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Cattaneo, Tobias Etzel, Jasmin Fliegner, Niklas Garnadt, Karl Schulz, and many

others who helped me with the completion of my thesis.

For making my Ph.D. life so much easier, I am thankful to Anja Dostert, Regina

Mannsperger, and Sylvia Rosenkranz from the University of Mannheim, as well as

Sandro Holzheimer, Marion Lehnert, Dagmar Röttsches, and Golareh Khalilpour
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General Introduction

This dissertation consists of three self-contained chapters. The common theme is the

estimation of spillovers and their interpretation as networks. In financial economet-

rics, spillovers are mostly regarded as forecast error variance decompositions, i.e.,

a matrix constructed by a combination of vector autoregressive coefficients and an

innovation covariance matrix. For a pristine interpretation of these spillovers, the

estimation of the model’s parameters is essential. The three chapters deal with dif-

ferent peculiarities of the estimation. All chapters contain an empirical application

with separate insights. In Chapter 1, I deal with the estimation of structural ma-

trices in order to obtain a proper representation of contemporaneous spillovers. In

the empirical application, I look at the US financial system and volatility spillovers.

This chapter has also been my job market paper and, thus, it is the central part

of this dissertation. The second chapter is joint work with Carsten Jentsch. We

investigate the estimation of time-varying spillovers in the setup of local station-

arity. Empirically, we investigate financial spillovers between the biggest banks in

the US, Europe, and Japan. The last chapter is joint work with Matteo Barigozzi

and Christian Brownlees. We analyze the effect of high-dimensions on the estima-

tion of spillover tables. An application on the industrial production index in the US

aims to answer the question of whether the Great Moderation has changed spillovers

between sectors. A compound of the respective abstracts follows to give a summary.
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Chapter 1

On Causal Networks of Financial Firms:

Structural Identification via Non-Parametric Het-

eroskedasticity Modeling.

We investigate the dependency structure of the US financial system. To account for

contemporaneous relations, we introduce a novel non-parametric approach to iden-

tify structural shocks, which exploits the fact that most financial models empirically

exhibit heteroskedasticity. The identification works locally and, thus, allows struc-

tural matrices to vary smoothly with time. A network application demonstrates

the functionality of our approach by analyzing volatility spillovers of financial firms.

The estimation of a causal network uncovers their contemporaneous directional de-

pendencies. In this setup, we derive a new measure of systemic relevance, which

highlights the most central institutions over the last two decades. Finally, we detect

a change in the network architecture beginning in March 2017. This change is due to

an increase in the systemic relevance of JPMorgan Chase, which is the most central

institution as of June 2018.

Chapter 2

On Time Variation of Financial Connectedness and

its Statistical Significance

Diebold and Yılmaz (2014) introduced a new way of estimating a unified network

and successfully established a new standard in monitoring systemically important

risk figures. Using a rolling window approach which sweeps through the sample,

they implicitly assume that networks evolve smoothly over time. Although rolling-

windows are heuristically easy to interpret, their theory lacks asymptotics. In this

paper, we aim to fill the gap of statistical inference and generalize the idea of financial

connectedness within the framework of local stationarity. For this purpose, we

propose a local linear kernel estimator for VAR coefficients curves. As the limiting

distributions are too complex for practical applications, we propose a new bootstrap

scheme for inference. In an extensive simulation study, we show the performance and

2



accuracy of this method. An application on financial volatility spillovers provides

new insights into the dynamics of financial connectedness. We also advise on how

to handle bandwidth selection.

Chapter 3

Estimation of Large Dimensional Connectedness

Tables

Forecast error variance decompositions are a popular way to describe spillover net-

works in a unified fashion. For this unified network estimation, it is essential to

include all variables. Obtaining such tables in a high-dimensional setup is chal-

lenging as they result from estimations of vector autoregressive coefficients and the

covariance matrices. Naturally, we resort to regularized estimators to get consis-

tent and accurate estimates. In this study, we carry out a comprehensive analysis

of different regularization methods and introduce a novel way to regularize network

tables. We compare these methods in an extensive simulation to shed light into their

estimation uncertainty. We find that when the number of nodes in the network is

large, ordinary least squares induces a bias for the entries of interconnectedness ta-

bles towards unity. Also, we show that regularization of the innovation covariance

matrix is key to optimal performance. An application on sectoral spillovers of in-

dustrial production in the US from 1972 to 2007 gives insights into the amendments

happening at the Great Moderation. With the assistance of regularization methods,

we obtain a meaningful distribution of in- and outgoing connectedness. We find that

a handful of sectors decreased their outgoing links to an extent which could have

caused the Great Moderation.
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Chapter 1

On Causal Networks of Financial

Firms

1.1 Introduction

In the financial crisis of 2007, the term “systemic risk” has been popularized by the

media after stock market reactions symptomized the entanglement of the financial

system. American International Group (AIG) asked for liquidity support from the

Federal Reserve, which decided for a bailout due to reactions on preceding defaults.

Although the individual systemic risk was the reason for the bailout, the term “in-

terconnectedness” better describes the origin of the problem: the tight entanglement

of firms.

In particular, Diebold and Yılmaz (2015) point out the importance of this concept

and link it to various aspects of risk. For example, portfolio risk and default connect-

edness are not only the sum of their increments but rather inherit their attributes

by a combination of idiosyncratic risks and interdependencies. Similarly, gridlock

(network) risk (see Brunnermeier, 2009) and systemic risk are results of the con-

nectedness of firms. Alongside linear correlation measures, it is essential to uncover

the interconnectedness of firms to allow for more sophisticated risk management.

Therefore, this study investigates the dependency structure of financial institu-

tions in the US by estimating a network graph, which represents interconnectedness.

In contrast to previous studies, we include a contemporaneous directed network by

employing a structural vector autoregression (SVAR). We work under the assump-

tion that parameters in our model are time-varying but still smooth enough for

4



estimation. In this framework, we find conditions under which structural parame-

ters are identified.

To build intuition, we want to highlight the importance of information about the

full set of contemporaneous dependencies. It is essential to know about direct de-

pendencies caused by contractual obligations such as liability structures, deposits,

and payments through the interbank clearing system. However, from a network

perspective, the stability of a system is not only affected by the average intensity

of pairwise associations, but it also depends on its network architecture (see Ace-

moglu et al., 2015). It is conceivable that different network architectures with the

same average connectedness are exposed differently to individual shocks. Take, for

example, the case of a cyclical dependency structure of banks. A significant shock

propagates step by step through all banks such that a default of one firm starts a

domino effect, which causes the whole system to default. In the case of a complete

network, i.e., all banks are connected, the diversification of the links absorbs the

shock. In a nutshell, the estimation of a unified network of directional dependencies

is closely related to the question of a system’s financial stability and, thus, it is of

vital importance for policymakers in order to react adequately.

In principle, multivariate time series analysis could estimate the full set of di-

rectional dependencies by observing responses over an extended period. However,

we require high-frequency data such that fast responses can be captured. Unfor-

tunately, the only high-frequency data available is prone to the bid-ask spread and

other problematic phenomena. Less-frequent data almost always misses out on direct

responses and, thus, standard statistical tools can only visualize them as undirected

co-movements or correlations. In other words, uncovering contemporaneous direc-

tional dependencies with standard time series analysis is usually a fruitless challenge.

One way to overcome this issue is to ignore potential short-term dependencies by

approximating them with an undirected covariance matrix of the error terms. Con-

sequently, long-term dependencies, e.g., Forecast Error Variance Decompositions,

are not fully understood.

A methodological contribution of this paper, then, is to introduce an approach

which identifies contemporaneous dependencies. This approach exploits the fact that

most financial models exhibit heteroskedasticity. That is, the covariance matrix of

the error terms varies over time. We follow an approach free of any functional form

and parametrize its local time-trend using a Taylor expansion. To decompose the

5



covariance matrix into its structural components, we propose two separate assump-

tions on the time-variation of the connectedness parameter and the idiosyncratic

volatility of structural shocks. More precisely, volatility has to alternate faster than

connectedness. Intuitively, this assumption ensures that we can attribute all lo-

cal time-variation to changes in idiosyncratic volatility. The additional covariance

structure from the Taylor expansion doubles the number of equations such that it

matches the number of unknowns. This way, we can identify structural parameters

when the connectedness matrix alternates reasonably slower than the idiosyncratic

volatility of the shocks. Unlike previous work, this local identification improves on

the assumption of static connectedness by allowing for dynamic parameters. Fi-

nally, in the network application, we introduce a new intuitive centrality measure

for financial firms.

The estimation of return volatility spillovers offers new insights into the average

connectedness of US financial firms. The results suggest that the most significant

peaks in spillovers occurred in the financial crisis. However, we find that spillovers

also peak at times where average return volatility does not. Moreover, we see a

higher spillover from stocks of financial firms to the stock market index than vice

versa. This finding is in line with the observation that financial crises are almost

always more severe than general economic crises. A snapshot analysis reveals that

all firms but Goldman Sachs receive spillovers from AIG around the time of the

bailout. Finally, we highlight the systemic relevance of institutions over the last two

decades. In particular, we find that JPMorgan Chase shows a significant increase in

relevance since the official Brexit. As of June 2018, it is the most systemic relevant

financial institution. This result suggests that policymakers and regulators are well

advised to monitor JPMorgan Chase’s financial health carefully.

Our study is related to three strands of the literature: the empirical studies of

connectedness, the identification of structural shocks and the estimation of time-

varying coefficients.

While the earlier literature measures dependencies as pairwise associations, e.g.,

Adrian and Brunnermeier (2011) and Brownlees and Engle (2012), the whole con-

cept of connectedness as a network has first been addressed by Diebold and Yılmaz

(2014). Their main claim is the interpretation of Forecast Error Variance Decom-

positions as networks. However, this framework only considers contemporaneous

relations as undirected correlations. Then, if most significant reactions occur con-

6



temporaneously, this method is prone to misspecifications since it only estimates

slower reactions. Thus, dynamic propagation is less credible for most applications.

For example, in a volatility context, investors are more alerted in turbulent periods

and, thus, it is conceivable that a substantial part of the responses occurs within

the same day, i.e., contemporaneously.

Another approach to estimating directed dependencies is Granger-Causality test-

ing. For example, Billio et al. (2012) provide a binary network with entries based on

positive Granger-Causality tests. However, these particular tests are carried out for

multiple lags and, hence, also ignore contemporaneous directionality. In contrast,

Barigozzi and Brownlees (2013) tackle directional dependencies with equation-wise

LASSO-type techniques to estimate a sparse causal contemporaneous network. Yet,

a precise non-sparse contemporaneous causal network remains imperfectly estimated

at best. De Santis and Zimic (2017) directly estimate a network by employing

a structural VAR, which is, however, only set-identified. In a nutshell, empirical

applications suffer under restrictive assumptions on the contemporaneous relations.

Note that the question of contemporaneous relations is equivalent to the identifi-

cation of structural shocks. Such shocks are generally interpreted as unexpected un-

correlated exogenous innovations with economic interpretation. As aforementioned,

structural shocks always require identification restrictions. The earlier literature

mostly tackled this issue with the exclusion of effects, e.g., via triangularization

as in Sims (1980) or via long-run restrictions as in Blanchard and Quah (1988).

Equality constraints, however, are too restrictive for many economic applications.

Therefore, set-identification of structural shocks by inequality restrictions as in Uhlig

(2005) are popular in applications.1

A smaller strand of the literature finds that changes in the variances of shocks

can identify parameters of the contemporaneous connectedness matrix (see Rigobon

and Sack, 2003). This relatively mild assumption generated attention as the pres-

ence of heteroskedasticity in the form of time-varying volatility is uncontroversial in

most applications. In particular, they assume discrete volatility regimes which need

to be determined. Prominent extensions as Markov-switching processes by Lanne

et al. (2010) and GARCH by Milunovich and Yang (2013) model heteroskedasticity

parametrically absent of external information. However, for most applications, the

1Fry and Pagan (2011) point out the advantages and disadvantages of this method and high-
lighted explicitly that the estimations are not interpretable with probabilistic language.
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implications of Markov-switching and GARCH models are too restrictive due to the

functional form assumptions. Thus, Lewis (2017) uses non-parametric heteroskedas-

ticity to identify a finite set of possible solutions. In contrast, the non-parametric

approach in our paper point-identifies structural parameters and, moreover, allows

for time-variation in the response matrix.

In the time-variation literature, a critical challenge is the derivation of restric-

tions to ensure positive definiteness. For example, Primiceri (2005) use a triangular

decomposition and impose a prior on the evolutionary process. However, such priors

are prone to misspecification for two reasons. First, the identification assumptions

for the decompositions are just a loose approximation of the truth and hence lead to

estimation uncertainty (see Bognanni, 2018). Second, distributional assumptions on

the dynamics dissent with the econometrician’s direct interest of unveiling the evo-

lution of the coefficients itself. To address this issue in the context of auto-regressive

models, Dahlhaus et al. (1997) provide a prior-free estimation procedure motivated

by the concept of infill asymptotics. In line with this idea, our prior-free estima-

tion of the structural components may be adapted to Bayesian estimation since it

is almost always concordant with less restrictive sampling methods.

The remainder of the paper is organized as follows. Section 1.2 first sets up

the mathematical framework and briefly summarizes the structural identification

problem. Within this framework, the same sections states identifying assumptions

in 1.2.3 and offers a likelihood-based extremum estimator in 1.2.4. In Section 1.3,

we apply this approach to provide further insights into contemporaneous causal

networks of financial firms in the US. Section 1.4 concludes.

1.2 The Model

1.2.1 Terminology and General Setup

In the application, we consider a structural VAR model, but more broadly, we first

introduce an N dimensional vector process ut with contemporaneous interdepen-

dence. ut can either be directly observed or obtained from a reduced form model.

For example, for a time series yt we have A(L)yt = ut, where A(L) is a matrix

function of the lag operator L. Contemporaneous interdependence is described by

A0,tut = Btεt, ∀t = 1, ..., T, (1.1)
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where the structural matrix A0,t is a real valued parameter matrix of size (N ×N)

with full rank and unit diagonals. Bt is diagonal matrix with real valued positive en-

tries. The structural shocks εt have a multivariate distribution with mean zero and

unit variance. The unit diagonal of A0,t and the diagonal structure of Bt ensure that

all connections of the N variables are in the off-diagonal of A0,t. Heteroskedasticity

is now included by Btεt and is without further restrictions unconditional. Moreover,

since A0,t is also assumed to be unconditional, we can use multiple estimation tech-

niques (e.g. General Methods of Moments, likelihood methods, or General Least

Squares).

Note that the basic structural equation reads ut = Stεt with St as the structural

matrix. Both problems can be regarded as equivalent since diagonality of Bt and the

unit diagonal of A0,t ensure that there exists a unique decomposition of St = A−1
0,tBt.

The decomposition into A0,t and Bt allows to impose different assumptions and is

essential for heteroskedasticity identification. The restrictions we consider focus on

the time evolution of matrix entries and are generally in line with the most recent

literature on time-varying parameters.2

Time-Variation Assumptions. For all t ∈ (1, ..., T ), Parameters θt = (A0,t, Bt)

are bounded random and/or deterministic processes independent of εt. They satisfy

(A0) smoothness: for 1 ≤ k ≤ t and k →∞: supd:|d|≤k ||θt − θt+d|| = Op(k/t)

Further,

(A1) local-linear volatility: Bt has a time-derivative or time-trend different

from zero

(A2) local-constant connectedness: A0,t has a slower alteration rate, i.e., for

some c > 0: supd:|d|≤k ||A0,t − A0,t+d|| = Op(k/t
1+c) = op(k/t)

The smoothness condition (A0) implies that parameters drift slowly with time.

In particular, this condition enables consistent estimation and allows for local ap-

proximations. Moreover, (A1) and (A2) ensure identification of parameters since

we assume different time-variation behavior. In fact, the difference in the conver-

gence (alteration) rate is the identification assumption. By (A0), the heteroskedas-

tic volatility parameter Bt is assumed to have an asymptotic derivative, which (A1)

ensures to be different from zero. In contrast, (A2) states that A0,t changes slower

2see e.g. Giraitis et al. (2016).
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such that its derivative or time-trend is negligible. In a nutshell, we expect volatility

depicted by BtB
′
t to evolve faster than connectedness in A0,t.

Assumption (A0) is a generalization of the standard assumptions for locally sta-

tionary processes. Namely, in the work of Dahlhaus et al. (2006) the parameter

θt = θ(t/T ) is assumed to be smooth, deterministic and piecewise differentiable. In

contrast, (A0) also allows for stochastic parameter processes but ensures the nec-

essary degree of persistence in the entries. Assumptions (A1) and (A2) are further

specifications under the smoothness condition. While Bt is linear with a non-zero

gradient for sufficiently small segments, A0,t is constant on the same segment. In-

tuitively, variations in Bt dominate variations in A0,t and thus we can neglect the

latter. In sections 1.2.3 and 1.2.4, we make clear how this dominance comes into

play.

Different from previous studies about heteroskedasticity identification, these con-

ditions are more flexible since they allow A0,t to be time-varying. Whereas this ap-

proach also functions under static A0,t, we are later forced to adopt time-variation

due to the estimation procedure. Relaxation of the time-invariant assumption, how-

ever, tackles the most prominent critique of identification via heteroskedasticity,

which states that time-variation in Bt is expected to accompany with time-variation

in A0,t.

1.2.2 Structural Identification in a Nutshell

To get further insights in the identification and estimation, we take the respective

reduced form of (1.1),

ut = A−1
0,tBtεt, E[utu

′
t] = Σt = A−1

0,tBtB
′
t A
−1
0,t
′
. (1.2)

Consequently, we get ut as a forecast error with unconditional covariance matrix

Σt. Although, we can estimate Σt, we are not able to deduce the structural com-

ponents from it. In fact, we need at least (N − 1)N/2 further relations to uniquely

identify A0,t and Bt. This requirement immediately follows from the (N2 + N)/2

equations provided by Σt and the N2 unknowns in (A0,t, Bt).

In order to understand the challenges of structural identification, we follow Rubio-

Ramirez et al. (2010), and introduce the concept of observational equivalent matri-

ces. In short, two structural parameter points are observational equivalent if and
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only if they yield the same reduced form distribution of ut. In our setting, this

holds true if they yield the same Σt. To visualize this phenomenon, we redefine the

structural parameters such that

Σt = StS
′
t, (1.3)

with St = A−1
0,tBt.

Consequently, any parameter set {S̃t = StQ|QQ′ = IN} satisfies (1.3) and thus

produces the same distribution. In the context of SVARs, we end up with the same

observations. The equivalence follows directly from the orthogonality of Q and can

be observed by plugging it into (1.3).

Note that whenever there exists more than one observational equivalent struc-

tural parameter, the structural model is not identified since they all yield the same

distribution. Thus, the set of orthogonal matrices defines all possible solutions in an

estimation. However, the process in (1.1) suggests that only one St is correct. The

fact that we can only observe and directly estimate (1.3) limits identification and

estimation of the real structural parameters in (1.1) to the set of observational equiv-

alent matrices. To obtain local identification of the structural parameters (A0, Bt),

we need to rule out all Q’s but Q = IN such that only the true S̃t = St remains.

In the literature overview, various identification schemes have already been

pointed out. To sum up, conditions on the parameter space, such as exclusion

and long-run restrictions, are sufficient for local identification. However, econom-

ically motivating these restrictions is usually a fruitless challenge. Therefore, we

desire weaker conditions to fit more applications. Sign restrictions, for example, are

easy to motivate, but only reduce the number of observational equivalent parame-

ters to more than one S̃t. In this case, we call the parameters to be partially or set

identified.

Although sign restrictions are frequently applied, they fall short when it comes

to the interpretation of the estimation results. Fry and Pagan (2011) point out

that solutions to the estimation cannot be interpreted with probabilistic language

anymore, due to the fact that all but one S̃t are untrue.3 Moreover, in the context of

time-variation, set identification prohibits to depict point dynamics and only allows

3In a first attempt of this paper, time-variation was used to evaluate the goodness of fit of a
single S̃t in the set of partially identified parameters, but it proved to be infeasible obtaining the
complete set of observationally equivalent solutions.
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for interval dynamics, which are, as pointed out, non-probabilistic. Therefore, this

study focuses on point-identification by exploiting the mild assumptions (A1) and

(A2) for time-varying parameters.

1.2.3 Identification via Non-parametric Heteroskedasticity

Modeling

Since this approach intends to work under parsimonious conditions, identification

and estimation of parameters have two conceptional tasks. First, identification of

structural parameters should proceed absent of any equality restrictions and para-

metric assumptions, and second, time-varying parameter estimation should be prior-

free. To overcome these challenges, we double use the local-constant and local-linear

assumptions for both tasks. That is, identification works under the assumptions (A1)

and (A2), and estimation requires (A0) and (A2). In so doing, we take the idea of

Rigobon and Sack (2003), who point out that structural parameters are identifiable

when models exhibit heteroskedasticity. More precisely, since Bt must have at least

two distinct values in (1.1), it is time-varying.

In the past, time-varying Bt have been modeled similarly with different ap-

proaches. Two examples are the previously mentioned Lanne et al. (2010), who

use a two-state Markov-Switching model, and Milunovich and Yang (2013), who

estimate Bt with a parametric GARCH model. Both papers establish an identifica-

tion scheme by parametrizing heteroskedasticity in their models. However, it comes

with the cost of functional form assumptions, which makes estimations sensitive to

their compliance. For example, we find structural GARCH estimation numerically

unstable due to the possible dissents between GARCH estimation and structural

identification. Therefore, this paper targets to avoid the parametrization of het-

eroskedasticity.

Identification

Non-parametric heteroskedasticity modeling challenges identification due to the miss-

ing parametric gains. To still gain additional parametric information, we exploit

the assumption of asymptotic differentiability and, thereby, we can stay in a non-

parametric environment. Precisely, this assumption allows us to apply a derivative

process to model heteroskedasticity and fit a locally weighted kernel estimator. The
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local optimization of an objective function with respect to the functional value and

its derivative gives us additional knowledge about the drift of the parameters. Such

drifts can be estimated and, therefore, be parametrized.

To benefit from infill asymptotics, we approximate continuity of time by rescaling

the time domain [1, ..., T ] to the unit interval. We replace A0,t, Bt and Σt by A0,t/T ,

B(t/T ) and Σ(t/T ). Note, that while we have a functional notation for B(t/T )

and Σ(t/T ), we leave time as subscript character for A0,t/T since the asymptotic

derivative ∂A0,t/∂t = 0. In particular, we use a Taylor-type expansion around τ for

a piecewise differentiable function f(·),

f(t/T) = fτ + (t/T − τ)ḟτ + 1/2(t/T − τ)2f̈τ + · · · .

For clarity, we left out the functional notation for realisations. Precisely, we denote

the functional value at τ with the subscript τ . The number of dots above fτ denotes

the respective derivative at τ , e.g. f̈τ = (∂2f/∂t2) (τ) . In order to keep assumptions

as parsimonious as possible, we use a Taylor series of degree one, which is sufficient

for exact identification. Fitting any other degree larger than one makes the assump-

tions over-identifying and, hence, testable.4 A higher degree is easily achievable by

following the same steps as in this paper.

Before we start, it is worth spending a thought on the parametric target of the

Taylor expansion. The main issue is its linear nature, which approximates time-

variation as a sum of the functional value and its derivative. While summands can

easily be torn apart for estimation methods such as General Method of Moments,

this form makes it hard for objective functions which include the inverted argument.

More precisely, likelihood-based estimations suffer since the covariance matrix ap-

pears in an inverted fashion. To understand this problem, take the innovation covari-

ance matrix Σ(t) and Taylor expand it around τ . It reads Στ (t) ≈ Στ + ( t
T
− τ)Σ̇τ .

Plugging this matrix function in the log-likelihood results in an inconvenient repre-

sentation due to the inverse of Στ (t) (see section 1.2.4).

Taylor expanding the inverse covariance matrix (also called the concentration or

precision matrix) obtains a more elegant representation. Barigozzi and Brownlees

(2013) point out the advantages of parametrizing the concentration matrix instead

of the covariance matrix itself. In fact, the entries of the concentration matrix re-

4Note, that the test can detect if the assumptions are too restrictive but can not indicate which
assumptions violate the observations.
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late to the contemporaneous correlations between two variables conditional on oth-

ers. Namely, partial correlations ρij depend on entries of the concentration matrix,

Σ−1(t), in the following way,

ρij = − Σ−1(t)ij√
Σ−1(t)iiΣ−1(t)jj

.

This matrix is still symmetric, but it already comes close to the matrix of causal

dependencies. The entries in the covariance matrix, in contrast, are affected by many

conditional correlations and thereby are a mix of many dependencies. Although, the

dependency structure of this matrix still contains undirected connections,5 we see the

Taylor expansion of the concentration matrix, Σ−1(t), superior. Moreover, targeting

the concentration matrix allows for a more appealing objective function but does

not affect estimation and identification.

The Taylor expansion for Σ−1(t/T ) = A′0,t/TB(t/T )−2A0,t/T around τ reads

Σ−1
τ (t/T ) ≈ Σ−1

τ + (
t

T
− τ)Σ̇−1

τ , (1.4)

Σ−1
τ = A′0,τB

−2
τ A0,τ (1.5)

Σ̇−1
τ =

∂(A′0,τB(τ)−2A0,τ )

∂τ
(τ)

= Ȧ′0,τB
−2
τ A0,τ − 2A′0,τB

−3
τ ḂτA0,τ + A′0,τB

−2
τ Ȧ0,τ , (1.6)

where the last equation follows from the chain rule and the diagonality of Bτ . To

build intuition for the derivative of a function under the assumptions (A0) and (A2),

we illustrate the (infill) asymptotics of the time-varying process. For two arbitrary

points τ and τ + t/T , the functional difference in the limit becomes the derivative,

lim
T→∞

θ(τ + t/T)− θ(τ)
t/T

=
∂θ

∂τ
(τ).

