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 I 

Abstract 
 

Revenue management (RM) for passenger railway is a small but active research field with an 

increasing attention during the past years. However, a detailed look into existing research shows 

that most of the current models in theory rely on traditional RM techniques and that advanced 

models are rare. This thesis aims to close the gap by proposing a state-of-the-art passenger 

railway pricing model that covers the most important properties from practice, with a special 

focus on the German railway network and long-distance rail company Deutsche Bahn 

Fernverkehr (DB). The new model has multiple advantages over DB’s current RM system. 

Particularly, it uses a choice-based demand function rather than a traditional independent 

demand model, is formulated as a network model instead of the current leg-based approach and 

finally optimizes prices on a continuous level instead of controlling booking classes. Since each 

itinerary in the network is considered by multiple heterogeneous customer segments (e.g., 

differentiated by travel purpose, desired departure time) a discrete mixed multinomial logit 

model (MMNL) is applied to represent demand. Compared to alternative choice models such 

as the multinomial logit model (MNL) or the nested logit model (NL), the MMNL is 

significantly less considered in pricing research. Furthermore, since the resulting deterministic 

multi-product multi-resource dynamic pricing model under the MMNL turns out to be non-

linear non-convex, an open question is still how to obtain a globally optimal solution. To narrow 

this gap, this thesis provides multiple approaches that make it able to derive a solution close to 

the global optimum. For medium-sized networks, a mixed-integer programming approach is 

proposed that determines an upper bound close to the global optimum of the original model 

(gap < 1.5%). For large-scale networks, a heuristic approach is presented that significantly 

decreases the solution time (by factor up to 56) and derives a good solution for an application 

in practice. Based on these findings, the model and heuristic are extended to fit further price 

constraints from railway practice and are tested in an extensive simulation study. The results 

show that the new pricing approach outperforms both benchmark RM policies (i.e., DB’s 

existing model and EMSR-b) with a revenue improvement of approx. +13-15% over DB’s 

existing approach under a realistic demand scenario. Finally, to prepare data for large-scale 

railway networks, an algorithm is presented that automatically derives a large proportion of 

necessary data to solve choice-based network RM models. This includes, e.g., the set of all 

meaningful itineraries (incl. transfers) and resources in a network, the corresponding resource 

consumption and product attribute values such as travel time or number of transfers. All taken 

together, the goal of this thesis is to give a broad picture about choice-based dynamic pricing 

for passenger railway networks.  
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Chapter 1 Introduction 
 

The passenger railway business experienced an increasing interest in the last years, not only in 

emerging markets like Asia where new high-speed routes are build, but also in countries that 

are typically known for a long history of rail transport like Germany (e.g., Chen and Haynes 

(2015), DB Netz (2017)). Reasons for the positive development are manifold. In addition to a 

general increasing mobility and wealth that makes travelling affordable for more people, rail 

transport is typically a convenient means of transport for limited distances (e.g., no security 

check or train stations in the city center). Further, if powered by green electricity, it also fulfils 

the demand for sustainable mobility, an issue that is increasing in demand at the present time 

of discussions about global warming. From a business perspective, this is accompanied by the 

challenge of meeting additional demand and, above all, of operating profitably in order to be 

able to operate the cost-intensive material such as rail tracks or trains. Motivated by the success 

of revenue management (RM) for airlines also railway companies started to use RM methods, 

e.g., the German long-distance passenger train provider DB Fernverkehr in 2002 (Link 2004). 

While passenger railway and passenger airline RM share some fundamental aspects (both sell 

tickets from A to B that can be purchased in advance and have a zero salvage value after 

departure) they differ in some substantial aspects. For example, an itinerary in the railway case 

consists of multiple legs compared to one or two legs at airlines, and typically a higher 

frequency of itineraries between two cities is offered. Further, the lack of a check-in process or 

the possibility to have standing passengers on the train are additional differences with impact 

on RM. For this reason, passenger railway revenue management (RRM) represents its own field 

of research. An analysis of existing research shows, however, that most of the RRM approaches 

to date apply very basic techniques known from revenue management theory whereas advanced 

approaches that include state-of-the-art demand models are still rare (e.g., Jiang et al. (2015), 

Zhai et al. (2016)). 

For RM research in general, there has been a trend in recent years towards choice-based pricing 

models. The aim of using choice-based optimization models is to account for demand shifts in 

the optimization (e.g., to alternative products, the competitor or not to buy at all) as a result of 

the pricing/availability decision. In the context of RRM, a choice model represents the customer 

choice of a train connection from a set of several alternative train connections (e.g., train 

connections departing earlier or later). With typically multiple daily train connections between 

large cities, a choice model can help to significantly increase revenues by a better steering of 

demand. While price optimization based on multinomial logit (MNL) (e.g., Dong et al. (2009)) 
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or nested logit (NL) (e.g., Gallego and Wang (2014)) choice models has already been 

intensively considered, research on pricing under the discrete mixed multinomial logit model 

(MMNL) with capacity constraints is still rare (e.g., Keller et al. (2014)). 

 

Research questions 

This thesis is dedicated to the development of a state-of-the-art RRM model that covers the 

most important properties from practice, with a focus on the project partner DB Fernverkehr 

AG. In order to achieve this goal, the following research questions are considered: 

 

1. What is the current status in RRM in theory and practice? 

2. What are the main features a RRM model should reflect and what limitations need to be 

considered? 

3. How can these properties be represented in an optimization model? 

a. How to solve the model in terms of solution quality? How can structural 

properties be exploited? 

b. How to solve the model in terms of solution time for large-scale railway 

networks? How to find a good balance between covered effects and keeping the 

model tractable? 

c. How to derive the necessary data for large-scale networks automatically? 

4. How does the new model perform compared to alternative benchmark RRM 

approaches? 

 

The proposed model is a multi-product multi-resource dynamic pricing model under the 

MMNL. The price for each product (the combination of a train connection and comfort class) 

is considered to be a continuous variable. Furthermore, the model covers the tradition network 

effect by controlling prices on a product level. Therefore, it is able to evaluate the optimal 

revenue contribution of different products that share the same critical resource. Finally, by 

integrating the MMNL, the model can represent the customer choice of a product as a choice 

out of a set of alternative products. I.e., the optimization model anticipates the switching 

behavior of customers between products as a result of the price decision. The MMNL makes it 

able to account for multiple heterogeneous customer segments that differ in the evaluation of 

product attributes. On the one hand, multiple segments make it able to better represent actual 

demand, on the other hand this comes along with the challenge of a non-linear non-convex 
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optimization problem (Li et al. 2018). Therefore, efficient solution techniques are required to 

find a good solution in reasonable time.  

 

Thesis structure 

The thesis consists of four essays that address the mentioned research questions (see Figure 1).  

 

 
Figure 1: Thesis overview 

 

The first essay (Chapter 2) gives a current overview on passenger railway revenue management 

from a theoretical and practical perspective. It presents the results from a survey with European 

passenger rail companies about RM in practice and shows the potential for advanced RM 

approaches. Furthermore, it discusses the main business model aspects of a passenger rail 

company that have an impact on RM based on the experiences at DB Fernverkehr. Finally, a 

literature review on RRM analyzes, discusses and classifies relevant papers published on the 

topic. It shows the increasing interest in research over the past years, but also reveals the gap 

of models that cover the most important conditions from practice. The first essay is the starting 

point and demonstrates the motivation for the development of the new pricing model in the 

following chapters. 

The second essay (together with Cornelia Schön, Chapter 3) lays the theoretical foundation for 

the development of the network dynamic pricing model under the MMNL. It provides a 

literature review about choice-based pricing and shows the research gap of solving the MMNL-

based pricing model to global optimality. The essay introduces multiple convex approximate 

reformulations of the original non-linear non-convex model that serve as upper bounds incl. a 

convex, piecewise approximation formulation that decreases the upper bound close to the 

globally optimal objective value. Furthermore, a heuristic approach is presented that makes it 

Essay 1

Railway RM overview

Model development & solution approach

Railway characteristics

Essay 2 Essay 3 Essay 4

Simulation study

General focus Railway focus

Data generation

Dynamic pricing overview
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able to derive a good solution in reasonable time for large-scale networks. The presented models 

and heuristics are tested in two numerical experiments. The first experiment focuses on the 

upper bound models. It shows that the proposed convex models (especially the model that uses 

the piecewise approximation) help to decrease the objective value gap between the upper bound 

and the original non-convex formulation to <1.5%. The gap can be further decreased by 

choosing sufficiently small price intervals to make the piecewise approximation more precise. 

For the second experiment, data from DB Fernverkehr are used to test the heuristic for large-

scale railway networks. The results show that the proposed heuristic makes it able to 

significantly decrease the solution time and to evaluate the (potentially local) solution by 

comparing the result with the solution from a convex upper bound model. 

The third essay (Chapter 4) is based on the model and the theoretical results from essay two 

and extends it by integrating railway specific constraints to ensure price consistency between 

longer and shorter itineraries. This is necessary due to the missing check-in and check-out 

process so that customers could buy a ticket for a longer train connection and embark later 

and/or disembark earlier. Therefore, prices for longer train connections should not be lower 

than for shorter ones to avoid strategic acting customers. Additionally, from DB’s product-

strategic perspective, first- and second-class tickets for the same train connection should fulfill 

a minimum price-gap that is ensured by a second type of price consistency constraints.  

An extensive simulation study is conducted to evaluate the performance of the new model in 

terms of revenue and network utilization compared to two leg-based benchmark policies that 

are based on DB’s current RM policy. The strong collaboration with DB Fernverkehr made it 

possible to use real data from practice (e.g., train schedules, demand data, booking history etc.). 

Furthermore, technical statistics (e.g., solution times and variances, maximum gaps to the upper 

bound model) are presented and discussed to give insights into the quality of the solution from 

a theoretical perspective. The results show a significant revenue improvement by the new 

choice-based network dynamic pricing model. 

Finally, the technical essay number four (together with Cornelia Schön, Chapter 5) lays the 

foundation for all tests that are done for railway networks in this thesis. Since one challenge 

with models for networks of realistic size is the availability of data, an algorithm is presented 

that automatically derives most of the operational data based on raw train schedules. This 

includes the set of train connections in the network (incl. transfers), the corresponding resource 

consumption for the network capacity constraints and product attribute values such as travel 

time or the number of transfers for the choice model. To derive the set of train connections, a 
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number of efficiency rules are defined that ensure that only meaningful train connections are 

considered (e.g., without long detours). 

 

All taken together, the thesis provides a broad picture of passenger railway revenue 

management with a special focus on network dynamic pricing models under the MMNL.  

 

Project partner DB Fernverkehr AG 

This thesis is not only motivated by its scientific questions as presented above, but also by the 

close cooperation with the project partner DB Fernverkehr AG in a direct practical context. DB 

Fernverkehr AG is a 100% subsidiary of Deutsche Bahn AG and provides long-distance travel 

within Germany and adjacent countries, mainly with its ICE (Intercity-Express) and IC/EC 

(Intercity/Eurocity) trains. With 147.9m travelers in 2018 and a revenue of 4.7bn EUR 

(Deutsche Bahn 2019), DB Fernverkehr is by far the largest provider of long-distance rail traffic 

in Germany. The revenue management department is part of the marketing division and consists 

of two teams, one team for the operational, short-term control (e.g., classical revenue managers) 

of prices and for the monitoring of train utilizations and a second team for data analytics and 

the development of the RM system. The joint research project contributes to this topic by 

answering the most important questions from a theoretical and practical perspective.
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Chapter 2 An overview on passenger railway revenue 

management 
 
 

Single author:  

Simon Hohberger 

Chair of Service Operations Management, Business School, University of Mannheim 

 

 

Abstract 

 

Revenue management (RM) is a discipline in Operations Research that is widely applied in 

practice, especially at airlines or hotels. The passenger railway industry can further be 

mentioned as an example with an increasing attention in research and practice especially in the 

last two decades driven by global investments in the extension of rail networks. This paper 

provides an overview of passenger railway in the context of revenue management. This includes 

an extensive study of the business model of a railway company to analyze the properties that 

have an influence on revenue management. Further, detailed insights into RM methods and 

challenges in practice based on a survey with European railway companies are provided. 

Finally, a literature overview analyzes existing research on railway revenue management from 

both a theoretical and practical perspective. This overview can serve as a starting point and 

source of information for future research in this still underdeveloped research area. 

 

 
  



An overview on passenger railway revenue management 

 8 

2.1 Introduction 

Revenue management (RM) is an already well-established discipline in Operations Research, 

with wide applications in practice. Starting in the early 1970s, British Airways (back then called 

BOAC) started selling discounted flight tickets for customers willing to book early (McGill and 

van Ryzin 1999). The following deregulation of the airline market in 1978 is often seen as the 

starting point of an ongoing success story of revenue management in the airline sector (Talluri 

and van Ryzin 2005). To date, other industries have followed, including car rental companies 

or hotels (Chiang et al. 2007). Another sector to be mentioned is railway passenger transport, 

especially the long-distance rail market. Compared to airlines, hotels or car rentals this field is 

underrepresented both in theory and practice. One reason may be that revenue management 

research in the early years primarily took place in the USA where the focus is strongly on air 

traffic. At the same time, railway passenger transport is well suited for applying RM methods. 

E.g., following the prerequisite criteria for RM defined by Kimes (1989), a railway company 

has a fixed seat capacity, the product (i.e., a train ride from A to B) has a fixed expiry date and 

can be booked in advance, low variable costs arise with each additional passenger, demand is 

fluctuating and demand segments can be priced individually (although the latter one highly 

depends on the government’s regulations). Thus, the right use of RM methods can potentially 

generate additional revenue and profit for railway companies.  

The rail market in general shows a strong, positive development in many countries of the world. 

Networks in Asia (e.g., high-speed rail line Beijing-Shanghai opened in 2011 (Chen and Haynes 

2015)) or Europe (e.g., the high-speed connection Berlin-Munich opened in 2017 (DB Netz 

2017)) are expanding and increase the attractiveness of the product by shortening travel times. 

The demand for sustainable, green means of transport additionally favors the demand for 

railway. However, rising passenger numbers not only lead to rising revenues, but also to 

capacity bottlenecks with overcrowded trains. Thus, RM has not only a purely profit-driven 

role but also a steering component, as passengers can be deterred from taking full trains by 

setting appropriate prices. The interest in railway revenue management (RRM) is also reflected 

in the agenda of well-known rail conferences, with specific streams of presentations on revenue 

management (e.g., "Rail World Festival 2018" in Amsterdam, or "Asia Pacific Rail 2019" in 

Hong Kong). It will be shown in this paper that many rail companies are already applying some 

kind of RM technique. However, a detailed look into the results of the conducted survey also 

shows that the methods used are mainly basic and so potential for improved RM approaches 

exists. The reasons for the limited application in practice are manifold: railway companies are 

often state-owned and focus on the domestic market. Thus, in addition to the influence of the 
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government that limits the flexibility in terms of pricing strategy in some countries, the strong 

geographical separation of markets leads to limited intramodal competition. Accordingly, a lack 

of competition can lead to a low level of innovation. In addition, decisions concerning public 

transport are often strongly and critically discussed by society. As a result, changes to the 

pricing system often take place in small steps. When DB Fernverkehr (the long-distance 

division of the German railway company Deutsche Bahn) applied RM for the first time in 2002 

by introducing controlled, discounted tickets, the headwind of the population was immense as 

customers had to get used to the train-bounded tickets (until then they were used to purely 

flexible tickets) and the image damage was considerable (Link 2004). However, the inhibitory 

reasons mentioned above seem to dissolve more and more. The discounted, controlled tickets 

at DB Fernverkehr have enjoyed great popularity and are a reason for the sharp rise in passenger 

numbers and revenue.  

In summary, it can be stated that the conditions for RM in railway passenger transport are met 

and the interest in practice is given, although advanced methods (e.g., network approaches) are 

missing. At the same time, a glance at research on RM for passenger railway shows a very 

limited number of publications. You (2008) and Ciancimino et al. (1999) can be described as 

the most prominent contributions. The working paper of Armstrong and Meissner (2010) gives 

the so far only overview on railway RM. Based on their results, this paper presents a broad and 

up-to-date overview of RM in passenger transport with a focus on relevant properties in 

practice. The scientific contribution is divided into three parts: First, the results of a survey 

conducted with European railway companies about RM in practice are presented, showing the 

already popular role of RM in practice as well as a high potential for advanced railway specific 

demand and optimization models. Second, particularities of rail transport that should be 

considered when developing a RM system are explained. Finally, an overview on existing 

literature that deals with passenger railway revenue management analyzes current approaches 

from both a theoretical and practical perspective. 
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2.2 Passenger railway revenue management in practice 

Revenue management as a discipline is already widely applied and well-studied for various 

industries (see, e.g., Chiang et al. (2007) for an industry overview). An open question is still, if 

and how revenue management is applied at railway companies. Some practical insights are 

provided by, e.g., Sibdari et al. (2008) for the auto train at Amtrak (US rail company), Bharill 

and Rangaraj (2008) for Indian railway and Bao et al. (2014) for Chinese railway. Abe (2007) 

gives some insights into European and American railway companies but to the author’s 

knowledge, there is no up-to-date analysis available that gives a structured overview about RM 

in practice. 

 

2.2.1 A survey with European passenger railway companies 

To make a first step for closing that gap a survey with passenger railway companies was 

conducted in spring 2018 by Feng (2018) as part of a master thesis at the University of 

Mannheim. In total, we contacted 28 companies (mainly in Europe) and received nine 

responses, from eight European and one Asian company. The online questionnaire covered 

different topics that are related with revenue management. To make the comparison and 

interpretation of the results easier for different companies in the same geographical/political 

region, only the results from the eight European companies are presented (i.e., n=8 sample size). 

Although the sample size is obviously not sufficient to derive statistically significant 

implications, it can give valuable insights and help to show the gap between theory and practice. 

The survey was aimed at three insights. First, to understand whether RM is applied at all and if 

so, which models and approaches are used. Second, to receive information about factors that 

influence the price decision and third, to understand the reasons that make an implementation 

difficult.  

From the eight European rail companies that took part, seven are offering controlled tickets 

(i.e., tickets that, e.g., vary in price or availability) so that they can be considered to use RM 

techniques to some extent. Therefore, RM seems to be already well established in European 

railway practice. Only one company stated that they are not applying RM. From the seven 

companies, two are using a pure capacity control mechanism, four are having a mix of capacity- 

and price-based approach and one uses a fixed quota control depending on the day to departure 

so that it is considered to be a (very basic) pure price-based control. This indicates that capacity 

allocation models play a very important role in practice and that pure and advanced price-based 

approaches are not applied so far.  
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Furthermore, answers show that most of the rail companies (75%) offer both flexible and train-

bounded tickets and the remaining 25% offer only flexible tickets. No company mentioned to 

offer only train-bounded tickets which shows the popularity and importance of flexible tickets 

in railway practice. Furthermore, seven companies mention to offer discount cards and most of 

them also offer discounts for groups, families or for different periods of validity (e.g., monthly 

passes). Asking for the most important factors that influence the pricing decision, the 

participants mentioned that the departure time is the most important one, closely followed by 

the number of seats available and the day of the week.  

From a technical perspective, all seven companies mention to use a leg-based rather than a 

network-based approach. This is a surprising result since RRM represents a classical network 

problem with multiple products that share the same resource. In addition, three companies are 

controlling the product availabilities/prices completely manually, one uses an algorithmic 

approach and the remaining three others use both an algorithmic and manual control. This 

shows a high potential for automated RM methods since manual control is still dominant in 

practice. 

When asked about possibilities 

for improvement (see Figure 

2), advanced forecasting 

methods were named most, 

followed by RM approach 

(e.g., going from leg-based to 

network model) and RM 

technique (e.g., improved 

heuristics, dynamic 

programming).  

 

From an implementation perspective, challenges in the IT-setup are the most critical obstacles 

(100% approval) next to problems in customer acceptance (71% approval). The results about 

the organizational structure show that the RM teams (excluding IT support) are rather small 

(57% with 1-5 employees, 43% with 6-10 employees) and the teams are on a low (43%) or 

medium level (53%) in the hierarchy of the organization.  

Taken all together one can say that RM is widely known and mostly applied in European 

railway practice but with significant potential for further improvements in the applied RM and 

forecasting techniques, especially with network-based models. Based on the desire for 
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advanced RM approaches and techniques the question arises which (special) properties should 

be considered when developing a state-of-the-art railway RM model.  

 

2.2.2 Characteristics of passenger railway  

Armstrong and Meissner (2010) give the first overview of research for rail freight and rail 

passenger revenue management and a brief look into practice. They conclude that passenger 

railway RM is closely related to airline RM with some industry specific features. These include 

on average less utilized capacities, high number of walk-in customers or the possibility to stand 

on the train (i.e., no fixed maximum capacity). Furthermore, they point out that rail journeys 

typically consist of multiple legs so that it is necessary to control capacities/prices on an origin 

and destination (O&D) based level, which stands in contrast with the insights from the survey. 

They present a good overview of railway RM literature, the corresponding models and at the 

same time highlight that railway RM is still very unpopular in theory and (in some countries) 

also in practice and provides opportunities for future research in theory and practice.  

Their contribution is used as a starting point to further extend the findings and present evidence 

from practice. The objective is to give a broad picture about properties that should be considered 

when building a railway RM system. Some of them can be determined as unique for the 

passenger rail business. The presented findings are mainly based on data and experiences from 

a joint project with DB Fernverkehr, the long-distance passenger rail unit of the main German 

railway company Deutsche Bahn. The attributes are split into three main areas, (1) structural 

(2) demand and (3) business model related characteristics. Important to mention is that the 

business model of a railway company can vary from country to country due to restrictions by, 

e.g., the government, geographical characteristics and historical influences. I.e., the 

characteristics presented in the following must not be universally valid for every country or 

company, but give a good overview of possible limitations and challenges when applying RM.  

In the following, statistics are based on internal data of DB (if not stated otherwise). Throughout 

the paper, the expression O&D is used to denote a pairing of an origin and destination (e.g., 

two cities/train stations) and the expression itinerary to denote a specific train connection. 

Example: There exist multiple daily itineraries for the O&D Frankfurt-Berlin. Finally, a fare 

class (or fare product) represents the combination of a price and corresponding fare rules (e.g., 

cancellation or advance booking policies), in the airline sector typically defined by capital 

letters (e.g., Y, M, C). 
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2.2.2.1 Structural network characteristics 

The rail network in some countries shows similarities to a hub-and-spoke network (e.g., France 

or Great Britain), where train lines are meeting in a hub-train-station (e.g., Paris in France). In 

contrast, other countries show a highly-connected network with little/medium (Italy) or large 

(Germany) number of train lines. The structure of the railway network can have a significant 

influence on the challenges that come along with RM.  

 

Challenge of defining the set of itineraries 

Especially for large and highly-connected rail networks without a hub-and-spoke or point-to-

point structure, there are typically multiple options to travel from city A to city B, e.g., some 

fast itineraries and some with (inefficient) detours. Since the set of itineraries is a crucial input 

in a network RM model, it is important to derive it in a meaningful way. At Deutsche Bahn, the 

algorithm that determines the offered train connections is not under direct control of the RM 

department but can be influenced by collaborating with the department in charge. Especially in 

situations of unexpected high demand, this can lead to suboptimal decisions. Imagine a high 

demand situation (e.g., soccer game Frankfurt vs. Berlin, taking place in Berlin on Friday 

evening) where many soccer fans want to travel from Frankfurt to Berlin. Since a normal Friday 

is already a day with strong demand, the additional passengers would lead to overcrowded 

trains. Therefore, it could be beneficial to offer alternative train connections that use less 

demanded trains (e.g., with a slight detour) so that not all soccer fans choose the same trains on 

the standard route from Frankfurt to Berlin. An approach that combines the decision of the 

offered product set (assortment problem) and the pricing decision (pricing models) would be a 

promising way. Since such an optimization model would be hard (if not impossible) to solve 

for large networks, a sequential step, where the set of itineraries is determined before the price 

optimization, is the more practicable way. In practice, there exists an additional challenge. On 

the website of DB, customers see by default only comfortable/fast train connections, but they 

have the option to deactivate an option called “prefer fast connection” so that alternative train 

connections are displayed. From an RM perspective that comes along with the question “What 

is the set of itineraries to optimize?”. While in practice, one would use the set of itineraries that 

is displayed by default as a product set, it is still necessary to have a heuristic that derives prices 

for the non-optimized/alternative train connections.  
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Multiple transfers when including regional train traffic 

An itinerary consists of all used trains on the journey from your starting point (origin) to your 

final destination, i.e., it can include the transfer from one train to another. For the long-distance 

part of a journey, most of the booked itineraries have no transfer but still 18% include one or 

more transfers. Thus, a RM model should be able to deal with train connections including 

transfers. 

When taking regional train services into consideration (i.e., the transport to/from the long-

distance train station) the number of transfers further increases (50% of long-distance travelers 

have a regional train as part of their ticket). In practice, customers generally buy their regional 

and long-distance ticket as a bundle, i.e., not separately. On the one hand, especially in an O&D 

based model, this can create additional difficulties, e.g., for the forecasting (see demand related 

characteristics below) as well as the optimization since the number of itineraries to optimize 

would increase significantly.  

 

An itinerary consists of many legs  

In the airline business, an itinerary typically consists of only one or two (in minor cases three 

or four) legs and each additional leg typically causes a transfer to another aircraft. In contrast, 

trains generally travel along many intermediate stations. Further, every section between two 

stations represents a leg so that a trip from city A to city D via two intermediate stops (B and 

C) already results in an itinerary of three legs. When analyzing big networks like the DB long-

distance network, you can see that an itinerary consists on average of eight legs which is by far 

larger than in any airline case (Hohberger and Schön 2019). At the same time, this means that 

a leg is used by multiple itineraries and, therefore, a network approach seems to be promising.  

 

2.2.2.2 Demand related characteristics 

Not only the network structure in the rail business can differ from other industries, also the 

demand for the products is special. 

 

Many intermodal alternatives 

Train services typically cover limited distances. This results in high competition with 

alternative means of transport such as intercity bus, private car, flight and carpooling. With 

increasing transparency based on price comparison websites, competition will probably be even 

stronger in future since customers can easily access and evaluate different alternatives and 

prices and finally switch, e.g., from train to car. If applicable, also other train service providers 
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should obviously be considered as direct competitors. As rail companies are often government-

owned and the only large rail provider in the operating market, competition between different 

train companies is weak/non-existing but this varies from country to country and sometimes 

also depends on the O&D. An extensive analysis of the competitive situation is necessary and 

demand forecasting techniques that allow for incorporating competition could be beneficial.  

 

Many rail alternatives to go from A to B 

There exist typically many train connections to go from city A to B within a day (e.g., 48 train 

connections between Berlin and Frankfurt each day). On the one hand, a tight schedule is good 

for the customers, on the other hand it makes forecasting difficult. Especially for train 

connections with similar departure times, an independent demand forecasting would ignore the 

choice effects of the customers, since they have many alternative train connections within a 

given desired departure time frame to choose from. Therefore, a demand model that accounts 

for (neighboring) alternative products is beneficial. In RM this challenge can be solved by 

incorporating some kind of customer choice model that becomes relevant especially in the 

context of RRM. Using a choice model helps the company to anticipate the itinerary choice of 

customers based on the pricing decision which is not possible with a traditional independent 

demand model.  

 

Many changes in the schedule 

Rail schedules are typically changed twice a year, in June and December. Major changes take 

place in December and the changes in June are typically smaller. During the year, additional, 

more spontaneous changes often occur, e.g., construction work that is so far not considered in 

the schedule. The problem with forecasting algorithms based on historical, realized passenger 

numbers is that any change in the timetable (i.e., planned or unplanned) will degrade the 

forecasting quality. For example, omitted stops (e.g., due to detours through construction sites) 

or supply reductions/expansions (i.e., fewer/more trains on the same O&D) have a strong effect 

on future demand that is not reflected in the historical data. From this point of view, forecasting 

methods that can account for timetable changes should be preferred. E.g., a discrete choice 

model can be considered. The idea is to use an O&D market demand forecast that is independent 

of one's own supply/timetable and to allocate the demand (by applying the choice model) to all 

possible itineraries on the basis of the respective attractiveness. Changes in the timetable are 

reflected directly in the utility values of the set of itineraries and thus lead to a forecast which 

takes the new timetable into account. 
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High percentage of tickets are purchased close to departure  

As already mentioned by Hetrakul and Cirillo (2014), many passengers buy their ticket close 

to the departure day or even on the day of departure (at DB more than 50% of bookings occur 

in the week before departure). This leads to two challenges: The time to react to unforeseen 

demand situations (lower or higher than predicted) is small. Therefore, the optimization 

technique should be able to adjust prices/quantities in reasonable time. In addition, forecasting 

techniques that include information of accumulated bookings on hand have only a small 

database during the first months of the booking horizon and, therefore, deviations from the 

forecasted demand pattern can only be observed at a late point in time.  

 

Manual counting of passengers 

It seems to be surprising but the evaluation of the realized demand (i.e., the actual number of 

passengers in a comfort class on a train) is a tough task in practice. Due to the missing check-

in process or electronic counting on the train (e.g., at the doors) there is no automatic record of 

passengers at DB. Statistics of sold tickets can help to determine the number but especially 

passengers with flexible tickets or monthly/yearly passes have no (fixed) booking record and 

also no-shows cannot be observed. At DB, the train conductors carry out a manual count on 

predetermined legs on a train run. Obviously, manual processes are always a source of errors 

and, e.g., in overcrowded trains it is even impossible to count the passengers. Furthermore, not 

each leg is counted separately so that precise numbers for each leg are missing. A second 

problem of the manual counting lies in the manual postprocessing steps. Until early 2019, 

passenger counts at DB were documented manually on a piece of paper and entered manually 

in the IT-system. Therefore, it took some days until the data were available for the RM team 

and forecasting system. Today, train conductors can record the passenger counts electronically, 

but problems of different kind still occur in daily practice. This is a very crucial point in practice 

since a forecasting system is only as good as the data are. 

 

Segmentation of customers 

As in the case of airlines, customers of a railway company can be divided into different 

customer segments. Typical criteria for a segmentation are the travel purpose (e.g., business or 

leisure travelers) or socio-demographic factors (e.g., age). Since the booking behavior and the 

willingness to pay (WTP) of these customer groups differ, several price points/booking classes 

can help to skim off the WTP. Additionally, the possibility of adjusting the price or booking 

class availability decision during the booking horizon would make segment-specific pricing to 
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some extent possible. From a modelling perspective, this means that a multi-fare multi-period 

model could cover both properties by taking varying price levels over the booking horizon into 

account. 

 

Customers have preferred departure time 

In the context of demand models (e.g., a discrete choice model) that incorporate external (other 

transportation modes) and internal alternatives (other itineraries, e.g., an itinerary one hour later 

or earlier), the fact that rail passengers typically have a preferred departure time becomes 

relevant. Therefore, it is advisable to divide the day into several time windows to better control 

the consideration set of a customer group. E.g., customers willing to travel in the morning only 

consider train connections departing in the morning. Additionally, one can increase the 

accuracy of the predicted choice behavior of a segment by considering that train connections 

with a larger deviation from the desired departure time have a lower utility than similar train 

connections that depart exactly within the preferred time frame. 

