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die Umwelt

(EU) Coordination of Information on the

Environment

DFS Dauth, Findeisen & Suedekum Dauth et al. (2014)

DGNB Deutsche Gesellschaft für Nachhaltiges Bauen

e.V.

German Sustainable Building Council

DDR / GDR Deutsche Demokratische Republik (Former) German Democratic Republic

DWD Deutscher Wetterdienst National Meteorological Service (Germany)

EC Europäische Kommission European Commission

ECB Europäische Zentralbank European Central Bank

E[ast][ern]E Osteuropa Eastern Europe

(used in Graphs and Tables)

EEA Europäische Umweltagentur European Environment Agency
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Table 0.2: Table of Abbreviations (cont.)

Abbreviation German Name
Description/Translation

English Name
Description/Translation

EKC - Environmental Kuznets Curve

EPER Europäisches Schadstoffemissionsregister European Pollutant Emission Register

(predecessor to the E-PRTR)

E-PRTR Europäische Schadstoff-Freisetzungs- und

Verbringungsregister

European Pollutant Release and Transfer

Register (successor of the EPER)

EPSG - European Petroleum Survey Group

EPA Umweltschutzbehörde (USA) Environmental Protection Agency

∆EPA Absolute Änderung im Exportvolumen pro

Fläche

Export Exposure Change per area

∆EPW Absolute Änderung im Exportvolumen pro

Arbeiter

Export Exposure Change per worker

ERE - Environmental and Resource Economics

(Journal)

EU Europäische Union European Union

EURO[1-6] Europäische Abgasnorm [1-6] European emission standards [1-6]

EURO / ¿ Euro (Währung) Euro (currency)

EU27 27 EU-Mitgliedstaaten 27 Member States of the European Union

EX Exporte (in ¿) Exports (in ¿)

FDI - Foreign Direct Investment

FED Zentralbank der USA US Federal Reserve

F&B F+B Forschung und Beratung für Wohnen,

Immobilien und Umwelt GmbH

F+B (housing data provider)

GDP Bruttosozialprodukt (in ¿ or $) Gross Domestic Product (in ¿ or $)

GESS - Graduate School of Social and Economic

Sciences, Mannheim

GIS Geoinformationssystem Geographical Information System

GMM Generalisierte Momentenmethode Generalized Method of Moments

GRETA - Gridding Emission Tool for ArcGIS

GWR - Geographically Weighted Regressions

ha Hektar hectare

HPI Häuserpreisindex (from F&B) Housing Price Index (from F&B)

IAB Institut für Arbeitsmarkt- und

Berufsforschung (BA)

Institute for Employment Research

(of the German BA)

IM Importe (in ¿) Imports (in ¿)

INKAR INdikatoren und KARten zur Raum- und

Stadtentwicklung in Deutschland und in

Europa (BBSR)

Indicators and maps on spatial and urban

development in Germany and Europe (BBSR)

IPCC Zwischenstaatlicher Ausschuss für

Klimaänderungen (UN)

Intergovernmental Panel on Climate Change

(UN)

∆IPA Absolute Änderung im Importvolumen pro

Fläche

Import Exposure Change per area

∆IPW Absolute Änderung im Importvolumen pro

Arbeiter

Import Exposure Change per worker

ITC - International Trade Commission (US)

IV Instrumentalvariable Instrumental Variable
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Table 0.3: Table of Abbreviations (cont.)

Abbreviation German Name
Description/Translation

English Name
Description/Translation

LEZ Umweltzone (im Verkehr) Low-Emission Zone

LKS Landkreis(e) County (Germany)

MSA US Metropolregion Metropolitan Statistical Area

MCC - Mercator Research Institute on Global

Commons and Climate Change, Berlin

NACE[1.1] Nomenclature statistique des activités

économiques dans la Communauté

Européenne (Revision 1.1)

Statistical Classification of Economic

Activities in the European Community

(Revision 1.1)

NFR - Nomenclature for Reporting

NO2 Stickstoff Nitrogen Dioxide

O3 Ozon Ozone

OI[E] Optimales Interpolationsraster (für

Emissionen)

Optimal Interpolation (Emission) Raster

OLS Methode der kleinsten Quadrate Ordinary Least Squares Regression

PM2.5 Feinstaub (Durchmesser ≤ 2.5µm) Particulate Matter (Diameter ≤ 2.5µm)

PM10 Feinstaub (Durchmesser ≤ 10µm) Particulate Matter (Diameter ≤ 10µm)

PRC Volksrepublik China People’s Republic of China

RCG - REM-CALGRID (Model)

RR Relativer Risikofaktor Relative Risk (factor)

SARAR - Spatial-autoregressive model

with spatial-autoregressive errors

SE Standardfehler Standard Error

SEDAC - Socioeconomic Data and Applications Center

SITC [Rev. 3/4] Internationales Warenverzeichnis für den

Außenhandel, Revision 3/4

Standard International Trade Classification,

Revision 3/4

SNAP - Selected Nomenclature for Air Pollution

SO2 Schwefeldioxid Sulfur Dioxide

STD Standardabweichung Standard Deviation

TREMOD Emissionsberechnungsmodell (Verkehr) Transport Emission Model

TRI - Toxics Release Inventory (US)

TTB - Temporary Trade Barriers

UBA Umweltbundesamt German Federal Environment Agency

VSL Wert eines statistischen Lebens Value of Statistical Life

UCB - University of California, Berkeley

UN Vereinte Nationen United Nations

UNECE Wirtschaftskommission für Europa der

Vereinten Nationen

United Nations Economic Commission for

Europe

USA Vereinigte Staaten von Amerika United States of America

USD / $ - US Dollar

UTM - Universal Transverse Mercator (System)

VAR Varianz Variance

WGS84 - World Geodetic System 1984

WTO Welthandelsorganisation World Trade Organization

WZ93 Klassifikation der Wirtschaftszweige,

Ausgabe 1993

German Classification of Economic Sectors,

Revision 1993

ZSE Zentrales System Emissionen German National Emission Inventory
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General Introduction

There is a growing awareness that human civilization and industrial activity

interact with the environment and create negative externalities by deterio-

rating its quality for current and future generations. While greenhouse gas

emissions change the composition of the atmosphere and have the power to

impact the climate at a global scale, emissions of local pollutants directly

impact the well-being of individuals close to the source. The rise in awareness

is exemplified by international agreements such as the Paris Agreement signed

in 2016 and recent EU air quality directives (e.g. 2008/50/EC - Directive on

Ambient Air Quality and Cleaner Air for Europe). It is also accompanied by

an increasing level of data availability and an increasing willingness of policy

makers to monitor environmental data and share it with the public.

This makes research on environmental externalities and the policies ad-

dressing these externalities an important and promising endeavour. Not least

because the various environmental threats and remedies are hotly debated in

the public and novel environmental data allows environmental economists to

accurately address previously unanswerable research questions.

While most advanced economies have nowadays implemented intricate

environmental regulation, Germany presents a unique case study, as it is one

of Europe’s largest economies, at the center of international trade networks

and the arena of an unprecedented energy and industrial transition process.

The novel environmental datasets published by the German Environment

Agency (“Umweltbundesamt”, UBA) over the course of the past two decades

have the power to highlight this transition process.

First of all, these two decades have seen a rapid shift in economic power

at the international level. They have provided challenges to economies trying

to adjust to technological change and financial turmoil. And they have been

characterized by a growing exposure to globalized trade flows. As Germany
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continues to deepen its trade ties with Eastern Europe and China, it remains a

relevant question whether the resulting shift in industrial production has been

in line with Germany’s alleged willingness to reduce local emissions. This

research project can shed light on how advanced economies and terms of trade

shape industrial production in times of growing environmental awareness and

global interconnectivity.

Second, EU regulations enforce the reporting of pollution emissions and

concentrations in an attempt to foster regulation by information through

citizens using the data at their disposal for community action. One prime

example are the point source emissions from industrial facilities via the Euro-

pean Pollutant Release and Transport Register (E-PRTR). The publication

of German raw emission data in the year 2009 and the resulting real estate

price dynamics are a testing ground for the question of public awareness and

uptake of such information.

My dissertation aims to answer both questions and is structured as follows:

Chapter 1 presents the main findings regarding the effect of trade openness

on local air quality in Germany by combining adapted trade shock data with

spatial grid data on pollution concentrations. Chapter 2 explores the effect

of publicly available pollution emission reports from industrial facilities (via

the E-PRTR) on real estate prices in Germany, thereby evaluating public

awareness of environmental quality and public response to regulation by infor-

mation. Chapter 3 synthesizes information on the spatial pollutant emission

datasets available for researchers in the German context and provides insight

on how to harness their potential. The Appendix (A) contains supplementary

material for all Chapters.

First Chapter: Trade and the Environment

During recent elections in Europe and America, the growing trade intercon-

nectivity has come under criticism and populists and media outlets have

emphasized the negative impacts of trade exposure. On the other hand, there

is rich empirical evidence highlighting the positive aspects of international

trade and the German export industry may be one of the biggest beneficiaries.
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According to recent research in trade and labor economics, the increasing

trade flows with China and Eastern Europe since 1998 have stabilized aggre-

gate employment and created new manufacturing job opportunities in the

German labor market despite significant restructuring in industries under

pressure.

This chapter evaluates, whether the restructuring processes resulting

from trade opportunities also had a positive impact on emission profiles. A

significant shift of production capacities towards cleaner and more modern

facilities could be considered a beneficial windfall effect of trade openness and

is potentially detectable using spatial environmental data. Demonstrating

the potential of existing terms of trade for such environmental improvements

may be an antidote against the populist notion that trade openness has

predominantly negative effects for developed nations.

To this end, I study whether the increase in trade relationships towards

China and Eastern Europe is tied to a reduction in local aerial pollution

concentrations. The analysis in long differences exploits regional variation in

trade exposure and pollution exposure over the time period from 1998 to 2008

coinciding with China’s admission to the WTO in 2001 and subsequent EU

accession waves. I observe regional pollution concentration changes for NO2,

SO2 and PM10 and pair this data with changes in trade flows at the German

county level over the same time period. Threats to identification are resolved

through the implementation of exogenous variation in Chinese and Eastern

European trade openness as instrumental variables. I find a positive effect

of rising local import competition on environmental quality for NO2 and

PM10 concentrations, which survives robustness checks such as weighting

trade exposure by area or controlling for initial dirtiness. These gains are not

offset by the negligible contributions of export opportunities towards China

or the minor increases in pollution levels caused by export scaling towards

Eastern Europe. As emission increases tied to export opportunities are small

in comparison to the savings from trade-induced restructuring, this yields a

net reduction of 0.07µg/m3 in average concentration levels for NO2 and of

0.24µg/m3 for PM10 over the observation period. These windfall effects of

trade openness constitute an economically significant but minor contribution
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to the absolute reductions in both substances (∼3µg/m3) over the observed

time frame.

Second Chapter: Regulation by Information

This research project addresses a policy response to industry emission external-

ities which refrains from direct command-and-control regulation and instead

promotes “regulation by information” by making environmental pollution

data available to the public. The European Pollutant Release and Transfer

Register (E-PRTR) is a web-based register established by EU regulations (i.e.

Regulation (EC) No 166/2006 implementing the UNECE PRTR Protocol

signed in 2003) and maintained by the European Environment Agency (EEA).

It obliges industrial facilities within EU member states to report emitted

pollutant quantities to the national environmental agencies if these exceed

predefined thresholds. The German Environment Agency (UBA) compiles

this information and has made the reports available to the public on a yearly

basis since 2009. The research design in this chapter exploits the publication

timing in a quasi-experimental approach based on differences-in-differences

and event study tools in order to analyze whether such emission reports alter

asset prices in the German housing market.

The event under study is the publication of the first wave of reported

E-PRTR emission quantities in 2009. The analysis is based on quarterly

housing prices at the German postal code level for the years 2007-2011 and

provides the first evidence from Europe on the link between emission data and

housing prices. Estimating a differences-in-differences model and controlling

for observable differences in land use, housing type distribution, tax revenues

and other postal code area characteristics by means of propensity score

matching, the released emission information is found to have no effect on

housing valuations in affected postal code areas. This result survives a number

of robustness checks designed to assess whether the finding is due to data

aggregation issues or the treatment definition. It leads to the conclusion that

on an aggregate level the 2009 publication of E-PRTR data did not have an

immediate and noticeable effect on housing prices in Germany.
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Third Chapter: Spatial Environmental Data

This chapter provides an overview of the environmental datasets that enable

the research projects presented above. It compares the characteristics of

these datasets, evaluates their usefulness for different research questions and

provides methodological insight on how to utilize the datasets and harness

their potential for the research questions at hand. The summary focuses

on data products provided by the German UBA and the industry emission

dataset E-PRTR compiled for the EEA. The former mainly consist of spatial

grid data based on the Optimal Interpolation (OI) methodology and advanced

distribution models, which generate raster datasets for the evaluation of

local immission concentrations of airborne pollutants such as NO2, PM10

and SO2 in lieu of underlying point source measurements. More recent

raster products rely on the Gridding Emission Tool for ArcGIS (GRETA) to

distribute emissions onto a finer spatial grid and attribute emission quantities

to source sectors. The E-PRTR contains obligatory reports of pollutant

releases from industrial facilities exceeding predefined thresholds and covers

a broad selection of chemical agents 1.

A lot of relevant information regarding the more technical aspects of

data preparation behind my empirical research has been compiled in this

chapter and has been referenced throughout the document. The chapter

also highlights some of the advantages and inherent limitations entailed by

the usage of various datasets and can therefore serve as a practical guide on

how to utilize the data for subsequent empirical projects or related research

questions. Last but not least, the chapter provides justification for the use of

individual datasets in the context of my research and tests their validity for

the research questions under study.

1While chemical agents and particles released from a point source are defined as
emissions, local aerial concentrations resulting from the dispersion and travel of such
emissions may occur in areas far from the source and constitute the so-called immisions.
Thus, Chapter 1 utilizes immission concentrations for its empirical analysis, while Chapter
2 analyzes the public response to emission reports.
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Chapter 1

Did Globalization help Germany

become cleaner? -

The effect of increasing Import/Export

Exposure on local air pollution

1.1 Introduction

The past decades have seen a remarkable change in the structure of the world

economy as both the World Trade Organization (WTO) and the European

Union (EU) have expanded towards the states of the former Soviet Union

and have fully integrated the People’s Republic of China into their vast

trade network. This development has affected Western economies on many

levels and recent literature has attempted to quantify and evaluate its effects

on local labor markets, regional industry structures and society as a whole.

While the increasing trade integration is sometimes perceived as a challenge

to the existing status quo and has been shown to create social and economic

pressure, it provides access to foreign markets, opportunities for renovation

and incentives for innovation.

One important aspect of exposure to the world markets is the impact

on local environmental quality within the countries involved. Due to the

complexity of trade relationships and the countervailing nature of observed

effects, it remains an empirical question, whether the environmental situation
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in a given country benefits or suffers from increasing trade links. Seminal

papers such as Antweiler et al. (2001) and Copeland and Taylor (2004) have

highlighted the possibility for positive effects of free trade on environmental

quality. They have identified several channels as drivers of the relationship

between trade exposure and environmental quality such as scale of produc-

tion, technological change and the composition of the production spectrum.

While Shapiro and Walker (2018) have recently disentangled the effects of

environmental regulation, productivity and trade on aerial pollution in the

United States manufacturing sector, empirical evidence for the aggregate effect

of Globalization on environmental quality in developed economies remains

sparse.

This chapter explores the effect of rising trade openness on the local

environmental quality in Germany by linking changes in trade exposure

towards rising economies in the East between 1998 and 2008 to spatial

concentration measures of aerial pollution. In doing so, it conducts the first

empirical analysis of this aspect with a focus on Germany as one of the

world’s leading exporters and one of the pivotal economies in the European

Union. For the empirical analysis, local concentrations of nitrogen dioxide

(NO2), sulfur dioxide (SO2) and particulate matter with a diameter of 10µm

or less (PM10) are obtained at high spatial resolution from geocoded datasets

provided by the German Environment Agency (UBA). They are combined

with trade exposure measures at the German county level. This allows for the

exploitation of regional variation in both trade intensity and local air quality

for the sake of empirically identifying causal effects between trade openness

and emission patterns2.

An efficient methodology for distributing trade volumes onto the regional

level has been developed by Autor et al. (2013) (henceforth ADH), who

evaluate domestic US labor market responses by assigning trade flows to

commuting zones according to proportional industry employment shares.

While their exposure measures reveal a negative impact of increasing trade

2The pollutants under study are known for their detrimental effects on the respiratory
and the cardiovascular system resulting in severe short term and long term health risks
associated with exposure. They are by-products of industrial production processes and
described in more detail in Appendix A.1.1.
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ties with China on US manufacturing workers, Dauth et al. (2014) (henceforth

DFS) find contrasting evidence for the German manufacturing sector by

adopting the same framework for the computation of variables at the German

county level. Trade ties between Germany and both China and the former

members of the Soviet Union in Eastern Europe have increased significantly

since the fall of the Iron Curtain. By exploiting cross-county variation in

trade shock severity, DFS demonstrate that the German manufacturing

sector has been capable of harnessing export opportunities especially towards

Eastern Europe. This is evidenced by the sector securing a high employment

share above trend through the creation of up to 442,000 additional jobs.

By conducting an extensive study of worker flows in Germany, Dauth et al.

(2021) demonstrate, however, that the overall positive employment effect

requires individual worker mobility to mitigate adverse impacts of import

shocks on careers in industries suffering from import competition. Despite

significant structural changes, the dominating influence of expanding export

opportunities towards Eastern Europe has rendered Germany a positive

singularity in the international context. This becomes particularly evident

when comparing the labor market effects with the adverse developments in

the US market. The magnitude of both trade expansion3 and labor market

responses gives rise to the question, whether this restructuring process also

has the capacity to effectively shape and enhance industry emission profiles.

1.2 Contribution

I contribute to the existing literature by expanding the research on the effects

of trade openness on local stakeholders to local emission profiles by making

use of (i) the regional trade exposure framework and (ii) the identification

3According to Dauth et al. (2014), this expansion amounts to a rate of 1608% in
imported goods from China to Germany between 1988 and 2008 and a growth rate of
900% in German exports to China. The growth rate for imported goods from Eastern
Europe amounts to a rate of roughly 900% and is slightly exceeded by the growth rate of
German exports to this region. Their definition of Eastern Europe (EasternE) has been
adopted for this chapter and encompasses Bulgaria, the Czech Republic, Hungary, Poland,
Romania, Slovakia and Slovenia as well as former members of the Soviet Union (Russia,
Belarus, Estonia, Latvia, Lithuania, Moldova, Ukraine, Azerbaijan, Georgia, Kazakhstan,
Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan).
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strategy introduced by ADH and DFS, which resolves endogeneity issues

through the use of exogenous variation in Chinese and Eastern European

trade openness. With respect to potentially beneficial environmental impacts,

Germany is an excellent case study as documented by DFS. This is because

(i) Germany allows for an analysis beyond trivial emission savings due to a

shrinking manufacturing sector and because (ii) it represents a major trade

hub economy in Europe that has also implemented costly environmental

regulation. Environmental benefits in this scenario may therefore be the

result of restructuring and modernization instead of a pure liquidation of

manufacturing capacities. The empirical approach is designed to evaluate,

whether the net effect of Germany’s rising trade exposure towards China and

Eastern Europe has been a reduction in local pollution concentration levels.

It also allows for the quantification of such net effects.

First of all, the estimates from my long differences instrumental variable

(IV) regressions suggest that import competition from both China and Eastern

Europe has lowered NO2 and PM10 levels in Germany, while emerging export

opportunities have not caused level increases of comparable magnitude. The

resulting net effect of increased trade exposure on local air quality in Germany

is therefore a reduction in concentration levels of −0.07µg/m3 for NO2 and

of −0.24µg/m3 for PM10.

Second, robustness checks incorporating initial county-level heterogeneity

reveal that air quality in initially dirtier counties benefits more from import

exposure than air quality in cleaner counties. Initially polluted counties also

experience stronger scale effects due to export opportunities, however.

Finally, I demonstrate that the overall savings represent economically

significant improvements when translated into mortality benefits but a small

contribution to the overall long-term trends, which yield pollution exposure

reductions of approximately −3µg/m3 for NO2 and of −2.84µg/m3 for PM10

over the same time period (1998-2008). Since Germany has experienced

beneficial manufacturing employment effects as a result of the new trade

routes, demonstrating the existence of meaningful pollution concentration

benefits in the presence of related scale effects is a strong empirical finding4.

4Average reductions across all German counties are the result of back-of-the-envelope
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1.3 Literature and Historical Background

1.3.1 Existing empirical evidence

The works by Autor et al. (2013) and Dauth et al. (2014) provide the empiri-

cal methodology for dissecting trade exposure at the local level used within

this chapter. They also provide ample evidence for the significant impact of

increased trade volumes on local labor markets and the restructuring pressure

in non-competitive industries. Autor et al. (2014) for example demonstrate

that rising import competition with China drove workers out of affected

US industries and lowered wages especially for low-skilled manufacturing

workers. Dauth et al. (2021) confirm the pattern for Germany that rising

import penetration induces workers to leave the exposed industries and that

industry sorting has been an effective form of adjustment for absorbing the

trade shocks in Germany. Non-competitiveness may be due to the fact that

affected industries rely on technologically obsolete facilities or suffer from a

competitive disadvantage due to higher environmental regulation. Their re-

structuring therefore constitutes a plausible impact channel for environmental

improvements5.

Consequently, empirical research by Naughton (2010) conducted with

aggregated data from several European countries indicates that variables

capturing the degree of trade intensity are positively linked to reductions in

SO2 and nitrogen oxide (NOX) emissions per capita over the time period

from 1980 to 2000. Furthermore, Managi et al. (2009) demonstrate that trade

openness as a major aspect of Globalization has allowed OECD countries like

Germany to improve their environmental footprint between 1972 and 2000 but

that non-OECD countries have experienced detrimental effects with respect

calculations based on the regression coefficients from my preferred IV specification presented
in Table 1.3 of Chapter 1.5.2. Chapter 1.5.3 describes this back-of-the-envelope methodology
in more detail and contains a simple Value of Statistical Life (VSL) estimation which
assesses the economical impact of savings through the mortality channel.

5Anecdotal evidence (e.g. The New York Times, 2007) suggests that obsolete and dirty
German facilities have been dismantled in their entirety and reassembled in China, where
their operation is still profitable.
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to SO2 and carbon dioxide (CO2) emissions over the same time period.

On the other hand, de Sousa et al. (2019) find positive effects of trade

integration for local Chinese SO2 concentrations as a result of increased

processing trade activities. These reductions are mainly driven by trade with

developed countries and imply the possibility of positive environmental effects

within developing economies if trade openness raises the technological level

of operations. Milner and Xu (2009) also discuss the environmental impact

of trade liberalization on China and find contradictory evidence depending

on the model assumptions. When taking pollution content into account, the

impact of trade openness on China’s domestic environmental quality becomes

negative making China a net exporter of embodied pollutants. By constructing

export shocks at the Chinese prefecture level, Bombardini and Li (2016) find

that trade shocks with respect to dirty industries affect local pollution and

child mortality. A one standard deviation increase in polluted exports raises

SO2 concentrations by 5.4µg/m3 between 1990 and 2010 according to their

analysis. However, they also find that higher domestic incomes drive demand

for clean environments. Furthermore, Lin et al. (2014) argue that China has

become one of the world’s largest emitters of anthropogenic air pollution

and that pollution from export-oriented industries is contributing to sulfate

pollution and ozone levels on the US West Coast. This implies that growing

Chinese industrial production causes environmental damages affecting air

quality far from the point of origin. Outsourcing this production, however,

retains the potential for domestic environmental benefits on the part of the

developed trade partners.

A recent paper by Shapiro and Walker (2018), investigates the role of trade,

productivity and environmental regulation on aerial pollutant abatement in

the US manufacturing sector between 1990 and 2008. They find that the

largest portion of reductions can be traced back to stricter regulation and

that the remaining effect of trade exposure is rather small. This implies

that regulation in Germany may lead both to direct local abatement and

simultaneous outsourcing of production in order to avoid costly compliance

with environmental regulation. Consequently, rising import competition

and pollution reductions may be directly correlated and estimations may be
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subject to simultaneity bias. This reinforces the need for an identification

strategy via instrumental variables based on exogenous variation in trade

openness demonstrated by the foreign trading partners.

