
A Dependency-Aware, Context-Independent Code

Search Infrastructure

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Diplom-Informatiker Marcus Schumacher

aus Heidelberg

Mannheim, 2019

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Colin Atkinson, Universität Mannheim
Korreferent: Prof. Dr. Ralf H. Reussner, Karlsruher Institut für Technologie (KIT)

Tag der mündlichen Prüfung: 18.07.2019

Abstract

Over the last decade many code search engines and recommendation systems have

been developed, both in academia and industry, to try to improve the component

discovery step in the software reuse process. Key examples include Krugle, Koders,

Portfolio, Merobase, Sourcerer, Strathcona and SENTRE. However, the recall and

precision of this current generation of code search tools are limited by their inability

to cope effectively with the structural dependencies between code units. This lack

of “dependency awareness” manifests itself in three main ways. First, it limits the

kinds of search queries that users can define and thus the precision and local recall

of dependency aware searches (giving rise to large numbers of false positives and

false negatives). Second, it reduces the global recall of the component harvesting

process by limiting the range of dependency-containing software components that

can be used to populate the search repository. Third, it significantly reduces the

performance of the retrieval process for dependency-aware searches.

This thesis lays the foundation for a new generation of dependency-aware code

search engines that addresses these problems by designing and prototyping a new

kind of software search platform. Inspired by the Merobase code search engine,

this platform contains three main innovations - an enhanced, dependency aware

query language which allows traditional Merobase interface-based searches to be

extended with dependency requirements, a new “context independent” crawling

infrastructure which can recognize dependencies between code units even when their

context (e.g. project) is unknown, and a new graph-based database integrated with a

full-text search engine and optimized to store code modules and their dependencies

efficiently. After describing the background to, and state-of-the-art in, the field of

code search engines and information retrieval the thesis motivates the aforementioned

innovations and explains how they are realized in the DAISI (Dependency-Aware,

context-Independent code Search Infrastructure) prototype using Lucene and Neo4J.

DAISI is then used to demonstrate the advantages of the developed technology in a

range of examples.

Zusammenfassung

Im letzten Jahrzehnt wurden sowohl im akademischen als auch im industriellen Bere-

ich zahlreiche Code-Suchmaschinen und so genannte Recommendation-Systeme

entwickelt, um den ersten Schritt im Prozess der Wiederverwendung von Soft-

warekomponenten zu verbessern, die Suche nach passenden Komponenten. Be-

deutende Beispiele der letzen Jahre waren oder sind Krugle, Koders, Portfolio,

Merobase, Sourcerer, Strathcona oder SENTRE. Allerdings ist die Trefferquote

und die Genauigkeit dieser aktuellen Generation an Programmen für die Code-

Suche gewissermaßen begrenzt, da sie nur bedingt in der Lage sind strukturelle

Abhängigkeiten zwischen verschiedenen Code-Einheiten effektiv dar zu stellen.

Dieser Mangel an “Abhängigkeitsbewusstsein” findet sich dabei in drei Hauptaspek-

ten. Erstens ist die Art wie Benutzer Suchanfragen an das System definieren können,

und damit die Genauigkeit und die lokale Trefferquote abhängigkeitsbewusster

Suchen, eingeschränkt (was zu einer großen Anzahl von false-positive und false-

negative Ergebnissen führt). Zweitens ist die globale Trefferquote des Komponenten-

Harvesting-Prozesses verringert, da die Möglichkeit Softwarekomponenten, die

Abhängigkeiten enthalten, in einem der Suche zu Grunde liegenden Such-Repository

abzubilden begrenzt ist. Drittens ist die Effizienz des Prozesses des Information

Retrieval für abhängigkeitsbezogene Suchen signifikant reduziert.

Diese Dissertation legt den Grundstein für eine neue Generation abhängigkeits-

bezogener Code-Suchmaschinen, bei der diese Probleme und Einschränkungen

durch den Entwurf und das Prototyping einer neuen Art einer Suchplattform für

Software gelöst werden. Inspiriert von der Merobase-Codesuchmaschine werden

hier drei Hauptinnovationen präsentiert: eine erweiterte, abhängigkeitsbezogene

Abfragesprache, mit der herkömmliche, auf der Merobase basierende Suchanfragen,

um Abhängigkeitsanforderungen erweitert werden können. Eine neue, “kontextun-

abhängige” Crawling-Infrastruktur, die Abhängigkeiten zwischen Codeeinheiten

erkennen kann. Und die Integration einer Graphen-Datenbank in eine Volltextsuch-

maschine die auf eine effiziente Speicherung von Codemodulen und deren Ab-

hängigkeiten optimiert ist. Nach den Grundlagen und den aktuellsten Techniken auf

dem Gebiet der Codesuchmaschinen im Bereich des Information Retrieval motiviert

die Dissertation die oben genannten Innovationen und erläutert, wie diese innerhalb

der DAISI (Dependency-Aware, Context Independent Code Search) auf Basis von

Lucene und Neo4J umgesetzt werden. Anhand der DAISI werden auch die Vorteile

der entwickelten Technologie anhand einer Reihe von Beispielen demonstriert.

Acknowledgment

After many years of intensive work, this Acknowledgment represents the culmination

of my dissertation project. The work was intensive but also rewarding, not only due

to the many things I was able to learn exploring my research topic but also due to

the many interesting people I was able to work and interact with. It was always a

pleasure being at the chair, and over the years many of my colleagues have become

friends.

First and foremost I would like to thank my supervisor, Colin Atkinson, for giving

me the chance to research on this stimulating topic and for always having an open

ear for questions and productive discussions. The atmosphere you have created at

your chair helped me in many ways, and provided the freedom needed for creative

thinking. Without this, many of my colleagues and I would not have been able to

come up with such innovative solutions to the problems we tackled.

Second, I would like to thank all the colleagues who have accompanied me all these

years, especially Oliver Erlenkämper, Werner Janjic, Ralph Gerbig, Thomas Schulze

and Marcus Kessel. Thank you for your encouragement and all the discussions in the

coffee corner where a lot of ideas were born (about all manner of things including

our research topics).

And last but not least, a big thanks to my family - my wife Kerstin, who has loved,

supported and encouraged me all these years, and my sons Fabian and Florian, who

sometimes had to put up with playtime interruptions when their father had to check

on his research prototype or implement a new idea. It has been a struggle to get this

dissertations finished, but sometimes the best research ideas came up when building

turrets or houses. I therefore dedicate this work to my family.

Contents

1 Introduction . 1

1.1 Dependency Awareness 3

1.2 Context-Independent Harvesting 7

1.3 Research Goals 9

1.3.1 Hypotheses 11

1.4 Thesis organization 14

2 General Information Retrieval Concepts 17

2.1 Recall and Precision 19

2.2 Boolean Retrieval 22

2.3 Vector Space Model 23

2.4 Set-based Model 25

2.5 Graph based IR Models 26

3 Information Retrieval for Software Components . . 29

3.1 Software Retrieval Methods 30

3.2 Search Queries 36

3.3 Relevance in Software Search Engines 38

3.4 Realization Approaches 40

4 Code Search Engines . 47

4.1 Merobase 48

4.1.1 Merobase Query Language 52

4.2 Portfolio 53

4.3 Exemplar 55

4.4 Sourcerer 57

4.5 Krugle 59

4.6 Koders - OpenHub 61

4.7 Symbol Hound 62

4.8 Strathcona 63

5 Dependency-aware Metamodel . 65

5.1 The Core Metamodel 66

5.1.1 Extended Metamodel for Java 72

5.2 Infrastructure of the Graph 75

5.3 Text Document Storage 83

6 Environment-Independent Harvesting 89

6.1 Crawling and Parsing 90

6.1.1 Context-Independent Content Analysis 92

6.1.2 Handling the source code 104

6.2 Graph-based Dependency Resolution 106

7 Dependency-Aware Searches . 113

7.1 DAQL 114

7.2 Search Types 118

7.3 Classification using Graph IR Methods 123

8 Diagrammatic Query Definition 125

8.1 The Search Event 126

8.1.1 Reuse Scenarios 126

8.2 UML-based Search 133

8.3 Search User Interface 137

8.4 Drag and Drop Search 139

9 Evaluation . 143

9.1 Simple Case 144

9.1.1 Case 1 145

9.1.2 Case 2 151

9.2 Methods from Superclasses 156

9.3 Complex Scenario 160

9.4 Hypothesis Validity 163

10 Conclusion . 169

10.1 Weaknesses 171

10.2 Future Work 173

Bibliography . 175

Books 175

Articles 177

List of Figures

1.1 Simple CustomerManagement System 4

2.1 IR Model 22

2.2 Boolean Retrieval Model Query conjunctive components 23

2.3 Undirected and directed graph 28

3.1 Sourcerer relational metamodel 41

3.2 Merobase relational metamodel 42

3.3 A simple example representing classes in a graph 44

4.1 Query comparison between standard search engines and Exemplar 56

4.2 Architecture of the Sourcerer infrastructure 58

5.1 Core Metamodel 67

5.2 Java Specific Metamodel 72

5.3 Example Application of the Core Metamodel 76

5.4 CandidateCollection example 83

6.1 Crawling and parsing process of the DAISI search engine 92

6.2 Process of the analyser and the different file formats 93

6.3 MOF pyramid defined by the OMG 97

6.4 Process of transforming Source Code to a KDM to a UML Model 99

6.5 Root elements of the ASTM metamodel 100

6.6 CandidateCollection example 107

6.7 CandidateCollection example 109

7.1 Difference of if a method is inherited or not 124

8.1 Design -> Implementation -> Validation Process 132

8.2 KobrA representation of the CustomerManagement example 137

8.3 Search result list 138

8.4 Details of a component 139

8.5 UI of the “drag and drop” search possibility 140

9.1 Stack - Item simple example 145

9.2 Berrypicking search process 148

9.3 Stack - Item example 151

9.4 Three Stack classes connected to the same Item class 154

9.5 Complex search scenario 161

List of Tables

4.1 Fields of the Merobase index 50

4.2 Lucene field for the updateCustomer method 51

4.3 Counter for same parameter signature 51

5.1 Properties of the individual class nodes in the graph 77

5.2 Properties of the CodeMethod 79

5.3 Index structure for CodeMethods 85

5.4 Index structure for CodeClasses 86

6.1 MOF relationship of KDM and ASTM 98

6.2 MOF relationship of KDM and ASTM 100

6.3 Java specific SASTM Elements 101

6.4 Removed terms of the source code for keyword based search 106

7.1 Prefixes for the different search capabilities 115

7.2 Relation types within the query 118

9.1 P@5 and P@10 metric of the simple Stack search 150

9.2 P@5 and P@10 measurement values for the Stack search with Item 155

9.3 precision, recall and F-measurement values 156

9.4 P@5 and P@10 values for the Customer search with methods 158

9.5 P@5 and P@10 measurement values of the Customer search 160

1. Introduction

Google can bring you back 100,000

answers. A librarian can bring you

back the right one.

– Neil Gaiman –

Today software permeates almost every part of our lives and environment, whether it

be as programs within computers, applications on smartphones, embedded controllers

within consumer goods or artificial intelligence within autonomously driving cars.

Software lies at the heart of all modern, “smart” products. However, the development

of software is still a tremendously costly process. Although there have been many

changes in software engineering approaches over the last 50-60 years, with waterfall

processes gradually giving way to agile processes [Som01], software development

still primarily revolves around the notion of writing code from scratch.

The idea of systematically building new applications from pre-existing components

was first promoted in the 1960’s to increase software quality and raise productivity

[McI68] [Moh+04]. However, today reuse is essentially only practised in ad-hoc,

opportunistic ways by individual developers who happen to be aware of existing

software that could fulfil their needs [LM89] [HW07]. Large scale, systematic reuse

2 Chapter 1. Introduction

that mirrors a component-based assembly like in other industries, e.g. the automotive

industry, where almost all new cars have standard, reusable components installed

(e.g. radio, air conditioning, fuel pumps etc.), is in software engineering still a long

way off, although the benefits of prefabricated component assembly in software

engineering are potentially just as dramatic. For example, Lime found that the defect

density in software systems built from existing components was half that of systems

developed from scratch through normal processes [Lim94].

However, systematically supporting software reuse is difficult because there are so

many different forms of components and ways of reusing them. A “component” can

be as small as a block of code or as large as a complete subsystem or framework,

and component reuse can take many different forms, depending on how many

components are involved and the reuser’s degree of knowledge about a component’s

internal realization. In terms of quantity, a developer may sometimes only wish to

reuse one independent component and on other occasions a developer may wish

to reuse several interconnected components. In terms of knowledge, a developer

may sometimes want to reuse a component “as-is” in a black box way, without any

knowledge about how it works internally, and on other occasions a developer may

wish to reuse a component in a white box way by modifying it for the task in hand

or simply learning from the way it is implemented [Sim+11].

Those differences have an impact on all phases of the reuse process. However they

present by far the biggest challenge for the first and arguably most important step

which is to find suitable reuse candidates in the first place. Probably the most effective

way of boosting software reuse in software engineering is to provide easier and more

reliable ways for developers to find components to support all the different kinds of

components and reuse forms. Over the last few years there have been many attempts

to improve the component discovery step in the software reuse process, including

the development of code search engines like Krugle [Kru13], Koders, Portfolio

1.1 Dependency Awareness 3

[McM+11], Merobase [Jan+13] or Searchco.de 1 and plug-in recommendation tools

such as Strathcona [HM05] or SENTRE [Jan14]. However, the current generation

of software search engines or recommendation systems only supports a few of the

aforementioned component types and reuse scenarios. In fact, most developers still

use text-based searches on Google, or similar web search engines, to find components

to use “as-is” or to find reference examples they can use in their own applications

[Sim+11]. Many important cases are only supported in a very rudimentary way or

not at all. But as the quote by Gaiman at the beginning hinted “Google can bring

you back 100,000 answers. A librarian can bring you back the right one.”, today’s

software search engines can return many results to almost every query, but they are

frequently not the right ones. To improve the precision of software search engines it

is necessary to make them aware of the structure of software components as well as

of the “text” elements they contain.

1.1 Dependency Awareness

As an example of the kind of challenges faced by developers when trying to use

today’s code search engines to support reuse, suppose a developer is responsible

for building a customer management (sub-)system based on the core classes and

relationships shown in figure 1.1. The central class in this system is the “ Customer-

Management ” class which is the entry point for looking up customers, updating

customers and creating new ones. This class is therefore responsible for managing

multiple instances of the class “Customer”. At the beginning of the development

process, the detailed properties of these classes are largely unknown, but it is clear

that the Customer class must at least contain attributes to store customer names and

addresses.

1http://www.searchco.de

4 Chapter 1. Introduction

CustomerManagementCustomerManagement

+ getCustomer(String) : Customer

+ addCustomer(Customer)

CustomerCustomer

- name : String

+ getName() : String

- forename : String

+ updateCustomer(Customer) - address : Address

+ getAddress() : Address

Figure 1.1: Simple CustomerManagement System

A developer who is open to reusing existing code to build this subsystem might start

by entering a query of the form “java customermanagement customer getname” in

a general purpose search engine such as Google and as for example shown by Sim

et al. [Sim+11], most developers turn to such search engines to find code. At the

time of writing, entering this query into Google returned only one remotely relevant

result at position two – a single Java class called CustomerManagement hosted at

GitHub. The class Customer is completely missing in this result. Entering this query

into Koders or Krugle, the two most popular and well known code search engines,

returned no results at all. The problem is the sensitivity of these search engines to

the exact keywords supplied in the query. If the identifiers in a component stored

in the repository deviate in the slightest way from the keywords in the query, these

search engines are unable to detect a match.

To provide better results, Krugle and Koders both provide special prefixes to identify

what role specific keywords should play in software. For example, it is possible to

obtain relevant results for this scenario from Krugle by changing the query to “cus-

tomermanagement functiondef:getCustomer”, and in the case of Koders a much more

effective query is “cdef:customermanagement mdef:getCustomers”. This specifies

that, to be included in the result set, a class must either have the name Customer-

Management or a method called getCustomers, or both. The inability of the first

example query to return any results from Koders and Krugle suggest they do not

have any classes called CustomerManagement in their index. Therefore, in the case

1.1 Dependency Awareness 5

of Krugle it was also necessary to change the individual query to “customer function-

def:getCustomer” where the class name was changed from customermanagement to

customer, and in the case of Koders to “cdef:customerservice mdef:getCustomers”

to search for a customerservice instead of the customermanagement.

Of course, developers are usually interested in the functionality offered by compo-

nents, not their exact name. However, unlike Google major code search engines like

Koders and Krugle are unable to take similar names into account when searching for

components. Additionally, in both cases the given query was unable to convey the

requirement for the getName-method. General purpose search engines like Google

provide no special prefixes for code and are thus unable to recognize the types

or names of any input- / output-parameters of methods. Google simply matches

keywords in the query to identifiers in the source code, regardless of what they mean,

but applies sophisticated name similarity detection techniques. In summary, Google

almost always returns a high number of results, but the vast majority of them are

irrelevant (low precision), while mainstream code search engines such as Krugle and

Koders often return few if any results (low recall).

The new generation of academic search engines developed over the last couple of

decades such as Koders, Portfolio, Merobase or Searchco.de have tried to address

this problem by introducing new ways of formulating queries. For example, Mer-

obase introduced interface-based searches in which queries essentially describe the

signature information wrapped up in interface specifications. For example the query -

Customer(getName():String; getId():String; setName(String))

will search for components (e.g. classes) called Customer offering methods get-

Name and getId which return a String value and setName which accepts a string

parameter. This significantly increases the precision of the results compared to

6 Chapter 1. Introduction

the aforementioned search engines which simply look for the union of the listed

features. However, the results are still very sensitive to the identifiers chosen in

the query. Merobase therefore offers a variant of interface based search, called

signature based search, which only specifies the signatures of the required methods,

without specifying the identifiers. This, of course, has the effect of increasing the

recall again but at the expense of precision. However, while these more advanced

query specification capabilities allow precision and recall to be improved, especially

when combined with systematic query reformulation techniques, they still focus on

individual components.

The basic problem with existing code search engines is their lack of “awareness”

of the typical kinds of dependencies that exist between code elements. This is

a fundamental problem because in the object-oriented programming languages

primarily used to write software today, functionality is almost always distributed over

several classes. Making search engines, and the queries that drive them, “dependency

aware” would allow them to consider the content of several related classes rather

than one individual class when establishing their relevance for the user.

In case of the Customer Management example, not only would it be possible to

search for a CustomerManagement class which has some kind of relationship to a

Customer class, it would also be possible to specify the precise kind of relationship

and properties of the Customer class, like name or address attributes. Additionally,

the immediate environment of each class could be examined so that methods that are

not contained by the class itself, but are defined in other classes (e.g. superclasses)

can be taken into account. Dependency-aware search technology therefore has the

potential to further enhance the precision and recall of searches. It can enhance the

former by allowing users to specify precisely what elements they expect, components

to be composed of and what relationships should exist between them. It can enhance

the latter by allowing components to be considered as candidates that do not provide

1.2 Context-Independent Harvesting 7

all of the desired functionality themselves but do so with the help of other dependent

components.

The first step towards exploiting dependency awareness in code searches was made

by the search engine Portfolio [McM+11] which considers the process flow of

method calls in related classes, and SENTRE, which loads all dependencies after a

component is selected [Jan14]. However, they exploit dependency awareness in only

very limited and narrowly focused ways. At the present time there is no code search

engine which allows the full range of dependencies supported by modern object-

oriented programming languages to be explicitly considered in the formulation and

execution of code searches.

1.2 Context-Independent Harvesting

As soon as the focus of searches extends beyond individual code elements to collec-

tions of elements, the question of how these elements are correlated and harvested

becomes a major question. More specifically, the problem of how to examine whether

elements belong together has to be addressed. The simplest and most straightforward

approach, if possible, is to harvest all elements from a given project or package

(e.g. jar file) because they are related to each other in a given “context” and were

usually written by the same development team. The most common and straightfor-

ward way of harvesting elements and their dependency relationships is to collect

them from online project repositories such as Github or Sourceforge, which are

typically configured by dependency management tools like Maven, Ivy or Gradle.

They capture dependencies in configuration files, along with all the inter-related

code elements within projects. However, such configuration files can often get lost

or be corrupted, or for some reason another code element may become unavailable

(e.g. due to versioning problems). This makes it impossible for crawlers that rely on

8 Chapter 1. Introduction

full context information to harvest such code. Also, a great deal of reusable code

is available as individual elements and code snippets in internet forums like Stack-

overflow 2. Moreover, these code snippets are often of very high quality [SH13a]

because they address concrete problems that are discussed and explained by a large

number of developers. A context-independent dependency resolution mechanism

which can inter-connect elements harvested from different contexts would therefore

significantly enhance a dependency aware search engine by allowing it to (a) harvest

more interrelated code elements (with an awareness of the dependencies between

them), and (b) be more robust against events that break the integrity of the index,

such as the movement of a project to another server.

Since context-dependent harvesting is much easier than context-independent har-

vesting we assume that any search engine that does the latter will also do the

former. In other words, we assume that context-independent harvesting subsumes

context-dependent harvesting. Conceptually, if a repository over which searches are

performed is regarded as complete, e.g. consists of all existing software components

which can be found in the global internet, rather than a subset, created by a search

engine’s crawler, a context-independent harvesting mechanism essentially increases

the global recall of a search engine since it allows more component candidates to be

considered.

The benefits of such context-independent harvesting can be directly seen in the

example above. To reuse the result returned by Google from the Github project,

which consists of only one class, CustomerManagement, a developer either has to

implement the second class Customer by himself or has to perform a second search.

Even if the implementation of the Customer class may not be that difficult, a context-

independent harvesting process would be able, in the case of a complete index, to

find another Customer class containing the necessary structure and information and

2http://www.stackoverflow.com

1.3 Research Goals 9

relate it to the CustomerManagement class.

1.3 Research Goals

To address the aforementioned issues this thesis presents the foundations for a new

generation of “dependency-aware” search engines which can be populated through

“context-sensitive” harvesting, and demonstrates their effectiveness by means of a

prototype implementation. In addition, the new technologies created for this purpose

were developed to fulfil the following sub-goals:

1. seamless extension: seamlessly extend the capabilities of the current genera-

tion of code search engines.

2. language independence: ensure compatibility with all mainstream object-

oriented programming languages and software repositories.

3. scalable: provide reasonable performance (i.e. response time) even for very

large scale repositories.

The general hypothesis behind this work is, therefore, that this new search engine

technology, which we refer to as DAISI (Dependency-Aware, context-Independent

code Search Infrastructure), will increase the precision and recall of code search

engines, both in terms of “local recall” relative to the harvested code repository, and

in terms of the “global recall” relative to the conceptually available components in

the Internet. The particular search engine chosen as the baseline for the research was

the Merobase search engine also developed at the Chair of Software Engineering at

the University of Mannheim. Wherever possible, the new capabilities were added to

the existing features of Merobase (e.g. the query language and document indexing

structure) in an as natural and simple way as possible. The particular language

chosen as the focus of the prototype implementation was the Java programming

language.

10 Chapter 1. Introduction

When it comes to storing information about relationships, the text-based document

indexing approaches used to implement the current generation of code search engines

are not scalable for a stand-alone solution. Relational databases are also unsuitable to

cover the requirements of solid relationship-based dependency discovery because of

the large number of “joins” that are often required to resolve relationships [HAS13].

This thesis therefore explores the novel approach of using a combination of traditional

text-based indexes and a graph database to store the searchable content.

In order to achieve the second sub-goal of being language independent, the doc-

ument schemata and graph database nodes need to be correlated and language

agnostic (i.e able to cope with all major object-oriented language concepts). A

major contribution of the work presented in this thesis is therefore the definition of

a language-independent metamodel which captures the key information needed to

support dependency-awareness in an efficient and level-agnostic way.

Finally, in order to support context-independent harvesting it was necessary to

design a two-phase parsing process, and a generic parsing approach which on the

one hand supports the abstract dependency representation approach defined in the

language-agnostic metamodel and on the other hand supports the straightforward

implementation of language specific parsers and analysers.

1.3 Research Goals 11

1.3.1 Hypotheses

The research goals described in the previous section essentially postulate the validity

of the following concrete hypotheses -

Hypothesis 1

It is possible to build a scalable, context-independent, dependency-aware,

code search engine populated through context-independent harvesting.

The premise behind this hypothesis is that it is possible to build a code search

engine that demonstrates the desired properties of language agnosticism and

dependency awareness that is “practical” in the sense that it is (a) able to

harvest and index a “meaningful” collection of components (in a context in-

dependent way) and (b) able to return results to dependency-aware searches

over a “large” repository within a “reasonable” amount of time. The validity

of this hypothesis is not self-evident since no code search engine with these

properties has yet been built. Although the terms “meaningful”, “large” and

“reasonable” are not quantified precisely and thus open to interpretation, they

can nevertheless be concretely measured against the capabilities of existing

code search engines

Hypothesis 2

A dependency-aware code search engine of the kind referred to in Hypothesis

1, which allows users to express the dependency relationships they desire

between code elements when defining queries, can enhance the precision of

search results.

The premise behind this hypothesis is that if (a) users can precisely express

what software structures they are looking for, containing the precise kinds

of dependencies they need, and (b) a search engine can effectively deliver

results from a large repository that stores these kinds of dependencies, the

12 Chapter 1. Introduction

number of unsuitable (i.e. undesired) software structures returned in search

result sets will be reduced. Technically, this corresponds to an increase in the

precision of the search engine measured against the “true” requirements of the

user. This increase in precision is only expected for dependency-containing

queries. There is no claim that the precision of normal (i.e. dependency-free)

queries is increased, although this might be a side-effect of the graph-based

implementation approach used to support dependency-aware searches.

Hypothesis 3

A dependency-aware code search engine of the kind referred to in Hypothesis

1 can enhance the (local) recall of search results.

This is the “flip-side” of hypothesis 2, but related to recall rather than precision.

The premise behind this hypothesis is that if (a) users can precisely express

what software structures they are looking for, containing the precise kinds of

dependencies they need, and (b) a search engine can effectively deliver results

from a large repository that contains these kinds of dependencies, the number

of suitable (i.e. desired) software structures included in the result set is in-

creased. Technically, this corresponds to an increase in the recall of the search

engine measured against the “true” set of suitable components in the repository.

Again, this increase in precision is only expected for dependency-containing

queries, and there is no claim that the recall of normal (i.e. dependency-free)

queries is increased, although this might be a side-effect of the graph-based

implementation approach used to support dependency-aware searches.

1.3 Research Goals 13

Hypothesis 4

A dependency-aware code search engine of the kind referred to in Hypothesis

1, populated by a context-independent harvesting approach, can enhance the

(global) recall of search results.

Hypothesis 3 refers to an expected increase in the recall of dependency-aware

searches measured in terms of the components that are contained in the search

engine’s repository. Thus, the “true” set of suitable components against which

recall is judged is the set of query-matching components contained in the

repository. In this thesis we refer to this form of recall as “local recall”. How-

ever, since we are focussed on “open” code search engines which harvest

software from “open” source software repositories and forums publicly acces-

sible anywhere on the Internet, the “virtual” repository against which users

conceptually issue their search queries is the complete set of components that

are in principle harvestable from the open internet. In other words, for users

of online, open search engines, the “true” set of suitable components against

which recall is judged is, conceptually at least, the set of query-matching

components in the openly harvestable Internet. We refer to this form of recall

as “global” recall. The key difference between local recall and global recall

is that global recall takes into account the effectiveness of the component

harvesting/indexing technology as well as the component retrieval technology,

while local recall only takes the former into account. Since we believe the

context-independent harvesting approach will be able to find and process more

components, we believe it will contribute towards an increase in the global

recall of the search engine.

14 Chapter 1. Introduction

1.4 Thesis organization

The remainder of this thesis is organised in the following way. Chapters two, three

and four provide the detailed background needed to understand the problem domain

tackled by the thesis and the nature of the proposed solution. Here, chapter two

provides a general overview of information retrieval concepts and technologies,

while chapter three describes the specific problems that are encountered when trying

to apply them to software. Chapter four provides a detailed overview of the most

influential code search engines that have been developed to date, both in industry

and academia.

With the background established, the next three chapters present the new approaches

and technologies proposed in thesis and describes the prototype code search engine,

DAISI, developed to demonstrate and test them. Chapter five begins by describing

the metamodels that were developed to describe the underlying data structure used to

support the new technology. These metamodels exist at various levels of abstraction

so that on the one hand they are general enough to be applied to all kinds of pro-

gramming languages and software environments, and on the other hand are concrete

enough to support efficient application to a tangible example, in this case the Java

programming language. Chapter six continues by presenting the technology behind

the context-independent harvesting aspect of the new technology. This includes a

detailed explanation of how online software component repositories are crawled

and analysed, and how the harvested software is stored in a Neo4J graph database

alongside multiple Lucene NLP (Natural Language Processing) indexes. Chapter

seven continues the detail exposition of the developed technology by describing the

dependency-aware search aspect of the approach. This includes a description of the

new dependency-aware query language, DAQL, as well as an explanation of the

various new kinds of searches and features that can be carried out by users.

1.4 Thesis organization 15

The final two chapters round off the thesis by discussing the effectiveness and

potential impact of the new search engine technology developed in the thesis. Chapter

eight presents a concrete evaluation of the developed prototype search engine using

increasingly complex search scenarios based on the running example used in the

thesis, and demonstrates that all the hypotheses outlined in the previous section are

valid, at least for this example. Finally, chapter nine concludes by summarising the

main contributions of the thesis and discussing the potential impact and possible

future enhancements of the developed technology.

2. General Information Retrieval

Concepts

The need for information consists of

the process of perceiving a

difference between an ideal state of

knowledge and the actual state of

knowledge

– Lidwien van de Wijngaert –

The ability to build new software applications by assembling reusable components,

rather than developing code from scratch, has been the dream of software engineers

for decades. However, the industry is still a long way from realizing this vision in

mainstream software engineering. The vision was first framed in 1986 by McIllroy,

but serious research on the topic was kick-started by Kruger in 1992 with his

definition “Software reuse is the process of creating software systems from existing

software rather than building software systems from scratch” [Kru92]. Since then

many researchers have worked on trying to turn this vision into practical reality.

Although good progress has been made, significant parts of the reuse process still

present serious obstacles. One of the biggest challenges is the general problem

of finding suitable components to reuse in the first place. As recently as 2001,

Sommerville stated that the search for software components is one of the most

18 Chapter 2. General Information Retrieval Concepts

critical elements of an effective reuse program [Som01]. Moreover, Singer et al. in

1997 [Sin+97] and Murphey in 2006 [MKF06] characterized the search for code as

one of the most critical stages in the software reuse process.

The search for software components differs in some important aspects to searches

for other kinds of artefacts. This is because of searches for software components

are essentially searches for “behaviour” or “functionality” whereas searches for

most other kinds of artefacts (physical or informational) are essentially searches

for “properties”. Since general search engine technology is ultimately driven by

property matching, it is much easier to find suitable components based on properties

rather than behaviour. However, in the case of software components, there are so

many ways in which functionality can be mapped to code, it is very difficult to

judge what concrete properties a search engine should be looking for when trying to

identify suitable components. The many options for implementing a given piece of

functionality arise not only because of the availability of many different programming

languages, but also because there are usually numerous architectures and algorithms

that can be used to solve a particular problem. Moreover, the strings used to name the

classes and methods within a program are entirely at the discretion of the developer.

Precisely these variations complicate the search for software components and have

challenged researchers for many years.

Key questions for researchers include the structure and form of a query language for

software components and the structure of the index or the database that stores the

repository of components to be searched. Effective answers to these questions must

take into account the many idiosyncrasies of software implementation technologies

and the many different ways software engineers can map a given set of requirements

into corresponding implementations. To date, most research has focused on handling

the naming variations that can exist in a domain, to ensure that identifiers used in

component implementations somehow match those used to formulate the search

2.1 Recall and Precision 19

query.

Initial attempts to tackle these problems were rather simple, such as the Japanese

“factory approach” for software development [Cus89] which various Japanese com-

panies introduced to try to support a reuse program [Mat84]. These mechanisms

and approaches have been continuously improved over time, however, so that today

naming differences and implementation variations can be handled reasonable well.

Therefore, information retrieval techniques still form the backbone of software search

engines. This chapter provides an overview of these techniques and evaluates their

relevance for software search engines today.

2.1 Recall and Precision

Information retrieval (IR), a term introduced in the late 1940’s by Calvin Mooers

[Moo50], has its origins in library science. The era of computer-supported retrieval,

which can be traced back to the late 1940’s [Cle91] [Lid05], arose from the need

to archive the rapidly growing number of newspaper articles and scientific papers

caused by the emergence of computing technologies. However, the first widely-

accepted definition of information retrieval was made nearly 20 years later by Gerald

Salton [Sal68]:

“ Information retrieval is a field concerned with the structure, analysis, organi-

zation, storage, searching, and retrieval of information.”

