices are positive, prices are higher than the competitive price and the seller’s
payo� is larger than what he would get if he were awaiting for the possible arrival of the outside
opportunity.

30A similar property arises in Fuchs and Skrzypacz (2010).
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3.5 Extensions and Discussion

3.5.1 The Case of Complete Information

Suppose that the buyer’s valuation v ∈ [v, v] for the good is common knowledge between the seller
and the buyer. If the event does not occur before trade takes place, then:

(a) Price discrimination is perfect and the seller, who has all the bargaining power, extracts all the
surplus from the transaction. As a result, the transaction occurs at time t(v), the e�cient trading
time with the buyer of type v (see Proposition 12–(ii)). The transaction takes place at price p
equal to the buyer’s willingness to pay at time t(v). This is given by the di�erence between the
buyer’s valuation v and the present discounted value of her outside opportunity at time t(v),
which is µt(v)λO

B(v)/(λ+ r). That is,

p = v −
µt(v)λO

B(v)

λ+ r
.

(b) The seller implements the complete information outcome by setting any price schedule which
is greater than the buyer’s willingness to pay, v − µtλOB(v)/(λ+ r), at all times t 6= t(v), and
equal to v − µt(v)λO

B(v)/(λ + r) at time t = t(v). In such case, the buyer of type v is willing
to pay price pt(v) at time t(v), as this leaves him indi�erent between trading and waiting for the
arrival of the outside opportunity, but refuses to trade at any other time.

The next proposition characterizes the complete information outcome. Parts (i) and (ii) follow from
the previous discussion. Part (iii) holds by straightforward calculations, which are in Appendix 3.7.3.

Proposition 17 (Complete Information Outcome). Suppose the buyer type v ∈ [v, v] is common knowl-
edge, and that the event does not occur before trade takes place. Then:

(i) Trade is e�cient.

(ii) The seller extracts all the surplus from the transaction by implementing any price schedule p : R+ →
R+, t 7→ pt, such that

pt

= v − µtλOB(v)
λ+r

if t = t(v)

> v − µtλOB(v)
λ+r

if t 6= t(v)
,

where t(v) is the e�cient trading time for the buyer of type v.

(iii) The seller’s and the buyer’s payo�s, denoted by SC(v) and BC(v), are:

SC(v) =

v −
µ0λOB(v)

λ+r
if v ≥ µ0λO(v)

µ0λ+r

v − rλvOB(v)
λ(λ+r)(O(v)−v)

if v < µ0λO(v)
µ0λ+r

,
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and

BC(v) =


µ0λOB(v)

λ+r
if v ≥ µ0λO(v)

µ0λ+r

rλvOB(v)
λ(λ+r)(O(v)−v)

if v < µ0λO(v)
µ0λ+r

.

The next corollary, which follows from straightforward calculations collected in Appendix 3.7.3,
contains comparative statics for the complete information outcome. The results have a natural inter-
pretation.

Corollary 4 (Comparative Statics). Fix a buyer type v ∈ [v, v]. In the complete information outcome:

(i) If v ≥ µ0λO(v)
µ0λ+r

, then

(a) SC(v) is decreasing in OB(v) and independent of OS(v);

(b) BC(v) is increasing in OB(v) and independent of OS(v).

(ii) If v < µ0λO(v)
µ0λ+r

, then

(a) SC(v) is increasing in OS(v), decreasing in OB(v) when OS(v) > v, increasing in OB(v)

when OS(v) < v, and independent of OB(v) when OS(v) = v;

(b) BC(v) is decreasing in OS(v), increasing in OB(v) when OS(v) > v, decreasing in OB(v)

when OS(v) < v, and independent of OB(v) when OS(v) = v.

3.5.2 The Bargaining Game without Learning

Fuchs and Skrzypacz (2010) study a one-sided incomplete information bargaining game where a new
trader arrives according to a Poisson process. There are two main di�erences between their setup and
mine. First, in my setting there is uncertainty about the type of the market; in contrast, in their setup
outside opportunities arrive stochastically, but are known to exist (i.e., it is common knowledge that
the market is of type 1). Thus, learning about the market environment and learning about the buyer’s
private information do not interact in their model. Second, in their setup arrivals do not correspond to
superior, but rather to alternative, trading opportunities. Therefore, the e�cient benchmark calls for
immediate agreement, and not for an optimal level of market experimentation.31

These contrasts lead to distinct insights and equilibrium dynamics. Fuchs and Skrzypacz (2010)
show that trade occurs over time only if valuations are interdependent. With independent private
values, instead, trade occurs either immediately or never (see also Inderst (2008)). In particular, Fuchs
and Skrzypacz (2010) argue as follows: “Arrival of new traders or outside options is necessary for
delay, but another important ingredient for slow equilibrium screening is that the seller’s outside value
depends on the buyer’s type.” In contrast, when learning about the market environment interacts with
learning about parties’ private information, I show that the seller serves di�erent (groups) of buyer
types at di�erent points in time and charges them di�erent prices even when private valuations are

31In addition, they write the model in discrete time and then study the atomless continuous-time limit of stationary
perfect Bayesian equilibria. In contrast, I pose the game directly in continuous time and develop a suitable framework for
equilibrium analysis.
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independent. A common insight of our models, however, is that interdependent values are necessary for
ine�ciently timed transactions. Fuchs and Skrzypacz (2010) also propose the following generalization
of the Coase Conjecture: although there is ine�cient delay and the price does not drop immediately
to zero, the Coasean dynamics force down the seller’s pro�t to his outside opportunity. In my setting,
this insight only holds if the seller cannot clear the market in �nite time at a positive price. In contrast,
when the seller has the option to do so, I show that he prices above his marginal cost, may exercise
substantial market power, and his payo� is larger from that he would obtain by simply awaiting for
the possible arrival of an outside opportunity. Moreover, the result holds independently of whether
private valuations are interdependent or not.

3.5.3 Optimal Sales Mechanisms under Commitment

In section 3.3.1, I characterize the �rst-best e�cient benchmark without discussing its implementation.
When valuations are independent, my analysis shows that “freestyle” bargaining implements the e�-
cient outcome. This is no longer true with interdependent values. In this case, it is natural to inquire
whether an e�cient mechanism exists and, if so, whether it can be implemented in prices. If the answer
to either question is negative, then the bargaining outcome is necessarily ine�cient.

In some work in progress, I adopt a mechanism design approach to study the same trading environ-
ment as the one in this paper. In particular, I consider the design of pro�t maximizing mechanisms
when the seller has full commitment power and the design of e�cient trading mechanisms. A prelimi-
nary investigation suggests that the bargaining outcome is not second-best e�cient when valuations
are interdependent.32

3.5.4 Burst of Trade after Trade Begins

In my model, trade may begin with a burst, but proceeds smoothly afterward. What drives slow
screening of buyer types in equilibrium is the assumption that v/O(v) is increasing. If v/O(v) were to
be constant over some interval subset of [v, v], bursts of trade might occur after trade begins. As long
as v/O(v) is constant over �nitely many interval subset of [v, v], regular stationary equilibria allow
to capture bargaining dynamics where bursts of trade alternate with periods of smooth trade. This
alternative speci�cation of the benchmark model may be appropriate in some applications.

3.5.5 Di�erent Learning Processes

I assume that learning occurs via conclusive news. Whereas this is a natural modeling choice in my
setting, one may consider more gradual learning processes. For instance, news may arrive via a non-
conclusive Poisson process (see Keller and Rady (2010)). I can nest this case in my model by assuming
that the event corresponds to the �rst jump of the Poisson process and using OS(v) and OB(v) to
capture the two parties’ payo�s in the continuation game that follows the jump. Alternatively, one
may assume that news about the market environment are revealed via a Brownian di�usion process

32See Deneckere and Liang (2006) for a result in a similar spirit. However, while theirs is a static mechanism design
problem, mine is dynamic.
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(see Bolton and Harris (1999a)). This is an interesting theoretical extension of the model, which I plan
to investigate in future work. I expect the main insights of the analysis to remain valid in such setup.

3.6 Related Literature and Concluding Remarks

3.6.1 Related Literature

This paper joins a recent literature that explicitly models changing (stochastic) features of the bargaining
environment. Huang and Li (2013), Ortner (2017), Daley and Green (2018), and Ishii, Öry, and Vigier
(2018) are the closest contributions to mine.33 Huang and Li (2013) analyze a discrete-time bargaining
game where a seller makes all price o�ers to a privately informed buyer. A new buyer with a higher
valuation for the seller’s good may arrive in the future. As time elapses with no arrival, the two players
revise downward their common belief about the existence of such a buyer. Their main result shows
that prices �uctuate in equilibrium. This is so because the seller posts a price at the very beginning
of each time period and, in discrete-time, he has to commit to that price for the whole period. I can
specialize my model to capture their setup by assuming independent private values, that there is a gap
between the seller and the lowest buyer’s valuation, and that outside opportunities, if existing, are only
available to the seller. In this case, however, I show that price �uctuations disappear in continuous
time. The price, instead, gently declines over time as the seller becomes more pessimistic about his
outside opportunities. An interpretation of the di�erence in our �ndings is that price �uctuations are
not driven exclusively by the option value of waiting to learn; rather, they result from the combined
e�ect of learning with that of other frictions in the protocol.

Ortner (2017) studies the problem of a durable-good monopolist who lacks commitment power and
whose marginal cost of production varies stochastically over time. He suggests a generalization of the
Coase Conjecture according to which the monopolist seller earns the same pro�t as he would earn if
he were selling to a market in which all consumers had the lowest valuation. I show that the seller’s
pro�t is larger than this lower bound when he has the option to clear the market at a positive price
in �nite time. Ortner (2017) also shows that the seller exercises market power if the distribution of
buyer valuations is discrete but is unable to do so when there is a continuum of types. In contrasts, my
�ndings on market power do not rely on the distribution of buyer valuations being discrete, but rather
on a market clearing condition.