1.3.2 Impact channels of trade exposure on

environmental quality

The seminal paper by Antweiler et al. (2001) argues that free trade globally

reduces pollution emissions through production scaling, technology effects and

changes in product mix. Their empirical analysis reveals that a rise in produc-

tion and income by 1% reduces pollution concentrations by 1%. Estimates for

SO2 indicate that rising global trade openness creates small but measurable

reductions in pollution concentrations by reducing the pollution intensity of

domestic production. Copeland and Taylor (2004) examine the relationship

between international trade, economic growth and the environment and review

prior empirical and theoretical works. They highlight the role of comparative

advantages through environmental regulation and the interaction of trade

policy and environmental policy, which can manifest itself in deregulated

“pollution havens” attracting industry production from environmentally regu-

lated countries. A recent review by Dechezlepretre and Sato (2017) reveals

that strict environmental regulation represents a comparative disadvantage

for affected industries. While small compared to overall trends in production

and mitigated by innovation in clean technologies, this disadvantage can have

significant impacts on pollution- and energy-intensive sectors in the short

run. Wagner and Timmins (2009) for example find statistically and econom-

ically significant evidence for an outsourcing to “pollution havens” within

the German chemical industry. Their empirical panel regression analysis

demonstrates that stringent environmental regulation acts as a deterrent for

foreign direct investment (FDI) in this sector .

While the outsourcing of highly pollution intensive manufacturing from

developed economies through trade liberalization will lead to environmental

benefits within the outsourcing countries, it may conversely lead to detrimental

13



environmental effects in developing economies if these fail to implement

this industrial production at a much higher technological standard. The

outsourcing economies then become cleaner domestically but remain net

importers of embodied ecological footprints from countries with a comparative

advantage in producing environment-intensive goods as demonstrated by

Dam et al. (2017). This means that by outsourcing dirty production and

re-importing the products a country does not necessarily change its domestic

emission consumption profile, as it implicitly re-imports and consumes the

emissions released abroad6.

On the other hand, restructuring pollution and energy intensive man-

ufacturing globally does offer opportunities for improvement. Koren et al.

(2019) demonstrate that Hungarian machine operators benefit from exposure

to imported machines and that importing advanced machinery increases skill

and wage levels. Trade openness therefore yields beneficial productivity and

environmental effects for developing nations if they experience additional

trade exposure in high-skill technologies. The empirical correlation between

high productivity and environmentally friendly production is well documented.

Cui et al. (2015) as well as Forslid et al. (2018) provide theoretical models jus-

tifying this relationship by demonstrating that successful exporters are likely

the most productive firms as well as the earliest adopters of new technologies

and new pollution abatement methods. This is supported by an empirical

analysis utilizing US and Swedish firm-level data, which demonstrates that ex-

port opportunities increase environmental quality via the internal technology

adoption channel. Facilities from both developed and developing countries

already operating at high productivity levels or in export markets are prone

to enter a “virtuous circle” that makes such facilities ever more competitive

6This has also been shown by Aichele and Felbermayr (2012) and Aichele and Felbermayr
(2015) in the context of CO2 footprints and formal commitment to the Kyoto Protocol.
My analysis focuses on locally active pollutants and evaluates the potential for domestic
abatement, thereby abstracting from fairness aspects in a potential zero-sum game. The
importance of emission leakage aspects becomes apparent, though, when considering
outsourcing as a simple relocation of emission sources and has been studied thoroughly
with respect to green house gases (see e.g. Jakob et al., 2014). The severity of this leakage
effect depends on several factors and can be rather small if domestic emission intensity
is able to respond to a rising demand for export goods (see e.g. Barrows and Ollivier
(2018b)).
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on global markets, more productive and therefore cleaner and more energy

efficient7. Holladay (2016) highlights the relationship between productivity

and emission intensity at the firm level and argues that import competition

leads to the exit of pollution intensive establishments. Theoretical models

and empirical evidence from this strand of literature thus emphasize that

trade liberalization has the capacity to reduce local or even global pollution

levels by reinforcing overall productivity, technological standards and the shift

towards cleaner and more energy efficient industries.

A popular concept mirroring these aspects is the Environmental Kuznets

Curve (EKC), which describes the relationship between a nation’s wealth

and its pollution levels. Stern (2004) revisits the theory and argues that

the inverted-U-shaped relationship between the wealth of a nation and its

pollution levels may be driven by a country’s ability to dictate its terms

of trade. Developed economies in such a framework start outsourcing their

dirtiest production to developing economies. As environmental regulation

creates financial constraints for polluting domestic industries, it incentivizes

shifting production with costly compliance to less regulated countries (i.e.

“pollution havens”). This research project seeks to analyze to what extent such

impacts of import competition and export opportunities on environmental

quality can be detected at the German county level, as the strict regulation in

Germany is seen as a powerful catalyst in the context of existing frameworks

(such as the EKC8).

While the impact of trade liberalization on pollution concentrations can

be attributed to three principal channels according to Antweiler et al. (2001)

and Copeland and Taylor (2004) and decomposed into a pure scale effect, a

composition effect and a technique component, it is beyond the scope of this

7There is ample anecdotal evidence from Germany that manufacturing companies
invest into the sustainability and emission intensity of modern facilities built after 1998
(e.g. Mitteldeutscher Rundfunk, 2019). This pertains to energy consumption as well and is
partly driven by the desire to generate long-term savings, to improve the brand image and
to achieve certification from independent bodies and testing institutes such as the German
Sustainable Building Council (“Deutsche Gesellschaft für Nachhaltiges Bauen”, DGNB).

8For a more detailed analysis of the role of free trade in the context of the Environmental
Kuznets Curve refer to Appendix A.1.2.
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research project to carry out such a decomposition9. Instead, I analytically

focus on the compounded effect at the German county-level and provide

a summary of the literature on potential impact channels as well as their

decomposition in Appendix A.1.3 and Appendix A.1.4.

1.3.3 Trade exposure, labor markets and

related research

ADH and DFS provide ample evidence for the significant impact of increased

trade volumes on local labor markets. While ADH demonstrate that rising

import competition with China has driven workers out of affected US industries

and affected wages negatively, DFS demonstrate a much smaller detrimental

effect for German industries exposed to Chinese import competition and a

positive employment effect from rising export exposure, especially with respect

to new export opportunities in Eastern Europe. They estimate that growing

trade ties with these two trade partners have saved up to 442,000 German

manufacturing jobs over trend between 1988 and 2008. This is in line with

findings presented in Benedetto (2012), who argues that Germany has been

able to exploit export opportunities with China. There is a concentration of

export flows in mechanical and electrical intermediate goods, in investment

goods for the Chinese exporting industry and in luxury cars according to

his analysis. While this suggests that recent trends in globalization have

yielded overall positive employment effects in Germany, restructuring and

adjustments in industry production lead to foreclosures and frictions within

less competitive sectors as documented by Dauth et al. (2021). A multi-sector

gravity model with heterogeneous workers developed by Galle et al. (2018)

quantifies the distributional welfare effects of the Chinese trade shock on US

workers. They estimate that the most negatively affected groups suffer welfare

losses up to five times the size of the positive average welfare gain. According

9A supplementary analysis relying on E-PRTR data at the industry-level is presented
in Chapter 3.4.2. The limited availability of data precludes causal identification but the
descriptive analysis verifies that key industries affected by trade exposure in DFS also drive
pollution patterns.
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to Marin (2017), the extent of aggregate employment gains through trade

renders Germany a singularity in the international context, however, which

can be explained by a predominantly decentralized management style and

high product quality.

While restructuring from industries under pressure to exporting industries

may yield environmental benefits, the perceived and actual welfare losses of

affected workers have played a major role in recent political debates. Utilizing

the data sources and the methodological approach popularized by DFS and

linking voting behavior to localized trade exposure in Germany, Dippel et al.

(2015) demonstrate that import competition has fueled the rise of right-wing

populism. Utilizing results from the US congressional elections in 2002 and

2010, Autor et al. (2016) find a trend towards ideological polarization in

districts exposed to import competition shocks, which end up electing either

very conservative Republican candidates or very liberal Democrats. A shift

towards cleaner production through import competition may therefore be

accompanied by attrition effects and social frictions in affected regions, which

require political attentiveness and can potentially be addressed through fiscal

interventions and transfers.

Sectors and industries under pressure from import competition, however,

can apply for Temporary Trade Barriers (TTB) via the EU or the International

Trade Commission (ITC) in the US in order to defend their products and

workers against supposedly unfair or insurmountable competition. Trimarchi

(2019) shows that affected industries in the United States have been partially

successful at doing so and have put non-tariff protection measures in place over

the past two decades that have effectively protected employees. He estimates

that negative employment effects from import competition in the United States

are halved when accounting for successful protection measures10. Protectionist

measures therefore have the capacity to slow down transformation processes

and to delay welfare losses for domestic workers.

10A recent EU example are the anti-dumping and anti-subsidy measures against Chinese
solar panels implemented in 2013 and terminated in 2018. Since this chapter is designed to
evaluate the impact of actual trade flows, trade barriers potentially limiting such flows do
not have to be accounted for.
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1.3.4 German Timeline of Globalization

The most important catalysts for the trade expansion towards China and

Eastern Europe are certainly the fall of the Iron Curtain after the collapse of

the Soviet Union and China’s accession to the WTO on December 11th, 2001.

The post Cold War enlargement of the EU began in the mid nineties and was

foreshadowed by Austria, Finland, and Sweden joining the EU on January,

1st, 1995, which marked its fourth enlargement phase. Eight Central and

Eastern European countries (the Czech Republic, Estonia, Hungary, Latvia,

Lithuania, Poland, Slovakia, and Slovenia) along with two Mediterranean

ones (Malta and Cyprus) joined on May, 1st, 2004. Romania and Bulgaria

were deemed ineligible for this wave of Eastern European Enlargement but

admitted on January, 1st, 200711.

Figure 1.1 depicts the rise in absolute volumes of manufacturing goods

between Germany and the new partners in the East during this time period

and plots these against the overall trends in German manufacturing trade
12. The trade flows with China and Eastern Europe exhibit a significant

increase from less than ¿50bn each in 1998 to an already significant share

of Germany’s global manufacturing trade in 2008 with Eastern European

exports exceeding ¿100bn by the end of 2008.

11An official summary of the EU accession history can be found on the official website
(https://ec.europa.eu/neighbourhood-enlargement/policy/from-6-to-27-members en).

12All real trade volumes are restricted to the manufacturing sector, denoted in 2005
currency and have been extracted from official UN trade data (COMTRADE). Total
manufacturing trade figures are scaled according to the secondary axis. The selection of
manufacturing industries follows DFS and is described along with the aggregation procedure
in Chapter 1.4.1.1 and Appendix A.1.6.
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Figure 1.1: Timeline of German Trade Volumes (restricted to Manufacturing)

Figure A.6 in Appendix Chapter A.1.5 presents a timeline of the main

accession events and compares them to the time series of available data sources

for the empirical analysis in this chapter.

The deepening economical ties with Eastern European countries after the

end of the Cold War are the outcome of a longer convergence process. DFS

narrow down its hot phase to the period between 1998 and 2008, however,

as it encompasses both the opening of German markets towards China and

the main expansion waves of the European Union towards Eastern Europe.

There is evidence (e.g. Xianbai, 2015) that the introduction of the EURO,

which is included within the period of observation, has allowed the German

exporting industry to further flourish due to the subsequent lack of currency

appreciation. The empirical analysis in this chapter focuses on the same

time frame as it encompasses all of these events and avoids the potentially

confounding influence of the Financial Crisis after 2008.
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1.4 Research Design

1.4.1 Data

1.4.1.1 Import/Export Exposure

This study relies on the changes in export and import exposure provided

by DFS. These measures have been computed based on raw firm-level

data obtained from the Institute for Employment Research (“Institut für

Arbeitsmarkt- und Berufsforschung”, IAB) of the German Federal Employ-

ment Agency (“Bundesagentur für Arbeit”, BA) and have been compiled at

the county level. The measures represent absolute changes in ¿1,000 per

worker over the main time frame (1998-2008) for each respective county (i)13.

The subscripts j ∈ [1, ..., J ] indicate NACE1.1 three-digit industries and the

superscripts X ∈ [China,EasternE, Pooled] indicate the trade partner. If

no index (X) is given, then the variable represents the pooled trade exposure

(with X = Pooled denoting the aggregate of both). The variables have been

computed by the authors according to the following formulas and can be

abbreviated by ∆IPW (Import Exposure Change per worker) and ∆EPW

(Export Exposure Change per worker):

∆IPWX
i

= ∆1998→2008ImportExposurePW
X
i

=
∑J

j=1

[
Employeesij1998

Employeesj1998
· ∆1998→2008ImportGER←Xj

Employeesi1998

] (1.1)

13In total, there are 413 counties (“Landkreise”, LKS) in Germany in the reference year
2008 of this analysis.
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∆EPWX
i

= ∆1998→2008ExportExposurePW
X
i

=
∑J

j=1

[
Employeesij1998

Employeesj1998
· ∆1998→2008ExportGER→Xj

Employeesi1998

] (1.2)

The variables∆1998→2008Importj and∆1998→2008Exportj represent changes

in absolute trade balances measured in 1.000¿ between t0 = 1998 and

t1 = 2008 that have been extracted from the United Nations Commodity

Trade Statistics Database (COMTRADE)14. The employment shares responsi-

ble for the allocation of exposure values within the DFS methodology pertain

to the initial time period t0 = 1998 . They distribute absolute changes in

trade volumes within a given industry code onto the regional level according

to national employment shares. Aggregating these industry-specific absolute

changes measured in ¿1,000 per worker in the county over all manufac-

turing sectors present in the given county produces explanatory variables

capturing how exposed the workers in a given county have been to shifts in

manufacturing-related trade volumes.

Dividing the absolute changes by the county size Areai (measured in m2)

instead of by the number of workers in the county provides area-weighted

explanatory variables controlling for the spatial density of exposure. Using

these measures of trade intensity is intuitive because they can be directly

related to pollution concentration averages (in µg/m3) due to the comparable

distribution of absolute quantities onto the shared spatial dimension (1/m2).

The resulting variables are therefore of the dimension 1,000¿/m2 and repre-

sent absolute changes in trade exposure per square meter. Regressions are

performed for both types of exposure changes and the area-weighted measured

14Trade volumes are transformed into real values (¿ of 2005) via publicly available
exchange and inflation rates provided by the German “Bundesbank”. The countries repre-
senting Eastern Europe are Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia,
Slovenia, Russia, Belarus, Estonia, Latvia, Lithuania, Moldova, Ukraine, Azerbaijan, Geor-
gia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. All trade data is
restricted to the manufacturing sectors selected by DFS. Please refer to Appendix A.1.6 for
more information on the data generation process. The trade exposure changes computed by
DFS have been used for the regression analysis in this chapter and the same weighting and
transformation schemes underlying these variables have been used for my own calculations.
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can be abbreviated by ∆IPA (Import Exposure Change per area) and ∆EPA

(Export Exposure Change per area). Utilizing county size and the manu-

facturing employment figures in t0 = 1998 provided by DFS, area-weighted

exposure changes can be computed as follows:

∆IPAXi

= ∆1998→2008ImportExposurePA
X
i

= ∆1998→2008ImportExposurePW
X
i ·

Employeesi1998

Areai

=
∑J

j=1

[
Employeesij1998

Employeesj1998
· ∆ImportGER←Xj

Areai

] (1.3)

∆EPAXi

= ∆1998→2008ExportExposurePA
X
i

= ∆1998→2008ExportExposurePW
X
i ·

Employeesi1998

Areai

=
∑J

j=1

[
Employeesij1998

Employeesj1998
· ∆ExportGER→Xj

Areai

] (1.4)

1.4.1.2 Pollutant Concentrations and Air Quality

Pollutant immission data is available through the various distribution channels

of the UBA. The agency routinely compiles fine-grid raster data for aerial

pollutants including NO2, PM10 and SO2 concentrations. Time series of

annual pollutant concentrations are therefore available for the year 1995

and continuously since 2000. This data is used to compute average changes

in concentration levels across individual Germany counties (“Landkreise”,

LKS) in order to pair this information with the import and export exposure

changes at the county level computed by DFS. The underlying hypothesis

is that counties with strong increases in import exposure are subject to

industry restructuring and in turn benefit from decreased local pollutant

concentrations in the air. Although export opportunities result in increased

production (“scale effect”), they are also predicted to benefit technologically

advanced sectors and highly productive firms or non-polluting job profiles in

the tertiary sector as discussed in Appendix A.1.4.
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Pollutant concentration rasters for the year 1995 and the years 2000

to 2014 have been obtained containing yearly averages (in µg/m3) for the

aerial pollutants NO2, PM10 and SO2. They provide me with time series

containing yearly averages of pollution concentrations measured in µg/m3

for a total of 10332 rectangular grid cells, which individually represent an

area of approximately 57km2. The UBA datasets used in this analysis

combine advanced scientific methods to carefully approximate local immission

concentrations. The underlying emission fields are derived from a top-down

modeling approach with respect to local emission quantities and distributed

according to meteorological parameters and the REM-CALGRID (RCG)

model developed in Yamartino et al. (1992), which simulates the transport

of chemical substances in various media. The resulting hourly emission

concentrations are readjusted locally through hourly station measurements

using the Optimal Interpolation (OI) framework developed by Flemming and

Stern (2004).

Concerns such as the influence of temporary weather anomalies are ad-

dressed by averaging raw emission concentrations at the county-level over

several years. Appendix A.1.8 describes the aggregation process in detail

and Appendix A.1.9 discusses the properties of the dataset for the analysis

at hand, while Chapter 3.3.2.2 presents correlations between the individual

pollutants and various aggregation methods. The Germany-wide averages of

these measures across all 413 counties are depicted in Figure 1.2.
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Figure 1.2: Averages of pollutant concentrations over time
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1.4.2 Regression Model

This chapter’s analytical approach is based on a first (long) differences model

with continuous treatment. Its aim is to test, whether the hypothesis that

increasing trade openness tends to have beneficial impacts on local pollution

concentrations in Germany holds true. Its dependent variables are therefore

the developments in pollutant concentration (Yit) over time (t) and across

413 German counties (i) in the cross-section. The year t0 = 1998 is the initial

time period and t1 = 2008 is the end-of-sample period marking the end of the

treatment process, which is captured by the differences in trade flow exposure.

The model is designed to evaluate aggregate effects of regional trade exposure

on local environmental quality as a net expression of the underlying channels

discussed in Appendix A.1.4.

The model can be applied to pollution concentrations measured in µg/m3

for the three individual pollutants Yitε [NO2it, PM10it, SO2it] and utilizes

the first differences between smoothed averages over the years 1995-2001

and the years 2005-2011 across 413 counties in the cross-section15. The

main explanatory variables are the changes in import and export exposure

measured in ¿1.000 per worker or per area unit (i.e. m2) as described in

Chapter 1.4.1.1. Standard errors are clustered at the level of the German

federal states (“Bundesland”) to capture differences in legislation between

federal states. A set of control variables pertaining to the initial time period

in order to minimize endogeneity concerns can be added via the vector Xi1998.

This yields the following model, which can be restricted to an individual trade

partner Xε [China,EasternE] or the pooled trade flows (X = Pooled) and

modified to include any larger subset of explanatory variables :

∆1998→2008Yi = α1 + α2∆1998→2008ImportExposure
X
i

+ α3∆1998→2008ExportExposure
X
i

+ X ′i1998 ·
−→
β + εi

(1.5)

15See Appendix A.1.8 for details on the aggregation procedure.
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The standard set of controls contains regional dummies (RegionNorthi,

RegionSouthi, RegionEasti), which define separate large-scale labor markets

as suggested by DFS and capture different trends in these macro regions16.

The main coefficients of interest are α2 and α3 as they capture the effects

of changes in export/import exposure with a given trade partner on the

environmental quality within counties. The regressions can be modified

to focus on individual trade partners only and the control set is tailored

to capture prevailing trends in emission concentrations unrelated to trade

exposure. The standard set of pre-sample controls includes the unemployment

rate in 1998, the share of employees in the manufacturing sector in 1998, the

share of votes received by the Green party (“Bündnis 90 / Die Grünen”)

during the parliamentary elections in 1998 as well as an additional control

variable capturing the nature of traffic within a given county17. Thus, the

trade exposure coefficients α2 and α3 capture the region-specific dispersion of

emission responses caused by differences in the individual severity of trade

shocks above or below the general trend component comprised of X ′i1998 ·
−→
β

and the intercept α1.

16The first region covers the Northern German states Hamburg, Bremen, Lower Saxony
and Schleswig-Holstein, while the second region covers Bavaria and Baden-Württemberg
and the Eastern Region covers all states belonging to the former German Democratic
Republic (GDR) along with West-Berlin.

17Since the aerial pollutants under study are also byproducts of the combustion of
vehicle fuels, it is important to control for regional differences in transportation. However,
trade opportunities have a direct effect on the labor market as shown by DFS and can
therefore change commuting patterns and local traffic density. The same is true for local
environmental quality as shown by Banzhaf and Walsh (2008). This implies the need for a
pre-sample control variable capturing traffic density and the distribution of vehicle types in
t0. I use the number of traffic-related accidents per 100,000 inhabitants in 1998 as a proxy
for the traffic conditions in a given county as these are likely indicative of traffic policies over
the subsequent decade without being related to trade exposure. Including the change in
traffic-related accidents between 1998 and 2008 does not change the results but potentially
introduces another source of endogeneity. It should be noted that the research design does
not account for changes in local emission profiles resulting from employees sorting into
different counties in response to trade shocks other than through their contribution to
manufacturing output and emissions. Refer to Appendix A.1.10 for further information on
available control variables.

26



1.4.3 Identification Strategy

The estimates for the main coefficients α2 to α3 yield the causal average

treatment effects of ¿1.000 increases in trade exposure on concentration levels

under a number of conditions. Most importantly, pollution concentrations

and trade exposure should not be endogenously related. Environmental

regulations and domestic policies, however, may simultaneously be correlated

with both exposures18. There is a possibility for reverse causality between

emission figures and trade opportunities if local emissions a-priori create

a desire for outsourcing and trade. In order to address these issues, an

instrumental variable (IV) approach based on changes in world-wide trade

flows between selected countries and China or Eastern Europe is employed.

This identification approach has been introduced by ADH and refined for the

German context by DFS. They suggest an IV strategy based on changes in

trade volumes between China (or Eastern Europe) and other nations that do

not share a border with Germany but are sufficiently large without having

highly interconnected trade patterns. They argue that these trade flows

should not be affected by German labor market movements or policy decisions

and should instead capture the intrinsic motivation of China and Eastern

European countries to expand their trade networks.

ADH further argue that until the early 2000s China’s export growth has

largely been the result of internal supply shocks and of obtaining WTO

membership status. In their paper on Chinese trade flows and innovation

pressure, Bloom et al. (2016) follow a similar reasoning and instrument trade

flows with the abolishment of quotas on textiles and apparel after China’s

accession to the WTO. In the German case, DFS consider unobserved supply

and demand shocks, which simultaneously affect trade exposure and regional

economic performance, as the main threats to identification. They construct

instrumental variables for their trade exposure measures based on global trade

18Strict regulations within Germany can incentivize firms to both outsource dirty
productions abroad and at the same time abate pollution emissions in domestic plants.
This biases the coefficients between trade flows and pollution exposure upwards in absolute
terms as the coefficients do not capture the pure causal treatment effect anymore. The
simultaneity bias consequently dilutes the causal relationship between trade openness and
environmental quality.
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flows between China (or Eastern Europe) and other nations, which are chosen

to ensure that the instruments are independent of German emission levels.

The resulting set of economically relevant and influential but sufficiently

distant countries includes Australia, Canada, Japan, Norway, NZ, Sweden,

Singapore and the UK. The trade shock allocation procedure utilizes the

formulas in Chapter 1.4.1.1 with lagged employment figures from the previous

decade (t−1 = 1988) if available19 to rule out the contemporaneous influence

of trade flows on employment shares.

I obtain area-weighted instruments for the exposure changes per square

meter by multiplying the worker-weighted instruments with lagged employ-

ment figures and dividing them by the county area. According to DFS, these

trade flows between other countries and China (or Eastern Europe) are then

able to isolate the exogenous component of Chinese or Eastern European

competitiveness and attractiveness as export markets. The instruments are

therefore constructed following the notation presented in Chapter 1.4.1.1 and

eliminate the impact of shocks, which simultaneously affect German trade

flows, regional industrial performance and pollution abatement:

∆1998→2008IV ImportExposurePW
X
i

=
∑J

j=1

[
Employeesijt−1

Employeesjt−1
· ∆1998→2008ImportOther←Xj

Employeesit−1

] (1.6)

∆1998→2008IV ExportExposurePW
X
i

=
∑J

j=1

[
Employeesijt−1

Employeesjt−1
· ∆1998→2008ExportOther→Xj

Employeesit−1

] (1.7)

19The instruments for the 87 Eastern German counties have to be computed using
employment shares from t0 = 1998 as older employment data is unavailable. This motivates
the robustness checks in Chapter 1.6.1 testing for systematic differences by excluding
Eastern German counties.
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∆1998→2008IV ImportExposurePA
X
i

=
∑J

j=1

[
Employeesijt−1

Employeesjt−1
· ∆1998→2008ImportOther←Xj

Areai

] (1.8)

∆1998→2008IV ExportExposurePA
X
i

=
∑J

j=1

[
Employeesijt−1

Employeesjt−1
· ∆1998→2008ExportOther→Xj

Areai

] (1.9)

In order to obtain instruments satisfying the exclusion restriction, the

policy regimes in all countries of the instrument group have to be sufficiently

independent from German policy decisions. Out of the chosen set of countries

(Australia, Canada, Japan, Norway, NZ, Sweden, Singapore and the UK), only

Sweden and the UK have close ties due to their EU membership during the

observation period. It can be argued, however, that the UK has traditionally

been the most independent member of the EU and that Sweden exhibits

vastly different trade patterns than Germany due to its industry composition

and geographical location.