By assumption (A0), this limit exists and therefore the derivative is asymptotically

defined. Additionally, (A2) ensures that the derivative of A0,τ goes to zero with

convergence rate T . For the sake of clarity, derivatives of A0,t will be dropped since

5Take, for example, the case with Bt as the identity. The direct dependencies in A0,t stay
hidden due to the symmetry of Σ−1(t) = A′0,tA0,t
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assumption (A2) ensures asymptotical negligibility. (1.6) becomes

Σ̇−1
τ = −2A′0,τB

−3
τ ḂτA0,τ . (1.7)

Intuitively, the assumptions allow to attribute all variation in Στ to variations in

Bτ , and, hence, provides additional information about A0,t. The mapping from the

structural parameters to the reduced form ones is consequently given by (1.5) and

(1.7), where there are N(N+1) reduced form parameters in (Σ−1
τ , Σ̇−1

τ ) and N(N+1)

structural parameters in (A0,τ , Bτ , Ḃτ ).

In the Appendix, Proposition 1 shows the conditions for identification of the

mappings. However, as B−2
τ is squared, Bτ ’s and Ḃτ ’s identifications are subject to

sign changes. We can easily solve this issue by restricting the elements to be positive,

which in turn imposes sign restrictions on Ḃτ . Fortunately, from construction, we

never sought to identify the derivative. It just serves as a tool to find A0,τ and

Bt and does not hold any interpretational value. In summary, identification results

from the mappings in (1.5) and (1.7) and, therefore, estimation of the structural

parameters is possible if we can find estimates for Σ−1
τ and Σ̇−1

τ . Note that, in

contrast to previous approaches, identification works for one observation τ and thus

is independent of others. Not only this peculiarity allows for time-variation in both

parameters, but also, it leads to a local estimation function, which is well tractable.

The condition ḃi/bi 6= ḃj/bj for all i 6= j assumes that the relative derivatives of

the structural variances are never the same for two variables. Considering that it

is highly unlikely that relative marginal changes of structural variances match the

same value, we come to the conclusion that this assumption holds for heteroskedas-

ticity applications with (A1) and (A2) fulfilled. Nevertheless, we are aware of the

potentially increasing identification uncertainty in case two relative derivatives are

close in magnitude. In applications where a common factor drives the structural

variances, violation of this condition represents a more serious problem. For exam-

ple, the market’s mood mostly drives heteroskedasticity for stock volatility, and it

is conceivable that relative changes in orthogonal variances are subject to changes

in mood. In this case, since we expect a common factor in the mood, the model

should equate for it.
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1.2.4 Extremum Estimator

In this section, we propose an estimator for the local-constant local-linear assump-

tions. Recall that, in contrast to previous heteroskedasticity literature, we only

require parameters at one observation for identification. This idiosyncrasy allows

us to estimate the structural parameters point-wise. In so doing, we tackle a weak-

ness of previous papers, which need to assume that A0,t is constant over multiple

periods. In our setup, this assumption leads to over-identification. We could test

over-identified models, but it is highly likely that we reject the null hypothesis.

Therefore, we focus on the estimation of time-varying A0,t.

Let l(ut|θτ ) be the likelihood of the reduced form vector ut to occur under the

parameters of θτ . With slight abuse of notation, θτ now consists of the structural

parameters (A0,τ , Bτ ) and the derivative Ḃτ .

By plugging in the structural parameters in the log-likelihood for normally dis-

tributed errors we get

l(ut|θτ ) = −1

2
ln|2π| − 1

2
ln|Στ (

t

T
)| − 1

2
u′tΣ

−1
τ (

t

T
)ut,

= −1

2
ln|2π|+ ln|A0,τ |+

1

2
ln|B−2

τ (IN − 2(
t

T
− τ)ḂτB

−1
τ )|

−1

2
u′tA

′
0,τB

−2
τ A0ut −

1

2
u′tA

′
0,τ (−2)(

t

T
− τ)ḂτB

−3
τ A0,τut,

with | · | denoting the matrix determinant. Note that, we take the log-likelihood of

any time point t with parameters at τ . This step is necessary for local estimation

techniques and requires us to have approximations for t 6= τ . In particular, we

use (1.4) to get an idea of other time points. Although, the setup implies uncon-

ditional covariance matrices, we plug in the conditional moments in the likelihood.

Implications of this necessity are pointed out at the end of this section.

Due to the nature of Taylor approximations and local smoothing estimators,

we choose an extremum estimator as in Giraitis et al. (2016). This estimator is

similar to Fan et al. (1995)’s quasi maximum likelihood (QML) estimator. It is

well known, that under correct specifications and identification of parameters the

QML with normal distribution is consistent. In the time series context, QML is

consistent and asymptotically normal under regularity conditions (see Bollerslev and

Wooldridge (1992)). In contrast to QML, the extremum estimator estimates locally

due to different weights for log-likelihood realizations. Precisely, it weights residual
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log-likelihoods with a pre-specified kernel Kh(x) = K(x/h)/h and bandwidth h.

The kernel is a symmetric continuous bounded function with compact support and

normalized to one. Moreover, the bandwidth h satisfies h → ∞ and h = o(T 1/2).

The log-likelihood at t has weight Kh(t/T − τ) for the estimate at τ such that the

extremum estimator reads

Lτ (θτ ) =
T∑
t=1

Kh(
t

T
− τ)l(ut|θτ ). (1.8)

We reformulate (1.8) with the properties of the Kronecker product, determinant and

inner product, and obtain

Lτ (θτ ) = c+ ln|A0,τ | − ln|Bτ |+
T∑
t=1

Kh(
t

T
− τ)

1

2
ln|IN − 2(

t

T
− τ)ḂτB

−1
τ |

−1

2
trace(Σ̃τA

′
0,τB

−2
τ A0,τ ) + trace( ˜̇ΣτA

′
0,τ ḂτB

−3
τ A0,τ ), (1.9)

with

Σ̃τ = UWU ′, W = diag(Kh(
1

T
− τ), ..., Kh(

T

T
− τ)),

˜̇Στ = UDWU ′, D = diag((
1

T
− τ), ..., (

T

T
− τ)).

where c is a constant term encompassing −1
2
ln|2π| and U = [u1, ..., uT ] is the matrix

of realizations of ut. Note that Σ̃τ and ˜̇Στ represent the local (least square) estimates

with a kernel weighting. Finally, optimizing (1.9) with respect to (A0,τ , Bτ , Ḃτ )

obtains the estimates for the structural parameters.

To build intuition for the functionality of the estimation, we inspect its two ap-

proximation errors. First, the Taylor expansion of Στ (t/T ) around τ yields an error

at observations different from τ . In the local polynomial estimation, this error is

asymptotically negligible by the smoothness assumption (A0). Second, the mapping

of θτ = (A0,τ , Bτ , Ḃτ ) to Σ̇τ ignores the trend/derivative of A0,τ . Clearly, account-

ing for this term makes computations numerically expensive and requires priors. In

the time-varying setup, assumption (A2) depicts a mild prior and ensures that this

approximation is asymptotically negligible as well.6 Intuitively, it is sufficient that

6In fact, the term
∑T
t=1Kh( tT −τ)(l(ut|θt)− l(ut|θτ )) is asymptotically negligible due to similar

arguments as in Giraitis et al. (2016) Clearly, the kernel automatically gives less weight to τ∗ distant
from τ and comprises the approximation errors for Στ∗ . Note that by construction Σt also fulfills
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A0,τ is locally constant over intervals where Bτ is not such that all variations in Στ

are evoked by variations in Bτ . This condition is ensured by A0,τ ’s slower alteration

rate.

1.3 Causal Financial Connectedness

1.3.1 A causal network model

In empirical applications, structural models are prominent in macroeconomics and

financial econometrics. While macro data such as unemployment, GDP, and in-

flation are mostly available at low frequencies, financial data such as return and

volatility are rich in, both, frequency and variables. This abundance allows for a

variety of applications but also challenges us to deal with its peculiarities. In par-

ticular, return, and volatility parameters are mostly considered to be time-varying

due to different market sentiments over time.

We exploit time-variation of the coefficients and innovation covariance matrix

by aligning our model within the setup of Diebold and Yılmaz (2014)’s daily stock

return volatilities. In their application, they estimate rolling window FEVDs and

interpret them as financial networks. As aforementioned, generalized FEVDs fall

short when it comes to accounting for contemporaneous dependencies. In particular,

in the setup of daily volatilities, it sums up all within-day dependencies and models

them as undirected correlations. However, it is highly conceivable that most of the

significant reactions on strong adverse shocks occur on the same day. The generalized

FEVD ignores the direction of these reactions. Therefore, we extend Diebold and

Yılmaz (2014)’s approach by a contemporaneous directed network to provide new

insights into the contagion process.

We model a system of N financial institutions and assume it to contain the most

important firms, such that there are no other significant effects. Then, business

between the firms in form of contractual obligations creates financial dependencies.

The set of financial dependencies spans a structure, which we want to estimate

to deduce systemic issues. More precisely, the dependencies in this structure can

present various key figures. For example, we can see how gains, losses, and risk

of firms are dependent on the financial success of others. For a given horizon, we

(A0)

18



interpret this structure as a network and analyze it with tools from the literature.

Various response times help us to understand different kinds of dependencies

and, therefore, we define networks for various time horizons. In particular, networks

appear in three forms in our analysis. First, the causal network Gt depicts immediate

reactions/direct dependencies. For daily observations, it is loose but perhaps helpful

to see this matrix as a within-seconds reaction type. Second, A−1
0,t is the impact

network and also appears contemporaneously, but quantifies the contagion result

at the one-step forecast errors ut. Loosely speaking, this matrix shows the end-of-

the-day outcome of chain reactions in case of daily observations. Third, a spillover

network shows the dynamic propagation of shocks after H periods. More precisely,

this matrix is employed as a Forecast Variance Decomposition, which we introduce

in Section 1.3.2. To account for propagation, we include dependency over periods

via lags in the regression.

Analogously to Diebold and Yılmaz (2014), we employ a VAR(3) model with

daily observation of volatility. The structural model reads

yt = αt +Gtyt + A1,tyt−1 + A2,tyt−2 + A3,tyt−3 +Btεt, ∀t = 4, ..., T (1.10)

where yt is an N dimensional time series vector of observables and Gt is an (N ×N)

adjacency matrix with zero on the diagonal. The network Gt contains nodes and

links representing firms and dependencies respectively. We assume it to be directed

and weighted, i.e. Gt is non-symmetric and has non-negative values.7 A1:3,t are real

valued time-varying autoregressive matrices within the boundaries of stationarity.

Bt is a (N × N) diagonal matrix representing the idiosyncratic risks and εt is the

normalized structural shock vector. αt is a vector of intercepts. Note that the infill

asymptotics require a rescaled time domain. In the application however, we stick to

the notation of discrete time for a more convenient representation.

To build intuition how non-negative entries inGt ensure a network decomposition,

we inspect A0,t in (1.1) more carefully and link it to (1.10). Since A0,t has ones on

the diagonal by assumption, we decompose the structural equation in an additive

7Note that the assumption of non-negative values for Gt is not necessary for identification,
but helps us to ensure a network decomposition. In the context of volatility spillovers, however,
this assumption is plausible and helps to make the numerical optimization computationally more
stable. Moreover, test for over-identification restrictions did not reject the null.
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structural equation

A0,tut = Btεt,

ut = Gtut +Btεt,

Gt = (IN − A0,t).

Clearly, the existence of Σt implies that A0,t is invertable. Hence, the geometric series

(IN −Gt)
−1 =

∑∞
k=0G

k exists and is finite. In return, the maximum magnitude of

Gt’s eigenvalues, i.e. the spectral radius ρ(Gt), has to be smaller than 1. With

all entries being non-negative, Gt has only values in [0, 1). Then, Gt is, in fact,

an adjacency matrix. In the literature of financial connectedness, this condition

is known as a magnitude restriction. For example, De Santis and Zimic (2017)

condition the effect to other shocks being smaller than the idiosyncratic effect.

1.3.2 Forecast Error Variance Decompositions for SVARs

For insights into the propagation of shocks, we analyze Variance Decompositions for

a given time horizon. Forecast Error Variance Decompositions (FEVD) are essential

for connectedness analyses since they predict how much of the forecast’s variance

is explained by other variables. They, therefore, show the estimated contributions

to other variables. The resulting matrix shows the dependency structure for the

forecast horizon and depicts a network matrix in our analysis.

Unfortunately, the estimation of the first impulse responses still poses a crucial

problem for higher horizons. The respective FEVD, therefore, suffers under the

decomposition of the covariance matrix. To address this issue, Generalized Fore-

cast Error Variance Decompositions (GVD) from Pesaran and Shin (1998) use a

correlation-based approach to get an idea of the first forecast error. The main

advantage over the (orthogonal) triangular Cholesky decomposition is that it is in-

variant to reordering. However, it misses out on the directions of contemporaneous

dependencies due to the pairwise nature of correlations.

In contrast, the structural VAR implies a decomposition of the covariance matrix.

More precisely, the structural representation allows to label structural shocks, and

thereby, we can see structural shocks as they are emanating from the respective

source.

We start with the MA(∞) representation for forecast errors ut
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yt =
∞∑
k=0

Φk,tut−k, Φ0,t = IN , ∀t = −p+ 1, ..., T, (1.11)

where we can use ut = A−1
0,tBtεt such that (1.11) becomes

yt =
∞∑
k=0

Θk,tεt−k, Θk,t = Φk,tA
−1
0,t−kBt−k. (1.12)

Then matrix Θk,t contains response functions for horizon k. We observe impulse

responses of a unit shock on variable j in the respective column of matrix

[θij,k,t] = Φk,tA
−1
0,t−kBt−k.

Since εt has mean zero and unit variance, squaring the elements of Θk,t gives us the

error variance for the forecast at horizon k. Summing these error variances up from

0 to H − 1, gives us the H-step forecast error variances:

Ψ2
t (H) =

H−1∑
k=0

((Φk,tA
−1
0,t−kBt−k)

·2). (1.13)

where (·)·2 denotes the element-wise squared matrix. The FEVD-table DH
t = [dHij,t]

reads

dHij,t =
ψ2
ij,t(H)∑
g ψ

2
ig,t(H)

, (1.14)

where ψ2
ij,t(H) denotes the ij-th entry of Ψ2

t (H). The ratio explains j-th percentage

contribution on the total forecast variance of all variables on i. In a financial setting,

we can directly link this ratio to the expected capital shortfall of i conditional on

j’s shortfall. Note that, in contrast to the generalized version of Pesaran and Shin

(1998), the rows of DH
t sum up to one.

1.3.3 Measures of Interconnectedness

Visualization of the results proves to be difficult for this analysis since we end up

with almost T network matrices. In order to provide useful insights into systemic

issues of the network, we define measures of interconnectedness in this section. The

measures will apply to all three network matrices: the causal network matrix Gt,
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the contemporaneous impact matrix A−1
0,tBt and the H-step Forecast Error Variance

Decomposition DH
t outlined in 1.3.2.

In analogy to Diebold and Yılmaz (2014), we add ”From”, ”To” and ”Average”

effects to see which institutions receive or spread risk and how connectedness evolves.

For connection matrix M = [mij] we define

Ci←· (M) =
∑
j 6=i

mij, (From-Connectedness to i)

C·←j (M) =
∑
i 6=j

mij, (To-Connectedness from j)

C (M) =
100

N

∑
i

∑
j 6=i

mij. (Average Connectedness)

Note that the first two measures are on firm-basis and produce N numbers each,

while the last distills the spillovers into a single number.

From-Connectedness and To-Connectedness show how much effect a firm ”takes

from“ or ”gives to“ others These measures relate to the in-degree and out-degree

respectively. The average over firms multiplied by 100 represents the Average Con-

nectedness and provides information about the overall spillover potential. For a

row-normalized connection matrix, a value of 100 depicts that an idiosyncratic shock

only affects others. Similarly, a value of 50 shows that 50% of the shock’s effect is on

other firms. Finally, institutions are Receivers, Distributors, and Diffussors if they

have a relatively high Ci←·, C·←j, and both, respectively.

Although these measures provide insights into the importance of institutions, they

neglect the underlying network architecture entirely. For instance, a Distributor is

less relevant if all connected receiving institutions are not forwarding shocks. Thus,

we should be concerned with measuring the centrality of firms within the network.

For example, we can use the eigenvector centrality, which is arguably the most

popular measure. It uses the attributes of eigenvalues and -vectors of the adjacency

matrix and takes the eigenvector with the highest absolute eigenvalue as a centrality

measure. However, this measure does not allow for an economic interpretation as

such.

In contrast, we add a new model-derived centrality measure in the context of

financial risk. First, we note that the impact matrix is a result of contagion through

the causal network Gt. In one period, the reactions from the causal network Gt
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mathematically occur infinitely often. Precisely, the contemporaneous reactions of

yt on a shock are depicted by the inverse structural matrix A−1
0,t = (IN −Gt)

−1. As

aforementioned, the inverse is, in fact, the geometric sum
∑∞

k=0G
k
t . This breakdown

shows that a minor change in Gt can change the contemporaneous contagion result

A−1
0,t completely.

For risk mitigation, regulators are primarily interested in the contagion result.

While a market intervention would come equal to a change in the causal network

Gt, the impact on the system is the most essential result in the end. Therefore, we

construct an artificial control experiment by treating one variable i as the placebo,

i.e., all outgoing causal connections of i are set to zero. In algebra, the placebo

variable has a zero column in the causal network Gt. The new causal and impact

networks are denoted by G∗t,−i and A−1
0,t,−i

∗
Bt = (I − G∗t,−i)−1Bt, respectively. The

difference in the impact is defined as the Systemic Relevance of i,

∆Cs
i,t = C

(
(IN −Gt)

−1Bt

)
− C

(
(IN −G∗t,−i)−1Bt

)
. (Systemic Relevance of i)

Note that this artificial control experiment is equivalent to a regulator making con-

cessions about the safety of an institution’s obligations. In particular, as the obliga-

tions from this institution are secured, other institutions do not take any more risk

from it. Then, ∆Cs
i,t measures the reduction in the average risk exposure if i was a

non-emanating variable. Consequently, the spillovers in the impact matrix decrease

more if institution i is systemically more relevant, and hence higher values of this

measure relate to a higher Relevance. The extension to longer time horizons works

analogously.

1.3.4 Data

For an analysis of financial dependencies and spillovers, high-frequency balance

sheets and other frequently updated obligations are ideal. However, the lack of

such data forces us to estimate dependencies with publicly observable data. We use

market-based data since it reflects the expectations of many strategically acting in-

vestors who might even have access to private firm information. As in most studies

about spillovers, we study volatility to track investors fear. The connectedness of

volatility represents the investor-anticipated dependencies of risk, gains, and losses

of firms. However, we have to estimate volatility since it is latent. The so-called
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realized volatility introduced by Andersen et al. (2003) has proven as a standard in

estimating past volatility. Diebold and Yılmaz (2014) use daily log-realized volatil-

ity to track investors fear by averaging 5-minute return variances of high-frequency

data. They argue that the result is a measure of risk and apply it successfully to

spillovers.

Following Barigozzi and Brownlees (2013), we measure volatility with the extreme-

value estimation by Parkinson (1980),

σ̃2
i,t = 0.361(phighi,t − plowi,t )2.

Where p
high/low
i,t denotes the daily maximum and daily minimum of intra-day log-

prices respectively. When it comes to applications, both volatility estimations show

remarkably similar values. In fact, we found the same magnitude of both estimators

and a correlation of more than 0.9 for the sample. The extreme value estimation is

particularly appealing due to its simplicity and we believe it to be more robust to

recording errors.8

More frequent observations help us to see reaction timings, but as for the esti-

mation of volatility, daily data is the best we can do. To build intuition, we review

investor reaction timings in the setup of daily observations. The main difference in

reaction timings is between institutional investors and private investors.9 While pri-

vate investors tend to be less informed and act slower, institutional investors have

more information and react swiftly. Even though they are often rigid because of

the size of their investments, they are still incentivized to respond on price signals

as forcefully and quickly as possible. Therefore we expect the strongest and most

sophisticated reaction type from institutional investors. Their swift reactions are

most notable on the day of the occurrence of a shock. We, therefore, expect to see

a relevant part of the market-based dependencies in the contemporaneous network.

To identify the contemporaneous network, assumptions (A1) and (A2) must be

fulfilled.10 First, (A1) implies that the exogenous shock vectorB(t)εt ∼ (0, B(t)B(t)′)

has covariance matrix B(t)B(t)′ with a trend component. In particular, we expect

shocks on realized volatility to have time-varying variance in the form of stable

8Since the extreme value estimation only requires daily high and low, we do not require high-
frequency data anymore.

9Market movements caused by algorithmic tradings are ascribed to the institutional investor
type reaction.

10(A0) follows from (A1) and (A2).
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processes. It is conceivable that this cyclical component comes from an investor

sentiment cycle and, thus, we see this assumption satisfied. Second, (A2) implies

that entries in Gt evolve smoothly and have slower alterations than Bt. As argued

above, we assume that this network is a result of dependencies caused by contrac-

tual obligations between financial firms. Stacks of contractual obligations constantly

grow and shrink due to new contracts getting signed and old ones maturing. Since

one contract is just a small increment of a stack, such stacks evolve at a slow rate

and can be assumed to be constant for sufficiently small periods. Thus, we see

market sentiments to have a faster variation rate than the whole stack of contracts.

The choice of institutions is crucial for the interpretation of the results. For exam-

ple, consider the case of neglecting a significant source of shocks. Then, the statisti-

cal identification of orthogonal shocks does not provide an economically meaningful

interpretation. Clearly, we want to include all institutions who have a potential

effect, but numerical optimizations restrict us computationally. Thus, we focus only

on the US financial market. For this market, we want to capture all main five

categories: primary and non-primary dealer banks, non-bank financial institutions,

non-financial institutions, and, to measure common effects, the rest.

We separate US banks into primary dealers and non-primary dealers since their

status differs substantially in the auction of US government securities and the open-

market operations of the Federal Reserve. In the US, a primary dealer is a financial

institution which is permitted to trade with the Federal Reserve directly. Other

financial institutions which are not classified as such, have to trade with primary

dealers to fund themselves. Therefore, non-primary dealers only get funding via the

interbank market. To account for all significant exogenous variations, we include as

primary dealers the six largest banks in the US: JPMorgan Chase, Citigroup, Bank

of America, Wells Fargo, Goldman Sachs, and Morgan Stanley.11

On the counterpart, the non-primary dealers are assumed to take less than aver-

age risk spillovers since they lend less money to other banks. To see these connec-

tions, we add a frequently traded non-primary dealer. Bank of New York Mellon

represents smaller banks and non-primary dealers. However, we expect these banks

to have significant effects on other banks since they refinance solely via the interbank

market.

11Bank of America is not listed as a primary dealer. However, Merrill Lynch under the auspices
of Bank of America is listed and, hence, we treat Bank of America as a primary dealer.
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We also include two non-bank financial institutions, American Express, as a

financial service institute and American International Group (AIG), which played a

crucial role in the 2007 financial crisis. Moreover, we include Apple in the analysis

as the representative for big non-financial institutions. It had the most substantial

returns in our sample period and is the most valuable stock in the market as of

today.12

As already argued, the statistical method does orthogonalize εt. However, we

also want to underpin the shock to variables with some economic meaning. For

that reason, we account for market-specific shocks by including an exchange-traded

fund (ETF) that tracks a broad market index. An obvious choice is the S&P 500

Ex-Financials. Unfortunately, ETFs for this index do not date back far enough to

complete our sample, and thus we are not able to overcome this issue.13 Thus, we

include the classical SPDR S&P 500 trust (SPY). Common shocks, such as shocks

to macroeconomic factors, are embedded in this variable. In doing so, we obtain or-

thogonality of shocks in a more meaningful way. If we assume that common shocks

exclusively occur to the whole market, we can interpret all other shocks as econom-

ically meaningful. Nevertheless, there is, most likely, no helpful interpretation of

shocks to the market since it includes various macroeconomic factors. Eventually,

we can rule out price effects since the construction of volatility already comprises

price shocks.

Our sample period starts at the 01/03/2000 and ends at the 06/30/2018 and,

hence, includes two major crisis, which is the early 2000’s crisis with the 9/11 crash

in 2001 and the financial crisis with the Lehman Brothers default and AIG bailout

in September 2008. The data source of all aforementioned is CRSP.

1.3.5 Estimation Strategy

The estimation includes two steps. First, we estimate the reduced form, and, second,

we take the resulting residual series for the structural estimation. For the empirical

application, the companion form

Yt = A∗tYt−1 + Ut, (1.15)

12Apple also serves as a sanity check of our approach since we can easily find economically
motivated arguments for the direction of its dependencies.

13Since we need daily high and low prices, it becomes complicated to create indexes for daily
high and low prices.
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demonstrates usefulness. Where

Yt =


yt

yt−1

...

yt−p+1

 , A∗t =


A−1

0,tα A−1
0,tA1,t A−1

0,tA2,t · · · A−1
0,tAp,t

0 IN 0 · · · 0
...

. . .
...

