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A B S T R A C T   

Combining choice modelling with social network analysis, we show how the stochastic actor- 
oriented model for the co-evolution of networks and behavior (SAOM) can be used as a power-
ful statistical framework to empirically analyze network-related choices. We discuss the under-
lying assumptions of SAOMs and show that they can be interpreted to represent a random utility 
maximization model (RUM). Network-related choices pertain both to decisions to engage in (or 
disengage from) specific social relationships and decisions to adapt behavior to that of social 
contacts. We demonstrate the usefulness of SAOM for the choice modelling community. We 
further illustrate how SAOM can be used to study network-related choices by providing an 
exemplary empirical analysis.   

1. Introduction 

People make choices concerning a wide array of subjects, such as where to live, which transportation mode to use, or which wine to 
buy. Conceptually, these choices are based on two principles. First, different alternatives satisfy people’s preferences to different 
extents, thus providing different utility, and people choose the alternative with the highest utility (McFadden, 1973). Second, utility is 
not tied to the alternatives as such but derives from the combination of their characteristics, attributes, or properties (Lancaster, 1966). 
If people, for example, think about moving to a different neighborhood, they may consider that this potential new place of residence 
differs from the current one in terms of commuting time, local facilities, or social composition of its residents, and then choose to move 
or to stay. Thus, understanding how people weigh these different characteristics is crucial. Stated choice experiments (SCE) constitute 
a popular means to disentangle the importance of different characteristics (Louviere et al., 2000), and the random utility maximization 
model (RUM; McFadden, 1973) is a key tool to specify how choice situations can be modelled statistically to estimate the probabilities 
of choosing each alternative in a given choice set. 

However, people do not only make decisions about goods, such as transportation modes or wine, but also about their social re-
lationships. That is, people choose who to befriend, who to collaborate with, or who to gossip about. These relations result in social 
networks, which can be defined as the web of specific relationships among a group of people, such as friendships in school, co-authors in 
a scientific field, or gossipers in a firm. From a choice modelling perspective, social networks are interesting for two reasons. First, 
social networks rarely emerge randomly but, as mentioned above, arise from people’s decisions regarding their network partners. In 
the literature on social networks, these decisions are referred to as the selection of interaction partners (Steglich et al., 2010). The 
structure of networks, then, is the outcome of individuals’ choices of who to connect to. Thus, although the choice to select interaction 
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partners reflects only one specific choice process among many others, it is particularly interesting and challenging due to the inherent 
interdependency of choices in social networks. The reason is that social networks do not suddenly pop up such that a group of people 
selects their interaction partners at the same time. Rather, social networks emerge over time through a sequence of people selecting 
their interaction partners. This renders people’s choices inherently dependent on the previous choices of other people because these 
choices change how attractive social relationships to particular people become. Thus, understanding choices regarding the selection of 
interaction partners, on which we focus in the following, is inextricably linked to the idea of interdependency of choices and, 
consequentially, to the evolution of social networks. One outcome of these selection processes is, for example, the size of personal 
networks, which has been assessed previously based on hybrid choice models using the relationship strength to predict retention and 
loss of social contacts (Calastri et al., 2018). Second, irrespective of how social networks formed and evolved, they are often important 
for choice modelling processes because people are embedded in networks which influence their non-network related individual 
behavior and decisions. For example, people have been shown to be influenced by their social contacts in their political voting choices 
(Reed, 2015). These effects of network partners on individual outcomes are referred to as influence, and understanding how and why 
people’s choice behavior is influenced by their network partners is another key task for both network researchers and choice modellers. 

Studying network-related choices, however, is complicated by the fact that both selection and influence result in the same 
structural outcome of similar people being connected to each other. For example, do adolescents start drinking alcohol because their 
friends do so, or do drinkers befriend other drinkers (Osgood et al., 2013)? Answering such questions requires separating selection (i.e., 
choosing network partners based on their characteristics) from influence (i.e., choosing to change one’s own behavior because of 
network partners). One statistical approach to study choices in a social network context and to separate selection from influence is the 
so-called stochastic actor-oriented model for the co-evolution of networks and behavior (SAOM, Snijders et al., 2010; Steglich et al., 2010). 
Though SAOMs are specifically suited to studying choice processes in network-related settings, the literature on choice modelling and 
social networks have so far been largely decoupled (but see Arentze et al., 2013; Calastri et al., 2018; Reed, 2015). In fact, a core 
critique of research on decision-making is that it often fails to take social context into account (Bruch and Feinberg, 2017; Maness, 
2020), an important part of which is people’s embeddedness in social networks. Furthermore, this decoupling is surprising because 
rational choice arguments might be a common basis of modelling decision-making processes (Hess et al., 2018) as they feature in both 
literatures. Several authors have pointed to the conceptual alignment of the SAOM modelling strategy with rational choice consid-
erations (Amati et al., 2015; Snijders, 1996; Van de Bunt et al., 1999) and SAOMs have been applied to substantive questions related to 
rational choice arguments (Leszczensky and Pink, 2015). 

In this paper, we aim to increase the mutual appeal between the fields of social network analysis and choice modelling. In order to 
do so, we focus on the SAOM, a well-established method of longitudinal social network analysis (for the main introduction, see Snijders 
et al., 2010). We show that a SAOM can be interpreted as a type of choice model, particularly as a random utility maximization model 
(RUM; McFadden, 1973, 1986), in which network features constitute the characteristics that shape people’s utility and people make 
network-related choices by utility maximization. To prepare this comparison, we first provide a short description of the random utility 
maximization model. Afterwards, we provide a basic intuitive understanding of how SAOMs work. Thereafter, we engage in a more 
formal discussion of how SAOMs model choices and show how the model’s foundations relate to random utility maximization models. 
Then, we illustrate the usefulness of SAOMs for choice modelling in a network context by discussing an exemplary application that 
shows how academic achievement affects friendship formation among adolescents and how adolescents’ friendships influence their 
academic achievement. We close with a short summary of the benefits of SAOMs for choice modelling and an outlook on the further 
possibilities using SAOMs. 