Given the limited hardware and programming capabilities at that time and the original

focus on physical books, scientific articles, newspapers and later e-mails, the initial

types of searches supported were very simple. For many years it was only possible

to specify the author, the title or some specific key word characterizing the desired

20 Chapter 2. General Information Retrieval Concepts

article. However, with the invention of the World Wide Web (WWW), these early

technologies were no longer sufficient and a new generation of IR technologies was

required. Among other things this new generation had to cope with significantly

more information. For example, in the 1960’s the data stored in a new IR system

was only about 1.5 megabytes, whereas today billions of online information artefacts

are available which must be analysed and made searchable.

Nevertheless, the basic concepts used to measure the effectiveness of search en-

gines are still the same. One of most fundamental is “relevance” [CMS10] which

expresses how well the items returned by an information retrieval system match the

requirements or goals of the users. Basically, a document can be seen as relevant if it

contains the information or the properties the user of the search engine is looking for.

Relevance can actually be split into two categories. One is the topical relevance and

the other the user relevance. The difference between these two relevance categories

lies in the information the retrieved documents contain. In the case of topical

relevance, the search results must fit only to the topic of the search query, whereas

in the case of user relevance additionally conditions and criteria must be satisfied

as well. For example, one of the results returned by a search for the German word

“Fussballweltmeister” (Soccer world champion) on one of the biggest existing search

engines is “Italy”. From one point of view this may be correct and relevant since

Italy won the world cup four times in the past. However, Italy is not the current

world champion and is thus not a relevant result for a user searching for the last team

which won the competition. Exactly these kinds of factors contribute in subtle ways

to the user relevance of search results [CMS10].

These different forms of relevance are important in the area of software search

engines. For example in the previous chapter, a search for components which

use a class called Customer could also deliver results which only have the word

Customer somewhere in the comments, but are not actually using a class with this

2.1 Recall and Precision 21

name. From a topical relevance point of view, this is a relevant result, but in terms

of the behaviour required by the user it is completely irrelevant. Relevance, by

itself, is not a sufficiently accurate measure, therefore. The quality of search results

strongly depends on the expectations of the user. In 1961, Cyril Cleverdon therefore

introduced the metrics “precision” and “recall” to better quantify the effectiveness

of IR systems and to allow their ranking algorithms to be validated and compared

[Cle61].

Precision: the fraction of the documents retrieved from the search

base that are relevant to the user’s information need.

Recall: the fraction of the documents in the search based that are

relevant to the query that are successfully retrieved.

Both metrics are still widely used today to evaluate new IR approaches. However, the

accuracy of the second requires knowledge of the total number of relevant documents

in the search base, which is very difficult to establish in practice, especially given

the size of search bases today (e.g. billions of documents from the global Internet)

and the rapid rate at which they change [GP99]. To address this problem, there

are several models for describing the conceptual space a search engine operates in.

Among the oldest IR models are the Boolean Retrieval Model and the Vector Space

Model [B+99]. These models, which are both still used today, are the foundation

of many subsequently developed approaches. As shown in figure 2.1, at the core

of every IR model is a quadruple [D,Q,F,R(qi,d j)], where D is a logical view on

the documents in the collection, Q is a logical view of the user queries, F is the

framework for representing the documents and queries and R(qi,d j) is the ranking

function.

22 Chapter 2. General Information Retrieval Concepts

D

Q

dj

qj

R(dj,qj)

document logical view

query logical view

Figure 2.1: IR Model

2.2 Boolean Retrieval

The Boolean Retrieval Model, sometimes also known as exact-match retrieval, was

used in some of the first IR systems. As its name suggest, the basic idea is to include

only exact matches in the result list. In other words, results are only included in the

result list if they contain all of the keywords specified in the search query and satisfy

all the Boolean constraints it implies. The term “implies” is used here because a

query can be a complex expression whose parts are connected by logical operators.

In the beginning only the basic and well know logical operators AND, OR and NOT

where supported, so a query could take the form q = qa∧ (qb∨qc)¬qd , where qi can

be also sub-expressions of the query q.

While it is relatively easy for a user to formulate such a request, formulating queries

in the Boolean Retrieval Model has some weaknesses. Since it assumes that rel-

evance is also binary and all “true” results included in the result set are basically

equivalent to one another, the approach provides no inherent ranking mechanism.

Apart from some ordering strategies (such as sorting by date) therefore, the user

can often receive quite a lot of irrelevant results, even though the overall precision

is high. It can therefore be quite a complex task to formulate a search query to

2.3 Vector Space Model 23

get results with a high degree of user relevance. The core problem here is that the

Boolean Retrieval Model does not consider how often or in what kind of context

the key words are present in the document. This weakness still persists in some of

the more recent enhancements to this model, such as the introduction of the wild-

card character or mechanisms to search with regular expressions. Other extensions,

however, have integrated a ranking mechanism, mostly by combining the Boolean

Retrieval Model with the Vector Space Model [SFW83], presented in the next section.

Figure 2.2: Boolean Retrieval Model Query conjunctive components

2.3 Vector Space Model

The Vector Space Model was one of the earliest IR retrieval approaches (alongside

the Boolean model) and became one of the main focus of IR research in the 60s and

70s [B+99] because it offers some key advantages – namely, ranking, term weighting

and relevance feedback. It achieves this by regarding all documents and queries as

vectors in a t-dimensional vector space, where t is the number of index terms within

a document, like words or sentences. The vector itself is composed of index terms

Di = (di1,di2, . . . ,dit), where di j represents the weight of the j-th term. The vectors

24 Chapter 2. General Information Retrieval Concepts

of all documents are then combined into a matrix which constitutes the index, where

each row stands for a document and each column for the weightings of the different

terms within that document.

Term1 Term2 . . . Termt

Doc1 d11 d12 . . . d1t

Doc2 d21 d22 . . . d2t

...
...

Docn dn1 dn2 . . . dnt

Search queries in the Vector Space Model are represented in a similar way as vectors

of the form Q = (q1,q2, . . . ,q3) where q j again represents the weighting, but in this

context the weighting of the j-th term within the query. Since a query vector is always

as long as a column in the index matrix, the results can be determined with the help

of a distance calculation and a determination of its resemblance to the matrix. Over

the years, cosine correlation has proved to be the most effective resemblance and

distance measure.

The biggest disadvantage of the Vector Space Model is the number of dimensions t.

The approach simply does not scale up to the billions of documents that are today

harvestable over the Internet because the dimension t simply become too large to

manage and the time taken to calculate distances becomes to long. This problem

was recognized in early uses of this approach in terms of the sizes of vectors for

certain books. Vector normalization therefore became a common practice to ensure

all vectors have a uniform length.

A big advantage of the Vector Space Model over the Boolean Retrieval Model is

that the distance calculation yields a non-binary measure of a component’s relevance

which can be used as the basis for ranking. However, this also means that every

2.4 Set-based Model 25

time the search query is changed the distance measures have to be re-calculated

[CMS10]. Nevertheless, this inherent ranking capability laid the foundations for new

approaches addressing the relevance problem and improving ranking still further.

2.4 Set-based Model

Like many other IR models, the Set-based Model introduced in 2002 has its origins

in the Vector Space Model [Pôs+02]. One of the main improvements introduced

in this model is to combine rules from the association theory [AIS93] with the

vectorial ranking mechanism. This allows it to take inter-dependencies between

different index terms into account and include documents in the result list which do

not actually contain any of the specified keywords in the search query. Instead of

storing the terms in documents directly in an index, this is achieved by referencing

“termsets” where each termset contains all correlated terms that express the same

meaning in different words. This approach was the first mechanism for relating

different documents to one another, where the relationship between two documents

is determined by the degree of similarity of the referenced termset. Instead of the

general termsets the Set-based Model makes use of so called closed-termsets. By

reducing the computational complexity and the amount of data to be stored without

losing information, closed-termsets have two important advantages over maximal

termsets or frequent termsets [Pôs+02].

“A closed termset, csi, is a frequent termset that is the largest termset among

the termsets that are subsets of csi and occur in the same set of documents.

That is, given a set D⊆ D of documents and the set SD ⊆ S of termsets that

occur in all documents from D and only in these, a closed termset csi satisfies

the property that @s j ∈ SD | cs j ⊂ s j.” [Pôs+02].

26 Chapter 2. General Information Retrieval Concepts

These closed-termsets are used to describe each document and every termset is

associated with a weighting pair. The first element in the pair identifies the impor-

tance of the termset within the document itself and the second the importance of

the termest within the index. These weighting pairs are used for ranking, but in

addition the ranking mechanism uses three other factors. First, of course, is the

frequency of occurrence of a term in a document, second is the generality of terms,

with common words that occur in many documents being down-weighted, and third

is a normalization procedure which ensure that large documents containing a lot of

different terms are not unduly ranked higher than other documents.

2.5 Graph based IR Models

Although the standard approach in IR is to describe documents as a collection of

words in individual index documents, there are other ways of modelling the contents

of a document. One is to represent the contained text as a graph in which the nodes

are words, whole sentences or even whole documents, and the edges represents the

relationships. These can be determined in different ways, depending on the use case

using statistical [BHQ03], syntactical [FCC07], semantic [MMD02], orthographic

[Cho+07] or linguistic relevance. The high degree of freedom in the structure of a

graph makes it possible to describe the non-linear and non-hierarchical structural

formalism of natural language in a mathematical way. This, in turn, provides an

excellent basis for different kinds of analyses about topological, statistical and gram-

matical aspects of a language [BL12b]. To support these possibilities, the underlying

hypothesis of the graph-based IR models is that in a coherent text fragment, related

words tend to build a network of connections which approximately matches the

model a human being constructs in the process of discourse and understanding

[HH76].

2.5 Graph based IR Models 27

This kind of IR model is not new, since IR approaches based on graphs were being

explored as early as 1969 by Minsk in the field of semantic IR [Min69]. Many

approaches based on his results were developed in subsequent years, like neural

networks, ontologies or associative networks. For example, one of the first neural

networks, the Hopfield net, was used to model information in a graph in 1988

[Hop88]. In this network, information was stored in a single layer in the form of

inter-connected neurons (the nodes) and their weighted synapses (edges).

A big advantage of these “connectionist” networks is that they fit very well to the

Vector Space Model and the probabilistic IR models [BL12b] and greatly assist the

ranking process. For example, in the context of the World Wide Web, the PageRank

ranking algorithm uses a mechanisms which stores the web pages as nodes and

their relations as edges to determine which website is referenced by the largest

number of other web pages [Pag+98]. A web page with a lot of incoming relations is

ranked higher than the others. Moreover, the information about the other web sites

referencing a web site can be used in a higher-order scoring algorithm which also

take into account the scores assigned to the other linked web pages.

Thus, the score assigned to a web page S(vi) can be influenced by the score of every

directly related and indirectly related web page S(v j), where Out(v j) is the number

of web pages referencing the site and δ is a so called damping factor which decreases

as the distance to the actual node increases.

S(vi) = (1−δ) +δ ∑ j∈V (vi)
S(v j)
|Out(v j)| (0≤ δ ≤ 1)

The use of this ranking approach has increased significantly in recent years, especially

in social networks and recommendation systems [Sch+08] because graph structure

are an ideal way to identify patterns [WH91] [Sin+09] in such information stores.

28 Chapter 2. General Information Retrieval Concepts

N1

N2

N3

N5

N6

N7

N4G1

N1

N2

N3

N5

N6

N7

N4G2

Figure 2.3: Undirected and directed graph [BL12b]

One of the weaknesses of the graph-based approach is its scalability, since perfor-

mance can decrease dramatically as the size of the graph grows. Depending on the

structure of the graph, calculating scores, or traversing the paths within the graph

can be very costly. This happens, for example, if there are nodes in the graph which

are referenced by a lot of other nodes and are then visited quite often in the analysis

or searching process. In the case of graph-based representations of programs, this

would be the case for primitive types, which if modelled as individual nodes would

be referenced by nearly every class. However, if these structural characteristics are

recognized and such bottle-neck nodes are avoided, the performance of graph-based

IR approaches does not differ significantly from other approaches [BL12b].

3. Information Retrieval

for Software Components

No man understands a deep book

until he has seen and lived at least

part of its contents.

– Ezra Pound –

Since source code is text, software components can be viewed as nothing more

than sequences of strings just like books or web pages. Traditional information

retrieval (IR) technologies can therefore be used to support the storage and retrieval

of software components [SM83] [FB92]. However, although many of the tech-

niques developed by IR researchers are helpful, such as correcting spelling error

or identifying synonyms, traditional IR technology based on the Boolean Retrieval

Model or the Vector Space Model leave a lot to be desired when used for code. For

example, there is the mismatch between the properties of natural language and the

technical structure and vocabulary of formal programming languages. This primarily

creates the problem of how to formulate requests to such a system so that the users

receives the relevant documents contained in the database and are not overwhelmed

by irrelevant results because traditional free text approaches do not “understand” the

special meaning of the concepts in source code. This chapter discusses the problems

involved in using traditional information retrieval approaches for supporting the

30 Chapter 3. Information Retrieval for Software Components

retrieval of software components and describes the range of possible solutions. It

starts by enumerating the different retrieval approaches devised by researchers and

then explains how these effect the problems of judging the relevance of software

components. Finally, this chapter discusses a range of realization choices.

3.1 Software Retrieval Methods

Several promising approaches for searching for components using natural language

have emerged over the years such as the profiling approach of Maarek 1991 [MBK91].

In his approach, Maarek extracted a certain number of indicators and combined them

to create a profile of a component. This profile can be used as the basis for matching

search queries to components to find relevant results. However, Maarek had to

contend not only with the conceptual limitations of the IR methods available at that

time, he also had to grapple with technical implementation details. In particular,

full-text indexes as we know them today did not exist that time, so Maarek had to

build his own index based on an uncontrolled vocabulary and clustering techniques.

As pointed out by Mili 1998, software component search technologies were far from

satisfactory in the past, and there was a lot of scope for further research [MMM98].

The problems with component retrieval technologies at that time were not just

technical. Another well known problem addressed by numerous researchers was the

so called “vocabulary problem” [Fur+87]:

“ No single word can be chosen to describe a programming concept

in the best way ”.

As a consequence, mapping natural language concepts used by software engineers

when developing solutions to the technical constructs of programming languages is

3.1 Software Retrieval Methods 31

a challenging task since components can be developed in so many different ways

[Mar+04]. Nevertheless, there are several approaches for mapping natural language

to software components. For example, the natural language comments found in

classes or methods can be used to infer mapping information, and some approaches

like Exemplar [Gre+10b] leverage the accompanying documentation to support natu-

ral language searches for components, based on the text they contain. Unfortunately,

however, the documentation accompanying components is often of poor quality and

has its own semantic gap to the implementation [BMW94]. As well as searching

for components by natural language, therefore, other researchers investigated ap-

proaches that build a special index based on their structural characteristics [ZW95].

This approach has a lot of potential because, as shown by graph-based IR models,

software components have a lot of dependencies which could be captured in an

index. However, this line of research has been neglected for a long time and has only

recently been revived. Instead, the thrust of current research into software component

search (or recommendation) has been to adapt and extend traditional IR methods.

In their seminal 1998 paper, Mili et al. subdivided the various retrieval methods into

six different categories [MMM98].

1. Information retrieval methods

2. Descriptive methods

3. Operational semantic methods

4. Denotational semantic methods

5. Structural methods

6. Topological methods

However, Hummel et al. regard the sixth category Topological methods as ranking

mechanisms [HJA07] rather than search methods, so we will not consider this

category further here.

32 Chapter 3. Information Retrieval for Software Components

Descriptive methods

Descriptive methods are related to methods that describe components in a textual

way. However, in contrast to traditional information retrieval methods which analyse

the complete document (i.e. all the code) they only deal with abstract descriptions of

components making references to a few keywords. The main objective of descrip-

tive methods, therefore, is to classify components rather than to understand their

semantics. When a search request is made, the keywords in the query are checked

against a list of keywords that describes the component. The vocabulary problem

causes a difficulty here, since the same concepts and classifications can be described

in many different ways and different terms [Mit98]. As Mili et al. suggested, the best

classifications are usually performed by human beings, such as software engineers

or system administrator, but this is totally unscalable to the millions of components

today’s software search engines deal with.

Operational semantics methods

As the name suggest, these methods are related to the operational semantics of

the executable code and use a unique feature of software called its “functionality”.

Podgurski and Pierce mentioned as early as 1993 that software components can be

identified by only a few input- and output parameters. Using such characterizations

of components it would, in their opinion, be theoretically possible to search for a

component using only a few keywords and some input and output parameters. This

would require the execution of components in the repository to determine whether

they implemented the required input/output mappings [PP93]. However, there are

several significant technical problems in doing this on a large number of potential

third party components. One is the shear number of logistic issues involved in getting

heterogeneous, third party components harvested from the Internet to compile and

run in an automated way, given the many dependencies on specific operating systems,

3.1 Software Retrieval Methods 33

frameworks and other packages that need to be resolved before software can run.

Another problem is related to security. In an open-source repository where software

components are harvested by automatic crawlers from the Internet, no mechanism

currently exists to identify in an automated way what functionality a component

actually provides. Therefore, when executing components on a server as part of

a functionality-based search, it is quite possible that malicious software could be

executed. Nevertheless, solutions to some of these problems have been found, and

execution-oriented search engines have a number of advantages as demonstrated by

Hummel’s test-driven search technology [HA04]. Innovations built into this tech-

nology included the use of traditional IR searches to pre-filter and rank components

prior to testing and the use of sandbox mechanisms to protect the system against

malicious code.

Denotational semantic methods

In contrast to the operational semantics methods which are based on executing

components, denotational approaches aim to discern the semantics of components

by analysis. These methods attempts to establish a match between the search query

and software components using an additional document providing more information

about the component than just the information in the source code. These methods

are mainly related to the signature matching search algorithms.

Structural methods

The main difference between the structural methods and the other methods is how

the software component is viewed. Instead of looking at the functional properties of

the code, the focus is placed on the structural characteristics of the component such

as the kinds of patterns used within it. As Mili mentioned, this is the most suitable

approach when the goal is not to directly re-use components per se, but rather to take

34 Chapter 3. Information Retrieval for Software Components

them as the basis for further development or as reference examples [MMM98]. In

the case of direct re-use with copy & paste, it is more effective to match components

to queries based on functionality rather than structure. However, as Mili points out,

components with similar functionality often also have similar structure. Although

this does not always apply in practice, there is certainly a strong correlation between

the two [MMM98]. Research on this topic has primarily focused on the area of

clone detection where approaches are being developed to infer the functionality of

components from their structure to determine clones [QLS13].

Most code search engines developed to date fall into one or more of the six cate-

gories of component retrieval methods defined by Mili. With sometimes only small

adaptations to standard IR technology, the first generation of code search engines are

able to deliver quite reasonable results [FP94] [MBK91]. However, as Mili pointed

out, they also leave a lot to be desired. They not only have difficulty coping with

the syntax of programming languages, but also with their structural characteristics

which have changed significantly over time. For example, the structural changes

to programs introduced by object-oriented languages created major challenges for

structural searches. With the advent of these languages it became possible to imple-

ment a function not only in a single class, but also to distribute the implementation

over several classes. For an information retrieval system that is designed to compare

a search request only with a single document rather than a collective of documents,

this is a big problem.

Code search engines like Assieme [HFW07], Sourcerer [Baj+06], Portfolio [McM+11]

or Codifier [Beg07] have tried to develop various “tricks” to support “structure-aware”

searches that are able to take the distributed nature of modern software into account,

but these have had only limited success. Other search engines have attempted to use

the documentation accompanying components such as Exemplar or LISA, which

analysed Twitter messages [AG15], to infer information about their content or quality.

3.1 Software Retrieval Methods 35

Still other tools have explored the use of graph-based IR methods. For example

GraPacc, a Graph-based, Pattern-oriented, Context-sensitive tool for Code Comple-

tion, is able give developers code suggestions directly in their IDEs based on the

code they are currently working on and a graph-based representation of the already

existing method calls [Ngu+12]. The creators of GraPacc claimed they were able

to increase the precision of searches to 95% and the recall to 92%. However, this

requires developers to have a basic knowledge of the framework being used and to

have already written some of the implementation. Another approach in this area is

ParseWeb, which supports queries of the form “ source→ destination ” [TX07] and

also takes sequences of method calls into account. In this approach, code examples

are analysed for method calls based on their abstract syntax tree (AST). However,

these two tools only consider the method calls and sequences within one class. The

first approach to take the actual processes behind the method calls and the classes

they involve into account was Portfolio. However, this required a fundamental

change to the nature of search queries [McM+11] to take into account the fact that

processes can have different paths. This is influenced, for example, by the different

ways a class can be initialized or the parameters of methods.

Although this discussion has only covered the most well known search approaches, it

already shows the diversity of approaches that researcher have explored and explains

the strengths and weakness of the various approaches that have been developed to

support component retrieval. It also reinforces Mili et al.’s contention that the quality

of component retrieval approaches can be improved in basically one of two ways

– by improving the structure of the databases used to store the components and by

improving the way queries can be expressed [MMM98].

36 Chapter 3. Information Retrieval for Software Components

3.2 Search Queries

The way in which users have to formulate search queries has a big effect on the

usability and effectiveness of code search engines. Especially the second aspect,

user understanding, is a frequently underestimated factor because virtually all search

engines today support the classical keyword based approach as a fall-back option if

users do not specifically define another type of search. However, they usually also

provide an “advanced” query language where it is possible to add more context about

the keywords. For example, Koders offers the prefixes “ cdef:” and “ mdef:” which

can be used to identify classes or methods with a specific name. If these prefixes

are not used in a search query, Koders is unaware of the “meaning” of the following

keywords and just searches for them “blindly” like any other keyword.

A search engine query language must provide the features needed to express the

full context of the keywords appearing in a query. However, it must do so in a way

that is as simple and intuitive as possible for users. Powerful search algorithms

and database structures are not going to deliver significant benefits if the associated

query language is extremely complex and difficult to use [CMS10]. The ease with

which search queries can be formulated and understood has been shown to have a

major impact on the perceived usability of code search engines [CMS10]. In general,

however, the more information that can be conveyed in a query the more effective

the corresponding searches are likely to be.

Haidoc developed a tool named Refoqus, which is able to predict the quality of

the search results likely to be generated by a query and makes suggestions for

reformulating it [Hai+13]. For example, when searching for code it is important to

know what information relates to a class and what information relates to methods

within it. Such a query reformulation approach can recommend how to change

the query so that it will deliver the most relevant results. Another approach for

3.2 Search Queries 37

improving query languages is the Program Query Language (PQL) developed by

Martin et al.[MLL05]. The PQL allows users to formulate queries using structural

information such as the order of method calls to an object. The combination of

textual and structural information in search queries was introduced several years

later by Wang, who developed a search query language in which it is possible to

specify a combination of topics and dependencies [WLJ11].

In terms of simplicity and ease-of-use, it is not necessary for every user to understand

the structure or the syntax of an advanced search query, but it should be possible

for advanced users to formulate queries without too much effort, otherwise they

will implement the desired functionality themselves in the same time they need to

reformulate the query multiple times. Even if the search query language is quite

simple to use, it might not always be possible for users to formulate the optimal

query because they do not have the right information at search time. A common

example of this is when users are searching for reference examples of a framework

they have just started to use and know very little about the components it contains

and how they are initialized, etc. This gap in knowledge is also known as Belkin’s

anomalous state of knowledge [BOB82].

In addition to the aforementioned problems, Croft identified two other major prob-

lems related to search queries [CMS10]:

• Search requests can represent very different information needs and therefore

require different search techniques and ranking algorithms to find the best and

most relevant results.

• A search query can be a very weak representation of the information needs

of the user. This primarily arises when users are not able to formulate all

their requirements in the query language, or more frequently, when users are

too “lazy” to formulate long, detailed queries. Sometimes, the constraints

38 Chapter 3. Information Retrieval for Software Components

expressed in long, complex queries are so restrictive that there are no matching

results.

If a search query does not return any results for a long, complex search request, users

should be helped to formulate shorter search queries. Several approaches have tried

to address this problem using mechanisms like stemming [Lov68] or spell checking

[Kuk92] but these only have a limited effect in code search. Stemming, for example,

does not consider code structure. However, other approaches for detecting semantic

relations in text have been developed that can address this problem to a certain extent

[Dee+90].

In summary, although a large number of approaches have been developed to im-

prove retrieval methods, and many of the original problems have been solved, there

still remains one big challenge to overcome – the mismatch between the topical

relevance and the user relevance [Mil+99]. Recall, for example, the “CustomerMan-

agementSystem” scenario from the previous chapter which returned a large number

of results but only a few of them were relevant to the user. It is still an open research

question to develop query languages to reduce this problem.

3.3 Relevance in Software Search Engines

In this section we consider again one of the most fundamental issues in search

engines, the relevance of the returned results. Probably the single most important

reason why code search engines are still not used by developers on a regular basis is

the relatively low average relevance of their results. A study by Sim et al. showed

that many developers primarily use Google to search for code [SCH98]. But as a

general purpose search engine Google is completely unaware of the meaning of

keywords within the textual body of a code unit. It treats code in the same way as any

other kind of textual document and never checks in what context keywords appear.

3.3 Relevance in Software Search Engines 39

However, in the field of code search engines this information is critical because it

determines whether a keyword represents the name of a class, a method parameter, a

variables used inside a method, or one of the myriad of possible constructs that can

be designated in a program. When tested with the search example described in the

first chapter Google returned one relevant component in the top five results. This is

because user relevance is not considered because it does not take into account what

the keywords in the search query mean. For example, Google makes no distinction

between whether the getName method is really a method or just a string appearing

somewhere in the source code, including the comments. Fortunately, in this case the

search query delivered a decent result, but due to this hit-and-miss nature of result

relevance, developers always have to have a careful look at the returned source code.

Moreover, it does not obviate the need for the developer to search through each result

to see if there is a Customer class which contains a getName method. In contrast to

normal search engines it is much easier to specify relevance in this context. To judge

user relevance, it is sufficient to indicate what the signatures of methods should look

like and to which other components a particular component should interact with.

In the field of code search, the geographical and temporal factors that play such an

important role in normal searches only have a secondary role.

The classic measures of search effectiveness in traditional IR approaches are the

precision and recall of the search results. The precision expresses what proportion

of the returned results are relevant, while the recall expresses what proportion

of all available relevant results in the index are returned in the result set [Cle61].

However, whereas in a normal search the user is often interested in obtaining multiple

result to obtain multiple sources of information about a particular topic, in software

development once a developer has one search result that is suitable (i.e. relevant) for

reuse, he/she is rarely interested in having more results.

40 Chapter 3. Information Retrieval for Software Components

3.4 Realization Approaches

At the end of the last millennium relational databases were prevalent in almost every

area of data storage, but for search engines they have some major weaknesses. This

is why Doug Cutting’s full text database, Lucene, was so widely and rapidly adopted,

and today it is still the foundation for almost every text-based search related system

[MHG10]. Lucene was primarily developed to efficiently store text documents and

support high efficient searches over them. Even other types of databases, including

relational and NoSQL database, frequently using Lucene in the background to

increase their search performance for some specific fields.

Combining Lucene with other databases to overcome the former’s weakness in

storing relationships has also been tried in the field of code search. As mentioned

above, Sourcerer was one of the first code search engines to combine Lucene with a

relational database to store the relations between components [BOL14]. The core

elements of the relational database schema they identified were projects, files, classes

or entities, comments and their relations to each other. The metamodel defined by

Bajracharya et al. can be seen in figure 3.1.

3.4 Realization Approaches 41

ProjectProject

-project_id

FileFile

-file_id

-project_type

-name

-description

-version

-groop

-path

-has_source

-name

-file_type

-path

-project_id

-hash

RelationRelation

-relation_type

-relation_id

-rhs_eid

-relation_class

-lhs_eid

-offset

-length

EntityEntity

-entity_id

-entity_type

-modifiers

-offset

-fqn

-file_id

-multi

-length

CommentComment

-comment_id

-comment_type

-containing_eid

-offset

-following_eid

-file_id

-length

Figure 3.1: Sourcerer relational metamodel [BOL14]

A similar approach was explored by Hummel et al. with Merobase to complement

the underlying Lucene index with a relational database [HAS13]. However, more

attention was given to the relationships between classes, such as which classes are

called by a given class, or in which methods a class is used as a parameter type etc.

Hummel et al. also addressed the problem of missing related classes at crawling time.

This is for example the case when classes are harvested from the Internet without

the project context in which they execute. To cope with this issue the database

schema included the ability to label classes as “candidates” to determine whether

a class might be, but need not necessarily be, required by other classes. The final

determination is then made after the end of the crawling and parsing process once a

selection of candidates is available.

42 Chapter 3. Information Retrieval for Software Components

ProjectProject

-id

-hash

MClassMClass

-id

-dependencies

-url

-isJar

-pom_file

-jarVersion

-isAndroid

-name

-hash

-innerClasses

-author

-license

-methods

-language

-annotations

-comments

-modifiers

-urls

-hasAsteriskImports

-interfaces

-constructors

superclass

-executability

DependencyDependency

-id

-classification

-className

-packageName

-candidates

-type

MethodMethod

-id

-modifiers

-returnParam

-dependencies

-name

-comments

-visibility

-parameters

-annotations

-hash

-exceptions

ParameterParameter

-id

-modifiers

-generics

-name

-hash

-class

-primitive

ConstructorConstructor

-id

-name

-exceptions

-parameters

-hash

-annotations

-visibility

-comments

* ** *

*

1

*

1

* ** *

1

*

1

*

1

*

1

*

*

1

*

1

1

*

1

*

Figure 3.2: Merobase relational metamodel [HAS13]

Relational databases are only of limited value for storing source code modules and

the relations between them. Although they can certainly store all the different kinds

of relationships that appear in object-oriented source code (e.g. method parameter,

superclass, global variable, etc.) they do not necessarily support efficient searches

over this information. Depending on the query, certain kinds of searches typically

involve a large number of joins to retrieve the desired results, and can lead to

significant performance problems once the database exceeds a certain size. In the

case of the Merobase, we observed a significant reduction in performance at a size

of 1.5 Mio components. While this might not be a problem for a small, internally

used search engine, for an online web search engine aiming to crawl and index

all available source code from the entire Internet, this performance degradation is

3.4 Realization Approaches 43

completely unacceptable.

It was precisely to address this kind of problem that graph databases, which are quite

similar to the network model databases from the 1970’s [Car85], arose in the late

2000s. “Graphs” have the advantage that they can not only be conceptualized in a

simple way as a network of nodes and edges, they also have a concrete mathematical

representation. Graph databases use the latter to organize the storage and retrieval

of information. One of the most well known and widely used is Neo4J [Vuk+15],

an open source (but commercially supported) graph database released in 2010. The

information in simple graphs is stored exclusively in nodes and edges, but Neo4J uses

attributed graphs which allow the nodes to store additional properties (i.e. attributes).

This creates some additional options when deciding how to map real world objects

to nodes. In addition, Neo4J allows one or more labels to be assigned to nodes

to classify them. These labels significantly increase the efficiency of the search

process since they allow pre-selections and/or scope restrictions to be performed.

Like most other modern databases, however, Neo4J also uses an internal Lucene

index to enhance performance. The role of Lucene in Neo4J is to map properties to

nodes.

Since graph databases have a fundamentally different structure to relational databases,

a new query language is needed to search in these. The query language supported

by Neo4J is Cypher. This initially only had the ability to traverse over the graph

from a starting node with the help of multidimensional indexes [MK14] but now

supports a skip-list mechanism to speed up the traversal process. Original presented

as part of SkipNet [Har+03], skip-list is a probabilistic data structure divided into

several levels, where each level represents a ring to map a collection of sorted linked

lists. Each node on the rings has a pointer to its predecessor and successor at every

level. Although this structure can become quite large since each node in the ring

needs 2log(n) pointers, it significantly increases the performance of certain kinds of

44 Chapter 3. Information Retrieval for Software Components

searches. The actual number of ring nodes required depends on the created database

schema and how many nodes needs to be created for each object. However, recent

versions of Neo4J have reduced the node limit problem.

Since the emergence of efficient graph databases their uptake in software engineering

has been rapid, but mainly in non-search related areas such as code inspection and

evaluation tools. The first use of graphs in the area of code search was published by

Horwitz in 1992 for analysing program-dependence graphs [HR92] in the context

of local code management. Based on this concept, many other tools have since

been developed to manage local code or to analyse process flows. The graph

representation typically used to represent simple, locally-stored, object-oriented code

is shown in figure 3.3. The corresponding data structures provide a powerful way

for mapping cross-linked information and therefore for storing source code. In this

simple example where Class A extends Class B and uses Class C by calling one of its

methods, all relevant information about all involved classes is available for a search,

since the search engine just has to go to the nodes in the neighbourhood. Suppose,

for example, that a user wants to search for a Class A containing a specific method.

A Lucene driven search engine could only provide results if the index contains a

document with a field having exactly this combination of class name and method.

A search engine driven by a graph database can also inspect Class B to see if this

method is available and Class A can be added to the result set because it inherits the

required method. Also, the graph-based search can usually outperform the text-based

search, as Wang et al. observed [WLJ11].

Figure 3.3: A simple example representing classes in a graph

3.4 Realization Approaches 45

This thesis is based on the premise that graph databases provide the best platform

for implementing large scale, online code search engines populated by components

harvested from the global Internet. The following chapters describes and evaluate an

approach for doing this using Neo4J.

