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This article deals with the modeling for an individual car path through a
road network, where the dynamics is driven by a coupled system of ordinary
and partial differential equations. The network is characterized by bounded
buffers at junctions that allow for the interpretation of roundabouts or on-ramps
while the traffic dynamics is based on first-order macroscopic equations of
Lighthill-Whitham-Richards (LWR) type. Trajectories for single drivers are
then influenced by the surrounding traffic and can be tracked by appropriate
numerical algorithms. The computational experiments show how the modeling
framework can be used as navigation device.
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1 INTRODUCTION

Traffic flow modeling is a current and active research area since mathematical models help to get a deeper insight into
the traffic mechanisms. Essentially, these models can be divided into microscopic and macroscopic depending on their
individual characteristics. Microscopic models consider every vehicle as single agent with different properties specified
by its position, speed, and acceleration, see, eg, Treiber and Kesting.1 In contrast, macroscopic models include fewer
specifications and are only characterized by aggregated variables such as traffic density, flow, and average speed, see, eg,
Garavello et al2 and Garavello and Piccoli.3 More precisely, in the case of road networks, the macroscopic dynamics is
typically given by hyperbolic conservation laws such that the traffic flow at junctions is distributed according to coupling
conditions. Within this framework, also on-ramps or roundabouts can be modeled, cf.4 In Goatin and Garavello5 and Herty
et al,6 a novel type of intersection was introduced considering that junctions may have a storage capacity as buffers. The
approach is closely related to supply chains or production networks, where goods must wait in a buffer to be processed, see
D'Apice et al.7 Recent publications couple microscopic and macroscopic models to analyze the path of a single vehicle that
travels along a road, see previous studies.8-10 Unlike strongly coupled models,9 a weakly coupled approach8 assumes that
the traffic influences the vehicle but not vice versa when the trajectory of the vehicle is given by an ordinary differential
equation. In the case of congestion, the right-hand side of this ordinary differential equation becomes discontinuous, and
we cannot expect a classical solution any more. The underlying theory of such kind of problems is considered in Colombo
and Marson.11,12 In contrast to already existing models, we provide a formulation to track a car in a network with buffers
at junctions, which leads to waiting times whenever a buffer is not empty. At junctions with more than one outgoing road,
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we introduce different methods to decide which road will be taken next. Moreover, a new numerical approach is presented
and the tracking algorithm based on Bretti and Piccoli8 is tailored to a network with buffers. The outline of the paper
is as follows. Section 2 is devoted to the introduction of the weakly coupled network model assuming bounded buffers
at junctions. The corresponding numerical analysis as well as a naive and complex tracking algorithm are presented in
Section 3. Section 4 covers the numerical results. In particular, the performance of the developed algorithms at junctions
is numerically investigated in several test networks. Additionally, the tracking algorithms are applied to compare different
paths and the resulting arrival time. Conclusions and aspects for future research are outlined in Section 5.

2 WEAKLY COUPLED NETWORK MODEL

We start by presenting the traffic flow model of Herty, Lebacque, and Moutari.6 As the speed of a single car is assumed to
depend on the traffic density, we refer to the approach in Colombo and Marson,11,12 where only a single road is considered.
In Section 2.2, a weakly coupled model to track the car's path in a network with buffers at junctions is developed.

2.1 Traffic flow model with bounded buffers
We consider a road network specified by a finite, connected, and directed graph  = ( , ) in which the set of nodes 
represents the junctions. The set of edges  denotes the finite collection of roads modeled by intervals Ie = [ae, be] ⊆ R of
length Le = be − ae for all e ∈  . Further, the functions A ∶  →  and Ω ∶  →  provide the source and target node of
an edge. For a given junction v ∈  , we call 𝛿+(v) the set of all incoming roads and 𝛿−(v) of all outgoing roads, respectively.

On each road e ∈  , we consider the Lighthill-Whitham and Richards (LWR) model13,14

𝜕t𝜌e + 𝜕x𝑓 (𝜌e) = 0,

where 𝜌e(x, t) ∈ [0, 𝜌max] denotes the car density and f the corresponding flux. We restrict ourselves to 𝜌max = 1 and a
strictly concave flux of the form f(𝜌) = 𝜌v(𝜌), which satisfies the following assumption according to6:

𝑓 ∈ C2([0, 1]), 𝑓 (0) = 𝑓 (1) = 0 and 𝑓 ′′ < 0 with unique maximum at 𝜌 = 𝜎 ∈ (0, 1),

while
v ∶ [0, 𝜌max] → [0, vmax], v smooth with v′ < 0 and v(𝜌max) = 0.

Remark 1. Note that different flux functions fe satisfying the assumptions from above could be also applied. As a
consequence, following the ideas in Dal Santo et al,15 the coupling conditions have to be defined more carefully.
Therefore, to improve readability, we stick to the same flux function on every edge e.

In order to describe that a junction v ∈  has limited capacity rmax
v > 0, we introduce a bounded buffer rv(t) ∈ [0, rmax

v ]
denoting the total number of cars in the buffer at time t. The buffer load can be modeled by an ordinary differential
equation considering the inflow and outflow at a junction. We fix appropriate initial density functions 𝜌e,0 together with
an initial buffer load rv,0 ∈ [0, rmax

v ] at time t0 = 0 and formulate the Cauchy problem at an intersection v ∈  as

𝜕t𝜌e + 𝜕x𝑓 (𝜌e) = 0, (1a)

𝜌e(x, 0) = 𝜌e,0(x), (1b)

r′v(t) =
∑

e∈𝛿+(v)
𝑓 (𝜌e(be, t)) −

∑
e∈𝛿−(v)

𝑓 (𝜌e(ae, t)), (1c)

rv(0) = rv,0, (1d)
with x ∈ (ae, be), t > 0 and for all e ∈ 𝛿+(v) ∪ 𝛿−(v). In Herty et al,6 the existence of a weak entropy solution at junctions
with one incoming and one outgoing road for constant initial data is ensured. Their approach has been extended to allow
for an arbitrary number of incoming and outgoing roads and initial density functions of bounded total variation as in
Goatin and Garavello.5

The remaining step concerns the exact inflow and outflow at junctions. More precisely, we have to prescribe coupling
conditions to determine the flux and the corresponding density at both ends of each road qin

e (t) = 𝑓 (𝜌e(ae, t)) and qout
e (t) =
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𝑓 (𝜌e(be, t)). To simplify the notation, we use the so-called demand and supply function. For a strictly concave flux function
𝑓 ∶ [0, 1] → R with a unique maximum at 𝜌 = 𝜎, we call d ∶ [0, 1] → R and s ∶ [0, 1] → R with

d(𝜌) =
{

𝑓 (𝜌) if 𝜌 ≤ 𝜎,
𝑓 (𝜎) if 𝜌 > 𝜎

and s(𝜌) =
{

𝑓 (𝜎) if 𝜌 ≤ 𝜎,
𝑓 (𝜌) if 𝜌 > 𝜎

demand and supply function.

Remark 2. The aim is to choose the inflow and outflow at a junction as high as possible to maximize the through-
put. The demand d(𝜌e(be, t)) gives the maximum flux that can come from a road e ∈  at time t whereas the supply
s(𝜌e(ae, t)) denotes the maximum flux that can enter road e. We remark that flux maximization is not the only pos-
sibility to uniquely determine the flux at junctions. Alternatively, capacity drop assumptions might be used, see, eg,
Dal Santo et al and Haut et al.15,16

We only consider networks consisting of dispersing and merging junctions, see Figure 1. To model the flow at a junction
v, we also introduce demand and supply functions for the buffer. The demand dB gives the maximum flux of cars that can
leave the buffer and the supply sB expresses the maximum flux that can enter the buffer.

We assume that the buffer maximally increases and decreases at a fixed, constant rate 𝜇v. Since all incoming roads may
provide a maximal flow of f(𝜎), the maximal incoming flow is given by |𝛿+(v)|f(𝜎). Analogously, the maximal possible
outgoing flow of the buffer is given by |𝛿−(v)|f(𝜎). Therefore, we assume that 𝜇v ∈

(
0,max{|𝛿+(v)|, |𝛿−(v)|}𝑓 (𝜎)), where

the load might increase or decrease. For instance, a lower 𝜇v can be used to describe capacity restrictions of a roundabout.
Summarizing, if the buffer is not completely full, the supply sB is constant, and the maximum flow entering the junction
is bounded by 𝜇v. Similarly, provided that the buffer is not empty, the demand dB is constant, and the maximum flow
leaving the junction cannot exceed 𝜇v.

