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Abstract

A mathematical model accounting for both accuracy and response time (RT)
data in standard visual search experiments on a distributional level has been
developed. The model implements the conceptualization of Moore and Wolfe
(2001) of a hybrid model, in which visual stimuli are selected by attention one
after another and then identified in parallel. For the modeling of RT data on a
distributional level, a finite-time queueing model with exponentially distributed
interarrival times and service times, c parallel servers and a finite customer source
is specified. It characterizes both the serial and parallel aspects of the visual
search process by modeling it as a queueing system where stimuli enter serially
and are processed in parallel at multiple servers. For the modeling of accuracy
data, the queueing model is extended by integrating a mechanism that produces
incorrect system responses. It differentiates between genuine processing errors
and decision errors due to incomplete search. The observer is assumed to adapt
a discrimination criterion for stimulus identification and a termination rule of
search that both depend on set size to optimize search efficiency. The termination
rule derived based on optimal foraging theory regulates the termination of the
queueing process. Embedded in the queueing model, this mechanism accounts
for both error rates and error RTs. Parameter estimation methods are developed
using the maximum likelihood estimation (MLE) approach for accuracy-related
parameters and the minimum distance estimation (MDE) approach based on
Monte Carlo simulation for RT-related parameters. The complete model is fitted
to two empirical data sets of two different search tasks. For both tasks, it fits
the error rates precisely and the distributional RT data nicely, indicating a high
explanatory power of the model.
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C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.
Savoir critiquer est bon, savoir créer est mieux.

— Jures HENRI POINCARE, Science et Méthode
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List of Symbols

This list displays the symbols that are used for deriving or expressing the

equations in this thesis.

A

SD

To

T;

interarrival time of customers in the Kendall’s notation for queueing
systems

service time of servers in the Kendall’s notation for queueing systems
number of parallel servers in the Kendall’s notation for queueing systems
number of buffers in the Kendall’s notation for queueing systems
population size of customers in the Kendall’s notation for queueing systems
queue discipline in the Kendall’s notation for queueing systems

set of natural numbers

beginning of the queueing process

instant at which the i-th customer arrives

interarrival time between the (i — 1)-th and the i-th arrivals

service time of the i-th customer

set size (i.e., the number of the stimuli in the display)

time elapsed from the beginning of the arrival process until the queueing

system responds “target-present”
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1y time elapsed from the beginning of the arrival process until the queuing
system responds “target-absent”

Tresn residual time of a “no” response

Tresy residual time of a “yes” response

Tres common residual time without distinction between “no” and “yes” re-

sponses
t a precise time instant in the queueing process
A mean interarrival rate
u mean service rate

Q(t) number of customers in the system at time t construed as a stochastic
process

“T” | D event of mistaking an ordinary customer (i.e., distractor) for the target

customer (i.e., target)

“D” | D complementary event of “T” | D, i.e., identifying an ordinary customer
(distractor) correctly

“D” | T event of mistaking the target customer (target) for an ordinary customer

(distractor)

“T” | T complementary event of “D” | T, i.e., identifying the target customer
(target) correctly

p1 probability of mistaking an ordinary customer (distractor) for the target

customer (target)

p2  the probability of mistaking the target customer (target) for an ordinary

customer (distractor)
P(false alarm) probability of responding “yes” on a target-absent trial

P(miss) probability of responding “no” on a target-present trial
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number of customers that have been served and judged as “distractor” to

initiate a “no” response on a trial

ratio of I to set size k

SAD(I) event that [ items have been searched and rejected

TA

P

Ni(I)

Ri(1)

E(X)

yi(D)

.....

event that the trial is target-absent
event that the trial is target-present

minimum posterior probability of a “no” response being correct given the
event SAD(]), i.e., a confidence criterion

random variable of the number of items examined until termination
(regardless of the outcome response) under the giving-up policy of “stop
and response ‘yes’ once the target is found, otherwise stop and response

‘no’ after examining [/ items” on a trial with set size k

random variable of the number of correct responses under the giving-up
policy of “stop and response “yes” once the target is found, otherwise stop

and response ‘no” after examining [ items” on a trial with set size k
expected value of a random variable X

7

mean reward rate under the giving-up policy of “stop and response ‘yes
once the target is found, otherwise stop and response ‘no’ after examining

[ items” on a trial with set size k
minimum acceptable accuracy

number of set size levels realized in a visual search experiment

)1, ..., Iy) total number of correct responses in an experiment with m

set size levels (k1, ..., k;;) under the giving-up policy (/4 ..., I,;) on trials

with the corresponding set size levels

ko)1, ..., Im) total number of items to search in an experiment with m set
size levels (ki, ..., k;,) under the giving-up policy (i, ..., ;) on trials with

the corresponding set size levels
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TUnd

Xta

Tfa

steepness of the reflected logistic curve used to approximate the theoreti-

cally optimal termination criterion

x-coordinate of the inflection point of the reflected logistic curve used to

approximate the theoretically optimal termination criterion
smallest non-negative integer satisfying mz — (m —m —1) > 0.5

coefficient of the monomial describing the power law relation between p;
and k, i.e, p1 = a1k = D)

additive inverse of the exponent of k in the power law relation between p;
and k,ie., p1 =a k(- b); at the same time also exponent of k in the power
law relation between p; and k, i.e., p2 = a1 k?)

coefficient of the monomial describing the power law relation between k

and p», ie., p2 = a1k?
stopping criterion modeled as a random variable

a Bernoulli random variable such that the probability of it taking the value
1 equals the decimal part of /

mean interarrival time

mean service time of a single server

number of simulation runs

number of trials realized for each set size level in a balanced design

response on a target-present trial (tp), modeled as a Bernoulli random

variable
probability of responding “no” on a target-present trial (miss detection)

response on a target-absent trial (ta), modeled as a Bernoulli random

variable

probability of responding “yes” on a target-absent trial (false alarm)