Another concern is that German policies affect the exporting patterns

of Eastern European EU members as Germany has the ability to influence

EU regulation20. With respect to Eastern Europe, the instruments may

therefore be weaker than in the Chinese case due to the violation of the

exclusion restriction stemming from EU regulations possibly introducing

a simultaneity bias. As the only country among the Eastern European

trade partners, Slovenia has introduced the Euro in 2007, which creates a

presumably negligible source of endogeneity between German and Slovenian

trade patterns.

The measures constructed above are used as instruments for the trade

exposure measures in the regression model presented in Chapter 1.4.2 but it

is not possible to include more than two instrumented explanatory variables

at once without severely impeding the computation of First Stage regressions.

20One example are environmental regulations supported by German diplomats at the
European level, which affect abatement strategies within both German industries and
Eastern European exporting industries.
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This is partly the case because the explanatory variables are positively corre-

lated across counties to varying degrees. While some counties exhibit similar

patterns with respect to both exports and imports over the observation period,

there is enough variation to warrant the evaluation of several individual trade

exposures in regression setups21.

1.4.4 Descriptive Analysis

1.4.4.1 Summary Statistics

Descriptive statistics at the German county level are presented in Table 1.1.

The corresponding exact variable definitions can be found in Table A.5 in

Appendix A.1.10. All variables based on IAB raw data have been provided

by DFS. The smoothed pollution concentration values for the years 1998

and 2008 are computed as unweighted averages over the 7 years around the

year of interest and all reported statistics are unweighted Germany-wide

averages over the 413 counties in existence on December 31st, 2008. Changes

in Trade Exposure are pooled across both trade partners. In order to control

for initial heterogeneity across counties, a normalized dirtiness indicator has

been constructed that captures the relative pollution burden of counties in

the year 1998 (see Appendix A.1.10 and Chapter 1.6.3 for the exact formula

and the results of the robustness check).

21Examples for counties with similar trends in both imports and exports are the car
manufacturing regions, which likely saw a rise in both export flows and import flows due to
the exchange of intermediate and finalized goods. Exporting industries are also unlikely to
discriminate against either China or Eastern Europe, so the patterns should be positively
correlated. See Table A.2 of Appendix A.1.7 for an overview of the correlations.
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Table 1.1: Summary table of mean characteristics at the county level

Entire Germany
Variables from INKAR Database Mean SD Min Max
Unemployment rate (1998) 10.94 4.67 4.04 23.63
Traffic Accidents per 100,000 inhabitants (1998) 650.46 111.94 380.00 1077.26
Green party votes in the 1998 general election (1998) 5.86 2.69 2.3 24.1
Variables from IAB Database Mean SD Min Max
E. Share in manufacturing of Tradable Goods (1998) 27.42 12.69 3.705 70.50
Percentage of college-educated employees (1998) 7.093 3.758 2.325 25.93
Percentage of foreign-born employees (1998) 5.858 4.263 0.167 18.10
Percentage of women (1998) 40.41 13.35 18.01 84.68
Percentage of employment in routine jobs (1998) 36.42 4.410 24.21 52.68

Variables from DFS/IAB Database Mean SD Min Max
∆ExportExposure per Worker in 1,000¿ (1998-2008) +4.75 3.00 +0.30 +21.09

I China only +1.04 0.82 -0.06 +5.84
I Eastern Europe only +3.71 2.27 -0.19 +15.62

∆ImportExposure per Worker in 1,000¿ (1998-2008) +3.75 2.65 +0.36 +17.70
I China only +1.90 1.88 +0.19 +15.01
I Eastern Europe only +1.85 1.30 -0.39 +9.55

Yearly Averages (Smoothed) from UBA OI Raster Mean SD Min Max
NO2Concentration (µg/m3) (1998) 17.70 5.45 7.45 37.34
∆NO2 Concentration (µg/m3) (1998-2008) -3.00 1.51 -7.87 +3.34
NO2 Initial Dirtiness Indicator (1998) 0.47 0.15 0.20 1
PM10 Concentration (µg/m3) (1998) 21.21 3.07 14.79 35.09
∆PM10 Concentration (µg/m3) (1998-2008) -2.84 1.60 -8.95 +2.05
PM10 Initial Dirtiness Indicator (1998) 0.60 0.09 0.42 1
SO2 Concentration (µg/m3) (1998) 6.02 2.45 1.94 17.31
∆SO2 Concentration (µg/m3) (1998-2008) -3.24 1.64 -10.53 +0.62
SO2 Initial Dirtiness Indicator (1998) 0.35 0.14 0.11 1

Variables from Geodatenzentrum Shapefiles Mean SD Min Max
County Size (km2) (2008) 865.8 637.7 35.5 3074.0
Number of counties (“Landkreise”) 413
Note: Table reports unweighted averages over 413 counties.

The spatial extents of counties reflect the status quo of territorial defini-

tions as of December 31st, 2008. All files for the mapping of spatial data have

been obtained from official sources and have been prepared for the subsequent

analysis with Geographical Information System (GIS) tools according to the

procedures described in Appendix A.1.11.
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1.4.4.2 Maps of Trade Exposure

The following maps depict pooled changes in export and import exposure

measured in ¿1.000 per worker between 1998 and 2008. The first map shows

absolute changes in export exposures, while the second map shows changes

in import exposures. The two variables appear to be highly correlated (see

Figure 1.3) and large increases are concentrated on industrial centers in

Western Germany such as the Ruhrgebiet, Baden-Württemberg (with more

than ¿10.000 in additional import exposure per worker in car manufacturing

dominated counties around Stuttgart) and Wolfsburg (with approximately

¿21.085 in additional export exposure per worker due to the Volkswagen

headquarters)22. The area-weighted measures obtained from dividing the

absolute changes by spatial area instead of workers demonstrate a slightly

different pattern. The corresponding maps in Figure 1.4 demonstrate that

increases in area-weighted import and export exposures are concentrated

on large urban centers (“Kreisfreie Städte”) and highly industrialized cities

while exhibiting similar overall trends. This is to be expected given that

more workers are concentrated in a smaller area in such production hubs. It

demonstrates the usefulness of this alternative measure, however, as additional

export opportunities for a single facility should have a smaller relative impact

on average emissions in a large county with wide open spaces than in a

concentrated urban area that is affected in its entirety by the emission output

of each facility.

There is a noticeable amount of spatial correlation in both these maps

and the ones in Chapter 1.4.4.3, which can be addressed by the use of

spatial autoregression methods as suggested by Auffhammer et al. (2013). I

corroborate my empirical results by estimating spatial autoregression models

in Chapter 1.6.2.

22Pooled trade exposures combine Chinese and Eastern European trade flows. Maps for
the split exposure measures exhibit similar general patterns.
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Figure 1.3: Absolute Changes in Trade Exposures per Worker (1998-2008)

Figure 1.4: Absolute Changes in Trade Exposures per m² (1998-2008)

33



1.4.4.3 Maps of Pollutant Concentrations

The following maps depict developments in local pollutant concentrations

between the years 1998 and 2008 through either percentage changes in Figure

1.5 or quantiles of absolute changes in Figure 1.6. The relative and absolute

changes are computed based on the smoothed concentration levels in 1998

and 2008 as discussed in Chapter 1.4.1.2. They demonstrate that well-known

industrial areas such as the Ruhrgebiet can experience significant increases

in NO2, whereas the majority of counties and especially rural areas in the

former German Democratic Republic (GDR) have experienced a significant

decline (top-left panel).

Increases in PM10 concentrations are also found in well-known urban and

metropolitan areas but there is a noticeable increase in Eastern German coun-

ties possibly due to reverse catch-up effects in the wake of the Reunification

(top-right panel). Increases in SO2 concentrations are found in coastal and

urban areas, while overall significant reductions of up to -78.5% dominate the

pattern especially in Eastern Germany (bottom center panel).

There is enough variation across counties to warrant regressions of con-

centration level changes on trade exposure changes at the county level. The

specific patterns found for SO2 and PM10 (Eastern Germany) hint towards

systematic regional differences23. Excluding Eastern German counties (see

robustness check in Chapter 1.6.1) or coastal counties does not significantly

alter the obtained empirical results.

SO2 profiles, however, are likely affected by the rising container ship traffic

as well as a potential bias arising from smoothing over the high concentration

values in 1995. Empirical results for this pollutant consequently have to be

interpreted with more caution.

23Increases in coastal regions and around the Nord-Ostsee-Kanal can be explained
by a rising volume in cargo shipping (e.g. from China). This may introduce a serious
bias as soon as trade exposure in landlocked counties causes emission increases in coastal
regions, which are not necessarily recipients of the trade flows. If they are the recipients,
then environmental benefits of the additional trade exposure are offset by increases in
traffic-related pollution. Trade exposure coefficients are then expected to be biased towards
the positive end of the scale as cargo shipping emissions introduce a positive correlation
between locally consumed trade flows and shipping-related pollutants (e.g. SO2).
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Figure 1.5: Percentage Changes in Pollutant Concentrations (1998 - 2008)
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Figure 1.6: Absolute Changes in Pollutant Concentrations (1998 - 2008)
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1.5 Empirical Results

1.5.1 Preliminaries

The empirical analysis employs the baseline model presented in Chapter

1.4.2 and either uses pooled trade exposure changes (Pooled) or the exposure

changes restricted to one of the trading partners (China / EasternE)24

as explanatory variables. The coefficients reported within a given column

constitute the entire set of explanatory variables in the respective model

(m) and the regression analysis in first differences is based on the complete

set of 413 county-level observations. While the dependent variables are

absolute differences in smoothed concentration levels between 1998 and 2008,

the independent variables are the differences in trade exposure denoted by

∆EPW (Export Exposure Change per worker), ∆IPW (Import Exposure

Change per worker), ∆EPA (Export Exposure Change per m2) and ∆IPA

(Import Exposure Change per m2).

My baseline set of controls contains the 1998 employment share in manufac-

turing of tradable goods provided by DFS, the initial level of unemployment in

1998, the share of Green party votes in the general election (“Bundestagswahl”)

of 1998, the regional dummies described in Chapter 1.4.2 and the number of

traffic accidents per 100,000 inhabitants in 1998. The inclusion of additional

pre-sample traffic controls or additional labor market controls included by

DFS (such as the share of female workers in manufacturing or the share of

skilled workers) does not alter the empirical results. Standard errors (SE) are

clustered at the level of the 16 German federal states (“Bundesland”).

Following the discussion of impact channels in Appendix A.1.4, it seems

reasonable to expect negative coefficients with respect to import competition

24 Regressions performed with all four trade exposure changes as explanatory variables

at once lead to extreme values and non-convergence in IV regressions because their high

degree of collinearity impedes the computation of non-singular matrices. Regression models

are computed using the estimators by Correia (2016) and Baum et al. (2002).
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(∆IPW , ∆IPA) due to product mix changes, foreclosures, layoffs or less

invasive extensive margin reallocation, whereas coefficients for export oppor-

tunities can either be positive if production scale effects dominate or negative

if productivity, core competency and technology effects dominate at the in-

tensive margin (see Table A.1 in Chapter A.1.4). All models are estimated

following the IV strategy outlined in Chapter 1.4.3 and the coefficients are

derived from standard two-stage least squares (2SLS) procedures. For the

preferred specification including the baseline control set and area-weighted

exposure measures, refer to Table 1.3.

1.5.2 Basic Instrumental Variable Regressions

The 2SLS regressions are performed with the intrinsic trade expansion mea-

sures (for China and Eastern Europe) as instrumental variables, which have

been computed on the basis of COMTRADE data by DFS. The table also

reports the F-statistics from tests on the excluded instruments within the

First Stage regressions. Negative coefficients of interest imply positive en-

vironmental effects, so the significant coefficient for ∆EPWChina in column

(2) implies a reduction of 1.650µg/m3 (SE: 0.342µg/m3) in NO2 levels for a

¿1,000 increase in export opportunities towards China per worker in a given

county. For a county like Wolfsburg with ¿5, 470 in additional exports per

worker towards China, this yields a net reduction of 9.03µg/m3 between 1998

and 2008 tied to the additional export revenues25.

According to columns (2) and (5), ¿1,000 per worker in additional im-

port competition from China lowers NO2 concentration levels significantly by

0.141µg/m3 (SE: 0.072µg/m3) and PM10 concentration levels by 0.242µg/m3

(SE: 0.082µg/m3) through emission savings in affected industries. The

∆IPWEasternE coefficient in column (6) implies that ¿1,000 per worker in

additional import competition from Eastern Europe lowers PM10 concentra-

tion levels by 0.331µg/m3 (SE: 0.088µg/m3). For a representative county like

Stuttgart with ¿2, 473 in additional Eastern European imports per worker,

25Wolfsburg represents an outlier due to the local Volkswagen headquarters.
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this yields a net reduction of 0.82µg/m3 in PM10 concentrations. Table 1.2

therefore demonstrates positive environmental effects of import competition

especially for China and to some extent for Eastern Europe. The reduction in

NO2 emissions due to export opportunities with respect to China in column

(2) seems fairly high in comparison to initial NO2 levels in Germany, though.

As explained in Chapter 1.4.4.3 and Appendix A.1.8, the lack of significant

and consistent results for SO2 concentrations may be due to several biases26.

Table 1.2: IV Regression (2SLS) with Worker-Weighted Exposures

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPW -0.0142 -0.0684 -0.0126

(0.0625) (0.0503) (0.0220)

∆EPW -0.00191 -0.0575 -0.00697

(0.0987) (0.0906) (0.0652)

China

∆IPW -0.141* -0.242*** -0.0245

(0.0719) (0.0817) (0.0464)

∆EPW -1.650*** -2.055 -0.176

(0.342) (1.280) (0.455)

EasternE

∆IPW -0.295 -0.331*** -0.153

(0.293) (0.0875) (0.0992)

∆EPW 0.0297 0.115 0.0781

(0.119) (0.0844) (0.0914)

Const -2.689** -5.404*** -2.857*** -5.107*** -8.198*** -4.920*** -3.984*** -4.240** -3.905***

(1.187) (1.181) (0.830) (1.520) (2.946) (1.176) (1.424) (1.835) (1.319)

First Stage F-Tests of excluded instruments

∆IPW 12.032 6.191 36.839 12.032 6.191 36.839 12.032 6.191 36.839

∆EPW 65.567 3.321 43.292 65.567 3.321 43.292 65.567 3.321 43.292

Controls Standard Set plus Region Dummies

UncenteredR2 0.813 0.786 0.812 0.839 0.762 0.841 0.905 0.904 0.905

F-Statistic 2.348 84.24 11.17 46.09 202.6 4.607 41.08 66.62 57.21

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.

26Although the coefficient for Eastern European import competition in column (9) of
Table 1.2 demonstrates the expected sign at a low p-value, I abstain from interpreting SO2

coefficients in the subsequent chapters and only report them for the sake of completeness.
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All first stage regressions feature highly significant coefficients for the

most relevant instrument and high F-statistics, which is not surprising given

that trade openness within China and Eastern Europe has likely increased

somewhat indiscriminately towards all potential trade partners and given the

successful application of these instruments by DFS and ADH. The weakest

instruments are those for export opportunities towards China, which implies

that patterns in German-Chinese trade flows differ from the trade patterns

between China and the country sample behind the instruments.

In order to account for the impact of facility density and county size on the

relationship between trade volumes and dispersed pollution concentrations,

the IV regressions are repeated with area-weighted explanatory variables.

These can be instrumented by the modified instruments described in Chapter

1.4.3 but the interpretation of the resulting coefficients is not as straight-

forward. Nevertheless, the area-weighting modification seems highly plausible

as explained in Chapter 1.4.4.3 and offers the opportunity for convenient

back-of-the-envelope calculations. I therefore consider the regression models

presented in Table 1.3 to be my preferred specifications. With respect to

back-of-the-envelope benefit calculations, the coefficients in Table 1.3 also

yield the more conservative estimates.

First of all, it is noticeable that the IV strategy based on area-weighted

variables yields much higher F-statistics in the respective first stage regressions,

which are far above any threshold indicating weak instruments according

to Stock and Yogo (2005). On the other hand, the regressions highlight

the environmentally beneficial effect of import competition and imported

intermediary goods, which is robust across specifications for both trade

partners and both well-constructed pollutant measures (NO2 and PM10).

The impact of Chinese import competition on NO2 and PM10 levels is

documented by columns (2) and (5) and accompanied in column (6) by a

prominent negative effect of Eastern European imports on PM10 levels in

excess of -1303.9µg/m3 (SE: 592.3µg/m3) per ¿1,000/m2. All coefficients

for SO2 are insignificant and indistinguishable from zero. While coefficients

related to export opportunities tend to be slightly positive, they are not

significantly different from zero either. In contrast to Table 1.2, this pattern

40



holds for export opportunities towards China and the positive effect of export

revenues vanishes27.

Overall, this means that the scale effects from export opportunities do not

outweigh the emission savings from growing import exposure, even though they

outweigh negative effects of import competition on domestic production and

employment figures on the labor market as demonstrated by DFS. While the

effects of export opportunities on local emission concentrations are negligible,

the significant coefficients for ∆IPAChina in columns (2) and (5) imply that

every additional ¿1,000 per m2 in Chinese import competition significantly

reduces NO2 concentrations by about 674.7µg/m3 (SE: 293.9µg/m3) and

PM10 concentrations by 650.4µg/m3 (SE: 204.5µg/m3). Combining the

coefficients from columns (2), (3), (5) and (6) in Table 1.3 with aggregated

COMTRADE trade volumes allows for the computation of tangible net effects

in the following chapter.

27Appendix A.1.12 contains the results for the area-weighted regressions without control
variables for comparative purposes. Almost all pivotal coefficients are robust to slight
modifications in model specification and particularly the omission of controls. I therefore
refrain from reporting the results for a sequence of different control sets.
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Table 1.3: IV Regression (2SLS) with Area-Weighted Exposures

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -491.1** -544.6*** 33.39

(236.3) (202.1) (86.48)

∆EPA 123.1 117.5 -37.30

(114.4) (184.7) (55.04)

China

∆IPA -674.7** -650.4*** 49.31

(293.9) (204.5) (120.4)

∆EPA 13.52 -215.8 -145.6

(211.0) (563.5) (118.8)

EasternE

∆IPA -477.7 -1303.9** 93.14

(837.5) (592.3) (538.8)

∆EPA -78.01 266.8 -43.70

(319.2) (264.2) (313.2)

Const -3.595*** -3.554*** -3.906*** -6.030*** -6.087*** -6.332*** -4.060*** -4.111*** -3.962***

(0.552) (0.601) (0.479) (1.434) (1.549) (1.286) (1.459) (1.425) (1.506)

First Stage F-Tests of excluded instruments

∆IPW 1043.013 166.482 222.271 1043.013 166.482 222.271 1043.013 166.482 222.271

∆EPW 385.752 38.162 185.482 385.752 38.162 185.482 385.752 38.162 185.482

Controls Standard Set plus Region Dummies

Uncentered R2 0.821 0.820 0.820 0.849 0.848 0.849 0.905 0.905 0.905

F-Statistic 5.140 7.029 5.013 9.746 12.55 7.263 81.57 87.25 113.1

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.

1.5.3 Net Effect of Trade Exposure

Multiplying the coefficient estimates from the area-weighted exposure IV

regressions in Table 1.3 with COMTRADE trade volumes broken down

onto the same spatial units allows for the computation of a “back-of-the-

envelope” net effect. The coefficients are multiplied with the Germany-wide

total manufacturing trade volumes (in k¿) divided by the German state

territory of 357, 376km2 as the area-weighted trade exposures are measured

in 1,000¿/m2.

Adding up the absolute reductions in NO2 concentrations across both

trade partners and both directional exposures yields a combined net effect of
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(-0.070+/-0.030)µg/m3 as most of the coefficients are indistinguishable from

zero.

Adding up the absolute reductions in PM10 concentrations of (−0.067±
0.021)µg/m3 and (−0.169± 0.077)µg/m3 yields a combined net effect of ap-

proximately −0.24µg/m3 due to the additional Chinese and Eastern European

import flows observed in 200828.

These reductions have to be seen in the context of the much larger overall

decline in NO2 and PM10 concentrations visible in Figure 1.2 and contained

as averages over all counties in Table 1.1. These reductions amount to roughly

−3.00µg/m3 for NO2 and to −2.84µg/m3 for PM10. Despite being mostly a

windfall gain of trade liberalization, the trade-related reductions do constitute

a significant contribution to these savings accounting for 8.3% of the overall

reductions in PM10 concentrations between 1998 and 2008.

Table 1.4: Back-of-the-Envelope Net Effects of Trade Exposure

(1) (2) (3) (4)
Pooled China Eastern Europe World

Import Exposure

Absolute Difference in Trade Volumes (in million¿) 83,353.35 37,081.88 46,271.46 137,356.06
Difference in Trade Volumes per area (in k¿/m2) 0.00023 0.00010 0.00012 0.00038
NO2 Coefficient -491.1 -674.7 ≈ 0 -
NO2 Back-of-the-Envelope Reduction (in µg/m3) -0.11454 -0.07001
PM10 Coefficient -544.6 -650.4 -1303.9

-
PM10 Back-of-the-Envelope Reduction (in µg/m3) -0.12702 -0.06749 -0.16882

Export Exposure

Absolute Difference in Trade Volumes (in million¿) 101,187.26 21,287.86 79,899.40 277,017.10
Difference in Trade Volumes per area (in k¿/m2) 0.00028 0.00006 0.00022 0.00078
NO2 Coefficient ≈ 0 ≈ 0 ≈ 0 -
NO2 Back-of-the-Envelope Reduction (in µg/m3)
PM10 Coefficient ≈ 0 ≈ 0 ≈ 0 -
PM10 Back-of-the-Envelope Reduction (in µg/m3)

Combined Net Effect

Overall NO2 Reduction (in µg/m3) -0.11 -0.07
-

Overall PM10 Reduction (in µg/m3) -0.13 -0.24
Note: All coefficients are taken from the the IV regressions with area-weighted exposure measures.

All monetary values are real values in ¿ of 2005.

28The ranges given in parentheses represent the 68.2% confidence intervals for these
estimates under standard normality assumptions. They are the result of multiplying
aggregate trade volumes with the standard errors in Table 1.3.
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The savings in NO2 emissions can be translated into a long-term effect on

mortality rates and into Value of Statistical Life (VSL) gains associated with

these environmental benefits. This is achieved by employing the concentration-

response function and methodology derived by Carozzi and Roth (2019) and

Fowlie et al. (2019), which links changes in pollution exposure to changes

in mortality via pollutant-specific relative risk (RR) factors and baseline

mortality incidence rates. COMEAP (2018) and Atkinson et al. (2018)

recommend using a relative risk factor of 1.023 per 10 µg/m3 for NO2, which

implies that a permanent 10µg/m3 increase in NO2 concentrations scales up

annual all-cause mortality by 2.3%. The German population reached a value

of 82.06million (Population1998) in 1998 with a baseline mortality incidence

rate of 10.683 per 1,000 inhabitants29 (MortalityRate1998). Plugging these

into the following formula yields an estimate of the avoided deaths through

NO2 reductions relative to initial conditions:

∆Deaths = Population1998 ·MortalityRate1998

·
[
1− e−ln(1.023)/[10µg/m3]·∆NO2

] (1.10)

The back-of-the-envelope reductions in Germany-wide NO2 concentrations

of 0.070µg/m3 (see Table 1.4) are then associated with 140 human lives saved

per year. While it is difficult to arrive at a universally accepted valuation of

human lives, VSL estimates represent a widely used method of monetarizing

the number of avoided deaths. Viscusi and Masterman (2017) provide an

income-adjusted VSL estimate for Germany of $7.9million (in $ of 2017),

which corresponds to a VSL of ¿4.31million per avoided death (in ¿ of 2008)

according to time series provided by the German “Bundesbank”. Multiplying

this figure with the above estimate yields an annual mortality premium of

¿603.77million purely due to the NO2 reductions obtained as windfall gains

from trade liberalization across German counties30.

29Source: https://www.macrotrends.net/countries/DEU/germany/death-rate.
30In addition to this mortality premium, there is a mortality premium related to PM10

reductions that is more difficult to compute due to the limited availability of relative risk
factors for particulate matter concentrations of higher diameter. The premium presented
in this paragraph is therefore a lower bound estimate in terms of VSL benefits.
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1.6 Robustness Checks

1.6.1 Robustness Check: Western Germany

The high explanatory power of trade exposure changes for PM10 and NO2

developments conjures up the question whether confounding factors drive these

results. One possible confounder with respect to PM10 are pollutant emissions

from Eastern Europe swapping over into Eastern German counties close to

the border. On the one hand, rising production volumes outside of Germany

could manifest themselves in systematic spillover effects and rising PM10

concentrations in Eastern Germany. Stagnating import exposures in Eastern

Germany, on the other hand, would then lead to biased regression coefficients

and negative values caused by a channel that should not be interpreted as a

causal link between domestic trade exposure and domestic industry emissions.