2.1.1 One-to-two junction
In the case of a dispersing junction, see Figure 1 on the left, distribution rates 𝛼2,1 > 0and𝛼3,1 > 0 have to be prescribed.
These fixed coefficients are the percentages of drivers coming from the first road and continuing their path on road two or
three. Thus, they represent the preferences of drivers. The condition 𝛼2,1 + 𝛼3,1 = 1 ensures that all drivers are distributed
to an outgoing road. The demand of the buffer is given by

dB(t) =
{

𝜇v if 0 < rv(t) ≤ rmax
v ,

min{d(𝜌1(b1, t)), 𝜇v} if rv(t) = 0. (2)

The latter is constant and equal to 𝜇v, if the buffer is not empty and linked to the incoming flux of cars, if rv(t) = 0.
To include that the maximum number of cars that can leave the junction is distributed to two roads, we restrict qin

2 (t) =
𝑓 (𝜌2(a2, t)) and qin

3 (t) = 𝑓 (𝜌3(a3, t)) by 𝛼2,1dB(t) and 𝛼3,1dB(t) instead of the total possible flux dB(t), ie,

qin
2 (t) = 𝑓 (𝜌2(a2, t)) = min{𝛼2,1dB(t), s(𝜌2(a2, t))}, (3)

qin
3 (t) = 𝑓 (𝜌3(a3, t)) = min{𝛼3,1dB(t), s(𝜌3(a3, t))}. (4)

For the buffer supply sB(t), it must hold that if the buffer is full, ie, rv(t) = rmax
v , the flow entering the junction must not

exceed the sum of the two outgoing fluxes or the maximum outflow 𝜇v. This implies

sB(t) = min{qin
2 (t) + qin

3 (t), 𝜇v}
= min{𝛼2,1𝜇v, s(𝜌2(a2, t))} + min{𝛼3,1𝜇v, s(𝜌3(a3, t))},

FIGURE 1 One-to-two junction (left) and
two-to-one junction (right)
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due to 𝛼2,1𝜇v + 𝛼3,1𝜇v = 𝜇v. In the case of an incompletely filled buffer, we assume that the supply is constant and equal
to 𝜇v. These considerations lead to

sB(t) =
{

𝜇v if 0 ≤ rv(t) < rmax
v ,

min{s(𝜌2(a2, t)), 𝛼2,1𝜇v} + min{s(𝜌3(a3, t)), 𝛼3,1𝜇v} if rv(t) = rmax
v .

(5)

Then, the actual outflow of an incoming road reads as

qout
1 (t) = 𝑓 (𝜌1(b1, t)) = min{sB(t), d(𝜌1(b1, t))},

which means that it is bounded by the supply of the buffer sB(t) and by the demand of the density on the first road
d(𝜌1(b1, t)). The latter guarantees the correct wave speed, and the former that the capacity constraints of the buffer is not
violated.

2.1.2 Two-to-one junction
For a merging junction, see Figure 1 on the right, we need to introduce so-called right-of-way priorities c3,1 > 0, c3,2 > 0
satisfying c3,1 + c3,2 = 1 to guarantee a unique solution at the junction. These parameters are needed to prescribe, which
cars are allowed to enter whenever the buffer cannot take the total amount caused by restrictions rmax

v and 𝜇v.
The actual outflow towards the buffer depends on the supply of the buffer and on the density at the end of the incoming

roads, i.e.,
qout

1 (t) = 𝑓 (𝜌1(b1, t)) = min{c3,1sB(t), d(𝜌1(b1, t))}, (6)

qout
2 (t) = 𝑓 (𝜌2(b2, t)) = min{c3,2sB(t), d(𝜌2(b2, t))}, (7)

with buffer supply

sB(t) =
{

𝜇v if 0 ≤ rv(t) < rmax
v ,

min{s(𝜌3(a3, t)), 𝜇v} if rv(t) = rmax
v .

(8)

The demand of the buffer dB(t), which is the maximum flux that can leave the buffer, is bounded by the two incoming
fluxes and 𝜇v. The actual flux towards road three is given by

qin
3 (t) = 𝑓 (𝜌3(a3, t)) = min{dB(t), s(𝜌3(a3, t))}. (9)

If rv(t) = 0, we obtain sB(t) = 𝜇v and

dB(t) = min{qout
1 (t) + qout

2 (t), 𝜇v}
= min{c3,1𝜇v, d(𝜌1(b1, t))} + min{c3,2𝜇v, d(𝜌2(b2, t))},

by using c3,1𝜇v + c3,2𝜇v = 𝜇v. Together with a constant flow of 𝜇v, if the buffer is not empty, we finally choose

dStand
B (t) =

{
𝜇v if 0 < rv(t) ≤ rmax

v ,
min{d(𝜌1(b1, t)), c3,1𝜇v} + min{d(𝜌2(b2, t)), c3,2𝜇v} if rv(t) = 0. (10)

Note that in Herty et al,6 the demand of the buffer is said to be

dHert𝑦
B (t) =

{
𝜇v if 0 < rv(t) ≤ rmax

v ,
min{d(𝜌1(b1, t)) + d(𝜌2(b2, t)), 𝜇v} if rv(t) = 0. (11)

The latter does not ensure a non-negative buffer load rv(t) if c3,1𝜇v ≷ d(𝜌1(b1, t)), c3,2𝜇v ≶ d(𝜌2(b2, t)) and s(𝜌3(a3, t))
sufficiently large since dB does not depend on the actual inflow to the buffer but only on the number of cars arriving at
the end of the road. To illustrate this problem, we study an example in detail.
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Example 1. Let us assume f(𝜌) = 𝜌(1 − 𝜌), 𝜇v = 0.2, c3,1 = c3,2 = 0.5 and the initial data 𝜌1,0 = 0.4, 𝜌2,0 = 0.1, 𝜌3,0 =
0.5, rv,0 = 0. According to (6)-(9) and (11), we obtain the fluxes

qout
1 (t) = min{c3,1sB(t), d(𝜌1,0)} = min{0.5 · 0.2, 0.24} = 0.1,

qout
2 (t) = min{c3,2sB(t), d(𝜌2,0)} = min{0.5 · 0.2, 0.09} = 0.09,

qin
3 (t) = min{dHert𝑦

B (t), s(𝜌3,0)} = min{0.2, 0.25} = 0.2,

which lead to a negative buffer load for rv,0 = 0, ie,

r′v(t) = qout
1 (t) + qout

2 (t) − qin
3 (t) = −0.01.

In this case, the choice (10) ensures that the inflow to the buffer equals the outflow with

qin
3 (t) = min{dStand

B (t), s(𝜌3,0)} = min{0.19, 0.25} = 0.19.

Consequently, r′v(t) = 0, and the buffer remains empty as expected. The following lemma provides the connection
between the two definitions of dB.

Lemma 1. Assuming d(𝜌1(b1, t)) ≠ 0 and d(𝜌2(b2, t)) ≠ 0 as well as time-dependent right-of-way priorities defined by

c3,1(t) =
d(𝜌1(b1, t))

d(𝜌1(b1, t)) + d(𝜌2(b2, t))
, c3,2(t) =

d(𝜌2(b2, t))
d(𝜌1(b1, t)) + d(𝜌2(b2, t))

. (12)

Then, dHert𝑦
B (t) and dStand

B (t) provide the same value for the demand of the buffer at a junction with two incoming and
one outgoing road.

Proof. In general, both definitions differ only if rv(t) = 0, c3,1(t)𝜇v ≷ d(𝜌1(b1, t)) and c3,2(t)𝜇v ≶ d(𝜌2(b2, t)). Choosing
the right-of-way priorities according to (12) excludes these cases, which means that only c3,1(t)𝜇v ≷ d(𝜌1(b1, t)) and
c3,2(t)𝜇v ≷ d(𝜌2(b2, t)) are possible. To see this, we assume c3,1(t)𝜇v > d(𝜌1(b1, t)) and c3,2(t)𝜇v < d2(𝜌2(b2, t)), which
leads to

c3,1(t)𝜇v > d(𝜌1(b1, t)) ⇔ 0 > d(𝜌1(b1, t)) · (d(𝜌1(b1, t)) + d(𝜌2(b2, t)) − 𝜇v)
⇔ 0 > d(𝜌1(b1, t)) + d(𝜌2(b2, t)) − 𝜇v

and
c3,2(t)𝜇v < d(𝜌2(b2, t)) ⇔ 0 < d(𝜌2(b2, t) · (d(𝜌1(b1, t)) + d(𝜌2(b2, t)) − 𝜇v)

⇔ 0 < d(𝜌1(b1, t)) + d(𝜌2(b2, t)) − 𝜇v.

Since d(𝜌1(b1, t)) > 0 and d(𝜌2(b2, t)) > 0, we obtain a contradiction. The same reasoning applies to the case c3,1(t)𝜇v <

d(𝜌1(b1, t)) and c3,2(t)𝜇v > d2(𝜌2(b2, t)).

We conclude that dStand
B always leads to a non-negative buffer load.

Lemma 2. If dStand
B is applied, then rv(t) ≥ 0.

Proof. Since t → rv(t) is continuous, we know that if rv(t) > 0, it follows rv(t + s) ≥ 0 for all s ∈ [0, 𝛥t] and some
𝛥t > 0 small enough. So, a negative buffer load might happen right after time t provided rv(t) = 0. Assume rv(t) = 0 at
some time t ≥ 0, then we obtain for the slope

r′v(t) = qout
1 (t) + qout

2 (t) − qin
3 (t)

= min{c3,1𝜇, d(𝜌1)} + min{c3,2𝜇, d(𝜌2)} − min{dStand
B , s(𝜌3)}

= min{c3,1𝜇, d(𝜌1)} + min{c3,2𝜇, d(𝜌2)}
− min{min{d(𝜌1), c3,1𝜇} + min{d(𝜌2), c3,2𝜇}, s(𝜌3)} ≥ 0.