4. Code Search Engines

A world where everyone creates

content gets confusing pretty quickly

without a good search engine.

– Ethan Zuckerman –

This chapter describes the state-of-the-art in code search by discussing the key

features of several leading code search engines. The first generation of dedicated

code search engines were generally “web-based” since they were accessed over the

Internet using some form of web interface. In recent years, however, the main focus

has been on the development of so called “code recommendation” tools in the form

of IDE plug-ins which make the functionality of “standard” code search engines

directly accessible, in a context sensitive way, from developers’ environments. As

well as normal object-oriented software modules, some recommendation systems

aim to provide such things as code snippets, frequently used classes and reusable

test cases.

Many of the original code search engines and recommendations systems are no longer

online or no longer the subject of active research. Perhaps the most well known,

Google Codesearch, was shut down back in 2012 due to disappointing advertisement

48 Chapter 4. Code Search Engines

earnings. Others, such as Sourcerer is only available as a downloadable database

and Koders closed down its freely accessible code search engine in June 2016.

Nevertheless, these search engines are still discussed in this chapter due to the

importance of their contribution. The chapter also discusses Portfolio [McM+11],

Exemplar [Gre+10b], SymbolHound and Strathcona. While these may not be widely

known or used they all contributed some interesting innovations to the field of

software component retrieval.

All these code search engines attempt to return relevant software components or

code snippets in response to a query. However, the developer must still overcome

a certain cognitive dissonance in order to understand the results [Kru92], since the

returned code is inevitably authored by different developers with different practices

and programming styles. In addition, one major weaknesses shared by all these

first-generation search engines is their limited consideration of classes related to,

or in the neighbourhood of, the prime target of a search. Especially in the context

of object-oriented programming languages, however, such relationships can have

a major bearing on the quality of the search results, both in terms of precision (i.e.

the extent to which developers can find exactly what they want) and recall (i.e. the

extent to which all relevant (constellations of) code fragments are retrieved as search

results).

4.1 Merobase

Merobase is a search engine developed by the Software Engineering Group at the Uni-

versity of Mannheim initially as part of the PhD work of Oliver Hummel [Hum08].

Inspired by the signature matching approach of Zaremski [ZW95], Hummel devel-

oped a signature-based retrieval approach [Jan+13] which falls into the category of

structural retrieval methods described in the previous chapter. The basic idea is to

4.1 Merobase 49

relate the individual keywords within a code module via semantic relations that can

be used to drive searches. Like many other search engines developed at that time,

Merobase was built using the Nutch crawling tool and the Lucene full text search

(FTSF) framework [MHG10].

The index supporting Hummel’s signature-based retrieval method was populated by

analysing code modules (in Merobase’s case, programming language classes) on

an individual, case-by-case basis. In other words, very little information about the

relationships between classes was taken into account. Lucene is a highly specialized

tool for indexing textual documents that is till today unequalled in its ability to

perform keyword-based searches over text-based documents. However, since this

requires documents to be indexed individually, unlike relational databases, Lucene

indexes did not provided inherent support for associating documents to each other

at that time. The only way in which any kind of relationship information can be

supported is by designing “clever” fields in which related items of information from

different place are concatenated. In a sense, Hummel’s signature-based retrieval

approach is based on capturing a few, carefully selected kinds of relationships within

special fields so that Lucene can “recognize” them when searching for components.

However, this approach is not only very inefficient and unscalable, it also fixes the

nature of the relationships that can be considered in a search at index creation time.

The special Lucene fields used in Merobase are shown in Table 4.1.

50 Chapter 4. Code Search Engines

Field Representation Method Content

content free-text source code

name attribute value component names
method attribute value method names
url attribute value component’s URL

lang faceted
component’s programming
language

kind faceted
special kind of component, e.g.
application or test case

methodSignature attribute value full signature of methods
namespace enumerated a component’s namespace

Table 4.1: Most important fields of the Merobase index [Hum08]

These fields were used in the original Merobase index to represent individual com-

ponents. Merobase also exploited the multi-field feature of Lucene which allows

a field with the same name to occur multiple times. For example, multi-fields are

used to store the methods of a class, since a class normally contains more than one

method. Multi-fields allow each method signature to be stored in a separate instance

of the field methodSignature so that signature-based searches for any of the methods

can be supported. Also, to overcome the fact that parameters of a method can be

arranged in arbitrary orders in search requests, in the methodSignature fields of the

index they are stored in alphabetical order.

Once fields are present in the index structure they can be searched over using the

full power of Lucene’s comprehensive query syntax [MHG10]. However, because

the fields were stored in a non-tokenized way in the first version of Merobase (i.e.

they were not split up into subtokens that could be independently searched over)

it was not possible to search for pure method signatures without method names or

parameter names (i.e. by just taking the parameter types and returned vale type into

account). This is because in a Lucene search, every keyword in the query must fully

match one of the fields in the index. Therefore, over the years more fields were

4.1 Merobase 51

introduced into the index structure alongside the methodSignature field, such as the

field methodSignatureParamsOrdered without method names. Another trick used

in Merobase was to add a counter to method fields to count multiple concurrences

of the same signature. For example, the signature of the updateCustomer(int id,

Customer customer):Customer method of the CustomerManagementSystem class

from the previous example would be stored in the Lucene index as shown in Table

4.2

Field Content

methodSignature mn:updateCustomer_rt:customer_pt:customer
methodSignatureParams rt:customer_pt:customer

Table 4.2: Lucene field for the updateCustomer method

where mn is used as an identifier prefix for the method name, rt for the return

parameter and pt for every input parameter. If the class were extended by adding

another method with the same signature (i.e. with the same parameter profile and

return value types), by for example a method such as removeCustomer(Customer

customer):Customer, a counter is added to their method signature fields as shown

in Table 4.3. This make it possible to define queries that search for components

containing more than one method with the same signature.

Field Content

methodSignatureParams 1_rt:customer_pt:customer
methodSignatureParams 2_rt:customer_pt:customer

Table 4.3: Counter for same parameter signature

Nevertheless, despite such tricks, the fundamental weakness of Lucene-based indexes

related to relationships remains. Basically, a new type of field has to be added for

every kind of relationship, or combination of relationships, that can be referred to in

52 Chapter 4. Code Search Engines

search queries. This not only adds tremendous redundancy to the information stored,

but means that users cannot define queries containing relationship combinations

which were not foreseen at index-creation time. Moreover, since Lucene does not

support wildcard-searches within non-tokenized fields, a component’s methods have

to completely match the keywords used in signature-based query to be selected in

the result. Classes whose methods have a similar method name or parameter names

are not considered.

4.1.1 Merobase Query Language

Alongside the data structure used to create a search engine’s index, another aspect of

a search engine is the query language offered to users to formulate searches. This

is one of the factors determining the perceived usability of a search engine and the

degree to which it is seen as providing a valuable service to users. As mentioned

above, Merobase users have access to the full Lucene query language to formulate

searches based on the fields stored in the index. However, in general it is desirable to

allow users to formulate queries in a way that resembles the languages they use in

their everyday tasks. For software engineering, these are the primarily programming

languages. Therefore, Merobase offers several extensions to the basic Lucene query

language that enable the method information within queries to resemble the way

methods are normally described in programming and modelling languages. The

exact concrete syntax supported in this enhanced query language - the so called

Merobase Query Language (MQL) - is inspired by the UML syntax for method

signatures in class diagrams, which in turn was inspired by the Ada programming

language. Using MQL, a search for a CustomerManagement system with the three

methods from the example would therefore have the form:

4.2 Portfolio 53

CustomerManagement(

getCustomer(int):Customer;

addCustomer(Customer):void;

udpateCustomer(Customer):Customer;

)

This MQL syntax is much more intuitive and usable for software engineers, enabling

them to express queries that naturally resemble the normal representation of the arte-

facts they are looking for (e.g. code fragments etc.). However, as Hummel pointed

out [Hum08] MQL still has significant limitations. First, MQL signature-based

searches are strictly limited to the syntactic information, extractable from compo-

nent “interfaces”, leading to linguistic problems in the naming of the parameters

– a manifestation of the IR vocabulary problem described in the previous chapter

[Fur+87]. Second, because MQL is still essentially limited to the non-tokenized

fields of the underlying Lucene index, strategies for reducing the vocabulary problem

such as termsets from set-based retrieval approaches [Pôs+02], synonyms/homonym

recognition capabilities in WordNet [Mil+90] or latent semantic analysis (LSA)

[Dee+90] are not applicable.

4.2 Portfolio

Portfolio, a code search engine developed by McMillan, was one of the first search

engines to explicitly consider relationships between classes [McM+11]. As well as

storing static relationships between methods, Portfolio also maps the whole dynamic

process behind method calls, including the full nested structure of sub methods

calls, into a call-graph. This call graph is always available to users, regardless of

how they reached the result, since it provides a better, faster and more intuitive

way to understand the code. With its call graph, Portfolio addresses something that

54 Chapter 4. Code Search Engines

is frequently neglected in other search engines, helping users validate candidates

returned in a search. Browsing such a graph is much easier than analysing the source

code.

Portfolio also supports natural language queries and well known ranking techniques

like the PageRank, the Vector Space Model and the Spreading Activity Networks

(SAN). The PageRank mechanism is used to determine the global “importance” of

a function in the overall call graph. In other words, Portfolio establishes which

method is called most often by other methods, and makes this the centre of the

net. Since the PageRank value is independent of the search query, this value can be

calculated beforehand, for example directly after crawling, and stored in the database.

McMillan calculates the PageRank PR(Fi) for a function Fi in the following way:

PR(Fi) = ∑(Fj∈BFi)
PR(Fj)
|Fj|

where BFi is the number of functions calling Fi and |Fj| is the number of functions

which are called by Fi itself. The search process then is divided into several steps.

First, the keywords of the search query are identified and used in a standard keyword-

matching search, based on the Vector Space Model. The results of this search, most

notably the nodes, are then annotated with several similarity scores calculated by the

SAN. The lower a node’s SAN similarity score, the further away the node is from

the actual function (the starting node). The SAN score for a node is calculated using

the following function:

SAN j = ∑i f (SANi · wi j)

Here is the score for a node j, equivalent to the combined score of all nodes i pointing

to the node j. wi j, represents the strength of the relation between j and i expressed

4.3 Exemplar 55

as a percentage (i.e to what extent the score of i affects j). Portfolio ranks all the

functions of the call graph based on a combined similarity score:

S = λ1PR(F) + λ2SAN(F) ·λi

where λi is the interpolated value for all types of scores. Based on this value the top

ten results will be returned. However, in Portfolio, the user is able to specify how

many results should be returned.

4.3 Exemplar

Exemplar, an acronym created from EXEcutable exaMPLes ARchive, is also a search

engine developed partly by McMillan [Gre+10b]. The main developer, however, was

Mark Grechanik of Accenture Technology Labs. Unlike Portfolio, which addresses

the reuse of source code, Exemplar focuses more on the reuse of executable and com-

plete applications. For this purpose, Exemplar, combines three different sources of

information about applications to deliver user relevant results. However, this assumes

that the high-level requirements on an application match the semantic ones [HJD10],

one of the main problems of denotational semantic methods. The three sources are

textual descriptions (e.g. documentation), the API calls, that take place within each

application, and the data flows between these API calls. The idea for Exemplar

arose from the observation that the relationships appearing in search queries often

resembles those found in the API calls and their implementations. This observation

is closely related to the software reflexion models originally observed by Murphy et

al. [MNS95]. Exemplar also deals with concept assignment problem in more detail –

namely the problem that the semantics in the description of an application can deviate

significantly from the semantics of the low-level implementation [BMW94]. Placing

a keyword in the search query because it occurs somewhere in the description or

56 Chapter 4. Code Search Engines

Descriptions
of apps

Descriptions
of API callskeyword keyword

app1

...

appn

app1

...

appn

API call1

...

API calln

Figure 4.1: Query comparison between standard search engines and Exemplar
[Gre+10b]

the source code, does not guarantee that the corresponding implementation matches

(i.e. is relevant). To solve this problem, Exemplar combines the description with

the corresponding abstract API calls. Although the idea to use API calls is not new

[CJS09] [GCP07], it had never previously been applied to a large code base.

As in Portfolio, the search process is divided into several sequential steps. In the first

step the keywords of the search query are matched to the documentation about the

applications. In the next step, the results are analysed and the API calls call1 . . .

callk are determined from the documentation. These API calls are then compared

to the called functions within the source code. If they match, the application is

placed into the result set. The developers of Exemplar observed that different kinds

of documentation about a component, such as JavaDoc or UML diagrams, which

were typically written in a project by different individual persons, often use different

terminology for the same concept. Their search engine is therefore able to address

the vocabulary problem [Fur+87] by accumulating alternative terms and keywords

in the index from the different kinds of documentation. To achieve this, every word

occurring in the documentation wordi is connected with an appropriate API call

during the analyse phase << word1, ...,wordn >,APIcall >. Rather than store all

this information in a single database, Exemplar uses several Lucene indexes in the

background, one for the documentation and one for the API calls. Given all these

features, the developer of Exemplar claims that the search engine is more efficient in

finding relevant applications than Sourceforge 1 [Gre+10a].

1https://sourceforge.net

4.4 Sourcerer 57

4.4 Sourcerer

Another academic code search engine first developed in 2006 and continuously

improved since then is Sourcerer [Baj+06]. Unfortunately, however, direct code

searches have not been supported online since in 2015, and only the source code and

data set are currently downloadable. Nevertheless, Sourcerer has made a significant

contribution to the evolution of code search engines. Like Merobase, the initial

version was also built using Lucene indexes to store the individual source code files.

However, subsequent version of Sourcerer were among the first search engines to

enhance standard text IR techniques with source-specific heuristics. The first version

of Sourcerer already supported various kinds of queries such as basic searches for

components or functions, searches for code that uses certain components or functions

and “fingerprints” corresponding to simple program structures or design patterns.

These fingerprints are based on a vector-like representation of interesting attributes of

entities in the source code, primarily to support structural searches. In the beginning,

these fingerprints just contained several simple control structures in the source code,

like concurrency, iterations and branching. Later, constructs were added related to

the object-oriented aspects of Java such as classes, methods, constructors, etc., and

micro patterns which capture simple design patterns used in the source code. After

that, based on these fingerprints, comparison mechanisms from various IR methods

[OH92] [B+99] were added to determine the similarity between two components

[Lin+09].

In contrast to many other code search engines, especially the commercial ones,

Sourcerer contains only Java source code, so that all the components underpinning

the system are tailored to this programming language, like the crawler, the parser and

the database structure. The infrastructure behind the search engine is presented in

figure 4.2 and consists of five main parts: (1) a system to manage the crawler and the

software repositories, (2) a system to parse the source code and to extract the features

58 Chapter 4. Code Search Engines

Figure 4.2: Architecture of the Sourcerer infrastructure [Lin+09]

from the source code, (3) a relational database to store additional information, (4)

various tools to search in the different databases and last but not least (5) a graphical

web-frontend [Lin+09].

As shown in 4.2, Sourcerer was one of the first code search engines to use a relational

database alongside a Lucene index to store code relevant artefacts. However, for

performance reasons, only parts of the abstract syntax tree (AST) of the source code

(several entities and their relationships) are stored in the relational database. The

entities are unambiguous, identifiable elements from the source code, like classes,

methods and constructors, while the relationships depend on what kinds of entities

they connect (e.g. uses, extends, implements, calls, returns, override, receives

etc.). To extract all this information, especially the different kinds of relationships,

Sourcerer use the Eclipse Java Development tools (JDT) in the background. JDT

supports automated dependency resolution, but only if a local copy of all the source

code classes and the whole project is available. Even then, it is not always possible

to resolve dependencies, for example, if pre-compiled jar files are missing in the

project directory [BOL14].

4.5 Krugle 59

4.5 Krugle

One of best known and most successful code search engines is Krugle [Kru13].

Unlike Portfolio or Sourcerer, Krugle is a commercial project which has evolved and

stayed online for many years http://opensearch.krugle.org. The main company

behind Krugle is Aragon Consulting Group, Inc, which sells the code search engine

to third parties for internal use. One of the biggest advantages of Krugle is the

large number of different programming languages supported, including widely used

programming languages like Java, C++ or Ruby, and also markup languages like

XML. In terms of search capabilities Krugle offers the general keyword based

search mechanism as well as searches for such things like class definitions, function

definitions, function calls, comments within the code or code snippets. The latter is

an interesting and promising kind of search approach in which users insert a small

piece of code into the search box and Krugle finds equivalent source code examples.

Two basic levels of search functionality are supported for this kinds of search, exact

searches where the search engine includes only exact matches in the result set, and

fuzzy searches where less strict levels of similarity are acceptable. However, these

two types of search are not mutually exclusive but represent grades on a scale, so

users can select the level of fuzziness they require. This is analogous to Belkin’s

“state of knowledge” [BOB82] concept and allows developers to start the search

process with only minimal information about the software they are looking for, and

then to gradually increase the level of exactness as they learn from the initial search

results. This kind of search was first introduced by Strathcona, but was not taken up

by any other search engine except Krugle.

Since it is a commercial search engine, Krugle places particular emphasis on address-

ing enterprise needs. For example, it not only parses and analyses the source code, it

also processes all the accompanying documentation like JavaDoc, Word documents,

bug reports and commits in version control systems. This allows it to support many

http://opensearch.krugle.org

60 Chapter 4. Code Search Engines

different kinds of use cases not just the “as-is” reuse of components or reference

examples. It can also calculate many different kinds of metrics on the source code

so that, for example, low quality components can be excluded from the result set

or code clones can be detected. Code clones are a big problem especially in bigger

companies and their automatic removal can significantly increase the productivity of

developers and the quality of components.

Krugle’s index was built in much the same way as other search engines like Merobase

using Nutch to crawl for components and Lucene to store the individual documents.

The only difference in the process is related to parsing. Whereas Merobase parses

software on-the-fly as it is harvested by the crawler, Krugle first stores the URL of all

harvested components in a database, crawlDB [Kru13] and then performs the parsing

process step by step. But before the parsing begins, however, the components in

crawlDB are pre-ordered by special scoring values so that the most important files

are parsed first.

The outcome of this parsing process is also somewhat unique. Instead of directly

storing the AST information directly in the database it is first sorted in XML files

which are analysed in a separate step to populate the Lucene index. The advantage

of this intermediate XML format is that it is not necessary to write Lucene analysers

for each different programming language. Instead, the Lucene index is created from

the common, XML-based description of the components.

4.6 Koders - OpenHub 61

< k r u g l e p a r s e v e r s i o n =" 0 . 3 ">

< u r i > t e s t / E n d i a n U t i l s . udt < / u r i >

< language >Java < / l anguage >

<udt >

<c b=" 0 " e=" 803 ">

<![CDATA[/ * * L i c e n s e d t o * /]] >

</ c>

<pkg n=" org . apache . commons . i o " b=" 813 " e=" 833 ">

<im n=" j a v a . i o . EOFException " b=" 844 " e=" 863 " / >

<im n=" j a v a . i o . IO Excep t ion " b=" 873 " e=" 891 " / >

<im n=" j a v a . i o . I n p u t S t r e a m " b=" 901 " e=" 919 " / >

<c b=" 952 " e=" 1636 ">

<![CDATA[/ * * * U t i l i t y code * /]] >

</ c>

<im n=" j a v a . i o . Ou tpu tS t r eam " b=" 929 " e=" 948 " / >

<cd n=" E n d i a n U t i l s " b=" 1651 " e=" 1661 ">

<c b=" 1670 " e=" 1748 ">

<![CDATA[/ * I n s t a n c e s s h o u l d . . . * /]] >

</ c>

< fd n=" swapShor t " b=" 2038 " e=" 2046 " / >}

Listing 4.1: Krugle XML-Document [Kru13]

The main weakness of Krugle, like all the other search engines mentioned in this

chapter, is that it only analyses components on an individual, case-by-case basis. It

is also not possible to integrate elements of related classes into the search request.

However, when classes are presented for analysis by the user as part of a search

result set, the whole project is made available so that related classes can be easily

inspected.

4.6 Koders - OpenHub

OpenHub, originally called Koders, is the second widely-known commercial code

search engine alongside Krugle. However, unlike Krugle the core business of Open-

Hub is not to sell the search engine to companies for internal use, rather the aim

62 Chapter 4. Code Search Engines

is to support open source projects such as the Mozilla Foundation. Unfortunately,

OpenHub discontinued the openly accessible search engine in June 2016 in order

to determine how to better support the open source software community. Although

its search capabilities are relatively weak compared to other search engines, how-

ever, its index is one of the largest available. At the beginning of 2016 it contained

20.000.000.000+ searchable lines of code and was accessed by about 30.000 develop-

ers per day [BL12a]. Like Krugle, Koders also supports many different programming

languages (in fact more than 40).

Koders shares the same basic weakness of all other search engines mentioned in

this thesis that it only analyses components on an individual, case-by-case basis.

Nevertheless, it is possible to search for various ingredients of a single component

like method definitions, class definitions or fields such as global variables. Moreover,

since the focus of OpenHub is the analysis of code projects, it supports searches for

features related to project membership and properties not related to the execution of

source code, such as the contributions of developers.

4.7 Symbol Hound

Symbol Hound was not primary intended be a code search engine, but it came

popular for this purpose because of the kind of searches it supports and how symbols

can be used in the search request. While most search engines keep certain symbols

hidden from users when they formulate searches, like the wildcard character, in

Symbol Hound they are all explicitly shown. This is especially important when

formulating queries for languages like C++ or Ruby where the presence of certain

special symbols can change the meaning of features. Examples are the pointer syntax

and the “*” symbol in C/C++. While other search engines regard an asterisk at the

beginning of the query, e.g. *customer, as a wildcard character and thus return every

4.8 Strathcona 63

result containing a word ending with customer, Symbol Hound takes this string

literally and includes results containing a pointer to a customer variable. This feature

is useful not only in relation to code files, but also for searching over postings in

forums etc.

4.8 Strathcona

The previously discussed code search engines are all primarily known as web based.

However, some tools are only intended for integration into IDEs. Strathcona is

one of such tools for the Eclipse IDE [HWM05] which characterizes itself as a

recommendation tool. Holmes et. al. observed that when implementing a system

using a new framework, developers frequently face such questions as “How do I

initialize this” or “In what order do I have to call the methods”. The basic goal of

Strathcona is to help developers find answers to such questions from within their

IDEs by analysing the structure of the framework’s code. To achieve this, Strathcona

not only analyses the structure of the crawled code and the order in which methods

are called to derive statistical information, it also analyses the new client code created

by the developer to generate appropriate search queries. The starting point for query

generation is always the current code under development in the IDE which could

be either a class or a method. In the case of a class, the tool derives structural

information such as the type of the class itself, the types of potential superclasses

and the types of the global attributes. In the case of a method, the tool derives

dynamic information as well as the messages that are sent and the objects which are

instantiated. The names of types are completely ignored since they do not contain

structural information. Therefore, if a developer is using a new framework and has

already learned from the documentation of the framework that certain classes needed

to be used first, as soon as they are opened in the IDE, Strathcona can start to gather

the information needed to drive the search process to discover more information.

64 Chapter 4. Code Search Engines

The results of searches can show the developer how the framework was used in

other projects and if suitable for the developer’s new project, can help include them

automatically. At the very least, the developer receives information about how the

framework is typically used in other projects. The main benefit, however, is that once

the client code contains the first class initialization and method calls, Strathcona

is able to provide very accurate results and help the developer to determine if any

intermediate steps (e.g. method calls) have been missed out. This can significantly

reduce the number of bugs that are introduced into a system even in cases where the

developer is familiar with the framework being used.

5. Dependency-aware Metamodel

What we find changes who we

become.

– Peter Morville –

A key component of any software engineering project is the creation of a model

to describe the data types that the system in question has to manipulate. The

model developed in this thesis constitutes a so called “metamodel” since it describes

the language used to represent software modules in object-oriented programming

languages. As well as fulfilling the basic criteria of supporting the core constructs

of object-oriented programming (e.g. classes, interfaces, packages etc.) and the

various dependency relationships between them, the metamodel was developed with

extensibility in mind. In particular, one goal was to make it easy to add additional

capabilities to the metamodel over time, while the other goal was to make it easy to

support further programming languages in the future. Thus, although the focus of

this thesis was on the Java programming language, the features of the metamodel

were carefully designed to be generic to as many mainstream object-programming

languages as possible. The next section describes the metamodel from a generic

perspective, while the section following that describes how the metamodel can be

used to represent Java constructs.

66 Chapter 5. Dependency-aware Metamodel

5.1 The Core Metamodel

The core concepts of mainstream object-oriented programming languages are very

similar. They all basically revolve around the notions of class and method and the

relationships that exist between them. However, as shown in figure 5.1, a “class”

is not the most abstract concept in our dependency-aware metamodel. Instead, to

provide more flexibility and extensibility, the most abstract concept in the model’s

inheritance hierarchy is CodeObject. This not only provides an abstraction that

subsumes all source code files in a project, is also accommodates any other kind of

artefact related to source code such as documentation. CodeObject therefore allows

arbitrary new kinds of artefacts to be added to the metamodel in the future as soon as

the corresponding parsing/analysis capabilities become available. In the same way

that Java follows the principle that “everything is an object”, therefore, we apply the

guiding principle that “everything is a CodeObject”.

There are three different kinds (i.e. subclasses) of CodeObject in the metamodel –

CodeProject, CodeComponent and CodeMethod. The first subclass, CodeProject,

essentially serves as a container of CodeObjects so that all the software-related

artefacts found at a given root URL during the parsing process can be stored in one

place regardless of whether they are related to one another or not. Of course, this

includes complete projects hosted at one of the well-known software repositories.

The ability to collect all of the code related elements found at the same address

is an important feature of our approach since it allows the subsequent dependency

resolution process to be much more comprehensive and flexible.

The motivation for distinguishing the two other kinds of CodeObjects lies in the

observation made by researchers such as Gallardo-Valencia et al. [GS14], that even

though methods are normally embedded within classes, software engineers are not

always interested in reusing complete classes “as-is”, but are often only searching

5.1 The Core Metamodel 67

CodeProjectCodeProject

CodeObjectCodeObject

containscontains

CodeComponentCodeComponent

CodeObjectPropertyCodeObjectProperty

hasPropertyhasProperty

CodeMethodCodeMethod

CodeClassCodeClass

CodeBlockCodeBlock

CodeDependencyCodeDependency

hasMethodhasMethod

hasComponenthasComponent

hasCodeDependencyhasCodeDependency

hasCodeDependencyhasCodeDependency

hasComponenthasComponent

CodeOutputDependencyCodeOutputDependency

CodeInputDependencyCodeInputDependency

CodeSuperComponentDependencyCodeSuperComponentDependency

hasOutputParameterhasOutputParameter

hasInputParameterhasInputParameter

CandidateCollectionCandidateCollection

hasCollectionhasCollection

refersTorefersTo

Figure 5.1: Core Metamodel

for only a single method to deliver a specific piece of functionality. Also, methods

are not always reused “as-is”, but are more frequently used as reference examples.

Another reason is the nature of the source code available on the internet. If only pure,

complete projects such as those hosted at GitHub were analysed, the full context for a

function would be available and could be directly assigned to a software component.

However, on the internet a lot of context free, decoupled methods can be found, like

methods which are presented and discussed in forums like StackOverflow1.

Therefore, to include decoupled code that is harvested outside its original environ-

ment in our model, CodeMethod was added as one of the three forms of CodeObject.

This allows methods and code snippets discussed in forum posts to be included

in the repository. Since these code snippets are discussed and improved by many

developers, sometimes over many years, they are often of high quality [SH13b]. It

also allows the elements of languages that are not necessarily defined in the context

of classes to be accommodated, such as JavaScript code fragments or functions

1https://stackoverflow.com

68 Chapter 5. Dependency-aware Metamodel

in functional programming languages. Of course, the fact that methods in object

oriented programming languages normally belong to classes can be represented by

means of the hasMethod relationship.

The third subclass of CodeObject is not CodeClass as might be expected but instead

CodeComponent. CodeClass is in fact a subclass of CodeComponent. The purpose

of CodeComponent is to allow further kinds of behaviour-encapsulating abstractions

to be accommodated in the metamodel, especially components, since the basic goal

of our approach is to support dependency-aware searches for software components.

Probably the most well-known and accepted definition of “software component” is

that of Szyperski and Clemens [Szy02].

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can

be deployed independently and is subject to composition by third parties.”.

It would potentially have been possible to use CodeProject to represent components.

However, since components can contain other components harvested from different

root URLs, this is not convenient. It is clearer to retain CodeProject’s restriction to

only contain artefacts from the same root URL and add CodeComponent to represent

components that are not bound to this restriction. Among other things, this makes it

possible to capture which classes belongs to which component or components (i.e.

in the case when a class is used multiple times in different components).

However, it is not always the case that a class is an independently deployable unit,

because it may have been harvested from an incomplete project or a discussion

forum. Therefore, for the purpose of a code search engine the modern definition of

software component proposed by P. Kruchten [Kru04] is more suitable:

5.1 The Core Metamodel 69

“A component is a nontrivial, nearly independent, and replaceable part of a

system that fulfills a clear function in the context of a well-defined architecture.

A component conforms to and provides the physical realization of a set of

interfaces.”.

This definition fits better to our approach because of the statement “nearly inde-

pendent”. This explicitly accommodates the case of reusing a class even if some

dependencies are missing. The missing dependencies might either be irrelevant for

the use-case in hand and removed, or the dependent parts might already be available

in the user’s system and fit to the reuse candidate.

The fact that a component can consist of many other components (e.g. in the style of

the composite pattern) is one example of a situation which can give rise to cycles

in instances of the metamodel. In the metamodel there are many other examples of

relationships that can lead to cycles such as “CodeComponent→ CodeDependency

→ CandidateCollection→ CodeComponent”. In general, the following types of

relations in modern programming languages, can give rise to circular relationship

patterns:

• Global variable types

• Method input parameters

• Method output parameters

• Locale method variables

• Super classes

The basic capability for creating circular relationship patterns comes from CodeOb-

ject. However, thanks to the different specializations of CodeObject it is possible to

express whether the underlying source code is a software component or just a code

fragment which does not fit to the definition of a component but can be regarded

70 Chapter 5. Dependency-aware Metamodel

as CodeMethod. Since all code elements found on the Internet can have their own

individual properties, the metamodel also supports two different ways of storing the

properties – either directly within the element itself, or indirectly with an additional

CodeObjectProperty element associated with the origin element. In general, a prop-

erty that is shared by multiple elements is stored as CodeObjectProperty, whereas

properties which are only relevant for a single element are stored directly at that

element.

Another role of CodeObjectProperty is to allow processes to associate different

elements with an object, for example, if a property is not known at parsing time,

or if there are duplicates. However, as it is generally a bad idea to store redundant

information in a storage system, our goal is also to detect these clones and avoid

redundancy. Nonetheless, in terms of a globally-populated search system, even

duplicates can provide information that is often worth keeping, like alternative URLs

at which the component can be reached. This information is stored in its own

CodeObjectProperty element, for example.

The role of the extends relation between CodeDependency and CodeComponent is

to support the case when a component has a direct dependency to another compo-

nent without a concrete visible dependency within the source code. This kind of

dependency can be found in different plug-in mechanisms, for example when a Java

class is initialized via the Java reflection capabilities. It is also useful for validation

since, at source code analysis time, it allows relationships between individual code

elements and their neighbours to be directly checked for validity. This makes it

possible to immediately reject invalid code during the analysis process which helps

to keep the index clearer and better structured. Since dependencies can occur in many

different forms such as input- / output parameter, a super class, a local variable or a

function call, the CodeDependency element is one of the most important elements in

the metamodel. Although function calls are not a concrete dependency in the usual

5.1 The Core Metamodel 71

sense, they are conveniently captured by the CodeDependency element dependency

since they are usually defined using local or global variables that point to the object

through which the function can be called. However, there are also constructs where

no variable is created before the function call, like the static method calls in Java.

CodeDependency can also be used to represent dependencies supported by the Java

reflection capabilities. For these and other reasons, CodeDependency is the element

in the metamodel with the most subclasses.

Another important element in the metamodel is CandidateCollection. This addresses

issues that became apparent when trying to augment a Lucene index with a relational

database [HAS13]. Since it is possible to find several classes with the same name

when crawling the Internet, or to find classes with different names but the same

functionality, it is hard to determine the right dependencies directly if complete

projects are not available. However, in order to support environment independent

dependency resolution it is necessary to accommodate such classes and establish the

relationships between them. CandidateCollection helps in this regard by proving

a way of simply collecting all components or classes that fit to the first available

information about the dependency. In a first step, all possible matches are added to

the candidate list. This list is then analysed further in a second step, as explained in

the next chapter, to reorder and restructure it. Until this is done the definition of a

component may be violated since it is not guaranteed that the dependencies point

to components. Adherence to the rules of components is only guaranteed once the

second step has been performed. CandidateCollection and CodeComponent were

added to the metamodel to support this temporary situation during the parsing process.

This is also the reason why the element CodeClass is a subtype of CodeComponent.