0 · · · 0 IN 0

 , Ut =


ut

0
...

0

 .

In the first step, we perform a time-variation estimation of (1.15). Note that we

explicitly need assumptions on the time-variation of Ai,t. We interpret them as

increments contributing to the long-run dependency. In return, we impose the same

assumptions on them as on A0,t. The smoothness condition (A0) and the local-

constant connectedness (A2) restrict us to use local-constant estimation techniques

on the reduced form slope coefficients. However, for the same reasons as in the

local extremum estimator, the approximation errors for the slope parameters are

asymptotically negligible. We use kernel weighted least square (LS) estimation, i.e.,

a special form of the generalized least squares,

Â∗t = XWtZ
′(ZWtZ

′)−1 (1.16)

where Wt is defined as in (1.9) and X = [Y1, ..., YT ], Z = [Y0, ..., YT−1]. The cor-

responding reduced form residuals are the first N values in Ût = Yt − Â∗tYt−1. We

use this series in (1.9) to obtain the structural parameters. Similar to the rolling

window estimation, this estimation approach has the advantages of great simplicity

and allows us to stay in a prior-free environment. Hence, in contrast to prior-based

approaches, this estimation unveils a more meaningful evolution of connectedness.

A crucial step in the estimation concerns the selection of bandwidths for both

steps: h1 and h2. In the first estimation, we explored robustness for the choice

of the bandwidth. The smoothness of the estimated coefficients was the only vis-

ible difference between the bandwidths. Due to this robustness and the fact that

misspecification potentially increases estimation uncertainty in the second step, we

apply a fully data-driven Cross-Validation approach for this bandwidth. In order to

minimize estimation errors in the first step, we use the likelihood of the leave-one-out

interpolation errors,

û◦t,h1 = yt − ŷ◦t,h1 , (1.17)
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where ŷ◦t,h1 denotes the estimate of yt with bandwidth h1 and weight 0 on observation

t. This step is equal to setting the t-th diagonal entry of W in (1.16) to 0. The

bandwidth we consider is chosen with the following log-likelihood type leave-one-out

criterion14

hCV1 = arg max
h

− 1

2

∑
t

(
û◦t,h

′ Σ̂−1
û◦t,h

û◦t,h + log(|Σ̂û◦t,h
|)
)
, (1.18)

where Σ̂û◦t,h
is the full-sample covariance estimate for the interpolation errors. Then,

hCV1 is the bandwidth which maximizes the explanatory power of the estimation

given a training dataset. The training set is simply the bandwidth weighted sample

without the value it predicts.

In the second step, we eliminate autocorrelation from the time series by using

the residual series ût = ût,hCV
1

with the previously selected bandwidth. Optimally,

we also apply a data-driven bandwidth selection for the extremum estimation, but,

unfortunately, we did not find any convincing criterion to choose the respective

bandwidth. To the best of our knowledge, bandwidth selection for structural matrix

estimates is still little studied. That is, an optimal bandwidth for the covariance

matrix does not necessarily imply that it is also optimal for the structural parame-

ters.

Thus, in this paper, we focus on a bandwidth which is meaningful for the needs of

our story. Namely, since we want to account for the average maturity of contractual

obligations of firms, we choose a bandwidth which assigns 95 % of the kernel’s weight

to one calendar year. For our data, this weight corresponds to 250 trading days. In

particular,

h2 =
250

2q0.95T
,

where T is the sample length and q0.05 denotes the 95% quantile of the respective

kernel distribution. We use a Gaussian kernel due to its good asymptotic behavior.

1.3.6 Empirical Results

In this section, we present the empirical results. Due to the issue of visualizing a

time series of networks, we include two different types of analyses. First, we visualize

14The sum of squared interpolation errors is potentially inaccurate for a selection criterion be-
cause we expect the covariance matrix to be non-diagonal.
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the whole network as a snapshot at a specific event, and the sample mean. Second,

we make use of the measures introduced in section 1.3.3 to visualize the evolution

of connectedness.

In the forthcoming analysis, we do not show results for Apple since we are not

able to label shocks for this firm. In particular, Apple only serves as a representative

of non-financial institutions, and we use it as a sanity check for the results. Table 1.1

shows descriptive statistics of the nine financial institutions. Note that JPMorgan

Chase and Bank of America increased their market capitalization and their number

of total assets by a large margin. In 2018, JPMorgan Chase had about 50 % more

assets than the runner-up Bank of America. In general, all institutions increased

their total assets, but note that assets generally increased in value since 2000Q1.

Market Cap. Total Assets
Institution Ticker 2000Q1 2018Q2 2000Q1 2018Q2

American Int. Group AIG 168.8 47.2 279.3 496.8
American Express AXP 66.2 84.4 150.7 184.9
Bank of America BAC 86.9 282.3 656.1 2291.7
Bank of NY Mellon BK 30.6 53.9 76.0 352.9
Citigroup C 201.8 168.4 738.2 1912.3
Goldman Sachs GS 44.8 82.9 276.9 968.6
JP Morgan Chase JPM 71.9 350.2 391.5 3360.9
Morgan Stanley MS 79.9 82.9 408.1 875.9
Wells Fargo WFC 66.4 268.3 222.3 1879.7

Table 1.1: US. financial institutions key figures in bn. US$

In Figure 1.1, we show the mean causal network over the whole sample with

the 20 % strongest directional connections. The circles (nodes) represent the firms

and are labeled with the respective ticker. The thickness of the arrows depicts

the strongest 5%, 10%, 15%, and 20% percentile dependencies (in decreasing order

of thickness). First, we note that the regular banks, J.P. Morgan, Wells Fargo,

Citigroup, and Bank of America are well connected and seem to be completely

intertwined. For the investment banks, Morgan Stanley and Goldman Sachs, we see

a mutual connection, but just small associations to other institutions or the market.

Further, the smaller non-primary dealer bank, Bank of New York Mellon, shows

mainly outgoing connections. This finding is in line with the story of non-primary

dealers being in primary dealers’ debt. Bank of New York Mellon needs to finance

itself via other banks and, thus, its financial health is essential for the lenders.
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Figure 1.1: Mean Causal Network for the 20 % strongest connections. Node colors indicate
the strength of the average To-Connectedness of the respective stock. The analysis includes
American Int. Group (AIG), American Express (AXP), Bank of America (BAC), Bank of
NY Mellon (BK), Citigroup (C), Goldman Sachs (GS), JP Morgan Chase (JPM), Morgan
Stanley (MS), Wells Fargo (WFC).

Moreover, we see that American Express and AIG only connect to the market

variable SPY and appear more isolated than other institutions. In particular, both

affect the market but do not have a single incoming connection (in the highest 20%).

While we ascribe SPY’s dependency on American Express to the fact that we did

not include other non-bank financial institutions, AIG clearly plays a central role as

one of the biggest insurance companies in the US. Finally, we direct our attention

to the role of the market within this constellation. The node color of SPY indicates

that the outgoing effects are the weakest for all nodes, but we also observe that it has

many ingoing effects. This perhaps surprising finding is in line with the claim that

financial crises are more severe than general economic crises. We see in the graph

that for this sample, there was more spillover from financial firms to the market

than vice versa.

In an analysis of the evolution of dependencies, we are mainly interested in ex-
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treme points, such as peaks and troughs, and a general trend. Therefore, to frame

the evolution over time, we include a list of events, which are potentially important

for the whole system. Table 1.2 gives an overview of these events.

# Date Event Description

1 11 September ’01 Stock market crash due to the 09/11 terror
attacks

2 07 November ’07 AIG’s Q3 report reveals losses with credit
default swaps

3 March-May ’08 Bear Stearns bailout by the FED and take over
by JPM

4 September-October ’08 Lehman Brother Default, AIG bailout, and Q3
reports

5 06 May ’10 Flash Crash
6 September-November ’11 Down-Rating WFC, Q3 reports, Greece bailout
7 October ’15 Q3 reports
8 29 March ’17 Great Britain invoked Article 50 starting

the Brexit
9 01 February ’18 China bans trading of Bitcoins

Table 1.2: Important events concerning the overall connectedness of financial institutions

In the liquidity crisis of 2008, AIG, in particular, stood in focus when it became

public that major banks and trading partners, such as Goldman Sachs, Morgan

Stanley and Bank of America, depended on AIG’s liquidity. Credit default swaps

(CDSs) and collateralized debt obligations (CDOs) were mainly responsible for the

tight entanglement of the firms. On the 14th of September, AIG sought for $ 40

Billion in FED aid to survive the uprising liquidity crisis. It followed the default of

Lehman Brothers on the 15th and the bailout of AIG on the 16th. For this sample,

the 14th of September 2008 marks a key date since it moved investor attention

towards AIG. Figure 1.2 shows the 10-day Forecast Error Variance Decompositions

for this very date. In the network graph, the 20% strongest connections are plotted,

and node colors represent outgoing effects of the respective stock. We compare the

generalized version as in Diebold and Yılmaz (2009) on the left with the structural

version as introduced in 1.3.2 on the right.15

For the generalized version, we see a higher connectedness of financial institu-

tions in the node colors and mainly see connections for the traditional banks. This

15The generalized version has an implicit undirected contemporaneous connectedness assump-
tion. Namely, for a forecast horizon of 1 day, we would not be able to see directions in the graph.

31



AIG

AXP

BKBAC

C

JPM

WFC

MS GS

SPY

AIG

AXP

BKBAC

C

JPM

WFC

MS GS

SPY

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1.2: Comparison of Forecast Error Variance Decompositions with the generalized
version as in Diebold and Yılmaz (2014) on the left and the structural version on the right.
Observation at the 09/14/2008 for the 20 % strongest connections. Node colors indicate
the strength of the average effect of a respective stock to others.

side-by-side comparison highlights the issue of using undirected correlations for the

contemporaneous effect. In crises, investors are more alerted and react faster on

shocks. Thus, most significant reactions occur within the same day. Since the gen-

eralized FEVD approximates contemporaneous connections with undirected corre-

lations, it cannot uncover the full directed FEVD. We can also see that it connects

all receiving institutions as they appear to co-move contemporaneously. For the

correlation based decomposition, a firm-specific shock, as it happened to AIG, is

not labeled and thus firms, which have high incoming and outgoing connections are

over-estimated.

In contrast, AIG has mainly outgoing connections in this period, and thus its ef-

fect gets highly under-estimated in the generalized FEVD. For the structural FEVD,

in comparison, AIG has outgoing connections to all other institutions but Goldman

Sachs. This finding is in line with the investors’ awareness of a potential default.

Connections did not increase necessarily, but investors valued connections more due

to the uncertainty emanating from AIG. Moreover, anticipating AIG’s default, Gold-

man Sachs at that time protected itself against such an event and stood to collect

1.7 $ bn from credit default swap had AIG defaulted.16 While investors anticipated

16see https://www.bloomberg.com/news/articles/2010-07-24/citigroup-credit-suisse-top-list-of-
goldman-sachs-counterparties-on-aig
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the shrinking dependency of Goldman Sachs to AIG, all other effects of AIG grew.

For further comparison, Figure 1.3 shows the dynamic of both, the generalized

and the structural version. The Average Connectedness for the generalized version

is about 30 index points higher, but movements are visually the same. That is, the

generalized version overestimates spillovers. Recall, that the Generalized Forecast

Error Variance Decomposition uses the undirected correlation for the one period

forecast error. Due to the undirectedness, we witness two entries in the off-diagonal,

even if there is only one in reality. This approximation generally results in an

overestimation of connectedness.
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Figure 1.3: Total Average Connectedness for the FEVDs with structural decomposition
(solid blue) and the generalized version of Diebold and Yılmaz (2009)(dotted green)

Forecast Error Variance Decompositions indicate general connectedness dynam-

ics. In stressed investment periods, however, we expect to see most reactions con-

temporaneously since investors are alerted. Thus, we investigate contemporaneous

relations further in an analysis of average connectedness for the causal matrix Gt

and impact matrix A−1
0,tBt. Figure 1.4 shows both curves plotted on different scales.

Namely, C(Gt) ranges circa from 60 to 75, while C(A−1
0,tBt) ranges from ca 80 to

145.

The impact’s maximum value of 145 interprets as follows: A unity shock to i

affects others on average with factor 1.45 in the same period. For the causal network,

the maximum value of 75 states that a one standard deviation shock is immediately

carried on with an average weight of 0.75. At first glance, the impact connectedness
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Figure 1.4: Total Average Connectedness for the causal network matrix Gt (solid blue),
the impact matrix A−1

0,tBt (dotted green)

looks like an enhanced version of the causal connectedness. Clearly, this visual

similarity results from the relation A−1
0,t =

∑∞
k=0G

k
t . However, for some periods,

e.g., August 2006 to December 2006 and the first half of 2018, the two curves differ

not just by magnitude but also by evolution. We ascribe these differences to changes

in the network architecture. At the end of this section, we discuss the reasons for

these differences with an analysis of the Systemic Relevances. In particular, this

analysis points out the changes in the centralities of institutions for these periods.

Moreover, we analyze the peaks of connectedness. In particular, the most promi-

nent peaks are seen during the financial crisis in events 2 and 4. These events are the

third quarter financial report in 2007 of AIG and the chain reactions on the market

caused by the Lehman Default, respectively. Whereas we would expect the Lehman

Default to be the most severe event in the sample, the consecutive month was more

stressful for the stock market. The third quarter report season in October 2008 re-

vealed most of the losses and thereby symptomized the real connections of financial

firms. More broadly, third quarter financial reports appear to have a significant

effect on the connectedness perceived by the investors. For example, quarter three

financial reports at event 6 and event 7 also date peaks of connectedness. Event 6

in 2011 was in the midst of the European sovereign debt crisis. The peak suggests

that investors were surprised by the connectedness of banks in the US to European

banks. Similarly, the quarter three reports in 2015 updated investors beliefs about

the connectedness.
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In contrast, a local trough is observable at event 3 between two peaks at the

financial crisis. The successful take over of Bear Stearns cooled down some frayed

nerves as it showed that an intervention of the FED buffers up the highest risks. In

March 2017, when the UK government invoked Article 50 of the Treaty on European

Union, we see another hard change in causal connectedness (event 8). Because

the analysis does not include European Banks, the Brexit affects connections of

US banks via the European ones. In particular, this event seemingly changed the

architecture of the network but did not affect the Average Connectedness of the

causal network.

Finally, we see a sharp increase in 2018 until the end of the sample. This increase

visualizes the growing fear of adverse shocks to other institutions and awareness

towards real connections. In particular, connectedness for the causal network matrix

Gt is at an all-time high. In contrast, after event 9 the connectedness of the impact

matrix A−1
0,tBt shrank again. Note that, for risk management, the impact matrix

plays a more important role than the causal network matrix. However, this difference

indicates a change in the centrality of firms. Thus, for policymakers, it is key to

identify the cause of it, namely, to find changes in institutions’ relevance.

Excursion The ’May 6, 2010, Flash Crash’ also known as the ’Crash of 2:45’

(event 5) was a stock market crash which lasted for approximately 36 minutes. On

this day, the stock market indices nearly lost 10% within minutes only to rebound

half an hour later. Volatility measured exceptionally high and, perhaps surprising,

connectedness as well. Since we can not identify any other events around this peak,

the question arises whether the volatility level causes the level of Average Con-

nectedness. In particular, more uncertainty in the stock market goes hand in hand

with a higher average correlation between the stock returns. However, it is unclear

whether a higher volatility level causes more connectedness or vice versa. Through

the story, we expect that connections in the network form exogenously. That is, a

higher degree of connectedness enhances the spillover of idiosyncratic shocks. By

investigating the lead-lag correlation (see Appendix) of Average Connectedness and

average volatility, we find support for exogenous network formation. This finding

suggests that Average Connectedness is a predictor of risk since its variations lead

variations in average volatility. Thus, this finding opens up new research questions.

To get more insights into single institutions, we study From-Connectedness,

To-Connectedness, and Systemic Relevance. Figures 1.5 and 1.6 depict the From-
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and To-Connectedness measures of the nine financial institutions and the market.
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Figure 1.5: From-Connectedness of Gt

The most notable detail is the low To- and the high From-Connectedness of the

market variable SPY. Since the market is substantially larger than the nine institu-

tions combined, it seems surprising that the market has more incoming connections

than outgoing ones. Nevertheless, it is common knowledge that financial institutions

play a significant role in the expected mean and variance of general stock returns.

Thus, we find that there is more spillover from the financial institutions to the mar-

ket than vice versa. This finding is in line with Jordà et al. (2011), who point out

that financial crises are more severe than ’normal’ recessions.

Table 1.3 provides an overview of events which happened at specific peaks and

troughs. At the 09/11 terror attacks (event A), American Express and the mar-

ket variable (SPY) were the only ones reacting in connectedness. While both are

dependent on private consumers’ sentiments, other firms’ business climate did not

change significantly. These two kinks highlight that a shock to the market does not
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Figure 1.6: To-Connectedness of Gt

affect causal connectedness of financial institutions. We see this as a support for the

structural decomposition of this paper.

Event B stated a trough in the From-Connectedness when Bank of America was

about to acquire The United States Trust Company, which was famous for its private

banking business. Bank of America seemingly was less dependent on other’s finan-

cial status but also increased its outgoing connectedness (see To-Connectedness).

Moreover, event D shows that the Greece bailout in 2011 affected Goldman Sachs.

The To-Connectedness of Goldman Sachs rose from 0.5 to more than one as they

stood to collect profits from a default of the crippled state. Finally, event E shows

the FED prohibiting Wells Fargo from growing their asset base. This event led to a

drop in the To-Connectedness.

As a final analysis, we show the Systemic Relevance of three institutions. This

measure, which we introduced in 1.3.3, demonstrates the centrality of institutions.

Recall that the measure is equivalent to a placebo experiment and intends to reveal
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Date Event Description

A 11 September ’01 Stock market crash due to the 09/11 terror attacks
B 20 November ’06 Bank of America announced to purchase of

The United States Trust Company
C 3 October ’08 Wachovia agrees to be bought by Wells Fargo
D 27 November ’11 Writedown of 50% of Greek bonds
E 2 February ’18 FED barred Wells Fargo from growing asset base

Table 1.3: Important events on firm-level

the importance of the respective financial institution. That is, it measures the

difference in the average connectedness of the impact matrix when institution i’s

outgoing causal connections are mitigated. A higher value of this measure relates to

a higher relevance for the system. The result is a combination of outgoing, ingoing

connections and the general architecture of the system’s network. We analyze the

most noteworthy movements: Goldman Sachs, JPMorgan Chase, and Wells Fargo.

Whereas they all increased market capitalization and total assets over the sample

period, it remains unclear how their Systemic Relevance changed.

Figure 1.7 depicts the Systemic Relevance of Goldman Sachs, JPMorgan Chase,

and Wells Fargo. While most of the pattern appears to be somewhat random, we

can still see a slight trend for Goldman Sachs and a stronger trend for JPMorgan

Chase. In particular, since Great Britain filed for the Brexit on the 29th of March

2017, JPMorgan Chase’s Relevance experienced an almost strict upwards trend.

More precisely, the average spillover of the whole system increases by 0.7 only due

to JPMorgan Chase forwarding shocks. This development makes JPMorgan Chase

the most important financial institution as of June 2018. Remarkably, this is the

highest value of a single institution for the whole sample. As aforementioned, the

formal process of Great Britain invoking Article 50 forms a milestone in the network

architecture. Since then, European and British banks stay behind the US banks in

financial profits. The sharp increase of JP Morgan Chase’s Relevance hints that it

benefits from a weaker competition overseas.

Moreover, Wells Fargo experienced a significant increase in importance in the

financial crisis. On October 28th 2008, the bank took 25 $ bn of Emergency Economic

Stabilization Act funds. Wells Fargo’s Systemic Relevance peaked at this date and

decreased after the financial aid. More recent developments at the beginning of

2018 showed a sharp decrease in the importance of Wells Fargo. This decrease is
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Figure 1.7: Systemic Relevance for particular firms

dated on February 2, 2018, when the FED barred Wells Fargo from growing its asset

base. Up to the end of this sample, Wells Fargo was not able to solve their issues.

Consequently, the Relevance of Wells Fargo is relatively low, as seen by investors.

Based on the analysis of Systemic Relevances, regulators are well-advised to keep

an eye on the financial health of JPMorgan Chase.

1.4 Conclusion

In this paper, we tackled the question of how to analyze directed contemporaneous

connectedness. In the methodological section, we developed time-varying assump-

tions under which contemporaneous connections can be identified. More precisely,

we modeled time-variation non-parametrically allowing to estimate a time-trend,

which ensures identification. The identification works under parsimonious conditions

and comes with a well tractable estimation function. Furthermore, we seized the

problem of static response matrices by allowing all parameters to be time-varying.
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In the application, we studied volatility spillovers for US financial firms in the

framework of Diebold and Yılmaz (2014). Our approach highlighted the issue of

approximating contemporaneous relations by correlations and, thus, it successfully

addressed a major drawback of Generalized Forecast Error Variance Decomposi-

tions. The application included a contemporaneous causal dependency matrix,

which provided new insights into the connectedness of financial firms. With an

explicit contemporaneous network in hand, we introduced a new centrality measure

that is economically meaningful. This centrality measure highlights the relevance of

financial firms and serves as a critical tool for policymakers to monitor risk.

Empirically, we found that investors mostly react within a day in uncertain pe-

riods. This finding stressed the importance of using directed contemporaneous de-

pendencies. Namely, we exemplified the directed connectedness of financial firms

by comparing Generalized and structural Forecast Error Variance Decompositions.

Moreover, we observed that the Average Connectedness measure is robust to stock

return shocks. In line with the story, it appeared that the connectedness analy-

sis based on market data peaked mostly for the financial reports seasons. Namely,

financial reports in some periods might have differed from the expectations of the in-

vestors. In other words, public reports contained valuable information for investors

since they hinted how strong the connections of financial firms are by revealing gains

and losses.

Finally, we investigated the Systemic Relevance of financial firms. In this analy-

sis, we focused on three banks, Goldman Sachs, JPMorgan Chase, and Wells Fargo.

In particular, JPMorgan Chase stood out at the end of the sample. In June 2018,

JPMorgan Chase was not only the biggest bank, but it also asserted its dominance

by being the most relevant institution in our sample. With this finding, policymak-

ers and regulators are well advised to monitor JPMorgan Chase’s financial health

carefully.
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Chapter 2

On Time-Variation of Financial

Connectedness and its Statistical

Significance

This paper is joint work with Carsten Jentsch.

2.1 Introduction

In 2008, the financial crisis peaked when Lehman Brothers filed for chapter 11

bankruptcy protection on the 15th of September. A day later, on the 16th of Septem-

ber, the FED took over 80% of the shares of American International Group (AIG).

These events removed any remaining doubts about the systemic scale of the finan-

cial crisis. In order to understand why this crisis was systemically so spread, it is

useful to see the underlying network structure. In particular, we want to know the

full unified network. This unified network structure provides insights into a battery

of essential risk figures, such as market risk, gridlock risk, and systemic risk. Be-

cause of insightful network graphs and network measures, the estimation of a unified

dependency structure enjoys popularity in time series econometrics.

If nothing else is known, we usually estimate an unknown dependency struc-

ture with time series regressions. For example, a regression on the lags reveals an

explicit, directed dependency. However, when it comes to network analysis, it is

essential that the links have a meaningful economic interpretation. For financial

firms, it is plausible to interpret dependencies as risk spillover resulting from stacks
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of contractual obligations, such as asset and liability structures, derivatives, and

mutual portfolio holdings. Since these stacks change over time, this interpretation

implies that links, and consequently networks, are non-static. Moreover, to detect

potential grievances, policy institutions are not only interested in the level of de-

pendency but also its evolution. In a nutshell, it is advisable to use a time-varying

parameter approach to capture financial networks accurately.

In general, many different strands of the literature incorporate time-variation

to study lagged correlation structures, because the assumption of a static sample

is often too strict. If not explicitly, authors assume implicitly that the sample’s

dependency structure is dynamic. However, time-variation in the parameters con-

tradicts the assumption of ergodicity of a standard vector autoregression (VAR) and

least squares estimation for rolling windows is not theoretically justified. Although

the application’s results are heuristically interpretable, they lack rigorous inference

tools. An exhaustive analysis of financial dependencies requires confidence sets of

the estimators. Without such, it is unclear whether a change in the estimators is

rooted in estimation uncertainty or the dynamics of the actual parameter. Thus, we

aim to fill this gap in the literature of time-varying parameters with an improved

local-linear estimator with theoretical justification.

We face three main challenges. First, local-constant regressions, such as rolling

windows, suffer from bias, and boundary issues. Local-linear estimations are known

to eradicate this bias but have to be extended to the multivariate case. Second, in-

ference for connectedness is one of the most obvious extensions of this fundamental

analysis. However, naive estimations, such as local-constant kernel regressions, do

not allow for meaningful statistical inference. Thus, to apply bootstrap techniques,

we need to find asymptotical results for the estimators first. Third, we want to pro-

vide a data-driven approach for bandwidth selection in time-varying VARs. Hence,

we face the challenge of finding the level of time-variation in the parameters. In

summary, this paper aims for a fully-fletched time-varying VAR estimation in the

setup of financial connectedness.

