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VII

Summary

Statistical hypothesis testing is an integral part of the scientific process. When employed
to make decisions about hypotheses, it is important that statistical tests control the
probabilities of decision errors. Conventional procedures that allow for error-probability
control have limitations, however: They often require extremely large sample sizes, are
bound to tests of point hypotheses, and typically require explicit assumptions about
unknown nuisance parameters. As a consequence, the issue of proper error-probability
control has frequently been neglected in statistical practice, resulting in a widespread
reliance on questionable statistical rituals.

In this thesis, I promote an alternative statistical procedure: the sequential probabil-
ity ratio test (SPRT). In three articles, I implement, further develop, and examine three
extensions of the SPRT to common hypothesis-testing situations in psychological re-
search. In the first project, I show that the SPRT substantially reduces required sample
sizes while reliably controlling error probabilities in the context of the common t-test
situation. In a subsequent project, I seize on the SPRT to develop a simple procedure
that allows for statistical decisions with controlled error probabilities in the context of
Bayesian t tests. Thus, it allows for tests of distributional hypotheses and combines the
advantages of frequentist and Bayesian hypothesis tests. Finally, I apply a procedure
for sequential hypothesis tests without explicit assumptions about unknown nuisance
parameters to a popular class of stochastic measurement models, namely, multinomial
processing tree models. With that, I demonstrate how sequential analysis can improve
the applicability of these models in substantive research.

The procedures promoted herein do not only extend the SPRT to common hypothesis-
testing situations, they also remedy a number of limitations of conventional hypothesis
tests. With my dissertation, I aim to make these procedures available to psychologists,
thus bridging the gap between the fields of statistical methods and substantive research.
Thereby, I hope to contribute to the improvement of statistical practice in psychology
and help restore public trust in the reliability of psychological research.





IX

Articles

This dissertation is the result of research conducted in the context of the research train-
ing group “Statistical Modeling in Psychology” (SMiP). It is based on three articles, two
of which have been published and one has been submitted for publication. In line with
the core idea of the research training group, each article can be located within a cuboid
defined by the three dimensions of SMiP’s research agenda: statistical techniques, model
families, and application fields.

In the main text, I discuss how each of the articles relates to these dimensions and how
they build upon each other. Thereby, I outline the unifying framework of my dissertation
project, which aims to improve statistical practice in psychological research by bridging
the gap between methodological and substantive research.

By further developing, implementing, and demonstrating three approaches to
test composite hypotheses with sequential techniques, I show how these methods
can improve the efficiency of hypothesis tests (Article I), combine the advantages
of Bayesian and frequentists tests (Article II), and facilitate the application of more
complex stochastic models (Article III). In that, I hope that my dissertation makes a
significant contribution to improving the methods employed to approach substantive
psychological research questions.

Article I

Schnuerch, M., & Erdfelder, E. (2019). Controlling decision errors with minimal costs:
The sequential probability ratio t test. Psychological Methods. Advance online pub-
lication. http://doi.org/10.1037/met0000234

Article II

Schnuerch, M., Heck, D. W., & Erdfelder, E. (2019). Waldian t tests for accepting and re-
jecting the null hypothesis with controlled error probabilities. Manuscript submitted for
publication.

Article III

Schnuerch, M., Erdfelder, E., & Heck, D. W. (2020). Sequential hypothesis tests for
multinomial processing tree models. Journal of Mathematical Psychology, 95, 102326.
http://doi.org/10.1016/j.jmp.2020.102326

http://doi.org/10.1037/met0000234
http://doi.org/10.1016/j.jmp.2020.102326




And so these men of Indostan
Disputed loud and long,

Each with his own opinion
Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong.

from The Blind Men and the Elephant
by J. G. Saxe
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1 Introduction

Every year, societies dedicate a considerable amount of their resources to scientific
research. In 2018, the German Federal Ministry of Education and Research’s budget
amounted to around 18.1 billion Euros (Bundesministerium für Bildung und Forschung,
2019). The German Research Society, funded mainly by the federal ministry, granted
nearly 200 million Euros to research projects in social and behavioral sciences alone
(Deutsche Forschungsgemeinschaft, 2019). Considering that this is but a small portion
of what is spent on research on a global scale, these figures impressively illustrate the
societal impact of scientific research.

Not least because of this, researchers have a responsibility not to squander the re-
sources with which they have been trusted. Recent findings that a great number of
seemingly well-established results failed to replicate, however, have cast serious doubt
on the extent to which psychological researchers fulfill this responsibility. Replicability
is a hallmark of scientific progress (e.g., Hempel & Oppenheim, 1948; Platt, 1964), and
reports on low replicability rates in psychology have marked the dawn of a far-reaching
confidence crisis (Earp & Trafimow, 2015; Ioannidis, 2005; Maxwell, Lau, & Howard,
2015; Open Science Collaboration, 2015; Pashler & Wagenmakers, 2012).

To restore public trust, many have argued for profound changes in research practices
(e.g., Asendorpf et al., 2013; Begley & Ioannidis, 2015; Benjamin et al., 2018; Chalmers
et al., 2014; Chalmers & Glasziou, 2009; Cumming, 2014; Dienes, 2016; Ioannidis et al.,
2014; Munafò et al., 2017; Nosek, Spies, & Motyl, 2012). A particular focus in this discus-
sion has been on the statistical methods employed to test hypotheses. The dominant pro-
cedure in psychology (and many other fields) is typically referred to as null-hypothesis
significance testing (NHST). As a somewhat logically incoherent compound of the semi-
nal theories of significance testing by Fisher (1935a) and statistical decision making by
Neyman and Pearson (1933), NHST has been criticized for decades (Bakan, 1966; Bre-
denkamp, 1972; Cohen, 1994; Gigerenzer, 1993, 1998, 2004; Goodman, 1993; Rozeboom,
1960; Sedlmeier, 1996; Wagenmakers, 2007). Broader awareness of its shortcomings has
only recently emerged, however, as the replication crisis fostered strong pleas for its
renunciation (e.g., Cumming, 2014; Dienes, 2011).

Among other things, attention has been drawn to the need for strict control of proba-
bilities of statistical decision errors. Figure 1 illustrates the influence of the Type-I error
probability α, that is, the probability to reject the null hypothesis when it is true, and
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the statistical power 1− β, that is, the probability to reject the null hypothesis when it is
false, on the replicability rate. The replicability rate denotes the proportion of successful
replications of statistically significant results, that is, results which led to a rejection of
the null hypothesis. Obviously, this rate is not only a function of error probabilities but
also of the proportion of false null hypotheses. This proportion is commonly referred
to as the base rate of true alternative hypotheses. For a given base rate, replicability typ-
ically increases, ceteris paribus, with increasing statistical power and decreasing Type-I
error probability. Figure 1 depicts the replicability rate as a function of α and 1 − β

for a base rate of .10, which is a reasonable estimate for a range of research areas in
experimental psychology (Miller & Ulrich, 2016, 2019).
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Figure 1: Replicability rate as a function of Type-I error rate α and statistical power
1− β. Base rate of alternative hypothesis = .10.

According to the statistical guidelines of the Psychonomic Society, “it is important
to address the issue of statistical power. ... Studies with low statistical power produce
inherently ambiguous results because they often fail to replicate” (Psychonomic So-
ciety, 2019). Despite such pleas, however, statistical power has often been neglected.
This is partly due to the sample-size requirements of common procedures that allow
for error-probability control (i.e., Neyman-Pearson procedures). Especially when to-be-
detected effect sizes are small, Neyman-Pearson tests require extremely large sample
sizes (Erdfelder, Faul, & Buchner, 1996). As a consequence, most experiments feature
notably smaller sample sizes, resulting in an average power of around 1− β = .50 in
prototypical journal publications (Cohen, 1962; Sedlmeier & Gigerenzer, 1989).

In my thesis, I promote an alternative statistical method that has been developed more
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than 70 years ago: the sequential probability ratio test (SPRT; Wald, 1947). In Neyman-
Pearson tests, the sample size required to satisfy certain error probabilities is defined
by an a priori power analysis (Cohen, 1988; Faul, Erdfelder, Buchner, & Lang, 2009). Se-
quential tests, in contrast, dispense with the requirement of a fixed sample size. Instead,
the data are continuously monitored during the sampling process until a predefined cri-
terion is met. Thus, a defining feature of sequential tests is that sampling is terminated
as soon as the data show a compelling result. Therefore, sequential analyses require on
average substantially smaller samples than conventional statistical techniques. At the
same time, they allow for error-probability control (Wetherill, 1975).

Apart from applications in clinical research (Proschan, Lan, & Wittes, 2006), sequen-
tial analyses have largely been ignored in psychology over the past decades (Botella,
Ximénez, Revuelta, & Suero, 2006; Lang, 2017). This might be surprising, given the
many beneficial properties of sequential tests. Considering the above-mentioned re-
sponsibility not to waste valuable resources, one might even identify an “ethical obliga-
tion” of researchers to make use of the most efficient methods available (Lakens, 2014,
p. 701).

One of the reasons for the widespread neglect of sequential methods has been their
mathematical sophistication (Botella et al., 2006). Until the late 20th century, high-
performance computers were not available. Thus, in order to apply sequential analy-
ses researchers had to rely on complex mathematical calculations and approximations.
Nowadays, in contrast, statistical analyses are easily conducted with standard statistical
software and, thus, mathematical complexity is no longer a limitation.

Another reason that has limited the applicability of sequential tests is that they are
typically designed for so-called simple hypotheses. A hypothesis is simple when the
values of all parameters of the statistical model that defines the probability distribution
of the data are uniquely determined. If more than a single value for each parameter is
consistent with the hypothesis, it is not simple but composite (Wald, 1947). Let θ1, ..., θK

denote the population parameters of the probability distribution of some random vari-
able X, that is, X ∼ f (x|θ1, ..., θK), with x, θk ∈ R. If K = 2, for example, the hypothesis
that θ1 = 0 and θ2 = 0 is simple. In contrast, the hypotheses that θ1 = 0 and θ2 6= 0, or
θ1 = θ2 are composite, because they are consistent with infinitely many values of θ2. To
summarize, a hypothesis is simple when it is consistent with exactly one point in the
K-dimensional parameter space. Otherwise, it is composite.

Consider the common case of testing a hypothesis on the mean of some normally
distributed random variable. A hypothesis µ = µ0 would only be simple if the scale
of the random variable (i.e., the population variance σ2) was known. This is typically
not the case, thus, σ2 is a so-called nuisance parameter and many test procedures do not
apply. The problem of composite hypotheses is not only an issue for sequential tests,
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but for all procedures that are based on simple hypotheses—such as, for example, the
Neyman-Pearson procedure.

Most research questions imply composite hypotheses. As a consequence, procedures
that are restricted to simple hypotheses are of limited practical use for substantive re-
searchers. Thus, it is not surprising that the SPRT has not been widely used in psychol-
ogy. To improve its applicability, such that substantive researchers can benefit from its
many advantages, it is important to consider the SPRT in more realistic scenarios.

In this thesis, I study three approaches to extend SPRTs to the case of composite
hypotheses. In the first article (Schnuerch & Erdfelder, 2019), I implement and examine
the properties of a sequential t test in a simulation study. The test is based on a method
by D. R. Cox (1952b) that requires a jointly sufficient set of estimators for the unknown
parameters, such that a test can be constructed on transformations of the observations,
whose distribution no longer depends on the unknown nuisance parameters.

In the second article (Schnuerch, Heck, & Erdfelder, 2019), I develop a sequential de-
sign for Bayesian t tests such that the procedure allows for statistical decisions with
controlled error probabilities. The procedure is a simple extension of the SPRT, based
on a suggestion by Wald (1947) tailored to alternative hypotheses that do not put re-
strictions on the exact value of the parameter of interest.

In the last article (Schnuerch, Erdfelder, & Heck, 2020), I seize on a method suggested
by D. R. Cox (1963), where a sequential test in the presence of nuisance parameters is
constructed based on asymptotic maximum-likelihood theory. I use this method to de-
velop sequential hypothesis tests on parameters of a popular class of stochastic models
for discrete data, namely, multinomial processing tree (MPT) models.

In the following, I discuss each article in more detail and elaborate on the general
framework in which they are connected, that is, sequential probability ratio tests of
composite hypotheses. Moreover, I put this framework into the context of the cuboid
model representing the three dimensions of SMiP’s research agenda: In Part I, I address
the statistical-techniques dimension and how the SPRT increases the efficiency and re-
liability of statistical hypothesis testing (Articles I and II). In Part II, I bridge the gap
to the second dimension, that is, the model-families dimension, by demonstrating how
sequential tests can facilitate the applicability of MPT models (Article III). In Part III, I
address the application-fields dimension by outlining with concrete examples how the
methods I promote can benefit substantive research. Finally, I discuss limitations and
future directions.

The field of psychology has yet to see the full ramifications of the replication crisis.
With my dissertation, I hope to contribute to overcoming this crisis by making sequen-
tial hypothesis tests available to substantive researchers and improving statistical prac-
tice. However, whereas I am convinced that questionable statistical rituals have played
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their part in the development of the crisis, they certainly are not the sole cause of it.
The research process comprises many elements and statistical hypothesis testing is only
one of them. To fully understand the mechanisms underlying the replication crisis, all
elements have to be considered in interaction, not in isolation. This is beyond the scope
of this dissertation, but necessary for the field of psychology as a whole. Otherwise, our
conclusions will be as misguided as those of the blind men from Indostan in J. G. Saxe’s
famous poem: In order to find out what an elephant is like, each of the men feels some
part of it. One is feeling its side, one its leg, another its trunk, and so on. Then, each
convinced that he has discovered the truth, they argue whether the elephant is like a
wall, a tree, or a snake—when, undoubtedly, integrating their experiences would have
brought them closer to the truth.
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2 Part I: Statistical Techniques

There are no routine statistical questions,
only questionable statistical routines.

(D. R. Cox)

2.1 Current Statistical Practice

Hypothesis testing is commonly viewed as a decision-making problem: Given some
hypothesis H and observed data X, do we accept the hypothesis or do we reject it?
From the perspective of an empirical science, critically testing the empirical predictions
derived from a theory is an integral part of the research process. An integral part of
hypothesis testing, in turn, is the use of statistical methods.

According to Ronald Fisher (1922), “the object of statistical methods is the reduction
of data” (p. 311) to a smaller, tangible quantity that captures all the essential informa-
tion. This is done by constructing a hypothetical distribution of samples drawn from
some population, which can be described by a small number of parameters and from
which we assume our data to be a random sample. The statistical process can thus be
reduced to three essential problems: (1) Specification, that is, the choice of the statisti-
cal model representing the hypothetical population; (2) Estimation, that is, calculation
of statistics that are used as estimates for the unknown population parameters; and
(3) Distribution, that is, the consideration of the distribution of the calculated statistics
across all possible samples.

Based on this notion, Fisher (1935a) developed his theory of significance testing. The
first step of Fisher’s procedure includes the specification of the statistical model under-
lying the data and the formulation of a simple null hypothesis on the parameter(s) of
interest, H0: θ = θ0. Let xn = (x1, ..., xn) denote a sample of n observations and t(xn) the
relevant test statistic computed from the data. The test of significance is then based on
the computation of the p value, denoting the conditional probability of the observed or
a more extreme test statistic under the null hypothesis. For a one-tailed test, this means

p = P(T(xn) ≥ t(xn)|θ0). (2.1)

Fisher suggested that this value be interpreted as the significance level, with small
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values denoting statistical evidence against the null hypothesis (Barnard, 1947; Berger,
2003). This reasoning has been termed “Fisher’s disjunction” (Rouder, Morey, Verhagen,
Province, & Wagenmakers, 2016): A small p value indicates that either a rare event
has occurred or the null hypothesis is false. Depending on the situation at hand and
the observed level of significance, this reasoning may warrant either rejecting the null
hypothesis or maintaining it (Barnard, 1947).

Despite its influence, Fisher’s theory sparked trenchant critique. Many statisticians
argued that the disjunction, as a probabilistic version of the modus tollens, was logically
invalid (Cohen, 1994; Royall, 1997). Among its fiercest critics was Jerzy Neyman, who
also challenged Fisher’s concept of fiducial probability, that is, the argument that objective
probability distributions for the unknown population parameters θ can be deduced
from the data alone (Fisher, 1935b; Kalbfleisch & Sprott, 1967). In fact, the argument is
hard to reconcile with the classical, frequentist view of probabilities (Neyman, 1941).
Although Fisher shared this classical view (see Fisher, 1922) and repeatedly argued that
the fiducial argument had been misinterpreted and misrepresented (e.g., Fisher, 1935b,
1955), Neyman remained that Fisher’s theory lacked proper, frequentist justification,
and set out to develop his own theory of hypothesis testing (Berger, 2003).

In collaboration with Egon Pearson, Neyman developed a most influential theory, in
which the test of a hypothesis is constructed as a decision rule to decide between two
possible courses of action. The aim of this rule is to govern behavior such that, in the
long run, the proportion of erroneous decisions can be controlled (Neyman & Pearson,
1933). The justification for this procedure is termed the frequentist principle: If a statistical
procedure is applied repeatedly, the overall rates of decision errors should be equal to
the average reported error probabilities (Berger, 2003; Neyman, 1977).

A crucial element in the Neyman-Pearson theory is the notion that the test of a hy-
pothesis always requires the specification of an (exact) alternative hypothesis. This can
be illustrated by a simple example (see Pollard & Richardson, 1987): Assume we are
meeting a random person and we want to test the following hypothesis,

H: The person is a U.S. citizen. (2.2)

In the course of testing this hypothesis, we might observe that the person is president
of the United States. Under our hypothesis, that is, given that the person we have met
is a citizen of the United States, this person being the president is an extremely un-
likely event (as of November 24, 2019, the probability is approximately 1/330, 000, 000;
U.S. Census Bureau, 2019). Following Fisher’s logic, we might thus conclude that the
hypothesis is false and should be rejected. Obviously, our conclusion is misguided, as
we failed to consider the probability of the observed event given that the hypothesis is
false. Observing an event that is unlikely under one hypothesis does not imply that it is
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more likely under any alternative hypothesis. If the person is not a U.S. citizen, being
president is not only unlikely but simply impossible. Hence, our observation, however
unlikely under the hypothesis, is unequivocal evidence that it is, in fact, true. This ex-
ample illustrates the importance of considering alternative hypotheses.

Let the null and the alternative hypothesis be denoted by H0: θ = θ0 and H1: θ = θ1,
respectively. A statistical test may then warrant one of two mutually exclusive courses
of action: Accept H0 or H1 and reject the respective other one. Based on this decision,
two possible errors can occur, namely, accepting H1 when H0 is true and vice versa.
The first one is referred to as Type-I error and the second as Type-II error, with α and β

commonly denoting the respective probabilities of the statistical procedure to commit
either one.

The Neyman-Pearson procedure to control these error probabilities is based on the
likelihood ratio. This ratio quantifies how much more likely the data have occurred under
one hypothesis relative to the other. Let f (xn|θi) denote the probability density function
of an observed sample of size n, conditional on the parameter (or parameter vector) θi

under hypothesis i, i = 0, 1.1 The probability density is proportional to the likelihood,
f (xn|θi) ∝ L(θi; xn), thus, the likelihood ratio is typically expressed as the ratio of
probability densities:

LRn =
f (xn|θ1)

f (xn|θ0)
. (2.3)

This ratio measures how well one hypothesis predicted the data relative to the other
hypothesis. Relative predictive accuracy, in turn, represents the statistical evidence that
the data provide for each hypothesis relative to the other (Royall, 1997). In order to
construct a test procedure that controls the error probabilities α and β, Neyman and
Pearson suggested to use the following decision rule: Reject H0 if

LRn ≥ c, (2.4)

where c is defined a priori, and accept it otherwise. Let Ω denote the set of all possible
samples of size n, that is, xn ∈ Ω, ∀xn, and Ωc the critical region, that is, the set of
all samples of size n for which Inequality 2.4 is satisfied. To achieve the desired Type-I
error probability, c is chosen such that, if the the null hypothesis is true, the relative size
of the critical region is equal to α. Moreover, it is chosen such that Ωc consists of those
elements of Ω for which the likelihood ratio LRn takes on its maximum values. Thus,
the probability that xn ∈ Ωc if the alternative hypothesis is true, that is, the power 1− β,
will be maximized. In other words, there is no alternative critical region for which the

1The random variable X can be either continuous or discrete, in which cases f (.) denotes the probability
density or the probability mass, respectively. Without loss of generality, I will treat X as a continuous
variable in what follows.
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power would be larger. Thus, the procedure is a most powerful test of H0 versus H1

for a given α and fixed sample size. This property is described in the Neyman-Pearson
lemma (Neyman & Pearson, 1933; Royall, 1997).

This result marks an important milestone in the theory of hypothesis testing (Wald,
1947). For any given (simple) hypotheses H0 and H1, the power of the test is a function
of α and the sample size. Thus, the error probabilities of the procedure can be controlled
explicitly by choosing a certain sample size. This is known as an a priori power analysis
(Cohen, 1988, 1992; Faul et al., 2009).

Neyman-Pearson tests and power analyses have served as nominal standards for sta-
tistical tests in psychology and many other scientific fields. Common practice, however,
often deviates from these norms (Erdfelder et al., 1996): For decades, the de-facto stan-
dard in psychological research has been null-hypothesis significance testing, a hybrid
procedure composed of elements of both Fisher’s as well as Neyman and Pearson’s the-
ories (Bredenkamp, 1972; Goodman, 1993; Wagenmakers, 2007). Like Fisher’s theory,
it only considers the null hypothesis but no specific alternative. At the same time, like
Neyman-Pearson tests, it is used as a decision-making procedure with controlled Type-I
error probability α, sometimes in combination with post-hoc assessments of effect sizes
and statistical power (Gigerenzer, 2004).

As a compound of two rivaling approaches, NHST is a theoretically inconsistent hy-
brid procedure. Despite its pitfalls, however, it has become a pervasive statistical ritual.
If there is anything that Neyman and Fisher could have agreed on, despite their fun-
damental differences and personal disputes, it would have been the illegitimacy of that
statistical hybrid (Berger, 2003; Gigerenzer, 1993, 1998, 2004).

In recent years, awareness of the shortcomings of NHST has spread and fostered calls
for a paradigm shift toward other methods (e.g., Cumming, 2014; Dienes, 2011; Rouder,
Morey, & Wagenmakers, 2016; Wagenmakers, 2007). Among other things, the replica-
tion crisis has underlined the need for reliable error-probability control of statistical
tests (e.g., Psychonomic Society, 2019). Neyman-Pearson tests, however, as the common
procedure that allows for error-probability control, often require extremely large sam-
ple sizes. This may have partly encouraged researchers to neglect power analyses and
to rely on NHST instead. Thus, not surprisingly, the average power of statistical tests
reported in the field of psychology has typically been unacceptably low (Cohen, 1962;
Erdfelder et al., 1996; Sedlmeier & Gigerenzer, 1989), indicating the urgent need for
efficient alternatives. One promising alternative, and the main topic of this thesis, is
sequential analysis.
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2.2 The Sequential Probability Ratio Test

A typical assumption of conventional statistical tests is that the sample size is fixed, and
the tests’ properties are defined in reference to the set of possible outcomes of repetitions
with the same sample size (Barnard, 1949). In sequential analysis, in contrast, the sample
size is not defined a priori. Instead, the data are sampled sequentially, that is, at any
new step of the sampling process a decision is made to either terminate (and accept
one of the hypotheses) or continue sampling. This process is reiterated until the first
decision is made and sampling stops. Thus, by implication, the sample size is a random
variable that depends on the sequence of observations.

In the 1940’s, Abraham Wald introduced one of the first formal theories of sequential
analysis, the sequential probability ratio test (SPRT; Wald, 1945, 1947). The SPRT is based
on the same test statistic as the Neyman-Pearson procedure, namely, the likelihood ratio
(see Equation 2.3). As before, let f (xn|θ) denote the probability density function of an
observed sample of size n and θ the true parameter (or parameter vector) defining this
distribution. For the test of the two simple hypotheses H0: θ = θ0 and H1: θ = θ1, the
likelihood ratio (LRn) is computed for any integral value of n, starting at n = 1. At each
stage of this procedure, one of the following three decisions is made:

1) Accept H1 and reject H0 when LRn ≥ A;

2) Accept H0 and reject H1 when LRn ≤ B;

3) Sample a new independent observation xn+1 when B < LRn < A.

(2.5)

It is straightforward to prove that the statistical procedure defined by Equations 2.3
and 2.5 will terminate with probability 1 (see Wald, 1947, Appendix A.1). Thus, accord-
ing to the nomenclature suggested by Kendall and Stuart (1969), the SPRT is a closed
sequential scheme, as opposed to open procedures that may, potentially, continue indef-
initely without a decision.2 Based on this, the determination of the decision boundaries
A and B such that the test satisfies certain error probabilities α and β is straightforward.

Let xn
i denote a sample that leads to the acceptance of Hi, i = 0, 1, that is,

B <
f (xn−1

i |θ1)

f (xn−1
i |θ0)

< A, (2.6)

and
f (xn

1 |θ1)

f (xn
1 |θ0)

≥ A (2.7)

2The terminology in the statistical literature appears to be somewhat inconsistent at this point. Some
authors use the term closed to describe test procedures with an exact upper limit on the sample size.
Following Kendall and Stuart (1969, p. 593), however, I will refer to these tests as truncated.
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or
f (xn

0 |θ1)

f (xn
0 |θ0)

≤ B, (2.8)

respectively. Thus, by definition, any sample xn
1 satisfies the following inequality,

f (xn
1 |θ1) ≥ A · f (xn

1 |θ0), (2.9)

indicating that this sample is at least A times more likely to occur under H1 than under
H0. This means that the probability to obtain a sample xn

1 is at least A times larger under
H1 than under H0. The probability to obtain a sample xn

1 , in turn, is equivalent to the
probability to accept H1. Because the SPRT eventually terminates with either accepting
H1 or H0, this implies that the probability to accept H1 is at least A times larger under
H1 than under H0. In the usual notation, the former is defined as the statistical power
1− β and the latter as the Type-I error probability α, hence, 1− β ≥ Aα. Following the
same logic for xn

0 , we see that β ≤ B(1− α), and thus,

A ≤ 1− β

α
(2.10)

and
B ≥ β

1− α
. (2.11)

Inequalities 2.10 and 2.11 indicate that upper and lower limits for A and B are given
by (1− β)/α and β/(1− α), respectively. Wald (1947) showed that treating these in-
equalities as equalities to define A and B “cannot result in any appreciable increase in
the value of either α or β” (p. 46). In fact, as the likelihood ratio will typically have
exceeded the boundary at the point of termination (a phenomenon called overshooting),
the resulting error rates of the sequential procedure will be lower than the nominal
α and β. Wald conjectured that the resulting decrease in efficiency is negligible and,
thus, suggested that for practical purposes the SPRT based on Equations 2.3 and 2.5 be
performed with A = (1− β)/α and B = β/(1− α). The resulting SPRT is a test with
approximate strength (α, β).

The SPRT marked an important milestone in the theoretical development of sequen-
tial analysis (Wetherill, 1975). Of particular interest is the test’s optimum character: Wald
and Wolfowitz (1948) proved that, among all tests with the same strength (α, β), the
SPRT requires on average the fewest observations. Let Eθ(N|S) denote the average sam-
ple size N for a sequential test S when θ is the parameter of interest. A test S′ is called
optimum if, for any alternative test S of equal strength, Eθi(N|S′) ≤ Eθi(N|S), i = 0, 1.
This property has been proven for the SPRT for the case of testing a simple null hypoth-
esis against a simple alternative (Matthes, 1963; Wald & Wolfowitz, 1948). It is important
to note, however, that the proof only holds if the true θ is equal to θ0 or θ1 (Wetherill,
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1975).
Apart from its efficiency, the SPRT has a number of desirable properties. Unlike classi-

cal Neyman-Pearson or Fisherian tests, for example, the SPRT does not require assump-
tions about the distribution of the test statistic. The decision thresholds are functions of
α and β only. Thus, it is not necessary to assume a distribution of the likelihood ratio
under the null hypothesis in order to choose a critical value that satisfies the required
error probabilities (Wald, 1947).

To compute the likelihood ratio, however, the SPRT does require the likelihood func-
tion to be completely specified under each hypothesis. This limits the general theory
of the SPRT, as well as analytical solutions for functions describing the test procedure’s
properties, to simple hypotheses. As argued above, however, hypotheses are typically
composite. Apart from the mathematical complexity of calculating the likelihood ratio
without the availability of computers, this limitation may explain the striking lack of
SPRT applications in the field of psychology (Botella et al., 2006; Lang, 2017; Wetherill,
1975).

In the years following its introduction, several extensions of the SPRT have been pro-
posed to adapt the general theory to the case of composite hypotheses. As I show in my
thesis, these extensions not only widen the scope of the SPRT, they also contribute to
overcoming some pervasive problems that practitioners typically face in statistical hy-
pothesis testing. With these extensions, the SPRT may become an important alternative
to classical test procedures, especially in light of the reproducibility crisis, and a helpful
step toward better statistical practice in psychological research.

2.3 Hajnal’s t Test

Schnuerch, M., & Erdfelder, E. (2019). Controlling decision errors with minimal costs:
The sequential probability ratio t test. Psychological Methods. Advance online pub-
lication. http://dx.doi.org/10.1037/met0000234

One of the arguably most common statistical tests in psychological research is concerned
with hypotheses on means (or mean differences) of normally distributed variables. As-
sume a one-sample test of the hypothesis H0: µ = µ0 versus H1: µ = µ1. Let f (x|µ, σ2)

denote the probability density of an observed value x. Only if the population variance
σ2 was known, the hypotheses would be simple and the application of the SPRT would
be straightforward. If σ2 is an unknown nuisance parameter, however, the hypotheses
are composite and the likelihood function (as well as the likelihood ratio) is not fully
specified.

One way to cope with the problem of nuisance parameters is to transform the ob-

http://dx.doi.org/10.1037/met0000234
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served sequence to one that no longer depends on the unknown parameter(s). This idea
was first formulated by Armitage (1947) and later by Barnard (1949), who suggested
to use instead of the sample observations x1, ..., xn the corresponding t statistics t2, ..., tn

computed from the observed data to construct the likelihood ratio,

LRn =
f (t2, ..., tn|H1)

f (t2, ..., tn|H0)
. (2.12)

The t distribution no longer depends on the unknown population variance. It is fully
defined by the degrees of freedom dfn and the noncentrality parameter ∆i corresponding
to hypothesis Hi at the nth stage.

Since the sequence of t values is not composed of independent elements, this ratio
can be complex to calculate. According to a theorem presented by D. R. Cox (1952b),
however, the likelihood function in Equation 2.12 factorizes into

f (t2, ..., tn|Hi) = f (t2, ..., tn|dfn, ∆i) = f (tn|dfn, ∆i) · f (t2, ..., tn−1|tn), (2.13)

the last term of which no longer depends on the hypothesis. Thus, the ratio at the nth

stage can be reduced to the ratio of the densities of tn under each hypothesis (Rushton,
1950, 1952),

LRn =
f (tn|dfn, ∆1)

f (tn|dfn, ∆0)
. (2.14)

As a straightforward application of this result, Hajnal (1961) showed that a sequential
two-sample t test for hypotheses on mean differences between two independent popu-
lations can be constructed based upon the same principle. In Schnuerch and Erdfelder
(2019), we implemented Hajnal’s t test in the statistical computing environment R (R
Core Team, 2019) and examined its properties by means of simulations. Additionally,
we compared the test with the classical Neyman-Pearson test, the group sequential (GS)
test (Proschan et al., 2006), and sequential Bayes factors (SBFs; Schönbrodt, Wagenmak-
ers, Zehetleitner, & Perugini, 2017) in terms of error-probability control, efficiency, and
robustness against violations of assumptions.

Being a sequential approach, the GS design allows for interim analyses during the
sampling process. Unlike Hajnal’s t test, however, it is based on a fixed number of
planned stops, including a number of interim and one final test. The sample sizes at
each stop are defined a priori. For example, a researcher might plan to inspect the
data after n = 25, 50, and 75 observations, and perform a final test at Nmax = 100
observations. At each step, the fixed-sample test statistic is computed and compared
with critical values that are calculated for each stop based on linear spending functions
for the overall error rates of the procedure, α and β (Lakens, 2014). Thus, in each stage,
the test can either terminate and accept H0 or H1, or sampling is continued until the
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next stage is reached. In the final stage, the test will accept one of the hypotheses. Thus,
the procedure is truncated, since the required sample size can never exceed Nmax.

The GS design allows for explicit control of error probabilities for two competing
hypotheses H0 and H1. At the same time, it requires on average fewer observations
than classical Neyman-Pearson tests with the same error probabilities. Although it is
based on normally distributed test statistics, the GS design can also be applied in the
context of t tests, since the t distribution approximates the normal distribution with
increasing sample size (Lang, 2017; Schnuerch & Erdfelder, 2019).

The SBFs are rooted in the Bayesian framework, where the method of choice for
hypothesis testing and model comparison is the Bayes factor (Jeffreys, 1961; Wrinch &
Jeffreys, 1921). The Bayes factor denotes the multiplicative factor by which subjective
belief is updated in light of the data (see Section 2.4). Like the test statistic in the SPRT,
it is a likelihood ratio and, thus, a measure of evidence in the data for one hypothesis
vis-à-vis the other (Kass & Raftery, 1995):

BF10 =
f (xn|H1)

f (xn|H0)
. (2.15)

The likelihoods specified in this ratio are so-called marginal likelihoods. In Bayesian
statistics, uncertainty about the exact values of unknown parameters is expressed by
means of prior distributions on the parameters. These distributions represent the sub-
jective belief about how plausible different parameter values are. The probability den-
sity of observed data under hypothesis Hi, the marginal likelihood, is then obtained by
integrating across the prior distributions πHi(θ),

f (xn|Hi) =
∫

ΘHi

fHi(xn|θ)πHi(θ) dθ. (2.16)

In Equation 2.16, ΘHi is the parameter space defined by hypothesis i and fHi(xn|θ)
denotes the probability density of the data for a specific point θ in ΘHi . Thus, the Bayes
factor denotes a weighted average likelihood ratio for all possible parameter values
(Morey & Rouder, 2011). As such, it crucially depends on the specified prior distribu-
tions. We focused on the arguably most prominent Bayes factor specification introduced
by Rouder, Speckman, Sun, Morey, and Iverson (2009), the Bayesian t test. Here, the hy-
potheses are represented by the prior distributions on the standardized mean difference
δ (Cohen’s d). Under the null hypothesis, the prior is a point mass on δ = 0. Under the
alternative, in contrast, the prior is a Cauchy distribution, a heavy-tailed distribution
whose shape is defined by a scale parameter r. For r = 1, the Cauchy is a t distribution
with one degree of freedom.

The SBFs are based on the sequential calculation of the Bayes factor until it reaches
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some predefined threshold. Unlike in the SPRT, however, this threshold is not based
on considerations of required error probabilities. Therefore, to keep the error rates of
all four test procedures constant in order to compare their efficiency, we simulated the
SBF design for a wide range of population scenarios, varying the true effect size δ, the
scale parameter r of the Cauchy prior, and the decision threshold. For each parameter
combination, we then used the empirical error rates of the SBFs to construct a classical
Neyman-Pearson t test, a GS test, and Hajnal’s t test with the same error probabilities.

We replicated the results of previous simulation studies in showing that the sequen-
tial designs are on average substantially more efficient than the classical, fixed-sample
procedure (Schönbrodt et al., 2017). What is more, we showed that Hajnal’s t test is even
more efficient than the GS and SBF tests with corresponding error rates (Schnuerch &
Erdfelder, 2019, Figure 2).

Moreover, we investigated the impact of violations of basic assumptions on the test
procedures’ performance. If the effect sizes specified under the hypotheses are much
larger than the true effect, or if the true effect is random rather than fixed, Hajnal’s t
test is negatively affected in terms of error rates and efficiency. At the same time, in
a balanced design, Hajnal’s t test is quite robust against violations of normality and
homogeneity assumptions, much more so than the other sequential designs.

To summarize, with the first article, we showed that the SPRT can be extended based
on D. R. Cox’s (1952b) method to the case of composite hypotheses for the t test. We
implemented the SPRT in standard statistical software and examined the properties of
one SPRT t test, Hajnal’s t test, by means of simulations. Thus, we demonstrated empir-
ically the advantages of the SPRT compared with classical as well as other sequential
designs. This underlines our argument that the SPRT constitutes an attractive alterna-
tive to current statistical practice by combining reliable error-probability control with
high efficiency.