Concerns that systematic developments specific to Eastern Germany (such as

catch-up effects in the wake of the Reunification) drive estimates are further

motivation for a robustness check restricting the observations to Western

German counties. The regressions preserve the significant coefficients for

PM10 and NO2 within the reduced 326 county sample. Standard errors for

the Eastern European trade flows are slightly increased due to the reduced

sample size and the most noticeable divergence is a barely significant positive

coefficient for export exposure in column (1). Column (6) deserves special

attention as it contains the model for PM10 with respect to Eastern European

trade flows and does preserve sign and magnitude of the estimated coefficients

when compared to column (6) in Table 1.3. If Eastern German counties

were to absorb pollution effects from Eastern European manufacturing, this

would be the coefficient most likely affected by bias. The robustness of

coefficients despite the exclusion of 87 counties rules out concerns that results

are driven by confounding factors within Eastern German observations. Taking

special precaution with Eastern German observations is therefore unnecessary

reinforcing my choice of models in Table 1.3 as benchmark specifications31.

31Regressions for Eastern German counties only suffer from the small sample size of 87
observations and are not reported.
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Table 1.5: WGermany: IV Regression (2SLS) with Area-Weighted Exposures

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -614.7*** -446.3** -53.77

(204.3) (193.5) (50.05)

∆EPA 169.6* 78.63 34.31

(93.95) (183.4) (42.40)

China

∆IPA -833.4*** -520.8** -53.19

(253.3) (204.4) (77.46)

∆EPA 62.89 -259.1 52.59

(166.0) (560.1) (109.7)

EasternE

∆IPA -580.7 -1173.4** -160.2

(900.8) (569.4) (420.4)

∆EPA -80.12 238.2 74.42

(353.4) (265.9) (251.5)

Const -4.299*** -4.242*** -4.718*** -6.124*** -6.189*** -6.439*** -2.580*** -2.588*** -2.605***

(0.416) (0.497) (0.292) (1.754) (1.916) (1.567) (0.599) (0.578) (0.620)

First Stage F-Tests of excluded instruments

∆IPW 856.676 137.223 198.455 856.676 137.223 198.455 856.676 137.223 198.455

∆EPW 339.1951 34.022 176.031 339.1951 34.022 176.031 339.1951 34.022 176.031

Controls Standard Set plus Region Dummies and Traffic Accidents

UncenteredR2 0.807 0.805 0.806 0.879 0.878 0.879 0.943 0.943 0.944

F-Statistic 581.4 213.3 174.2 614.4 2884.9 58.54 7998.2 8066.7 682.1

Observations 326 326 326 326 326 326 326 326 326

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.

1.6.2 Robustness Check: Spatial Autocorrelation

As demonstrated by the maps in Chapter 1.4.4.2 and Chapter 1.4.4.3, there

is a visible amount of spatial correlation in both pollution concentration

patterns and trade exposure due to agglomeration effects. Auffhammer et al.

(2013) argue that spatial climate and weather data is typically affected by

spatial autocorrelation and suggest the usage of spatial weighting matrices in

regression designs to account for systematic spatial variation.

Following Drukker et al. (2013a), I generate a spatial contiguity matrix that

assigns spatial weights to counties based on direct proximity. Choosing the

“queen” criterion ensures that any counties that touch or share a border with
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each other are modeled as correlated. This weighting matrix is plugged into

the spatial-autoregressive model with spatial-autoregressive errors (SARAR)

implemented by Drukker et al. (2013b), which can also account for endogenous

variables through the inclusion of instruments. This type of model is able to

accommodate a weighted average of the dependent variable as a spatial lag

component and allows the error term to depend on a weighted average of the

disturbances from neighbouring counties.

Figure 1.7: Queen and Rook Criteria in Contiguity Weighting

Figure 1.7 illustrates the different selection criteria for neighbouring coun-

ties using a grid cell example. Most German counties connected via the

“queen” criterion are also connected via the “rook” criterion due to a common

border. The SARAR model incorporates contiguity by means of the computed

spatial weighting matrix W and is given by:

−→y = λ ·W · −→y +X ·
−→
β + Z · −→γ + ρ ·W · −→ν +−→ε (1.11)
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The specification used in this robustness check contains spatial lags of the

dependent variable W · −→y as well as a spatial autoregressive error component

W · −→ν capturing spillover effects and dispersion patterns of pollution concen-

trations across the adjacent county borders. X is a set of exogenous variables

and Z is a set of instrumented endogenous variables.

The econometric analysis reveals that the signs of the preferred IV results

from Table 1.3 are robust to the accommodation of such spatial autocorrelation.

The import competition coefficients in columns (1), (2), (4) and (5) are nearly

halved in magnitude and lose a portion of their significance but preserve the

overarching patterns. The only meaningful divergence is that export exposure

towards China reaches a noticeable level of influence in column (5). In light

of the pervasiveness of spatial patterns demonstrated in Chapters 1.4.4.2

and 1.4.4.3, I consider this level of conformity to be a strong finding lending

credibility to the prevailing effects.
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Table 1.6: SPIVREG Regressions with Area-Weighted Exposures and Spatial
Autocorrelation

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -248.9* -368.0*** 109.1

(129.5) (113.4) (103.6)

∆EPA 8.560 27.88 -68.16

(97.85) (84.93) (77.74)

China

∆IPA -336.1** -312.4** 110.7

(152.5) (135.6) (123.4)

∆EPA -266.4 -591.7** -121.7

(269.2) (239.7) (213.7)

EasternE

∆IPA 60.78 -556.3 399.7

(396.5) (359.1) (327.6)

∆EPA -255.7 -45.62 -181.8

(219.2) (196.8) (179.7)

Const -2.373*** -2.466*** -2.568*** -4.285*** -2.865*** -4.469*** -3.924*** -3.931*** -3.857***

(0.659) (0.672) (0.666) (0.562) (0.611) (0.568) (0.518) (0.530) (0.525)

SARAR Estimated autoregression parameters

λ 0.023*** 0.022*** 0.020*** 0.028** 0.044*** 0.030** -0.006 -0.006 -0.007

(0.007) (0.007) (0.007) (0.012) (0.010) (0.012) (0.013 (0.013 (0.013

ρ 0.252*** 0.251*** 0.249*** 0.134*** 0.197*** 0.134*** 0.147*** 0.147*** 0.147***

(0.012) (0.012) (0.012) (0.008) (0.015) (0.008) (0.006) (0.006) (0.006)

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors are an outcome of the SARAS estimation procedure.

The reported autoregression parameters demonstrate the level of autocorrelation.

1.6.3 Robustness Check: Dirtiness Indicator

Due to the likely existence of catch-up effects in pollution abatement across

counties over the past decades (as documented for the US by Bento et al., 2014),

initially dirty counties may benefit from larger trend reductions unrelated to

trade exposure than initially cleaner counties. It is also possible that initially

dirty counties react differently to trade exposure due to their industrial or

social structure. To address this initial county-level heterogeneity, I run an IV

regression including interactions with a continuous dirtiness indicator to test

for such phenomena. Initial immission concentrations are readily available

via the computed smoothed averages for the year 1998. Normalizing these
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averages by the maximum concentration found among all counties yields the

following indicators with values between 0 and 1:

DirtyNO2
i1998 =

Ȳ NO2
i1998

maxi(Ȳ NO2
i1998)

DirtyPM10
i1998 =

Ȳ PM10
i1998

maxi(Ȳ PM10
i1998 )

DirtySO2
i1998 =

Ȳ SO2
i1998

maxi(Ȳ SO2
i1998)

(1.12)

There are individual initial dirtiness indicators for each pollutant and

instruments for the interaction terms are computed as the product between

former instrument and the appropriate dirtiness indicator. I restrict this

analysis to the pooled explanatory variables for reasons of clarity and do not

add control variables besides the regional dummies and the initial dirtiness

indicator (DirtyYi1998) as this indicator absorbs county-level characteristics in

this setup. The underlying regression model then becomes:

∆1998→2008Yi = α10 + α11Dirty
Y
i1998

+ α20∆1998→2008ImportExposure
X
i

+ α21∆1998→2008ImportExposure
X
i ·DirtyYi1998

+ α30∆1998→2008ExportExposure
X
i

+ α31∆1998→2008ExportExposure
X
i ·DirtyYi1998

+ X ′i1998

−→
β + εi

(1.13)

The coefficients of the interaction terms (α21 and α31) capture the moder-

ating or accelerating effect of initial air quality. Heterogeneous county-level

trends and catch-up effects are captured by the coefficient α11 of the dirtiness

indicator. I focus on aggregated trade flows first (X = Pooled) and report

coefficients for worker-weighted exposure changes in Table 1.7 because their

interpretation is straight-forward.
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Table 1.7: Dirtiness Indicator: IV Regression (2SLS) with Worker-Weighted
Exposures (I)

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPW 0.422** 0.543*** 0.0223 -0.633 -0.268 -0.138

(0.192) (0.111) (0.296) (0.831) (0.181) (0.169)

∆IPW*Dirty -1.027** -1.376*** -0.162 0.888 0.719 0.273

(0.469) (0.266) (0.446) (1.333) (0.527) (0.558)

∆EPW 0.232 -0.0875 0.338** 0.726 -0.233* -0.147**

(0.171) (0.131) (0.141) (0.460) (0.130) (0.0739)

∆EPW*Dirty -0.400 0.376** -0.535*** -1.089 0.649** 0.475**

(0.303) (0.188) (0.199) (0.758) (0.307) (0.221)

Dirty -2.576*** -4.429*** -3.285*** -11.38*** -9.583*** -10.10*** -9.895*** -10.23*** -10.37***

(0.670) (1.048) (0.778) (2.007) (1.296) (1.674) (2.826) (2.577) (2.749)

Const -1.214** -0.765 -1.190** 3.658*** 2.202** 2.610** 0.658 0.718 0.802

(0.569) (0.657) (0.581) (1.307) (0.860) (1.134) (0.914) (0.863) (0.910)

First Stage F-Tests of excluded instruments

∆IPW 54.716 103.731 56.305 183.357 33.627 141.098

∆IPW*Dirty 43.079 115.411 54.163 357.487 9.439 134.682

∆EPW 176.310 214.231 75.152 60.040 60.946 89.636

∆EPW*Dirty 336.925 435.180 59.517 41.278 91.632 104.776

Controls Regional Dummies only (dirtiness indicator used instead of controls to capture county heterogeneity)

Uncentered R2 0.865 0.857 0.862 0.918 0.915 0.916 0.955 0.958 0.957

F-Statistic 22.33 6.089 35.68 101.2 149.2 190.0 44.00 20.68 60.80

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the smoothed averaged difference in concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.

First of all, the dirtiness indicator now absorbs much of the overall trends

previously contained in the controls and the negative constant. This is es-

pecially visible for PM10 and SO2, for which the dirtiest county (with an

indicator value equal to 1 by construction) experiences a catch-up effect

of roughly 9.6-11.4µg/m3 unrelated to trade exposure. The coefficients in

columns (1) and (3) identify initial dirtiness as a catalyst that lets dirty coun-

tries experience more beneficial NO2 emission impacts through trade exposure

(∆IPW ·Dirty). Clean counties experience much smaller NO2 and PM10

concentration reductions due to pooled import exposure since their dirtiness

indicator interactions are offset by positive ∆IPW coefficients. Initially clean

counties therefore benefit less from import exposure and contribute less to

overall beneficial net effects. Column (5) demonstrates a similar pattern

(∆EPW ·Dirty) for PM10. An overall negative effect, however, exists only

51



for the dirtiest counties with an indicator close to 1. Column (3) even ex-

hibits a significantly positive coefficient for the export exposure interaction

(∆EPW ·Dirty) regarding NO2. This implies that dirty counties benefit the

most from import competition in terms of air quality but experience dominant

scale effects with respect to export opportunities32. Table 1.9 demonstrates

that initially dirtier counties are not associated with much smaller trade flow

increases but conversely tend to have stronger ones when looking at NO2

exposure. This reinforces the claim that dirtier counties experience the most

beneficial or most severe pollution effects from import and export scaling due

to the significant interaction coefficients in Table 1.7.

Regressions with X ∈ [China,EasternE] in Table 1.8 demonstrate that

the accelerating or inhibiting effects of initial dirtiness in column (1) and (3)

of Table 1.7 are mostly due to increased trade exposure towards China. Dirty

and industrialized counties that expand their trade networks with China

apparently drive the NO2 emission savings through import competition.

However, their scaling up of production for the Chinese market is also a major

factor inhibiting emission reductions according to column (10).
In the German case, high levels of initial dirtiness and catch-up effects in

Eastern Germany can be attributed to restructuring and modernization in
the wake of the Reunification. Other counties with high levels of pollution
in 1998 have introduced local policy measures to target particulate matter
emissions along with other pollutants and have then experienced additional
bonus effects through trade exposure. Dissecting the effect of trade openness
further requires better micro data and attributing the benefits to individual
channels beyond the above analysis is highly speculative. This robustness
check does, however, address the existence of different pre-trends, as these
trends are often related to catch-up effects stemming from varying levels of
initial dirtiness (e.g. Bento et al., 2014). An additional robustness check
evaluating the role of pre-trends is performed below.

32It should be noted that the regressions for area-weighted exposures produce less
significant coefficients. See Appendix A.1.13. It is difficult to ascertain, whether the current
specification represents the optimal implementation of initial dirtiness. The indicator
depends heavily on the most unreliable pollutant averages from the year 1995 and is
therefore likely biased. Although the inclusion of the indicator in lieu of socio-economic
controls absorbs some of the significance in the area-weighted models, I conclude that it is
reasonable to omit the dirtiness indicator from my preferred specifications in Table 1.3 and
Table 1.5 but concede that doing so potentially inflates the coefficients of interest.
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Table 1.8: Dirtiness Indicator: IV Regression (2SLS) with Worker-Weighted
Exposures (II)

Regression ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆SO2 ∆SO2

Model (10) (11) (12) (13) (14) (15)

China

∆IPW 1.051*** -1.098 0.261*

(0.233) (0.943) (0.156)

∆IPW*Dirty -2.546*** 1.656 -1.157**

(0.471) (1.501) (0.507)

∆EPW -1.631 4.204*** -2.746***

(1.088) (0.904) (0.852)

∆EPW*Dirty 3.839** -6.201*** 7.982***

(1.530) (1.228) (1.709)

EasternE

∆IPW -0.903 0.585 -1.531***

(1.118) (0.836) (0.430)

∆IPW*Dirty 1.378 -1.428 4.273***

(2.648) (1.336) (1.181)

∆EPW 0.654* 0.161 0.528***

(0.363) (0.247) (0.127)

∆EPW*Dirty -1.141 -0.0457 -1.495***

(0.858) (0.390) (0.414)

Dirty -6.472** -4.591*** -8.745*** -9.045*** -12.74*** -10.04***

(2.605) (0.803) (1.610) (1.915) (2.704) (2.494)

Const 0.329 -0.452 1.519 1.987* 1.612* 0.620

(1.663) (0.402) (0.996) (1.167) (0.838) (0.792)

First Stage F-Tests of excluded instruments

∆IPW 150.322 65.153 289.913 59.261 164.397 112.182

∆IPW*Dirty 256.040 65.883 515.344 73.701 94.869 108.415

∆EPW 15.357 194.854 5.165 146.434 18.588 536.874

∆EPW*Dirty 19.707 267.249 5.136 170.807 28.800 472.546

Controls Regional Dummies only (dirtiness indicator used instead of controls to capture county heterogeneity)

Uncentered R2 0.849 0.861 0.903 0.915 0.946 0.953

F-Statistic 1115.0 24.08 1641.6 462.6 34.58 41.95

Observations 413 413 413 413 413 413

Note: Dependent variable is the smoothed averaged difference in concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.

Table 1.9: Correlation Matrix of Dirtiness Scores

∆IPW ∆EPW

∆IPW 1 -

∆EPW 0.6475 1

DirtyNO2
i1998 0.0692 0.1973

DirtyPM10
i1998 -0.0046 0.0398

DirtySO2
i1998 -0.2133 -0.1842

Note: Correlations between Changes in Trade Exposure per Worker and Dirtiness Scores.
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1.6.4 Robustness Check: Pre-Trends

The treatment can only be argued to be exogenous if county characteristics

do not influence both treatment intensity and environmental performance

simultaneously. If pre-trends in pollution concentrations differ significantly

between counties highly affected by trade openness and less exposed counties,

an interpretation of treatment effects as causal is precarious. Even more so if

there is a credible risk of endogenous selection into treatment intensity. One

way to test for such a confounding relationship is regressing the pre-trends

in the outcome variable (i.e. the change in pollution concentrations) on

treatment intensity to rule out the existence of such a correlation between

important county characteristics and treatment. The lack of comprehensive

pollutant concentration data before the year 1998 makes it difficult to construct

convincing pre-trends33. Therefore, I have to rely on the changes between

1995 and 2000 as a proxy for pre-trends before the year 1998, which marks

the initial time period of my main analysis.

The following tables report the main coefficients of interest from simple

regressions with either no controls or the standard set of controls including

region dummies. In each regression, the pre-trends are regressed on individual

trade exposure changes. In an optimal scenario without a confounding

relationship, neither of these regressions yield a significant coefficient between

dependent and independent variable. Consequently, Table 1.10 confirms that

there is no relationship between initial NO2 trends and trade patterns, while

pre-trends in PM10 are weakly related to trade exposure in setups with the

baseline control set.

Overall, trade exposure changes after 1998 have little explanatory power

for pre-treatment trends. This implies that there is only a weak link between

treatment intensity and pre-trends and that sorting into trade patterns in

response to pollution trends can be ruled out at least for NO2. The robustness

33While sparse data from measuring stations does exist before 1998, no datasets or
interpolation strategies can saturate the entire territory of Germany without introducing
measurement errors as explained by Auffhammer et al. (2013). Constructing historical pre-
trends for a small subset of counties with sufficient information and limiting the pre-trend
analysis to these counties creates an unbalanced sample suffering from selection bias.
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check does caution against a causal interpretation of effects related to PM10

values, though. Since initial trends in PM10 exhibit a negative correlation

with trade openness, later emission reduction estimates with respect to this

pollutant are not entirely attributable to the causal effect of trade exposure

and likely biased downwards. Notwithstanding, the common trend assumption

appears to hold for the vast majority of models and the apparent violations

may also be precipitated by the use of imperfect pre-trend proxies.

Table 1.10: Pre-Trends on Trade Exposure Changes (Regression Coefficients)

Pre-Trend NO2 (1995-2000)

∆IPW 0.0481 0.0227

(0.0694) (0.0313)

∆EPW -0.0252 -0.0511

(0.0841) (0.140)

∆IPA -229.4 -28.89

(246.3) (126.3)

∆EPA -148.3 45.12

(194.8) (138.1)

Pre-Trend PM10 (1995-2000)

∆IPW 0.100 0.106

(0.116) (0.0665)

∆EPW 0.0374 -0.212**

(0.106) (0.0878)

∆IPA -376.5 -438.6*

(369.3) (228.1)

∆EPA -285.7 -378.9**

(251.8) (169.8)

. Pre-Trend SO2 (1995-2000)

∆IPW 0.451* 0.0672

(0.224) (0.0674)

∆EPW 0.451* -0.0314

(0.227) (0.147)

∆IPA 318.5 -90.02

(302.2) (183.0)

∆EPA 154.6 -150.0

(207.7) (133.4)

Controls None Standard None Standard None Standard None Standard

Observations 413 413 413 413 413 413 413 413

Note: Pre-Trends are concentration differences between 1995 and 2000. Regressions are performed without controls and

with the baseline set plus regional dummies. This table reports only the main coefficient from each regression.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

A recent discussion has developed revolving around the use of so-called

Bartik instruments. According to Goldsmith-Pinkham et al. (2019) and

Borusyak et al. (2018), ADH use a shift-share instrumental variable design

to estimate the causal effect of rising import penetration on labor markets.

These variables represent Bartik instruments and Borusyak et al. (2018)
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argue that the approach can be viewed as a reasonable way of leveraging

exogenous shock variation, while Goldsmith-Pinkham et al. (2019) use bal-

ance and overidentification tests to challenge the plausibility of these Bartik

instruments.

Both DFS and ADH use lagged employment shares to construct the

instruments and do not rely on temporal shifts in employment figures for

their identification but on static employment shares. This circumvents a few

pitfalls associated with Bartik instruments but Goldsmith-Pinkham et al.

(2019) stress the importance of parallel trends for the plausibility of the

instruments. While I am unable to provide pre-trend tests at the industry-

level due to the necessary micro level data, the above robustness checks

suggest the existence of parallel trends in NO2 concentrations regardless of

treatment severity, which lends credibility to NO2 results obtained from the

instrumental variable approach.
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1.7 Conclusion

Utilizing the trade shocks and instruments from Dauth et al. (2014) along

with spatial datasets of emission concentrations in Germany, I am able to

confirm the hypothesis that increased trade volumes with China and Eastern

Europe over the time period from 1998 to 2008 have impacted local air quality

in Germany. The empirical analysis is based on an instrumental variable

identification approach, exploits regional variation in pollution and trade

exposure across German counties and yields a positive net benefit of rising

trade exposure on environmental quality for both NO2 and PM10 but mixed

results for SO2, possibly due to limitations in data availability at the beginning

of the sample. These net reductions in pollution concentrations are driven by

emission savings due to import competition and productivity benefits through

imports, which are not offset by the scale effects associated with growing export

opportunities towards China and Eastern Europe. While Dauth et al. (2014)

demonstrate positive employment effects through these export opportunities

of singular magnitude, this growth does not cause a comparable increase in

pollution emissions. It is possible that the beneficial effects of export revenues

on productivity and abatement technology prevalence neutralize any scale

effects in the exporting industries or that cleaner and more efficient industries

are the main beneficiaries of these export opportunities.

Following my preferred specification based on spatially dispersed trade

exposure changes, I compute an estimate of the net effect of trade expansion.

Due to the air quality improvements tied to import competition and the

almost pollution-neutral additional export opportunities, trade liberalization

with respect to China generates an average net reduction of approximately

0.070µg/m3 in NO2 concentrations and of approximately 0.067µg/m3 in

PM10 concentrations across German counties. Expanding the trade network

with Eastern European countries lowers average PM10 concentrations by

an additional 0.168µg/m3 mainly as a result of growing import exposure

and despite their dominant role as export markets. While analyzing pre-

trends and initial heterogeneity at the county-level reveals a potentially
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confounding relationship for PM10 regressions, it reinforces the credibility

of NO2 estimates. Since relative risk factors for this pollutant are readily

available, I perform a basic estimation of the overall value of statistical

life (VSL) preserved by NO2 reductions and arrive at an annual benefit of

¿602.77million tied to the avoidance of emission-related mortality. The net

benefits are economically meaningful because of their relevance for human

health but small compared to overall trend reductions of roughly 3 µg/m3 for

NO2 and 2.84 µg/m3 for PM10 over the same time period. This implies that

the contribution of trade exposure to air quality is small compared to the

reductions achieved by regulation, technological progress and social norms

unrelated to trade activity. These findings mirror recent results for the United

States by Shapiro and Walker (2018). In light of the fact that Germany has

experienced advantageous impulses for its manufacturing labor force through

trade liberalization and has remained a net exporter, these small but robust

savings should nevertheless be interpreted as a remarkable result.

The finding also provides an antidote against the well-documented populist

strategy of framing international trade as a threat for the local populace in

developed nations (e.g. Dippel et al., 2015, and Autor et al., 2016). My

research contributes to the body of literature that emphasizes the ability

of developed nations to harness the terms of trade, to outsource costly and

environmentally harmful production and to collect windfall gains from trade

liberalization beyond export revenues.