We start our analysis with a plain time-varying VAR model. That is, we allow

for a dynamic process in the VAR coefficients and the covariance matrix. To de-

rive their estimators, we impose assumptions on the process locally similar to the

global assumptions in the static setup. For the dynamic estimation of coefficients

and covariances, we provide a data-driven cross-validation approach to select band-
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widths for the estimators. In particular, this step sheds light in the dynamics of

connectedness and helps to understand the network formation. A simulation anal-

ysis underpins the functionality and efficiency of our approach. Finally, a residual-

based bootstrap procedure gives confidence intervals for all quantities of interest and

neatly avoids the problem of complex distributional results of the coefficients and

covariance estimates.

We contribute in four ways to the literature. First, we translate univariate local-

linear estimators to the multivariate setting of time-varying VARs with the respec-

tive stability conditions. The local stationarity setup of Dahlhaus (1996) gives lim-

iting behavior on the observational level. Second, with the help of theoretical limit

results, we extend the literature of time-varying parameters with the possibility to

conduct inference on the estimates. In particular, bootstrap techniques enhance

the comprehension of the time-varying results. Third, in the application of financial

connectedness, the novel estimators give vital insights into the level and evolution of

the average connectedness of firms. In particular, the confidence intervals quantify

the goodness of the estimates. Last, the dynamic cross-validation is, to the best of

our knowledge, the first of its kind and gives valuable information about the change

in the dynamics of financial connectedness. This particular finding is essential for

policymakers as it shows the accuracy of forecasts.

Our study relates to two strands of the literature: the theoretical considera-

tions of estimating locally stationary processes, and the general analysis of financial

spillovers. While we connect to the literature on local stationarity in Section 2.2, we

embed this study into the financial spillover context here in the introduction. In par-

ticular, since the outburst of the financial crisis in 2007, many authors devoted their

attention to the measurement of financial connectedness. Systemic risk papers, e.g.

Adrian and Brunnermeier (2011), Brownlees and Engle (2012) and Acharya et al.

(2017), focused on pairwise versions of financial dependency. While they estimate

associations between firm- and market-movements or vice versa, another strand of

the literature, e.g., Billio et al. (2012) and Diebold and Yılmaz (2014), studied the

estimation of a network. In particular, the latter gained popularity as its estima-

tion target was a unified network. Korobilis and Yilmaz (2018) extended the rolling

sample estimation by a large Bayesian time-varying VAR estimation. In so do-

ing, they observe increased connectedness with the occurrence of extremely adverse

shocks and hence implying endogenous network formation. Yet, confidence sets of
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spillovers remain uncared for.

The remainder of this study aims to extend the literature in this regard in the

following way. Section 2.2 explains the technical concept of local stationarity. Sec-

tion 2.3 introduces the methodological approach for the statistical audience. Section

2.4 shows the effectiveness and efficiency of the estimation strategy. In section 2.5,

we apply the methodology to the concept of financial connectedness.

2.2 Preliminaries

2.2.1 Notation

To study connectedness between financial institutions, we propose a time-varying

VAR. For this purpose, we observe data y1, . . . , yT from the following N -dimensional

time-varying VAR(p) model of the form

yt = ν(t) + A1(t)yt−1 + · · ·+ Ap(t)yt−p + ut, (2.1)

where ut ∼ (0,Σ(t)) is an N -dimensional independent white noise sequence with

time-varying variance-covariance matrix Σ(t) such that E(ut) = 0, E(utu
′
s) = 0 if

t 6= s and E(utu
′
t) = Σ(t). The deterministic parameters of interest in (2.1) are

an N -dimensional intercept term ν(t), the N × N VAR coefficient matrices Ai(t),

i = 1, . . . , p and the innovations’ covariance matrix Σ(t) that are all allowed to

depend on time t. Alternatively, (2.1) can be represented as

yt − µ(t) = A1(t)(yt−1 − µ(t− 1)) + · · ·+ Ap(t)(yt−p − µ(t− p)) + ut, , (2.2)

with the relation ν(t) = µ(t)−A1(t)µ(t− 1)− · · ·−Ap(t)µ(t− p) between (2.1) and

(2.2).1 In particular, this representation is useful when we want to derive MA(∞)

representations. In applications, the companion form

Yt = A(t)Xt−1 + Ut, (2.3)

1Note that there is a difference between the mean µ of a process and an intercept ν in a
regression. In the literature on local stationarity it is more common to include a time-varying
mean, whereas in the stable VAR literature we rather prefer to have a time-varying intercept.
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proves to be useful, where

Yt =


yt

yt−1

...

yt−p+1

 , Xt−1 =

[
1

Yt−1

]
, Ut =


ut

0
...

0

 ,

and A(t) =


ν(t) A1(t) A2(t) · · · Ap(t)

0 IN 0 · · · 0
...

. . .
...

0 · · · 0 IN 0

 .

Technically, a time-varying VAR model is a non-linear model which has to fulfill a

stability condition of some sort. Clearly, without any further restrictions, the model

class (2.1) is too rich and not feasible. It appears to be natural to impose a stability

condition on the VAR coefficients that is uniform in t. However, even under a

uniform stability condition, the resulting processes will be generally non-stationary

due to the dependence on t. Furthermore, in contrast to stationary VAR models,

increasing the sample size T → ∞ in model (2.1), does not provide any further

information about the process of the past. Consequently, a standard asymptotic

treatment T → ∞ is a fruitless challenge. To resolve this issue, one can impose

(global) parametric assumptions, such as a functional form on the dynamics, but,

following the simplicity of rolling-windows, we want to avoid any assumptions of

that kind.

To allow for rigorous asymptotic treatments in the time-varying VAR as in (2.1),

we rescale the parameter curves A(t) and Σ(t) from [1, ..., T ] to the unit interval

(0, 1]. To be precise, we replace them by A(t/T ) and Σ(t/T ) respectively. Formally,

this results in replacing Yt in (2.3) by a triangular array of observations {Yt,T : t =

1, . . . , T, T ∈ N} following the recursion

Yt,T = A(
t

T
)Xt−1,T + Ut,T , (2.4)

where (Ut,T ) is as above with ut,T ∼ (0,Σ( t
T

)) and parameter curves A(·) and Σ(·)
are defined on (0, 1] with suitable domains. For a more convenient treatment of

the above recursions (2.4), we extend all curves from the unit interval to the real

line, by assuming A(τ) = A(0) and Σ(τ) = Σ(0) for τ ≤ 0 and A(τ) = A(1) and
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Σ(τ) = Σ(1) for τ > 1.

The main idea of local stationarity introduced to time-varying VAR models (2.1)

is to obtain a rescaled model class (2.4) that is globally non-stationary but can be

approximated sufficiently well by a stationary VAR process locally. This rescaling

does not only allow to model changing dynamics of a VAR process but also enables

us to apply established techniques for stationary VAR processes. More precisely, it

provides a framework to establish a meaningful and rigorous asymptotic theory. In

particular, it becomes feasible since, with T → ∞, the mesh size between observa-

tions yt,T becomes finer such that for a given τ ∈ (0, 1] more information about the

structure of the process becomes available locally. Surely, without any further reg-

ularity conditions on the parameter curves, the model class in (2.4) does not allow

a meaningful asymptotic treatment. That is, we have to control the model class

(2.4) in two aspects. First, we assume that the VAR parameters to fulfill a specific

uniform stability condition. Second, we impose sufficient smoothness conditions on

the parameter curves that allow for locally stationary approximations to the globally

non-stationary process.

In detail, we make the following assumptions.

(A0) The N -dimensional noise process {ut,T , t ∈ Z} is independent with

suptE(u
(a)
t,Tu

(b)
t,Tu

(c)
t,Tu

(d)
t,T ) <∞ for all a, b, c, d = 1, . . . , D.

(A1) There exists a δ > 0 such that for all τ ∈ (0, 1], 2 it holds

det(IK − A1(τ)z − · · · − Ap(τ)zp) 6= 0 ∀z : |z| ≤ 1 + δ. (2.5)

(A2) The parameter curves ν(·), Ai(·), i = 1, . . . , p and Σ(·) are (entry-wise) con-

tinuous on R and twice continuously differentiable on (0, 1).

Intuitively, (A1) guarantees that for each fixed τ ∈ (0, 1] the VAR process with

parameters A1(τ), . . . , Ap(τ) is stable (stationary and causal). By imposing the

smoothness conditions (A2), we achieve that the rescaled tvVAR model can be

locally approximated by stationary processes uniformly on the unit interval and,

hence, (A2) enables estimation.

2This is equivalent to “for all τ ∈ R” thanks to the extension of A1(·), ..., Ap(·) to the real line.
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2.2.2 Local stationarity

Dahlhaus (1996) provides the original definition of local stationarity for univariate

time series processes. Even if not needed, he requires all moments of the time series

to be finite. Similarly, he also gives the first definition of local stationary suitable

for multivariate Gaussian time series in Dahlhaus (2000). Since finite moments or

Gaussianity are too restrictive for most applications, we adopt the multivariate def-

inition of Hirukawa (2004, 2012) (we drop their notation about presample values

here) that explicitly does not need all moments to be finite or any normality as-

sumption. However, we include an N -dimensional time-varying mean vector as in

the definition of Dahlhaus (2000), which leads to the following definition.

Definition 2.2.1 (Local stationarity).

A sequence of multivariate (N-dimensional) processes yt,T = (y
(1)
t,T , . . . , y

(N)
t,T )

(t = 1, . . . , T ) is called locally stationary with transfer function A0 and mean µ

if there exists a representation

yt,T = µ(
t

T
) +

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ) (2.6)

where

(i) ξ(λ) = (ξ(1)(λ), . . . , ξ(D)(λ)) is a complex-valued stochastic vector process on

[−π, π] with ξ(a)(λ) = ξ(a)(−λ), a = 1, . . . , D, and

cum{dξ(a1)(λ1), . . . , dξ(ak)(λk)} = η

(
k∑
j=1

λj

)
κa1,...,ak
(2π)k−1

dλ1 · · · dλk−1

for some k ≥ 2, a1, . . . , ak = 1, . . . , D, where cum{. . .} denotes the cumulant

of kth order and η(λ) =
∑∞

j=−∞ δ(λ + 2πj) is the period 2π extension of the

Dirac delta function.

(ii) There exists a constant B and a 2π-periodic matrix valued function A : [0, 1]×
R→ CN×D with A(u,−λ) = A(u, λ) and

sup
t,λ

∣∣∣∣A0
t,T (λ)ab −A(

t

T
, λ)ab

∣∣∣∣ ≤ B

T

for all a, b = 1, . . . , D and T ∈ N. A(τ, λ) = (A(τ, λ)ab) and µ(τ) =

(µ1(τ), . . . , µN(τ))′ are assumed to be continuous in τ .
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Note that there are various definitions for local stationarity. Dahlhaus (2012) dis-

cusses most results under the setup of a time-varying MA(∞) representation, which

is essentially equivalent. Puchstein and Preuß (2016) make use of an MA(∞) repre-

sentation with Gaussian errors. In contrast, Vogt (2012) and Vogt and Dette (2015)

use an alternative definition of local stationarity that relies on a direct approxima-

tion without using frequency domain representation. General classes of univariate

locally stationary time series processes based on physical dependence conditions have

been considered by Zhou (2013), who constructs confidence bands for time-varying

AR coefficients. A definition based on time-varying MA(∞) representations would

suffice for our purpose, but sticking to the original definitions allows to adopt the

proofs from the corresponding literature and to extend them to the multivariate

case.

Lemma 2.2.1 (tvVMA(∞) representation). Suppose the parameter curves Ai(·),

i = 1, . . . , p and Σ(·) fulfill the uniform stability condition (A1) and the smoothness

condition (A2). Then, the tvVAR(p) recursions (2.2) have a solution of the form

yt,T − µ(
t

T
) =

∞∑
j=0

Ψt,T,jut−j, (2.7)

with

sup
t,T
|Ψt,T,j|1 ≤ Cρj

for constants ρ ∈ (0, 1) and C <∞ such that
∑∞

j=0 |Ψt,T,j|1 <∞ holds uniformly in

t and T .

Proof. All proofs can be found in Appendix B.1.

Lemma 2.2.2. Suppose the parameter curves Ai(·), i = 1, . . . , p and Σ(·) fulfill

the uniform stability condition (A1) and the smoothness condition (A2). Then, the

tvVAR(p) recursions (2.2) have a solution of the form (2.7) by Lemma 2.2.1 which

is locally stationary in the sense of Definition 2.2.1 with

A(τ, λ) =
1√
2π

(
IN −

p∑
j=1

Aj(τ) exp(−ijλ)

)−1

Σ1/2(τ) (2.8)
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and time-varying spectral density f(τ, λ) = A(τ, λ)A(τ, λ)
′
. Furthermore, there ex-

ists a sequence of tvVMA coefficient curves {Ψj(·) : (−∞, 1]→ RN×D, j ∈ N0} that

are (entry-wise) differentiable on (0, 1) and a process {ỹt,T , t ∈ Z, t ≤ T, T ∈ N}
with

ỹt,T − µ(
t

T
) =

∞∑
j=0

Ψj(
t

T
)ut−j, (2.9)

such that

(i) sup
t∈Z,t≤T

|yt,T − ỹt,T |1 = OP (
1

T
), (2.10)

(ii) sup
τ∈[0,1]

∞∑
j=0

|Ψj(τ)|1 <∞. (2.11)

Precisely, it holds that supτ |Ψj(τ)|1 ≤ Cρj.

Proof. Again, all proofs can be found in Appendix B.1.

It is worth noting that a tvVAR model as in (2.4) leads to a tvMA(∞) repre-

sentation (2.7), which we only approximate by (2.9). This fact is different to the

case where the process is already introduced as a tvMA(∞) process and At,T (λ) =

A( t
T
, λ) holds. This difference comes by the recursive derivation of the tvVMA

representation, which includes VAR coefficient curves that reach into the past. In

particular, we find this approach appealing as the tvMA parameter curves Ψj(·) are

also useful in the calculation of connectedness.

2.3 Methodology

2.3.1 Local-Linear Estimator for Time-Varying VAR Coef-

ficients

In this section, we introduce an easy-to-apply estimator in matrix notation. Ap-

pendix B.2 derives a local-linear estimator for local stationary processes. For the

sake of notation, we start with the companion form (2.3). That is, the parameters

are estimated as a VAR(1). Note, however, that it is possible to avoid the companion

form to save computation time.
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For any t ∈ (1, T ) and τ ∈ (0, 1], we want to estimate µ(τ) and Ai(τ) for i =

1, .., p. Define matrices as follows,

Y = (Y1,T , Y2,T , ..., YT,T ) , X = (X0,T , X1,T , ..., XT−1,T ) ,

Dτ = diag

(
1

T
− τ, 2

T
− τ, · · · , T

T
− τ
)
, Zτ =

(
X

XDτ

)
,

Wτ = diag

(
Kh1

(
1

T
− τ
)
, · · · , Kh1

(
T

T
− τ
))

, E1 =

(
IN

0N×N

)
,

where Kh(x) =
K(x

h
)

h
is a kernel function of choice with bandwidth h. The local-

linear estimator for the coefficient matrix curve A(τ) at rescaled time point τ is

Âτ = YWτZ
′
τ (ZτWτZ

′
τ )
−1
E1. (2.12)

First, note that the form of the estimator is similar to the least squares (LS)

case. Since LS minimizes the residual sum of squares (weighted or not), the estimator

above incorporates LS for the case of local-constant estimation, as in rolling windows.

Since we additionally optimize over the derivative, this approach states an extension

of rolling windows. A Taylor expansion of order one of A(τ) around τ approximates

the state of the coefficient and its derivative. The optimized derivative can be backed

out by using E2 = (0N×N , IN)′ instead of E1 in (2.12).

Second, the closed form solution gives us an easy-to-apply estimator. Even high

dimensional settings are still in reach. In general, however, these settings may

suffer under the concept of time-variation in the entries since the estimator assigns

the same bandwidth for all of them. Further, we can use model-based bootstrap

methods to carry out inference on the parameters, which is novel in the setting of

financial spillovers.

In analogy to rolling windows, the degree of time-variation determined by h1 still

needs to be assessed. In the following sections, we introduce an entirely data-driven

approach of bandwidth selection.

50



2.3.2 Local-Linear Estimator for a Time-Varying Innovation

Covariance Matrix

After the estimation of Âτ for the VAR coefficient matrices in (2.3), we denote the

residuals series, with a slight abuse of notation, as û1, . . . , ûT . That is, we use the

companion form,

Ût = Yt,T − ÂτXt−1,T ,

to extract ût as the first N values of Ût. Since we assume that the innovation

covariance matrix is time-varying as well, a local-linear estimator would be the

obvious choice here. However, the local-linear estimator, as we introduce it later,

does not guarantee positive semi definiteness. Thus, we also introduce the local-

constant kernel weighted estimator of the innovation covariance matrix. For rescaled

time point τ , it is defined by

Σ̃τ =
T∑
t=1

Kh2(
t

T
− τ)ûtû

′
t, (2.13)

= V(W1(T×1) ⊗ IN), (2.14)

where

V = (û1û
′
1| · · · |ûT û′T ) (N ×NT ),

and 1 is a vector of ones. Equation (2.14) gives the matrix notation for the estimation

step and will proof useful in comparison to the local-linear covariance estimator. In

most applications, the degree of time-variation h2 is heuristically chosen or it can be

assumed that the coefficients and covariance estimator share the same degree, i.e.

h1 = h2. However, a different degree of time-variation in the innovation covariance

matrix is conceivable and, thus, we use a second bandwidth h2 for greater flexibility.

Next, we extend the estimator to the local-linear version. In Appendix B.3, we

derive the respective local-linear estimator for Σ(τ). That is, we approximate the

parameter curve of Σ(τ) by a derivative process, i.e., a Taylor expansion of order

one.

With Z ′Σ,τ = [1(T×1)|Dτ1(T×1)] the estimator reads
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Σ̂τ = V

(
WτZ

′
Σ,τ (ZΣ,τWτZ

′
Σ,τ )

−1

(
1

0

)
⊗ IN

)
. (2.15)

Note, that (2.15) is equivalent to (2.13) for τ close to 0.5. This peculiarity roots

from the squared minimization, which cancels out the first order of the Taylor Ex-

tension (t/T − τ)Σ̇τ when squaring it. In the boundaries, however, (2.15) takes into

account the local change. Intuitively, it outperforms the local-constant estimator

(2.13) at the beginning and the end of the sample.

Again, the estimator is dependent on a second bandwidth, which allows users to

calibrate the models more at their discretion. To remedy such behavior, we provide

a data-driven machine learning approach to select the bandwidths: cross-validation.

2.3.3 Bandwidth Selection

In this subsection, we deal with the question of bandwidth selection. Similar to

rolling windows, in which the econometrician has to choose a window length, the

choice of bandwidth implicitly determines the dynamics. While most applications

choose a bandwidth which is in line with the economic story, we want to focus on

a data-driven bandwidth. We find this step as vital as the estimation itself since

the evolution of the parameters is as important as its level. Without a data-driven

bandwidth the overall shape of the results is exposed to the author’s discretion.

Cross-validation (CV) has proven to be a useful method to select bandwidths.

Intuitively, CV divides the full sample into a training data set and test data set

and then, based on the best predictive power, selects a tuning parameter. For

most econometric applications, CV is heuristically easy to apply. However, in the

context of time series analysis, this task becomes particularly challenging since the

sample is a single draw of a multivariate time series. This peculiarity complicates

the classification of the sample in training and test data, such that some cross-

validation methods are computationally infeasible. Hence, we focus on leave-one-out

cross-validation (LOOCV).

Leave-one-out cross-validation refers to a training data set which includes all

but one observation and, consequently, a test data set which consists of this very

observation. The aim is to predict one observation by training on the rest of the
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sample. We estimate the coefficients at time point t without observation yt in order

to predict it. However, the estimator in (2.12) generally performs best using a two-

sided kernel. Note that using the two-sided ’holey’ estimator uses future values and

does not ’predict’ the value. Thus, it becomes a projection error. The bandwidth

with the best fit is the one which minimizes the sum of squared projection errors. By

leaving out the central observation, the minimization uses all valuable information

around it.

Let Â◦τ,h be the ’holey’ estimator as in (2.12) where we set Kh(τ) := 0, i.e. the

estimator without observation yt with t = Tτ .3 The corresponding fitted value of yt

is denoted as ŷ◦t,h. Then,

û◦t,h = yt − ŷ◦t,h (2.16)

is the ’holey’ residual or projection error for bandwidth h. Clearly, this projection

error shares a lot of characteristics with the innovation term ut in (2.1). For ex-

ample, the innovation covariance matrix Σt is in general non-diagonal and thus the

covariance matrix of the projection errors is non-diagonal as well.

In the context of financial networks, we believe that links get formed by new

contracts getting signed and old contracts maturing. In return, one would expect

slowly changing entries in the dependency structure. However, this formation pos-

sibly has endogenous aspects. In crisis periods, on the one hand, firms act more

cautious and aim to reduce their dependency on others as swift as possible. In more

tranquil investment periods, on the other hand, firms slowly build up links over

time and become increasingly intertwined. Hence, time-variation also plays a role

in how fast dependencies change and, consequently, it is desirable to implement a

dynamic bandwidth in this setup. In a nutshell, a dynamic bandwidth counteracts

the potential misspecification of dynamics due to the endogenous formation of links.

In analogy to Niedźwiecki et al. (2016), we use a cross-validation procedure for

multivariate locally stationary processes. Even though it is desirable to incorporate

the non-diagonal covariance matrix in the sum of squared projection errors, the es-

timation of such requires a residual series and a bandwidth in the first place. Hence,

we stick to the plain CV. That is, for time instance τ , we choose the bandwidth h1,τ

3Note the slight abuse of notation. We need the τ notation to denote the observation we want
to estimate.
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with

hCV1,τ = arg min
h

∑
t

Kh3

(
t

T
− τ
)
û◦t,h

′ û◦t,h. (2.17)

By minimizing this criterion, we check the quality of the model estimates with

bandwidth h around τ . The degree of time-variation in h1,t is then determined by

h3, which we assume to be given.

Note that (2.17) gives us a series of bandwidths for the coefficients. Given this

series, we construct a residual series ût, which is then used for the covariance esti-

mates. Similar to the the sparse covariance estimation in Cai and Liu (2011), we

extend the idea of cross-validation to the second moment of residuals. That is, we

employ a distance criterion to validate the goodness of fit of an estimator given a

bandwidth. Thus, define the ’holey’ estimator for the covariance matrix (2.13) with

bandwidth h at τ as

Σ̃◦τ,h =
T∑

t=1;t6=τT

Kh(
t

T
− τ)ûtû

′
t, (2.18)

and, respectively for the local-linear estimator (2.15),

Σ̂◦τ,h = V

(
W ◦
τ Z
′
Σ,τ (ZΣ,τW

◦
τ Z
′
Σ,τ )

−1

(
1

0

)
⊗ IN

)
, (2.19)

where W ◦
τ is set to give weight zero at τ , i.e. Kh(τ) := 0. Again, with a slight abuse

of notation, we use index t on these ’holey’ covariance estimates. Then, Σ̂◦t,h is the

covariance estimate for the innovations ut without using the residual ût. Since we

assume a smooth evolution of Σt, we again want to find the bandwidth with the

most predictive power. In particular, we test the ’trained’ estimator on the test

data set ûtû
′
t. Denote the distance to the squared residuals at each time point as

dt(Σ̂
◦
t,h) = ||ûtû′t − Σ̂◦t,h||F . (2.20)

The weighted leave-one-out criterion at τ reads

hCV2,τ = arg min
h

∑
t

Kh4

(
t

T
− τ
)
dt(Σ̂

◦
t,h), (2.21)

54



where || · ||F denotes the Frobenius norm and h4 again determines the degree of

time-variation of the bandwidth for the covariance estimator. This step evaluates

which bandwidth has the best explanatory power for the covariance of ûτ around τ .

Thus, this step also yields a dynamic bandwidth as we let the kernel Kh4

(
t
T
− τ
)

sweep through the sample, i.e. for all τ ∈ (0, 1]. Following all proposed steps yields

two series of bandwidths, h1,τ and h2,τ . Needless to say, these two series give us

further insights into the dynamics of our model, as we are also able to see changes

in the degree of time-variation of the coefficients and the covariance.

Note that dynamic bandwidths imply that the dynamics of the parameter es-

timates are less constrained and, thus, it might look odd compared to a regular

fixed bandwidth regression. Consequently, we have to ensure that the bandwidth

series are smooth enough for neat regression results. The previous step is, however,

performed over a grid of bandwidths and, hence, we will kernel smooth the two

bandwidth series in the application.

2.3.4 Time-Varying Forecast Error Variance Decompositions

To link the implied dependency structure of coefficients and the innovation covari-

ance matrix to networks, Diebold and Yılmaz (2009) interpreted Forecast Error

Variance Decompositions (FEVD) as spillover tables. In this section, we shed light

in the abstractness of FEVDs and show how they behave with time-varying param-

eter estimates. We assume a time-varying VAR(1) representation of (2.1). This

VAR(1) can be the companion form of a VAR(p) estimation as in (2.3). In the

following, we drop the notation of locally stationary processes to generalize FEVDs

for all time-varying VAR models.