A possible limitation of the non-truncated sequential design is the risk to end up
with extremely large samples. The general theory of the SPRT is based on continuous
sampling until a threshold is reached, and the error rates of this procedure critically
hinge on this assumption. Although our simulations showed that the risk is small (typ-
ically, around 90% of the simulations terminate with a sample size smaller than the
corresponding Neyman-Pearson test), the situation might occur in single instances. If
the sequential procedure is terminated before reaching a boundary, a decision must not
be made. Otherwise, the error rates of such a procedure are unknown and potentially
much larger than intended.

Another limitation is that Hajnal’s t test is bound to the test of point hypotheses.
For many situations, the specification of point hypotheses is reasonable, for example,
as lower limits for a substantively meaningful effect size that the test should detect
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with power ≥ 1− β (Psychonomic Society, 2019; Schulz & Grimes, 2005). Sometimes,
however, there might be no reason to assume a certain, fixed effect size. If, for example,
the theory at test predicts the absence of an effect, any δ 6= 0 might be interpreted
as contradicting the hypothesis. In this case, it might be more appropriate to specify
a distribution (representing a random effect) rather than a point under the alternative
hypothesis.

The Bayes factor can be used to test such hypotheses, since it is based on prior distri-
butions. As a continuous measure of evidence, however, it does not constitute a natural
basis for statistical decisions. Thus, if the Bayes factor is employed to accept or reject
hypotheses, the long-run error rates of that procedure are not controlled explicitly. In
the second article of my dissertation, I developed a sequential design, based on an ex-
tension of the SPRT suggested by Wald (1947), which allows for statistical decisions
based on the Bayes factor with controlled error probabilities.

2.4 Waldian t Tests

Schnuerch, M., Heck, D. W., & Erdfelder, E. (2019). Waldian t tests for accepting and re-
jecting the null hypothesis with controlled error probabilities. Manuscript submitted for
publication.

In what is now one of the most-often cited articles published in Psychonomic Bulletin
& Review, Rouder et al. (2009) proposed Bayesian t tests as an alternative to NHST for
accepting and rejecting the null hypothesis. As mentioned above, Bayesian t tests use
the Bayes factor to quantify statistical evidence for competing hypotheses. The fun-
damental assumption at the heart of Bayesian statistics is that probability represents
subjective belief: How certain are we that something is true or will happen (Etz & Van-
dekerckhove, 2018)? Based on this, we can put probabilities on single events (What’s the
probability that Germany will win the FIFA World Cup?), hypotheses (What’s the probability
that standing next to a giant box makes people more creative, i.e., ‘think outside the box’?; Lee
& Wagenmakers, 2013), or parameter values.

From this perspective, hypothesis testing means updating the belief that a hypothesis
is true by looking at data. A principled way how one should update subjective belief in
light of data is given by Bayes’ well-known theorem (i.e., the law of inverse probability).
The Bayes factor is a consequence of a straightforward application of this theorem to
the case of two competing hypotheses. In order to arrive at the relative belief in two
competing hypotheses after seeing the data (posterior odds), the relative belief before
seeing the data (prior odds) is multiplied with the relative accuracy with which the
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hypotheses predicted the data:

P(H1|data)
P(H0|data)︸ ︷︷ ︸
Posterior odds

=
f (data|H1)

f (data|H0)︸ ︷︷ ︸
Bayes factor

· P(H1)

P(H0)︸ ︷︷ ︸
Prior odds

(2.17)

This multiplicative updating factor is the Bayes factor. As explained in the previous
section, it is a ratio of marginal likelihoods. As such, it measures the statistical evi-
dence in the data for one hypothesis relative to the other (Kass & Raftery, 1995; Rouder
& Morey, 2017). It has frequently been argued that measuring evidence and updating
subjective belief to posterior odds or probabilities reflects the core aim of statistical infer-
ence or even science in general (e.g., Dienes, 2011; Edwards, Lindman, & Savage, 1963;
Morey, Romeijn, & Rouder, 2016; Rouder, Morey, & Wagenmakers, 2016; Rozeboom,
1960), and Bayesian hypothesis tests have gained notable attraction in psychological
research (Tendeiro & Kiers, 2019).

In practice, however, hypothesis testing often resembles a decision-making process
(cf. Berger, 2006; Schnuerch & Erdfelder, 2019). Consider experimental psychologists
conducting a pilot study. Based on their decision to accept or reject the hypothesis of
interest in that study, they might decide to continue or abandon this particular line of
research. In the same vein, clinical researchers might decide to implement a new treat-
ment based on their decision to accept or reject the hypothesis that it is better than the
old treatment. As in these examples, many situations compel researchers to dichotomize
the continuous Bayes factor into discrete regions of acceptance or rejection (Jeon & De
Boeck, 2017). For these situations, it is vital to consider and control the long-run rates
of incorrect decisions of the statistical procedure (Sanborn & Hills, 2014; Sanborn et al.,
2014). For the standard Bayesian t test, however, there is no means to control decision-
error probabilities explicitly. As a remedy, we propose a simple extension of Bayesian t
tests based on the SPRT (Schnuerch et al., 2019; see also Berger, Boukai, & Wang, 1999).

In the Bayesian t test for two independent samples, the data from the two groups are
modeled as normally distributed with means µ± δσ/2 and common variance σ2. Thus,
the statistical model comprises three parameters: the grand mean µ, the standardized
effect size δ, and the variance σ2, all of which are typically unknown. Therefore, prior
distributions are defined for the unknown parameters, denoting subjective belief about
the plausibility of possible values.

Following suggestions by Jeffreys (1961) and Zellner and Siow (1980), the Bayesian t
test employs a so-called JZS prior on the unknown parameters. For the nuisance param-
eters µ and σ2, the priors are non-informative and equivalent under both H0 and H1,
rendering their influence on the resulting Bayes factor negligible. Thus, the statistical
hypotheses actually tested are represented by the priors on the standardized effect size
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δ (Rouder et al., 2009).
Under the null hypothesis, the prior is a point mass corresponding to the classical,

simple null hypothesis that the population means are identical, H0: δ = 0. Under the
alternative, in contrast, the prior is a Cauchy distribution representing the hypothesis
H1: δ ∼ Cauchy(r). It is easy to see that this hypothesis is composite because the Cauchy
has support over the entire real line. Thus, infinitely many δ ∈ R are consistent with
the hypothesis.

Error-probability control in the classical Neyman-Pearson sense requires a procedure
for which

P(accept Hi|Hi) =

1− α (i = 0)

1− β (i = 1)
, (2.18)

where P(accept Hi|Hi) denotes the probability to accept Hi if it is, in fact, true. For H1

in the Bayesian t test, this means that we require the test procedure to have an average
Type-II error probability β across all possible values of δ. For this situation, Wald (1947)
outlined a simple solution in the SPRT framework (see also Berger et al., 1999).

If we can specify the plausibility of different values of δ by means of some weight
function ω(δ) that integrates to one across the parameter space ∆1, then the compos-
ite hypothesis H1 on δ is conceptually equivalent to a simple hypothesis H∗1 on the
probability distribution of the data, that is,

H∗1 : x ∼ f1(x) =
∫

δ∈∆1

f (x|δ) ω(δ) dδ. (2.19)

Wald (1947) showed that an SPRT for the simple hypothesis H0 against the simple
alternativeH∗1 with A = (1− β)/α and B = β/(1− α) will have Type-I error probability
equal to α and Type-II error probability equal to∫

δ∈∆1

β(δ) ω(δ) dδ = β, (2.20)

where β(δ) denotes the Type-II error probability for a specific value of δ. The Cauchy
prior distribution on the effect size in the Bayesian t test is conceptually equivalent to
the weight function ω(δ). Thus, Wald’s (1947) result applies: An SPRT with the Bayes
factor as likelihood ratio and threshold values A and B will approximately satisfy the
error requirements defined in (2.18). We implemented this procedure and demonstrated
by means of simulations that it does indeed satisfy the error-probability requirements
as specified. What is more, this result holds for any proper prior distribution, not just
that suggested by Rouder et al. (2009).

We refer to this newly developed sequential design for the Bayesian t test as Waldian
t test. It is an analytically derived framework that allows for statistical decisions with
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controlled error probabilities conditional on the hypotheses tested with the Bayes factor.
Thereby, it combines the beneficial properties of classical, frequentist tests with those
of Bayesian tests: While it allows for error-probability control, it preserves the fully
Bayesian interpretation of the Bayes factor as a measure of evidence for the specified
statistical models and updating factor of relative belief.

It is important to note that for a composite hypothesis represented by a prior distri-
bution, Waldian t tests control the average Type-II error probability. This implies that the
error probability of the procedure will not be constant for any parameter value δ ∈ ∆1.
From a classical frequentist point of view, a prior distribution (i.e., weight function) rep-
resents a random effect, that is, true variation in parameter values or effect sizes across
single experiments. This assumption is reasonable, for example, if the theory at test pre-
dicts the absence of an effect (δ = 0) and under the alternative hypothesis (δ 6= 0), the
prior distribution represents approximately the range of possible, differently weighted
effect sizes in the field. In this case, controlling the average error probability is in line
with the classical error requirements as specified in (2.18).

If a hypothesis test is required with an upper-limit error probability for any δ in a
range of possible values, a test based on simple hypotheses is more appropriate. In this
case, we would need to define a minimum relevant effect size δmin ∈ ∆1. Hajnal’s t test or
a Neyman-Pearson t test based on the point alternative hypothesis H1: δ = δmin would
then satisfy the error requirement, that is, for both test procedures, P(reject H1|δ) ≤ β,
∀δ ∈ {∆1|δ ≥ δmin} (Schnuerch & Erdfelder, 2019). If no minimum relevant effect size
can be specified, however, as in the case of a substantively motivated null hypothe-
sis against an unrestricted alternative hypothesis, a Waldian t test with default priors
suggested by Rouder et al. (2009) might be more appropriate.

Waldian t tests are an important example of how sequential analysis, extended to
composite hypotheses, can improve statistical practice. Bayesian and frequentist statis-
tics represent fundamentally different approaches to probability and the aim of statis-
tical inference. Statisticians have been engaged in this debate for well over two cen-
turies (Efron, 2005) and it seems far from over—particularly in the field of psychology,
where it often resembles a theological war rather than a scientific discourse. Despite
their differences, however, the approaches are “both quite legitimate” (Efron, 2005, p.
1). Therefore, rather than choosing a side (Dienes, 2011) our efforts should be focused
on a reconciliation of the two schools (Berger, 2000; Little, 2006). Much like the blind
men from Indostan, we might find that an integration of different approaches—rather
than an ideological dispute—might bring us closer to the truth. The Waldian t test,
by combining the advantages of Bayesian and frequentist procedures, is an attempt to
contribute to this goal.
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3 Part II: Model Families

Essentially, all models are wrong,
but some are useful.

(G. E. P. Box)

3.1 Multinomial Processing Tree Models

Psychological research relies to a large extent on simple statistical modeling such as
analysis of variance or t tests as considered in the previous chapter. This is appropri-
ate for tests of hypotheses on directly observable behavior or if the processes at test
can be operationalized in such a way that observed responses serve as direct indica-
tors of these processes. Many psychological theories, however, assume that observed
behavior is determined by a number of qualitatively distinct, latent processes. Memory
judgments, for example, might be determined by encoding, retrieval, and guessing pro-
cesses (Batchelder & Riefer, 1986). Similarly, truth judgments might be the result of an
interplay of knowledge and response biases (Hilbig, 2012). To formalize psychological
theories about latent cognitive processes underlying observed behavior, and to allow for
critical tests of their assumptions, formal mathematical measurement models constitute
powerful tools (Erdfelder, Castela, Michalkiewicz, & Heck, 2015).

In 1988, Riefer and Batchelder introduced a particularly influential class of substan-
tively motivated stochastic models for categorical data: multinomial processing tree
(MPT) models. MPT models assume that observed responses stem from a finite set of
discrete processing states. Specifically, MPT models explicitly specify the sequences of
processing states that determine response behavior. These sequences are represented
by branches in a processing tree that connects the experimental input to all possible
response categories. Along these branches, the latent processing states are represented
as nodes, connected by links denoting the (conditional) probabilities of entering the
respective states. Based on the assumption that observed category frequencies follow
a multinomial distribution, the category probabilities are modeled by these branches,
thereby allowing to measure (i.e., estimate) and test the contribution of each assumed
cognitive process (Erdfelder et al., 2009; Hu & Batchelder, 1994).

As an example, consider a simple hypothetical perception experiment in which par-
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ticipants are presented with a flash of light displayed on a screen for 100 ms in one of
two temporally defined intervals. Following each of these trials, participants are asked
to indicate in which of the two intervals the stimulus was presented (two-alternative
forced-choice test, 2AFC). As an experimental manipulation, the stimuli are presented
in two different luminous intensities, that is, high versus low intensity (see Blackwell,
Pritchard, & Ohmart, 1954, for a similar experimental procedure).

Obviously, the observed performance in this task is not a process-pure measure of de-
tection or perceptual abilities. We can assume that if a participant detects the stimulus,
they will answer correctly. If they do not detect the stimulus, however, they might still
give a correct response simply by guessing the interval in which the stimulus was pre-
sented. Thus, the performance measure in the 2AFC is a confound of two qualitatively
different processes: a detection process representing perceptual abilities, and a guessing
process.

Figure 2 displays a simple MPT model that explicitly specifies the assumed pro-
cess structure underlying observed responses in the 2AFC. It is based on the two-high-
threshold model of recognition memory (Snodgrass & Corwin, 1988), a prominent and
well-studied example of MPT models (Bröder & Schütz, 2009). Presented with a high- or
low-intensity stimulus in each trial, participants either detect the stimulus (with prob-
abilities dh or dl , respectively) and answer correctly, or they do not detect the stimulus
(1− dh or 1− dl). In the latter case, in a state of uncertainty, they have to guess in which
interval the stimulus was presented. Their answer can either be correct (with conditional
probability g) or incorrect (1− g).

Within a tree, the probability of each branch leading to a response category is sim-
ply the product of (conditional) probabilities of all processing states along the branch.
Across the branches, the probability of a response category is the sum of all branch
probabilities ending in the respective category, thus expressing the response probabili-
ties as a function of the model parameters (Hu & Batchelder, 1994). In our example, the
probability of correctly identifying the interval in which a high-intensity stimulus was
presented is thus given by

P(Correct|High intensity) = dh + (1− dh) · g. (3.1)

There is a well-developed body of statistical theory surrounding MPT modeling, pro-
viding methods and software for maximum-likelihood as well as Bayesian parameter
estimation (e.g., Heck, Arnold, & Arnold, 2018; Hu & Batchelder, 1994; Klauer, 2006,
2010; Moshagen, 2010; Singmann & Kellen, 2013; Stahl & Klauer, 2007). These methods
also allow for goodness-of-fit tests to asses whether empirical data can be reconciled
with the model’s assumptions, and for statistical hypothesis tests on single parameters
(Erdfelder et al., 2009).
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High

1− dh
1− g False

g Correct

dh Correct

Low

1− dl
1− g False

g Correct

dl Correct

Figure 2: A multinomial processing tree model for a perception experiment with high
versus low luminous intensity and a two-alternative forced-choice test. dh = probability
to detect the stimulus with high intensity; dl = probability to detect the stimulus with
low intensity; g = probability to guess correctly.

Beyond model fit, necessary conditions for the psychological interpretation of MPT
parameter estimates are identifiability and experimental validation (Batchelder & Riefer,
1999). Identifiability denotes a one-to-one mapping of parameter values to observed
data, which is necessary for the model to provide unique parameter estimates (Bamber
& van Santen, 2000). In other words, an MPT model is identifiable if any set of ob-
served, model-consistent category probabilities corresponds to one, and only one, set of
parameter values. Experimental validation involves the demonstration that experimen-
tal manipulations of specific cognitive processes selectively affect the corresponding
model parameters (Hilbig, 2012; Voss, Rothermund, & Voss, 2004). Only when a model
has been validated, and identifiability and model fit have been established, parameter
estimates allow for a psychologically meaningful interpretation as measures of latent,
cognitive processes.

Over the last decades, numerous MPT models have been developed, validated, and
successfully applied to substantive research questions in various branches of psychol-
ogy, especially in (social-)cognitive research (see Batchelder & Riefer, 1999; Erdfelder
et al., 2009; Hütter & Klauer, 2016, for reviews). MPT models have also been suggested
as measurement tools for psychometric purposes. Due to the explicit formalization of
latent processes underlying observed behavior and their ability to measure and disen-
tangle them, Batchelder (1998) saw an “untapped potential” for MPT applications in
individual assessments (p. 331). He coined the term cognitive psychometrics, repeatedly
promoting the use of MPT models in clinical settings, for example, to identify specific
cognitive deficits of individuals or subpopulations (Riefer, Knapp, Batchelder, Bamber,
& Manifold, 2002).

In the third article of my dissertation (Schnuerch et al., 2020), we address a notable
limitation of MPT model analysis which is particularly relevant in individual assess-
ment situations or when each individual provides only a single data point (e.g., Heck,
Thielmann, Moshagen, & Hilbig, 2018; Klauer, Stahl, & Erdfelder, 2007; Schild, Heck,
Ścigała, & Zettler, 2019): Classical, sufficiently powered hypothesis tests typically re-
quire conservative assumptions about unknown model parameters, resulting in ex-
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tremely large required sample sizes. As a remedy, we propose substantially more ef-
ficient sequential probability ratio tests for MPT models. Moreover, we consider an ex-
tension based on maximum likelihood theory which allows to test composite hypothe-
ses without making explicit assumptions about unknown model parameters. With this
approach, we show how sequential analysis can facilitate the applicability of formal
measurement models such as MPT models in substantive research.

3.2 Sequential Maximum Likelihood Ratio Tests

Schnuerch, M., Erdfelder, E., & Heck, D. W. (2020). Sequential hypothesis tests for
multinomial processing tree models. Journal of Mathematical Psychology, 95, 102326.
http://doi.org/10.1016/j.jmp.2020.102326

Hypothesis tests for MPT parameters, that is, tests of parameter constraints represent-
ing a psychological hypothesis, typically rely on NHST (Batchelder & Riefer, 1999). To
test a set of parameter constraints, we can compare the goodness-of-fit statistic of the
constrained model to that of an unconstrained model. Under certain circumstances,
the difference statistic follows a χ2 distribution if the null hypothesis (i.e., the set of
constraints) holds (Read & Cressie, 1988).

A sensible test requires sufficient statistical power to reject the constraints if they do,
in fact, not hold in the population (Batchelder & Riefer, 1990). Power analyses for MPT
models have been worked out (Erdfelder, Faul, & Buchner, 2005) and implemented in
readily available software (e.g., Faul et al., 2009; Moshagen, 2010). Such an analysis,
however, requires explicit assumptions about all model parameters. While test-relevant
parameters are specified by the hypotheses, MPT models typically comprise additional,
unknown nuisance parameters, thus rendering the hypotheses composite.

To deal with this, we can make conservative assumptions about the nuisance param-
eters so as to choose a sample size that ensures sufficient power for any plausible value
of the unknown parameters. Such a strategy, however, may result in extremely large
required sample sizes. Especially when resources are scarce, for example, in individ-
ual assessments, this is a notable limitation, either prohibiting the application of MPT
models or resulting in underpowered tests and biased inference (Batchelder & Riefer,
1990).

The SPRT provides an attractive and very efficient alternative to conventional sta-
tistical tests. If all parameters are specified under the hypotheses, that is, if they are
simple, the application of the SPRT to hypothesis tests in MPT models is straightfor-
ward (Schnuerch et al., 2020). It has been proven to be the optimal test for this situation
and its properties (error probabilities and expected sample size as a function of true

http://doi.org/10.1016/j.jmp.2020.102326
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parameter values) can be determined analytically (Wald, 1947), indicating an average
sample-size reduction of around 50% while holding the error rates constant. For com-
posite hypotheses due to nuisance parameters, however, the general theory of the SPRT
does not apply. This can be remedied with an extension developed by D. R. Cox (1963),
which is based on asymptotic maximum likelihood (ML) theory.

Let X be a random variable, with X ∼ f (x|θ, φ), and assume a test of the hypothesis
H0: θ = θ0 versusH1: θ = θ1. If φ is unknown, and no prior distribution can be assumed
(see Schnuerch et al., 2019), D. R. Cox (1963) suggested to construct a sequential test
based on

LRn =
f (xn|θ1, φ̂)

f (xn|θ0, φ̂)
, (3.2)

where φ̂ denotes the ML estimate of φ based on xn, conditional on a model without
restrictions on θ or φ.3 D. R. Cox (1963) showed that if the ML estimates θ̂, φ̂ are asymp-
totically independent, a simple SPRT as defined in (2.5) based on (3.2) is asymptotically
equivalent to that when φ is known. Otherwise, however, the sequential procedure must
be corrected for fluctuations in the likelihood ratio caused by sampling error of φ̂.

For simplification, the likelihood ratio in (3.2) can be replaced by the ratio of second-
order Taylor series expansions about the true parameter values θ and φ. As far as possi-
ble, the resulting terms are then further replaced by expressions that are asymptotically
equivalent (see Breslow, 1969; D. R. Cox, 1963; Schnuerch et al., 2020, for mathematical
details), finally leading to the following, simple procedure (see also Wetherill, 1975): For
every integral value of n, compute the test statistic

Tn = n
[
θ̂ − 1

2 (θ0 + θ1)
]

, (3.3)

with θ̂ denoting the ML estimate of θ based on xn. Sampling is continued as long as

Vθθ

θ1 − θ0
log
(

β

1− α

)
< Tn <

Vθθ

θ1 − θ0
log
(

1− β

α

)
, (3.4)

such that the resulting test procedure satisfies approximately the desired error rates α

and β.
In Equation 3.4, Vθθ denotes the (θ, θ) element of the inverse of the expected Fisher

information for sample size n = 1. This value denotes the variance of the ML estimate θ̂

based on a single observation, assuming observations to be independent and identically
distributed (see Ly, Marsman, Verhagen, Grasman, & Wagenmakers, 2017). Thus, the
sequential procedure is adjusted for the additional uncertainty about the test-relevant
parameter resulting from the necessity to estimate the unknown nuisance parameter φ.

3Bartlett (1946) presented a similar idea, but his method includes separate ML estimates for φ under each
hypothesis, conditional on θ = θ0 and θ = θ1, respectively.
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In Schnuerch et al. (2020), we show that it is straightforward to implement this
method in the context of MPT models to overcome the practical limitations described
above. Since the dimensionalities of θ and φ do not matter (D. R. Cox, 1963), we can
denote by θ the test-relevant MPT model parameters specified by the hypotheses, while
φ denotes the vector of unknown model parameters. Thus, the test allows for hypothe-
sis tests on specific MPT model parameters without explicit assumptions on unknown
nuisance parameters.

We consider three hypothetical psychometric experiments relying on MPT models to
demonstrate the SPRT and its ML extension developed by D. R. Cox (1963), which we
refer to as sequential maximum likelihood ratio test (SMLRT). By means of simulations, we
explore the core properties of the SMLRT in these examples, namely, the empirical error
rates and sample-size distributions. Overall, we demonstrate that the procedure allows
for decision-error probability control without assumptions about unknown parameters.
At the same time, the sequential test requires notably fewer observations than classical
Neyman-Pearson tests with power analyses based on the same nominal error rates and
the true values of the unknown nuisance parameters.

It is important to keep in mind, however, that the test is derived from asymptotic ML
theory. Thus, its assumptions may be violated for small samples, leading to premature
decisions and increased error rates if the initial sample size of the sequential procedure
is too small (C. P. Cox & Roseberry, 1966; Wetherill, 1975). This can be remedied by
imposing a minimum number of observations that have to be sampled before making
a decision. There is no definite strategy how to determine this number, however. It
may vary considerably based on model complexity and effect size. Therefore, based on
our simulations, we recommend an initial sample size of 25–50% of the corresponding
Neyman-Pearson sample size, determined by an a priori power analysis and Monte
Carlo simulations.

Another caveat concerns the assumption that observations are independent and iden-
tically distributed (i.i.d.). If contaminating effects such as fatigue, exercise, or order ef-
fects can be ruled out, this assumption is reasonable when analyzing data from one
individual or when each individual provides only a single data point. For aggregate
data with multiple data points from several individuals, however, the i.i.d. assumption
may often be questioned (Smith & Batchelder, 2008). Ignoring the hierarchical structure
and dependencies in the data may result in biased inference, particularly when the data
are sampled and analyzed sequentially. Thus, the sequential approach is not suited for
those cases in which there are multiple data points per individual and no reason to
assume i.i.d. observations across individuals.

Especially in the context of individual assessments (i.e., cognitive psychometrics),
however, the i.i.d. assumption is typically justified. At the same time, efficiency is of
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particular concern for reasons of limited resources. Therefore, SPRTs and SMLRTs are
attractive alternatives to conventional hypothesis tests in this situation. To summarize,
as we outlined theoretically and demonstrated empirically, sequential analysis can im-
prove the applicability of MPT models considerably, thus fostering their application
in research areas that could greatly benefit from this class of theoretically motivated
stochastic models.
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4 Part III: Application Fields

Gedanken ohne Inhalt sind leer,
Anschauungen ohne Begriffe sind blind.4

(I. Kant)

The aim of the methods studied and developed in my dissertation is to improve sta-
tistical practice and provide psychological researchers with more reliable and efficient
means to approach substantive research questions and test psychological theories. In
the following sections, I describe two concrete examples from different fields of psy-
chology where an application of the methods led to a substantial saving of required
resources. In the first one, Hajnal’s t test was employed to test hypotheses about the
influence of age on the attraction search effect (Scharf, Fischer, & Schnuerch, 2020). The
second example is an application of the SMLRT to the randomized response technique,
which was used to test hypotheses about gender differences in the prevalence of casual
sex.

4.1 The Attraction Search Effect

In all areas of our lives, we have to make decisions: When do we get up in the morning?
What clothes do we choose to wear? Which job do we take? What name do we pick
for our children? The circumstances and consequences of the decisions we make may
vary greatly, but they all typically include the search for and integration of relevant
information about the choice options. Whereas there is a considerable body of theory
and empirical evidence on how people integrate information, there has been a somewhat
surprising neglect of information search in psychological research for decades (Todd &
Gigerenzer, 2012).

In the classical probabilistic inference task, participants are presented with two op-
tions (e.g., stocks) and a number of cues. Each cue provides information on each of the
options (i.e., cue values), which can be either positive or negative. The cues differ in
terms of validity, that is, predictive quality. The task is to choose one of the options,
based on the information provided by the cues. To study information search, partic-
ipants are presented with a pattern of open and concealed cue values and they can

4Thoughts without contents are empty, intuitions without concepts are blind.
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choose the next cue values to open. Typically, information search is restricted to a cer-
tain number of additional openings and associated with costs.

A critical assumption of the few theoretical accounts that include information search
(e.g., the “adaptive toolbox”; Gigerenzer & Todd, 1999) is that search rules are fixed
(Jekel, Glöckner, & Bröder, 2018). That is, they assume that people will search for in-
formation either within cues (cue-wise) or within options (option-wise), irrespective of
the information that is already available. There is a magnitude of evidence, however,
that search rules vary depending on contextual features of the decision situation or the
decision maker (e.g., Bröder, 2000, 2003; Glöckner & Moritz, 2008; Mata, Schooler, &
Rieskamp, 2007; Mata, von Helversen, & Rieskamp, 2011; Rieskamp & Hoffrage, 2008),
as well as the available information (Söllner & Bröder, 2016; Söllner, Bröder, Glöckner,
& Betsch, 2014), which challenges the assumption of a fixed search rule.

An alternative, more successful account was recently presented by Jekel et al. (2018),
the integrated coherence-based decision and search model (iCodes). The model is an exten-
sion of the parallel constraint satisfaction model for decision making (Glöckner, Hilbig,
& Jekel, 2014), a network model that assumes parallel processing of all available infor-
mation, represented by activation spreading through the network. Importantly, iCodes
makes a new and unique prediction about information search in a decision-making sit-
uation: Assuming that, based on the available information, one of the options is more
“attractive” than the other, iCodes predicts that the search is directed toward informa-
tion about the more attractive option.

This attraction search effect (ASE) has been shown in a number of studies using classi-
cal paradigms such as hypothetical stock-market tasks (Jekel et al., 2018) or other, more
realistic contexts and task formats (Scharf, Wiegelmann, & Bröder, 2019). It is assessed
via the attraction search score (ASS). Participants are presented with an information ma-
trix where some cue values are open while others are concealed. Their search behavior
in a trial is measured by the first cue value they open, which can either be a cue value
that contains information on the more attractive option (based on the initially revealed
information) or one with information on the less attractive one. The ASS is calculated as
the difference between the conditional probabilities of cue searches for an option when
it is attractive versus when it is unattractive. An ASS = 1 would thus denote a perfect
ASE, that is, someone always searches for information about an attractive option, but
never about the unattractive one.

In Scharf et al. (2020), we investigated whether there is a positivity effect in the con-
text of the ASE. The positivity effect denotes “an age-related trend that favors positive
over negative stimuli in cognitive processing” (Reed & Carstensen, 2012, p. 1). Across
different domains in cognitive psychology, there is consistent evidence that older adults
strategically select positive information to process as a means to advance a state of emo-
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tional well-being (Mather & Carstensen, 2005). For example, in the context of decision
making, older people have been shown to selectively search for positive information
about the available choice options (Löckenhoff & Carstensen, 2007, 2008). In the context
of the ASE, the valence of the concealed information is not known. However, as we
assume one option to be more attractive based on the available information, the pos-
itivity effect implies that older adults should show a stronger tendency to search for
information about this option. Hence, we expected a positivity effect on the ASE, that
is, a stronger ASE among older adults than among younger adults.

Based on meta-analytic results on the positivity effect and age-related differences in
cognitive processes (Mata & Nunes, 2010; Reed, Chan, & Mikels, 2014), we expected a
rather small effect size (Cohen’s d) under the alternative hypothesis, δ = 0.30. For a
one-tailed t test with α = .05 and power 1− β = .90, an a priori power analysis revealed
a required sample size of N = 382, assuming equal group sample sizes (Faul et al.,
2009). To reduce this number, we opted for a more efficient statistical test with the same
error probabilities, namely, Hajnal’s t test (Schnuerch & Erdfelder, 2019).

In a preregistered quasi-experiment (http://osf.io/dy3jx), older (> 60 years) and
younger adults (18–30 years) worked through 48 probabilistic inference tasks with dif-
ferent cue patterns and two different contexts (i.e., decision about cell-phone contracts
and health-insurance providers). The patterns were constructed such that one of the
options was the more attractive one (i.e., received more positive or less negative in-
formation from the cues) and additional information search was restricted. The ASS
was calculated for each person across the 48 trials. We started the experiment with an
initial sample of size N = 3, with nold = 2 and nyoung = 1, which is the minimum re-
quired sample size to estimate the standard error and calculate the t value (Schnuerch
& Erdfelder, 2019). Hajnal’s t test was then applied to the data after each additional
observation and sampling continued as long as

β

1− α
<

f (tn|dfn, δ = 0.30)
f (tn|dfn, δ = 0)

<
1− β

α
. (4.1)

Figure 3 shows the development of the log likelihood ratio as the sample size in-
creases. After 142 observations (nold = 78, nyoung = 64), the test was terminated be-
cause the upper threshold was crossed, with LR142 = 19.62. This ratio indicates that the
data were almost 20 times more likely under the alternative hypothesis than under the
null hypothesis. Note that Hajnal’s t test is not affected by unequal sample sizes if ho-
moscedasticity is not violated (Schnuerch & Erdfelder, 2019). In this experiment, there
was no reason or indication in the data to assume a violation. Thus, we accepted the
alternative hypothesis that the ASE is stronger among older adults than among younger

http://osf.io/dy3jx
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Figure 3: Development of the log likelihood ratio for Hajnal’s t test. Upper and lower
dashed lines represent the decision boundaries log(A) and log(B), respectively. The test
terminates after N = 142 observations with a decision in favor of H1.

adults, δ̂ = 0.44, 95% CI = [0.10, 0.78].5

Our study supported the hypothesis derived from the positivity effect. Importantly,
it did so notably more efficiently than a classical Neyman-Pearson test. Hajnal’s t test
required almost 63% less observations while holding the error probabilities α and β

constant. Finally, the study also supported iCodes by once again demonstrating its core
prediction, that is, the ASE.

For a more critical test of the positivity effect, however, future experiments need to
test the underlying mechanisms of the influence of age on the ASE. For example, is it,
in fact, caused by an age-related trend to selectively process positive information (as
implied by the underlying socioemotional selectivity theory; Carstensen, 2006)? Moreover,
to exclude cohort effects as an alternative explanation, a longitudinal design is required
to investigate the strength of the ASE as a function of age over the lifespan. Lastly, more
research is needed on the psychological mechanisms underlying the ASE and, more
generally, the processes assumed in iCodes.

5Note that this estimate of Cohen’s d and the confidence interval are based on the assumption of a fixed
sample size and not corrected for a potential bias due to the sequential analysis.
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4.2 The Randomized Response Technique

Social scientists frequently rely on self-report based surveys to estimate or test the
prevalence of opinions, attitudes, or behavior that cannot be observed or otherwise
assessed objectively (Fox, 2016). Social surveys provide an efficient and cost-effective
means to asses such attributes. They depend, however, on respondents’ compliance to
answer truthfully. This is a notable limitation, because respondents often have a ten-
dency to present themselves in a positive way by responding in line with perceived
expectations or social norms. Unlike random sampling errors, systematic biases such as
social desirability corrupt the validity of prevalence estimates (Paulhus, 1991). Socially de-
sirable responding is particularly harmful when asking about sensitive attributes, that
is, opinions or behavior that violate social norms or laws, such that respondents are
reluctant to disclose true answers in order to avoid negative consequences (Krumpal,
2013; Tourangeau & Yan, 2007).

As a remedy, Warner (1965) introduced a survey technique specifically designed to
overcome the “evasive answer bias” (p. 63) resulting from asking sensitive or intru-
sive questions. Assuming that the bias is a function of perceived anonymity, Warner’s
technique aims to ensure the individual respondent’s anonymity in order to encourage
truthful responding. The basic idea of the randomized response technique (RRT) is that
random elements enter the response process, thus stripping individual responses of
all diagnostic value as to the true status of the respondent. Specifically, individuals are
prompted to answer to either the sensitive statement A (e.g., I have used illicit drugs in the
past.) or its logical opposite ¬A (I have never used illicit drugs.), depending on the outcome
of some randomization device (e.g., the role of a die). Critically, only the respondents
know the outcome and, thus, which statement they responded to. Consequently, in the
RRT, an individual “Yes” or “No” response provides no valid information on whether or
not the respondent possesses the sensitive attribute (e.g., consumption of illicit drugs).

When the probability p (p 6= .50) of the randomization device to lead to statement
A is known, however, the population prevalence π of the sensitive attribute can easily
be estimated from the observed responses (see Figure 4 for illustration). Let λ denote
the probability of a “Yes” response, then the RRT implies that λ = pπ + (1− p)(1− π).
Given the observed proportion of positive responses λ̂, an unbiased estimate of π is
given by

π̂ =
λ̂ + p− 1

2p− 1
(4.2)

with sampling variance (in a sample of size N)

Var(π̂) =
π(1− π)

N
+

p(1− p)
N(2p− 1)2 . (4.3)
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The RRT has repeatedly been shown to result in higher prevalence estimates of sen-
sitive attributes than direct questioning in the context of comparative validation stud-
ies (Horvitz, Greenberg, & Abernathy, 1976; Lensvelt-Mulders, Hox, van der Heijden,
& Maas, 2005). Moreover, experimental validation studies have found that it leads to
prevalence estimates that are closer to known prevalence rates (e.g., Hoffmann, Dieden-
hofen, Verschuere, & Musch, 2015; Moshagen, Hilbig, Erdfelder, & Moritz, 2014). In-
spired by Warner’s model, numerous model extensions and variations have been pro-
posed over the last decades, aimed at improving the technique in terms of statisti-
cal properties or psychological acceptance (e.g., Clark & Desharnais, 1998; Greenberg,
Abul-Ela, Simmons, & Horvitz, 1969; Kuk, 1990; Mangat, 1994; Moors, 1971; Moshagen,
Musch, & Erdfelder, 2012; Yu, Tian, & Tang, 2008).