Daley and Green (2018) propose a one-sided incomplete information bargaining model with news.
Their setup di�ers from mine in two relevant ways. First, in their setting news are about the informed
party’s private information, and not about the existence of outside opportunities. Second, the social
value of waiting for news is nil, and so e�ciency calls for an immediate agreement.34 They show that the
uninformed party’s ability to leverage public information to extract more surplus from the transaction

33More broadly, this paper adds to the work studying the role of outside options or the arrival of new traders in bargaining
games with asymmetric information (e.g., Fudenberg, Levine, and Tirole (1987), Samuelson (1992), Inderst (2008), and, more
recently, Chang (2015) and Hwang (2018)).

34From a more technical viewpoint, in Daley and Green (2018) the uninformed party learns about the informed party’s
private information by observing a public Brownian news process, whereas in my setting the two players learn about the
existence of superior outside opportunities by publicly observing a conclusive Poisson process.
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is remarkably limited. They suggest a novel interpretation of the Coase Conjecture: because of his
perfect lack of commitment, the uninformed party derives no bene�t from the ability to screen using
prices. The equilibrium may involve delay of trade and positive pro�ts, depending on the environment,
but the uninformed party’s payo�s must be exactly what it would receive if it were unable to make
o�ers at all. In contrast, I show the seller’s payo� exceeds what he would get if he were unable to
screen using prices when he has the option to clear the market in �nite time at a positive price.

Ishii et al. (2018) study wage bargaining between a worker and two �rms, with public learning about
worker-speci�c productivity. Firms make take-it-or-leave-it o�ers over time, and hiring is irreversible.
Search frictions delay the arrival of one �rm, the entrant, while informational frictions prevent the
incumbent from always observing the entrant’s arrival. They show that the combined e�ect of search
and informational frictions induces unraveling in all equilibria: parties reach ine�ciently early agree-
ments and the average talent of hired workers is lower than socially optimal. They also show that
without market frictions, or when the search friction is present whereas the informational friction is
not, there is no unraveling in equilibrium. In my model, one can interpret the arrival of the outside
opportunity as a breakthrough in some underlying (on-the-market) search activity that parties engage
in in parallel to their negotiations. With this interpretation, my results say that search and learning
do not give rise to ine�cient bargaining outcomes, unless they are paired with an additional friction
in the environment, which in my model takes the form of interdependent values. At a high level, this
insight is evocative of the one of Ishii et al. (2018), who show that learning and the search friction do
not give rise to ine�ciencies, unless they are paired with the informational friction.

My work relates to the recent contribution by Nava and Schiraldi (2018). They analyze the problem
of a durable-good monopolist who sells multiple varieties of a good without the ability to commit
to future prices. The authors show that, in such setting, the seller regains some ability to command
positive pro�ts. They propose a robust interpretation of the Coase Conjecture by arguing that the
force driving any Coasean equilibrium is market-clearing, and not e�ciency or minimal pricing (that
is, pricing equal to the maximum between marginal cost and the minimal value). This is so because any
market-clearing price (that is, any price at which all consumers are willing to buy) provides a credible
commitment to the monopolist (as it is no longer compelled to lower prices). Although our settings
are very di�erent in nature and Nava and Schiraldi (2018) do not model any dynamic feature of the
environment, their result is reminiscent of my �nding that a monopolist seller exercises some form of
market power any time he has the option to clear the market at a positive price in �nite time.

From a methodological viewpoint, I add to the recent and growing work on bargaining games in
continuous time. In particular, I build on Ortner (2017) and Daley and Green (2018) to develop an ad hoc
equilibrium notion for the game I study by introducing strategy restrictions directly into the equilibrium
de�nition.35 Although not being fully Nash, the equilibrium concept captures the key features of any
perfect Bayes (stationary) analysis of the discrete-time analog of the model.36

35Chaves Villamizar (2018) adopts a similar approach.
36Other notable contributions on bargaining games in continuous time, although less immediately connected to my

work, are Perry and Reny (1993), Sákovics (1993), Ambrus and Lu (2015), and Ortner (2016). More broadly, my paper relates
to literature that uses continuous-time techniques to study strategic interactions.
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More broadly, my work relates to the literature on equilibrium delay in bargaining. For example,
delay occurs in a model with two-sided private information about fundamentals and overlap in values
(e.g., Cramton (1984), Chatterjee and Samuelson (1987), and Cho (1990)), with reputational concerns
(e.g., Abreu and Gul (2000), Compte and Jehiel (2002), and Atakan and Ekmekci (2014)), with higher
order uncertainty (Feinberg and Skrzypacz (2005)), with disagreement about continuation play (Yildiz
(2004)), with externalities (Jehiel and Moldovanu (1995)), with the possibility that players can commit to
not responding to o�ers (Admati and Perry (1987) and Freshtman and Seidmann (1993)), or when outside
options are history-dependent (Compte and Jehiel (2004)). E�cient delay may emerge in bargaining
games with complete information where the size of the cake and the identity of the proposer evolves
stochastically over time (Merlo and Wilson (1995) and Merlo and Wilson (1998)). (Ine�cient) delay
when players may receive new information while bargaining also arises in the complete information
setting of (Avery and Zemsky (1994)). In my environment, there is incomplete information and the
identity of the proposer is �xed; in a similar spirit, however, parties do not trade as long as the option
value of waiting for news is, in expectation, su�ciently larger that the surplus from the transaction.

My paper also relates to the literature that checks the robustness of Coase’s insight or identi�es
di�erent ways in which a dynamic monopolist can exercise market power. For instance, a monopolist
could relax its commitment problem and increase its pro�t by renting the good rather than selling
it (Bulow (1982)), by introducing best-price provisions (Butz (1990)), or by introducing new updated
versions of the durable good over time (Levinthal and Purohit (1989), Waldman (1993, 1999), Choi (1994),
Fudenberg and Tirole (1998), and Lee and Lee (1998)). Other studies have analyzed environments which
preclude the market from fully deteriorating. These include environments with capacity constraints
(Kahn (1986) and McAfee and Wiseman (2008)), with entry of new buyers (Sobel (1991)), where buyers’
valuations are subject to idiosyncratic stochastic shocks (Biehl (2001), Deb (2014), and Garrett (2016)),
where buyers can exercise an outside option (Board and Pycia (2014)), where goods depreciate over
time (Bond and Samuelson (1987)), and with demand is discrete (Bagnoli, Salant, and Swierzbinski
(1989), von der Fehr and Kuhn (1995), and Montez (2013)).

Finally, I model learning and market experimentation building on the exponential bandit framework
pioneered by Keller, Rady, and Cripps (2005a).

3.6.2 Concluding Remarks

Parties to a negotiation often have reasons to inquire whether the current counterparty o�ers the
best available trading opportunity or, in contrast, a more satisfactory use of their resources exists
in the market. Superior outside opportunities not only may take time to arrive; they are often of
uncertain existence. Uncertainty, however, unravels over time if parties engage in some form of market
experimentation or search. These features are common in many markets—durable goods, labor, housing,
and �nancial markets, just to name a few—and the trade-o�s they give rise to are arguably a de�ning
feature of many bargaining relationships. In this paper, I develop a framework to understand bilateral
bargaining relationships with one-sided incomplete information when gains from trade are ex ante
uncertain and parties may learn whether superior outside opportunities are available during their
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negotiations. I show that the resulting tension between an immediate agreement and the option value
of waiting to learn is of �rst-order importance in shaping the bargaining relationship. It a�ects the
timing of agreements, the dynamics of prices, realized surplus and its division, and the seller’s ability
to exercise market power.

Trade no longer takes place immediately with the informed party capturing all the rents. In contrast,
the seller screens out buyers over time by charging di�erent prices to di�erent types. While learning
accounts for delay, ine�ciently timed agreements only occur if valuations are interdependent. Although
other explanations have been proposed for the observed delay in bargaining, mine is a very natural one.
It shows that delay is to be expected in markets with search and learning. My results, however, question
the view that long disputes result in ine�cient bargaining outcomes: absent additional frictions in the
protocol (e.g., interdependent values), the Coasean force toward e�ciency remains overwhelming when
parties engage in market experimentation during their negotiations. I also show that the seller may
exercise market power. In particular, market power is present when the seller is able to clear the market
in �nite time at positive prices. In this cases, prices are higher than the competitive price and the seller’s
payo� is larger than what he would get if he were awaiting for the possible arrival of a superior outside
opportunity or unable to screen using prices (or both).

My model is �exible enough to serve as a stepping stone for future research. I discuss several exten-
sions in Section 3.5. I plan to build on this setup to explore further bargaining and trade relationships
when the economic environment is non-stationary because of learning.
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3.7 Remaining Proofs

3.7.1 Proofs for Section 3.4.1

Proof of Lemma 17

Suppose v = 0. At time t = tµ the willingness to pay of the buyer of type v is

v − µλOB(v)

λ+ r
. (3.43)

As (3.43) is negative for a positive-measure subset of buyer types at any tµ ∈ R+, trade with all buyer
types at a single instant can only occur at a negative price. Since the seller can always secure himself a
payo� of zero (or larger, if OS > 0) by not trading, this can never be an equilibrium.

Now suppose v > 0. Let T be the time satisfying

v −
µTλO

B
(
v
)

λ+ r
= 0.