Take (2.7), which presents the canonical representation of an N -dimensional local

stationary VAR process yt,T ,

yt − µt =
∞∑
j=0

Ψj,tut−j, Ψ0,t = IN , ∀t = 1, ..., T, (2.22)

where ut is defined as above with covariance Σt. The tvMA parameters are recur-

sively defined as

Ψi,t =

(
i−1∏
j=0

At−j

)
. (2.23)
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For a lag order higher than 1, the matrix of interest is the companion form estimate

of (2.3) without the intercept (first) column. We can rewrite Σt as Σt = PtP
′
t , with

Pt as a lower triangular matrix, i.e. with Cholesky decomposition. Consequently,

(2.22) reads

yt = µt +
∞∑
j=0

Ψj,tPtP
−1
t ut−i = µt +

∞∑
j=0

Φo
j,tεt−i

where Φo
j,t := Ψj,tPt and εt := P−1

t ut is white noise with the identity as covariance

matrix.

The responses functions of an orthogonal impulse at time t on yt+h are in the

columns of the (N ×N) matrix:

Φo
h,t = Ψh,tPt (2.24)

Since the Cholesky decomposition is not invariant to reordering, Pesaran and

Shin (1998) proposed a different method. They set a single impulse to variable j

with size δj, such that the expectation of the innovation vector becomes

E[ut|uj,t = δj] = (σ1j,t, ..., σNj,t)σ
−1
jj,tδj = Σtejσ

−1
jj,tδj,

with σjj being the j-th diagonal value of Σ. We can interpret the latter as a gener-

alized impulse as it controls for correlated effects. The response functions of gener-

alized impulses with the size of one standard deviation δj =
√
σjj,t ∀j at time t on

yt+h are in columns of the (N ×N) matrix:

Φg
h,t = Ψh,t Σt diag(Σt)

− 1
2︸ ︷︷ ︸

=P g
t

, (2.25)

where diag(Σw,t) denotes a diagonal matrix with the diagonal values of Σt and P g
t

is the matrix ’decomposition’ similar to Pt in the orthogonal case. Note, however,

that P g
t is not a decomposition of Σt since Σt 6= P g

t P
g
t
′. Thus, this case does not

create orthogonal innovations, but, in fact, is invariant to reordering.4

When squaring the elements of (2.24) and (2.25) we obtain the orthogonal forecast

4The resulting innovations εgt = P gt
−1
ut are by no means shocks, since their covariance matrix

is the inverse correlation matrix diag(Σt)
1
2 Σ−1t diag(Σt)

1
2 , which is non-diagonal. Entries in this

matrix can be linked to partial correlations, see e.g. Raveh (1985).
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error variance and the generalized forecast error variance respectively. The H-step

forecast error variances at time t read as5

Γlt
2

(H) =
H−1∑
h=0

(Φl
h,t

·2
+ · · ·+ Φl

h,t

·2
) l = {o, g}. (2.26)

where M ·2 denotes the element-wise squared matrix M .

Following Diebold and Yılmaz (2014), we denote the H-step orthogonalized and

the generalized Forecast Error Variance Decompositions as DoH
t = [doHij ] and DgH

t =

[dgHij ], respectively, where

doHij,t =
e′i Γot

2 (H)ej

e′i Γot
2 (H)1N×1

, dgHij,t =
e′i Γgt

2 (H)ej

e′i Γot
2 (H)1N×1

(2.27)

with ei being the i-th column of the (N×N) identity matrix and thus e′i Γot
2 (H)1N×1

being the mean squared forecast error of variable i. This ratio then explains the j-

th percentage contribution on the total forecast variance of all variables on variable

i. Remember that since P g
t is not a decomposition of Σt, rows of the generalized

forecast error variance decompositions do not sum to one.

Normalizing these entries leads us to our network interpretation, where the nor-

malized spillover table D̃gH
t marks our adjacency matrix. In particular, we want to

see contagion of shocks to firms relative to their own shock affection. In Diebold

and Yılmaz (2014), the spillover table comes with measures of connectedness

Ci←·
(
D̃gH
t

)
=
∑
j 6=i

d̃gHt,ij, (From Connectedness to i)

C·←j
(
D̃gH
t

)
=
∑
i 6=j

d̃gHt,ij, (To Connectedness from j)

C
(
D̃gH
t

)
=

1

N

∑
i

∑
j 6=i

d̃gHt,ij. (Average Connectedness)

While the first two measures depict variable specific attributes, Average Con-

nectedness is the average of one of the two. That is, it shows how much effect one

5Even though these can be technically described as decompositions, we denote them as forecast
error variances to abstract from the later construct, which is a relativized version.
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variable takes on average from others. From Connectedness, in contrast, shows how

much i takes from others, and vice versa for To Connectedness. Note here, that

the connectedness matrix D̃gH
t is row normalized, i.e., all numbers in the matrix are

relative to the total effect taken. For a more detailed discussion about the measures,

we refer to Diebold and Yılmaz (2014).

2.3.5 Inference with Bootstrap Confidence Intervals

The previously introduced concepts give a clear picture of the extent to which vari-

ables contribute to each other and hence allow for a network interpretation. Ideally,

we would like to underpin the estimation of those with some distributional results.

In the upcoming subsection, we focus on providing confidence intervals for the esti-

mated networks.

With distributional results of the estimators, one can directly apply them to the

estimates. However, network tables are complex functions of the estimation results,

and therefore limiting distributions are hard to calculate. Moreover, limiting distri-

butions do not work for all bandwidths, e.g., for small bandwidths, our estimators’

variances may be falsely specified. Hence, we focus on bootstrapping methods due

to their simplicity and universality. That is, we use the residual bootstrap, which is

known to be a flexible and sophisticated approach for linear models.

For a given number of bootstrap repetitions, B, and all the estimates from the

previous sections, we create confidence intervals with the following steps:

1. Calculate residuals Ût = Yt − ÂtXt−1 and extract ût
6

2. Define orthogonal innovation terms ε̃t := Σ̂
− 1

2
t ût that are approximately iden-

tically distributed. Σ̂
− 1

2
t is any decomposition of the innovation covariance

estimate in (2.13) or (2.15)

3. Draw randomly (with replacement) from the set of ũt to generate a new times

series with the orthogonal innovations

Y ∗t = ÂtX
∗
t−1 + Σ̂

1
2
t ε̃t∗︸︷︷︸
iid draw

, ∀t = 1, ..., T,

X∗0 = X0.

6Note that these are independent but not identically distributed, due to the fact that we have
time-variation in the residual series as well.
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4. Calculate the bootstrap coefficient and covariance estimates on the generated

time series with (2.12), and (2.13) or (2.15). Save the bootstrapped parameters

of interest in θ̂∗b .

5. Repeat steps 2, 3 and 4 B times, where B is large.

6. Calculate differences for the parameter of interest θ̂∗b − θ̂ and subtract the

quantile from the estimate. Denote the α-quantile of the empirical distribution

of θ̂∗b by q∗α/2 and q∗1−α/2, then the bootstrap confidence interval for θ̂ is given

by

[2θ̂ − q∗1−α/2, 2θ̂ − q∗α/2].

Note that the intervals, as constructed in step 6, are known as the basic Hall

bootstrap intervals. Alternatively, one could also use the Efron intervals, which are

the percentile quantities of the empirical distribution.

In this paper, we focus on θ as an entry of the spillover table as in (2.27). By

applying the confidence intervals to spillover tables, we provide an idea of how

connectedness changes over time. This information helps to abstract from differences

caused by estimation errors.

2.4 Simulation Study

In the upcoming section, we focus on the proficiency and applicability of the method.

In particular, we are interested in the three critical steps of the method. First, a

simulation of the estimators for the coefficients and the innovation covariance matrix

shows the applicability of local-stationary approaches. Second, we calculate coverage

rates to show the performance of the previously introduced bootstrap. Third, since

this paper does not provide a theoretical background for the cross-validation, we

test its performance to the ideal bandwidth.

All three simulations follow the same parameter generating process. In particular,

we focus on N = 3 with time-varying coefficients and innovation covariance matrix.

In order to show their fit, we randomly generate stationary time-varying coefficients

and covariance matrices with entries from a sine function having random magnitude,

frequency, and shift for all entries. A more detailed description of the parameter
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generating process can be found in Appendix B.4. Note that generated parameter

series which are not stable are discarded due to the assumption of local stationarity.

Illustration of the Estimators

This subsection intends to give an understanding of the local-linear estimator. We

show one example to give insights into the performance of the estimator in the

time-varying setup. This example, in particular, is a negative example as it shows

the estimator under challenging conditions, e.g., different frequencies for the entries.

However, we hope that this example can highlight the estimator’s advantages. We

randomly generate a parameter series, which, in return, generates a time-series for

each Monte-Carlo repetition with 1000 observations and respective Forecast Error

Variance Decompositions.

Figures 2.1, 2.2 and 2.3 show the mean of the Monte-Carlo estimation of (2.12)

for the (3×3) matrix function At, Σt and DgH
t respectively. We select the bandwidth

which minimizes the Frobenius norm to the true parameters and denote it as the

oracle bandwidth.

First, note that the local-linear and local-constant estimators for the coefficient

curves At look similar. The local-constant kernel estimator (dashed blue) performs

slightly worse at the boundaries but slightly better in this example (see B.1 in

Appendix B.3). Furthermore, we observe that the estimator is not entirely unbiased.

While it gets an idea of the overall form and level of the entries, it is not able to

match the peaks of the true curve. However, the derivative structure of the local-

linear estimator lets it perform better at the boundaries of the sample.

A similar picture, but with a better overall estimation result is shown in Fig-

ure 2.2. We observe similar performance with a slightly better estimation at the

boundaries by the local-linear estimator.

Last, the connectedness matrix DgH
t shows that the boundary effect enhances.

That is, Figure 2.3 shows that the local-linear estimator has a significantly better

understanding of where the trend is going. This result is particularly essential since

forecasting methods require accurate estimations at the end of the sample. For

example, institutions are mostly interested in the 10-day capital shortfall conditional

on another variable, which is the Forecast Error Variance Decomposition at the end

of the sample.
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Entries for At (T=1000)

95%-MC
True
Local-Constant
Local-Linear

Figure 2.1: Monte Carlo Simulation of At with 500 repetitions. Mean comparison of the
local-linear estimator (2.12) (red) and the local-constant estimator aka kernel-weighted
LS-estimator (dashed blue). The black line depicts the true DGP parameters. The grey
area shows the Monte-Carlo bands.

In summary, this particular negative example slightly favors the local-constant

estimator for the coefficient curves. However, one has to keep in mind that the more

essential periods are the ones at the end of the sample. Thus, we recommend using

the local-linear estimator as it outperformed the local-constant in the boundaries.

Bootstrap Performance

Table 2.1 shows the coverage rates of the simulation for 200 Monte-Carlo and 1000

bootstrap repetitions. First, it is evident that the coverage rates are permissive for

both the basic Hall bootstrap interval (first row) and the Efron percentile bootstrap

interval (second row). Second, the intervals perform similarly with virtually no

differences even though the first one is bias corrected. Consequently, we most likely
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Entries for Sigmat (T=1000)

95%-MC
True
Local-Constant
Local-Linear

Figure 2.2: Monte Carlo Simulation of Σt with 500 repetitions. Mean comparison of the
local-linear estimator (2.12) (red) and the local-constant estimator aka kernel-weighted
LS-estimator (dashed blue). The black line depicts the true innovation covariance entries.
The grey area shows the Monte-Carlo bands.

cannot correct the bias with a bootstrap, albeit the fact that the permissive behavior

might be inherited from a bias. In contrast to the application, these simulations are

calculated with a static oracle bandwidth.7

Cross-Validation

We now conduct a simulation analysis of the cross-validation steps as in section

2.3.3. In particular, we use (2.19) as an estimator of the covariance matrix since this

seems to perform slightly better boundaries. Taking the other covariance estimator

for increased computation performance gave similar results. Figure 2.4 shows the

distribution for ’horacle−hCV ’, where the oracle bandwidth is the bandwidth, which

7This is the bandwidth that minimizes the Frobenius norm to the true value
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Entries for DgH
t  (T=1000, H=10)

95%-MC
True
Local-Constant
Local-Linear

Figure 2.3: Monte Carlo Simulation of DgH
t with 500 repetitions. Mean comparison of the

local-linear estimator (2.12) (red) and the local-constant estimator aka kernel-weighted
LS-estimator (dashed blue). The black line depicts the true innovation covariance entries.
The grey area shows the Monte-Carlo bands.

minimizes the Frobenius norm to the true parameters.
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α

0.2 0.1 0.05 0.01

[2θ̂ − q∗1−α/2, 2θ̂ − q∗α/2] 0.7146 0.8235 0.8889 0.9575

[ q∗α/2 , q∗1−α/2 ] 0.7225 0.8244 0.8848 0.9470

Table 2.1: Monte-Carlo simulation results for 200 repetitions and a 1000 bootstrap repe-
titions. Coverage rates are shown for the basic Hall bootstrap interval and the percentile
interval. θ̂ denotes the estimation target Ât and quantiles are determined by α.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

h
1
oracle-h

1
CV

h
2
oracle-h

2
CV

Figure 2.4: Distributional results for the distance between the oracle bandwidth and
the cross validation selected bandwidth. The oracle bandwidth is the bandwidth which
minimizes the norm to the true parameter curves. The CV bandwidths are chosen with
the cross-validation criteria in (2.17) and (2.21). Distributions are kernel smoothed with
a gaussian kernel.

First note that the cross-validation approach for the coefficients as in (2.17) ap-

pears to have a Gaussian type distribution. In average, it finds the best bandwidth,

and its distribution appears to be rather symmetric. The cross-validation for the
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covariance estimates as in (2.21) performs slightly worse as it overestimates the

bandwidth relative to the oracle one. Nonetheless, it also shows something similar

to a Gaussian bell with a small recess on the left side. This result is not surprising

since the second step cross-validation (2.21) carries estimation errors from the first

cross-validation step and the estimation of the residuals. Thus, this cross-validation

has a higher standard deviation. Since bandwidths cannot be negative, the differ-

ence mostly appears on the left side of this distribution. In a nutshell, we can see

that the cross-validation steps give consistent results with acceptable errors and,

hence, are good indicators for the best fit in a time-varying setup.

2.5 Time-Varying Financial Connectedness

Financial connectedness as introduced by Diebold and Yılmaz (2014) is a concept to

monitor various key figures for risk management at once. In this section, we proceed

at an intuitive level and refer back to Section 2.3.4, or to Diebold and Yılmaz (2009),

for more rigorous definitions. First, we want to emphasize the obvious and link this

concept to systemic risk. The fact that the connectedness table shows contributions

of one firm to the other gives a clear hint about the long-run dependency structure.

Thus, it helps to identify systemic issues, and also shows potential gridlock risk.

Furthermore, financial connectedness links to other risk concepts such as market

risk and portfolio risk. Time-variation is not only a crucial feature in detecting

trends in market risk, but portfolio risk becomes particularly consequential when

we observe time-varying connectedness. For example, in a crisis, connectedness may

rise and, thus, imply worse diversification opportunities. Consequently, portfolio

managers who have insights into the real dynamics of time-varying connectedness

can exploit the additional knowledge to generate extra risk-adjusted excess returns

(see Fleming et al. (2001, 2003)). In the upcoming section, we hope to shed more

light in the dynamics of financial connectedness by empirically assessing volatility

spillovers in the financial market.

2.5.1 Data

Our empirical section hovers around the setup of volatility spillovers of Diebold

and Yılmaz (2014). We find this application, in particular, appealing since it gives
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an idea of how strongly financial firms are entangled. Return volatility is known

to show investors fear about the financial health of firms. Clearly, risk figures as

probability of default also highlight firms which are more likely to get into financial

distress. However, prices of credit default swaps as market-based variables have less

trading volume than stocks, and we leave this application for future research. In

our application on time-varying parameters, we believe that it is vital to have a

big trading volume to measure spillovers consistently. Hence, we focus on realized

volatility as a measure for the variance of returns. That is, we use the extreme-value

estimation measure by Parkinson (1980),

σ̃2
i,t = 0.361(phighi,t − plowi,t )2.

Where p
high/low
i,t denotes the daily maximum and daily minimum of intra-day log-

prices respectively. Similarly, we can use the realized volatility estimation of An-

dersen et al. (2003), which is based on high-frequency data. However, we find the

extreme value estimation particularly appealing due to its simplicity and its robust-

ness to recording errors.

Ideally, the analysis considers all available variables to understand connected-

ness as a whole. Unfortunately, computational constraints limit our analysis to a

relatively low number of financial firms. Thus, we focus on the most prominent

institutions. In particular, we include banks, insurance companies (AIG), and other

financial services (American Express). Moreover, since the analysis hovers around

the idea of responses, we have to ensure that all firms have the same trading times.

Hence, we can only include non-American institutions, which get traded on the New

York Stock Exchange (NYSE). That is, we focus on the biggest banks from Eu-

rope and Japan. Due to missing data, we are not able to include Banks such as

BNP Paribas or Chinese Banks. We use CRSP data and fill missing data points

(for Deutsche Bank and Credit Suisse) with Yahoo Finance.8 The data starts at

03/01/2000 and ends at 29/06/2018.

Table 2.2 describes the 15 institutions and their growth in total assets and market

capitalization over the years. Unfortunately, the fourth quarter financial report

of 1999, which is the closest to the start of our sample, has too many missing

values. Table 2.2 thus shows the 2000Q1 values and interpolates missing values.

8We observed that both institutions have weak data from 2000Q1 to 2001Q3. Thus, their
estimation for this period is fuzzy.
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Note that for every single institution, the number of total assets increased. In

particular, the big banks had a significant increase in total assets from 2000Q1 to

2018Q2. For market capitalization, the common trend is upwards. Apart from

AIG, Deutsche Bank, and Credit Suisse, all institutions experienced an increase in

market capitalization. At the end of the sample, MUFG, HSBC, JPMorgan Chase,

and Bank of America are the biggest institutions.

Total Assets Market Cap.
Institution Ticker Country 2000Q1 2018Q2 2000Q1 2018Q2

American Int. Grp AIG US 279.3 496.8 168.8 47.3
American Express AXP US 150.7 184.9 66.2 84.4
Bank of America BAC US 656.1 2291.7 86.9 282.3
Bank of NY Mellon BK US 76.0 352.9 30.6 53.9
Citigroup C US 738.2 1912.3 201.8 168.4
Credit Suisse** CS SUI 613.1 817.2 57.1 37.2
Deutsche Bank DB GER 912.5 1657.9 40.8* 21.9
Goldman Sachs GS US 276.9 968.6 44.8 85.6
HSBC HSBC UK 574.7* 2607.3 103.5* 187.3
JPMorgan Chase JPM US 391.5 2590.1 71.9 350.2
Mitsubishi UFG*** MUFG JPN 750.5 2698.5 44.5 73.9
Morgan Stanley MS US 408.1 875.9 79.9 82.9
Santander Group SAN ES 258.1 1673.0 43.0 86.2
Toronto-Dominion B. TD CAN 233.9 1283.8 22.5* 133.0
Wells Fargo WF US 66.4 293.6 222.3 9.9

Table 2.2: Key figures of financial institutions in bn. US$ (source: Compustat, *inter-
polated missing values, **CS reported for 2000Q4 and 2017Q2***MUFG reported for
2001Q2 and 2018Q1, )

We conduct our analysis on Generalized Forecast Error Variance Decompositions

from Section 2.3.4 for a forecast horizon H = 10. The respective matrices are

estimated with the local-linear estimates (2.12) and (2.15) and bandwidths of (2.17)

and (2.21). We set the dynamics of the cross-validation to

h3 = h4 =
250

2q0.95T
,

where T is the sample length and q0.95 denotes the 95% percentile of the respec-

tive kernel distribution. This bandwidth gives 95% of the weights to 250 trading

days (one calendar year). We use the Gaussian kernel due to its good asymptotic
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behavior, and its viability with the covariance estimate.9

2.5.2 Empirical Results

This section intends to show time-varying estimates of financial connectedness. In

contrast to Diebold and Yılmaz (2014), we provide insights into spillovers to non-

US institutions, reaction times of investors, and confidence bands for the estimator.

Although the new dynamics of the estimators and its confidence bands add informa-

tion on an institutional level (e.g., From and To Connectedness), we zoom out to the

root of the problem, i.e., connectedness as such. In the following, we first present

the implied network as a time-average of the FEVD and the last observational pe-

riod. Second, we analyze the dynamics of Average Connectedness by showing the

cross-validation results, Average Connectedness, and its confidence sets.

Figure 2.5 shows the 25% strongest connections of the mean network, which is

the average of the networks at each time point. The nodes are arranged with force-

directed graph drawing. This method plots the most central nodes in the middle and

arranges nodes closer to each other when they share more connections. However,

presenting all edges in one graph would yield a muddle to the reader. Thus, for this

figure, the smallest 75% edges are set to zero and, consequently, the force layout

arranges the nodes neatly.

It is salient that the institutions are formed in clusters by regions. The US

financial institutions form a cluster, which has mainly banks in the center. The

European banks form a cluster on its own, where every single one has a connection

in the top 25%. For the Canadian Toronto-Dominion and the Japanese Mitsubishi

UFJ Financial Group, we do not observe any connections in the top 25%. Note,

however, that this does not imply that they are less critical for the financial system.

It only states that for this group of financial institutions, the impact is significantly

lower than for the rest.

On a similar note, we analyze the most recent network in Figure 2.6, the estimated

network as of 30/06/2018. Again, only the 25% strongest connections are shown in

a force-directed network graph.

While is it is clear that we can again observe the clusters by regions, this network

shows that the clusters do share more spillovers. Since we only show the 25% most

9Other kernels might improve the computation time, but possibly produce non-positive definite
matrices.
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Figure 2.5: Network graph of the mean network over time. The strongest 25% dependen-
cies are shown. Colors indicate the out-degree of the respective institution.

substantial dependencies, it is particularly interesting that we do not observe any

isolated nodes anymore. This observation implies that institutions have gotten rela-

tively more connected to institutions from other regions. Even though globalization

plays a significant role, it is evident that in this sample the Swiss Credit Suisse and

the British HSBC contributed to more global connectedness. They increased their

spillovers to others (see the change in color of the node relative to the mean net-

work in Figure 2.5). Furthermore, the scale on the right side shows the out-degrees,

which, when comparing to the mean network out-degrees, are higher at the end of

the sample.

In order to analyze how dependencies changed over time, we show the average

connectedness in Figure 2.7. Before getting into detail, it is worth noting that, in

contrast to the Bayesian time-varying VAR of Korobilis and Yilmaz (2018), this

estimation has a smoother development of connectedness. The assumptions on the

estimation targets require the evolution to be sufficiently smooth. Intuitively, the
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Figure 2.6: Network graph of the network at the 30/06/2018. The strongest 25% depen-
dencies are shown. Colors indicate the out-degree of the respective institution.

smoothness assumes that the network forms exogenously. A Bayesian time-varying

VAR allows them to be affected by a shock and, thus, it shows sharper jumps in

the connectedness. This behavior is imaginable if we assume endogenous network

formation. That is, an extremely negative or positive realization affects the de-

pendency structure instantaneously. Note that the two-sided local-linear estimation

approach somehow prohibits that since it smoothly adapts to bigger volatilities of

before adverse shocks to make them likely enough to happen.

Figure 2.7 shows Average Connectedness in blue with its confidence intervals in

grey. The red lines depict the cross-validation bandwidths with values on the right

scale. Most notably, there is a clear upwards trend over nearly the whole sample.

Even though we allow for time-variation of all sorts, the result seems to have a

nearly linear trend. Solely from 2010 until 2015, the connectedness did not increase.

The end of the sample shows an alarming average connectedness of financial firms.

More precisely, the amount of average spillovers to other firms exceeds the spillovers
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Figure 2.7: Average Connectedness (blue) over time. The grey areas depict the 90% and
99% bootstrap confidence interval. The red lines depict the selected bandwidth for the
coefficient (solid) and the covariance (dashed) estimate.

during the financial crisis.

A technically compelling result is the seeming independence of the level of Av-

erage Connectedness of adverse events. We see this finding as support for a more

exogenously formed network. Specifically, the series of extreme events during the

great recession from 2007 to 2009 only shows changes in the selected bandwidths.

The bandwidth of the covariance estimate increased to an all-time high before

the crisis and shrank with the first negative news at the beginning of 2007. The

coefficient’s bandwidth increases at that time but shortly after drops again. If we see

the covariance matrix as the immediate co-effects rooting from mutual exposures,

such as portfolio holdings or increased market risk, a lower bandwidth implies that

most of these effects are experiencing more change. A higher bandwidth, as we

observe it in that period, stands for a more persistent mutual exposure to the same

risks — namely, the bad loans from the subprime crisis.

Beyond, we interpret the coefficients as directed and more causal dependencies

of institutions, e.g., causal relations issuing from asset and liability structures, or

options and derivatives. Thus, higher bandwidths for the coefficient’s estimates

relate to more rigidity in the asset and liability structure of the institutions. The
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peak at the end of 2007 can then be interpreted as a phase of greater mistrust of

the firms.

Eventually, the confidence intervals give us evidence that all these changes in the

average connectedness are significantly different. In times when the confidence sets

are not centered, it shows that the mean estimate could also be different. In most

phases, the bootstrap is more confident that the true line is below that estimate.

While in stressful periods, the bootstrap instead has more confidence of higher levels.

2.6 Concluding Remarks

In the time-series literature, rolling-windows are arguably the most applied time-

varying parameter models. We generalized the idea of rolling windows with a semi-

parametric estimation approach. We introduced a bootstrap method that applies

to the connectedness measure from Diebold and Yılmaz (2014). A bandwidth se-

lection approach complemented the estimation and inference steps. In an extensive

simulation study, we showed their efficiency and effectiveness.