Randomization Device

Statement A

Statement ¬A

Yes

No

No

Yes

p

1− p

π

1− π

π

1− π

Figure 4: Warner’s (1965) randomized response technique, with p (p 6= .50) denoting
the known probability to receive the sensitive statement and π representing the un-
known population prevalence of the sensitive attribute.

Although RRT models have successfully been applied to substantive research ques-
tions in the past (e.g., Dietz et al., 2013; Moshagen, Hilbig, & Musch, 2011; Ulrich, Pope,
et al., 2018), there is a notable drawback of the RRT which may in part be responsi-
ble for the surprisingly low number of substantive applications (Blair, Imai, & Zhou,
2015): Due to the random noise that enters the response process, which is the crucial
element of the RRT, the sampling variance of the estimator π̂ is inflated (see Equation
4.3). This increase in variance compared to direct-questioning methods results in de-
creased estimation precision and low statistical power when testing hypotheses on the
unknown prevalence (Ulrich, Schröter, Striegel, & Simon, 2012). Consequently, particu-
larly when effect sizes are small or the level of anonymity is high, RRT models require
extremely large sample sizes, thus rendering their application more or less infeasible
for researchers with limited resources.

As a remedy, Reiber, Schnuerch, and Ulrich (2019) suggested to improve the efficiency
of hypothesis tests in the RRT by means of sequential analysis. Specifically, we proposed
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curtailed sampling for RRT models, a simple sequential procedure for binomial tests
(Wetherill, 1975). The curtailed approach requires on average fewer observations than
a corresponding Neyman-Pearson test. At the same time, it is easy to apply, truncated
at the Neyman-Pearson sample size, and there are closed-form solutions for unbiased
estimators for the unknown prevalence (Girshick, Mosteller, & Savage, 1946).

Despite its advantages, however, curtailed sampling has a notable limitation. Like
Neyman-Pearson tests, it only applies to simple hypotheses. Thus, it is not suitable for
two-tailed hypothesis tests and other tests of composite hypotheses (e.g., due to nui-
sance parameters in multi-parameter RRT models; Clark & Desharnais, 1998; Mosha-
gen et al., 2012). Since RRT models belong to the class of MPT models, however, a
solution for this problem is given by Schnuerch et al. (2020): The SMLRT provides an
efficient means to test composite hypotheses in the context of RRT models without ex-
plicit assumptions about unknown nuisance parameters. Moreover, it is straightforward
to derive closed-form solutions for the test statistic and threshold values for common
scenarios such as comparisons between independent prevalence estimates and multi-
parameter RRT models.

In a first empirical application, this sequential RRT was used to test three competing
hypotheses about gender differences in the prevalence of casual sex.6 Grello, Welsh,
and Harper (2006) define casual sex as “sexual relationships in which the partners do
not define the relationship as romantic or the partner as a boyfriend or girlfriend” (p.
255). A typical finding in surveys on casual sex behavior is that incidence rates of ca-
sual sex are higher among men than among women (e.g., Herold & Mewhinney, 1993;
see also Petersen & Hyde, 2010). This is somewhat surprising, as one might expect that
for heterosexual men and women these numbers should match. However, whereas this
reasoning is true for the total number of sexual encounters, it does not necessarily ap-
ply to incidence rates. In fact, we might consider three competing, mutually exclusive
hypotheses on gender differences in the prevalence of casual sex, derived from contem-
porary theories on sexual behavior.

First, in a strict interpretation of the gender similarities hypothesis (Hyde, 2005),
we might expect that there are no meaningful differences between genders, indicating
that prevalence rates of casual sex should indeed not differ between men and women.
In contrast, from the perspective of sexual economics, sex is considered a valuable fe-
male resource which is traded for other, non-sexual resources in a sexual marketplace
(Baumeister & Vohs, 2004). According to this perspective, women as the sellers of sex
should seek to maximize its value by keeping it scarce, while men should generally
strive to acquire it for as low costs as possible. Thus, women should be less inclined to
engage in casual sex than men, resulting in a smaller prevalence among women than

6I am grateful to Benjamin Hilbig for bringing my attention to this research project.
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among men.
A different prediction can be derived from the evolutionary perspective of the sexual

strategies theory (Buss & Schmitt, 1993). According to this theory, women and men pur-
sue different strategies to increase their chances of genetic success. While men can max-
imize the quantity of offspring by maximizing the number of sexual partners, women
need to maximize the quality of their partners to acquire the best possible genes for
their offspring. Casual sex may have reproductive benefits for both genders as it in-
creases the number of sexual partners, which benefits men, and the chance to evaluate
potential long-term partners, which is important for women. However, whereas men
should engage in casual sex rather indiscriminately, women should be highly selective
and only engage in casual sex with those men that meet certain standards to qualify
them as potential long-term partners. Thus, only the subgroup of men that possess these
qualities get the opportunity for casual sex, and they should engage in casual sex with
a larger group of women, resulting in a higher prevalence of casual sex among women
than among men. Figure 5 illustrates the qualitative predictions of the three outlined
hypotheses.

Sexual Economics Gender Similarities Sexual Strategies

Men Women Men Women Men Women

Figure 5: Qualitative predictions for casual sex prevalences among men and women.

Empirical evidence from past surveys seems to provide support for the sexual eco-
nomics theory. As they relied exclusively on self-report measures, however, response
biases cannot be excluded as an alternative explanation. Casual sex is considered a
sensitive attribute (Baumeister & Vohs, 2004) and sexual double standards may sys-
tematically motivate men and women to over- or underreport their sexual behavior,
respectively (Crawford & Popp, 2003). Therefore, to reduce social-desirability bias and
critically test the three competing hypotheses, I assessed the prevalence via an RRT.

Specifically, I used the crosswise model (CWM; Yu et al., 2008), a newer model variant,
which is often referred to as non-randomized response technique. Instead of the random-
ization device leading to one of two logically opposite statements, participants in the
CWM are prompted to simultaneously respond to the sensitive and a neutral statement.
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The task is to indicate whether the answers to the statements are identical (response ‘A’)
or different (response ‘B’). The resulting model is mathematically identical to Warner’s
original RRT. Let p denote the prevalence of the neutral statement, then the probability
λ of an ‘A’ response is given by λ = pπ +(1− p)(1−π), resulting in the same estimator
as for Warner’s model (Equations 4.2 and 4.3).

Participants were presented with the following statements:

1. I had casual sex during the last 12 months.

2. My mother was born between January 1 and September 30.

Assuming a uniform distribution of birth rates across the months, the prevalence of the
neutral statement is p = .75. Let π denote the prevalence of casual sex among women
and π + θ the prevalence for men. We can then express our hypotheses in terms of θ.
The prevalence π, however, is an unknown nuisance parameter. Thus, the hypotheses
are composite.

Under the null hypothesis (representing the gender similarities hypothesis) I expected
no difference between the prevalence rates, θ0 = 0. The sexual economics and sexual
strategies theories both predicted a difference, but in opposite directions. Thus, the al-
ternative hypothesis is the two-tailed hypothesis θ1 6= 0, with θ1 < 0 representing the
sexual strategies account and θ1 > 0 denoting the sexual economics approach. Follow-
ing previous results from direct-questioning studies (Grello et al., 2006), I specified an
effect size of |θ1| = .15 under the alternative hypothesis.

An a priori power analysis requires an assumption about the nuisance parameter π.
To ensure a sufficiently powered test for the above hypotheses, the analysis was based
on the conservative assumption π = .50 and α = β = .05, resulting in a required
sample size of N = 2, 292, assuming group sample sizes to be equal (Fleiss, Levin, &
Paik, 2003; Ulrich et al., 2012). Instead, I used the SMLRT without any assumption on π.
Note that although I am testing hypotheses on θ (i.e., the difference between prevalence
rates), the test is based on the linear transformation λ of these prevalence rates. Let λθ

i

denote the predicted difference in λ corresponding to hypothesis i, i = 0, 1. Then, in
a straightforward application of Equations 3.3 and 3.4, the test statistic computed after
every single additional observation is given by

Tn =
n1 + n2

2

(
n1x1 − n2x2

n1n2
− λθ

0 + λθ
1

2

)
, (4.4)

with n1, n2 denoting the sample sizes in each group and x1, x2 denoting the observed
number of ‘A’ responses in each group. Note that although it allows for unequal group
sizes, the derivation of this formula is based on the assumption that observations are
sampled from both populations with equal probabilities. Correspondingly, the term
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Vλθλθ for calculating the threshold values is given by

(n1 + n2)
[
n3

1x2(n2 − x2) + n3
2x1(n1 − x1)

]
2n3

1n3
2

. (4.5)

To extend the SMLRT to the case of two-tailed hypotheses, I superimposed two one-
tailed tests with Type-I error probabilities α/2 (Armitage, 1950). The procedure contin-
ues until one of the tests crosses the upper threshold or, alternatively, both tests have
crossed the lower threshold. In the former case, the alternative hypothesis of the test
that crossed the threshold is accepted, while in the latter case, the common null hy-
pothesis is accepted. Following the recommendations given in Schnuerch et al. (2020), I
performed Monte Carlo simulations prior to the study to define a lower boundary for
the sample size of the SMLRT. Based on these simulations, I defined the initial sample
size Nmin = 20.

The study was conducted online. All participants received detailed instructions on the
topic and the questioning technique. Participants who were unable to answer control
questions about the instructions were excluded. After the indirect question, participants
disclosed demographic information. Only those who identified as heterosexual men and
women were included in the analyses.

Figure 6 depicts the development of the test statistics as a function of the sample
size. After 40 observations, the test of the sexual strategies hypothesis accepted the null
hypothesis. The other test continued until it also reached the lower boundary. Thus,
after 233 observations, the test was terminated and the null hypothesis was accepted.

At the point of termination, the sample comprised 81 male and 152 female partici-
pants. The prevalence estimates in the two groups were π̂male = .41 and π̂female = .31,
resulting in the estimate θ̂ = .10 with the 95% adjusted Wald CI [0, .24] (Agresti & Coull,
1998). Note, however, that these estimates are not corrected for a potential bias due to
sequential analysis.

To summarize, the study supports the strict interpretation of the gender similarities
hypothesis that there is no meaningful difference in the prevalence of casual sex be-
tween men and women. What is more, because the test was based on the SMLRT, I
was able to accept the null hypothesis already after 233 observations. Compared with
a classical Neyman-Pearson test with the same error probabilities, this is a reduction
of almost 90%. Thus, this study nicely demonstrates the benefits of sequential analy-
sis by improving the efficiency and, thus, facilitating the application of RRT models in
substantive research.

A potential limitation of the study is the considerable difference in group sample
sizes. This might have been the result of sampling error, in which case the test’s proper-
ties are unaffected. If, however, observations were not sampled with equal probabilities
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Figure 6: Development of the test statistics. Upper and lower dashed lines represent the
upper and lower threshold, respectively. Sampling terminated after N = 233 observa-
tions.

from both groups, error rates of the procedure might be increased. Simulations indicate
that, for the observed ratio of group sizes, the reduction in statistical power is negli-
gible. Nevertheless, future studies should replicate the finding with constant sampling
probabilities for both groups.
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5 Discussion

In my dissertation, I implemented, further developed, and examined the properties of
sequential hypothesis tests. Specifically, I studied three methods to extend the most
efficient sequential test, the sequential probability ratio test (Wald, 1945, 1947), to the
case of composite hypotheses.

With few exceptions, sequential hypothesis tests have largely been ignored in psycho-
logical research (Botella et al., 2006; Lang, 2017). This was partly due to the mathemati-
cal complexity of the procedures, especially before the emergence of high-performance
computers. What is more, the procedures were typically designed for simple hypothe-
ses. In practical applications, however, hypotheses are rarely simple, which limits the
usefulness of these test procedures considerably.

Throughout the literature, different solutions have been developed to extend sequen-
tial tests to the common case of composite hypotheses (Wetherill, 1975). By seizing on
and implementing these methods, I demonstrate that the scope of sequential hypothesis
tests is much wider than typically assumed and that they are, by no means, limited to
simple hypotheses. What is more, I aim to show how SPRTs can be used to overcome
a number of pervasive problems that typically arise in the context of statistical hy-
pothesis testing. Conventional procedures that control error probabilities often require
extremely large sample sizes to ensure a sufficiently powered test. They do not allow
for distributional hypotheses and require explicit assumptions about all parameters,
even unknown nuisance parameters. SPRTs, in contrast, can be extended to handle dis-
tributional hypotheses and unknown parameters, and they are on average much more
efficient than conventional tests. By implementing and examining sequential procedures
for composite hypotheses, I hope to contribute to the improvement of statistical practice
in psychology, such that substantive researchers are equipped with more efficient and
more reliable means to formalize theories and critically test hypotheses.

In the first article (Schnuerch & Erdfelder, 2019), we show how the SPRT is easily
extended to the common t-test situation, based on methods by D. R. Cox (1952b), Rush-
ton (1950), and Hajnal (1961). Sample-size requirements of conventional tests very of-
ten result in underpowered experiments that are prone to producing unreliable results
(Psychonomic Society, 2019). SPRT t tests control error probabilities in the same man-
ner as Neyman-Pearson tests, and much more reliably so than Bayesian t tests. At the
same time, they require on average substantially smaller sample sizes. Considering the
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amount of resources societies spend on research every single year, researchers have an
ethical obligation to use these resources to the best of their possibilities (Lakens, 2014).
The SPRT, as we demonstrate in the article, does so while controlling statistical decision
errors.

In the second article (Schnuerch et al., 2019), we use the SPRT to bridge the gap be-
tween frequentist and Bayesian hypothesis tests. By conceptualizing the Bayes factor
as a simple likelihood ratio for distributional hypotheses, as represented by the prior
distributions, and combining it with decision thresholds of the SPRT, we develop a
sequential design for Bayesian t tests that combines the advantages of both statistical
worlds: The Waldian t test allows for statistical decisions with controlled error proba-
bilities conditional on the hypotheses tested. At the same time, since the Bayes factor
remains unchanged, it preserves the fully Bayesian justification and interpretation as a
measure of evidence and updating factor of subjective belief. Thus, the SPRT provides
a useful means to reconcile the somewhat ideological quarrel between frequentist and
Bayesian statistical methods.

Apart from its potential role in the Bayesian-frequentist debate, the Waldian t test is
an important addition to Hajnal’s t test considered in the first article. Wheres the latter
is more appropriate when a point alternative is specified (e.g., representing a minimum
relevant effect size) for which a test with some upper-bound error probability is re-
quired, the former is more appropriate when a substantively motivated null hypothesis
is tested against an unrestricted alternative hypothesis. In this case, the prior distri-
bution of the Bayes factor represents a weight function for plausible, non-zero effect
sizes under the alternative hypothesis. The resulting Waldian t test allows for a test
of this distributional hypothesis against a point null hypothesis with controlled error
probabilities.

In the last article (Schnuerch et al., 2020), we seize on yet another method to extend
the SPRT to the case of composite hypotheses to improve the applicability of formal
measurement models in substantive research. Hypothesis tests in multinomial process-
ing tree models very often require conservative assumptions about nuisance parameters
and extremely large samples to ensure sufficient statistical power (Batchelder & Riefer,
1990). This may limit their applicability in situations with scarce resources, for example,
individual assessments. We show how a method developed by D. R. Cox (1963) can
be applied to parameter tests in MPT models and how this sequential maximum like-
lihood ratio test increases the efficiency of those tests, while controlling decision error
probabilities without explicit assumptions about unknown nuisance parameters.

To summarize, in the three articles of my dissertation I studied three different meth-
ods to extend the SPRT to the case of composite hypotheses. I demonstrated the benefi-
cial properties of these methods and how they can be used to remedy practical problems
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of statistical hypothesis testing. For illustration, I reported two concrete examples where
the methods were applied to substantive research questions. Using Hajnal’s t test, we
tested a hypothesis on the influence of age on the attraction search effect almost 63%
more efficiently than with a corresponding Neyman-Pearson test (Scharf et al., 2020).
In the second example, to test three competing hypotheses on gender differences in the
prevalence of casual sex, I implemented the SMLRT in the context of the randomized
response technique. The sequential procedure allowed to test the composite hypotheses
without assumptions about unknown nuisance parameters. Moreover, the test required
almost 90% fewer observations than a Neyman-Pearson test.

By explicitly locating the projects of my dissertation in SMiP’s cuboid model, I also
hope to demonstrate the benefits of a holistic perspective on the research process. It is
important to consider all dimensions: the models that are formalized, statistical instan-
tiations of psychological theories; the statistical techniques employed to estimate and
test hypotheses on parameters of these models; and the substantive fields that motivate
the research questions, theories, and hypotheses. Only by looking at all dimensions in
interaction, the process can evolve as a whole and produce the scientific progress that
justifies the resources societies spend on it.

5.1 Limitations and Future Directions

Throughout this thesis and the projects reported herein, we assumed that, when apply-
ing the sequential procedures, a decision will eventually be made. Although the SPRT
has been proven to be a closed test (Wald, 1947, Appendix A.1), this proof is of theoreti-
cal interest only. In practical applications, it cannot be guaranteed that the test continues
until a threshold is reached because there is no definite upper limit to the sample size.
Thus, it may well happen that the sampling process is terminated prematurely due to
practical constraints such as limited time or financial resources. Although the risk for
extremely large samples is small (Schnuerch & Erdfelder, 2019; Schnuerch et al., 2020;
Schnuerch et al., 2019), there is no guarantee that a non-truncated sequential procedure
terminates with a reasonably small sample size.

If a statistical decision is made upon premature termination, the error probabilities
of the procedure are no longer controlled (Schnuerch & Erdfelder, 2019). Therefore, a
practical remedy in such a case would be to terminate sampling without a decision. In
case of Hajnal’s t test and the Waldian t test, the likelihood ratio at this point could
still be interpreted as a continuous measure of evidence (Royall, 1997). If a decision
is required, however, this constitutes a rather unsatisfying solution. Moreover, in the
SMLRT, the test statistic does not have an evidential interpretation.

This latent risk to end up with extremely large samples, however unlikely, is an-
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other factor that might have prevented non-truncated sequential procedures from more
widespread application in substantive research. Truncated procedures such as group
sequential tests (Proschan et al., 2006) or curtailed sampling (Reiber et al., 2019) do
not have this risk. However, the truncation comes at the cost of average efficiency
(Schnuerch & Erdfelder, 2019). Moreover, they are limited to simple hypotheses. Ar-
mitage (1957) developed a class of “restricted sequential procedures” (p. 10). However,
these procedures are not optimal, either, and rather limited in scope (Wetherill, 1975).
Therefore, future research is needed to investigate possibilities to truncate the SPRT and
its extensions at some predefined sample size Nmax without compromising error rates
and efficiency.

A second limitation of the sequential procedures reported herein concerns effect-
size estimation. Hypothesis testing is an integral part of the scientific process (Morey,
Rouder, Verhagen, & Wagenmakers, 2014). Therefore, sequential procedures aiming to
increase the efficiency of hypothesis tests are an important addition to the psycholog-
ical researcher’s toolkit. Apart from hypothesis testing, however, precise and unbiased
estimation of the effect size is frequently required. Unbiased estimation following fixed-
sample tests is typically straightforward. Following a sequential test, in contrast, the
distribution of conventional estimators is often distorted considerably, with small sam-
ples systematically overestimating and large samples systematically underestimating
the true effect size (Whitehead, 1986). Since the sample-size distribution is not sym-
metric, either, effect-size estimation following sequential procedures is typically biased
(e.g., Emerson & Fleming, 1990; Fan, DeMets, & Lan, 2004; Goodman, 2007; Mueller,
Montori, Bassler, Koenig, & Guyatt, 2007; Schönbrodt & Wagenmakers, 2018; Stallard,
Todd, & Whitehead, 2008; Zhang et al., 2012).

For certain sequential testing problems, unbiased estimators have been derived. Gir-
shick et al. (1946) presented a number of theorems that gave rise to unbiased estimators
for a range of sequential binomial tests, among others for curtailed sampling plans (see
also Reiber et al., 2019) and the SPRT. In the latter case, the estimator derived by Gir-
shick et al. (1946) is limited to the one-tailed one-sample binomial test. Moreover, unless
the sample sizes are very small, the exact estimator is computationally intractable and,
thus, of little practical use. D. R. Cox (1952a) derived a simple approximation, however,
which appears to be close to the exact estimator.

For many other, more complex situations, there are no exact unbiased estimators
following a sequential test. A closer analysis of this issue reveals, however, that the
drawback is not as severe as it may seem (Goodman, 2007): A bias resulting from exclu-
sively taking into account those studies that accepted the alternative hypothesis is not
surprising, as it is based on a loss of information, not the sequential procedure itself. In
fact, it is comparable with the over-estimation of effect sizes resulting from publication
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bias (Ulrich, Miller, & Erdfelder, 2018). Aggregating across all studies, irrespective of
the point of termination, reduces the bias considerably (Schönbrodt & Wagenmakers,
2018). What is more, meta-analytic effect-size estimates that take into account not only
all studies but also the sample size (i.e., precision) underlying each estimate are, in fact,
unbiased (see Schönbrodt et al., 2017).

In my thesis, I considered the methods for extending the SPRT to the case of com-
posite hypotheses in specific situations (e.g., t tests, MPT models). They are, however,
much more general. Thus, the approaches presented in my thesis should be extended
to other situations which are relevant for psychological researchers. For example, D. R.
Cox’s theorem (1952b) does not only apply to t tests but also to analysis of variance
(F tests), χ2 tests, and tests of correlation coefficients. The SMLRT could be applied to
more complex models such as multiple regression models or other classes of cognitive
models besides MPT models. Implementing and examining the properties of SPRTs for
other scenarios would substantially increase the number of research questions to which
the tests can be applied, thus making the benefits of sequential analysis available to a
broader range of psychological researchers.

In the same vein, the general framework underlying Waldian t tests applies to any
Bayes factor with proper prior distributions. Thus, an extension to Bayes factors with
different priors than those suggested by Rouder et al. (2009), as well as to Bayes factors
for other experimental designs (e.g., analysis of variance; Rouder, Morey, Speckman, &
Province, 2012) is straightforward. Less straightforward, but equally relevant, would be
an extension to other Bayes factor concepts, for example, adjusted fractional Bayes fac-
tors, which are based on implicit priors specified by a fraction of the data (Gu, Mulder,
& Hoijtink, 2018; Hoijtink, Mulder, van Lissa, & Gu, 2019).

The main purpose of the methods presented in this thesis is the application to sub-
stantive research questions. The methods can only improve statistical practice and psy-
chological research if they are put to use. In Chapter 4, I already presented two empir-
ical applications that nicely demonstrated the advantages of sequential techniques in
substantive research (e.g., Scharf et al., 2020).

One area in which sequential hypothesis tests might prove particularly useful in the
future are replications (Lakens, 2014). The current crisis in psychology has made un-
equivocally clear the need for sufficiently powered replications (Asendorpf et al., 2013).
This puts an additional strain on the available resources, thus increasing the need for ef-
ficient statistical methods. At the same time, replication studies typically have quite spe-
cific expectations about the effect size (e.g., assuming the lower limit of the 80% or 95%
CI of the original effect-size estimate; Perugini, Gallucci, & Costantini, 2014). Conse-
quently, replication studies represent an ideal situation for the application of sequential
methods as presented in this thesis. By increasing the number of efficient, sufficiently-
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powered replication studies, sequential hypothesis tests could greatly benefit the entire
field of psychology and play an important part in improving the replicability of psy-
chological research.

5.2 Conclusion

Considering the amount of resources dedicated to science, researchers have an ethical
and a societal obligation to use these resources in the best possible way. In my thesis,
I promote a class of particularly efficient statistical techniques that can help fulfill this
obligation: sequential analysis. By implementing, further developing, and examining
extensions of the sequential probability ratio test to composite hypotheses, I show how
these methods can be used in psychological research. They test hypotheses with nearly
optimal efficiency, reliably control decision-error probabilities, unify the advantages of
frequentist and Bayesian methods, and improve the applicability of stochastic measure-
ment models. Thus, by addressing and overcoming a number of practical problems of
statistical hypothesis testing, the sequential procedures presented herein have the po-
tential to sustainably improve statistical practice in psychological research.
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For several years, the public debate in psychological science has been dominated by
what is referred to as reproducibility crisis. This crisis has, inter alia, drawn attention
to the need for proper control of statistical decision errors in testing psychological hy-
potheses. However, conventional methods of error probability control often require
fairly large samples. Sequential statistical tests provide an attractive alternative: They
can be applied repeatedly during the sampling process and terminate whenever there
is sufficient evidence in the data for one of the hypotheses of interest. Thus, sequential
tests may substantially reduce the required sample size without compromising prede-
fined error probabilities. Herein, we discuss the most efficient sequential design, the
Sequential Probability Ratio Test (SPRT), and show how it is easily implemented for
a two-sample t test using standard statistical software. We demonstrate by means
of simulations that the SPRT not only reliably controls error probabilities but also
typically requires substantially smaller samples than standard t tests and other com-
mon sequential designs. Moreover, we investigate the robustness of the SPRT against
violations of its assumptions. Finally, we illustrate the sequential t test by applying
it to an empirical example and provide recommendations on how psychologists can
employ it in their own research to benefit from its desirable properties.

Keywords: hypothesis testing, efficiency, statistical error probabilities, sequential
analysis, sequential probability ratio test

Critical tests of theories and hypotheses are at the
heart of psychological science. A good theory makes
clear-cut predictions that can be evaluated empirically,
for example, in an experiment. Empirical tests of such
predictions often take the form of binary decisions:
Based on the data, do we accept the hypothesis of in-
terest or do we reject it, thereby corroborating or refut-
ing the underlying theory? The most common statisti-
cal procedure in psychology to decide between conflict-
ing hypotheses is usually referred to as null-hypothesis
significance testing (NHST). NHST has been harshly
criticized in the past, and rightly so, as it is an in-
consistent hybrid between two seemingly similar but
in fact substantially different statistical theories: the
theory of null-hypothesis testing proposed by Fisher,

and the theory of statistical decision-making by Ney-
man and Pearson (e.g., Bakan, 1966; Berger, 2003;
Bredenkamp, 1972; Cumming, 2014; Dienes, 2011;
Gelman, 2016; Gigerenzer, 1993, 2004; Goodman,
1993; Sedlmeier, 1996; Wagenmakers, 2007). Notwith-
standing these criticisms, NHST has been the domi-
nant procedure in behavioral science for decades. How-
ever, fostered by the reproducibility crisis in psychol-
ogy (Asendorpf et al., 2013; Earp & Trafimow, 2015;
Maxwell, Lau, & Howard, 2015; Open Science Collab-
oration, 2015; Pashler & Wagenmakers, 2012; but see
Gilbert, King, Pettigrew, & Wilson, 2016), there is an
increasing awareness of the pitfalls of NHST and the
importance of rigorous control of decision errors in hy-
pothesis testing.

1
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According to Neyman and Pearson (1933), two types
of errors can occur when deciding between a null hy-
pothesis (H0) and an alternative hypothesis (H1): The
null hypothesis is rejected when it is true (Type 1 er-
ror), or it is accepted when it is false (Type 2 error). By
convention, the probabilities of Type 1 and 2 errors are
denoted by α and β, respectively. The complement of β,
1−β, is referred to as the statistical power of the test. As
outlined in the statistical guidelines of the Psychonomic
Society, “[i]t is important to address the issue of statis-
tical power. [...] Studies with low statistical power pro-
duce inherently ambiguous results because they often
fail to replicate” (Psychonomic Society, 2012). Despite
such pleas, however, the issue of power has largely been
neglected in psychological research so far. A possible
reason is that the most common statistical procedure to
control α and β (i.e., the Neyman-Pearson procedure)
often requires sample sizes much larger than those typi-
cally employed (Erdfelder, Faul, & Buchner, 1996). To
illustrate, a two-tailed two-sample t test requires a total
sample size of N = 210 to detect a mean difference of
medium size (i.e., Cohen’s d = .50) with error proba-
bilities α = β = .05. In contrast, the common over-
all sample size for the same test is only about N = 60
in prototypical journal publications, resulting in power
t test slightly lower than 1 − β = .50 (Cohen, 1962;
Sedlmeier & Gigerenzer, 1989).

To avoid costly hypothesis tests, researchers may be
tempted to apply NHST to small, underpowered sam-
ples first, followed by recursive increases in sample size
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until a significant test result is observed. This mislead-
ing use of NHST is known as data peeking, a ques-
tionable research practice that boosts chances of gain-
ing a significant outcome at the cost of error probabil-
ity control (Simmons, Nelson, & Simonsohn, 2011).
In this article, we promote a proper alternative statis-
tical method that was developed more than 70 years
ago: Sequential Analysis (Wald, 1947). Unlike data
peeking with its associated risk of inflating Type 1 er-
rors, sequential hypothesis tests have been designed
specifically to control error probabilities while at the
same time allowing for smaller sample sizes than the
Neyman-Pearson approach (Lakens, 2014). As compu-
tational tools have improved substantially over the past
decades, these sequential tests are nowadays easily im-
plemented and combined with standard statistical soft-
ware. We will empirically demonstrate the beneficial
properties of one particular sequential test, namely, the
Sequential Probability Ratio Test (Wald, 1947). More-
over, we will show that on top of controlling for deci-
sion error probabilities, this test is more efficient than
both the Neyman-Pearson approach and other common
sequential designs. Importantly, we will also assess the
robustness of the proposed sequential test against viola-
tions of its assumptions.

The key feature of sequential tests, as opposed to
standard test procedures, is that the sample size N is not
determined a priori but a random variable that depends
on the sequence of observations. Thereby, sequential
methods may substantially reduce the sample size re-
quired to make a decision whenever the available data
clearly support one hypothesis over the other. At the
same time, they allow for explicit control of decision
error probabilities. Thus, sequential statistical meth-
ods form an attractive alternative to standard test proce-
dures. Despite their desirable properties and potential
benefits to the field of psychological science, however,
sequential methods have largely been ignored in exper-
imental research so far (Botella, Ximénez, Revuelta, &
Suero, 2006; Lakens, 2014).

One helpful step in this direction was recently taken
by Schönbrodt, Wagenmakers, Zehetleitner, and Perug-
ini (2017). These authors proposed a sequential method
based on Bayesian inference, referred to as Sequen-
tial Bayes Factors (SBFs). By means of simulation,
they demonstrated the properties of SBFs in the con-
text of testing hypotheses about mean differences of two
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independent groups (two-sample t test). Specifically,
they simulated populations with a specific mean differ-
ence δ and examined the simulation estimate of the ex-
pected sample size and the relative frequencies of Type
1 and Type 2 errors of SBFs for different prior specifica-
tions and stopping criteria. Based on their simulations,
they compared the SBF design to two other designs:
the standard fixed-sample Neyman-Pearson t test (mis-
leadingly referred to as null-hypothesis significance test
with power analysis [NHST-PA]) and the group sequen-
tial (GS) design (Proschan, Lan, & Wittes, 2006).

In the GS design, the data are analyzed at predefined
stages during the sampling process. If in any stage the
test statistic exceeds a critical value, sampling is termi-
nated. These critical t test, in turn, are calculated based
on linear spending functions of α and β such that the
overall error rates of the procedure can be controlled.
Thus, while reducing the average sample size required
for a statistical decision, the GS design does not com-
promise predefined error probabilities (Lakens, 2014).
Nevertheless, Schönbrodt et al. showed that SBFs need
on average smaller samples than both the Neyman-
Pearson and the GS design to achieve the same error
probabilities. Thus, they concluded that “SBF can an-
swer the question about the presence or absence of an
effect with better quality [...] and/or higher efficiency
[...] than the classical NHST-PA approach or typical
frequentist sequential designs” (p. 335).

We appreciate the contribution of Schönbrodt et al.
(2017) in raising awareness for the advantages of se-
quential designs and thoroughly assessing the long-run
properties of SBFs in comparison with the Neyman-
Pearson and the GS design. However, their comparison
did not include the arguably most efficient sequential
design: the Sequential Probability Ratio Test (SPRT;
Wald, 1947). We seek to close this gap and include
the SPRT in the comparison. Moreover, as Schönbrodt
et al. noted themselves, there is no means (and, in fact,
no intention) in the standard SBF design to control sta-
tistical decision error probabilities explicitly. Herein,
we will show that the SPRT not only allows to test hy-
potheses about mean differences more efficiently than
SBFs and GS, it also exerts strict control of decision
error probabilities.

In the following section, we briefly outline the basic
concept of the SPRT with particular focus on its appli-
cation to the t-test scenario, elaborating on differences

between the SPRT and other sequential designs. Next,
we evaluate by means of simulation the properties of
the SPRT with regard to empirical rates of incorrect de-
cisions. In Section 4, we empirically compare SPRT,
GS, and SBFs in terms of efficiency, that is, the ex-
pected sample size required to reach a decision. Subse-
quently, we explore the effects of violations of various
assumptions underlying the test procedures. We then
demonstrate the SPRT using an empirical example, and
discuss implications as well as limitations of our study
and the SPRT. Finally, we provide recommendations on
how to apply the proposed sequential t test in research
practice.

The Sequential Probability Ratio Test

Statistical tests usually assume samples of a fixed
size N. Sequential statistical tests dispense with this re-
quirement. Instead, the data are analyzed sequentially,
and a rule is applied to make one of three possible deci-
sions at any new step of the sampling process:

1) AcceptH1 and rejectH0;

2) AcceptH0 and rejectH1;

3) Continue sampling.

(1)

Whenever one of the first two decisions is made, the
sampling process is terminated. In case of the third
decision, another observation follows and the decision
rule is applied again. This process is repeated until ei-
ther one of the first two decisions is made. By impli-
cation, the sample size is not a fixed constant defined
a priori, but a random variable that depends on the se-
quence of observations.

To set up a sequential test, a decision rule needs to
be defined. The choice of this rule determines the prop-
erties of the test, namely, the conditional probabilities
of correct decisions and the so called Average Sample
Number (ASN)1. Assume that H0: θ = θ0 is tested
against H1: θ = θ1, where θ denotes the true param-
eter (or parameter vector) in the underlying population.
We shall impose on the test the following requirements

1Average Sample Number denotes the average number of
observations per sample, that is, the expected sample size at
termination. Wald (1947) consistently used this expression,
thus, we will maintain it as a technical term throughout the
article.
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(Wald, 1947):

P(acceptHi|θi) =


1 − α (i = 0)
1 − β (i = 1)

, (2)

where P(acceptHi|θi) denotes the probability to cor-
rectly accept hypothesis Hi when θi is true. A sequen-
tial test is said to be of strength (α, β) when it satisfies
these requirements. For all tests of a given strength, a
test is better the smaller its ASN. Let Eθ(N |S ) denote
the expected sample size N for a sequential test S when
θ is true. A test S ′ is better than an alternative test S
of equal strength (α, β) if Eθ0(N |S ′) < Eθ0(N|S ) and
Eθ1(N |S ′) ≤ Eθ1(N |S ), or Eθ0(N |S ′) ≤ Eθ0(N|S ) and
Eθ1(N |S ′) < Eθ1(N |S ). If there is a test S ′ such that
for any alternative test S of equal strength Eθi(N |S ′) ≤
Eθi(N |S ), i = 0, 1, then S ′ is called an optimum test,
because no other test of equal strength can exceed S ′ in
terms of efficiency. For many applications, the choice of
a decision rule to achieve an optimum test can be quite
complex. However, for the special case of testing a sim-
ple null hypothesis against a simple alternative hypoth-
esis, as in the given case, the SPRT has been proven to
be optimal (Matthes, 1963; Wald & Wolfowitz, 1948).

Abraham Wald introduced the SPRT in the 1940s as
one of the first formal theories of sequential test pro-
cedures. Let f (X|θi) denote the probability (density)
function for the observed data X given the population
parameter specified inHi, i = 0, 1. At any mth stage of
the sampling process, compute a test statistic that con-
forms to the likelihood ratio, that is, the ratio of proba-
bility densities of the observed data X = x1, ..., xm under
H1 versusH0, that is,

LRm =
f (x1, ..., xm|θ1)
f (x1, ..., xm|θ0)

. (3)

The likelihood ratio indicates how likely the observed
data occur under one hypothesis vis-a-vis the other. It
is thus a measure of relative evidence in the data for the
specified hypotheses2. As a basis for statistical infer-
ence, it has desirable properties:

Consistency: The likelihood ratio is consistent, that
is, if one of the specified hypotheses is in fact true, it
will converge to either 0 or ∞ as the sample size in-
creases towards infinity. Note that not all tests actually
behave in this reasonable way. The p value in an NHST,
for example, will not converge to 1 if the null hypothesis
is true, which is why it is not suitable as a measure of

evidence for the null (Rouder, Speckman, Sun, Morey,
& Iverson, 2009).