Trade with all buyer types at any single instant t < Tv requires a negative price. Again, as the seller
can always secure himself a payo� of zero (or larger, if OS > 0) by not trading, this can never be an
equilibrium. It remains to rule out instantaneous trade with all buyer types at any t ≥ Tv. �

3.7.2 Proofs for Section 3.4.2

Proof of Lemma 17

Suppose v = 0. At time t = tµ the willingness to pay of the buyer of type v is

v − µλOB(v)

λ+ r
. (3.44)

As (3.44) is negative for a positive-measure subset of buyer types at any tµ ∈ R+, trade with all buyer
types at a single instant can only occur at a negative price. Since the seller can always secure himself a
payo� of zero (or larger, if OS > 0) by not trading, this can never be an equilibrium.

Now suppose v > 0. Let T be the time satisfying

v −
µTλO

B
(
v
)

λ+ r
= 0.

Trade with all buyer types at any single instant t < Tv requires a negative price. Again, as the seller
can always secure himself a non-negative payo� by not trading, this can never be an equilibrium. It
remains to rule out instantaneous trade with all buyer types at any t ≥ Tv. �
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3.7.3 Proofs for Section 3.5.1

Proof of Proposition 17

If v ≥ µ0λO(v)/(µ0λ+ r), trade occurs at time t = 0 (equivalently, belief µ0). The seller’s payo� is

SC(v) = p0 = v − µ0λO
B(v)

λ+ r
,

and the buyer’s payo� is

BC(v) = v − p0 =
µ0λO

B(v)

λ+ r
.

If v < µ0λO(v)/(µ0λ+ r), trade occurs at belief

µ(v) =
rv

λ(O(v)− v)
.

Let tµ(v) be the time at which µt = µ(v). Thus, the seller’s payo� is

SC(v) = ptµ(v) = v − µ(v)λOB(v)

λ+ r
= v − rv

λ(O(v)− v)

λOB(v)

λ+ r
= v − rλvOB(v)

λ(λ+ r)(O(v)− v)
,

and the buyer’s payo� is

BC(v) = v − ptµ(v) =
rλvOB(v)

λ(λ+ r)(O(v)− v)
. �

Proof of Corollary 4

Part (i) is immediate. The only non-obvious statement in part (ii) is the dependence of SC(v) andBC(v)

on OB(v). This is so because OB(v) appears in both the nominator and the denominator of SC(v) and
BC(v). Suppose that v < µ0λO(v)/(µ0λ+ r), so that also v < O(v). Then:

∂SC(v)

∂OB(v)
=

∂

∂OB(v)

[
v − rλvOB(v)

λ(λ+ r)(O(v)− v)

]
= −

rλv
(
OS(v)− v

)
O(v)− v

,

and
∂BC(v)

∂OB(v)
=

∂

∂OB(v)

[
rλvOB(v)

λ(λ+ r)(O(v)− v)

]
=
rλv
(
OS(v)− v

)
O(v)− v

.

By observing that

∂SC(v)

∂OB(v)
> 0⇐⇒ OS(v) < v and ∂SC(v)

∂OB(v)
= 0⇐⇒ OS(v) = v,

and that
∂BC(v)

∂OB(v)
> 0⇐⇒ OS(v) < v and ∂BC(v)

∂OB(v)
= 0⇐⇒ OS(v) = v,
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the desired result follows. �
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Chapter 4

Dynamic Foundations for Empirical Static
Games1

4.1 Introduction

When data are generated by strategic interaction, the analyst needs to specify a solution concept
to interpret players’ outcomes and leverage the observables to perform identi�cation of the game’s
primitives. It is common practice to assume that equilibrium play is observed. This assumption is
justi�ed whenever players are able to form correct expectations2 on the strategic environment, and to
(optimally) behave accordingly. However, for many real-world strategic environments, it is not obvious
that behavior satis�es these requirements: players may need to learn how to play. An external analyst
needs then to determine when the learning phase terminates, and whether it is possible to interpret
subsequent behavior as the result of equilibrium play.

In this paper, we explicitly allow for the possibility that players are learning how to interact. How-
ever, we remain agnostic on the details of the learning process. Moreover, instead of assuming that
players reach the ability to choose correct strategies at some given point in time, we only impose a
minimal behavioral assumption describing an optimality condition for the long-term result of play-
ers’ interaction. More speci�cally, we model players as interacting repeatedly, playing an incomplete
information game, and assume that long-run outcomes satisfy a property of “asymptotic no regret”
(hereafter, ANR). The ANR property requires that the time average of the counterfactual increase
in past payo�s, had di�erent actions been played, becomes approximately equal to zero in the long
run. Intuitively, no matter which speci�c learning rule players are adopting, we assume that they
eventually eliminate the regret of not having played di�erently in the past. After having imposed that
players’ behavior satis�es the ANR property, we derive the implications for identi�cation of the game’s
primitives.

We show that, under the ANR assumption, it is possible to partially identify the structural parameters
of players’ payo� functions. We do so in two steps. First, we show that the time average of play that

1The content of this chapter is joint work with Lorenzo Magnol� and Camilla Roncoroni. We thank Dirk Bergemann
for valuable conversations. All errors and omissions are our own.

2Given their information sets, which are assumed to be correctly de�ned by the analyst.
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satis�es ANR converges to the set of Bayes correlated equilibria of the underlying static game (although,
in general, it does not converge to a particular point in this set).3 To establish this property we extend
to games of incomplete information prior results on dynamic foundations for equilibrium play in static
games of complete information. Second, we show how to use the limiting model to obtain consistent
estimates of the parameters of interest. Our empirical approach is based on a behavioral assumption
that has only implications on the predictions of a limiting model, as opposed to the full data generating
process. Our approach gives rise to non-standard econometric issues, as it is not possible to fully
characterize a single limit distribution of the observables, similarly to Epstein, Kaido, and Seo (2016),
but only the set it belongs to. Yet, we show that we can use the limiting model to obtain a consistent
estimator for the parameters of interest. Since behavior is not speci�ed, our model is incomplete in the
sense of Tamer (2003).

The ANR property is weaker than the one-shot no-ex post-regret property of pure-strategy Nash
equilibrium that is sometimes invoked to motivate the choice of modeling cross-sectional data as
equilibrium outcomes of a static game. Indeed, this descriptive4 interpretation of static models is
often paired with the assumptions of complete information and pure-strategy Nash equilibrium. The
rationale for these assumptions is that the no-ex post-regret property of pure-strategy Nash equilibria
re�ects the stable nature of long-run outcomes.5 Although appropriate for some environments, the
static notion of no-ex post regret is a strong requirement: our work is thus complementary to standard
equilibrium models of strategic interaction and provides an alternative whenever Nash equilibrium
does not represent an appropriate restriction on behavior. In fact, Nash equilibrium of the static game
is neither a natural long-run outcome of many simple game dynamics (for a review, see Hart and
Mas-Colell (2013)), nor easy to compute in large games (BR2 (2017)).

In contrast, the ANR property is satis�ed by a large class of well-known algorithms for the repeated
play of the underlying one-shot game, once they are appropriately extended to games of incomplete
information. This class includes simple adaptive heuristics, �ctitious-play-like dynamics, more sophis-
ticated learning rules involving active experimentation, calibrated learning, and several equilibrium
dynamics. Since we do not fully specify what the behavior of players is or what they do to play ac-
cording to this minimal long-run requirement, we depart from the current literature on empirical
dynamic games that typically imposes the Markov perfect (or related) solution concept (for a review,
see Ackerberg, Benkard, Berry, and Pakes (2007)).

Related Literature. Our work is related to the literature on learning in games, especially to Hart
and Mas-Colell (2000, 2013), whose convergence results we extend to incomplete information environ-
ments. In contrast to these authors, the emphasis of our work is on connecting learning dynamics to
the inference problem of an external observer. Recent contributions in computer science o�er both
related theoretical results (Hartline, Syrgkanis, and Tardos (2015)), and connection to empirical work

3Bayes Correlated Equilibrium is a generalization of Correlated Equilibrium to incomplete information environments
developed by Bergemann and Morris (2016).

4In the sense of Pakes (2016)
5For instance, Ciliberto and Tamer (2009) argue as follows: “The idea behind cross-section studies is that in each market,

�rms are in a long-run equilibrium.”
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(Nekipelov, Syrgkanis, and Tardos (2015)), although the latter is specialized to online auction environ-
ments. Instead, we consider a general model where the primitive to be recovered is not the payo�
type of players, but rather the structural features of payo�s, in line with the econometric literature on
empirical games.

We are not the �rst to leverage on results in the literature on learning in games to perform empirical
analysis. Lee and Pakes (2009) develop a learning-based procedure to compute counterfactuals in
dynamic games. Several recent advances in the estimation of dynamic games investigate tractable and
less restrictive empirical models (e.g., Doraszelski, Lewis, and Pakes (2018)). Our paper proposes a valid
descriptive approach that is complementary to these structural methods.

Magnol� and Roncoroni (2017) also consider estimation of discrete games under the assumption of
Bayes correlated equilibrium behavior. Although this paper proposes the use of a similar estimation
technique, the motivation is very di�erent. In fact, Magnol� and Roncoroni (2017) exploit the link
between equilibrium behavior and information to establish that Bayes correlated equilibrium allows to
estimate static discrete games under minimal assumptions on information. In this paper, instead, we
motivate the use of Bayes correlated equilibrium as a behavioral restriction when the data are generated
by repeated interaction.

Road Map. In Section 4.2, we present the basic theoretical setup. First, we formalize the notions of
regret and asymptotic no-conditional regret for the repeated play of a one-shot incomplete information
game. Then, we study the convergence properties of no-conditional regret dynamics. In Section, 4.3
we specialize the theoretical model to study what features of the underlying economic environment we
can empirically recover, and how, under minimal assumptions on behavior when the one-shot game
is played repeatedly over time. In Section 4.4, we present several extensions of the main results and
outline the next steps of this research. In Section 4.5, we conclude.