This shows the positivity of the solution to the buffer equations.
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2.1.3 Inflow and outflow
In a traffic network, we usually introduce some nodes v ∈ ̃ , ̃ ⊂  , with either only one incoming edge or only
one outgoing edge. We call edges that are connected to one of these nodes, incoming or outgoing roads, since the cars
enter or leave the network at these points. For nodes with only one outgoing edge, we prescribe desired inflow functions
𝑓 in

v (t). Additionally, we assume unlimited buffers rv(t) at these nodes, which means rmax
v = ∞. The load of this buffer

will increase when the desired inflow is higher than the capacity of the following road at that time or higher than the
maximum possible outflow 𝜇v. Hence, the inflow towards the first road is restricted to a reasonable value and even if the
network is completely blocked, an admissible solution can be obtained. Similar to the buffers inside the network, the load
decreases with rate 𝜇v when the traffic is less dense and the road is able to absorb a higher flux than 𝑓 in

v (t). The actual
inflow and the demand of the buffer are set as

qin
e (t) = min{d̃B, s(𝜌e(ae, t))}, (13)

d̃B =
{

𝜇v if rv(t) > 0,
min{𝑓 in

v (t), 𝜇v} if rv(t) = 0. (14)

Since 𝑓 in
v is the flux towards the buffer, the latter is given by

r′v(t) = 𝑓 in
v (t) − qin

e (t), e ∈ 𝛿−(v).

On outgoing roads, we introduce the absorbing condition

qout
e (t) = 𝑓 (𝜌e(be, t)), (15)

which prevents that backwards traveling waves emerge at outgoing nodes. In this case, the flux is not maximized at the
end of the edge if 𝜌e(be, t) > 𝜎.

2.1.4 Comparison with a supply chain model
In the following, we remark that in the case of unbounded buffers rmax

v → ∞ and one-to-one junction, the traffic model
with bounded buffers reduces to the well-known production model from D'Apice et al.7 The latter model describes the
flow of goods through a network of production lines, where each production step is characterized by a capacity 𝜇e > 0
and production velocity ve > 0. The flux function is then given by

𝑓
prod
e (𝜌) = min{ve𝜌, 𝜇e},

and the production density satisfies

𝜕t𝜌e + 𝜕x𝑓
prod
e (𝜌e) = 0 for (x, t) ∈ (ae, be) × (0,T).

Together with the assumption of an unbounded buffer in front of every production step, the buffer size at the one-to-one
junction is given by

(rprod
v )′(t) = qprod,out

1 (t) − qprod,in
2 (t),

qprod,out
1 (t) = min{v1𝜌1(b1, t), 𝜇1},

qprod,in
2 (t) =

{
min{qprod,out

1 (t), 𝜇2} if rprod
v (t) = 0,

𝜇2 if rprod
v (t) > 0.

We state the following:

Theorem 1. Let 𝜇v = 𝜇, 𝜎 = 𝜇

v
and f(𝜌) = min{v𝜌, 2𝜇 − v𝜌}, which has a unique maximum at 𝜎. If rmax

v = +∞ and
v𝜌e,0 ≤ 𝜇, then the solution of the traffic and production model coincide.
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Proof. We directly obtain sB(t) = 𝜇 since rmax
v = +∞ and d(𝜌e) = min{v𝜌e, 𝜇}. Therefore, qout

1 (t) =
min{𝜇,min{v𝜌1(b1, t), 𝜇}} = qprod,out

1 (t). We also get

dB(t) =
{

𝜇, if rv(t) > 0,
min{d(𝜌1(b1, t)), 𝜇} if rv(t) = 0,

which leads to

qin
2 (t) =

{
𝜇, if rv(t) > 0,
min{qprod,out

1 , 𝜇} if rv(t) = 0

= qprod,in
2 (t).

This shows that the time evolution of the buffer coincides. It remains to argue that the transport along the edge is the
same. Since we assume v𝜌e,0 ≤ 𝜇, we recover a linear transport with velocity v in both cases.

Remark 3. Note that at junctions with more than one outgoing edge, the two models differ since the supply chain
model assumes a buffer in front of each edge instead of a single buffer at the junction.

2.2 Car path
In the following, we extend the traffic flow model by a microscopic equation to track the path of a single car. We develop
the mathematical formulation before discussing the choice of the next road in a network based on the car's scope of
information about the current traffic situation.

2.2.1 Model equations
To track the position x(t) of a single car on every road e ∈  that the car passes on its way from an initial position to its
destination, we need a set of initial value problems

.x(t) = v(𝜌e(x(t), t)), x ∈ [x∗e , be], t > t∗e , (16a)
x(t∗e ) = x∗e , (16b)

with an appropriate speed function v(𝜌) and initial data (t∗e , x∗e ), which means that the car is located at x∗e ∈ [ae, be] on road
e at time t∗e . The main challenge is the discontinuous right-hand side of Equation (16a). In case of congestion, which is
described by a shock wave in the LWR model, the speed of the car v(𝜌) is not continuous. Consequently, the Picard-Lindelöf
theorem cannot be applied to prove existence and uniqueness of a solution. Therefore, in Colombo and Marson,11,12 the
wider class of Filippov solutions17 are considered. Such a solution is defined at a discontinuity by the derivative, and a
solution is no longer required to be continuously differentiable but an absolutely continuous function. The existence and
uniqueness of a Filippov solution have been proven in Colombo and Marson.11,12

So far, the car's behavior at junctions is not obvious, and we do not know how to choose the initial data (t∗e , x∗e ) properly.
Therefore, we take a closer look at the travel time on a road e ∈  and the waiting time at a junction v with e ∈ 𝛿+(v).
The definition of the travel time is based on the formulation in Göttlich and Harter.10 Figure 2 shows an illustration of
the notation that will be utilized in the following.

Let us denote by t∗e ∈ [0,T] the time at which the car is located at x∗e ∈ [ae, be] on a road e ∈  . To simplify the following
considerations, we assume without loss of generality that x∗e = ae. This means that the car is located at the beginning
of the considered road, ie, x(t∗e ) = x∗e = ae. Hence, the required travel time tte(t∗e ) on this road e can be described by the
arrival time at the end of the road. Note that the travel time depends on the starting time t∗e since the traffic density on the
road varies over time. Let t̃e be defined such that x(t̃e) = be. Then, t̃e is strictly greater than t∗e since all roads have positive

FIGURE 2 Notation of starting, travel, arrival,
and waiting time
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length and x(t) is continuous. Additionally, t̃e ≤ T holds, if the car reaches the end of the road within the time horizon T,
which means

∫
T

t∗e
𝜔(𝜌e(x(t), t)) dt ≥ be − ae. (17)

Due to the non-negative speed 𝜔, x(t) is nondecreasing. However, it is possible that the car has zero speed in a traffic
jam. Therefore, there might be more than one t̃e satisfying x(t̃e) = be. For this reason, we define the arrival time at the
end of road e by ate(t∗e ) = min{t ∈ (t∗e ,T] ∶ x(t) = be}. Due to this consideration, the travel time on road e is given by
tte(t∗e ) = ate(t∗e ) − t∗e .

Now, we turn to the waiting time at junctions. The cars are assumed to behave according to the First-In-First-Out (FIFO)
principle. The idea behind this concept is that if the buffer is non-empty, the considered car has to wait until all cars, which
had arrived earlier, have left the buffer. If the buffer load at the junction v is empty when the car arrives at the end of road
e, which means rv(ate(t∗e )) = 0, the car leaves immediately, and the waiting time at node v is equal to zero, wtv(ate(t∗e )) = 0.
Since the buffer has no spatial dimension, the end of an incoming road e is the beginning of an outgoing road ẽ

be = aẽ, for all e ∈ 𝛿+(v), ẽ ∈ 𝛿−(v).

For this reason, the starting time t∗ẽ on the next road is equal to the arrival time at the end of the previous road t∗ẽ = ate(t∗e ),
and the car must be located at the beginning of the new road x(t∗ẽ ) = be = aẽ. Note that the road ẽ is only uniquely
determined if the junction has only one outgoing road. In case of a dispersing junction, we will need a criteria to decide
which road is taken by the driver. This issue is dealt with in the next subsection.

If the buffer is non-empty, ie, rv(ate(t∗e )) > 0, the considered car has to wait, and the starting time t∗ẽ on the new road ẽ
is defined by the buffer load at the arrival time ate(t∗e ) and the outflow 𝑓 out

v (t) while the car is inside the buffer. In fact, we
have to solve

rv(ate(t∗e )) = ∫
t∗ẽ

ate(t∗e )
𝑓 out

v (t) dt.