On the other hand, it has to be taken into account that Germany repre-

sents a singularity due to its ability to absorb a major fraction of EU trade

flows and to avoid deindustrialization by seizing export opportunities. Thus,

empirical findings for Germany may not be valid in other contexts. Further-

more, this analysis ignores potentially detrimental environmental effects for

citizens abroad and explores only the domestic cross-sectional propensity

to harness trade shocks for environmental benefits. Another caveat is that

my research framework based on the seminal paper by Autor et al. (2013)

focuses on aggregate effects and does not attribute environmental benefits to

individual channels at the micro level. It would be interesting to evaluate, to

what extent the emission reductions are due to restructuring at the extensive
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margin and to what extent they are caused by improvements in emission

intensity along the intensive margin. In order to arrive at such a specification,

measures of emission intensity and productivity have to be constructed that

incorporate price dynamics in a correct manner as emphasized by De Loecker

(2011). Last but not least, aggregate improvements in both job opportunities

and environmental quality are tied to distributional inequalities and welfare

is not increasing evenly across stakeholders. Galle et al. (2018) and Dauth

et al. (2021) have explored these distributional concerns with respect to the

labor market. My analysis of initial heterogeneity at the county-level reveals

that dirty counties experience the largest improvements in air quality and

drive aggregate effects. On the flipside, they also experience the strongest

labor market pressures. Helm (2019) demonstrates that trade shocks induce

spillover effects into connected industries in the vicinity due to agglomeration

economies, which constitute up to 38% of total employment effects. My

baseline research design ignores spatial spillovers and treats import com-

petition shocks as county-specific, while in reality they affect workers and

air quality in surrounding regions. The fact that aerial pollutant emissions

exhibit powerful dispersion patterns (e.g. Lin et al., 2014) makes immission

rasters an imperfect proxy. Accounting for spatial autocorrelation is therefore

an important and expandable aspect of my analysis.

Altogether, my analysis provides robust evidence for domestic air quality

improvements in Germany as a result of the trade liberalization process. I

interpret these improvements as windfall gains from trade openness that

can likely be replicated in other scenarios if terms of trade are favorable

and supported by local environmental regulations, incentives for innovation

and subsidies for abatement technologies. The magnitude of environmental

benefits - between 2.3% of overall reductions between 1998 and 2008 for

NO2 and 8.3% for PM10 - makes them not immediately noticeable by

everyone affected. Consequently, creating awareness for such environmental

improvements and the positive aspects of global trade integration remains

a challenge, while politicians need to make sure that social, economical and

environmental benefits from Germany’s focal position in international trade

are distributed efficiently and fairly - even across national borders.
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Notes

The following subchapters are identical to the published version except for

the formatting and the inclusion of an erratum. This erratum was added in

order to replace a flawed map in the original version and is available on the

Springer website “Erratum to: The Effect of Emission Information on Housing

Prices: Quasi-Experimental Evidence from the European Pollutant Release

and Transfer Register”34. The following subchapters therefore represent the

final version of the paper accepted for publication with slight modifications

regarding the numbering of the subchapters, the placement of the appendix

and the inclusion of the erratum for the convenience of the reader.

Abstract

In this paper, we study whether the release of pollutant emission information

has an effect on housing prices. The event under study is the publication

of the first wave of emission quantity data from the European Pollutant

Release and Transfer Register in 2009. Our analysis is based on quarterly

housing prices at the German postal code level for the years 2007-2011 and

provides the first evidence from Europe on this research question. Estimating

a differences-in-differences model and controlling for observable differences in

land use, housing type distribution, tax revenues and other postal code area

characteristics by means of propensity score matching, we find no significant

effect of the release of emission information on the value of houses in affected

postal code areas. This result survives a number of robustness checks designed

to assess whether our findings are due to data aggregation issues or the actual

treatment definition. This leads to the conclusion that on an aggregate

level the 2009 publication of E-PRTR data did not have an immediate and

noticeable effect on housing prices in Germany.

34Figure A.16 in Appendix A.2.8 is the corrected version also found on the website
(https://link.springer.com/article/10.1007%2Fs10640-016-0100-9).

62



2.1 Introduction

The first wave of data for Germany from the European Pollutant Release and

Transfer Register (E-PRTR) was released in 2009 and reported on location and

volume of pollutant emissions in 2007. The origin of this type of registry can

be found in the American Toxics Release Inventory (TRI) that was introduced

in 1989 and continues to publish U.S. emission information on a regular basis.

The introduction of the E-PRTR was meant to provide information about

local emissions to communities in Germany and other European countries,

which previously did not have access to public information of such quality.

The aim of this paper is to assess the impact of this event on the German

housing market.

In general, the provision of information about pollutant emissions gives

households the opportunity to adjust their behavior in response. If households

react to the reports and re-evaluate locations according to the reported

emissions, the housing market should reflect the resulting adjustments of

preferences in the corresponding real estate values. To test this hypothesis, we

look at the revelation of emission information tied to the first wave of E-PRTR

data in Germany and evaluate possible impacts on aggregated housing prices.

In doing so, we provide the first assessment of the impact of a large-scale

publication of emission information on housing prices in a European context.

The idea that the mere provision of information can be an effective means

of regulating polluters is popular among policymakers as it is relatively cheap

to implement. The information provided to the public should then give rise

to community pressure on polluters to reduce their emissions. As emissions

are present before and after publication, only unexpected information about

quantities or substances should lead to adjustments in behavior. The way in

which households respond to such information depends on how they under-

stand it and what their prior beliefs are, i.e. whether they perceive a change

in the risk they are exposed to. There is evidence that households do respond

to information on environmental amenities in a variety of situations and that

they reduce their exposure to hazardous substances when learning about water

quality (Graff Zivin et al., 2011) or ambient ozone pollution (Neidell, 2009,
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Moretti and Neidell, 2011). It is important to note that emission inventories

only provide indirect information on environmental quality and do not convey

exact measurements of health relevant variables such as local concentration

of pollution. Nevertheless, recent empirical studies on the most prominent

program established on the basis of this concept, the U.S.-American TRI,

have confirmed its effectiveness by demonstrating significant market responses

particularly in the context of housing prices (Sanders, 2014, Mastromonaco,

2015).

The E-PRTR covers emissions to three different media: air, water and soil,

with approximately 60 pollutants in each group and some degree of overlap.

We base our analysis on a quarterly House Price Index at the German postal

code level for the years 2007-2011. Our identification strategy is based on a

differences-in-differences model using the time of the announcement to identify

varying developments in housing prices in the treatment and control group.

Treatment status is assigned based on the number of emission reports affecting

a given spatial entity. Our analysis relies on several assumptions concerning

market extent and the identification of an appropriate control group. For

the treatment effect to be accurately identified, the control group should be

identical to the treatment group in the absence of treatment. Specifically, in

this context, pre-treatment trends should be the same in both groups.

We are fortunate to have a comprehensive data set that provides detailed

characteristics for all postal code areas in our sample and allows us to

accurately construct comparable treatment and control groups. First of all,

we are able to spatially assign socio-economic information at the municipal

level to individual postal codes. Secondly, the use of Geographical Information

Systems (GIS) allows us to collect data on the categories of land use within

each postal code area including industrial land use, landfills, infrastructure and

urban areas. Evidence from the hedonic literature emphasizes the importance

of accounting for locally undesirable land use in assessing the impact of

exposure to hazardous substances on house prices (Taylor et al., 2016). Since

our data indicate substantial systematic differences between treated postal

code areas and untreated areas in the full sample, a matching approach

seems prudent. Based on land use and a list of other relevant observable
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characteristics we are able to match our treated postal code areas to suitable

controls. For the matched sample, we do not find a significant effect on mean

house prices in treated postal codes.

Subsequently, we carry out several robustness checks, predominantly based

on our treatment definition. Our baseline treatment definition, assigning the

treatment status to any postal codes with at least one emitter, may be too

broad as small emissions are given the same weight as large emissions. To

better capture the treatment intensity, we redefine the treatment variable to

indicate quartiles of toxicity-weighted emission quantities by approximating

toxicity through the reporting thresholds of the register. These thresholds are

publicly available and send a distinct signal about the danger associated with

the emission. An additional robustness check approaches treatment intensity

from a different angle by factoring in the absolute number of reporting

facilities. Moreover, we address the distance to emissions and narrow down

the treatment definition to concern only those postal codes with urban area

within 500 m of a point source. We estimate regression models with different

sets of fixed effects, but also compute Average Treatment Effects on the

Treated as in Muehlenbachs et al. (2015) for comparative purposes. None of

these robustness checks indicate the existence of systematic, significant effects

after nearest neighbor matching is performed. In sum, our results suggest

that disclosing the first wave of E-PRTR emissions in 2009 had no significant

impact on postal code average housing prices in Germany once we account

for observable characteristics of these postal code areas.

2.2 Related Literature and Background

2.2.1 Empirical evidence on environmental amenities

in the housing market

Following Tiebout’s seminal paper on households voting with their feet

(Tiebout, 1956), households’ residential choice should reflect their preferences

for public goods, including environmental amenities. Empirical evidence in

support of this hypothesis has been provided by Banzhaf and Walsh (2008),
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who find that local changes in environmental quality are linked to local

changes in community demographics. Such changes should be reflected in

the housing market, and as a result housing markets are often used for non-

market valuation purposes. There is a large literature on housing prices and

environmental amenities using e.g. the hedonic model (Palmquist, 2006).35

In the last decade, a number of papers on environmental valuation using

a quasi-experimental approach have emerged (e.g. Chay and Greenstone

(2005) on the Clean Air Act, Greenstone and Gallagher (2008) on Superfund

sites and Davis (2004) on cancer clusters). As emphasized by Parmeter and

Pope (2009), the use of treatment evaluation techniques aids in overcoming

a number of issues concerning omitted variable bias, which is otherwise an

inherent problem in most cross-sectional hedonic analyses. It should be noted,

however, that hedonic models are designed to recover a marginal willingness

to pay measure from the slope of the hedonic price function, whereas the

quasi-experimental approach recovers a capitalization effect. Kuminoff and

Pope (2014) emphasize that several assumptions are required to interpret the

capitalized effect as an estimate of households’ average marginal willingness

to pay for an amenity.

There are several studies that look at the effect of providing information

on environmental amenities on housing prices. While there are also examples

using direct information on environmental quality,36 empirical studies that

deal with the effect of publishing indirect information on environmental

amenities, in particular emission information via the Toxics Release Inventory

in the United States, are the most relevant empirical counterparts to our

analysis. The results are mixed.37 Bui and Mayer (2003) find no significant

effects of TRI releases on the housing market at the zip code level for more

than two hundred zip codes in Massachusetts, while Sanders (2014) provides

evidence of a negative non-linear impact of reported TRI emissions on housing

35Housing markets have also been used to evaluate changes in utility due to proximity
to sex offenders (Linden and Rockoff, 2008), school quality, etc.

36Pope (2008) for example exploits the introduction of disclosure laws that require
sellers to provide exact information about airport noise exposure to potential buyers.

37A list of scientific articles relying on TRI data can be found in the booklet Envi-
ronmental Protection Agency (2013) released by the Toxics Release Inventory Program
Division.
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prices. Sanders conducts a nation-wide event-study at the postal code level

and based on the 1998 extension of the TRI pollutant reporting definitions.

His findings imply that only substantial deviations from previously reported

emissions have a significant effect on real estate prices.

Moreover, there are papers based on micro-level data: Oberholzer-Gee

and Mitsunari (2006) find a negative effect of emissions on predicted housing

values within short distances (< 1 mile) of the emitter for a limited sample

of five counties in the Philadelphia region. Using TRI and census data from

the 1980s for the six New England states, Hanna (2007) finds estimates

suggesting that being a mile closer to a polluting manufacturing plant reduces

house values by 1.9 %. Mastromonaco (2015) uses a difference-in-differences

specification and a change in the reporting requirements for several chemicals

in 2000/2001 as a quasi-experiment to test for housing price changes in the San

Francisco-Oakland-San Jose Metropolitan Area and finds that listing a firm

in the TRI lowers housing prices in the vicinity by up to 11 %. Currie et al.

(2015) look at both health effects from residing near polluting facilities and the

effects of the opening and closing of facilities registered in the TRI on housing

prices. Using micro data on individual transactions, they find a significant

effect on house prices, albeit at the very local level within 0.5 miles of the

facility. Thus, several existing studies find both statistically and economically

significant effects of revealed emission information on housing prices but with

mixed evidence on the magnitude and spatial range of the effect. As Currie

et al. (2015) emphasize, many of the pollutants in the TRI are odorless,

colorless and hence undetectable without technical equipment. The same

holds true for many pollutants in the E-PRTR. For this reason, households are

unlikely to accurately perceive the (spatial) extent of emissions from a nearby

facility. Information announcements from the European register therefore

have the potential to stimulate households to update their information sets

and consequently their risk perceptions. To the best of our knowledge, this

research project is the first to look at the effect of the E-PRTR on housing

prices. We use Germany-wide housing data on the zip code level and provide

first evidence on the effect of large-scale publication of emission information

outside the U.S.
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2.2.2 The quasi-experiment

The European register for emissions was established following the signing

of the Aarhus Convention in 1998 by EU member states. The convention

aims to increase democratic participation and grants the public the right to

information about the environment. In 2000, the European Council decided

to establish the European Pollutant Emission Register (EPER) based on

Article 15(3) of Council Directive 96/61/EC. The main objective of the EPER

was to fulfill the public’s right to know about the releases of pollutants in

their neighborhood. The EPER was a web-based register, which enabled

the public to access data on emissions to water and air of 50 key pollutants

from large and medium-sized industrial point sources in the European Union.

The register was hosted by the European Environment Agency (EEA). In

2003, the UNECE Pollutant Release and Transfer Register protocol was

signed resulting in the establishment of the European Pollutant Release and

Transfer Register. The E-PRTR expands the coverage of the EPER to include

additional substances and release media. The first round of data for the

E-PRTR covers 2007 and was released in 2009 with the launch of the E-PRTR

website. We downloaded the data in the summer of 2012. E-PRTR emissions

data is collected annually with a delay of approximately 2 years. Since 2009,

comprehensive data releases have taken place every year.

While the predecessor, the EPER, lived a relatively quiet life,38 the launch

of the E-PRTR in 2009 was heavily publicized. Several major German

newspapers announced the launch of the German E-PRTR website and

released short articles detailing the purpose and the scope of the register.

In the period between 2006 and 2011, 43 articles were retrieved from a

LexisNexis search for the keywords “E-PRTR” and “PRTR” in German

newspapers. For the year 2009 alone, there were 34 entries.39 The launch

38The EPER made Europe-wide emissions data for the year 2001 available in 2004 and
emissions data for the year 2004 available in 2006. However, this register received very
little public attention. A LexisNexis search involving German newspapers regarding the
keyword “EPER” yielded only 7 hits for the time frame before 2009. Mentions of the term
were largely concentrated in special interest journals regarding environmental topics or the
waste treatment industry such as Entsorga (2004).

39Examples of comprehensive newspaper articles on the newly available E-PRTR data
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was also accompanied by an official conference in Berlin and the introduction

of a more professional and user-friendly website layout. The website itself

is centered around a convenient database hosted on the servers of the EEA

and was featured in a number of popular magazines. Furthermore, maps on

the website containing the graphical depiction of all point sources made the

information more accessible to people not familiar with the subject or not

interested in filtering through extensive micro data.40

In addition, the number of pollutants was greatly expanded in the E-PRTR

register to 91 substances in comparison to 50 EPER categories, leading to

4,727 reported point source releases in the first E-PRTR data wave compared

to 3,413 reported releases in the last EPER data wave with respect to Germany

alone. Analyzing the media impact of the old and the new register as well

as the scope of the databases suggests that the release of the first wave

of E-PRTR data had a much greater impact on the public perception of

emission quantities in the local environment than previous reports including

any EPER releases and publications. In fact, limiting the numerical analysis

to facilities that were included in the 2009 E-PRTR release but did not report

emissions under EPER in order to eliminate all observations for which prior

high-quality information may have been available, did not reveal substantially

different results. This suggests that the E-PRTR reports were not treated

differently by the housing market with respect to potentially available EPER

emission figures from 2004 or 2006 and that all information released in 2009

was equally new to the market. Since it seems reasonable to assume that

the information released on June 3rd 2009 should be considered news to the

German households, we treat the release of the E-PRTR information in the

second quarter of 2009 as the pivotal event in our analysis. While households

likely had beliefs about the level of pollutant emissions in their area, the

release of E-PRTR data provided them with the opportunity to update their

include “Database of hazards” - Sueddeutsche Zeitung (2010), “Pollutant information now
online”-Hamburger Abendblatt (2009), and “Interesting information on environmental
sinners in the neighborhood”-TAZ (2009).

40Compared to the EEA website the localized website was fairly basic but also easier
to use and has been updated substantially over the following years. The current German
front-end application for private inquiries is available under: http://www.thru.de/search/
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beliefs and adjust behavior if deemed necessary. To account for the possibility

that large emitters might represent more obvious pollutant sources allowing

for more precise beliefs on the side of the households, we provide a robustness

check estimating treatment effects for different emission levels separately (see

Chapter 2.6.1).

2.3 Method

Our analytical approach is based on a difference-in-differences model that

focuses on the evolution of housing prices (Yist) over time (t, yearly quarters),

and across different postal code areas (i) within different federal states (s).

We restrict the data on housing prices to a time interval covering two years

before and after the release of the data as suggested by Sanders (2014).41

Given our quarterly data, we are left with 16 observations for each postal code

area, starting in 2009Q2 and ending in 2011Q1. We include a shift dummy

variable (Postt), which is set to 1 for all quarters after the release of the

emissions data, and a dummy variable for treatment (Treatedi). We estimate

the following model with postal code fixed effects (α4,i) and state-by-time

dummies (α5,st) for each state and quarter, allowing for time trend differences

between the 16 German federal states:

Yist = α0 +α1Postt+α2Treatedi+α3PosttTreatedi+α4,i+α5,st+εist (2.1)

When performing a fixed effects regression, the treatment dummy is

dropped because of time invariance and the coefficient of interest is α3. Its

estimate will yield the average treatment effect of the release of emissions

data on housing prices under four conditions.

First, the appropriate definition of treatment status (Treatedi) is crucial

to our study and we test a number of different definitions. In the E-PRTR

41It is possible to obtain House Price Index values for a longer time horizon and E-PRTR
emission data for the subsequent years (i.e. data from 2008 released in 2010, data from 2009
released in 2011 and so forth). However, the scope of this research project is to focus on the
immediate impact of the initial data release. The following waves of E-PRTR information
would allow inhabitants to continuously update their beliefs, which could potentially dilute
the actual effect of interest.
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dataset, the geographical coordinates of each emitter are provided along with

a postal code. Hence, we define a postal code area as treated if it contains

at least one emitter reporting emissions in the 2009 release. We refine these

treatment definitions in section 6 in order to address the concern that the

emitted quantity or the facility density may be important for the housing

price response.

Second, the extent of the market is important in determining the appro-

priate capitalization effect if there is heterogeneity in preferences in different

housing markets. While treating large geographic areas (e.g. the whole U.S.)

as a single market is not unusual in the quasi-experimental hedonic litera-

ture (e.g. Greenstone and Gallagher (2008) and Sanders (2014)), Gamper-

Rabindran and Timmins (2013) find that there is considerable heterogeneity

in the capitalization of clean-ups of hazardous waste across the U.S. Their

findings suggest that pooling data across regions may be misleading. Given

the German history and the resulting very different economic conditions in

Eastern and Western Germany, we estimate our model for each of these two

regions separately with the former covering the previous territory of the DDR

along with Berlin.

Third, we need to rule out systematic differences between control and

treatment group and the prevalence of systematically different housing market

trends in particular. If treatment status is determined at least in part by

the value of an unobserved variable which is correlated with the general

development of housing prices, the estimate of the treatment effect will be

biased (e.g. Angrist and Pischke, 2009, p. 243). We address this concern by

using propensity score matching techniques to secure comparable control and

treatment groups. For this purpose, we carefully collect data on the charac-

teristics of the postal code areas including land use and socio-demographic

information useful in predicting the probability of finding emitters in the

different areas. The market definition discussed in the previous paragraph

can also be seen as an important step towards narrowing down the relevant

control group to one that is highly comparable to treated postal code areas

and as an important factor in our efforts to control for all relevant (regional)
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differences in terms of unobservable characteristics.42

Finally, we need to assume no other changes unique to the treatment

group take place when the data is released. A potential threat might be the

financial crisis that peaked around the time of the first E-PRTR publication.

This would cause problems if treated postal code areas were systematically

affected differently than the control areas. It could be the case for example

that housing prices are less volatile in industrial areas due to less speculation

as compared with urban housing and high quality living areas. We can address

this concern by including the share of industrial areas within a postal code

area in our matching procedure.

The observable characteristics that we use for the matching procedure

are measured shortly before the event under observation. This ensures that

control and treatment observations share similar properties at the time of the

data release. Treatment and control groups then remain unchanged over all

16 time periods.43

Further, we follow Muehlenbachs et al. (2015) and compute Average

Treatment Effects on the Treated (ATET) based on mean differences in

housing prices pre and post treatment for comparative purposes. This setup

abstracts from individual zip code characteristics and only takes state fixed

effects for each German “Bundesland” into account to control for different

evolutions in the housing markets across federal states. In general, the ATET

measures a similar effect as the interaction term in the regression model but

should be less sensitive to issues concerning the balancing of covariates for

the matched samples.

42This point is made in a recent paper by Abbott and Klaiber (2013). They use matching
to account for observable characteristics, but limit matching to potential controls within
a certain radius (spatial proximity) to obtain comparable units in terms of unobservable
characteristics. The procedure is intuitively similar to the use of fixed effects to capture
neighborhood unobservable characteristics.

43In essence this corresponds to using matching as a non-parametric pre-processing of
the data, see Ho et al. (2007). By limiting the analysis to a matched sample, the estimated
models become less sensitive to misspecification as there is less implicit interpolation when
the treatment and control group are balanced in terms of observable characteristics.
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2.4 Data

2.4.1 Housing data

We use a hedonic House Price Index, the “F&B Wohn-Preis-Index”, on

the postal code level with quarterly data for the 4 years surrounding the

information release (2007Q2-2011Q1). This data was purchased from F&B

GmbH, a private research and consulting institute in Hamburg, Germany,

that specializes in the housing market. This hedonic price index is based on

supply data from up to 20 million German real estate objects in the private

sector such as family homes, condominiums and privately owned terraced

houses. An adjustment is made to account for the differences between listing

prices and actual transaction prices. The index uses aggregates computed on

the basis of supply data from selected online and offline sources for housing

and weighted by typical variables such as number of rooms, age of building,

type of residency and location. With these adjustments, the index describes

how the development in the price of an “average home” changes across time

and postal code areas. Plausibility checks are performed for each entry and

the aggregation process controls for regional and seasonal variation in types

of homes available. Details can be found on the company website and have

been summarized in F+B (2012).44

The baseline index is normalized to 100 in 2004Q2 for each of the 8,212

postal codes and describes the development in housing prices within each

separate postal code relative to the House Price Index at this fixed point in

time. We compared the aggregate long term trends with annual data obtained

from the German Federal Institute for Research on Building, Urban Affairs and

Spatial Development (Bundesinstitut für Bau-, Stadt- und Raumforschung,

BBSR) and found fairly similar trends confirming the general validity of the

obtained housing price data. Monthly data has been converted to quarterly

data by assigning the index value from the latest month to the respective

quarterly time series. Figure A.9 in Appendix A.2.4 shows that by 2009Q2

44www.f-und-b.de (F+B Forschung und Beratung für Wohnen, Immobilien und Umwelt
GmbH, Hamburg). Accessed on 28-10-2013.
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the index values had fallen by 5% on average across German postal codes.

The subsequent recovery back to 99% in mean housing price values can be

attributed to the Financial Crisis and the resulting lack of other attractive

investment opportunities. The turnaround point roughly coincides with the

publication of the first wave of E-PRTR data in 2009Q2 and divides our

period of observation into two sub-periods exhibiting almost linear trends,

which facilitates their interpretation and parts of the analysis but also stresses

the necessity of a careful approach with respect to existing pre-treatment

trends. All changes in House Price Index values are basis point changes

relative to the level of housing prices within a certain postal code in 2004Q2.

2.4.2 Pollutant emissions data

2.4.2.1 Facility reports

Polluted emissions data has been taken from the website of the E-PRTR. The

database itself is maintained by the European Environment Agency and lists

pollutant emissions from point sources on the facility level for all European

countries reporting to the E-PRTR in absolute quantities.45 The database

contains releases into air, water and soil as well as transfers to external

waste treatment facilities. The reports differentiate between 96 pollutant

categories including some aggregate classes and 91 individual pollutants, out

of which 70 actually occurred in Germany in the reports for 2007. For the

year 2007, there were 4,727 point source releases and 952 waste transfers

reported for 1,976 individual facilities. All facilities engaging in at least one of

65 specified economic activities46 are obliged to report their yearly emissions

of those 91 specified substances that exceed a certain threshold defined for

45Database accessible via: http://www.eea.europa.eu/data-and-maps/data/member-
states-reporting-art-7-under-the-european-pollutant-release-and-transfer-register-e-prtr-
regulation-12

46All relevant economic activities are listed in the Annex (p. 8 et seq.) to the regulations
published in European Union (2006b) in January 2006. Official information accessible via:
http://prtr.ec.europa.eu/. The register includes information of about 29000 facilities in 32
countries (EU27, Iceland, Liechtenstein, Norway, Switzerland and Serbia).
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each pollutant and release medium separately.47 The specific thresholds were

chosen to ensure that about 90% of industrial emissions are captured by

E-PRTR reports.48 The basis for this calculation was data accumulated by

EU member states such as Germany, the Netherlands and the UK in years

prior to the passage of regulation. We exclude reports on CO2 for our analysis

as this substance does not pose a local threat to nearby households and is not

contained in the TRI.49 Moreover, we exclude reports on transfers as their

final destination is usually not close to the reporting site and transportation

to another facility such as a waste treatment site should evoke fewer concerns

within the local community than the direct release of pollutants into the local

environment. Emissions from such a waste treatment site would be reported

in the E-PRTR if they exceed the respective reporting threshold.