4.2 Theoretical Model

4.2.1 Basic Setup

Incomplete Information Game. Following Bergemann and Morris (2011, 2016) (and a standard
practice in the literature), we decompose an incomplete information game into a basic game and an
information structure. Formally, there is a �nite set of I players, I := {1, . . . , I}, and we write i for a
typical player. There is a �nite set of payo� states, Θ, and we write θ for a typical state. A basic game G
consists of: (i) for each player i, a �nite set of actionsAi, where we writeA := A1×· · ·×AI , and a utility
function ui : A×Θ→ R; and (ii) a full support common priorψ ∈ ∆++(Θ). Thus,G :=

(
(Ai, ui)

I
i=1, ψ

)
.

An information structure S consists of: (i) for each player i, a �nite set of signals (or types) Ti, where
we write T := T1 × · · · × TI ; and (ii) a signal distribution π : Θ → ∆(T ). Thus, S :=

(
(Ti)

I
i=1, π

)
.

Together, the basic game G and the information structure S de�ne a standard incomplete information
game, which we identify with the pair (G,S). We use the standard notation a−i to denote a pro�le

113



of actions for players other than i, i.e., a−i := (a1, . . . , ai−1, ai+1, . . . , aI). Analogously, t−i denotes a
pro�le of signals for players other than i.

When Θ is a singleton, the game is one of complete information A possible (and natural) information
structure is the null information structure, in which each player’s set of signals is a singleton, i.e.
Ti := {ti}. This corresponds to the situation in which each player has no information over and above
the common prior ψ.

Bayes Correlated Equilibrium. The relevant space of uncertainty in the incomplete information
game (G,S) is A× T ×Θ. We write ν for a typical element of ∆(A× T ×Θ). The equilibrium notion
we are interested in, Bayes correlated equilibrium, is de�ned through the restrictions that we impose
on ν. The �rst restriction, consistency, is a feasibility constraint which simply says that the marginal
of distribution ν on the exogenous variables T and Θ is consistent with the description of the game
(G,S).

De�nition 16 (Consistency). A probability distribution ν ∈ ∆(A× T ×Θ) is consistent for (G,S) if,
for all t ∈ T and θ ∈ Θ, we have ∑

a∈A

ν(a, t, θ) = π(t | θ)ψ(θ).

The second condition, interim obedience, is an incentive constraint. Intuitively, a probability dis-
tribution ν is interim obedient if any player i who knows ν and is told his action–signal pair (ai, ti)

from a realization of ν weakly prefers to play ai, given that the other players, who know their realized
action–signal pair, are going to play their part of the realized action pro�le.

De�nition 17 (Interim ε-Obedience). Let ε ≥ 0. A probability distribution ν ∈ ∆(A×T×Θ) is interim
ε-obedient for (G,S) if for each i ∈ I , ti ∈ Ti, and ai ∈ Ai, we have∑

a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
≤ ε (4.1)

for all a′i ∈ Ai.

We now de�ne the notion of Bayes correlated equilibrium of (G,S).

De�nition 18 (Bayes Correlated ε-Equilibrium). Let ε ≥ 0. The probability distribution ν ∈ ∆(A ×
T × Θ) is a Bayes correlated ε-equilibrium (hereafter, ε-BCE) of (G,S) if it is consistent and interim
ε-obedient for (G,S). When ε = 0, we say that ν is a Bayes correlated equilibrium (hereafter, BCE) of
(G,S). Denote with E(ε) the set of ε-BCE of (G,S). We denote with E(ε) the set of ε-BCE of (G,S).

The notion of BCE we adopt is due to BM2 (2013); Bergemann and Morris (2011, 2016); it can be seen
as an incomplete information version of correlated equilibrium (Aum; Aumann (1987)). When Θ is a
singleton, the de�nition of ε-BCE reduces to the Aumann (1987) de�nition of correlated ε-equilibrium
for a complete information game.
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We say that the distribution ν ∈ ∆(A × T × Θ) is a Bayes Nash equilibrium action-signal-state
distribution of (G,S) if there exists a Bayes Nash equilibrium β := (β1, . . . , βI) of (G,S), where
βi : Ti → ∆(Ai) for all i ∈ I , such that

ν(a, t, θ) = ψ(θ)π(t | θ)
I∏
i=1

βi(ai | ti)

for all a ∈ A, t ∈ T , and θ ∈ Θ. It is straightforward to show that every Bayes Nash equilibrium action-
signal-state distribution of (G,S) is a BCE of (G,S) (see Lemma 1 in Bergemann and Morris (2011)).
Moreover,E(ε) is convex and contains the convex hull of all Bayes Nash equilibrium action-signal-state
distributions of (G,S).

Conditional Regrets and No-Conditional Regret Dynamics. Suppose that the game (G,S) is
played repeatedly over time. Time is discrete, and periods are indexed by n ∈ N := {1, 2, . . .}. We
maintain the following assumptions on the timing of events within periods and on what players observe
about the game being played.

Assumption 4. The timing within each period n ∈ N is the following:

(i) A new state θn ∈ Θ is drawn form ψ;

(ii) Given a realized state θn, a pro�le of signals (tn1 , . . . , t
n
I ) is drawn from π(· | θn);

(iii) After observing his signal tni ∈ Ti, each player i ∈ I selects an action ani ∈ Ai and payo�s realize;

(iv) At the end of the period, each player i ∈ I observes the realized state θn, the pro�le of actions an

that has been played, and his own realized payo� ui(an, θn).

De�nition 19 (Sequence of Actions, Signals, and States). We say that
(
(an, tn, θn)

)
n∈N

is a sequence of
actions, signals, and states from (G,S) if the game (G,S) is played repeatedly over time under Assumption
4 and (an, tn, θn) ∈ A× T ×Θ for all n ∈ N.

Under Assumption 4, (θn)n∈N is a sequence of i.i.d. realizations of payo� states. Moreover, the
following objects are well-de�ned.

• For all i ∈ I and ti ∈ Ti, denote by Ui(ti;N) the average payo� that player i with signal ti has
obtained up to time N ; that is,

Ui(ti;N) :=
1

N

N∑
n=1

ui
(
(ani , a

n
−i), θ

n)
)
1{ti}(t

n
i ).

• Let j be the last action played by player i with signal ti up to time N . For each action k ∈ Ai,
k 6= j, let Vi(ti, j, k;N) be the average payo� player i with signal ti would have obtained had he
played k instead of j every time in the past that he actually played j; that is,

Vi(ti, j, k;N) :=
1

N

N∑
n=1

vni (ti, j, k),
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where, for each n ∈ N,

vni (ti, j, k) :=

ui
(
(k, an−i), θ

n)
)
1{ti}(t

n
i ) if ani = j

ui
(
(ani , a

n
−i), θ

n)
)
1{ti}(t

n
i ) if ani 6= j

.

De�nition 20 (Conditional Regret). Suppose that the game (G,S) is played repeatedly over time under
Assumption 4. For all i ∈ I , ti ∈ Ti and j, k ∈ Ai, the conditional regret Ri(j, k; ti, N) for action k with
respect to action j before play at time N + 1 is de�ned by

Ri(j, k; ti, N) := max {Vi(ti, j, k;N)− Ui(ti;N), 0} .

The expression Ri(j, k; ti, N) has a clear interpretation as a measure of the (average) “regret” expe-
rienced by player i with signal ti at periodN for not having played, every time that j was played in the
past, the di�erent action k. The notion of conditional regrets for the repeated play of a complete infor-
mation game is due to Hart and Mas-Colell (2000). We extend their notion to incomplete information
games in a natural way—with each player computing his own conditional regrets signal-by-signal.6

De�nition 21 (Asymptotic ε-No-Conditional Regret). Let ε ≥ 0. A sequence of actions, signals, and
states

(
(an, tn, θn)

)
n∈N

from (G,S) has asymptotic ε-no-conditional regret (hereafter, ε-ANCR) if

lim sup
N→∞

Ri(j, k; ti, N) ≤ ε

for all i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k. When ε = 0, we say that sequence of actions, signals, and
states has asymptotic no-conditional regret (hereafter, ANCR).

Asymptotic ε-no-conditional regret can be interpreted as a minimal long-run optimality condition
for the repeated play of the one-shot game (G,S). When the sequence of actions, signals, and states has
ε-ANCR, the average “regret” experienced by each type of each player for not having played di�erent
actions vanishes (or is ε-close to vanish) in the long-run. There are many strategies that players can
follow in the repetition of the one-shot game (G,S) and that generate a sequence of actions, signals,
and states satisfying ε-ANCR (see Section 4.2.3 for a few examples). For our empirical exercise (see
Section 4.3), however, we do not take any stand on how players play the one-shot game (G,S) in each
period. We only assume that players (learn to) play game (G,S) su�ciently well for the sequence
of actions, signals, and states to satisfy, in the long-run, the mild optimality condition captured by
ε-ANCR.

6This is a natural choice under the assumptions that each player’s set of signals is �nite and that payo� states are i.i.d.
across time periods.
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4.2.2 Convergence of No-Conditional Regret Dynamics

De�nition 22 (Empirical Distribution). Let
(
(an, tn, θn)

)
n∈N

be a sequence of actions, signals, and states
from (G,S). For every N ∈ N, the empirical distribution ZN ∈ ∆(A× T ×Θ) is de�ned pointwise as

ZN(a, t, θ) :=
1

N

N∑
n=1

1{a}(a
n)1{t}(t

n)1{θ}(θ
n) (4.2)

for all (a, t, θ) ∈ A× T ×Θ.