 

Little demand history for unpopular O&Ds 

Standard forecasting models are based on historical data to predict the future (e.g., time series 

regression, machine learning techniques). As with every statistical analysis, the quality of the 

forecast increases with the amount and quality of available data. Depending on the optimization 

model, leg based, O&D-market based (how many people travel between an O&D) or itinerary-

based (how many people travel between two stations using train no. 123), different kind of data 

are necessary. The problem especially in the two latter cases is that data for unpopular O&Ds 

(e.g., between two small cities) is very limited and therefore robust forecasting difficult. One 

way to tackle that problem in practice would be using an O&D based approach only for popular 

O&Ds and an alternative approach (e.g., leg-based approach) for the remaining part of the 

network. This challenge is not unique for railway companies. Lufthansa Airlines announced in 

2019 to go back to a leg-based forecasting system in some part of its system to avoid the 

problem of too small O&D demand values (and therefore high chance of forecasting errors) 

(Pölt 2019).  

 

Low average load factor 

Armstrong and Meissner (2010) mention that trains have typically a load factor <100% so that 

overbooking or cancellations do not have to be considered. On the one hand, data from DB 

confirm that finding with an average load factor of 56.1% in 2018 (Deutsche Bahn 2019). On 
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the other hand, an average load factor for the whole network does not give any information 

about the number of single, highly utilized legs which is an important consideration in RM. 

Internal numbers from DB show that 4.1% of the legs (for the whole network on a standard 

Wednesday in late summer 2018) had a load factor of >95%. I.e., the chance that an itinerary 

uses a highly-utilized leg is given because an itinerary typically consists of many legs. 

Following, capacity consideration becomes (despite the low average load factor) relevant.  

 

Fencing of fares 

To avoid buy up or buy down behavior, airlines use fare rules to fence lower from higher fare 

classes like the popular Saturday night stay. I.e., cheaper booking classes are only available if 

the outward and return flight include a Saturday night stay at the destination to avoid bookings 

from price insensitive business travelers that are typically at home on weekends (Talluri and 

van Ryzin 2005). Since railway tickets are typically one-way tickets (approx. 76% of all 

travelers at DB) and the different booking classes at DB do not have different fare rules, this 

self-selecting customer segmentation is less given and the buy down problematic becomes 

highly relevant. Therefore, a stronger fencing of fares can also be useful for railway companies, 

but the rules must be adapted to the fact that the majority of sales are one-way tickets.   

 

2.2.2.3 Business characteristics 

As the last category of characteristics, properties that are closely linked to the business model 

of the railway company are presented. Some of them are self-imposed rules that can be defined 

from a strategic point of view. 

 

Price consistency within the network 

As no check-in (check-out) is required when boarding (leaving) trains at DB, strategically 

acting customers could buy a ticket for a longer than desired itinerary (i.e., with earlier and/or 

later departure/arrival station) if it is cheaper than the original itinerary. To avoid that, DB wants 

to ensure that price consistency holds between the itineraries so that a longer itinerary is always 

more expensive than a shorter one when the same train is used. This policy obviously reduces 

the flexibility in terms of pricing and can, therefore, lead to less revenue. An example where it 

could be beneficial to charge higher prices for a short itinerary compared to a longer itinerary 

is, e.g., if the short O&D-market has a high demand of business travelers with high WTP and 

the longer O&D has mostly leisure demand (with low WTP). It is therefore advisable to analyze 
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the effect of adding the price consistency constraint vs. the potential loss due to strategic 

customers and derive a business decision based on the results.  

 

Itinerary as a product bundle 

An itinerary could be interpreted as a product bundle of multiple leg-products. For example, a 

long, direct itinerary from Munich (southern Germany) to Hamburg (northern Germany) can 

be split into multiple, partial itineraries without having the risk of missing a connecting train, 

since the passenger can just stay seated. This is also a reason why this consideration is more 

important in the railway than airline case, since in the latter one, splitting an itinerary into single 

tickets would result into a risk for the customer of missing the connecting flight without having 

any right for compensation. To avoid customers that buy multiple partial itineraries to rebuild 

their journey (with the aim to save money), one can add a constraint that makes sure that the 

sum of partial itineraries is always more expensive than the original itinerary. Since (especially 

long) itineraries can be represented by multiple different combinations of partial itineraries, this 

would lead to many additional constraints and probably strong limitations in terms of pricing 

flexibility so that it is again a business decision whether to consider this type of price constraint.  

 

Flexibility in defined capacity limits 

In contrast to airlines where the number of seats in an aircraft exactly determines the maximum 

number of passengers on the airplane, the capacity of a train is higher than the number of seats 

as it is also allowed to have standing passengers. Therefore, the capacity used in optimization 

models is determined rather by a service level than by a fixed, physical seating capacity (e.g., 

80-120% of the number of seats).  

 

Open system: Flexible tickets allow for entering any train 

Some rail companies (such as DB) offer flexible tickets that allow for taking any train within a 

given timespan without doing any reservation, e.g., a flexible ticket for a single trip or even 

monthly or yearly passes for commuter traffic. At DB it is even possible to buy a ticket from 

the conductor on board of a long-distance train for an additional service fee. This has two 

implications. First, this is a big issue for the forecasting since passengers with flexible tickets 

have no recordings in the database about the train that is finally chosen and thus harder to 

predict than passengers with controlled tickets. Second, a large number of passengers with 

flexible tickets may choose one particular train, leading to overcrowding.  
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Discount loyalty card reduces realized revenue 

Some rail companies (e.g., DB in Germany, SBB in Switzerland) sell discount loyalty cards 

that reduce every ticket by a certain percentage (e.g., 25% or 50% off each ticket). From a 

revenue perspective this means that the (optimized) price is reduced by certain percent so that 

the realized ticket revenue is smaller than the expected revenue in the optimization.  

 

Fixed prices determined by government 

While DB in Germany already has the possibility to adjust the price of a train connection during 

the booking horizon, this is not given in every country. In some countries (e.g., China) prices 

for tickets are restricted by the government and different price levels for a train connection are 

not possible. Therefore, revenue management models in that environment typically control the 

amount of tickets that are available for sale for different O&Ds that share the same resource 

(e.g., Bao et al. (2014), Jiang et al. (2015)). 

 

High public awareness 

In many countries, the railway companies are still government-owned. Especially in Germany, 

every change of the ticket pricing policy is critically discussed in public. The introduction of a 

new pricing scheme in 2002 (Link 2004, Brenck et al. 2003) or new fare rules in 2018 (Bild 

2018) have experienced significant nationwide attention. The flexibility in pricing is therefore 

limited since not only technical/modelling hurdles have to be taken, but also (critical and 

sensitive) public reactions have to be considered.   

 

Preliminary remarks 

The analysis shows that the railway business has many characteristics that should be considered 

when discussing new RM methods and techniques. As mentioned above, most of the presented 

findings are based on practical experiences at DB Fernverkehr. Since the railway business in a 

country has typically historic roots and rail networks are partly separated from neighboring 

countries, the application and intensity of the above-mentioned characteristics varies from 

country to country. Table 1 summarizes the presented characteristics and gives an overview on 

the impact on forecasting and optimization. Although the overview shows a large number of 

properties that have an influence on railway RM, six very important aspects can be identified 

that a state-of-the-art model should focus on. These are: (1) network consideration, (2) 

integration of train connections with transfers, (3) multiple price points for each itinerary, (4) 

considering multiple booking periods, (5) covering the customers’ switching behavior between 
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train connections caused by the (ticket price) decision and (6) fulfilling price consistency 

between long and short itineraries. Based on these findings the question arises whether there 

already exist models in literature that cover the mentioned aspects and are applicable in railway 

business. Therefore, the literature overview in the following analyzes current railway RM 

models from both a practical and theoretical perspective. 
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Category Property 
Influence on... 

demand model optimization model 
St
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s Challenge of defining set of itineraries Network-based demand model requires information about forecasted 
itineraries 

Preceding algorithm necessary that determines fixed set of itineraries to 
optimize 

Multiple transfers For itineraries incl. regional trains, demand forecasting is difficult due to 
limited demand history 

(1) Capacity constraint should be able to work with indirect train 
connections, (2) number of itineraries explodes if also regional trains are 
considered 

Many legs per itinerary   Strong network effects in case of bottleneck situations and thus a network 
model is favorable 
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ic
s  

Many intermodal alternatives Demand function should automatically react on price and quality changes 
of competitors 

Quality and price levels of competitors influence own demand and optimal 
decisions 

Many rail alternatives  Demand for itinerary ! is a function of multiple, alternative itineraries Significant switching effects between itineraries caused by price decision 
can be anticipated by, e.g., integrating a discrete choice model 

Many changes in schedule Forecasting should be able to immediately react on changes in the schedule    

High #bookings close to departure Forecasting has limited data base to learn from bookings on hand Optimization should be fast to make frequent reoptimization possible 

Manual counting of passengers Data base of historic, realized demand is error-prone   

Segmentation of customers Demand and WTP varies for different segments Multiple price levels and decision based on booking time should be possible 

Preferred departure time  Desired departure time is a criterion for customer segmentation and thus 
segment-specific demand forecasting reasonable Multiple segments increase complexity for optimization model 

Little demand history for unpopular O&Ds Future demand is hard to predict accurately   

Low average load factor   Most of the capacity constraints are not binding 
Fencing of fares   Strong buy-down behavior without appropriate fencing 
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Price consistency   Can be ensured by, e.g., additional constraints 

Itinerary as a product bundle   Can be ensured by, e.g., additional constraints 

Flexibility in defined capacity limit   Overbooking is less relevant and violations of capacity constraints can be 
accepted within certain limits 

Open system with flexible tickets Difficult to forecast since realized travel routes of passengers with flexible 
tickets are not recorded in database Reduces available capacity to sell for controlled tickets 

Discount cards   Realized revenue is smaller than assumed in optimization 

Government influence   Additional constraints on RM-control can apply and less flexible for 
changes 

Public awareness   Limited flexibility in terms of price strategy adjustments 
Table 1: Summary of properties for railway companies in the context of revenue management
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2.3 Passenger railway literature review 

Passenger railway RM is a small but active research field. The following literature overview is 

split into three parts: (1) quantity-based models (i.e., fares are fixed and decisions are made 

about which product/booking class to offer), (2) price-based models (i.e., price is the decision 

variable) and (3) railway RM studies with various focus.  

At the end of this chapter, the literature is presented from two perspectives: First, an analysis 

with a theoretical focus and second, a practical perspective to check which of the practical 

requirements mentioned in Chapter 2.2.2 are already covered by the various articles.  

 

2.3.1 Quantity-based railway revenue management 

As a starting point, consider the standard (non-rail) specific deterministic linear programming 

model (DLP) for the quantity-based network case following, e.g., Williamson (1992, Ch. 4.1) 

or Talluri and van Ryzin (2005, Ch. 3.3.1), 

 

!"#	%&'('
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 (2.1) 

+. -.		%.'/
'∈*

(' ≤ 1/				∀	3 ∈ 4 (2.2) 

0 ≤ (' ≤ 6'				∀	7 ∈ 8 (2.3) 

 

with 7 ∈ 8 representing the set of products, &' the price and 6' the expected demand for product 

7, .'/ ∈ {0,1} defining whether product 7 uses leg 3 (.'/ = 1) or not (.'/ = 0). Finally, the 

decision variable (' defines the number of seats to assign to product 7. Hence, the objective is 

to maximize total revenue under the consideration of capacity and demand limitations. Most of 

the following articles strongly rely on this basic network model and extend or adjust it to the 

considered setting.  

Ciancimino et al. (1999) are one of the first researchers that analyze RM for rail companies 

from a scientific perspective. They present a multi-leg single-fare network model for RRM to 

find the optimal booking limit for each itinerary. I.e., they consider a fixed price for each 

itinerary and try to find the optimal availabilities for all (long and short) itineraries in the 

network. They present two approaches, a deterministic linear program and a probabilistic non-

linear formulation. The deterministic version follows the standard DLP approach with the slight 

difference of stricter bounds on the number of assigned seats to the itineraries due to, e.g., a 

minimum number of tickets to assign for an O&D due to public interests. In the non-linear 
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formulation, they adapt the objective function to integrate the probabilistic demand behavior 

by assuming normal distributed demand. In both formulations demand is assumed to be 

independent. Their numerical study shows that both models achieve revenue gains compared 

to a first-come-first-serve (FCFS) policy when being re-optimized during the booking horizon, 

while the probabilistic non-linear model outperforms the deterministic linear model. They also 

show that the advantage of an optimization model (over a FCFS policy) increases with the size 

of the rail network. From a computation time perspective, it can be shown that the non-linear 

model is (expectedly) slower than the linear model. While the linear model can be easily solved 

using standard software (e.g., CPLEX), they propose an own solution algorithm for the non-

linear approach and show that it outperforms both tested solvers (minos and lancelot). Since 

the model considers only one fare class for each itinerary, i.e., decides how many tickets to 

assign (=booking limit) to each possible itinerary on a train running from A to B via many 

intermediate stations, it cannot account for multiple price levels for a specific train connection.  

You (2008) extends the probabilistic non-linear model of Ciancimino et al. (1999) to the two-

fare class case (a full fare vs. discounted fare) and presents a solution approach to solve the 

probabilistic non-linear multi-leg two-fare problem for railway RM. The goal is to find the 

optimal booking limit for each fare-class-itinerary combination in a sequential rail network. As 

a further extension to Ciancimino et al. (1999), You (2008) takes overbooking into account by 

considering the tradeoff between additional revenue through overbooking and expected 

bumping costs. Further, he does not allow the number of full fare tickets to exceed the capacity, 

so that overbooking becomes only relevant for discount fare demand. Because of the 

probabilistic formulation, the model is a non-linear integer problem and the focus of the paper 

is on the development of a heuristic approach to solve the model efficiently (i.e., a good solution 

in reasonable time). The idea is to first solve the relaxed integer problem and use the optimal 

solution as a starting point for a particle swarm optimization algorithm. In terms of solution 

quality and time the approach is superior to the results of both tested non-linear solvers (Lingo 

and DICOPT).  

Dutta and Ghosh (2012) provide insights into the business of an Asian railway company und 

present a deterministic network approach for optimizing seat allocation where the decision 

variable represents the number of tickets assigned to each itinerary in a network of multiple 

O&Ds. The model formulation is based on the above mentioned DLP and is extended in two 

ways: First, they consider an additional type of ticket (called Tatkal) that can be purchased 

shortly before departure by an extra fee (but the number of assigned seats to this ticket type is 

determined upfront). Second, they take revenues from cancellation fees into account. Since 
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fares are fixed for each itinerary in each cabin class, the model considers only a single fare. 

They test their model based on real data for one specific train and run a simulation study where 

various stochastic demand realizations are used as inputs to solve the deterministic model. 

Furthermore, they emphasize the importance of accurate demand forecasts and describe briefly 

how an EMSR (Expected Marginal Seat Revenue) based system could work for a rail company.  

Bao et al. (2014) present a single-fare network seat allocation model for a Chinese railway 

provider that determines the optimal quantity of tickets to sell for each itinerary. They mention 

that in China ticket prices for each O&D are fixed and controlled by the government, so that 

the most effective control mechanism to increase revenue is the optimal assignment of tickets 

to different itineraries. They give detailed insights into the rail business in China and discuss 

different techniques to forecast demand. To optimize the seat allocation, they present three 

different methods. A non-nested booking limit strategy, a nested booking limit strategy and a 

bid-price strategy. The non-nested booking limit strategy again follows the classical 

deterministic linear problem as in DLP. For the nested booking limit setting, they propose a 

stepwise method that takes the dual variable of the capacity constraint of the standard DLP 

approach into account. Finally, the third proposed approach is a traditional bid price control, 

where the shadow prices of the capacity constraint of the DLP are used as bid price 

approximations. Hence, a ticket for an itinerary is offered if its fare is larger or equals the sum 

of the bid prices of all used resources (see, e.g., Talluri and van Ryzin (2005, Ch. 3.1.2.3)). 

Although they mention that the model is formulated for a single train, the problem formulation 

should also work for more complex networks including train connections with transfers. The 

conducted experiment shows that the non-nested booking control with daily updates performs 

best among all approaches.  

Jiang et al. (2015) present a seat allocation model for a Chinese high-speed rail. Since fares are 

fixed for each O&D, they underline that they focus on how to assign tickets to different 

itineraries in peak seasons to different stations and thus follow the idea of Bao et al. (2014). 

This practical example shows that due to national regulations, RRM models often need to be 

tailored to the specific conditions in the operating country. Their deterministic model optimizes 

revenue by finding the optimal number of seats assigned to an itinerary in a comfort class (again 

based on the basic DLP formulation). In the case of limited capacity, they propose to first 

determine the so-called restricted number of stations. The limited set of stations makes sure that 

long-distance demand is prioritized over short distances. They propose to resolve the model 

within the booking horizon with updated demand forecasting data. The model is solved by 
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applying a genetic algorithm. In their numerical test they show that their approach increases 

revenue by 13.5% compared to the existing ticket assignment policy.  

Zhai et al. (2016) present a deterministic single-fare network model that maximizes the total 

travel distance of passengers or number of passengers. Since they assume the prices to be a 

linear function of the travel distance, travel distance maximization equals revenue 

maximization. Compared to the capacity constraint as in DLP they formulate the resource 

consumption as a passenger flow, where for each station the remaining, boarding and leaving 

passengers are determined so that the utilization of the leg between two stations can be 

determined and restricted to the available capacity. The motivation for this complex 

representation is not mentioned. The model is tested with a medium sized network (solved using 

a branch-and-bound method provided in the LINGO software) with various crossing train lines. 

The results show that under passenger maximization, the number of short-haul ticket sales 

increases compared to the travel distance maximization case.  

Compared to all aforementioned studies, Wang et al. (2016) reject the assumption of 

independent demand and formulate a choice-based stochastic seat-allocation model that applies 

a discrete random demand function. More precisely they present (1) a stochastic single-stage 

model where seat allocation is not changed during the selling horizon (e.g., optimized at the 

beginning of the selling horizon) and (2) a stochastic multi-stage model, that allows for an 

updated seat allocation during the selling horizon. Both stochastic formulations are then 

transformed to its deterministic representation and solved using CPLEX. Similar to Ciancimino 

et al. (1999) they consider the single-fare setting. Although they test the model only for a 

sequential rail network (i.e., only direct itineraries without transfers), the definition of a product 

and formulation of the capacity constraint should also work for indirect train connections. The 

applied multinomial logit model (MNL) includes the basic attributes for each product like travel 

time and comfort and, therefore, allows to represent the choice of customers based on product 

attributes. As only fixed product attributes are part of the customer choice model, it represents 

passengers’ choice independently from the RM decision (i.e., the seat allocation). They propose 

to relax this assumption in future research. To test the proposed approach, they run a numerical 

test based on a Chinese rail line with two trains serving the same O&D and compare the results 

for two different demand scenarios (low and high demand). They show that the revenue benefit 

of a multi-stage compared to a single-stage model is small especially when the single-stage 

model is re-solved at the beginning of each booking period.  
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As a preliminary conclusion it can be stated that the presented quantity-based approaches are 

limited to the single-fare setting, with the exception of You (2008) and to a limited extent Dutta 

and Ghosh (2012). This can be explained by the practical orientation to the Chinese railway 

market which currently does not permit a multi-fare RM model (Bao et al. 2014, Jiang et al. 

2015, Wang et al. 2016). Further, deterministic network approaches play a dominant role, that 

are mostly based on a basic capacity allocation model as in DLP and adjusted to local 

conditions.  

 

2.3.2 Price-based railway revenue management 

Compared to quantity-based RM with only a few publications for passenger rail transport, there 

is even less literature available for price-based railway RM approaches.  

Sibdari et al. (2008) study the railway RM problem for the specific application of auto trains at 

the US company Amtrak. In this application, the RM problem becomes a product bundling 

problem instead of a (traditional) network problem since customers buy a ticket for both, 

themselves (coach seat or sleeper) and their car. Thus, two capacity buckets are required to 

make a product available. Their proposed approach is a single-leg multi-product multi-period 

problem that determines the optimal price for each of the three products in each booking period. 

They use stochastic dynamic programming to determine the optimal prices for the three 

products (coach seat, sleeper and car accommodation), where prices can be chosen from a 

discrete set. Following, the state space is defined as (!, ?, +, -) where !, ? and + represent the 

remaining capacity of car accommodation, coach seat and sleeper respectively and - the current 

planning period. Numerical results show that their approach yields higher revenues than the 

current (manual) strategy at Amtrak. Their approach also outperforms three other benchmark 

pricing policies. Since auto trains are a niche in the passenger railway business, the proposed 

model is hardly transferrable to the standard passenger rail setting.  

Sato and Sawaki (2012) present a choice-based single-leg multi-period dynamic programming 

approach that uses price as decision variable. The passengers’ choice is described by the 

multinomial logit model (MNL) and represents the product choice over a set of multiple 

intramodal (other train connections) and intermodal alternatives (e.g., air traffic, bus services). 

The approach also takes possible no-shows and cancellations into account. The focus is on 

modelling the choice of customers under competition and the analysis of optimal prices under 

different demand situations. Since the original formulation of the objective function with price 

as decision variable is non-concave, they use the common approach for MNL-based price 

optimization models of choosing choice probabilities as decision variable. Thus, they can solve 
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a convex optimization problem. They show in their numerical study that price changes of the 

competitors influence the own price and that prices without competition (monopoly market) are 

higher than in the oligopoly case. They only consider single-leg itineraries, i.e., trains run from 

A to B without any intermediate stops so that the authors point out that the model should be 

extended to a more advanced network model.  

Hetrakul and Cirillo (2014) use a MNL and latent class demand model to describe the 

customers’ booking time decision and implement it into a deterministic multi-product multi-

period network railway RM model that jointly considers the pricing and seat allocation decision 

(i.e., the price for each itinerary and the accepted fraction of demand). Although they jointly 

optimize price and accepted demand, the article is assigned to pricing models since the main 

focus of the contribution is on the pricing part. They use real data of a railway company to 

estimate the choice parameters for the booking time decision and demand data and run an 

experiment to evaluate the performance of the proposed approaches. They can show significant 

revenue improvements compared to the current approach used in practice. The considered 

network consists of multiple trains running from north to south during a day. Since the multiple 

trains are not connected in the model, they do not consider switching behavior between train 

connections. That is why they propose to incorporate more product attributes into the choice 

model and to allow alternative departures to represent demand shifts between connections. 

Furthermore, they propose to extend the model and analysis for bigger (hub-and-spoke) 

networks of realistic size.  

Finally, Hohberger (2019a) presents a deterministic choice-based multi-period multi-product 

network dynamic pricing model for passenger railway RM. The model covers multiple effects 

from practice by integrating a discrete mixed logit demand function into the optimization model 

that reflects the product choice of heterogeneous customer segments over multiple alternative 

train connections. The network formulation makes it also able to account for network effects 

(e.g., between short- and long-haul travelers) and prices can be chosen from a continuous set. 

Additional rail specific constraints ensure two types of price consistency. First, with respect to 

longer or shorter itineraries and second, with respect to other comfort classes. Finally, a solution 

algorithm is proposed that makes it possible to solve even large-scale instances and it is shown 

that the new O&D-based model outperforms two benchmark models in terms of revenue (the 

current approach by DB Fernverkehr and an EMSR-b based method).  
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2.3.3 Railway revenue management studies with various focus 

In addition to the presented studies that focus strongly on the model development for the 

standard passenger railway RM case, there are some interesting articles that provide insights 

into practice or consider different objectives.  

Terabe and Ongprasert (2006) study the question whether revenue maximization is the right 

objective when talking about optimizing the seat allocation. They highlight that revenue 

maximization is a short-term decision that could potentially lead to lower customer satisfaction 

since revenue maximization could lead to high numbers of rejected customers. Further, from a 

political perspective it could be desirable to maximize the number of served customers (instead 

of revenue). Therefore, they propose and test three different approaches (maximizing revenue, 

maximizing the average passenger load factor, minimizing the number of rejected customers) 

against a FCFS policy that is still used by some rail companies. Their empirical study shows 

that the three objectives are not in contrast to each other. Rather, when optimizing one objective 

also the other two are optimized simultaneously in 70% of the cases and the other two objectives 

are at least improved in 92% of the cases (compared to the FCFS policy). They also show that 

revenue management techniques do not have any impact on revenue when trains are not fully 

occupied and prices are fixed.  

Bharill and Rangaraj (2008) give practical insights into the pricing strategy of the Indian Rail 

Company (IR) and analyze internal booking data. At the time of the study, IR had a very simple 

fare structure and the analysis shows a high potential for intensified RM techniques combined 

with more advanced data analytics to detect possible sources for revenue gains.  

Gopalakrishnan and Rangaraj (2010) also analyze IR and consider the problem of optimally 

assigning seats to different travel segments on a train serving multiple intermediate stations. As 

the authors mention, the proposed model is again based on the DLP, but the objective is 

different. Instead of revenue maximization, it minimizes the number of required seats so that 

the demand is fulfilled. Their numerical study shows that under the new linear model total 

revenue and load factor increase significantly, i.e., it creates a positive financial impact to IR 

(in the range of +2.6% to +29.3% revenue increase). It also increases the amount of confirmed 

bookings that will probably result in higher customer satisfaction.  

Finally, Xiaoqiang et al. (2017) consider the case of group bookings which is a special case of 

railway RM with an increasing relevance due to the popularity of traveling in groups. Their 

approach (formulated using a Bellman equation) determines the discount rate for group tickets 

that is applied on the fixed price for the single ticket. Based on the real-world example of the 
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itinerary Beijing-Shanghai (a single-leg network) they conduct a numerical study to illustrate 

their approach.  

 

 
Figure 3: Classification tree of railway literature 

 

2.3.4 Final remarks on literature overview 

The overview in Figure 3 emphasizes once again the strong focus on network approaches which 

makes sense for the structure of a rail network. In addition, it can be seen that quantity-based 

approaches are in the majority, partly due to the lack of flexibility in pricing in the Chinese 

market where some of the research is coming from. There is also a slight trend towards models 

that use a choice-based demand model, especially more recent contributions.  

Table 2 analyzes the articles from 2.3.1 and 2.3.2 from a practical perspective. The most 

important properties mentioned in Chapter 2.2.2 are used to check if the model formulations 

fulfill the practical requirements. The fields marked with n/a in the "price consistency" row 

indicate that price consistency does not play a role for these models by restricting them to a 

single-leg or single-fare. The numbers in brackets correspond to the listed and ordered articles 

in Table 3. Table 2 shows that, with the exception of Hohberger (2019a), none of the models 

are covering all six practical requirements.  

Table 3 analyzes and summarizes the literature with a theoretical focus. For the classification 

of Solution quality, a heuristic solution is defined as an approach that finds a locally optimal 

solution and an exact approach to find a globally optimal solution of a proposed optimization 

model. This means, a deterministic optimization model with a globally optimal solution is 

defined to be an exact approach. This is important to highlight since DLP is often defined as an 
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approximation for the original stochastic dynamic programming formulation (e.g., Talluri and 

van Ryzin (2005, Ch. 3.3)). For the categorization in Formulation, Dynamic Programming 

refers to models using a Bellman equation and static to standard mathematical optimization 

problems, e.g., as in DLP.  

Finally, when comparing the survey results (in 2.2.1), where leg-based approaches are stated to 

be dominant in practice, with existing research, where network models are in the majority, a 

large gap between theory and practice can be observed. A possible explanation for this could 

be the lack of models that consider the most important attributes as seen in Table 2. A stronger 

cooperation between research and practice for railway RM would be a possibility to narrow the 

gap in future.  

 

Property Quantity-based railway RM Price-based railway RM 
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 

Network consideration ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ 

Transfers possible ✓   ✓   ✓    ✓ 

Multi-fare (>2 price points)        ✓ ✓ ✓ ✓ 

Multiple periods   ✓ ✓   ✓ ✓ ✓ ✓ ✓ 
Switching between train 
connections caused by 
(ticket price) decision 

        ✓  ✓ 

Price consistency between 
long and short itineraries n/a  n/a n/a n/a n/a n/a n/a n/a ✓ ✓ 

Table 2: Literature in context of practical properties 
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Table 3: Literature overview on passenger railway RM

Optimization model Test instances

Author(s) Year

Network structure Fare structure Demand model Uncertainty Formulation Solution quality Network size Rail network

Single-leg Multi-leg Single-fare Multi-fare Independent Choice-
based

Determi-
nistic

Probabi-
listic Static Dynamic 

Programming Heuristic Exact Small Medium Large Single 
train

Multiple 
(parallel) 

trains

Highly-
connected
network

Q
ua

nt
ity

-b
as

ed

[1] Ciancimino et al. 1999 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[2] You 2008 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[3] Dutta and Ghosh 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[4] Bao et al. 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[5] Jiang et al. 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[6] Zhai et al. 2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[7] Wang et al. 2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pr
ic

e-
ba

se
d

[8] Sibdari et al. 2008 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[9] Sato and Sawaki 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[10]
Hetrakul and
Cirillo 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[11] Hohberger 2019a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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2.4 Conclusion 

Railway revenue management is already widely recognized and applied in practice. The survey 

results have shown that leg-based approaches are still dominant at European rail companies and 

that managers see high potential for improved demand forecasting and optimization algorithms. 

To satisfy the market request for advanced railway RM models, an extensive overview on 

properties that should be considered when developing a state-of-the-art RM model was 

presented. The analysis showed that railway RM in general shares some aspects with airlines, 

which is in fact the most prominent industry for RM, but also has some special characteristics 

that make railway RM unique (e.g., price consistency, multiple legs per itinerary, typically one-

way bookings). The information given is the result of a joint project with DB Fernverkehr. The 

following literature overview analyzed current research from two perspectives. First, a 

theoretical and mathematical focus with the result that quantity-based approaches are in the 

majority compared to price-based models and that deterministic network models are dominant. 

Bringing this together with the insights from the survey, a large gap between theory and practice 

can be noticed. Further, it can be observed that current research does not fulfill the stated 

requirements from practice. This is a possible reason for still less advanced RM models in 

practice and shows a high potential for collaborations between research and practice in future. 

Finally, especially recent contributions are mainly dealing with an application for an Asian 

passenger railway provider, showing the significant interest in this emerging market. All taken 

together, a high potential for the research area of railway RM can be observed since the demand 

for improved models from industry is rising and existing research is still underdeveloped. 
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Abstract 

 

The deterministic multi-product multi-resource pricing problem (DMMP) arises in many 

applications in practice where pricing decisions for multiple products should be optimized 

jointly and capacities are constrained. We study the DMMP under the discrete mixed 

multinomial logit model, i.e., a product is considered by multiple heterogeneous customer 

segments. Since the objective function and constraints of DMMP are non-linear and non-

convex, we present various convex reformulations that serve as upper bounds incl. a piecewise 

approximation formulation that decreases the upper bound close to the globally optimal 

objective value of DMMP. Further, a heuristic approach with a focus on large-scale applications 

is presented and applied to a real-world revenue management case study of the German long-

distance railway network with several thousand train connections per day.  
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3.1 Introduction 

The deterministic multi-product multi-resource pricing (DMMP) problem arises in many 

applications in practice where pricing decisions for multiple products should be optimized 

jointly, in particular when products have cross-effects on demands of other products and/or 

different products share the same resources (Talluri and van Ryzin 2005). Direct applications 

are manifold, such as revenue management for airlines, railways, and hotels, assortment pricing 

in retailing or product line pricing in consumer goods industries. The objective is to find the 

profit-maximizing set of prices under the consideration of limited capacities. A recent research 

direction are pricing models that integrate a choice-based demand function to overcome the 

limitations of independent demand models used in previous studies. While the basic 

multinomial logit model (MNL) is already extensively analyzed, more advanced choice models 

such as the nested logit (NL) or the discrete mixed multinomial logit model (MMNL) that relax 

the IIA-assumption in the MNL have experienced increasing attention in the pricing literature. 