In the same manner as before, we can argue that t∗ẽ ∈ (ate(t∗e ),T] exists if the total outflow up to T exceeds the buffer load
at time ate(t∗e ), ie,

r(ate(t∗e )) ≤ ∫
T

ate(t∗e )
𝑓 out

v (t) dt. (18)

Note that 𝑓 out
v (t) denotes the total outflow from node v towards all outgoing roads e ∈ 𝛿−(v), ie,

𝑓 out
v (t) =

∑
e∈𝛿−(v)

qin
e (t).

This function is non-negative, and we are searching a t∗ẽ that satisfies

t∗ẽ = min{t ∈ (ate(t∗e ),T] ∶ r(ate(t∗e )) = ∫
t

ate(t∗e )
𝑓 out

v (s) ds}.

Then, the waiting time is given by wtv(ate(t∗e )) = t∗ẽ − ate(t∗e ). For all t ∈ [ate(t∗e ), t∗ẽ ], the car remains at the end of the edge
and x(t) = be = aẽ.

Now, we are able to define appropriate initial data (t∗e , x∗e ) for the set of initial value problems (16a)-(16b) depending
on the travel and waiting times. To achieve this, we prescribe the position of the car's departure x∗e∗ ∈ [ae∗ , be∗ ] on an
initial edge e∗ ∈  at initial time t∗e∗ ∈ [0,T]. If the considered time horizon T is sufficiently large, the initial data for
the remaining ODEs can be determined iteratively. At every junction v with incoming edge e ∈ 𝛿+(v) and outgoing edge
ẽ ∈ 𝛿−(v), which are part of the car's path, we set

t∗ẽ = ate(t∗e ) + wtv(ate(t∗e )),
x∗ẽ = aẽ.
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2.2.2 Choice of the next road
Whenever a car arrives at a dispersing junction, the driver decides which outgoing road will be taken next. One possibility
is the use of the road being part of the shortest path to the destination in terms of total road length. Another approach
might consider travel and waiting times to obtain the fastest path. In the following, we apply Dijkstra algorithm,18 where
the definition of time-varying weights is the crucial point.

Complete information
In a first situation, the car has complete information on the traffic and on its own properties including the initial position,
the destination, and the departure time. Clearly, following the shortest path generally does not correspond to the earliest
arrival time at the destination. For this reason, we include the travel and waiting times defined previously to find the fastest
path. Cooke and Halsey19 first dealt with the time-dependent shortest path problem. In general, a path can be written by
a finite sequence of nodes and edges (v0, e1, v1, ..., ek, vk) such that v0, ..., vk ∈  and e1, ..., ek ∈  with A(ei) = vi−1 and
𝛺(ei) = vi for i = 1, ..., k. The set of all paths from a source s ∈  to a destination d ∈  is denoted by (s, d). For a given
path P = (s, e1, v1, ..., ek, d) ∈ (s, d) and a departure time t ≥ 0, the path arrival time atP(t) is defined by the sum of the
waiting time at nodes and the travel time on edges, ie,

atP(t) =t + wts(t) + tte1 (t + wts(t))
+ wtv1(t + wts(t) + tte1 (t + wts(t))) + ... + ttek (...).

Then, our aim is to find the earliest path arrival time such that

eats,d(t) = min{atP(t) ∶ P ∈ (s, d)}.

The following lemma enables to apply classical methods to find the earliest arrival time path from the theory of static
networks as described in Dreyfus.20

Lemma 3. The network of the presented coupled model together with the definition of the total travel time on an edge

ttte(t) = wtv(t) + tte(wtv(t)), e ∈ 𝛿−(v). (19)

satisfies the condition of a FIFO network.

Proof. We have to show that for all edges e ∈  and t < t̃,

t + ttte(t) ≤ t̃ + ttte(t̃)

is valid. We begin by considering two cars starting at t and t̃ with t < t̃. Additionally, we assume that the car, which
started later, arrives earlier at the end of the road that means t + ttte(t) > t̃ + ttte(t̃). Then, this car needs to overtake
the other car at some point.

While the car is inside the buffer, this is not possible since the car has to wait in an ordered queue until the cars
in front of it have left the buffer. Thus, t + wtv(t) ≤ t̃ + wtv(t̃) and overtaking must happen on the road. Then, there
must exist a point (xo, to) with xo ∈ [ae, be] and to ≥ t̃ + wtv(t̃). At this point, the speed of both cars is equal to
𝜔(𝜌e(xo, to)). Consequently, they travel at the same speed until the end of the road and arrive at the same time. We
obtain t + ttte(t) = t̃ + ttte(t̃), which leads to a contradiction.

The consideration of FIFO networks has the advantage that the concatenation property is valid. Hence, it is sufficient to
assign only one label to each node representing the earliest arrival. Then, these labels can be successively updated similar
to Dijkstra algorithm using the total travel times instead of distances between the nodes.

Departure time not available
We study the situation in which we know the aggregated densities and buffer loads over time, but the exact departure time
of the car is unknown. Therefore, we use an aggregated measure to determine a path instead of requiring exact waiting
and travel time functions. This approach has its origin in the field of optimization of traffic flow models.2,3 A possible
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target can be the minimization of the travel time for all cars in the network within a given time horizon as studied in
Treiber and Kesting.1

First, we consider the total number of cars on an edge e on the complete time horizon [0,T], which reads

∫
T

0 ∫Ie

𝜌e(x, t) dxdt.

We know that the higher this quantity, the higher the total time spent by cars traveling along this road. Thus, we obtain a
measure corresponding to the travel time. Next, we must include the waiting time at nodes in some way. The buffer load
over the interval [0,T] is given by

∫
T

0
rv(t) dt

and provides an analogy to the waiting time. To compare these two measures, we normalize the quantities by their
maximum value and obtain

𝜆
𝜌
e = 1

Tmaxe∈{Le} ∫
T

0 ∫Ie

𝜌e(x, t) dxdt,

𝜆r
v =

1
Tmaxv∈⧵̃{rmax

v } ∫
T

0
rv(t) dt.

Now, we combine these single elements and define for parameters w𝜌,wr ∈ [0, 1] with w𝜌+wr = 1 the weights 𝜆e on each
edge e ∈  ,

𝜆e = w𝜌𝜆
𝜌
e + wr𝜆r

v

= w𝜌

Tmaxe∈{Le} ∫
T

0 ∫Ie

𝜌e(x, t) dxdt + wr

Trmax ∫
T

0
rv(t) dt, e ∈ 𝛿−(v). (20)

These time-independent weights enable to apply static methods, as for instance Dijkstra algorithm, to find a path with
minimum weights from the target node of the initial edge s = 𝛺(e*) to the destination d. Instead of using the distance of
each edge, we use these weights to find a path. Then, the car chooses the next edge in P at every junction.

Departure time and current information available
In general, having full information about the traffic is a strong assumption. Therefore, it might be reasonable to update the
path of the car during its journey based on the current information. More precisely, at every dispersing junction, we restart
a fastest path algorithm from the current node using only the information available at this time point. Hence, the waiting
and travel times are not given as input functions but only for the fixed and current times t̄ when the car is at a dispersing
junction. Obviously, we cannot expect to obtain the exact travel and waiting times due to the lack of information, but the
updating procedure provides the opportunity to change the path when the traffic on a road is suddenly more dense than
somewhere else.

In contrast to the previous approach, we consider the total number of cars on the edge e only at a certain time t̄, ie,

∫Ie

𝜌e(x, t̄) dx.

Likewise, the buffer load at this time is rv(t̄). Again, we normalize and obtain the values

𝜆
𝜌
e (t̄) =

1
maxe∈{Le}∫Ie

𝜌e(x, t̄) dx and 𝜆r
v(t̄) =

rv(t̄)
rmax .