Xi

Yip,k Observed number of “yes” responses on the target-present trials with set

size k in a visual search experiment

Yok Observed number of “yes” responses on the target-absent trials with set

size k in a visual search experiment

nip,k  Observed number of “no” responses on the target-present trials with set

size k in a visual search experiment

nia x  Observed number of “no” responses on the target-absent trials with set

size k in a visual search experiment

L(Ttmd ki, TC Fakis s Tnd ko r TC fa,km) likelihood of observing the response pattern
((Yep,kys Yiaki)s --r (Ytp ks Yia k) in the entire experiment with set size
levels (kq, ..., ki)

I(TUnd,kys TCfa ks s Tnd,ky» T fa ky) l0g-likelihood of observing the response pat-
tern (Yep ki, Yiaki)s o (Ytp ks Yta k,,)) in the entire experiment with set size
levels (kq, ..., kn)

I(a, B, a1,a2,b) log-likelihood function

At a(small) changein ¢

n number of customers in the system construed as a concrete number
Ay effective arrival rate depending on n

un  effective departure rate depending on n

Q generator matrix for the birth-death process model of the Markovian

queueing system

P,(t) probability of the number of customers in the system at t being 1, given
that no customers are in the system at the beginning of the queueing

process
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Chapter 1

Introduction

I am never content until I have constructed a mechanical model of what I
am studying. If I succeed in making one, I understand; otherwise I do not.
— WiLLiAM THOMSON,

Molecular Dynamics and the Wave Theory of Light

Looking for a predefined target among other objects is an important real-world
task that human cognition has to deal with efficiently in everyday life. Imagine
the scenario where the supermarket will be closing in fifteen minutes and you
still have eight items on your shopping list that you urgently need but have not
yet found, including your grandmother’s favorite yogurt, a new bicycle multi
tool your picky brother asked you to buy him, and tuna for your cat. Or imagine
another scenario where you are looking for the stand offering the most genuine
Thai snack in the alleys of Bangkok and suddenly realize that your little child is
no longer in sight, disappearing in the huge crowd of strangers. In such cases,
you probably just want to locate your target as soon as possible, whether it is a
multi tool or a four-year old boy. How does the search process work so that we
can meet the efficiency demands in different kinds of situations? During a visual
search, can attention be distributed to several stimuli? Or can no more than one

object be attended to at any time?
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Despite a large amount of research in the last five decades, the serial/parallel
debate of visual search still continues, with some empirical findings favoring
one account and some the other (briefly reviewed in Section 2.2, cf. Bundesen &
Habekost, 2004; Moore & Wolfe, 2001; Thornton & Gilden, 2007). Among the
existing empirical findings, two directly motivated this research project. On the
one hand, there are studies suggesting that it takes several hundred milliseconds
to redirect attention from one stimulus to another (estimated at 200 — 500 ms,
e.g., Duncan et al., 1994; Horowitz et al., 2009; Moore et al., 1996; Theeuwes et al.,
2004). On the other hand, the analysis of response times (RT) as a function of the
number of stimuli in the display (set size) indicates that they are processed at a
rate of a few dozen milliseconds per stimulus (estimated at 20 — 60 ms/item, e.g.,
Treisman & Gelade, 1980; Wolfe, 1998b). If processing is strictly serial, then this
should be the speed at which attention redirects from one stimulus to another,
which contradicts the first finding. Moore and Wolfe (2001) proposed a hybrid
model that can resolve the apparent conflict: Items are selected by attention in a
serial manner at a rapid rate (of about 50 ms/item) but several items are analyzed
in parallel after having gone through this attentional bottleneck, whereby the
processing of each item can take several hundred milliseconds. In this way, such
a mechanism can identify stimuli at a rapid rate, although the time required to
identify every single stimulus can amount to 500 ms.

Although this conception is appealing because of its straightforwardness and
simplicity in accommodating seemingly conflicting findings, it is rather informal
and somewhat vague. There are many theoretical options and ambiguities
with this idea and it remains unclear which predictions such an account makes
uniquely under what conditions. Thus, it is difficult to test this conception
empirically. One solution is to formalize it as a formal model that makes
quantitative and testable predictions. Elaborating on the idea of Moore and
Wolfe (2001), this dissertation formalizes and tests a formal stochastic model that
implements their conception of a hybrid model.

This dissertation is divided into six chapters. In the first chapter, the relevant
experimental approaches, theoretical concepts, accounts and models as well as
empirical findings of previous studies are reviewed. In the second chapter, a

formal stochastic model for the RTs on correct trials in visual search is developed.



At the beginning of the second chapter (Section 3.2), I demonstrate that queueing
models have the desired properties described by Moore and Wolfe (2001), which
make them conceptually suitable to model the cognitive processing during visual
search. Along with the arguments for the appropriateness of queueing models,
the major obstacles of applying queueing models to the study of visual search
are described and the necessary tasks for a successful adaptation are outlined.
Following this, I further explore the adaptability of queueing models to visual
search by briefly reviewing the fundamentals of queueing theory, provide a
mathematical formalization of queueing model of visual search (Section 3.3), and
then elaborate the model predictions of RTs in visual search (Section 3.4). In the
third chapter, the queueing model is extended by incorporating a mechanism
that produces incorrect system responses so that it accounts for RTs and response
accuracy simultaneously. The chapter starts with a rudimentary form of an error
model based on the assumptions of imperfect processing and self-terminating
and exhaustive search (Section 4.1.1). By showing the inconsistencies of the
predictions of this rudimentary form with empirically observed error patterns, I
conclude that the assumption of exhaustive search needs to be replaced by an
assumption of premature termination (Section 4.2). The final accuracy model
attributes errors to both incomplete search and imperfect processing, assuming a
quasi-efficiency-maximizing termination policy of the observer (Section 4.3 to 4.5).
In the fourth chapter, a simulation routine of the complete model is developed
and implemented in R. The behavior of the extended queueing model is studied
systematically using Monte Carlo simulation. This preliminary model assessment
enables a better understanding of how changes of input variables and model
assumptions influence the model predictions. In the fifth chapter, a parameter
estimation procedure is developed in order to test the model empirically. Tailored
to the extended queueing model, the parameter estimation procedure consists of
the estimation of accuracy-related parameters as the first step and the estimation
of RT-related parameters based on the estimated accuracy-related parameters as
the second step. I first present the technical details of estimating accuracy-related
parameters using Maximum-Likelihood Estimation in Section 6.1, and then the
technical details of a hierarchical and iterative procedure for the estimation of