2. Modelling choices: the random utility maximization model 

A variety of theoretical approaches to decision-making assume that choices are associated with specific consequences for the 
decision maker, who then chooses the alternative that provides the most utility or satisfaction to her (Kroneberg and Kalter, 2012; 
Liebe et al., 2018). According to Lancaster’s (1966) characteristics theory of value, the utility of choosing specific goods does not 
derive from these goods per se but depends on the properties or characteristics of each good. However, this utility is not conceived to be 
deterministic. It acknowledges both that people may err about the utility of alternatives and that non-observed traits of 
decision-makers or goods may contribute to the utility. These ideas are incorporated by the random utility maximization model (RUM; 
McFadden, 1973). Formally, an actor i’s total utility U from an alternative j is 

Uij ¼
XK

k¼1
βkxkij þ εij; (1)  

a linear combination of attributes xkij, weighted by their importance βk, and a random utility component εij. Assuming that the latter 
has a type 1 extreme value distribution (also called Gumbel distribution), the contributions βk of the attributes to utility can be 
estimated from empirical data in a multinomial logistic regression framework (McFadden, 1973). Given that people are assumed to 
maximize their utility, the probability that actor i chooses alternative j from her choice set of 1, …, J alternatives is 

Prij¼
exp
� PK

k¼1βkxkij
�

PJ
h¼1exp

�PK
k¼1βkxkih

�: (2) 

This probability is oftentimes interpreted as an individual’s stochastic preference for a specific alternative. In empirical 
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applications, however, the preference for a specific alternative constitutes a revealed preference as the decision-making process itself 
remains hidden to the researcher in this kind of model, as only the decision itself is observed (Liebe et al., 2018). 

In the following sections, we will return to this RUM setup after an intuitive introduction to SAOMs in order to show the com-
monalities and differences between the SAOM and the RUM and thereby discuss to which extent SAOMs may be conceived as choice 
models. 

3. The stochastic actor-oriented model 

The stochastic actor-oriented model for the co-evolution of networks and behavior (SAOM) is a statistical model to investigate the 
evolution of social networks between two or more discrete time points, which was developed by Tom A. B. Snijders and colleagues 
(Snijders, 2001; Snijders et al., 2010).1 It provides methodological solutions to one of the major challenges of investigating the 
evolution of social networks, namely that its members select their network partners while simultaneously being influenced by them. 

SAOMs have been applied to study manifold social phenomena and networks such as scientific collaboration networks (Ferligoj 
et al., 2015), interbank credit (Finger and Lux, 2017), cultural tastes (Lewis et al., 2008), arctic expedition networks (Block et al., 
2018), international weapons agreements (Kinne, 2016), or adolescents’ friendship networks in school (Leszczensky and Pink, 2015). 
SAOMs model the interdependency of choices in a social network by simulating a sequence of decisions in which individuals (also 
called “actors”) shape the evolution of the network.2 In addition, the network itself and the social relationships that people maintain 
can affect other individuals’ choices as well. These network effects do not only concern network-related choices, but can also impact 
individuals’ personal characteristics (such as attitudes and behavior) through influence processes. 

SAOMs implement this interplay of how people form social relationships and how these relationships influence them as two parts of 
the same model (Steglich et al., 2010). This is a great advantage because while previous choice modelling applications highlight the 
importance of social influence in choice models (e.g., Walker et al., 2011), they do not systematically model the selection of the social 
contacts that frequently accompanies this influence (e.g., Pa�ez and Scott, 2007), but rather analyze either selection (e.g., Calastri et al., 
2018) or influence (e.g., Reed, 2015). In SAOMs, the selection part models changes in the social network that result from people’s 
relationship choices; the influence part models changes in people’s individual characteristics, due to their relationships to other people, 
i.e., how they choose to alter their characteristics in response to those surrounding them. If researchers are only interested in 
explaining relationship choices (by studying the formation and change of a given social network), the selection part may be sufficient. 
However, if they are (also) interested in how a social network affects individual characteristics (behaviors and attitudes such as desires, 
beliefs, identification, effort, or reputation) the model also has to include the influence part. Jointly modelling selection and influence 
is particularly important if the underlying processes result in the same outcome. The reason is that connected actors may be similar to 
one another in a characteristic because they chose similar interaction partners or adapted to their interaction partners. As we illustrate 
below, SAOMs can be used to disentangle these processes. 

3.1. Modelling choices about social relationships (selection) 

The heart of a SAOM is the modelling of individuals’ decisions that, in concert, drive the evolution of social networks by forming 
and dissolving social relationships. SAOMs assume that individuals make these choices in a myopic manner, meaning that they only 
consider immediate, self-referred consequences of their decisions for their local environment. This so-called myopic stochastic opti-
mization (Snijders, 2004) constitutes a simplification and implies that network members do not decide strategically (Indlekofer, 2014: 
36; Steglich et al., 2010). Longer-term objectives, indirect rewards, learning from the past or coordination with others are thus ignored 
in the modelling process (Brandes et al., 2012: 300; Snijders and Steglich, 2015: 234). 

As will be shown when considering relations to the random utility model, SAOMs can be motivated from a rational-choice approach 
(Snijders, 1996), but are generally flexible regarding behavioral assumptions (Snijders and Steglich, 2015: 225f.), and thus not 
necessarily married to a specific theory of action or decision-making. Taken together, put very simply, in the SAOM approach, every 
time individuals have the opportunity, they choose what seems best for them in that very moment. SAOMs therefore do not require 
strong assumptions about perfectly rational actors that are aware of the complete ramifications of their actions. 

An individual’s choice can have three potential outcomes: the creation of a social relationship, the dissolution of a social rela-
tionship, or the maintenance of the status quo. The decision for one of these alternatives happens in a so-called “mini-step”. Strictly 
speaking, however, the choice itself is not a choice between individual options but between potential states of the social network that a 
member of the network may induce through his or her action. Put differently, the choice set contains all different potential states of the 
social network that an actor may create by a single decision. This set then contains all states that might be realized through adding a tie 
to any actor to whom the focal actor is not yet connected to, all states that originate from dissolving an existing tie, and the status quo. 
Each of these potential states in the choice set is evaluated using a function that is based upon the characteristics of the potential states 
of the network. 