 

3.1.1 Problem and motivation 

In the following, we consider the deterministic multi-product multi-resource pricing (DMMP) 

problem with continuous prices under the MMNL choice model. More precisely, assume a 

seller wants to sell a given set ! of products over a finite planning horizon with sales periods 

" ∈ $ and determine the profit-maximizing product prices %&'	(* ∈ !, " ∈ $) within some 

predefined lower and upper bounds %&- and %&., respectively. There is a set of resources / with 

capacities 0123	(4 ∈ /) which are non-replenishable during the planning horizon and each 

resource 4 ∈ / is required by a (sub)set !3̇ ⊂ ! of products. Each unit sale of product * incurs a 

variable cost of 7&. The total market potential in period " is 8' and the share that product * 

attracts in period " if offered at price 9: = <%&'=&∈>	is given by a function ?&'(9:) which will 

be specified shortly for the MMNL model. 

 

Then, the DMMP problem can be formulated as follows: 

 

@AB	CC8'<%&' − 7&=?&'(9:)
&∈>'∈E

 (3.1) 

F. ".CC 8'?&'(9:)
&∈>Ḣ'∈E

≤ 0123					∀	4 ∈ / (3.2) 

%&
- ≤ %&' ≤ %&

.					∀	* ∈ !, " ∈ $ (3.3) 
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The deterministic problem formulation plays an important role as an approximation of the 

stochastic version of the problem and may be used for developing powerful heuristics (Gallego 

and van Ryzin 1997, Maglaras and Meissner 2006). The corresponding problem instances of 

the DMMP in practice are typically of large-scale size. For example, a railway service provider 

sells different fare products, i.e., scheduled itineraries from the customer’s origin to the desired 

destination at defined fare class conditions; each sale of a fare product requires capacity of one 

or multiple scheduled train legs also utilized as resources by other fare products; and the price 

of a second class ticket for the train from Frankfurt to Berlin at 10 a.m. on a selected day will 

probably impact first class demand on the same train as well as second class ticket demand for 

the next train from Frankfurt to Berlin two hours later – a cross-effect which should be properly 

captured by the demand model. To get an estimate of a possible problem size, assume a medium 

railway network with 500 origin-destination (O&D) pairs, 5 connections per day per O&D pair 

on average and two comfort classes per connection. Then, there would be 5,000 fare products 

for each day of departure that need to be dynamically priced during the reservation period prior 

to departure. With hundreds of scheduled trains in the national long-distance network per day, 

Deutsche Bahn (DB) serves around 410,000 customers daily (Deutsche Bahn 2019). Based on 

publicly available schedule data of DB, Hohberger and Schön (2019) estimate algorithmically 

that DB offers tens of thousands of fare products on each day in the future in the national long-

distance railway network that must be priced accordingly. 

In face of the large size of problem instances in practice, efficient solution techniques are 

required. However, the tractability of the DMMP problem largely depends on the assumed 

choice model ?&'(9:) that is incorporated into the optimization problem. Most commonly used 

is the standard MNL choice model. While the optimization problem under the logit function is 

tractable, the MNL model suffers from well-known limitations such as the assumption of a) 

homogeneous choice behavior across the potential customer base and b) independence of 

irrelevant alternatives (IIA) (see below for a more in-depth discussion). To overcome the 

limitations of the standard MNL model, recent approaches have also incorporated more 

advanced choice models, such as the nested logit (addressing IIA) and the MMNL model 

(allowing for heterogeneity and thereby also resolving IIA, at least partially). 

The MMNL model is considered to be one of the most powerful discrete choice models 

(Hensher and Greene 2003). However, the DMMP problem under MMNL choice is hard to 

solve, with non-convex nonlinearities included in both objective function and capacity 

constraints. Despite its theoretical and practical relevance, the MMNL model and its 

incorporation into the DMMP problem has only received scant attention in the dynamic pricing 
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literature, probably due to the resulting complexity of the optimization. How to efficiently solve 

the continuous pricing problem under MMNL choice to optimality is still an open problem 

(Keller et al. 2014) and we want to contribute to narrow this gap. In particular, we develop a 

convex mixed-integer programming approach that approximates the original problem and 

allows to determine near-optimal solutions and an upper bound close-to-optimum of the 

original problem. Before we position our contribution in more detail, we review the related 

work and the current state-of-the-art in multi-product multi-resource pricing under choice 

behavior. 

 

3.1.2 Related work 

Excellent reviews on dynamic pricing and capacity allocation for revenue management are 

provided, e.g., in Bitran and Caldentey (2003) and Strauss et al. (2018). In their seminal work 

on multi-product multi-resource dynamic pricing, Gallego and van Ryzin (1997) develop and 

analyze a deterministic and a stochastic version of the problem under some general model for 

the demand rate. The multi-product demand rate function is required to satisfy some regularity 

conditions such as the existence of a so-called null price that turns off demand, invertibility in 

the price vector, and a resulting revenue function that is continuous, bounded and concave in 

demand. This is the case, e.g., for the log-linear demand function used exemplary in Gallego 

and van Ryzin (1997). Considering demand rather than price as the decision variable has also 

played an important role in multi-product multi-resource dynamic pricing problems with choice 

behavior. We will elaborate this in the following, and to maintain brevity and focus, concentrate 

our review to multi-product pricing under the MNL, the NL, and the MMNL choice model. 

Furthermore, we assume cross-effects of demand between periods are neglectable and, for the 

sake of simplicity, introduce choice model specifications ?&(9) for a single period, suppressing 

the time index " for price variables and choice parameters. 

 

Pricing under the MNL choice model 

The most common approach to capture cross effects in demand has been to assume 

homogeneous choice behavior and incorporate the standard MNL choice model into a 

(deterministic or stochastic) multi-product multi-resource pricing problem. In case of the MNL 

model, the probability that product * ∈ ! is chosen is given by (see, e.g., McFadden (1974), 

Anderson et al. (1992)): 
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?&(9) =
KLMNOMPM

1Q + ∑ KLTNOTPTU∈>
					(* ∈ !) (3.4) 

 

with parameters V& ∈ ℝ and 1Q, X& < 0 to be estimated. The parameter 1Q specifies the 

attraction of consumers to the outside option to buy a competitor product or not to buy at all. 

 

Recent references discussing pricing under the MNL include, among many others, Song and 

Xue (2007), Dong et al. (2009), Akcay et al. (2010), Keller et al. (2014). The standard logit 

profit function is known to exhibit nonlinearities that are not pseudo-concave in price (Hanson 

and Martin 1996). However, if price coefficients are uniform for all products, then the logit 

profit function is unimodal with respect to the markups (prices minus costs) and the optimal 

markups are constant for the products. Therefore, the pricing problem in this case can be easily 

solved by the first-order optimality conditions (see, e.g., Akcay et al. (2010)). 

Furthermore, also for the general case of product-specific parameters, the profit function is 

known to be concave when considering demand or market shares rather than prices as decision 

variables. In case of a homogeneous group of customers, there is a linearizable one-to-one 

mapping between product prices and MNL choice probabilities such that the resulting 

optimization problem is convex in demand and can be solved efficiently. Concavity of the 

(expected) revenue function in demand under the MNL model was first shown by Song and 

Xue (2007) and Dong et al. (2009) under the assumption that the MNL price sensitivities X&	(* ∈

!) are identical and equal to one across products. Li and Huh (2011) extend this result and prove 

that the revenue function under MNL choice remains concave in demand as long as price 

sensitivity parameters are uniform, but not necessarily equal to one. Schön (2010a) and Keller 

et al. (2014) consider own product shares as decision variables and introduce an additional 

variable related to the probability of making no sale. With this auxiliary variable, they show 

that the revenue function is concave under the general setting where price sensitivities are 

product-specific. 

Hausman and Chen (2000) analyze pricing under the aggregate MNL choice model in the 

context of optimal product line selection with the objective to maximize total profit. In their 

case, prices are considered to be discrete and can be chosen from a given discrete price set. The 

decision of the price level for each product is represented by binary decision variables. Capacity 

constraints are not considered. They show that the problem can be solved efficiently by 

considering the relaxed problem (i.e., dropping the binary constraint) and applying standard 

linear or fractional programming solution methods.  
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In summary, while the pricing problem under logit choice behavior exhibits structural 

properties that can be well exploited for its efficient solution, the aggregate MNL model fails 

to account for the empirically more realistic case where customers have heterogeneous 

preferences. Furthermore, the choice model suffers from the well-known IIA property, i.e., the 

share of any product which is removed from the offered set is allocated among the remaining 

products proportional to their original choice probabilities (McFadden 1974). The IIA 

assumption is quite strong since it is often violated in empirical data in practice, in particular if 

a consideration set contains a subset of alternatives that are closer substitutes than those outside 

the subset. To overcome the limitations of the standard MNL, recent approaches have also 

incorporated more advanced choice models, in particular, the NL and the MMNL model. 

 

Pricing under the NL choice model 

The general idea of a nested choice model is that a consumer’s decision is a hierarchical process 

with two or more stages, first selecting the nest (e.g., the type of accommodation such as hotel 

vs. apartment) and in a second step choosing an alternative within the selected nest (e.g., hotel 

1 vs. hotel 2). With a NL model, the IIA assumption can be relaxed by allowing the unobserved 

factors to be correlated over alternatives. As a result, the NL model exhibits the IIA property 

only for alternatives within the same nest but not for choices across nests, and more flexible 

substitution patterns can be captured. The standard MNL model is included as a special case.  

 

Research on pricing under the NL choice model mainly differs in the number of possible 

stages/levels, considered constraints and the flexibility of nest coefficients and price betas. Most 

of the models so far assume homogeneous preferences and thus focus on a single segment NL 

model, such as Li and Huh (2011) and Gallego and Wang (2014).  

Li and Huh (2011) consider a multi-product pricing problem with a single-segment NL model. 

They show that the objective function is jointly concave in market shares if the price betas are 

equal for all products within each nest (but can vary over nests) and the nest coefficients are 

between zero and one.  

Gallego and Wang (2014) show that this property is lost for the general case when the price 

sensitivity parameters are allowed to be different for each product or the nest coefficients are 

>1. In particular, the authors provide an example with two products, product-differentiated price 

betas and a nest coefficient of 0.1 that shows that the profit function is not jointly concave in 

market shares. Nevertheless, the authors demonstrate how to still exploit the mathematical 

structure of the problem by introducing the notion of an adjusted markup (i.e., price minus cost 
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minus the reciprocal of the product’s price beta). They show for the uncapacitated problem that 

the optimal adjusted markup is constant for all products within a nest. Furthermore, the adjusted 

average markup for all products in the same nest is also constant for all nests. Accordingly, the 

optimization problem can be reduced to a single variable with an objective function that is 

shown to be unimodal under mild conditions and therefore efficiently solvable. 

Li et al. (2015) consider both the product selection (assortment) problem and pricing problem 

under the NL model with multiple stages (d-nested logit) and present a novel algorithm for the 

pricing problem that solves it locally optimal and much faster than a traditional gradient ascent.  

Rayfield et al. (2015) study the uncapacitated pricing problem under the nested logit model in 

two variants, i.e., when the set of products is fixed and when the set of offered products is 

jointly determined with the prices. Additionally, both models include the possibility to define 

lower and upper price bounds. The authors present an approximation method to solve the 

problems with a performance guarantee and show that it can solve the pricing problem in 

reasonable time for medium-sized instances.  

More recently, Davis et al. (2017) present an algorithm to solve the uncapacitated pricing 

problem with two types of quality consistency constraints (within a nest or between nests), 

where prices are chosen from a discrete set. 

 

We note that all of the presented studies for nested logit models ignore preference 

heterogeneity. As mentioned by, e.g., Gallego and Wang (2014), choice models with multiple 

heterogeneous customer groups (such as the MMNL) that differ in the evaluation of product 

attributes are a promising research area. 

 

Pricing under the MMNL choice model 

Mixed multinomial logit models are an alternative extension to account for heterogeneous 

cross-effects in demand and are considered to be among the most powerful state-of-the-art 

discrete choice models (Hensher and Greene 2003). Here, a consumer’s choice probability is a 

mixture of logits, allowing the parameter vector of the logit specification to be randomly 

distributed across the population according to some mixing distribution. McFadden and Train 

(2000) have shown that a mixed logit model can approximate any random utility choice model 

arbitrarily close by an appropriate specification of the mixing distribution. 

The mixing distribution can be continuous or discrete. For the continuous case, a parametric 

distributional form has to be assumed, e.g., a normal or a lognormal distribution. Then, the 

parameters are estimated for the assumed specification (Train 2008). A mixture model with a 
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discrete mixing distribution, unobserved segment membership, and observed choices following 

a multinomial logit distribution within each segment is also called a latent class (LC) model 

(see Wedel and Kamakura (2012, p. 77)). 

In the LC model, the observed choices in a sample are assumed to stem from an unknown 

number of discrete segments with uncertain segment size. Though the segments are not directly 

observable, they can be recovered from the data by “unmixing” the sample through the 

estimation of a finite mixture model (see Wedel and Kamakura (2012, Ch. 6)). Accordingly, 

the LC model is based on a post hoc segmentation where the number of segments, their weights, 

and their choice parameters are estimated jointly from the data (see Wedel and Kamakura 

(2012, Figure 3.1, p. 17)).  

Denote the set of consumer segments by [ and assume that each segment \ ∈ [ has a relative 

weight ]̂_ and a consideration set !̀_ ⊂ ! of products that are considered to be alternative options 

to buy from the seller. Further, let [̀& be the set of segments \ ∈ [ that have included product * ∈

! in their consideration set, i.e., [̀& ≔ {\ ∈ [: * ∈ !̀_}. Then, the probability that product * ∈ ! is 

chosen according to the discrete MMNL choice model is given by 

 

?&(e) =C]̂_
KfghNighjh

1_Q + ∑ KfgTNigTjTU∈>̀g_∈k̀h

					 (* ∈ J) (3.5) 

 

with segment-specific choice parameters V_& ∈ ℝ, X_& < 0 (\ ∈ [, * ∈ !̀_) and outside option 

value 1_Q > 0	(\ ∈ [) to be estimated. Thus, conditional on segment membership, the 

probability that a consumer from segment \ ∈ [ chooses product * ∈ ! is the standard MNL 

formula. The unconditional likelihood that product * ∈ ! is chosen is defined as a weighted 

mixture of the segment-level probabilities, where the weights ]̂_ correspond to the relative size 

of each segment \ (Wedel and Kamakura 2012, Ch. 6). 

While the IIA property is still present within each segment of a latent class model (Wedel and 

Kamakura 2012, p. 289), the aggregate LC probability that an alternative is chosen will usually 

not exhibit the IIA property, i.e., the LC model may resolve the IIA limitation of the standard 

aggregate MNL choice model to a large extent by accounting for preference heterogeneity. In 

fact, Gensch and Ghose (1997) show that in face of preference heterogeneity across individuals, 

it is virtually impossible to meet the IIA assumption at the aggregate market share level. Thus, 

the authors argue that observed violations of the IIA property at the aggregate could stem 

primarily from preference heterogeneity rather than IIA violations at the individual level. To 
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reduce this aggregation bias in face of preference heterogeneity, Gensch and Ghose (1997) 

recommend segmentation and LC models.  

We note that some authors define the term mixed logit in a narrow sense where the mixing 

distribution is restricted to be continuous and discrete distributions are not considered as part 

of this class. Other authors (e.g., McFadden and Train (2000), Train (2008), and us) consider 

the distinction rather arbitrary and include any mixing distribution in the definition of mixed 

logit, in particular since any continuous distribution can be approximated by a discrete one with 

numerous support points. Likewise, the accuracy of the approximation of a latent class model 

to the “true” distribution may be increased by increasing the number of parameters (segments), 

as long as the computational effort of the maximum likelihood estimation is not prohibitive. In 

fact, the discrete mixed logit model is less restrictive with regard to the assumptions of the 

mixing distribution than the continuous one (Train 2008).  

We follow this more conclusive definition of the term mixed logit. In particular, we include a 

discrete mixed logit model into the pricing problem in order to capture customers of multiple 

types that choose according to different logit models. Our definition of discrete mixed logit 

includes LC models based on a post-hoc segmentation with latent classes (unobserved 

heterogeneity) as well as multi-segment MNL models based on an a-priori segmentation 

(Wedel and Kamakura 2012, p. 17) where the type and number of segments are observable and 

determined in advance (observed heterogeneity). Furthermore, we may also include mixed logit 

models that are combinations of a-priori and post-hoc discrete segments, e.g., when the 

population is split into different observable markets and each market can be further split into 

latent classes with different preferences.  

 

MMNL models have received increasing attention in the empirical literature for estimating 

travel choice behavior, e.g., for railways and airlines (see, e.g., Warburg et al. (2006), Carrier 

(2008), Hetrakul and Cirillo (2013), Hetrakul and Cirillo (2014)). But despite its empirical 

relevance in theory and practice, the MMNL model and its incorporation into the DMMP 

problem has only received scant attention in the prescriptive dynamic pricing literature (e.g., 

Keller et al. (2014), Li et al. (2018)), probably due to the resulting complexity of the 

optimization.  

 

With a particular focus on railway revenue management, Hetrakul and Cirillo (2014) estimate 

multinomial logit and latent class choice models to describe the ticket purchase timing decision 

of railway passengers as a function of price and other attributes. The demand functions are then 
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incorporated into a revenue management optimization model that jointly determines prices and 

seat allocations for a single train. The non-linear optimization problem is not further analyzed, 

but solved with a commercial solver so that only local solutions can be expected. For future 

research in railway RM, they propose to include the choice-based demand model into a more 

complex railway network structure and the consideration of trips with station transfers. 

Additionally, they suggest optimizing revenue over multiple departures to account for demand 

shifts between train connections.  

Keller et al. (2014) consider the multi-product multi-resource problem with continuous prices 

under attraction choice models (e.g., the MNL and MCI demand model). They provide an 

example that the objective function is non-concave in price and only locally optimal solutions 

can be expected. To globally solve the optimization problem for a single customer segment, 

they use the convex reformulation based on inverse attraction functions where demand rather 

than price is the decision variable. For the more general case of multiple overlapping customer 

segments, the authors suggest replacing the multi-segment demand model (e.g., the MMNL 

model) by an approximate attraction model that renders the resulting optimization problem 

convex and thus tractable. Theoretical bounds on the maximum error of the approximate 

demand model with respect to the true multi-segment demand model are provided. With regard 

to the optimization, a numerical experiment shows that a solution of the approximate problem 

is computed quickly and yields objective function values close to the (in general local) optimum 

of the original non-convex problem formulation. However, since the global optimum of the 

original problem is not known, there is neither a theoretical performance guarantee nor an 

experimental assessment of the solution quality.  

Li et al. (2018) study the continuous pricing problem under the discrete MMNL model as we 

do. However, capacity constraints are not considered. The authors consider a transformed 

problem formulation where the total profit under multi-segment MMNL choice is expressed as 

a function of segment 1 demand only (rather than of prices as decision variables). They show 

that the transformed objective function is not necessarily concave (in segment 1 demand) under 

the MMNL model and that the optimal markup is in general not equal across products (as is in 

the basic MNL), even with symmetric price sensitivities across all products and all segments. 

Only if also the variation of the price-independent attraction parameter is sufficiently small 

across segments, the objective function is proven to be concave in segment 1 demand. For this 

case, the authors propose an efficient bisection search algorithm (including convex feasibility 

subproblems) for globally solving the problem under the MMNL model. For the more general 

case with asymmetric choice parameters and non-quasi-concave profit function, a gradient-
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descent method with multiple random starting points is proposed to search for stationary point 

solutions.  

Zhang and Lu (2013) consider a dynamic stochastic network pricing problem under a multi-

segment MNL choice model with uniform price betas (equal to one across products and 

segments) and disjoint consideration sets. To obtain approximate dynamic pricing policies, the 

authors suggest a resource decomposition approach that uses dual values from a deterministic 

approximation model. Similar to the DMMP problem under MNL choice, the problem with 

multiple segments but disjoint consideration sets can be transformed into a convex 

programming problem by considering demand rather than price as the control variable. Since 

every product is only considered by one single segment, the transformed formulation represents 

a one-to-one mapping between demand and prices and can therefore be used to derive a globally 

optimal solution to the problem. The authors propose an Augmented Lagrangian method to 

efficiently solve the convex programming problem. Finally, a numerical study shows that the 

dynamic pricing policies from their network decomposition approach can achieve substantial 

revenue improvements compared to dynamic availability controls, deterministic static pricing 

and deterministic pricing with re-optimization, although the gap to the latter is overall smaller. 

Schön (2010a) shows that the convex problem structure of the multi-product multi-resource 

continuous pricing problem under a discrete mixed logit choice with heterogeneous price 

sensitivity parameters can still be maintained if it is feasible to simultaneously quote individual 

prices for the same product to each segment according to a first- or third-degree price 

discrimination. However, this requires the capability to identify a priori which customer 

segment an incoming sales request belongs to. In the more common case considered here, where 

the same product is offered at a uniform price to all customer requests occurring at the same 

time, the convexity property is lost, since non-convex constraints need to be introduced to 

ensure price consistency across segments with overlapping consideration sets. Accordingly, the 

DMMP problem under MMNL choice is non-linear non-convex and thus difficult to solve in 

general.  

While the MMNL choice model has been less considered in the dynamic pricing literature so 

far, it has received increasing attention in the related field of product assortment (PA) 

optimization (see, e.g. Schön (2010b), Mendez-Diaz et al. (2014), Feldman and Topaloglu 

(2015), Kunnumkal (2015)). The PA problem is to determine which products should be 

included in an assortment and how to price them such that total profit is maximized. The PA 

problem is somewhat related to the DMMP problem considered here. However, prices are 

usually treated as discrete decision variables (including the null price) if not predetermined. 
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Capacity constraints may or may not be included. The non-linear PA problem has often been 

reformulated as a mixed-integer linear program through Big-M or McCormick linearizations of 

bilinear mixed-binary terms (e.g., Sen et al. (2018)). It has been shown to be NP-hard for the 

MMNL model even in the uncapacitated case (Rusmevichientong et al. 2014, Désir et al. 2014). 

Therefore, much work has been focused on deriving upper bounds and efficient 

approximations.  

As an exception, Sen et al. (2018) consider the PA problem with shelf-space constraints and 

predetermined prices and propose a conic mixed-integer reformulation of the problem. 

Combining the conic formulation with the traditional McCormick constraints, the authors are 

able to exactly solve different problem instances with 500 products and 50 customer classes 

with CPLEX in less than 2 minutes on average.  

 

In summary, multiple restrictive assumptions have been made to efficiently solve the DMMP 

problem under MMNL choice, either with restrictions for the choice parameters, with regard to 

pricing policies (allowed to be non-uniform) or the consideration set. Table 4 summarizes the 

few approaches that consider the general case of a discrete mixed logit model with 

heterogeneous price sensitivity and uniform pricing, and compares them with regard to solution 

quality and run time performance reported from their numerical experiments.  
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Reference Constraints Solution quality Test instance 
Continuous pricing under MMNL choice 

Li et al. (2018) 
Cap. constraints ✗ § Locally optimal for general case 

§ Globally optimal for case with high symmetry 
across segments 

|J|= 4,096 (products) 
|I|= 16 (segments) 

Sol. time = 54s  Price bounds ✗ 

Keller et al. (2014) 
Cap. constraints ✓ 

§ Locally near optimal for general case 
|J|= 3  
|I|= 7  

Sol. time: n/a Price bounds ✓ 

Schön and 
Hohberger (2019) 

Cap. constraints ✓ 
§ Globally near-optimal for general case 
§ Locally optimal heuristic for large-scale instances 

1) |J|=50 and |I|=125 
Sol. time: 350s,  

gap: <1.5%1 
2) |J|=40,012 and 

|I|=72,240 
Sol. time: 1,328s 

Price bounds ✓ 

Product assortment under MMNL choice 

Sen et al. (2018) 
Cap. constraints2 (✓) 

§ Globally optimal for general case 
|J|= 500 
|I|= 50 

Sol. time: 119s Price bounds n/a 
Table 4: Overview on pricing & product assortment under MMNL choice 

 

                                                
 
 
1 Numbers show base case results; refer to Table 5 for more detailed results. 
2 Sen et al. (2018) consider shelf-space as capacity constraint. 
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3.1.3 Contribution and outline 

How to efficiently solve the continuous pricing problem with multiple segments to optimality 

is still an open problem and we want to contribute to narrow this gap. Our contributions are as 

follows: 

a. First, we analyze the DMMP problem with continuous prices and price consistency 

constraints under the MMNL choice model in detail with regard to its mathematical 

structure. 

b. We present an approximate optimization problem to derive an upper bound on the optimal 

profit and to determine heuristic solutions. The approximate problem is convex and can 

therefore be solved efficiently even for large problem instances. An experimental study 

shows that the approach is very promising with regard to run time performance and 

solution quality.  

c. We present a convex mixed-integer programming approach that allows to tighten the 

upper bound close-to-optimum and to determine near-optimal solutions of the original 

problem. To our knowledge, this is the first approach to approximately tackle the problem 

under the MMNL choice model. In our experiments, we are able to approximately solve 

medium-sized problem instances in reasonable time.  

d. The suggested dynamic pricing approach is applied to a real-world revenue management 

case study of the German long-distance railway network with several thousand train 

connections per day. 

 

The paper is structured as follows: Chapter 3.2 discusses the original non-convex model 

formulation of DMMP and presents various approximate, convex reformulations and solution 

techniques with a focus on upper bound models. Subsequently, Chapter 3.3 presents two 

heuristic procedures that serve to find a good lower bound of the original non-convex model. 

A numerical study in Chapter 3.4 tests the performance and solution quality of the proposed 

models and solution approaches. Finally, Chapter 3.5 summarizes the findings and gives an 

outlook for future research directions.  
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3.2 Model development  
In this section, we present and discuss the DMMP problem formulation. Chapter 3.2.1 is 

concerned with the original problem formulation with prices as decision variables, while 

Chapter 3.2.2 presents an equivalent problem formulation with inverse price demand 

relationship. In Chapter 3.2.3, different convex approximations are developed that provide both 

upper bounds on the optimal objective function value for the original problem and good starting 

points for solving the original problem at least locally. For convenience, we focus on a single 

period only to discuss the structural properties. The extension to the multi-period setting is 

straightforward. Further, as common for RM models we assume variable costs !" to be zero and 

therefore drop the parameter in following.  

 

3.2.1 Original model formulation (P0) 

Under the discrete MMNL choice model (3.5), the DMMP problem looks as follows: 
 

#$%&
'( ∑ *"+,-./0-.1."∈34-
5(6 + ∑ +,-8/0-8189∈34-(∈:

 (3.6) 

&
'( ∑ +,-./0-.1."∈3-̈<

5(6 + ∑ +,-8/0-8189∈34-
≤ >5?@

(∈:

			(C ∈ D) (3.7) 

*"F ≤ *" ≤ *"G				(H ∈ I) (3.8) 

 

We denote this problem formulation, where prices are decision variables, as P0. Let H ∈ I(̈@ 

denote the set of products that are considered by segment J ∈ K and use resource C ∈ D. Further, 

let '( be the absolute size of segment J ∈ K.  

In general, both the objective function and the capacity constraints can exhibit nonlinearities 

that are not quasi-convex in the price vector. An example of a non-convex problem instance 

with one segment and two products is provided in Keller et al. (2014). To better understand the 

mathematical structure of the objective function, we note that it is the sum of ∑ |I4(|(∈:  non-

linear ratios M("(N)/P((N) (J ∈ K, H ∈ I4(), which is one of the most difficult fractional programs 

(Schaible and Shi 2003). Here, the denominator P((N) ≔ 	5(6 + ∑ +,-8/0-8189∈34-  is convex in 

N ≥ T and the numerator M("(N) ≔ '(*"+,-./0-.1. is quasi-concave in N ≥ T (see Figure 4) 

with an inflection point in *̿(" ≔ −2/X(" where M("  changes from being concave to convex. 

Since the objective function is the sum of quasiconcave-convex ratios, we could exploit the 

structure by approximately guessing the value of each numerator and each denominator for an 

optimal solution and solving a parameterized convex feasibility problem for each guess (similar 
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to, e.g., Désir et al. (2014)). However, with Y:= ∑ |I4(|(∈:  ratios to combine, the approach will 

be prohibitive unless the number of ratios is very small. Furthermore, how to handle the 

nonlinearities in the capacity constraints remains an open question. 

The structure has some interesting implications if product prices can be restricted to not exceed 

*"\]^ ≔ min
(∈:4.

*̿("  such that M("  and thus ∑ M(""∈34-  is concave. It is well known that the ratio of a 

nonnegative concave and a positive convex function is known to be pseudo-concave in the 

differentiable case (Avriel et al. 1988). Thus, each segment-specific ratio 

 

ℎ((N) =
∑ M("(N)"∈34-
P((N)

= 	
'( ∑ *"+,-./0-.1."∈34-
5(6 + ∑ +,-8/0-8189∈34-

					(J ∈ K) (3.9) 

 
of the objective function is pseudo-concave on the set c4 ≔ dN ≥ T: *" ∈ e0, *"\]^gh. 

Accordingly, a problem instance with a single segment, no capacity constraints and prices 

restricted to c4 corresponds to a fractional program with pseudo-concave objective function and 

linear (bound) constraints. In this case, the KKT conditions are sufficient for a global optimum 

such that the problem can be efficiently solved, e.g., by transforming it into a program that is 

convex in price (see, e.g., Schaible (1976)). 

Unfortunately, with multiple segments, the pseudo-concavity of the objective function may be 

lost, as the properties of concave-convex single-ratio fractional programs do not generally 

extend to the sum of concave-convex ratios. Freund and Jarre (2001) show that the sum-of-

concave-convex-ratios-problem is NP-complete. The difficulty of the problem mainly arises 

from the number of ratios, i.e., segments. For a small number of ratios, different solution 

methods such as branch-and-bound algorithms can be used (see, e.g., Benson (2002), Schaible 

and Shi (2003), Gao and Shi (2010)). Alternatively, if the number of segments is small, the 

uncapacitated objective function could be maximized on the restricted set c4 by parameterizing 

ratios and solving convex feasibility problems at selected parameter values from a set of 

appropriately chosen grid points (Boyd and Vandenberghe 2004, Section 4.2.5). 

However, approaches that assume a small number of segments do not seem promising for our 

purposes. First of all, with different O&D markets and heterogeneous preferences for travel 

time and purpose, the number of segments is usually rather large. Second, the restriction N ∈ c4 

is not realistic in many cases as empirical studies show. For example, Carrier (2008, Table 6.2) 

estimates a two-class LC model of airline itinerary choice with beta parameters −0.0125 for 

segment 1 and −0.0273 for segment 2. Thus, the maximum allowable price for the optimization 
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would be *"\]^ = €73.26 (Figure 4), while real ticket prices were as high as €362 in the 

empirical study. 

 

In summary, while there are sufficient conditions for the data that would allow exploiting 

generalized convexity substructures of the problem in price, they appear far too restrictive. In 

general, due to the non-convex nonlinearities, the DMMP problem is difficult to solve. The 

common methods relying on local gradient-based information may terminate in a local 

optimum that is not global, and we will typically not know how far a local optimum is from the 

global one. Therefore, we follow a different approach based on the inverse price demand-

relationship and introduce demand as a control. 

In particular, we are interested in approximations that make the problem more tractable. 

Furthermore, we discuss several techniques to generate promising starting solutions as well as 

upper bounds in order to evaluate the quality of a known local optimum.  