That is, ZN(a, t, θ) is the relative frequency of the action-signal-state pro�le (a, t, θ) in the �rst N
periods.

The next theorem shows that a necessary and su�cient condition for the sequence of empirical
distributions to converge almost surely to the set of ε-BCE of (G,S) is that the sequence of actions,
signals, and states has ε-ANCR.

Theorem 3 (ε-ANCR and ε-BCE). The sequence of actions, signals, and states
(
(an, tn, θn)

)
n∈N

from
(G,S) has asymptotic ε-no-conditional regret almost surely for some ε ≥ 0 if and only if, as N → ∞,
the sequence of empirical distributions

(
ZN
)
N∈N

converges almost surely to the set of Bayes correlated
ε-equilibria of (G,S).

For our empirical exercise, we are mostly interested in the su�ciency part of the previous result.
Suppose that players play the one-shot game (G,S) repeatedly over time under Assumption 4. If their
play satis�es the minimal long-run optimality condition captured by ε-ANCR, then, by Theorem 3,
the empirical distribution converges almost surely to E(ε) of the underlying incomplete information
game (G,S); that is, from some time on, the empirical distribution is almost surely close to an ε-BCE
of (G,S). The convergence here is to the set of ε-BCE, not necessarily to a point in that set. Moreover,
observe that it is the empirical distribution that becomes essentially an ε-BCE, not (necessarily) the
actual play.

Proof of Theorem 3. [=⇒] Suppose the sequence of actions, signals, and states
(
(an, tn, θn)

)
n∈N

from (G,S) has ε-ANCR almost surely for some ε ≥ 0. Consider any subsequence
(
ZNl

)
l∈N

of(
ZN
)
N∈N

that converges almost surely to some ν ∈ ∆(A × T × Θ). We need to show that ν is
almost surely an ε-BCE of (G,S), i.e., that ν is almost surely consistent and interim ε-obedient for
(G,S).

Consistency. Pick any (t, θ) ∈ T ×Θ. Note the following:∑
a

ν(a, t, θ) =
∑
a

lim
l→∞

ZNl(a, t, θ)

= lim
l→∞

∑
a

ZNl(a, t, θ)

= lim
l→∞

[ ∑
a Z

Nl(a, t, θ)∑
a,t Z

Nl(a, t, θ)

∑
a,t

ZNl(a, t, θ)

]
(4.3)
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= lim
l→∞

∑
a Z

Nl(a, t, θ)∑
a,t Z

Nl(a, t, θ)
lim
l→∞

∑
a,t

ZNl(a, t, θ)

= lim
l→∞

∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

lim
l→∞

∑Nl
n=1 1{θ}(θ

n)

Nl

.

The ratio ∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

(4.4)

is the empirical frequency of the signal pro�le t when �ltered at time steps where the state is θ. As
(θn)n∈N is an i.i.d. sequence, and the t’s are drawn from π(· | θ), (4.4) is the empirical frequency of∑Nl

n=1 1{θ}(θ
n) independent observations from π(· | θ). Moreover, asψ has full support,

∑Nl
n=1 1{θ}(θ

n)→
∞ as l→∞. Thus, by the strong law of large numbers,

lim
l→∞

∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

= π(t | θ) almost surely. (4.5)

Again, as (θn)n∈N is an i.i.d. sequence, by the strong law of large numbers,

lim
l→∞

∑Nl
n=1 1{θ}(θ

n)

Nl

= ψ(θ) almost surely. (4.6)

Together, (4.3), (4.5), and (4.6) give∑
a

ν(a, t, θ) = π(t | θ)ψ(θ) almost surely. (4.7)

As (t, θ) ∈ T ×Θ was arbitrarily chosen, we conclude from (4.7) that ν is almost surely consistent for
(G,S).

Interim ε-obedience. To begin, note the following:

Vi(ti, j, k;N)− Ui(ti;N) =
1

N

N∑
n=1

[
ui
(
(k, an−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{j}(a

n
i )1{ti}(t

n
i )

=
1

N

∑
θ∈Θ

N∑
n=1

[
ui
(
(k, an−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{j}(a

n
i )1{ti}(t

n
i )1{θ}(θ

n) (4.8)

=
∑

a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ZN
(
(j, a−i), (ti, t−i), θ

)
.

Now pick any i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k. As lim supN→∞Ri(j, k; ti, N) ≤ ε almost
surely, by de�nition ofRi(j, k; ti, N), we also have lim supN→∞

[
Vi(ti, j, k;N)−Ui(ti;N)

]
≤ ε almost

surely. But then, by (4.8),

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
−ui

(
(j, a−i), θ

)]
ZN
(
(j, a−i), (ti, t−i), θ

)
≤ ε almost surely. (4.9)
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Moreover, on the subsequence
(
ZNl

)
l∈N

we get

lim
l→∞

∑
a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ZNl

(
(j, a−i), (ti, t−i), θ

)
=

∑
a−i,t−i,θ

lim
l→∞

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ZNl

(
(j, a−i), (ti, t−i), θ

)
(4.10)

=
∑

a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ν
(
(j, a−i), (ti, t−i), θ

)
.

Together, (4.9) and (4.10) give∑
a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ν
(
(j, a−i), (ti, t−i), θ

)
≤ ε almost surely. (4.11)

As i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k were arbitrarily chosen, we conclude from (4.11) that ν is
almost surely interim ε-obedient for (G,S).

[⇐=] Now suppose the sequence of empirical distributions
(
ZN
)
N∈N

converges almost surely to the
set of Bayes correlated ε-equilibria of (G,S) for some ε ≥ 0. Pick any i ∈ I , ti ∈ Ti, and j, k ∈ Ai
with j 6= k. By interim ε-obedience,

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui

(
(j, a−i), θ

)]
ZN
(
(j, a−i), (ti, t−i), θ

)
≤ ε almost surely.

(4.12)
By (4.8) and (4.12),

lim sup
N→∞

Vi(ti, j, k;N)− Ui(ti;N) ≤ ε almost surely.

This, by de�nition of conditional regret,

lim sup
N→∞

Ri(j, k; ti, N) ≤ ε almost surely.

As i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k were arbitrarily chosen, the desired result follows. �

Remark 18. The almost sure convergence of
(
ZN
)
N∈N

to E(ε) means that the sequence
(
ZN
)
N∈N

eventually enters any neighborhood of the set E(ε) and stays there forever. An equivalent way of
stating this is as follows: given any ε′ > ε, there is a time N(ε′) after which the empirical distribution
is always a ε′-BCE of (G,S) almost surely; that is, ZN ∈ E(ε′) for all N > N(ε′) almost surely.

4.2.3 Asymptotic-No-Conditional-Regret Strategies

Suppose game (G,S) is played repeatedly over time under Assumption 4. In this section, we provide
some examples of algorithms that players can follow in the repetition of the one-shot game (G,S)

and that generate a sequence of actions, signals, and states satisfying ε-ANCR (hereafter, ε-ANCR
algorithms). By Theorem 3, under ε-ANCR algorithms the sequence of empirical distributions

(
ZN
)
N∈N
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converges almost surely to the set of ε-BCE of (G,S). Although we only sketch here a few examples, it
is worthwhile noting that the class of ε-ANCR algorithms is very large, ranging from simple adaptive
heuristics to sophisticated learning dynamics, and even to repeated equilibrium play of the one-shot
game (G,S).

Conditional Regret Matching and Generalizations. It is natural to extend the conditional regret
matching algorithm—introduced by Hart and Mas-Colell (2000) for complete information games—to
the incomplete information game (G,S). Let ti be player i’s signal in period N + 1 and let j be the
action played by player i the last time in the past he observed signal ti. Conditional regret matching
stipulates that each action k 6= j is played in period N + 1 with a probability that is proportional to its
regret Ri(j, k; ti, N), and, with the remaining probability, the same action j is played in period N + 1.
Formally, denote with pN+1

i (k; ti, j, N) the probability of playing action k in period N + 1 by player
i with signal ti, given that i has played action j the last time in the past he observed signal ti. Then,
conditional regret matching prescribes that

pN+1
i (k; ti, j, N) =

{
cRi(j, k; ti, N) if k 6= j

1−
∑

k 6=j cRi(j, k; ti, N) if k = j
(4.13)

for some su�ciently small constant c > 0.7 The play in the �rst period can be arbitrary.
Following the logic of Hart and Mas-Colell (2000), we can show that, if each player plays a conditional

regret matching strategy in each period N , then, the sequence of actions, signals, and states has ANCR
almost surely. The proof that all regrets vanish in the limit uses arguments suggested by Blackwell
(1956)’s approachability.

Instead of the switching probability being proportional to the conditional regret Ri(j, k; ti, N), i.e.,
equal to cRi(j, k; ti, N), we may want to allow this switching probability to be given by a general
function f(Ri(j, k; ti, N)) of Ri(j, k; ti, N). If f is sign-preserving (i.e., f(x) > 0 for x > 0 and
f(0) = 0) and Lipschitz continuous, we call the resulting strategies generalized conditional regret
matching strategies, in the spirit of Hart and Mas-Colell (2001a) and Cahn (2004). Building on these
authors’ results, we can show that, if each player plays a generalized conditional regret matching
strategy in each period N , then, the sequence of actions, signals, and states has ANCR almost surely.
In fact, the full class of conditional-regret-based strategies—for which, if played by all players, the
sequence of actions, signals, and states has ANCR almost surely—is even larger. We refer to Hart (2005)
for an extensive survey of regret-based strategies for the repeated play of complete information games.
Their extension to incomplete information games mimics that for conditional regret matching and its
generalization outlined above.