SAOMs assume that, when making their choices, individuals are fully informed about the current state of the social network, i.e., 

1 SAOMs are implemented in the simulation-based estimation method “SIENA” (“Simulation Investigation for Empirical Network Analysis”).  
2 For the sake of brevity, we refer to decision-making units as “people” or “individuals”. Note, however, that SAOM can also be applied to groups 

of people who act in concert and who are related to other groups of their kind, such as organizations or firms. For readers more interested in the 
preconditions of a social network analysis, we refer to a short outline in Appendix A. 
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the social relationships among all actors as well as all actors’ relevant characteristics (Snijders et al., 2010; Veenstra et al., 2013). Only 
given this assumption, people may be modelled as if they envisioned the set of network states they may generate and deliberated about 
which to choose. This assumption of full information has consequences for the size of social networks that SAOMs can plausibly be 
applied to. As the number of people increases, it becomes more likely that people do not know all other people or their relationships 
among each other (e.g., Dunbar, 1992). While this assumption can be defended in rather small networks, such as a classroom network, 
it may be violated in larger networks that consist of hundreds of actors, such as a large school. 

3.1.1. Formally modelling choices about relationships: the evaluation function 
The choice between possible states of the social network (i.e., the distinct elements of the choice set) is a discrete choice between 

nominal alternatives (Snijders, 2001; Snijders et al., 2010). Actor i evaluates a particular state j of the social network with the so-called 
evaluation function 

fijðβ; sÞ¼
XK

k¼1
βkskij þ εij: (3) 

Each possible state of the social network that an actor may realize in a mini-step thus has a particular evaluation function value fijðβ;
sÞ, which consists of a deterministic and a stochastic component. The deterministic component is a weighted sum of a series of network 
characteristics in the form of network statistics skij and the importance of these statistics, as reflected in the direction and strength of the 
associated coefficients βk. The network statistics skij are counts of network configurations that are considered to be relevant for people’s 
evaluation of a network state. If they, for example, value same-sex relations, they will evaluate network states that contain more same- 
sex relations more positively, implying a positive β on the count of same-sex relations sij. This deterministic component is com-
plemented by a stochastic error term εij that captures idiosyncratic errors and influences on the evaluation of network states that are 
not modelled explicitly. This error is assumed to be Gumbel-distributed (Snijders, 2001). Actors then choose the network state j with 
the highest evaluation function value, which they implement by creating a new tie, dissolving an existing tie, or maintaining the status 
quo. Fig. 1 illustrates this process of making a choice regarding outgoing ties. 

The SAOM mini-step choice process closely resembles the classic random utility maximization setup, as can be seen by comparing 
equations (1) and (3). Interpreting the statistics skij in the deterministic component of the SAOM evaluation function as network at-
tributes that determine actors’ utility from a given network state, the evaluation function is conceptually identical to the classical 

random utility maximization model Uij ¼
PK

k¼1
βkxkij þ εij with xkij ¼ skij. In both the classic RUM and the SAOM, the deterministic 

component of utility is complemented by a Gumbel-distributed stochastic error term, such that both models imply a multinomial logit 
model for estimation on empirical data (Steglich et al., 2010: 49). Like the different alternatives in the RUM model (see equation (2)), 
an actor i chooses a specific network state j with a probability of 

Prij¼
exp
� PK

k¼1βkskij
�

PJ
h¼1exp

�PK
k¼1βkskih

� : (4) 

This conceptualization of SAOMs in terms of random utility models demonstrates that SAOMs can be understood as choice models, 
which model social relationships as the outcome of preference-based decision-making processes (also see Calastri et al., 2018; Van de 
Bunt et al., 1999). However, as SAOMs are also generative statistical models designed to study the evolution of social networks, the 
evaluation function will frequently contain network attributes that fit less well with a preference interpretation for those attributes but 
that help to more appropriately model the structure of the networks. As outlined later, such network attributes refer to structural 
properties of the network (e.g., an outdegree effect modelling the general tendency to have a number of social relationships) or key 
sources of opportunities for interaction. 

Note that the potential network states actors can choose between in any given mini-step do not necessarily differ in all of the 
specified network attributes skij. The importance β of the network attributes is always estimated taking into account opportunities to 
affect them with a given choice (e.g., Block and Grund, 2014). In other words, although actors may have preferences for certain 
relationship configurations, they may not always be able to realize them due to a lack of opportunities. Estimates of β, however, are not 
biased by the opportunity structure individuals face in their network choices. 

3.1.2. The evaluation function and the attributes of network states 
What types of attributes or characteristics of social networks may SAOMs incorporate? As indicated earlier, the values of the 

evaluation function derive from network statistics skij that represent different types of attributes (or effects).3 These attributes represent 
researchers’ theoretical and empirical expectations about the determinants of individuals’ network-related choices. Three types of 
attributes may be included. First, attributes may represent individual covariate effects, which refer to effects of network members’ 
individual characteristics, such as their gender or socio-economic status. These attributes take the form of ego or alter affects and 
model whether the frequency of sending or receiving network ties varies according to the characteristic considered, i.e., whether actors 

3 More detailed descriptions and their mathematical formulations, also for the effects of the influence part discussed later, may be found in Ripley 
et al. (2019), Snijders et al. (2010), or Snijders (1996). 
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with specific attributes are more active or popular than others. 
Second, attributes that are based on the dyadic combinations of ego’s and alter’s characteristics are called dyadic covariate effects. A 

same dyadic covariate effect allows to test whether actors who share a characteristic are more likely to have ties to each other than actors 
who differ in that characteristic. Such similarities between individuals are particularly important because of the well-established 
tendency to associate with similar others (McPherson et al., 2001). This tendency does not only extend to demographic categories 
such as gender or ethnicity, but also to various kinds of behavior, attitudes, or opinions. For instance, social relationships often are 
more likely to be created between people who hold similar opinions or who engage in similar behaviors. 

Third, effects of the state of the social network on the formation of ties may be taken explicitly into account using structural effects. 
These pertain to configurations of ties that may affect whether or not people form ties. Such structural configurations may, for 
example, be on the dyadic level (i.e., between two people) or on the triadic level (i.e., between three people) with configurations such 
as reciprocated dyads (i.e., reciprocal directed ties between two people) or closed triads (e.g., transitivity, a person becoming friends 
with a friend’s friend). Both the tendency to reciprocate incoming ties and to close triadic structures are behavioral tendencies that are 
well-documented across a wide range of social networks (Ripley et al., 2019). 