Together with parameters w𝜌,wr ∈ [0, 1] satisfying w𝜌 +wr = 1. Then, the weights of the Dijkstra algorithm on each edge
e ∈  read as

𝜆e(t̄) = w𝜌𝜆
𝜌
e (t̄) + wr𝜆r

v(t̄), e ∈ 𝛿−(v). (21)

Doing so, we can apply Dijkstra algorithm to find a path from the current node to the destination that is followed by
the car up to the next dispersing junction.
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3 NUMERICAL DISCRETIZATION AND TRACKING ALGORITHMS

Before discussing the discretization of the car path trajectory, an appropriate scheme to approximate the solution of the
traffic flow problem is presented. First, we introduce a spatial grid ae = xe,0 < xe,1 < … < xe,Ne = be of Ne + 1, Ne ∈ N,
points on all roads of length Le = be − ae, e ∈  with step size he = xe,i − xe,i−1, for alli ∈ {1, … ,Ne}. Additionally, we
use M + 1, M ∈ N, time points tn to discretize the time interval [0,T], with time horizon T > 0, such that 0 = t0 < t1 <

... < tM = T. To achieve numerical convergence, the temporal step size 𝜏 has to be linked to the spatial step size he by the
CFL-condition. On a road network, he can vary due to different road lengths. To define coupling conditions at junctions,
we need a uniform time discretization for all roads. For the flux function f(𝜌) = 1 − 𝜌, the choice

𝜏 ≤ 1
2

min
e∈ {

he

max𝜌e |𝑓 ′(𝜌e)|} = 1
2

min
e∈ {he}

guarantees that waves emerging at the cell boundaries to be defined do not interact. For the discretization of the LWR
equation on each road e ∈  , we use the Godunov method to approximate the cell averages

𝜌n
e,i+0.5 ≈ 1

he ∫
xe,i+1

xe,i

𝜌e(x, tn) dx, i ∈ {0, ...,Ne − 1}, n ∈ {0, ...,M},

such that
𝜌n+1

e,0.5 = 𝜌n
e,0.5 −

𝜏

he
(FG(𝜌n

e,0.5, 𝜌
n
e,1.5) − qin,n

e ), (22)

𝜌
e,n+1
i+0.5 = 𝜌n

e,i+0.5 −
𝜏

he
(FG(𝜌n

e,i+0.5, 𝜌
n
e,i+1.5) − FG(𝜌n

e,i−0.5, 𝜌
n
e,i+0.5)), (23)

𝜌n+1
e,N−0.5 = 𝜌n

e,N−0.5 −
𝜏

he
(qout,n

e − FG(𝜌n
e,N−1.5, 𝜌

n
e,N−0.5)), (24)

where FG(u, v) denotes the numerical flux of the Godunov scheme. The fluxes at the boundary qin,n
e and qout,n

e are obtained
by replacing the continuous variables in (2)-(10) by their discrete versions. As approximation to rv(tn), we use the first
order explicit Euler method and obtain

rn+1
v = rn

v + 𝜏

( ∑
e∈𝛿+(v)

qout,n
e −

∑
e∈𝛿−(v)

qin,n
e

)
.

The presented approximation of the density and the buffer load allow for a discretization of the car's path. In Section 3.1,
a naive algorithm to track a car on a single road is investigated before applying a more complex one in Section 3.2. Section
3.3 is aimed at approximating the travel and waiting times. For completeness, we give a brief description of the discrete
versions of the edge weights to determine the next road of the car's path in Section 3.4.

3.1 Naive tracking algorithm
An intuitive approach to solve an ordinary differential equation numerically might be the explicit Euler method. We
consider a car starting at time t0 = 0 at position x0 = x* and iteratively compute the position xn+1 at the next time tn+1 by

xn+1 = xn + 𝜏v(𝜌n
i+0.5).

The speed of the car is based on the average density 𝜌n
i+0.5 of the cell in which the car is located at time tn. Note that we

drop the index e here since we only consider a single road. We terminate the procedure above when the car either crosses
the end of the road or the time horizon T is reached.

Apparently, we cannot completely avoid an error due to the underlying approximated cell averages. However, we expect
this error to decline with decreasing step size. The naive algorithm does not adjust the car's speed when it reaches a new
cell with a possibly different density within a time step. Additionally, waves are assumed to emerge at cell boundaries and
to travel along the road, which should immediately influence the speed of the car when hit by a wave. Therefore, we also
consider a more complex algorithm including interactions with waves.
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3.2 Complex tracking algorithm
The more complex algorithm is based on the work of Bretti and Piccoli8 to track a car in a classical traffic network without
buffers at junctions. The idea of this algorithm is to exactly solve the coupled ordinary differential equation at every time
step using the piecewise constant densities resulting from Godunov method to describe the speed of the car. We start by
defining the shifted cells

C0 = [x0, x0.5), Ci = [xi−0.5, xi+0.5), i = 1, ...,N − 1, CN = [xN−0.5, xN].

Since the cell averages used for the Godunov scheme are defined from xi to xi+1, the emerging waves start exactly in the
middle of these shifted cells Ci. For a schematic illustration of the shifted cells, we refer to Figure 3.

Lemma 4. Let xn ∈ Ci be the position of the car at time tn. Further, the concave flux function f(𝜌) = 𝜌v(𝜌)and cell averages
approximated by the Godunov method are assumed. Then, under the condition 𝜏 ≤ 1

2
h

max |𝑓 ′(𝜌)| , for xn ∈ [xi−0.5, xi) only
the wave starting at xi, and similar for xn ∈ [xi, xi+0.5) only the wave starting at xi+1 can influence the car trajectory within
a time step 𝜏 .

Proof. By the CFL condition 𝜏 ≤ 1
2

h
max |𝑓 ′(𝜌)| , two neighboring waves do not interact before 𝜏, and the car can travel at

most a distance of half a cell in one time step due to v(𝜌) ≤ 1. Consequently, for xn ∈ [xi−0.5, xi], only a wave starting
at xi can intersect the car trajectory before 𝜏.

If xn ∈ [xi, xi+0.5), we take a closer look at the wave starting at xi. In case of a shock wave, ie, 𝜌i−0.5 < 𝜌i+0.5, its speed
can be calculated according to the Rankine-Hugoniot-condition. Since f(𝜌) = 𝜌v(𝜌) with a strictly decreasing function
v, we can write

𝜆i =
𝜌n

i+0.5v(𝜌n
i+0.5) − 𝜌n

i−0.5v(𝜌n
i−0.5)

𝜌n
i+0.5 − 𝜌n

i−0.5
<

𝜌n
i+0.5v(𝜌n

i−0.5) − 𝜌n
i−0.5v(𝜌n

i−0.5)
𝜌n

i+0.5 − 𝜌n
i−0.5

= v(𝜌n
i−0.5) =

.x.

In case of a rarefaction, the wave propagates at the speed

𝜆i = 𝑓 ′(𝜌n
i+0.5) = v(𝜌n

i+0.5) + 𝜌n
i+0.5v′(𝜌n

i+0.5) ≤ v(𝜌n
i+0.5) =

.x.

The inequality holds due to the decreasing velocity, v′
< 0, and 𝜌n

i+0.5 ≥ 0. In both cases, we see that the wave is never
faster than the car. We conclude that a wave starting at xi has no intersection with the car trajectory if xn ∈ [xi, xi+0.5).

Then, the algorithm can be formulated in the following. We divide the cell Ci = [xi−0.5, xi+0.5) in half, ie, either

xn ∈ [xi−0.5, xi) or xn ∈ [xi, xi+0.5),

and only study the case xn ∈ [xi−0.5, xi) since the procedure for xn ∈ [xi, xi+0.5) is similar. Further, we distinguish between
no wave, shock, and rarefaction. For simplicity, we assume f(𝜌) = 𝜌v(𝜌) = 𝜌(1−𝜌), which allows for explicit representation.

When no wave occurs at xi, the car is not deflected away from its original path, and its speed remains constant on
[tn, tn+1]. In particular, the new position at time tn+1 can be calculated by the explicit Euler method, similar to the naive
algorithm, ie,

xn+1 = xn + 𝜏v(𝜌n
i−0.5).

If 𝜌n
i−0.5 < 𝜌n

i+0.5, the path of the car possibly consists of two parts with different velocities. Starting with v(𝜌n
i−0.5), the car

drives at a lower speed v(𝜌n
i+0.5) after an interaction with the shock front. The cell Ci together with the car trajectory and

the shock front are depicted in Figure 4.

FIGURE 3 Schematic illustration of the cells
Ci and average densities 𝜌n

i+0.5
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Until the time tn + 𝜏, when the car interacts with the wave, the car trajectory can be expressed by

x(t) = xn + (t − tn)v(𝜌n
i−0.5), t ∈ [tn, tn + 𝜏].

The velocity of a shock wave starting at xi at time tn satisfies

𝜆i =
𝑓 (𝜌n

i+0.5) − 𝑓 (𝜌n
i−0.5)

𝜌n
i+0.5 − 𝜌n

i−0.5
.

When the car hits the shock front, which reads

xn + v(𝜌n
i−0.5)𝜏 = xi + 𝜆i𝜏, (25)

the point of the intersection (tn + 𝜏, x̄) is given by

𝜏 = xi − xn

v(𝜌n
i−0.5) − 𝜆i

and x̄ = xn + v(𝜌n
i−0.5)𝜏. (26)

We note that 𝜏 is well-defined since it can be shown that v(𝜌n
i−0.5) ≠ 𝜆i by employing f(𝜌) = 𝜌v(𝜌) = 𝜌(1−𝜌). Additionally,

𝜏 > 0 due to xn ∈ [xi−0.5, xi). Now, we distinguish:

(i) 𝜏 ≥ 𝜏, ie, the shock and the car do not interact before 𝜏, and the car's position at time tn+1 is

xn+1 = xn + v(𝜌n
i−0.5)𝜏.

(ii) 𝜏 < 𝜏, ie, we have an intersection at (tn + 𝜏, x̄) and the new position at time tn+1 is

xn+1 = x̄ + v(𝜌n
i+0.5)(𝜏 − 𝜏).

If 𝜌n
i−0.5 > 𝜌n

i+0.5, a rarefaction starts at xi at time tn and we need to consider three different elements of the car trajectory.
First, the car will drive at speed v(𝜌n

i−0.5). If it comes to an intersection with the rarefaction, the speed continually increases
until the car possibly leaves the rarefaction. Figure 5 shows a schematic illustration of the trajectory.