The application analyzed a multivariate time series of volatility spillovers on the

financial market. In particular, our results highlighted the general trend of connect-

edness in the financial market. Moreover, we detected a persistent trend between

2002 and 2008, which, we all know, lead to the financial crisis. Comparing networks

at different time points, we highlighted the formation of clusters by regions. How-

ever, the network estimate on the 30/06/2018 gave evidence of increasing spillovers

between regions.
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Chapter 3

Estimating Large Dimensional

Connectedness Tables

This paper is joint work with Matteo Barigozzi and Christian Brownlees.

3.1 Introduction

In most quantitative research fields, applied problems deal with uncovering depen-

dencies between variables. While dependencies are mostly understood and quantified

as contemporaneous covariances and correlations, these linear measures hide direc-

tionalities and potential lagged relations. To visualize and summarize dependencies

in a more causal way, the recent economics literature pictures such dependencies as

spillovers and connectedness. Many papers consult the idea of forecast error vari-

ance decompositions (FEVDs) to measure such structures. That is, FEVDs give

a coherent understanding of how much the variation of one variable explains the

variation of others and, thus, illuminate causal relations with relative contributions.

Whereas this concept works for all autocorrelated settings, connectedness measures

are most popular in the literature on measuring systemic risk. In particular, Diebold

and Yılmaz (2014) successfully reinterpreted this tool and introduced a new way of

measuring financial connectedness. Their conception of interpreting FEVDs as net-

works enables rigorous analyses and insightful visualizations of dependencies, which

results in new key figures.

FEVDs condense contemporaneous and lagged dependencies into one connect-

edness table, which has to be estimated. As for any other econometric method,
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accuracy is pivotal. The main equational form of FEVDs follows a vector autore-

gressive (VAR) structure, such that the estimation of these tables inherits the VAR’s

estimation uncertainty. While the estimation of VARs has several weaknesses, we

are convinced that it suffers particularly in the setup of high dimensionality. That is,

the estimation error blows up when the number of variables or nodes (N) approaches

the number of time observations (T ). This issue is particularly grave because of two

reasons. First, most applications seek for time-variation in the parameters and ap-

ply rolling window approaches, which requires to reduce the number of observations

used in the estimation. Second, to have a pristine unified network interpretation,

authors need to ensure that no relevant variables were omitted. Accordingly, they

desire a large number of variables.

In this setup, it is widely known that regularization methods for the respective

estimators of the coefficient and covariance matrix reduce the uncertainty and the

bias. Although the literature on regularization regressions and covariance matri-

ces is rich with the vast availability of different techniques, it is yet unclear how

these approaches perform by comparison. Hence, we summarize the most promi-

nent methods and compare them in an extensive simulation study for the setup of

sparse relations. Moreover, we deal with the task of regularizing the innovation

covariance matrix and how this step affects the overall estimation uncertainty. In

short, the simulation study focuses on the clean estimation of VARs and measure

their performance on FEVDs. A result of this analysis is that we are not able to

elect a clear winner since it appears that their performances are similar overall.

In an empirical analysis, we investigate how spillovers on industrial production

of the US between 1972 to 2007 have changed with the Great Moderation. In so

doing, we want to answer the question of whether the change in the volatility of

the industrial production index is due to a change in some sectors or many. The

estimation of FEVDs proves to be challenging, since the split into pre- and post-

Great Moderation periods reduces the effective sample size. However, we successfully

uncover the spillover networks and the respective dependencies of sectors. We find

that there is a significant difference in the average spillover between the pre- and

post-Great Moderation periods. An analysis of the distribution of sectoral spillovers

highlights that a handful of sectors may be partially responsible for the high volatility

before the Great Moderation.

This study connects to the literature on regularization. In particular, we stay in
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the strands of regularizing regressions and covariance matrices, respectively. The

regularization of regressions has become more popular, because the increasing avail-

ability of data made variable-selection more critical. While shrinkage regression

methods, such as ridge regression by Hoerl and Kennard (1970), serve as useful

tools to decrease the estimation bias, variable selection methods, such as LASSO by

Tibshirani (1996), caught more attention in the time series literature. A combina-

tion of shrinkage and variable selection is, by the strands of the current research, the

most advanced regularization practice applied to time series models. A prominent

example is the adaptive elastic-net by Zou and Zhang (2009), which generalizes

the ideas of ridge and adaptive LASSO in one approach. Economic applications

usually perform these methods in a cross-sectional context. In contrast, time series

applications of modern techniques are implemented for elastic-net in a general VAR-

case in Kascha and Trenkler (2015) and for the setting of FEVDs in Demirer et al.

(2017). The latter is the impetus of this work as it remains unclear how estimation

uncertainty affects the overall result of FEVDs.

Complementary to the approach of Demirer et al. (2017), we consider regulariz-

ing the innovation covariance matrix likewise. The statistics literature encompasses

various methods of regularizing covariance matrix estimates. Friedman et al. (2008)

considered a sparse estimate by applying the LASSO penalty to the inverse covari-

ance matrix. Along with this estimator, the optimal shrinkage method by Ledoit and

Wolf (2004) reigned as an easy-to-apply regularization for sample covariances. Just

recently, thresholding rules like Bickel and Levina (2008), Rothman et al. (2009)

and Cai and Liu (2011) introduced the general idea of hard-thresholding, soft-

thresholding, and adaptive thresholding, respectively. These methods follow the

idea that the sample covariance matrix is subject to calculable estimation errors,

which can easily be cut and shrunk. While most thresholding rules apply the same

threshold to all entries of the sample covariance, the adaptive approach allows for

entry-specific threshold levels.

The rest of the paper organizes as follows. In Section 3.2, we introduce the

concepts of FEVDs and give an overview of various regularization methods. We

assess these methods with a simulation study in Section 3.3. Section 3.4 applies

the regularization of FEVDs to the setup of industrial production to answer the

question of sectoral spillovers. Finally, Section 3.5 concludes.
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3.2 Methodology

Ultimately, the goal of this study is to estimate large networks in a time series

context. For that purpose, we make use of two different methodologies. First, we

consider the estimation of networks, which is enabled by the theoretical considera-

tions of forecast error variance decompositions. That is, they explain the amount

of spillover between variables. Second, due to the impairment in the estimation of

high-dimensional VARs, we deal with regularizations suitable for the estimation of

FEVDs. This section sums up generalized FEVDs and introduces suitable regular-

ization methodologies to overcome their estimation uncertainty.

3.2.1 Generalized Forecast Error Variance Decompositions

in a Nutshell

As in Pesaran and Shin (1998), we consider a N -dimensional stable VAR(p) process,

yt = µ+

p∑
i=1

Aiyt−i + ut, ∀t = −p+ 1, ..., T, (3.1)

where ut has multivariate normal distribution with covariance matrix Σu. Due to

the stability assumption, the process can be written in canonical MA representation

yt = µ+
∞∑
i=0

Φiut−i. (3.2)

Where the MA parameters are recursively defined as Φi =
∑p

l=1AiΦi−1 for i > 0

and Φ0 = IN . Note that the components of ut are generally not orthogonal such that

structural interpretations are economically meaningless. To this extent Koop et al.

(1996), Pesaran and Shin (1998), define the (unscaled) generalized impulse response

(GIR) function at horizon h to an impulse δj on the jth entry of the reduced form

innovation ut. They do so in integrating out the effect of all the remaining shocks

in the shock vector:

IR(h, δj, j) = E(yt+h|uj,t = δj)− E(yt+h|uj,t = 0). (3.3)
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Under the Gaussian assumption, we can use

E[ut|uj,t = δj] = (σ1j, ..., σNj)σ
−1
jj δj = Σuejσ

−1
jj δj,

and substitute it in (3.3). The impulse response function can be rewritten as

IR(h, δj, j) = ΦhΣuejσ
−1
jj δj,

with ej as the jth column of the identity matrix. It is customary to set δj =
√
σjj,

which yields the scaled generalized impulse response functions IR(h,
√
σjj, j). We

assemble the scaled IRs in the (N ×N) matrix

Ψg(h) = [ψgij(h)] = [IR(h,
√
σ11, 1), ..., IR(h,

√
σNN , N)] = ΦhΣu diag(Σu)

− 1
2 , (3.4)

where diag(M) denotes a diagonal matrix with diagonal values of a square matrix

M .

Analog to standard impulse response analysis, we gain further insights rewrit-

ing yt as impulse response functions multiplied by an innovation vector. Let P =

Σudiag(Σu)
− 1

2 and define the generalized shock ugt as

ugt := P−1ut ∼ N (0N×1,Ω) ,

where Ω = diag(Σu)
1
2 Σ−1

u diag(Σu)
1
2 . Then it is possible to express (3.2) as

yt = µ+
∞∑
i=0

Ψg(i)ugt−i. (3.5)

Henceforth we are allowed to interpret ugt as the innovation vector in the generalized

impulse response analysis which gets one element shocked with unity and all others

set to zero.

Note that the ith forecast error variance at h explained by innovations in variable

j is
(
ψgij(h)

)2
. Then, the effect of a generalized impulse of variable j at time t on

the H-step ahead forecast error variance of variable i is

MSE[yi,t+H |ugt = ej] =
H−1∑
h=0

(
ψgij(h)

)2
. (3.6)
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Also the H-step total forecast error variance from all variables to i is just the mean

squared error of variable i:

MSE[yi,t+H ] =

(
H−1∑
h=0

(ΦhΣuΦ
′
h)

)
ii

. (3.7)

Pesaran and Shin (1998) divide (3.6) by (3.7) and thus get a table showing the

contributions accounted by innovations in variable j to the H-step forecast error

variance of variable i. Like Diebold and Yılmaz (2014), we denote the H-step ahead

generalized forecast error variance decompositions DgH = [dgHij ] with entries

dgHij =
MSE[yi,t+H |ugt = ej]

MSE[yi,t+H ]
. (3.8)

Note that the numerator implicitly shocks single entries of ugt and the denominator

shocks single entries of ut. With the relation given by Ω, we see that the rows of DgH

just sum up to one if Σu is diagonal. Diebold and Yılmaz (2014) row-normalize these

tables for a cleaner network interpretation. However, row-normalization distorts the

entries such that the distribution of estimation errors gets more complex. Thus, if

not explicitly stated, we do not perform this normalization.

3.2.2 Estimating Large Vector Autoregressions

Naturally, we want a broad set of variables in the economic model, and, thus, we

have to deal with high-dimensionality. Recall that (3.8) is a function of the coeffi-

cients and innovation covariance matrix in (3.1). Thus, to estimate FEVDs, we have

to estimate the unknowns in (3.1). For that purpose, the literature already provides

various approaches for estimating large VARs. Since our goal is to improve on esti-

mating connectedness tables in a high-dimensional VAR setup, we compare different

regularization approaches. We hope to address the most prominent examples, but

we are aware that we might miss out on some others.

First, LASSO-techniques are known to perform well in an autoregressive setup.

Those methods, in particular, aim to regularize the coefficient matrix A but do

not regularize the covariance matrix Σu, which also suffers from estimation uncer-

tainty. From (3.4), it should be evident that a poor estimation of the innovation

covariance matrix spoils the overall FEVD. Later in this paper, we point out that,
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in particular for the sparsity setup, it is negligent not to regularize the innovation

covariance matrix. Hence, we combine regularization methods for the unknown re-

gression coefficient and covariance matrix to achieve the best possible estimate of the

FEVD. Eventually, we introduce a new regression model to regularize the long-run

dependency.

Regularizing Vector Autoregressive Coefficients

As in Kascha and Trenkler (2015), we first transform the VAR setup such that our

coefficient matrix A can be estimated in vector form.

y = (Z ′ ⊗ IN) β + u (3.9)

where y = vec([y1, ..., yT ]), Z0
t−1
′

= (y′t−1, ..., y
′
t−p)

′, Zt−1 = (1, Z0
t−1
′
)′,

Z = [Z0, ..., ZT−1], β = vec(A) and u = vec([u1, ..., uT ]). We set X := (Z ′ ⊗ IN)

to obtain the general regression form. For a general regression, the ordinary least

squares (unpenalized) estimator reads

β̂OLS = argmin
β
||y −Xβ||22.

Based on this objective function, we aim to regularize the coefficient matrix A.

(Adaptive) elastic net, LASSO and ridge We outline the most general con-

cept following Zou and Zhang (2009)’s adaptive elastic net. This penalized estimator

is a compound of the general concepts of elastic net and adaptive LASSO. In par-

ticular, it simultaneously shrinks and selects entries in the coefficient matrices and,

moreover, has the oracle property, which ensures optimal large sample performance.

We adapt

β̂AEnet = argmin
β

||y −Xβ||22 + λ

N2p∑
i=1

wi

(
α|βi|+ (1− α)

1

2
β2
i

) , (3.10)

where wi = |β̂i,ini|−γ is an initial guess with γ > 0. λ is the penalty term, which

has to be chosen, e.g. by cross-validation. Then, λ controls for the strength of the

elastic-net penalty. Note that the original paper proposed to only use the weights

on the LASSO penalty. However, similar to Demirer et al. (2017) we put the weight
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before the shrinkage penalty and use the glmnet routine from Friedman et al. (2010).

The regression in (3.10) is an enhanced version of the penalty regression and,

thus, generalizes many other concepts. For example, the elastic-net penalty with

α ∈ (0, 1) is the bridge between the LASSO and the ridge estimator and inherits both

their desirable properties, e.g., it removes the degeneracies of the LASSO estimator

caused by extreme correlations. Moreover, in case of large N and small T , LASSO

selects at most NT non-zero entries before it saturates. The mixture with the

ridge penalty eradicates this behavior. In a nutshell, the absolute penalty term

automatically selects variables while the quadratic penalty shrinks and stabilizes

the solution paths; see Zou (2006).

Now, choosing wi = 1 gives the naive elastic-net,1 α = 1 the adaptive LASSO,

α = 0 the ridge regression, and α = wi = 1 the classical LASSO from Tibshirani

(1996). In Section 3.3, we compare performances of the LASSO, ridge and the

adaptive elastic net in a simulation of FEVD. If not stated differently, we use wi =

|β̂i,OLS|−1.

Regularizing the Innovation Covariance Matrix

Recall, that forecast error variance decompositions are functions of the coefficient

and covariance estimates. In particular, all impulse response functions include a zero

period response, i.e., some decomposition of the covariance matrix. Even though the

generalized variance decomposition is not a decomposition of the covariance matrix

estimate itself, it solely uses this estimate as an input. Because the covariance matrix

estimate suffers similarly under high-dimensionality, we also have to regularize the

covariance matrix to obtain the best possible estimate for FEVDs. The literature

on the regularization of covariance matrices has originated a variety of methods. In

the upcoming section, we introduce three of them. We assume that the innovation

series ut is known. That is, we have to assume that the regularization of the VAR

coefficients works reasonably well. For this overview, we change the notation of the

innovation series ut to a general random variable X.

Adaptive thresholding Thresholding methods are designed for sparse covariance

matrices and mimic the idea of shrinking and dropping entries (i.e. selection) of the

1Zou and Zhang (2009) rescale the naive estimator by (1+(1−α)λ/T ). But similar to Friedman
et al. (2010), we drop this distinction.
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sample covariance matrix. Assume an N -variate random vector X = (X1, ..., XN)′

with covariance matrix Σ = (σij)N×N . Further, assume an iid random sample

{X1, ...,XT} from the distribution of X. The aim is to estimate the covariance

matrix Σ with big N and small T . Start with the sample covariance matrix,

Σ̂ = (σ̂ij)N×N :=
1

T − 1

T∑
t=1

(Xt −X)(Xt −X)′,

where X = T−1
∑T

t=1 Xt. Further define the variance of the sample covariance’s

entries as

θij := Var ((Xi − µi)(Xj − µj)) = E
[
((Xi − µi)(Xj − µj)− σij)2] , (3.11)

with µi = E[Xi]. We can now interpret the sparse covariance estimation as a mean

vector estimation. That is, an individual entry can be described with

1

T

T∑
t=1

(Xt,i − µi)(Xt,j − µj) = σij +

√
θij
T
zij, (3.12)

with zij asymptotically standard normal. On this basis, it is straightforward to

create an individual threshold for each entry of the covariance matrix. Yet, the vari-

ability of an individual entry, θij, needs to be estimated with its sample counterpart

θ̂ij = T−1
∑T

t=1

[
(Xi,t − X̄i)(Xj,t − X̄j)− σ̂ij

]2
. The adaptive (entry dependent)

threshold estimator,

Σ̂∗ = (σ̂∗ij)N×N = (sλij(σ̂ij))N×N , (3.13)

allows for different threshold levels for the entries and incorporates the variability

of the entries. The function sλ(z) then describes the threshold rule applied to the

entries of the sample covariance. Cai and Liu (2011) propose the threshold level

λij := λij(δ) = δ

√
θ̂ij logN

T
, (3.14)

where the regularization parameter δ > 0 can be selected with cross-validation (CV)

or, as the authors suggest, be set to 2.

Note now, that the thresholding functions sλ(z) can be chosen by the econome-

trician’s needs. For a specific class of thresholding functions, the estimator achieves
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optimal convergence and performs better than the universal thresholding estimator,

which thresholds all entries with the same threshold. This class has to satisfy the

following conditions:

(i) |sλ(z)| ≤ c|y| ∀ z, y satisfying |z − y| ≤ λ and some c > 0

(i)∗ |sλ(z)| ≤ |z| (shrinkage)

(ii) sλ(z) = 0 for |z| ≤ λ (thresholding)

(iii) |sλ(z)− z| ≤ λ ∀ z ∈ R (limits of shrinkage)

Cai and Liu (2011) conduct analyses for the class satisfying (i),(ii),(iii), but state

that it is also possible to adapt this to (i)*. The hard-thresholding rule is ruled

out by (i), but other thresholding functions, such as the soft-thresholding2 sλ(z) =

sgn(z)(|z| − λ)+ and the adaptive-lasso rule sλ(z) = z(1− |λ/z|η)+ with η ≥ 1, are

included. Again, λ determines the strength of the penalty. But, unlike before, this

parameter is a function described by (3.14) and thus not freely selectable in the

adaptive threshold estimator. Here, δ determines the degree of penalization and has

to be selected carefully.

Note, that the authors suggest a tresholding rule which applies to all entries in

the covariance matrix. In simulations, we experienced zero entries on the diagonal

of the thresholded estimator. Since this behavior contradicts the idea of covariances,

we treat diagonal values slightly different. Heuristically, whenever a diagonal value

σ̂ii of the sample covariance is smaller than λii, we opt for shrinking this very value

to a number bigger than zero. In particular, we employ a shrinkage with

sλii(σ̂ii) = σ̂ii

√∑
j σ̂
∗
ij∑

j σ̂ij

∑
j σ̂
∗
ji∑

j σ̂ji
, ∀i with σ̂ii ≤ λii.

This shrinkage rescales the sample covariance entry with the geometric mean taken

over the average shrinkage of the ith row and column.

Ledoit and Wolf In contrast to sparse covariance estimations, we also consider

an unblended shrinkage estimator. The estimator of Ledoit and Wolf (2004) is well-

conditioned (inverting it does not amplify estimation errors) and more accurate than

the sample covariance matrix. In particular, the estimator is the optimal convex

2Cai and Liu (2011) forgot the absolute value of z.
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linear combination of the sample covariance and the identity. Whereas optimality

is achieved asymptotically with respect to a squared loss function. We consider this

regularization method, since it is easy-to-compute and bona fide, i.e., it is not affected

by the choice of a regularization term and does not require additional knowledge.

The Ledoit-Wolf shrinkage estimator reads

Σ̂LW =
b2

d2
mIN +

(
1− b2

d2

)
Σ̂, (3.15)

with

m = tr(Σ̂)N−1, d2 = ||Σ̂−mIN ||2,

b2 = min

[
T−2

T∑
t=1

||(Xt −X)(Xt −X)′ − Σ̂||2, d2

]
,

where || · || and Σ̂ denote the Frobenius norm and sample covariance matrix respec-

tively. Xt and X are defined as above and m is the average of the diagonal values

of the sample covariance matrix. In contrast to Ledoit and Wolf (2004), we use

the scaled sample covariance matrix, i.e., we divide the sum by T − 1 instead of T .

However, this scaling should be negligible with the T ’s we use.

This estimator is a linear shrinkage estimator, which optimally mixes the ’all-

bias no-variance’ estimator mIN with the ’all-variance no-bias’ estimator Σ̂. The

term b2/d2 automatically assigns more weight to the ’no-variance’ estimator if the

variance of the sample’s second order, measured by b2, is large. Thus, similar to

the shrinkage in James and Stein (1992), Σ̂LW trades between bias and variance of

the estimator aiming to minimize the mean squared error. Note that the shrinkage

weight can also be chosen with cross-validation.

GLASSO Friedman et al. (2008) propose to estimate sparse graphs by penalizing

the inverse covariance matrix. That is, they estimate the inverse covariance with a

LASSO penalty. Let Θ = Σ−1 and optimize

log detΘ− tr(Σ̂Θ)− ||Θ||1, (3.16)

over all nonnegative definite matrices Θ, where || · ||1 denotes the L1 norm, i.e., the

sum of the absolute values of the entries. As before, Σ̂ is the sample covariance.
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The first two terms describe the multivariate Gaussian likelihood, and the latter is

the LASSO penalty, which selects entries in Θ and sets others to zero. The matrix

Θ̂, which minimizes this objective function is the respective estimator of the inverse

covariance matrix. Since the approach intends to estimate undirected graphical

models, they call this estimation the graphical LASSO or, in short, GLASSO.

The fact that the penalization is on the inverse covariance makes this approach

particularly appealing in the setup of FEVDs. For example, Barigozzi and Brownlees

(2013) highlight the relation of the inverse covariance (concentration matrix) to

partial correlations. In particular, if entry [Σ−1]ij in the inverse covariance is zero,

then variables i and j are conditionally uncorrelated. In economic setups, it is often

plausible to rather assume sparsity in the partial correlations than in the overall

correlation structure. In other words, it is easier to rule out direct than indirect

effects.

Regularizing long-run effects

While most methods assume sparsity in the regression coefficients or the covari-

ance matrix, economic setups sometimes motivate sparsity for a different construct.

Namely, some regressions only serve as a tool for a final object of interest. As FEVDs

represent the overall dependency with different response times between variables,

the idea of sparsity may also apply here. In this subsection, we briefly introduce a

method, which models sparsity in the long-run dependency.

We motivate the idea of restricting long-run dependencies in the setup of a

VAR(1). This step works without loss of generality since we can always rewrite

a VAR(p) in companion form as a VAR(1). Then, for a VAR(1), the moving aver-

age matrices Φk = [φij,k] are recursively defined and they read

Φk = Ak.

If the economic story implies that many variables do not affect each other, we ideally

also presume sparsity in the lagged responses. For example, if we assume sparsity

in the long-run responses, then we should regularize all Φk’s. This regularization

proves to be difficult since the matrix potential is a complex function of the coefficient

matrix A.

To overcome this issue, we take the forecast error, i.e., the response to a one-
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standard-deviation impulse. The long-run (lagged) response of an impulse is

FE(H) =
H−1∑
h=0

Φh =
H−1∑
h=0

(
Ah
)
,

limH→∞FE(H) =
∞∑
h=0

(
Ah
)

= (IN − A)−1, (3.17)

where the last equation holds due to the stability condition and is the result of the

geometric series. If there is no spillover of one variable to another we assume that

the respective entry in FE(∞) = (IN − A)−1 is zero.

It is evident that zeros in the forecast error most likely imply that the respective

forecast error variance, i.e. the element-wise squared version, is also zero. So, in

order to impose sparsity on the spillover network, this matrix is a potent candidate

for the regularization of FEVDs. Take (3.17) and plug it into the model (3.1),

yt = (IN − FE(∞)−1)yt−1 + ut,

∆yt = yt − yt−1 = −FE(∞)−1yt−1 + ut,

yt−1 = FE(∞)(−∆yt) + FE(∞)ut. (3.18)

Estimating the last equation with the previously introduced regularization methods

permits to regularize FE(∞) and, with A = IN − FE(∞)−1, we can back out

the autoregressive coefficients. Whereas this version quite likely performs worse

if sparsity is on A instead on the FEVDs, it may be better in the contrary case.

Henceforth, we denote the LASSO regularization on this target as the geometric

regularization.

3.2.3 Data-Driven Choice of λ and δ

Except for the Ledoit-Wolf shrinkage estimator, all estimators above require the

choice of a penalization term. In particular, techniques related to elastic-net and

graphical LASSO require the choice of λ and the adaptive thresholding rule the

choice of δ. Technically, one can also choose the shrinkage weight in Ledoit-Wolf,

but since the authors complement their estimator with an optimized weight, this step

is unnecessary. To validate the goodness of the estimate for the single penalty terms,

machine-learning approaches such as cross-validation (CV) prove functionality. We
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briefly discuss how CV can be applied in this context here and suggest slightly

modified versions of the ones provided.

In short, CV divides the sample into training and test data. It estimates a trained

estimate on the training data and validates its performances on the rest. That is,

the quality of the estimate from the training dataset is assessed by its ability to

explain the test dataset. The value selected by CV is the version which explains

the test sample the best. A common practice is the K-fold CV, which divides the

sample into K test samples. For each of these K samples, CV trains the estimator

on the rest and then validates it on this sample. A loss-function, such as the mean-

squared error or the negative log-likelihood, validates the performance. If K equals

the sample size, it becomes the leave-one-out version, which validates the estimator

on a single observation.