72 Chapter 5. Dependency-aware Metamodel

CodeProjectCodeProject

CodeObjectCodeObject

containscontains

CodeComponentCodeComponent

CodeObjectPropertyCodeObjectProperty

hasPropertyhasProperty

CodeMethodCodeMethod

CodeClassCodeClass

CodeBlockCodeBlock

CodeDependencyCodeDependency

hasMethodhasMethod

hasComponenthasComponent

hasCodeDependencyhasCodeDependency

hasCodeDependencyhasCodeDependency

hasComponenthasComponent

CodeOutputDependencyCodeOutputDependency

CodeInputDependencyCodeInputDependency

hasOutputParameterhasOutputParameter

hasInputParameterhasInputParameter

CandidateCollectionCandidateCollection

hasCollectionhasCollection

refersTorefersTo

CodeInterfaceCodeInterface

realizesrealizes

CodeBodyMethodCodeBodyMethod

CodeConstructorMethodCodeConstructorMethod

CodeTestMethodCodeTestMethod

hasMethodhasMethod

CodeBasicInterfaceCodeBasicInterface

CodeCollectionInterfaceCodeCollectionInterface

CodeGenericsDependencyCodeGenericsDependency

CodeSuperComponentDependencyCodeSuperComponentDependency

CodeGlobalVariableDependencyCodeGlobalVariableDependency

CodeLocalVariableDependencyCodeLocalVariableDependency

CodeAnnotationDependencyCodeAnnotationDependency

CodeFunctionCallDependencyCodeFunctionCallDependency

CodeExceptionDependencyCodeExceptionDependency

CodeEnumCodeEnum

CodeAnonymousInnerClassCodeAnonymousInnerClass CodeTestClassCodeTestClass

Figure 5.2: Java Specific Metamodel

5.1.1 Extended Metamodel for Java

The core modelling constructs described in the previous section can be specialized

to represent the concrete features of many different programming languages. In this

section we describe how we extended it to support the Java programming language

since this language is the focus of the thesis. The Java specific metamodel is shown

on figure 5.2.

Unlike many object-oriented programming languages, Java includes the concepts of

interfaces to support multiple inheritance in a clean way. In the metamodel, interfaces

are represented by the code element CodeInterface which, like CodeClass, extends

CodeComponent. Interfaces cannot be seen as stand-alone components because they

do not define executable code themselves, but abstract (or virtual) behaviour that has

to be realized by at least one class in the system. The realizes association is included

5.1 The Core Metamodel 73

to identify the CodeClasses that implement them.

The metamodel distinguishes between two types of interfaces by defining two sub-

classes of CodeInterface, CodeBasicInterface and CodeCollectionInterface. Code-

BasicInterface represents all the simple and normal interfaces, whereas the element

CodeCollectionInterface accommodates all the instances of collection interfaces that

are typed via generics – a peculiarity of Java. All standard interfaces of Java, like

List, Map, Set, that are defined to be generic via a type parameter, are modelled

using this element. It therefore simplifies the representation of generic interfaces and

their realizing classes in the search engine.

The next Java-specific extension to the core metamodel is used to represent alternative

ways of defining value classes such as “enums”. In terms of the source code, enum

definitions are just collections of keywords, but the Java compiler generates a normal

class out of them with methods to access the values of the keywords, etc. An enum

is therefore essentially a shorthand way of defining simple classes. This can be

seen from the fact that it is possible to implement normal methods in enums or to

instantiate enum keywords with parameters.

Another Java-specific form of class that has to be explicitly supported in the meta-

model are “inner anonymous classes”. These are classes which do not have their

own name and are not defined in a separate file but instead are defined within the

body of another class. They provide a convenient way of defining a local class using

just a few lines of code when it is too laborious to define a new, fully-fledged class

in the normal way. Such classes are most commonly used in the programming of

user interfaces, where for example the system has to react asynchronously to events.

In many cases, suitable listener classes (e.g. for reacting to mouse events) can be

defined using just one line of code.

74 Chapter 5. Dependency-aware Metamodel

The final Java-specific specialization of CodeClass is the element CodeTestClass.

This is used to represent classes which do not add any functionality to the system,

but are used to test the functionality defined in other classes. In older version of

JUnit, such as JUnit3, such test classes where fully decoupled from the classes they

tested and needed to extend the class “TestCase”. Even if it is now possible in JUnit4

to integrate test methods directly in the class with the methods under test, it is still

useful to capture classes containing tests to support test-focused searches [HA07].

Therefore, in the same way that CodeTestClass specializes CodeClass, the Code-

TestMethod is defined as a specialization of CodeMethod in order to accommodate

JUnit4 based testing methods in the search database.

The other subclasses of the CodeMethod are not actually Java-specific per se, as they

can be found in many other object oriented programming languages, but they are

of great importance in Java – the constructors and methods of a class. The concrete

methods of a class are represented by the element CodeBodyMethod to distinguish

them from the methods of interfaces which cannot be testing methods or constructors.

Even though constructors are invoked, they can only be called once when a class

is instantiated, unlike normal methods. Moreover, although they cannot have any

output parameters, since they can have input parameters, they are still of interest in

searches for methods.

Consider, for example, the system CustomerManagement where a Payment class

is instantiated directly with a Customer object. Using a signature-based search it

would not be possible to find this class if a developer is searching for a method like

makePayment(Customer, Double) where the Customer parameter is the customer

which has to be billed and the Double parameter is the value of the bill. However, with

our approach, the customer is already in the Payment object due to the instantiation

of the class, so the “parameter” of type Customer is available in every method

contained in the Payment class. Therefore, for the purpose of supporting signature-

5.2 Infrastructure of the Graph 75

based searches, if constructors were not handled as methods it would be much more

difficult to search for this kind of structure.

Most of the extensions to the core metamodel appear as subclasses of CodeDe-

pendency, since this is where most of Java’s idiosyncrasies occur. Examples are

exceptions, which allow methods to react to unusual events, and annotations which

allow additional information or instructions to be added to an element. For each of

these specific kinds of dependencies additional elements are added to the metamodel

as subclasses of CodeDependency.

5.2 Infrastructure of the Graph

The metamodels presented in the previous two sections represent the conceptual

model we used also to specify our database schema. However, since graph databases

allow elements to be connected in a different manner to relational database, the

database schema does not have a one-to-one mapping of the metamodel. In a graph

database it is possible to avoid some of the join tables or similar constructs that have to

be used in relational databases. In this section we explain the steps taken to efficiently

store information represented in the previously presented metamodels in graph-based

databases such as Neo4J. We do this using the CustomerManagement example

introduced in chapter Chapter 1. The basic search scenario in this example is for the

method addCustomer(Customer), which has a dependency via its input parameter to

a Customer class, and is associated with this class via a CandidateCollection element.

A representation of the metamodel elements needed to represent this example using

the core metamodel is shown in 5.3

76 Chapter 5. Dependency-aware Metamodel

<<CodeClass>>

CustomerManagement

<<CodeClass>>

CustomerManagement

<<CodeMethod>>

addCustomer

<<CodeMethod>>

addCustomer
CodeInputDependencyCodeInputDependency

CandidateCollectionCandidateCollection
<<CodeClass>>

Customer

<<CodeClass>>

Customer

hasMethodhasMethod hasDependencyhasDependency

hasCollectionhasCollection

refersTorefersTo

Figure 5.3: Example Application of the Core Metamodel

As already observed, the fact that there can be relationships between almost all

elements in almost all directions means that instances of the core metamodel lend

themselves to graph databases. In contrast to the pure metamodel, however, it is

desirable for an entity stored in the database to store information not only about

their immediate type, but also about all their supertypes. To do this we use Neo4J’s

feature of allowing nodes to have multiple labels to add all the supertypes to a node.

For example, a testing method will not only have the labels CodeTestingMethod but

also the label CodeMethod.

Of course, the name and supertypes of an entity do not provide enough information

for a search engine to work effectively, so a lot more information is collected and

stored as node properties or as an additional node labelled with CodeObjectProperty.

The element CodeObject does not have any properties of its own, since it does not

represents a concrete source code entity, but serves as the supertype of the other

elements. All the other elements introduce different properties that are derived from

the source code during the parsing and analysing process. In the following we will

present the properties relevant to the search and dependency resolution processes.

Since CodeProject is not directly associated with code and merely serves to encapsu-

late other elements it has only two properties. One is the URL at which all the files it

encapsulates (e.g. from a project) can be found and the other is the programming

5.2 Infrastructure of the Graph 77

language in which most of the classes are written. It is always possible for a project to

contain classes written in more than one programming language, so it is the language

that the majority is written in that determines the language property for the project

(i.e. the elements contained by a particular CodeProject element). For example,

JavaScript is often included in Java source code via the JSNI (JavaScript Native

Interface) mechanism, and a similar mechanism exists for including C++ code. To

ensure that information about these programming languages is not lost, it is stored

as additional property of the individual classes or interfaces. The programming

language property of CodeProject is included to efficiently support searches such as

“Which projects are implemented in Java?”.

Most of the information is of course stored at the level of the individual CodeClasses

themselves. In fact, each CodeClass element has the following six properties.

CodeClass
name the name of the class
lang language in which the class is written in
hash the hash-value of the class
urln the URLs of the class
fetchDate the date the class was crawled and analysed
uniqueid a unique id

Table 5.1: Properties of the individual class nodes in the graph

Some of these attributes, such as name, are read directly from the source code but

others, such as the hash value, are calculated indirectly during the crawling process.

Although the hash value property is not of direct relevance for users, it is useful

for driving some of the analysis processes that take place in the background. For

example, based on class hash values it is possible to detect simple forms of duplicates

[Cho+02] of a class and avoid redundant information in the index.

Another generated value is the uniqueid. Even though the database generates its own

implicit ID for every node, it is useful for each CodeClass to have a globally unique

78 Chapter 5. Dependency-aware Metamodel

ID as an explicit property in order to support environment independent dependency

resolution. The uniqueid consists of the URL followed by the file name and the

element name. Thus, the uniqueid of the Customer class from our example is –

http://www.example.com/Customer.java/Customer

To cope with classes that are nested within other classes, such as anonymous classes,

in general the uniqueid stores the full containment hierarchy of each. This ensures

that all classes have a globally unique ID. For example, consider the case of two

variables with the same name but different types, where one is a method input

parameter and the other one is a global variable. Without any additional information

beyond the name the local variable is always used. However, if it is necessary in this

method to access the global variable, in Java a “this.” needs to be put in front of the

variable name. Therefore, in Java first the local variables are checked and after that

the global variables or the variables of the superclasses, etc. A similar mechanism is

also used in our approach.

This hierarchical structure not only has a benefit for classes, but also for methods

and other elements. For example, the uniqueid of a method has the form –

http://www.example.com/Customer.java/Customer/addCustomer

The only weakness of this approach is that only the first generated uniqueid is stored.

In case of duplicates the uniqueid is not recalculated or regenerated. However, this

can create problems if, for example, the first version of a class to be analysed is

decoupled from a project (such as one retrieved from a forum post) and later a

duplicate is found contained in a project. This make it impossible to use this unique

id for dependency resolution.

The URL itself does not change, however, because Neo4J does not support multi-

fields like Lucene which allow a keyword of a property to occur multiple times, the

keyword or the URL “url” has to be extended with a counter url1 . . .urln.

http://www.example.com/Customer.java/Customer
http://www.example.com/Customer.java/Customer/addCustomer

5.2 Infrastructure of the Graph 79

Some of the properties, like the url or the hash value are used for several elements.

So they can be found again in the list of properties of CodeMethod as can be seen in

table 5.2.

CodeMethod

name the name of the method
modifiern the modifiers of the method
hash the hash-value of the method
urln the URLs of the method
containedIn how many classes the method exists in
fetchDate the date the method was crawled and analysed
uniqueid a unique id
startPos the start line in the source code
stopPos the stop line in the source code
contentLength the content length in characters of the method

Table 5.2: Properties of the CodeMethod

As with CodeClass, hash value is used to identify simple forms of duplicates. The

next property, containedIn field, also used in duplicate determination, is just a count

of how many classes this method can be found in. This is useful in statistical searches

to identify widely used methods. Of course, to do this it is necessary to filter out

all the getter- and setter-methods, as these methods frequently appear in multiple

classes. The other properties mainly serve to help locate either the position of the

methods in the source code or the classes to which the methods belong to.

There are no properties to store information about the parameters because this is

stored in the graph via subclasses of CodeDependency. Input parameter dependen-

cies are represented by instances of CodeInputParameterDependency and output

parameter dependencies by instances of CodeOutputParameterDependency.

The other elements or nodes in the graph are mainly of the type of CodeDependency,

which have two properties in common.

80 Chapter 5. Dependency-aware Metamodel

CodeDependency

classname the name of the class of the type
fqn the fully qualified name of the class

Since, for most kinds of searches, it is only necessary to know the kinds of depen-

dencies that exists between two classes and all other properties can be obtained

from the related class themselves, only the name and the fully qualified name of

dependencies are stored to facilitate their identification. This significantly decreases

graph navigation times when, for example, multiple dependencies of the same type

exist, like the same input parameter type used in different methods.

Occasionally some sub-elements of CodeDependency have additional properties.

For example, CodeInputParameterDependency also has a property to store the

name of the parameter, the CodeFunctionCallDependency also has the name of

the called function and CodeGlobalVariableDependency also stores the variable’s

position in the code so that they can be found more efficiently. Not every developer,

unfortunately, places global variables at the top of a class. All other elements, like

CodeBlock or CandidateCollection, have no properties as they are mainly auxiliary

nodes.

This requirement could also have been addressed using various relationship types

within the graph database. However, for several reasons we chose to use auxiliary

nodes. The element CodeBlock was introduced because this kind of code structure

can occur in different forms in the source code. Not only methods have code blocks,

Java also supports so called static-blocks which are executed when classes are loaded

and before they are instantiated. The elements of a static block do indeed occur

within the context of a class, but due to the loading process they are decoupled from

the rest of the class at run time. This allows us to determine whether, for example, a

database has to be connected during the loading process or the initialization process.

5.2 Infrastructure of the Graph 81

To establish, which is required, a user just has to include the CodeBlock in the search

request.

The second relationship that could have been captured solely using associations

is CandidateCollection. However, if more associations were added to the node

they would mix with the associations to the potential candidate. Not only that,

as already mentioned we also associate CodeObjectProperty nodes to Candidate-

Collection nodes to support the process of determining the right candidates. This

has a distinct advantage, contrary to the approach with direct associations in our

context-independent crawling approach. Of course, it would also be possible to use

an approach similar to most other code search engines (Sourcerer, Portfolio, Exem-

plar) and always take complete projects from individual repositories like GitHub or

Sourceforge. However, as already mentioned, Subramanian and Holmes observed

that the code snippets found in forum post are generally of high quality [SH13b].

Moreover, the availability of complete projects does not always guarantee that every

dependency is included because projects can be configured differently. So called

automated build-management tools can complicate the task of resolving dependen-

cies to third-party libraries. In today’s build-management tools like Apache Maven,

Gradle or Ivy, dependencies are defined in configuration files. However, this has

the consequence that the individual library files are not stored in the project, but

are stored centrally on servers or in local caches, and thus are also not pushed to

the repository as in GitHub. Of course, it would be possible to write a parser for

each individual build-management tool to get all the necessary information needed

to resolve dependencies. An additional advantage of this approach would be that

the right version numbers from the library would be available. However, given the

rapid rate at which IT technologies change, it will not take long before the layout of

build-management configuration files are updated. The corresponding parsers there-

fore need to be constantly adapted to keep up with these new layouts. For example,

tools like Gradle are based on the version of Maven from 2004, but have their own

82 Chapter 5. Dependency-aware Metamodel

configuration file with a different layout. The last issue to be dealt with are parallel

referenced projects, which means projects in the immediate environment of the origin

project. For example, in most of today’s development environments like Eclipse,

it is possible to put other local projects in the build path so that the classes can be

directly used as dependencies. Of course, these projects are usually also pushed to

the same repository and the project documentation explains that for execution the

other project needs to be checked out, too. However, due to the vocabulary problem

it is always difficult to get this kind of information. This is why DAISI employs

an alternative approach to dependency resolution which provides some freedom in

choosing the matching dependencies. Nevertheless, this approach also has some

drawbacks. Since classes or code snippets are crawled and analysed independently

from their project, the order in which they are loaded is unpredictable. Thus, in

our example, it is possible that a CustomerManagement class is analysed before the

Customer class. In this case, assuming no other Customer class exists in the index, it

is not possible to identify a concrete dependency for the CustomerManagement class.

Therefore, to handle this type of scenario we add a dummy CodeObjectProperty

node to the graph containing the information available at analysis time. In general,

this is the name of the class and sometimes the package name.

After that, when the Customer class, or any other class with the same name, is

subsequently analysed it will be connected to the CodeObjectProperty node which is

also referenced by the CandidateCollection. As illustrated in figure 5.4, over time

every crawled class with the same class name and package name will be connected

to this node. The figure shows the case where two Customer classes have been found.

The same would happen in the opposite direction if the Customer class is the first to

be analysed. In this case, the CandidateCollection node would be connected to the

already existing CodeObjectProperty node. Of course, a lot of different classes may

be available which have the same name but totally different functionality.

5.3 Text Document Storage 83

<<CodeMethod>>

addCustomer

<<CodeMethod>>

addCustomer
CodeInputDependencyCodeInputDependency

CandidateCollectionCandidateCollection
CodeObjectPropertyCodeObjectProperty

-name = Customer

-uniqueId = com.example.Customer

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://abc.com/.../Customer.java

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://xyz.com/.../Customer.java

hasDependencyhasDependency

hasCollectionhasCollection

hasPropertyhasProperty

hasPropertyhasProperty

Figure 5.4: CandidateCollection example

5.3 Text Document Storage

Even though a graph is an ideal structure to store code related information, searches

can still be computation intensive if large portions of the graph have to be traversed.

However, since code is ultimately nothing more than text, storing code in a “Full

Text Search Environment” (FTSE) framework has a lot of benefits as well. The

most effective search performance is therefore obtained by combining graph-based

and FTSE-based data structures. Many vendors of traditional database systems

today augment their core data storage structure with FTSE (e.g. Lucene) indexes to

enhance the search process. The usual approach is to prefix a search in the main data

structure with a search in the FTSE index to narrow down the scope of data that has

to be analysed [JZW09]. Modern graph-based databases such as Neo4J also use the

same approach by preselecting candidate nodes from a Lucene index based on the

keywords of the search request. To establish a direct mapping between the Lucene

84 Chapter 5. Dependency-aware Metamodel

index and the nodes in the graph, every entry in the Lucene index contains also the

node id of the graph. This makes it possible to read out the node ids of the individual

search results and to take them as starting nodes to traverse the graph to refine the

search results. However, Neo4J not only creates a separate Lucene index for each

node type it does so fully automated. This means it is impossible to influence the

underlying data structure or the information that is stored.

Since one of the goals was to retain the basic data search capabilities of Merobase,

and in particular support MQL-based queries, DAISI also creates a so called “legacy

index” in Neo4J. Although this is not completely integrated with the Neo4J data

stores, and thus cannot be accessed using all the functionality of Neo4J, it can

be given the structure and contents desired. The main disadvantage of not being

completely independent of Neo4J is the loss of some query formulation possibilities

in Cypher, the query language of Neo4J, but this can usually be overcome using

query reformulations. Therefore, this disadvantage does not have a noticeable impact

on our approach.

The big difference to the original Merobase architecture based on a single Lucene

index is that in DAISI several Lucene indexes are created focusing on different

areas. In parallel to the indexes automatically created by Neo4J, DAISI creates three

different legacy indexes. The first index of CodeClass elements is very similar to the

old Merobase index and incorporates some information about the code structure. The

second index of identifiers discovered during the parsing process is mainly used to

analyse the CandidateCollection elements to check whether a CodeObjectProperty

node already exists. Finally, the third index of CodeMethod elements is mainly used

to support searches for methods rather than classes or complete components. This

index combines information in a different way to the first and thus delivers better

results for searches that are not covered well by Merobase’s signature based search

due to the choice of fields that are tokenized. As discussed previously, this problem

5.3 Text Document Storage 85

can be addressed using Lucene’s multifields feature in a separate index. Therefore,

DAISI contains a separate additional index containing the fields of table 5.3 for the

methods.

CodeMethod-Index

name the name of the method
containedIn name of the methods, where this method is contained
containedInCounter in how many classes this method is contained
lang programming language
inputParam type of the input parameter
inputTypeFqn fully qualified name of the input parameter (if available)
outputParam type of the output parameter
outputTypeFqn fully qualified name of the output parameter (if available)
url URL of the class which contains the method
calledFunction name of the called function
annotation fully qualified name of the annotation class

Table 5.3: Index structure for CodeMethods

The field containedIn is defined as a multi-field to reference all classes where a

method is contained in. However, DAISI does not just store the name of the class

but also the referencing node id of the graph database, so that it can be used as

the starting node of a graph traversal for a search. This node id is added to the

name enclosed within two “#”. For example, of the method addCustomer the value

of the containedIn field would be CustomerManagement#23#. The first part is the

name of the class and the second part is the node id (23). To tokenize this field

we also added a Lucene specific CharTokenizer which splits the string at the hash

character. This tokenizing makes it possible to directly read the id at search time.

This provides a performance improvement, as it is generally expensive to read out

additional fields from the Lucene index. Another option would be to always load

whole documents, but this is not the case in general, as this would lead to a higher

network and performance load.

86 Chapter 5. Dependency-aware Metamodel

DAISI uses the same format for all other fields for which it makes sense to store a

direct reference to the node of a class or method in the graph. However, this is only

done if we know which class is definitely the correct one. For example, the node

id is only added to an annotation or calledFunction field if the right dependency is

resolved. Until this is determined, DAISI only stores the name of the class or method

without the id. The same mechanism is also used for the index of the CodeClass

elements whose fields are presented in table 5.4.

CodeClass-Index
name the name of the method
namespace the package name of the class
lang programming language
protocol the protocol how the class can be accessed
url the URL of the file containing the class
methodSignature the method signature of the contained methods,

including method name
methodSignatureParams the method signature only with the parameters
content the source code of the class
comments the collected comments contained in the class
interface the name of the realized interfaces
interfacer typified interfaces with generics

Table 5.4: Index structure for CodeClasses

This index of CodeClass elements is basically an extended version of the original

Merobase index because it contains every field in the original index with appropriate

extensions [Hum08]. For example, the original fields methodSignature and meth-

odSignatureParams are extended by the node id to allow the corresponding node

in the graph to be directly accessed. However, in the new version of the index we

removed fields like methodSignatureParamsOrdered because there is an additional

supporting index for methods and the parameters are now usually ordered. There

are also two new fields – interfaceSig and comments. The interfaceSig field stores

information about realized interfaces but in a way that supports Java’s generics. This

5.3 Text Document Storage 87

aids searches for collections which are only allowed to contain elements of a specific

type. The comments field is used to separate natural language comments from the

formal source code. In contrast to the original Merobase index structure, where all

the text in source code files, including the comments, were stored in the content-field,

DAISI separates the comments from the source code and stores them in a separate

field. This makes it easier to include “Natural Language Processing” (NLP) retrieval

techniques which are based on a semantic interpretation of the natural language. Of

course, for the normal keyword based searches this decreases search performance

slightly since two fields have to be considered. However, this decrease is not signif-

icant. All other fields are unchanged. Thus, the field protocol still describes how

the class can be accessed, either via http, https, svn or git, and the field content

still contains the bulk of the code for the keyword based search, but with a minor

extension to reduce the amount of code that has to be stored.

6. Environment-Independent

Harvesting

The ultimate search engine would

basically understand everything in

the world, and it would always give

you the right thing. And we’re a

long, long ways from that.

– Larry Page - Founder of Google

Inc. –

As two well-known founders of one of the world largest search engines wrote a few

years ago, the demands on search engines are immense.

“Creating a search engine which scales even to today’s web presents many

challenges. Fast crawling technology is needed to gather the web documents

and keep them up to date. Storage space must be used efficiently to store

indexes and, optionally, the documents themselves. The indexing system must

process hundreds of gigabytes of data efficiently. Queries must be handled

quickly, at a rate of hundreds to thousands per second.” [BP12]

90 Chapter 6. Environment-Independent Harvesting

The demands on code search engines are similar, although they differ slightly in

terms of the kind of objects they deal with, the crawlers, the indexing processes and

the storage systems. Whereas fast response times are usually more important than

result accuracy in general Internet search use cases, code search engines need to

focus more on accuracy and ensuring that results satisfy user constraints. Therefore,

the crawlers and deployed data structures are usually more complex in the latter.

6.1 Crawling and Parsing

Along with the metamodel and the database schema described in the last chapter,

another key part of the DAISI search engine is the crawling and parsing process

[GJ09]. The crawler is responsible for finding content that is suitable for the search

engine, while the parser is responsible for analysing the content and incorporating

it into the underlying database schema. Therefore, the crawler has to know which

content is relevant for the underlying search engine and which content is irrelevant.

The relevance of the content is determined by certain criteria or characteristics

defined by the source of the information.

One way of identifying document relevance is through their type, since software

documents of the same type generally contain the same kind of information or

data. For example, every programming language has its own typical file extension.

Another way to determine whether a document contains relevant information is by

checking the MIME type of the document. MIME (Multipurpose Internet Mail

Extensions) types were introduced with the internet [BF93] to describe the content

of a document since file extensions are not always made available. The MIMI type

therefore essentially delivers some meta data about a document. However, since

file extensions or MIME types are not foolproof [Woo+96], the only reliable way

to determine if the content of a document is relevant is through detailed analysis.

6.1 Crawling and Parsing 91

Nevertheless, the file extension or the MIME type provides a useful way of filtering

out irrelevant documents and identify which document are worth analysing.

Identifying code in a forum post that is mixed with the normal text of discussions is

more complicated. Fortunately, however, the tag “<code/>” is used in most forums

and blogs where code is normally discussed. Therefore, DAISI’s crawler identifies

code based on this tag. The only way to identify the programming language used in

such cases, given that no file MIME type is available, is to analyse and compare the

code with the keywords of the different language. However, since DAISI focuses

purely on the programming language Java, the crawler is configured to recognize

only files with the extension “.java” and files with the MIME type “text/java”.

Additionally, to get the “<code/>” tags of websites, the MIME types “application/x-

html+xml” and “text/html” are also considered. If a code fragment is detected on

such a web site, an additional step is necessary to identify the programming language

in which the code is written. Basically, the tokens in the code are compared to the

keywords of Java and if they match the document will be parsed and analysed.

Instead of directly analysing discovered source code, however, we use the same

approach as Krugle [Kru13] and first store the discovered URLs containing suitable

code in a relational database. This database contains only three fields: one to store the

URL of the discovered source code, one to store a Boolean value indicating whether

this code has already been fetched by an analyser and one to store a Boolean variable

indicating whether the analyser has successfully completed the analysis. The analyser

gradually fetches URL’s from this database for analysis. Since each source file is

analysed independently of its project context the order in which the individual URLs

are processed is irrelevant. Therefore, it is no problem to run multiple analysers

in parallel since each analysis task can run completely independently. It is only

necessary to coordinate the different threads when the nodes are stored to avoid

redundant CodeObjectProperty nodes, for example.

92 Chapter 6. Environment-Independent Harvesting

http, svn, git SQL

Crawler

(Nutch)
crawls storeURL

Analyser

fetchURL

Lucene

Neo4J

storeContent

storeStructure

Dependency-

Analyser

Figure 6.1: Crawling and parsing process of the DAISI search engine

6.1.1 Context-Independent Content Analysis

One of the reasons why it is harder to parse and analyse code components than text

based web pages is their underlying context. Whereas web pages contain natural

language text and are related to each other via world wide unique URLs, source code

modules contain text expressed in formal languages and are not related to each other

via globally unique links. Instead, the dependencies between code modules, which

in Java are a combination of the package name and the class name, are only unique

in the specific context of the software component. Changing the context can make

the meaning of the dependency ambiguous. For example a dependency D might be

unique in project A, but this project might also be used in project B where another

class with the same name exists with a different implementation and functionality.

In this case, if the context is changed the import statement of the dependency D is

no longer unique. Java solves this issue using hierarchical dependency resolution.

However, in terms of the global internet, where it is not always possible to find the

whole context in which a software component was written, it is not always easy to

determine the right hierarchy. The same issue arise if the dependency D does not exist

6.1 Crawling and Parsing 93

Java Source

Code
ASTANTLR ASTM-PARSER

ASTM
Analyser

(Metamodel)
Lucene

Neo4j

analyse transformsTo analyse

transformsTo

analysepersistsTo

persistsTo

Figure 6.2: Process of the analyser and the different file formats

in the context it is used in. This can occur, for example, if the dependency is placed

in a third-party library which cannot be found in the project context – something

that can be observed today in all projects whose dependencies are configured via a

dependency management tool such as Maven. However, DAISI’s graph database

approach provides mechanisms that make it possible to ignore the context of a

software component. Various steps are needed to achieve context and language

independence by transforming the underlying source of information to a uniform

data format which can be analysed in a centralized, uniform manner.

Of course, the first step is always to download the code from its source. This could

either be a location in the global internet or a SVN or Git repository in a company’s

internal network. To support these different kinds of protocols (http, git, svn, etc.)

the necessary connector is determined from the fetched URL of the crawl database.

In view of license restrictions and the academic characteristics of our project, we

only collected source files from the global internet which are accessible via a normal

HTTP connection. In the second step, the downloaded source code is then split into

several parts and a language specific grammar is used to build an abstract syntax

tree (AST) from the source code. An AST is a tree-based, abstract representation

of source code in a specific programming language. At this stage a compiler is

94 Chapter 6. Environment-Independent Harvesting

also invoked to determine the syntactic correctness of the source code based on the

tree structure. This is a task for which the widely used ANTLR parser-generator

system is well suited [Par13]. ANTLR was created in 1998 by Terence Par as part

of his master thesis and has evolved over the years to the point where it is the most

commonly used tool for parsing text in Java environments.

To use ANTLR to parse Java source code it is necessary to create an appropriate

ANTLR definition of the Java grammar. Rather than store the information of the AST

directly in the database it is first mapped to a platform and programming language

independent format – the Abstract Syntax Tree Metamodel (ASTM), specified by the

OMG [OMG11a]. ASTM is a generic metamodel which can represent the elements

of all mainstream object-oriented programming languages. As soon as the ANTLR

AST for a source file is created it is transformed into the standard ASTM format. Of

course, this raises the question as to why DAISI does not use a document format

directly corresponding to the metamodel to store the code in our central database.

There are several reasons, but the main reason is that the metamodel was basically

developed as a database schema, whereas ASTM was designed to represented all the

elements of an AST in the XML Metadata Interchange (XMI) format. This format

was designed by the OMG for the purpose of exchanging information between

software tools and over a network. Therefore, XMI documents contain information,

like header information, which does not need to be stored in a database for every

element. Avoiding the use of ASTM as the underlying database schema also results

in fewer nodes in the graph, because some elements no longer need to be stored in the

database. In particular, nodes which are irrelevant for searches, such as statements

in which values are assigned to a variable, can be omitted from the database. This

obviates the need to traverse such nodes when a search is performed, thereby reducing

the overall size of the database and increasing performance.