FIGURE 4 Trajectory of a car that hits a
shock front at the intersection (tn + 𝜏, x̄)

FIGURE 5 Trajectory of a car that reaches a
rarefaction at (tn + 𝜏, x̄) and leaves at (tn + ̄̄𝜏, ̄̄x)
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With the choice v(𝜌) = 1 − 𝜌, the ODE to be solved in case of a rarefaction starting at (tn, xi) becomes

.x(t) = v(𝜌(x(t), t)) = 1 − 𝜌(x(t), t)

=
⎧⎪⎨⎪⎩

1 − 𝜌n
i−0.5 if x(t) ≤ xi + 𝑓 ′(𝜌n

i−0.5)(t − tn),
1
2
+ x(t)−xi

2(t−tn)
if 𝑓 ′(𝜌n

i−0.5)(t − tn) < x(t) − xi < 𝑓 ′(𝜌n
i+0.5)(t − tn),

1 − 𝜌n
i+0.5 if x(t) ≥ xi + 𝑓 ′(𝜌n

i+0.5)(t − tn).

The first intersection that is denoted again by (tn + 𝜏, x̄) can be derived in the same manner as in the case of a shock.
Instead of applying the Rankine-Hugoniot-condition to obtain the speed of the wave, we take the velocity at which the
rarefaction propagates to the left, ie,

𝜆i = 𝑓 ′(𝜌n
i−0.5).

Thus, we can compute the coordinates of this intersection according to

𝜏 = xi − xn

v(𝜌n
i−0.5) − 𝜆i

and x̄ = xn + v(𝜌n
i−0.5)𝜏.

Again, it can be shown that 𝜏 is well-defined and always positive. To describe the car trajectory while the car is in the
rarefaction, we have to solve the inhomogeneous linear ordinary differential equation

.x(t) = 1
2
+ x(t) − xi

2(t − tn)
.

Applying the method variation of parameters, the solution reads

x(t) = xi + t − tn −
√

t − tn 𝜏 + xi − x̄√
𝜏

, t ∈ [tn + 𝜏, tn + ̄̄𝜏]. (27)

Note that tn + ̄̄𝜏 defines the time at which the car leaves the rarefaction. However, ̄̄𝜏 is not necessarily smaller than
infinity. It is also possible that the car never leaves the rarefaction. To find out if a final intersection at ̄̄x at time tn + ̄̄𝜏

exists, compare Figure 5, we solve the equation

x(tn + ̄̄𝜏) = xi + 𝑓 ′(𝜌n
i+0.5) ̄̄𝜏, (28)

where x(tn + ̄̄𝜏) is given by (27). Rearranging leads to

(1 − 𝑓 ′(𝜌n
i+0.5)) ̄̄𝜏 − 𝜏 + xi − x̄√

𝜏

√
̄̄𝜏 = 0. (29)

It can be shown that 𝜏+xi−x̄√
𝜏

≠ 0 by using the explicit values for 𝜏 and x̄. If 𝜌n
i+0.5 = 0, the unique solution to this

non-linear equation is ̄̄𝜏 = 0. This means, that there is no final intersection point since the car is not fast enough to leave
the rarefaction. To be more precise, the rarefaction propagates at speed 𝑓 ′(𝜌n

i+0.5) = 1 to the right. At the same time, the
car becomes faster while driving through the rarefaction. However, it can reach at most the speed vmax = 1. Hence, it
cannot overtake the right rarefaction front. Otherwise, if 𝜌n

i+0.5 ≠ 0, (29) has two solutions

̄̄𝜏1 = 0 and ̄̄𝜏2 =

(
𝜏 + xi − x̄√

𝜏 (1 − 𝑓 ′(𝜌n
i+0.5))

)2

.
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The second candidate is the desired ̄̄𝜏, which is well-defined since 𝜌n
i+0.5 ≠ 0 and 𝜏 > 0. By (27)-(28), the position of the

final intersection ̄̄x is given by

̄̄x = x(tn + ̄̄𝜏) = xi + ̄̄𝜏 −
√

̄̄𝜏
𝜏 + xi − x̄√

𝜏
= xi + 𝑓 ′(𝜌n

i+0.5) ̄̄𝜏.

To calculate the new position of the car, we differentiate the following cases.

(i) 𝜏 ≥ 𝜏, ie, no interaction takes place before 𝜏 and the new position of the car at time tn is given by

xn+1 = xn + v(𝜌n
i−0.5)𝜏.

(ii) 𝜏 < 𝜏, ie, the car interacts with the rarefaction before 𝜏 and we need to further distinguish:

(a) ̄̄𝜏 ≥ 𝜏, ie, the car is still in the rarefaction at time tn+1. Applying (27) yields

xn+1 = xi + 𝜏 −
√
𝜏

𝜏 + xi − x̄√
𝜏

.

(b) ̄̄𝜏 < 𝜏, ie, the car has left the rarefaction before 𝜏, and we also have to include the part of the trajectory when the car
drives at speed v(𝜌n

i+0.5). We obtain
xn+1 = ̄̄x + v(𝜌n

i+0.5)(𝜏 − ̄̄𝜏).
According to the described procedure, we would have to consider the wave starting at xN for a car located in the last cell

CN = [xN−0.5, xN]. Since xN = b is the endpoint of the road, we do not have a density 𝜌n
N+0.5. A possible remedy is to extend

the road artificially assuming the same density 𝜌n
N−0.5 as in the last cell, see Figure 6. This implies that no wave emerges

from xN and the car drives at constant speed v(𝜌n
N−0.5) to the end of the road.

3.3 Travel and waiting time
For both approaches, ie, the naive and complex algorithm, we need to discretize the behavior at nodes. Let the car be
located at time tn∗ ∈ {t0, ..., tM} at x∗e on an edge e ∈  . For a sufficiently large time horizon T, our presented tracking
algorithms terminate with n ∈ {n*, ...,M} such that condition xn ≥ be is valid. For xn > be, the car has driven too far and
an intermediate step to calculate the arrival time exactly at the point be is needed.

Since no wave emerges from be, the car's speed can be assumed to be constant, and we are looking for the smallest
n̂ ∈ {n∗, ...,M} and appropriate 𝜏 ∈ [0, 𝜏) such that

xn̂ + 𝜏v(𝜌n̂
e,Ne−0.5) = be ⇔ 𝜏 = be − xn̂

v(𝜌n̂
e,Ne−0.5)

, (30)

which means that at time tn̂ + 𝜏, the car is located at be. Note that v(𝜌n̂
e,Ne−0.5) ≠ 0, otherwise the car is waiting and must

have already reached the end of the road in the time step before. Hence, 𝜏 is well-defined, and the travel time tte(tn∗

e ) on
road e can be approximated by

ttn∗

e = (n̂ − n∗)𝜏 + 𝜏.

Since we know the arrival time tn̂ + 𝜏 at the end of road e, we are able to approximate the buffer load rv(tn̂ + 𝜏) by r̂v with
e ∈ 𝛿+(v). For this purpose, we use linear interpolation between tn̂ and tn̂+1 and define

r̂v = rn̂
v + 𝜏(𝑓 in,n̂

v − 𝑓
out,n̂
v ),

FIGURE 6 Density at the end of a road
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with the total inflow and outflow at the node v at time tn̂ denoted by 𝑓 in,n̂
v and 𝑓

out,n̂
v . Similar to the continuous formulation,

we distinguish two cases r̂v = 0 and r̂v > 0.
If r̂v = 0, the car immediately passes the node and continues on the next road ẽ ∈ 𝛿−(v) at a speed depending on the

density in the first cell. That means the waiting time is zero, and the position of the car at the next time tn̂+1 is

xn̂+1 = aẽ + (𝜏 − 𝜏)v(𝜌n̂
ẽ,0.5).

This case is illustrated in the left picture of Figure 7.
Otherwise, if r̂v > 0, we take a closer look at the discrete outflow 𝑓

out,n
v with n ≥ n̂. To obtain the outflow within two

time steps, we use again linear interpolation. For a small buffer load and a sufficiently large outflow 𝑓
out,n̂
v , it is possible

that the car enters and leaves the buffer within 𝜏, as depicted in the center of Figure 7. Then, the leaving time tn̂ + ̂̂𝜏 with
̂̂𝜏 ∈ (𝜏, 𝜏) is given by

r̂v = ( ̂̂𝜏 − 𝜏)𝑓 out,n̂
v ⇔ ̂̂𝜏 =

r̂v + 𝜏𝑓
out,n̂
v

𝑓
out,n̂
v

.

As a consequence, the approximated waiting time at the node is wtn̂
v = ̂̂𝜏 − 𝜏 and the car's position at time tn̂+1 can be

computed by
xn̂+1 = aẽ + (𝜏 − ̂̂𝜏)v(𝜌n̂

ẽ,0.5).