RT-related parameters using Minimum Distance Estimation approach in Section
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6.2. In the sixth chapter, the extended model is fitted to empirical data of previous
studies. At the end of the thesis, the results of this dissertation are summarized
and discussed.

The major achievement of this dissertation is a quantitative, testable model
that accounts accuracy and RT data in visual search simultaneously and on a
distributional level. It realizes a theoretical conceptualization that addresses a
long-existing, fundamental question in attention research. Even though a hybrid
model provides a theoretically appealing response to the enduring serial /parallel
debate, we do not understand visual attention better than before as long as it
remains a notion. On this matter, I share the view of William Thompson that a
mechanical model is the way to truly understand a phenomena or a relation. By
formalizing it as a formal mathematical model, I make the conceptualization of a
hybrid model empirically testable. It can be tested empirically on a restrictive
level because it makes predictions on the entire distribution of RTs. Similarly,
theoretical concepts used in the construction of the mechanism accounting for
error rates are quantified to express a hypothetical relation, for example, the
mean reward rate from optimal foraging theory (Section 4.3.3). In fact, it was the
analysis of quantitative predictions of different notions that led me to a novel
account of understanding errors as a result of incomplete search and imperfect
processing.

To ensure the transparency and replicability of the implementation, the
development of the model and the corresponding simulation and parameter

estimation methods are documented in an elaborate manner.



Chapter 2

Theoretical background

2.1 Visual search as an object of study

2.1.1 What is visual search and why study it?

Wolfe (2018) defines visual search as “the act of looking for something or a
number of things” (p. 569). Visual search constitutes an important cognitive
function of human beings and animals with highly developed visual system
because a good search performance is essential for survival. Many activities that
maintain the existence rely on visual search, such as collecting food, hunting for a
prey, finding orientation in the environment, identifying enemies and threats. So
do activities that build the basis of a society and of reproduction, such as finding
the young or mates in the herd. Although the life of human beings in modern
society has changed significantly compared to primitive or farming societies, the
role of visual search is not essentially different than in ancient times. We may
look for food in a supermarket instead of in a field, get necessities by shopping in
the internet instead of collecting them in the nature, find orientation in big cities
built with complex streets and signs seen only in civilization, and look for friends
in a crowd. The objects we are dealing with and structure of the environment
are different but the role of visual search as defined by Wolfe (2018) in fulfilling
the basic needs has not changed. The function of visual search remains the same:
finding a specific object and ignoring others, sometimes requiring filtering of
more intense information.
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As a basic cognitive performance, visual search has been attracting attention
of numerous researchers. Understanding visual search helps us optimize search
performance and/or efficiency in various contexts, identifying factors that
influence the search outcomes and efficiency and guiding the design of an
more performance facilitating environment or products. More importantly, the
study of visual search does not only has applicational interests. Visual search
as a phenomena and an experimental paradigm is sufficiently interesting and
important for scientists to answer fundamental questions about visual attention.
What is the nature of visual attention? What is the architecture of visual system?
What are the mechanisms of visual processing? On a more general level, studying
visual search helps us answer theoretical questions about human cognition, such

as how the mind allocates cognitive resources.

2.1.2 The role of visual search in studying the time course of

visual attention

Visual search is a specific topic and an experimental paradigm in the field
of visual attention research. Research on visual attention attempts to answer
fundamental questions, such as “how does attention work” and “where (or what)
is the limitation of attention?” These questions motivated the development of
various kinds of experimental paradigms. Basically, the allocation of attention
can be viewed as a black box receiving and releasing information. To find out how
the black box works, the investigator varies the task demands or the resources
available and observe the performance as outcome. Ideally, the observed relations
allow inference on how much resources are necessary to meet certain demands.
However, finding out the amount of necessary resources that just match the
demands imposed on the observer is far from trivial in empirical research.
Any attempt of such inferences relies (at least implicitly) necessarily on some
assumptions on the mechanisms of attention, which themselves belong to the
objects that need to be examined empirically. This issue should become clearer if
one takes a closer look at the existing experimental paradigms. Corresponding to
the idea of varying either the demand or the available resource while keeping the

other constant, existing experimental methods follow roughly two approaches.
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One approach is to increase the total demand or workload unit by unit and
observe the increment of resource expenditure to reach a certain performance
level. The use of visual search as a research paradigm follows this concept. The
demand is systematically manipulated by adding items to the set to search and
the increment of resource expenditure is measured by RT. Thus the speed of
processing constitutes the basis of inferences according to this approach. This
leads to the classic slope analysis of the RT X set size function (see Section 2.3.1
and 2.3.2). However, the slope is not a direct measure of the time course of
attentional shifts but rather an inference. The slope as an estimation of the time
course of individual shifts of attention is only justified if visual search underlies
a (stage of) strictly serial processing (see Section 2.2). In other words, inferring on
the limitation of attention using the slope requires the assumption on a specific
manner of the allocation of cognitive resources.