Even procedures that fall in the class of “reinforcement learning” algorithms (see, for example, Roth
and Erev (1995), Börgers and Sarin (1997, 2000), and Erev and Roth (1998)), broadly de�ned as including
those procedures whereby individuals react to past payo�s without full knowledge of the game, may
lead to convergence results such as the ones we obtain in this paper. A relevant case is presented

7The constant c must guarantee that (4.13) yields a probability distribution over Ai and, moreover, that the probability
of j is strictly positive.
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in Hart and Mas-Colell (2001b), who develop a modi�ed regret matching algorithm, dubbed proxy-
regret matching, for environments where each player initially knows only his own set of actions and
is informed, after each period of play, only of his realized payo�.

Calibrated Learning, Variants of Fictitious Play, andOther Dynamics. Previous work has iden-
ti�ed several dynamics for the repeated play of a one-shot complete information game that converge
to the set of correlated equilibria or correlated ε-equilibria of the underlying game. A notable example
of such dynamics is the calibrated learning of (Foster and Vohra (1997)), Here, each player computes
calibrated forecasts on the behavior of the other players, and then plays a best reply to these forecasts
(Foster and Vohra (1997)).8 Other notable examples are conditional smooth �ctitious play eigenvector
strategies (Fudenberg and Levine (1998, 1999a)) and smooth conditional �ctitious play (Cahn (2004)),
where each player i plays at each period a smoothed-out best reply to the distribution of the play of
the opponents in those periods where i played the same action j as in the previous period.

With some work, it is possible to extend such dynamics to the repeated play of the one-shot incom-
plete information game (G,S) signal-by-signal, in the spirit of what we outline above for conditional
regret matching and its generalizations. Building on previous work we can then show that such dy-
namics converge to the set of BCE or ε-BCE of (G,S). It follows from Theorem 3 that the sequence of
actions, signals, and states has ANCR or ε-ANCR.

Equilibrium Play. Suppose that, in each period n, players play a Bayes Nash equilibrium of (G,S)

(not necessarily the same). If so, the empirical distribution lies in the convex hull of all Bayes Nash
equilibrium action-signal-state distributions of (G,S), which is contained in the set of BCE of (G,S).
It follows from Theorem 3 that the sequence of actions, signals, and states has ANCR. Similarly, if
players play a BCE of (G,S) in each period n, then the sequence of actions, signals, and states has
ANCR.

Remark 19. Several ε-ANCR algorithms (e.g., regret matching, its generalizations, and smooth variants
of �ctitious play) only require regrets as an input. Therefore, to achieve ε-ANCR players do not need
to know the utility functions of the other players or their signals. That is, there exist algorithms that
achieve ε-ANCR and only require each player to know what other players do, not what their objectives
or private information are.

4.3 From the Model to the Data

We now specialize the model developed in Section 4.2 to consider the following question: when players
interact repeatedly in an incomplete information game, what features of the underlying one-shot game
can we recover under minimal assumptions on behavior?

8Forecasts are calibrated if, roughly speaking, probabilistic forecasts and long-run frequencies are close: for example,
an event must occur approximately π% of the times for which the forecast was a π% chance of the event. There are various
ways to generate calibrated forecasts (see, among others, Foster and Vohra (1997, 1998, 1999), Foster (1997), Fudenberg and
Levine (1999b), and Kakade and Foster (2008).
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We leverage on the convergence results established in Section 4.2 to recover features of the under-
lying one-shot game under the assumption that the data we observe are the outcomes of an ongoing
dynamic interaction. The literature on empirical games typically maintains that the observable actions
results from equilibrium play in a cross-section of simultaneous games (e.g., Berry (1992), Tamer (2003),
and Ciliberto and Tamer (2009)) or from fully rational dynamic equilibrium play in a panel of dynamic
games (e.g., Ericson and Pakes (1995), Benkard (2004), Jofre-Bonet and Pesendorfer (2003), and Ryan
(2012)). In contrast, we do not make any strong assumption on how players play the one-shot game in
each period. We only assume that players (learn to) play the one-shot game su�ciently well for the
sequence of actions, signals, and states to satisfy, in the long-run, the minimal optimality condition
captured by ε-ANCR.

Empirical Model. To begin, we lay out the main assumptions on the empirical model and the ob-
servables. In particular, we assume the following.

(i) The incomplete information game
(
G
(
λG
)
, S
(
λS
))

belongs to a parametrized class with struc-
tural parameters λ :=

(
λG, λS

)
∈ Γ ⊆ Rdg × Rds .

(ii) λ0 :=
(
λG0 , λ

S
0

)
are the true structural parameters.

(iii) The sequence of actions, signals, and states
((
an, tn, θn

))
n∈N

(a) Is generated by play in
(
G
(
λG0
)
, S
(
λS0
))

that satis�es Assumption 4;

(b) Has asymptotic ε-no-conditional regret for some ε ≥ 0.

(iv) The econometrician only observes the realized sequence of actions (an)n∈N.

Assumption 5. The empirical model and the observables are summarized by (i)–(iv) above.

Although players observe the sequence of actions, signals, and states
((
an, tn, θn

))
n∈N

, in applied
contexts outside analysts have typically less information than players. Therefore, we assume that
the econometrician only observes the realized sequence of actions (an)n∈N (i.e., (iv) above). This
assumption is the most common in the empirical literature, but it is not the only one. For instance, BM2
(2013) consider identi�cation under BCE behavior in a model where both actions and payo� states, i.e.,
(an, θn)n∈N, are observable to the econometrician.

In the remaining part of this section, we investigate what we can recover of λ0, and how, under
Assumption 5.

Bayes Correlated Equilibrium and Restrictions on Parameters. To recover structural parame-
ters λ0 under Assumption 5, we leverage on the convergence results in Section 4.2, which motivates the
adoption of our equilibrium restrictions. In particular, we will show the ε-BCE assumption allows to re-
cover valid bounds on the structural parameter. We have already de�ned the notion of ε-BCE; for future
reference, denote with E(λ; ε) the set of ε-BCE of the incomplete information game

(
G
(
λG
)
, S
(
λS
))

with structural parameters λ :=
(
λG, λS

)
∈ Γ. We now expand on the restrictions that the ε-BCE

equilibrium assumption implies for the structural parameters.
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De�nition 23 (ε-BCE Prediction). Let ε ≥ 0. A probability distribution q ∈ ∆(A) is an ε-BCE prediction
if there exists ν ∈ E(λ; ε) such that

q(a) =
∑

t∈T,θ∈Θ

ν(a, t, θ)

for all a ∈ A. The set of ε-BCE predictions for a game with structural parameters λ is denoted by Q(λ; ε).

De�nition 24 (Identi�ed Set). Let q ∈ ∆(A) be a distribution of actions. The set of parameters identi�ed
by q under the ε-BCE assumption, denoted by ΛI(q; ε), is

ΛI(q; ε) := {λ ∈ Λ : q ∈ Q(λ; ε)} .

In our model, we do not observe a limiting “population” distribution of the observables, i.e., a �xed
limiting q ∈ ∆(A). To see this, let the empirical distribution of actions qN ∈ ∆(A) be de�ned pointwise
as

qN(a) :=
1

N

N∑
n=1

1{a}(a
n)

for all a ∈ A. Under Assumption 5, Theorem 3 only ensures that the sequence of empirical distributions(
ZN
)
N∈N

converges almost surely to E(λ; ε) as N →∞. Therefore, as qN is the marginal on A of the
empirical distribution ZN for all N ∈ N, i.e.,

qN(a) =
∑

t∈T,θ∈Θ

ZN(a, t, θ)

for all a ∈ A, Theorem 3 only ensures that, as the sample size gets large, time averages of actions
converge almost surely to the set Q(λ0; ε), not necessarily to a point in that set. To overcome this
complication, instead of focusing on the identi�ed set ΛI(q; ε), we consider the set of parameters that
can be recovered when any q ∈ Q(λ0; ε) may describe the data, which leads to the next de�nition.

De�nition 25 (Recoverable Set). The set of recoverable parameters under Assumption 5, denoted by
ΛR(ε), is

ΛR(ε) :=
⋃

q∈Q(λ0;ε)

ΛI(q; ε).

The bounds imposed by ΛR(ε) are valid, in the sense that λ0 ∈ ΛR(ε).9

Recovering Bounds on Parameters. Consider the “plug-in” estimator

Λ̂N(ε) :=
{
λ ∈ Λ : qN ∈ Q(λ; ε)

}
= ΛI

(
qN ; ε

)
,

where qN is the observed empirical distribution of N actions.

Theorem 4 (Properties of Λ̂N ). Under Assumption 5, for any ε′ > ε, the following statements hold almost
surely as N →∞:

9That λ0 ∈ ΛR(ε) holds by construction of ΛR(ε).
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(i) λ0 ∈ Λ̂N(ε′);

(ii) Λ̂N(ε) ⊆ ΛR(ε′).

Theorem 4 says that a static equilibrium notion, ε-BCE, provides an adequate behavioral restriction
for the estimation of dynamic interactions that satisfy the minimal long-run optimality condition
captured by ε-ANCR assumption. Part (i) of the theorem establishes that the restriction of ε-ANCR
leads to estimating a set of parameters which contains the true structure of the data generating process.
Part (ii) describes bounds on this estimated set, which is contained within the (theoretical) recoverable
set. The width of the bounds, in practice, will depend on the speci�c model and on the informativeness
of the data. Despite data not being generated by the repetition of identical experiments, we bound
structural parameters without statistical assumptions on the sampling process on top of the economic
assumption of ε-no-conditional regret in the limit.