6.1 Crawling and Parsing 95

< P r o j e c t >

< f i l e s l a n g u a g e =" j a v a "

p a t h =" CustomerManagement . j a v a ">

< import className ="Map" packageName=" j a v a . u t i l " / >

< f r a g m e n t s x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : A g g r e g a t e T y p e D e f i n i t i o n ">

< a g g r e g a t e T y p e x s i : t y p e =" Types : ClassType " hash =" −664476951|31736226 ">

<opensScope >

< dec lOrDefn x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : E n t r y D e f i n i t i o n ">

< a c c e s s K i n d x s i : t y p e =" ASTMSyntax : P u b l i c " / >

</ declOrDefn >

< dec lOrDefn x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : NamedTypeDef in i t ion "

typeName=" CustomerManagement " / >

< dec lOrDefn x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : N am e Sp a ce D ef i n i t i o n "

n a m e S t r i n g =" de . unima . i n f o r m a t i k . swt . example " / >

</ opensScope >

<members >

<member x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : V a r i a b l e D e c l a r a t i o n ">

< a c c e s s K i n d x s i : t y p e =" ASTMSyntax : P r i v a t e " / >

< I d e n t i f i e r n a m e S t r i n g =" c u s t o m e r s " / >

< d e c l a r a t i o n T y p e i s C o n s t =" t r u e "

x s i : t y p e =" Types : NamedTypeReference ">

<typeName n a m e S t r i n g ="Map" / >

< t y p e

x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : A g g r e g a t e T y p e D e f i n i t i o n ">

< aggrega t eType >

<members >

<member x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : D e c l a r a t i o n ">

< d e c l a r a t i o n T y p e i s C o n s t =" t r u e ">

< t y p e x s i : t y p e =" Types : S t r i n g " / >

</ d e c l a r a t i o n T y p e >

</ member>

<member x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : D e c l a r a t i o n ">

< d e c l a r a t i o n T y p e i s C o n s t =" t r u e "

x s i : t y p e =" Types : NamedTypeReference ">

<typeName n a m e S t r i n g =" Customer " / >

</ d e c l a r a t i o n T y p e >

</ member>

96 Chapter 6. Environment-Independent Harvesting

</ members >

</ agg rega t eType >

</ type >

</ d e c l a r a t i o n T y p e >

</ member>

<member x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : F u n c t i o n D e f i n i t i o n ">

< a c c e s s K i n d x s i : t y p e =" ASTMSyntax : P u b l i c " / >

< I d e n t i f i e r n a m e S t r i n g =" ge tCus tomer " hashValue ="−1644953633 "

c o n t e n t L e n g t h =" 67 " / >

< r e t u r n T y p e i s C o n s t =" t r u e " x s i : t y p e =" Types : NamedTypeReference ">

<typeName n a m e S t r i n g =" Customer " / >

</ r e t u r n T y p e >

< f o r m a l P a r a m e t e r s >

< I d e n t i f i e r n a m e S t r i n g =" c u s t o m e r " / >

< d e c l a r a t i o n T y p e i s C o n s t =" t r u e ">

< t y p e x s i : t y p e =" Types : S t r i n g " / >

</ d e c l a r a t i o n T y p e >

</ f o r m a l P a r a m e t e r s >

<body x s i : t y p e =" S t a t e m e n t : E x p r e s s i o n S t a t e m e n t ">

< e x p r e s s i o n x s i : t y p e =" E x p r e s s i o n : F u n c t i o n C a l l E x p r e s s i o n "

c a l l e d F u n c t i o n =" g e t " / >

</ body >

</ member>

</ members >

</ agg rega t eType >

</ f r a g m e n t s >

</ f i l e s >

</ P r o j e c t >

Listing 6.1: ASTM representation of the CustomerManagement class only with the
getCustomer-Method

6.1 Crawling and Parsing 97

Even if some of the information is not persisted in the database it can be useful to

support certain kinds of analysis. It is also possible to extend the underlying data

structure to use other approaches like the call-graph searches supported by Portfolio

[McM+11] or the multi-modal code searches defined by Wang [WLJ11], where it is

necessary to know which statement or expression a method is called in. This is why

in our process both metamodels are involved.

The ASTM evolved from the Knowledge Discovery Metamodel (KDM) [OMG11b]

also defined by the OMG. However, the KDM is more suited to storing information

from UML-like diagrams and is rather intended as an exchange format and interme-

diate representation for software systems and their operating environment as part

of application life-cycle management. The KDM also defines metadata in the XMI

format and is used mainly to represent entities, attributes and relations in an existing

software system. However, when the OMG observed that transforming code to a

KDM model structure caused the loss of a great deal of information, they decided to

create a more code-related metamodel, the ASTM.

Like most OMG metamodels, the KDM and ASTM are based on the MOF infras-

tructure, also defined by the OMG [OMG11a].

Figure 6.3: MOF pyramid defined by the OMG

98 Chapter 6. Environment-Independent Harvesting

The different layers capture different levels of abstraction in a system [Atk97] and

both the KDM and ASTM metamodels are positioned in this MOF architecture in

the following way:

Layer Description ADM Examples

Meta-metamodel
M3

MOF (i.e., the set of
constructs used to
define metamodels

MOF Classes,
MOF Attributes,
MOF Associations,
etc

Metamodel M2 Metamodels consisting of
instances of
MOF constructs

KDM UML profiles
GASTM UML profile
SASTM UML profile

Model M1 Models consisting of
instances of AS
model of COBOL
language M2 metamodel
constructs

KDM Data Model

Instances
(examples) M0

Objects and data
(i.e. instances of M1 model
constructs)

AST model instances of
source code of real
application.
KDM Data models
instance of data
base or data files

Table 6.1: MOF relationship of KDM and ASTM

The KDM is often used to transfer information from one tool to another or to

transform a model into another. However, transforming source code to a KDM

model leads to the loss of information because it focuses on the high-level semantic

elements of a software system. For example, there is no way to model a for-loop in

KDM. The ASTM was defined several years later to avoid this information loss and

allow all the low-level implementation details like procedural logic or data definitions

(exactly the information present in an AST) to be stored as well. Nevertheless, the

ASTM has a strong dependency on the KDM to facilitate a simple mapping between

the elements of both metamodels. This can be used for example to transform

source code to UML diagrams and vice versa with minimal loss of information.

6.1 Crawling and Parsing 99

Likewise, according to the OMG, it should be possible to convert source code of one

programming language into another language, a common problem in domains such

as the banking industry with many legacy systems.

Application

Src code

SASTM

model

GASTM

model

KDM

model
P T T

Model

(Conforms to a metamodel)

P
Parser

(injector/discoverer)

T
Transformation

(model-to-model)

Figure 6.4: Process of transforming Source Code to a KDM to a UML Model

The ASTM is the only model needed in DAISI’s parsing process, however, since it

only has to capture information from the source code that is needed for the analysing

process, even if it is not ultimately stored in the database. However, the use of

the ASTM also creates future opportunities to include a subsystem to transform the

information into a KDM related model for other analysis approaches or representation

formats.

Since every programming language has it own characteristics and idiosyncrasies, the

ASTM itself consist of two separate parts, the Generic Abstract Syntax Tree Meta-

model (GASTM) and the Specialized Abstract Syntax Tree Meta-model (SASTM).

The GASTM represents the core of the metamodel and contains generic elements

that most programming languages have in common. The SASTM extends the core

with elements specific to a particular programming language. Therefore, every

programming language needs its own SASTM model, if it provides non-common

programming structures and/or syntactical elements. To create the GASTM, the

OMG analysed the most common programming languages and captured their com-

mon classes.

100 Chapter 6. Environment-Independent Harvesting

Domain Data Executable Code Structure Preprocessor
Programming

Paradigm Symbols Types Statements Expressions

Imperative
Paradigm

Entry Definition
Enumeral Definition
Label Definition
Procedure Definition
Template Definition
Type Definition
Variable Definition
Formal Parameter
Definition

Collection Type
Enumeration
Literal
Enumeration Type
Exception Type
Label Type
Pointer Type
Primitive Type
Range Type
Reference Type
Structure Type
Template Type
Sequence Type
Dimension Type
Address Of

Block Statement
Break Statement
Case Statement
Continue
Statement Default
Statement
Expression
Statement
Try Statement
Jump Statement
Label Statement
Loop Statement
Return Statement
Switch Statement
Throw Statement
Global
Declaration

Array Reference
Binary Expression
Cast Expression
Conditional
Expression
Enumeration
Reference
Identifier
Reference
Label Reference
Literal Operator
(Name)
Pointer
Expression
Procedure Call
Qualified
Identifier
Reference
Range
Expression
Reference
Expression

Compilation Unit
Declaration
Entry
Point
Procedure

Include Statement
Include Unit
Macro Call
Macro
Definition

Object
Oriented

Class Definition
Method Definition
Member Definition

Class Type
Inherits
(possible relationship)

Table 6.2: MOF relationship of KDM and ASTM

In addition to these various core elements, the OMG defined three different “scopes”

in which semantic elements occur – Domain, Bindings and Location. The Domain

scope defines all programming paradigms, the Binding scope defines ProgramScope,

ProcedureScope, BlockScope and TypeScope as sub scopes, and the Location scope

defines the two elements SourceLocation and SourceFile. For all these different

categories, a corresponding root element exists, depending on whether an element

belongs to the semantics, the syntax or the location (source).

GASTMObjectGASTMObject

GASTMSourceObjectGASTMSourceObject GASTMSemanticObjectGASTMSemanticObject GASTMSyntaxObjectGASTMSyntaxObject

Figure 6.5: Root elements of the ASTM metamodel

Based on these scopes, for every necessary Java specific concept we defined a cor-

6.1 Crawling and Parsing 101

responding element in the SASTM model. However, since the GASTM already

contains many elements relevant to Java, and also contains generic elements such

as “annotation”, it is only necessary to add a few additional elements to support our

search engine. Thus, the DAISI SASTM model only contains elements for import

statements, static blocks, enums, interfaces and the different specific modifiers a

method or attribute can have (i.e. native, volatile, static, synchronized, abstract

and transient). In addition, we included two elements to better represent two Java

specific types – exceptions as ExceptionTypeReferenz and primitive types as Prim-

itiveTypeReferenz. The latter is needed because in Java a wrapper class exists to

each corresponding primitive type and these needs to be treated in a similar, but not

identical, way. For example, depending on the Java version, in some case it was only

possible for wrapper classes to determine equality using the equal method rather

than the “==” operator. Also, with wrapper classes is is possible to check whether a

variable is “null”, but this is not possible for primitive types. In DAISI, all kinds of

primitive types are mapped to the same element of the ASTM model.

Element Extends

Import ASTMSemantics:GlobalScope
StaticBlock DeclarationAndDefinition:Declaration
Static DeclarationAndDefinition:AccessKind
Final DeclarationAndDefinition:AccessKind
Volatile DeclarationAndDefinition:AccessKind
Native DeclarationAndDefinition:AccessKind
Synchronized DeclarationAndDefinition:AccessKind
Transient DeclarationAndDefinition:AccessKind
Abstract DeclarationAndDefinition:AccessKind
Interface Types:AggregateType
Enum Types:AggregateType
ExceptionTypeReference Types:TypeReference
PrimitiveTypeReference Types:TypeReference

Table 6.3: Java specific SASTM Elements

102 Chapter 6. Environment-Independent Harvesting

Together, the model elements in the GASTM and SATSM metamodels provide all

the information needed to map the ANTLR AST to an ASTM XMI file that can

drive the code search engine. It is of course possible to extend these metamodels

to accommodate additional features, or to create additional SASTMs to support

new programming languages. The root element of the ASTM XMI file is always

a “project” element, since the OMG defines this to be the top of the hierarchical

structure regardless of whether the source file is located in a project or not.

< P r o j e c t >

< f i l e s l a n g u a g e =" j a v a " p a t h =" h t t p : / / example . com / Customer . j a v a ">

< f r a g m e n t s x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : A g g r e g a t e T y p e D e f i n i t i o n ">

< a g g r e g a t e T y p e x s i : t y p e =" Types : ClassType ">

<opensScope >

< dec lOrDefn x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : NamedTypeDef in i t ion "

typeName=" Customer " / >

< dec lOrDefn x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : N am e Sp a ce D ef i n i t i o n "

n a m e S t r i n g ="com . example " / >

</ opensScope >

<members >

<member x s i : t y p e =" D e c l a r a t i o n A n d D e f i n i t i o n : F u n c t i o n D e f i n i t i o n ">

< a c c e s s K i n d x s i : t y p e =" ASTMSyntax : P u b l i c " / >

< I d e n t i f i e r n a m e S t r i n g =" getName " hashValue ="−245570169 "

c o n t e n t L e n g t h =" 28 " / >

< l o c a t i o n I n f o s t a r t L i n e =" 9 " s t o p L i n e =" 11 " s t a r t P o s i t i o n =" 11 "

s t o p P o s i t i o n =" 4 " / >

< r e t u r n T y p e i s C o n s t =" t r u e "

x s i : t y p e =" J a v a S y n t a x : P r i m i t i v e T y p e R e f e r e n c e ">

< t y p e x s i : t y p e =" Types : S t r i n g " / >

</ r e t u r n T y p e >

</ member>

</ members >

</ agg rega t eType >

</ f r a g m e n t s >

</ f i l e s >

</ P r o j e c t >

Listing 6.2: ASTM as XML

6.1 Crawling and Parsing 103

Every project can contain an unlimited number of files and every file an unlimited

number of aggregateTypes which represent the different types of classes, such as

normal classes, enums or interfaces. The reason why a distinction between files

and aggregateType is being made is that a file can contain more than one class, or

class-like constructs, whereas an aggregateType cannot. The class name and the

package name, if available, are placed under the element openScopes. Information

about the visibility of the class is normally also placed under this element but is not

shown in this example for space reasons. After the scope of the class, the members

representing the individual syntactical elements of the source code are listed, like

global variables, methods, etc. In the example above, however, only one of the

methods is included – the getName method of the Customer class along with its

return parameter of type String.

This XMI document can now be used to store the actual structure of the source code

in a centralized way in the database. To include new programming languages only

two additional tasks are necessary. The first is to build a new ASTM XMI document

from the source code using, for example, an additional ANTLR grammar, and the

second is to build a language specific SASTM model if language specific constructs

need to be added to the index.

Since the ASTM model does not contain a validation mechanism to check if the

source code represented via the model is syntactically correct, and the validation

performed by ANTLR is optional, we also integrated a validation mechanism in the

DAISI metamodel. This validation is performed via the aforementioned rudimentary

neighbour check to identify incorrectly parsed code. For this purpose, every element

type in the metamodel has a defined list of neighbour element types to which it can

have relationships. So a method, for example, can have a CodeInputParameterDe-

pendency element as a neighbour but not a CodeGlobalVariableDependency element.

The list of individual neighbour types allowed for each element type can be found in

104 Chapter 6. Environment-Independent Harvesting

chapter 5. This list also defines the types of the allowed relationships in the graph.

So a CodeInputParameterDependency, for example, can have a relationship of type

hasInputParameterDependency to a method.

6.1.2 Handling the source code

Although the ASTM model, and thus the database, contains most of the syntactic and

semantic information from the code, such as the method signatures or the relations

between the different classes, it does not store every piece of text in the source code.

Therefore, to support full text searches as well as graph based searches it is necessary

to process the source in parallel and store it in a complementary Lucene index. This

allows, for example, the Boolean retrieval model to be used to express queries with

arbitrary combinations of keywords. The simplest way of achieving this would be to

map the whole source file (i.e. every single string) to the content field used to store

the code in the Lucene index. However, as Larry Page pointed out in his famous

sentence “Storage space must be used efficiently...” any potential optimizations can

have a dramatic impact on the size of the index and on the efficiency of searches.

In fact, it turns out that certain strings in the source code can be neglected without

having a visible reduction on performance. For example, when analysing the queries

from the log-file of an internal search engine at SAP, Panchenko et al. observed, that

most searches performed by developers were for method names (17%), followed by

class names (13%), patterns (14%) and identifiers (9%) [PPZ11]. The term “pattern”

in this context does not mean the structural relationships between classes, but rather

queries in which developers used logical operators, like “<”, “>”, “=” or “==” to

specify the relationships between the different terms in queries. In another study

Bajracharya and Lopes examined the log files of Koders and discovered that 80% of

the queries consisted of only one term [BL12a].

Therefore, one major optimization possibility is to avoid storing keywords that are

6.1 Crawling and Parsing 105

rarely if ever used in search queries. A prime example are the method modifiers.

When searching for methods, users invariably include the name of the method and

sometimes also the parameters, but never the modifiers. Removing these modifiers

from an index which potentially stores billions of source code files can save a lot

of space. The same applies to the visibility modifiers of classes or global variables.

When searching for variables it is usually irrelevant to users whether the variable can

be accessed directly or only accessed via a getter method. In fact, most IDE’s offer

a service to automatically create getter and setter methods if they are needed. The

same also applies to curly braces. The aforementioned studies showed that while

users sometimes include round braces in queries when they are looking for methods

with specific parameters, they never include curly brackets. Even if developers

become familiar with using structural searches in the future, this would not happen

in the context of pure text-based searches. On the contrary, other search mechanisms

like interface based search would most probably be used which do not need curly

brackets to be stored in the “content” field of the Lucene index. Based on these

studies, therefore it is possible to ignore quite a large number of keywords and

characters when storing the source code in the Lucene index.

Another issue affecting the relevance of the results in keyword-based searches are

the comments embedded in the source code. The aforementioned analysis of Koders

log files revealed that in many cases keywords in the search query only occurred

in the comments. Although the corresponding result were topologically relevant in

these cases, they were rarely if ever user relevant. Therefore, in the DAISI index

comments are stored separately from the rest of the source code.

Other keywords that are not stored in the DAISI Lucene index are loops and condi-

tions since these also rarely if ever appear in keyword-based queries. Such keywords

are only included when users are searching for method calls, as it is possible in

Portfolio. However Portfolio stores this information in a different database schema

106 Chapter 6. Environment-Independent Harvesting

since it is not relevant for keyword based searches [McM+11]. Finally, we remove

all white-space related characters from the source code, like tabulators, new-line

characters or end of line markers such as the well-known “;” in Java.

Motivated by these aforementioned studies, the complete set of source code elements

that are not included in the Lucene index is given in Table 6.4. On average this

reduces the amount of information the DAISI database needs to store by 25%. This

is a huge saving given the billions of source code documents in the internet that

could potentially be harvested by code search engines.

Category Terms

Modifier public private, static, volatile,. . .
Brackets curly bracket
Comments every kind of comment, specified with // , /** or /*
Loops for, while loops
Conditions if, else
Space character empty lines, white spaces, etc.
Delimiter semicolon

Table 6.4: Removed terms of the source code for keyword based search

6.2 Graph-based Dependency Resolution

As described in chapter 5, the first step in the dependency resolution algorithm is

to add a node to the graph for every potential dependency based on the available

meta-information, such as class name or package name. However, in the first step

no direct association is made between the element CandidateCollection and the

potential dependency node. Instead, to determine the right dependency, the analysis

process identifies all candidates via the nodes connected to the CodeObjectProperty

node, the only node to which the CandidateCollection is connected in the first step

as seen in figure 6.6.

6.2 Graph-based Dependency Resolution 107

<<CodeMethod>>

addCustomer

<<CodeMethod>>

addCustomer
CodeInputDependencyCodeInputDependency

CandidateCollectionCandidateCollection
CodeObjectPropertyCodeObjectProperty

-name = Customer

-uniqueId = com.example.Customer

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://abc.com/.../Customer.java

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://xyz.com/.../Customer.java

hasDependencyhasDependency

hasCollectionhasCollection

hasPropertyhasProperty

hasPropertyhasProperty

Figure 6.6: CandidateCollection example

In this picture, two different classes which have nothing in common except for

their names are identified as potential candidates for a dependency. But since

name selection is part of the creative design process conducted by developers, the

names given to classes do not necessarily reflect their functionality, so it is not clear

whether actually they represent a matching dependency. Therefore, it is necessary to

perform an additional step to identify all appropriate candidates. This is achieved by

gathering from the graph and the Lucene index all available information to determine

which candidates match. The ones that do not match based on this information

are omitted from the collection node of potential candidates. Examples of the

type of information used in this steps are the called methods, information from the

FunctionCallDependency node, access to global variables, the name of the author,

the URL and the popularity (i.e. the number of incoming relationships from other

CandidateCollection nodes).

108 Chapter 6. Environment-Independent Harvesting

The methods regarded as “called methods” are not just those from the currently

analysed element, such like a method. Rather all methods called by the whole class

are considered. Each method call is analysed to check whether a) the method is

available to call and b) if the method signature matches the call parameters. If

the method is not available or the method signature does not match the call, the

class is omitted from the candidate list. The only exception is when a call to a

FunctionCallDependency matches, but all other method calls from other parts of the

origin class do not. In this case, we add the class to the candidate list because it is an

appropriate candidate for the actual method call. If no candidates can be identified, it

is necessary to use several dependent classes to obtain a complete component for the

origin class, for example, by restructuring or adaptation. Even if this does not lead

to the “as-is” reuse of the software it could still provide a good reference example.

The same process is performed for global variables, but with the exception that

they are always added to the candidate list if they are available regardless of the

visibility of the variables. As the method calls and the accessed variables are the only

factors that influence whether a class can be compiled, they are also the only criteria

used to determine whether the class is added to the candidate list. In fact, this only

requires a restructuring of the graph, because even if a class does not make it into

the candidate list, it will still retain its connection to the CodeObjectProperty node.

Only an additional association of type isCandidate is created between the candidate

collection and the class CodeComponent node, as seen in figure 6.7.

6.2 Graph-based Dependency Resolution 109

<<CodeMethod>>

addCustomer

<<CodeMethod>>

addCustomer
CodeInputDependencyCodeInputDependency

CandidateCollectionCandidateCollection
CodeObjectPropertyCodeObjectProperty

-name = Customer

-uniqueId = com.example.Customer

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://abc.com/.../Customer.java

<<CodeClass>>

Customer

<<CodeClass>>

Customer

-url = http://xyz.com/.../Customer.java

hasDependencyhasDependency

hasCollectionhasCollection

hasPropertyhasProperty

hasPropertyhasProperty

isCandidateisCandidate

Figure 6.7: CandidateCollection example

Despite these steps it is still not guaranteed that potential dependencies will be

correct. However, by reordering the classes connected to the node, containing the

properties of the classes, direct “reuse” candidates will be selected first. All other

forms of information, such as the name of the author, are used to determine the order

of the remaining candidates. Nevertheless, since in most cases dependencies occur

between classes within the same project, their root URLs in the database are likely to

be the same. Failing that, they are likely to be located in a close project, so only the

project names in their root URLs are likely to differ. This can be established from the

generated uniqueid fields. Furthermore, in many cases a single developer wrote the

classes within a component, so it is also likely that author name, if available, is the

same. Finally, the popularity of a class is an indicator that it is likely to be a correct

dependency. If a class is referenced by many CandidateCollections it is likely to be

of high quality since it has been used and trusted by many other developers. However,

110 Chapter 6. Environment-Independent Harvesting

a complicating factor is the version history of a class. One class with the same name,

the same package, the same methods and the same author as another class might

be a new version of that class containing bug fixes. This cannot be determined

automatically from only the source code, however. Additional information about

versioning is needed, which is sometimes available from the comments. Alternatively,

humans needs to be integrated into the process to provide their judgment about the

quality of a class. DAISI therefore contains simple community features which allow

users to vote on the quality of a candidate via a like/dislike mechanism. The current

version of this feature is very basic and can be improved in many ways. For example,

it would be useful to not only be able to vote for a component, but also to influence

further development steps by giving feedback about discovered bugs and providing

hints about the structure of components etc.. Such capabilities could help establish

whether components are worthy of reuse “as-is” in other systems

In contrast to the case where a list of potential candidates based on names already

exists, sometimes there are no classes connected to the CodeObjectProperty node. In

this case, the information about the called methods is again used to search for classes

which have the required signature. Of course, there is a chance that this search

returns results where only the method signature matches but not the functionality.

Therefore, the user has to check the source code carefully to determine whether the

required functionality is provided. The community functionality could also be used

here to find matching dependencies. Moreover, this will improve the quality of the

results because if a user declares that the first candidate dependency does not match,

the second candidate can be carefully examined to see if it is a related class. In

the long run it would be possible define a process which periodically identifies all

components with poor scores and removes them. Alternatively it would be possible

to resolve the dependencies using a test-driven approach, similar to the test-driven

search of Hummel [HA04].

6.2 Graph-based Dependency Resolution 111

Regardless of how candidate components are determined, another advantage of this

approach is that it is resilient to repository location changes. It is not uncommon for

open-source projects to be moved from one location on the internet to a new one. A

good example is the closure of the Google Code Projects site in 2016 in which all

projects were moved mainly to GitHub. In this case, all resolved candidates and their

URLs are no longer valid and accessible. Nevertheless, replacement classes are often

available to ensure the compileability of the project. Of course, over time, the classes

at the new location can be analysed and added again to the candidate list, but in the

meantime other classes are often available to substitute for the temporarily missing

classes. Also, this approach means that the system is less affected by zombie records.

This was for example the reason for the ultimate failure and shut down of the well

known UDDI repository which was built to provide a “yellow pages” system for web

services [Atk+09].

7. Dependency-Aware Searches

There’s nothing that cannot be found

through some search engine or on

the Internet somewhere.

– Eric Schmidt –

Although crawling and parsing are critical elements of a search engine, the part

that end users directly experience is the query language. Query languages are there-

fore the gateway through which users access the functionality offered by search

engines and thus have a major influence on their satisfaction with the service pro-

vided [CMS10]. However, today code search engines typically support only simple

keyword-based queries, as revealed by Bajracharya and Lopes [BL12a] or Panchenko

et al. [PPZ11], giving them little if any context information to identify components.

Much more sophisticated forms of queries are needed to allow search engines to

properly interpret keywords and find the optimal candidates for the problem in hand.

This chapter focuses on the query language developed to support dependency-aware

searches based on the graph-based code index described in the previous chapter.

114 Chapter 7. Dependency-Aware Searches

7.1 DAQL

In programming languages, identifiers are used to designate a wide variety of artefacts

ranging from packages and classes through methods and interfaces down to variables

and constants. Therefore, without any further information a keyword in a query could

match any identifier stored in the document schema used to represent components in

the index. Most code search engines today therefore provide features for defining

more context in the query languages. For example, in the Koders query language it is

possible to indicate whether a keyword in a query should match to a class, a method

or an interface using the the prefixes “cdef:” “mdef:” or “idef:” respectively. It is

also possible to force the stemming of the keyword using the “*” character at the end

of a keyword. However, the study by Bajracharya and Lopes [BL12a] showed these

features are very rarely used (i.e. only 7% of the analysed search queries exploited

these features)

The main reason why these prefixes are so rarely used at Koders is that 97% of the

queries are issued by first time users who are unfamiliar with Koders query language.

While it is essential to offer a rich set of prefixes for specifying how keywords should

be interpreted, it is also important that the query language needs to be intuitive and

simple to learn. For this reason, DAISI’s query language for dependency-aware

searches has been carefully designed as a conservative extension of the simple, yet

powerful, Merobase Query Language (MQL) [Hum08]. The new, enhanced version,

which we refer to as DAQL (Dependency Aware Query Language), is a conservative

extension in the sense that all valid queries in MQL are also valid queries in DAQL

[SA15]. In other words, DAQL subsumes MQL. This, not only makes the language

accessible to users already familiar with the MQL, it also ensures that the set of

queries that can be defined using DAISI is a proper superset of those that can be

defined using the original Merobase technology.

7.1 DAQL 115

Table 7.1 shows the set of prefixes supported in the DAQL query language.

Prefix Kind of Search

method search within the method index
comment search for the keywords only within the comments
url search for components of a specific URL
lang search for components in a specific language
id search by the id of a node
mql old MQL search of the Merobase (added automatically)
defs new kind of search

Table 7.1: Prefixes for the different search capabilities

The simplest prefixes are “url:” and “lang:” since these simply cut down the scope of

a search to components written in a specific language or originating from a specific

URL. The prefix “comment:” exploits the fact that DAISI separates the comments

from the code so users can search for keywords that appear only in the comments.

This provides a very simple form of natural language processing, but more sophis-

ticated mechanisms could easily be added in the future. The prefixes “mql:” and

“defs:” are used to explicitly indicate whether a query should be interpreted as an

old MQL query or as a new DAQL query. If neither is added, “mql:” is taken as the

default. So for example a query for a CustomerManagement system like

CustomerManagement(

getCustomer(int):Customer;

addCustomer(Customer):void;

udpateCustomer(Customer):Customer;

)

will be identified as an MQL query and the search performed with the original

Merobase semantics. The automatic detection of MQL queries takes place using

116 Chapter 7. Dependency-Aware Searches

regex pattern “.*(.*(.*).*).*”. Thus, at a minimum of two opening brackets and two

closing brackets must occur in the query, as it only makes sense to search via the

MQL if a minimum of one method is specified in the query. This search request is

then mapped to the methodSignature and similar fields of the Lucene index mainly

according to the original Merobase algorithms. Due to some minor changes we have

made to the underlying index structure, we also had to slightly adapt the original

algorithms.

To allow queries to leverage the relationship information in the graph database, DAQL

divides them into two distinct parts, the first part dealing with class definitions and

the second part dealing with relationships. Both parts have to be introduced by their

own prefixes. Class definition are introduced by the prefix “defs:” in the intuitive,

but extended, MQL style while relationships between classes are introduced by the

prefix “deps:”.

In DAQL, the same query as above, but extended with the information that the

Customer Management system needs a dependency to a Customer class, would have

the form:

7.1 DAQL 117

Defs:{

C1:CustomerManagement(

getCustomer(int):Customer;

addCustomer(Customer):void;

udpateCustomer(Customer):Customer;

); C2:Customer(

getName():String;

);

}

Deps:{

C1→C2;

}

As this example illustrates, DAQL uses the same formatting style as MQL concerning

class definitions except that every class definition is extended with an identifier, “C#:”,

where the “#” represents a counter value. The “C#” identifier not only assigns the

following MQL query fragment a unique number, it also identifies it as a class. It is

also possible to identify the construct as an interface using the “I#” prefix. The unique

identifier is used afterwards in the optional “deps:” segment of the query where

the desired relationships between the classes and interfaces are specified. Several

different types of dependencies are supported such as the “use”, the “extends” and the

“realizes” relations. To represents the different types of relationships between classes,

DAQL uses different types of arrows as seen in table 7.2. These were designed to

roughly resemble the symbols for the corresponding relationships in the UML

118 Chapter 7. Dependency-Aware Searches

Relationtype Example

Association C1 -> C2
Extension C1 -|> C2
Realisation C1 - -> C2
Method-Call C1.addCustomer() -> C2.getName()

Table 7.2: Relation types within the query

Thus, in the query above, the CustomerManagement class should somehow “use”

a Customer class somewhere in its body. In terms of method calls, it is currently

only possible to specify which methods have to be called from another method as

illustrated in the example. This specifies that the method getName() has to be called

from within the method addCustomer(), to determine whether or not a customer is

already in the data set. Therefore, currently it is not possible to specify that a method

call has to occur somewhere in the code of a class.

Nevertheless, this simple set of relationships allows most search scenarios to be

supported and quite complex queries to be formulated. In particular, the ability to

formulate search queries which are able to return multiple classes, obviates the need

for users to perform separate searches for every desired class and evaluate whether

the separate results fit together and/or need adaptation. The only disadvantage of

this kind of query is that they can became quite long and complex. To counteract

this problem a mechanism for defining queries in a graphical form is presented in

chapter 8.2.

7.2 Search Types

Now that the different data sources (i.e. Lucene indexes, graph database) and the

DAQL query language has been defined in this section we present the main search

types supported by DAISI.

7.2 Search Types 119

Type 1: Keyword-based search

The simplest and yet still one of the most common types of searches is the simple

keyword-based search. For this kind of search the query consists only of one or

more keywords, without any prefixes and no pattern matches. Such searches are

performed only on one index, the main Lucene index containing the information

of the crawled classes in the content and comments fields. Since Lucene is the

underlying engine, the Lucene algorithm is used to rank the results based on how

many of the query keywords are included and how often. Therefore, the top-ranked

result contains the most query keywords and / or the query keywords occurring most

frequently. However, the “comment” field has a lower weighting since the source

code is normally the main point of interest of the user.

Type 2: Comment-based search

Like keyword-based searches, this kind of search is performed only on the Lucene

main index, but limited to the comments field. The actual technical code is not taken

into account in this case. This type of search therefore essentially represents a simple

type of natural language analysis, and much more sophisticated natural language

processing approaches could be included in the future. The popularity of natural

language searches is reinforced by studies of the log-files of code search engines

which showed that even developers likes to search for code in natural language such

as “How to validate a number” to find components which validate a number [BL12a].

However, to include more advanced algorithms it would be also necessary to provide

a way for the search engine to detected if natural language processing is desired in a

query.

120 Chapter 7. Dependency-Aware Searches

Type 3: Method search

Another more technical type of search is focuses on specific parts of the source code,

the methods. The prefix “method:” in a query forces the search engine to explicitly

search for methods that match the keywords following the prefix. In contrast to

the signature-based search queries of MQL, DAQL method searches do not have

to have a specific form like addCustomer(Customer):void;, or be embedded in a

specific class context. Instead, DAQL allows method searches to be formulated

like normal keyword-based searches where the different terms can be written in

arbitrary order. This is possible because, in contrast to the previous two searches,

method searches are performed on a separate method index. This stores information

about different aspects of methods in different fields such as a multi-field for every

parameter etc. This has the advantage, compared to the original signature-based

search technology of Merobase, that methods can also be matched which do not

satisfy all the constraints of the search query such as, for example, methods which

have a return parameter that is not specified in the search query. The signature-based

search approach requires method signatures in the index to exactly match the search

query. In contrast, DAQL allows keywords to appear in any order in the method

signature (name, parameter, etc.) and uses special prefixes to define what role they

should play in the method. These prefixes include “ip:” for input parameters, “op:”

for output parameters or “mn:” for the method name.

Type 4: Interface-based Search

This type of search employs the interface-based search approach implemented in

the original version of the Merobase search engine, described by Hummel [Hum08].

Interface-based searches essentially looks for components that realize an interface

described in an MQL interface description, including method names and signatures.

For this purpose Merobase’s Lucene index contains a set of carefully defined fields

7.2 Search Types 121

which stores the name of the classes as well as each individual method signatures.

The search process simply regards the individual method-signatures and the name

as “keywords” and perform a search for them in the class index. The key trick is to

focus on the fields name and methodSignature, but with a lower boost for the name

field as users are usually more interested in the methods than in the name [Hum08] in

this type of search. However, Hummel identified several weaknesses of the interface-

based search approach in his thesis. One of the weaknesses is that Lucene returns

results even when some of the methods contained in the query are not present, so

that the user has to perform additional searches. The other weakness is that Lucene

does not allow information in the methodSignature fields to be tokenized. Again this

means that the information in the methodSignature field must exactly equal the query

for a match to be recognized. This means that acceptable (i.e. relevant) candidates

are sometimes missed, for example, if they have an output parameter which is not

specified in the search query. Nevertheless, despite these weaknesses, Merobase

interface-based searches significantly increased the precision and recall of this type

of search compared to other code search engines that existed at the time.