Returning to the specification of effects in the evaluation function (equation (3)), all of these attributes are incorporated into the 
SAOMs as counts skij of the respective network attributes k in a given network state j. For a reciprocity effect, for example, the 
respective count is the number of reciprocal ties in network state j. This count varies between different potential network states 
because, by forming an additional tie, an actor is able to reciprocate one (more) friendship nomination in some networks but not in all. 
Together with an attribute’s parameter value βk, the count of the network configurations then determines a network state’s value on 
the evaluation function. 

In the literature applying SAOMs, the previously outlined decision-making heuristic concerning relationship formation has been 
described in different ways. For example, it has been interpreted as the attractiveness of particular network states compared to others 
(Veenstra et al., 2013), as representing the network members’ “short-term objectives” (Snijders et al., 2010: 47), as the “behavioral 
‘rules’” that people will “probabilistically follow” (Lewis et al., 2008: 1697), or as possible network states’ “potential to increase or 
decrease [the] level of satisfaction” with the current state (Finger and Lux, 2017: 241). 

3.2. Modelling changes in personal characteristics (influence) 

So far, our considerations have focused on choices concerning social relationships to network partners. However, as outlined 
earlier, a unique feature of SAOMs is that they also allow to investigate how social networks influence people’s behavior, choices, and 
personal characteristics in non-network related domains (Steglich et al., 2010). In an influence part that is modelled jointly with the 
selection part that we have discussed above, SAOMs allow to model changes in actors’ behavior and other characteristics, subsumed 
under the term of “behavior” variables. 

In particular, the influence part allows to capture how characteristics of the social network shape actors’ non-network related 
behavior. As outlined earlier, this may be a valuable extension of choice modellers’ toolbox as SAOMs can help address critiques of 
research on decision-making being inattentive to actors’ social context (Bruch and Feinberg, 2017), an important part of which is 
represented by actors’ social networks. For example, SAOMs could be used to study how actors’ choices of transportation modes or 
consumer products depends on the characteristics of their social networks and the attributes of their network partners. Such effects of 
social networks are of particular interest in situations in which the behavior of actors tends to be influenced by the corresponding 
behavior of their network partners, i.e., when there are social influence effects. 

A conceptual advantage of SAOMs is the possibility to simultaneously model network and behavioral evolution. This allows to 
separate selection from influence effects. This is particularly important in situations with network autocorrelation (Doreian, 1989)—an 
overlap of networks and personal characteristics—that can originate from both selection and influence (Steglich et al., 2010). In case of 
network autocorrelation, it is essential to account for selection effects to assess how social networks shape individual behavior through 
influence processes. Similarly, if the main interest is in how individuals choose their network partners, it is essential to identify these 
selection effects net of influence. SAOMs are unique in providing the possibility to separate both types of effects because they model 
both network evolution and behavior change jointly, with both model components being estimated simultaneously. The selection part 

Fig. 1. Illustration of modelling network choices (selection) using the stochastic actor-oriented model.  

S. Pink et al.                                                                                                                                                                                                            



Journal of Choice Modelling 34 (2020) 100202

6

assesses whether similarity in characteristics drives tie formation; the influence part investigates whether actors who have relation-
ships with one another assimilate in their characteristics. 

Statistically, changes in the behavioral characteristic(s) are modelled similarly to changes in the structure of the social network. 
This additional modelling step usually requires an ordinal measure of the behavioral characteristic in question, though extensions to 
continuous measures have been proposed recently (Niezink et al., 2019). In mini-steps that are conceptually similar to those intro-
duced for relationship formation above, actors’ choices with regard to the behavioral characteristic consist of three alternatives: an 
increase in the behavioral characteristic (by one unit), a decrease, or no change of the value. In other words, people may make either 
upward or downward moves on the variable’s scale or stay where they are. Again in line with the network part of the model, the choice 
to change the value on the scale is modelled with an evaluation function that captures systematic effects of individual and network 
characteristics on choice behavior as well as a random term. In a mini-step, members of the network, then, depending on their current 
value, are more likely to choose a neighboring value on the scale if the evaluation function value of that behavior variable’s value is 
higher (Snijders et al., 2010; Steglich et al., 2010). Again, the setup is conceptually identical to a random utility approach and is 
empirically estimated using a multinomial logit model. 

In terms of model specification, two default parameters are always included in the behavior component of a SAOM to model the 
general tendency of the behavioral distribution: The linear shape effect shows whether members of the social network generally strive 
for higher values on the scale of the behavioral variable. The quadratic shape effect indicates whether this is a self-reinforcing tendency 
(Veenstra et al., 2013). Effects of individual covariates (such as gender, ethnicity, etc.) can be included to model that behavioral choices 
may differ according to individual characteristics. Importantly, this part of the model can also test whether people are influenced by 
their social contacts, using influence effects of the personal network that model assimilation in the behavior of connected individuals. One 
popular specification is the average similarity effect, which measures whether actors tend to adjust their behavioral value to the 
average of those who they are connected to (Ripley et al., 2019). This possibility to test for whether the contacts people have influence 
their behavior is one of the great strengths of SAOMs. 

3.3. Parameter estimation and the simulation of the evolution of the social network and behavior 

As shown in the preceding section, the heart of any SAOM is the evaluation function, a linear combination of effects and the co-
efficients associated with these effects. But how to arrive at estimates for the coefficient βk of an effect skij? Being generative models of 
network evolution, SAOMs are longitudinal models that need information on social network structure for at least two points in time 
(Snijders et al., 2010). In the standard Methods of Moments estimation approach, SAOMs take the initial empirical network state as an 
input and, from there, use a simulation approach to model the process that structurally transforms the network observed initially into 
the empirical network observed at the next point in time. The actual process of network evolution is not observed empirically due to 
the panel data structure and thus remains unknown to the researcher. SAOMs simulate this evolution process by repeatedly giving 
network members opportunities for tie formation in the so-called mini-steps, as discussed previously. The frequency of individual 
actors making a choice is determined by a rate parameter that is estimated from the empirical data. The changes in these mini-steps are 
the key processes of the SAOM estimation, as they alter the social network step by step, thus constituting the sequence of interde-
pendent choices driving network change.4 In this sequence of decisions, actors’ choices feed back into other actors’ choice sets. By 
altering the state of the network, albeit in only one tie, an actor changes the set of possible network states a subsequent actor can 
generate through his or her own choice of network partners as well as the evaluation of these states. Therefore, each subsequent actor’s 
choice of a network state is contingent on the choices of the previous actors. Fig. 2 depicts this process in a stylized way. 