 

  
Figure 4: Example for	M("(*") with inflection point at *̿(" 	=73.26  

 

3.2.2 An equivalent formulation with inverse price-demand relationship (P1) 

We now reformulate the problem P0 by introducing new variables p(" ∈ [0,1]	(J ∈ K, H ∈ I4() 

and s( > 0 (J ∈ K) with  

 

p(" =
+,-./0-.1.

5(6 + ∑ +,-8/0-8189∈34-
				(J ∈ K, H ∈ I4() (3.10) 
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being the probability that a consumer from segment J ∈ K chooses product H ∈ I4(, and  

 

s( =
1

5(6 + ∑ +,-./0-.1."∈34-
				(J ∈ K) (3.11) 

 

being an auxiliary variable, which is proportional to the probability p(6 that segment J ∈ K buys 

the outside option, i.e., p(6 = 5(6s(.  

Then, the two equations (3.10.) and (3.11) can be equivalently stated as 

 

*" =
1
X("

uv w
p("
s(
x −

y("
X("
		zH ∈ I, J ∈ K4"{ (3.12) 

5(6s( +&p("
"∈34-

= 1			(J ∈ K) (3.13) 

 

Constraints (3.12) represent the inverse price demand-relationship. For each product H ∈ I, they 

ensure price consistency across preference-based customer segments J ∈ K4", since the left-hand 

side depends on index H only while the price inverse on the right-hand side depends on J and H. 

Therefore, we also call them price consistency (PC) constraints throughout the paper. Equations 

(3.13) state that the choice shares of all alternatives considered by segment J ∈ K sum up to 

unity. 

Accordingly, the problem P0 can be reformulated as the following problem with inverse price-

demand relationship and price consistency, P1:  

 

#$%&'(&|
1
X("

uv w
p("
s(
x −

y("
X("
} p("

"∈34-(∈:

 (3.14) 

*" =
1
X("
uv w

p("
s(
x −

y("
X("
			zH ∈ I, J ∈ K4"{ (3.15) 

&'( & p("
"∈3-̈<
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(∈:

			(C ∈ D) (3.16) 

5(6s( +&p("
"∈34-

= 1			(J ∈ K) (3.17) 

+,-./0-.1.
~
s( ≤ p(" ≤ +,-./0-.1.

�
s(						(J ∈ K, H ∈ I4() (3.18) 
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p(" ∈ [0,1]			(J ∈ K, H ∈ I4(), s( ≥ 0			(J ∈ K) (3.19) 

*" ∈ [*"F, *"G]				(H ∈ I) (3.20) 

 

The objective function in (3.14) is the revenue as a function of Ä and Å. The variables in this 

formulation are Ç, Ä and Å as defined in (3.19) and (3.20). In (3.15), we have the price 

consistency constraints. The capacity constraints as a function of Ä are presented in (3.16) while 

(3.17) contains the sum-to-unity constraints. Constraints (3.18) correspond to lower and upper 

price bound constraints if price is expressed as a function of Ä and Å. 

Obvious to see, a price vector Ç is an optimal solution to P0 if and only if (Ç,Ä, Å) is optimal 

to P1. Concerning the mathematical structure, it is straightforward to show that the objective 

function in (3.14) is jointly concave in (Ä, Å), and all constraints but the PC constraints in (3.15) 

are linear. The PC constraints are non-linear non-convex and can thus be considered as 

complicating constraints. Note that the function É
0-.
uv ÑÖ-.

Ü-
á − ,-.

0-.
 on the right-hand side of each 

PC constraint is quasilinear.  

Furthermore, note that if product H ∈ I is contained in only one consideration set (i.e., àK4"à = 1, 

which is the case for example when segments have disjoint consideration sets), then the PC 

constraint for product H can be dropped from the problem formulation, along with the price *" 

as decision variable. 

 

3.2.3 Convex approximations yielding upper bounds 

3.2.3.1 Segment-based pricing relaxation (P_REL1) 

By relaxing (i.e., ignoring) the PC constraints (3.15) and thus dropping price as a decision 

variable in (3.20), we obtain a convex optimization problem whose optimal objective function 

value provides an upper bound to the original problem. We denote this problem as P_REL1:  

 

Maximize (3.14) subject to (3.16)-(3.19). 

 

From an optimal solution (p("âäFÉ, s(âäFÉ) of P_REL1, we can obtain prices *("âäFÉ ≔

É
0-.
uv w

Ö-.
ãå�ç

Ü-
ãå�çx −

,-.
0-.
		(H ∈ I, J ∈ K4") that are potentially differentiated by segment J ∈ K4". 

 

Theorem 1: Problem P_REL1 is convex and its optimal objective function value is an upper 

bound on the optimal objective function value of problem P1. Furthermore, if (p("âäFÉ, s(âäFÉ) is 
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an optimal solution of P_REL1 and if inferred prices *("âäFÉ are homogeneous across segments 

J ∈ K4" for all H ∈ I, then (Çéèêë, Äéèêë, Åéèêë) is optimal to P1. 

Proof. For convexity proofs, see Schön (2010a) and Keller et al. (2014). The upper bound 

property is obvious since P_REL1 is a relaxation of P1. Further, if *("âäFÉ = *(í"
âäFÉ	∀H ∈ I,

J, Jî ∈ K4":	J ≠ 	 Jî, the PC constraints (3.15) are satisfied and (Çéèêë, Äéèêë, Åéèêë) is obviously 

optimal to P1. 

 

3.2.3.2 Segment-based pricing relaxation with envelopes for the price consistency 

constraint (P_REL2) 

To decrease the variability of product prices *("âäFÉ for J ∈ K4" and thereby the extent of 

infeasibilities with regard to the PC constraints (3.15), the following model variant P_REL2 

does include the PC constraints but in a relaxed form. In particular, we derive two types of 

convex relaxations for the PC constraint. For this purpose, note that we can rewrite the PC 

constraints (3.15) equivalently as the following two inequalities: 

 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó ≤ *"			(H ∈ I, J ∈ K4") (3.21) 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó ≥ *"			(H ∈ I, J ∈ K4") (3.22) 

 

3.2.3.2.1 Envelopes for the logarithm 

Constraint sets (3.21) and (3.22) can be further rewritten as  

 
1
X("

uvep("g −
1
X("

uv[s(]
òôôöôôõ
ú9ùû@ûü†(\]†û

−
y("
X("

≤ *"			(H ∈ I, J ∈ K4") 
(3.23) 

and 
1
X("
uvep("g

òôôöôôõ
°Üû@ûü†(\]†û

−
1
X("
uv[s(] −

y("
X("

≥ *"			(H ∈ I, J ∈ K4") (3.24) 

respectively. 
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Note that for X(" < 0, the function É
0-.
uvep("g is convex while − É

0-.
uv[s(] is concave. 

Therefore, we linearly underestimate − É
0-.
uv[s(] in (3.23) and linearly overestimate 

É
0-.
uvep("g in (3.24) in order to obtain a convex relaxation of the constraints. 

Let s(F  and s(G  be lower and upper bounds on s( (J ∈ K), e.g.,  

 

s(F:=
1

5(6 + ∑ +,-./0-.1.
�

"∈34-

, s(G: =
1

5(6 + ∑ +,-./0-.1.
~

"∈34-

	 (3.25) 

 

Then, we use the convex envelop of uv[s(] over [s(F , s(G] to underestimate uv[s(]: 

 

uv[s(] ≥
uv[s(G] − uv[s(F]

s(G − s(F
(s( − s(F) + ln[s(F] (3.26) 

 

Accordingly, we can relax the first price consistency constraint set (3.23) by  

 

1
X("
uvep("g −

1
X("

|
uv[s(G] − uv[s(F]

s(G − s(F
(s( − s(F) + ln[s(F]} −

y("
X("

≤ *"				(H ∈ I, J ∈ K4") (3.27) 

 

Similarly, we use ln	[p("] ≥
§9ÑÖ-.

~á•§9ÑÖ-.
� á

Ö-.
~•Ö-.

� (p(" − p("F ) + lnep("F g to relax constraint set (3.24) 

by 

  

1
X("

|
uvep("Gg − uvep("F g

p("G − p("F
zp(" − p("F { + lnep("F g} −

1
X("

uv[s(] −
y("
X("

≥ *"			

	(H ∈ I, J ∈ K4") 

(3.28) 

 

where p("F  and p("G (J ∈ K, H ∈ I4() are lower and upper bounds on p(", e.g., 

 

p("F :=
+,-./0-.1.

~

5(6 + +
,-./0-.1.

~
+ ∑ +,-8	/0-818�9∈34-\{"}

 (3.29) 

p("G:=
+,-./0-.1.

�

5(6 + +,-./0-.1.
�
+ ∑ +,-8	/0-818~9∈34-\{"}

 (3.30) 
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3.2.3.2.2 McCormick envelopes for bilinear terms 

The second relaxation of the PC constraints in (3.21) and (3.22) is based on McCormick 

envelopes for bilinear terms (McCormick 1976). To see how they can be applied to the PC 

constraints, we first consider (3.22) in Part 1, then (3.21) in Part 2. 

 

PC constraint 1 

For p(" > 0, we can multiply the PC constraint (3.22) on both sides with p(" and equivalently 

rewrite it as  

 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó p("

òôôôôôôöôôôôôôõ
©°9©]Üû

≥ *"p("òöõ
@-.

			(H ∈ I, J ∈ K4") (3.31) 

 

While the left-hand side of the „≥”-inequality is concave and does not introduce any non-

convex nonlinearities to the feasible set, the bilinear term on the right-hand side is complicating. 

Therefore, we introduce a new variable C(" ≥ 0 to replace the bilinear term and linearly 

approximate the requirement C(" = 	*"p(" by the following four McCormick envelopes:  

 

C(" ≥ *"Fp(" + *"p("F − *"Fp("F 				(H ∈ I, J ∈ K4") (3.32) 

C(" ≥ *"Gp(" + *"p("G − *"Gp("G				(H ∈ I, J ∈ K4") (3.33) 

C(" ≤ *"Gp(" + *"p("F − *"Gp("F 				(H ∈ I, J ∈ K4") (3.34) 

C(" ≤ *"Fp(" + *"p("G − *"Fp("G				(H ∈ I, J ∈ K4") (3.35) 

 

As *"G and *"F converge to each other, the approximation becomes more accurate. 

 

PC constraint 2 

For s( ≠ 0, PC constraint 2 in (3.21) is equivalent to 

 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó s(

òôôôôôöôôôôôõ
©°9Üû^

≤ *"s(™
ú-.

				(H ∈ I, J ∈ K4") (3.36) 

 

The term on the left-hand side of the „≤”-inequality is convex for X(" < 0 and thus easy to cope 

with. However, we have again a bilinear term on the right-hand side that is rendering the 



Continuous pricing in a capacitated network under mixed multinomial logit demand 

 57 

constraint non-convex. Therefore, we introduce a new variable ´(" ≥ 0 as before to replace the 

bilinear term and linearly approximate the requirement ´(" = 	*"s( by the following four 

McCormick envelopes:  

 

´(" ≥ *"Fs( + *"s(F − *"Fs(F 				(H ∈ I, J ∈ K4") (3.37) 

´(" ≥ *"Gs( + *"s(G − *"Gs(G				(H ∈ I, J ∈ K4") (3.38) 

´(" ≤ *"Gs( + *"s(F − *"Gs(F				(H ∈ I, J ∈ K4") (3.39) 

´(" ≤ *"Fs( + *"s(G − *"Fs(G				(H ∈ I, J ∈ K4") (3.40) 

 

Using both approximations for the PC constraints (i.e., the envelopes for the logarithm and the 

McCormick envelopes), we can define the problem P_REL2: 

 

#$%&'(&C("
"∈34-(∈:

 (3.41) 

Subject to  

Price consistency “≥” with McCormick: 

 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó p(" ≥ C("			(H ∈ I, J ∈ K4") (3.42) 

C(" ≥ *"Fp(" + *"p("F − *"Fp("F 				(H ∈ I, J ∈ K4") (3.43) 

C(" ≥ *"Gp(" + *"p("G − *"Gp("G				(H ∈ I, J ∈ K4") (3.44) 

C(" ≤ *"Gp(" + *"p("F − *"Gp("F 				(H ∈ I, J ∈ K4") (3.45) 

C(" ≤ *"Fp(" + *"p("G − *"Fp("G				(H ∈ I, J ∈ K4") (3.46) 

 

Price consistency “≤” with McCormick: 

 

ñ
1
X("

uv w
p("
s(
x −

y("
X("
ó s( ≤ ´("				(H ∈ I, J ∈ K4") (3.47) 

´(" ≥ *"Fs( + *"s(F − *"Fs(F 				(H ∈ I, J ∈ K4") (3.48) 

´(" ≥ *"Gs( + *"s(G − *"Gs(G				(H ∈ I, J ∈ K4") (3.49) 

´(" ≤ *"Gs( + *"s(F − *"Gs(F				(H ∈ I, J ∈ K4") (3.50) 

´(" ≤ *"Fs( + *"s(G − *"Fs(G				(H ∈ I, J ∈ K4") (3.51) 
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Price consistency “≤” with linearization of log: 

 

1
X("
uvep("g −

1
X("

|
uv[s(G] − uv[s(F]

s(G − s(F
(s( − s(F) + ln[s(F]} −

y("
X("

≤ *"				(H ∈ I, J ∈ K4") (3.52) 

 

Price consistency “≥” with linearization of log: 

 

1
X("

|
uvep("Gg − uvep("F g

p("G − p("F
zp(" − p("F { + lnep("F g} −

1
X("

uv[s(] −
y("
X("

≥ *"				

(H ∈ I, J ∈ K4") 

(3.53) 

 

Standard constraints from the inverse model: 

 

&'( & p("
"∈3-̈<

≤ >5?@
(∈:

			(C ∈ D) (3.54) 

5(6s( +&p("
"∈34-

= 1			(J ∈ K) (3.55) 

+,-./0-.1.
~
s( ≤ p(" ≤ +,-./0-.1.

�
s(						(J ∈ K, H ∈ I4() (3.56) 

 

Variables: 

*"F ≤ *" ≤ *"G				(H ∈ I) (3.57) 

p("F ≤ p(" ≤ p("G					(J ∈ K, H ∈ I4() (3.58) 

s(F ≤ s( ≤ s(G			(J ∈ K) (3.59) 

´(" ≥ 0, C(" ≥ 0						(J ∈ K, H ∈ I4() (3.60) 

 
3.2.3.3 Piecewise approximations through interval partitioning for product prices 

(P_REL3) 

3.2.3.3.1 Piecewise McCormick approximations 

The McCormick approximations of *"p(" in (3.32)-(3.35) (and of *"s( in (3.37)-(3.40) 

respectively) are tighter, the tighter the lower and upper bounds on the two variables, *"F, *"Gand 

p("F , p("G, are. To strengthen the approximation of the McCormick relaxation for bilinear terms, 

different piecewise McCormick approximations have been proposed. For example, to globally 

solve complex problems typically arising in the chemical process industry, Bergamini et al. 
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(2005) present a piecewise McCormick relaxation based on a univariate and uniform 

partitioning approach. In our case, we partition the domain [*"F, *"G] of each price variable *" 

into disjoint intervals ℑ"≠ ≔ e*̌"≠, *̂"≠g	z∞ ∈ ±"{ with *̂"≠ = *̌",≠/É, *̌"É = *"F, *̂",≤. = *"G. 

Then, the best price interval for product H is determined by introducing binary variables %"≠ ∈

{0,1} with %"≠ = 1 if interval ∞ is selected, 0 otherwise. To ensure that exactly one price interval 

is selected we impose  

 

& %"≠
≠∈≤.

= 1			(H ∈ I) (3.61) 

 

The interval partitioning leads to the following set of disjunctive constraints for the McCormick 

approximations of *"p(" (replacing (3.43)-(3.46)): 

 

≥

⎣
⎢
⎢
⎢
⎢
⎡

%"≠
C(" ≥ *̌"≠p(" + *"p∑("≠ − *̌"≠p∑("≠
C(" ≥ *̂"≠p(" + *"p∏("≠ − *̂"≠p∏("≠
C(" ≤ *̂"≠p(" + *"p∑("≠ − *̂"≠p∑("≠
C(" ≤ *̌"≠p(" + *"p∏("≠ − *̌"≠p∏("≠⎦

⎥
⎥
⎥
⎥
⎤

≠∈≤.
 (3.62) 

 

where p∑("≠  and p∏("≠  are lower and upper bounds on p(" if the price of product H is bounded to 

interval ∞ ∈ ±", e.g., 

 

p∑("≠: =
+,-./0-.1∏.º

5(6 + +,-./0-.1∏.º + ∑ +,-8	/0-818�9∈34-\{"}
 (3.63) 

p∏("≠:=
+,-./0-.1∑.º

5(6 + +,-./0-.1∑.º + ∑ +,-8	/0-818~9∈34-\{"}
 (3.64) 

 

Similarly, for *"s( we have: 

 

≥

⎣
⎢
⎢
⎢
⎢
⎡

%"≠
´(" ≥ *̌"≠s( + *"s∑("≠ − *̌"≠s∑("≠
´(" ≥ *̂"≠s( + *"s∏("≠ − *̂"≠s∏("≠
´(" ≤ *̂"≠s( + *"s∑("≠ − *̂"≠s∑("≠
´(" ≤ *̌"≠s( + *"s∏("≠ − *̌"≠s∏("≠⎦

⎥
⎥
⎥
⎥
⎤

≠∈≤.
 (3.65) 
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with lower and upper bounds s∑("≠  and s∏("≠ on s( (J ∈ K) if the price of product H is bounded to 

interval ∞ ∈ ±", e.g.,  

 

s∑("≠:= Ω5(6 + +,-./0-.1∑.º + & +,-8/0-818�

9∈34-\{"}

æ

•É

 (3.66) 

s∏("≠:= Ω5(6 + +,-./0-.1∏.º + & +,-8/0-818~

9∈34-\{"}

æ

•É

 (3.67) 

 

The disjunctive constraints can be algebraically expressed, e.g., through Big-M constraints or 

so-called Hull reformulations (Trespalacios and Grossmann 2014), resulting in (linear or non-

linear) mixed-integer problem (MIP) formulations. While the Big-M formulations of the 

disjunctions generate a smaller MIPs, the Hull reformulation generates a tighter continuous 

relaxation of the MIP and is therefore applied in the following. In particular, for the Hull 

reformulation of (3.62) we define new continuous variables *ø"≠, pø("≠ , C̃("≠ ≥ 0 for each interval 

with 

 

*" = & *ø"≠
≠∈≤.

	(H ∈ I), *̌"≠%"≠ ≤ *ø"≠ ≤ *̂"≠%"≠		zH ∈ I, ∞ ∈ ±"{ (3.68) 

p(" = & pø("≠
≠∈≤.

	(J ∈ K, H ∈ I4(), p∑("≠%"≠ ≤ pø("≠ ≤ p∏("≠%"≠		zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.69) 

C(" = & C̃("≠
≠∈≤.

	(J ∈ K, H ∈ I4(), Č("≠%"≠ ≤ C̃("≠ ≤ Ĉ("≠%"≠		zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.70) 

 

with lower and upper bounds on C̃("≠ , Č("≠  and Ĉ("≠ , respectively, if the price of product H is 

bounded to interval ∞ ∈ ±". 

Then, the McCormick approximations of *"p(" can be stated as 

 

C̃("≠ ≥ *̌"≠pø("≠ + *ø"≠p∑("≠ − *̌"≠p∑("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.71) 

C̃("≠ ≥ *̂"≠pø("≠ + *ø"≠p∏("≠ − *̂"≠p∏("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.72) 

C̃("≠ ≤ *̂"≠pø("≠ + *ø"≠p∑("≠ − *̂"≠p∑("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.73) 

C̃("≠ ≤ *̌"≠pø("≠ + *ø"≠p∏("≠ − *̌"≠p∏("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.74) 
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Similarly, for the Hull reformulation of (3.65) we define new continuous variables sø("≠, ǿ("≠ ≥

0 for each interval with 

 

s( = & sø("≠
≠∈≤.

	(J ∈ K, H ∈ I4(), s∑("≠%"≠ ≤ sø("≠ ≤ s∏("≠%"≠		zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.75) 

´(" = & ǿ("≠
≠∈≤.

	(J ∈ K, H ∈ I4(), ∑́("≠%"≠ ≤ ǿ("≠ ≤ ∏́("≠%"≠		zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.76) 

 

with lower and upper bounds on ǿ ("≠ , ∑́("≠  and ∏́("≠ , respectively, if the price of product H is 

bounded to interval ∞ ∈ ±", and McCormick approximations of *"s( as follows: 

 

ǿ ("≠ ≥ *̌"≠sø("≠ + *ø"≠s∑("≠ − *̌"≠s∑("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.77) 

ǿ ("≠ ≥ *̂"≠sø("≠ + *ø"≠s∏("≠ − *̂"≠s∏("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.78) 

ǿ ("≠ ≤ *̂"≠sø("≠ + *ø"≠s∑("≠ − *̂"≠s∑("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.79) 

ǿ ("≠ ≤ *̌"≠sø("≠ + *ø"≠s∏("≠ − *̌"≠s∏("≠			zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.80) 

 

Finally, we also reformulate (3.56) as  

 

+,-./0-.1∏.ºsø("≠ ≤ pø("≠ ≤ +,-./0-.1∑.ºsø("≠						zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ (3.81) 

 

In summary, denote the problem to determine variables *", *ø"≠ , p(", pø("≠ , s(, sø("≠, C(", C̃("≠ , ´(", 

ǿ ("≠ , and %"≠ zJ ∈ K, H ∈ I4(, ∞ ∈ ±"{ such that (3.41) is maximized subject to constraints (3.42), 

(3.47), (3.54), (3.55), (3.61), (3.68)-(3.81) by P_REL3. Note that P_REL3 is a mixed-integer 

convex optimization (MICP) problem that, compared to the convex optimization problems 

P_REL1 and P_REL2, includes additional binary variables but is tighter. Obviously, the 

optimal objective function value of P_REL3 provides an upper bound to the optimal objective 

function value of P1. 

 

3.2.3.3.2 Piecewise envelopes for the logarithm 

Based on the partitioning of the price intervals introduced in the subsection above, we can also 

tighten the envelopes of the logarithm in (3.52) and (3.53), respectively, as follows and add 

them to P_REL3 (J ∈ K, H ∈ I4(, ∞ ∈ ±"): 
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1
X("

uvepø("≠g −
1
X("

|
uves∏("≠g − uves∑("≠g

s∏("≠ − s∑("≠
zsø("≠ − s∑("≠{ + lnes∑("≠g} −

y("
X("

≤ *ø"≠  (3.82) 

1
X("

|
uvep∏("≠g − uvep∑("≠g

p∏("≠ − p∑("≠
(pø("≠ − p∑("≠) + lnep∑("≠g} −

1
X("
uvesø("≠g −

y("
X("

≥ *ø"≠ (3.83) 
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3.3 Heuristics yielding lower bounds 
3.3.1 Outer approximation heuristic 

In this heuristic, the optimal price vector N from the outer approximation problem P_REL2 or 

P_REL3 is used. If N is capacity feasible (i.e., satisfying constraints (3.7)), the price vector can 

be used directly as an approximate solution to P0. If N is not capacity feasible, we use it as a 

(slightly infeasible) warm start solution for a gradient-based search procedure (e.g. an interior 

point method implemented in Knitro) to determine a (potentially locally) optimal and thus 

feasible solution of P0.  

 

3.3.2 Price interval heuristic (3-step approach) 

For large-scale networks such as passenger railway networks, mixed-integer problem 

formulations are typically intractable due to the exponential number of integer variables. For 

this case, we propose in the following a heuristic that is based on the models developed in 3.2 

but relies on continuous decision variables to make an application for large-scale instances 

possible.  

As already mentioned in 3.2.3.3.2, the approximations of the PC constraints are tighter the 

smaller the price ranges *"F and *"G are. While price ranges can be quite large in a practical 

application, we can dynamically use the optimal segment-specific prices from the solution of 

P_REL1 and derive approximate, updated lower and upper price bounds (*"F∗ and *"G∗, 

respectively) to increase the accuracy of the approximation for the PC constraints in P_REL2. 

To keep the number of processed constraints as low as possible, we only apply the envelopes 

for the logarithm as in (3.52) and (3.53) and drop the McCormick constraints (incl. the 

corresponding variables ¬ and √) from P_REL2 for this heuristic. Hence, the objective function 

is replaced by the original inverse formulation as in (3.14). The reason for choosing the 

envelopes for the logarithm instead of the McCormick approximation is a good balance between 

solution quality and time as we will show later in the numerical study. Finally, the solution of 

P_REL2 is used as a warm start to solve P0 and find a good locally optimal solution.  

Since both P_REL1 and P_REL2 can be solved in polynomial time and globally optimal with 

appropriate solution techniques such as the interior-point method, they are reliable in terms of 

solution time and quality. The optimal values for *" from P_REL2 serve as a warm start for P0 

and decrease the solution time of P0 significantly as we will show later in the numerical study.  
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In the following, more technical details and the processed steps for the heuristic are presented: 

  

Step 1 - Derive tighter lower and upper price bounds: 

Step 1a: Solve the relaxed inverse model with segment-specific prices (P_REL1) to 

derive an optimal solution for s(âäFÉ and p("âäFÉ. 

Step 1b: Compute the segment-specific prices *("âäFÉ ≔
É
0-.
uv w

Ö-.
ãå�ç

Ü-
ãå�çx −

,-.
0-.
		(H ∈ I, J ∈

K4") and determine the new lower and upper price bounds *"F∗ ∶= min
(∈:4.

*("âäFÉ and *"G∗ ∶=

max
(∈:4.

*("âäFÉ and define 5("\]^ ∶= +,-./0-.1.
�∗
	and 5("\(9 ∶= +,-./0-.1.

~∗
 . 

Step 1c: Determine the lower and upper bounds on market shares p(" and s( with p("F ≔

«-.
»-8

«-…/«-.
»-8/∑ «-8

» À
8∈ÃÕ-\{.}

 , p("G ≔
«-.
» À

«-…/«-.
» À/∑ «-8

»-8
8∈ÃÕ-\{.}

 and s(F ≔
É

«-…/∑ «-.
» À

.∈ÃÕ-
 , s(G ≔

É
«-…/∑ «-.

»-8
.∈ÃÕ-

  (J ∈ K, H ∈ I4(). 

Step 1d: Derive the demand weighted average price for each product H ∈ I that serves 

as a warm start for the uniform price in step 2 by *̅" ∶=
∑ Ö-.

ãå�çœ-1-.
ãå�ç

-∈–Õ.
∑ Ö-.

ãå�çœ--∈–Õ.
 . 

Step 2 - Solve model with approximate uniform price constraints (P_REL2): 

Apply the bounds from step 1c on variables s( and p(" and the price bounds *"F∗ and *"G∗ 

from step 1b on variables *". Furthermore, use the lower and upper bounds from step 

1c in the approximate PC constraints in P_REL2 (i.e., the envelopes for the logarithm). 

Finally, use the warm start *̅", s(âäFÉ, p("âäFÉ from step 1a and 1d for the variables *", s( 

and p(" and solve P_REL2. 

Step 3 - Solve P0: 

Solve P0 under the consideration of the original price bounds *"F and *"G (H ∈ I) with the 

warm start for *" using the optimal solution for the uniform product prices from P_REL2 

derived in step 2. 

End.  
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3.4 Numerical study 
In this section, we report the application of different models in the context of a systematic 

numerical experiment to illustrate the overall performance of our approach with regard to 

solution quality and computation time. Furthermore, we present a case study of pricing in the 

German long-distance railway network to demonstrate the real-world applicability of our 

approach. 

 

3.4.1 Systematic experiment 

3.4.1.1 Experimental setup 

Products: We assume that products are differentiated by market (origin destination pair), 

departure time window and quality level. With presumably 5 markets, 5 departure time 

windows and 2 quality levels, the number of products is determined as the product of the 

number of the three factors, i.e., 50 products. For each product H ∈ I, the lower and upper price 

bounds, *"F and *"G, respectively, are set to the minimum and maximum segment-specific 

optimal prices obtained from P_REL1 (i.e., *"F ≔ min
(∈:4.

*("âäFÉ , *"G ≔ max
(∈:4.

*("âäFÉ) within an 

initial price range of *" ∈ [10,200]. 

Customer segments: We assume that customers are first of all segmented by markets and 

desired departure time window. Furthermore, for each market and time window, there are 

heterogeneous preference segments that differ with regard to the parameters y(" and X(" where 

we assume y("~“(0,2) and X("~“(−0.1,−0.01). Thus, the number of segments equals the 

product of the number of markets (5), time windows (5) and preference segments (3), resulting 

in 125 customer segments. For the market size, we assume that '(~”‘ ∙ “(10,30) where ”‘ ∈

{1, 10, 20} is a demand factor representing low, medium, and high demand scenarios, 

respectively. The attraction value of the outside option is randomly drawn from a uniform 

distribution with 5(6~“(1,10). 

For each segment, we generate overlapping considerations sets of 2-8 products as follows. Each 

segment has a random time tolerance ~⌊“(0,4)⌋ that denotes the number of time windows that 

a segment is willing to depart later than its desired departure time window. The consideration 

set I4( of segment J includes all connections in the same market within the segment’s time 

tolerance.  

Resources: The network of resources is generated as follows. First, we derive the total number 

|D| of resources from the number of connections. Assuming one connection per market and 

time window, the number of connections corresponds to the product of the number of markets 
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and the number of time windows (i.e., 25). To derive a reasonable number of resources for a 

given number of connections, we make use of the algorithm of Hohberger and Schön (2019) 

that generates test data for large-scale railway network revenue management models based on 

schedules of transportation companies. In particular, we use the test data presented by the 

authors to estimate a functional relationship between the number of connections and the number 

of resources in typical railway networks. A regression turns out that the number of resources 

can well be approximated by a square root function of the number of connections (see Figure 

5). 

Then, we assume that each product H uses a random number of resources, #C+⁄"~⌊U(1, ⌈0.5 ∗

|R|⌉)⌋. The specific resources that a product uses are selected randomly where each resource 

C∈D has an equal probability of being assigned. The available capacity >5?@ of resource C ∈ D 

is drawn from a discrete Uniform distribution or set to the required capacity at the upper bound 

price vector, NG, whatever is larger: >5?@~max{⌈U(400,800)⌉, >5?@
@û‡(NG)}. 

 

 
Figure 5: Relation between #train connections & #legs in a railway network (Hohberger and Schön 2019) 
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For each of the three demand scenarios, we randomly generate 5 instances. All tests were 

performed in AMPL with instances solved with CPLEX 12.83 on a Workstation with Windows 

7, 2x Intel Xeon E5-2687W v4 @ 3GHz, 32 cores, 64GB RAM. The time limit to solve an 

instance was set to 10 minutes. 

 

3.4.1.2 Results 

Table 5 shows the results of the experimental study. The first three columns display the number 

of products, the number of segments and the demand scenario. The fourth column shows the 

(potentially locally optimal) objective function value in absolute terms that the warm started 

Knitro solver achieved for problem P0. The blue numbers below indicate the time to solve P0 

(including warm start) which were neglectable for these instances. Columns 5 and 6 show the 

performance of the two convex approximations in terms of the relative gap between the optimal 

objective function value of the convex approximation and P0. As expected, P_REL2 provides 

slightly smaller upper bounds than P_REL1 since McCormick and log approximations of the 

PC constraints are incorporated in P_REL2. The improvement of the bound is achieved without 

significantly increasing run times. The red numbers indicate the average price range over 

segment-specific prices. 