Type 5: Dependency-Aware Search

The final type of search is dependency aware search which is supported only in DAQL

and is driven by a slightly different process since additional steps are performed.

Particularly as graph-based searches can be quite costly, the first step in a dependency-

aware search is a pre-search in the Lucene class-index to determine the best entry-

nodes into the graph. This pre-search is a normal interface-based search of the kind

just described. However, because DAQL allows searches on multiple classes, the

query is first analysed to identify the “central” class – that is, the class with the most

outgoing relationships to other classes defined in the “deps:” section of the search

query. For example, the query for the CustomerManagement system also contains

the Customer class and the TaxType to determine the tax category of the customer.

122 Chapter 7. Dependency-Aware Searches

Defs:{ C1:CustomerManagement(

getCustomer(int):Customer;

addCustomer(Customer):void;

udpateCustomer(Customer):Customer;

);

C2:Customer(

getName():String;

);

C3:TaxType(

getTax(Customer):TaxType;

);

}

Deps:{

C1→C2; C1→C3

}

Here the class C1 (CustomerManagement) has two outgoing relations to the other

classes, C2 (Customer) and C3 (TaxType), whereas the other classes have no outgoing

relationships. Therefore the class C1 or CustomerManagement is the central class

in the query and is used as the basis for an interface-based search on the Lucene

class index. The top-ranked results of this search are then taken as entry points in

the graph to check if the classes are connected to other classes with a name similar

to Customer and TaxType which contains the specified methods. This process is

also repeated for all the other existing relationships specified in the search query.

However, if the relationships are extends relationships or method call relationships,

this is taken into account for the search of the “central” class in Lucene.

In addition to the different base search types, it is, of course, possible to add additional

7.3 Classification using Graph IR Methods 123

constraints to search queries such as constraints on the “lang” or “url”. These

conditions affects only the number of results, although in our current prototype index

“lang” currently has no effect on the result size since it contains only Java source

code. Nevertheless, the fields needed to support other programming languages in

the future have already been integrated, based on the approach taken in the original

version of Merobase,

7.3 Classification using Graph IR Methods

Although this approach could be regarded as a graph IR method, such a classification

would not be completely accurate because DAISI does not exclusively use graphs. It

also uses text-based Lucene indexes to select the starting points for graph searches

and thus to improve the efficiency and effectiveness of the overall process. More

specifically, it uses the Lucene indexing approach from Merobase since this was

specifically developed to support semantic code searches that are “aware” of the

special meaning of the text in source code. Merobase’s Lucene index provides the

optimal basis for finding a set of candidate components for deeper analysis using

graph search techniques. However, the downside of using Lucene in this way is

that its underlying scoring mechanism is not ideal for ranking software components

according to their functional relevance. Nevertheless, this is not a big problem in

out context because (a) the results from the initial Lucene search are only reduced

by the graph-based search (i.e. no new components are ever added) and, (b), nodes

with many incoming connections do not necessarily need to have their score boosted.

Whereas in general purpose Internet searches incoming relationships are regarded

as an indicator of the importance of a web page, in the field of software component

retrieval they only provide information about the quality of a component, not about

its functionality (and thus relevance).

124 Chapter 7. Dependency-Aware Searches

Class A Class A

Class B Class B

Method A Method B Method A

Method B

hasMethod hasMethod

extends extends

hasMethod

hasMethod

Figure 7.1: Difference of if a method is inherited or not

A direct implementation of the old search mechanism would only reduce the number

of results, but as already mentioned, would not improve the precision or recall. This is

why the search mechanism implemented in DAISI has been changed minimally, but

in a way that has a significant impact on the results. Instead of combining individual

conditions using “AND”, as in Merobase (i.e. to required that a result must contain

a method A and method B), in DAISI they are combined by “OR”. In other words,

a class is only required to contain method A or method B, but not both. At first

glance, this might not appear to be a significant change, but the scores of results

that contain both methods are boosted by Lucene. It also means that components

returned in a search might not directly meet all of the individual conditions specified

in a query. While this might be a significant problem for normal Lucene searches,

however, in our context it is actually an advantage because it includes components

that provide the required features indirectly (e.g. via inheritance). The analysis of

the graph determines whether such cases are relevant.

8. Diagrammatic Query Definition

I have discovered that there are two

types of command interfaces in the

world of computing: good interfaces

and user interfaces.

– Daniel J. Bernstein –

In 2009 Brandt et al. came to the conclusion that a modern search engine needs

to offer ways of specifying search queries that go beyond traditional, mainstream

database systems [Bra+09]. This applies to code search engines as well as normal

databases because the complexity of code search queries can grow quickly, especially

when relationships between classes are involved. Providing simpler, more efficient

ways for users to express queries not only increase the chances that their searches

will ultimately be successful, it can also lead to changes in how and when developers

search for reusable code within the overall software engineering process.

126 Chapter 8. Diagrammatic Query Definition

8.1 The Search Event

The studies of the log-files of two code search engines [PPZ11] [BL12a] mentioned

in the previous chapter showed that most search queries were formulated in ways that

reflected the implementation problem that users were tackling at the time. Sim et al.

also came to the same conclusion in their study [Sim+11], but they also observed that

developers do not use search engines in a systematic way at pre-planned points in the

development process. Instead, they search for code in totally unplanned ways. Users

usually only resort to code search engines in the implementation phase when most of

the code already exists and the probability of finding components that can be reused

“as-is” is slim [HW07] [HDK06]. At that stage in the development process, the only

viable option is usually ad hoc reuse in which the discovered components have to be

modified in some way to fit to the existing application. However, modifying code is

costly, and can often be more expensive than directly writing the code from scratch

[HW08]. As Sommerville observed, since systematic software reuse should be a key

ingredient of all software engineering processes, a better way of integrating software

search into the development process could have a massive impact, especially at

the early stages of development [Som01]. In particular, if software reuse could

be integrated seamlessly and performed in a systematic way, many of the current

problems caused by ad hoc reuse could be avoided.

8.1.1 Reuse Scenarios

Before discussing how component searches can be integrated seamlessly into early

parts of the software development process, in this section we first identify the

scenarios and uses cases in which searches are likely to be helpful. Although the

question might appear similar to the question “why do developers search for code”,

developers’ underlying motivation is not the only factor that determines how and

when they search for code. The overall nature of their specific use cases is also a

8.1 The Search Event 127

big factor. For example, a user’s motive for performing a search may not be to find

directly reusable candidates, but also to find the reason why an exception is thrown

in existing code.

In his book [Som01], Sommerville pointed out that code searches can occur at various

stages of the development process and presented the outline of a re-use process that

takes into account different kinds of re-use. He also observed that the advantages of

such a process would be higher reliability, lower risk (i.e. lower uncertainty in new

development project), more effective use of specialists, compliance with standards

and, as a consequences of all these factors, lower costs. To identify the steps involved,

he divided the re-use process into three different categories:

• reuse of applications: a complete system is integrated and re-used without

adaptation,

• reuse of components: individual subsystems or single objects are reused

without change,

• reuse of functions: components, which contain several functions (e.g. a date

converter), are re-used.

Here, the re-use of applications means that a complete software system is integrated

into a new system, or the new system is connected to the reused system. This

mainly happens for example in the area of databases, since databases are typically

stand-alone systems accessed in a loosely coupled way from other systems. However,

developers usually make decisions to use databases before the implementation of

their own system starts so that they can be sure to create and use the database

management system according to its specification.

Component searches can be performed as part of both planned and unplanned

reuse. The planned reuse of components occurs, for example, when the decision

is made to use third-party libraries, or libraries which were developed in previous

128 Chapter 8. Diagrammatic Query Definition

projects. Such decisions are typically made during the planning phase, using prior

experience to select which existing functionality in self-built libraries can usefully

be incorporated into the new system. This can be mainly observed in the context of

database connectivity where developers frequently choose to integrate e.g. Hibernate

to access databases from their system. Such choices made at the beginning of a

project have in a lot of cases direct influence on the architecture and overall structure

of the system under development.

In contrast, the unplanned (i.e. ad-hoc) reuse of components occurs when developers

come up against an unexpected problem such as converting data from one format to

another. In such cases, they will probably either search for source code to parse the

data, or search for existing libraries that provide the required functionality.

The reuse of functionality almost always takes place in an unplanned way since at

this level, searches primarily focus on snippets of source code. This usually happens

during the implementation phase when developers address specific coding challenges,

like the one above.

As well as identifying these categories, Sommerville also specified the criteria that

need to be fulfilled in all three case to make reuse possible -

• it must be possible to search for appropriate components which have to be

categorized correctly,

• users of re-useable components must be convinced they behave as indicated

and are reliable,

• the components need to be well documented so that developers can understand

their functionality.

In addition to these criteria, Sommerville also identified several issues which can

arise during the process of re-use. One of the major potential problems he identified

are maintenance costs because if a component’s source code is not written by the

8.1 The Search Event 129

developer himself, maintenance becomes significantly more difficult. The side

effects that occur due to changes in the new code can sometimes be particularly

hard to detect. Theoretically, a public available library should be maintained by the

developers, but unfortunately this is the exception rather than the rule. There are

many examples of open source libraries offering very useful features which are no

longer maintained. This, of course, raises significant doubts about the quality of a

library in the minds of developers, and often causes them to avoid a component even

though it offers precisely the functionality they need.

Another issue Sommerville identified is the presence of large gaps in the availability

of tools that support re-use. This issue has been alleviated to a large extent since

2001 by the release of many different code search engines and recommendation tools

as IDE plug-ins.

Finally, the last issue identified by Sommerville is the psyche of the developers and

the importance of the “not-here-invented” syndrome [All+88]. Many developers

do not trust the skills of other developers and prefer to develop all parts of their

systems themselves, especially smaller components, regardless of the time they need

to develop and maintain them [Som01].

In contrast to Sommerville, who defined his categories of re-use scenarios in terms

of the size of components, a few years before Sim et al. defined 11 different types of

searches [SCH98]:

1. searches for all uses of a variable or function to assist in impact analysis,

2. searches for function and variable definitions to assist in program understand-

ing,

3. searches to reuse functions, variables or objects,

4. searches for function signatures to call them correctly,

130 Chapter 8. Diagrammatic Query Definition

5. searches for functionality that is known to exist, but where the name may not

be known,

6. searches identify misbehaving code for maintenance (i.e. bug location),

7. searches to track the usage of a variable,

8. searches to find an output string as the starting point for a bug hunt,

9. searches to find all uses of an entity being removed to eliminate dead code

10. searches to analyse variables when porting code,

11. searches to examine functions when adding new features.

Most of these types focus on local searches, since at the time Internet-based search

over the web or distributed repositories was only just emerging. In contrast, in

2008 Umarji et al. reduced this set of search types to just 9. However, they ig-

nored local searches, so all their search types focus on public available repositories

[USL08]. Umraji et al. also introduced the idea that types should be characterized

by two dimensions – motivation and size. The motivation dimension addresses

whether a search is being performed to support the “as-is” reuse of components,

to find reference examples, or to find bugs in code. As its name implies, the size

dimension addresses the magnitude of the reused artefact, and is subdivided into

three further subcategories, code-blocks (e.g. like wrappers or parsers) subsystems

(e.g. like algorithms or libraries) and systems (e.g. complete stand-alone runnable

applications).

In terms of “as-is” reuse, in the motivation dimension Umarji et al. identified 4

different types of artefacts as the subject of searches:

1. code snippets, wrappers or parsers,

2. data structures, algorithms and GUI widgets to be incorporated into an imple-

mentation,

3. libraries to be incorporated into an implementation,

4. systems to be used as the starting point for an implementation.

8.1 The Search Event 131

In terms of the “find reference” scenario in the motivation dimension, they also

identified 4 different types of artefacts as the subject of searches:

1. blocks of code to be used as an example,

2. examples of how to implement a data structure, algorithm or GUI widget,

3. examples of how to use a library,

4. similar systems to be used as a source of ideas.

Only one of Umarji et al.’s search types, the ninth “Confirmation and resolution

of defects”, is not related to the “as-is” reuse or “reference example” motivations.

Instead, this type focuses on the process of detecting bugs in a system and establishing

the meaning of the error messages. A closer look at Umarji et al.’s search types

reveals that only the first two types in each dimension occur when developers are

currently facing a problem. Such cases, of the kind identified by Stolee et al.’s study,

correspond to true classic reuse scenarios [SED14] and to a certain extent are already

supported by today’s search engines. The other types involve much more complex

search scenarios, such as exploiting the relationships between different classes and

are basically not supported today. Only searches for existing libraries are more or

less covered by the big, mainstream search engines like Google, Bing or Yahoo,

as long as they are well documented so that they can be discovered using normal

keyword-based searches. However, such documentation normally only exists for the

larger and more widely used libraries.

The search types related to the discovery of existing data structures are currently

very limited since no existing search engine supports a sufficiently powerful query

language for specifying the required relationships and/or structures. Consider, for

example, the second “how to implement a data structure” in the list of search types

described above. This is a case where, in general, several preliminary steps have to be

performed such as (1) analysing the requirement and extracting the domain objects,

(2) creating a diagram describing the relationships between these domain objects,

132 Chapter 8. Diagrammatic Query Definition

1. Specification

2. Design & Implementation3. Validation

4. Evolution

Figure 8.1: Design -> Implementation -> Validation Process

(3) adding any necessary technical classes to the class diagram, (4) implementing

the classes and (5) validating the implementation. Such steps are performed more or

less universally regardless of the underlying process, like the waterfall process, the

RUP or another process. The only difference between such processes is the amount

of time spent on each of these steps. Also, in the waterfall process the steps occur

only once, whereas in agile processes these steps are performed in several iterations.

However, the Design, Implementation and Validation steps are always performed at

some point.

Searches for existing code components typically occur during the implementation

phase, when developers are aware of the structure, names and the functionality of

the parts of the system from design documents such as UML diagrams. Therefore,

rather than addressing the question of “how to implement a data structure” directly

by building the parts from scratch, it would be helpful if suitable implementations

could be found using the information in the UML diagram directly. As well as

saving the time that would be needed to implement the component from scratch,

such a capability could also reduce the problem of component integration since the

accompanying development effort can focus on adapting discovered components.

8.2 UML-based Search 133

Moreover, rather than performing such code searches in the implementation phase

they could be performed at the end of the design phase when the UML design

diagrams are created. This means that the output of the design phase would not only

be a design in the classic sense (with the accompanying documentation and models),

but also a collection of candidate components for implementing the system. Such

an approach would also fit well into agile processes where the different steps are

performed several times, since designs are created at different levels of granularity,

throughout the process.

The biggest challenge to provide such a search capability is to ensure the relevance of

search results. Since the results of such searches will often be groups of classes, rather

than individual classes, it is not only essential that the individual members of the

group are sound and of high quality, it is also essential that they fit together correctly

to meet the user’s needs. The time saving benefits of this kind of search significantly

decreases if the developer has to search for every single class individually and has

to adapt and connect all the discovered classes to each other manually. The next

section therefore presents a new type of search capability, driven by diagrammatic

(i.e. UML-based) queries, which considers inter-class relationships to deliver groups

of components that satisfy the user’s needs.

8.2 UML-based Search

The UML is the most widely used modelling language for describing and visualizing

designs of software systems. It is commonly used before any line of code is written

to model and plan the structure and architecture of a software system. Thanks to

its ability to display almost all processes and structures within software systems

in a programming-language independent way, the UML is used in all kinds of

software development processes. UML diagrams therefore provide the ideal input

134 Chapter 8. Diagrammatic Query Definition

for searching for complex software structures and support reuse at a higher level

of granularity than existing search engines. Nevertheless, to support UML-based

diagrammatic search queries it is necessary to transform UML diagrams into the

DAQL query format described in chapter 7.

Although the UML visual syntax is standardized, this is not the case for the underly-

ing file format. As a result, many of the underlying file formats used by different

UML tools are incompatible. One of the most widely used and freely available

formats is the EMF (Eclipse Modeling Framework) file format defined by the Eclipse

Foundation. The prototype UML search capabilities developed in this thesis therefore

uses the EMF format to describe UML-based queries. Only UML class diagrams

are supported since these contain all the information that can currently be used to

perform searches, like the extends, realizes or uses relationships between classes

and interfaces. Other UML diagram types such as sequence diagrams also contains

useful information about methods, but since the goal of this thesis is to exploit

structural information, the current focus is on class diagrams. Most open source

UML modelling tools, such as Papyrus or UML Designer support the EMF format.

Therefore, it is possible to create UML queries in a conventional UML modelling

tool and export them to the DAISI search engine.

To convert the EMF representation of a class diagram to a DAQL query, the different

elements of the UML diagram need to be mapped to different parts of a query. The

first step is to extract classes from the diagram because classes are the most important

elements. Since classes and similar concepts like enums or interfaces are represented

in the EMF data structure as “eClassifier” elements this can easily be achieved

by simply collecting all instances of “eClassifier”. The specific kind of classifier

represented by an “eClassifier” element is stored in the attribute “xsi:type”. For

example, a class has the type ecore:EClass. Interfaces are not designated by this

attribute, however, but by an additional Boolean “interface” attribute which has the

8.2 UML-based Search 135

value “true” for interfaces and “false” otherwise. While the different kinds of classes

are being extracted, a counter is internally incremented to facilitate the creation of

unique DAQL keywords.

<?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>

< e c o r e : EPackage xmi : v e r s i o n =" 2 . 0 " xmlns : xmi=" h t t p : / / www. omg . org /XMI"

xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "

xmlns : e c o r e =" h t t p : / / www. e c l i p s e . o rg / emf / 2 0 0 2 / Ecore "

name=" r o o t E l e m e n t " nsURI=" h t t p : / / / r o o t E l e m e n t . e c o r e "

n s P r e f i x =" r o o t E l e m e n t ">

< e A n n o t a t i o n s s o u r c e =" h t t p : / / www. e c l i p s e . o rg / uml2 / 2 . 0 . 0 /UML">

< d e t a i l s key=" o r i g i n a l N a m e " v a l u e =" RootElement " / >

</ e A n n o t a t i o n s >

< e C l a s s i f i e r s x s i : t y p e =" e c o r e : EClass " name=" CustomerManagement ">

< e O p e r a t i o n s name=" addCustomer " o r d e r e d =" f a l s e " lowerBound=" 1 ">

< e P a r a m e t e r s name=" c u s t o m e r " o r d e r e d =" f a l s e " lowerBound=" 1 "

eType=" # / / Customer " / >

</ e O p e r a t i o n s >

< e S t r u c t u r a l F e a t u r e s x s i : t y p e =" e c o r e : ERefe rence " name=" c u s t o m e r "

o r d e r e d =" f a l s e " lowerBound=" 1 "

eType=" # / / Customer ">

</ e S t r u c t u r a l F e a t u r e s >

</ e C l a s s i f i e r s >

< e C l a s s i f i e r s x s i : t y p e =" e c o r e : EClass " name=" Management " / >

< e C l a s s i f i e r s x s i : t y p e =" e c o r e : EClass " name=" Customer ">

< e O p e r a t i o n s name=" getName " o r d e r e d =" f a l s e " lowerBound=" 1 ">

< e P a r a m e t e r s name=" name " o r d e r e d =" f a l s e " lowerBound=" 1 "

eType=" e c o r e : EDataType

h t t p : / / www. e c l i p s e . o rg / emf / 2 0 0 2 / Ecore # / / E S t r i n g " / >

</ e O p e r a t i o n s >

</ e C l a s s i f i e r s >

</ e c o r e : EPackage >

Listing 8.1: ecore model of the CustomerManagement example

More specifically, every element is internally identified by C1 . . . CN identifiers for

classes or I1 . . . IN identifiers for interfaces. In the next step, the individual methods

are extracted from each class. This is achieved by extracting all sub-elements of type

136 Chapter 8. Diagrammatic Query Definition

“eOperations”. These elements themselves have sub-elements of type “eParameters”

which represent the input and output parameters. For our purpose, only the types of

the parameters stored in the eType attribute are used.

Once all information about the individual classes has been extracted from the UML

diagram, the final step is to extract the information about the inter-class relation-

ships. This information can be found in the “eStructuralFeatures” elements of type

“ecore:eReference” and is used to build the “deps:” section of the corresponding

DAQL query. No such element exists for interfaces, however, since interfaces as

well as superclasses are both referenced via “eSuperTypes” elements. To extract

the relationship information, therefore, it is necessary to look at the type of the

“superclass”. If it is a normal class, the relationship between the two classes is

“extends”, whereas if it is an interface the relationship is “realizes”.

Defs:{ C1:CustomerManagement(

addCustomer(Customer):void;

);

C2:Customer(

getName():String;

);

I1:Management()

}

Deps:{

C1→C2; C199KI1

}

As can be seen from the above example, the result is a DAQL query which can be

used to drive a dependency-aware search via DAISI. The only problem that can occur

8.3 Search User Interface 137

<<Subject>>

CustomerManagement

<<Subject>>

CustomerManagement

-addCustomer(Customer)

CustomerCustomer

-getName():String

<<Interface>>

Management

<<Interface>>

Management

Figure 8.2: KobrA representation of the CustomerManagement example

with this kind of search is the size of the UML diagram. The larger the UML diagram

the greater the search time and the greater the likelihood that the focus of the search

(i.e. the class the user is primarily interested in) could be mistaken. This means that

the initial Lucene search will be performed based on the “wrong” class, from the

perspective of the developer. A strategy for tackling this problem would be to use a

methodology such as KobrA [Atk+08] which explicitly calls for the identification of

the subject class of all class diagrams, and explicitly advocates a modelling approach

where all the information in a model revolves around that individual subject.

8.3 Search User Interface

To provide a simple and intuitive interface to the dependency-aware search capabili-

ties as part of this thesis a Web 2.0 front-end was developed.

Like other search engines, the front-end minimizes obfuscating information on the

starting page. Therefore, the homepage only contains a text box where the query

can be entered, a help button to receive information about the query language and a

bar along the top, listing the different types of search that can be performed. These

categories are normal DAQL text-based searches, UML-based searches of the kind

described in the previous section, and special “drag an drop” search which will be

138 Chapter 8. Diagrammatic Query Definition

Figure 8.3: Search result list

described later in this section. The search results are presented in the standard style

typical for other code search engines. The default is to show only the first 10 results

on the first page. However, to help to decide which results are worthwhile examining

in further detailed, the result list provides additional information along with the

name of the components – the programming language, in front of the name, the URL

where the component was found and the methods offered by the component. To

reduce the used space and to provide the user with an overview, the methods are

initially hidden, but can easily be called up on demand as shown for the first result in

figure 8.3.

After selecting a result, the user is forwarded to a page presenting the details of the

corresponding component. As shown in figure 8.4, the source code takes centre

stage in the detailed view since this is the ultimate description of the functionality

offered by the component. However, on the left hand side, it is possible to search

for dependencies as well since all the included classes in the project from which the

component was obtained. Thus, if a user wishes to see what classes the component

is dependent upon, these are directly accessible from the details page.

8.4 Drag and Drop Search 139

Figure 8.4: Details of a component

8.4 Drag and Drop Search

In addition to the text-based and the UML-based search interface, DAISI offers

another way of defining search queries. This interface is mainly aimed for developers

who do not want to write a complex textual search query, but also do not want to

create a UML diagram. It should also be useful to developers who only want to

search for components in part of an existing UML diagram, but would like to avoid

having to explicitly create a separate UML diagram with just the information they

are interested in for the search. The third interface therefore allows queries to be

assembled using a simple “drag and drop” metaphor. Using this interface, users can

draw the different classes and associations in the typical UML style, but without the

full power (and associated overhead) of the full UML.

As shown in figure 8.5, it is possible to drag the elements in the bar at the top

directly into the drawing area in the middle to assemble a query. Associations can be

created by clicking on an element and dragging the association type that appear in

140 Chapter 8. Diagrammatic Query Definition

the resulting dialog box to the other element to which the relationships needs to be

connected.

Figure 8.5: UI of the “drag and drop” search possibility

These three ways of specifying queries cover all the usual preference of developers.

As with other code search engines, the most expressive way of writing queries is

using the textual language (i.e. DAQL). However, because such queries can quickly

become quite complex, there is a risk that DAISI will face the same problem as other

search engines in which the majority of developers fail to tap its full potential. Since

powerful features that are rarely if ever used will not make a significant contribution

8.4 Drag and Drop Search 141

to software reuse in the long term, the other two more user-friendly search interfaces

make it possible for developers to use these powerful features in more intuitive ways.

This is particularly helpful when multiple relationships needs to be specified in an

unplanned ad-hoc search. With this “drag and drop” user interface developers can

avoid having to learn the technical details of the syntaxes of UML and the underlying

query language.

9. Evaluation

Everything that can be counted does

not necessarily count; everything

that counts cannot necessarily be

counted.

– Albert Einstein –

Any new approach must be critically appraised to evaluate whether it delivers the

claimed benefits. As indicated by the hypotheses list in the introduction, in the field

of information retrieval this largely comes down to demonstrating improvements

in the precision and recall. In this chapter we presents the results of an evaluation

that compares the recall and precision achieved by the new technology, developed

embodied in the DAISI prototype, to Merobase using the metrics precision@10

(P@10) and precision@5 (P@5) [Ort+16]. These metrics evaluate the occurrence

of relevant results in the top 10 and 5 results returned by a search respectively.

However, since it is difficult to compare an approach that is able to handle inter-

component relationships to an approach that is not, the evaluation first compares

their performance on “traditional” search scenarios where Merobase is able to deliver

appropriate results. Merobase is chosen for the comparison not just because the new

technology subsumes its query language but because other leading search engines

144 Chapter 9. Evaluation

of that generation, like Portfolio or Sourcerer, are no longer available. To perform

a fair comparison of the underlying technologies, and not of different repositories,

the same data-set was used to compare their performance. For this purpose we

constructed a repository and an index containing about 500.000 different classes and

1.5 million methods from 30.000 projects, mainly crawled and parsed from GitHub.

This common data-set was used to compare several search examples and realistic

scenarios which frequently occur during software engineering projects.

9.1 Simple Case

The “classic” example used by Hummel to show the benefits of interface-based

search is a Stack containing a pop() and a push() method. Of course, this is a

really simple example and even if the discovered components can not be reused

“as-is”, an experienced developer can normally adapt classes of this scale with ease.

Nevertheless, although Merobase’s interface-based search queries allowed users to

specify what they are looking for much more precisely than previous search engines

they are still rather generic. For example MQL does not allow a developer to specify

that he/she is not interested in any kind of stack, but rather stacks storing a specific

type of item without using the Java generic types mechanism. The developer might

desire functionality to sort the contained items, too, which is much more likely to

be included in a stack of Item objects. However, for this scenario it is necessary to

consider two different use cases. In the first use case the user has already obtained or

developed a class Item and is looking for a Stack class to store instances of it. More

specifically, this use case involves –

a search for a Stack class which is specifically designing to store objects of

an existing class called Item.

9.1 Simple Case 145

In the second use case, however, the user does not yet have the class of the object to

be stored in the stack, but knows that it should have an attribute to store a name and

a method to access this attribute. This case, therefore, involves –

a search for a class, Stack, designed to store objects of a class which has an

attribute to store a name and a method to get the value of this attribute.

9.1.1 Case 1

The first scenario can be handled by the Merobase signature-based search technology

and delivers quite reasonable results since it is possible to define a query for a class

named Stack with push and pop methods having a class called Item as their input

and return parameters respectively.

StackStack

+pop()

+push()

ItemItem

Figure 9.1: Stack - Item simple example

The corresponding MQL query has the following form:

Stack(pop():Item; push(Item));

On the repository used for the evaluation, this search delivers 80 results. However,

closer analysis revealed that only the first three results fully match the requirements

of the user, as expressed in the query, and of these, only the first two can be used

“as-is” without modification. The third result can be made to match the requirements

with minor adaptations and the fourth and sixth can be used as a reference example.

146 Chapter 9. Evaluation

However, the fifth result, which manages Item classes, too, does not manages the

Items in a way of a Stack and therefore do not fulfil the search requirements of the

query

1. Stack

Methods: pop():Item, push(Item), size(), iterator(), main()

URL: http://www.cs.princeton.edu/courses/archive/fall17/

cos126/precepts/Stack.java?highlight=off

2. Stack

Methods: pop():Item, push(Item), size(), iterator()

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/Stack.java

3. RezisingArrayStack

Methods: pop():Item, push(Item), iterator()

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/

ResizingArrayStack.java

4. Lifo

Methods: pop():Item, getSize(), setSize(int), getPremierItem(), set-

PremierItem(Item)

URL: https://raw.githubusercontent.com/joanny/T_P/master/

Crytographie/src/com/iut/LIFO/Lifo.java

http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java

9.1 Simple Case 147

5. Indicator

Methods: setUrl(Item), getUrl():Item, getCall():Item, setService(Item)

URL: https://raw.githubusercontent.com/eschwabe/

interview-practice/master/coursera/algorithms-part1/

stacks-and-queues/StackWithMax.java

6. ViewRequestController

Methods: no relevant

URL: https://raw.githubusercontent.com/hartmannr76/

DogEBooks/master/src/java/controller/requests/

ViewRequestController.java

7. ItemController

Methods: setItem(Item), getItem():Item, getItems(), find()

URL: https://raw.githubusercontent.com/grantbachman/

coursera/master/algorithms_1/QueueDeque/Deque.java

8. Deque

Methods: addLast(Item), removeLast():Item, addFirst(Item),

isEmpty():Boolean, main()

URL: https://raw.githubusercontent.com/grantbachman/

coursera/master/algorithms_1/QueueDeque/Deque.java

The repository actually contains three additional classes which satisfy the constraints

specified in the search query. The only reason why they were not included is

because one or more of the methods has a return parameter. This reveals one of the

weaknesses of the interface-based search mechanism in Merobase resulting from

the non-tokenized fields within the Lucene index. As already mentioned, if the

https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/hartmannr76/DogEBooks/master/src/java/controller/requests/ViewRequestController.java
https://raw.githubusercontent.com/hartmannr76/DogEBooks/master/src/java/controller/requests/ViewRequestController.java
https://raw.githubusercontent.com/hartmannr76/DogEBooks/master/src/java/controller/requests/ViewRequestController.java
https://raw.githubusercontent.com/grantbachman/coursera/master/algorithms_1/QueueDeque/Deque.java
https://raw.githubusercontent.com/grantbachman/coursera/master/algorithms_1/QueueDeque/Deque.java
https://raw.githubusercontent.com/grantbachman/coursera/master/algorithms_1/QueueDeque/Deque.java
https://raw.githubusercontent.com/grantbachman/coursera/master/algorithms_1/QueueDeque/Deque.java

148 Chapter 9. Evaluation

Q0

Q1

Q2

Q3

Q4

Q5

T

T
T

T

E

Q = query variation

T = thought

E = exit

 = documents, information

Figure 9.2: Berrypicking search process [Bat89]

specification of a method in the search query does not fully match the signature

stored in the index no match will be detected by Lucene and the corresponding

component will not be added to the result list. To retrieve these additional components

using interface-based search, it is necessary to change the search query slightly and

explicitly include the return parameters. Possible options are boolean, where the

push method returns “true” if the item is successfully added to the stack and Item

where the item itself is returned unchanged by the method. So, for example, the

query could be changed to –

Stack(pop():Item; push(Item):boolean);

This search query, however, does not include the results of the first search shown

previously. Thus, with signature based search users often have to apply a Berrypick-

ing process [Bat89] as shown in 9.2, where they repeatedly modify the search query

until they obtain acceptable results.

In contrast, the same search, performed as a dependency-aware search in the graph

database delivers all the original results, but includes the three relevant classes not

9.1 Simple Case 149

included in the first search. This is because the new graph-based search engine does

not have this weakness of interface-based search.

1. SLStack

Methods: push(Item):Boolean, pop():Item, peek():Item, isEmpty(), isFull()

URL: https://raw.githubusercontent.com/jedwardblack/

DataStructures/master/StackADT/src/SLStack.java

2. Stack

Methods: pop():Item, push(Item), size(), iterator(), main()

URL: http://www.cs.princeton.edu/courses/archive/fall17/

cos126/precepts/Stack.java?highlight=off

3. Stack

Methods: pop():Item, push(Item), size(), iterator()

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/Stack.java

4. StackWithMax

Methods: pop():Item, push(Item), max():Item

URL: https://raw.githubusercontent.com/eschwabe/

interview-practice/master/coursera/algorithms-part1/

stacks-and-queues/StackWithMax.java

5. Lifo

Methods: pop():Item, getSize(), setSize(int), getPremierItem(), set-

PremierItem(Item)

URL: https://raw.githubusercontent.com/joanny/T_P/master/

Crytographie/src/com/iut/LIFO/Lifo.java

https://raw.githubusercontent.com/jedwardblack/DataStructures/master/StackADT/src/SLStack.java
https://raw.githubusercontent.com/jedwardblack/DataStructures/master/StackADT/src/SLStack.java
http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java

150 Chapter 9. Evaluation

6. ItemController

Methods: getItem():Item, setItem(Item), isMixedItem(), searchItem(String)

URL: https://raw.githubusercontent.com/marembo2008/

seamlesspos/master/src/main/java/com/seamless/

internal/controller/ItemController.java

7. ResizingArrayStack

Methods: pop():Item, push(Item), resize(Integer)

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/

ResizingArrayStack.java

8. Stack

Methods: pop():Object, push(Object), ensureCapacity()

URL: https://raw.githubusercontent.com/xingyuli/

swordess-toy-effectivejava/master/src/main/java/org/

swordess/toy/effectivejava/chapter5/use_generic_type_

first/Stack.java

In the above listing of results, the three additional Stack classes are the third (Stack),

the fifth (StackWithMax) and the seventh (SLStack) result.