2.4.2.2 Facility locations

The E-PRTR database also contains Gauss-Krüger coordinates (WGS84) of

each facility. We use geographic information systems (ArcGIS) to attribute

the point source to the corresponding postal code area.50

The location of emissions by postal code areas is displayed in Figure 2.1,

using a shape file that contains the full set of 8,212 German postal code areas

as of January 2012, provided by GfK GeoMarketing GmbH.51 The visual

representation shows that point sources are not spread out evenly across

Germany. Emissions are concentrated in well-known industrial areas such

as the Ruhr valley, as well as in certain rural areas in the former German

Democratic Republic. There are in total 1,118 postal code areas, which

contain at least one point source according to the data set published in 2009.

47These thresholds will be used as weights to normalize emissions when calculating
a weighted severity measure, see Appendix A.2.2 or Chapter 2.6.1. All pollutants and
thresholds are listed under: http://prtr.ec.europa.eu/docs/Summary pollutant.pdf.

48See question 5 on http://prtr.ec.europa.eu/#/faq.
49Including these reports does not qualitatively affect the results.
50Interestingly, using the geographic coordinates revealed that in more than 200 cases

in 2007 alone, the postal code in the E-PRTR reflected the location of a firm’s main office
rather than the location of the actual emission.

51This shape file has also been used for the remaining maps displayed in this paper.
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Figure 2.1: Postal code areas with emissions
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2.4.3 Data on postal code areas

2.4.3.1 Corine land cover data

The Corine Land Cover project was initiated by the European Commission

and is managed by the European Environmental Agency.52 The data on land

use is initially collected from satellite images and then refined through the

use of aerial photographs and other ancillary sources of information. The

maps are aggregated such that the smallest unit of any type is at least 25

hectares. The location precision of the data is 100 m. As part of the Corine

Land Cover project, the land use in Germany was mapped in 2006. Varying

categories of land use, like e.g. urban area, infrastructure and natural areas,

are defined resulting in a total of 44 categories, 37 of which exist in Germany.

We aggregate these into a total of 7 categories: Urban area, Urban green space,

Natural area, Agriculture, Water body, Industrial area and, finally, Landfills

and construction sites. Based on the land use data, we calculate the respective

share of individual postal code areas allocated to each type of land use. An

example can be seen in Figure 2.2, where the different categories of land use

are demonstrated for the postal code covering the center (bottom right) and

the industrial harbor (left) of Mannheim, Baden-Wuerttemberg. The dots in

the example represent the locations associated with emission reports in the

2007 E-PRTR. Clearly, most of them are located within industrial areas.

52The data can be downloaded from the European Environment Agency website:
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3
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Figure 2.2: Land use in Mannheim, Germany

2.4.3.2 Municipality Data

At the municipality level, we have access to the 2008 wave of the INKAR53

database provided by the German Federal Institute for Research on Building,

Urban Affairs and Spatial Development. These data describe the demographic,

economic and social composition of municipalities. Among other things, they

contain information about the unemployment rate, prevalent type of housing,

age composition and population size as well as tax revenues at the municipal

level (“Gemeinde” or “Gemeindeverband”). A list of all used variables from

our data set of observed characteristics can be found in Table 2.1 and the

corresponding variable descriptions are compiled in Table A.8 in Appendix

A.2.1.

53INdikatoren und KARten zur Raum- und Stadtentwicklung in Deutschland und in
Europa - Indicators and maps on spatial and urban development in Germany and Europe.
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We used the Corine Land Cover information on urban area coverage in

the postal code areas to merge postal code areas with municipalities. In

Germany, municipalities and postal codes do not overlap perfectly. In some

cases, several postal code areas will be contained in one municipality. In other

cases, several municipalities will lie within a single postal code area. In the

latter case, we merged postal codes with municipalities based on the share of

the total urban area within a postal code area, such that each postal code was

assigned to the municipality with the largest portion of shared urban area.

If there was no urban area in the postal code area, the municipality with

the largest share of land was used. Using this procedure, a few postal code

areas were lost as we were not able to match them with municipalities.54 Our

available sample for the estimations using these observable characteristics for

matching purposes was therefore reduced to 8,194 postal code areas.

2.4.3.3 Summary Statistics

A detailed summary of descriptive statistics for the full sample is presented

in Table 2.1. Variable definitions can be found in Appendix A.2.1, Table A.8.

54Over the last years, there have been several municipal reforms merging and dividing
municipalities. Since our INKAR data refers to the state ultimo 2008 we had to match
municipalities from this time period to present municipal structures and then to the postal
code areas. As a result, 18 postal code areas were lost in the first step of this process.
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Table 2.1: Summary table of mean characteristics (full sample)

Entire Germany
Variable Mean SD Min Max
Unemployment level 5.1 3.2 0.8 19.8
- long term 28.1 12.5 0.0 94.1
- long term, change -30.1 38.7 -100.0 400.0
Employed in the primary sector 2.5 3.8 0.0 54.7
- secondary sector 37.7 16.8 0.0 94.2
- tertiary sector 59.7 16.9 5.5 100.0
Commuters into municipality 64.1 13.6 12.2 95.7
Commuters out of municipality 69.1 22.8 6.9 96.7
Total tax revenues 636.5 359.4 64.2 14093.8
Population density 599.0 908.4 6.8 4274.5
Value added tax revenues 32.8 26.3 -50.5 535.2
Commercial tax revenues 332.3 393.9 -241.9 11982.7
Income tax revenues 329.6 112.6 79.6 779.5
Distance to freeway 14.5 12.4 0.0 139.2
Distance to airport 58.6 32.1 1.3 269.0
Distance to fast trains 22.9 16.4 0.0 170.7
Distance to large urban center 27.3 19.5 0.0 194.7
Distance to medium urban center 9.5 9.0 0.0 137.3
Access to European neighbors 247.6 29.9 179.5 431.6
Newly constructed buildings 2.3 1.9 -3.5 42.9
Share of single/two family housing 84.9 13.4 46.3 99.7
- multiple family housing 15.1 13.4 0.3 53.7
Small apartments 6.5 4.2 0.7 40.7
Large apartments 50.4 16.4 16.0 84.2
Size of postal code area (km2) 43.5 52.5 0.002 890.0
Pct. agriculture 52.1 26.8 0.0 100.0
Pct. urban area 15.5 21.9 0.0 100.0
Pct. water bodies 1.4 4.3 0.0 100.0
Pct. natural areas 26.5 22.0 0.0 100.0
Pct. industrial areas 2.7 7.3 0.0 99.6
Pct. landfills etc. 0.4 1.5 0.0 38.8
House Price Index pre
(2007Q2-2009Q1)

95.3 4.0 81.2 115.1

House Price Index post
(2009Q2-2011Q1)

96.9 5.5 76.7 128.7

∆ House Price Index (post-pre) 1.6 3.0 -11.6 16.6
Number of facilities 0.2 0.6 0.0 14.0
Weighted emission score 8.9 165.8 0.0 11656.5
Number of postal codes 8212

Note: House Price Index values are averages over the respective periods.80



2.5 Results

2.5.1 Full sample

After the release of the E-PRTR, the housing market in Germany was domi-

nated by a positive trend resulting in an average increase of roughly 3-4% for

the subsequent two-year-period (see Appendix A.2.4). Comparing the housing

price averages over the 8 quarters before treatment and over the following 8

quarters confirms the Germany-wide positive trend in housing prices in the

later time period (see Table 2.1). In the main specification, we define those

postal code areas as treated that had at least one report published in the

E-PRTR register for the year 2007. Raw mean comparisons, calculated as

average differences before and after treatment, indicate a trend-malus of the

treatment group in comparison to the control group for Eastern Germany,

while there is no difference between treatment and control group in Western

Germany (see ∆ House Price Index in Table 2.2). The different developments

in Eastern and Western Germany underline the importance of controlling for

regional housing markets.

Table 2.2: Mean comparison across treatment groups and regions (full sample)

Entire Germany Western Germany Eastern Germany
Variable Mean

(Treated)
Mean

(Control)
Mean

(Treated)
Mean

(Control)
Mean

(Treated)
Mean

(Control)
House Price Index pre
(2007Q2-2009Q1)

95.56
(0.12)

95.28
(0.05)

96.23
(0.14)

95.28
(0.05)

94.23
(0.21)

95.28
(0.14)

House Price Index post
(2009Q2-2011Q1)

96.76
(0.16)

96.94
(0.07)

97.95
(0.18)

96.99
(0.07)

94.41
(0.26)

96.65
(0.22)

∆ House Price Index
(post-pre)

1.20
(0.08)

1.66
(0.04)

1.72
(0.09)

1.71
(0.04)

0.17
(0.14)

1.37
(0.11)

Number of Facilities 1.43
(0.03)

0.00
(0.00)

1.46
(0.04)

0.00
(0.00)

1.36
(0.04)

0.00
(0.00)

Weighted Emission Score 65.44
(13.32)

0.00
(0.00)

88.75
(19.97)

0.00
(0.00)

19.64
(3.39)

0.00
(0.00)

Number of postal codes 1118 7094 741 6058 377 1036
Note: Housing index values are averages over the respective periods.

Standard deviations in parentheses.

In a first step, we compute Average Treatment Effects on the Treated

(ATET) based on the mean difference in the changes in housing prices pre and
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post treatment (∆ House Price Index) between treatment and control group,

taking into account state fixed effects to control for legislative and systematic

differences in the German federal states.55 In this preliminary setup, we find

a negative effect of treatment for Eastern Germany (column (iii) in Table 2.3),

while the observed ATET for Western Germany (ii) is significantly positive.

The overall effect appears to be negligible in the full sample (i).

In a next step, we move to our baseline regression model with postal code

fixed effects and time-by-state fixed effects in order to capture state-specific

time trends. Standard errors are clustered at the postal code level. For the full

sample, housing prices in the treated postal codes rose just as strongly as those

in the control group (Column (1) in Table 2.3). We proceed to look at the

Eastern part and the Western part of Germany separately (columns (2) and (3)

in Table 2.3) and again find that the results differ strongly between these two

regions. The effect is strongly significant across the board, but with opposite

signs for Eastern and Western Germany. In Eastern Germany, a negative

effect is found and in Western Germany a positive effect. However, these

findings are rather naive as they do not control for important characteristics of

postal codes that are confounded with treatment and that cannot be captured

by spatial and temporal fixed effects.

55Note that due to the inclusion of state fixed effects the results cannot be directly
inferred from Table 2.2.

82



Table 2.3: Naive panel estimates, full sample

Mean comparisons Entire Germany Western Germany Eastern Germany
(i) (ii) (iii)

ATET 0.0005 0.217** -0.425*
(0.083) (0.090) (0.169)

State-specific FE Yes Yes Yes
Note. Dependent variable is House Price Index; robust standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

Regression models Entire Germany Western Germany Eastern Germany
(1) (2) (3)

Post*Treatment 0.053 0.236** -0.399**
(0.081) (0.091) (0.166)

Postal code FE Yes Yes Yes

State-specific time FE Yes Yes Yes

R2 0.394 0.387 0.424
Observations 8212 6799 1413
Treated observations 1118 741 377
Control observations 7094 6058 1036

Note. Dependent variable is House Price Index normalized to 100 in 2004Q2.

*/**/*** Significant at the 5%/1%/0.1% level. Clustered standard errors in parentheses.

The underlying assumption in the differences in differences approach is

that the treatment and the control group are similar in terms of observable

and unobservable characteristics except for the fact that the treatment group

was exposed to treatment. Moreover, if the treatment group and control

group are similar in terms of observable characteristics it seems more plausible

that they should also be similar in terms of unobservable characteristics. If,

however, the control group differs significantly from the treatment group, any

effects found using the differences in differences estimator may be due to the

underlying heterogeneity between treatment and control group, specifically,

when these differences concern properties with direct relevance for housing

prices. In particular, the trend in housing prices prior to treatment should be

identical in control and treatment group. Based on the data we have at hand,

we can test for differences in pre-treatment trends and a rich set of additional

observables.
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Table 2.4: Mean characteristics of treatment and control group (full sample)

Western Germany
Variable Treated Control %bias t p > |t|
Unemployment level 5.1 3.9 55.1 15.1 0.00
- long term 29.2 28.0 8.9 2.4 0.02
- long term, change -24.5 -26.1 4.0 1.0 0.30
Employed in the primary sector 1.5 2.2 -27.2 -6.3 0.00
- secondary sector 38.6 39.1 -2.9 -0.7 0.46
- tertiary sector 59.9 58.7 7.3 1.9 0.06
Commuters into municipality 61.8 66.2 -37.3 -9.6 0.00
Commuters out of municipality 59.1 72.5 -63.6 -16.3 0.00
Total tax revenues 763.6 672.1 24.8 6.7 0.00
Population density 821.7 520.3 36.7 9.7 0.00
Value added tax revenues 45.9 30.9 53.6 14.0 0.00
Commercial tax revenues 491.0 334.0 34.8 10.0 0.00
Income tax revenues 351.6 365.2 -15.4 -3.9 0.00
Distance to freeway 11.1 14.4 -29.2 -7.1 0.00
Distance to airport 48.5 57.8 -34.5 -8.5 0.00
Distance to fast trains 19.0 23.3 -27.8 -7.1 0.00
Distance to large urban center 22.7 27.5 -25.5 -6.7 0.00
Distance to medium urban center 5.2 10.1 -59.1 -14.2 0.00
Access to European neighbors 238.7 244.4 -21.4 -5.5 0.00
Newly constructed buildings 2.2 2.5 -18.6 -4.3 0.00
Share of single/two family housing 81.7 87.3 -44.4 -11.9 0.00
- multiple family housing 18.3 12.7 44.4 11.9 0.00
Small apartments 7.0 6.2 20.2 5.1 0.00
Large apartments 47.5 54.6 -46.9 -12.4 0.00
Size of postal code area (km2) 49.0 35.0 35.2 10.2 0.00
Pct. agriculture 49.5 53.4 -15.0 -3.9 0.00
Pct. urban area 17.1 14.0 16.9 4.0 0.00
Pct. water bodies 1.9 1.3 16.3 4.0 0.00
Pct. natural areas 21.4 27.8 -30.9 -7.6 0.00
Pct. industrial areas 7.3 2.0 56.7 19.7 0.00
Pct. landfills etc. 0.8 0.3 35.5 10.9 0.00
Number of postal codes 741 6058
Note. Bias is defined as the difference in means between the treated and the non-treated subsample

divided by the square root of their average sample variances. Means are unweighted across samples.

84



Table 2.5: Mean characteristics of treatment and control group (full sample)

Eastern Germany
Variable Treated Control %bias t p > |t|
Unemployment level 10.6 9.9 25.4 4.4 0.00
- long term 28.9 27.3 11.9 2.0 0.05
- long term, change -49.6 -50.8 4.6 0.8 0.45
Employed in the primary sector 5.9 4.1 29.3 5.0 0.00
- secondary sector 33.5 30.4 20.6 3.3 0.00
- tertiary sector 60.6 65.5 -29.1 -4.7 0.00
Commuters into municipality 62.0 54.4 45.5 7.0 0.00
Commuters out of municipality 66.3 57.4 35.7 5.5 0.00
Total tax revenues 421.1 413.7 2.4 0.4 0.69
Population density 338.8 996.6 -60.8 -8.8 0.00
Value added tax revenues 32.6 34.3 -9.7 -1.7 0.10
Commercial tax revenues 249.8 237.6 3.9 0.7 0.50
Income tax revenues 150.9 169.8 -38.8 -6.0 0.00
Distance to freeway 17.2 16.4 6.8 1.1 0.26
Distance to airport 75.6 64.2 25.8 4.2 0.00
Distance to fast trains 27.2 21.7 30.0 4.9 0.00
Distance to large urban center 35.8 26.7 40.0 6.5 0.00
Distance to medium urban center 10.2 8.8 15.0 2.5 0.01
Access to European neighbors 275.6 263.0 37.6 5.8 0.00
Newly constructed buildings 1.4 1.7 -13.2 -2.0 0.00
Share of single/two family housing 80.6 74.6 40.9 6.5 0.00
- multiple family housing 19.4 25.4 -40.8 -6.5 0.00
Small apartments 6.5 8.3 -47.0 -7.2 0.00
Large apartments 36.2 32.3 33.7 5.5 0.00
Size of postal code area (km2) 140.0 54.0 84.9 16.5 0.00
Pct. agriculture 60.8 42.7 66.3 10.5 0.00
Pct. urban area 9.3 25.4 -68.0 -9.8 0.00
Pct. water bodies 2.1 1.8 7.5 1.2 0.22
Pct. natural areas 22.7 23.5 -3.7 -0.6 0.56
Pct. industrial areas 3.2 3.5 -4.3 -0.7 0.49
Pct. landfills etc. 1.0 0.4 28.0 5.4 0.00
Number of postal codes 377 1036
Note. Bias is defined as the difference in means between the treated and the non-treated subsample

divided by the square root of their average sample variances. Means are unweighted across samples.

It turns out treatment group and control group differ with respect to a

large number of the observable characteristics (see Tables 2.4 and 2.5). The

standardized percentage bias is computed as suggested by Rosenbaum and

Rubin (1985). Generally speaking, the postal code areas in the treatment

group in Western Germany have fewer commuters out of the municipality,
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higher proximity to large and medium sized urban centers, and a higher

population density also evidenced by a larger share of apartment buildings

than single family houses compared to the untreated postal code areas. The

treated areas seem to be less residential in nature: They tend to have higher

VAT and higher commercial tax revenues than the average postal code area

without emissions and they have a higher percentage of industrial area and a

lower percentage of natural areas than the untreated postal code areas. In

Eastern Germany in contrast, the treated postal code areas tend to be of a

more rural nature. A larger share of employment is in the primary sector

and a lower share in the tertiary sector. The treated postal code areas in

Eastern Germany also have lower population density, more agricultural area

and less urban area than the postal code areas without emissions. They are

further away from large urban centers and from main line train stations. In

consequence, while treatment in Western Germany is associated with the

prevalence of industry and proximity to urban centers, the opposite seems to

be the case in Eastern Germany. These differences in observable characteristics

of the treatment and control group in both parts of Germany could explain

the findings in Table 2.3, where treatment in Western Germany is associated

with higher price increases in the housing market, and lower price increases

in Eastern Germany. It is conceivable that the housing market trend differs

between rural and urban areas, which we have not controlled for when we use

the full data set. Analyzing pre-treatment trends confirms this picture as we

have to reject the common trend assumption, finding significant differences in

opposite directions for Eastern and Western Germany (see Chapter 2.5.2.2).

In both Eastern and Western Germany, treated postal codes tend to have

a higher unemployment level, lower income tax revenue, and the treated

postal code areas tend to be larger and to have a larger share of landfills than

the untreated postal code areas. These differences mirror the findings in Bui

and Mayer (2003) when looking at the characteristics of affected counties

in Massachusetts. For instance, in their sample, the counties with non-zero

emissions had a lower median household income and lower health and welfare

spending than their unaffected counterparts. Davis (2011) finds evidence of

taste-based sorting in and out of polluted areas in his study of power plant
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openings in the US, and also concludes that power plants are likely to be sited

in low-density areas. As the siting of pollutant sources in general is unlikely

to be random, controlling for observable characteristics of postal code areas

is important. In particular, a recent paper by Taylor et al. (2016) analyses

stigma effects of undesirable land use following the clean up of hazardous

waste sites. They show that once surrounding land use, which is often also

undesirable, has been taken into account for in a hedonic model, there is no

evidence of stigma keeping prices low after a cleanup. Their result emphasizes

that the evolution of prices depends strongly on land use characteristics of

the surrounding area. For this reason, we think that the inclusion of data on

land use is crucial and should play an important role in the following process

of creating adequate control groups.

2.5.2 Matching

2.5.2.1 Methodology

The idea underlying the matching approach is to find control units which are

comparable to the treatment group in terms of relevant observable characteris-

tics. This approach has recently become popular in the study of environmental

impacts in housing markets (see e.g. Abbott and Klaiber, 2013; Sanders,

2014; Muehlenbachs et al., 2015). One option is to do exact matching on

characteristics, however, given the number of characteristics in our data set,

and the fact that several of them are continuous measures, aggregating the

information by propensity scores seems prudent. The propensity score can be

estimated and is a measure of the individual postal code area’s likelihood of

being treated, as far as this can be predicted given observable variables. Gen-

erally speaking, a probit or a logit is estimated with the treatment indicator

as the dependent variable.

A number of assumptions are important when it comes to using matching

estimators. The most important of these is that unobservable characteristics

do not play a role in determining treatment assignment or price evolution so

that the propensity score is based on all relevant characteristics. Secondly, the
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common support assumption, i.e. that the distributions of propensity scores

overlap for the treatment and control group, is necessary to ensure that there

is a comparable match for each treated observation included in the analysis.

Finally, there is the stable unit treatment assumption, namely that treatment

does not indirectly affect untreated observations.56 Implementing propensity

score matching also requires a number of decisions. In addition to choosing

which control variables to include, the number and selection of matches must

also be decided upon. Nearest neighbor matching is commonly used in the

environmental economic literature, e.g. Muehlenbachs et al. (2015). The

number of neighbors to match with, as well as whether to match with or

without replacement, are both issues of bias versus efficiency. The more

neighbors included, the more efficient, yet the further away the matches

may be from the treated unit they should correspond to in terms of the

propensity score. This may in turn induce bias due to lower quality of the

match. Radius matching is a way to address these issues wherein the treated

observations are matched to all controls within a radius distance of their

propensity score. In this way, efficiency is increased while bad matches are

dropped (as are some of the treated units without any suitable controls

within the specified radius). Also the specification of the model for the

propensity score is important and there are different ways to implement such

a model. Mahalanobis matching can improve the balance of covariates in

the control and treatment group as matching solely on propensity scores

may not be sufficient due to sampling variation and non-exact matching

(see Rosenbaum and Rubin (1985) for further information). Mahalanobis

matching is based on the multivariate distance between individuals in different

groups weighted by the sample covariance matrix. For two observations i

and j, the respective Mahalanobis distance (MD) is given by MD(Xi, Xj) =√
(Xi −Xj)TS−1(Xi −Xj), where Xi and Xj are the corresponding covariate

vectors and S is the sample covariance matrix. It would be possible to assign

56In our case, some 12 percent of the postal code areas are affected and general
equilibrium effects are conceivable if households respond strongly. If treatment has the
effect of increasing house prices in surrounding non-treated areas, this would make an
estimated effect larger rather than smaller and thus make it more likely that we would find
a significant treatment effect.

88



subjectively chosen weights to the matching variables or consider only a chosen

subset for the Mahalanobis procedure but any such restriction could potentially

give rise to a bias arising from personal preference. Therefore, reporting the

results for the generic matrix seems the most objective method. We carry

out nearest neighbor matching with a single neighbor, radius matching and

Mahalanobis matching for our main treatment specification. Our propensity

score matching procedures are all carried out using the procedure psmatch2

for Stata (Leuven and Sianesi, 2003).

A logit model is estimated for each region based on the postal code

characteristics.57 Several of the covariates are highly significant reflecting the

different characteristics discussed above. We impose common support for the

matched sample and trim the data sections that exhibit thin support.58 This

procedure reduces the sample by 14 postal code areas in Western Germany

for both nearest neighbor and Mahalanobis matching. In Eastern Germany,

enforcing common support results in the loss of 7 postal code areas. For

radius matching we consider the distribution of p-score distances and set

the radius to half the 90th percentile. This radius specification eliminates

a substantial number of treated units (129 in Western Germany and 58 in

Eastern Germany), for which the distance to the closest match is too large.

Our specification of the radius is an adaption of the approach used in Huber

et al. (2013), where half of the maximum distance is used as radius setting.59

Imposing common support in all these methods has the direct consequence of

changing the population under study. In particular for the radius matching

case, this could potentially affect the results in the presence of heterogeneous

treatment effects.

57To avoid multicollinearity we left the share of labor force employed in the primary
sector, the share of single family housing, and the share of natural land use out of the logit
models used for matching.

58In addition to dropping treated units with propensity scores above the highest score
for the potential control units, we also exclude the 2 % of the treated units with the lowest
p-score density.

59Huber et al. (2013) additionally use 1.5 and three times the maximum distance in
an assessment of the performance of matching estimators. We choose the lower end
specification to avoid including too many poor matches.
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2.5.2.2 Control group comparison and the common trend assump-

tion

A comparison of the treatment group with the matched control group shows

large improvements in terms of matching characteristics with sample means

on almost all characteristics insignificantly different from each other. A set

of histograms comparing the propensity scores distribution for the full and

the matched samples can be found in the appendix for each of our treatment

definitions together with the estimates of the logit models (Appendix A.2.6

and Appendix A.2.7).