The other approach is to restrict the available cognitive resources while
holding the processing demand or workload constant, and observe the reduction
of performance (the outcome of the processing). Thus the accuracy of processing
constitute the basis of inferences according to this approach. The attentional
dwell time paradigm (see Section 2.5.2) and related paradigms (see Section
2.5.3) are representatives of this class. Restriction of processing capacity can be
achieved by brief presentation of the stimulus to identify (i.e., presenting stimuli
only for very short time period), requiring a response to another stimulus at the
same time (i.e., using a dual task paradigm), or both. The study of attentional
dwell time often adopts a dual task paradigm (see Section 2.5.2). Typically, two
items need to be identified in such methods. One of them makes demand, taking
up resources, and the impact on the identification of the other item is measured
as an indicator for the interference. The processing capacity is restricted by
shortening the temporal proximity of the first to the second item. The paradigms
used to study attentional dwell time are explored in details in Section 2.5.

2.1.3 How has visual search been studied in laboratory?

As an important paradigm for understanding visual attention, visual search has
been studied extensively (Wolfe, 1998a). Simplified and abstracted from the act

of visual search in daily life, “classic search tasks involve search for a target in an
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array of clearly individuated items presented on an otherwise blank background.”
(Wolfe, 2018, p. 574). Different from the visual field in a continuous, naturalistic
scene, participants see isolated visual stimuli — usually abstract symbols and
patterns — in a display in a typical visual search experiment. In each trial, the
display contains either one or no occurrence! of a predefined target as well as a
number of distractors (e.g., a single blue “T” target letter in twenty black and
blue digits and letters). The task is to indicate as quickly as possible whether
the target is present in the display. The stimuli in the display remain visible and
unchanged until the participant makes a response. Figure 2.1 shows an example
of the search display used in the experiments of Wolfe et al. (2010, see Section 7.1
for a brief description).

Figure 2.1: An example of the search displays used in Wolfe et al. (2010). From
“Serial _Conj”, by Visual Attention Lab, 2010, Retrieved from http://search.bwh.
harvard.edu/new/data_set_files.html. Copyright 2019 by Visual Attention Lab.

As discussed in the last section, performance measures are the center of visual
search paradigm and experiments. The most obvious, thus the most commonly
used performance measures are behavioral measures such as accuracy and latency.
Accuracy is measured by the proportion of correct responses in all responses
and latency by the mean RT. As more advanced and sophisticated technologies
become available, information beyond behavioral data can be recorded precisely
as well. Among others, eye movement methods have become more convenient to
apply and more popular. Although the idea of recording scan paths of fixations
to reveal the process of search is appealing, making valid inferences on the

deployment of attention based on eye movement data turns out to be difficult in

IThis is referred to as standard visual search. There is a variant form using redundant or
multiple targets, see e.g., Mordkoff et al. (1990), Pashler (1987).
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practice. Firstly, the recorded data lags a few hundreds of milliseconds behind the
deployment of attention. Secondly, fixations turn out to be neither necessary nor
sufficient for the deployment of selective attention (see Wolfe, 2018, for detailed
arguments). Other methods for non-behavioral measurement aim at recording
brain activities. Electrophysiological techniques such as electroencephalography
(EEG) and magnetoencephalography (MEG) measure the electromagnetic activity
of the brain. The most useful measure for the study of visual search is visual event-
related potentials (ERPs). Specific patterns have been found out to correlate with
the deployment of attention, in particular the N2pc component (e.g., Woodman &
Luck, 1999, see also 2.5). However, electrophysiological methods are hard to use
on classic visual search tasks due to their special requirements on experimental
setup and procedure to obtain meaningful results. Neuroimaging techniques,
such as magnetic resonance imaging (MRI) and functional magnetic resonance
imaging (fMRI) deliver structural or functional images indicating neural activity,
yet their usage in tracking the concrete course of attention deployment process is
limited due to their lack of spatiotemporal resolution (for detailed discussion see
Wolfe, 2018). Moreover, employing non-behavioral methods comes with higher
technical and financial demands in practice, which further restricts their usage.
In sum, all of these types of measurement methods are used to investigate visual
search, but the vast majority of the studies employing visual standard search
paradigm use only behavioral measures.

Although visual search experiments often use arbitrary, isolated objects (e.g.,
lines with different orientations, geometrical figures, letters and so on) on blank
background in order to control stimulus features and configurations precisely,
mechanisms inferred from laboratory data are considered to play an important
role in searching in real-world, continuous scenes (e.g., Wolfe, 1994b; Wolfe et al.,
2011).

2.2 Serial vs. parallel accounts

As mentioned above, search efficiency (speed) is at the core of research on
visual search. It is surprising that despite many constraints on our capacity
of information processing, visual search has reached an efficiency that enables
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coping with tasks in daily life successfully. What kind of mechanisms governs
the allocation of attention such that the search is so efficient? Is it because we can
deploy our attention to several objects at the same time? As an enduring debate
in the visual search literature, the serial /parallel debate concerns the question of
how attention is allocated among visual objects.

In daily life, we sometimes experience the search as so effortful that we have
to check object by object to locate the target, for instance, looking for a ring in a
drawer full of sundries. Sometimes we happen to spot the target with a rapidity
that surprises even ourselves, for instance, locating the new album of our favorite
singer among the thousands of CDs on the shelves of a store as if it had “popped
out” on its own so that we did not need to check the CDs one by one. These
two different experiences are respectively reflected by the serial and the parallel
account, which make up two fundamental theoretical positions regarding the
mechanism of object recognition. Both accounts have not only correspondence to
introspection but also plausible theoretical rationales.

The notions of serial and parallel processing are rooted in the information
processing approach and were transferred in the field of vision research in the
1960s (e.g., Eriksen, 1966; Eriksen & Spencer, 1969; Sperling, 1963; Sternberg,
1967, April). Since then, nearly a half-century has passed; the serial/parallel
debate remains an unsolved issue in vision science despite intensive research in
the past decades.