Statistically, the trajectory of simulated choices (i.e., mini-steps) is handled as a continuous-time Markov chain (Snijders et al., 
2010). This means that each observed state of the network is conditional on the previously observed state of the network, with no 
additional effects of preceding states. Given the interdependence of choices, the order of the mini-steps is consequential for the final 
simulated network, such that the simulation process is not conducted once but repeated multiple times. The goal of the simulation 
procedure is to arrive at simulated networks that resemble the empirically observed network as closely as possible in terms of the 
network statistics that are spelled out in the model specification. For example, if researchers assume that a preference for others that 
have the same sex (i.e., gender homophily), reciprocity, and transitive closure are driving forces of the evolution of a social network, 
they can add related effects as covariates in the model specification by including the number of same-sex ties, the number of reciprocal 
ties, and the number of transitive triads as network statistics in the evaluation function. 

The SAOM estimation process then starts with repeatedly allowing randomly selected actors to make choices regarding network 
partners according to the mini-steps introduced above. After the simulation run, the (average) number of same-sex ties, the number of 
reciprocal ties, and the number of transitive triads produced by the simulation model with parameters βk are compared to the counts 
observed in the actual empirical network at that point in time. If these counts are too far from those obtained in the simulated net-
works, the simulation is repeated after parameter values βk have been updated to reflect the incorrect representation of the network 
characteristics in the simulation. For example, if the initial guess for the parameter for same-sex relationships is close to zero, while the 
actual network is characterized by many same-sex relationships, the simulated networks will contain few same-gender ties relative to 

4 In the following paragraphs, our considerations focus on explaining estimation for the selection part of the model, which captures network 
evolution. As outlined earlier, estimation for the influence part is analogous, with similar mini-steps modelling change in the behavioral variable(s). 
In models that contain both a selection and an influence part, the estimation of both parts happens simultaneously, with actors being either chosen 
for a mini-step that involves either behavioral change or network change. For more details, we refer readers to Ripley et al. (2019). 

S. Pink et al.                                                                                                                                                                                                            



Journal of Choice Modelling 34 (2020) 100202

7

the actual empirical network. In that case, the coefficient associated with same-gender ties will be increased in subsequent simulations. 
This updating process is repeated until the simulated networks sufficiently resemble the empirical network in all of the characteristics 
considered in the model specification. Once this condition is fulfilled, the model is said to have converged, with a specific set of co-
efficients found through iterative simulation.5 The resulting coefficients, as in other nonlinear choice models, can be interpreted in 
terms of their sign and significance, but not in terms of the size of the substantive effect on probabilities for relationship formation 
(Mood, 2010). However, both assessing the relative importance of effects (Indlekofer, 2014) or building contrasts of interest 
(Leszczensky and Pink, 2019) may provide means to more closely interpret the weight of the effects researchers are particularly 
interested in.6 

Contrary to statistical models conventionally applied in the choice modelling literature, formal proofs for desirable statistical 
properties are unavailable for SAOMs due to their mathematical complexity. For example, there are no formal results on the identi-
fiability (Rothenberg, 1971) of SAOMs. However, there is strong suggestive evidence for SAOMs being identified models (Ripley et al., 
2019: 16). Internally, SAOMs are built on generalized linear models for actor choices (and the timing of choices). Given this foundation 
in generalized linear models, SAOMs can be expected to be identified unless redundant effects are included (Niezink et al., 2019; 
Niezink and Snijders, 2017). 

4. Exemplary application: academic achievement and friendships in school 

To illustrate how to implement, estimate, summarize, and interpret the results of SAOMs, we provide an exemplary application of 
friendship making and academic achievement in the school context. The following analysis does not constitute an independent 
empirical contribution; it solely serves illustrative purposes aiming to better understand SAOMs. As such, it is a simplified version of 
our analysis provided in Kretschmer et al. (2018), which investigated a prominent question in the educational sciences: Does observed 
clustering according to academic achievement arise because adolescents select friends with similar academic achievement, or do 
friends influence their friends’ academic achievement (e.g., Kandel, 1978)? In what follows, we use this example to demonstrate the 
usefulness of SAOMs for modelling the preference for certain social relationships, i.e., peers with certain academic achievement as 
friends, and for assessing whether social networks shape individual choices regarding behavior, i.e., academic achievement. 

4.1. Data 

We use data from the first three waves of the Friendship and Identity in School (FIS) project (Leszczensky et al., 2015). FIS is a 
longitudinal study on student friendship networks conducted in nine secondary schools in the German federal state of North 
Rhine-Westphalia. In each school, all students belonging to the fifth, sixth, and seventh grade (i.e., academic year) were surveyed. 
Fifth-graders were aged 10–11, sixth-graders 11–12, and seventh-graders 12–13 years. The first wave of data collection took place in 
April 2013, with subsequent waves conducted in January 2014, and October 2014. Overall, 1,668 students from 26 grades were 
surveyed in the first wave. In the analysis provided here, we focused on grade-level networks for which the student participation rate 
exceeded 75 per cent in all of the three waves of data collection. Furthermore, we excluded one network with very imprecise parameter 
estimates. This leaves eleven grade-level networks for the analysis. 

Friendship networks were obtained by asking students to nominate up to ten best friends in their grade. Students who did not fill 
out the questionnaire could nevertheless be nominated so that their ingoing friendships were still recorded. The social networks 
resulting from this measure can be conveniently represented by adjacency matrices for each of the eleven grades as well as for each 

Fig. 2. Illustration of modelling interdependent individual choices using SAOMs.  

5 The overall maximum convergence ratio indicates the convergence of the estimation algorithm. As a rule of thumb, values smaller than 0.25 are 
acceptable (Ripley et al., 2019).  