The spatial extent of both control and treatment group defined by nearest

neighbor matching carried out separately for each region are shown in Figure

A.16 in Appendix A.2.8. It is clear that both the treatment and the control

postal code areas are scattered across each of the regions, i.e. although spatial

proximity is not directly a condition for matching, the outcome is not a

control group spatially distinct from the treatment group.

Table 2.6 provides a raw mean comparison after nearest neighbor matching

for both parts of Germany has been carried out and serves as a preliminary

test before the regression analysis. The subsequent tables (Table 2.7 and

Table 2.8) give an overview over treated and control group characteristics

after matching and demonstrate that the procedure was successful in reducing

percentage biases (see Rosenbaum and Rubin, 1985) across the board.
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Table 2.6: Mean comparison across treatment groups and regions (matched
sample)

Western Germany Eastern Germany
Variable Mean

(Treated)
Mean

(Control)
Mean

(Treated)
Mean

(Control)
House Price Index pre
(2007Q2-2009Q1)

96.22
(0.14)

95.87
(0.15)

94.20
(0.22)

93.99
(0.26)

House Price Index post
(2009Q2-2011Q1)

97.94
(0.19)

97.73
(0.21)

94.44
(0.27)

94.38
(0.36)

∆ House Price Index
(post-pre)

1.73
(0.09)

1.86
(0.11)

0.24
(0.14)

0.40
(0.19)

Number of facilities 1.45
(0.04)

0.00
(0.00)

1.35
(0.04)

0.00
(0.00)

Weighted emission score 82.45
(19.87)

0.00
(0.00)

19.94
(3.47)

0.00
(0.00)

Number of postal codes 727 585 368 227
Note: Housing index values are averages over the respective periods.

Standard deviations in parenthesis.
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Table 2.7: Mean characteristics of treatment and control group (matched
sample)

Western Germany
Variable Treated Control %bias t p > |t|
Unemployment level 5.1 5.0 6.9 1.3 0.21
- long term 29.1 28.6 3.3 0.6 0.55
- long term, change -24.7 -26.7 4.9 0.9 0.38
Employed in the primary sector 1.5 1.5 0.3 0.1 0.96
- secondary sector 38.6 39.0 -2.7 -0.5 0.63
- tertiary sector 59.9 59.4 2.6 0.5 0.64
Commuters into municipality 62.0 62.0 -0.7 -0.1 0.90
Commuters out of municipality 59.5 59.5 -0.1 0.0 0.99
Total tax revenues 762.0 758.1 0.7 0.1 0.89
Population density 811.4 773.4 4.4 0.8 0.43
Value added tax revenues 45.6 44.5 3.1 0.6 0.57
Commercial tax revenues 487.7 471.2 3.0 0.5 0.59
Income tax revenues 352.1 353.2 -1.4 -0.3 0.80
Distance to freeway 11.1 11.9 -8.5 -1.5 0.13
Distance to airport 48.6 50.4 -6.8 -1.2 0.22
Distance to fast trains 19.0 19.1 -0.6 -0.1 0.92
Distance to large urban center 22.8 22.9 -0.8 -0.1 0.89
Distance to medium urban center 5.3 5.5 -2.6 -0.5 0.64
Access to European neighbors 238.8 240.2 -5.3 -1.0 0.34
Newly constructed buildings 2.2 2.2 0.6 0.1 0.91
Share of single/two family housing 81.8 82.0 -1.4 -0.3 0.81
- multiple family housing 18.2 18.0 1.4 0.3 0.81
Small apartments 7.0 7.1 -3.1 -0.6 0.57
Large apartments 47.7 48.2 -3.0 -0.5 0.59
Size of postal code area (km2) 48.0 47.0 2.3 0.4 0.68
Pct. agriculture 49.9 49.6 1.3 0.2 0.81
Pct. urban area 17.1 18.0 -4.6 -0.8 0.40
Pct. water bodies 1.9 1.8 2.2 0.4 0.68
Pct. natural areas 21.5 22.6 -5.2 -1.0 0.34
Pct. industrial areas 6.9 5.1 16.4 3.0 0.00
Pct. landfills etc. 0.8 0.5 18.0 3.3 0.00
Number of postal codes 727 585
Note. Bias is defined as the difference in means between the treated and the non-treated subsample

divided by the square root of their average sample variances. Means are unweighted across samples.
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Table 2.8: Mean characteristics of treatment and control group (matched
sample)

Eastern Germany
Variable Treated Control %bias t p > |t|
Unemployment level 10.6 10.5 2.8 0.3 0.74
- long term 29.1 28.4 4.6 0.6 0.58
- long term, change -49.3 -50.6 5.1 0.6 0.54
Employed in the primary sector 5.9 6.5 -8.6 -1.0 0.30
- secondary sector 33.6 34.2 -3.7 -0.4 0.66
- tertiary sector 60.4 59.3 6.9 0.8 0.41
Commuters into municipality 62.2 63.0 -6.2 -0.7 0.46
Commuters out of municipality 66.5 68.9 -12.0 -1.4 0.16
Total tax revenues 422.8 403.2 6.3 0.7 0.46
Population density 343.8 330.1 2.2 0.3 0.80
Value added tax revenues 32.7 31.9 4.2 0.5 0.63
Commercial tax revenues 251.9 239.1 3.5 0.4 0.67
Income tax revenues 151.2 149.4 4.3 0.5 0.60
Distance to freeway 17.1 17.3 -1.4 -0.2 0.87
Distance to airport 75.4 79.2 -8.8 -1.1 0.30
Distance to fast trains 27.0 28.4 -7.7 -0.9 0.36
Distance to large urban center 35.4 35.0 1.6 0.2 0.85
Distance to medium urban center 10.4 11.3 -10.3 -1.2 0.22
Access to European neighbors 275.9 277.3 -5.1 -0.6 0.55
Newly constructed buildings 1.4 1.4 4.1 0.5 0.63
Share of single/two family housing 80.6 80.9 -2.3 -0.3 0.79
- multiple family housing 19.5 19.2 2.3 0.3 0.79
Small apartments 6.5 6.4 5.6 0.7 0.50
Large apartments 36.2 36.8 -5.3 -0.6 0.53
Size of postal code area (km2) 130.0 100.0 28.1 3.3 0.00
Pct. agriculture 60.7 61.1 -2.0 -0.2 0.82
Pct. urban area 9.5 10.5 -6.7 -0.8 0.42
Pct. water bodies 2.1 1.9 5.0 0.6 0.55
Pct. natural areas 22.6 21.9 3.8 0.5 0.65
Pct. industrial areas 3.3 3.0 2.9 0.3 0.73
Pct. landfills etc. 1.0 0.8 8.5 1.0 0.32
Number of postal codes 368 227
Note. Bias is defined as the difference in means between the treated and the non-treated subsample

divided by the square root of their average sample variances. Means are unweighted across samples.

Common trends in the treatment and control group prior to treatment

is an important assumption in our research design. Figure 2.3 and Figure

2.4 display the raw mean comparisons across all postal codes in the control

and treatment groups for the unmatched and matched samples respectively.

Since the House Price Index is normalized to 100 in 2004Q2 for each separate
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postal code area, it can be seen that relative to this reference point prices

had dropped on average by 4-7% before treatment. The subsequent recovery

of the housing market resulted in a 3-4% increase in average housing prices

relative to 2004Q2. The trend graphs for the unmatched sample show a

similar overall development but hint towards an underlying heterogeneity

between treatment and control group. The observable differences in 2009Q2

index levels imply that this prevailing heterogeneity drove the index levels

comparatively further down for the treatment group in Eastern Germany and

further down for the control group in Western Germany during the 2004Q2-

2009Q2 time period (see Figure 2.3). The figures are strongly supportive

evidence for the assumption that our procedure of nearest neighbor matching

is successful in ensuring a common trend for the two groups in both parts of

Germany (see Figure 2.4). This reinforces our argument in favor of a matching

approach designed to minimize the observable differences between the two

groups. Overall, the analysis at hand demonstrates that our approach not

only succeeds in providing groups with a common trend but also in reducing

aggregate index level gaps at the time of treatment. A more formal test can

be found in Table A.11 in Appendix A.5.
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Figure 2.3: Price trends (House Price Index), unmatched sample
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Figure 2.4: Price trends (House Price Index), matched sample
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2.5.2.3 Matched regression results

We carried out the difference-in-differences estimation and computation of

Average Treatment Effects on the Treated (ATET) using our matched samples

but otherwise with the same specifications as in Table 2.3.60 The results

of the estimations and calculations with different matching approaches are

given in Tables 2.9 and 2.10, where we also report the previous results for

convenience of the reader (see (i) and (1) respectively). The main coefficient

of interest (Post*Treatment) for each of the matching approaches (see (2)-(4)

) is markedly reduced towards zero in comparison with the coefficients from

the unmatched sample estimations for both Eastern and Western Germany.

This finding suggests that there is some bias in the original estimations due to

the inherent differences between the treatment and control postal code areas.

The estimated coefficients across all specifications with matching are small

(between -0.11 and +0.12) suggesting an economically insignificant effect of

around 0.1 percent on average house prices in 2004 levels. Consequently, these

results suggest that the publication of the E-PRTR data had no significant

impact on the evolution of house prices in the affected areas once other

observable differences are accounted for. As we would expect, the standard

errors of the radius matching approach are slightly smaller reflecting the

higher number of observations included in the estimation. Significant findings

for the ATET are also eliminated through the process of matching as the

treatment effects in the matched samples for both regions (see column (ii)-(iv))

are found to be insignificant. The insignificance of the resulting coefficients

is a clear indication that at this level of aggregation the release of E-PRTR

data had no effect on the housing price trends in the affected zip codes.

60Following Dehejia and Wahba (2002) we use the weights generated in the matching
procedure as frequency weights and estimate weighted regressions. The same weights are
used in the calculation of the ATETs.
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Table 2.9: Panel estimates, matched samples, Western Germany

Mean comparisons Western Germany
Full sample NN Radius Mahalanobis

(i) (ii) (iii) (iv)
ATET 0.217** -0.069 0.036 -0.0017

(0.090) (0.136) (0.114) (0.131)
State-specific FE Yes Yes Yes Yes
Note. Dependent variable is House Price Index; robust standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

Regression models Western Germany
Full sample NN Radius Mahalanobis

(1) (2) (3) (4)
Post*Treatment 0.236** -0.074 0.041 0.0018

(0.0910) (0.138) (0.113) (0.131)
Postal code FE Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes

R2 0.387 0.452 0.414 0.431
Observations 6799 1312 5617 1342
Treated observations 741 727 612 727
Control observations 6058 585 5005 615

Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.
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Table 2.10: Panel estimates, matched samples, Eastern Germany

Mean comparisons Eastern Germany
Full sample NN Radius Mahalanobis

(i) (ii) (iii) (iv)
ATET -0.425* -0.063 0.125 -0.164

(0.169) (0.232) (0.212) (0.225)
State-specific FE Yes Yes Yes Yes
Note. Dependent variable is House Price Index; robust standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

Regression models Eastern Germany
Full sample NN Radius Mahalanobis

(1) (2) (3) (4)
Post*Treatment -0.399*** -0.0839 0.121 -0.113

(0.166) (0.233) (0.213) (0.216)
Postal code FE Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes

R2 0.424 0.271 0.274 0.267
Observations 1413 595 1140 615
Treated observations 377 368 317 368
Control observations 1036 227 823 247

Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

2.6 Robustness Checks

Several robustness checks were carried out to assess the impact of the definition

of treatment. These robustness checks are intended to address concerns

about the level of aggregation in our data and treatment definition. First,

we introduce a finer treatment definition based on the actual amounts of

substances emitted. Second, we define treatment by the number of facilities

emitting pollutants in a postal code area. Third, we introduce buffers to

allow for an expanded treatment effect on postal code areas within 500 m

of a facility. Finally, as our House Price Index concerns residential property,

we estimate a model where we limit the treatment definition to only those
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postal code areas with urban area or urban green space within 500 m of an

emitter facility. In each of the robustness checks, nearest neighbor matching

is applied. To summarize, the robustness checks provide the same picture as

the main results discussed above: the publication of emissions information

seems to have had little impact on average prices in affected postal code areas.

The robustness checks are described in more detail below.61

2.6.1 Quartiles of emissions

The binary definition of treatment status underlying the preceding analyses

may be too crude as we do not account for the amount of substances emitted.

To address the concern that the quantity emitted may be important (see

e.g. Sanders, 2014) we aggregate the emissions of different substances to

a weighted measure of total emissions within a postal code area, where

the weights assigned to different substances are intended to account for the

potential severity of the effects of these individual emissions. We use the

inverse reporting thresholds from the E-PRTR as a proxy for these weights. In

general, these thresholds are lower for more potent substances such as benzene

or dioxin than for less potent substances such as nitrogen oxides. Furthermore,

the thresholds are publicly available via the different websites and thus

easily available to households. The lack of more precise toxicity measures

contained within the E-PRTR framework makes our Weighted Emission Score

a reasonable measure of the perceived severity of pollutant emissions.62 This

exercise also addresses potential concerns that large emitters may have been

more obvious to the public and should thus be treated differently in the

analysis.

61It is well-known that matching techniques can be sensitive to the specification of the
logit/probit model. We tested alternative specifications without qualitatively changing the
results.

62Nevertheless, the reporting thresholds are an imperfect proxy for toxicity. They are not
directly intended to capture toxicity but rather to ensure that a large fraction of emissions
is covered by the register while at the same time minimizing unnecessary burdens for small
emitters. Still, when looking across the table of thresholds and individual substances, there
is a clear pattern that lower thresholds are associated with substances generally perceived
as being dangerous. The full list of pollutants and their thresholds can be accessed under
http://prtr.ec.europa.eu/docs/Summary pollutant.pdf.
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For this treatment definition we consider a model that separates the group

of treated postal codes into 4 quartiles according to their Total Weighted

Emissions, calculated as the sum over all emissions within the postal code

area weighted by their corresponding reporting thresholds. For a detailed

description of the computation of Weighted Emission Scores, we refer the

reader to Appendix A.2.2. The lowest quartile represents the least affected

25% of postal codes, while the fourth quartile represents the most heavily

polluted areas as identified by the 2009 E-PRTR dataset. The regression

model takes the form:

Yist = α0 +α1Postt+
4∑
j=1

[α2,jTQij + α3,jPosttTQij]+α4,i+α5,st+eist (2.2)

The coefficients of interest are now the α3,j as they correspond to the

interaction of the shift dummy variable (Postt) and the treatment quarterly

dummies (TQij) with respect to each of the j = 1, 2, 3, 4 quartiles.63 The

results of main interest are shown in Table 2.11. For Western Germany, the full

sample without matching again yields a positive treatment effect. However,

the effect is largest for the higher quartiles of emissions and insignificant for

low emissions. Once matching is employed, we find no significant impact of

treatment for any of the quartiles.

For Eastern Germany, the effect of emissions information is negative and

significant for the second quartile before matching. With the matched sample

however, no significant effect of the information release is found for any of the

quantiles (TQ1-TQ4). Summarizing, the results from the main specifications

are confirmed by this robustness check and no isolated effect can be found

for postal codes with higher relative severity of reported emissions.64

63Similar to the main specification, the isolated treatment dummies are dropped due to
the inclusion of postal code area fixed effects in all robustness checks.

64We also carried out analyses distinguishing between emissions to air and water
respectively. With only 6 emissions to soil the data is too thin to analyze this medium
separately. Again, no significant effect could be found in either Western of Eastern Germany
after matching was carried out. A table of these results is available from the authors upon
request.
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Table 2.11: Quartiles of emissions

Western Germany Eastern Germany
Full sample Matched sample Full sample Matched sample

Post*TQ1 0.003 -0.360 -0.438 -0.0890
(0.189) (0.216) (0.248) (0.290)

Post*TQ2 0.038 -0.296 -0.537* -0.189
(0.201) (0.226) (0.246) (0.288)

Post*TQ3 0.442** 0.0924 -0.299 -0.0714
(0.157) (0.191) (0.305) (0.363)

Post*TQ4 0.350* 0.129 -0.138 0.166
(0.140) (0.175) (0.405) (0.432)

Postal code FE Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes

R2 0.388 0.453 0.424 0.272
Observations 6799 1312 1413 595
Treated observations 741 727 377 368
Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level. Estimations based on nearest neighbor matching.

2.6.2 Number of facilities

In an alternative specification, we define treatment based on the number

of reporting facilities in the postal code area. Of the treated areas, 73.8%

contain one facility, 16.9% two, 5.2% three and 2.8% four facilities that report

emissions under E-PRTR. Based on this distribution, we form three categories

(1 facility, 2 facilities, more than 2 facilities):

Yist = α0+α1Postt+
3∑

k=1

[α2,kTCik + α3,kPosttTCik]+α4,i+α5,st+eist (2.3)

As in the previous robustness check, the coefficients of interest are now the

different α3,k as they correspond to the interaction of the shift dummy variable

(Postt) and the treatment category dummies (TCik) with respect to each of

the k = 1, 2, 3 facility number categories. Based on this specification, there are

effects for a small subset of the matched sample in Eastern Germany as shown

in Table 2.12 as the interaction coefficient for postal code areas containing 2
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Table 2.12: Number of facilities

Western Germany Eastern Germany
Full sample Matched sample Full sample Matched sample

Post*1Facility 0.123 -0.204 -0.193 -0.130
(0.106) (0.148) (0.180) (0.243)

Post*2Facilities 0.515** 0.257 -1.036*** -0.722*
(0.194) (0.229) (0.309) (0.342)

Post*3+Facilities 0.621** 0.380 -0.856 -0.692
(0.216) (0.233) (0.624) (0.663)

Postal code FE Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes

R2 0.388 0.453 0.425 0.275
Observations 6799 1312 1413 595
Treated observations 741 727 377 368
Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level. Estimations based on nearest neighbor matching.

facilities becomes significant at the 5% level.65 There is no obvious explanation

why there should have been a significantly negative effect in these areas in

particular and the small number of remaining observations for these categories

(75 postal codes with 2 facilities in Eastern Germany and 13 postal codes with

3 facilities) as compared with the larger number of observations in Western

Germany (114 and 45 respectively) may be partly to blame. However, this

result taken together with the results from the previous robustness check may

hint towards an isolated effect for medium sized polluters grouped in small

batches of 2-3 facilities in this part of Germany, which had been overlooked

or underestimated by consumers before and were revealed as emission sources

in the 2009 information release. Overall, this robustness test reinforces our

finding that after controlling for postal code characteristics via matching,

there is no evidence for a robust effect of the E-PRTR publication on housing

prices.

65This result survives the robustness check of grouping 2-3 facility postal codes together
in an alternative specification but remains at a fairly low level of significance throughout
these tests.
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2.6.3 Buffers

E-PRTR requires the geographical coordinates to be reported with a maximum

of +/- 500 m distance from the actual location of the facility and some emitters

will be located on the border of the postal code area. We therefore construct

an alternative treatment measure that defines a postal code area as treated if

some part of its land is within a 500 m buffer distance from an emitter. Of

course, the number of affected postal code areas in our study increases with the

buffer distance around the point sources. With a 500 m buffer around point

sources, the number of affected postal code areas rises to 1,585. We would

not expect there to be systematic error in the reported location of facilities

such that postal code areas in the narrow treatment definition are wrongly

identified as treated. That would require facilities to be generally located

on the border of postal code areas and wrongly assigned. By broadening

our treatment definition we allow for cross border effects but also get a

noisier sample. We expect broadening of the treatment definition to weaken

the results rather than change the conclusions. We match treatment postal

code areas to controls based on the new treatment definition. Looking at

the results in Table 2.13, the new treatment definition does not change the

estimates substantially for either the ATET computation or the regression

model. Overall, previous results are confirmed showing that they did not

suffer from a bias due to emitters located close to the border of the postal

code areas.

2.6.4 Urban areas only

In a final robustness check, the sample is reduced to those areas that contain

urban land use, i.e. areas labeled as “Urban feature or urban green space”

according to the Corine Land Cover project. Here, postal code areas are

defined as treated if there is an emission reported within 500 meters of the

urban area. As a result, the number of treated areas drops by about 50 %

as compared with the original treatment definition using the 500 m buffer.
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Table 2.13: Treatment based on buffers

Mean comparisons Western Germany Eastern Germany
Full sample Matched sample Full sample Matched sample

ATET 0.368*** -0.010 -0.332* -0.002
(0.078) (0.117) (0.160) (0.224)

State-specific FE Yes Yes Yes Yes
Note. Dependent variable is House Price Index; robust standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

Regression Models Western Germany Eastern Germany
Full sample Matched sample Full sample Matched sample

Post*Treatment 0.408*** -0.0109 -0.286 -0.000
(0.0801) (0.117) (0.154) (0.228)

Postal code FE Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes

R2 0.388 0.460 0.424 0.313
Observations 6799 1917 1413 710
Treated observations 1127 1105 458 447
Control observations 5672 812 955 263
Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level. Estimations based on nearest neighbor matching.

Compared to the definition without a buffer the reduction is by about 40 %.

Since we are restricting attention to postal code areas with non-industrial

urban areas in close proximity to emissions, this treatment definition should

be the one most likely to show an effect of treatment in comparison to all

other specifications. In total there are 826 affected postal code areas with the

urban treatment definition. Their spatial distribution is seen in Figure A.17

in Appendix A.2.9.

Estimations are carried out for the full sample divided into Eastern

Germany and Western Germany. Additionally, nearest neighbor matching is

carried out using propensity scores based on the extensive dataset collected

for the characterization of postal code areas. Two matching definitions are

used: Match A and Match B. In contrast to A, the latter excludes all postal

code areas from the control group, which had emissions in 2009 but not in the

direct vicinity of urban areas. As in the baseline estimation, matching yields

a control group in Western and Eastern Germany which is largely similar
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to the treatment group in terms of observable characteristics (see Appendix

A.2.10 for a comparison of characteristics pre and post matching with respect

to this robustness check based on Match A). The regression results are shown

in Table 2.14 along with the ATETs. For both types of matched samples,

no significant effects can be found in either Western Germany or Eastern

Germany.66

Table 2.14: Urban areas only

Mean comparisons Western Germany Eastern Germany
Full sample Match A Match B Full sample Match A Match B

ATET 0.287*** -0.113 -0.094 -0.397** -0.290 -0.372
(0.097) (0.154) (0.163) (0.185) (0.270) (0.310)

Note. Dependent variable is House Price Index; robust standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.

Regression models Western Germany Eastern Germany
[1em] Full sample Match A Match B Full sample Match A Match B
Post*Treatment 0.319** -0.118 -0.0797 -0.396* -0.285 -0.350

(0.099) (0.156) (0.164) (0.185) (0.273) (0.307)
Postal code FE Yes Yes Yes Yes Yes Yes

State-specific time FE Yes Yes Yes Yes Yes Yes

R2 0.387 0.491 0.490 0.424 0.328 0.360
Observations 6799 1070 991 1413 400 357
Treated observations 603 591 591 223 219 219
Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

Match A: Nearest neighbor matching of treated and untreated postal code areas within region.

Match B: As A but excluding areas with emissions outside urban areas.

*/**/*** Significant at the 5%/1%/0.1% level.

66All results are summarized in Appendix A.2.11 in Table A.14 to allow for a quick
comparison of estimated values across all methods and robustness checks.
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2.7 Concluding discussion

The quasi-experimental literature aims to get as close to a lab experiment

as possible, however, the events under study do take place in the real world

and require that care be taken in ensuring that the control and treatment

units are comparable. In the present study, we address the question whether

the publication of the first wave of the E-PRTR in Germany, containing

information on pollutant emissions, affected the German housing market. Our

data suggest that the location of polluting facilities is indeed non-random.

Using a sizable data set characterizing the areas under study and analyzing

pre-treatment trends, postal code areas with and without emissions are found

to be quite different in the full sample. Moreover, the characteristics of

postal code areas with emissions differ vastly between Eastern and Western

Germany, which hints at the importance of considering the market in which

capitalization takes place as a way to control for unobservable differences in

addition to observable characteristics. We use matching based on postal code

characteristics to form adequate control groups and find no evidence that

the publication of emissions information capitalized into housing prices in

Germany. While our results show that appropriate matching is crucial to the

validity of our difference-in-differences estimates, matching is not an exact

science. However, our results are robust to variations in the model used to

calculate propensity scores and survive a considerable number of robustness

checks.

A possible threat to recovering an effect on housing prices is aggregation

bias. We are working with housing data at the postal code level as access

to nation-wide micro data for the German housing market is generally very

limited. While our analysis shows that the publication of E-PRTR data

in 2009 had no effect on mean housing prices at an aggregate level, a more

disaggregated data set would be needed to capture effects at the very local scale.

Gamper-Rabindran and Timmins (2013) emphasize that locally undesirable

land use is more likely to be present for homes at the lower quantiles of the

price distribution. As such it may be that the impact on the mean is not

significant, but an effect on lower percentiles of the distribution cannot be
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ruled out based on our analysis.