Columns 7-9 show the relative gap of the upper bound obtained from different versions of 

P_REL3 with three equidistant price intervals (PI): “P_REL3 BND” denotes a version of 

P_REL3 where only interval price bounds in (3.81) with the disaggregation of variables 

according to (3.68), (3.69) and (3.75) are considered, but PC constraints are neglected. 

“P_REL3 log” additionally includes log PC constraints (3.82) and (3.83) while “P_REL3 McC” 

incorporates the McCormick approximations (3.70)-(3.74) and (3.76)-(3.80) of the PC 

constraints. Both the log and the McC PC constraint approximations significantly improve the 

upper bound over BND at the expense of solution time. The McC bound is close to the objective 

function value of P0 for the base and the high demand scenario (with an average gap of 1.47% 

and 0.18%, respectively) indicating that the potentially local solution of P0 is close to globally 

optimal. However, for the low demand scenario, the McC bound exhibits a relatively large 

average gap of 8.45% where the time limit is reached. Here, the log bound dominates the McC 

bound not only with respect to average solution time but also regarding solution quality. 

                                                
 
 
3 In theory, the problems could be solved exactly with some MINLP solvers like Knitro or Bonmin. However, to 
our experience, the branch-and-cut method of CPLEX was much more efficient on P_REL3, although applied to 
a linearized version of the MICP, where all convex functions were approximated with piecewise linear 
underestimators. 
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Overall, the log PC constraint approximations show a good balance between solution time and 

quality. 

 

        

Upper Bounds:  
Gaps, avg. price range,  

solution time in sec. (limit 600s) 

#prod #segm demand P0 Obj. 
P_REL1 

(1PI) 
P_REL2 

(1PI) 

P_REL3 
BND 
(3PI) 

P_REL3 
log  

(3PI) 

P_REL3 
McC 
(3PI) 

50 125 base 
245,818 6.30% 5.56% 3.98% 2.83% 1.47% 

 - 53.6 53.4 20.4 15.2 17 
0 1 2 23 292 350 

50 125 high 
349,800 5.64% 4.14% 2.93% 2.01% 0.18% 

 - 54.8 54.8 28.4 24.4 25.6 
0 1 1 6 45 169 

50 125 low 
32,321 15.80% 14.92% 9.65% 6.93% 8.45% 

 - 66.2 53.2 22 16 14.4 
0 1 1 526 433 603 

Table 5: Results of the experimental study 

 

Looking at a selected instance of the low demand scenario, Table 6 shows the improvements 

of the P_REL3 bound and the run time behavior as more price intervals are added. To maintain 

focus, the “P_REL3 log” bound is considered with 3, 10, 15 and 50 price intervals. As before, 

a time limit of 600 seconds was set for solving the instance of P_REL3 with 3 price intervals, 

while 3600 seconds were allowed to solve instances with 10 or more price intervals per product. 

Interesting to note is that the solution times are not necessarily monotone increasing in the 

number of price intervals. The gap between the log bound and the objective function value of 

P0 decreases to 0.62% as the number of PIs is increased to 50. Again, the bound proves that the 

potentially locally optimal solution of P0 found by the warm started Knitro solver is close-to-

optimal.  

Our experiments demonstrate that the proposed problem formulation and relaxation approach 

underlying P_REL2 and P_REL3 can be very powerful for approximately solving pricing 

problems in capacitated transportation networks under the MMNL model. While the convex 

problem formulation P_REL2 can be used to quickly generate (possibly slightly infeasible) 

warm start solutions for solving P0 at least locally, the upper bound obtained from P_REL2 

(and from P_REL3, respectively) simultaneously provides valuable information on the quality 

of the local solution. The comparably long run times for solving P0 reported in Keller et al. 

(2014) suggest that the warm start solution from P_REL2 obviously helps to find “good” or 

even close-to-optimal solutions of P0 quickly. 

 



Continuous pricing in a capacitated network under mixed multinomial logit demand 

 69 

Instance 1  
Upper Bounds:  

Gaps, solution time in sec.  
(limit: 3 PI = 600s ; 10+ PI = 3,600s) 

#prod #segm demand P0 Obj. 

P_REL1 P_REL2 
P_REL3 

log 
P_REL3 

log 
P_REL3 

log 
P_REL3 

log 

(1PI) (1PI) (3PI) (10PI) (15PI) (50PI) 

50 125 low 
30,646 16.43% 15.53% 9.48% 2.34% 1.93% 0.62% 

0 1 1 605 68 1,668 1,484 
Table 6: Results for solving the first instance in the low demand scenario 

 

3.4.2 Railway network revenue management application 

The results so far have shown that a warm started model P0 can achieve solutions close to the 

global optimum. While the proposed MIP (i.e., P_REL3) works well for medium-sized 

instances, large-scale networks such as the railway network in Germany need solution 

techniques that are able to deal with thousands of products and customer segments. Therefore, 

we apply and test the proposed price interval heuristic (3.3.2) in an experiment using data from 

Deutsche Bahn.  

 

3.4.2.1 Experimental setup 

Dynamic network pricing under the MMNL has many applications in practice. Railway 

companies like Deutsche Bahn (DB) for example sell a unique, capacitated product (a specific 

train ride from A to B in a given comfort class) to different customer segments that differ in the 

evaluation of price (Ẋ() and quality attributes (y("). The general idea of revenue management 

(i.e., how many seats to sell early to passengers with low WTP vs. how many seats to protect 

for a late booking segment with high WTP) can also be translated to the choice-based dynamic 

pricing case with multiple customer segments. The goal is to find an optimal uniform price for 

each product at each point in time during the booking horizon where the product is considered 

by different customer segments and the price should therefore be set on a level that maximizes 

total ticket revenue under capacity constraint considerations. 

A product in the railway context can be described as the combination of a specific train 

connection/itinerary „ and the comfort class ‰ (i.e., („, ‰) = H ∈ I). Since segment demand and 

the corresponding willingness to pay is varying throughout the booking horizon (e.g., early 

booking customers with low WTP vs. late booking customers with high WTP), the price for 

each product should be able to vary over the booking horizon Â ∈ Ê	and therefore be defined as 

*"†. Furthermore, a customer segment is defined by four attributes: the travel purpose (tp), 

considered O&D (od), desired departure time (dt) and desired booking time (t), leading to a 
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definition of (Â*, ÁË, ËÂ, Â) = J ∈ K . This split is for instance reflected in the definition of the 

segment-specific market demand parameter '(†1,°ù,ù†,†) = '( , e.g., the number of business 

travelers (tp) who want to travel from Frankfurt to Berlin (od) on a Monday morning between 

7 a.m. and 9 a.m. (dt) and would like to book 5-7 days in advance (t). The consideration of 

booking time makes it possible to consider information about future demand in the today’s 

pricing decision. The market share parameter p(" then defines the probability that a specific 

segment J chooses product H. An important part in the choice model is the definition of the 

consideration set I4( since it defines the set of products that are considered by segment J. In the 

railway case, it could be defined as the set of products that serve the same O&D within a given 

departure time tolerance (e.g., all connections during the day or all connections with departure 

time +/- two hours) and also the other available comfort classes. This leads to a choice model 

that not only covers switching effects between train connections from a departure time 

perspective but also between comfort classes. The concept of limited time windows that define 

the maximum deviation between desired and scheduled departure time is also used by, e.g., 

Proussaloglou and Koppelman (1999) in their study about the choice of a flight. Switching 

effects between booking dates are ignored in our study due to minor information about the 

strategic behavior over time, i.e., customers that decide not to book in period Â are considered 

as lost demand and not backlogged for future periods. The underlying idea of a choice model 

in railway business is that customers do not have a demand for a specific train connection, they 

rather have a demand for going from A to B within a given departure time frame and therefore 

choose the product that maximizes their utility or choose not to buy at all. 

 

We were able to test our approach by using data from our project partner Deutsche Bahn with 

the focus of solving large-scale instances to prove the tractability of practical problems. To our 

knowledge, this is the first study that solves large-scale dynamic pricing models under the 

MMNL. To generate the set of train connections in the rail network (incl. transfer connections), 

we apply the network data generation algorithm NDGA (Hohberger and Schön 2019). The 

NDGA provides also information about the resource consumption for each itinerary (the set of 

resources C ∈ D is defined as the combination of a leg and comfort class), the available 

capacities for each resource and product attribute values such as travel time, number of transfers 

etc. that are necessary to derive the non-price product utilities y(". Therefore, NDGA helps to 

set-up a large proportion of the realistic test data. Remaining data, i.e., the segment-specific 

demand '(, the current lower and upper price bounds for each product and the necessary 

sensitivities (X-values, including price beta Ẋ() were provided by Deutsche Bahn. 
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The challenge that arises with large-scale models is not only the nonconvexity of the original 

model but also the solution time that should lie within a given range to make frequent 

recalculations in practice possible. A carefully considered tradeoff between accuracy and 

performance is therefore of high interest. One powerful lever to decrease the complexity of the 

model is the limitation of the consideration set. Fewer products that are considered to be an 

alternative for product H	help to decrease the model size. We use a maximum deviation of +/- 

two hours, i.e., a segment has a preferred departure time window but also considers train 

connections that lie outside of the preferred window. Since departure time preference is part of 

y(", the value of y(" will be lower for a train connection that lies outside of the preferred window 

compared to a train connection in the preferred window (ceteris paribus). In addition, the 

number of desired departure time windows and booking time periods significantly influence 

the total number of segments and therefore the size of the model. We use a split into 60 minutes 

departure time windows and consider only two points in time for bookings, Â = 1 = ÂÁË$È and 

Â = 2 = ”Âℎ+	⁄´Y	ÁM	$uu	M´Â´C+	*+CJÁË⁄”.  

 

Different sized railway networks are used in the numerical study (see Table 7). The north-south 

axis network consists of all major O&Ds and the corresponding train connections on a north-

south axis of DB’s rail network. The other two networks are defined by choosing the most 

important O&Ds based on past sales data. The largest network covers all daily train connections 

in a network of the Top 400 O&Ds, creating approx. 10,000 train connections and over 10,800 

resources. This network already accounts for >50% of DB’s revenue and therefore covers a big 

portion of ticket sales. Detailed information about the structure of the three different test 

networks is given in Table 7. The numbers shown correspond to a specific, full departure day 

in future, i.e., we optimize one full departure day incl. all products within the given network.   

 

Network #train 
connections 

#train 
stations #O&Ds #resources #prices #segments 

(1) North-
South Axis 667 8 21 1,080 2,668 3,784 

(2) Top 50 
O&Ds 1,523 12 50 6,384 6,092 9,296 

(3) Top 400 
O&Ds 10,003 53 400 10,844 40,012 72,240 

Table 7: Statistics for tested railway networks 

For each of the three networks, we construct four demand cases with low to very high demand 

realizations following the idea in Zhang and Adelman (2009), e.g., the low demand case 

corresponds to a market demand that leads to a load factor of 40% in the unconstrained case. 
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The other cases are medium with load factor 0.7, high with load factor 1.0 and very high with 

load factor 1.3. To achieve meaningful and stable results independent from numerical outliers, 

we solve the networks (1) and (2) 30x and the large-scale network (3) 10x for each demand-

case, where the demand is randomly varied by +/- 5% to construct slightly different test 

instances. Table 8 summarizes the setup of the experiment. 

 

Network Demand cases Unconstrained avg. 
load factor # test instances 

North-South 
Axis 

low 40% 

30x each 
medium 70% 

high 100% 
very high 130% 

Top 50 O&Ds 

low 40% 

30x each 
medium 70% 

high 100% 
very high 130% 

Top 400 O&Ds 

low 40% 

10x each 
medium 70% 

high 100% 
very high 130% 
Table 8: Experimental setup for railway study 

All problem instances were coded in AMPL and solved using Knitro 10.3 on a compute node 

of the Baden-Württemberg High Performance Cluster with 2x 2.6 GHz Intel Xeon E5-2640v3 

processors using 8 threads and 128 GB RAM on a Linux operating system. 

 

3.4.2.2 Results 

Results for P0 without warm start 

The decision of model P0 in the railway case can be defined as: Find the revenue maximizing 

uniform price for each product H in each booking period Â where the accepted demand of all 

products H that use resource C must be smaller than >5?@ where *"† must lie within a given price 

range. Note that *"† in the railway setting depends also on the booking period Â ∈ Ê, i.e., 

different price levels within the booking horizon are possible.  

Keller et al. (2014) have already shown that P0 for the classic MNL and also the multi-segment 

case shows poor results in terms of solution time. Our tests can confirm that finding. We 

implemented P0 in a slightly adapted formulation, with an additional variable s(	(J ∈ K) with 

s( ∶= Î5(6 + ∑ +,-./0̇-1.Ï"∈34- Ì
•É

 representing the division by all considered product 
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alternatives of segment J in the objective function and capacity constraint of P0. Therefore, an 

additional constraint is introduced to make sure that total market shares sum up to one (similar 

to (3.17)). The benefits of that reformulation are improved solution times for P0. Still with the 

modified version, solving P0 directly for large instances is intractable. Table 9 shows the 

solution times for a medium demand case scenario for the three different railway networks 

without a warm start solution.  

 

Network Solution time of P0 (in sec.)  

North-South Axis 669 
Top 50 O&Ds 3,350 
Top 400 O&Ds 72,810 

Table 9: Results for P0 without warm start 

It is obvious that solution times >10h (=36,000 sec.) are not manageable for a practical 

application, especially for the time periods close to departure. Hetrakul and Cirillo (2014) have 

already shown that most of the bookings in the railway context show up very late and practical 

data from DB can confirm that, i.e., resolving a deterministic model is especially crucial in the 

last days prior to departure to account for (unforeseen) demand realizations. 

Keller et al. (2014) have already presented that the inverse formulation solves much faster than 

the original formulation. As mentioned by Schön (2010a), the traditional inverse formulation 

assumes the possibility of segment-specific pricing, which is unrealistic in the railway business. 

A railway company typically cannot charge different prices for a specific product from a leisure 

customer than from a business customer, or from a leisure customer willing to travel between 

7 a.m. and 9 a.m. than from a leisure customer willing to travel between 9 a.m. and 11 a.m. In 

practice, there is just one uniform price for each product.  

The solution times for medium-sized problems with our MIP approaches in 3.4.1.2 already 

demonstrate that large-scale instances with thousands of products and segments will not be 

manageable in reasonable time.  

Therefore, we apply in the following the price interval heuristic (3-step approach) from 3.3.2 

since it fully relies on continuous decision variables.  

 

Results of the price interval heuristic (3-step approach) 

The results in Table 10 indicate that even large instances can be solved in under 30 minutes, a 

solution time that is more than convincing from a practical perspective. Both convex models 

solve fast and therefore serve as a good way to derive a warm start solution for P0. The 

comparison with the solution time of P0 without a warm start (see Table 9) highlights the 
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necessity for a good warm start when solving P0. Additionally, the small objective value gap 

between P_REL1 and P0 suggests that a solution close to the global optimum is achieved. 

Remember that P_REL1 serves as an upper bound since it assumes segment-specific pricing 

which is a relaxed version of P0. The average load factor (lf) after the constrained optimization 

(most right column) shows that demand had to be shifted between trains (or to the outside 

option) due to limited capacities. Next to the average solution times, the variance of solution 

times is important in practice. Figure 6 and Figure 7 show the solution times of all instances in 

the four demand cases as a boxplot diagram. Although the total solution time of the 3-step 

approach varies within each demand case scenario, the variance is in an acceptable range. Even 

in the slowest test instances the solution is derived in 54 sec. for network (1), in 164 sec. for 

network (2) and 2,049 sec. for network (3). More detailed analyses have also shown that the 

variance of solution times is smallest for P_REL1, slightly higher for P_REL2 and highest for 

P0, which supports the idea of using the two convex models to derive a warm start solution. 

 

 

 
Figure 6: Solution times of all instances as boxplot for railway network (1) 
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Figure 7: Solution times of all instances as boxplot for railway network (2) 
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Network Demand case 

Solution times for price interval heuristic (sec.) 
Objective  
value gap 

Avg. load 
factor P_REL1 P_REL2 P0 ∑ 

North-South 
Axis 

low 8 10 11 29 2.5% 33% 
medium 8 12 15 36 2.4% 49% 

high 8 16 20 44 2.1% 59% 
very high 8 15 19 42 1.8% 64% 

Top 50 O&Ds 

low 27 23 40 90 2.6% 33% 
medium 30 34 42 105 2.5% 46% 

high 30 44 60 134 2.4% 56% 
very high 30 39 51 120 2.1% 64% 

Top 400 O&Ds 

low 283 255 555 1,093 2.5% 33% 
medium 308 316 704 1,328 2.4% 47% 

high 339 358 735 1,432 2.3% 56% 
very high 358 366 829 1,553 2.1% 63% 

Table 10: Results for price interval heuristic (3-step approach) 
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A comparison with the data from P0 without a warm start shows significant improvements in 

terms of solution time. From the 30 instances in the medium demand case scenario, we select 

the instance with the smallest deviation from the average solution time and solve this directly 

with P0, i.e., without a warm start. The data in Table 11 show that the larger the network, the 

higher the advantage of the 3-step approach. The additional time that is necessary to solve 

P_REL1 and P_REL2 in the 3-step approach is a good investment to solve P0 with the warm 

start solution and therefore decreases the total solution time. The heuristic can decrease the 

solution time from over 20 hours to ∼22 minutes for the Top 400 O&D problem, an 

improvement of factor 56. The advantage of the heuristic increases with the size of the network, 

meaning that the bigger the problem instance is, the higher are the solution time improvements. 

 

Network 
Solution times 

improvement 
factor P0 without 

warm start 
P0 with warm 

start 
Sum of 3-step 

heuristic 
North-South Axis 669 16 35 19x 
Top 50 O&Ds 3,350 46 106 32x 
Top 400 O&Ds 72,810 652 1,292 56x 

Table 11: Improvement by applying the price interval heuristic 

 

Overall, the 3-step approach seems to be a promising way to derive prices of good quality in 

reasonable time, even for large-scale instances. Since it uses a single price interval for the linear 

approximation of the non-convex part of the original PC constraints, it works better the tighter 

the approximate lower and upper price bounds from P_REL1 are. For applications and data sets 

that achieve a large range of lower and upper price bounds after step 1, one should apply our 

proposed models with interval partitioning from 3.2.3.3. 
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3.5 Conclusion and future research 
Summary 

We considered the deterministic multi-product multi-resource pricing problem under discrete 

mixed multinomial logit demand. We discussed and analyzed the original model from a 

structural and mathematical perspective and presented various convex reformulations that serve 

as upper bounds and two heuristics yielding lower bounds for the original non-convex model. 

The numerical study showed that the model with the piecewise approximations can decrease 

the gap between the upper and lower bound significantly (< 1.5%), i.e., the objective value is 

close to the globally optimal solution. Further, for large-scale problem instances with thousands 

of products and customer segments (i.e., the railway case study), we have shown that the 

proposed price interval heuristic makes it able to derive a good solution in reasonable time and 

therefore serves as an approach for a practical application. 

 

Future research 

The current work of the authors is concerned with the proof that P_REL3 can serve as an upper 

bound arbitrarily close-to-optimum of the original problem by defining a sufficiently large 

number of price intervals " ∈ $%. Further, our relaxation P_REL3 was based on piecewise 

McCormick approximations with Hull reformulations of disjunctive constraints. While the Hull 

reformulation generates a tighter continuous relaxation of the MIP, the Big-M reformulation 

would generate a smaller MIP. To obtain a stronger formulation with small growth in problem 

size, Trespalacios and Grossmann (2016) developed a cutting plane algorithm to solve 

generalized disjunctive convex optimization problems based on cuts for the Big-M formulation. 

It would be interesting to apply the method to the piecewise McCormick relaxation of our 

pricing problem and test its solution quality and speed.  

Furthermore, it would be interesting to analyze the discrete pricing setting for P0 as an 

alternative for the continuous pricing case that we considered in this study. For the discrete 

pricing model, different solution techniques could be applied to achieve a convex optimization 

problem (e.g., linearization via Big-M constraints or the conic approach for the product 

assortment problem by Sen et al. (2018)). 

From a practical perspective, it would be interesting to see how the DMMP under the MMNL 

performs compared to existing revenue management approaches in practice. Discussions with 

the project partner have also shown that there is another restriction on prices in railway practice, 

namely that longer itineraries should not be cheaper than shorter ones if the same train is used. 

This self-imposed rule is intended to prevent customers from buying a longer (potentially 
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cheaper) ticket but leaving the train earlier. For this reason, an additional set of constraints 

should exclude this kind of price inconsistency. 
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Abstract 

 

During the past two decades revenue management has found its ways into the passenger railway 

business, in research as well as in practice. Still, advanced methods that represent the product 

choice of a rail customer by using a choice-based demand model, integrate network 

consideration including itineraries with transfers and railway specific constraints are missing. 

Therefore, this paper presents a choice-based dynamic pricing approach for large-scale railway 

networks that is developed in cooperation with the German railway company Deutsche Bahn 

(DB). An extensive simulation study is conducted to measure the revenue improvement over 

the existing approach at DB and an EMSR-b based method. The results show a significant 

revenue potential by the new model that accounts for many effects ignored in both benchmark 

models (e.g., customer choice effect, network effect, continuous pricing). Further, networks of 

realistic size with more than 3,000 products and over 6,000 resources can be solved in only a 

few minutes. Therefore, time requirements for an application in practice are fulfilled.  

 

 



A simulation study for a choice-based dynamic pricing approach for large-scale railway networks 

 82 

4.1 Introduction 
4.1.1 Motivation and overview  

The passenger railway market for long-distance travel has experienced high interest in public 

and politics during the last years in different regions all over the world. New high-speed routes 

in Asia (e.g., Beijing-Shanghai in China, the magnetic levitation train Chuo Shinkansen in 

Japan), USA (California High-Speed Rail) or Europe (Rotterdam-Genua axis) are already open 

or currently under construction. These are just a few examples of global efforts to expand rail 

transport. In addition to the increasing mobility of people in general, the environmental aspect 

of travelling becomes more and more important. Rail transport is considered to be a green 

means of transport (e.g., in Germany <1g CO2 emissions per passenger kilometer for electrified 

trains, 32g for buses, 139g for cars or 201g for aircrafts (Umweltbundesamt 2018, Deutsche 

Bahn 2018)), contributing to reduce CO2 emissions and thereby to mitigate climate change. The 

increasing interest is also reflected in the growing number of passengers, e.g., +20% passengers 

between 2009 and 2018 at DB Fernverkehr, the long-distance division of the German rail 

company Deutsche Bahn (Deutsche Bahn 2019). At the same time, the railway business is very 

capital intense since initial and ongoing investments in rail tracks and trains are high so that not 

only costs have to be tightly controlled but also revenue must be managed effectively for a 

profitable business model. Therefore, advanced revenue management (RM) techniques can help 

to increase revenues by making more informed pricing and capacity allocation decisions. This 

can be achieved by optimally matching supply (i.e., the limited seating capacity) with demand 

(i.e., different customer segments with heterogeneous willingness to pay). Like for airlines, the 

decision could be opening/closing booking classes for each itinerary or leg (quantity-based RM) 

or defining the prices for each train connection (price-based RM).  

Hohberger (2019b) shows that RM is already widely applied in practice at European rail 

companies. Sibdari et al. (2008) and Bao et al. (2014) discuss RM applications to the rail sector 

in the USA and China, respectively. At the same time, the techniques applied are typically less 

advanced compared to, e.g., the airline sector. The survey results presented in Hohberger 

(2019b) show that RM managers see a high potential for better forecasting and optimization 

methods. 

Therefore, the aim of this paper is to present a choice-based network dynamic pricing approach 

that covers the most important rail characteristics mentioned in Hohberger (2019b) and to 

compare the performance in terms of total revenue with two benchmark models: the well-

known EMSR-b heuristic and DB’s current RM approach from practice. The optimization 

model was developed in close cooperation with practitioners to make sure that all relevant 
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constraints from practice are fulfilled. Since both benchmark models are leg-based models, the 

results provided can give interesting insights also for other rail companies using similar 

approaches. The performance of the three approaches is compared and analyzed in a systematic 

simulation study. In the experiments, the proposed model yields a revenue increase of 13%-

15%, thus leading to a significant improvement over the current approach. Further analysis of 

the solution times shows that still large-scale networks with approx. 3,000 products and over 

6,000 resources can be solved in only a few minutes so that time limitations from practice are 

fulfilled. Additionally, detailed information about the simulation framework is provided so that 

the aspects mentioned can help in the design of future simulation studies.  

The paper is structured as follows: First, a short literature overview on railway revenue 

management and revenue management in general with a focus on price-based models is given. 

Second, the proposed choice-based network dynamic pricing model is introduced and the 

solution approach to solve large-scale instances is explained. Subsequently, the results of the 

extensive numerical simulation study are presented with the goal to evaluate the revenue 

potential in practice and to present statistics for solution times and quality of the new approach 

for different networks and demand cases.  

 

4.1.2 Literature overview 

Research that deals with revenue management for passenger railway companies is still in the 

minority compared to more prominent industries like airlines or hotels. Ciancimino et al. (1999) 

can be considered to be the first and still one of the most prominent examples for passenger rail 

RM research, i.e., more than 25 years after the famous contribution of Littlewood and his two 

fare class rule for BOAC (now British Airways) in 1972 (Littlewood 2005). In the past two 

decades, more papers dealing with railway RM have been published and most of them consider 

quantity-based models (e.g., You (2008), Dutta and Ghosh (2012), Wang et al. (2016)), i.e., an 

optimal decision about product availabilities is determined. You (2008) extends the one fare 

class approach of Ciancimino et al. (1999) to a two-fare class approach, i.e., a low and a high 

fare for each product. Both are dealing with a network approach, i.e., multiple products share 

the same resource. It is interesting to see that early RM models for railways already integrate 

the idea of network optimization but practical applications still rely on leg-based models 

(Hohberger 2019b). In recent years, a high interest in railway RM in China can be observed 

with models typically dealing with single-fare network models due to the restriction of the 

Chinese government of having fixed itinerary prices (Bao et al. 2014, Jiang et al. 2015, Wang 

et al. 2016). In addition to quantity-based methods, there exist a few examples that use price as 
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a decision variable, e.g., Sibdari et al. (2008) or Sato and Sawaki (2012), which are both single-

leg models, or Hetrakul and Cirillo (2014) who consider a rail network where price and 

availabilities are optimized jointly. They also integrate a discrete choice model that covers the 

booking time decision of customers. Since the applied choice model does not take alternative 

train connections into account and the considered network is of limited size, they propose to 

extend the model to cover the mentioned characteristics from practice. 

In addition to models developed for the special purpose of railway RM, there exist many 

publications for the general RM problem. Since the proposed optimization problem in this paper 

is price-based and uses a choice-based demand function, the focus in the following is on 

research on choice-based pricing models. For a broad overview of general RM models (incl. 

assortment or availability control) under customer choice see Strauss et al. (2018) who give a 

current overview. Publications on choice-based pricing can be subdivided on the basis of the 

choice model applied. Examples of pricing models that use a classic multinomial logit model 

(MNL, i.e., one single, homogeneous customer segment) are, e.g., Dong et al. (2009), Akcay et 

al. (2010), Li and Huh (2011) or Keller et al. (2014). Due to the IIA axiom (independence of 

irrelevant alternatives) in the MNL, advanced models such as nested logit or mixed logit models 

are applied to the pricing problem. For nested logit models, Li and Huh (2011), Gallego and 

Wang (2014), Li et al. (2015), Rayfield et al. (2015) or Davis et al. (2017) can be mentioned. 

They typically differ in the formulation of the nested choice model. For example, Li and Huh 

(2011) consider a nested logit model with nest-specific price-betas; Gallego and Wang (2014) 

account for product-differentiated price-betas and arbitrary nest coefficients. Li et al. (2015) 

allow for multiple nest-levels (d-level nested logit). Finally, pricing models that integrate a 

choice model covering multiple customer segments (i.e., discrete mixed logit or latent class) 

can be found in Keller et al. (2014), van de Geer and den Boer (2018), Li et al. (2018) and 

Schön and Hohberger (2019). While Keller et al. (2014) and Schön and Hohberger (2019) 

consider the capacitated multi-product pricing problem, Li et al. (2018) and van de Geer and 

den Boer (2018) neglect capacity considerations so that their findings cannot be transferred 

universally to the classical RM setting. As a final remark on discrete mixed logit models, Sen 

et al. (2018) consider the assortment optimization under this type of demand model. Due to its 

integer formulation, the approach can only be transferred to a pricing model with discrete price 

levels.  

As one can see, research on railway RM is rare but existing. At the same time, for the general 

pricing problem, there exist many high-quality publications for different kinds of choice-

models. A model that covers the railway specific constraints and a solution approach that makes 
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it possible to derive a good solution in reasonable time for railway networks of realistic size, is 

still missing. This study fills the gap by proposing a suitable model and additionally providing 

results of a simulation to evaluate the performance in terms of revenue against two benchmark 

models. 
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4.2 The choice-based railway network dynamic pricing model 
Based on the example of DB Fernverkehr, Hohberger (2019b) has presented the major aspects 

of DB’s business model that are relevant for a RM system. This analysis is used as the basis for 

the proposed model in this paper (see Hohberger (2019b) for detailed explanations).  

 

Structural characteristics 

Due to the structural characteristics of a railway network (a resource is used by multiple 

itineraries), a network-based formulation seems to be promising. This allows the decision 

maker to take the network interdependencies accurately into account, e.g., if short-haul and 

long-haul travelers compete for the same (critical) resource. Further, since train connections 

with transfers are common, a new model should also allow to consider itineraries with transfers.  

 

Representation of demand 

From a demand perspective, multiple effects should be included. Due to the strong competition 

from cars, flights and long-distance buses (i.e., intermodal alternatives), adding these transport 

alternatives to the demand function allows a fast reaction to changes in the market (e.g., network 

expansion of an airline, sales campaigns of long-distance buses). Moreover, the demand 

function should not be based on the assumption of independent demand since customers do not 

make their product choice independently of other intramodal alternatives (i.e., other train 

connections earlier/later). Due to the missing fencing in DB’s current system a demand model 

that accounts for buy-up and buy-down behavior can have additional positive impact. A discrete 

choice model that represents the product choice and uses choice probabilities to represent the 

demand is suitable for modelling both effects. This formulation would also help to determine a 

demand function that can automatically react to timetable changes by representing train 

connections on the basis of their attractiveness (e.g., travel time, no. of transfers etc.).  

 

Further railway constraints 

In addition, there are self-imposed business rules, such as the price consistency (i.e., a long 

itinerary should not be cheaper than a shorter one if they are overlapping) or having products 

other than the controlled tickets such as flexible tickets or annual tickets, which have an 

influence on the price decision. Furthermore, a second kind of price constraint can be applied 

with respect to different comfort classes, i.e., ensuring a minimum price difference between 1st 

and 2nd class.  
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Model formulation 

Since a stochastic dynamic programming approach for the network case is impossible to solve 

for networks of realistic size due to the number of dimensions and the resulting calculation 

times (Talluri and van Ryzin 2005, p. 92), a multi-period, deterministic model could be a 

possible approximation. In addition to the prerequisites shown so far, there are also some 

aspects that may simplify a RM system. For example, the load factor is on average low and 

therefore many resources are not fully used (i.e., the capacity constraint is not binding) or that 

the capacity is only roughly fixed, since standing passengers are allowed at DB and therefore 

slight overloads do not lead to passenger rejections. Due to the missing fencing and also the 

lack of an external booking system (i.e., GDS such as Amadeus or Sabre for airlines) going 

from a traditional booking class approach to continuous pricing could help to further increase 

revenues by having the option to choose from more (in fact continuous) price points. Finally, 

from a practical perspective, a system should be able to react on (unforeseen) situations in 

reasonable time, i.e., frequent recalculations, especially during the days close to departure, 

should be possible. 