The serial and parallel accounts diverge on the question of whether accom-
plishing visual search tasks involves any object-by-object serial processing stage
(Moore & Wolfe, 2001). The serial account holds that visual search contains
at least one serial processing stage. It does not deny the existence of parallel
processing stages. Rather, it claims that the visual system has a limited capacity,
such that at some point in the processing it becomes impossible to process visual
information in a parallel manner. That is, a bottleneck exists in the information-
processing channel of the human system that requires the processing to reduce
to one-by-one. This corresponds to the view of attention being a filter that picks
out relevant information or a spotlight that directs to certain coordinates of a
location map.

In contrast, the parallel account denies the notion of a mandatory serial selec-
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tion of individual items at any level of processing. Although the parallel account
also admits that humans have limited resources in information-processing, it
views attentional selection as a resolution of these constraints by competition and
cooperation between features and objects. Preliminary representations of visual
objects compete for the constrained processing resources within the nervous
system. By “winning” the competition, an object is recognized. Therefore,
attention is an emergent property of such competitions rather than a “spotlight”
that is directed to a certain location to integrate features.

2.2.1 Serial models

The major theoretical argument for the existence of a mandatory serial processing
stage is that visual search essentially involves object recognition. To recognize an
object, it appears necessary to link the visual representation to the representation
of the object in memory. It is plausible that such linking involves the visual
representation of only one object at any instant and thus requires a separate serial
deployment of attention from object to object, selecting them to pass through
the bottleneck. Through an item-by-item engagement of processing, stimuli are
identified and classified as target or non-target. This is particularly the case in
situations where the target is defined by a conjunction of features (e.g., black
square in gray squares and black circles). Serial allocation of attention is needed
because perceptions of single features have to be integrated correctly to identity
an object.

2.2.1.1 Feature integration theory (FIT)

The most influential serial model is the feature integration theory proposed by
Treisman and Gelade (1980). The core hypothesis of FIT is that visual perception
consists of two functionally independent and sequential processing stages: a
parallel feature encoding stage, followed by a serial feature binding stage.

In the first stage, basic visual features, such as color, size, shape and orientation,
are registered independently and in parallel across the visual field. Feature
detectors encode the presence of the corresponding features in separate feature
maps. Within each map, the relational location information of the corresponding
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feature, if present, is stored using the map’s own coding system. In this way,
processing in the first stage is assumed to be preattentive and automatic (i.e.,
without attention). However, there is no coordination of information across
different feature maps at this early stage. Thus, it should be possible for a
searcher to tell the presence of single features by inspecting the activity in the
corresponding feature map (e.g., there is something red and there is something
round). Yet the searcher may not be able to recognize an object (e.g., a red
dot), because these separate registrations of individual features (“free-floating”
features) do not form a coherent representation due to lack of coordination across
different feature maps. To identify an object as a whole, features have to be
bound together correctly, which requires attention according to FIT.

The integration of features takes place in the second stage. Here, focal
attention is needed to function as the “glue” that coordinates activations across
different feature maps. More precisely, focal attention is assumed to be a serial
scan operating in a more general coordinate system, a master map. Moving
within the master map, an attention window (“spotlight”) recovers and combines
the representations of the separate features at the current attended location
via connections between the master map and the feature maps. In this way,
an integrated percept of the object would be formed and the object would be
identified. After the recognition, the attention proceeds to the next location to
perform the integration there, if needed. In this way, processing in the second
stage is assumed to be attentive and serial.

Although FIT can predict the patterns in a lot of empirical data, there are
many findings that it is not able to explain (see Section 2.3). To accommodate
these findings, Wolfe et al. (1989) developed the guided search model.

2.2.1.2 Guided search (GS)

The core of the original GS model (Wolfe, 1994a; Wolfe et al., 1989) is the claim
that the preliminary processing outcomes guides the allocation of attention. In
FIT, the parallel, preattentive stage and the serial, attentive stage are independent.
FIT does not specify how the preattentive stage supports the localization of a
given feature. Based on the basic structure of preattentive/attentive processing
stages as in FIT, the GS model conceives a preattentive mechanism that uses the
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information from the first stage to guide deployment of attention in the second
stage.

The basic principle of this guidance mechanism is a combination of a bottom-
up, stimulus-driven guidance to salient items and a top-down, schema-driven
control reflecting the needs of the searcher. First, separate features of visual
stimuli are registered and analyzed in parallel in the preattentive stage in the way
FIT conceives. The outcomes of the preattentive processing are activation values
for the features present in the display. These activation values are then delivered
from different feature maps to the master map via broadly tuned “categorical”
channels (e.g., “red”, “yellow”, “black”, “small” and “big”). The bottom-up
component of the activations responds to local contrast or salience of stimuli. It
measures the differences between the value of a given location and the values
of its neighborhood regarding the same feature. The top-down component of
the activations responds to target-matching features, i.e., explicit task demands
or implicit change in guidance. It weights or selects relevant channels from the
broadly tuned channels so that they differentiate the target from the distractors as
well as possible (e.g. “black” and “small”). These activation values are summed
up across features at the same location. The sum gives an evaluation by the
preattentive stage of how likely the object at a given location to be a target.
Attention is then directed to the location with the highest total activation value.
As soon as attention is deployed, the serial stage integrates different features to
identify the object and then classifies it as target or non-target. Due to inherent
noise, this location may contain a distractor. In this case, after the classification,
attention is directed to the location with the next highest activation.

When guidance is possible in a task, search efficiency will be improved. For
instance, for a small black “2” as target with distractors that are red, yellow or
black and big or small digits, information from the channel “black” and “small”
is enhanced. Compared with big black digits or small red digits, small black
digits receive higher total activation from both channels, and therefore would be
assigned higher priority. Although red digits and big digits may automatically
have a relative high salience, these subsets of candidates may be ignored due to
the inhibition of the respective channels.