6 We focused on the choice modelling aspect of SAOMs rather than the simulation of network evolution, which is why we refrain from a discussion 
of the assessment of goodness of fit. However, importantly, besides convergence in parameter estimates, SAOM applications should be accompanied 
by an inspection of their goodness of fit. Researchers should assess the extent to which the simulated networks that follow from the model spec-
ification also adequately represent characteristics of the empirical network that have not been explicitly included in the model specification (for 
further information, see Ripley et al., 2019). 
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wave. An adjacency matrix is a square matrix in which the rows and columns denote the students in the grade. The cells provide 
information about directed friendship nominations. For example, as depicted in Table 1, assume a grade featured 80 students and cell 
[2,3] entails a one, then student 2 nominated student 3 as a friend. If cell [3,2] entails a one, too, then this friendship is reciprocal. In 
case there is no friendship nomination between students, the cell features a zero. In case of a student not having participated in the 
survey (i.e., unit non-response) the entire row of this student features a missing code. However, as ingoing friendships were recorded, 
too, the column values of this student do not necessarily have to be missing. 

We measure academic achievement by students’ self-reported grades in the subjects German, English, and mathematics. In the 
German educational system, grades range from 1 (very good) to 6 (failed). As the worst grade was reported only eight times across all 
waves and friendship networks, we collapsed it with the second worst grade rather than treating it as a separate category (Fortuin et al., 
2016). As a final measure of academic achievement, we use the reverse-coded average grade across the three subjects, rounded to the 
nearest integer. The scale ranges from 1 to 5, with higher values indicating higher achievement. In SAOM terms, this is the behavior 
variable. 

4.2. Model specification 

In our exemplary model specification, we use individual covariate effects, dyadic covariate effects, and structural effects in the 
selection part of the model. We focus on two individual characteristics that may be important for the evolution of adolescents’ 
friendship networks: gender and academic achievement. For gender, we include both ego and alter effects to acknowledge the pos-
sibility that activity in the friendship network (the number of ties sent) and popularity (the number of ties received) may vary between 
boys and girls. Furthermore, we include a same-gender dyadic covariate to assess whether students are more likely to form re-
lationships with same-gender rather than cross-gender peers. For academic achievement, we also include ego and alter effects to assess 
whether activity and popularity differs according to achievement levels; e.g., students with low (or high) grades might be more (or less) 
desirable as friends. Most importantly, we also include a similarity effect for academic achievement to test whether students are more 
likely to befriend schoolmates with similar academic achievement. Finally, we include a dyadic covariate that accounts for whether 
students share the same classroom, the same neighborhood, or the same elementary schools: all these shared characteristics may 
provide more opportunities to form friendship relations and are therefore likely to shape friendship formation. 

For structural effects, we introduced reciprocity and transitivity via the geometrically weighted edgewise shared partners (GWESP) 
effect. The reciprocity effect shows whether students reciprocate friendship nominations and the GWESP effect shows whether friends 
of friends become friends. Furthermore, by default, an outdegree effect is included, which indicates the extent to which friendship 
nominations are made relative to the size of the network, given that all other effects in the model are zero. This corresponds to a 
constant in regular regression models and is frequently negative in school-based friendship networks because students have limited 
capacities to befriend other peers. We also account for a number of additional structural effects (indegree popularity, indegree activity, 
outdegree activity, and the interaction of reciprocity and GWESP) to more appropriately capture general processes of network evo-
lution (see Ripley et al., 2019), but do not discuss them in detail here. 

We also investigate whether students adapt their own academic achievement to their friends’ achievement, i.e., whether there are 
influence processes. We thus conceptualize students’ academic achievement as a choice process, with students putting different levels 
of effort and time into their academic work and thus producing different achievement levels. Given our interest in both whether 
students choose peers with similar achievement as their friends (selection effect) and whether students assimilate their achievement to 
their friends’ achievement, we can also use our exemplary model to demonstrate SAOMs’ ability to separate selection from influence 
effects. In order to do so, we complement the model’s selection part by an influence part that models the determinants of students’ 
academic achievement. Next to the linear and quadratic shape parameters that model the general distribution of academic achieve-
ment, we consider variation in achievement according to students’ gender. Furthermore, and most importantly, we assess influence 
effects that originate from friends’ academic achievement. These influence effects are accounted for with the achievement average 
similarity effect, which models whether students assimilate their friends’ average achievement levels, i.e., whether they adjust their 
own achievement towards that of their friends. 

We applied this model specification with 20 effects to all of our eleven grade-level networks. As a result, we estimated not one but 
eleven SAOMs with identical model specifications for different networks from different schools. The estimation was carried out using 
RSiena 1.2–14 (Ripley et al., 2019). The highest overall maximum convergence criterion value across all eleven SAOMs was 0.15, 
indicating good convergence. We combined results for the eleven networks using a fixed-effects multivariate meta-analysis (An, 2015; 
Gasparrini et al., 2012). In this exemplary analysis, we refrained from discussing goodness of fit. We refer interested readers to 
Kretschmer et al. (2018). 

5. Results 

Before we turn to the SAOM analysis, we provide descriptive information on the 11 grade-level networks we analyze in Table 2. To 
show that friends indeed tend to have similar academic achievement, we report Moran’s I, a measure of network autocorrelation, for 
all of our networks. Moran’s I assesses whether actors that are directly connected to one another are more similar on some charac-
teristic than randomly selected actors. In all but one of our networks, Moran’s I is larger than zero suggesting that friends indeed tend to 
have similar academic achievement. This similarity may originate from both selecting similar-achieving friends and assimilating 
friends’ achievement. 

To run a SAOM analysis that investigates the sources of similarity, we also check whether relationships and achievement change 
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over time. Table 2 shows that friendships do change: The Jaccard index, which captures the share of stable friendship relations across 
subsequent periods is always substantially smaller than 1, but also not too close to 0, indicating that some relationships do persist over 
time. Similarly, Table 2 shows that students’ academic achievement changes over time in all of our networks, showing a considerable 
number of upward and downward moves in the behavior variable. 

Given that these preconditions for the SAOM analysis are met, Table 3 shows the main results of our exemplary analysis. We first 
discuss the results of the selection part, starting with structural effects and then continue with the individual and dyadic covariate 
effects. 