Proof of Theorem 4. To establish part (i), �x any ε′ > ε and note that, by de�nition of Λ̂N(ε′),

λ0 ∈ Λ̂N(ε′)⇐⇒ qN ∈ Q(λ0; ε′). (4.14)

Under Assumption 5, by Theorem 3 we have that the sequence of empirical distributions
(
ZN
)
N∈N

converges almost surely to E(ε) as N → ∞. Then, by Remark 18, there exists N(ε′) such that
ZN ∈ E(ε′) for all N > N(ε′) almost surely. As qN is the marginal on A of the empirical distribution
ZN for all N ∈ N, it follows that qN ∈ Q(λ0; ε′) for all N > N(ε′) almost surely. Combining this fact
with (4.14) gives the desired result.

To establish part (ii), �x any ε′ > ε and note that, by de�nition of Λ(ε′) and of Λ̂N(ε′),

qN ∈ Q(λ0; ε′)⇐⇒ ΛI

(
qN ; ε′

)
⊆ ΛR(ε′)⇐⇒ Λ̂N(ε′) ⊆ ΛR(ε′). (4.15)

Moreover, as ε′ > ε,
Λ̂N(ε) ⊆ Λ̂N(ε′). (4.16)

Under Assumption 5, by Theorem 3 we have that qN ∈ Q(λ0; ε′) for all N > N(ε′) almost surely (see
the proof of part (i)). Combining this fact with (4.15) and (4.16) gives the desired result. �

Remark 20. Assumption 5 maintains that the econometrician observes the entire realized sequence of
actions (an)n∈N. Often, however, data do not capture the complete path of play and may come without
precise time identi�ers. Our analysis easily extends to the case where the econometrician only observes
a subsequence (anl)l∈N (i.e., a sample) of the realized sequence of actions.

To see this, suppose that the econometrician only observes the subsequence (anl)l∈N of the realized
sequence of actions (an)n∈N. Under Assumption 5, the realized sequence of actions, signals, and states((
an, tn, θn

))
n∈N

has ε-ANCR. Therefore,

lim sup
N→∞

Ri(j, k; ti, N) ≤ ε (4.17)
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for all i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k. By standard properties of the lim sup operator, on the
subsequence of actions, signals, and states

((
anl , tnl , θnl

))
l∈N

corresponding to (anl)n∈N we have that

lim sup
L→∞

Ri(j, k; ti, L) ≤ ε (4.18)

for all i ∈ I , ti ∈ Ti, and j, k ∈ Ai with j 6= k. That is, also the sequence
((
anl , tnl , θnl

))
l∈N

has
ε-ANCR. Thus, by Theorem 3, as L→∞, the sequence of empirical distributions

(
ZL
)
L∈N

converges
almost surely to the set of ε-BCE of (G,S). It follows that Theorem 4 applies unchanged to the “plug-
in” estimator Λ̂L(ε) := ΛI

(
qL; ε

)
, where qL ∈ ∆(A) is the observed empirical distribution of actions

de�ned pointwise as

qL(a) :=
1

L

L∑
l=1

1{a}(a
nl)

for all a ∈ A.

4.4 Extensions and Discussion

4.4.1 Bayes Coarse Correlated Equilibrium and Unconditional Regrets

Bayes Coarse Correlated Equilibrium. The form of obedience we impose on ν distinguishes the
notion of Bayes correlated equilibrium from that of Bayes coarse correlated equilibrium. Intuitively, a
probability distribution ν ∈ ∆(A× T ×Θ) is ex ante obedient if any player i who knows ν, is told his
signal ti (but not his action ai) from a realization of ν, and is given a choice between (i) committing
to whatever joint action pro�le (ai, a−i) has realized from ν, and (ii) committing to a �xed action a′i,
weakly prefers (i) to (ii), given that the other players, who know their realized signal (but not their
realized action), are committed to playing their part of whatever joint action has realized.

De�nition 26 (Ex Ante ε-Obedience). Let ε ≥ 0. A probability distribution ν ∈ ∆(A × T × Θ) is ex
ante ε-obedient for (G,S) if, for each i ∈ I and ti ∈ Ti, we have∑

a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
≤ ε (4.19)

for all a′i ∈ Ai.

We now de�ne the notion of Bayes coarse correlated equilibrium of (G,S).

De�nition 27 (Bayes Coarse Correlated ε-Equilibrium). Let ε ≥ 0. The probability distribution ν ∈
∆(A× T ×Θ) is a Bayes coarse correlated ε-equilibrium (hereafter, ε-BCCE) of (G,S) if it is consistent
and ex ante ε-obedient for (G,S). When ε = 0, we say that ν is a Bayes coarse correlated equilibrium
(hereafter, BCCE) of (G,S).

The notion of BCCE can be seen as an incomplete information version of coarse correlated equi-
librium (Hannan (1957), Moulin and Vial (1978), and Young (2004)). We extend the notion of BCE due
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to BM2 (2013); Bergemann and Morris (2011, 2016) to its coarse analogue in the natural way. When
Θ is a singleton, the de�nition of ε-BCCE reduces to the de�nition of coarse correlated ε-equilibrium
for a complete information game. For �xed incomplete information game (G,S) and ε ≥ 0, it is
straightforward to show that the set of ε-BCCE of (G,S) is convex and contains the set of ε-BCE of
(G,S).

Unconditional Regrets and No-Unconditional Regret Dynamics. Suppose that the game (G,S)

is played repeatedly over time under Assumption 4. For each action k ∈ Ai, let V̂i(ti, k;N) be the
average payo� player i with signal ti would have obtained had he played k in all periods up to time N ;
that is,

V̂i(ti, k;N) :=
1

N

N∑
n=1

ui
(
(k, an−i), θ

n)
)
1{ti}(t

n
i ).

De�nition 28 (Unconditional Regret). For all i ∈ I , ti ∈ Ti and k ∈ Ai, the unconditional regret
R̂i(k; ti, N) for action k before play at time N + 1 is de�ned by

R̂i(k; ti, N) := max
{
V̂i(ti, k;N)− Ui(ti;N), 0

}
.

The expression R̂i(k; ti, N) has a clear interpretation as a measure of the (average) “regret” experi-
enced by player i with signal ti at period N for not having played action k in all past periods up to N .
Unconditional regrets are a rougher measure of regret than conditional regrets; namely, they are based
on the increase in the average payo�, if any, were player i with signal ti to replace all past plays, and
not just the j-plays, by k.

De�nition 29 (Asymptotic No Unconditional Regret). Let ε ≥ 0. A sequence of actions, signals, and
states

(
(an, tn, θn)

)
n∈N

from (G,S) has asymptotic ε-no unconditional regret (hereafter, ε-ANUR) if

lim sup
N→∞

R̂i(k; ti, N) ≤ ε

for all i ∈ I , ti ∈ Ti, and k ∈ Ai.

Convergence of No-Unconditional Regret Dynamics. The next theorem parallels Theorem 3 and
shows that a necessary and su�cient condition for the sequence of empirical distributions to converge
(almost surely) to the set of ε-BCCE is that the sequence of actions, signals, and states has ε-ANUR.

Theorem 5 (ε-ANUR and ε-BCCE). The sequence of actions, signals, and states
(
(an, tn, θn)

)
n∈N

from
(G,S) has asymptotic ε-no unconditional regret almost surely for some ε ≥ 0 if and only if, asN →∞, the
sequence of empirical distributions

(
ZN
)
N∈N

converges almost surely to the set of Bayes coarse correlated
ε-equilibria of (G,S).

Proof. See Appendix 4.6 �
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From the Model to the Data with Unconditional Regrets. The empirical exercise we perform
in Section 4.3 extends in the obvious way when we modify condition (iii)–(b) of Assumption 5 by
requiring that the sequence

((
an, tn, θn

))
n∈N

satis�es ε-ANUR instead of ε-ANCR.
A motivation for our work is to provide valid bounds on structural parameters under minimal

assumptions on behavior. Bounds on parameters are less sharp under the ε-ANUR assumption than
under the ε-ANCR assumption, as the set of ε-BCE of (G,S) is contained in the set of ε-BCCE of (G,S).
However, the ε-ANUR assumption is more robust, at least in the following sense. Call an algorithm
a player can follow in the repetition of the one-shot game (G,S) Hannan-consistent if it guarantees,
for any algorithms other players may follow, that all the regrets of this player vanish in the limit with
probability one. That is, an algorithm is Hannan-consistent if it unilaterally assures vanishing regrets
independently of what other players do. Hannan-consistent algorithms exist for both conditional and
unconditional regrets (see Blackwell (1954), Hannan (1957), Fudenberg and Levine (1995, 1998), Foster
and Vohra (1993, 1998, 1999), Freund and Schapire (1999), Hart and Mas-Colell (2000), and Young
(2004)—their extension to incomplete information settings is straightforward). Importantly, however,
unconditional regret matching and its generalizations10 are Hannan-consistent, whereas conditional
regret matching and its generalizations are not.11 As Remark 19 points out, regret matching algorithms
only require regrets as an input. It follows that to achieve the long-run optimality condition captured by
ε-ANUR players need to know neither the utility functions of the other players and their signals nor the
algorithms that other players adopt. In contrast, to achieve the long-run optimality condition captured
by ε-ANCR: (a) If players do not know the utility functions or the signals of other players, they need to
know what regret-minimizing algorithm the other players adopt and to coordinate on this algorithm; (b)
If, instead, they do not know what other players do, they need to design more sophisticated algorithms
to assure that their own conditional regrets vanish—these algorithms requiring common knowledge of
the underlying one-shot game.

4.4.2 Robustness of No-Conditional Regret Dynamics

There are at least two natural orderings on information structures: an “incentive ordering” and a
“statistical ordering”. Roughly speaking, we have the following.12

• Incentive ordering: an information structure is more incentive constrained than another if it
gives rise to a smaller set of BCE.