The GS model has been successful in accommodating variations in search
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performance, such as intermediate slope in conjunction search (see Section 2.3.1)

and searching behavior within a certain subset of stimuli (see Section 4.2.2)

2.2.2 Parallel models

Parallel models rely on the notion that search efficiency is achieved by a unified
mechanism of both selection and recognition that deals with several objects
simultaneously. According to the parallel account, once the (multiple) stimuli
enter the visual system, evidence of the identity of all objects accumulates over
time until thresholds of identification as targets or non-targets are exceeded.
There can be multiple levels of processing, but the principle of each level remains
a parallel competition. Once an object is recognized, it is also selected, and vice
versa. In this way, information from these objects can be processed simultaneously

to classify them as target or non-target.

2.2.2.1 Attentional Engagement Theory (AET)

Duncan and Humphreys (1989, 1992) proposed the attentional engagement theory
(AET) as response to FIT. AET regards the entire visual field as a continuous search
surface, where object representations compete for access to visual short term
working memory (VSTM). By entering VSTM, an object is selected and recognized.
The competition is based on a matching mechanism that continuously cumulates
evidence for the degree of similarity each stimulus shares with a “template of
the target.”

According to AET, stimulus objects are processed initially in a parallel stage of
perceptual segmentation and analysis, which results in hierarchically structured
representations across the visual array. These representations are then compared
with an attentional template (i.e., a specification of the anticipated target) and
gain or lose weight in the competition, depending on how well they match the
template (top-down excitations and inhibitions). In this process, representations
share their weights to the extent of their similarity. That is, they are linked by
perceptual grouping based on their perceptual similarity and any change in
weight for one would spread in parallel to the others (weight linkage). Therefore,

search efficiency is determined by two factors: the target-distractor similarity
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and the distractor-distractor similarity (bottom-up connections). If the target
and the distractors are very similar (e.g., a rotated “T” in rotated “L"s, especially
“L”s with 90 degree counterclockwise rotation are confusable with a “T” with
90 degree clockwise rotation), their representations would be all linked closely,
resulting in similar weights and consequently inefficiency in determining the
“winner”. In contrast, if the target and the distractors are dissimilar (e.g., an “X”
in “O”s), the target would gain weight quickly, resulting in an efficient search.
On the other hand, if the distractors are very homogenous (e.g., an “X” in “O”’s
and “Q”s), they would all lose weight quickly because they are linked closely and
rejected together due to the shared “unlike-features.” In contrast, if the distractors
are very heterogeneous (e.g., a “T” in all kinds of letters), they are linked loosely
so that the inhibition of each single feature (e.g., round shape) is not sufficient to
reject a large group of them (e.g. “O” and “Q” would lose weight, but not “K”,
“N” and so on). In this case, search would also be inefficient because additional

iterations of rejection are required.

2.2.2.2 Theory of visual attention (TVA)

At the same time when AET was proposed, another influential parallel model
emerged — Bundesen’s (1990) theory of visual attention (TVA), a limited-capacity
race model. In TVA, attentional selection and object recognition take place at the
same time, by means of visual classification. That is, “the process of attentional
selection is conceived as a parallel processing race among visual categorizations.”
(Bundesen & Habekost, 2004, p. 119), whereby a visual classification takes the
form of “object x has feature i (or belong to category i).”

This process consists of two stages. In the first stage, the strength of the sensory
evidence for object x belonging to category i is calculated (the 1 values, e.g., how
well “C” and “G” matches the feature “round shape”) by a massively parallel
comparison. The 1 values are affected only by the objective perceptual properties
of the visual field and the representation of the features in the long-term memory.
The parallel processing in this stage is assumed to be unlimited. In the second
stage, stimuli compete for selection into VSTM in a parallel stochastic race process.
The storage capacity of VSTM is assumed to be limited to K (typically assumed 4)
different objects, but unlimited with respect to the number of features. In other
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words, when the memory space is available, the first K objects that first finish
processing regarding the desired categorization (the winners of the race) become
encoded into VSTM.

TVA views the classification of object x to category i as a result of the selection
of x among objects and the selection of i among categories. It specifies two
mechanisms of attention that affect the visual classification, i.e., the “competition”.
According to TVA, the “speed” of a certain visual classification in the “race”
is jointly determined by the (objective) n value assigned to the object and two
subjective values: the pertinence of the visual category and the bias of the
categorization. The pertinence represents a mechanism called “filtering”, which
determines which objects are preferred. For example, if the target is red, then all
red objects would have a high pertinence. The other subjective value bias of the
categorization represents another mechanism called “pigeon-holding”, which
determines which category is preferred. For example, if the task is to find a red
“S” among red and black letters and digits, then objects are more likely to be
categorized regarding to alphanumeric identity instead of shape (in the sense that
“S” and “5” have similar shape, so as “I” and “1”). TVA assumes independence
between categorizations of different objects and between different categorizations
(i.e., regarding different features) of the same object. Furthermore, it assumes
that in most applications, once determined initially, the “speed” of each object
remains constant during the stimulus presentation.