If the car has to wait longer inside the buffer, we look for the smallest ̂̂n ∈ {n̂ + 1, n̂ + 2, ...,M} and ̂̂𝜏 ∈ [0, 𝜏) such that

r̂v = (𝜏 − 𝜏)𝑓 out,n̂
v + 𝜏

̂̂n−1∑
n=n̂+1

𝑓
out,n
v + ̂̂𝜏𝑓

out, ̂̂n
v .

The right picture of Figure 7 shows a schematic illustration of this situation. Then, the approximated waiting time can be
computed by

wtn̂
v = (𝜏 − 𝜏) + 𝜏

(
̂̂n − 1 − (n̂ + 1) + 1

)
+ ̂̂𝜏 = −𝜏 + 𝜏

(
̂̂n − n̂

)
+ ̂̂𝜏.

For all n = n̂ + 1, ..., ̂̂n, the car is located at the end of the road, and its position is

xn = be = aẽ.

The first position on the new edge x ̂n̂+1 at the time t ̂n̂+1 is then

x ̂̂n+1 = aẽ + (𝜏 − ̂̂𝜏)v(𝜌̂̂n
ẽ,0.5).

Given the first position on the new edge, we can continue with one of our tracking algorithms using this point as initial
datum.

We summarize the results in the following theorem, where the results follow from the derivation above for the
generalization from v(𝜌) = 1 − 𝜌 to a general velocity function v(𝜌) satisfying the stated assumptions from the beginning.

Theorem 2. Let 𝜌n
i+0.5 be the cell means of the cells [xi, xi+1) and C0 = [x0, x0.5),Ci = [xi−0.5, xi+0.5), i = 1, ...,N − 1,CN =

[xN−0.5, xN]. Further, assume xn ∈ [xi−0.5, xi), 𝜆i = 𝑓 ′(𝜌n
i+0.5), 𝜏 ≤ 1

2
h

max |𝑓 ′(𝜌)| and si = 𝑓 (𝜌n
i+0.5)−𝑓 (𝜌

n
i−0.5)

𝜌n
i+0.5−𝜌

n
i−0.5

. The solution of

x′ (t) = v(𝜌(x(t), t)) for t ∈ (tn, tn+1), x(tn) = xn at time t = tn+1 is then given by

FIGURE 7 Trajectory of a car when the car can leave immediately (left), in the same time step (center), in the next time step (right)
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1. No wave and shock

• x(tn+1) = xn + v(𝜌n
i−0.5)𝜏 if 𝜏 = xi−xn

v(𝜌n
i−0.5)−si

≥ 𝜏 ,
• x(tn+1) = xn + v(𝜌n

i+0.5) + 𝜏(v(𝜌n
i−0.5) − v(𝜌n

i+0.5))

2. Rarefaction

• x(tn+1) = xn + v(𝜌n
i−0.5)𝜏 if 𝜏 = xi−xn

v(𝜌n
i−0.5)−𝜆i

≥ 𝜏 ,
• x(tn+1) = y(tn+1) if ̄̄𝜏 ≥ 𝜏 ,
• x(tn+1) = 𝑦(tn + ̄̄𝜏) + v(𝜌n

i+0.5)(𝜏 − ̄̄𝜏) if ̄̄𝜏 < 𝜏 ,

where y solves 𝑦′(t) = v((𝑓 ′)−1( 𝑦(t)−xi
t−tn )), 𝑦(tn + 𝜏) = x̄ = xn + v(𝜌n

i−0.5)𝜏, and ̄̄𝜏 > 𝜏 is the solution to 𝑦(t + ̄̄𝜏) =
xi + 𝑓 ′(𝜌n

i+0.5) ̄̄𝜏 .
3. At the end of road (x(tn+1) ≥ be):

• x(tn+1) = aẽ + (𝜏 − 𝜏)v(𝜌n
ẽ,0.5) if r̂v = 0,

• x(tn+1) = aẽ + (𝜏 − ̂̂𝜏)v(𝜌n
ẽ,0.5) if r̂v > 0 and ̂̂𝜏 ≤ tn+1,

• x(tn+1) = be if r̂v > 0 and ̂̂𝜏 > tn+1,

where ẽ ∈ 𝛿−(v) is the chosen next road, 𝜏 = be−xn

v(𝜌n
e,Ne−0.5)

, r̂v = rn
v + 𝜏(𝑓 in,n

v − 𝑓
out,n
v ) and ̂̂𝜏 = r̂v+𝜏𝑓

out,n
v

𝑓
out,n
v

.

3.4 Choice of the next road
If the exact departure time is known, the car can drive along the fastest path calculated by an extended Dijkstra algorithm.
Instead of requiring continuous input functions, which provide the travel and waiting times, we can integrate the calcu-
lation of these quantities into the algorithm. We use our tracking algorithms and the procedure described in the previous
section to determine the waiting time as well as the travel time on the outgoing edges of already considered nodes. Then,
we possibly update the labels in the same manner as in a static Dijkstra algorithm and obtain iteratively the path with the
earliest arrival time to the destination.

To determine the aggregated path, the standard MATLAB function shortestpath can be applied using the discrete
weights corresponding to (2.2.2)

𝜆e = w𝜌𝜆
𝜌
e + wr𝜆r

v

= w𝜌 𝜏h
Tmaxe{Le}

M∑
n=0

Ne−1∑
i=0

𝜌n
e,i+0.5 + wr 𝜏

Trmax

M∑
n=0

rn
v , with e ∈ 𝛿−(v), e ∈  . (31)

instead of distances. *

In the last considered scenario, the current traffic densities are only received at dispersing junctions. In this case, the
car starts a new shortest path calculation at every junction with more than one outgoing road using the discrete weights

𝜆n̂
e = w𝜌𝜆

𝜌
e (tn̂) + wr𝜆r

v(tn̂) = w𝜌 h
maxe{Le}

Ne−1∑
i=0

𝜌n̂
e,i+0.5 + wr rn̂

v

rmax , (32)

depending on the time point tn̂ defined in (30), when the car is almost at the end of the considered road.
Summarizing, we have the following steps. First, the driver's trajectory is solved numerically by one of the presented

tracking algorithms until the car reaches the end of the road. While the destination is not reached, the waiting time at the
target node of the current edge is computed, and an outgoing edge is chosen according to the considered decision criteria.
If it says that the car should follow the shortest, the aggregated or the fastest path, we provide these paths already as input
variables since they can be calculated in advance. Then, the car simply chooses the next edge according to the appropriate
path. Only in the scenario with incomplete information on the densities, the car updates its path at dispersing junctions
since the densities are only available at certain time points. Then, we proceed until the destination node is reached.

*Documentation: https://de.mathworks.com/help/matlab/ref/graph.shortestpath.html. Last checked: May 22, 2019. MATLAB Version R2017a.

https://de.mathworks.com/help/matlab/ref/graph.shortestpath.html
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FIGURE 8 Linear network with initial data

FIGURE 9 Car trajectory and characteristics (left) as well as buffer loads (right)

4 COMPUTATIONAL RESULTS

This section deals with the numerical evaluation of the presented algorithms based on different types of networks. We start
with linear networks to show the numerical behavior of the developed algorithms at nodes. Subsequently, the tracking
algorithms are applied to compare different paths in a small network. Finally, a car is tracked in a large network of block
structure while choosing its path based on different levels of information.

4.1 Behavior at nodes in linear networks
In this section, we investigate the behavior at nodes for different linear networks. First, we choose a small example such
that the car faces constant traffic densities on the roads and the Godunov method provides the exact solution to the traffic
flow problem. Hence, the car drives at constant speed v̄ and our numerical tracking algorithms calculate the position on
the road exactly since the updating rule

xn+1 = xn + 𝜏 v̄

provides the true values. This has the advantage that arising errors must be related to the behavior at nodes. We set the
parameters L1 = L2 = L3 = 1, rmax

1 = rmax
4 = ∞, rmax

2 = rmax
3 = 0.3 and 𝜇1 = 𝜇2 = 𝜇3 = 0.25. The network together with

the initial data are indicated in Figure 8.
The car starts at time t∗1 = 0 at the beginning of the first road x∗1 = 0. Although the densities on the roads are different, no

wave occurs at a junction at the beginning of the simulation. This is due to the balance property of the buffers. In Figure 9,
the characteristics together with the car trajectory as well as the buffer loads are depicted. At the second junction, the
buffer decreases until it is completely empty. Then, a shock with positive speed emerges. However, the car is not affected
since it has already passed the node at this time. The buffer at the third junction increases but does not reach rmax

3 = 0.3
within T = 8.

For this small example, we are able to derive the analytical solution and hence the exact formulation of the car's
trajectory can be described by

x(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.7t if 0 ≤ t ≤ 10
7
,

1 if 10
7
≤ t ≤ 8

5
,

1 + 0.5(t − 1.6) if 8
5
≤ t ≤ 18

5
,

2 if 18
5
≤ t ≤ 30

7
,

2 + 0.3(t − 30
7
) if 30

7
≤ t ≤ 160

21
.
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FIGURE 10 Network with single road (setting 1) and network with a buffer (setting 2)

The waiting times are wt2( 10
7
) ≈ 0.17 at the second node and wt3(3.6) ≈ 0.69 at the third one. Using the step sizes h = 0.1

and 𝜏 = 0.05, we obtain for both algorithms a truncation error of 2.35e-14, which is in the range of the computational
accuracy of MATLAB, and the error is dominated by the round-off errors.