 

Based on the practical requirements mentioned above, a network dynamic pricing approach that 

uses a discrete mixed multinomial logit demand model (MMNL) to represent the product choice 

of multiple discrete and heterogeneous customer groups is developed. It finds the optimal prices 

for each product (', )) that is defined as the combination of an itinerary '	and comfort class ) 

(the mathematical representation of the model is introduced in 4.2.1). Since resources are 

limited, a capacity constraint that can also account for itineraries with transfers is integrated, 

which was a restriction in previous studies (e.g., Hetrakul and Cirillo (2014), You (2008)). 

Furthermore, the optimization problem includes three different kinds of price constraints. First, 

the itinerary-price consistency constraints make sure that longer itineraries are more expensive 

than shorter ones (if travel paths are overlapping), second, comfort class price consistency 

constraints ensure a minimum price gap between a first- and second-class tickets. While the 

capacity considerations are also valid for, e.g., airline RM, the railway specific constraints, 

especially the price consistency between overlapping itineraries, are a special characteristic of 

a railway RM model. Furthermore, despite the fact that airline customers also have a choice 

between different flights, the number of offered alternative itineraries by a single company is 

typically smaller than in the railway example, especially for long-haul flights. Deutsche Bahn 

offers multiple itineraries between two cities within a day, with sometimes half-hourly services. 

That is the reason why the choice model plays a critical role in railway RM. The third kind of 
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price constraint ensures a lower and upper bound on the price variable, where the upper bound 

equals the flexible fare of the corresponding origin and destination (O&D) and the lower bound 

is, e.g., 19€ for a 2nd class ticket in the case of DB. Finally, prices can be chosen from a 

continuous set, thus offering more flexibility compared to traditional quantity-based approaches 

with discrete price points. The switch to a continuous pricing approach is already a development 

taking place in practice at other companies, e.g., Markus Brink, RM-Manager at Lufthansa 

Group, announced continuous pricing for 2019 (fvw 2018). 

 

Currently, Deutsche Bahn is using a leg-based approach, which is typical for (European) 

railway companies as seen in the survey results in Hohberger (2019b). Demand is assumed to 

be independent, i.e., potential switching behavior between train connections as a result of price 

decisions are ignored. The proposed model has three main advantages over the current one: 

Decisions are derived on an itinerary-level to cover network effects, it accounts for customer 

choice behavior and can choose prices from a continuous set. The goal of the model and solution 

approach is to find a solution in reasonable time that is of good quality in order to fulfill the 

practical requirements. I.e., it can be applied to large and complex rail networks and is solvable 

within a given time limit so that frequent recalculations are possible. The general framework 

and optimization model is based on the 3-step approach proposed in Schön and Hohberger 

(2019) that is adapted to fit the railway setting and further improved to decrease solution times. 

 

4.2.1 Model formulation 

The starting point is the non-linear non-convex formulation of the choice-based network 

dynamic pricing model from Schön and Hohberger (2019). To adapt it to the railway setting, 

the railway specific constraints to cover the two types of price consistency (itinerary- and 

comfort class price consistency) are added as mentioned above. Furthermore, the following 

notations reflect the railway specific sets in the railway setting, so that the corresponding 

optimization model is denoted as RAIL_ORG. An itinerary ' ∈ , defines a train 

connection/itinerary between two train stations. The combination of ' with a comfort class ) ∈

-	is denoted as product (', )). Similarly, a leg . ∈ / is defined as the edge between two train 

stations and the combination with comfort class ) is denoted as resource (., )). Set 0 ∈

1	represents the combinations of different O&Ds and preferred departure time windows in the 

network, e.g., Frankfurt-Berlin between 9 a.m. and 11 a.m. (called market segments). ,3̇ then 

represents the set of itineraries that passengers of market segment 0 consider as alternatives. 

Set 4 ∈ 5 denotes the different travel purposes of passengers (e.g., business, leisure) and 6 ∈ 7 
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the discrete booking periods. Following, a combination of 4, 0 and 6 defines a customer segment 

(4, 0, 6). The role of the preferred departure time windows as part of the choice process of a 

customer segment is further explained at the end of this chapter. The set ,3̈: includes all 

itineraries in market 0 that use leg .. The price for itinerary ' in comfort class ) if booked in 

time period 6 is denoted by ;<=>  and represents the decision variable, ?@3> the market potential 

of customer segment (4, 0, 6), A<3=@ the quality related utility in the logit model for product 

(', )) in 0 and 4, B@3 the price sensitivity parameter (with B@3 < 0) for 4 in market 0 and E@3>F  

the outside option for 4 in market 0 and 6. The parameter GH;:=  represents the total seating 

capacity of a resource (., )) that is reduced by the bookings on hand plus the forecast of 

travelers without a train-bounded ticket (e.g., flexible tickets, monthly passes) denoted by I:= 

(a number that increases during the booking horizon). Finally, ;<=J<K defines the lower and ;<=JLM 

the upper bound on the variable.  

RAIL_ORG:  

NHO	PPPPP;<=>?@3>
QRSTUVWXVTYSUZ

E@3>
F + ∑ ∑ QR]TÛVWXVTY]ÛZ=_∈`a∈bṪ>∈c=∈`@∈d<∈bṪ3∈e

 (4.1) 

4. 6.PPPP?@3>
QRSTUVWXVTYSUZ

E@3>
F + ∑ ∑ QR]TÛVWXVTY]ÛZ=_∈`%∈bṪ>∈c@∈d<∈bT̈f3∈e

≤ GH;:= − I:=					∀	. ∈ /, ) ∈ - (4.2) 

;<=> ≤ ;a=>				∀	j ∈ ,, ' ∈ ,ka, ) ∈ -, 6 ∈ 7 (4.3) 

;<=> + l ≤ ;<=_>				∀	' ∈ ,, ) ∈ -, )_ ∈ -̇=, 6 ∈ 7 (4.4) 

;<=
J<K ≤ ;<=> ≤ ;<=

JLM					∀	' ∈ ,, ) ∈ -, 6 ∈ 7 (4.5) 

;<=> ∈ ℝ
W (4.6) 

 

The objective function to be maximized (4.1) sums up the ticket revenue from all products (', )) 

and all customer segments (4, 0, 6). The capacity constraints (4.2) make sure that trains are not 

overcrowded by summing up the demand on the left-hand side that uses resource (., )). The 

railway-specific constraints (4.3) (called itinerary-price constraint) make sure that longer 

itineraries are not cheaper than shorter ones, if the travel paths are overlapping and therefore 

potential for arbitrage could exist. Set ,k% includes all itineraries that must fulfill itinerary-price 

consistency with respect to itinerary n ∈ ,. Constraints (4.4) (called comfort class price 

constraint) ensures a minimum price gap (l) between different comfort classes ()_ ∈ -̇=); a rule 

that is desired by the rail company from a price-strategic reason to distinguish higher and lower 

quality products also from a pricing perspective. Especially itinerary-price constraints cause 

strong network effects since many train connections are now interrelated not only by the 
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capacity constraint but also by these additional price restrictions. Finally, constraints (4.5) 

define a lower and upper bound on the variable. 

The demand function is represented by a discrete mixed multinomial logit choice model that 

can account for multiple customer segments. This is important in the railway case to account 

for different travel purposes 4 ∈ 5 and also preferences for departure time windows (0 ∈ 1, 

e.g., morning, noon, afternoon). The choice model describes the choice of a product from a set 

of alternative products, i.e., it reflects the switching behavior of customers depending on 

product attributes like travel time, number of transfers, comfort-level and most importantly 

price. Especially in a RM setting with capacity consideration, the integration of a discrete 

choice demand function into the price optimization model helps to anticipate the switching 

behavior as a result of price changes. This is a feature that a classic independent demand 

function cannot cover. The segmentation by preferred departure time helps to describe different 

preferences of customer groups from a departure time perspective. Customers preferring to 

travel in the morning probably do not consider a train connection in the evening as a possible 

alternative but consider a train connection at noon as possible (but less attractive) alternative. 

I.e., each customer (segment) has a unique departure time preference 0 but is also willing to 

deviate from its original plan to some (limited) extend so that also train connection outside 0 

are considered. Thus, a portion of the utility parameter A<3=@ covers this deviation from the 

preferred time window 0. Figure 8 illustrates the idea of segmentation by departure time.  

 

 

Figure 8: Segmentation by departure time preference. Bold arrows represent higher preference value. 

 

Although RAIL_ORG is a multi-period model, the idea would be to reoptimize the model 

frequently to account for unforeseen demand realizations and to update the optimal pricing 

decisions.  
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The results of the numerical study in Schön and Hohberger (2019) for a railway example 

without the railway specific constraints have already shown that directly solving the non-linear 

non-convex model (here RAIL_ORG) is not practicable in terms of solution time and the 

evaluation of the quality of the solution due to the missing guarantee of a globally optimal 

solution is not possible. With the proposed 3-step approach, they are able to decrease solution 

times by a factor of up to 56 and can give information about the maximum gap to the (still 

unknown) globally optimal solution of the non-convex model. In the following only basic 

insights into the heuristic are given and the focus lies on the adjustments that were made to fit 

RAIL_ORG. Model formulations of RAIL_INV and RAIL_INV_LOG, that have to be solved 

as part of the heuristic, are given in the appendix. For further details of the 3-step approach and 

the general dynamic pricing model see Schön and Hohberger (2019). 

  

4.2.2 Solution approach 

The idea of the 3-step approach is to solve three slightly different models in a row, where 

RAIL_INV and RAIL_INV_LOG both are fast and convex and therefore able to derive a warm 

start solution for solving the original, non-convex model formulation (RAIL_ORG). Figure 9 

gives an overview on the solution approach.  

 

 
Figure 9: Overview of adapted 3-step approach for the railway model 

RAIL_INV uses the inverse price-demand function so that the decision variables in that model 

are the choice probabilities for each product and customer segment (compared to ;<=>  as in 

RAIL_ORG). This is a typical approach used by other researchers before to transform the non-

convex model to a convex one (e.g., Schön (2010a), Keller et al. (2014)). The remaining 

challenge with a discrete mixed logit demand model in RAIL_INV is that the optimal product 

prices are potentially different for each customer segment (i.e., ;̇<=>@3). Since segment-

individual pricing is typically not of interest in practice, an additional constraint has to be added 
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that ensures a uniform price for each product. This is done in RAIL_INV_LOG by a uniform-

price constraint that ensures a unique price ;<=> . Since this new constraint is non-convex in its 

original form, the non-convex part of the constraint is approximated by a linear function. Thus, 

RAIL_INV_LOG includes only an approximate uniform price. The motivation of solving 

RAIL_INV beforehand is that the solution of RAIL_INV is used to improve the approximation 

in the uniform-price constraint in RAIL_INV_LOG. The solution of RAIL_INV_LOG can then 

be used as a warm start for solving RAIL_ORG as a last step of the solution approach to find a 

good, feasible solution since the outputs of both RAIL_INV and RAIL_INV_LOG must not 

deliver a feasible solution for RAIL_ORG. Additionally, since the optimal objective value of 

RAIL_INV is an upper bound to the (unknown) maximum revenue of RAIL_ORG, the former 

serves as a reference point to evaluate the quality of the (possibly local) solution of RAIL_ORG. 

 

Since the 3-step approach is originally developed for the general dynamic pricing case, it is 

adjusted to fit the railway specific setting. Two main adjustments are considered: Since 

RAIL_INV_LOG introduces a specific price variable ;<=>  , the two types of price constraints 

(itinerary-price and comfort class price constraints) can only be represented with a convex 

representation from this point on. To make sure that the tighter price bounds derived with 

RAIL_INV allow a feasible solution with respect to the newly introduced constraints, an 

additional step is applied before solving RAIL_INV_LOG. It ensures that two products which 

must fulfill price consistency have overlapping price ranges to make a feasible solution 

possible. The parameter that determines the size of the overlapping price range has to be defined 

by the user. The increase of the price range comes at the cost of a slightly worse linear 

approximation. The same kind of check and possible adjustment of overlapping price ranges is 

performed for the comfort class price consistency.  

 

Furthermore, pretests have shown that the high number of additional price constraints 

(especially the itinerary-price consistency) makes it impossible to solve RAIL_INV_LOG and 

RAIL_ORG in acceptable time, even with a warm start. To further improve solution times, two 

ways to decrease the number of constraints in RAIL_INV_LOG and RAIL_ORG are proposed 

in the following section. 

 

Itinerary price consistency constraints 

Within a large-scale rail network, there exist multiple overlapping train connections and thus a 

high number of price consistency relations. Overlapping in this context means that an itinerary 
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B can also be used to travel itinerary A, since it includes all resources from A. Figure 10 shows 

that itinerary A is overlapping with B & C and B is overlapping with C so that the prices of 

these three products should fulfill the following three conditions: ;o ≤ ;p and ;o ≤ ;q  and 

;p ≤ ;q .  

 
Figure 10: Example for itinerary price consistency 

By applying the concept of transitivity, one can easily reduce the number from three to two 

constraints since ;o ≤ ;q  can be expressed by the combination of the other two constraints 

(;o ≤ ;p and ;p ≤ ;q). It reduces the number of relations significantly. For a network that 

consists of DB’s Top 400 O&Ds with approx. 10,000 itineraries, the number of price 

consistency constraints can be decreased from approx. 213,000 to 53,000 (-75%) without losing 

any accuracy.  

 

Capacity constraints 

The benefit of the 3-step approach is not only a good warm start solution for RAIL_ORG it can 

also be used to gain approximate information about the utilization of resources in the network 

from the intermediate results of RAIL_INV and RAIL_INV_LOG. Constraints that are not 

binding in the optimal solution can be removed without any change in the optimal solution. 

Typically, one has no knowledge about the capacity utilization before an optimal solution is 

derived and therefore has to solve a model with the full set of constraints. But in the 3-step 

approach, one can derive information about the utilization from RAIL_INV and therefore 

decrease the number of capacity constraints for RAIL_INV_LOG. In a similar way, the solution 

of RAIL_INV_LOG can be used to remove (probably non-binding) capacity constraints in 

RAIL_ORG.  

With the solution of RAIL_INV, one can derive a utilization rate in % for each resource (., )). 

Since the comfort class price constraint is only introduced in RAIL_INV_LOG and it can 

generate a significant number of passengers switching from first to second class, the rule that a 

resource (., )) is deleted from the set of resources is applied if the utilization rates of (., )) and 

(., )_) are both ≤ r (where	r is a parameter to be defined). Similarly, the solution from 

RAIL_INV_LOG is used to derive updated resource utilization rates and a resource is deleted 

Train No. 
420

Itin. A
Itin. B

Itin. C

St. 2Station 1 St. 3 St. 4



A simulation study for a choice-based dynamic pricing approach for large-scale railway networks 

 94 

from the set if the utilization of (., )) is ≤ r′ (where rt is a second parameter to define). The 

optimal solution from RAIL_ORG (with the reduced set of resources) is finally tested for 

feasibility for the full set of resources. In case of an infeasibility, RAIL_ORG is again solved 

with the additional constraints that cause the infeasibility. From a practical point of view, it is 

also possible to accept a slight overbooking in the feasibility check, e.g., overbookings of 1% 

of the capacity are considered to be fine and no recalculation is conducted. Especially in the 

railway case, where standing passengers are allowed, setting prices that yield an expected 

utilization slightly above 100% would be acceptable to avoid additional iterations of solving 

RAIL_ORG. To achieve a feasible solution directly in order to avoid frequent recalculations, 

one has to carefully choose the value of r′	so that the number of constraints is significantly 

reduced but at the same time all critical resources are still considered. Historic demand data of 

DB show that there typically exists only a small amount of bottleneck resources and thus most 

of the resources can be ignored. In the simulation study values of r = 70% and rt = 90% are 

used. 
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4.3 The simulation framework 
From a practical perspective, a new model is as good as it outperforms an existing approach. 

To evaluate the performance of the new choice-based network dynamic pricing model (denoted 

as O&D) an extensive market simulation is conducted that makes it possible to construct 

various, stochastic demand scenarios (explained below) and finally compare the total revenue 

of the new approach with alternative RM approaches. Therefore, prices for each product are 

derived under each considered RM model and a series of randomly generated arriving 

customers is constructed to derive a buying decision accordingly. In this study, the new O&D 

model is compared with two alternative RM-approaches: Benchmark approach “DB” reflects 

the current DB-approach and benchmark approach “EMSR-b” is based on the well-known 

EMSR-b heuristic. Since EMSR-b is a prominent heuristic in practice, the results of “EMSR-

b” are probably more universally transferable to other rail companies and “DB” gives a 

practical insight about possible revenue improvements at the specific example of DB 

Fernverkehr. Since Hohberger (2019b) has shown that leg-based approaches are still dominant 

in practice (and both benchmarks rely on leg-controls) the results of the simulation provide 

interesting insights also for other rail companies.  

 

4.3.1 Benchmark policies 

Benchmark approach “EMSR-b” 

EMSR (i.e., expected marginal seat revenue) is a well-known heuristic for the single-leg, 

quantity-based RM problem (Belobaba 1987). It is the extension of Littlewood’s rule (assuming 

two fare classes) to the multiple fare class case and is widely applied in practice (Talluri and 

van Ryzin 2005, p. 45ff.). While there exist two versions of the heuristic (EMSR-a and EMSR-

b), EMSR-b is chosen to be a benchmark approach since it is one of two models applied by DB 

Fernverkehr in practice (see explanations for the second benchmark “DB”). EMSR-b derives 

nested protection levels for each resource and booking class based on an independent leg 

forecast. A booking class (≠ comfort class) in DB’s RM system is simply defined as a discrete 

price step without any fare rule. Following, the value of the booking class availability defines 

the maximum number of tickets to sell for the corresponding price level. Since EMSR-b can be 

implemented by using simple formulas, it is very fast in deriving the decision even for large 

networks and can also be parallelized very well. For detailed insights into the calculations for 

EMSR-b-based protection levels see Talluri and van Ryzin (2005).  

Since EMSR-b is a single-leg heuristic, it does not derive a price for multi-leg products directly. 

To derive the final product prices, DB’s way of transferring EMSR-b based booking class 
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availabilities to product prices is applied. The following example illustrates the approach: First, 

for a product (e.g., a comfort class “2” ticket for a scheduled train connection departing from B 

at 10:00 a.m. and arriving at E at 11:35 a.m.) it is evaluated which of the three used resources 

(B-C, 2), (C-D, 2) and (D-E, 2) is the most restrictive one according to the EMSR-b booking 

class availabilities. Assuming (C-D, 2) is binding, where only booking class 3 is available, then 

;̂p{|,}
Y~�:<J

:= ;ÅÇ
É.Ñ:L@@ , where ;ÅÇÉ.Ñ:L@@ is the price corresponding to booking class 3. Second, there 

exists for each product (', )) a specific set E<= of possible discrete prices, e.g., Ep{|,} =

{19,29,39,59,79}. Both information combined is then used to derive the final O&D price 

;̀p{|,}
|ådçÉ:= min

L	<K	oëíì,î:	LïYñëíì,î
óòôfSö

(H)	, meaning the smallest price larger than the booking class 

price is chosen. Or, in general form, for comfort class 2 itineraries: ;̀<,}|ådçÉ: =

min
L	<K	oS,î:	LïYñS,î

óòôfSö
(H)	. While the second-class price is derived as described, the first class price 

must additionally fulfill the requirement that a minimum price gap of l to comfort class 2 must 

hold, so that the following formula applies for first class prices: ;̀<,õ
|ådçÉ:=

min
L	<K	oS,ú:	LïYñS,ú

óòôfSö
	∧	LïỲS,î

ìûü†°W¢

(H) .  

 

Benchmark approach “DB” 

The current system consists of two parallel optimization procedures, an EMSR-b based booking 

class availability control as described in the previous paragraph, and a rule-based approach that 

covers the willingness to pay of customers (also controlled on a leg level; in the following 

denoted as discount-control). The rules are defined manually by the RM personnel based on 

market tests and expert knowledge. The final price of a product is defined by the most restrictive 

approach (i.e., either the EMSR-b or the discount-control). The underlying idea is having the 

EMSR-b-control to increase prices in case of bottlenecks along the itinerary and second, the 

discount-control to optimize for willingness to pay of customers, depending on which approach 

dominates. Different from an EMSR-b-control, it does not control booking classes with fixed 

prices. Instead, it determines (also for each resource) the discount with respect to the flexible 

fare ;<=JLM that is granted for any product that uses the resource, where the various discount 

levels are given by a discrete discount set, e.g., £ = {70%, 50%, 20%, 0%}. To achieve lower 

prices, discount classes with higher discounts are opened and vice versa. Similar to the EMSR-

b approach, the most constraining resource that a product uses determines the discount that is 

applied on the flexible fare of that product. Since the flexible fare ;<=JLM is O&D/product-

specific and therefore higher for longer itineraries than for shorter ones, the discount-control 
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does take some O&D consideration into account, which is in fact the main reason why it is 

applied in practice. The availabilities of the discount classes in practice are controlled manually 

by the RM managers. Since this kind of manual control is hard to transfer to a computer driven 

simulation, an approach that automatically derives the resource-based discount levels was 

developed together with DB in order to represent the idea of the discount-control.  

 

4.3.2 Framework of the simulation 

Williamson (1992) discusses and proposes a general framework for a simulation to evaluate the 

performance of RM-techniques. This simulation study is based on her findings and is adjusted 

so that it fits the railway environment and choice-based passenger behavior. First, Williamson 

proposes to split the booking period into discrete time intervals rather than just considering a 

single (long) booking period. It has the advantage of updating the availabilities/prices in case 

of unforeseen demand realizations at the beginning of every period by reoptimizing the model 

and also better representing an application in practice, where data are frequently updated over 

the booking horizon. It can therefore be described as a dynamic simulation. Second, one has to 

decide how the randomly distributed demand in each period is derived. Demand in that sense 

can be divided into 1) the random number and segment membership of arriving customers and 

2) the random product choice of each simulated customer. For simulating the arriving 

customers, different distributions are discussed by Williamson (1992). The well-known and 

widely adopted normal distribution has the disadvantage of being continuous, which is an 

unrealistic behavior when modeling discrete passengers and it can lead to negative demand 

realization, so it has to be adjusted to avoid negative realizations. The gamma distribution has 

the disadvantage of allocating zero probability for a zero-demand realization and is also 

continuous. As mentioned by Williamson, especially in the O&D case, it is not uncommon to 

realize zero demand for a specific O&D product within a booking period and thus an unrealistic 

assumption of the gamma distribution in this context. Finally, the Poisson distribution seems to 

be a promising way to represent the random demand over time. Due to its discrete formulation 

it avoids continuous demand realizations and it is truncated at zero, so that negative draws are 

avoided but values equal to zero still possible. Williamson (1992) and Lee (1990) conclude that 

using a Poisson distribution is a valid approach to randomly model arriving passengers in an 

O&D simulation. For further information and a comprehensive discussion of creating a 

simulation study in RM see Williamson (1992, Ch. 5). More details on how the demand is 

randomly created for this simulation study are given below.  
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The simulation is constructed as follows: The booking horizon of 180 days is split into 9 discrete 

time intervals. At the beginning of each time interval, the booking class availabilities in 

benchmark model “DB” and “EMSR-b” and the prices based on the O&D model are derived, 

taking the remaining capacities into account. Within each time interval, a series of customer 

requests is simulated, each of it characterized by a specific desire for an O&D, departure time 

and travel purpose, so that customers differ in the consideration set and the evaluation of 

products. This segment membership is randomly created for each arriving customer based on 

the empirical mix. Following, one can derive the MMNL choice probabilities for each customer 

for all considered product alternatives with prices based on “O&D”, “DB” and “EMSR-b” and 

finally simulate the product choice for all three models separately. The generated revenue from 

ticket sales in each period and for each of the three approaches can then be easily calculated. 

After all buying decisions for a specific period are simulated, the simulation proceeds with the 

next period (i.e., the capacities are updated based on realized ticket sales and all three models 

are solved again). In case of a fully booked resource, the simulation immediately reacts (i.e., 

within a time interval) and closes the sales of all products that use this resource and includes 

the information into the following simulated choice situations by making these products not 

available. Although this increases the complexity of the simulation, it is necessary to avoid the 

occurrence of overbooking. 

  

 
Figure 11: Overview on processed steps in each period 
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Figure 11 shows the flow chart of the simulation for one exemplary simulation period. In the 

following, further insights into the structure and assumptions of the simulation are explained.  

 

Deriving leg based independent demand forecast 

The goal of the simulation is to obtain insights into the performance of the three different 

optimization approaches, i.e., the results should not be driven by more accurate data for a 

specific model. Since the EMSR-b heuristic (that is part of DB and EMSR-b) is based on the 

independent demand assumption and uses a traditional forecast for booking classes for each 

resource, it differs from an O&D-choice-based forecasting approach where the O&D market 

demand and the choice model itself represents the price-sales relationship. Talluri and van 

Ryzin (2004) already mention in their study that there is no unique, correct way to derive 

forecasts from a choice-based demand model for an optimization approach that uses the 

independent demand assumption. To make sure that the forecasting quality is similar and the 

final comparison as fair as possible, the O&D-choice model is used to derive a leg-based 

forecast. I.e., first the demand for each product (', )) in each booking class § and time period 6 

is defined as 

•<=É>: = ∑ ∑ ?@3>
�
¶STUVß®VTó©°

°.™f´VV

oVTZ
¨ W�

¶STUVß®VTó©°
°.™f´VV

W∑ ∑ �
¶]TÛVß®VTó̂]ÛZ

Û∈≠]∈Æ̇T,Ø∞S

@∈d3∈ėS
 , where ;̅a=_> is the price 

from the solution of RAIL_ORG for all alternative products. To derive the incremental demand 

for each booking class, define •<=É><KÑ~ = •<=É> − •<=	(É{õ)	> and finally determine the leg-based 

forecast as ≤:=É = ∑ ∑ •<=É>
<KÑ~

>∈c<∈b≥f
 . Further, a normally distributed demand is assumed which 

is in line with DB’s approach. Since the procedure of deriving the leg-based demand as 

explained above does not deliver any knowledge about the variance, the variance is assumed to 

equal the expected demand for each leg. This approach of deriving a leg-based forecast has the 

advantage that the same source of data is used for O&D, DB and EMSR-b. Although the leg-

based forecast is derived by a choice model, the values are finally considered as 

fixed/independent, i.e., do not dependent on other product or booking classes availabilities and 

therefore fulfill the independent demand assumption.  

 

Simulating the number of customer arrivals 

The number of arriving customers (i.e., total market potential) in each booking period 6 is 

assumed to be Poisson distributed with mean ?¥>, where ?¥>:= ∑ ∑ ?@3>3∈e@∈d  for 6 =

Gµ∂∂Q∑6	;Q∂'∏π, i.e., ?¥>~�L:<3�∫ is the randomly generated market demand value based on a 

Poisson distribution with mean ?¥>. Since ?¥>~�L:<3�∫  does not include any information about the 
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desired departure time, O&D and travel purpose, one has to randomly assign its market 0 and 

travel purpose 4 to each of the customers in ?¥>~�L:<3�∫ . 

The allocation of an arriving customer request to market 0 and travel purpose 4 is modelled as 

a discrete random variable where the corresponding probabilities are estimated based on the 

empirical mix. It means that both the realized number of arriving customers and also the 

segment allocation are determined randomly. This approach also ensures that customers arrive 

in a mixing order, which is especially important close to departure with limited remaining 

capacities. Furthermore, demand in all discrete periods is assumed to be independent, i.e., a 

higher random demand realization in period 6 has no influence on the random demand 

realization in the following periods 6 + 1, . . . , 7.  

 

Simulating the customer choice behavior  

In addition to the randomly generated arrival process of customers, the choice of each customer 

must be modeled to derive the choice decision. Two different choice-settings are constructed. 

In the first one (called perfect forecast), the choice model and data that are used to derive 

forecasts for DB and EMSR-b and are used in O&D are applied. This case corresponds to the 

practical situation where choice data (i.e., the A and B values) can be perfectly estimated. 

In a second setting (called imperfect forecast), it is assumed that choice data cannot be perfectly 

estimated in practice. Therefore, choice parameters A<=@3 and B@3 are adjusted for each (4, 0) 

and E@3>F  for each (4, 0, 6) by a factor that is randomly drawn from the uniformly distributed 

interval [0.7	, 1.3] and the buying decision is derived accordingly (similar to Vulcano et al. 

(2010)). This case, which is probably the more realistic scenario in practice, can give insights 

about the robustness of the revenue gap between the models.  

In addition to the randomization of the choice parameters, it would also be conceivable to use 

a choice model with a different structure to derive the choice decision in the simulation (e.g., 

nested logit). Talluri et al. (2010) explain that it is a common approach in research to use the 

exact same model in optimization and simulation. However, they also mention the fact that on 

the basis of this approach only the improvement by the algorithm can be tested and no statement 

can be made about the validity of the choice model itself. Since the focus is on the evaluation 

of the optimization methods and the MMNL is able to represent heterogeneity in product 

evaluation of different customer groups, this approach seems reasonable.  
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Further assumptions 

In the simulation, one full, specific departure day in the future is simulated. In fact, also for a 

practical implementation solving a series of single departure days is recommended instead of 

solving one single model that reflects all 180 departure days in future. The seat capacity in a 

comfort class on a train is defined as the limit for ticket sales (i.e., in case a resource is fully 

booked, all products that use the resource are marked as sold out). For simplicity, the case of 

cancellations is ignored and single arriving customers are assumed (i.e., no group bookings). 

Further, for solving RAIL_ORG the remaining booking periods are defined as two periods 

where 6 = 1 is the current planning period and 6 = 2 is the aggregated future. It reduces the 

number of variables to optimize but still makes it possible to consider future high-fare demand. 

Additionally, when testing the solution of RAIL_ORG for feasibility in the 3-step solution 

approach, an overbooking of up to 1% of the resource capacity is accepted. To account for 

uncontrolled customers (i.e., customers with flexible tickets or annual passes) the current 

practice is applied, i.e., the capacity is decreased at the very beginning of the first booking 

period by I:= based on historical data.  

 

4.3.3 Test instances and data 

Test networks 

To evaluate the performance of the new O&D model the simulation is run for two different test 

networks, both based on the schedule of DB Fernverkehr. The first network covers the top 

O&Ds on a north to south axis in Germany (from Hamburg to Stuttgart). I.e., all important 

combinations of cities/train stations (=O&Ds) along that route are chosen and further, all 

itineraries between these O&Ds are considered. This network is called “North-South axis”. The 

second test network is constructed by taking only the O&Ds of the entire long-distance network 

into account that generated high revenue based on internal data of DB Fernverkehr. This 

network is called “Top 50 O&Ds” since the 50 most valuable O&Ds are chosen. The rationale 

behind the two networks is having one network (“North-South axis”) that has a dense, 

sequential structure with many overlapping itineraries and a mix of short- and long-haul O&Ds 

and a second highly interconnected network (“Top 50 O&Ds”) that represents a realistic 

network for a practical application. Using various networks gives an indication of how much 

the results depend on the network structure. Table 12 shows some statistics about both 

networks.  
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Network # itineraries i # products (i,q) # resources (l,q) 
North-South axis 667 1,334 1,080 
Top 50 O&Ds 1,523 3,046 6,384 

Table 12: Statistics for test networks 

 

Data 

The necessary data to solve O&D, DB and EMSR-b can be split into two categories. First, 

operational data like the set of products, the itinerary-leg consumption matrix, available 

resources etc. and second, demand related data like the A and B values for modelling the 

customer choice or market demand parameter ?. For the operational data, the network data 

generation algorithm (NDGA) from Hohberger and Schön (2019) is applied to the full schedule 

of DB to derive itineraries and corresponding data for DB’s full network. In a following step, 

only the relevant data for the test network are extracted, so that all itineraries and corresponding 

data are included in the data set for each network. For the demand model, internal choice model 

data of DB Fernverkehr are applied (currently used for medium-term planning purposes), i.e., 

sensitivities (B) with respect to price and product attributes like travel time or number of 

transfers. Together with the attribute values (e.g., travel time, number of transfers) from the 

data generation algorithm, the non-price utility parameters A can be calculated. Further, based 

on internal data about historic market shares and prices the values for the outside option EF are 

derived.  