The serial /parallel debate simulated much theoretical elaboration of both
serial and parallel models. Accordingly, there has been much work done to test
these theoretical concepts and models empirically. Several experimental methods
have been developed to distinguish between classes of models empirically with
the focus on the distinction between serial and parallel accounts. Although these
efforts has not led to conclusive evidence for or against either account so far, they
provide useful experience and strategies for assessing this and related issues,
pointing out the directions for subsequent research. The next section reviews the
major empirical work that aimed at distinguishing between serial and parallel

accounts using a latency measure (cf. Section2.1.3)
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2.3 Major empirical findings regarding RT in visual
search

As discussed in Section 2.1.2, to investigate the limitation of attention, visual
search paradigm follows the idea of measuring the increment of the resource
expenditure for increasing demands. Therefore, the relation between set size (i.e.,
the number of items in the search display) and RT has been studied extensively.
As it is desirable that the increment of latency reflects the increment of resource
expenditure, no further restriction is imposed on the cognitive capacity?. Since
RT is considered as the indicator for efficiency under this assumption, its relation
to set size under various experimental manipulations that ought to affect the
search efficiency constitutes the primary empirical check for theories of visual
search. A good model of visual search is expected to make predictions consistent
with the findings regarding the RT X set size relation. Therefore, the patterns
found in the RT X set size relation under various manipulations have become
primary criteria for the assessment of the serial and parallel models reviewed
in Section 2.2. These models (and other serial and parallel models) all make
predictions on the time required to detect the presence or absence of the target
under different conditions.

Whereas RT is the primary measure of interest, accuracy data has been
attracted subordinate attention in research on visual search. Predicting the
outcome of visual search seems not to be of primary interest in studies using visual
search paradigm. The logic of the analysis of RT X set size treats performance as
a control measure rather than a variable to predict. Even under the assumption of
strictly serial processing, which allows inferences on the time course of individual
shifts of attention, the claim that the increment of mean RT matches the necessary
processing resources is only justified if the task is completed successfully. In
theory, successful completion of the task means a perfect performance; in practice,
slight error rates are tolerated. As a matter of fact, classic visual search tasks

have been designed in a way that error rates could be kept low (e.g., under

ZNote that the instruction “respond as fast as possible” serves as a measure intending to
prevent an overestimation of the resource expenditure. A problem here is that the performance,
i.e., the accuracy rate is not held constant when comparing the relation between demands and
resource expenditure. See detailed discussions in Chapter 4, especially Section 4.2 and 4.6.
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10%). Otherwise, the observed RT X set size relation will be questioned as an
indicator for the search efficiency because speed could increase at cost of accuracy
reduction. This issue is discussed in detail in Section 4.6. For this reason, accuracy
data in visual search has been less frequently analyzed. Not only there have been
infrequent attempts of predicting accuracy data, it has been rarely used as a hint
for the development of theories of visual attention. Error rates have usually been
seen as uninformative in respect of theory developing as they are considered not
be able to differentiate between different theoretical accounts®. Most existing
models make no explicit predictions regarding error rates.

To retain the focus of this chapter and a fluent presentation of the model
development, the following sections discuss solely empirical findings regarding
RT. Research work regarding accuracy is reviewed and discussed in Chapter 4.

2.3.1 RT X setsize

Following the analysis method of Sternberg (1966) for memory search, the
analysis of RT X set size relation was the earliest attempt to empirically examine
whether visual search involves a serial component. The logic is simple: If visual
search is serial, latency (reflected by the mean RT) should increase linearly with
the set size because each added item requires an additional amount of time to be
checked. In contrast, if visual search is parallel with unlimited capacity, RT should
remain unchanged even if the set size becomes larger because added items can
be checked simultaneously. Thus, the increase of the mean RT for every unit of
increase in set size, i.e., the slope of the function relating the mean RT to set size,
is taken as an index for the seriality /parallelity of the search process (cf. e.g.,
Treisman & Gelade, 1980; Treisman et al., 1977; Wolfe, 1998b).

As discussed last section, there is a consensus that the early stage of processing
is parallel with unlimited capacity. The divergence concerns the processing stage
that involves recognition. Therefore, the inference on the seriality /parallelity
from the RT X set size slope depends on the type of the search task. If the target
differs from all the distractors by a single basic feature (e.g., a red circle among

3This statement refers to differentiating theories based on the quantitative aspect of accuracy
data, i.e., the error rates. Qualitative aspects, e.g., the types of the errors, have been used to test
theories of visual attention. An example is the study of the phenomena illusory conjunction.
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black figures), the outcome of the early parallel processing stage can already
provide the diagnostic information for the presence or absence of the target —
one must simply inspect the activity in this feature dimension. It follows that
the completion of such a search task should be efficient and insensitive to the set
size (i.e., characterized by a shallow RT X set size slope), regardless of the nature
of the subsequent stage involving recognition. In contrast, if the target differs
from the distractors in terms of a combination of features (e.g., a blue “L” among
black “L”s and blue and black letters), the classification of an item as target or
distraction requires a more elaborate processing. According to FIT and GS, this
involves a serial integration processing search. It follows that search should be
inefficient and more difficult with larger set size (i.e., characterized by a steep
RT X set size slope). FIT labels the first kind of search tasks as feature search
and the second as conjunction search. In empirical studies manipulating set size,
shallow RT X set size slopes (mostly < 5 ms/item) were found for feature search
tasks and steeper RT X set size slopes (mostly between 5 and 25 ms/item) for
conjunction search and other tasks (see e.g., Treisman, 1988; Treisman & Gelade,
1980; Wolfe, 1994a, 1998b). This has been initially seen as evidence for serial
models, especially for FIT.

Furthermore, the ratio of the RT X set size slope on target-absent trials to that
on target-present trials has also been regarded as relevant for the serial/parallel
debate. It was argued that a strictly serial scan predict an approximate 2:1
target-absent to target-present slope ratio under the additional assumptions
of exhaustive and self-terminating search. Exhaustive search means that the
searcher checks all items to give a negative response on target-absent trials. Self-
terminating search means that the search process ceases on a target-present trial
once the target is found, resulting in a positive response. If the items are sampled
in a random order with equal probability and without replacement, the target
will be found after checking half the items in the display on average. This means
that to give a positive response on a target-present trial, the searcher should need
on average half the time of giving a negative response on a target-absent trial. In
empirical studies, an approximate 2:1 ratio has been found (e.g., J. Palmer, 1995;
Pashler, 1987; Treisman & Gormican, 1988; Wolfe, 1998b).