Table 9.1 compares the P@10 and P@5 metrics for the two different types of

searches.

MQL

P@5 P@10
0.8 0.4

DAQL

P@5 P@10
1.0 0.6

Table 9.1: P@5 and P@10 metric of the simple Stack search

https://raw.githubusercontent.com/marembo2008/seamlesspos/master/src/main/java/com/seamless/internal/controller/ItemController.java
https://raw.githubusercontent.com/marembo2008/seamlesspos/master/src/main/java/com/seamless/internal/controller/ItemController.java
https://raw.githubusercontent.com/marembo2008/seamlesspos/master/src/main/java/com/seamless/internal/controller/ItemController.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/xingyuli/swordess-toy-effectivejava/master/src/main/java/org/swordess/toy/effectivejava/chapter5/use_generic_type_first/Stack.java
https://raw.githubusercontent.com/xingyuli/swordess-toy-effectivejava/master/src/main/java/org/swordess/toy/effectivejava/chapter5/use_generic_type_first/Stack.java
https://raw.githubusercontent.com/xingyuli/swordess-toy-effectivejava/master/src/main/java/org/swordess/toy/effectivejava/chapter5/use_generic_type_first/Stack.java
https://raw.githubusercontent.com/xingyuli/swordess-toy-effectivejava/master/src/main/java/org/swordess/toy/effectivejava/chapter5/use_generic_type_first/Stack.java

9.1 Simple Case 151

This shows that the DAQL queries have much higher P@10 and P@5 scores than the

MQL interface based search. Of course, it must also be considered that, compared to

other software search indexes, we only have a relatively small index as basis. With a

larger index and thus a higher probability of matching results, the Merobase would

deliver significantly more and better results.

9.1.2 Case 2

In the second use case, the user wants to find both classes, a Stack class as well as

an Item class with certain characteristics. In MQL the user had to analyse all results

of a search for the Stack to establish whether one of them uses a class Item with

the appropriate properties. Alternatively, a user could perform two searches, one for

each class. However, based on the search result above, the user would not be able to

find a component with these characteristics. To obtain matching results which are

connected to an Item class containing a name attribute it is necessary to change the

MQL query by adding either the boolean or the Item return parameter to the push

method .

StackStack

+pop()+pop()

+push()+push()

ItemItem

+getName()+getName()

Stack

+pop()

+push()

Item

+getName()

Figure 9.3: Stack - Item example

To perform the same search using a DAQL dependency aware search, it is only

necessary to change the search query to the following –

Defs:{C1:Stack(pop():Item;push(Item));C2:Item(getName():String)}

Deps:{C1->C2}

152 Chapter 9. Evaluation

This combines the desired constraints on both classes into one search query that

find a perfectly matching pair. The probability that a pair fits together increases

as the number of properties which are required to have increases. For example, in

addition to pop() and push() methods the Stack class might be required to have

other functionality such as sorting, conciliation or similar methods.

1. Stack

Methods: pop():Item, push(Item), size(), iterator(), main()

URL: http://www.cs.princeton.edu/courses/archive/fall17/

cos126/precepts/Stack.java?highlight=off

2. Stack

Methods: pop():Item, push(Item), size(), iterator()

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/Stack.java

3. ResizingArrayStack

Methods: pop():Item, push(Item), resize(Integer)

URL: https://raw.githubusercontent.com/amitbansalite/

Coursera_Algortihms_Princeton/master/algs4/

ResizingArrayStack.java

4. Lifo

Methods: pop():Item, getSize(), setSize(int), getPremierItem(), set-

PremierItem(Item)

URL: https://raw.githubusercontent.com/joanny/T_P/master/

Crytographie/src/com/iut/LIFO/Lifo.java

http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
http://www.cs.princeton.edu/courses/archive/fall17/cos126/precepts/Stack.java?highlight=off
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/Stack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/amitbansalite/Coursera_Algortihms_Princeton/master/algs4/ResizingArrayStack.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java
https://raw.githubusercontent.com/joanny/T_P/master/Crytographie/src/com/iut/LIFO/Lifo.java

9.1 Simple Case 153

4. StackWithMax

Methods: pop():Item, push(Item), max():Item

URL: https://raw.githubusercontent.com/eschwabe/

interview-practice/master/coursera/algorithms-part1/

stacks-and-queues/StackWithMax.java

· · ·

8. SLStack

Methods: push(Item):Boolean, pop():Item, peek():Item, isEmpty(), isFull()

URL: https://raw.githubusercontent.com/jedwardblack/

DataStructures/master/StackADT/src/SLStack.java

The rest of the 10 results are not relevant to the search query, but some of them are

Item classes which are maybe useful for the developer depending on his/her use case.

In contrast, the three results containing Stack classes totally match the search query

and thus provide software components containing a stack storing items that contains

a name attribute and an appropriate getter-method. These results also directly show

one of the main advantages of dependency-aware searches – the three relevant results

involve the same Item class.

https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/eschwabe/interview-practice/master/coursera/algorithms-part1/stacks-and-queues/StackWithMax.java
https://raw.githubusercontent.com/jedwardblack/DataStructures/master/StackADT/src/SLStack.java
https://raw.githubusercontent.com/jedwardblack/DataStructures/master/StackADT/src/SLStack.java

154 Chapter 9. Evaluation

StackStack

+pop():Item

+push(Item):Boolean

ItemItem

+getName()

+getSize()

+showItem()

StackWithMaxStackWithMax

+pop():Item

+push(Item):Item

+max():Item

SLStackSLStack

+pop():Item

+push(Item):Boolean

+peek():Item

+isEmpty()

+isFull()

Figure 9.4: Three Stack classes connected to the same Item class

An analysis of the “projects” of the individual results reveals that the projects from

which two of the results were harvested do not contain an Item class, because

they just contain example classes used for teaching purposes. In fact, they are not

complete projects at all. The pairs in the results set were therefore associated with

one another during the dependency resolution process.

Although at first sight it might seem meaningless to compare the P@10 and P@5

values of DAISI and Merobase because the latter does not support dependency

aware searches, since it is possible for developers to “simulate” dependency-aware

searches through multiple signature-based searches, it is possible to compare the

two search engines. Table 9.2 shows the P@5 and P@10 values for the single

DAQL dependency-aware search compared to the combined results of the two MQL

signature-based searches (i.e. the one with return parameters and the one without

return parameters).

9.1 Simple Case 155

MQL

P@5 P@10
0.3 0.1

DAQL

P@5 P@10
0.8 0.6

Table 9.2: P@5 and P@10 measurement values for the Stack search with matching
Item class

Even this simple example shows the benefits of DAISI’s dependency-aware search.

Although it is possible to perform multiple, reformulated searches in the old MQL

search to get appropriate results, this involves significant extra work. The user either

has to try all possible return parameter variants to get matching results, or has to

take one of the stacks from the first search and adapt it. Dependency aware search

increases the precision of searches as well as their recall. The traditional MQL

signature based searches returned 34 results, but only 3 of them were relevant to the

search query, whereas the new DAQL dependence-aware search returned 10 results

in total but 6 of them were relevant. In other words, the new technology delivers

more relevant results and far fewer irrelevant results. The precision, recall and the

F-measures are defined mathematically as follows:

precision = #relevant retrieved results in the index
#retrieved results

recall = #relevant retrieved results in the index
#existing results in the index

F−measure = 2 x precision x recall
precision + recall

The F-measure metric is often used to provide a summary as it is the harmonic mean

of the precision and recall. It indicates whether an increase in recall outweighs a

decrease in precision and vice versa.

156 Chapter 9. Evaluation

MQL DAQL

precision 0.088 0.6
recall 0.5 1.0

F-measure 0,1279 0.75

Table 9.3: precision, recall and F-measurement values

The only weakness that can be observed in the current DAISI implementation of

dependency-aware search is related to the scoring of components and therefore with

the order in which they are represented in the result set. This is determined by the

order in which they appear in the normal Lucene search that represents the first

step of the search process. Once the initial set of candidates have been found by

Lucene, subsequent steps only removes results from the list if they do not match the

constraints in the search query. One way of addressing this weakness is to recalculate

the scores for each candidate after the graphed-based search and reorder the retained

results. Nevertheless, even without such enhancements all examples in this chapter

demonstrates that matching results are better and are always returned within the first

ten results. Since users usually check at least the first ten results before starting to

reformulates queries, this level of performance is usually sufficient [SJC00].

9.2 Methods from Superclasses

To compare the performance of DAISI to Merobase on a non-trivial, yet still simple,

example we consider a search for a class which either directly has a particular method

or inherits the method from another class. As before, this kind of search can only be

performed on Merobase with some extra effort by the users. Nevertheless, this is

sufficient to support a comparison between the technologies underpinning the two

search engines. The precise example involves –

9.2 Methods from Superclasses 157

a search for a class Customer, containing a name and a database-created ID,

which ideally extends (i.e. inherits from) a class that handles all the database

related issues.

A simple keyword search performed on the evaluation repository using the query

“customer” returns 57444 results, while a signature-based search using the query

Customer(getName():String;getId(); setName(String))

returns 5755 results. There are therefore a lot of potential Customer components in

the database. However, only the first 9 of them involve Customer classes, and only

one (the 10th) contains the specified methods, but has nothing to do with the notion

of customer per se (it is actually a class for analysing HTML code). The only two

other relevant classes, which could be used as reference examples, are returned at

positions 15 and 21, but both classes called User which contains the methods found

in the customer class in the running example.

The DAQL dependency-aware version of the search, which accesses the information

in the graph database a well as the Lucene index, returns additional customer classes.

Defs:{C1:Customer(getName():String;getId(); setName(String))}

This query returns 20 results, all of which are Customer classes where the required

methods are either in the class itself or in a superclass. Table 9.2 show the P@10

and P@5 metrics for the MQL and DAQL version of the search –

158 Chapter 9. Evaluation

MQL

P@5 P@10
1.0 0.9

DAQL

P@5 P@10
1.0 1.0

Table 9.4: P@5 and P@10 measurement values for the Customer search with
matching methods

With DAQL it is also possible to specify the additional architectural constraint that

the Customer class has to extends a class which contains a getId method –

Defs:{C1:Customer(getName():String;setName(String));

C2:Person(getId())}

Deps:{C1-|>C2}

This returns 10 Customer classes which all extends a class called Person. The first

result overrides the getId method from the superclass Person, whereas the remaining

classes in the top 10 simply inherit it (i.e. without overriding). All classes have the

following structure.

package mv . sub ;

p u b l i c c l a s s Customer ex tends Pe r s on {

p r i v a t e double c r e d i t ;

p u b l i c double g e t C r e d i t () {

re turn c r e d i t ;

}

p u b l i c vo id s e t C r e d i t (double c r e d i t) {

t h i s . c r e d i t = c r e d i t ;

}

}

9.2 Methods from Superclasses 159

Listing 9.1: Customer class without the methods

package mv . sub ;

p u b l i c c l a s s P e r s on {

p r i v a t e long i d ;

p r i v a t e S t r i n g name ;

p u b l i c long g e t I d () {

re turn i d ;

}

p u b l i c vo id s e t I d (long i d) {

t h i s . i d = i d ;

}

p u b l i c S t r i n g getName () {

re turn name ;

}

p u b l i c vo id setName (S t r i n g name) {

t h i s . name = name ;

}

}

Listing 9.2: Person class containing the desired methods

In the context of a database-driven application, the second result is also directly

relevant as it is also annotated with some entity-relation, mapper-specific annotations.

Depending on the database used in the application, this class might potentially be

reusable without any adaptation. To achieve the same results with Merobase it is

necessary to perform two independent searches, one for the Customer, but without

the getId method, and one for the Person class. Although relevant results for both

classes can be found in the top 10, they both have to be adapted to fit together in the

new system.

The P@10 and P@5 metrics for the Merobase searches were obtained by combining

the values of the two individual searches. The values P@10 and P@5 values for

Customer were 0.9 and 1.0, respectively, and for Person were 0.8 and 0.6. The poor

160 Chapter 9. Evaluation

result for the search for Person stems from the fact that the first two results have

nothing in common with a Person class, but instead merely contain a getId method.

MQL

P@5 P@10
0.85 0.8

DAQL

P@5 P@10
1.0 1.0

Table 9.5: P@5 and P@10 measurement values of the Customer search

Again a scoring issue arises in the “customer extends person” example because

according to the search query, the first Customer class which overrides the getID()

method from the Person class is relevant, but to satisfy the user’s requirements it

must appear later in the list. Nevertheless, all classes found by DAISI can be reused

“as-is” without change. Although the database constraint is a requirement of the user

in this scenario, it is not actually specified in the search query. If this is a “must have”

criteria the query would have to be changed to include the required annotations, but

this is currently not supported by DAISI.

Even though this example is again a quite simple use case, it demonstrates that

dependency-aware searches, in which it is possible to include the requirement for

inheritance into the search query, can significantly boost the quality of the search

results in terms of both recall and precision.

9.3 Complex Scenario

The two previous use cases could be supported using Merobase by executing multiple

search queries and reformulations. The final search example we discuss in this

subsection cannot be achieved using Merobase or any other existing code search

engine, so it is not possible to compare P@10 and P@5 values. This example

extends the CustomerManagement example from chapter 1 with a few additional

9.3 Complex Scenario 161

CustomerManagementCustomerManagement

+ getCustomer(String) : Customer

+ addCustomer(Customer)

CustomerCustomer

+ getCredit() : Double

+ updateCustomer(Customer) + getTaxType() : TaxType

PersonPerson

- name : String

+ getName() : String

- foreName : String

- address : Address

+ getAddress() : Address

<<Enumeration>>

TaxType

<<Enumeration>>

TaxType

+ getContactPersons():List

+ getName() : String

Figure 9.5: Complex search scenario

classes. Figure 9.5 shows that, as in the previous example, the Customer is required

to extend a Person class and every Customer is required to additionally possess

a relationship to a TaxType class. For example, such a tax related class might be

necessary in a system to determine if the customer is living in a particular country.

Alternatively, a shop might sell items to private and business customers who have

different tax classifications.

In traditional code search engines like Merobase a developer would have to search

for each one of these classes separately and attempt to reformulate the queries to

home in on relevant results. Performing a berrypicking process of the kind described

by Bates et al. [Bat89] for each individual class would take a lot of time and have

little guarantee of success, so it is highly likely that developers will simply develop

the required classes themselves.

162 Chapter 9. Evaluation

DAISI dependency-aware searches can dramatically speed up the process and thus

increase the chances that developers will at least give reuse a chance. A DAQL query

to support the new use cases would have the form -

Defs:{

C2:CustomerManagement(

getCustomer():Customer);

C1:Customer(

getCredit():Double;

getTaxType():TaxType);

C3:TaxType();

C4:Person(

getName():String)

} Deps:{C2->C1;C2->C3;C1-|>C4}

and delivers the following results:

1. CustomerManagement

Methods: getCustomer():Customer, addCustomer(Customer), getCustomer-

ByTaxType()

2. Customer

Methods: getName():String, getCredit():Double, getTaxType():TaxType, get-

Category()

3. Person

Methods: getName():String, getAddress():Address, getEmail():String,

getId():String

9.4 Hypothesis Validity 163

The DAISI search engine returns only one relevant result for this query at the first

position. However, the other results are the other classes defined in the query above,

like the Person or Customer class. Nevertheless, this is an extremely successful result

since it represents a fully implemented subsystem with all the desired properties.

The P@10 and P@5 values for this search are both 1.0. Of course, in contrast to

the commercial search engines the index used for this evaluation is relatively small.

To gain a better understanding of the effectiveness of the approach it is therefore

necessary to try it out on larger repositories. Compared to the search results from

chapter 1, where it was quite hard to get appropriate results from other code search

engines, DAISI dependency-aware searches provide a highly intuitive way to find

relevant results that fits all the extra requirements. Even if queries are quite complex

and potentially long, they are written in a format which most developers should find

familiar since it is based on the UML notation for method signatures. As explained

in the previous chapter, it is also possible to formulate the query in a diagrammatic

way, either in the from of a UML diagram or using the “Drag and Drop” search

interface.

9.4 Hypothesis Validity

The new dependency-aware search technology described in this thesis and prototyped

in DAISI successfully demonstrates the validity of the research hypotheses outlined

in chapter 1.

Hypothesis 1

It is possible to build a scalable, language-agnostic, dependency-aware code

search engine populated through context-independent harvesting

164 Chapter 9. Evaluation

Result

This has been demonstrated to be valid by the construction of the DAISI

prototype search engine using a graph-based database driven by a carefully

defined metamodel. This shows that it is possible create and search over

dependency-aware, graph-based software data structures. Furthermore, by

ensuring that the metamodel uses only the core constructs of object-oriented

programming implemented by most languages, the capabilities demonstrated

by DAISI are language-agnostic and are thus generally applicable. Finally,

by using a multi-phase, context-independent crawling and analysis process

DAISI demonstrates that it is possible to infer relationships between classes

which may not be explicitly recorded in the environment from which they

were harvested.

Threats to Validity

Since the hypothesis is an existential claim (i.e. that a dependency-aware

code search engine can be constructed), only one successful implementation is

needed to validate the claim. There are therefore no threats to the validity of

this conclusion. In particular, since no claim is made about the generalizability

of the implementation, there are no external threats to validity.

Hypothesis 2

A dependency-aware code search engine of the kind referred to in Hypothesis

1, which allows users to express the dependency relationships they desire

between code elements when defining queries, can enhance the precision of

search results.

9.4 Hypothesis Validity 165

Result

The evaluation includes several search examples supported by both DAISI

and Merobase (through multiple consecutive searches), which showed that the

former returned far fewer irrelevant results. For example, in the first scenario

presented in chapter 9, Merobase returned the class NewBookOrderControl

which does not have any relevant methods or structures consistent with a Stack

of Items. Furthermore, because Merobase requires two separate searches to be

performed to fulfil the goal, in the second example (section 9.1.2) it provides a

lot of irrelevant results since it only considers the method getName.

Threats to Validity

A potential internal threat to the validity of any evaluation with such a small set

of examples (i.e. sample size) is that the selected examples are not representa-

tive of the general population (in this case the set of all possible search queries).

However, since the DAISI prototype builds on the Merobase platform, and will

always deliver at least as good precision as Merobase, even just one example

of improved precision demonstrates an improvement over all. No claim is

made about the generalizability of the approach to other platforms, so there is

no threat to external validity.

Hypothesis 3

A dependency-aware code search engine of the kind referred to in Hypothesis

1 can enhance the (local) recall of search results.

Result

The evaluation also demonstrates the increase in local recall provided by the

new technology, even for traditional searches. Local recall is measured in

terms of the components actually stored in the repository. For example, in the

166 Chapter 9. Evaluation

simple stack search case, Merobase only returned three relevant results, while

DAISI returned six. In fact, DAISI returned every directly relevant result in

the index. This is because Merobase requires the results from two separate

searches to be manually combined, both of which contain a lot of irrelevant

results. On the hand, DAISI automatically combines results that satisfy both

requirements, and is able to rank the most relevant results highest. In the

stack example, the top three results from DAISI can be reused without any

adaptation.

Threats to Validity

A potential internal threat to the validity of any evaluation with such a small set

of examples (i.e. sample size) is that the selected examples are not representa-

tive of the general population (in this case the set of all possible search queries).

However, since the DAISI prototype builds on the Merobase platform, and

will always deliver at least as good local recall as Merobase, even just one

example of improved recall demonstrates an improvement over all. No claim

is made about the generalizability of the approach to other platforms, so there

is no threat to external validity.

Hypothesis 4

A dependency-aware code search engine of the kind referred to in Hypothesis

1, populated by a context-independent harvesting approach, can enhance the

(global) recall of search results.

Result

In contrast to local recall, global recall takes into account a search engine’s abil-

ity to harvest components in the first place. DAISI’s global recall is increased

primarily by its context-independent harvesting capability which allows it to

establish relationships that are not contained in the local environment of the

9.4 Hypothesis Validity 167

analysed code component, but instead are available in the already crawled

dataset. DAISI’s improved global recall is demonstrated by the second case

study (9.1.2 in chapter 9) where the collection of components returned in the

first result were not harvested from the same place. For example, the Stack

class and Item class in the first result were harvested from completely different

sources, and the former does not even contain a reference to a class called

Item. DAISI was able to establish the required relationship between the two at

search time by virtue of the fact that the Item class is a subclass of the class

Object which the Stack class stores.

Threats to Validity

A potential internal threat to the validity of any evaluation with such a small

set of examples (i.e. sample size) is that the selected examples are not repre-

sentative of the general population (in this case the set of all possible search

queries). However, since the DAISI context-independent harvesting capability

builds on the standard Merobase crawler technology it merely expands the set

of components harvests, and thus can only increase recall. Just one example

of improved recall therefore demonstrates an improvement over all. No claim

is made about the generalizability of the approach to other platforms, so there

is no threat to external validity.

10. Conclusion

Computer science is no more about

computers than astronomy is about

telescopes.

– Edsger Dijkstra –

A major weakness of today’s code search engines is that they are only able to support

searches for relatively simple components [SCH98]. The principal reason why most

developers still primarily use general purpose search engines like Google to search

for source code is the lack of support for software structures that extend beyond a

single class. This is because they have focused almost exclusively on analysing the

contents of individual classes to make them searchable via standard text-processing

tools such as Lucene. Although it is potentially possible, with some effort, to use

Lucene to support searches for groups of related classes, this involves a process

of repeated query reformulation within a series of sequential sub searches. As

well as being inefficient, such multiple-consecutive-search approaches also yield

questionable results. This particularly relates to relationships involving methods

used from other classes, because current search engines store only method signatures

and the relationships between method names and functionality is a tenuous one.

170 Chapter 10. Conclusion

The main research trend over the last few years has been in the direction of code

recommendation where statistical analysis techniques are used to suggest code

fragments and method call sequences to developers based on the current state of

their code. However, the underlying approaches used to discover the candidate code

fragments and components in the first place are still driven by traditional search

technologies.

The aim of this thesis was therefore to create the foundations for a new generation

of code search engines capable of supporting more sophisticated searches that take

the structure of complex software components into account - that is, are “aware

of”, and can exploit, the relationships between inter-related classes. Moreover,

these foundations should be independent of specific programming languages and

relationships so they can be adapted to support new programming languages and

features in the future (e.g. such as in Java 8 introduced lambda expressions). To

realize this goal, a new kind of database structure based on graphs was developed

to store software components and a new, dependency-aware query language was

developed to accommodate constraints on relationships between classes and methods.

Finally, to populate this new kind of database with content, a new parsing process

was developed capable of analysing individual classes in a context free manner

without requiring information from complete projects to identify the relationships

between classes. This parsing technology is a key ingredient, since a search engine

should be able to harvest all the code available in the Internet, not just the classes

wrapped up in complete projects controlled by configuration management systems.

To develop an optimal database structure, the Lucene text-based indexing system

that underlies the majority of modern code search engines was integrated in a

sophisticated way with a fundamentally new kind of database – a graph database.

This combination was considered optimal because, while the graph database provides

the ideal way of storing the many kinds of links between classes, Lucene provides

10.1 Weaknesses 171

the optimal way of discovering initial sets of candidates, and thus of defining starting

points for graph-driven searches. In contrast to existing search engines, to combine

them in an effective way, several Lucene indices were used to store different kinds of

information about the harvested components in the most efficient way. To increase

the range of search queries that could be supported, the MQL query language

defined by Hummel for the Merobase search engine was extended with dependency-

awareness. This extension makes it possible to enhance traditional MQL searches

with constraints about the relationships that should exist between the desired classes.

Although the DAQL query language is as simple and intuitive as possible, dependency

aware searches become unavoidably complex when expressed in textual format. For

this reason additional, non-text based ways of expressing dependency-aware queries

were also developed – namely, diagrammatic query languages based on UML class

diagrams and a web-based “Drag and Drop” query definition interface.

In combination, these innovations introduce a range of new search capabilities to

users of code search engines. More specifically, they make it possible to –

• search for classes that possess certain structural relationships,

• search for multiple components with only one query,

• harvest code outside the context of a complete project structure,

• define dependency-aware queries without learning a complex, text-based query

language.

10.1 Weaknesses

Although the example dependency-aware searches used in the evaluation demonstrate

significant increases in recall and precision as measured by the P@10 and P@5

metrics, there are some weaknesses in the current prototype implementation. The

first weakness, which was also visible with the simplest stack example, is the way

172 Chapter 10. Conclusion

that the relevance of search results are evaluated for ranking. To address this problem

a new evaluation mechanism needs to be integrated which is ideally performed after

the graph database has been seed to filter out unsuitable components.

Another weakness is the complexity of the query language. The significance of query

language complexity is highlighted by various studies which show that users prefer

to provide as little information as possible in search queries and rarely use the special

prefixes offered by existing search engines. However, to obtain the kind of precision

and recall provided by dependency-aware search engines like DAISI it is necessary

for users to indicate which keywords are expected to fulfil what role in candidate

components. Rather than reduce the information that has to be supplied in queries,

in the previous chapter we presented approaches that allow users to supply this

information in an as intuitive and simple a way as possible - name, via diagrammatic

and “Drag and Drop” based queries.

The final weakness relates to the strictness of the matching criteria in dependency-

aware searches. The more complex a search query, the more constraints have to be

matched by candidates in the search repository. If all constraints are applied strictly

in an all-or-nothing fashion, many components that could be potentially useful for the

user may not be returned because they deviate from the requirements in a small way.

For instance, consider the customer example. If no class can be found which satisfies

all the constraints specified in the query, the user might still be able to exploit the

“Person”-class result as a reference example. However, this would not be returned in

a strict interpretation of the constraints since all classes would be removed from the

result list. This leads to a kind of reverse scenario where the user no longer has to

extend his/her search query with additional information step-by-step, but instead has

to remove constraints from the query step by step. Moreover, while doing this he/she

would have to be aware of the different combinations in which the constraints could

be satisfied. For example, removal of a return parameter constraint on a method

10.2 Future Work 173

might not deliver any new results whereas the removal of a complete method might.

10.2 Future Work

DAISI’s ability to ensure all required dependencies between classes are included in

search queries and to examine the structure of components and projects opens up

a lot of new opportunities. This new technology can not only be used to enhance

the capabilities of existing code search engines, but can also lead to completely

new opportunities. First of all, it is not only possible to consider dependencies

directly-expressed in the source code, it is also possible to consider indirectly derived

dependencies. For example, the dependencies derived from a social-media inspired

dislike/like mechanism can be exploited as discussed in chapter 6 to add different

metrics to the relationships between the potential candidates in a dependency. These

metrics could be performance metrics or energy efficient metrics for example. Energy

efficiency metrics could be particularly interesting, as many developers in the mobile

sector are currently developing applications that have power consumption constraints.

Another possibility is to create different enhancements of comparative metrics or

analysis approaches. Currently only two classes are compared to each other to

generate such metrics, but what if a copy is created in which the original class is

divided into two classes by moving some of the functionality into a superclass? No

existing algorithm today would recognize such a class as a clone of the original.

Another opportunity created by the new technology is related to the open source

sector. As Spinelli and Szyperski have already pointed out the quality of software in

the open source sector is subject to large fluctuations [SS04]. There are many shoddy

components of very low quality and there are many high-quality components that

meet industrial standards. Since the quality of new systems is affected by the quality

of the components they are made of, one useful extension of the search engine would

174 Chapter 10. Conclusion

be to keep track of different versions of components as they are tested and improved.

Thus, when a developer is upgrading a system he/she could include an improved

component, whilst keeping the relationship to the original one. This relationship

could then be characterized by metrics or other properties. The next developer who

recommended this component at the search engine would be informed automatically

about new, improved versions of the component. Of course, over time a mechanism

would be needed to fix discovered bugs in all existing versions, or periodically these

different versions would have to be merged.

Bibliography

Books

[B+99] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information

retrieval. Volume 463. ACM press New York, 1999 (cited on pages 21,

23, 57).

[Car85] Alfonso F Cardenas. Data base management systems. Volume 2. Allyn

and Bacon Boston et al., 1985 (cited on page 43).

[CMS10] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search en-

gines: Information retrieval in practice. Volume 283. Addison-Wesley

Reading, 2010 (cited on pages 20, 25, 36, 37, 113).

[GS14] Rosalva E. Gallardo-Valencia and Susan Elliott Sim. Source Code Seek-

ing on the Web: A Survey of Empirical Studies and Tools. Lulu.com,

2014. ISBN: 130469545X, 9781304695451 (cited on page 66).

[HJD10] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements engi-

neering. Springer Science & Business Media, 2010 (cited on page 55).

176 Chapter 10. Conclusion

[Jan14] W. Janjic. Reuse-Based Test Recommendation in Software Engineering.

Verlag Dr. Hut, 2014. ISBN: 9783843916738. URL: https://books.

google.com/books?id=wU7HoQEACAAJ (cited on pages 3, 7).

[Kru04] Philippe Kruchten. The rational unified process: an introduction. Addison-

Wesley Professional, 2004 (cited on page 68).

[Lov68] Julie B Lovins. Development of a stemming algorithm. MIT Informa-

tion Processing Group, Electronic Systems Laboratory Cambridge,

1968 (cited on page 38).

[MHG10] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in

Action: Covers Apache Lucene 3.0. Manning Publications Co., 2010

(cited on pages 40, 49, 50).

[Min69] Marvin L. Minsky. Semantic Information Processing. The MIT Press,

1969. ISBN: 0262130440 (cited on page 27).

[Mit98] Roland T Mittermeir. Hypertext: Werkzeug?–Denkzeug? na, 1998

(cited on page 32).

[OMG11a] OMG. Architecture-driven Modernization: Abstract Syntax Tree Meta-

model (ASTM)- Version 1.0. Object Management Group, Jan. 2011.

URL: http://www.omg.org/spec/ASTM/1.0/PDF/ (cited on pages 94,

97).

[OMG11b] OMG. Architecture-Driven Modernization: Knowledge Discovery Meta-

Model (KDM) - Version 1.3. Object Management Group, Aug. 2011.

URL: http://www.omg.org/spec/KDM/1.3/PDF/ (cited on page 97).

[Par13] Terence Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Book-

shelf, 2013. ISBN: 1934356999, 9781934356999 (cited on page 94).

[Sal68] Gerard. Salton. Automatic Information Organization and Retrieval.

McGraw Hill Text, 1968. ISBN: 0070544859 (cited on page 19).

https://books.google.com/books?id=wU7HoQEACAAJ
https://books.google.com/books?id=wU7HoQEACAAJ
http://www.omg.org/spec/ASTM/1.0/PDF/
http://www.omg.org/spec/KDM/1.3/PDF/

10.2 Future Work 177

[SM83] Gerard Salton and Michael J McGill. Introduction to modern informa-

tion retrieval. New York: McGraw - Hill Book Company, 1983. ISBN:

0070544840 (cited on page 29).

[Som01] I. Sommerville. Software engineering. International computer science

series. Addison-Wesley, 2001. ISBN: 9780201398151. URL: https:

//books.google.co.uk/books?id=Uoo%5C_AQAAIAAJ (cited on

pages 1, 18, 126, 127, 129).

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented

Programming. 2nd. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2002. ISBN: 0201745720 (cited on page 68).

[Vuk+15] Aleksa Vukotic et al. Neo4j in Action. Manning, 2015 (cited on page 43).

[Atk+08] Colin Atkinson et al. “Modeling Components and Component-Based

Systems in KobrA”. In: The Common Component Modeling Example:

Comparing Software Component Models. Edited by Andreas Rausch

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pages 54–

84. ISBN: 978-3-540-85289-6. DOI: 10.1007/978-3-540-85289-6_4.

URL: https://doi.org/10.1007/978-3-540-85289-6_4 (cited on

page 137).

Articles

[All+88] Thomas Allen et al. “Project team aging and performance: The roles of

project and functional managers”. In: R&D Management 18.4 (1988),

pages 295–308 (cited on page 129).

https://books.google.co.uk/books?id=Uoo%5C_AQAAIAAJ
https://books.google.co.uk/books?id=Uoo%5C_AQAAIAAJ
http://dx.doi.org/10.1007/978-3-540-85289-6_4
https://doi.org/10.1007/978-3-540-85289-6_4

178 Chapter 10. Conclusion

[BL12a] Sushil Krishna Bajracharya and Cristina Videira Lopes. “Analyzing

and mining a code search engine usage log”. In: Empirical Software

Engineering 17.4-5 (2012), pages 424–466 (cited on pages 62, 104,

113, 114, 119, 126).