Independence from stopping rule: Inference based on
likelihood ratios is not affected by sampling plans and
stopping rules (Etz, 2018). In NHST, statistical infer-
ence is based on the p value. This value is computed in
reference to the sampling distribution of the test statis-
tic under the null hypothesis and depends on the sam-
ple size. However, if the sample size is determined by
what has been observed (optional stopping), the sam-
pling distribution is likely to differ from the expected
distribution under the assumption of a fixed sample size
(Anscombe, 1954). Hence, its approximate properties
(such as the p value) are unlikely to hold. Consequently,
inference that is based on the assumption of a fixed
sample size is affected by the stopping rule. The like-
lihood ratio, on the other hand, is independent of the
researcher’s intentions and stopping rule. Thus, it may
be computed and interpreted sequentially (Etz, 2018).

Given these properties, Wald (1945, 1947) defined
the following sequential test procedure based on the
likelihood ratio:

1) AcceptH1 and rejectH0 when LRm ≥ A;

2) AcceptH0 and rejectH1 when LRm ≤ B;

3) Sample a new independent observation xm+1

when B < LRm < A.

(4)

Wald (1947) showed that this sequential procedure
terminates with probability 1 after a finite number
of observations with either decision 1) or 2). This
implies that A ≤ P(acceptH1|θ1)/P(acceptH1|θ0)
and B ≥ P(acceptH0|θ1)/P(acceptH0|θ0) (Wetherill,
1975). For practical purposes, these inequalities can be
replaced by equalities and, in accordance with the re-
quirements given in (2), the boundaries may simply be
determined by A = (1 − β)/α and B = β/(1 − α). The
resulting test will be approximately of strength (α, β):
As the test statistic may exceed one of the boundaries at
the point of termination rather than matching it exactly
(a phenomenon called “overshooting”), the actual error

2The term likelihood usually refers to the likelihood of
a hypothesis, L(H). This is proportional to the proba-
bility (density) of the data conditional on this hypothesis:
L(H) ∝ f (x1, ..., xn|H). Thus, the likelihood ratio is usu-
ally expressed as a probability (density) ratio (Etz, 2018).
Unlike Abraham Wald, however, we will maintain the term
likelihood ratio.
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probabilities of the sequential procedure will in general
be lower than α and β. Hence, strictly speaking, the
SPRT is an approximate test with α and β serving as
upper bounds to the error probabilities.

Importantly, this also holds true for interval hypothe-
ses of the formH0: θ ≤ θ0 versusH1: θ ≥ θ1 (θ0 < θ1)
if all other parameters of the statistical model are known
constants. Like the classical Neyman-Pearson test, an
SPRT based on the simple hypotheses θ = θ0 versus
θ = θ1 will have its maximum error probabilities α and
β if the true θ equals θ0 and θ1, respectively. For any
other true value θ in line withH0: θ ≤ θ0 orH1: θ ≥ θ1
(θ0 < θ1), the respective error probabilities will be
lower (Wald, 1947). Hence, just like Neyman-Pearson
tests, SPRTs allow for the specification of upper-bound
error probabilities even if there is no expectation of the
exact value of the parameter of interest, as long as a
minimum (maximum) value can be defined and all other
parameters are constants.

Sequential t Tests

Despite the generality of the SPRT, a test procedure
designed for decisions between simple hypotheses will
not be appropriate for many applications (Wetherill,
1975). To see this, note that a hypothesis µ = µ0 on the
mean of a normally distributed random variable would
only be simple if the variance σ2 was either known
or also specified by the hypothesis. If at least one of
the parameters of the underlying statistical model is
unknown, the decision becomes one between complex
composite hypotheses to which the SPRT defined by
(3) and (4) does not apply. To adapt the SPRT to such
hypotheses, Wald (1947) suggested the use of weight
functions to integrate out the unknown parameters from
the statistical model. However, the construction of suit-
able weight functions is not trivial. What is more, there
is no general method such that the resulting SPRT satis-
fies the requirements concerning error probabilities and
efficiency. In fact, the mathematical complexity of set-
ting up suitable test statistics for composite hypotheses
might in part be responsible for the widespread neglect
of sequential methods in behavioral research (Botella
et al., 2006).

Another way to cope with the problem of unknown
parameters is to replace the sequence of observations in
LRm by a transformed sequence that no longer depends
on the unknown parameters (Armitage, 1947). For the

one-sample test on the mean of a normal distribution
with unknown variance, Barnard (1949) showed that
composite hypotheses about X can be reduced to simple
hypotheses about the well-known t statistic computed
from X. Specifically, the sample observations x1, ..., xm

at stage m are simply replaced by the corresponding t
statistics t2, ..., tm based on these data (m ≥ 2), whose
distributions do not depend on the unknown variance.
Rushton (1950), building on previous work by Cox
(1952), later showed that an SPRT analogue of the one-
sample t test can be performed by simply considering
the ratio of probability densities for the most recent tm
statistic underH1 andH0 at any mth stage, because

LRm =
f (t2, ..., tm|H1)
f (t2, ..., tm|H0)

=
f (tm|d fm,∆1) · f (t2, ..., tm−1|tm)
f (tm|d fm,∆0) · f (t2, ..., tm−1|tm)

=
f (tm|d fm,∆1)
f (tm|d fm,∆0)

.

(5)

In Equation 5, d fm denotes the degrees of freedom and
∆i denotes the noncentrality parameter of the t distri-
bution corresponding to hypothesisHi at the mth stage.
For two-sided tests, tm can be substituted by t2

m and LRm

is thus expressed as the ratio of t2 density functions
(Rushton, 1952).

For testing mean differences between two indepen-
dent samples with unknown variance (two-sample t
test), Hajnal (1961) introduced an SPRT based upon the
same principle. Let δ = (µ1 − µ2)/σ denote the true
standardized difference of means of the populations un-
derlying the two groups (i.e., Cohen’s d in the popula-
tion), with σ representing the common (but unknown)
population standard deviation. Assume a two-sided test
of the hypothesis H0: δ = 0 against H1: δ = d, d , 0.
For each step m of the sampling process, let n1 and n2
be the number of observations in Group 1 and Group 2,
respectively, such that m = n1 +n2. If observations from
both populations underlying the groups and at least two
different observations from the same group have been
sampled (such that the sample estimate of the standard
error becomes larger than 0), we compute

t2
m =


X̄1m − X̄2m

σ̂m ·
√

1
n1

+ 1
n2



2

, (6)

with the group means X̄1m and X̄2m in step m and the
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pooled standard deviation

σ̂m =

√
(n1 − 1) · s2

1m + (n2 − 1) · s2
2m

n1 + n2 − 2
, (7)

where s2
1m and s2

2m denote the group variances estimated
from the observed sample data available in step m.

The likelihood ratio is then derived as the ratio of the
noncentral to the central probability density of t2

m,

LRm =
f (t2

m|d fm,∆m)
f (t2

m|d fm)
, (8)

with d fm = n1 + n2 − 2 and noncentrality parameter

∆m = d ·
√

n1 · n2

n1 + n2
. (9)

Since t2(d f ) = F(1, d f ), the ratio (8) can be ex-
pressed as the ratio of a noncentral to a central F density
function,

LRm =
f (Fm|d1 = 1, d2 = d fm,∆2

m)
f (Fm|d1 = 1, d2 = d fm)

, (10)

where Fm = t2
m and d1 and d2 denote the degrees of

freedom of the F distribution.
Both the t and the F density function are available

in the standard R environment (R Core Team, 2017).
Thus, an SPRT for a one- or two-sample t test can be
conducted easily with R by iteratively computing the
ratios given in (5) for a one-sided test, and (10) for a
two-sided test for each stage m of the sequential sam-
pling process. A workable R script to apply the SPRTs
described in this section can be downloaded from the
Open Science Framework (https://osf.io/4zub2/).

Hajnal (1961) proved that a sequential procedure
based on (10) with the boundary t test A = (1−β)/α and
B = β/(1−α) results in a valid SPRT as described in the
previous paragraph. Thus, the two-sample SPRT t test
(henceforth referred to as Hajnal’s t test) constitutes an
easy to implement alternative to Neyman-Pearson tests
as well as to SBFs and GS for the scenario addressed in
Schönbrodt et al. (2017). In addition, it also provides
full control of the error probabilities α and β. How-
ever, the formal proof of the optimum property of the
SPRT as well as analytical methods to determine the
ASN of the procedure only apply to simple hypotheses
and independent observations (Cox, 1952; Köllerström

& Wetherill, 1979). Although Hajnal’s t test transforms
the composite hypothesis about X to a simple hypoth-
esis about t, the sequence of t t test is no longer com-
posed of independent elements. Hence, neither the for-
mal proof of the procedure’s optimum character nor an-
alytical solutions to determine the ASN hold for this test
(Hajnal, 1961).

Therefore, it is of great practical as well as theoretical
interest to empirically assess the properties of Hajnal’s
t test and examine (1) the degree to which the actual
error rates approximate the upper bounds α and β, (2)
the expected sample size and relative efficiency as com-
pared with Schönbrodt et al.’s SBFs and the GS design,
and (3) the robustness of these results when basic as-
sumptions are violated. In the following section, we
will elaborate on the differences between the SPRT and
the two alternative sequential test procedures addressed
in this article.

Two Alternative Sequential Designs: GS and SBFs

As outlined before, the GS is based on a priori
planned stops during the sampling process. These stops
include a number of interim tests and a final test, for
which the sample size (Nmax) may be defined by a
power analysis. For example, a researcher might de-
cide to perform three interim tests after n = 25, 50, and
75 observations, say, before performing a final test at
Nmax = 100 observations. Based on the overall error
rates of the procedure, α and β, critical t test for the
fixed-sample test statistic are calculated for each stop
using linear spending functions (Lakens, 2014). The
researcher will then sample 25 observations and com-
pare the test statistic at this point with the critical t test
for the first analysis. If there is strong evidence in the
data and the statistic exceeds a critical value, sampling
is terminated and the respective hypothesis is accepted.
Otherwise, the researcher has to continue sampling un-
til the next stop is reached. This continues until Nmax,
where the test will finally accept one of the hypotheses.

Due to the interim analyses and the resulting pos-
sibility to terminate early, the GS requires on average
fewer observations than Neyman-Pearson tests with the
same error probabilities (Schönbrodt et al., 2017). Im-
portantly, it allows for explicit control of these proba-
bilities and the specification of a maximum number of
observations required. As the interim analyses have to
be planned a priori, however, the GS is less flexible than
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the SPRT or SBFs. Whereas the latter allow for termi-
nation after possibly any single additional observation,
a GS test can only terminate at one of the planned stops.
Hence, although it has the advantage of a definite upper
limit to the required sample size, it can be expected that
the GS is on average less efficient than SPRT and SBFs
(see Schönbrodt et al., 2017).

The test statistic of the SBF design is the Bayes fac-
tor (Jeffreys, 1935, 1961; Wrinch & Jeffreys, 1921).
Like the SPRT test statistic, the Bayes factor is a likeli-
hood ratio. Thus, it is a measure of relative evidence in
the data for the specified hypotheses (Kass & Raftery,
1995):

BF10 =
f (x1, ..., xn|H1)
f (x1, ..., xn|H0)

. (11)

Importantly, the likelihoods specified in this ratio are
marginal likelihoods, that is, the probability density of
data under hypothesisH is given by

f (x1, ..., xn|H) =

∫

ΘH
fH (x1, ..., xn|θ)pH (θ) dθ. (12)

In Equation 12, ΘH is the parameter space specified by
hypothesisH , fH (x1, ..., xn|θ) is the probability density
of the data given a certain point θ in ΘH , and pH (θ)
is the prior distribution of the parameters θ under hy-
pothesis H . Thus, the likelihood is integrated over all
possible t test in the parameter space defined by the
hypothesis, weighted according to the respective prior
functions. In other words, the likelihood ratio in the
Bayes factor is a weighted average of likelihood ra-
tios for all possible parameter t test (Morey & Rouder,
2011; Rouder et al., 2009).

In their simulation of the SBFs, Schönbrodt et al.
(2017) used the default prior specifications as proposed
by Jeffreys (1961) and Zellner and Siow (1980), which
were further developed by Rouder et al. (2009) for the
standard Bayesian t test. Specifically, prior distributions
are defined for the unknown population variance, the
grand mean, and the effect size, that is, the true stan-
dardized mean difference δ. The likelihood under the
null hypothesis is the likelihood for the constant δ = 0,
as in the SPRT. Under the alternative hypothesis, how-
ever, the specified prior for the effect size is not a con-
stant but a Cauchy distribution whose shape is defined
by a scale parameter r. Consequently, the Bayes factor
tests the point hypothesisH0: δ = 0 against the alterna-
tiveH1: δ ∼ Cauchy(r)3. With increasing scale param-
eter, the Cauchy distribution gets flatter, thus putting
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Figure 1. Effects of marginalizing across an effect-
size prior, assuming some known variance. The grey
line denotes the probability density of an observed
effect size under the null hypothesis δ = 0. The
solid black line denotes the probability density of ob-
served data under the alternative hypothesis δ = d,
d = 0.8. The dashed line denotes the density function
when marginalized corresponding to the hypothesis δ ∼
Cauchy(1). Grey dots denote the densities under either
hypothesis for an observed effect of size δ̂ = 1.

more weight on larger effect sizes. The default t test
suggested in the BayesFactor package in R for the test
of a small, medium, or large effect are r =

√
2/2, 1, or√

2, respectively (Morey & Rouder, 2015).
The likelihood ratios employed in the SPRT and

SBFs are closely related. Unlike in the Bayesian t
test, however, the alternative hypothesis in Hajnal’s t
test specifies a constant d rather than a distribution.
Figure 1 illustrates how the probability density of ob-
served data under the alternative hypothesis changes
when marginalizing across an effect size prior distribu-
tion: Assume a hypothesis test on the mean difference
of two normally distributed variables with some com-
mon, known variance. The probability density of an
observed mean difference δ̂ under the null hypothesis

3Note, however, that both hypotheses are composite hy-
potheses because of the unknown within-groups variance for
which a common standard prior is assumed, known as Jef-
freys prior, and the unknown grand mean, for which a uni-
form prior is specified (Rouder et al., 2009).
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H0: δ = 0 is given by the grey curve. Let the alternative
hypothesis beH1: δ = d, d = 0.8. Then the solid black
line denotes the respective probability density of an ob-
served mean difference under this hypothesis. Now as-
sume a sample effect size of δ̂ = 1 is observed. A like-
lihood ratio is simply the ratio of densities at the point
of observed data (denoted by the grey dots in Figure
1). For the alternative hypothesis d = 0.8, this ratio
is thus computed between the solid black and the grey
curve at δ̂ = 1. In the Bayes factor, however, f (δ̂|H1)
is a weighted average of the probability densities under
each possible δ in H1: δ ∼ Cauchy(r), with r = 1 in
this example. Consequently, the resulting probability
density function (dashed curve) is less peaked than the
density function based on the hypothesis d = 0.8. Thus,
the ratio for the observed effect is larger under the latter
than under the former hypothesis.

Generally speaking, a likelihood ratio based on point
hypotheses will be more sensitive to data that are likely
under the hypotheses. Consequently, if we assume that
there either is no effect or a specific effect of size δ = d,
then the SPRT should be a more sensitive and more effi-
cient test to discriminate between these two hypotheses
than SBFs.

It should be noted, however, that this sensitivity
comes at a cost: If the true effect differs greatly from
what was expected (δ̂ = 3, say), the likelihood ratio for
the point alternative hypothesis will be less pronounced
than for the diffuse hypothesis. As a consequence, in
such a case the SPRT is likely to be less efficient, while
an SBF based on a diffuse prior will be more robust.
A similar point was recently made by Stefan, Gronau,
Schönbrodt, and Wagenmakers (2019). According to
these authors, an SBF based on an informative prior is
more efficient (or less error-prone) when the true effect
lies within the prior’s highest density region. At the
same time, however, the informative prior might be at
a disadvantage if the true effect greatly deviates from
this region. In other words, there is a general trade-off

between peak efficiency when the true effect matches
the expectation, and robustness when it doesn’t. Con-
ceptually, the effect size specified in the SPRT is the
most extreme case of an informed prior. Hence, Stefan
et al.’s conclusions also apply to the SPRT.

Statistical Error Rates of SPRT, GS, and SBFs

As outlined above, in practical applications the SPRT
will be an approximate test procedure, where α and β
serve as upper bounds to the actual error rates (Wald,
1947). Thus, we empirically examined the properties
of Hajnal’s t test by means of simulations, focusing on
the empirical rates of wrong decisions in relation to the
specified upper bounds α and β. Additionally, we simu-
lated a GS test and SBFs with default Cauchy priors to
assess their error rates under the same population sce-
narios.

Note, however, that whereas Hajnal’s t test and the
GS design are based on the assumption of a fixed under-
lying effect and the same nominal error rates, the default
priors in the SBFs make quite different assumptions. In
a Cauchy distribution with scale parameter r, 50% of
the area under the curve lie in the interval [−r, r]. Thus,
the default scale parameters used by Schönbrodt et al.
(2017), r =

√
2/2, 1, and

√
2, correspond to expected

median absolute effect sizes of δ = 0.7, 1, and 1.4, re-
spectively. The absolute effect sizes corresponding to a
small, medium, or large effect in Hajnal’s t test as well
as GS and Neyman-Pearson tests, in contrast, are δ =

0.2, 0.5, and 0.8, respectively (Cohen, 1988). Thus, our
results—like those of Schönbrodt et al. (2017)—should
not be generalized to other SBF designs with different
prior distributions (e.g., informative priors; Stefan et al.,
2019) or other population scenarios (e.g., random ef-
fects).

Settings of the Simulation

We drew random samples from two normal distribu-
tions with common variance σ2 = 1 and means µ1 = δ

(δ = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1.2), and µ2 = 0. Start-
ing at n1 = n2 = 2, we applied Hajnal’s t test to the sam-
ple data. The sample of each group was then increased
by +1 until the the LR exceeded one of the boundary t
test A = (1 − β)/α or B = β/(1 − α). In addition to the
true effect size δ, the settings of the test procedure were
varied in terms of expected effect size d according to
H1 and typical t test of the nominal error probabilities
α and β, that is, α = .01 vs. .05, and β = .05 vs. .10. For
each combination of true effect size δ, expected effect
size d, α, and β, 10,000 replications were simulated.

In a second step, we simulated a GS with four looks
(three interim analyses and one final test) for the same
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population scenarios and nominal error rates. Sample
sizes for each step and the respective critical t test were
calculated with the gsDesign package in R (K. Ander-
son, 2014).

Third, we replicated Schönbrodt et al.’s (2017) sim-
ulation of the SBFs: Random samples from two nor-
mally distributed populations with true mean difference
δ were drawn and the Bayes factor was computed dur-
ing the sampling process until a threshold value was
reached. The scale parameter of the Cauchy prior in
the Bayes factor was systematically varied using the de-
fault t test specified in the BayesFactor package, that is,
r =

√
2/2, 1, or

√
2, respectively (Morey & Rouder,

2015). The threshold t test for the sequential procedure
were set to a critical Bayes factor between 3 and 30 in
steps of 1. As in the previous simulation of Hajnal’s
t test, each simulated trajectory started with an initial
sample size of n1 = n2 = 2 that was gradually increased
in equal steps for both groups until a decision threshold
was reached4.

Results

Columns 1–4 of Table 1 contain the percentages (and
95% CI) of decision errors of Hajnal’s t test as a func-
tion of the true effect δ, the expected effect d underH1,
and the specified error probabilities α and β. In columns
5–8, the same information is presented for the simulated
GS with four looks. The remaining columns provide the
result for the SBFs as a function of the true effect δ, the
scale parameter r of the Cauchy prior (representing the
expected median absolute effect size underH1), and the
threshold value for the Bayes factor.

For the sake of brevity, we only display a limited
range of effect sizes here, namely, δ = 0, 0.2, 0.5, and
0.8, as these represent the absence of an effect and the
effect sizes commonly referred to as small, medium,
and large (Cohen, 1988). In a similar vein, we only
report a subset of SBF threshold t test, namely 5, 10,
and 30. The full table of results as well as repro-
ducible scripts and all data can be downloaded from
https://osf.io/4zub2/. The ASN (as well as the 50th,
75th, and 95th quantile) for Hajnal’s t test, GS, and
SBFs corresponding to the results displayed in Table 1
may be obtained from the Appendix (Table A1).

The first three rows of Table 1 depict the observed
percentages of incorrect decisions for the true popula-
tion scenario δ = 0 (i.e., empirical Type 1 error rates).

Obviously, Hajnal’s t test provides excellent α error
control. The empirical rates closely approximate the
nominal probabilities (.01, .05). In fact, as can be in-
ferred from the 95% Clopper-Pearson exact confidence
intervals (Clopper & Pearson, 1934), 67% of the ob-
served Type 1 error rates are significantly lower than the
specified α. Thus, as expected, Hajnal’s t test approx-
imates nominal error rates nicely, with the specified α
serving as an upper bound.

We observe a similar result for the GS: The empirical
error rates nicely approximate the nominal α. In some
cases, the estimate is slightly above the nominal level,
but this is likely caused by sampling error. Hence, with
respect to Type-1 error control, the GS and the SPRT
procedures are comparable and perform well.

In contrast to the SPRT and GS test procedures, the
observed α rates of the SBFs vary as a function of the
Bayes factor threshold value and the scale parameter r.
For a low threshold, the probabilities of falsely reject-
ing a true null hypothesis are much larger than what re-
searchers typically aim at. Although these error rates
decrease for higher thresholds (e.g., about .06 for a
Bayes factor of 10), there is no means in the standard
SBF design to control the α probability a priori.

The remaining rows of Table 1 correspond to true
population scenarios with δ > 0. Here, the percentages
represent observed rates of accepting a false null hy-
pothesis (Type 2 error). The probability of committing
such an error is commonly referred to as β; however,
this definition is somewhat vague. More precisely, β is
the probability to accept a false null hypothesis if the
specified alternative hypothesis δ = d is in fact true (see
Equation 2). As the results in Table 1 demonstrate, Ha-
jnal’s t test provides excellent control of the error prob-
ability in this situation: The empirical rates nicely ap-
proximate but never exceed the specified β (.05, .1). In
fact, the actual error rates are significantly smaller than
the nominal β in 92% of the cases. Thus, as expected, β
denotes an upper bound of the test procedure’s probabil-
ity to accept a false null hypothesis when the alternative
is correctly specified.

Notably, this result also holds when the true effect
does not match the expected effect but is in fact larger.

4To find an acceptable compromise between computa-
tional efficiency and accuracy in the simulations of Haj-
nal’s test and SBFs, the samples were increased by +1 until
n1 = n2 = 10, 000 and by +50 afterwards.
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Table 1
Percentages [and 95% CI] of Type 1 and Type 2 Decision Errors Committed by Hajnal’s t Test, Group Sequential
Test, and Sequential Bayes Factors

Hajnal’s t test Group Sequential Test Sequential Bayes Factors
α = 1% α = 5% α = 1% α = 5%

d r β = 5% β = 10% β = 5% β = 10% β = 5% β = 10% β = 5% β = 10% BF = 5 BF = 10 BF = 30

δ = 0 (% Type 1 error)
1.0 0.9 4.5 4.8 0.8 1.0 5.1 4.7 11.6 6.3 2.30.2

√
2/2 [0.9,1.3] [0.7,1.1] [4.1,4.9] [4.4,5.3] [0.7,1] [0.8,1.2] [4.6,5.5] [4.3,5.1] [11.0,12.3] [5.9,6.8] [2.0,2.6]

0.8 0.7 4.5 3.8 0.8 0.9 5.3 4.9 10.3 5.8 2.00.5 1 [0.7,1.0] [0.5,0.9] [4.1,5.0] [3.4,4.2] [0.7,1.0] [0.7,1.1] [4.9,5.8] [4.5,5.3] [9.7,10.9] [5.3,6.3] [1.8,2.3]
0.8 0.8 4.0 3.8 1.2 1.3 5.4 5.6 10.5 5.8 2.10.8

√
2 [0.7,1.0] [0.6,1.0] [3.6,4.4] [3.5,4.2] [1.0,1.5] [1.1,1.5] [5.0,5.9] [5.1,6.0] [9.9,11.1] [5.4,6.3] [1.8,2.4]

δ = 0.2 (% Type 2 error)
4.7 9.4 4.4 9.1 4.4 9.7 5.1 9.1 49.0 6.4 0.00.2

√
2/2 [4.3,5.1] [8.8,10.0] [4.0,4.8] [8.5,9.6] [4.0,4.8] [9.1,10.3] [4.7,5.6] [8.6,9.7] [48.0,50.0] [5.9,6.9] [0.0,0.0]

81.0 84.8 73.1 74.6 80.5 84.2 68.2 73.6 67.0 23.5 0.00.5 1 [80.2,81.7] [84.1,85.5] [72.2,73.9] [73.7,75.5] [79.7,81.3] [83.4,84.9] [67.3,69.2] [72.8,74.5] [66.0,67.9] [22.7,24.4] [0.0,0.0]
95.2 95.3 88.1 89.2 92.7 93.8 85.2 85.6 78.6 49.0 0.10.8

√
2 [94.7,95.6] [94.9,95.7] [87.5,88.8] [88.5,89.8] [92.1,93.2] [93.4,94.3] [84.5,85.9] [84.9,86.3] [77.8,79.4] [48.1,50.0] [0.1,0.2]

δ = 0.5 (% Type 2 error)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.00.2

√
2/2 [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [1.4,1.9] [0.0,0.0] [0.0,0.0]

4.2 8.8 4.5 8.7 4.2 8.6 4.7 8.5 11.7 0.0 0.00.5 1 [3.8,4.6] [8.2,9.4] [4.1,4.9] [8.2,9.3] [3.8,4.6] [8.1,9.2] [4.2,5.1] [8.0,9.1] [11.1,12.3] [0.0,0.1] [0.0,0.0]
39.8 48.8 35.4 43.6 43.5 52.9 35.4 44.7 31.8 1.3 0.00.8

√
2 [38.8,40.8] [47.8,49.8] [34.4,36.3] [42.6,44.6] [42.5,44.5] [51.9,53.9] [34.5,36.4] [43.7,45.6] [30.9,32.7] [1.1,1.5] [0.0,0.0]

δ = 0.8 (% Type 2 error)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.2

√
2/2 [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0] [0.0,0.0]

0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.6 0.0 0.00.5 1 [0.0,0.1] [0.0,0.2] [0.0,0.1] [0.1,0.3] [0.0,0.0] [0.0,0.1] [0.0,0.1] [0.0,0.2] [0.4,0.8] [0.0,0.0] [0.0,0.0]
3.9 7.7 4.1 8.2 4.5 8.0 4.1 8.7 5.9 0.0 0.00.8

√
2 [3.5,4.3] [7.2,8.2] [3.7,4.5] [7.7,8.8] [4.1,4.9] [7.4,8.5] [3.7,4.5] [8.2,9.3] [5.4,6.4] [0.0,0.1] [0.0,0.0]

Note. The d and r metrics indicate fundamentally different effect-size expectations, although they are often assigned the same verbal labels for “small” (d = 0.2,
r =
√

2/2), “medium” (d = 0.5, r = 1), and “large” effects (d = 0.8, r =
√

2). The group sequential test comprised three interim and one final test. d = expected
effect size according to H1 in Hajnal’s t test and group sequential test (Cohen’s d); r = scale parameter of Cauchy prior (= expected median absolute effect size)
according toH1 in Sequential Bayes Factors; δ = true population effect size (Cohen’s d in population); BF = threshold Bayes factor.

As Table 1 shows, the probability that Hajnal’s t test
incorrectly accepts a false null hypothesis converges to
0 when δ > d. It is a popular critique by proponents
of the Bayesian approach that a precise prediction of
the effect size is not possible (e.g., Schönbrodt et al.,
2017). Even in this case, however, a test can be defined
with β as an upper bound to the Type 2 error probability
(Wald, 1947). By specifying a minimum relevant effect
dmin and setting up Hajnal’s t test for the simple hypoth-
esis H0: δ = 0 against H1: δ = dmin, the probability of
incorrectly accepting a false null hypothesis will never
exceed β if δ ≥ dmin. Of course, if the true effect is no-
tably smaller than dmin then the probability of accepting
H0 will exceed β. However, if dmin is specified based
on which effect sizes are practically relevant, one would
actually prefer the test to maintain H0 if the true effect
falls under this lower bound. Thus, the results demon-
strate that Hajnal’s t test provides reliable, conservative
control of the probabilities to commit a decision error.

It should be noted at this point, however, that a con-
servative specification of the effect does not only result
in conservative error rates but also in a less efficient test:
In the same way as error rates decrease when the true
effect is larger than expected, the ASN increases (Table
A1). This is not surprising as this reflects the trade-off

between efficiency and robustness (Stefan et al., 2019).
Importantly, this is also true for the GS and the classical
Neyman-Pearson test. As the effect-size assumption is
the same for all three designs, a conservative estimate
will increase the required sample size for all of them.
As Table A1 shows, however, Hajnal’s t test is still more
efficient in these cases. For example, if a small effect
is expected (d = 0.2) in case of a medium true effect
(δ = 0.5), Hajnal’s t test with α = β = .05 requires on
average 194 observations. The GS test with the same
parameters requires on average 378 observations. A
classical t test with the same assumptions would even
require 1302 observations. Hence, Hajnal’s t test is not
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only more efficient when the correct effect size is ex-
pected, but also when the tests specify a conservative
assumption.

As in case of Type 1 errors, there is no explicit con-
trol of Type 2 errors in the SBF design. For a thresh-
old Bayes factor of 5, the empirical error rates exceed
typical error rates by far (see also Schönbrodt et al.,
2017). A more reasonable threshold of 10 yields ex-
cellent error probabilities for medium to large effects
but not for small effects (δ = 0.2). If a higher thresh-
old is chosen (BF = 30), the procedure will basically
commit no decision errors, even when the true effect is
small. However, this powerful procedure comes at the
cost of efficiency: In the context of small to medium
effect sizes, the expected sample sizes required to reach
the decision threshold can become extremely large (see
Table A1). For example, for a true effect of size δ = 0.2,
an SBF assuming a Cauchy prior with scale r =

√
2/2

requires on average 1120 observations to reach a thresh-
old of 30. To summarize, the results indicate that the
SBF design—if combined with thresholds representing
moderate (BF = 5) or strong evidence (BF = 10)—can
be associated with high error probabilities and lacks a
proper means to control these explicitly.

Relative Efficiency of SPRT, GS, and SBFs

For the test of simple hypotheses, the SPRT’s proper-
ties can be derived analytically and its optimum charac-
ter has been proven (Wald & Wolfowitz, 1948). When
modified for the case of a composite hypothesis, how-
ever, analytical solutions do no longer exist (Cox, 1952;
Hajnal, 1961; Köllerström & Wetherill, 1979). Schön-
brodt et al. (2017) demonstrated that the SBF design is
more efficient for the two-sample t-test scenario than
the GS. However, this comparison did not include the
SPRT, and sensitivity considerations concerning SBFs
and SPRT strongly suggest that if SPRT’s assumptions
are met (which was the case in Schönbrodt et al.’s sim-
ulation design), it should be more efficient. To assess
this in more detail, we empirically juxtaposed Hajnal’s
t test with SBFs and GS by means of simulation.

Settings of the Simulations

A meaningful comparison of different test proce-
dures’ efficiencies requires all tests to satisfy the same
error probabilities. To generate tests of the same

strength (α, β), we repeated the simulation of Hajnal’s
t test with the same settings as in the previous simu-
lation. This time, however, the stopping thresholds A
and B were based on the corresponding error rates of
the SBFs. For each condition, the test was based on the
correctly specified effect-size assumption d = δ and the
empirical α and β of the SBFs under the same condi-
tion5. In addition, we calculated the ASN for a GS test
with four looks using the gsDesign package, as well as
required sample sizes for the corresponding Neyman-
Pearson t test (NNP) with the same error probabilities.
Thus, the four test procedures are of the same strength
and can be compared directly in terms of efficiency.

Note that this simulation represents a favorable sce-
nario for the SPRT, the GS, and the Neyman-Pearson
test, as the true effect sizes perfectly match the effect-
size assumptions. Hence, the results capture their peak
efficiency. If the true effect does not match the expected
effect or if different priors are used in the SBFs, the re-
sults are likely to differ. However, this simulation set-
ting is necessary to keep the error rates constant across
test procedures, which, in turn, is necessary for a mean-
ingful comparison of efficiency.

Results

The relative efficiency of Hajnal’s t test, the GS, and
the SBFs with default priors can be obtained from Fig-
ure 2. It is based on Figure 4 in Schönbrodt et al. (2017,
p. 331), in which these authors presented their com-
parison of SBFs and GS. Figure 2 displays the relative
reduction of the ASN of the three test designs com-
pared with the corresponding Neyman-Pearson sam-
ple size (in % NNP). Not surprisingly, all three se-
quential designs are more efficient than the classical
Neyman-Pearson t test. We also replicated the finding
of Schönbrodt et al. that the SBF design (dashed line)
is substantially more efficient than the GS test (dotted
line), although the latter assumes the correct effect size.
The mean relative reduction of expected sample size of
the SBFs compared with the corresponding Neyman-
Pearson test is 63%, whereas the mean relative reduc-
tion is 50% for the GS. However, as Figure 2 also re-
veals, Hajnal’s t test is in fact even more efficient (solid
line): On average, the ASN of Hajnal’s t test is 67%

5In conditions for which the SBFs did not exhibit wrong
decisions, β was set to an arbitrarily small value of 1/50000.
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smaller than NNP. In almost all conditions, the observed
ASN undercuts the corresponding statistics of the SBFs
and the GS.

As can be seen, this difference between SPRT and
SBFs is quite small for medium to large effect sizes,
although consistent. Two mechanisms can explain this
small difference:

(1) As the true effect further departs from the null,
the likelihood of an observation that is typical under the
null hypothesis decreases quickly. Thus, the expected
change in the likelihood ratio by adding a single obser-
vation increases correspondingly fast. Therefore, both
sequential procedures reach a decision on average af-
ter very few observations already (e.g., for δ = 1.2, all
ASN are smaller than 20). Hence, the comparison is
distorted in this context by a floor effect.

(2) The extent to which the likelihood ratio exceeds
the stopping t test A and B at the point of termina-
tion (overshooting) increases as a function of effect size
(Wald, 1947). Thus, with increasing effect size, the ac-
tual error probabilities of the SPRT further depart from
the specified α and β, resulting in a more conservative
and slightly less efficient test. Wald conjectured that
this loss of efficiency was not of practical relevance.
Nevertheless, it is important to keep in mind when inter-
preting the small difference in efficiency between Haj-
nal’s t test and SBFs in the context of large effect sizes.

For small to medium effect sizes, in contrast, the dis-
crepancy in efficiency between Hajnal’s t test and the
SBFs is considerably stronger and can reach differences
in ASN of more than 300 observations. Since these are
effect sizes that require very large NNP’s, efficiency is
of particular interest in this context. Thus, as our results
show, Hajnal’s t test can be an efficient alternative not
only with respect to the Neyman-Pearson procedure and
the GS, but also with respect to the default SBF design
proposed by Schönbrodt et al. (2017). What is more,
unlike the latter, Hajnal’s t test additionally allows for
the proper specification of upper bounds to decision er-
ror probabilities, as empirically illustrated in the previ-
ous section.

Robustness of SPRT, GS, and SBFs

So far, we examined Hajnal’s t test under ideal con-
ditions, that is, when the assumptions underlying the
test procedure are met. This is necessary from a the-
oretical perspective in order to investigate the general

properties of the test such as error probability control
and efficiency, and also to compare the test procedure
with other designs. However, from a practical point of
view, it is also important to consider scenarios in which
these assumptions are violated.