In the selection part of the model, the rate parameters are estimated at around 15, indicating that every actor, on average, has around 
15 opportunities to change a friendship tie. Considering structural effects first, note that the coefficient of the outdegree effect is 
negative and significant, indicating that, in the absence of all other effects, a random pair of students is more likely to not be friends 
than to be friends. This reflects the fact that students have few friendships relative to the network size, i.e., the network has a low 
density. The GWESP effect is positive and significant, pointing towards transitive closure: students tend to become friends with the 
friends of their friends. The reciprocity effect, is significantly positive and indicates that students tend to choose peers as friends who 
nominated them as friends, too. However, the tendency to reciprocate is weaker in configurations that are transitively closed rather 
than open (negative interaction effect of reciprocity and GWESP). These findings are in line with previous network studies, thus 
capturing fundamental network dynamics of friendship networks (e.g., Ripley et al., 2019). 

Turning to covariate effects, we first discuss gender differences in friendship formation behavior. Table 1 shows a negative ego 
effect for gender, but no substantial alter effect. As boys are the reference category in the analysis, these effects indicate that girls send 
fewer friendship nominations than boys do, and that boys and girls receive the same amount of friendship nominations, i.e., are equally 
popular. The positive coefficient of the same-gender effect indicates gender segregation in friendship networks, with girls being more 
likely to befriend other girls rather than boys, and vice-versa. Finally, we find positive and significant coefficients for the same 
classroom and the same primary school effects, indicating that students are more likely to befriend peers from their own classroom and 
primary school. Both effects reflect different opportunities to befriend peers. 

For academic achievement, ego and alter effects are very close to zero, which indicates that both popularity and activity do not differ 
by academic achievement. However, we find a positive and significant coefficient for students’ similarity in academic achievement. 
This indicates that students tend to choose those schoolmates as their friends who have an academic achievement that is similar to their 
own achievement. 

To further illustrate the dependence of friendship formation processes on academic achievement, Fig. 3 shows the tendency of 
students to become friends with schoolmates with different levels of academic achievement. The five horizontal panels differentiate 

Table 1 
Adjacency matrix of friendship nominations.   

Student 1 Student 2 Student 3 … Student 80 

Student 1 0 1 1 … 0 
Student 2 1 0 1 … 1 
Student 3 0 1 0 … 1 
… … … … … … 
Student 80 0 0 1 … 0  

Table 2 
Descriptive information on networks.  

Network # Network Size Moran’s I Wave 1 Jaccard Index Changes in Academic Achievement 

Wave 1-2 Wave 2-3 Wave 1-2 Wave 2-3 

1 85 0.13 0.47 0.44 12 25 
2 74 0.15 0.44 0.46 11 18 
3 100 0.07 0.42 0.47 26 29 
4 112 0.14 0.42 0.45 18 30 
5 93 0.04 0.36 0.46 13 21 
6 120 0.00 0.38 0.41 38 34 
7 138 0.18 0.37 0.34 48 42 
8 126 0.13 0.45 0.47 44 39 
9 121 0.14 0.43 0.43 37 29 
10 119 0.06 0.41 0.44 34 33 
11 113 0.08 0.41 0.44 33 33  
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focal students (“egos”) with different levels of academic achievement. The horizontal axis considers different levels of academic 
achievement of peers the focal individuals can potentially become friends with (“alteri”). Finally, the vertical axis shows contributions 
to the evaluation function of the specific combinations of the effects related to academic achievement (ego, alter, and similarity in 

Table 3 
Meta-analysis of SAOMs.   

Model 1  

Coef. SE 

Selection Part 
Rate of friendship formation 

Period 1  16.40*** (0.41) 
Period 2  14.64*** (0.39) 

Structural effects 
Outdegree  � 2.28*** (0.11) 
Reciprocity  2.31*** (0.08) 
Transitivity (GWESP)  1.56*** (0.03) 
Reciprocity x GWESP  � 0.89*** (0.06) 
Indegree-popularity (square root)  � 0.17*** (0.02) 
Indegree-activity (square root)  � 0.47*** (0.04) 
Outdegree-activity (square root)  0.19*** (0.03) 
Individual-level covariates 

Gender (Ref.: Boy) 
Ego  � 0.06* (0.03) 
Alter  � 0.01 (0.02) 

Academic achievement 
Ego  � 0.01 (0.02) 
Alter  � 0.00 (0.02) 

Dyad-level covariates   
Same gender  0.32*** (0.02) 
Similarity in academic achievement  0.34** (0.11) 
Same classroom  0.36*** (0.02) 
Same primary school  0.07** (0.02) 
Same neighborhood  0.01 (0.02) 
Influence Part 
Rate of behavior change 

Period 1  0.95*** (0.08) 
Period 2  0.99*** (0.08) 

Trend 
Linear shape  0.09 (0.06) 
Quadratic shape  0.02 (0.07) 
Individual-level covariates 
Gender (Ref.: Boy)  0.03 (0.08) 
Personal network attributes 
Average similarity  3.56*** (0.85) 

Note: Reported coefficients stem from fixed-effects multivariate meta-analysis based on eleven individual 
network SAOMs; all SAOMs .converged; yp < 0:10; *p < 0:05; **p < 0:01; ***p < 0:001:

Fig. 3. Academic achievement and friendship formation.  
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academic achievement; see Table 3). The reference group (i.e., the dashed zero line) is a setup in which both the focal actor and his or 
her schoolmate have medium academic achievement.7 Higher contributions to the evaluation function indicate higher probabilities of 
friendship formation, compared to this medium/medium combination. 

In Fig. 3, we see that across the entire spectrum of academic achievement, the evaluation function peaks if ego and alter are 
maximally similar, i.e., if ego’s and alter’s average grades are identical. This, again, shows that students are most likely to befriend 
those peers who are most similar to themselves in their academic achievement. By contrast, friendship formation becomes less likely 
with increasing differences in ego’s and alter’s academic achievement. Taken together, these observations reflect the positive 
achievement similarity effect from Table 1 discussed earlier and show that given the opportunity, all else equal, students most likely 
select friends who do similarly well in school. 