 

Demand cases 

To evaluate the performance under different demand scenarios, three demand cases (low, base 

and high) are defined. The base case demand scenario is calibrated in a way that the number of 

bottleneck resources (in %) in the simulation results of DB (i.e., the current DB-approach) 

equals the numbers from DB’s booking history. A resource (., )) is defined as a bottleneck 

resource if the utilization is larger than 95%. Numbers from DB’s booking system show that 

on a standard day in 2018 4.1% of the resources are utilized by more than 95%, so the demand 

?@3> is calibrated in the base case of the simulation accordingly. The low demand case is 

defined by a demand decrease of 30% and the high demand case by an increase of 30% over 

the base case.  

Another possibility to define demand cases would be using the average utilization (i.e., load 

factor) in the network. Since an average network utilization rate does not give any information 

about the distribution over the network, especially about the number of highly utilized 
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capacities which is crucial in network RM, using the bottleneck definition seems to be more 

suitable to construct realistic demand cases. 

 

4.3.4  Simulation of special O&D model versions 

In addition to the main simulation explained above, two adapted versions of the O&D based 

approach are tested. The first special case is denoted as “Discretized Prices”. In this approach, 

the optimal continuous product prices of O&D are rounded to the closest discrete price given 

by a predefined set by the company (see E<= from EMSR-b). The motivation behind is that 

legacy RM systems and sales platforms in practice are often based on the logic of booking 

classes and implementing continuous pricing policies would require major systems changes. 

Instead, mapping continuous prices to booking class prices could be a viable workaround. An 

interesting question is therefore how big the effect of continuous pricing is and how big the 

sales potential of the O&D model would be if one were still bound to discrete price levels. Since 

limiting the price variable in RAIL_ORG to a set of discrete prices would lead to a non-linear 

integer problem and is thus intractable to solve for large networks, the rounding heuristic 

described above is used. Also, RM managers from DB Fernverkehr argued that it is a reasonable 

way for a first practical application and therefore interesting for practice. 

The second special case is denoted as “Approximate Prices”. The idea is to use the 

approximate prices from the solution of RAIL_INV_LOG since they are feasible in all self-

imposed business rules (i.e., lower and upper price bounds, itinerary-price consistency and 

comfort class price consistency). The advantage of using the prices of RAIL_INV_LOG is that 

solution times for different instances have a low variance for both convex models (RAIL_INV 

and RAIL_INV_LOG), while RAIL_ORG has a high variance in high demand situations (see 

4.4.2). Since the available solution time is limited in practice and predictability is important, 

the solution of RAIL_INV_LOG could be used as a valuable fallback. The disadvantage is that 

these prices may not be feasible with respect to the capacity constraint and probably do not 

yield the largest revenue in the simulation. Since the simulation is constructed in a way that 

sold out products are immediately removed for all following passengers from the set of 

available products, the infeasibility can be realistically reflected in the simulation.  

 

Figure 12 gives an overview of all different settings that are tested as part of the simulation 

study. In total 3 ∗ 2 ∗ 2 ∗ 3 = 36 settings are created and for each combination in the main 

simulation 10 randomized instances and in both special cases 5 randomized instances are 

solved. This is done to report average results over various random simulation instances.  
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Figure 12: Overview on different settings in the simulation  
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4.4 Simulation results 
In the following, the results of the simulation study are presented. First, the advantages of the 

new O&D based model over both benchmarks are qualitatively discussed. Second, quantitively 

results of the main simulation are presented. That includes the analysis of solution time and 

revenue improvement compared to the benchmark models. Finally, results of both special cases 

are presented and discussed. 

 

4.4.1 Qualitatively discussion of O&D model 

The overall improvement of the O&D model can be split into four main categories that are 

currently ignored in both benchmark models. 

Controlling products/itineraries: The possibility to control itineraries instead of legs increases 

the number of control variables and thus makes more precise decisions possible. With a leg-

based approach like EMSR-b, one single resource influences the price of multiple products 

simultaneously. One can imagine the EMSR-b control in the railway context as if a single RM 

manager was just trying to maximize revenue on that specific resource and ignoring sales and 

resources in the remaining part of the network. In fact, having the flexibility of controlling 

prices at the product level instead of the resource level can be seen as the enabler for the 

following three improvements. 

(Traditional) network effect: Decisions on an itinerary level make it possible to account for 

(traditional) network effects, i.e., a resource is used by multiple products (short- and long-haul 

itineraries). Thus, in case of high demand, a decision which product request to accept or reject 

has to be made precisely. In the price-based formulation, the network consideration leads to 

accurate pricing decisions (i.e., increasing prices in various intensity) for the various products 

that use the same bottleneck resource. 

Choice-based network effect: Integrating the discrete choice demand function into the 

optimization model allows for anticipating the switching behavior to alternative products (i.e., 

a switch to a different comfort class or to alternative train connections earlier/later). Especially 

in case of a bottleneck resource it can help to make the right decision, e.g., “Is it better to 

increase the prices of the products that use a bottleneck resource or is it better to decrease prices 

of alternative products, or both?”.  

Continuous pricing: Finally, having the option of choosing prices from a continuous set 

increases the solution space and can thus increase revenue.  
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4.4.2 Results of the main simulation 

Solution time 

For a practical application, a model should be able to find a solution in reasonable time. 

Typically, reoptimization takes place over night. Additionally, close to the departure day also 

an intraday reoptimization should be possible to react immediately to unforeseen demand 

realizations. Assuming that for the future 180 departure days that are available for sale, daily 

reoptimization takes place only for the departure days close to departure (i.e., with ≤ 30 days 

remaining booking horizon) and every 3 days for all days with a longer remaining booking 

period, a company would have to solve 30 + 50 = 80 instances each night. With a nightly batch 

of 8 hours, a model should be solved in under 8 ∗ 60/80 = 6 minutes when using one machine. 

Since each model is separated (i.e., departure day 67 in future does not depend on departure 

day 64) one could easily parallelize the optimization. In addition to the (average) solution time, 

the variance is important from a practical perspective as well. A model that has a high variance 

for the solution time is somewhat unpredictable. The presented statistics are the averages of the 

ten random simulation instances for the perfect forecast scenario in the main simulation. In each 

simulation instance the O&D model is solved nine times (once for each booking period). Since 

the solution of the first period is the same for each of the ten instances (since randomization 

only has an impact afterwards) and the last period has approximately half the number of 

variables (since there is only t=1, and no future period t=2), the solution time results of booking 

period two to eight are averaged to give an unbiased overview. I.e., each number is an average 

over 7 ∗ 10 = 70 data points. For the simulation and optimization, AMPL and Knitro 11.0.1 

under Windows 7, Intel Xeon E5 with 3 GHz 16 cores, 64 GB RAM were used. In total, the 

whole simulation for all instances in the different scenarios took approx. 105 hours (or four and 

a half days), while most of the time is caused by the simulation itself (and not the optimization 

of O&D, DB or EMSR-b).  

 

For both networks in all demand cases, the proposed 3-step approach is able to find a feasible 

solution in under 6 minutes. Table 14 summarizes the solution times for the different settings. 

Solving the smaller, sequential network “North-South axis” takes on average 26 seconds in the 

base case, with slight decrease (increase) for the low (high) demand case and an acceptable 

standard deviation. Interesting to see is that RAIL_INV and RAIL_INV_LOG have larger 

solution times than RAIL_ORG. In addition to the warm start that is provided, also the 

reduction of capacity constraints helps to improve solution times (both information is a result 

of the previous solved model RAIL_INV_LOG). For the larger network (Top 50 O&Ds) 
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solution times are as expected larger but still fulfill the practical requirements. What is 

remarkable, however, is that the solution times for RAIL_ORG increase significantly with 

increasing demand, while the solution times of the two convex models (RAIL_INV and 

RAIL_INV_LOG) remain relatively stable (with also low variance). The same applies to the 

variance where RAIL_ORG has a larger standard deviation in all demand cases compared to 

the convex models, with strong outliers in the high demand scenario. In fact, this result was the 

motivation for constructing the special simulation case “Approximate prices” to test how the 

solution of RAIL_INV_LOG performs in case RAIL_ORG does not find a solution within a 

given time limit.  

Finally, since RAIL_INV is a relaxed version of RAIL_ORG it serves as an upper bound and 

therefore enables the evaluation of the maximum possible deviation of a feasible solution from 

the globally optimal solution (under the consideration that a slight violation of the capacity 

constraint in RAIL_ORG is accepted). The gap is with approx. -2% quite small (i.e., compared 

to RAIL_INV the objective value in RAIL_ORG decreases by that percentage) and can also be 

explained by additional restrictions that apply in RAIL_ORG. Since the mentioned data are 

averages, a detailed look into single instances gives additional information. It can be observed 

that the largest gap achieved in the analyzed data is -3.3% gap for an instance in the North-

South axis and -2.7% for the Top 50 O&D network.  

 

Revenue impact 

The analysis of the revenue impact provides an overview about the potential that can be 

generated in practice and serves as an important argument for an implementation decision. 

Benchmark models DB and EMSR-b are used as the basis for calculating the revenue 

improvement of the O&D model (in %). This means that positive percentages show an 

improvement through the application of O&D. 

Table 15 summarizes the results and provides additional information about the utilization in the 

network. The load factor is the average over all resources with a utilization >20% and the no. 

of bottleneck shows the share of resources with utilization >95% in relation to the total number 

of resources. The data show a clear advantage of the O&D-based model. The revenue 

improvement compared to DB is significantly lower than compared to EMSR-b, which is in 

line with the assumption from practice. The poor performance of EMSR-b is the result of 

applying a methodology based on assumptions (e.g., fencing, low-fare demand arrives before 

high-fare demand, single resource) not found in DB Fernverkehr's pricing strategy. In fact, DB 

uses the manual discount-control to overcome these weaknesses. Overall, in most cases the 
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O&D model shows a higher capacity utilization compared to DB and EMSR-b, which suggests 

that the revenue increase is achieved through an improved network utilization. A look at the 

average prices from tickets sold (see Table 13) also shows that this is not achieved by a 

generally lower or higher average price level of sold tickets since ;̈|ådçÉ
L¡¬

≤ ;̈√&≈
L¡¬

≤ ;̈≈p
L¡¬ . An 

improved steering between train connections and short- and long-haul travelers through the use 

of the choice-based network approach is one explanation. Interesting to see is also that 

compared to DB the improvement through O&D increases with the demand. A reason can be 

that bottleneck situations can be better solved and controlled by taking the customer choice and 

network effects in the optimization into account. The numbers also show that the revenue 

benefit (compared to DB) is relatively similar for both kind of networks. From a practical point 

of view, this is a satisfying result as it shows that the revenue potential is hardly dependent on 

the network structure to which the model is applied. 

It is also striking that the revenue advantage in both comparative models is lower in the 

imperfect forecast case. The O&D approach thus appears to be less robust in the case of 

imperfect forecasts. Since an imperfect forecast is the more realistic case in practice, a revenue 

increase of approx. 13-15% (base case) by implementing O&D is considered to be the most 

appropriate result. 

 

Network Demand 
Avg. price of tickets sold 

O&D DB EMSR-b 

North-
South axis 

low 27.52 28.09 24.62 
base 27.79 28.60 26.01 
high 28.36 29.24 27.43 

     

Top 50 
O&Ds 

low 30.77 33.64 24.43 
base 31.67 35.53 27.94 
high 32.89 37.50 30.71 
Table 13: Average prices from tickets sold
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Network Demand 
 RAIL_INV  RAIL_INV_LOG  RAIL_ORG  Total Obj. value gap 

to upper bound  mean std.dev.  mean std.dev.  mean std.dev.  mean std.dev. 

North-South 
axis 

low  10 0.2  10 0.7  3 0.3  23 0.9 -2.01% 

base  10 0.2  12 2.9  4 0.4  26 2.9 -2.10% 
high  10 0.1  15 1.7  6 0.6  30 1.9 -2.59% 

               

Top 50 
O&Ds 

low  41 1.6  29 3.2  12 7.6  82 9.4 -2.30% 

base  44 0.9  33 4.5  14 5.6  92 6.9 -2.01% 
high  45 1.1  35 3.9  54 45.0  133 43.5 -1.82% 

Table 14: Statistics for solution times in seconds and objective value gap between RAIL_ORG and upper bound model RAIL_INV. 

    Revenue improvement w.r.t.  Load factor (>20%)  Bottleneck resources (>95% load factor) 

Network Demand 
forecast 
quality  DB EMSR-b  O&D DB EMSR-b  O&D DB EMSR-b 

North-South 
axis 

low perfect  13.1% 20.0%  51.1% 48.5% 51.2%  4.6% 0.8% 1.5% 

base perfect  16.5% 20.9%  58.6% 55.3% 57.7%  10.6% 3.9% 4.7% 
high perfect  21.2% 24.4%  64.4% 59.0% 60.4%  17.3% 7.0% 7.7% 

low imperfect  9.8% 14.8%  50.5% 48.8% 51.4%  3.9% 0.9% 1.6% 

base imperfect  13.1% 16.2%  57.8% 55.5% 57.9%  9.1% 4.2% 5.0% 

high imperfect  16.2% 18.6%  63.8% 59.7% 61.2%  15.2% 7.6% 8.2% 
              

Top 50 
O&Ds 

low perfect  15.0% 30.6%  53.8% 46.6% 53.2%  7.7% 2.4% 4.2% 

base perfect  19.5% 29.0%  61.0% 51.8% 58.3%  14.6% 4.0% 7.0% 

high perfect  22.5% 29.0%  66.4% 56.4% 62.0%  21.2% 5.4% 9.1% 
low imperfect  11.0% 23.7%  52.9% 46.6% 52.9%  6.7% 2.5% 4.1% 

base imperfect  14.7% 22.0%  60.0% 52.1% 58.1%  13.2% 4.2% 7.1% 

high imperfect  17.1% 22.1%  65.5% 56.9% 62.0%  19.3% 6.4% 9.9% 
Table 15: Revenue improvement of the O&D model in the different demand cases and corresponding statistics about network utilization.
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4.4.3 Results of special cases  

Discretized Prices 

A heuristic to derive discretized prices based on O&D is to round the continuous prices to the 

closest discrete price after optimization. Under these conditions one could claim that 

RAIL_ORG is the relaxed version of a discrete pricing version of O&D. This special case has 

two underlying motivations: First, from a practical perspective it serves as a benchmark for the 

expected revenue improvement in a first, live market test (where O&D can only be tested with 

the existing IT-infrastructure) and second, the share of continuous pricing in the overall effect 

can be approximately estimated. The numbers in Table 16 compare the revenue improvement 

(again with both alternative approaches as benchmark) under the special case with rounded 

prices. As expected, rounding the prices leads to decreased revenue compared to the continuous 

O&D model and thus smaller revenue improvement (compare the numbers with the results from 

Table 15). The gap varies depending on the applied network and demand case and the %-deltas 

(in absolute terms) lie in the range of 2.0% and 3.3% for the imperfect case when using DB as 

benchmark model (deltas are quite similar for a comparison with EMSR-b). Thus, the loss in 

revenue in this special case is significant but the overall revenue effect is still positive and large 

enough to justify an advantage from the adapted version of O&D.  

 

Approximate Prices 

The results in Table 16 show that using the approximate prices leads to a smaller revenue 

improvement in all scenarios (compared to the full O&D instances). In other words: Solving 

RAIL_ORG as a third step is beneficial because it finds a solution that generates higher revenue 

while ensuring capacity limitations. Further, a detailed look into the data shows that it is true 

for each simulation instance, i.e., the positive effect of solving RAIL_ORG is not only seen on 

average numbers but also for single instances. Differences between both networks are quite 

low, i.e., the structure of the network seems to have a low influence on the effect. Interestingly, 

the absolute difference of the percentage improvement factors is smaller at high demand, 

suggesting a better approximation of RAIL_INV_LOG at high demand cases. Still, the loss in 

revenue is large enough to justify solving RAIL_ORG in practice. A possible way in practice 

would be to use the prices from RAIL_INV_LOG if RAIL_ORG does not provide a solution 

in a predefined time limit. 
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    Special case "Discretized Prices"  Special case "Approx. Prices" 

    Revenue improvement w.r.t.  Revenue improvement w.r.t. 

Network Demand 
forecast 
quality  DB EMSR-b  DB EMSR-b 

North-South 
axis 

low perfect  10.0% 17.0%  9.2% 16.0% 
base perfect  13.5% 17.7%  13.3% 17.6% 
high perfect  17.2% 20.7%  18.0% 21.6% 
low imperfect  7.6% 13.0%  6.9% 12.3% 
base imperfect  10.7% 13.9%  10.5% 13.7% 
high imperfect  14.2% 16.5%  14.3% 16.7% 

         

Top 50 
O&Ds 

low perfect  10.6% 25.8%  11.0% 26.2% 
base perfect  15.1% 24.4%  16.3% 25.8% 
high perfect  17.9% 24.4%  19.4% 26.1% 
low imperfect  7.7% 20.5%  8.3% 21.1% 
base imperfect  11.6% 19.0%  12.3% 19.8% 
high imperfect  14.4% 19.2%  15.3% 20.1% 

Table 16: Results for both special cases 
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4.5 Insights from practice 
Defining a core network 

The O&D approach should be applied to a so-called core network in order to keep solution 

times reasonably short in practice and since accurate forecasting requires a minimum amount 

of historic booking data. During the joint project, different criteria are discussed and evaluated 

to define such a network. As potential criteria, there exists using 1) only the top itineraries, 2) 

top train lines, 3) top train stations or 4) top O&Ds.  

Since one crucial benefit of the model O&D is the integrated discrete choice model, using top 

itineraries and top train lines is not a suitable criterion. Both would solve O&D for only a part 

of the itineraries, thus the consideration set would be incomplete and the switching effects not 

accurately represented. Further, considering a network of all itineraries between top train 

stations would work with a full set of itineraries (i.e., customer choice is represented correctly). 

At the same time, choosing top stations does not mean that all the combinations of these top 

stations (i.e., O&Ds) have a high revenue contribution. Therefore, many unpopular O&Ds and 

itineraries could become part of the optimization process. Finally, defining a core network 

based on the top O&Ds appears to be the most appropriate approach. It has the advantage to 

cover a large part of the revenue and at the same time to have a complete consideration set. 

Although there is the disadvantage that unpopular connections (e.g., at off-peak times) are also 

optimized, it is necessary for consideration set reasons. This is one reason why the Top 50 O&D 

network is used in the simulation since this could be a potential network for a practical 

implementation.  

 

Understanding the pricing decision 

One part of the analysis is to understand the price decision for a single product (", $). This is 

particularly important for prices that deviate from the general price structure at first glance (i.e., 

outliers). Due to the large number of effects, it is usually hardly possible to determine the exact 

reason. Figure 13 shows an example of a connection in 2nd class (bold printed, underlined 

product). Compared to a basic network pricing model where the demand for a product (", $) is 

assumed to be independent of alternatives, a single product in RAIL_ORG is linked to many 

other product decisions (i.e., &'(())). The choice model links the 2nd class product both with 

the 1st class product of the same connection (see circle 1) as well as with alternative products 

of both classes, which depart earlier or later (see 2).  

In addition, the capacity constraint connects the price decision with other connections that use 

the same 2nd class resource (see 3). The price consistency constraint now creates a further 



A simulation study for a choice-based dynamic pricing approach for large-scale railway networks 

 113 

dependency on an additional (here: longer) connection (see 4). Finally, the comfort class price 

consistency constraint creates an additional dependency to the 1st class of the same connection 

(see 5).  

 

 
Figure 13: Price decision and its dependency 

First, this example shows that an optimal decision for such a network of dependencies cannot 

be optimally controlled by RM managers manually. This reason is a strong argument for 

applying mathematical optimization techniques as proposed with RAIL_ORG. Second, it 

comes at the cost of introducing a black box so that extensive live tests are necessary in practice 

to convince the management of the idea and see whether the revenue improvement from the 

simulation can be realized in practice as well. In fact, applying the proposed model in practice 

as part of live market tests is the next step of the project at DB Fernverkehr.  
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4.6 Conclusion 
Revenue management for passenger rail companies is a small but active research field. While 

network approaches are popular in theory, leg-based models are still found in practice. In this 

paper, a choice-based network dynamic pricing model was presented that accounts for the main 

rail specific constraints from practice and uses a discrete mixed multinomial logit model to 

represent the customer choice. The extensive simulation study that covers different rail 

networks and demand cases has shown that the revenue improvement can be estimated to be 

approx. +14% by using the O&D model compared to the current approach of DB Fernverkehr. 

Additionally, building on the approach of Schön and Hohberger (2019) a good solution can be 

derived in a few minutes even for networks of realistic size. Two special cases were analyzed 

to evaluate the effect of continuous pricing and using approximate prices from a relaxed, convex 

model. The results showed that a significant revenue improvement is still given under these 

scenarios although the gap decreases. Since simulations cannot cover all special conditions, 

further live tests are necessary to validate the results in practice. Therefore, this paper lies the 

foundation for a bigger project at DB Fernverkehr. 
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Abstract 

 

Large-scale railway network revenue management models with customer choice behavior are 

not only a challenge from an optimization perspective, it is also complex and time-consuming 

to collect and set up test data for large networks. To promote research in this field, we present 

an algorithm that generates test data based on the schedules of railway companies, e.g., the set 

of itineraries and corresponding data, such as the resource consumption or product attribute 

values like travel time, number of transfers, etc. The generated data are also useful for other 

fields of research, such as crew scheduling or delay management. We show that the algorithm 

generates realistic test data for large-scale networks in only a few seconds. To promote research 

in the field of large-scale railway revenue management, we make the programming code (incl. 

a small schedule dataset) publicly available.  

 

 

An earlier version of this paper is available on SSRN:  

Hohberger, S. and Schön, C. (2019) An Algorithm to Create Test Data for Large-Scale Railway 
Network Revenue Management Models with Customer Choice. Available at SSRN: 3439270. 
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5.1 Introduction 
Revenue management (RM) is a well-studied discipline in Operations Research that deals with 

the question of how to sell your products so that revenue is maximized. Revenue management 

is usually divided into quantity-based or price-based RM. In the former case, the availabilities 

of products (i.e., booking classes of itineraries) are controlled to steer demand, while in the 

latter case, prices for products are controlled (Talluri and van Ryzin 2005, Erdelyi and 

Topaloglu 2011). Most revenue management problems in practice are so-called network 

problems, where multiple products and multiple resources are optimized jointly in order to 

account for product interdependencies with regard to demand and/or shared resources. While 

earlier models for network revenue management assumed that demand for one product is 

independent of the controls for other products (see McGill and van Ryzin (1999) for an 

overview of network models), there has been a recent focus in research on models that 

overcome this strong assumption by including discrete choice models such as the multinomial 

logit model (MNL) (e.g., Talluri and van Ryzin (2004), Liu and van Ryzin (2008), Ratliff and 

Vinod (2005)). 

At the same time, revenue management has become more and more prominent not only in 

research but also in practice. There are many industries that apply RM-techniques in their daily 

business, such as airlines, railway companies or hotels (see Chiang et al. (2007) for an industry 

overview of revenue management applications). Usually, real-life product networks are bigger 

and more complex in terms of model and data size than the examples used in research. One 

reason is that it is typically very time consuming to construct realistic test data for big networks, 

e.g., a railway network with thousands of itineraries, legs, etc. The consideration of customer 

choice models intensifies the challenge, as for each itinerary, the corresponding attribute values 

(e.g., travel time, comfort level) are necessary to derive product utilities. This quickly leads to 

the challenge that test data for a network revenue management model with customer choice 

behavior can be manually constructed only for a network of very limited size. Additionally, 

past research has shown that new model formulations are typically tested by using self-defined 

(academic) networks and data sets, which makes a comprehensive evaluation and comparison 

of results in different publications much harder.  

To overcome that challenge and promote research for large-scale revenue management, we 

present a “Network Data Generation Algorithm” (NDGA) that derives test data for railway 

companies based on schedules. We also make the corresponding programming code publicly 

available so that everyone can use it for their own small- or large-sized examples and adjust it 

according to personal needs. Additionally, our motivation with the NDGA is to do a first step 
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for establishing a consistent database that can be used by various academics and practitioners 

that would improve the comparability of novel approaches in the context of revenue 

management. Although the NDGA was created for the purpose of creating railway test data, it 

also works for other transportation companies, such as airlines or intercity bus services. It 

automatically creates all promising itineraries between two cities/train stations (incl. up to one 

transfer) based on some predefined efficiency rules to avoid certain itineraries, e.g., with big 

detours. In other words, one goal of the NDGA is to create the set of candidate itineraries that 

a railway company would offer their customers when searching for connections from city A to 

city B. In a second step, it derives relevant data for RM models, such as the resource 

consumption of the itineraries and attribute values like travel time, number of transfers, etc., 

that determine customer choice. The NDGA is based on AMPL programming language (Fourer 

et al. 1990). Researchers that use different software for their optimization models can use it as 

a blueprint to copy the idea into their appropriate programming language or to transfer the data 

via the AMPL API to their specific software environment. The algorithm is designed specially 

to construct data for transportation networks, primarily for railway companies and especially 

for applications in the revenue management context. Some part of the generated data can also 

be interesting for other fields of research, such as delay management or crew scheduling. A 

similar idea of generating test instances in a different research area (project scheduling projects) 

is provided by Kolisch et al. (1995). We follow that way with the NDGA to support research in 

railway RM for large-scale networks. 

The paper is structured as follows: First, we present a basic network RM model with customer 

choice as a starting point to explain the necessary data that are generated in the NDGA presented 

in Chapter 5.3. Chapter 5.4 presents examples and statistics for the runtime of the algorithm. 

Finally, Chapter 5.5 summarizes the findings.  
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5.2 Theoretical background 
The basic idea of network revenue management (also multi-resource RM) compared to a leg-

based approach (single-resource RM) is to consider the fact that some products use multiple 

resources rather than a single resource, and therefore, multiple products share one resource. 

Under limited capacity, network RM helps to determine the optimal mix of product 

availabilities (in capacity-based RM) or optimal prices (in price-based RM) for the products 

that are offered (Talluri and van Ryzin 2005). 

Traditional RM models assumed the demand to be independent of other products. In reality, 

demand for products does of course not only depend on the own price but also on quality and 

prices of alternative products. Example: A customer is willing to travel from city A to city B, 

and a railway company offers two different connections, one in the morning (1) and one at noon 

(2). Then, the demand for train connection 1 will not only depend on its own price *+ but also 

on the price of the alternative train connection 2 (*,) and other quality-related attributes. To 

model this more realistic behavior, the implementation of customer choice models into RM 

optimization has increased in popularity during the last few years. A basic deterministic 

network-based pricing model that includes choice-based demand (CB-NPM) can be described 

as:  

CB-NPM: 

max0 *1&1(
1∈3

)) (5.1) 

4. 6. 0 &1())
1∈3̇8

≤ :;				∀	> ∈ ? (5.2) 

*1 ≥ 0				∀	B ∈ C (5.3) 

 

where B ∈ C describes the set of products, > ∈ ? the resources/legs, and B ∈ Ċ; the products 

that use resource >. Let &1()) denote the price-dependent demand function with the price vector 

) that includes *1 , the price for product B, and the prices of all products that are defined as 

alternatives for B. Finally, :; defines the capacity of leg >. The objective function in (5.1) 

represents total revenue from ticket sales, expression (5.2) describes the set of capacity 

constraints for legs > ∈ ?, and inequality (5.3) is the non-negativity requirement for all price 

variables.  

There exist different approaches to represent choice-based demand functions. A well-known 

approach for a discrete choice model is the MNL model (following McFadden (2001)): 
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D1 =
FGH

FGI + ∑ FGHL1M∈3NH
			∀	B ∈ C 

(5.4) 

 

where D1 is the choice probability, O1  is the utility of product B, and OP is the utility of the 

outside option (no purchase). CN1 denotes the set of products that are considered as alternatives 

for B.  

In transportation RM, we denote a product B as (Q, $), i.e., the combination of an itinerary Q ∈ R 

and comfort class $ ∈ S, e.g., a 2nd class ticket for a specific itinerary Q. Throughout this paper, 

we use the notions “connection” and “itinerary” interchangeably. As a result, one can describe 

the utility of a product as: 

 

OT( = UT( + VT + WT(X *T( = UT( +0WYZTY +
Y∈[

WT(X *T(  (5.5) 

 

The total utility of product (Q, $) consists of the utility for all comfort class-related attributes of 

a product UT(  (e.g., seat comfort, on-board service), the utility of all schedule-related attributes 

VT (e.g., travel time of itinerary Q) and the price-dependent utility WT(X *T(. The term ZTY  represents 

the level of the schedule-related product attribute \ ∈ ], e.g., travel time in minutes, number of 

interchanges and WY the sensitivity parameter of attribute \ ∈ ]. The utility function in (5.5) is 

based on a vector model but can, of course, easily be replaced by a more flexible approach such 

as a part-worth utility function (Green and Srinivasan 1978). Following, e.g., Schön (2010a) or 

Zhang and Lu (2013), the MNL model multiplied by the market size can be used to replace the 

demand function &T(()) so that CB-NPM becomes the MNL-NPM (with ^ ∈ _ representing 

markets, i.e., different origin-destination (O&D) pairs and `a the market demand): 

 

MNL-NPM: 

max 0 0 0*T(`a
Fbcdefcegcd

h icd

FGIj + ∑ ∑ FbcLdLefcLegcLdL
h icLdL

(M∈kTM∈lmc(∈kT∈lj̇a∈n

 
(5.6) 

4. 6. 0 0 `a
Fbcdefcegcd

h icd

FGIj + ∑ ∑ FbcLdLefcLegcLdL
h icLdL

(M∈kTM∈lmcT∈lj̈,8a∈n

≤ :;(				∀	> ∈ ?, $ ∈ S 
(5.7) 

*T( ≤ *TM( 					∀	Q′ ∈ R, Q ∈ RTM
qrs;tYi, $ ∈ S (5.8) 

*T( ≥ 0				∀	Q ∈ R, $ ∈ S (5.9) 
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MNL-NPM also contains the price consistency constraints (5.8), which can be relevant for some 

railway or intercity bus companies to make sure that longer itineraries are never cheaper than 

shorter itineraries to avoid strategic customers that buy a ticket for a longer trip and disembark 

earlier (Hetrakul and Cirillo 2014). The relationship between a short and long itinerary that has 

to fulfill price consistency is represented by the set RTM
qrs;tYi.  

The challenge with MNL-NPM is not only that it is a non-convex optimization problem 

(Hanson and Martin 1996) and therefore not directly solvable globally optimal but also that a 

large amount of data is necessary to set up an optimization model for medium- or large-sized 

instances. The algorithm that we present automatically generates a significant proportion of 

data to set-up MNL-NPM and CB-NPM.  