• Statistical ordering: an information structure is individually su�cient for another if there ex-
ists a combined information structure where each player’s signal from the former information
structure is a su�cient statistic for the state and other players’ signals in the latter information

10The de�nition of unconditional regret matching mimics that of conditional regret matching, except for using uncondi-
tional regrets instead of conditional regrets.

11That is, unconditional regret matching assures non-positive unconditional regrets for any player who uses it irre-
spective of the behavior of the other players. In contrast, if a single player uses conditional regret matching, there is no
assurance that his conditional regrets will become non-positive over time unless we assume that the other players use the
same algorithm.

12We refer to Bergemann and Morris (2016) for the formal de�nitions and the discussion of other orderings on information
structures.
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structure; individual su�ciency captures intuitively when one information structure contains
more information than another.

Bergemann and Morris (2016) show that one information structure is more incentive constrained than
another if and only if the former is individually su�cient for the latter. That is, the statistical ordering
is equivalent to the incentive ordering.

Building on the latter equivalence, we can provide a robustness result for our empirical exercise.
Fix a basic game G. Suppose the econometrician knows that players observe at least information
structure S, but may observe more—in the sense that they may observe information structure S ′, for
some S ′ that is individually su�cient for S, the exact S ′ being unknown to the econometrician. Can the
econometrician recover valid bounds on the payo� structure of (G,S ′) under the ε-ANCR assumption
for the repeated play of the misspeci�ed model (G,S)? The answer to this question is positive. Suppose
that the sequence of actions, signals and states is generated by play in (G,S ′)—the true game—and
has ε-ANCR. Thus, by Theorem 3, the sequence of empirical distributions converges almost surely to
the set of ε-BCE of (G,S ′). As S ′ is individually su�cient for S, by Bergemann and Morris (2016)’s
equivalence result, S ′ is also more incentive constrained than S, and so the set of ε-BCE of (G,S ′) is
contained in the set of ε-BCE of (G,S). But then, the sequence of empirical distributions converges
almost surely also to the set of ε-BCE of (G,S). As a result, the bounds on the payo� structure under
the ε-ANCR assumption for the misspeci�ed model remain valid for the true model, although they
might not be as sharp as those one would obtain under the correct speci�cation of the information
structure.

4.4.3 How Long to Equilibrium?

In empirical applications, the question often arises of how many observations one needs to consistently
estimate the parameters of interest. In our setting, this concern needs to be paired with an assessment
of how long it takes for the empirical distribution to converge to the set of ε-BCE (or ε-BCCE) of (G,S).

The answer to the latter question depends on the particular ε-ANCR (or ε-ANUR) algorithm that
players follow in the repetition of the one-shot game (G,S). For instance, if players play a Bayes Nash
equilibrium or a BCE of (G,S) in each period n, then the empirical distribution is in the set of BCE of
(G,S) since period 1. When players follow regret-based algorithms, Hart and Mansour (2010) show
that the rate of convergence to the set of correlated ε-equilibria of the underline complete information
game is polynomial in the number of players; given our signal-by-signal extension of regret-based
algorithms to incomplete information environments, one can show that the rate of convergence is
longer—as each player now needs to accumulate experiences for each of their signal—but remains of
the same order when players follow regret-based algorithms for the repeated play of (G,S).

In short, we cannot provide sharp rate-of-convergence results under minimal assumptions on be-
havior (i.e, without selecting a speci�c ε-ANCR (or ε-ANUR) algorithm). However, it is worthwhile
noting that converge to the set ε-BCE (or ε-BCCE) of (G,S) is, in general, faster that convergence to
Nash or Bayes Nash equilibria (or related solution concepts).
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4.4.4 An Alternative Empirical Model

An alternative setup is one where the same players take part in a panel of games. Formally, we allow
for a setM := {1, . . . ,M} of di�erent games, where we write m for a typical game, to be played in
every period n. Each game m has a (possibly overlapping) set of players Im. Game m in period n is
characterized by a vector of payo� shifters xm,n in a subset of Rdx , so that

ui (xm,n) : A×Θ→ R

for all xm,n ∈ Rdx , m ∈ M, and n ∈ N; payo� shifters are assumed to be common knowledge to all
players. We maintain the same structure of payo� states as in Section 4.2, so that a basic game m at
time n can be denoted as Gm,n :=

(
(Ai, ui(xm,n))i∈Im , ψ

)
. Timing is as in Assumption 4, so that play

now generates a sequence a sequence of actions, signals and states

(
(am,n, tm,n, θm,n)

)
m∈M,n∈N

from the repeated play of (Gm,n, Sm).
The interesting aspect of this setup is that now players may learn across di�erent markets by pooling

their experiences. We conjecture that this type of learning, formally de�ned with an appropriate no-
regret condition, could result in restrictions on the empirical distribution of actions in a cross-section
of markets, i.e., when the empirical distribution of actions is computed, for a given period n, across all
values of m. In turn, this may allow the econometrician to identify the underlying structure from just
cross-sectional data. Further work is needed to establish results in this direction.

4.5 Concluding Remarks

We propose an estimation strategy that is valid when data on strategic interaction are interpreted as
the long-run result of a history of game plays. We model players as interacting repeatedly, playing
an incomplete information game, and learning how to play. We remain agnostic on the details of
the learning process and we do not require the analyst to determine whether or when the learning
phase terminates and equilibrium behavior is observed. Instead, we only impose a minimal behavioral
assumption describing an optimality condition for the long-term outcome of players’ interaction. In
particular, we assume that play satis�es a property of "asymptotic no regret" (ANR). This condition
requires that the time average of the counterfactual increase in past payo�s, had di�erent actions been
played, becomes approximately zero in the long run. A large class of well-known dynamics satis�es
the ANR property: for example, this is the case for regret matching algorithms, calibrated learning,
and variants of �ctitious play. Moreover, the condition is trivially satis�ed if observed outcome are the
result of equilibrium play.

We show that, under the ANR assumption, it is possible to partially identify the structural parameters
of the underlying static game of incomplete information game. Identi�cation relies on the result that
the time average of play that satis�es ANR converges to the set of Bayes correlated ε-equilibria of the
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underlying static game. Consequently, we can use the limiting model to obtain consistent estimates of
the parameters of interest.

In future work, we plan to explore the extensions of our result for general data generating processes,
allowing for persistence in the process that determines the evolution of payo� states over time.
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4.6 Remaining Proofs

Proof of Theorem 5. [=⇒] Suppose the sequence of actions, signals, and states
(
(an, tn, θn)

)
n∈N

from (G,S) has ε-ANUR almost surely for some ε ≥ 0. Consider any subsequence
(
ZNl

)
l∈N

of(
ZN
)
N∈N

that converges almost surely to some ν ∈ ∆(A × T × Θ). We need to show that ν is a
Bayes coarse correlated ε-equilibrium of (G,S), i.e., that ν is almost surely consistent and ex ante
ε-obedient for (G,S).

Consistency. The proof of consistency is the same as for Theorem 3.

Ex ante ε-obedience. To begin, note the following:

V̂i(ti, k;N)− Ui(ti;N) =
1

N

N∑
n=1

[
ui
(
(k, an−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{ti}(t

n
i )

=
1

N

∑
θ∈Θ

N∑
n=1

[
ui
(
(k, an−i), θ

n)
)
− ui(an, θn)

]
1{ti}(t

n
i )1{θ}(θ

n) (4.20)

=
∑
a,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui(a, θ

)]
ZN
(
a, (ti, t−i), θ).

Now pick any i ∈ I , ti ∈ Ti, and k ∈ Ai. As lim supN→∞ R̂i(k; ti, N) ≤ ε almost surely, by de�nition
of R̂i(k; ti, N), we also have lim supN→∞

[
V̂i(ti, k;N) − Ui(ti;N)

]
≤ ε almost surely. But then, by

(4.20),

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui(a, θ)

]
ZN
(
a, (ti, t−i), θ

)
≤ ε almost surely. (4.21)

Moreover, on the subsequence
(
ZNl

)
l∈N

we get

lim
l→∞

∑
a,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui(a, θ)

]
ZN
l

(
a, (ti, t−i), θ

)
=
∑
a,t−i,θ

lim
l→∞

[
ui
(
(k, a−i), θ

)
− ui(a, θ)

]
ZN
l

(
a, (ti, t−i), θ

)
(4.22)

=
∑
a,t−i,θ

[
ui
(
(k, a−i), θ)− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
.

Together, (4.21) and (4.22) give∑
a,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
≤ ε almost surely. (4.23)

As i ∈ I , ti ∈ Ti, and k ∈ Ai were arbitrarily chosen, we conclude from (4.23) that ν is almost surely
ex ante ε-obedient for (G,S).

131



[⇐=] Now suppose the sequence of empirical distributions
(
ZN
)
N∈N

converges almost surely to the
set of Bayes coarse correlated ε-equilibria of (G,S) for some ε ≥ 0. Pick any i ∈ I , ti ∈ Ti, and k ∈ Ai.
By ex ante ε-obedience,

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(k, a−i), θ

)
− ui(a, θ)

]
ZN
(
a, (ti, t−i), θ

)
≤ ε almost surely. (4.24)

By (4.20) and (4.24),

lim sup
N→∞

V̂i(ti, k;N)− Ui(ti;N) ≤ ε almost surely.

This, by de�nition of unconditional regret,

lim sup
N→∞

R̂i(k; ti, N) ≤ ε almost surely.

As i ∈ I , ti ∈ Ti, and k ∈ Ai were arbitrarily chosen, the desired result follows. �
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