However, the research on the search-slope did not yield conclusive empirical
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distinction between the serial account and the parallel account. First, neither a
steep RT X set size slope in conjunction search nor a 2:1 ratio between target-
absent and target-present slopes is a unique implication of serial models. A
limited-capacity parallel model can predict a steep RT X set size slope, assuming
that disjoint subsets of the entire set of stimuli in the display are sampled serially
but stimuli within a subset are processed in parallel (e.g., Townsend, 1971, 1990;
Townsend & Ashby, 1983; Townsend & Nozawa, 1995; Townsend & Wenger,
2004; Ward & McClelland, 1989). Similarly, based on the same assumptions of
exhaustive and self-terminating search, a limited-capacity model can also predict a
2:1 ratio between target-absent and target-present slopes. Second, empirical data
does not uniquely exhibit these two patterns. Patterns that deviate from these
findings have also been observed in empirical studies. For example, some kinds
of conjunction search were found to be completed very quickly (e.g., Nakayama
& Silverman, 1986; Wolfe et al., 1989). Moreover, empirical RT X set size slopes
do not cluster into two groups which can be labeled as “shallow” and “steep”.
An analysis of 1,000,000 visual search trials across different kinds of search
tasks including feature search, conjunction search and other search tasks (Wolfe,
1998b) shows that the empirical slopes have not been subjected to a bimodal
distribution, but rather display a continuum of search efficiency. Generally, the
slopes fall into a range of 20 — 60 ms/item. Within each task type, the slopes
vary rather continuously. The analysis also shows that a large proportion of
empirical slope ratio is reliably larger than 2:1. On the other hand, the slope ratio
is found to decrease and approximate 1:1 as the slopes themselves increase, that
is, as the search task becomes more difficult (cf. e.g., Townsend & Roos, 1973).
Although both serial and parallel models proposed theoretical explanations for
these deviations (see e.g., Duncan & Humphreys, 1989; Wolfe et al., 1989), these
attempts did not lead to a clear-cut conclusion.

2.3.2 RT X set size under additional manipulations

Following a similar logic, another cluster of studies investigated the effects of
various manipulations on the RT X set size slope. Assume that a manipulation
increases the processing time of a single item. If the processing involves a
mandatory serial processing stage and the manipulation affects the processing
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time in this stage, then the increased processing time for each single item that are
processed should add to the latency. That is, the increase in the mean RT under
the manipulation should be proportional to the set size (i.e., a constant ratio of
the increase in the mean RT to set size is to expect)*. It follows that the effect
of the manipulation on RT should interact with the set size: For larger sets, the
difference in the mean RT under the conditions without and with manipulation
should be larger than for smaller sets (over-additive effect of the manipulation).
This implies a steeper RT X set size slope under a processing time increasing
manipulation. In contrast, if search takes place in a purely parallel manner with
unlimited capacity, although the processing time of each single item increases
as well due to the manipulation, this increase should be reflected only once in
the latency. It follows that the increase in the mean RT under the manipulation
should be invariant to set size (additive effect of the manipulation). This implies
that the RT X set size slopes under conditions with and without manipulation
should be similar.

Empirical studies that used this approach yielded inconsistent results. For ex-
ample, using stimulus quality manipulations (e.g., high-contrast vs. low contrast
or no added noise vs. added noise), Pashler and Badgio (1985) observed additive
effects of the manipulations, which indicates that the manipulations affected
parallel processing. Egeth and Dagenbach (1991) adopted a slightly modified
technique which presents only two stimuli in the display and manipulates the
visual quality of the two stimuli independently (cf. Townsend & Nozawa, 1995).
They reasoned that if the two stimuli had to be identified one after than the
other, low visual quality of both stimuli should induce longer mean RT than low
visual quality of one stimulus and high visual quality of the other. If the two
stimuli could be identified simultaneously, there should be no difference between
having only one and having two low-quality stimuli. In both case, high quality
of both stimuli should lead to the shortest mean RT among the three conditions.
The results of Egeth and Dagenbach (1991) supported parallel processing in

“Note that the argumentation from here on replaces “the number of items that are processed”
by set size, i.e., “the number of items in the display”. These two quantities equal each other only
if the search is exhaustive. To ensure that all the items in the display have to be identified, Pashler
and Badgio (1985, see next paragraph) used a so-called highest-digit task, in which participants
were required to report the identity of the highest digit in the display.
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some situations (e.g., “X” among “O”s and “T” among “L”s, or vice versa), but
indicated the engagement of a serial process in other situations (e.g., a rotated
“T” among rotated “L”s, or vice versa).

Apart from the inconsistent results, this approach has two major logical
problems. First, limited-capacity parallel models are also able to predict the same
over-additive effect of such manipulations, assuming that disjoint subsets of the
entire set of stimuli in the display are sampled serially but stimuli within a subset
are processed in parallel (cf. Section 2.3.1). Second, a serial processing stage
could be a mandatory part of the entire search process, but such experimental
manipulations exerted effects only on the parallel stage (e.g., the preattentive
stage as postulated by FIT and GS) due to their perceptual character. In summary,
this approach did not distinguish between serial and parallel models in an

unambiguous manner, either.

2.4 Can RTs tell us more?

So far, it should be apparent that the major problem with using the slope of the
RT X set size function to distinguish between serial and parallel accounts is that
any pattern of the results is not a unique implication of either account. More
specifically, processing that involves a mandatory serial stage and purely parallel
processing with limited capacity can predict exactly the same pattern of RT X set
size slope, regardless of an additional manipulation.

Another issue that adds doubt to the use of the RT X set size slope is the
inconsistency of the patterns found in empirical studies. It makes the issue
more difficult to deal with that the conditions under which the inconsistency
occurred are not clear. Strict replications are rare among these studies on the
search slope. Although a theorist may be able to adjust a model to accommodate
new data, doing so wi