H. Lee and Fung (1980) already examined the ro-
bustness of Hajnal’s t test under conditions of non-
normality and heteroscedasticity. Due to computational
limitations at the time, however, their simulations were
based on approximations to the likelihood ratio. In this
section, we examine the performance of Hajnal’s t test
as well as the GS and the default SBFs under conditions
of (1) non-normality and (2) heteroscedasticity, as well
as (3) random effects and (4) intentional misuse. For
the sake of parsimony, we restricted the simulations to
the nominal error rates α = β = .05 in Hajnal’s t test
and the GS. For the SBFs, we chose a threshold value
of BF = 10 throughout the simulations. As this value
reflects “strong evidence” from a Bayesian perspective
(M. D. Lee & Wagenmakers, 2013), it is often used
as a threshold in practical applications (e.g., Matzke et
al., 2015; Schönbrodt et al., 2017; Wagenmakers et al.,
2015). In each simulation, 10,000 replications per pa-
rameter combination were simulated. All scripts and
data are again available from the Open Science Frame-
work.

Non-Normality

Settings. To investigate the test procedures’ perfor-
mances against violations of the normality assumption
we repeated the first simulation for data generated from
log-normal distributions and mixtures of two normal
distributions. For the former case, we drew random data
for two groups from a log-normal distribution corre-
sponding to a standard normal on the log scale. To each
observation in the first group, δσ

′
was added, where δ

denotes the true standardized mean difference (δ = 0,
0.2, 0.5, 0.8) and σ

′
represents the standard deviation

of the log-normal distribution.
To simulate the mixture case, we followed the proce-

dure employed by H. Lee and Fung (1980) by generat-
ing random data from a mixture of two normal distribu-
tions given by

γN(µ1, σ1) + (1 − γ)N(µ2, σ2) (13)

where γ (γ = .9, .7, .5) denotes the probability that an
observation is drawn from N(µ1, σ1). For the underly-
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Figure 2. Relative efficiency of sequential probability ratio test (SPRT), group sequential test (GS) and sequential
Bayes factors (SBFs). The y-axis denotes the reduction in expected sample size of SPRT (solid line), GS (dotted
line) and SBFs (dashed line) compared with a Neyman-Pearson t test with the same error probabilities in % NNP

for different true effect sizes as well as boundaries and prior specifications of the SBFs. Based on Schönbrodt,
Wagenmakers, Zehetleitner, and Perugini (2017, Figure 4).
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Table 2
Percentages of Type 1 and Type 2 Decision Errors Committed by Hajnal’s t Test, Group Sequential Test, and
Sequential Bayes Factors Under Conditions of Non-Normality

δ = 0.2 δ = 0.5 δ = 0.8
Distribution γ s k Empirical error rates SPRT GS SBF SPRT GS SBF SPRT GS SBF

α′ 4.5 5.1 6.3 4.5 5.3 5.8 4.0 5.4 5.8Normal 0.0 3.0 β′ 4.4 5.1 6.4 4.5 4.7 0.0 4.1 4.1 0.0
α′ 4.5 3.3 5.5 3.7 4.3 5.1 3.5 4.4 5.1.9 0.8 6.0 β′ 4.5 3.9 5.6 3.9 3.7 0.0 4.1 4.2 0.0
α′ 4.6 2.5 6.2 4.2 2.5 4.6 3.7 3.1 4.5.7 0.9 4.4 β′ 2.9 2.0 4.2 2.9 1.8 0.0 2.6 1.8 0.0
α′ 2.3 1.2 5.2 3.8 1.5 5.1 4.0 1.7 4.7

Mixture

.5 0.7 3.4 β′ 0.8 0.4 1.6 1.3 0.4 0.0 1.4 0.3 0.0
α′ 3.9 4.8 4.0 2.7 4.7 3.7 1.8 4.6 3.3Log-normal 6.2 116.9 β′ 4.6 5.1 6.2 4.1 4.5 0.1 3.7 4.5 0.0

Note. The first two rows display results from the first simulation for normally distributed data, see Table 1, columns
3, 7, and 10. Number of repetitions per parameter combination: k = 10, 000. γ = mixture probability; s = skewness; k =

kurtosis; δ = true and expected effect size (Cohen’s d in population); S PRT = sequential probability ratio test (Hajnal’s t
test) assuming d = δ and α = β = .05. GS = group sequential design with four tests, assuming d = δ and α = β = .05.
S BF = sequential Bayes factor design with threshold 10, assuming r =

√
2/2, 1,

√
2 when δ = 0.2, 0.5, 0.8, respectively.

ing distributions, we defined µ1 = 0, σ1 = 1, µ2 = 2,
and σ2 = 2. As in the log-normal case, δσ

′
was added

to each observation in the first group, with σ
′

denoting
the standard deviation of the mixture distribution.

Results. The empirical error rates of the three test
procedures are displayed in Table 2. Expected sample
sizes can be obtained from the Appendix (Table A2).
For ease of comparison, the first two rows of Table 2
contain results from the first simulation for normally
distributed data (see Table 1, columns 3, 7, and 10).

In terms of error rates, the examined procedures are
quite robust against violations of distributional assump-
tions. This is not surprising as it is in line with H.
Lee and Fung’s results for Hajnal’s t test. Type 1 error
rates in particular seem to be quite stable for all designs
across all simulated scenarios, although Hajnal’s t test
becomes slightly conservative with increasing effect-
size assumption for log-normally distributed data. In
the case of mixture distributions, there is a tendency that
Type 2 error rates for all test procedures decrease with
decreasing kurtosis. Interestingly, however, this is not
accompanied by an increase in expected sample sizes.
To summarize, all three sequential designs show robust-
ness under conditions of non-normality both in terms of
error rates and ASN.

Heteroscedasticity

Settings. To simulate the case of two populations
with unequal variance and some standardized mean dif-
ference δ, we drew random samples from two normal
distributions with µ1 = 0, σ1 = 1 and

µ2 = δ ·
√
σ2

2 + 1
2

(14)

with σ2 = 1/4, 1, 4 and δ = 0, 0.2, 0.5, 0.8. In addition,
we simulated two sampling schemes (H. Lee & Fung,
1980): (1) pairwise sampling from the two populations
such that n1/n2 = 1, and (2) unbalanced sampling such
that at each step for one observation in the first sample
there were always three in the second sample, that is,
n1/n2 = 1/3.

Results. The observed error rates for the three test
procedures under the condition of heteroscedasticity are
displayed in Table 3. The corresponding expected sam-
ple sizes can be obtained from the Appendix (Table
A3). If the sample sizes are balanced, Hajnal’s t test is
basically unaffected by heteroscedasticity in the under-
lying populations. Although there seems to be a slight
tendency that with increasing expected effect size, the
Type 1 error rate increases as well, this is likely due to
sampling error. In the same vein, expected sample sizes
of Hajnal’s t test are basically constant irrespective of
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Table 3
Percentages of Type 1 and Type 2 Decision Errors Committed by Hajnal’s t Test, Group Sequential Test, and
Sequential Bayes Factors Under Conditions of Heteroscedasticity

δ = 0.2 δ = 0.5 δ = 0.8
N1/N2 σ1/σ2 Empirical error rates SPRT GS SBF SPRT GS SBF SPRT GS SBF

α′ 4.6 4.9 9.8 5.1 5.0 9.5 5.3 6.3 8.61/4 β′ 4.6 4.8 6.2 4.3 4.5 0.0 3.5 4.0 0.0
α′ 4.3 5.2 6.5 4.0 5.3 6.0 4.1 5.6 5.51 β′ 4.8 4.8 6.0 4.4 4.7 0.0 4.1 4.0 0.0
α′ 4.8 5.7 9.8 5.0 5.4 9.3 5.3 6.5 9.3

1

4 β′ 4.6 4.5 5.9 4.6 4.5 0.0 3.7 4.0 0.0
α′ 0.0 1.0 0.1 0.0 0.8 0.2 0.1 1.1 0.11/4 β′ 1.2 17.2 1.9 1.0 17.1 0.0 1.1 16.3 0.0
α′ 4.4 5.1 6.0 3.8 5.0 5.4 3.1 5.6 4.31 β′ 4.6 14.5 6.1 4.0 14.4 0.0 3.4 13.1 0.0
α′ 38.0 21.3 59.8 36.1 23.7 55.9 34.9 26.6 52.3

1/3

4 β′ 6.1 10.2 5.0 5.4 9.8 0.1 4.9 9.0 0.0
Note. Number of repetitions per parameter combination: k = 10, 000. N1/N2 = ratio of sample sizes in group
1 and 2; σ1/σ2 = ratio of standard deviations in population 1 and 2; δ = true and expected effect size (Cohen’s
d in population); S PRT = sequential probability ratio test (Hajnal’s t test) assuming d = δ and α = β = .05.
GS = group sequential design with four tests, assuming d = δ and α = β = .05. S BF = sequential Bayes factor
design with threshold 10, assuming r =

√
2/2, 1,

√
2 when δ = 0.2, 0.5, 0.8, respectively.

the variance ratio as long as the group sample sizes are
balanced. Thus, our simulations show that for a bal-
anced sampling scheme, Hajnal’s t test is robust against
violations of homoscedasticity assumptions.

The GS seems to be quite robust as well (there is vir-
tually no effect in terms of efficiency), although its em-
pirical Type 1 error rates slightly exceed the nominal
level. The SBF design is quite robust when there is an
effect (Type 2 errors), but there is a noticeable increase
in Type 1 error rates in the case of unequal variances.
Thus, SBFs seem to be affected by heteroscedasticity
to a certain extent even when group sample sizes are
balanced.

If sample sizes are unbalanced, Hajnal’s t test and
the SBFs are affected in quite the same manner. If there
is homoscedasticity, error rates do not change, whereas
their efficiency is lowered: Expected sample sizes of
both tests increase notably. In the case of heteroscedas-
ticity, however, both tests show poor Type 1 error rates
when the sample with larger variance is smaller. This
increase in error rates is not surprising, as the pooled
variance estimate will seriously underestimate the true
variance if the sample with larger variance is notably
smaller than the other sample. This, in turn, will result
in too large t t test and a high number of false-positive

decisions. If the population with larger variance is over-
represented, on the other hand, both tests become more
conservative and less efficient.

Interestingly, the GS is affected most seriously by
an unbalanced design. Whereas Type 1 error rates
are highly conservative when there is heteroscedastic-
ity and the sample with small variance is larger, Type
2 error rates are inflated for all variance ratios. Hence,
independent from heteroscedasticity, the GS design is
strongly affected by unequal sample sizes.

Random Effects

Settings. In the previous simulations, a fixed effect
size δ was always assumed. This is a common assump-
tion in psychology; however, it is also possible to as-
sume that in certain cases, the true effect is not fixed
but in fact random. Hajnal’s t test, like the GS and the
classical t test, specifies a fixed effect size. The de-
fault SBFs, on the other hand, are based on an effect-
size prior distribution. Thus, we investigated the per-
formance of the three sequential designs when the true
effect is in fact sampled from a distribution.

In this simulation, a population effect size δ was ran-
domly drawn from a normal distribution with µδ = 0.2,
0.5, 0.8 and σδ = 1 in a first step. Subsequently, ran-
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Table 4
Percentage of Type 2 Errors and Expected Sample Size of Hajnal’s t Test, Group Sequential Test, and Sequential
Bayes Factors for Random Effects

SPRT GS SBF
Effect size β′ ASN β′ ASN β′ ASN
δ ∼ N(0.2, 1) 8.5 278 8.5 518 2.4 1042
δ ∼ N(0.5, 1) 18.6 88 18.6 112 5.1 370
δ ∼ N(0.8, 1) 23.6 46 23.5 52 7.0 198

Note. Number of repetitions per parameter combination:
k = 10, 000. S PRT = sequential probability ratio test (Ha-
jnal’s t test) assuming d = µδ and α = β = .05. GS =

group sequential design with four tests, assuming d = µδ
and α = β = .05. S BF = sequential Bayes factor design
with threshold 10, assuming r = µδ; ASN = average sample
number (n1 + n2).

dom data were drawn from two normal distributions
with µ1 = δ, µ2 = 0 and common standard deviation
σ = 1. In the case of H1, the expected effect size in
Hajnal’s t test and the GS was specified as d = µδ. In
the SBFs, a Cauchy prior with r = µδ was specified.
With this setting, the median expected absolute effect
size in the SBFs always matches the true median ef-
fect size (µδ) and thus, in contrast to the fixed-effects
simulations, this represents a favorable setting for the
Bayesian test.

Results. The empirical error rates and ASN can be
obtained from Table 4. Not surprisingly, the error rates
of Hajnal’s t test and the GS are basically equivalent
since they make the same assumption. However, as this
assumption (fixed effect) is violated, the resulting error
rates are seriously inflated. Hence, if the true effect size
is in fact random rather than fixed or at least as large as
expected, neither Hajnal’s t test nor the GS can control
the probability of a decision error.

The SBFs, on the other hand, does not put all prior
weight on a single effect size, but a range of effect sizes.
Moreover, the prior expectation is reasonably close to
the true situation in this simulation. Thus, error rates for
this particular SBF are lower than for Hajnal’s t test or
the GS. Although a direct comparison is difficult as the
designs also differ substantially in ASN, the simulation
demonstrates the advantages of a diffuse prior: If the
true effect is random, a diffuse prior will in general be
more robust than a point prior, particularly if the scale
parameter is chosen so that the prior’s expected median
effect size matches the true median effect size.

Truncation Before a Decision

Settings. Lastly, we address the consequences of
possible misuse. One issue that might be particularly
critical in practical applications of sequential tests is
the risk of ending up with extremely large sample sizes.
Obviously, this is not a concern in the GS design where
an upper bound sample size Nmax is defined a priori. In
Hajnal’s t test and the SBF design, on the other hand,
the final sample size is unknown. Therefore, if the se-
quential test has not reached a threshold at a certain
point, researchers might choose to truncate it.

From a Bayesian point of view, this is not an issue.
The Bayes factor is a continuous measure of evidence
and its interpretation is unaffected by the stopping rule
(Rouder, 2014). Hence, if the SBF procedure is termi-
nated before reaching an a priori defined threshold, the
Bayes factor at this point can still be interpreted (Schön-
brodt et al., 2017). In principle, this is of course also
possible in Hajnal’s t test, as it is based on a likelihood
ratio. However, this is not an option if the goal is to
make decisions with a priori controlled error probabil-
ities. Intuitively, it might seem like a reasonable strat-
egy to truncate the sequential test when the sample size
for a classical Neyman-Pearson test with corresponding
error probabilities is reached, and simply switch to the
fixed-sample procedure at this point. However, as only
those samples will be analyzed for which the sequential
procedure has not come to a decision yet, the sampling
distribution of the test statistic at this point is likely to
be distorted. Any statistical inference based on it will
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Table 5
Percentage of Type 1 and 2 Decision Errors and Ex-
pected Sample Size of Hajnal’s t Test when Truncated
at NNP

δ d α′ / β′ ASN NNP % NP
0.2 6.9 800 1302 9.1
0.5 6.7 134 210 10.60.0
0.8 6.0 54 84 10.4

0.2 0.2 6.5 652 1302 8.7
0.5 0.5 6.4 112 210 9.9
0.8 0.8 5.7 48 84 10.5

Note. Number of repetitions per parame-
ter combination: k = 10, 000. Nominal error
rates: α = β = .05; δ = true effect size (Co-
hen’s d in population); d = expected effect
size; α′/β′ = empirical error rates; ASN = av-
erage sample number (n1 + n2); NNP = total
sample size required by a Neyman-Pearson t
test assuming δ = d and α = β = .05; %NP =

proportion of truncations at NNP.

thus be biased.
Therefore, we investigated the impact of this kind of

misuse on the long-run properties of Hajnal’s t test. We
replicated the first simulation and truncated the process
whenever the sample size reached that of a correspond-
ing Neyman-Pearson test (NNP). A final decision was
then made based on the classical t test.

Results. The error rates and ASN of Hajnal’s t test
for a truncated sampling plan are displayed in Table 5.
Additionally, it displays the proportion of replications
that did not accept a hypothesis before reaching NNP.
Hajnal’s t test consistently terminates with a sample
size smaller than NNP in about 90 percent of the cases.
Hence, the risk of ending up with a larger sample is
small. Nevertheless, if sampling is terminated in these
cases and a decision is made based on the classical t
test, the error rates are no longer fully controlled. In
all cases, the nominal rate is exceeded by up to two
percentage points. At the same time, the reduction in
ASN compared with the open procedure is only slight.
To summarize, the truncation strategy is invalid and in-
creases the error rates beyond their nominal levels. If
NNP is used as the point of truncation, this increase is
not dramatic but it is clearly visible and must not be
ignored.

Empirical Example

In this section, we illustrate Hajnal’s t test by ap-
plying it to a real data set. Following Schönbrodt
et al. (2017), we chose open data from a replication
of the retrospective gambler’s fallacy (RGF) in the
Many Labs Replication Project (Klein et al., 2014,
https://osf.io/ydpbf/). The RGF, initially reported by
Oppenheimer and Monin (2009), refers to people’s false
belief that seemingly rare outcomes are more likely
to stem from a larger number of trials than seemingly
common outcomes. In the experiment, participants are
asked to imagine walking into a casino and observing a
man rolling a die three times in a row. In the experimen-
tal condition, all dice show 6’s, whereas in the control
condition, two of the dice come up 6’s while the third
die comes up 3. Based on this scenario, participants
are asked to indicate how many times they think the
die had been rolled before they walked into the casino.
In line with the theory, participants in the experimental
group typically indicate a larger number of rolls than
in the control condition. In the original study, Oppen-
heimer and Monin (2009) reported an effect size of Co-
hen’s d = 0.69, 95% CI [0.16, 1.21]. In the replication
study, the effect was reproduced with a total sample of
N = 5, 942 participants, Cohen’s d = 0.63 [0.57, 0.68].

Following the safeguard power analysis procedure
proposed by Perugini, Gallucci, and Costantini (2014),
a replication of the RGF should not be based on the
original effect-size estimate. Rather, one should as-
sume, for example, the lower limit of the 80% CI of the
original effect-size estimate, that is, ds = 0.34. Thus,
a replication based on a standard two-sided Neyman-
Pearson t test with α = .05 and a power of 1 − β = .95
would require a total sample of 452 participants (Faul,
Erdfelder, Buchner, & Lang, 2009). We applied Haj-
nal’s t test with the same specifications to the data, that
is, d = 0.34 and α = β = .05.

The outcome and efficiency of a sequential test de-
pends on the sequence of observations analyzed. To
avoid the impression of choosing a particular sequence,
we applied the test to the data in the sequence in which
they are listed in the data set. This resembles the ac-
tual application of a sequential t test, as data should
be analyzed in the exact sequence in which they are
sampled. Figure 3 depicts the development of the log-
likelihood ratio of Hajnal’s t test across the sampling
process. Starting at N = 3, the test stops sampling at a
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total sample size of N = 87 with LR87 = 19.84. This ra-
tio indicates that the data are about 20 times more likely
under H1 than under H0, which exceeds the boundary
value A = (1 − β)/α = 19. Thus, we accept the alter-
native hypothesis: Participants in the RGF group indi-
cated longer sequences (M = 3.55, S D = 2.93) than
participants in the control group (M = 2.06, S D = .98),
Cohen’s d = 0.69, 95% CI [0.26, 1.12]6. Compared
with the sample size required by the standard Neyman-
Pearson t test, Hajnal’s t test tested the same hypothesis
with the same error probabilities about 80% more effi-
ciently.

Discussion

Hypothesis testing is an integral part of science
(Morey, Rouder, Verhagen, & Wagenmakers, 2014). It
does not necessarily take the form of a dichotomous de-
cision in favor of one of two specified hypotheses. In
a Bayesian framework, for example, researchers may
aim at an assessment of posterior probabilities rather
than a discrete decision. Some authors even call for a
shift away from hypothesis testing to inference based on
estimation (Cumming, 2014; Halsey, Curran-Everett,
Vowler, & Drummond, 2015; Tryon, 2016). Neverthe-
less, scientific discovery requires a principled, critical
evaluation of whether or not a theory’s predictions hold
(Morey et al., 2014; Popper, 1968). For many scien-
tists, this is represented by a binary decision to either
accept or reject a hypothesis derived from the theory.
As long as this decision is accompanied by an estimate
of the strength of the effect, it does not conflict with
the overarching aim of science to generate cumulative
knowledge.

When conceiving statistical inference as decision-
making under uncertainty, error probabilities in statis-
tical decisions must not be ignored, irrespective of the
statistical framework used for making inferences (Lak-
ens, 2016). Hence, employing test procedures and stop-
ping rules that allow for error probability control is piv-
otal for the scientific endeavor. However, when apply-
ing statistical tests researchers also face practical con-
straints such as limited resources. This has led to a
widespread neglect of statistical power and invited a
number of questionable practices, which played their
part in the development of the reproducibility crisis in
psychology (Bakker, van Dijk, & Wicherts, 2012; Sim-
mons et al., 2011). Thus, in order to improve current

statistical practice, sensible and efficient alternatives are
needed, for example, sequential methods. Although se-
quential hypothesis tests have been proposed to the field
of psychology in the past, their application is still sur-
prisingly scarce in experimental research (Botella et al.,
2006; Lakens, 2014).

Herein, we promote the use of the SPRT for testing
precise hypotheses about mean differences between two
independent groups with high efficiency and reliable
control of error probabilities. The SPRT is not new.
In fact, the general theory and its extensions as well
as the mathematical simplifications this article builds
upon have been developed more than half a century ago
(Wetherill, 1975). This notwithstanding, we see three
important practical and theoretical contributions of our
work to psychological science:

First, in light of the ongoing reproducibility crisis, we
want to introduce the SPRT to psychologists as a statis-
tically sound and efficient alternative to the currently
dominating procedure. The field is more than ever
aware of the value and the need for sufficiently pow-
ered replications (Bakker et al., 2012; Lakens, 2014).
Sequential methods control the probabilities of statis-
tical decision errors while allowing for early decisions
whenever the test statistic exceeds one of the boundary t
test, thus making optimal use of available resources. We
have demonstrated the excellent properties of the SPRT
for the typical two-sample t-test scenario and how it is
easily implemented in standard statistical software. Ad-
ditionally, we created a simple, user-friendly R script
to facilitate the application of the sequential tests pro-
moted herein. Thus, the SPRT is an easy-to-apply pro-
cedure that benefits both the individual researcher and
the entire field of psychology by increasing efficiency
and reliably controlling error probabilities.

Second, we extended the comparison of SBFs and
the GS design by Schönbrodt et al. (2017) and included
the SPRT. We showed that the SPRT is not only more
efficient than the GS but also than SBFs for a correctly
specified hypothesis. However, it is not our intention
to take a stance in the somewhat ideological quarrel
between different schools of statistical inference. We
merely point out the SPRT as an alternative to SBFs

6Note that this estimate of Cohen’s d as well as the CI
are based on the assumption of a fixed sample size and, thus,
might be biased towards an overestimation of the true effect
size. See the Discussion Section for details.
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Figure 3. Development of the log-likelihood ratio for Hajnal’s t test on the replication data of the retrospective
gambler’s fallacy (Klein et al., 2014). The test terminates sampling after N = 87 observations with a decision in
favor ofH1. The upper and lower dashed lines represent the decision boundaries ln(A) and ln(B), respectively.

that (1) is more efficient when the alternative hypoth-
esis corresponds to a point hypothesis and (2) allows
for explicit control of error probabilities. If the psycho-
logical hypothesis of interest is in fact best represented
by a prior distribution rather than a point mass, we en-
dorse the use of a correspondingly specified likelihood
ratio such as the Bayes factor implanted in SBFs. In the
same vein, if the research goal is to quantify evidence
and assess posterior probabilities, the SBFs (or gener-
ally, the Bayes factor) is the way to go. However, the
standard SBF design does not allow for explicit control
of error probabilities, which is a notable limitation. If
error probability control is essential, the SPRT might
constitute a better alternative.

Third, whereas extensive work has been done on
elaborating the properties of the SPRT for simple hy-
potheses (Matthes, 1963; Sobel & Wald, 1949; Wald,
1947; Wald & Wolfowitz, 1948), little is known about
its performance when adapted to the case of com-
plex composite hypotheses (Cox, 1952; Köllerström
& Wetherill, 1979; Wetherill, 1975). Introducing
the SPRT for the two-sided two-sample t test, Haj-
nal (1961) stated that “[t]here is no known method of
computing the average number of observations needed
for sequential tests of composite hypotheses” (p. 72).

Thus, to our knowledge, our simulations constitute the
first study to demonstrate the properties of Hajnal’s t
test for such a wide range of population scenarios and
without relying on mathematical approximations to the
likelihood ratio. Moreover, we examined its robustness
against a number of violations of its basic assumptions
and compared this to the robustness of SBFs and the GS
design. To summarize our results, in a balanced design
and when the effect size is not grossly misspecified, Ha-
jnal’s t test is highly efficient and quite robust even un-
der conditions of non-normality or heteroscedasticity.

Limitations

There are some possible limitations of our work that
apply to sequential procedures in general, whereas oth-
ers are specific for the test we promote in this article.
First, some critics might object that the SPRT requires a
precise specification of both the null and the alternative
hypothesis (i.e., a precise prediction of the effect size).
Ideally, this prediction follows from an underlying the-
ory; however, it is frequently argued that researchers
do not have realistic effect-size assumptions (Gelman
& Carlin, 2014; Perugini et al., 2014). If there is no
information in the literature such that an effect-size es-
timate could be based on a review or meta-analysis, this
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may indeed seem like a severe drawback. However, it is
important to keep in mind that the effect-size assump-
tion underH1 is not necessarily an attempt to guess the
true effect that underlies the data. Alternatively, it can
be seen as specification of an effect that the researcher
“deem[s] worthy of detecting” (Schulz & Grimes, 2005,
p. 1350). Thus, the need to specify a precise hypothesis
should not be considered detrimental. After all, a hy-
pothesis test is, by definition, the test of a prediction—
why would we demand it to work without specifying
one? NHST is an inglorious example of the critical
consequences of employing a test without specifying a
precise alternative to the null hypothesis.

It is true, however, that the SPRT will be less effi-
cient or may lead to wrong decisions more often when
the effect size is grossly under- or overspecified, respec-
tively. At the cost of efficiency, the SBF design is more
robust against such misspecifications to a certain extent.
However, this does by no means free from the need to
define a sensible statistical hypothesis: If the prior allo-
cates undue mass to effect sizes that differ substantially
from the true effect, the resulting test procedure will
also perform poorly in terms of asymptotic error rates
and efficiency. In sum, sensible hypothesis tests require
reasonable and precise statistical hypotheses; the more
precise a hypothesis, the more critical and efficient is its
test (Stefan et al., 2019).

Second, the SPRT is an open procedure, that is, it
requires sampling until a decision is made. It cannot
be ruled out a priori that the data do not yield strong
evidence in favor of any hypothesis such that the test
goes on for thousands of observations. However, our
results indicate that the risk of extremely large sample
sizes in Hajnal’s t test is small, although such events are
possible in principle. Obviously, this is a potential risk
in any open sequential design, SPRT and SBFs alike.
Next to the GS design, there have been suggestions in
the literature to modify sequential procedures such that
they definitely terminate at or before a certain sample
size Nmax (T. W. Anderson, 1960; Armitage, 1957).
However, as the comparison with the GS demonstrated,
these restricted tests are not optimal, that is, they either
are less powerful or come with higher ASN than open
sequential designs (Wetherill, 1975).

Since the SPRT is based on a likelihood ratio, like
the SBFs, it is possible to define an Nmax at which sam-
pling terminates even if no boundary is reached. One

could then report the likelihood ratio at Nmax. However,
such a procedure cannot be used for dichotomous de-
cisions with controlled error probabilities, because er-
ror probabilities would be larger to an unknown degree
than those of the open sequential test. Specifically, the
smaller Nmax at the point of termination, the higher the
extent to which the error probabilities of the truncated
test exceed those of the open test (Wetherill, 1975). In
the same vein, we demonstrated with our simulations
that it would be ill-advised to administer a standard
fixed-sample test after a sequential test failed to find a
decision within the sample size defined by an a priori
power analysis. Hence, it is important to either con-
tinue until a boundary is reached, or terminate without
a definite decision and report the observed likelihood
ratio only.

So far, our discussion focused only on the properties
of sequential designs as efficient and accurate proce-
dures to decide between two statistical hypotheses. As
elucidated at the outset of the discussion, deciding in
favor of a hypothesis is not the only means of statistical
inference. It merely represents the process of accepting
the data as corroboration or refutation of a prediction
of interest. However, the scope of information in the
data goes beyond this binary decision and should be
conveyed in the form of effect-size estimates. Herein,
we did not explicitly address the issue of effect-size es-
timation following the sequential procedure because it
is not unique to the SPRT and has been addressed be-
fore (e.g., Emerson & Fleming, 1990; Fan, DeMets, &
Lan, 2004; Goodman, 2007; Mueller, Montori, Bassler,
Koenig, & Guyatt, 2007; Schönbrodt & Wagenmakers,
2018; Schönbrodt et al., 2017; Stallard, Todd, & White-
head, 2008; Whitehead, 1986; Zhang et al., 2012).

The difficulty of estimation following a sequential
test resulting in acceptance of H1 arises from the fact
that the evidence in the data, which is reflected in the
effect-size estimate, determines the sample size. Strong
evidence for H1 will result in early stopping while
weaker evidence will lead to larger samples. Hence,
the sampling distribution of effect-size estimates will
be distorted considerably, with small samples systemat-
ically overestimating and large samples systematically
underestimating the true effect of interest (Whitehead,
1986; Zhang et al., 2012).

However, a closer look reveals that this apparent
drawback is not as serious as it may seem (Goodman,
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2007; Schönbrodt & Wagenmakers, 2018): The overes-
timation of effect sizes by only considering early ter-
minations at H1 is comparable with the overestima-
tion of effect sizes caused by publication bias (see Ul-
rich, Miller, & Erdfelder, 2018). That is, it is based
on a loss of information rather than the sequential na-
ture of the test procedure itself. When aggregating
across early and late terminations, the bias—although
it remains—is reduced and might be considered negli-
gible (Schönbrodt & Wagenmakers, 2018). Moreover,
the SPRT should be less prone to publication bias than
NHST since it allows for acceptance of both hypothe-
ses. Hence, meta-analytical effect-size estimates taking
into account sample sizes and estimates from both early
and late terminations in favor ofH1 orH0 will basically
be unbiased (see Schönbrodt et al., 2017).

Practical Recommendations

The SPRT we promote in this article can easily be
set up with any statistical software in which the proba-
bility density functions of t or F are provided or can be
implemented. A workable, user-friendly R script to per-
form Hajnal’s t test can be downloaded from the Open
Science Framework (https://osf.io/4zub2/). Herein, we
explicitly addressed the case of testing two-sided hy-
potheses for two independent groups. The script addi-
tionally can be used to perform a sequential t test for
one-sided hypotheses, as well as hypotheses about a
single or two dependent groups. Note, however, that
the expected sample sizes observed in our simulations
only apply to the two-sided two-sample scenario (Haj-
nal’s t test). Smaller ASN can be expected for one-sided
hypotheses and dependent observations.

As noted earlier, there are different ways to spec-
ify a sensible alternative hypothesis. Ideally, one has
a precise prediction implied by a psychological theory.
However, we acknowledge that this is not always the
case. If an effect-size assumption is based on previous
estimates in the literature, it makes sense to take the un-
certainty of these estimates into account and assume a
lower-bound effect size to ensure a sufficiently powered
test (Perugini et al., 2014). Similarly, in total absence of
any information or precise prediction one should spec-
ify a minimum relevant effect dmin to obtain a power of
at least 1 − β for the SPRT to detect an effect δ ≥ dmin.
Note, however, that a conservative effect-size assump-
tion will result in a less efficient test.

To make sure that error rates as specified by α and β
are not exceeded, the data need to be analyzed in the se-
quence in which they have been sampled. This must be
continued until the inequality B < LR < A is violated,
resulting in a decision for one of the two hypotheses of
interest. Hajnal’s t test does not require pairwise sam-
pling in general (H. Lee & Fung, 1980). Participants
can be randomly allocated to a group and the data can
be analyzed after each additional observation irrespec-
tive of the relative group sizes, as long as there are at
least three observations in total and at least one in each
group. However, we strongly recommend a balanced
design as this will increase the test’s efficiency and ro-
bustness in case of heteroscedasticity (see Section Ro-
bustness of SPRT, GS, and SBFs).

In sum, when testing hypotheses with the SPRT one
should adhere to the following simple steps:

(1) Specify the statistical hypotheses (e.g., the to-be-
detected minimal effect size d) and the desired up-
per bounds to the error probabilities of the test (α,
β) before the sampling process. Do not alter these
specifications during the sampling process in re-
sponse to the data observed.

(2) Analyze the data in the sequence in which they have
been sampled. This sequence must not be altered to
obtain a specific result (e.g., by dropping unwanted
observations). Observations may be added and an-
alyzed in groups rather than separately. However,
this may result in a decrease of error probabilities
and, correspondingly, efficiency.

(3) Continue sampling as long as β/(1 − α) < LR <

(1 − β)/α and terminate as soon as this inequality
is violated, resulting in a decision in favor of H0 if
LR ≤ β/(1 − α) orH1 if LR ≥ (1 − β)/α.

Conclusion

Sequential analyses are useful tools to conduct suf-
ficiently powered hypothesis tests with minimal costs
in terms of time and observations needed. Particularly
in light of the ongoing reproducibility crisis, these are
highly desirable features that could benefit both indi-
vidual researchers and the entire field of psychological
science (Lakens, 2014). We showed that the SPRT is
not only easily applied to the common t-test scenario
but also more efficient than other common sequential
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designs. Additionally, the SPRT allows for specifying
reliable upper bounds to decision error probabilities.

We do not promote the SPRT as the single optimal in-
ference procedure for all situations. After all, statistics
is not a single tool that fits all problems but a toolbox
that contains several procedures suited for different sit-
uations. Depending on the aim of the researcher and
the problem at hand, some research questions may bet-
ter be approached using a fixed-sample design, others
by a different sequential design such as SBFs, GS, or
adaptive designs (Lakens & Evers, 2014). With this ar-
ticle, we hope to expand the scope of psychologists’
statistical toolboxes by proposing the SPRT as an effi-
cient alternative to conventional methods of controlling
statistical decision errors.
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Table A2
Expected Sample Sizes of Hajnal’s t Test, Group Sequential Test, and Sequential Bayes Factors Under Conditions
of Non-Normality

δ = 0.2 δ = 0.5 δ = 0.8
Distribution γ s k True state SPRT GS SBF SPRT GS SBF SPRT GS SBF

H0 832 1040 834 138 170 426 56 68 216Normal 0.0 3.0 H1 690 932 770 120 150 134 50 60 58
H0 834 1036 832 140 170 432 58 68 222.9 0.8 6.0 H1 674 914 748 114 144 130 48 58 54
H0 830 1018 822 140 166 434 58 68 218.7 0.9 4.4 H1 626 872 698 108 140 118 46 54 48
H0 794 994 732 138 162 384 58 66 204

Mixture

.5 0.7 3.4 H1 562 832 612 96 134 104 42 52 46
H0 860 1040 886 146 172 454 60 70 232Log-normal 6.2 116.9 H1 642 892 682 94 132 96 36 48 36

Note. Depicted are expected total sample sizes (n1 + n2). The first two rows display results from the first
simulation for normally distributed data, see Table 1, columns 3, 7, and 10. Number of repetitions per parameter
combination: k = 10, 000. γ = mixture probability; s = skewness; k = kurtosis; δ = true and expected effect
size (Cohen’s d in population); S PRT = sequential probability ratio test (Hajnal’s t test) assuming d = δ and
α = β = .05. GS = group sequential design with four tests, assuming d = δ and α = β = .05. S BF = sequential
Bayes factor design with threshold 10, assuming r =

√
2/2, 1,

√
2 when δ = 0.2, 0.5, 0.8, respectively; H0, H1 =

true state underlying data generation.