[BOL14] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. “Sourcerer: An

infrastructure for large-scale collection and analysis of open-source

code”. In: Science of Computer Programming 79 (2014), pages 241–

259 (cited on pages 40, 41, 58).

[Bat89] Marcia J Bates. “The design of browsing and berrypicking techniques

for the online search interface”. In: Online Review 13, No. 5 (1989),

pages 407–424 (cited on pages 148, 161).

[BOB82] Nicholas J Belkin, Robert N Oddy, and Helen M Brooks. “ASK for

information retrieval: Part I. Background and theory”. In: Journal of

documentation 38.2 (1982), pages 61–71 (cited on pages 37, 59).

[BMW94] Ted J Biggerstaff, Bharat G Mitbander, and Dallas E Webster. “Pro-

gram understanding and the concept assignment problem”. In: Com-

munications of the ACM 37.5 (1994), pages 72–82 (cited on pages 31,

55).

[BL12b] Roi Blanco and Christina Lioma. “Graph-based Term Weighting for

Information Retrieval”. In: Inf. Retr. 15.1 (Feb. 2012), pages 54–92.

ISSN: 1386-4564. DOI: 10.1007/s10791-011-9172-x. URL: http:

//dx.doi.org/10.1007/s10791-011-9172-x (cited on pages 26–28).

[BF93] Nathaniel Borenstein and Ned Freed. “MIME (Multipurpose Internet

Mail Extensions) Part One: Mechanisms for specifying and describing

the format of Internet message bodies”. In: (1993) (cited on page 90).

http://dx.doi.org/10.1007/s10791-011-9172-x
http://dx.doi.org/10.1007/s10791-011-9172-x
http://dx.doi.org/10.1007/s10791-011-9172-x

10.2 Future Work 179

[BP12] Sergey Brin and Lawrence Page. “Reprint of: The anatomy of a large-

scale hypertextual web search engine”. In: Computer networks 56.18

(2012), pages 3825–3833 (cited on page 89).

[Cho+02] Abdur Chowdhury et al. “Collection statistics for fast duplicate docu-

ment detection”. In: ACM Transactions on Information Systems (TOIS)

20.2 (2002), pages 171–191 (cited on page 77).

[Cle61] Cyril W Cleverdon. “Application for grant to the National Science

Foundation, Washington [for] an investigation into the performance

characteristics of descriptor languages”. In: (1961) (cited on pages 21,

39).

[Cus89] Michael A Cusumano. “The software factory: a historical interpreta-

tion”. In: IEEE Software 6.2 (1989), page 23 (cited on page 19).

[Dee+90] Scott Deerwester et al. “Indexing by latent semantic analysis”. In:

Journal of the American society for information science 41.6 (1990),

page 391 (cited on pages 38, 53).

[FCC07] Ramon Ferrer I Cancho, Andrea Capocci, and Guido Caldarelli. “Spec-

tral Methods Cluster Words of the Same Class in a Syntactic Depen-

dency Network”. In: Int. J. Bifurc. Chaos 17.07 (2007), pages 2453–

2462. ISSN: 0218-1274. DOI: 10 . 1142 / S021812740701852X. URL:

http://www.worldscinet.com/ijbc/17/1707/S021812740701852X.

html (cited on page 26).

[FB92] William B Frakes and Ricardo Baeza-Yates. “Information retrieval:

data structures and algorithms”. In: (1992) (cited on page 29).

[FP94] William B. Frakes and Thomas P. Pole. “An empirical study of rep-

resentation methods for reusable software components”. In: IEEE

Transactions on Software Engineering 20.8 (1994), pages 617–630

(cited on page 34).

http://dx.doi.org/10.1142/S021812740701852X
http://www.worldscinet.com/ijbc/17/1707/S021812740701852X.html
http://www.worldscinet.com/ijbc/17/1707/S021812740701852X.html

180 Chapter 10. Conclusion

[Fur+87] George W. Furnas et al. “The vocabulary problem in human-system

communication”. In: Communications of the ACM 30.11 (1987), pages 964–

971 (cited on pages 30, 53, 56).

[GP99] Michael Gordon and Praveen Pathak. “Finding information on the

World Wide Web: the retrieval effectiveness of search engines”. In:

Information Processing & Management 35.2 (1999), pages 141–180

(cited on page 21).

[HH76] Michael AK Halliday and Ruqaiya Hasan. “Cohesion in English”. In:

(1976) (cited on page 26).

[HDK06] Björn Hartmann, Scott Doorley, and Scott R Klemmer. “Hacking,

mashing, gluing: a study of opportunistic design and development”. In:

Pervasive Computing 7.3 (2006), pages 46–54 (cited on page 126).

[Har+03] Nicholas JA Harvey et al. “Skipnet: A scalable overlay network with

practical locality properties”. In: networks 34 (2003), page 38 (cited

on page 43).

[Kru92] Charles W. Krueger. “Software Reuse”. In: ACM Comput. Surv. 24.2

(June 1992), pages 131–183. ISSN: 0360-0300. DOI: 10.1145/130844.

130856. URL: http://doi.acm.org/10.1145/130844.130856 (cited

on pages 17, 48).

[Kuk92] Karen Kukich. “Techniques for automatically correcting words in text”.

In: ACM Computing Surveys (CSUR) 24.4 (1992), pages 377–439

(cited on page 38).

[LM89] B. M. Lange and T. G. Moher. “Some Strategies of Reuse in an Object-

oriented Programming Environment”. In: SIGCHI Bull. 20.SI (Mar.

1989), pages 69–73. ISSN: 0736-6906. DOI: 10.1145/67450.67465.

URL: http://doi.acm.org/10.1145/67450.67465 (cited on page 1).

http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/130844.130856
http://doi.acm.org/10.1145/130844.130856
http://dx.doi.org/10.1145/67450.67465
http://doi.acm.org/10.1145/67450.67465

10.2 Future Work 181

[Lim94] W.C. Lim. “Effects of reuse on quality, productivity, and economics”.

In: Software, IEEE 11.5 (Sept. 1994), pages 23–30. ISSN: 0740-7459.

DOI: 10.1109/52.311048 (cited on page 2).

[Lin+09] Erik Linstead et al. “Sourcerer: mining and searching internet-scale

software repositories”. In: Data Mining and Knowledge Discovery

18.2 (2009), pages 300–336 (cited on pages 57, 58).

[MBK91] Yoëlle S Maarek, Daniel M Berry, and Gail E Kaiser. “An information

retrieval approach for automatically constructing software libraries”. In:

IEEE Transactions on software Engineering 17.8 (1991), pages 800–

813 (cited on pages 30, 34).

[MK14] Anita Brigit Mathew and SM Kumar. “An efficient index based query

handling model for Neo4j”. In: IJCST 3.2 (2014), pages 12–18 (cited

on page 43).

[Mat84] Yoshihiro Matsumoto. “Some experiences in promoting reusable soft-

ware: Presentation in higher abstract levels”. In: IEEE Transactions on

Software Engineering 5 (1984), pages 502–513 (cited on page 19).

[McI68] M. D. McIlroy. “Mass-produced software components”. In: Proc.

NATO Conf. on Software Engineering, Garmisch, Germany (1968)

(cited on page 1).

[MMM98] A. Mili, R. Mili, and R. T. Mittermeir. “A Survey of Software Reuse

Libraries”. In: Ann. Softw. Eng. 5.1 (Jan. 1998), pages 349–414. ISSN:

1022-7091. URL: http://dl.acm.org/citation.cfm?id=590631.

590637 (cited on pages 30, 31, 34, 35).

[Mil+99] Ali Mili et al. “Toward an engineering discipline of software reuse”.

In: IEEE software 16.5 (1999), pages 22–31 (cited on page 38).

http://dx.doi.org/10.1109/52.311048
http://dl.acm.org/citation.cfm?id=590631.590637
http://dl.acm.org/citation.cfm?id=590631.590637

182 Chapter 10. Conclusion

[Mil+90] George A Miller et al. “Introduction to WordNet: An on-line lexi-

cal database”. In: International journal of lexicography 3.4 (1990),

pages 235–244 (cited on page 53).

[Moo50] Calvin E. Mooers. “Coding, Information Retrieval, and the Rapid

Selector”. In: American Documentation 1.4 (1950), pages 225–229

(cited on page 19).

[MMD02] A. E. Motter, A. P. S. de Moura, and P. Dasgupta. “Topology of the

conceptual network of language”. In: Physical Review E 65.065102(R)

(2002) (cited on page 26).

[MKF06] Gail C Murphy, Mik Kersten, and Leah Findlater. “How are Java

software developers using the Elipse IDE?” In: IEEE software 23.4

(2006), pages 76–83 (cited on page 18).

[MNS95] Gail C Murphy, David Notkin, and Kevin Sullivan. “Software reflexion

models: Bridging the gap between source and high-level models”. In:

ACM SIGSOFT Software Engineering Notes 20.4 (1995), pages 18–28

(cited on page 55).

[Ort+16] Fernando Ortega et al. “Recommending Items to Group of Users Using

Matrix Factorization Based Collaborative Filtering”. In: Inf. Sci. 345.C

(June 2016), pages 313–324. ISSN: 0020-0255. DOI: 10.1016/j.ins.

2016.01.083. URL: https://doi.org/10.1016/j.ins.2016.01.083

(cited on page 143).

[PP93] Andy Podgurski and Lynn Pierce. “Retrieving reusable software by

sampling behavior”. In: ACM Transactions on Software Engineer-

ing and Methodology (TOSEM) 2.3 (1993), pages 286–303 (cited on

page 32).

[SFW83] Gerard Salton, Edward A. Fox, and Harry Wu. “Extended Boolean In-

formation Retrieval”. In: Commun. ACM 26.11 (Nov. 1983), pages 1022–

http://dx.doi.org/10.1016/j.ins.2016.01.083
http://dx.doi.org/10.1016/j.ins.2016.01.083
https://doi.org/10.1016/j.ins.2016.01.083

10.2 Future Work 183

1036. ISSN: 0001-0782. DOI: 10.1145/182.358466. URL: http://doi.

acm.org/10.1145/182.358466 (cited on page 23).

[Sim+11] Susan Elliott Sim et al. “How Well Do Search Engines Support Code

Retrieval on the Web?” In: ACM Trans. Softw. Eng. Methodol. 21.1

(Dec. 2011), 4:1–4:25. ISSN: 1049-331X. DOI: 10.1145/2063239.

2063243. URL: http://doi.acm.org/10.1145/2063239.2063243

(cited on pages 2–4, 126).

[SS04] Diomidis Spinellis and Clemens Szyperski. “Guest Editors’ Intro-

duction: How Is Open Source Affecting Software Development?” In:

IEEE Softw. 21.1 (Jan. 2004), pages 28–33. ISSN: 0740-7459. DOI:

10.1109/MS.2004.1259204. URL: http://dx.doi.org/10.1109/MS.

2004.1259204 (cited on page 173).

[SJC00] Amanda Spink, Bernard J Jansen, and H Cenk Ozmultu. “Use of query

reformulation and relevance feedback by Excite users”. In: Internet

research 10.4 (2000), pages 317–328 (cited on page 156).

[SED14] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. “Solving the

Search for Source Code”. In: ACM Trans. Softw. Eng. Methodol. 23.3

(June 2014), 26:1–26:45. ISSN: 1049-331X. DOI: 10.1145/2581377.

URL: http://doi.acm.org/10.1145/2581377 (cited on page 131).

[Woo+96] Allison Woodruff et al. “An investigation of documents from the World

Wide Web”. In: Computer Networks and ISDN Systems 28.7 (1996),

pages 963–980 (cited on page 90).

[ZW95] Amy Moormann Zaremski and Jeannette M Wing. “Signature match-

ing: a tool for using software libraries”. In: ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM) 4.2 (1995), pages 146–

170 (cited on pages 31, 48).

http://dx.doi.org/10.1145/182.358466
http://doi.acm.org/10.1145/182.358466
http://doi.acm.org/10.1145/182.358466
http://dx.doi.org/10.1145/2063239.2063243
http://dx.doi.org/10.1145/2063239.2063243
http://doi.acm.org/10.1145/2063239.2063243
http://dx.doi.org/10.1109/MS.2004.1259204
http://dx.doi.org/10.1109/MS.2004.1259204
http://dx.doi.org/10.1109/MS.2004.1259204
http://dx.doi.org/10.1145/2581377
http://doi.acm.org/10.1145/2581377

184 Chapter 10. Conclusion

[AIS93] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining asso-

ciation rules between sets of items in large databases”. In: Acm sigmod

record. Volume 22. 2. ACM. 1993, pages 207–216 (cited on page 25).

[AG15] Carol V. Alexandru and Harald C. Gall. “Rapid Multi-purpose, Multi-

commit Code Analysis”. In: Proceedings of the 37th International

Conference on Software Engineering - Volume 2. ICSE ’15. Florence,

Italy: IEEE Press, 2015, pages 635–638. URL: http://dl.acm.org/

citation.cfm?id=2819009.2819124 (cited on page 34).

[Atk97] Colin Atkinson. “Meta-modelling for distributed object environments”.

In: Enterprise Distributed Object Computing Workshop [1997]. EDOC’97.

Proceedings. First International. IEEE. 1997, pages 90–101 (cited on

page 98).

[Atk+09] Colin Atkinson et al. “Towards high integrity uddi systems”. In: Inter-

national Conference on Business Information Systems. Springer. 2009,

pages 350–361 (cited on page 111).

[Baj+06] Sushil Bajracharya et al. “Sourcerer: a search engine for open source

code supporting structure-based search”. In: Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications. ACM. 2006, pages 681–682 (cited on

pages 34, 57).

[Beg07] Andrew Begel. “Codifier: a programmer-centric search user interface”.

In: Proceedings of the workshop on human-computer interaction and

information retrieval. 2007, pages 23–24 (cited on page 34).

[BHQ03] Stefan Bordag, Gerhard Heyer, and Uwe Quasthoff. “Small Worlds

of Concepts and Other Principles of Semantic Search”. In: Innovative

Internet Community Systems, Third International Workshop, IICS 2003,

Leipzig, Germany, June 19-21, 2003, Revised Papers. 2003, pages 10–

http://dl.acm.org/citation.cfm?id=2819009.2819124
http://dl.acm.org/citation.cfm?id=2819009.2819124

10.2 Future Work 185

19. DOI: 10.1007/978-3-540-39884-4_2. URL: http://dx.doi.org/

10.1007/978-3-540-39884-4_2 (cited on page 26).

[Bra+09] Joel Brandt et al. “Two studies of opportunistic programming: inter-

leaving web foraging, learning, and writing code”. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems.

ACM. 2009, pages 1589–1598 (cited on page 125).

[CJS09] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. “Sniff: A

search engine for java using free-form queries”. In: International

Conference on Fundamental Approaches to Software Engineering.

Springer. 2009, pages 385–400 (cited on page 56).

[Cho+07] M. Choudhury et al. “How Difficult is it to Develop a Perfect Spell-

checker? A Cross-linguistic Analysis through Complex Network Ap-

proach”. In: Proceedings of the Second Workshop on TextGraphs:

Graph-Based Algorithms for Natural Language Processing. 2007,

pages 81–88 (cited on page 26).

[Cle91] Cyril W. Cleverdon. “The Significance of the Cranfield Tests on Index

Languages”. In: Proceedings of the 14th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’91. Chicago, Illinois, USA: ACM, 1991, pages 3–12.

ISBN: 0-89791-448-1. DOI: 10.1145/122860.122861. URL: http:

//doi.acm.org/10.1145/122860.122861 (cited on page 19).

[GCP07] Mark Grechanik, Kevin M Conroy, and Katharina A Probst. “Finding

relevant applications for prototyping”. In: Proceedings of the Fourth

International Workshop on Mining Software Repositories. IEEE Com-

puter Society. 2007, page 12 (cited on page 56).

[Gre+10a] Mark Grechanik et al. “A search engine for finding highly relevant

applications”. In: 2010 ACM/IEEE 32nd International Conference on

http://dx.doi.org/10.1007/978-3-540-39884-4_2
http://dx.doi.org/10.1007/978-3-540-39884-4_2
http://dx.doi.org/10.1007/978-3-540-39884-4_2
http://dx.doi.org/10.1145/122860.122861
http://doi.acm.org/10.1145/122860.122861
http://doi.acm.org/10.1145/122860.122861

186 Chapter 10. Conclusion

Software Engineering. Volume 1. IEEE. 2010, pages 475–484 (cited

on page 56).

[Gre+10b] Mark Grechanik et al. “Exemplar: Executable examples archive”. In:

2010 ACM/IEEE 32nd International Conference on Software Engineer-

ing. Volume 2. IEEE. 2010, pages 259–262 (cited on pages 31, 48, 55,

56).

[GJ09] Pooja Gupta and Kalpana Johari. “Implementation of Web crawler”.

In: 2009 Second International Conference on Emerging Trends in

Engineering & Technology. IEEE. 2009, pages 838–843 (cited on

page 90).

[Hai+13] Sonia Haiduc et al. “Automatic query reformulations for text retrieval

in software engineering”. In: Proceedings of the 2013 International

Conference on Software Engineering. IEEE Press. 2013, pages 842–

851 (cited on page 36).

[HFW07] Raphael Hoffmann, James Fogarty, and Daniel S Weld. “Assieme:

finding and leveraging implicit references in a web search interface for

programmers”. In: Proceedings of the 20th annual ACM symposium

on User interface software and technology. ACM. 2007, pages 13–22

(cited on page 34).

[HM05] Reid Holmes and Gail C. Murphy. “Using Structural Context to Rec-

ommend Source Code Examples”. In: Proceedings of the 27th Inter-

national Conference on Software Engineering. ICSE ’05. St. Louis,

MO, USA: ACM, 2005, pages 117–125. ISBN: 1-58113-963-2. DOI:

10.1145/1062455.1062491. URL: http://doi.acm.org/10.1145/

1062455.1062491 (cited on page 3).

[HW07] Reid Holmes and Robert J. Walker. “Supporting the Investigation

and Planning of Pragmatic Reuse Tasks”. In: Proceedings of the 29th

http://dx.doi.org/10.1145/1062455.1062491
http://doi.acm.org/10.1145/1062455.1062491
http://doi.acm.org/10.1145/1062455.1062491

10.2 Future Work 187

International Conference on Software Engineering. ICSE ’07. Wash-

ington, DC, USA: IEEE Computer Society, 2007, pages 447–457.

ISBN: 0-7695-2828-7. DOI: 10.1109/ICSE.2007.83. URL: http:

//dx.doi.org/10.1109/ICSE.2007.83 (cited on pages 1, 126).

[HW08] Reid Holmes and Robert J Walker. “Lightweight, semi-automated

enactment of pragmatic-reuse plans”. In: International Conference on

Software Reuse. Springer. 2008, pages 330–342 (cited on page 126).

[HWM05] Reid Holmes, Robert J Walker, and Gail C Murphy. “Strathcona exam-

ple recommendation tool”. In: ACM SIGSOFT Software Engineering

Notes. Volume 30. 5. ACM. 2005, pages 237–240 (cited on page 63).

[HR92] Susan Horwitz and Thomas Reps. “The use of program dependence

graphs in software engineering”. In: Proceedings of the 14th interna-

tional conference on Software engineering. ACM. 1992, pages 392–

411 (cited on page 44).

[Hum08] Oliver Hummel. “Semantic Component Retrieval in Software Engi-

neering”. In: Ausgezeichnete Informatikdissertationen 2008. 2008,

pages 151–160 (cited on pages 48, 50, 53, 86, 114, 120, 121).

[HA04] Oliver Hummel and Colin Atkinson. “Extreme harvesting: Test driven

discovery and reuse of software components”. In: Information Reuse

and Integration, 2004. IRI 2004. Proceedings of the 2004 IEEE Inter-

national Conference on. IEEE. 2004, pages 66–72 (cited on pages 33,

110).

[HA07] Oliver Hummel and Colin Atkinson. “Supporting agile reuse through

extreme harvesting”. In: International Conference on Extreme Pro-

gramming and Agile Processes in Software Engineering. Springer.

2007, pages 28–37 (cited on page 74).

http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/ICSE.2007.83

188 Chapter 10. Conclusion

[HJA07] Oliver Hummel, Werner Janjic, and Colin Atkinson. “Evaluating the

Efficiency of Retrieval Methods for Component Repositories.” In:

SEKE. Citeseer. 2007, pages 404–409 (cited on page 31).

[Jan+13] Werner Janjic et al. “An Unabridged Source Code Dataset for Research

in Software Reuse”. In: Proceedings of the 10th Working Conference

on Mining Software Repositories. MSR ’13. San Francisco, CA, USA:

IEEE Press, 2013, pages 339–342. ISBN: 978-1-4673-2936-1. URL:

http://dl.acm.org/citation.cfm?id=2487085.2487148 (cited on

pages 3, 48).

[JZW09] Yinan Jing, Chunwang Zhang, and Xueping Wang. “An empirical

study on performance comparison of lucene and relational database”.

In: Communication Software and Networks, 2009. ICCSN’09. Interna-

tional Conference on. IEEE. 2009, pages 336–340 (cited on page 83).

[Mar+04] Andrian Marcus et al. “An information retrieval approach to concept

location in source code”. In: Reverse Engineering, 2004. Proceedings.

11th Working Conference on. IEEE. 2004, pages 214–223 (cited on

page 31).

[MLL05] Michael Martin, Benjamin Livshits, and Monica S Lam. “Finding

application errors and security flaws using PQL: a program query

language”. In: ACM SIGPLAN Notices. Volume 40. 10. ACM. 2005,

pages 365–383 (cited on page 37).

[McM+11] Collin McMillan et al. “Portfolio: A Search Engine for Finding Func-

tions and Their Usages”. In: Proceedings of the 33rd International

Conference on Software Engineering. ICSE ’11. Waikiki, Honolulu,

HI, USA: ACM, 2011, pages 1043–1045. ISBN: 978-1-4503-0445-0.

DOI: 10.1145/1985793.1985991. URL: http://doi.acm.org/10.

1145/1985793.1985991 (cited on pages 3, 7, 34, 35, 48, 53, 97, 106).

http://dl.acm.org/citation.cfm?id=2487085.2487148
http://dx.doi.org/10.1145/1985793.1985991
http://doi.acm.org/10.1145/1985793.1985991
http://doi.acm.org/10.1145/1985793.1985991

10.2 Future Work 189

[Moh+04] Parastoo Mohagheghi et al. “An Empirical Study of Software Reuse

vs. Defect-Density and Stability”. In: Proceedings of the 26th Interna-

tional Conference on Software Engineering. ICSE ’04. Washington,

DC, USA: IEEE Computer Society, 2004, pages 282–292. ISBN: 0-

7695-2163-0. URL: http://dl.acm.org/citation.cfm?id=998675.

999433 (cited on page 1).

[Ngu+12] Anh Tuan Nguyen et al. “Graph-based Pattern-oriented, Context-sensitive

Source Code Completion”. In: Proceedings of the 34th International

Conference on Software Engineering. ICSE ’12. Zurich, Switzerland:

IEEE Press, 2012, pages 69–79. ISBN: 978-1-4673-1067-3. URL: http:

/ / dl . acm . org / citation . cfm ? id = 2337223 . 2337232 (cited on

page 35).

[OH92] Paul Oman and Jack Hagemeister. “Metrics for assessing a software

system’s maintainability”. In: Software Maintenance, 1992. Proceerd-

ings., Conference on. IEEE. 1992, pages 337–344 (cited on page 57).

[Pag+98] L. Page et al. “The PageRank citation ranking: Bringing order to

the Web”. In: Proceedings of the 7th International World Wide Web

Conference. Brisbane, Australia, 1998, pages 161–172. URL: citeseer.

nj.nec.com/page98pagerank.html (cited on page 27).

[PPZ11] Oleksandr Panchenko, Hasso Plattner, and Alexander Zeier. “What do

developers search for in source code and why”. In: Proceedings of the

3rd International Workshop on Search-Driven Development: Users,

Infrastructure, Tools, and Evaluation. ACM. 2011, pages 33–36 (cited

on pages 104, 113, 126).

[Pôs+02] Bruno Pôssas et al. “Set-based Model: A New Approach for Infor-

mation Retrieval”. In: Proceedings of the 25th Annual International

ACM SIGIR Conference on Research and Development in Information

http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=998675.999433
http://dl.acm.org/citation.cfm?id=2337223.2337232
http://dl.acm.org/citation.cfm?id=2337223.2337232
citeseer.nj.nec.com/page98pagerank.html
citeseer.nj.nec.com/page98pagerank.html

190 Chapter 10. Conclusion

Retrieval. SIGIR ’02. Tampere, Finland: ACM, 2002, pages 230–237.

ISBN: 1-58113-561-0. DOI: 10.1145/564376.564417. URL: http:

//doi.acm.org/10.1145/564376.564417 (cited on pages 25, 53).

[QLS13] DH Qiu, H Li, and JL Sun. “Measuring software similarity based on

structure and property of class diagram”. In: Advanced Computational

Intelligence (ICACI), 2013 Sixth International Conference on. IEEE.

2013, pages 75–80 (cited on page 34).

[Sch+08] Ralf Schenkel et al. “Efficient Top-k Querying over Social-tagging

Networks”. In: Proceedings of the 31st Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’08. Singapore, Singapore: ACM, 2008, pages 523–530.

ISBN: 978-1-60558-164-4. DOI: 10.1145/1390334.1390424. URL:

http://doi.acm.org/10.1145/1390334.1390424 (cited on page 27).

[SA15] Marcus Schumacher and Colin Atkinson. “An Enhanced Graph-based

Infrastructure for Software Search Engines”. In: 12th Working Con-

ference on Mining Software Repositories, Florence. 2015 (cited on

page 114).

[SCH98] Susan Elliott Sim, Charles L. A. Clarke, and Richard C. Holt. “Archety-

pal Source Code Searches: A Survey of Software Developers and Main-

tainers.” In: IWPC. IEEE Computer Society, 1998, pages 180–187.

ISBN: 0-8186-8560-3. URL: http://dblp.uni-trier.de/db/conf/

iwpc/iwpc1998.html#SimCH98 (cited on pages 38, 129, 169).

[Sin+97] Janice Singer et al. “An Examination of Software Engineering Work

Practices”. In: Proceedings of the 1997 Conference of the Centre for

Advanced Studies on Collaborative Research. CASCON ’97. Toronto,

Ontario, Canada: IBM Press, 1997, pages 21–. URL: http://dl.acm.

org/citation.cfm?id=782010.782031 (cited on page 18).

http://dx.doi.org/10.1145/564376.564417
http://doi.acm.org/10.1145/564376.564417
http://doi.acm.org/10.1145/564376.564417
http://dx.doi.org/10.1145/1390334.1390424
http://doi.acm.org/10.1145/1390334.1390424
http://dblp.uni-trier.de/db/conf/iwpc/iwpc1998.html#SimCH98
http://dblp.uni-trier.de/db/conf/iwpc/iwpc1998.html#SimCH98
http://dl.acm.org/citation.cfm?id=782010.782031
http://dl.acm.org/citation.cfm?id=782010.782031

10.2 Future Work 191

[Sin+09] Sitabhra Sinha et al. “Network Analysis Reveals Structure Indicative

of Syntax in the Corpus of Undeciphered Indus Civilization Inscrip-

tions”. In: Proceedings of the 2009 Workshop on Graph-based Methods

for Natural Language Processing. TextGraphs-4. Suntec, Singapore:

Association for Computational Linguistics, 2009, pages 5–13. ISBN:

978-1-932432-54-1. URL: http://dl.acm.org/citation.cfm?id=

1708124.1708128 (cited on page 27).

[SH13a] Siddharth Subramanian and Reid Holmes. “Making sense of online

code snippets”. In: Proceedings of the 10th Working Conference on

Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May

18-19, 2013. 2013, pages 85–88. DOI: 10.1109/MSR.2013.6624012.

URL: http://dx.doi.org/10.1109/MSR.2013.6624012 (cited on

page 8).

[SH13b] Siddharth Subramanian and Reid Holmes. “Making sense of online

code snippets”. In: Proceedings of the 10th Working Conference on

Mining Software Repositories. IEEE Press. 2013, pages 85–88 (cited

on pages 67, 81).

[TX07] Suresh Thummalapenta and Tao Xie. “Parseweb: A Programmer As-

sistant for Reusing Open Source Code on the Web”. In: Proceedings of

the Twenty-second IEEE/ACM International Conference on Automated

Software Engineering. ASE ’07. Atlanta, Georgia, USA: ACM, 2007,

pages 204–213. ISBN: 978-1-59593-882-4. DOI: 10.1145/1321631.

1321663. URL: http://doi.acm.org/10.1145/1321631.1321663

(cited on page 35).

[USL08] Medha Umarji, Susan Elliott Sim, and Crista Lopes. “Archetypal

internet-scale source code searching”. In: IFIP International Con-

http://dl.acm.org/citation.cfm?id=1708124.1708128
http://dl.acm.org/citation.cfm?id=1708124.1708128
http://dx.doi.org/10.1109/MSR.2013.6624012
http://dx.doi.org/10.1109/MSR.2013.6624012
http://dx.doi.org/10.1145/1321631.1321663
http://dx.doi.org/10.1145/1321631.1321663
http://doi.acm.org/10.1145/1321631.1321663

192 Chapter 10. Conclusion

ference on Open Source Systems. Springer. 2008, pages 257–263 (cited

on page 130).

[WLJ11] Shaowei Wang, David Lo, and Lingxiao Jiang. “Code search via topic-

enriched dependence graph matching”. In: 2011 18th Working Confer-

ence on Reverse Engineering. IEEE. 2011, pages 119–123 (cited on

pages 37, 44, 97).

[WH91] Ross Wilkinson and Philip Hingston. “Using the cosine measure in a

neural network for document retrieval”. In: Proceedings of the 14th

annual international ACM SIGIR conference on Research and devel-

opment in information retrieval. ACM. 1991, pages 202–210 (cited on

page 27).

[Hop88] J. J. Hopfield. “Neurocomputing: Foundations of Research”. In: edited

by James A. Anderson and Edward Rosenfeld. Cambridge, MA, USA:

MIT Press, 1988. Chapter Neural Networks and Physical Systems with

Emergent Collective Computational Abilities, pages 457–464. ISBN:

0-262-01097-6. URL: http://dl.acm.org/citation.cfm?id=65669.

104422 (cited on page 27).

[HAS13] Oliver Hummel, Colin Atkinson, and Marcus Schumacher. “Artifact

representation techniques for large-scale software search engines”. In:

Finding Source Code on the Web for Remix and Reuse. Springer, 2013,

pages 81–101 (cited on pages 10, 41, 42, 71).

[Kru13] Ken Krugler. “Krugle code search architecture”. In: Finding Source

Code on the Web for Remix and Reuse. Springer, 2013, pages 103–120

(cited on pages 2, 59–61, 91).

[Lid05] Elizabeth D. Liddy. “Automatic Document Retrieval”. In: Encyclope-

dia of Language and Linguistics. 2nd. Elsevier, 2005 (cited on page 19).

http://dl.acm.org/citation.cfm?id=65669.104422
http://dl.acm.org/citation.cfm?id=65669.104422

	1 Introduction
	1.1 Dependency Awareness
	1.2 Context-Independent Harvesting
	1.3 Research Goals
	1.3.1 Hypotheses

	1.4 Thesis organization

	2 General Information Retrieval Concepts
	2.1 Recall and Precision
	2.2 Boolean Retrieval
	2.3 Vector Space Model
	2.4 Set-based Model
	2.5 Graph based IR Models

	3 Information Retrieval for Software Components
	3.1 Software Retrieval Methods
	3.2 Search Queries
	3.3 Relevance in Software Search Engines
	3.4 Realization Approaches

	4 Code Search Engines
	4.1 Merobase
	4.1.1 Merobase Query Language

	4.2 Portfolio
	4.3 Exemplar
	4.4 Sourcerer
	4.5 Krugle
	4.6 Koders - OpenHub
	4.7 Symbol Hound
	4.8 Strathcona

	5 Dependency-aware Metamodel
	5.1 The Core Metamodel
	5.1.1 Extended Metamodel for Java

	5.2 Infrastructure of the Graph
	5.3 Text Document Storage

	6 Environment-Independent Harvesting
	6.1 Crawling and Parsing
	6.1.1 Context-Independent Content Analysis
	6.1.2 Handling the source code

	6.2 Graph-based Dependency Resolution

	7 Dependency-Aware Searches
	7.1 DAQL
	7.2 Search Types
	7.3 Classification using Graph IR Methods

	8 Diagrammatic Query Definition
	8.1 The Search Event
	8.1.1 Reuse Scenarios

	8.2 UML-based Search
	8.3 Search User Interface
	8.4 Drag and Drop Search

	9 Evaluation
	9.1 Simple Case
	9.1.1 Case 1
	9.1.2 Case 2

	9.2 Methods from Superclasses
	9.3 Complex Scenario
	9.4 Hypothesis Validity

	10 Conclusion
	10.1 Weaknesses
	10.2 Future Work

	Bibliography
	Books
	Articles

	Index