Given a schedule, not all connections that can be theoretically generated in the network are 

viable alternatives to be offered to customers (e.g., in case an itinerary includes unreasonable 

detours or an unreasonable number of changing activities for passengers). Therefore, our 

algorithm allows us to generate only those connections from the schedule that are promising 

with regard to some efficiency criteria. In revenue management, generating the set of 

connections from a given schedule deals with the question of which itineraries to ultimately 

offer to customers. And since an itinerary Q determines a product (Q, $) to a large extent, this 

decision is directly linked to the set of offered products. We assume that a company first 

determines the set of promising itineraries from a given schedule and in a second step optimizes 

its revenue by applying RM models like MNL-NPM for the resulting set of fixed products. This 

idea is strongly related to the two-step approach discussed in product line design (PLD), where 

first a set of candidate products is determined, and in a second step, based on the reduced set, 

a product line selection (assortment optimization) and pricing problem is solved to find the 

optimal product line (Steiner and Hruschka 2002, Green and Krieger 1989). As mentioned by 

Steiner and Hruschka (2002), most research on two-step approaches in PLD focuses on the 

second step, while the first step (i.e., generating the set of candidate products) seems to be 

underdeveloped. Still, in the current revenue management literature, models assume a given set 

of products, typically without detailed information about how these products are derived, and 

optimize revenues by setting optimal prices or booking class availabilities for the given 

products. NDGA can therefore be seen as an approach for step one for RM models in 

transportation companies. A challenge of a two-step approach in price-based RM is that the 

price of the product is determined in step two and thus unknown when determining the 

candidate products. Our algorithm ensures that itineraries of lower quality (with regard to non-

price attributes, e.g., longer travel duration) can be kept in the candidate set if it is feasible to 
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offset this lower quality by a lower price, such that the overall product offer may still be 

attractive from a customer’s perspective as well as from a seller’s revenue perspective. A 

balanced ratio between keeping itineraries and decreasing model size is therefore of high 

interest to generate a “good” candidate product set. NDGA is one possible way to derive a set 

of promising itineraries and thus products. There are also other approaches that could be 

adapted to the railway environment, e.g., the best-in heuristic proposed by Green and Krieger 

(1987). In their heuristic, a promising product is found by choosing the one product that 

generates the highest utility for one specific customer. The final product set is then the union 

of the highest-valued products over all customers. Our proposed efficiency rules are inspired 

by algorithms used in practice (e.g., on websites) by railway companies. 

 

A deeper look into contributions on railway revenue management shows that models are 

typically tested only with a limited sized rail network. Ciancimino et al. (1999) can be seen as 

the starting point for the increasing interest in railway RM problems. They present a network 

seat allocation model and test it with different sized networks, from five up to 15 legs and 15 

up to 120 itineraries, which represents, as they mention, a typical long trip in Italy. You (2008) 

applies the proposed seat allocation approach to networks of different sizes where the largest 

instance has eight legs and represents a serial network (i.e., train stations are sequentially 

connected). Hetrakul and Cirillo (2014) propose a latent-class based seat allocation and pricing 

model. They use a train line with nine stations, i.e., 36 itineraries to test the approach. They 

consider four trains covering the same pathway during the day and only differ in the departure 

time. They also conclude that for future research it would be interesting to look at more complex 

networks with transfers and a hub-and-spoke structure. Wang et al. (2016) present a choice-

based seat allocation model for a Chinese rail provider. In their numerical study they focus on 

two trains going from Shanghai to Nanchang (via three intermediate stops), i.e., four legs for 

each train or in total 5 ∗ 4/2 = 10 itineraries. Since two trains are serving these cities, the 

network consists of 20 itineraries and 60 products (defined by three comfort classes). They also 

mention, that in reality a high number of trains are serving popular O&Ds such as Beijing to 

Shanghai with nearly 40 trains each day. 

These examples show that railway RM models are typically tested with a limited number of 

train connections and with a serial rail network (e.g., one (long) train that serves multiple 

stations). Rail networks in practice are typically larger and more complex in terms of the 

structure, i.e., transfers are possible so that multiple single trains form a large network of 

itineraries and customers can choose from a large set of itineraries that serve the desired O&D. 
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We believe that next to runtime issues for larger networks the collection of data is a big issue. 

Our algorithm is therefore a first step in filling the gap and thus making it possible to solve 

large-scale railway RM models for a broader range of researchers. 
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5.3 The network data generation algorithm (NDGA) 
The starting point for the NDGA is a resource schedule, as shown in Table 17, that represents 

the legs in the provider’s transportation network. Together with the AMPL-files, we provide 

one small test schedule as a .dat-file so that everyone can test and understand how the algorithm 

works. For bigger examples, users have to create their own schedules, which can be easily done 

in Excel randomly or by transforming publicly available schedule data into the required format. 

The schedule has to include information in the following order: the vehicle/train number, 

vehicle type (e.g., high-speed train, intercity train), the train station, the corresponding arrival 

and departure time in minutes, a consecutive station number, the capacities for class 1 and class 

2, and the cumulative travel distance (e.g., in km/miles) from the initial to the current station of 

the train (if the information about distances is not available, one can just fill out the column 

with zero-values). In the railway case in Table 17, a specific train has many intermediate 

stations and therefore fills many rows (e.g., ICE279 going from Berlin to Mannheim), whereas 

an airline example would typically contain only two lines for each flight number, corresponding 

to the departure and arrival of each flight. 
 

Table 17: Exemplary schedule for two trains 

Train 
No. 

Train 
Type Station Arrival 

time 
Departure 

time 
Station 

No. 
Capacity  

1. class 
Capacity  

2. class 
Cum. 

distance 
ICE279 ICE Berlin 510 510 1 200 500 0 

ICE279 ICE Wolfsburg 578 580 2 200 500 50 

ICE279 ICE Braunschweig 596 598 3 200 500 140 

ICE279 ICE Hildesheim 623 625 4 200 500 240 

ICE279 ICE Goettingen 653 655 5 200 500 320 

ICE279 ICE Kassel_Wilh 674 676 6 200 500 450 

ICE279 ICE Fulda 706 708 7 200 500 470 

ICE279 ICE Hanau 746 748 8 200 500 510 

ICE279 ICE Frankfurt 764 770 9 300 750 530 

ICE279 ICE Mannheim 807 816 10 300 750 630 

                 
ICE108 ICE Basel_Bad 683 683 1 150 650 0 

ICE108 ICE Freiburg 715 716 2 150 650 200 

ICE108 ICE Offenburg 748 749 3 150 650 280 

ICE108 ICE Karlsruhe 778 780 4 150 650 420 

ICE108 ICE Mannheim 803 816 5 150 650 480 

ICE108 ICE F_Flugh 846 849 6 150 650 560 

ICE108 ICE Siegburg_Bonn 886 887 7 150 650 660 

ICE108 ICE Koeln 905 905 8 150 650 720 
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The capacities have to be formulated from an outbound perspective, meaning that capacities in 

a row represent the levels from the station in the same row to the station in the next row (e.g., 

capacity in ICE 279 in first class from Hanau to Frankfurt is 200 and from Frankfurt to 

Mannheim is 300). 

Based on the schedule that has to be delivered as a .dat-file, NDGA generates the following 

output:  

§ Sets R and Rȧ, i.e., creating the set R of promising itineraries in the network, which here 

are itineraries with no transfer (=direct connection) or one transfer (=indirect 

connection) and the allocation to its O&D-market (Rȧ). 

§ The set ?, which includes all resources in the network and the set R{;, which describes 

which itineraries Q ∈ R use a resource > ∈ ?. 

§ The set Rä,;, which adds the information of the market ^ to R{; and would be necessary 

for a formulation as in (5.7) of MNL-NPM. 

§ The parameter :;(, i.e., the capacity for each resource > in comfort class $. 

§ The set Q ∈ RTM
qrs;tYi, which describes if the (short) itinerary Q is part of a (longer) 

itinerary Q′ and should therefore fulfill price consistency with respect to Q′. 

§ For each itinerary Q ∈ R, the specific schedule-related attribute levels (ZTY) that can be 

used to calculate VT in a discrete choice model: 

o travel time in minutes 

o number of transfers 

o waiting time in minutes at the transfer station 

o used transport mode (e.g., train type) 

o length of each connection (e.g., km/miles, depends on how the data are provided 

in the schedule). 

A brief overview of the algorithm is shown in Figure 14. NDGA is further explained in the 

following. 
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5.3.1 Constructing the set of efficient connections 

In the following, we will explain the notion of an efficient connection and how the NDGA 

constructs the set of efficient connections. Please note again that we use the expressions 

“connection” and “itinerary” interchangeably. In the airline example, there are multiple ways 

to travel from city A to B (via intermediate transfer stations). Some ways are fast and 

convenient, some routes are long and inconvenient. It is theoretically possible to make big 

detours, e.g., flying from Paris to London via Hong-Kong. This would be a possible connection 

but not a reasonable one, and we consider it to be inefficient. Our goal is to define rules for 

identifying itineraries that are – though theoretically possible – inefficient in terms of travel 

time and transfers and will therefore be excluded from the offered set R.  

The algorithm works as follows: it first constructs all possible direct connections in a network, 

i.e., for each individual vehicle number, it finds all possible combinations of stations in the 

direction of travel. In a second step, it combines two direct connections to an indirect connection 

(i.e., changing from one train to another) based on predefined transfer time limits. The 

parameters dur_change_min and dur_change_max define the minimum and maximum time 

that is allowed to create an itinerary with a transfer and can be easily adjusted by the user in the 

algorithm. Currently, NDGA only creates connections with no transfer or exactly one transfer.  

After finding all possible connections (i.e., also connections with big detours or connections 

going from A via B back to A), the algorithm identifies and deletes all inefficient itineraries 

based on predefined “efficiency rules” in a filtering process. It works by comparing a 

connection with all connections of the same O&D. The filtering is a sequential process and 

Input:
Schedule

Set of efficient
connections Set of resources

Connection 
based data
generation

Algorithm

Additional 
data

Optimization
model

NDGA

Figure 14: Process flow of NDGA 
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consists of multiple steps. If a criterion is fulfilled, the set member will be deleted from the set. 

After applying all filtering steps, a set of efficient itineraries remains.  

The filtering steps are (in that specific order): 

1. Delete connections that are inefficient with regard to travel time. A connection QM ∈ R is 

considered to be inefficient with regard to travel time  

a. if there exists another connection Q ∈ R	serving the same O&D that departs at the 

origin at a time 6T
|si no earlier than Q′ (i.e., 6T

|si ≥ 6TM
|si), arrives at the 

destination more than dep_arr_buffer minutes earlier (i.e., at time 6TY;; < 6TL
Y;; −

&F*_\>>_ÄÅZZF>) and has fewer or equal transfers.  

b. if there exists another connection Q ∈ R	serving the same O&D that departs at the 

origin more than &F*_\>>_ÄÅZZF> later than Q′ (i.e., at time 6T
|si > 6TL

|si +

&F*_\>>_ÄÅZZF>), arrives at the destination no later than Q′ (i.e., 6TY;; ≤ 6TL
Y;;) 

and has fewer or equal transfers. 

2. Delete itineraries with the same departure and arrival station. 

3. Delete itineraries that are inefficient with regard to the transfer station. A connection 

QM ∈ R with one transfer is considered to be inefficient with regard to the transfer station 

if there exists another connection Q ∈ R that uses the same two vehicle numbers but has 

a superior transfer station, i.e.,  

a. the transfer time is longer, or 

b. if both connections have the same transfer time, the transfer is taking place 

earlier. 

 

In this filtering process, we assume that a rational passenger would never choose an itinerary if 

another connection exists that is much more comfortable with regard to travel time and 

transfers. Note that it can happen that a slow direct connection and a fast indirect connection 

exist. In that case, the algorithm keeps both connections as it only deletes connections if the 

number of transfers is higher or equal to the reference itinerary. In other words, an indirect 

connection can never define a direct connection as inefficient. The meaning of “much more” 

comfortable can be controlled by the user through the buffer parameter dep_arr_buffer (in 

minutes). It defines how strict the algorithm handles slower connections, e.g., if dep_arr_buffer 

is defined to be ten minutes, then a (slower) connection that departs up to ten minutes earlier 

and arrives at the same time than another (faster) connection, will still be kept in the set of train 

connections. The same is true for a delta in the arrival time up to the level of dep_arr_buffer. 
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The parameter defines how rigorous the filtering process in terms of departure and arrival times 

is carried out. The higher it is, the more connections will be kept in the final set. In the default 

setting, the parameter is set to zero.  

The second step is quite obvious but necessary to delete all itineraries with the same departure 

and arrival station. These kinds of connections are theoretically possible but not realistic in 

practice and therefore not efficient. 

The final step considers the case where two or more connections only differ in the transfer 

stations. This could happen, e.g., when two trains have overlapping travel paths and therefore 

more than one possible transfer station where a passenger can change from train 1 to train 2. 

To determine the itinerary with the best transfer station, we first apply the rule that the station 

with the largest time for the transfer is chosen to make the transfer convenient for the passenger 

(step 3a). As this rule has the possibility to still have two connections with the same time for 

the transfer, we finally apply a distinct rule that only the itinerary with the earliest transfer is 

kept (step 3b). After filtering the connections, only the efficient itineraries are left over. Figure 

15 shows the evolution of the size of the set of connections for a large set of trains in the network 

that was provided by a European railway company. We first produce a set of approx. 850,000 

theoretical connections and reduce it by applying the efficiency rules to finally approx. 170,000 

efficient connections.  

 

 

 
Figure 15: Evolution of efficient connections. 
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One could argue that the process of first setting up a large set of itineraries that will then be 

decreased by some efficiency rules is inefficient from a computational perspective. But we will 

see below that this approach works well for large networks in only a few seconds. Technically 

speaking, NDGA uses the powerful feature of set commands in AMPL. Set commands make it 

possible to compare different entries of a set easily. The possibility of creating 

multidimensional sets makes it possible to save up to 20 pieces of information into one set 

member. For example, you can define a set “Connection-Information” that has four dimensions 

{(Connection, travel time (min.), train type, No. of transfers)}, which could result in the specific 

set member {(Frankfurt_Berlin_ICE580, 260, ICE, 0)}. This not only makes it possible to link 

relevant information such as travel time to a connection, but it also helps to compare 

connections, as we can compare numbers (like travel time) or strings (like vehicle type) between 

connections. We will also see later that set operations work very well for large amounts of data 

and therefore make it possible to handle large networks.  

 

5.3.2 Deriving data for discrete choice models 

After the final definition of all train connections in the network, it is possible to extract 

additional information that can be used in a choice model. The algorithm creates a parameter 

ZTY  that represents the values for eight different attributes that supposedly determine passenger 

convenience and customer choice behavior for each connection Q with 

\ ∈{Travel_Time_Section1, Travel_Time_Section2, Total_Travel_Time, 

Vehicle_Type_Section1, Vehicle_Type_Section2, No_of_Transfers, Waiting_Time_Transfer, 

Trip_Length}. 

 

Travel_Time_S1 127 
Travel_Time_S2 176 
Total_Travel_Time 313 
Vehicle_Type_S1 2 
Vehicle_Type_S2 1 
No_of_Transfers 1 
Waiting_Time_Transfer 10 
Trip_Length 590 

 

The split into Section 1 and Section 2 is relevant for itineraries with a transfer. Section 1 

represents the first part of the itinerary (from the starting train station to the transfer station). 

Table 18: Exemplary data for one connection 
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Section 2 represents the second part of the itinerary (from the transfer to the final station). The 

attributes travel time and vehicle type are split into these sections (S1 and S2). This is relevant, 

e.g., if the first part of the itinerary is served with a comfortable type of train/vehicle and the 

second part with an uncomfortable one. Then, a choice model should be able to account for that 

mix of comfort levels during the whole trip. An example for the output of ZTY for a specific train 

connection Q can be seen in Table 18. 

 

5.3.3 Deriving operational data  

In addition to the set of offered products and the data on itinerary-specific attribute levels for 

the choice model, a network optimization problem needs further information such as the 

resource consumption of each itinerary or the relationship between itineraries to cover the price 

consistency requirements as in (5.8). Based on the schedule, the NDGA first creates the 

resource set ? that defines all legs in the network. In a second step, it defines a set R{; with two-

dimensional elements that consist of all itinerary-leg combinations that are valid. For example, 

if connection Q uses leg 15 and leg 16, then two set members {(	Q,15); (Q,16)} exist. For the 

capacity constraint as in (5.7), NDGA also derives the capacities of leg > in comfort class $ as 

a parameter value :;(. When using a choice model, such as MNL-NPM, the information about 

the O&D-market ^ that Q serves is also necessary. Therefore, the set Rä,; is derived. Depending 

on the model formulation, one can choose which of the sets R{; or Rä,; is applicable. 

The relationship between two connections to represent the price consistency in the network is 

slightly more difficult to define. Price consistency constraints are typically reasonable for 

companies without a check-in process, e.g., railway or intercity bus companies. The algorithm 

works by comparing two connections section-wise and checking for the following criteria: 

1. Is direct connection Q part of another direct connection Q′ ? 

2. Is direct connection Q part of another indirect connection Q′ ? 

a. Q is part of Q′ before the transfer in Q′  

b. Q is part of Q′ after the transfer in Q′ 

3. Is indirect connection Q part of indirect connection Q′ ? 

 

The case where an indirect connection Q is part of a direct connection Q′ can never be possible 

since the transfer in Q means that an additional vehicle is used and therefore cannot be part of a 

direct connection Q′. Finally, as an extract of Rȧ, we define the minimum distance for each 

O&D-market ^ as the parameter É&_B^q;'Ñ,|sÖÜ. This information can be used to classify train 

connections into long-haul and short-haul routes or to simply derive statistics of the network.  
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The AMPL files for NDGA that are publicly available include more detailed information to 

understand the programming code better.  
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5.4 Practical example 
To show a practical example of the NDGA, we apply 

it to a small but already complex network of three 

trains running in a network (see Figure 16). The trains 

are crossing in a station and therefore make 

connections with transfers possible. Since each train 

has many intermediate stations, the network consists 

of 26 train stations in total.  

 

Running the NDGA for that example takes 0.13 

seconds. Table 19 shows some statistics about the 

amount of data that is generated. It first creates 348 

connections, of which 40 are inefficient and therefore 

deleted so that 308 connections remain in the set R. 

The set ? consists of 32 legs, each leg utilized by some of the 308 connections.  

 

Example: Network of three trains 

    
# O&Ds 650 
# unfiltered connections 348 
# efficient connections 308 
# legs 32 
# capacity values 64 
# itinerary-resource relations 1,666 
# itinerary-itinerary relations 6,492 
# choice parameter values 2,464 

Table 19: Statistics regarding the generated data 

 

Table 20: Set of efficient connections 

... 
Ulm_HbfAugsburg_HbfICE517_11_12 
Ulm_HbfMuenchen_HbfICE517_11_13 
Augsburg_HbfMuenchen_HbfICE517_12_13 
... 
Berlin_HbfMannheim_HbfICE279_Mannheim_Hbf_F_Flughafen_Fern__ICE108_1_10_5_6 
Berlin_HbfMannheim_HbfICE279_Mannheim_Hbf_Siegburg_Bonn_ICE108_1_10_5_7 
Berlin_HbfMannheim_HbfICE279_Mannheim_Hbf_Koeln_Hbf_ICE108_1_10_5_8 
... 

Berlin

Munich

Basel

Mannheim

Cologne

Dortmund

Train 1
Train 2
Train 3

Figure 16: Network with three trains 
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Table 20 shows an extract of the list of efficient connections including some direct and indirect 

connections. A connection is described by the departure and arrival station, the train number 

and the station numbers. For example, Table 20 contains a connection from Berlin via 

Mannheim (with train number ICE279) to Koeln/Cologne (with ICE108). From a capacity 

utilization perspective, á⋃ R{;;∈â á = 1,666, i.e., 1,666 itinerary-resource relations exist in this 

network. Further, each connection is described by the eight attributes (travel time, #transfers, 

etc.), and therefore, 308 ∗ 8 = 2,464 parameter values are created. Table 21 contains the choice 

data output for the connection from Berlin via Mannheim to Cologne. 

 

Travel_Time_S1 297 
Travel_Time_S2 89 
Total_Travel_Time 395 
Vehicle_Type_S1 1 
Vehicle_Type_S2 1 
No_of_Transfers 1 
Waiting_Time_Transfer 9 
Trip_Length 1026 

Table 21: Choice data for connection Berlin - Cologne 

Such a small example of three trains can already illustrate that it is hardly possible to derive the 

possible connections and corresponding data manually. In particular, creating efficient 

itineraries and deriving resource consumption matrix information would be both very time-

consuming and error-prone. 

The NDGA was created to construct data for much larger networks with more trains running in 

the system. To show how it performs for larger networks, we applied different medium- and 

large-sized practical examples. We had access to schedules from a European railway company 

that made it possible to test NDGA with realistic data. Table 22 shows the results of four test 

instances (on a Mac OS X, 2.9 GHz Intel Core i5, 8 GB RAM). 

The second column shows the number of trains in the test instance. The third and fourth 

columns show the number of generated connections and the corresponding run time (sec.). 

Columns 5-9 show the amount of generated data for the efficient connections, and the last 

column shows the total run time (sec.) of NDGA.  
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1 35 2,240 <1 240 358 9,913 32,905 17,920 <1 
2 159 11,886 <1 1,206 1,128 64,211 242,971 95,088 5 
3 230 26,666 1.3 4,780 1,961 165,936 721,067 213,328 16.4 
4 752 172,982 11 37,895 6,371 1,396,736 7,347,427 1,383,856 322 

Table 22: Overview of the amount of generated data and run time (in sec.) for different network sizes 

Networks such as No. 1 are constructed in less than a second. Larger networks are, especially 

in the data generation phase, more time consuming but still practical. Even for very large 

networks like No. 4, it takes only 11 seconds to create the efficient connections and 

approximately 5 additional minutes to generate the corresponding data. 

 

5.4.1 Comments on run time 

When you plan to solve CB-NPM or MNL-NPM with large networks, such as No. 3 or No. 4, 

one should run the NDGA just once and store the generated data in a .dat file by using display 

commands. For smaller networks (and therefore smaller run times) such as No. 1, it would also 

be possible to combine an optimization model with NDGA directly so that the data are first 

generated by NDGA and then the optimization model is solved using the data. Table 22 shows 

that the process of data generation takes most of the time. The calculation of the leg 

consumption and price consistency sets are especially time-consuming.  

Typically, there are multiple ways to write a code for a specific outcome. Different formulations 

were tested, and an unorthodox solution worked best. In some parts of the code, the printf 

command in AMPL is used to build up a set of data. It adds rows/set members into a file and 

loads this file at the end. Therefore, every time the NDGA is executed, a file called 

NDGA_data_temp.dat is created/updated. This file is of no further use for the end consumer; it 

is just used to speed up the data generation process. 

Another formulation that differs from usual model formulations in RM is the definition of 

resource consumption. Some models in literature have a capacity constraint as in (5.10) where 

çT; ∈ {0,1}: 

0&T(())çT; ≤ :;(				∀	> ∈ ?, $ ∈ S
T∈l

 (5.10) 
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The problem with this binary formulation is that in a railway RM network, most of the entries 

in the incidence matrix are zero. The network No. 4 has a resource consumption incidence 

matrix with size ] = R ∗ ? = 1,102,068,322 entries, where only 1,396,736 entries equal 1 (see 

# Leg Consumption in Table 22) and all others are zero. That is, only 0.13% of the entries of ] 

equal 1 and are relevant for capacity constraints. A problem when solving an optimization 

model occurs, since AMPL first has to detect all zero-values and cancel out the irrelevant 

demand values. This overwhelms the model and makes it much slower to solve. This also results 

in a solution failure for larger networks due to memory constraints.  

It is better to use a subset formulation (R{;) that only sums up the demand on the left-hand side 

that corresponds to the resource >. This leads to a slightly different capacity constraint equal to: 

 

0&T(()) ≤ :;(			∀	> ∈ ?, $ ∈ S	
T∈l{8

 (5.11) 

 

The same idea is used for the set of price consistency relationships where the subset RTM
qrs;tYi 

only contains the connections Q that should fulfill price consistency with respect to Q′.  

  



An algorithm to create test data for large-scale railway network revenue management models with customer choice 

 135 

5.5 Conclusion 
In this paper, we presented an algorithm called NDGA that automatically generates a set of 

offered itineraries and corresponding data based on the schedule of a railway company. It could 

also be applied to other areas like airlines or intercity bus companies to derive consistent and 

realistic test data. The objective of NDGA is to generate the majority of set and parameter 

values that are necessary to set up network revenue management optimization models under 

customer choice behavior. The generated information includes, for example, the set of 

connections with up to one transfer, the resource consumption and product attribute values such 

as the travel time or number of transfers that are necessary to compute utilities in a discrete 

choice model. NDGA is formulated for use in AMPL and creates data even for large networks 

in a reasonable amount of time.  

Our goal is to promote research for large-scale revenue management models, especially in 

railway business, and to make a first step in establishing a consistent database for researchers 

to improve the comparability of novel RM approaches. Therefore, we make the NDGA publicly 

available so that everyone can test and use it for their own research purposes. 
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Chapter 6 Conclusion and outlook 
 

This thesis has shown that railway revenue management is still an underdeveloped field of 

research but with an increasing interest in the past years. Due to the growing demand, revenue 

management methods play not only an important role for revenue maximization but also for an 

improved passenger steering to avoid overcrowded trains. Choice-based demand functions, 

such as the MMNL, can help to better represent the demand shift as a result of the price control 

and are therefore one possibility to overcome that challenge. In addition, rail networks are 

ideally suited to use network-based models that make the right pricing decisions for different 

itineraries sharing the same critical resource. While network-based approaches are already 

common in railway RM research, there are still many companies that use a leg-based control. 

With the choice-based network dynamic pricing model, this thesis presented an approach that 

covers the most important conditions from practice using DB Fernverkehr as an example. The 

new model has four main advantages over DB’s existing approach. The most important 

improvement is the possibility to control product prices (or itineraries) instead of legs. This is 

the enabler to cover the traditional network effect and to integrate the MMNL that represents 

the itinerary choice of customers. The fourth innovation is the possibility of choosing prices 

from a continuous set since this increases the solution space and thus offers additional revenue 

potential compared to models that rely on booking classes.  

Since the resulting model turns out to be non-linear and non-convex, different convex 

reformulations were presented that approximate the original model and derive a good upper 

bound. Numerical experiments using synthetic data have shown that the upper bound can be 

significantly decreased by applying the model using a piecewise approximation technique. 

Furthermore, the presented heuristic (3-step approach) makes it able to derive a good solution 

in reasonable time even for large-scale railway instances. This heuristic was applied and 

extended in the simulation study (e.g., to account for price consistency between long and short 

itineraries). Additional improvements were implemented to increase the solution time by, e.g., 

considering only critical resources in the optimization and thus reducing the number of 

processed constraints. The results showed that the new price-based approach generates higher 

revenues than the two leg-based benchmark models from practice, with a total revenue increase 

of approximately 14% under a realistic demand scenario compared to DB’s existing policy. The 

numbers shown serve as a motivation to take the next step and test the model in real market 

tests. 
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Outlook 

Future research directions can be split into two categories, a theoretical and a practical 

perspective. 

From a theoretical perspective, dynamic pricing under the MMNL remains a promising research 

area since a procedure that derives a proven globally optimal solution does still not exist. While 

some of the current research considers a setting without capacity restrictions, it would be 

necessary to integrate it to apply the model in a traditional railway/airline revenue management 

context.  

Furthermore, combining the pricing problem with assortment optimization is a promising 

research area from both a theoretical and practical perspective. I.e., prices as well as the set of 

offered products are decision variables and optimized jointly. Pricing models typically assume 

a fixed set of itineraries that is determined in a preprocessing step (e.g., by an algorithm that 

finds all comfortable/promising train connections). Integrating the decision into the pricing 

model can lead to additional revenues and further help in practice to ensure a feasible solution 

even in high-demand scenarios. 

From a practical perspective, it would be interesting to see whether the simulation results can 

be confirmed in a real application since a simulation can never capture all conditions from 

practice. An open challenge regarding the choice model is still how the sensitivities (the W 

values), the outside option and arrival rates for a short-term, high-quality demand forecast can 

be regularly updated and derived from realized booking data without observing the no-buy 

customers for a real application in practice. DB has currently only access to realized bookings 

(i.e., customers that chose to buy a ticket) but cannot observe customers who decided to take 

the car/flight etc. or did not travel at all. It exists some recent research about that issue (e.g., 

Newman et al. (2014) for the MNL), but the application and accuracy for railway choice models 

is still an open question and needs to be further analyzed, especially for the more advanced 

MMNL that was applied in this study.  

Additionally, it was shown that the heuristic can solve large-scale instances covering a large 

proportion of revenue and O&Ds. However, even if it is possible to derive optimal prices for 

the majority of products, there will still remain a set of (unpopular) products that need a price 

as well. Therefore, it is necessary to have some kind of a second heuristic that makes it able to 

derive prices for the remaining, unoptimized set of products. Furthermore, as already mentioned 

in Chapter 4, the pricing decision becomes more incomprehensible with a choice-based pricing 

approach since many effects have an influence on the price. A high degree of confidence in the 

approach is therefore required that can only be achieved through extensive and ongoing testing. 
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In addition, the result of the model are prices for the products in each booking period under the 

assumption of deterministic demand. Especially in cases of unexpectedly high demand, when 

a high amount of bookings occurs in only a few minutes, this can lead to revenue loss (e.g., 

when a soccer team from Frankfurt wins the half-final of a national cup and all fans want to 

travel to Berlin for the final match). If the algorithm cannot derive new prices automatically in 

a small period of time, this could lead to fully booked trains with low-priced tickets. This 

problem does typically not occur with booking class-based systems where prices automatically 

increase when a booking class is sold out (i.e., its availability decreases to zero) and the next-

higher booking class determines the new price. Therefore, a price-based system should include 

a fallback solution that automatically increases prices until the model is reoptimized and 

updated prices are available.  

Finally, going from a leg- to a network-based approach means a big change for both IT and the 

tasks of the RM staff. For this reason, the support of the management and the employees is 

essential in order to successfully carry out such a large project. 
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Appendix 
 
The 3-step approach for RAIL_ORG 

The 3-step approach for solving RAIL_ORG follows the heuristic as in Schön and Hohberger 

(2019) and the adjustments as described in Chapter 4.2.2. In step 1, the relaxed, convex model 

with the inverse demand function (RAIL_INV) and segment-specific prices is solved (the 

notations are related to Chapter 4): 

max
ê,r
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In step 2, the convex formulation that includes the approximate uniform price constraints 

(RAIL_INV_LOG) is solved (incl. the two kind of railway specific price consistency 

constraints): 
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ê,r,i
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Compared to RAIL_INV, this model includes two constraints (A.11 and A.12) that approximate 

the uniform price *'(Ü . Additionally, it is now possible to integrate the price consistency 

constraints (A.15) and (A.16) into the model since a specific variable for the price is introduced 

(which was not the case in RAIL_INV). The parameter values for the lower bounds (LB) and 

upper bounds (UB) on variables ª, º and ) in (A.17)-(A.19) and the PC constraints in (A.11) 

and (A.12) are derived following the 3-step approach in Schön and Hohberger (2019) and the 

adjustments explained in 4.2.2.  

Finally, RAIL_ORG is solved using the warm start solution from RAIL_INV_LOG. Note that 

both models RAIL_INV_LOG and RAIL_ORG are solved using the reduced set of resources 

following the constraint-reduction rules as described in Chapter 4.2.2.  
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