Table A3
Expected Sample Sizes of Hajnal’s t Test, Group Sequential Test, and Sequential Bayes Factors Under Conditions
of Heteroscedasticity

δ = 0.2 δ = 0.5 δ = 0.8
N1/N2 σ1/σ2 SPRT GS SBF SPRT GS SBF SPRT GS SBF

H0 832 1028 797 137 166 410 56 67 2041/4 H1 683 924 738 116 148 129 49 58 54
H0 834 1024 820 139 166 416 57 67 2121 H1 688 926 770 119 149 133 50 59 57
H0 831 1023 784 137 167 408 56 67 210

1

4 H1 687 928 744 115 149 128 49 58 53
H0 993 935 914 164 152 454 67 62 2321/4 H1 1471 1213 1871 240 195 282 99 77 112
H0 1115 1027 1112 185 166 573 77 68 2921 H1 916 1025 1044 157 166 186 68 65 78
H0 875 1025 507 152 164 286 65 65 164

1/3

4 H1 533 792 321 95 127 81 42 49 39
Note. Depicted are expected total sample sizes (n1 + n2). Number of repetitions per pa-
rameter combination: k = 10, 000. N1/N2 = ratio of sample sizes in group 1 and 2; σ1/σ2
= ratio of standard deviations in population 1 and 2; δ = true and expected effect size (Co-
hen’s d in population); S PRT = sequential probability ratio test (Hajnal’s t test) assuming
d = δ and α = β = .05. GS = group sequential design with four tests, assuming d = δ and
α = β = .05. S BF = sequential Bayes factor design with threshold 10, assuming r =

√
2/2,

1,
√

2 when δ = 0.2, 0.5, 0.8, respectively;H0,H1 = true state underlying data generation.





Waldian t tests for accepting and rejecting the null hypothesis
with controlled error probabilities
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Abstract
Rouder, Speckman, Sun, Morey, and Iverson (Psychonomic Bulletin & Review,
2009) proposed Bayesian t tests for accepting and rejecting the null hypothesis
as an alternative to null-hypothesis significance testing (NHST). We endorse
the necessity of statistical tests that allow for substantiated decisions not
only against but also in favor of the null. However, a major drawback of
Bayesian t tests is that error probabilities of statistical decisions remain
uncontrolled. To remedy this problem, we propose a sequential probability
ratio test that combines the Bayes factor proposed by Rouder et al. (2009)
with decision criteria developed by Abraham Wald in 1947. We demonstrate
by means of simulations that the corresponding sequential procedure, which
we call Waldian t test, reliably controls decision error probabilities, with the
nominal Type-1 and Type-2 error probabilities serving as upper bounds to
the actual error rates. Moreover, Waldian t tests are easily implemented in
practice. Finally, we critically discuss conventional criteria of interpreting
Bayes factors as “moderate” or “strong” evidence for statistical hypotheses
by showing that these criteria may imply error probabilities considerably
larger than those researchers typically aim at.

Keywords: Bayesian t tests, Bayes factors, statistical error probabilities,
sequential tests, sequential probability ratio test

A key component of empirical science is the critical evaluation of observed data with
respect to predictions from theories, that is, hypothesis testing (Morey, Rouder, Verhagen,
& Wagenmakers, 2014). The statistical toolbox contains a vast number of different inference
procedures, albeit not all equally suited for the purpose of hypothesis testing. Depending
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on the researcher’s intentions and the situation at hand, there are certain desiderata for a
good statistical test. Ironically, null-hypothesis significance testing (NHST)—the dominant
test procedure in psychology—hardly satisfies any of them (Wagenmakers, 2007) and has
been criticized for decades as a theoretically unsound and flawed method (e.g., Bakan, 1966;
Bredenkamp, 1972; Cohen, 1994; Gelman, 2016; Gigerenzer, 1993; Gigerenzer, 2004;
Rozeboom, 1960). Yet, its shortcomings have only recently received broader attention and
been acknowledged by the scientific community, as the replication crisis in psychology has
fostered calls for a paradigm shift away from NHST (e.g., Cumming, 2014; Dienes, 2011).

Ten years ago, in what is now one of the most often-cited articles in Psychonomic
Bulletin & Review, Rouder, Speckman, Sun, Morey, and Iverson (2009) proposed Bayesian t
tests as a viable alternative to NHST. Building upon the Bayes factor, the method of choice
for hypothesis testing and model selection in Bayesian statistics (Berger, 2006), Bayesian t
tests quantify the relative evidence in the data for one hypothesis, typically referred to as
null hypothesis (H0) vis-à-vis another, termed alternative hypothesis (H1). While H0 usually
is a simple point hypothesis on a parameter similarly as in NHST (e.g., H0: δ = 0 when
testing whether a difference in means is zero), H1 typically is a distributional hypothesis
that specifies a prior distribution over the range of possible parameter values, for example, a
Cauchy distribution (H1: δ ∼ Cauchy). The Bayes factor quantifies the relative evidence
for the two hypotheses of interest and is defined as the multiplicative updating factor for
transforming prior beliefs for the competing hypotheses to posterior beliefs. Essentially,
the Bayes factor prefers the model that predicted the data best by considering how well
the observed data match with the hypotheses of interest, thus reflecting a central goal of
statistical inference from a Bayesian perspective (Morey, Romeijn, & Rouder, 2016; Rouder,
Morey, Verhagen, Province, & Wagenmakers, 2016).

Bayesian t tests (i.e., applications of the the Bayes factor with suitable H0 and H1)
provide a remedy for several of the critical problems associated with NHST (Wagenmakers,
2007). Most importantly, unlike p values, the Bayes factor can provide evidence in favor
of the null hypothesis (Kass & Raftery, 1995; Rouder et al., 2009). In fact, Bayes factors
satisfy many of the desiderata for a good statistical procedure and thus have attracted
notable attention in the field of psychology. As a rough proxy for the increasing popularity of
Bayesian hypothesis tests, Figure 1 displays the number of peer-reviewed articles registered
on PsycINFO featuring the keyword Bayes factor, published over the last ten years. Both
the number of methodological articles as well as empirical publications using the Bayes
factor have increased substantially.

The growing awareness for the limitations of NHST and the corresponding shift toward
other, better justified statistical methods is a most welcome development. We endorse the
use of inferential procedures such as Bayesian t tests that put emphasis on the explicit
specification of both the null and the alternative hypothesis and allow for substantiated
inference in favor of either hypothesis (unlike NHST). As outlined by Rouder et al. (2009),
this is particularly useful if a strong psychological theory predicts a point null hypothesis,
contrasted against an alternative hypothesis that allows for deviations from the null as
formalized by a suitable prior distribution. However, as detailed below, the default Bayesian
t test does not satisfy all relevant desiderata: As a continuous measure of evidence, the
Bayes factor does not constitute a natural basis for binary statistical decisions—such as
accepting or rejecting the null hypothesis—with controlled error probabilities (Schnuerch &
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Figure 1 . Number of articles containing the keyword Bayes factor registered on PsycINFO
by year of publication. Only peer-reviewed journal articles were considered.

Erdfelder, 2019). This is a notable limitation for applications in which statistical decisions
are required.

As a remedy, we propose a simple extension for Bayesian t tests when the aim is, in
fact, to accept or reject a null hypothesis. This extension is based on Wald’s (1947) sequential
probability ratio test and thus called Waldian t test in what follows. Waldian t tests control
long-term error rates in the classical sense while using exactly the same specifications of H0
and H1 as Bayesian t tests, thus preserving the interpretation of the corresponding Bayes
factor. We argue that Waldian t tests satisfy all relevant desiderata of a hypothesis-testing
procedure when a statistical decision in favor or against a point null hypothesis is required
and, thus, represent a useful extension of existing inferential procedures.

Properties of a Good Statistical Procedure

Researchers and even statisticians hold different opinions as to which properties a
good statistical inference procedure should possess (e.g., Dienes, 2011; Wagenmakers, 2007).
Herein, we focus on three desiderata we deem particularly important (see Berger & Bayarri,
2004; Neyman, 1977; Royall, 1997)

First, a sensible statistical test must be able to convey support for any of the hypotheses
tested, that is, both the null and the alternative hypothesis. It is well known that NHST fails
to satisfy this desideratum (Wagenmakers et al., 2017). In NHST, only the null hypothesis
is specified and inference is based on the p value, denoting the conditional probability of
the observed or more extreme data, given that the null hypothesis holds. The logic of this
test has been termed “Fisher’s disjunction” (Rouder, Morey, Verhagen, et al., 2016): A
small p indicates that either a rare event has been observed or the null hypothesis is wrong.
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Thus, given a small p value, the (unspecified) alternative hypothesis is accepted and we
are inclined to conclude that it is true, rather than the null hypothesis. Not only is this
reasoning flawed—a procedure cannot measure evidence for a hypothesis that has not been
specified—also, the interpretation of large p values as evidence for the null hypothesis is
inadmissable as well. If the null hypothesis is false, the p value indeed converges to zero as
the sample size increases toward infinity (Rouder et al., 2009). However, if the null is true,
the p value does not converge to any fixed value but rather follows a uniform distribution in
the unit interval for all sample sizes. Thus, the p value can only measure evidence against,
but never in favor of the null hypothesis (Rouder et al., 2009; Wagenmakers, 2007).

Bayesian t tests, in contrast, satisfy the requirement of being able to provide support
for any of the two hypotheses. Inference in Bayesian t tests is based on a quantity typically
attributed to the works of Sir Harold Jeffreys (Etz & Wagenmakers, 2017). This quantity
represents the factor by which the relative belief in two competing hypotheses before seeing
the data (i.e., the prior odds) is updated in order to arrive at the relative belief after seeing
the data (i.e., the posterior odds). The multiplicative updating factor is the Bayes factor
(Jeffreys, 1961; Kass & Raftery, 1995):

P (H1|data)
P (H0|data)︸ ︷︷ ︸
Posterior odds

= f(data|H1)
f(data|H0)︸ ︷︷ ︸
Bayes factor

· P (H1)
P (H0)︸ ︷︷ ︸

Prior odds

(1)

The term f(data|Hi) denotes the marginal likelihood of Hi, that is, the probability
(density) of the observed data under hypothesis i (Rouder et al., 2009). This formula follows
directly from Bayes’ rule. It clearly demonstrates that the factor by which subjective belief
is updated is, in fact, the relative accuracy of the two hypotheses in predicting the observed
data (Rouder & Morey, 2017). Since predictive accuracy denotes the relative evidence in the
data for each hypothesis (Morey et al., 2016; Royall, 1997), Bayesian t tests can measure
support for any of the specified hypotheses, vis-à-vis the other.

Second, a good statistical procedure should provide informative results in an efficient
way, that is, with sample sizes as small as possible. In NHST, an informative result typically
means a “significant” result, that is, p ≤ α, where α denotes the significance level defined
a priori (typically, α = .05). So what happens when researchers start with a cost-efficient
sample of, say, 40 participants and are left with p > α? As outlined before, this result
is inconclusive as it neither provides evidence against nor in favor of the null hypothesis.
Can this ambiguity be removed by successively increasing the sample, followed by further
statistical tests? The answer is negative: If the null hypothesis is true, the statistical test
will keep its pre-specified α level only when inspecting the data once. If multiple tests are
conducted repeatedly while stopping only when an “informative result” is obtained (p ≤ α)
and increasing the sample size otherwise, the probability of the p value falling below α at
some point approaches one—even when the null hypothesis is true (Armitage, McPherson,
& Rowe, 1969). This questionable research practice represents a form of p hacking called
data peeking (e.g., Erdfelder & Heck, in press; Simonsohn, Nelson, & Simmons, 2014).

Bayesian t tests, in constrast, satisfy the efficiency requirement. According to the
likelihood principle (Berger & Wolpert, 1988), the evidential interpretation of a ratio of
likelihoods only depends on the data observed, irrespective of how the data came about (e.g.,
which stopping rule was used for sample-size determination). As a result, Bayes factors can
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be computed repeatedly during the sampling process without altering their interpretation,
allowing for optionally stopping or increasing the sample size at any point (Edwards,
Lindman, & Savage, 1963; Lindley, 1957; Rouder, 2014). The flexibility of sequential testing
makes Bayesian t tests more efficient than their NHST counterpart: Whenever the available
evidence appears ambiguous, one can add more observations until sufficient evidence has
been collected. In the same vein, sampling can be terminated whenever the evidence is
deemed sufficient (Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017).

To illustrate the advantages of optional stopping, consider the example depicted in
Figure 2. It displays the development of a Bayes factor with standard Cauchy prior for a
two-sample t test, denoting how well the data were predicted by the alternative hypothesis
relative to the null hypothesis (BF10). The Bayes factor was computed using the R package
BayesFactor (Morey & Rouder, 2015), and the underlying data were simulated from two
normal distributions with a standardized mean difference of δ = 0.50 (i.e., the population
value of Cohen’s d). Assume two experimenters, A and B, decided to terminate sampling
after 70 observations and analyze the data using an NHST with α = .05 (Experimenter A)
and a standard Bayesian t test (Experimenter B). As Figure 2 shows, Experimenter A finds
the data to be inconclusive, p > α, indicating that the null cannot be rejected. If A had
decided to sample 200 observations, however, the result would have been different. As p < α,
she would have rejected the null hypothesis. Because she decided a priori to inspect the data
after 70 observations, however, she cannot continue with subsequent data collection and
testing, and is thus left with an inconclusive result. After 70 observations, the conclusion of
Experimenter B agrees with that of Experimenter A: The resulting Bayes factor BF10 =
1.08 suggests that the evidence in the data favors none of the hypotheses over the other.
However, unlike Experimenter A, Experimenter B can just continue the experiment until
the data show more unequivocal evidence in favor of one of the hypotheses (e.g., after 164
observations, when BF10 = 10.97, or after 200 observations, when BF10 = 15.46).

As for the third desideratum, a good statistical procedure should have good long-run
properties (Sanborn & Hills, 2014). If applied correctly, classical t tests control the long-run
frequency of incorrect rejections of the null hypothesis. Without consideration of a specific
alternative, however, there is no means to control the probability of incorrectly accepting
the null if the alternative is true. In fact, the normative standard of classical hypothesis
testing, that is, the procedure for statistical decision making introduced by Neyman and
Pearson (1933), allows for control of both the Type-1 and Type-2 error probabilities by
means of an a priori power analysis (Cohen, 1988). However, NHST as the de facto standard
in psychological research ignores the alternative and, thus, the issue of statistical power
(Gigerenzer, 1993, 2004).

In the standard Bayesian t tests, there is no means to control long-run frequencies of
incorrect decisions, either. Instead, the Bayes factor is defined as a continuous measure of
evidence for informing one’s subjective beliefs about the hypotheses. Accordingly, thresholds
for the interpretation of Bayes factors (e.g., BF > 3 or BF > 10 for “weak” or “strong”
evidence, respectively) are merely based on conventions (e.g., Jeffreys, 1961; Wagenmakers
et al., 2018). There are currently no normative, theoretically derived thresholds for the
Bayes factor which, if exceeded, mandate a decision to reject or accept a hypothesis. It has
frequently been argued that communicating evidence and posterior probabilities (or odds)
on a continuous scale, rather than making decisions, truly reflects the aim of statistical
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Figure 2 . Development of the Bayes factor (BF10) with standard Cauchy prior for a two-
sample t test. True effect size δ = 0.50. Dashed lines represent inspections after 70 and 200
observations, respectively.

inference (e.g., Dienes, 2011; Edwards et al., 1963; Morey et al., 2016; Rouder, Morey,
& Wagenmakers, 2016; Rozeboom, 1960). In practice, however, researchers might well be
inclined to dichotomize the continuous Bayes factor into regions of acceptance or rejection
(Jeon & De Boeck, 2017). In fact, as we will outline below, many situations compel researchers
to make decisions. In these situations, the long-run rates of incorrect decisions of a statistical
procedure have to be considered (Sanborn & Hills, 2014). Thus, for these situations standard
Bayesian t tests fail to satisfy a relevant desideratum.

Subjective Belief versus Error Control

From a strict Bayesian perspective, probability denotes subjective belief and Bayesian
t tests represent a principled way to update that belief in light of the data (Morey et al.,
2016). From this point of view, statistical inference should be about inductive probabilistic
statements and one might consider long-run error rates irrelevant, since they refer to
conditional probabilities assuming that one of the hypotheses is true (e.g., Wagenmakers &
Gronau, 2018). Rouder (2014) states that “the key to understanding Bayesian analysis is
to focus on the degree of belief for considered models, which need not and should not be
calibrated relative to some hypothetical truth” (p. 308).

Unless scientists actually adhere to this principle, however, and completely refrain
from binary decisions, the properties of the Bayesian inference procedure in terms of decision
accuracy are highly relevant but unknown (Jeon & De Boeck, 2017). Heuristic taxonomies
for interpreting the strength of evidence conveyed by the Bayes factor (Jeffreys, 1961; Lee &
Wagenmakers, 2013), for example, invite practitioners to translate the Bayes factor into a
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discrete decision. If a Bayes factor greater 10 indicates “strong evidence” according to a
widely used convention (Jeffreys, 1961), doesn’t this imply that one can safely accept the
respective hypothesis upon observing a Bayes factor larger than 10? However, how “safe” in
terms of error rates would such a decision be? Since many researchers make use of these
conventional taxonomies in applied Bayesian statistics, we suspect that most scientists aim
at categorizing empirical evidence as either supporting or contradicting specific hypotheses.

In fact, in many contexts of research, both basic and applied, statistical inference
necessitates a binary decision, namely, to accept or reject a hypothesis in the face of empirical
data. Whenever specific actions are taken depending on the outcome of a statistical test, the
inference becomes a decision between discrete options. Think of a clinical psychologist, for
example, who has to decide whether or not to implement a new therapy. The decision will
be made depending on whether or not the hypothesis is accepted that the new therapy is
better than the old one. In the same vein, experimental psychologists might conduct a pilot
study to test a specific hypothesis and decide to continue this line of research depending
on whether or not the pilot study leads to (preliminary) acceptance of the hypothesis. In
all of these cases, discrete decisions based on continuous statistical evidence cannot be
avoided, which in turn implies that researchers should both quantify and minimize the error
probabilities in these decisions.

Misusing Bayesian t tests as a decision-making tool bears the undetermined risk of
producing high rates of false-positive results or underpowered studies —much like what we
have witnessed in the context of NHST (Sanborn & Hills, 2014). Therefore, we emphasize
the importance of considering frequentist concepts such as error rates and statistical power
also in the context of Bayesian hypothesis testing.

This plea is not particularly new. A prominent Bayesian, James Berger, has long
argued that “statisticians should readily use both Bayesian and frequentist ideas” (Berger &
Bayarri, 2004, p.58). To unify the different schools of thought, Berger, Brown, and Wolpert
(1994) introduced a strategy in which error rates from a frequentist perspective are equivalent
to Bayesian posterior error probabilities (see also Bayarri, Benjamin, Berger, & Sellke, 2016;
Berger, Boukai, & Wang, 1997; Berger, Boukai, & Wang, 1999). Their focus, however, was
on post-experimental error probabilities conditioned on the observed data, which is referred
to as conditional frequentist perspective (Kiefer, 1977). The focus of our present article, in
contrast, is on promoting a specific design for Bayesian t tests such that the procedure does
not exceed some predefined error probabilities. This is termed unconditional frequentist
perspective, which corresponds to the Neyman-Pearson-Wald notion of error rates as stable
properties of the test procedure (Royall, 1997).

Proper error control in this sense is about designing the test procedure such that one
can control the probability of incorrect decisions, conditional on the hyptheses tested being
true. Building on previous work by Wald (1947) and Berger et al. (1999), we argue that
there is a simple means to control error probabilities of statistical decisions in Bayesian t
tests: the sequential probability ratio test (SPRT). The SPRT is a sequential test procedure
based on a likelihood ratio for which termination criteria are computed by simple formulae
that satisfy prespecified error probabilities (α, β). We will show that this test is easily
combined with a Bayesian t test for any proper prior distribution, and that it allows for
control of decision error probabilities while maintaining the Bayesian specification of the
models and priors for H0 and H1 as well as the interpretation of the Bayes factor. In that,
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we believe that the procedure we suggest unifies beneficial properties from both worlds.

Error Control for Bayesian t Tests

Bayesian t Tests

Defined as the ratio of posterior odds to prior odds, the Bayes factor in the Bayesian t
tests captures all the information in the data about the hypotheses tested (see Equation
1). Let x = (x1, ..., xn) denote a sample of n observations assumed to be distributed as
X ∼ f(x|θ), where θ is the parameter vector defining the probability density function f(.).
For hypothesis Hi, i ∈ {0, 1}, the marginal likelihood Mi of the observed data is given by
the integral

Mi =
∫

θ∈Θi

f(x|θ,Hi) π(θ|Hi) dθ, (2)

where Θi is the parameter space defined by hypothesis i and π(.) denotes the prior distribution
on the parameters θ over this space. As Equation 2 shows, Mi denotes a weighted average
likelihood of the observed data under hypothesis i. The Bayes factor for the test of an
alternative H1 against a null hypothesis H0 is simply the ratio of marginal likelihoods:

BF10 = M1
M0

. (3)

Being a likelihood ratio, the Bayes factor denotes the evidence provided by the data x
for one statistical model relative to the other (Kass & Raftery, 1995). In case of Bayesian t
tests, the Bayes factor can be interpreted as a test between two different prior distributions
on the parameters,

Hi : θ ∼ π(θ|Hi). (4)

This highlights the relevance of the choice of prior distributions when computing and
interpreting a Bayes factor. Essentially, one should carefully define these distributions for
each hypothesis according to prior convictions or expectations one might hold about the
unknown parameters (Rouder et al., 2009).

When defining a prior distribution for the t test, we are faced with the problem that we
want to test hypotheses about population means or mean differences of normally distributed
random variables without knowing the scale of the dependent variable (i.e., the population
variance σ2). Consider the common two-sample scenario: Let X and Y denote observations
from two groups, modeled as

X ∼ N (µ+ δσ

2 , σ2) (5)

and
Y ∼ N (µ− δσ

2 , σ2), (6)

with µ denoting the grand mean and δ the standardized effect size (i.e., Cohen’s d; Cohen,
1988). The prior distributions on the population parameters δ, µ, and σ2 suggested by
Rouder et al. (2009) for Bayesian t tests are commonly referred to as JZS prior, because
they are based on prior specifications by Jeffreys (1961) and Zellner and Siow (1980). The
priors on µ and σ2 are non-informative and identical under both hypotheses H0 and H1.
Thus, the effect of these priors on the resulting Bayes factor is negligible, implying that the
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statistical hypotheses actually tested by a Bayesian t test are fully defined by the priors on
δ (Rouder et al., 2009).

Under the null hypothesis, the prior on δ is a point mass corresponding to the classical
null hypothesis in NHST that the group means are identical, H0: δ = 0. Under the
alternative, in contrast, the prior is a Cauchy distribution, that is, H1: δ ∼ Cauchy. The
Cauchy is a heavy-tailed distribution defined over the entire real line, centered at zero. Its
shape is defined by a scale parameter r, such that 50% of its weight are assigned to values
in the interval [−r, r]. Thus, if a smaller value of the scale parameter r is chosen, the prior
distribution assigns more probability mass to smaller effect sizes around zero (see Figure 3).
For r = 1, the Cauchy is a t distribution with one degree of freedom.
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Figure 3 . Shape of the Cauchy prior distribution for the standardized effect size δ (i.e., the
population value of Cohen’s d) in Bayesian t tests for different specifications of the scale
parameter r.

The justification for the choice of the Cauchy distribution as a prior under the
alternative hypothesis is primarily based on its favorable mathematical properties (for
details, see Ly, Verhagen, & Wagenmakers, 2016). However, it also has a reasonable
psychological interpretation and practical appeal: Given a theoretically motivated null
hypothesis that two group means are expected to be identical, there might be no reason to
assume a certain fixed effect size under the alternative. For such a case, the Cauchy might
be interpreted as a representation of the distribution of possible non-zero effect sizes in the
field when the predicted point hypothesis does not hold, specifically, when the true effect is
randomly distributed around the effect predicted by the null. The Cauchy puts emphasis on
smaller effect sizes around the null. At the same time, there is also substantial weight on
large effect sizes, which are notably less frequent, albeit possible.

To summarize, Bayesian t tests are a theoretically sound method to quantify statistical
evidence for or against a null vis-à-vis an alternative hypothesis in the common t-test
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situation. If the aim is to communicate this evidence on a continuous (Bayes factor) scale or
employ it to update prior beliefs about the plausibility of the specified statistical models,
there is no need for an extension of the method. However, when used as a decision-making
tool for accepting or rejecting the null hypothesis, it is necessary to consider long-run
properties. In the following section, we outline a simple statistical approach to control error
probabilities in Bayesian t tests.

Waldian t Tests

Statistical procedures that are concerned with error probability control, such as
Neyman-Pearson tests, are typically bound to the specification of so-called simple hypotheses.
A hypothesis is simple if all parameter values are known or specified by the hypothesis. If a
hypothesis is not simple, it is composite (Wald, 1947).

In default Bayesian t tests, a simple null hypothesis on the parameter of interest
(δ = 0) is tested against a composite alternative (δ ∼ Cauchy). The problem is to define a
statistical procedure for the Bayesian test such that the following requirements are satisfied:

P (accept Hi|Hi) =
{

1− α (i = 0)
1− β (i = 1)

, (7)

where P (accept Hi|Hi) denotes the conditional probability to accept hypothesis i when it is
true, thus defining α and β as the Type-1 and Type-2 error probabilities, respectively. A
solution for this problem has been outlined by Wald (1947) and discussed by Berger et al.
(1999).

For a simple null hypothesis defined by a point in the parameter space (i.e., δ = 0
in the t test), the probability of a Type-1 error has a fixed value α for any given test
procedure. In contrast, for a composite alternative hypothesis H1, the probability of a
Type-2 error depends on the specific parameter value δ under the alternative hypothesis
and is a single-valued function of δ defined over the parameter space ∆i under hypothesis i:

P (reject H1|δ) = β(δ), ∀δ ∈ ∆1. (8)

To take into account that not all values of δ are equally plausible, we can specify a non-
negative weight function, ω1(δ), that integrates to one,

∫

δ∈∆1
ω1(δ) dδ = 1. (9)

Then, error control satisfying the requirements given in Equation 7 is achieved if we can
define a test procedure such that the weighted average of β(δ) is equal to the desired Type-2
error probability,

P (reject H1|H1) =
∫

δ∈∆1
β(δ) ω1(δ) d(δ) = β. (10)

We further note that, by marginalizing over the free parameter δ weighted by ω1(δ) in
Equation 10, the test of the composite hypothesis H1 on the distribution of the unknown
parameter δ is in fact equivalent to the test of a simple hypothesis H∗1 on the probability
distribution of the data,

H∗1 : x ∼ f1(x) =
∫

δ∈∆1
f(x|δ) ω1(δ) d(δ), (11)
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thus reducing the problem to a test of a simple null hypothesis against a simple alternative
(Berger et al., 1997, 1999).

The Cauchy prior in the Bayesian t tests is a proper weight function as defined in
Equation 9. Thus, the corresponding Bayes factor can be seen as a likelihood ratio for two
simple hypotheses (see Equation 11). Consequently, a likelihood-ratio test procedure for
the Bayes factor with Type-1 and Type-2 error probabilities α and β would satisfy the
requirements for controlling error rates as specified in Equation 7.

Such a test procedure is given by the sequential probability ratio test (Wald, 1945,
1947). The SPRT is a sequential procedure for a test between two simple hypotheses. For
this scenario, it has been proven to be the most efficient test. In other words, for given error
probabilities α and β there is no alternative test that requires fewer observations on average
(Wald & Wolfowitz, 1948; Wetherill, 1975).

The general procedure of the SPRT requires computation of the likelihood ratio LR
for the observed data under the two hypotheses after every single observation, followed by a
decision in line with the following three decision rules:

1) Accept H1 and reject H0 when LR ≥ A;
2) Accept H0 and reject H1 when LR ≤ B;
3) Sample a new independent observation when B < LR < A.

(12)

By Rule 1, any observed sample that leads to the acceptance of H1 is at least A times
as likely under the alternative as under the null hypothesis. This implies, in turn, that
the long-term probability of accepting H1 with this procedure is at least A times larger
if H1 is in fact true (= correct acceptance) than if H0 is true (= Type-1 error), that is,
1− β ≥ Aα. Following the same reasoning for the lower threshold specified in Rule 2, we see
that β ≤ B(1− α). Rewriting these inequalities and replacing them by equalities provides
definitions for the threshold values such that the error probability requirements specified in
Equation 7 will be satisfied approximately (Wald, 1947):

A = 1− β
α

(13)

and
B = β

1− α. (14)

Note that replacing the inequalities by equalities merely renders the procedure more conser-
vative, that is, the nominal error probabilities α and β will be upper bounds to the actual
error probabilities achieved by inserting Equations 13 and 14 in the sequential decision
procedure (Equation 12).

As outlined above, Bayesian t tests can be conceptualized as a test of two simple
hypotheses. Thus, the general logic of the SPRT applies. To control decision error probabili-
ties, the Bayes factor can be computed sequentially until it reaches (or crosses) the upper
or lower threshold A or B, respectively. As shown above, the long-term error rates of this
procedure will approximate (but never exceed) α and β if researchers strictly follow the
procedure defined in Equation 12 in combination with threshold values defined by Equations
13 and 14 (Wald, 1947).
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This sequential design for Bayesian t tests, which we call Waldian t tests, has fully
Bayesian and frequentist justification (Berger et al., 1999): Since the interpretation of the
Bayes factor is unaffected by optional stopping (Rouder, 2014; but see Sanborn et al., 2014;
Yu, Sprenger, Thomas, & Dougherty, 2014), the specific value of the Bayes factor obtained
after reaching the upper or lower threshold A or B, respectively, in a Waldian t test preserves
its fully Bayesian interpretation. At the same time, because threshold values based on α
and β are defined for the likelihood ratio, it controls the probabilities of decision errors
conditional on the specified hypotheses. Thereby, Waldian t tests combine the beneficial
properties of Bayesian and classical Neyman-Pearson-Wald hypothesis testing, thus satisfying
the three desiderata discussed above.

Simulation of Waldian t Tests

The properties of the SPRT have been derived and proven analytically (Wald, 1945,
1947; Wald & Wolfowitz, 1948). As outlined above, however, the nominal error probabilities
used to define the decision thresholds A and B are upper bounds to the actual error rates: At
the time of termination, the likelihood ratio (or, in case of a Waldian t test, the Bayes factor)
will almost always exceed rather than be equal to one of the boundary values (so-called
overshoot). When there is substantive overshoot, the resulting error rates of the sequential
test procedure will undercut the nominal values (Berger et al., 1999; Wald, 1947). To examine
the extent to which empirical error rates deviate from the nominal rates, we simulated the
proposed Waldian t tests. Simulations have “a tangible, experimental feel” and are thus
well suited to demonstrate the properties of an analytically justified approximate method to
psychologists (Rouder, 2014, p. 303). All simulations and analysis were performed in R (R
Core Team, 2019). Reproducible scripts and all simulated data are available at the Open
Science Framework (https://osf.io/z5vsy/?view_only=63252a8bd2374b8297bf8bb9fdd124
42).

Design

We simulated the Waldian t tests based on default Bayesian t tests for two independent
samples as proposed by Rouder et al. (2009). We chose the default test for the sake of
demonstration. Note, however, that Waldian t tests provide a general framework that
applies to any choice of proper priors, not just those proposed by Rouder et al. (2009).
The statistical hypotheses tested are H0: δ = 0 and H1: δ ∼ Cauchy(r). Under H0, we
simulated random data from two normal distributions with means µ1 = µ2 = 0 and common
standard deviation σ = 1. Under H1, the true effect size δ was randomly drawn from the
specified Cauchy distribution with the scale parameter r to generate data from two normal
distributions with group means µ1 = 0 and µ2 = δ.

Starting at an initial sample size of n = 2 per group, the Bayes factor was computed
using the R package BayesFactor (Morey & Rouder, 2015). The sample was then increased
stepwise by +1 in each group until the Bayes factor BF10 reached one of the boundary
values A = (1− β)/α or B = β/(1− α). As soon as a threshold was reached, sampling was
terminated and the respective hypothesis was accepted.

We systematically varied the scale parameter of the Cauchy distribution according
to the default values provided in the BayesFactor package, that is, r ∈ {

√
2/2; 1;

√
2}.
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Additionally, different combinations of nominal error probabilities of the Waldian t tests were
simulated with α ∈ {.01; .05; .10} and β ∈ {.05; .10; .20}. For each parameter combination,
20, 000 replications were simulated.

Results

The simulation results are depicted in Figure 4. It displays the empirical error rates
(i.e., the proportion of simulations with decisions in favor of the wrong statistical model) with
95% Clopper-Pearson exact confidence intervals (Clopper & Pearson, 1934) as a function
of the true data-generating model H0 (left panel A) or H1 (right panel B), the nominal
error rates α and β, respectively, and the scale parameter of the Cauchy prior under the
alternative hypothesis.
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Figure 4 . Results of the two-sample Waldian t-test simulation. Empirical error rates are
depicted as a function of the nominal error rates and the scale parameter r of the Cauchy
prior distribution under the alternative hypothesis. Number of replications per parameter
combination: k = 20, 000. Error bars represent 95% Clopper-Pearson exact confidence
intervals (Clopper & Pearson, 1934). A The data-generating model corresponds to the null
hypothesis: δ = 0. B The data-generating model corresponds to the alternative hypothesis:
δ ∼ Cauchy(r).

If the null hypothesis is true (panel A), Waldian t tests exert strict control of the
probability of a Type-1 error. The observed error rates approximate the nominal error
probabilities and never exceed them. In fact, most of the observed rates are significantly
lower than the nominal rates, demonstrating the notable influence of overshooting. The
deviation, however, is only small. On average, the empirical rates are 34% smaller than the
nominal error rates.

If the alternative hypothesis represents the data-generating model (panel B), empirical
rates of Type-2 errors almost perfectly match the nominal error rates. Thus, the statistical
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power of the test (i.e., the complement of the Type-2 error probability, 1 − β) is not
negatively affected by its conservative behavior. To summarize, the simulation demonstrates
the excellent performance of Waldian t tests in controlling error probabilities of statistical
decisions with Bayesian t tests, as derived analytically by Wald (1947).

Reinterpretation of Conventional Criteria

A common way of communicating the evidential strength of a Bayes factor is due
to Jeffreys (1961), see also, Lee and Wagenmakers (2013). Often, the continuous scale
is divided into discrete categories to provide a heuristic guideline for summarizing and
interpreting Bayes factors. According to this taxonomy, a Bayes factor greater than 3 (or,
correspondingly, BF ≤ 1/3) denotes moderate evidence, BF ≥ 10 (BF ≤ 1/10) represents
strong evidence, and BF ≥ 30 (BF ≤ 1/30) can be interpreted as very strong evidence (see
Table 1).

This scheme provides an approximate, often-used heuristic to communicate a continu-
ous measure of evidence in categorical terms. However, the specific threshold values of the
categories might serve as anchors for researchers aiming at sufficient evidence for a decision
about the hypotheses. For example, if one decided to reject or accept the null hypothesis as
soon as they observed BF10 ≥ 10 or BF01 ≥ 10, respectively (e.g., Schönbrodt et al., 2017),
the verbal label associated with this boundary value might convey misleading impressions as
to the quality of this sequential test procedure. For an informed judgment, the long-run
properties must be taken into account.

To assess the long-run error rates of a sequential Bayesian t test when adopting the
category threshold values suggested by Jeffreys (1961) as decision boundaries, we simply
invert the formulae derived by Wald (1947) to find the error probabilities that correspond
to these threshold values. Let BFu denote the upper threshold (leading to acceptance of
H1) and BFl the lower threshold (leading to acceptance of H0) of the sequential procedure.
According to Wald’s formulae, BFu = (1− β)/α and BFl = β/(1− α). Solving these two
equations for the two unknown error probabilities α∗ and β∗, we obtain

α∗ = BFl − 1
BFl −BFu

(15)

and
β∗ = BFu ·BFl −BFl

BFu −BFl
. (16)

Typically, one would opt for symmetric thresholds in Bayesian statistics, that is,
BFl = 1/BFu, such that the resulting test procedure has symmetric error probabilities. In
this case, the formulae presented above reduce to

α∗ = β∗ = 1
BFu + 1 . (17)

According to Equation 17, a sequential Bayesian t test with symmetric thresholds
of 10 and 1/10 is associated with error rates α∗ = β∗ = .09. These Type-1 and Type-2
error rates might seem surprisingly high when considering that the corresponding verbal
label implies “strong evidence” and that statistical decisions based on a Bayes factor of 10
have typically been compared to NHST decisions based on α = .05 (e.g., Brysbaert, 2019).
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Clearly, the error rates associated with a sequential Bayesian t test in combination with
Bayes factor thresholds of 10 and 1/10, respectively, are considerably larger than those
researchers typically aim at. Less surprisingly, employing a threshold denoting “moderate
evidence” (BFu = 3) implies even larger error rates: α∗ = β∗ = .25 (cf. Schönbrodt et al.,
2017). This endorses Schönbrodt et al.’s (2017, p. 332) recommendation to avoid such
low threshold values because of their high risk of resulting in incorrect decisions. Table 1
summarizes error rates implied by certain thresholds, as well as threshold values required to
satisfy certain error rates.