While CV works well for most setups, it is worth highlighting the predicament in

high dimensions. Since its main idea is the division into test and training data, this

split decreases the number of observations in the estimation. The estimator faces

a different degree of estimation uncertainty and, thus, CV is bent on choosing a

stronger penalization term. Consequently, leave-one-out CV is the ideal choice since

the training set has a sample size close to T , i.e., T − 1, and thus it uses nearly the

full sample size to train. On the other hand, a lower K, e.g., 10, might be expected

to estimate the prediction error well, since it averages over more diverse training

sets (Hastie et al., 2009, Chapter 7.12). In a nutshell, there is a trade-off between a

good training sample and a reasonable estimate of the prediction error.

In a typical setup, CV is valid, but for dependent data, such as time-series re-

gressions, it is not always theoretically justified. When dividing the sample into two

sets, it is the case that observations at the boundaries show up in both samples,

i.e., as the dependent and as the independent variable. Leaving out p observations

between the samples circumvents that issue. However, for randomly drawn subsam-

ples, this comes with a significant loss of observations. Thus, it is advisable to use

block sampling, similar to the block bootstrap. Moreover, Bergmeir et al. (2018)

show that the K-fold version is permissible for a purely autoregressive model with

uncorrelated innovations. Consequently, we recommend sticking to the established

10-fold CV with non-random sampling.

Unlike CV for coefficient estimates, there exists no dominantly established version

for the covariance estimation. To understand why this is the case, it is worth
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spending a look at the loss functions. CV for the coefficient estimates, here β,

minimizes the mean-squared error of the implied residuals. This loss-function is

straight forward since it is also the minimization target in the estimation step.

However, the validation of the covariance matrix proves to be more abstract due to

the unobservability of the covariance matrix. Cai and Liu (2011) propose to use the

sample covariance estimate of the test sample to validate the goodness of fit. The

loss function for the kth test sample is

`k(δ) = ||Σ̂{1:T}\k(δ)− Σ̂k||,

where the first term of the difference is the trained estimate for the covariance of

X, Σ, with penalization parameter δ. The second term is the sample covariance of

the test data sample. This loss-function, however, is by the motivation of this paper

imprecise since the sample covariance is a bad estimate of the test sample. Thus, we

prefer to validate the trained estimate Σ̂{1:T}\k(δ) on the residuals directly. Natu-

rally, we want to use a similar loss-function as in the optimization of the estimator.

For example, we can use a likelihood-based loss-function similar to the GLASSO

approach. Unfortunately, we experienced issues with this loss function since the

likelihood is not always well defined for the regularized version.

Alternatively, we propose to use a modified version of Cai and Liu (2011). For

the kth test sample it is calculated by

`k(δ) =
1

Tk

∑
t∈k

||Σ̂{1:T}\k(δ)−XtX
′
t||,

where Tk denotes the sample size of k. In contrast, this loss-function shows the

mean of the distance between the squared observations and the trained estimate.

On a final note, we want to highlight an obvious extension. Since CV selects

penalty terms on predefined sample splits, we can also think of plugging in different

regularization techniques for the estimators. In case of doubt which estimator is the

best, we can let CV select the estimator with the best predictive power.
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3.3 Simulation Study

3.3.1 Data Generating Processes

Before we present the simulation results, it is worth spending a thought on the

data generating processes (DGPs). In the context of FEVDs, we are convinced that

sparsity accompanies with increasing dimension N . However, it remains unclear

whether sparsity appears in the VAR coefficients, the innovation covariance matrix,

the FEVD or in all of them. Thus, we introduce various data generating processes

(DGPs) and hope to address the most relevant issues. This simulation study is

limited to VAR(1) models, as higher lag orders only increase the factor of the high-

dimensionality problem. The DGPs contain sparse coefficients A and innovation

covariances Σu.

DGP 1: White noise (in the observations)

A = 0N×N

Σu = IN

DGP 2: Diagonal coefficient (auto-correlation with no spillovers)

A = 0.5IN

Σu = IN

DGP 3: Diminishing diagonal (only approximately sparse)

A is a banded diagonal matrix, with entries aij = 0.5|i−j|

Σu = IN

DGP 4: Random graph (without ordering):

A is random sparse matrix. That is, it has entries with probability

P (aij 6= 0) = τ . τ = 0.3 denotes the degree of sparsity. Non-zero

entries are temporarily set to one. Then, A is rescaled such that its

maximum eigenvalue is in modulus U(0.2, 0.5).

Σu = S1/2D S1/2 ′. S1/2 is a sparse matrix with the same sparsity

structure as A, i.e., s
1/2
ij 6= 0⇔ aij 6= 0. Its non-zero values are drawn

from U(−0.5, 0.5). D is a diagonal matrix with values drawn from

U(1, 2).
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DGP 5: Block-Diagonal FEVD (sparse FEVD)

This DGP mimics a network relation for time series with a sparse

FEVD. First, a diagonal-block structure is chosen for FE(∞) = (I −
A)−1 with

√
1/τ equal-sized quadratic blocks. τ = 0.3 denotes the

degree of sparsity. Non-zero entries are temporarily set to one.

A = I −FE(∞)−1 is rescaled such that its maximum eigenvalue is in

modulus U(0.2, 0.5).

Σu = S1/2D S1/2 ′. S1/2 is a sparse matrix with the same sparse block-

structure as A, i.e., s
1/2
ij 6= 0⇔ aij 6= 0. Its non-zero values are drawn

from U(−0.5, 0.5). D is a diagonal matrix with values drawn from

U(1, 2).

Note that DGP 1, 2, and 5 always produce a sparse FEVD and DGP 3 and 4 do

not. Moreover, all but DGP 4 and 5 are deterministic and have the identity as the

covariance matrix. DGP 4 and DGP 5 will have 25 different random realizations in

the simulation. The methods performances are compared for FEVDs with forecast

horizon 10.

3.3.2 Bias, Accuracy and ROC

First, we take a look at the mean of the entries and the norms for regularized and

least squares FEVDs. For that, we construct time series with DGP 5, N = 100

and T ∈ [100, 150]. The analysis compares OLS, adaptive elastic-net (ENET),

and ridge. Additionally, we also regularize the covariance matrix with the soft-

threshold estimator. Penalty terms are chosen with respect to the best performance

(minimization of the Frobenius norm to the true FEVD). Figure 3.1 shows the mean

distance, i.e., the entries of D̂gH −DgH , its Frobenius norm ||D̂gH −DgH ||. and the

Frobenius norm of the estimate to the one matrix, i.e., ||D̂gH − 1N×N ||.
The left panel depicts the magnitude of the bias when T goes to N . We see

that on average the non-regularized estimator profoundly overestimates entries in

the FEVDs. That is, it faces a strong positive bias the closer N is to T . Any

regularization already takes away most of the bias. Elastic-net slightly overshoots

the regularization and underestimates entries. However, it goes up again, with the

additional threshold estimator, because of the division by the standard deviations.
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Figure 3.1: Simulation results for 500 Monte-Carlo repetitions of DGP 5 and N = 100.
The first two panels show the mean difference and the norm of D̂gH −DgH respectively.
The third panel shows the Frobenius norm of the estimate to the one matrix, i.e., ||D̂gH −
1N×N ||. The sample size T is on the x-axis.

The bias vanishes for T = 150, which corresponds to 50% more observations than

variables.

The center panel shows the accuracy of the estimation plotted as the Frobenius

norm. The non-regularized version has to face heavy inaccuracies from the bias.

However, when its bias vanishes (T = 150), the norm is still significantly higher

than the norms of the regularization versions. For all regularization methods, we

see a better estimation on average. In particular, we see that the best estimator’s

accuracy is unaffected by the samples size. Surprisingly, though, the additional

regularization of the covariance visually yields no improvement. Finally, the right

panel shows the direction of the bias. The norm to the one matrix 1N×N is nearly

zero when N is close to T .

In the context of networks, we explicitly care about the diagnostic ability of the

estimator as well. That is, we are interested in how accurate it predicts a non-zero

entry in the network matrix. For that purpose, we show the probability of detection,

also known as the true-positive rate (TPR), the probability of false alarm, also known

as the false-positive rate (FPR), and the receiver operator characteristic (ROC). A

value is considered to be true-positive (TP) in case of a hit and false-positive (FP)

in case of a false alarm. The TPR is the number of TPs divided by the total positive

entries in the actual network. The FPR is the quotient of the number of false alarms

and the total amount of values to predict (N2).

The challenge of this analysis is to show a meaningful graph, even though the
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true network is not binary and the estimations are mostly non-zero. To overcome

this issue, we set the 50% smallest entries in the estimate to 0 and the rest to 1.

The true FEVD constructed by DGP 5 already contains 50% zero entries, such

that we set the rest to 1. For the ROC curve, we vary the cut-off percentile from

0 to 1. ROC then plots the FPR vs. the TPR. Each entry on the curves stands

for one cut-off percentile. A curve which lies on the diagonal line is equivalent to a

completely random estimate. Figure 3.2 shows the three curves for 500 Monte-Carlo

simulations. It contains the TPR, FPR and the ROC respectively in each panel.

100 150

0.5

0.6

100 150

0.4

0.5

OLS + Sample Cov
ENET + Sample Cov
RIDGE + Sample Cov
ENET + Threshold

0 1
0

1

Figure 3.2: Simulation results for 500 Monte-Carlo repetitions of DGP 5 and N = 100.
The first two panels show the true positive rate (TPR) and false positive rate (FPR)
respectively. The sample size T is on the x-axis. The right panel shows the receiver
operator characteristic (ROC) for T = 150, which is FPR on the x-axis and TPR on the
y-axis. The diagonal thin black line is the equivalent of a random estimate.

It is evident that the unregularized version performs significantly worse than the

others. However, it appears to be the case that all regularization methods perform

similarly well when it comes to these measures. The first two panels show that the

TPR and the FPR of the regularized versions are significantly better than the one of

OLS plus the sample covariance. With increasing sample size T , we see that this gap

reduces marginally. For T = 100, the blue line is exactly 0.5, which means that the

estimate is as good as a random matrix. The ROC curve in the last panel confirms

that the regularized versions are superior to the unregularized one. Their curves

more than double the distance to the diagonal and, thus, they are more precise. In

summary, it appears that all regularized versions have similar performance results.3

3Note, however, that the elastic-net and the threshold estimator select entries, i.e., they set
some entries to zero. Their advantage lies in the true-negative values. Unfortunately, this quotient
only makes sense for estimators who set values to zero. Thus, it does not make sense to have a
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When it comes to predicting positive values, the elastic-net performs slightly worse

than the ridge regression. Adding the threshold estimator does not change that

finding.

3.3.3 Comparison of Different Regularization Methods

This section intends to show the relative performance gain of using regularization

methods for the estimation of FEVDs. That is, we compare the accuracy of the

various regularized versions to the OLS plus sample covariance case. In partic-

ular, we run simulations for the aforementioned DGPs and calculate the Frobe-

nius norm of the regularized case versus the OLS plus sample covariance one:

||D̂gH
reg − DgH ||/||D̂gH

OLS − DgH || with H = 10. We compare the performance gain

over N = {50, 150, 250} and T = {75, 175, 500}. We split the simulation into two

parts since the estimation is a two-step procedure. Note that OLS breaks down for

N > T such that we are not able to calculate any value for these cases.

First, we regularize A paired with the sample covariance for Σu. We compare

the ridge, LASSO, adaptive elastic-net, and the geometric long-run regularization.

The latter is using the LASSO penalty only, such that it performs variable selec-

tion. Penalty parameters λ are chosen such that they minimize the respective norm

||D̂gH
reg −DgH ||. Thus, the values show the best possible performance gain.

Table 3.1 contains the simulation results for the regularization of A for 500 Monte-

Carlo repetitions. First, it is evident that there is an overall big efficiency gain

by regularizing. DPG 1-3 all show a similar gain for all estimators. The best

performance gain for all DGPs and regularization methods is at N = 250. However,

for N = 50 and T = 500, we still observe a remarkable efficiency gain. That is, the

norm to the true value shrinks to 22−25% for DGP 1-3 and 56−67% for DGP 4-5.

Surprisingly, all traditional regularization methods perform similarly well. It

is unclear which one performs the best since the differences in performances are

marginal. If at all, the performance of the ridge estimator is better by a tiny margin

for all DGPs. This result is in line with the finding from the ROC curve. In contrast,

the geometric regularization performs slightly worse for DGP 3 and 4, since they

only have approximative sparsity in the FEVD. Unsurprisingly, it performs better

for DGP 5, which has a sparse long-run Forecast Error matrix. The performance

comparison to other estimators here.
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DPG1 ridge LASSO elastic-net geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 21.5% 22.6% 22.6% 21.6% 22.7% 22.6% 21.6% 22.7% 22.6% 22.4% 23.2% 22.8%
150 12.3% 13.8% 12.2% 13.8% 12.3% 13.8% 12.6% 13.9%
250 10.7% 10.8% 10.8% 10.9%

DPG2 ridge LASSO elastic-net geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 21.5% 22.6% 22.6% 21.6% 22.7% 22.6% 21.6% 22.7% 22.6% 22.4% 23.2% 22.8%
150 12.3% 13.8% 12.2% 13.8% 12.3% 13.8% 12.6% 13.9%
250 10.7% 10.8% 10.8% 10.9%

DPG3 ridge LASSO elastic-net geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 23.5% 23.2% 23.9% 24.2% 23.2% 26.4% 24.2% 23.2% 26.4% 29.9% 30.0% 35.4%
150 13.7% 14.5% 13.7% 14.3% 13.8% 14.3% 17.2% 19.2%
250 11.7% 11.2% 11.2% 15.2%

DPG4 ridge LASSO elastic-net geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 35.2% 47.7% 65.4% 35.1% 47.6% 65.4% 34.9% 47.4% 64.9% 37.0% 49.2% 67.5%
150 19.8% 30.9% 19.7% 30.9% 19.7% 30.9% 20.3% 31.5%
250 20.4% 20.4% 20.4% 20.7%

DPG5 ridge LASSO elastic-net geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 33.9% 41.2% 56.2% 34.1% 41.9% 58.6% 34.0% 42.5% 58.7% 32.8% 42.4% 63.4%
150 20.4% 27.7% 20.2% 27.7% 20.9% 27.5% 19.2% 27.7%
250 19.7% 19.5% 20.1% 18.7%

Table 3.1: Simulation results for the regularization of A paired with the sample covariance.
||D̂gH

reg − DgH ||/||D̂gH
OLS − DgH || are shown for different N and T with 500 Monte-Carlo

repetitions. DGP 4 and DGP 5 have 25 different random realizations of A and Σu.

gain over the traditional regularization techniques appears negligible.

As a second step, we compare regularization methods for Σu. That is, we calculate

residuals with the adaptive elastic-net and estimate the FEVD with the (regularized)

estimate of Σu. The adaptive elastic-net penalty is the one, which minimizes the

Frobenius norm to the true parameter A. We use the soft-thresholding rule for the

adaptive Threshold estimator.

Table 3.2 shows simulations with different regularizations. The first estimator,

the naked sample covariance, sets the benchmark for the performance of the co-

variance regularization. Again, we measure the performance of the regularization

methods with the norm of the estimated FEVD to the true one. The most salient re-

sult is the 0% norm for DGP 1-2. In particular, the FEVDs get perfectly estimated,

since the covariance matrix in the DGPs is the identity. The strongest penalization

finds this matrix. A shrinkage towards a diagonal matrix as in the Ledoit-Wolf
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DPG1 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 21.6% 22.5% 22.6% 0% 0% 0% 0.1% 0% 0% 0% 0% 0%
150 12.3% 13.8% 0% 0% 0% 0% 0% 0%
250 10.8% 0% 0% 0%

DPG2 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 21.6% 22.5% 22.6% 0% 0% 0% 0.1% 0% 0% 0% 0% 0%
150 12.3% 13.8% 0% 0% 0% 0% 0% 0%
250 10.8% 0% 0% 0%

DPG3 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 25.5% 23.1% 27.5% 4.1% 8.9% 19.9% 4.2% 9.0% 20.0% 4.1% 8.9% 19.9%
150 14.6% 14.8% 2.9% 7.7% 3% 7.7% 2.9% 7.7%
250 11.5% 4.6% 4.6% 4.6%

DPG4 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 35.3% 48.0% 65.6% 27.0% 43.9% 64.6% 22.9% 39.5% 61.8% 24.0% 41.0% 65.0%
150 19.8% 30.9% 13.5% 28.0% 11.1% 24.4% 11.8% 25.7%
250 20.5% 16.6% 14.0% 14.8%

DPG5 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500
50 36.8% 43.0% 59.8% 29.7% 41.1% 60.7% 29.5% 47.5% 69.1% 28.1% 40.9% 74.2%
150 21.7% 28.0% 15.9% 26.4% 14.9% 29.6% 14.5% 26.2%
250 20.1% 17.6% 18.7% 17.0%

Table 3.2: Simulation results for the regularization of Σu paired with the best performing
adaptive elastic-net estimator. ||D̂gH

reg −DgH ||/||D̂gH
OLS −DgH || are shown for different N

and T with 500 Monte-Carlo repetitions. DGP 4 and DGP 5 have 25 different random
realizations of A and Σu.

estimator perfectly estimates the identity here. Similarly, for the Threshold and

GLASSO estimator, which both select entries in the covariance matrix. However,

the perfect estimations are also due to the perfect estimation of the coefficient matrix

in the first step.

In DGP 3, elastic-net is not able to perfectly estimate this matrix since it

is not sparse. Thus, the estimation of the overall FEVD is not completely per-

fect. However, it appears that sometimes the methods perfectly estimate the covari-

ance matrix, which is again the identity. The performance is similar for all of the

regularization methods. Different performances for the methods are observable for

non-diagonal covariance matrices in DGP 4-5. A significantly increased performance

is observable for all combinations of N and T except for N = 50 and T = 500. For

this case, the sample covariance performs reasonably well, such that its regulariza-
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tion does not enhance estimation accuracy. Again, we do not find any particular

difference in the performance between these estimators and, thus, we cannot give a

clear advise which one to use.

In summary, we find that the regularization of the single steps leads to a signif-

icant performance gain in the estimation of FEVDs. If we have to recommend the

use of one specific regularization technique, we recommend using the ridge combined

with the Ledoit-Wolf estimator. Both of them slightly outperform the others and

are also easy-to-apply. However, since we already have to find the penalization term,

it suggests itself to use cross-validation techniques to validate the performances of

these methods for specific data.

3.4 Empirical Application

In the mid-1980s, the Great Moderation exhibited a change in the growth of real

gross domestic product growth, industrial production, monthly payroll employment,

and unemployment. For instance, the Federal Reserve Board’s Index of Industrial

Production (IP) shows a significant decrease in volatility after 1984. Foerster et al.

(2011) investigate this break concerning sectoral and common shocks. Since the

aggregate IP index is a weighted average of IPs across sectors, the volatility of

the sectors should average out. The authors search for roots of this puzzle. They

find that common shocks cause most of the break in IP’s volatility. Consequently,

a decrease in the volatility of aggregate shocks explains why the IP index is less

volatile post-1984. At one go, they also find that the contribution of common shocks

decreased.

The question arises what the descent of the decrease in aggregate shock volatility

is. In particular, it would be interesting to see if a handful of large sectors lowered

their links to others and thus reducing common shock volatility and pairwise corre-

lation. For sufficient insights into these links, we want to know who affects whom.

Thus, this question links to the comprehension of spillovers. This section estimates

FEVD tables to study sectoral spillovers of shocks. These connectedness tables then

reveal the share of a sector’s variation explained by others. We examine pre-and

post-1984 periods in greater detail to give a fair comparison of how spillover have

changed. In a nutshell, the purpose of this application is to quantify the spillovers

of sectors and uncover changes in the propagation of shocks.
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3.4.1 Data

As in Foerster et al. (2011), we use sectoral data on IP throughout 1972-2008. This

data spans up to N = 138 sectors, which corresponds to the six-digit classification of

the North American Industry Classification System (NAICS). The sectoral indices

are available on a monthly basis. Since the pre- and post-Great Moderation periods

have different sample sizes, they face distinct degrees of estimation uncertainty.

Hence, we split the whole sample into three equally sized subsamples with T = 144

months each. The subsamples are from 03/1972 to 02/1984, 03/1984 to 02/1996,

and 03/1996 to 02/2008. The boundary between the first and the second sample

marks the Great-Moderation. For simplicity, we label these samples as 1972-1983,

1984-1995, and 1996-2007, respectively.

Let IPi,t denote the value of industrial production of sector i at date t. We

take monthly growth rates and annualize the respective percentage points, gi,t =

1200 × ln(IPi,t/IPi,t−1). The aggregate level of IP growth is the weighted average

over the sectors, gt =
∑N

i=1wi,tgi,t, with given weights wi, t. Figure 3.3 plots the

growth rate of IP on an aggregate level. The first subsample, from 1972 to 1983,

coincides with the pre-Great Moderation period and the other two to the post-Great

Moderation. It is evident, that average monthly volatility of aggregate IP diminished

with the Great Moderation and stayed fairly constant thereafter.

3.4.2 Results

We interpret the spillover constituent in the data as a VAR(1) model, which coincides

roughly with the ARMA(1,1) model in Foerster et al. (2011). They implemented

connectedness with the help of quarterly input-output tables. In contrast, we are

now implementing the connectedness in our model solely via the autocorrelation

component of gi,t for monthly data. The higher frequency allows setting a forecast

horizon of one quarter, i.e., three months, which is the same horizon as for the

shock covariance matrix of the quarterly data. This connection between monthly and

quarterly frequency gives insights into the contagion within a quarter. In particular,

Foerster et al. (2011)’s average pairwise correlations and aggregate shocks may be
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Figure 3.3: Growth rates of monthly industrial production with annual rates.

better understood if we break up the three-month volatility. Now,

yt = µ+ Ayt−i + ut, ∀t = 0, ..., T,

yt = [g1,t, ..., gN,t]
′

ut ∼ N (0,Σu)

states the base regression. We regularize A and Σu with the techniques mentioned

earlier. Since the simulations didn’t hint a clear winner, we validate those on the

data. Namely, we run a 10-fold cross-validation to select the best performing regular-

ization. This step also includes the selection of α in the elastic-net and the penalty

terms λ and δ. Then, forecast error variance decompositions are calculated with

forecast horizon H = 3. Recall that we consider the generalized version of FEVDs,

i.e., the shocks are not idiosyncratic and can be correlated. Effects which propagate

via the autocorrelation matrix A increase correlations between the sectors.

We row-normalize DgH to show the percentage contribution to volatility. The

row-normalized matrix is denoted as D̃gH with entries d̃gHij . Additionally, we present

key figures related to the network literature. In particular, we use the same measures

as Diebold and Yılmaz (2014): From-, To-, and Average Connectedness. These
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measures are defined respectively as the row and column sums without the diagonal

entries and the average row sum.

Ci←·
(
D̃gH

)
=
∑
j 6=i

d̃gHij , (From-Connectedness to i)

C·←j
(
D̃gH

)
=
∑
i 6=j

d̃gHij , (To-Connectedness from j)

C
(
D̃gH

)
=

1

N

∑
i

∑
j 6=i

d̃gHij . (Average Connectedness)

The first two measures are sector-specific measures. The latter sums up the overall

explanatory power of connectedness, which gives us an idea of how much variation

is explained on average by spillovers and not directly by shocks. Note now, that

we are mainly interested in the distribution of the outgoing spillovers of the sectors

measured by the To-Connectedness. Precisely, if a handful of large sectors had a

high To-Connectedness, the volatility of those sectors’ IP would not average out in

the aggregate IP.

First, we validate the performances of the different methods on the data set. We

use the three-digit sectoral disaggregation with 88 sectors. Figure 3.4 and Figure

3.5 show the mean squared errors for the regularization of A and Σ, respectively.

While we compare different methods for the estimation of Σ, the estimation of A

is technically only done with the adaptive elastic-net. That is, we compare the

minimal mean squared errors for different values of α. Recall, that α = 1 is the

adaptive LASSO and α = 0 is the (adaptive) ridge estimator. However, we find it

desirable to have the good behavior of, both, the LASSO and ridge at all times in

the estimation. Thus, α is allowed to take values in [0.025, 0.975].

Figure 3.4 compares the best performing λ’s for different values of α. The two

curves use different initial guesses for the weight wi = |β̂i,ini|−1. OLS corresponds to

the approach of Demirer et al. (2017), and the elastic-net (selected by 10-fold CV,

α = 0.5, and wi = 1) corresponds to the original idea of Zou and Zhang (2009).

Two results are evident here. First, the minimal MSE appears to be a monotonously

increasing function in α ∈ (0, 1). Consequently, we select α = 0.025 for all periods.

Second, the elastic-net initial guess dominantly gives lower MSE. Hence, CV suggests

an estimator with penalty close to ridge and the elastic-net as an initial guess.
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Figure 3.4: 10-fold cross-validation results for the tuning parameter α in the adaptive
elastic-net. The blue curve shows for different α’s the minimal MSE with ÂOLS as the
initial estimate in the weights of the individual penalties for different αs. The red curve
shows the same for ÂENET , as suggested by Zou and Zhang (2009). Both curves show the
results of the first 10-fold CV over values of λ.

In the second step, CV for the covariance estimators includes the soft-thresholding

estimator, the adaptive-lasso thresholding estimator, the GLASSO estimator, the

bona fide Ledoit-Wolf estimator, and the Ledoit-Wolf estimator with manually se-

lectable shrinkage weight. Figure 3.5 shows their performance with different penal-

ization and shrinkage parameters on the abscissa.