In a second example, we aim to study a non-linear case. More precisely, we compare two similar networks. In the first
one, we consider a single road with length L1 = 2 whereas the second network consists of two roads, L1 = L2 = 1, with
an empty buffer in between. Both settings are depicted in Figure 10.

Now, we choose initial data such that a rarefaction wave travels through the junction and the car can pass the buffer
immediately. In fact, we set

𝜌1,0(x) =
{

0.4 if x < 0.5
0.2 if x > 0.5 , 𝜌2,0 = 0.2 and r1,0 = r2,0 = r3,0 = 0.

The remaining parameters are fixed to rmax
1 = rmax

2 = rmax
3 = ∞ and 𝜇1 = 𝜇2 = 0.25. Assuming that the car starts at the

beginning of the first edge x∗1 = 0 at time t∗1 = 0, the exact solution for the car's path up to the end of the single road is
given by

x(t) =

{
0.6t if 0 ≤ t < 1.25,
t − 2

√
5

5

√
t + 0.5 if 1.25 ≤ t ≤ 19+2

√
34

10
.

In the second setting, the buffer remains empty and the total flow traverses the junction without being kept back. Con-
sequently, we assume the same car trajectory as in the first setting. For step sizes h = 0.1 · 2−n,n = 0, 2, 4, 6, we calculate
the truncation error

𝜖 = max
n

{|x(tn) − xn|}, tn ∈ [0,T].

The results are summarized in Table 1.
We observe that the resulting outcomes of the naive and complex algorithm are comparable. In both settings, the trun-

cation error declines proportionally to the step sizes. The small difference between settings 1 and 2 is due to behavior at
x = 1. In the first setting, the car can pass this point without any further calculations and at a speed corresponding to the
density in the cell 1. In the second setting, the car drives exactly up to the end of the first road and checks whether the
buffer is empty or not. Then, it starts on the second road at a speed corresponding to cell 2, which is higher than the
speed corresponding to 1 since the traffic flow is described by a rarefaction. However, Table 1 shows that the difference
between both settings tends to zero for decreasing step sizes. In both settings, the error is reasonably small, and evidence
of convergence of the algorithms is observed.

4.2 Comparison of different paths
In this section, we consider a small network to study the different decision criteria of the car to choose the next edge. The
network is depicted in Figure 11. All roads are of length Le = 1.

Trunc. Err. (Setting 1) Trunc. Err. (Setting 2)
n Naive Algo Complex Algo Naive Algo Complex Algo
0 3.59e-02 4.14e-02 3.67e-02 4.17e-02
2 1.74e-02 1.83e-02 1.74e-02 1.84e-02
4 7.04e-03 7.29e-03 7.05e-03 7.30e-03
6 2.51e-03 2.58e-03 2.51e-03 2.58e-03

TABLE 1 Truncation error 𝜖 for the settings depicted in
Figure 10
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The initial data are chosen such that the all fluxes are constant as long as the buffer load at junction 4 decreases.
Therefore, we set a constant inflow 𝑓 in

1 (t) = 0.2 and the following initial densities

𝜌1,0 =
5 −

√
5

10
, 𝜌2,0 =

5 −
√

13
10

, 𝜌3,0 =
5 −

√
17

10
, 𝜌4,0 =

5 −
√

13
10

,

𝜌5,0 =
5 −

√
15

10
, 𝜌6,0 =

5 −
√

10
10

, 𝜌7,0 =
5 −

√
3

10
.

All buffers, except at junction 4, are initially empty:

r1,0 = r2,0 = r3,0 = r5,0 = r6,0 = 0 and r4,0 = 0.5.

The maximum buffer capacities are rmax
v = 0.5, v = 2, 3, 4, 5, and infinity at the incoming and outgoing nodes. Additionally,

we choose 𝜇v = 0.25 and distribution rates in the way that more cars prefer road 2 to road 3 and road 6 to road 5. More
precisely,

𝛼2,1 = 0.6, 𝛼3,1 = 0.4, 𝛼5,3 = 0.4 and 𝛼6,3 = 0.6.
The right-of-way priorities are not fixed but time-dependent on the demand, and we consider a time horizon T = 15.

We look at a car starting at different times t∗1 ∈ {0, 5} at the position x∗1 = 0.5 (triangle) with destination node 6. In
Figure 11, the two possible paths P1 and P2 are depicted. Figure 12 shows the distances traveled depending on the time
calculated by the complex tracking algorithm with step size h = 0.01. If the car starts at t∗1 = 0, it must wait at junction
4 since the buffer is not empty, wtP2

tot ≈ 0.78. For this reason, the arrival times vary although the slope of the trajectories
do not differ strongly. When the buffer is completely empty, the distribution rates ensure that the traffic is denser on the
roads e ∈ {2, 4} than on the roads e ∈ {3, 5}. This effect makes P2 preferable when the car starts at t∗1 = 5.

Now, we study the choice of the path based on the different decision criteria introduced in Section 2.2.2. Since both
paths are of length L = 4.5, the cars are indifferent whenever their decision is completely based on the path length. The
application of the time-dependent Dijkstra algorithm with complete information provides the optimum path related to

FIGURE 11 Network together with the car's
starting position (triangle) and the two possible
paths P1 and P2 to reach the destination node 6

FIGURE 12 Distance traveled of a car
following path P1 and P2 starting at the position
x∗1 = 0.5 at t∗1 = 0 (top) and at t∗1 = 5 (bottom)
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the arrival time, which is P1 when the car starts at t∗1 = 0 and P2 when it starts at t∗1 = 5. The same result is obtained
assuming that accurate information on the densities is only available when the car is at a dispersing junction and when
we successively update the path using the edge weights (32) with w𝜌 = wr = 0.5. Without knowing the exact departure
time, the aggregated measure (3.4) with w𝜌 = wr = 0.5 provides the path P2. It includes the fact that from initial time
t∗1 > 1, following P2 leads to an earlier arrival time than P1.

4.3 Tracking a car in a block network
Now, we consider a bigger traffic network arranged in block structure and with road lengths of Le ∈ {1, 2} as depicted in
Figure 13. The network has a single inflow node with 𝑓 in

1 (t) = 𝑓 (0.3) and two outflow nodes. We prescribe equal initial
densities 𝜌e,0 = 0.3 on all roads e ∈  and rv,0 = 0 at each junction v ∈  . The maximum capacities at junctions inside
the network are rmax

v = 0.3, and the inflow and outflow per time are restricted to 𝜇v = 0.25. The distribution rates are set
to 𝛼i,j = 0.5 at all dispersing junctions, and the priority parameters are chosen according to (12).

The car starts at time t∗1 = 0 at the position of triangle and wants to reach the destination marked by the diamond in
Figure 13. Note that the network is symmetric with an axis of reflection that connects the triangle to the diamond. Hence,
for our chosen initial data, we have two shortest and two fastest paths. One shortest path is visualized by the light gray
line in Figure 13. It has a total length of Lshort = 13 and the complex algorithm with he = 0.01 yields an arrival time of
32.92. However, a faster path can be found, which is illustrated by the thick black line. Its total length Lfast = 15 is higher,
but the car arrives earlier at time t = 28.19.

In Figure 14, the distance traveled depending on the time is depicted for two cars following the shortest and fastest path,
respectively. Since the paths overlap at the beginning and at the end, it is not surprising that the slopes are similar in these
areas. However, the slope in case of the shortest path is steeper in the middle section due to the higher traffic density in
this part of the network. Additionally, the total waiting times differ. By following the shortest path, the car must wait at
two junctions, which leads to a higher waiting time of wtshort

tot ≈ 2.5 instead of wt𝑓ast
tot ≈ 1.1 following the fastest path.

FIGURE 13 Block network with start
(triangle) and destination node
(diamond), shortest path (light gray),
and fastest path (dark gray)

FIGURE 14 Distance traveled along the
shortest and fastest path as depicted in Figure 13;
passed nodes are indicated by vertical lines
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The algorithm based on complete information finds the fastest path. However, for w𝜌 = wr = 0.5, the algorithms aiming
to find an optimum path for situations with imperfect information, lead to the shortest path but do not provide the earliest
arrival time.

5 CONCLUSION

We considered the traffic flow model with buffers at junctions introduced in Herty et al.6 We particularly presented a
new approach to define the buffer demand preventing negative buffer loads. The link between the original and the new
formulation is described in Lemma 1.

Built on the concepts of Bretti and Piccoli,8 we successively extended two car path algorithms to networks with bounded
buffers. Their numerical performance was evaluated by considering several test networks. Moreover, we investigated the
possible paths and the corresponding arrival times at a given destination resulting from different choices to take the next
road at junctions.

Future work may include the investigation of car path tracking in second order traffic flow models on networks.
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