Table 1
Association of threshold values and error rates for sequential Bayesian t tests

H1 Threshold H0 Threshold
BF10 Interpretation of Evidence 1/BF10 Interpretation of Evidence α∗ β∗

3.0 moderate 3.00 moderate 0.25 0.25
8.0 moderate 4.50 moderate 0.10 0.20
9.0 moderate 9.00 moderate 0.10 0.10
9.5 moderate 18.00 strong 0.10 0.05
10.0 strong 10.00 strong 0.09 0.09
16.0 strong 4.75 moderate 0.05 0.20
18.0 strong 9.50 moderate 0.05 0.10
19.0 strong 19.00 strong 0.05 0.05
30.0 very strong 30.00 very strong 0.03 0.03
80.0 very strong 4.95 moderate 0.01 0.20
90.0 very strong 9.90 moderate 0.01 0.10
95.0 very strong 19.80 strong 0.01 0.05

Note. BF10 = Bayes factor denoting the ratio of the marginal likelihood of H1 to the
marginal likelihood of H0. Note that 1/BF10 = BF01. α∗, β∗ = Type-1 and Type-2 error
rates associated with threshold values, respectively. Interpretation of thresholds according
to Jeffreys (1961). Note that error rates apply to the sequential procedure and do not
consider effects of overshoot.

It is important to note that Equations 15 and 16 define approximate, unconditional
error rates of the sequential procedure associated with certain thresholds BFu and BFl, not
exact error rates conditional on a particular observed result BFx > BFu or BFx < BFl. Like
the formulae defining threshold values for the SPRT (Wald, 1947), the formulae presented
herein ignore potential overshoot at the point of termination (Berger et al., 1999). Thus, α∗
and β∗ denote upper bounds to the exact error rates. However, our simulations showed that
the overshoot is not crucial and that empirical error rates of the procedure approximate the
nominal rates quite well. Consequently, Equations 15 and 16 are useful tools to evaluate
the long-run properties of a sequential Bayesian t test with threshold values BFu and BFl
chosen in accordance with some heuristic taxonomy.
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Discussion

Bayesian statistics have become considerably popular among psychologists, fostered by
the replication crisis, current advances in computational methods, and persistent critique of
classical approaches to statistical inference (Etz & Vandekerckhove, 2018; Jeon & De Boeck,
2017). A particularly influential milestone in this development was the article on Bayesian
t tests as an alternative to NHST by Rouder et al. (2009). These authors developed and
proposed Bayes factors for common t-test scenarios. Bayesian t tests possess a number of
desirable properties and satisfy important desiderata for good statistical procedures. Most
importantly, unlike NHST, they allow to measure evidence in favor of the null hypothesis.

Notwithstanding these favorable features, Bayesian t tests have a severe limitation:
As a continuous measure of evidence, the Bayes factor does not provide a natural basis
for binary decisions. In many research contexts, however, such decisions are required, and
specific actions are taken depending on whether the null is accepted or rejected. Assuming
that we are testing theories about the true state of the world, a single statistical decision can
always be right or wrong. There is no way to tell with certainty whether a single decision
is wrong. Nevertheless, from the perspective of a cumulative science it is vital that the
proportion of decision errors in the long run does not exceed an acceptable limit. This is the
very intention of frequentist theories of statistical inference such as the Neyman-Pearson or
Wald’s theory: to design statistical procedures such that the probabilities of decision errors,
conditional on the hypotheses tested being true, can be controlled explicitly (Neyman, 1977;
Neyman & Pearson, 1933; Wald, 1947).

There have been previous efforts in the literature to control error probabilities for
statistical decisions in the context of Bayesian hypothesis tests (e.g., Berger et al., 1994;
Berger et al., 1997; Berger et al., 1999; Gu, Hoijtink, & Mulder, 2016; Schönbrodt &
Wagenmakers, 2018). In this article, we presented a sequential extension of Bayesian t tests
based on Wald’s sequential probability ratio test. These Waldian t tests (a) are based on
an analytically derived framework of error probability control, (b) are easily applied to any
Bayesian t test based on proper priors, and (c) allow for efficient hypothesis testing with
strict control of error rates. Importantly, Waldian t tests also maintain a fully Bayesian
justification. The interpretation of the numerical value of the Bayes factor obtained after
reaching one of the a priori defined thresholds is not affected by the sequential application.
Therefore, we believe that Waldian t tests remedy a notable limitation of Bayesian t tests
by combining their beneficial properties with those of classical statistical procedures.

Limitations

Waldian t tests are based on the assumption that sampling is continued until a decision
threshold is reached, upon which the procedure is terminated and one of the two hypotheses
is accepted. The assumption that sampling can be continued indefinitely is vital in any
sequential procedure designed for controlling error probabilities. Although such sequential
procedures are much more efficient on average than procedures based on fixed samples,
there is no guarantee that the test will terminate at or before reaching a certain sample
size (Schnuerch & Erdfelder, 2019; but see Armitage, 1957). Concluding from simulations,
the risk is small that the required sample size becomes unfeasibly large. Nevertheless, this
feature of Waldian t tests may limit their application to scenarios in which the specification
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of a definite upper bound to the sample size beforehand is not pivotal.
If a definite upper bound to the sample size is mandatory, a standard Neyman-Pearson

test based on a fixed sample size derived from an a priori power analysis (e.g., Cohen, 1988) or
a closed sequential test that maintains a pre-specified maximum sample size (e.g., Proschan,
Lan, & Wittes, 2006) might be appropriate alternatives. However, these approaches require
that both the null and the alternative hypothesis can be specified as simple point hypotheses.
If researchers feel more comfortable with a composite alternative hypothesis as employed
in Bayesian and Waldian t tests, a simulation-based solution might be more appropriate
to determine the necessary (fixed) sample size and critical value for a Bayesian t test such
that the procedure satisfies prespecified error rates. Such an approach, referred to as Bayes
factor design analysis (BFDA), has been developed and introduced by Schönbrodt and
Wagenmakers (2018). Although BFDA is rooted in the Bayesian framework and focuses on
strength of evidence rather than error rates, it can be used to assess any kind of long-run
property of the test procedure by means of simulation, assuming a certain true state of
the world. Therefore, if an open sequential procedure is not an option, BFDA can be
used to design Bayesian t tests such that they allow for error control (see Stefan, Gronau,
Schönbrodt, & Wagenmakers, 2019, for a tutorial on BFDA).

Furthermore, it is important to keep in mind that the error probabilities in a Waldian
t test denote the weighted average probability of decision errors across all possible parameter
values defined by the alternative hypothesis. This is in line with the requirements specified in
Equation 7 and makes sense, for example, if we assume the composite hypothesis to represent
a range of possible, differently weighted effect sizes (e.g., in case of a theoretically motivated
null hypothesis). However, the focus on weighted average probabilities also implies that the
specified error probability for the alternative hypothesis is not constant for all parameter
values δ ∈ ∆1. If this is required, one would need to find a suitable weight function (i.e.,
prior distribution), for which the resulting test would satisfy this requirement. However, the
construction of such a weight function on δ can be complex (Wald, 1947) and, with respect
to the Bayes factor, would possibly result in a prior distribution without a substantive
interpretation (Gu et al., 2016).

A different approach would be to define a minimum value δmin ∈ ∆1 for which the
requirement can be imposed that the sequential test has error probability less or equal to
β for any δ greater than or equal to δmin. In this case, an SPRT t test such as Hajnal’s t
test (Schnuerch & Erdfelder, 2019) or a Neyman-Pearson t test based on a point alternative
hypothesis H1: δ = δmin will satisfy the error requirement, that is, P (reject H1|δ) ≤ β,
∀δ ∈ {∆1|δ ≥ δmin}.

This characteristic of both Hajnal’s t test and Neyman-Pearson t tests is highly
desirable because it enables researchers to test a composite hypothesis (i.e., δ ≥ δmin) with
a specific upper-bound error probability. However, the appealing evidential interpretation
of the specified likelihood ratio (as well as the Bayes factor) is no longer valid in this case.
The ratio always denotes the relative evidence for the specified models. If the alternative
model is based on δmin, the likelihood ratio denotes the relative evidence for the hypothesis
that δ = δmin, not that δ ≥ δmin. In other words, the likelihood ratio (as well as the Bayes
factor) can be interpreted as relative evidence only for the specified statistical models, but
no longer for the underlying psychological hypotheses.
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Conclusion

From a Bayesian perspective, prior distributions represent uncertainty or subjective
belief about more or less plausible values of the parameters. The Bayes factor, in turn,
denotes how the data inform and change subjective belief about different hypotheses. In
the classical frequentist framework, in contrast, a prior distribution has its counterpart in a
random effect, that is, variation in true parameter values or effect sizes across experiments.
Such an assumption is reasonable, for example, when a theoretically motivated simple null
hypothesis (δ = 0) is tested against a composite, not further specified alternative hypothesis
(δ 6= 0). With Waldian t tests, these hypotheses can be tested with reliable error probability
control in a classical (Neyman-Pearson-Wald) sense.

It is not our intention to suggest that psychologists should abandon hypothesis tests
based on simple hypotheses. Eventually, the choice of a statistical model should be determined
by the psychological hypotheses and the aim of the statistical test. If the theory at test
predicts a specific (minimum) effect size or if decision error probability control is required
for effect sizes equal to or more extreme than some minimum relevant effect size (e.g., in
various types of psychological intervention research), this warrants the specification of point
hypotheses and the use of Neyman-Pearson t tests or (notably more efficient) sequential
tests such as Hajnal’s t test (Schnuerch & Erdfelder, 2019).

If, however, the psychological theory predicts an invariance, which is typically repre-
sented by a point null hypothesis (δ = 0), any deviation from this point (i.e., any δ 6= 0)
would contradict the theory (Rouder et al., 2009). In this case, the Cauchy prior distribution
has a reasonable substantive interpretation as a weight function for plausible, non-zero effect
sizes under the alternative hypothesis. Thus, for the case of a substantively motivated null
hypothesis tested against an unrestricted and not further specified alternative hypothesis,
Bayesian t tests with default priors as suggested by Rouder et al. (2009) might be more
appropriate than tests based on a point alternative hypothesis. When used as a means to
accept or reject the null hypothesis with controlled error probabilities, however, Waldian t
tests are a useful and easy-to-apply extension of Bayesian t tests.

Statistical inference aiming at error probability control (i.e., classical statistics) on the
one hand and updating of subjective beliefs (i.e., Bayesian statistics) on the other hand are
rooted in two fundamentally different approaches to probability and statistics. They might
often be perceived as incompatible, although they are, in fact, “both quite legitimate” (Efron,
2005, p. 1). Therefore, with this article, we hope to bring together beneficial properties from
both worlds and combine them in the Waldian t tests.

Open Practices Statement

The simulation data reported in this manuscript, as well as all R scripts to reproduce
the simulation and analysis are available at the Open Science Framework (https://osf.io/z5v
sy/?view_only=63252a8bd2374b8297bf8bb9fdd12442).
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Stimulated by William H. Batchelder’s seminal contributions in the 1980s and
1990s, multinomial processing tree (MPT) modeling has become a powerful
and frequently used method in various research fields, most prominently in
cognitive psychology and social cognition research. MPT models allow for
estimation of, and statistical tests on, parameters that represent psychological
processes underlying responses to cognitive tasks. Therefore, their use has
also been proposed repeatedly for purposes of psychological assessment, for
example, in clinical settings to identify specific cognitive deficits in individu-
als. However, a considerable drawback of individual MPT analyses emerges
from the limited number of data points per individual, resulting in estimation
bias, large standard errors, and low power of statistical tests. Classical test pro-
cedures such as Neyman-Pearson tests often require very large sample sizes
to ensure sufficiently low Type 1 and Type 2 error probabilities. Herein, we
propose sequential probability ratio tests (SPRTs) as an efficient alternative.
Unlike Neyman-Pearson tests, sequential tests continuously monitor the data
and terminate when a predefined criterion is met. As a consequence, SPRTs
typically require only about half of the Neyman-Pearson sample size without
compromising error probability control. We illustrate the SPRT approach to
statistical inference for simple hypotheses in single-parameter MPT models.
Moreover, a large-sample approximation, based on ML theory, is presented for
typical MPT models with more than one unknown parameter. We evaluate the
properties of the proposed test procedures by means of simulations. Finally,
we discuss benefits and limitations of sequential MPT analysis.

Keywords: multinomial processing tree models, hypothesis tests, efficiency,
sequential analysis, sequential probability ratio test

1 Multinomial Processing Tree Models

Among a multitude of outstanding contributions
to the field of psychology, one of the arguably most
prominent instances of William H. Batchelder’s
(1940–2018) scientific impact is the development
of a class of stochastic models for the measurement
of cognitive processes, known as multinomial pro-

cessing tree (MPT) models. In what is now con-
sidered a classical article, Riefer and Batchelder
(1988) introduced and promoted the use of MPT
models which, in contrast to other scientific areas,
had received but little attention in psychology at
the time (Erdfelder et al., 2009). Stimulated by this
pioneering work and Batchelder’s ongoing effort
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in the following years (e.g., Batchelder & Riefer,
1999), MPT models have become a powerful in-
strument to measure and disentangle the contribu-
tion of latent processes underlying observed be-
havior.

MPT models are substantively motivated
stochastic models for categorical data (but see
Heck, Erdfelder, & Kieslich, 2018, for an ex-
tension to continuous data). They are based on
the assumption that each observable response
in a specific paradigm originates from a finite
set of sequences of discrete processing states.
These sequences are conceptualized as branches
in a processing tree. Nodes along these branches
denote latent cognitive states and the links between
the nodes represent (conditional) probabilities of
entering the respective states. The product of
these link probabilities determines the branch
probability. Each category probability, in turn,
is defined as the sum of probabilities of all
branches terminating in this category. Based on
the assumption that observed category frequencies
follow a multinomial distribution, the (conditional)
link probabilities can be estimated and, thus, the
contribution of each latent processing state can be
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measured and tested statistically (Erdfelder et al.,
2009; Hu & Batchelder, 1994).

Nowadays, MPT models are widely used in
various branches of psychology, particularly in
(social-)cognitive research. Even though the pri-
mary context of MPT applications is experimen-
tal psychology, Batchelder himself repeatedly pro-
moted the use of MPT models for psychomet-
ric purposes (e.g., Batchelder, 1998; Batchelder
& Riefer, 1999). Unlike item response models,
for example, MPT models are based on explicit
assumptions about the latent cognitive processes
underlying observed responses and aim at mea-
suring and disentangling these processes. Thus,
Batchelder (1998) identified an “untapped poten-
tial” (p. 331) of what he referred to as “cognitive
psychometrics” for individual assessments of spe-
cific cognitive processes, for example in clinical
settings.

Despite the apparent appeal of MPT models for
individual assessment, there is a notable limitation
of this type of cognitive psychometrics. In experi-
mental settings, MPT analyses typically make use
of group data, either in a pooled or a hierarchical
fashion (Chechile, 2009; Heck, Arnold, & Arnold,
2018; Klauer, 2006, 2010; Smith & Batchelder,
2010). As a consequence, parameter estimates and
statistical tests are based on many data points, of-
ten resulting in high precision of estimates and
high statistical power of tests. Individual analy-
ses, in contrast, are typically based on far fewer ob-
servations. Thus, parameter estimates may be bi-
ased and will necessarily be less precise, resulting
in large standard errors and low statistical power
(Batchelder, 1998).

To remedy the problem of few observations in
individual parameter estimation, Batchelder sug-
gested to make use of Bayesian methods. Drawing
on data from other individuals that are matched to
the testee based on theoretical considerations (e.g.,
a reference group similar in age and educational
background), one can construct a prior distribution
for the parameters of interest. Using Bayes’ theo-
rem, this prior is then combined with the testee’s
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data to obtain the posterior distribution. The mean
(or mode) of this distribution serves as a point es-
timate while its variance or other measures of dis-
persion denote estimation uncertainty. When there
is little variance in the prior, this empirical Bayes
estimation procedure will result in a more pre-
cise estimate than classical maximum likelihood
estimation without prior information (Batchelder,
1998). Of course, there is also a danger of con-
siderable bias if the testee deviates systematically
from other individuals (i.e., if the prior is misspec-
ified).

A frequent goal in individual clinical assess-
ment, however, goes beyond mere estimation of
model parameters: To identify a specific cogni-
tive deficit or to decide on a particular interven-
tion for the individual testee, statistical tests on
model parameters are required. For example, to
assess whether or not an individual is able to uti-
lize a certain cognitive process, one might want to
test whether the corresponding parameter is sub-
stantially different from zero. In MPT model-
ing, tests of parameter constraints typically rely on
null-hypothesis significance testing (NHST) based
on the asymptotic distribution of some fit statis-
tic under the null hypothesis (Batchelder & Riefer,
1999). In MPT models, these fit statistics denote
the distance between model-implied and observed
category frequencies. They can be characterized as
a power divergence family (Read & Cressie, 1988),
the most well-known special cases of which are
Pearson’s χ2 or the log likelihood ratio G2 (Hu,
1999; Hu & Phillips, 1999).

Standard applications of NHST to MPT models
typically ignore statistical power, that is, the prob-
ability of rejecting a set of parameter constraints if
the constraints do indeed not hold in the popula-
tion. However, both in basic research and in clini-
cal settings, sufficient statistical power is necessary
for unbiased inference (Batchelder & Riefer, 1990,
1999). To this end, classical methods to control
statistical error probabilities based on the seminal
theory by Neyman and Pearson (1933) require an
a priori power analysis. Given a certain expected

effect size and a predefined Type 1 error proba-
bility α, the Type 2 error probability β (and the
power of the test, 1− β) is a function of the sample
size. Although power analyses are easily carried
out with MPT software (e.g., multiTree; Mosha-
gen, 2010) or general-purpose software for power
analysis (e.g., G*Power; Faul, Erdfelder, Buchner,
& Lang, 2009), there are two major drawbacks
in the context of MPT analyses: First, a power
analysis not only requires assumptions concern-
ing the test-relevant parameters as specified by the
null and the alternative hypothesis but depends on
all other model parameters as well. This poses
a problem whenever the model contains parame-
ters for which the population values are unknown,
so-called nuisance parameters. The second ma-
jor limitation of classical power analyses in the
Neyman-Pearson framework concerns scenarios in
which the expected effect size is small. In this case,
classical Neyman-Pearson tests require extremely
large numbers of observations, often much larger
than realistically feasible.

The problem of achieving a sufficiently pow-
ered hypothesis test is particularly pressing when
data collection is costly: either when assessing
a single participant with as few trials as possible
or when each participant provides only a single
data point (e.g., Batchelder, 1998; Heck, Thiel-
mann, Moshagen, & Hilbig, 2018; Klauer, Stahl,
& Erdfelder, 2007; Moshagen, Hilbig, Erdfelder,
& Moritz, 2014; Moshagen, Musch, & Erdfelder,
2012; Schild, Heck, Ścigała, & Zettler, 2019).
However, it potentially applies to any MPT model
analysis (Batchelder & Riefer, 1990, 1999; Riefer
& Batchelder, 1988). Therefore, in this article we
introduce a sequential statistical method for hy-
pothesis testing in MPT models that (1) allows
to control both α and β error probabilities (unlike
NHST), (2) requires on average much less obser-
vations than classical power analyses, and (3) does
not rest on explicit assumptions about the popula-
tion values of nuisance parameters of the model.

The approach we promote herein is based on
Abraham Wald’s sequential probability ratio test
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(Wald, 1947). In the following, we introduce
the basic idea as well as an extension of Wald’s
method by D. R. Cox (1963). We then show how
sequential tests can be used for efficient hypothesis
tests in MPT models and how this may improve
the applicability of MPT models for purposes of
individual assessment. Overall, with the present
article we hope to increase efficiency not only of
typical experimental applications of MPT models,
but also for applications to individuals in the con-
text of cognitive psychometrics.

2 Sequential Analysis

2.1 Sequential Probability Ratio Tests

Classical statistical methods rely on fixed sam-
ples of an a priori defined size. Sequential statis-
tics, in contrast, are based on the continuous mon-
itoring of the data throughout the sampling pro-
cess. This process continues until some predefined
criterion is met, at which point sampling is termi-
nated (optional stopping) and a statistical decision
is made. Crucially, unlike the recursive application
strategy of classical methods known as p-hacking
(Simmons, Nelson, & Simonsohn, 2011), sequen-
tial methods do not compromise control of long-
term error rates (Wetherill, 1975).

Due to their characteristic to terminate early
whenever the data strongly support a hypothesis,
statistical analysis may substantially reduce the re-
quired sample size. For a decision between two
simple hypotheses, Wald’s (1947) sequential prob-
ability ratio test (SPRT) has been proven to be the
most efficient test (Matthes, 1963; Wald & Wol-
fowitz, 1948). That is, for given long-term error
rates α and β, there is no test procedure that re-
quires less observations than the SPRT on average.

To illustrate the SPRT, consider a random vari-
able X, X ∼ f (x|θ), where θ denotes the true pa-
rameter vector of the underlying population. The
random variable may be discrete or continuous, in
which case the function f (.) refers to the proba-
bility mass or the probability density, respectively.
Assume a test of the two simple hypotheses H0:

θ = θ0 versus H1: θ = θ1. A hypothesis is simple
when all parameters of the statistical model that
define the probability distribution of the data are
either known or specified by the hypothesis. If at
least one parameter is not known or restricted to
a specific value, the hypothesis is composite. For
the given example, the parameter vector θ is com-
pletely specified under each hypothesis. Thus, the
hypotheses are simple and the SPRT is the optimal
test to decide between them with a given strength
(α, β).

In the SPRT, the ratio of the probabilities of
the observed data after any nth observation, xn =

(x1, ..., xn), under each hypothesis i is computed.
As the probability density is proportional to the
likelihood, that is, f (xn|θi) ∝ L(θi; xn), this ratio is
typically referred to as a likelihood ratio (LR):

LRn =
f (xn|θ1)
f (xn|θ0)

=
L(θ1; xn)
L(θ0; xn)

. (1)

Sampling continues by adding independent obser-
vations xn+1 as long as

B < LRn < A. (2)

If LRn ≥ A, sampling is terminated andH1 is ac-
cepted. By definition, any sample xn which leads
to the acceptance of H1 is thus at least A times as
likely underH1 as underH0. This implies that the
probability to accept H1 is at least A times larger
under H1 than under H0. In the usual notation
based on the Neyman-Pearson theory, the former
probability is defined as 1− β, whereas the latter is
denoted by α. Hence, 1 − β ≥ Aα, which can be
written as

1 − β
α
≥ A. (3)

In contrast, if LRn ≤ B, sampling is terminated
and H0 is accepted. Following the same logic as
for A, we see that

β

1 − α ≤ B, (4)

which implies that upper/lower limits for A and B
are given by (1 − β)/α and β/(1 − α), respectively.
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In practical applications, however, the inequalities
in (3) and (4) can be treated as equalities defining
threshold values A and B for the LR that satisfy
pre-specified statistical error probabilities α and β.
More precisely, the resulting sequential test pro-
cedure provides an approximate control of error
probabilities with α and β serving as upper bounds
to the actual error rates (Wald, 1947; Wetherill,
1975).

Functions describing the test procedure’s prop-
erties (i.e., power and expected sample size at ter-
mination) can be approximated analytically by for-
mulae derived by Wald (1947). Moreover, as men-
tioned before, the SPRT has been proven to be the
most efficient test for given error rates. As soon as
the statistical model defining the probability dis-
tribution of the data contains nuisance parameters,
however, the general theory of the SPRT no longer
applies.

This constitutes a practically relevant limitation
since composite hypotheses due to nuisance pa-
rameters occur frequently in many common MPT
models (e.g., in models for memory paradigms,
which typically comprise guessing parameters).
Different methods have been proposed to remedy
this problem: For example, Wald (1947) suggested
to integrate out nuisance parameters by means of
weight functions (that resemble prior distributions
in Bayesian inference). In a different approach,
the likelihood ratio is constructed based on sim-
ple sufficient statistics (Barnard, 1952; D. R. Cox,
1952; Rushton, 1950). Although this approach
provides an adequate solution for certain problems
such as the classical t test (Schnuerch & Erdfelder,
2019), its applicability is restricted to specific sit-
uations. In the following, we consider a more
general method introduced by D. R. Cox (1963),
building on Bartlett’s (1946) idea to construct a se-
quential test based on asymptotic maximum likeli-
hood (ML) theory.

2.2 Sequential Maximum Likelihood Ratio
Tests

Let X be a random variable denoting the ob-
served data, with X ∼ f (x|θ,φ). Similar as in the
SPRT above, we consider a test of the hypotheses
Hi: θ = θi (i = 0, 1), φ denoting nuisance parame-
ters of the statistical model. The method developed
by D. R. Cox (1963) and outlined in this section
applies to any θ, φ regardless of their dimension-
alities. Therefore, without loss of generality, we
will assume that both parameters are single-valued
in what follows. A detailed mathematical justifica-
tion of D. R. Cox’s method can be found in Bres-
low (1969).

In the SPRT, it is straightforward to consider the
log likelihood ratio rather than the likelihood ra-
tio. Assume the true value of φ was known, then
the SPRT as defined in the previous section would
require to continue sampling as long as

log
(

β

1 − α
)
< `(θ1, φ; xn)−`(θ0, φ; xn) < log

(
1 − β
α

)
,

(5)
where `(θi, φ; xn) denotes the log likelihood for
hypothesis i after n observations. Calculations in-
volving exact log-likelihood functions are often
difficult or even infeasible. As a remedy, based on
large-sample theory, the exact log likelihood can
be replaced by a second-order Taylor series expan-
sion about the true parameter value θ, treating the
difference θi − θ (i = 0, 1) as of order 1/

√
n (cf.

Joanes, 1972):

`(θi, φ; xn) = `(θ, φ; xn) + (θi − θ)∂`(θ, φ; xn)
∂θ

+ 1
2 (θi − θ)2∂

2`(θ, φ; xn)
∂θ2 ,

(6)

such that the log likelihood ratio in (5) becomes

(θ1 − θ0)
∂`(θ, φ; xn)

∂θ

+ 1
2 (θ1 − θ0)(θ1 + θ0 − 2θ)

∂2`(θ, φ; xn)
∂θ2 .

(7)
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If, in contrast, φ is not known, the log likelihood
ratio can be constructed using the ML estimate φ̂
based on xn, that is,

`(θ1, φ̂; xn) − `(θ0, φ̂; xn) . (8)

Note that Bartlett (1946) suggested separate ML
estimates for the nuisance parameter φ conditional
onH1 andH0 (i.e., the estimates φ̂1 and φ̂0 assum-
ing θ = θ1 or θ = θ0, respectively). In contrast, D.
R. Cox’s (1963) method involves the use of a sin-
gle estimate φ̂ for both terms in (8), conditional on
a model without restrictions on θ or φ. Expanding
about the true parameter values (θ, φ) analogously
to (6), (8) becomes

(θ1 − θ0)
∂`(θ, φ; xn)

∂θ

+ 1
2 (θ1 − θ0)(θ1 + θ0 − 2θ)

∂2`(θ, φ; xn)
∂θ2

+ (θ1 − θ0)(φ̂ − φ)
∂2`(θ, φ; xn)

∂θ∂φ
.

(9)

It is easy to see that (9) is equivalent to (7) if the
last term becomes 0, that is, if θ and φ are indepen-
dent and, thus,

E
[
1
n
∂2`(θ, φ; xn)

∂θ∂φ

]
−−−→
n→∞

0 . (10)

In this case, the ML estimates θ̂ and φ̂ are asymp-
totically independent as well. A simple SPRT as
defined in (5) where φ is replaced by φ̂ is then
asymptotically equivalent to that when φ is known.
If θ̂ and φ̂ are not asymptotically independent,
however, the test procedure will not satisfy the
long-run error rates implied by α and β. As a rem-
edy, the sampling error of φ̂ must be taken into ac-
count.

Equation (9) can be further simplified based on
large-sample ML theory, showing that it is asymp-
totically equivalent to the following expression
(see Appendix A and D. R. Cox, 1963, for details):

nIθθ(θ1 − θ0)
[
θ̂ − 1

2 (θ0 + θ1)
]
, (11)

where Iθθ denotes the (θ, θ) element or submatrix
of the expected Fisher information matrix I(θ, φ)

for sample size n = 1, assuming observations to be
independent and identically distributed.

For simplification, D. R. Cox (1963) suggested
to base the sequential test procedure on a mono-
tonic transformation of (11) obtained by dropping
the multiplicative constant Iθθ(θ1 − θ0) (see also
Wetherill, 1975, p. 60),

Tn = n
[
θ̂ − 1

2 (θ0 + θ1)
]
, (12)

where θ̂ is the ML estimate of θ based on xn. This
test statistic has to be computed after any nth ob-
servation, and stopping boundaries corresponding
to the constant likelihood-ratio boundaries of the
SPRT (Equation 2) are given by

Vθθ

θ1 − θ0
log

(
β

1 − α
)
< Tn <

Vθθ

θ1 − θ0
log

(
1 − β
α

)
.

(13)
In (13),Vθθ denotes the (θ, θ) element of the in-

verse of the expected unit Fisher information, that
is, V = I(θ, φ)−1. In many cases, the analytical
derivation of the expected Fisher information is in-
feasible. Thus, for practical purposes, it can be re-
placed by the observed Fisher information I(θ̂, φ̂),
that is,

I(θ̂, φ̂) = −1
n

H(θ̂, φ̂) , (14)

where H(θ̂, φ̂) is the Hessian matrix of second-
order partial derivatives of the log likelihood func-
tion, evaluated at the ML estimates.

As an element of the inverse of the unit Fisher
information, Vθθ (or, when using the observed in-
formation matrix, Vθθ) denotes the variance of the
ML estimate θ̂ based on a single observation (cf.
Ly, Marsman, Verhagen, Grasman, & Wagenmak-
ers, 2017). Thus, the threshold values in (13) are
adjusted based on the precision with which the
test-relevant parameter is estimated, thereby cor-
recting for the uncertainty that results from the ne-
cessity to estimate the unknown nuisance parame-
ter φ.

D. R. Cox’s test, henceforth referred to as se-
quential maximum likelihood ratio test (SMLRT),
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satisfies the long-run error rates α and β for test-
ing hypotheses about θ without making explicit as-
sumptions about the nuisance parameters φ (D. R.
Cox, 1963; Wetherill, 1975). As it is based on
asymptotic ML theory, however, the approxima-
tions involved in the derivation of the formulae
cannot be expected to work sufficiently well for
small samples. Hence, the proposed sequential test
requires a sufficiently large initial sample (C. P.
Cox & Roseberry, 1966). Otherwise, it is not en-
sured that the Taylor series expansion in (9) is valid
or that the observed Fisher information I(θ̂, φ̂) pro-
vides a good approximation of the expected Fisher
information I(θ, φ) (Hu & Phillips, 1999). Never-
theless, even though the initial sample size needs
to be sufficiently large, we show below that the
SMLRT still requires on average much smaller
sample sizes than Neyman-Pearson tests without
compromising error probability control.

The practical implementation of the SMLRT for
MPT models is straightforward with MPT soft-
ware such as, for example, multiTree (Moshagen,
2010) or MPTinR (Singmann & Kellen, 2013). Af-
ter any nth observation, the ML estimate θ̂ can eas-
ily be computed with these software packages. Ad-
ditionally, Vθθ can be computed from software out-
put based on the estimated standard error of θ̂, S Eθ̂.
Since S Eθ̂ is the (θ, θ) element of

[
nI(θ̂, φ̂)

]−1/2
, it

follows that Vθθ = n(S Eθ̂)2.

3 Sequential MPT Analysis

3.1 Case 1: Simple Hypothesis

As a running example, consider a psychometric
experiment administered to an individual partici-
pant in a clinical assessment situation. Assume we
are interested in the individual’s perceptual abili-
ties. Specifically, we want to assess whether or not
the participant is able to detect a visual stimulus of
a given intensity.

The experiment is carried out as follows: In
the style of classical experiments on visual thresh-
olds (Blackwell, Pritchard, & Ohmart, 1954) and
decision processes underlying visual perception

(Swets, Tanner, & Birdsall, 1961), the participant
is presented with a visual stimulus in one of two
defined temporal intervals in each trial. A stimu-
lus typically used in such experiments is a flash of
light displayed on a screen (for 100 ms, say) with a
certain diameter and magnitude (that is, luminous
intensity). Following each trial, the participant
is prompted to decide in which of the two inter-
vals the stimulus was presented. Thus, the percep-
tual performance is measured in a two-alternative
forced-choice test (2AFC).

If the participant detects the stimulus, they will
answer correctly. If they do not detect the stimu-
lus, however, they might still give a correct answer
by guessing the interval in which the stimulus was
presented. Thus, the performance in the 2AFC is
diluted by guessing processes which do not repre-
sent actual perceptual abilities (Swets et al., 1961).
In order to assess these directly, the processes un-
derlying response behavior in the 2AFC can be dis-
entangled by means of an MPT model.

Figure 1 displays the simplest instance of an
MPT model for the paradigm under consideration.
In each trial, participants either enter a state of de-
tection (with probability d) and choose the correct
answer, or they do not detect the stimulus (1−d). In
this state of uncertainty, they have to guess which
of the intervals contained the stimulus. Thus, they
can either guess correctly (with conditional proba-
bility g) or incorrectly (1 − g).

Formally, the probability of each branch j ( j =

1, ..., J) leading to response category k (k = 1, ...,
K) in a binary MPT model is defined as

p jk(Θ) = c jk

S∏

s=1

θ
a jks
s (1 − θs)b jks , (15)

where Θ = (θ1, ..., θS ) represents the vector of pa-
rameters in the model denoting the (conditional)
link probabilities along the branches, with Θ ∈
Ω = [0, 1]S . The count variables a jks and b jks

indicate how often a parameter θs (or its comple-
ment 1−θs, respectively) occurs in a branch, while
c jk denotes the product of fixed parameter values
along each branch (Hu & Batchelder, 1994).
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Trial

1 − d
1 − g False

g Correct

d Correct

Figure 1. A simple multinomial processing tree model for a perception experiment with a two-alternative forced-
choice test. d = probability to detect the stimulus; g = probability to guess correctly.

The probability of each category k as a function
of the model parameters is the sum of all branch
probabilities ending in category k,

pk(Θ) =

J∑

j=1

p jk(Θ) . (16)

For the observed category frequencies nK =

(n1, ..., nK),
∑K

k=1 nk = N, the resulting likelihood
function is then given by

L(Θ; nK) = N!
K∏

k=1

[
pk(Θ)

]nk

nk!
. (17)

For parameter interpretation, any statistical
modeling requires the model fitted to the data to be
identifiable. In case of an MPT model, this means
that Θ , Θ′ implies that p(Θ) , p(Θ′), for all
Θ, Θ′ ∈ Ω. In other words, a model is globally
identifiable if any specific set of model-consistent
category probabilities corresponds to a unique set
of parameter values (Bamber & van Santen, 2000).

In our example, the MPT model contains two
parameters: Θ = (d, g). In a balanced and com-
pletely randomized design, it is reasonable to as-
sume that guessing in a 2AFC cannot be system-
atically “biased” towards a correct or incorrect re-
sponse. Therefore, we fix the guessing parameter
a priori, g = .50. Thus, according to (16) the prob-
ability of a correct response is given by

pc(d) = d + (1 − d) · .50 , (18)

while the probability of an incorrect response is
given by 1 − pc(d), since there are only two ob-
served response categories. The restricted model

is identifiable, but since K
′

= S
′
, with K

′
denot-

ing the number of independent categories and S
′

the number of free parameters, it is saturated and
does not allow for tests of goodness of fit. It is still
possible, however, to test hypotheses about free pa-
rameters in a saturated model.

To assess the participant’s ability to detect the
visual stimulus, we want to test the following hy-
potheses on the detection parameter d in our MPT
model: H0: d = 0 versus H1: d > 0. In other
words, is the response behavior based entirely on
guessing or can the participant detect the stimulus
at least sometimes? To control the probabilities of
decision errors, we request that the test acceptsH1

with probability α = .05 if d = 0, and H0 with
probability β ≤ .05 if d ≥ .10. To this end, we test
the simple hypothesis that d = d0 := 0 versus the
simple alternative that d = d1 := .10.