CV selects the soft-thresholding estimator for all periods. This version thresholds

the values entry-wise and appears to outperform the others slightly. The other entry-

wise regularization, the adaptive-lasso thresholding, comes seconds and, the manual

Ledoit-Wolf estimator third. Even though CV suggests the manual Ledoit-Wolf, the

bona-fide estimator performs well. In fact, it suggests using this estimator before

using any GLASSO regularization. In particular, it might be unrealistic to set

partial correlations between two series to zero for this data set. However, it is not

advisable to discard GLASSO for other applications.

Table 3.3 shows some selected summary statistics. Two results are evident in

this table. First, the non-regularized version has a significantly higher Average

Connectedness and also stays remarkably constant over the periods. That is, they

do not detect any change with the Great Moderation. In contrast, the regular-

ized versions can capture a difference between the pre- and post-Great Moderation

periods. Moreover, for all dimensions, the connectedness level bounced back. Sec-
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Figure 3.5: 10-fold cross-validation results for the tuning parameter of different covariance
regularization methods. Values of α are on the x-axis and the minimal mean squared error
on the y-axis. The two thresholding estimators tune δ in equation (3.14), the GLASSO
tunes λ in equation (3.16), and the manual Ledoit-Wolf the shrinkage term.

ond, the average results of the regularized versions are robust over different levels

of disaggregation. The non-regularized estimators, however, have higher Average

Connectedness when we increase dimensions. This observation clearly emphasizes

the need of regularizations in this context and also exemplifies the bias of FEVDs

(see Section 3.3).

Eventually, we want to emphasize the degree of freedom of the estimators in Ta-

ble 3.3. As expected, CV decreases the average degree of freedom in the coefficient

estimates Âreg with higher dimensions since it has to deal with more estimation

uncertainty. The four- and six-digit levels have nearly always 0% non-zero entries

in the coefficient matrix. We do not see any gain in using more dimensions in this

analysis, and thus, we further analyze the three-digit level to include reasonably

many lagged responses. For this level of disaggregation, we use the elastic-net es-

timator as an initial guess, since it outperformed the least squares version in the

CV. In the analysis, we observe average spillovers of 39.5%, 20%, and 26.7% for the

three periods respectively.

To give a synoptic view of the spillovers, we summarize the estimated connect-

edness tables in Figure 3.6. It shows the tables as a network graph, for which the

force-layout arranges the nodes. That is, nodes appear closer in the graph if they are

more connected to each other. The size of the node relates to the respective From-
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1972-1983 1984-1995 1996-2007

C(DgH) df C(DgH) df C(DgH) df

Three-digit non-regularized 83.1% 82.2% 81.2%

(88 sectors) reg. Âini = ÂOLS 43.5% 10.7% 24.9% 6.5% 27.4% 8.1%

reg. Âini = ÂENET 39.5% 3.9% 20.0% 0.6% 26.7% 2.2%

Four-digit non-regularized 92.9% 92.3% 92.0%

(117 sectors) reg. Âini = ÂOLS 40.3% 0.01% 23.2% 0.2% 30.9% 10.5%

Six-digit non-regularized 98.4% 98.2% 98.3%

(138 sectors) reg. Âini = ÂOLS 42.5% 0% 28.1% 0.02% 33.7% 0%

Table 3.3: Summary of the estimation results for different levels of sectoral disaggregation.
The columns labeled C(DgH) show the estimated Average Connectedness. The columns
labeled df show the sparsity level or percentage degree of freedom of the autoregression
coefficient A.

Connectedness of the sector. The colors illustrate the To-Connectedness. Finally,

we highlight the sector with the highest To-Connectedness.

Figure 3.6: Connectedness network for the respective periods. The size of the node
relates to the respective From-Connectedness of the sector. The colors depict the To-
Connectedness. The sector with the highest To-Connectedness is labeled.

From eye-balling, it is evident that the network has changed significantly after

1984. Whereas the pre-Great Moderation period shows a closely connected graph

with many powerful nodes in the center, the two consecutive periods have more

widespread graphs with only a couple of sound nodes. Clearly, this also shows in

the Average Connectedness. Furthermore, it appears that the distribution changed
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for the To- and From-Connectedness. As mentioned earlier, a plausible explanation

for the high volatility in the aggregate index is that a handful of sectors spilled a

lot of volatility before the Great Moderation. We further investigate this hypothesis

with the distribution of the To- and From-Connectedness.

First, we check if sectors with bigger weights in the aggregate IP index receive

more spillovers than sectors with small weights. Figure 3.7 shows the distribution

of the From-Connectedness measure over the sectors. The red makers highlight the

50% most significant sectors by weights.
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Figure 3.7: Histogram of the From-Connectedness of the 88 three-digit level sectors. The
50% strongest sectors by weight are highlighted in red.

Perhaps surprisingly, the distribution of weights appears to be independent of

the From-Connectedness. Also, the overall distributions reflect the same picture

as the network graphs. A higher level of incoming spillovers indicates that other

sectors’ volatility has relatively more effect on the volatility of a single sector. This

finding, however, is no clear evidence for the generally higher volatility. Hence,

the distribution of the spillover receiving measure is of little importance in the

explanation of the higher volatility of aggregate shocks.

Although higher spillovers do not cause higher volatility at an aggregate level,

the roots may be in the distribution of the opposing side. Outgoing spillovers,

here measured as To-Connectedness, determine how much a single sector’s volatility

explains the volatility of others. For example, if a handful of sectors has a very high
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level of To-Connectedness, their volatility determines the volatility of other sectors

more. Consequently, the volatility of the aggregate IP index is indirectly affected

more by a couple of sectors, and their shocks do not average out.
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Figure 3.8: Histogram of the To-Connectedness of the 88 three-digit level sectors. The 10%
largest sectors by To-Connectedness in the pre-Great Moderation period are highlighted
in red.

Figure 3.8 shows the histogram of the To-Connectedness for the respective peri-

ods. The first panel shows a clear heavy tail on the right of the distribution. Roughly

15% of the sectors have a To-Connectedness higher than 1. These sectors explain on

average more than 100% of the volatility of other sectors. So their volatility shows

up on average more than twofold in the aggregate index. The heavy tail disappears

mostly after the Great Moderation, i.e., the distributions of the consecutive periods

have significantly fewer values in the right tail. Moreover, the sectors with the 10%

largest To-Connectedness before the Great Moderation mostly have reduced the val-

ues to around 0.5 in the last panel. Comparing only the first and the last panel,

they have a similar distribution except for the heavy right tail. A similar result

is observable in the cumulative distribution functions (see Appendix Figure C.1).

This result supports the hypothesis that the Great Moderation is only a temporary

phenomenon. To test this hypothesis, though, further research is needed.

In summary, the results give insights into the change observable during the Great

Moderation. Foerster et al. (2011) emphasize that the decrease in aggregate volatil-

ity is not due to some sectors, but instead rooted in the change of aggregate shocks,
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i.e., shocks to multiple sectors at once. However, our analysis of propagation of

shocks within a three-month period highlights that just a handful of sectors may

have been responsible for the change in quarterly aggregate shocks. That is, these

sectors had higher spillovers such that they increased the volatility of the aggregate

shocks.

3.5 Conclusions

In this study, we investigated the estimation of high-dimensional vector autoregres-

sive models. In a simulation study, we compared different regularization methods for

the coefficient and the covariance matrix. We evaluated performances on the estima-

tion of forecast error variance decompositions, and we found that the regularization

of both matrices leads to better estimations. Since there was no clear cut winner

in the simulation, we suggested validating the estimators with cross-validation. In

an application on US industrial production, we were able to uncover the change of

spillovers at the Great Moderation. Specifically, we aimed to answer the question of

whether a handful of sectors was responsible for the decrease in aggregate volatility.

We found that a couple of sectors had a particular high outgoing spillover before

the Great-Moderation. After the Great-Moderation these outgoing spillovers were

unmatched.
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Appendix A

Appendix to Chapter 1

A.1 Propositions and proofs

Proposition 1. Let Σ−1
τ = A′0B

−2
τ A0 and Σ̇−1

τ = −2A′0B
−3
τ ḂτA0 be the existing

inverse of a (N × N) covariance matrix and its differential, with A0 having a unit

diagonal and Bτ = diag(b1, .., bN) and Ḃτ = diag(ḃ1, ..., ḃN). Then, the (N × N)

matrix A0 is unique and the N × N matrices Bτ and Ḃτ are unique up to sign

reversal of its entries if ḃi/bi 6= ḃj/bj for all i 6= j ∈ 1, ..., N .

Proof: The proof follows directly from Lanne et al. (2010). The following will

be a copy of their proof in a notation aligned with this paper. Define S = A0B
−1
τ

and Λ = −2ḂτB
−1
τ . Then there exists S̃ = SQ leading to the same observations

where Q is an orthogonal matrix with QQ′ = IN , such that

Σ−1
τ = SS ′ = SQQ′S ′ (A.1)

⇒ Σ̇−1
τ = SΛS ′ = SQΛQ′S ′ (A.2)

Since Bτ is diagonal and A0 has unit diagonal, A0 is uniquely identified if S is. To

prove the proposition we need to rule out all orthogonal matrices except the Q’s

which are diagonal with only 1 ’s and −1’s.

From (A.2) follows that QΛQ′ = Λ and therefore QΛ = ΛQ and (−2ḃi/bi)qij =

(−2ḃi/bi)qji. Hence, Q is diagonal. Because all eigenvalues of a diagonal real orthog-

onal matrix are ±1 and the diagonal entries of a diagonal matrix are its eigenvalues,

Q is a diagonal matrix with 1’s and −1’s.
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A.2 Complementary Figures
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Figure A.1: Lead-lag correlation: corr(C(Gt), volat−k). The average volatility at time t is
taken over the firms.
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Lemma 2.2.1

Proof. From continuity of Σ(τ) on [0, 1] and its extension to R, we get that

supt∈ZE(utu
′
t) = supt∈Z Σ < ∞ holds. Then, with the companion form matrix

(1.15) (without intercept) we follow the same arguments from the proof of Bühlmann

and Künsch (1995) and get the claimed result; see also Example 2.3(ii) in Dahlhaus

(2000).

Proof of Lemma 2.2.2

Proof. Since the ut’s are independent, we have a Cramér representation

Σ−1/2(
t

T
)ut =

∫ π

−π

1√
2π

exp(iλt)dξ(λ), t ∈ Z

with ξ(λ) as in Definition 2.2.1. Together with Lemma 2.2.1, this gives

yt,T = µ(
t

T
) +

∞∑
j=1

Ψt,T,jut−j = µ(
t

T
) +

∞∑
j=1

Ψt,T,jΣ
1/2(

t− j
T

)Σ−1/2(
t− j
T

)ut−j

= µ(
t

T
) +

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ),
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where

A0
t,T (λ) =

1√
2π

(
∞∑
j=0

Ψt,T,jΣ
1/2(

t− j
T

) exp(−iλj)

)

Then, following the proof of Theorem 2.3(i) in Dahlhaus gives the claimed result

with A(u, λ) as in (2.8) such that

sup
t,λ

∣∣∣∣A0
t,T (λ)−A(

t

T
, λ)

∣∣∣∣
1

≤ N2B

T
. (B.1.1)

See also Example 2.3 in Dahlhaus (2000). From the uniform stability condition, we

have that for all τ ∈ [0, 1] (and actually all τ ∈ R)

ID =

(
∞∑
j=0

Ψj(τ) exp(−ijλ)

)(
ID −

p∑
k=1

Ak(τ) exp(−ikλ)

)
,

where the smoothness properties of the tvVAR coefficient curves Ai(·), i = 1, . . . , p

transfer to the tvVMA coefficient curves Ψj(·), j ∈ N0. Further, we get from (B.1.1)

that

sup
t∈Z,t≤T

|yt,T − ỹt,T |1 = sup
t

∣∣∣∣∫ π

−π
exp(iλt)

(
A0
t,T (λ)− A(

t

T
, λ)

)
dξ(λ)

∣∣∣∣
≤ sup

t,λ

∣∣∣∣A0
t,T (λ)− A(

t

T
, λ)

∣∣∣∣ ∫ π

−π
dξ(λ)

= OP (
1

T
).

From the uniform stability condition (2.5), we obtain that for all τ ∈ (0, 1] that

|Ψj(τ)|1 ≤ C(τ)ρj(τ),

where the constants C(τ) <∞ and ρ(τ) ∈ (0, 1) can be chosen such that supuC(τ) <

∞ and ρ = supτ∈[0,1] ρ(τ) < 1 hold. This immediately gives

sup
τ

∞∑
j=0

|Ψj(τ)|1 <∞.
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B.2 Derivation of local linear least square tvVAR

Define

y = vec(y1,T , . . . , yT,T ), (NT × 1)

Zt = (1, (vec(yt,T , . . . , yt−p+1,T )′)′, ((Np+ 1)× 1)

Z(0) = (Z0, . . . , ZT−1), ((Np+ 1)× T )

β(τ) = vec(ν(τ), A1(τ), . . . , Ap(τ)), ((N2p+N)× 1)

w = vec(u1, . . . , uT ), (NT × 1)

σ(τ) = vech(Σ(τ)), (N(N + 1)× 1)

B(τ) = (ν(τ), A1(τ), . . . , Ap(τ)), (N × (Np+ 1))

Y = [y1,T , . . . , yT,T ], (N × T )

Z ′ = [Z(0)′|DτZ
(0)′], (T × 2(Np+ 1))

Dτ = diag(
1

T
− τ, . . . , T

T
− τ), (T × T )

β̇(τ) = vec(ν̇(τ), Ȧ1(τ), . . . , Ȧp(τ)), ((N2p+N)× 1)

Ḃ(τ) = (ν̇(τ), Ȧ1(τ), . . . , Ȧp(τ)), (N × (Np+ 1))

Wτ = diag(Kh(
1

T
− τ), . . . , Kh(

T

T
− τ)), (T × T )

W = [u1, . . . , uT ], (N × T )

where ‘vec’ denotes the column stacking operator. The ‘vech’-operator is defined to

stack columnwise the elements on and below the main diagonal of a square matrix.

Further, we denote A ⊗ B = (aijB)ij the Kronecker product of matrices A = (aij)

and B = (bij). The kernel function is assumed to be symmetric and non-negative.

Now, we derive the local linear least-squares estimator for the VAR coefficient

curves Ai(·), i = 1, . . . , p and the intercept curve ν(·). After having established

suitable estimators for these quantities, we will make use of corresponding residuals

to estimate the innovations’ variance covariance curve Σ(·) as well. As the VAR

coefficient curves are assumed to be sufficiently smooth (continuously differentiable

on (0, 1)), we can use a Taylor expansion of Ai(
t
T

) around u to get

Ai(
t

T
) = Ai(τ) + Ȧi(τ̃)(

t

T
− τ),
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where τ̃ lies between t
T

and τ . Ȧi denotes the (matrix-valued entry-wise derivative) of

the function Ai with respect to time. For each τ ∈ (0, 1), this exercise together with

the recursively defined tvVAR(p) model equations in (2.4) leads to the following

local linear least-squares estimator for the VAR coefficient curves, the intercept

curves plus their first derivatives. Precisely, we define

[B̂(τ)| ̂̇B(τ)] =
[
ν̂τ , Â1(τ), . . . , Âp(τ), ̂̇ντ , ̂̇A1(τ), . . . , ̂̇Ap(τ)

]
= arg min

(ν,Ak,ν̇,Ȧk), k=1,...,p

T∑
t=1

|yt,T − ŷτ (t)|22Kh(
t

T
− τ),

ŷτ (t) =

(
ν + ν̇(

t

T
− τ)

)
−

p∑
k=1

(
Ak + Ȧk(

t

T
− τ)

)
yt−k,T

where | · |22 denotes the Euclidean norm. In detail, we assume to have p pre-sample

values, such that the latter equation is fulfilled for all t. However, for the sake of

notation, we avoid to mention pre-sample values. In vectorized form, the above

minimization problem transfers to(
β̂(τ)̂̇β(τ)

)
= vec

([
ν̂τ , Â1(τ), . . . , Âp(τ), ̂̇ντ , ̂̇A1(τ), . . . , ̂̇Ap(τ)

])
= arg min

vec([B|Ḃ])

(
y − (Z ′ ⊗ IN) vec([B|Ḃ])

)′
(W ⊗ IN)

∗
(
y − (Z ′ ⊗ IN) vec([B|Ḃ])

)
,

where B = [ν,A1, . . . , Ap], and Ḃ respectively. Solving the minimization problem

above by standard arguments, we get the local linear LS estimator(
β̂(τ)̂̇β(τ)

)
= ((Z ′ ⊗ IN)′ (W ⊗ IN) (Z ′ ⊗ IN))

−1
(Z ′ ⊗ IN)′ (W ⊗ IN) y

=
((

(ZWZ ′)−1ZW
)
⊗ IN

)
y,

where standard rules for Kronecker products have been used to get the last identity.

As we will be interested in the coefficient and intercept curves itself and not in the

first derivatives, we introduce the (Np+ 1× 2(Np+ 1)) matrix E ′0 = [INp+1|ONp+1],

where IN and ON denote the (N ×N) identity and zero matrices, respectively. This
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matrix E0 allows us to write β̂(τ) as

β̂(τ) = (E ′0 ⊗ IN) ((Z ′ ⊗ IN)′ (W ⊗ IN) (Z ′ ⊗ IN))
−1

(Z ′ ⊗ IN)′ (W ⊗ IN) y

= (E ′0 ⊗ IN)
((

(ZWZ ′)−1
)
⊗ IN

)
(ZW ⊗ IN) y

=
((
E ′0(ZWZ ′)−1ZW

)
⊗ IN

)
y. (B.2.1)

Again by using the usual rules for the Kronecker product, we end up with an alter-

native representation that avoids vectorization, that is,

B̂(τ) = YWZ ′(ZWZ ′)−1E0. (B.2.2)

This estimator is the same estimator as in (2.12).

B.3 Residual-based estimation of Σ(τ )

After having defined the local linear LS estimator B̂(τ) for the VAR coefficient

matrices and the intercept in (2.2), we can make use of it to get the residuals

û1, . . . , ûT

ût = yt,T − B̂(τ)Zt−1

= yt,T − ν̂(
t

T
)− Â1(

t

T
)yt−1,T − · · · − Âp(

t

T
)yt−p,T

and to define the local linear LS estimator for Σ Precisely, following the same ideas

as above, we define

[Σ̂(τ)|̂̇Σ(τ)] = arg min
Σ,Σ̇

T∑
t=1

∣∣∣∣ûtû′t − (Σ + Σ̇(
t

T
− τ)

)∣∣∣∣2
2

Kh(
t

T
− τ),

In vectorized form, the above minimization problem transfers to(
vec(Σ̂(τ))

vec(̂̇Σ(τ))

)
= arg min

vec(Σ),vec(Σ̇)

(
v − (Z ′Σ ⊗ IN2) vec([Σ|Σ̇])

)′
(W ⊗ IN2)

∗
(
v − (Z ′Σ ⊗ IN2) vec([Σ|Σ̇])

)

111



where we set vt = vec(ûtû
′
t) and we used the notation

v = vec(v1, . . . , vT ) (N2T × 1), Z ′Σ = [1T |Dτ1T ], (T × 2)

V = (v1, . . . , vT ) (N2 × T )

where 1T is the T -dimensional vector of ones. Note that Z ′Σ corresponds to Z ′ defined

above, for the special case of fitting a tvVAR(0) model that estimates only the

intercept curve. That is, when only the first column of Z(0)′ is used which is nothing

else but 1T . Solving the minimization problem above by standard arguments, we

get the local linear LS estimator(
vec(Σ̂(τ))

vec(̂̇Σ(τ))

)
= ((Z ′Σ ⊗ IN2)′ (W ⊗ IN2) (Z ′Σ ⊗ IN))

−1
(Z ′Σ ⊗ IN2)′ (W ⊗ IN2) v

=
((

(ZΣWZ ′Σ)−1ZΣW
)
⊗ IN2

)
v.

As we will be interested in the innovations’ covariance matrix itself and not in the

first derivatives and as this curve will be symmetric, we make use of the N(N +

1)/2 × N2 elimination matrix LN which transforms vec(Σ̂(τ)) into vech(Σ̂(τ)); see

e.g. Lütkepohl (2006). This matrix LN allows us to write σ̂(τ) as

σ̂(τ) = LN ((1, 0)⊗ IN2) ((Z ′Σ ⊗ IN2)′ (W ⊗ IN2) (Z ′Σ ⊗ IN))
−1

∗(Z ′Σ ⊗ IN2)′ (W ⊗ IN2) v

= ((1, 0)⊗ LN)
((

(ZΣWZ ′Σ)−1
)
⊗ IN2

)
(ZΣW ⊗ IN2) v

= ((1, 0)⊗ LN)
((

(ZΣWZ ′Σ)−1ZΣW
)
⊗ IN2

)
v (B.3.3)

=
(
(1, 0)(ZΣWZ ′Σ)−1ZΣW ⊗ LN

)
v

=
(
(1, 0)(ZΣWZ ′Σ)−1ZΣW ⊗ IN(N+1)/2

)
(IT ⊗ LN) v

=
(
(1, 0)(ZΣWZ ′Σ)−1ZΣW ⊗ IN(N+1)/2

)
ṽ, (B.3.4)

where we set ṽt = vech(ûtû
′
t) and we used the notation

ṽ = vec(ṽ1, . . . , ṽT ) (TN(N + 1)/2× 1), Ṽ = (ṽ1, . . . , ṽT ) (N(N + 1)/2× T )

Here it worth noting that (B.3.4) is exactly the local linear LS estimator obtained

for vech(Σ(τ)) if we start the derivation with the minimization problem by stacking

vech(ûtû
′
t) instead of vec(ûtû

′
t) and using ṽ instead of v.
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By dropping the elimination matrix and using the usual rules for the Kronecker

product, we end up with an alternative representation that avoids vectorization,

that is,

vec(Σ̂(τ))

= VWZ ′Σ(ZΣWZ ′Σ)−1

(
1

0

)

= vec

(
VN×NT (W ⊗ IN) (Z ′Σ ⊗ IN)

(
(ZΣWZ ′Σ)−1 ⊗ IN

)(( 1

0

)
⊗ IN

))

= vec

(
VN×NT

(
WZ ′Σ(ZΣWZ ′Σ)−1

(
1

0

)
⊗ IN

))
, (B.3.5)

where

VN×NT = (û1û
′
1| · · · |ûT û′T ) (N ×NT ).

Finally, this leads to the matrix representation of the local linear LS estimator of

Σ(τ), i.e.

Σ̂(τ) = VN×NT

(
WZ ′Σ(ZΣWZ ′Σ)−1

(
1

0

)
⊗ IN

)
. (B.3.6)

B.4 Simulation: Data Generation

In the simulation, we generate stable parameter series for dimension N with the

following base matrices:

Ā = 1(N×N) ∗ 0.2 + diag(U(0.2, 0.4), · · · ,U(0.2, 0.4))

where diag(·) denotes a diagonal matrix with the respective entries.

SE(A) = 1(N×N) ∗ 0.2

Σ̄0.5 = 1(N×N) ∗ 0.1 + I(N×N) ∗ 0.4
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For t = 1, ..., T and i, j = 1, ..., N , parameter matrix entries are then generated

by the following two functions:

aij(t) = Āij + SE(A)ij

[
αij sin

(
βij2π + γij2π

1− t
T

)]
αij ∼ N (0, 1) (Magnitude)

βij ∼ U(0, 1) (Shift)

γij ∼ U(0.3, 0.5) + δ (Frequency)

δ ∼ U(0, 1) (random frequency)

All resulting parameter series are checked for stability. That is, at all time points,

the eigenvalue of the parameter matrix [aij(t)] has to be smaller than one in modulus.

If not, the process is generated again.

The entries of the square root innovation covariance matrix Σ0.5 = [σ0.5
ij (t)] are

generated similarly.

σ0.5
ij (t) = Σ̄0.5

ij

[
2 + sin

(
β′ij2π + γ′ij2π

1− t
T

)]
β′ij ∼ U(0, 1) (Sigma Shift)

γ′ij ∼ N (0, 1) + 2δ′ (Sigma Frequency)

δ′ ∼ U(0, 1) (Sigma rand freq)

Note that both δ and δ′ are randomly drawn for all i, j, while the other randomly

drawn parameters are drawn for the specific entry.

The data generating process is a VAR(1) process with coefficient series A(t) =

[aij(t)] and innovation covariance series Σ0.5(t) = [σ0.5
ij (t)].

Yt = A(t)Yt−1 + Σ0.5(t)εt, ∀t = 1, ..., T

Y0 = ĀΣ̄0.5εt

εt ∼ N (0, IN)

114



Additional Simulation Results

0.1 0.15 0.2 0.25 0.3 0.35

mean norm local linear
mean norm local constant

Figure B.1: Monte Carlo Simulation with 500 repetitions of At. Cumulative distribu-
tion function of the norm of the local-linear estimator (2.12) (red) and the local-constant
estimator minus the true parameter.
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Figure B.2: Monte Carlo Simulation with 500 repetitions of Σt. Cumulative distribu-
tion function of the norm of the local-linear estimator (2.12) (red) and the local-constant
estimator minus the true parameter.
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Appendix C

Appendix to Chapter 3

C.1 Complementary Graphs
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Figure C.1: Estimated CDF of the To-Connectedness of the 88 three-digit level sectors.
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