In the influence part of the model, we investigate how actors choose their academic achievement. The rate parameters are estimated 
at around one, indicating that every actor, on average, has one opportunity to change his or her academic achievement. The results in 
Table 1 first show that, in the data at hand, boys and girls on average do not differ in their academic achievement, as the respective 
effect is close to zero and not statistically significant. Furthermore, the linear and quadratic shape effects suggest that there is no 
substantial tendency for achievement to improve or deteriorate over time. Most importantly, the average achievement similarity effect 
models how students’ academic achievement depends on their social network. Specifically, the effect assesses whether students 
assimilate their friends’ academic achievement over time, i.e., whether there is an influence effect for academic achievement. In our 
model, the average achievement similarity effect is positive and statistically significant. This indicates that students indeed adapt to 
their friends’ academic achievement, i.e., that they become more similar to them over time. 

In other statistical approaches, we would have been unsure about how trustworthy our estimates of the influence effects are, as 
most of them empirically capture students’ similarity in academic achievement when trying to estimate influence. However, as shown 
above, similarity can also be a consequence of actors’ choice to befriend similar-achieving peers. In the SAOM approach, we do not face 
this problem because selection and influence effects are modelled and estimated jointly from the same model. Therefore, our estimates 
of influence are net of selection and vice-versa, making SAOMs particularly suitable to study how individual choices are shaped by 
social networks. 

6. Discussion 

In order to increase the mutual appeal between the fields of social network analysis and choice modelling, we discussed the sto-
chastic actor-oriented model for the co-evolution of networks and behavior (SAOM; Snijders et al., 2010) as a powerful statistical tool 
to analyze choices in social networks. SAOMs can be used to study two kinds of choice processes as well as their interplay: On the one 
hand, individuals choose their social relationships (selection); on the other hand, individuals choose to change their behavior in 
response to the characteristics of their social networks (influence). 

In our presentation, we showed that the core of a SAOM is similar to the random utility maximization model (RUM; McFadden, 
1973). However, SAOMs provide a way to face the criticism that choice modelling applications often fail to account for the social 
context in which people make their choices (Bruch and Feinberg, 2017) by allowing to investigate how social networks influence the 
choices of their members. Furthermore, they allow to understand how interdependent individual tie formation decisions created these 
social contexts in the first place. We illustrated how SAOMs can be used to study both types of choices with an empirical example of 
friendship making and academic achievement in the school context, showing that students both choose peers as friends who are similar 
in academic achievement to them and adjust their academic achievement towards that of their friends. 

Our presentation sought to explain and discuss the basic specification of SAOMs. It is important to note, however, that SAOMs can 
be extended with regard to the types of relationships, the types of actors, and the types of behavior under consideration. Regarding the 
types of relationships, researchers may use SAOMs to model the simultaneous evolution of multiple networks (so-called multiplex 
networks) and their effects on each other (e.g., Boda (2018) uses both friendships and race attributions as two different networks). 
With regard to types of actors, SAOMs are capable of investigating two-mode networks, in which a single network features two types of 
“actors” and relationships only exist between these types (e.g., in a study by Benton (2016), directors are connected to each other 
through firms). With regard to the type of behavior investigated, SAOMs may model a range of behavioral variables with different 
properties. For example, in studies on the diffusion of innovations, the behavioral variable may be binary, with people either adopting 
an innovation or not adopting it (e.g., Greenan (2015) models the initiation of cannabis smoking as an innovation) or, as proposed 
recently, it may be measured continuously (Niezink et al., 2019). The frequently updated manual of RSiena (Ripley et al., 2019) guides 
researchers on how to implement these extensions. 

Researchers who consider using SAOMs for studying choices have to be aware that SAOMs impose certain restrictions on the data 
and are not equally suitable to all kinds of social networks. First, with regard to missing data, social network data should be as complete 
as possible, which means that both unit and item non-response rates should be rather low (Huisman and Steglich, 2008). Second, as 
SAOMs were designed to investigate the evolution of social networks, researchers need to have longitudinal network information. 
While the precondition is to have network observations for at least two time points, SAOMs may also be used to study network 

7 Notice, however, that in a mini-step the total value of the evaluation function of a network state is calculated based on all effects included in the 
model specification. In this illustration, however, we are only interested in how friendship formation depends on academic achievement, which is 
why we only focus on the joint contribution of the achievement-related effects to the value of the evaluation function, holding all other charac-
teristics constant. 
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evolution if data on a larger number of time points is available. From three time points onwards, researchers can decide whether they 
want to obtain average model results across all time points or whether they prefer separate model results for transitions between 
subsequent time points. Third, the assumption of full information in the choice modelling process is likely to be violated in very large 
networks, which is why SAOMs may be less applicable to the analysis of large-scale social networks such as Twitter, Facebook, patent, 
or citation networks. In addition, in principle, SAOMs may be extended to feature other forms of choice modelling. 

Taken together, we have shown that SAOMs constitute a theory-driven statistical model for studying both selection—the choice of 
specific network partners—and influence—the effects of social networks on individual choice behavior. Since SAOMs are not bound to 
specific topics or research questions, and given their similarities with the RUM, they should be useful for the choice modelling 
community for empirically investigating network-related choices. 
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Appendix A. Preconditions for social network analysis 

An informed statistical investigation of a social network (Wasserman and Faust, 1994) forces researchers to clearly specify both 
who the members of the network are and the type of relationship that links them to each other. 

The first task refers to the so-called boundary specification problem (Laumann et al., 1989). It asks researchers to state who is a 
member of a social network, and who is not. The boundaries of a network may be institutionally defined by considering all students 
within a school or every worker within a firm. In the jargon of the social network perspective, the network members may be referred to 
as “vertices” or “nodes”, or, given they have agency, as “actors”. 

The second task asks researchers to specify the type of relationship that links the network members to each other. Examples for 
different types of relationships are friendships, romantic relationships, citations, exchanges of goods and services, or measures of the 
frequency of contact. The actual instantiations of such relationships among the network members may be called “edges”, “arcs, or 
“links”, or, if agency is to be highlighted, “ties”. Relationships may be directed or undirected; for example, a tie in a scientific 
collaboration network is undirected because cooperation binds scientists together, but a scientific citation network is directed, with 
one paper citing another without necessarily being cited back. In a directed relationship, the sender of the tie is called “ego” and the 
receiver “alter”. 

Network members and relationships jointly define the social network of interest. Given that the evolution of a social network is 
subject to the analysis, the network has to be observed empirically at least at two points in time for a SAOM analysis to apply.8 
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