In a classical analysis, we would sample N ob-
servations from the participant and test whether
our MPT model with two restricted parameters
ΘR2 = (d = 0, g = .50) fits the data worse
than a model where d remains unrestricted, that is,
ΘR1 = (d, g = .50). As the two models are nested,
the test is based on the difference of the respective
fit statistics, ∆PDλ, where PDλ denotes any power
divergence statistic defined by λ, for example, the
log-likelihood ratio statistic G2 if λ = 0 or Pear-
son’s χ2 statistic if λ = 1. Under the null hypothe-
sis defined above, ∆PDλ ∼ χ2(1) holds asymptoti-
cally, irrespective of the PDλ statistic chosen (Read
& Cressie, 1988). Thus, if P(χ2(1) ≥ ∆PDλ) < α,
we decide in favor of the hypothesis d ≥ .10.

In this example, a power analysis is straightfor-
ward. The models under H0 and H1 imply cer-
tain category probabilities. A common standard-
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ized effect size measure for the discrepancy be-
tween expected proportions under two hypotheses
is Cohen’s w (Cohen, 1992). In a single-tree MPT
model, w is given by

w =

√√
K∑

k=1

(p1k − p0k)2

p0k
, (19)

where pik denotes the probability of category k un-
der hypothesis i = 0, 1. Based on (18) and (19),
the expected effect size in our example with d0 = 0
and d1 = .10 is w = 0.10, denoting a small effect.
Thus, a one-tailed asymptotic test of the hypothesis
that d = d0 versus d = d1 with error probabilities
α = β = .05 requires approximately N = 1, 083
observations (Faul et al., 2009).

Since we are dealing with simple hypotheses,
the SPRT provides a most efficient alternative. Let
pi = pc(di), then the likelihood given hypothesis i,
according to (17), is

L(di; nc) =

(
N
nc

)
pnc

i (1 − pi)N−nc , (20)

where nc denotes the observed number of correct
responses. Thus, our hypotheses can be tested by
means of an SPRT by continuing to sample obser-
vations from the participant as long as

β

1 − α <
pnc

1 (1 − p1)N−nc

pnc
0 (1 − p0)N−nc

<
1 − β
α

(21)

and terminating as soon as one of the inequalities
is violated, thus accepting eitherH0 orH1.

Based on formulae derived by Wald (1947), it is
straightforward to approximate functions describ-
ing the test procedure’s properties (see Appendix
B for details). Specifically, we can analytically
determine the procedure’s probability to accept
the alternative hypothesis (the so-called Operating
Characteristic, OC) as well as the expected sample
size at termination (the so-called Average Sample
Number, ASN) as a function of the true value of
the parameter d. The respective functions of the
SPRT in this example are depicted in Figure 2. Ad-
ditionally, we simulated the SPRT for the given hy-
potheses to demonstrate how well the procedure’s

properties are approximated in practice1. The re-
sults are denoted by the grey dots in Figure 2. Ex-
cept for a slight underestimation of the ASN when
the true value lies between d0 and d1, the analyti-
cal functions approximate the simulated estimates
almost perfectly.

As the results show, the SPRT not only con-
trols error probabilities as accurately as Neyman-
Pearson tests do, it does so notably more effi-
ciently. For any true value d, the expected sam-
ple size at termination is substantially smaller than
the sample size determined by an a priori power
analysis for the given hypotheses (N = 1, 083).
When d equals d0 or d1, the expected sample size
of the SPRT is approximately N = 545, that is,
almost 50% smaller. Moreover, if the true param-
eter value is notably larger than specified by the
hypothesis, the test will require even lower sam-
ple sizes to make a decision. Classical analysis, in
contrast, requires the a priori defined sample size
irrespective of the true value. Thus, for the test
of a simple hypothesis in a single-parameter MPT
model, the SPRT is a highly efficient alternative to
classical inference procedures.

3.2 Case 2: Composite Hypothesis with a Sin-
gle Nuisance Parameter

In practical applications of cognitive psycho-
metrics as well as in experimental settings, param-
eter tests in MPT models will rarely be on absolute
parameter values as in Case 1. It is much more
common to test equality or order constraints on
model parameters to compare cognitive processes
under different conditions or with different stimu-
lus material. The challenge with this kind of pa-
rameter tests, however, is that they typically imply
tests of composite hypotheses.

Consider the following extension of the sim-
ple psychometric experiment introduced in Case
1. Instead of the absolute perceptual ability, we

1R scripts for this and all following simulations as
well as all simulated raw data are available from https:
//osf.io/98erb/.
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Figure 2. A: The black line denotes the Operating Characteristic (OC) function for a sequential probability ratio test
(SPRT) onH0: d = 0 versusH1: d = .10 with α = β = .05. B: The black line denotes the Average Sample Number
(ASN) function of the respective SPRT. Grey dots denote simulated estimates of OC and ASN for the given test,
based on 10,000 replications per estimate.

now want to assess the testee’s perceptual sensi-
tivity. Specifically, we manipulate physical fea-
tures of the visual stimulus presented and assess
whether the participant’s ability to detect the stim-
ulus differs between conditions (see Blackwell et
al., 1954, for a similar experimental procedure).
To this end, the stimulus is now presented in two
different magnitudes (low versus high luminous in-
tensity). As in Case 1, we want to test the detection
processes directly by means of an MPT analysis of
the individual’s performance in the 2AFC.

Figure 3 depicts the extended MPT model for
Case 2. The model now comprises two processing
trees, one for each stimulus magnitude. We still
assume unbiased guessing of the correct response
in the 2AFC, that is, g = .50 for each stimulus
type. However, to test whether the manipulation of
stimulus magnitude affects the detection probabil-
ity, the model now contains two detection parame-
ters, dh (high magnitude) and dl (low magnitude).
We want to test the hypothesesH0: dh = dl versus
H1: dh > dl, as the probability to detect the stim-
ulus should be higher for high stimulus magnitude
than for low magnitude.

To incorporate parametric order constraints into
a binary MPT model, it is straightforward to repa-
rameterize the model such that the new model

satisfies all assumptions of binary MPT models
and is statistically equivalent to the original model
(Knapp & Batchelder, 2004): By restructuring the
processing tree for low-intensity stimuli and intro-
ducing a new parameter ξ (Figure 4), we can ex-
press dl in terms of dh:

dl = ξdh . (22)

The reparameterized model, just as the original
model, contains two unknown parameters, Θ =

(dh, ξ), both of which are free to vary in the en-
tire parameter space Ω = [0, 1]. Our hypotheses
are then reformulated in terms of ξ, that is, H0:
ξ = ξ0 (ξ0 = 1) andH1: ξ = ξ1 (ξ1 < 1). Thus, our
hypotheses are about the ratio of detection proba-
bilities for low and high stimulus magnitude.

It is easy to see that these hypotheses are com-
posite as the probability distribution of our data de-
pends both on ξ, which is specified by the hypothe-
ses, and dh, which is unknown. This is a particular
problem for a Neyman-Pearson test of the hypothe-
ses, as the effect size and, in turn, the power of the
test also depend on both parameters.

If an MPT model includes more than one tree,
the model becomes a joint MPT model. For T > 1
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High

1 − dh
1 − g False

g Correct

dh Correct

Low

1 − dl
1 − g False

g Correct

dl Correct

Figure 3. A multinomial processing tree model for a perception experiment with two stimulus magnitudes (high
versus low luminous intensity) and a two-alternative forced-choice test. dh = probability to detect the stimulus with
high magnitude; dl = probability to detect the stimulus with low magnitude; g = probability to guess correctly.

Low

1 − dh
1 − g False

g Correct

dh

1 − ξ
1 − g False

g Correct

ξ Correct

Figure 4. Reparameterization of the second processing tree depicted in Figure 3 for the order constraint dh > dl.
dh = probability to detect the stimulus with high magnitude; ξ = ratio of the probability to detect the stimulus with
low magnitude to dh; g = probability to guess correctly.

trees, Cohen’s effect size measure w generalizes to

w =

√√√ T∑

t=1

πt ·
Kt∑

kt=1

(p1kt − p0kt)2

p0kt
, (23)

where Kt denotes the total number of categories in
tree t (t = 1, ...,T ) and πt the proportion of the total
sample size N assigned to tree t. Resembling Case
1, p1kt denotes the predicted category probabilities
for category k of tree t according toH1. However,
since H0 is composite, the corresponding p0kt cat-
egory probabilities are now obtained by fitting the
H0 model (with dh free) to these H1 probabilities
such that w becomes a minimum (Erdfelder, Faul,
& Buchner, 2005). Note that (23) reduces to (19)
iff T = 1.

Assume ξ0 = 1.00 and ξ1 = .75. Then the ex-
pected effect size for dh = .70 in a balanced design
with πhigh = πlow = .50 is approximately w = 0.11
according to (23). An a priori power analysis for
this effect size reveals a required sample size of
N = 892 observations for a one-tailed asymptotic

test with α = β = .05. If, however, dh = .50,
the expected effect size is only w = 0.07 and the
required sample size for the same test is more than
twice as large, that is, N = 2, 248.

To ensure a sufficiently powered test in the con-
text of a composite hypothesis, a rational strategy
would be to assume a conservative value of dh such
that the resulting test has power 1 − β ≥ .95 for
any dh in a reasonable range. However, this can be
inefficient and demand very large sample sizes.

Instead, we can analyze the data sequentially by
means of the SMLRT. Let ph = dh · (1 − dh) · .50
denote the probability of a correct response in a
trial with high stimulus magnitude under both hy-
potheses, and pli = ξidh + (1 − ξidh) · .50 the cor-
responding probability for low stimulus magnitude
under hypothesis i. The likelihood function is then
given by

L(ξi, dh; n1, n2, n3, n4)

=
N!

∏4
k=1 nk!

pn1
h (1 − ph)n2 pn3

li (1 − pli)n4 ,
(24)
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where the nk (k = 1, 2, 3, 4;
∑4

k=1 nk = N) de-
note observed frequencies of correct versus false
responses for high versus low stimulus magnitude,
respectively.

If Equation (10) is satisfied in our case (with
θ = ξ and φ = dh), that is, if d̂h and ξ̂ are asymptot-
ically independent, the SMLRT reduces to a sim-
ple SPRT where dh is replaced by d̂h at each step.
However, since

∂2`(ξ, dh; n1, n2, n3, n4)
∂ξ∂dh

=
n3

(ξdh + 1)2 −
n4

(ξdh − 1)2

(25)
and considering that in a balanced design, E(n3) =

N/2 ·[ξdh +(1−ξdh) · .50] and E(n4) = N/2−E(n3),
we see that

E
[

1
N
∂2`(ξ, dh; n1, n2, n3, n4)

∂ξ∂dh

]
= − ξdh

2(1 − ξ2d2
h)
.

(26)
The term in (26) no longer depends on N and,

thus, (10) is not satisfied if neither ξ nor dh are
equal to 0. Hence, as suggested by D. R. Cox
(1963), the test should be based on (12) with stoop-
ing boundaries (13), where θ is replaced by ξ. To
calculate the expected Fisher information in order
to obtain Vξξ at each step, observed cell frequen-
cies in the Hessian matrix H(ξ, dh) are replaced by
the expected cell frequencies, as was done in (26).
Additionally, when ξ1 < ξ0, the inequalities in (13)
must be inverted. This will be the case for order
constraints in MPT models, where the null hypoth-
esis typically denotes ξ0 = 1, such as in our exam-
ple.

Unlike in the SPRT for simple hypotheses, there
are no analytical formulae for the SMLRT’s prop-
erties for composite hypotheses. Therefore, we
simulated the SMLRT for the perception experi-
ment in Case 2 (1) to assess whether long-run error
rate control works as expected and (2) to compare
the expected sample size required by the SMLRT
to that of the classical Neyman-Pearson test.

The simulations were carried out in the statis-
tical computing environment R (R Core Team,
2019). We generated participants’ responses ac-
cording to the model depicted in Figures 3 and 4

and analyzed them sequentially by means of the
SMLRT defined by (12) and (13) with inverted
boundaries. Estimates of ξ were computed with the
R package MPTinR (Singmann & Kellen, 2013).

We simulated data for different true values of dh

(dh = .70, .50) and ξ (ξ = 1.00, .75, .50). Under
the null hypothesis, ξ0 was always equal to 1, while
under the alternative hypothesis, ξ1 was equal to
.75 or .50. Furthermore, we varied the initial sam-
ple size of the sequential procedure (Nmin). As the
SMLRT is based on large-sample approximations,
a too small sample size might negatively affect the
procedure and compromise its error rates (C. P.
Cox & Roseberry, 1966). As a simple strategy
to find a suitable number, the initial sample was
therefore defined to be 25%, 40%, or 50% of the
sample size required by a corresponding Neyman-
Pearson test (NNP).2

In each step, the sample size was increased by
+2, one observation for each stimulus magnitude,
until a threshold was reached. Threshold values
were chosen such that α = β = .05. For each pa-
rameter combination, we replicated the test proce-
dure 1,000 times.

The results are displayed in Figure 5. It con-
tains the empirical error rates (α′ and β′) and the
required sample sizes as a function of dh, the true
value of ξ, that is, ξ = ξ0 or ξ = ξ1, and the
initial sample size. Error bars for the error rates
denote 95% exact confidence intervals (Clopper &
Pearson, 1934). The sample size distributions are
displayed as boxplots. Black dots denote outliers
(data points further than 1.5 times the inter-quartile
range below or above the first or the third quartile,
respectively), grey dots represent the means of the
distributions, that is, the ASN. Dashed lines de-
note the nominal error rates and the sample sizes
required by a corresponding Neyman-Pearson test.

The left part of Figure 5 shows the results for
ξ1 = .50, the right part displays results for ξ1 = .75.

2To increase computational efficiency, each simu-
lated trajectory started with Nmin = .25 · NNP and was
then reanalyzed with Nmin = .40 · NNP and Nmin =

.50 · NNP.
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Figure 5. Empirical error rates and sample size distributions of the sequential maximum likelihood ratio test
(SMLRT) as a function of the hypothesis tested, the true detection parameter dh, and the data-generating scenario.
Error bars denote 95% Clopper-Pearson exact confidence intervals (Clopper & Pearson, 1934). Black dots in the
boxplots denote outliers (data points more than 1.5 times the inter-quartile range below or above 1st or 3rd quantile).
Grey dots denote mean sample sizes. Dashed lines represent nominal error rates and sample sizes required by a
corresponding Neyman-Pearson (NP) test.

For all parameter combinations, β′ substantially
undercuts the nominal level. At the same time, ex-
cept for a slight upward deviation when dh = .50
and the initial sample size is small, α′ adheres to
the nominal level. Moreover, the SMLRT controls
error probabilities notably more efficiently than a
corresponding Neyman-Pearson test: The ASN is
on average 45% smaller. Across all parameter
combinations, the test terminates with a sample
size smaller than NNP in 94% of the cases.

In almost all of the simulated scenarios, the

SMLRT shows satisfying results for an initial sam-
ple size of Nmin = .25 · NNP. With increasing Nmin,
the test procedure becomes more conservative and
less efficient. However, the increase in ASN is
only slight and still below the sample size required
by the Neyman-Person test. Concluding from our
results, an initial sample size of 25% of a cor-
responding Neyman-Pearson test is a reasonable
starting point to efficiently control long-run rates
of statistical decision errors for parameter tests in
MPT models with a single unknown nuisance pa-
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rameter.

3.3 Case 3: Composite Hypothesis with Sev-
eral Nuisance Parameters

Commonly, MPT models contain several un-
known parameters. Thus, hypotheses about single
parameters typically involve more than one nui-
sance parameter. To illustrate that the SMLRT nat-
urally extends to this case, consider the following
variation of our psychometric experiment.

To assess potential biases involved in the deci-
sion process as well as perceptual processes, the
experiment is now based on a Yes/No test. That is,
in each trial either a stimulus (target) or no stimu-
lus (lure) is presented. For each trial, the partici-
pant has to indicate whether they detected a stimu-
lus (“Yes”) or not (“No”). As in Case 2, stimuli are
light flashes presented in two different magnitudes
(high versus low luminous intensity).

Figure 6 displays the MPT model for Case 3.
It contains three detection parameters denoting the
probability to detect a stimulus with high magni-
tude (dh), a stimulus with low magnitude (dl), or
the absence of a stimulus (dn). Additionally, it con-
tains the parameter g, which represents the condi-
tional probability to guess “Yes” in a state of un-
certainty.

With K
′
< S

′
, the model is not identifiable.

Thus, we need to restrict at least one of the pa-
rameters. As g no longer refers to guessing cor-
rectly but rather guessing that a stimulus was pre-
sented, it seems reasonable not to restrict it a priori.
For the given experiment, we rather assume that
the absence of a stimulus should be equally salient
and detectable as the presence of a high-magnitude
stimulus. Thus, we will assume that dn = dh. The
restricted model is identifiable and saturated.

To test whether the participant is sensitive to
the manipulation of stimulus magnitude in the new
paradigm, we will reparameterize the model as we
did in Case 2 (see Figure 4), such that dl = ξdh.
Again, we test the hypotheses H0: ξ = ξ0 (ξ0 = 1)
versusH1: ξ = ξ1 (ξ1 < 1). This time, the power of
a hypothesis test on ξ not only depends on dh but

also on the bias to respond “Yes”, g.
Similar to Case 2, the effect size for this case can

be calculated based on (23), this time with T = 3
and πhigh = πlow = πlure = .33. When testing
ξ0 = 1.00 versus ξ1 = .75 while assuming dh = .70
and g = .50 for the nuisance parameters under H1

(while treating dh and g as free parameters under
H0), the effect size is w = 0.09. A classical one-
tailed asymptotic test with α = β = .05 would thus
require N = 1, 335 observations. However, if the
participant has a slight bias to respond with “Yes”
under uncertainty, g = .60, the effect size is re-
duced to w = 0.08 and the same test would require
about N = 1, 752 observations. For g = .40, in
contrast, the required sample size reduces to about
N = 1, 059. Also taking into account different pos-
sible values of dh would further increase the num-
ber of possible power analyses, thus illustrating the
difficulty of determining a reasonable sample size
for classical hypothesis tests in MPT models with
more than one unknown nuisance parameter.

In the SMLRT, in contrast, we only need ξ̂ and
Vξξ (or S Eξ̂), as the test is based on (12) and (13).
The uncertainty with respect to the actual values of
the nuisance parameters is taken into account im-
plicitly, since Vξξ and, correspondingly, the stan-
dard error of ξ̂ depend in general on the preci-
sion and values of all parameter estimates. In the
same vein, further increasing the complexity of the
model in terms of the number of nuisance parame-
ters or experimental conditions would not alter the
general procedure for testing hypotheses on ξ.

As shown in the previous simulation, however,
the SMLRT requires a sufficiently large initial
sample size. If the sample size is too low, error
rates may be inflated. If it is too large, the test
may be less efficient. To illustrate that the required
initial sample size may depend on the values of the
nuisance parameters, we simulated the SMLRT for
Case 3. The settings of the simulation were es-
sentially identical to those in the previous simula-
tion. Additionally, we varied the guessing param-
eter g = .40 versus g = .60. As the experiment in
Case 3 comprises three stimulus categories (high
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High

1 − dh
1 − g “No”

g “Yes”

dh “Yes”

Low

1 − dl
1 − g “No”

g “Yes”

dl “Yes”

Lure

1 − dn
1 − g “No”

g “Yes”

dn “No”

Figure 6. A multinomial processing tree (MPT) model for a perception experiment with two stimulus magnitudes
(high versus low) and a Yes/No test. dh = probability to detect the stimulus with high magnitude; dl = probability to
detect the stimulus with low magnitude; dn = probability to detect a lure trial in which no stimulus was presented;
g = probability to guess “Yes”.

versus low magnitude targets and lures), the sam-
ple size was increased by +3 in each step, one ob-
servation per stimulus category. For each param-
eter combination, 1, 000 replications were simu-
lated.

The results are displayed in Figure 7. For all
simulated parameter combinations, the test shows
very low rates of Type 1 errors. At the same time,
however, the ASN in this case is still on aver-
age 38% smaller than the Neyman-Pearson sam-
ple size. The empirical β′ closely approximate the
nominal error rate for almost all parameter com-
binations. Only when dh = .70 and g = .60, the
test of ξ1 = .50 yields too large β′ when the ini-
tial sample size is smaller than .50 · NNP. Across
all parameter combinations, the SMLRT is on av-
erage 34% more efficient than a Neyman-Pearson
test and terminates with a smaller sample in 88%
of the cases.

As our simulations show, the general procedure
of the SMLRT extends to models with more than
one unknown nuisance parameter. However, we
also see the importance of a sufficiently large ini-
tial sample size in this case. When both dh and g
are large, the model predicts very low probabili-
ties of “No” responses. In case of a large expected
effect such as ξ1 = .50, the classical Neyman-
Pearson test is already quite efficient. Conse-

quently, an initial sample based on 25% or 40% of
NNP is so small that the risk of extremely small cell
frequencies is high. In such a case, the asymptotic
approximations upon which the SMLRT is based
cannot be expected to hold (cf. C. P. Cox & Rose-
berry, 1966).

For example, if dh = .70 and g = .60, a classical
one-tailed test requires N = 174 observations per
tree to test ξ0 = 1 versus ξ1 = .50 with α = β = .05.
Thus, an initial sample size of 25% of the Neyman-
Pearson sample size would comprise N = 44 ob-
servations per tree only. Conditional on the as-
sumed values of dh and g, the expected number of
incorrect responses for high-magnitude targets in
this case is only 44 · (1 − .70) · (1 − .60) = 5.28.
Not surprisingly, the large-sample approximations
on which the SMLRT is based do not hold in such
a situation. This could be remedied by further in-
creasing the initial sample size. In that case, how-
ever, the test would no longer be more efficient
than a classical test procedure.

It is important to note, however, that a case in
which the classical test is already so efficient that
the SMLRT cannot satisfy the nominal error rates
with smaller samples is of practical relevance only
if we can place high confidence in the parame-
ter assumptions we make. Under uncertainty, we
would rather rely on conservative assumptions to
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Figure 7. Empirical error rates and sample size distributions of the sequential maximum likelihood ratio test as
a function of the hypothesis tested, the true detection parameter dh, the true guessing parameter g, and the data-
generating scenario. Error bars denote 95% Clopper-Pearson exact confidence intervals (Clopper & Pearson, 1934).
Black dots in the boxplots denote outliers (data points more than 1.5 times the inter-quartile range below or above
1st or 3rd quantile). Grey dots denote mean sample sizes. Dashed lines represent nominal error rates and sample
sizes required by a corresponding Neyman-Pearson (NP) test.

ensure sufficient power. If we follow this advice,
the SMLRT will in general be more efficient.

4 Discussion

Hypothesis tests on parameter constraints in
MPT models often rely on NHST, thus ignoring
statistical power. Although power analyses have
been worked out for categorical data (Erdfelder
et al., 2005) and are readily available in exist-
ing software (e.g., Faul et al., 2009; Moshagen,
2010), practitioners typically face two challenges.

First, to determine the effect size for a hypothe-
sis test on a single parameter in a multi-parameter
MPT (or other) model, the population values of
all other parameters must be known or specified a
priori based on theoretical considerations that may
or may not hold. As a remedy, one can perform
multiple power analyses for a range of reasonable
parameter values and then choose the most conser-
vative one. However, this strategy often fosters a
second challenge for practitioners, namely, that the
required sample sizes may become very large and
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practically infeasible.
As a remedy, in the present article we suggest

to rely on sequential tests, an efficient alternative
to classical statistical methods for hypothesis tests
in MPT models. Sequential hypothesis tests con-
trol error probabilities of statistical decisions just
as classical Neyman-Pearson tests do. Yet, at the
same time, they are based on continuous monitor-
ing of the data as they are sampled and terminate
as soon as the data contain sufficient evidence for
one hypothesis vis-à-vis the other. Thus, on aver-
age, sequential tests require notably smaller sam-
ples than classical methods that are based on a pri-
ori defined sample sizes (Schnuerch & Erdfelder,
2019).

We introduced the SPRT (Wald, 1947) and
demonstrated how it is easily applied to analysis
of MPT models with a single free parameter. We
showed that it is substantially more efficient than
classical Neyman-Pearson tests, requiring about
50% smaller samples on average. However, al-
though there are applications of single-parameter
MPT models in the literature (e.g., models for
the randomized response technique; see Ulrich,
Schröter, Striegel, & Simon, 2012), MPT models
that are commonly used in cognitive psychology
typically contain more than one parameter, many
of which are nuisance parameters that need to be
estimated.

Therefore, we introduced an extension of the
SPRT suggested by D. R. Cox (1963) for sequen-
tial tests of composite hypotheses. In the SMLRT,
the likelihood ratio is constructed based on ML es-
timates of both the test-relevant and the nuisance
parameters. The sequential procedure is then cor-
rected for the additional estimation uncertainty,
such that the resulting test does not exceed long-
run error rates α and β. Hence, the test proce-
dure controls error probabilities without requiring
knowledge or a specification of the exact values for
the unknown nuisance parameters in the statistical
model.

We illustrated how the SMLRT can be used to
test hypotheses on MPT model parameters with

existing MPT software. Essentially, the proce-
dure merely requires the ML estimate θ̂ of the
test-relevant parameter and the expected Fisher
information (or the standard error of the esti-
mate). Moreover, the SMLRT does not only rem-
edy the problem of unknown nuisance parame-
ters, it also increases efficiency of hypothesis test-
ing. We demonstrated by means of simulations
that the SMLRT requires on average 34% (Case
3) to 45% (Case 2) smaller samples to satisfy the
same or even lower error rates compared to clas-
sical Neyman-Pearson tests even when these are
based on the true, data-generating values of the
nuisance parameter (which is an unlikely assump-
tion in practice).

The sequential approach can be particularly use-
ful in individual assessments (e.g., clinical diagno-
sis). As part of Bill Batchelder’s proposal of cogni-
tive psychometrics—that is, building a bridge be-
tween the fields of mathematical psychology and
psychometrics—he strongly promoted the use of
MPT models in the context of psychological as-
sessment (Batchelder, 1998). For instance, he
identified the great potential for substantive MPT
model applications as diagnostic tools in clini-
cal settings (Batchelder & Riefer, 1999; Riefer,
Knapp, Batchelder, Bamber, & Manifold, 2002).
However, Batchelder also acknowledged the ob-
vious drawback of reduced estimation precision
and low statistical power as a consequence of the
small number of data points on the individual level.
The sequential approach we promote in this article
may facilitate the application of MPT models in
individual assessments whenever it is necessary to
make decisions about the presence or absence of
specific cognitive symptoms while controlling er-
ror probabilities. More generally, we hope that the
SMLRT for MPT models will further contribute to
the increasing number of substantive applications
in cognitive psychometrics.

Apart from individual assessment, sequential
analysis is also particularly useful for efficient
MPT modeling of data on the group level when
each participant provides only a single data point
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(e.g., Heck, Thielmann, et al., 2018; Klauer et al.,
2007; Moshagen et al., 2014; Moshagen et al.,
2012; Schild et al., 2019). This setting has the ad-
vantage that the MPT analysis need not be built
into the experimental procedure or software be-
cause the data can be analyzed after data collection
for each participant. It is thus easily implemented
in practice, thereby providing an attractive alterna-
tive to classical methods in terms of a more effi-
cient and less costly control of error probabilities.

4.1 Limitations

The approaches presented in this article are so-
called unrestricted sequential procedures that do
not have a definite upper bound of sample size.
Hence, although the test is on average more effi-
cient than classical procedures, there is a potential
risk that the data provide inconclusive evidence in
single cases, meaning that the test will continue for
a long time without reaching one of the two bound-
aries. Concluding from our simulation results, this
risk is small (approximately 6% in Case 2, 12% in
Case 3). Nevertheless, this risk potentially limits
its applicability in individual analysis to situations
in which the number of data points is not restricted
a priori. Think, for example, of an experimen-
tal paradigm assessing long-term episodic memory
processes (e.g., Batchelder & Riefer, 1986). Such
a paradigm typically includes a learning phase and
a test phase. The number of possible data points in
the test phase is limited by the number of items
learned during the first phase. Thus, sequential
analysis during the test phase will make sense only
if it requires no more than the number of learned
items. As this obviously cannot be guaranteed, the
unrestricted sequential approach is not appropriate
for such applications.

Second, the SMLRT for composite hypotheses
is based on large-sample approximations (D. R.
Cox, 1963). Therefore, as the simulation results in
Case 3 showed, the method may fail when initial
sample sizes are too small (see also C. P. Cox &
Roseberry, 1966; Wetherill, 1975). The relevance
of a sufficiently large initial sample size increases

with model complexity, as does the required sam-
ple size at termination. The practical challenge is
of course to determine a suitable initial sample size
for the sequential procedure on a priori grounds. If
the sample size is too small, error rates might be
seriously inflated. If it is too large, on the other
hand, the test’s efficiency is reduced (although our
simulations demonstrated that the increase in ASN
due to larger initial sample sizes is only slight).

As a remedy, we suggest to search for a model-
specific minimum sample size by means of an a
priori power analysis and Monte Carlo simula-
tions. Of course, this will again entail assump-
tions about reasonable true parameter values of the
nuisance parameters. However, the consequences
of an overly conservative assumption in the con-
text of a sequential test are much less severe than
for a standard test procedure. If the initial sam-
ple size is chosen too large, the evidence provided
by the data may already be compelling very early
during data collection, meaning that the test proce-
dure will stop immediately. Thus, the SMLRT will
be more efficient than a correspondingly conserva-
tive classical test, in which one cannot use optional
stopping even if the data clearly speak in favor of
one of the hypotheses.

Third, sequential approaches assume that obser-
vations are independent and identically distributed
(i.i.d.). This assumption is reasonable for se-
quential analyses of data generated by an individ-
ual provided that the experimental design prevents
contaminations of the data by exercise effects, fa-
tigue effects, or order effects. The i.i.d. assump-
tion is also plausible in model applications where
each participant provides a single data point only.
If, however, MPT models are applied to aggregate
data of repeated observations of multiple individu-
als, the i.i.d. assumption may be questioned and is
often implausible (Smith & Batchelder, 2008). If
there is heterogeneity in items or participants, ig-
noring the hierarchical structure might bias param-
eter estimates and statistical tests (Heck, Arnold,
& Arnold, 2018). Thus, if parameter tests are per-
formed at the group level based on data aggre-
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gated across items and participants, the sequen-
tial approaches promoted herein may not be suit-
able. This issue is especially critical for sequential
tests if the data are collected in a batch-wise fash-
ion. For instance, if one first collects 100 observa-
tions from a person that does perform extraordinar-
ily well, the sequential test may already indicate a
decision, thereby ignoring data from other partici-
pants that perform worse.

Finally, it is important to keep in mind that both
SPRT and SMLRT address problems of hypothe-
sis testing, not estimation. In this article, we fo-
cused on efficiency in statistical decision making
exclusively. If this is the primary concern, SPRT
and SMLRT are appropriate alternatives to classi-
cal methods. However, if the aim is to estimate a
parameter as precisely as possible, these sequential
procedures are not suitable. Whereas efficiency re-
quires to make a decision with as few observations
as possible, high precision of parameter estimates
is achieved with as many observations as possible
(without optional stopping depending on the cur-
rent value of the estimates). In fact, parameter es-
timates following a sequential hypothesis test may
be biased (Whitehead, 1986). Thus, the sequential
approach promoted herein should only be used if
the aim is in fact to make an efficient statistical de-
cision, for example, in psychological assessments.

4.2 Conclusion

Multinomial processing tree models have
proven useful in many areas of cognitive and
social psychology as tools to measure and disen-
tangle latent cognitive processes. As repeatedly
argued and demonstrated by Bill Batchelder, they
have great potential especially for psychometric
purposes, for example, in the context of individual
diagnostics in clinical settings (e.g., Batchelder,
1998; Batchelder & Riefer, 1999; Riefer et al.,
2002). We introduced sequential test procedures
proposed by Wald (1947) and D. R. Cox (1963)
and illustrated how they can be adapted to MPT
model analysis. By means of simulations, we
demonstrated the excellent properties of the se-

quential approach for testing hypotheses on MPT
model parameters both in the absence and pres-
ence of nuisance parameters. Thereby, we hope to
improve efficiency of statistical inference in MPT
modeling, particularly in the context of individual
assessments (i.e., cognitive psychometrics) and
other settings with scarce resources.
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Appendix A
Sequential Maximum Likelihood Ratio Tests

To show that (11) is asymptotically equivalent to
(9), consider that according to ML theory, the ex-
pected Fisher information matrix for a sample of

size n is given by

nI(θ, φ) = E
[−H(θ, φ)

]

= E


−



∂2`(θ, φ; xn)
∂θ2

∂2`(θ, φ; xn)
∂θ∂φ

∂2`(θ, φ; xn)
∂φ∂θ

∂2`(θ, φ; xn)
∂φ2





(27)

where H(θ, φ) denotes the Hessian matrix of
second-order partial derivatives. Accordingly,
nIθθ and nIθφ denote the (θ, θ) and (θ, φ) el-
ement (or submatrix) of this matrix. Moreover,
θ̂, φ̂ asymptotically satisfy the following equation
(D. R. Cox, 1963):

n
[
Iθθ(θ̂ − θ) + Iθφ(φ̂ − φ)

]
=
∂`(θ, φ; xn)

∂θ
. (28)

Thus, writing (9) in terms of (27) and (28)
gives

n(θ1 − θ0)Iθθ(θ̂ − θ) + n(θ1 − θ0)Iθφ(φ̂ − φ)
− 1

2 (θ1 − θ0)(θ1 + θ0 − 2θ)nIθθ
− (θ1 − θ0)(φ̂ − φ)nIθφ

(29)

which by application of simple calculus yields

n(θ1 − θ0)
[
Iθθ(θ̂ − θ) + Iθφ(φ̂ − φ)

− 1
2Iθθ(θ1 + θ0 − 2θ) − Iθφ(φ̂ − φ)

]

= n(θ1 − θ0)Iθθ(θ̂ − θ − 1
2θ1 − 1

2θ0 + θ)

= nIθθ(θ1 − θ0)
[
θ̂ − 1

2 (θ1 + θ0)
]
. (30)

Appendix B
Properties of the Sequential Probability Ratio Test
To approximate the functions describing power
and expected sample size of the sequential prob-
ability ratio test (SPRT) for a test of hypotheses
about d in the MPT model displayed in Figure 1
(with g = .50), we can use formulae derived by
Wald (1947). For any given d0, d1, α, and β, the
power of the SPRT is a function of the true value
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d. Let Ψd denote the probability to acceptH1 given
a certain true value d, then

Ψd ≈
1 −

(
β

1 − α
)h

(
1 − β
α

)h

−
(

β

1 − α
)h
, (31)

where h is the non-zero root of the equation

p
(

p1

p0

)h

+ (1 − p)
(
1 − p1

1 − p0

)h

= 1 (32)

with p and pi denoting the true and predicted prob-
ability of a correct response under hypothesis i, re-
spectively, pi = di + (1 − di) · .50.

It is easy to see that if d = d1, which means
that p = p1, the non-zero root of (32) is h = −1,

p1
p0

p1
+ (1 − p1)

(1 − p0)
(1 − p1)

− 1

= p0 + (1 − p0) − 1
= 0 ,

(33)

which, as expected, yields

Ψd=d1 =

1 −
(
1 − α
β

)

(
α

1 − β
)
−

(
1 − α
β

)

=
α + β − 1

β
· β(1 − β)
βα − (1 − β)(1 − α)

= 1 − β.

(34)

In the same vein, if d = d0 the non-zero root
of (32) is h = 1,

p0
p1

p0
+ (1 − p0)

(1 − p1)
(1 − p0)

− 1

= p1 + (1 − p1) − 1
= 0 ,

(35)

which yields

Ψd=d0 =

1 −
(

β

1 − α
)

(
1 − β
α

)
−

(
β

1 − α
)

=
1 − α − β

1 − α · α(1 − α)
(1 − α)(1 − β) − αβ

= α .

(36)

In a second step, the expected sample size at
termination as a function of the true value d can be
approximated by

Ed(N) ≈
Ψd log

(
1 − β
α

)
+ (1 − Ψd)log

(
β

1 − α
)

p log
(

p1

p0

)
+ (1 − p)log

(
1 − p1

1 − p0

) ,

(37)
where Ψd is given by (31).
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