Even if our findings should hold at the disaggregate level, this does not

necessarily imply that German households do not care about pollution or that

the release of E-PRTR information has been ignored by the public. There

can be several reasons why no adjustment of risk perception takes place upon

the publication of emissions information. One possible explanation is that

households already had a good idea about the amount of local emissions

prior to the publication, and that pollution from emitters in the area was

therefore already capitalized in the prevailing housing prices. In this case,

the data available on the E-PRTR website might not have contained enough

new information for households living in areas with high pollutant emission

levels to adjust their behavior. Alternatively, it may be that households did

not understand the information provided in the E-PRTR since they were

possibly not acquainted with the toxicity of the individual pollutants. In

particular, it may be that households expect no adverse effects from pollution

as long as emission levels are not in excess of legal limits. In that case,

more information may be needed on the adverse effects from exposure to

the pollutants emitted. Finally, it may be that the mere existence of the

online register is not sufficient to provide adequate access to the information

contained therein, and that more or better outreach is necessary to enhance

household awareness of emissions in their neighborhood. Early studies of the

TRI also failed to find an effect at the community level (Bui and Mayer, 2003).

More recent studies do find effects of TRI publications, but there may also

be a heightened awareness with respect to these issues now than in the early

days of the TRI. Anecdotal evidence suggests that the published information

in the TRI is spread to a much larger degree than in the case of the E-PRTR.

In the U.S., there are e.g. top 10-lists of worst polluters and green company

rankings (see e.g. Lyon and Shimshack, 2015). Such simplified information

is no doubt easier to spread and process (even if it is less accurate) than

information provision that requires individuals to visit a website and look up

their own address. Research by Schlenker and Scorse (2012) suggests that

companies react to their placement on such scorecards perhaps in anticipation

of community pressure.
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Given the rather brief existence of the E-PRTR, it may also be worthwhile

to study longer time-series in the future to address potential long-term effects.

We therefore strongly encourage further research based on richer time series

and ideally micro level data in Europe. The robustness checks and regressions

in this paper may provide researchers with hints as to where to look for such

local effects if they do exist with respect to E-PRTR data releases.
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Chapter 3

Empirical Research in Economics with

German Spatial Environmental Data -

A Practical Guide for Data Preparation and

Research Design

3.1 Introduction

Novel environmental datasets containing spatial information see the light of

day due to advances in Geographical Information Systems (GIS) technology

and allow for the analysis and empirical exploitation of regional effects and

phenomena. With respect to Germany, the need to visualize environmental

data for the public and the inception of a long-term project called GRETA

(“Gridding Emission Tool for ArcGIS”) have encouraged the UBA to expedite

the compilation of detailed emission raster data, which can be utilized by

agency members, researchers and policy-makers for numerous purposes.

This chapter contains a descriptive analysis of the most prominent datasets

along with a practical guide providing details on how I utilized raster and point-

source data from the UBA for my own empirical research projects. The chapter

is designed to aid other researchers in dealing with these datasets, preparing

them for empirical research projects and getting the most out of the available

information. It compares the characteristics of these datasets, evaluates their

usefulness for different research questions and provides methodological insight

on how to harness their potential for the questions at hand. It thereby also
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highlights some of the advantages and inherent limitations that the usage of

these datasets entails. Within this chapter, I focus on raster data products

provided by the UBA and the industry emission reports contained in the

E-PRTR register compiled for the EEA67.

The former consist of (i) spatial grid data provided in the form of Optimal

Interpolation (OI) rasters, which can be used for evaluating local immission

concentrations of airborne pollutants such as NO2, SO2 and PM10 in lieu of

point source measurements, as well as (ii) recently compiled rasters with higher

resolution based on the GRETA tool, which distributes emission quantities

onto local sources. This tool employs sophisticated methods to distribute

aggregated emission data both spatially and onto various source categories

defined by the Nomenclature for Reporting (NFR) including industrial sectors

and transportation. OI rasters contain grids cells with an areal extent of

4−57km2, while emission rasters from the GRETA tool are compiled at 1km2

precision. The E-PRTR register contains (iii) obligatory reports of pollutant

releases from industrial facilities exceeding predefined thresholds and covers

a broader set of chemical agents68.

In summary, OI rasters provide a convenient and reliable alternative

to point-source measurements from individual stations if a project requires

access to environmental data in regions without measuring stations and

exploits variation in pollution averages over a longer time horizon. The

rasters address potential measuring errors due to missing observations and

use methodological approaches accounting for emission dispersal that are

superior to simple inverse-distance weighted interpolation. They combine

top-down methods of emission field creation and bottom-up corrections, which

capture some short-term variation and override underlying emission fields in

the proximity of measurement stations.

Point-source data on the other hand is more appropriate if the research

67Other useful data sources like the CORINE dataset used in Chapter 2 or satellite data
are beyond the scope of this chapter and only touched upon briefly.

68While chemical agents released from a point source are defined as emissions, they may
travel and lead to aerial concentrations in other areas, where they constitute the so-called
local immisions. Thus, Chapter 1 utilizes immission concentrations for its empirical analysis,
whereas Chapter 2 analyzes the public response to emission reports.
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question focuses on environmental quality at the very local level or is limited

to urban areas containing multiple stations. Since OI rasters and GRETA

products obtain some of their variation from top-down procedures reallocating

aggregated emissions, they are imperfect dependent variables in econometric

research relying on short-term variation or localized shock responses in pollu-

tion concentrations. Nevertheless, they always provide useful control variables

and excellent descriptive maps if aggregated at a reasonable level. Given a

high enough level of aggregation and an observation window of several years,

this limitation of OI raster values vanishes and researchers benefit from the

improved interpolation and consistency of reported immission concentrations.

A lot of relevant information regarding the more technical aspects of data

preparation has been outsourced from the earlier chapters and compiled in

this chapter. This technical information can serve as a practical guide on how

to utilize the data for subsequent projects and related empirical questions.

The chapter also seeks to provide details on the typical workflow leading up

to an econometrical analysis along with applied examples. These examples,

illustrations and tests build upon the research presented in Chapter 1 as well

as the exploration of spatial data necessary for recent projects.

3.2 Datasets

3.2.1 Overview

The following Tables 3.1 and 3.2 provide an overview of the main datasets

presented in this chapter. As explained in Chapter 3.1, there are trade-offs

for researchers when using the individual datasets. According to Auffhammer

et al. (2013), available environmental, climate and weather datasets suffer

from missing data issues and panel attrition within the universe of point

source measuring stations even in highly developed countries. If researchers

want to include regions and time periods without actual measurements into

their analysis, they are forced to interpolate the available information and to
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account for panel attrition.

The gridded raster products attempt to perform these steps at a high

level of scientific rigor and to alleviate this burden on researchers. However,

the products often rely on the identical set of stations and the providing

agencies perform additional steps to validate their products or mitigate missing

observation bias. On the other hand, they also add model components and

even reanalysis elements as they see fit. While some of them (e.g. chemical

transport models, topology and altitude correction) add a level of precision

to the products that clearly outperforms simple inverse-distance weighted

interpolation approaches, other model components (e.g. outlier corrections,

distribution according to land use characteristics, top-down allocation of

emissions) introduce patterns that impede the usage of the datasets for causal

econometric analysis.

In general, station-level measurements are the best source for observations

that are supposed to capture actual short-term variation in response to

shocks or policy measures. Consequently, they can yield reasonable outcome

variables for an empirical analysis if the spatial and temporal limitations are

of no concern. Gridded raster products alleviate these concerns and provide

solid control variables but lose their power as observables for econometric

regressions the more reanalysis elements and top-down allocation procedures

are incorporated. I try to outline these aspects in the following subchapters

in order to help researchers find a fitting data product for their research

design. Figure 3.1 contains a simplified tree diagram of the different datasets

presented in this chapter and visualizes their relationships.

� Conventional 7× 8km2 OI rasters

� Sectoral NFR information from GRETA emission rasters

� Refined 2× 2km2 OI rasters

� Point source industry emissions from E-PRTR

� Point source data from measuring stations
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3.2.2 Raster Data from the Umweltbundesamt

The earliest gridded dataset provided by the UBA consists of polygonized

rasters with a resolution of 57km2 resulting in 10,332 rectangular grid cells.

Each raster contains information on either the yearly average concentration

of a certain pollutant in µg/m3 or the number of days with concentrations

above EU thresholds. The available pollutants NO2, SO2 and PM10 can be

obtained on a yearly basis from 2000 onward. An additional raster has been

computed retroactively for the year 1995 and relies on less precise emission

rasters at the European level that required additional temporal and spatial

interpolation steps as described in Stern (2015). For a limited number of

years, O3 concentrations may also be available. All datasets are available from

the UBA upon request69. The gridded concentration values are the result

of a sequence of advanced scientific methods designed to approximate local

immission concentrations. They are named after the Optimal Interpolation

(OI) method presented by Flemming and Stern (2004), which applies field

computations based on background station measurements to local emission

regimes in order to readjust and distribute these emissions onto a grid spanning

the entirety of Germany.

Thiruchittampalam et al. (2013) and Joerss et al. (2013) document the cre-

ation and the evaluation of these rasters linked to the internal PAREST project

of the UBA. The generation of these OI rasters combines top-down methods

of emission field creation with bottom-up corrections based on measurements

from background stations, which capture short-term variation in pollution

emissions. In a first step, emissions from the central emission database of the

UBA (“Zentrales System Emissionen”, ZSE) are distributed onto the local

level via detailed information on industry employment shares and regional

characteristics. The ZSE represents a national inventory of emissions that

is used for internal and external reporting. It utilizes advanced accounting

methods along with detailed micro data to obtain national aggregates at the

sectoral level, which are reallocated to grid cells via complex top-down source

69The UBA department “Fachgebiet II 4.2 Beurteilung der Luftqualität” provides
services such as the provision of raster datasets (E-mail: immission@uba.de).

118



apportionment formulas described in Thiruchittampalam et al. (2013). Distri-

butional parameters take activity rates, energy footprint and emission factors

into account and emission quantities are allocated by matching the sectoral

classifications used in national accounting to the Selected Nomenclature for

Air Pollution (SNAP) in order to obtain sectoral-specific parameters. These

classification systems and the accounting standards have been synchronized

with classifications and recommendations of the Intergovernmental Panel on

Climate Change (IPCC). For a precise allocation of traffic-based emissions,

the UBA relies on its Transport Emission Model (TREMOD), which accounts

for vehicle stock and the prevalence of European emission standards (EURO1-

6) in the vehicle fleet. The framework is explained in Knoerr et al. (2010)

and Knoerr et al. (2014) and also provides parameters for the allocation of

emissions towards line sources, shipping, railways and aviation. Shapefiles

from the CORINE land use database combined with administrative data at

the county-level enhance the regional distribution of aggregated emissions.

Taking these parameters and topology into accounts, emission fields are

dispersed according to meteorological parameters and the REM-CALGRID

(RCG) model developed in Yamartino et al. (1992), which simulates the

transport of chemical substances in various media70. This yields hourly

predictions at high spatial precision, which are readjusted locally through

hourly station measurements according to the OI framework described in

the methodological papers by Flemming and Stern (2004) and Stern (2009).

The data manual Umweltbundesamt (2018) and Flemming and Stern (2004)

explain that only stations classified as “background” stations should be taken

into account for the field computations, while stations classified as “traffic”

or “industrial” represent “hot spots” that report extreme values and outliers

compared to the pollution averages in surrounding areas. The emission levels

captured by these stations influence concentrations measured by background

stations but cannot be used for the field correction interpolation since they

would distort grid averages if given too much weight .

For an analysis of the air quality experienced by the local population,

70Wickert (2001) discusses properties of chemical transport models which have been
used in the context of OI raster creation especially during earlier stages.
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the selection of background and especially suburban stations for calibration

seems reasonable as the conditions captured by traffic and industrial stations

only affect a subset of the population. The locations of all active measuring

stations for the given pollutants during the extended observation period

(1995-2008) of Chapter 1 are shown in Chapter 3.2.3. There have been 488

active background stations for NO2 over this time frame and 933 stations

in total. For PM10, there have been 361 active background stations and

699 stations in total. For SO2, there have been 455 background stations and

701 stations in total. The remaining stations are split between traffic and

industrial measuring stations but typically represent smaller panels.

Table 3.3 reports summary statistics from the past decade (2009-2018) for

comparative purposes, while Chapter 3.4.1 analyzes the relationship between

raster products and point source measurements. It can be shown that the

correlation between background stations and OI rasters is high, which supports

the claim that station measurements override top-down emission fields in the

vicinity of measuring stations and therefore preserve local variation needed

for the identification of causal economic effects on local air quality.

3.2.3 Point Source Data from the Umweltbundesamt

The UBA maintains an extensive network of measuring stations for the various

pollutants71. This network has been expanded over time but leaves major

gaps in rural areas and less populated counties. The UBA station-level data

shares the typical weaknesses of point source measurement panels identified

by Auffhammer et al. (2013) and listed below.

71Metadata on the stations has been obtained from a section of the UBA website
(https://www.env-it.de/stationen/public/downloadRequest.do) that is currently unavail-
able. Such meta information and comprehensive station-level datasets with daily measure-
ments are available upon request and I rely on the dataset covering all available station-level
data between 2000 and 2014 that have been obtained by Holub (2015).
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� Missing information for regions without point source measuring stations

� Panel attrition through the closing and opening of stations introduces

measurement bias

� Interpolation of missing data due to infrequent station reports introduces

measurement bias

Stations may be located in so-called “hot spots” (Flemming and Stern,

2004) if their purpose is to specifically track extreme pollution exposure in

locations that are interesting from an urban planning or political perspective.

This includes traffic measurement stations, stations on mountains or stations

close to industrial facilities. Combining their data with data from background

stations may give these extreme measurements too much weight if the weight-

ing scheme does not control for the fact that they are not representative of

surrounding areas. The choice of station types introduces an additional degree

of freedom and has an impact on the obtained aggregates as Table 3.3 and

Chapter 3.4.1 imply. The selection of stations should therefore be tailored to

the research question at hand. Point source data may be preferable to the

usage of gridded data products if the analysis is restricted to urban areas and

well-defined local shocks. One appropriate application of station-level data is

the evaluation of traffic-related pollution in response to the introduction of

Low-Emission Zones (LEZs) as in Wolff (2014) and Klauber et al. (2020).

The maps in Figure 3.2 show the locations of point source measurement

stations in Germany with at least one annual pollutant report over the period

of observation in Chapter 1 72. It can be seen that coverage is similar for all

pollutants (NO2, PM10 and SO2). The panel on the left shows stations of

all types (including “background”, “industrial” and “traffic”), while the panel

on the right depicts only the background stations used for the OI emission

field adjustment. All counties (according to 2008 definitions) with at least

one station reporting in the time period from 1995 to 2008 are coloured in

dark green. This demonstrates that the occurrence of missing observations is

72These figures use the OpenStreetMap layer provided within QGIS courtesy of open-
streetmap.org (Contributors) (2019). There are 413 counties as of 2008.
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a phenomenon concentrated in rural areas. It can be seen that the network

of background stations offers almost the same coverage as the full panel.

Stations also tend to report values for multiple pollutants, so the underlying

data quality for pollutants should be comparable.

The maps in Figure 3.3 show the locations of point source measurement

stations in Germany with at least one annual pollutant report between 2009

and 2018. Counties in dark green contain at least one of these stations. Due

to the shorter time period, these maps are populated with less stations and

coverage for SO2 is more spotty. The county borders pertain to the 2014

territorial definitions, so there are 402 counties with significantly larger areas

in Eastern Germany due to county restructuring, which makes coverage in

Eastern Germany appear more extensive. The maps and summary statistics

in Table 3.3 demonstrate that the density of the station network, which

provides inputs for the emission field correction, is excellent for urban areas

and sufficiently dense for NO2 and PM10. The prevalence of counties without

a single station emphasizes the relevance of solid interpolation methods if

researchers prefer to work with station-level data.
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Figure 3.2: UBA Point Source Stations by Pollutant (All vs. Background
stations active in 1995 - 2008)
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Figure 3.3: UBA Point Source Stations by Pollutant (All vs. Background
stations active in 2009 - 2018)
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Table 3.3: Station Coverage (1995-2008 and 2009-2018)

Time Period 1995-2008
Pollutant NO2 PM10 SO2
Station Types Background All Stations Background All Stations Background All Stations

Number of Stations 488 933 361 699 455 701
Counties with Coverage 246 / 413 295 / 413 233 / 413 281 / 413 227 / 413 279 / 413

Time Period 2009-2018 1995-2018
Pollutant NO2 PM10 SO2 PM2.5
Station Types Background All Stations Background All Stations Background All Stations All Stations

Number of Stations 317 758 294 599 163 215 236
Counties with Coverage 214 / 402 274 / 402 208 / 402 258 / 402 124 / 402 148 / 402 152 / 402

Note: County territorial definitions correspond to those used in the maps (413 counties as of 2008 and 402 counties as of 2014). Station

counts and county averages are based on all stations with at least one relevant annual report over the course of the time period.

3.2.4 Raster Data based on GRETA

3.2.4.1 GRETA in a nutshell

The UBA commissioned the development of the “Gridding Emission Tool

for ArcGIS” (GRETA) with the aim of improving the quality and utility

of emission raster generation. Simply put, it is a collection of tools used

internally for the generation of various important UBA products supposed

to meet contemporary quality standards. Schneider et al. (2016) provide

an overview of the improved workflows and methodologies facilitating the

compilation of GRETA emission fields and adjunct products73.

One key aspect is the availability of emission quantities split by NFR codes

in raster products enhanced by GRETA information. Another improvement

is the allocation of emission quantities onto a more precise 1 × 1km2 grid,

which contains these quantities in kilotons (kT ) per NFR source sector. Table

3.4 provides a non-exhaustive selection of high-level NFR codes outlining the
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Table 3.4: Selection of NFR Codes covered by GRETA

NFR Code Source Description NFR Code Source Description

1 Energy 3 Agriculture

1A Fuel Combustion Activities 3B Manure Management

1A1 Energy Industries 3D Agricultural Soils

1A2 Manufacturing Ind. and Construction 3F Field burning of Agricultural Waste

1A3 Transport 3I Other (Agriculture)

1B Fugitive Emissions 5 Waste

2 Industrial Processes and Product Use 5A Solid Waste disposal on land

2A Mineral Products 5B Biological Treatment of waste

2B Chemical Industry 5C Waste Incineration

2C Metal production 5D Waste-water handling

2D Solvents 5E Other (Waste)

2H Other (Pulp & paper, Food) 6 Other Sources

2I Wood Processing

2K Consumption of POPs and HMs

sectoral segmentation of GRETA products74.

An important aspect for the spatial distribution of emissions are traffic

arteries within both GRETA and the allocation procedures of conventional

raster products. TREMOD emissions are combined with national ZSE emis-

sions for road traffic and redistributed at the local level (for example onto line

sources such as highways) according to parameters for road condition, road

usage and emission output contained in TREMOD. The model is described

in Knoerr et al. (2010) and Knoerr et al. (2014) and also provides parameters

for the allocation of aviation, railway and shipping emissions.

One of the main advantages of the GRETA tool is that it incorporates in-

73A short summary of the external project can be obtained via the offi-
cial website (https://www.umweltbundesamt.de/publikationen/arcgis-basierte-loesung-zur-
detaillierten). Raster files covering all compiled reference years can be obtained (E-
mail: immission@uba.de) from the UBA department “Fachgebiet II 4.2 Beurteilung der
Luftqualität”.

74GRETA datasets specify emissions at more disaggregated NFR levels. Official websites
provide complete code lists (http://naei.beis.gov.uk/glossary?view=nfr) and correspondence
tables (https://www.ceip.at/fileadmin/inhalte/emep/pdf/2019/ConversionTableReporting
Codes 06122019 01.xlsx). The UBA hosts detailed descriptive statistics by NFR sector
for Germany (https://iir-de.wikidot.com/start) because the nomenclature is the current
standard format for reporting national emissions according to the Convention on Long-
Range Transboundary Air Pollution (CLRTAP) and regulations established by the United
Nations Economic Commission for Europe (UNECE).
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formation from the E-PRTR database. First of all, reported facility emissions

are treated as point measurements that are factored in during the emission

field creation to pinpoint locally dominant emitters. In a second step and

in order to ensure consistency with NFR totals and ZSE national accounts,

differentials between aggregate emissions and total E-PRTR quantities at the

sectoral level are reallocated onto local NFR sectors and fields via top-down

methods informed by sectoral quantities. The distribution of these emissions

onto local sources and NFR sectors is achieved by linking NFR, E-PRTR and

SNAP sector codes in order to assign appropriate emission factors.

E-PRTR data therefore enhances the precision of the allocation procedure

but individual facility-level reports are absorbed by surrounding emission

fields if their individual contribution is small compared to the reallocated

differentials. These discrepancies between E-PRTR reports and overall emis-

sion output will persist by design due to the E-PRTR reporting thresholds

and negligible sanctions for false reporting75. Since the raster products based

on GRETA emission fields rely on similar distribution and OI background

station calibration models, they share many advantages of the OI rasters

presented in Chapter 3.2.2.

3.2.4.2 GRETA Emission Raster

The GRETA emission quantities are allocated onto a more precise grid than

previous iterations (1 × 1km2 with 560,466 grid cells) and attributed to

individual source categories. Each category corresponds to a single NFR

code and occupies one attribute field per grid cell in the underlying dataset.

Some key aspects of the GRETA emission framework are only computed for

reference years including the years 2000, 2005, 2010 and 2015. All reference

years are already available upon request. I have aggregated annual emission

quantities from the 2015 GRETA wave across all NFR sectors (measured

in kT/km2) and have plotted the resulting totals in the form of heat maps.

Figure 3.4 plots quantiles of total NOX emissions per grid cell in a map of

Northern Germany. Figure 3.5 plots quantiles of total PM10 emissions per

75Refer to Chapter 3.2.6 for more information on E-PRTR reports.
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grid cell in a larger-scale map centered on the city of Mannheim, while Figure

3.6 plots quantiles of total SO2 emissions per grid cell in the vicinity of Berlin.

The maps show that highways and traffic arteries represent major agglom-

erations of emissions. This is a warning sign regarding the interpretation

of computed quantities as short-term variation exploitable for causal iden-

tification within econometric regression designs. Especially highly localized

shocks that drive traffic-related emissions in the short term will not be cap-

tured by the underlying emission fields. Schneider et al. (2016) confirm that

the distribution of emissions in the GRETA tool is heavily influenced by

TREMOD parameters and that a significant share of aggregate ZSE emissions

is allocated according to these parameters. Emission quantities near roads

are therefore highly dependent on top-down reallocation mechanisms and

experience corrections only in the vicinity of background stations since traffic

stations are outliers excluded from OI interpolation procedures.

Figure 3.4: Heat map: NOX Totals in GRETA (Northern Germany, 2015)
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Figure 3.5: Heat map: PM10 Totals in GRETA (Rhine-Neckar Region, 2015)

Figure 3.6: Heat map: SO2 Totals in GRETA (Eastern Germany, 2015)
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Emission fields and raster products based on GRETA take E-PRTR and

background station reports into account but do not possess the same potential

as diligently reported E-PRTR quantities at the facility level for causal

identification strategies based on actual short term variation. If researchers

are interested in precise facility-level shock responses, they should therefore

use the facility-level quantities reported via the E-PRTR database. This

entails dealing with problems such as panel attrition, missing observations

due to reporting thresholds and false reporting as discussed in Chapter 3.2.6,

though. The number of facilities reporting emission quantities for a pollutant

under study may also be too low in individual counties to satisfy standard

criteria of statistical inference.

The rasters suffer to a much lesser degree from misreporting and thresholds,

as they apportion a significant share of emissions according to sophisticated

top-down accounting methods. For research projects with a broader scope and

higher aggregation levels, this top-down apportionment can actually provide a

meaningful approximation of emission quantities and researchers can extract

emission estimates for selected NFR codes from GRETA products in order to

obtain extremely detailed control and explanatory variables.

3.2.4.3 Refined OI Rasters

Following the completion of the GRETA project in 2016, the UBA has im-

plemented OI raster computation procedures that map annual immission

concentrations at a much higher resolution than former versions due to the

higher precision of GRETA emission fields of 1× 1km2. These refined rasters

contain grid cells with a spatial extent of 2× 2km2. They rely on underly-

ing emission fields from the GRETA tool based on E-PRTR point source

information, the RCG chemical transport model and the OI readjustment

procedures described in Chapter 3.2.2. Stern (2015) uses cross-validation

tools to evaluate the differences between the two raster products and finds

that national aggregates deviate by less than 25%, while the local distribution

of emissions onto spatial units and sources may deviate to a significantly
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higher degree. My own analysis of immission concentrations in Chapter 3.4.1

demonstrates that the vintage OI rasters (7 × 8km2) differ most strongly

from the refined rasters (2× 2km2) in regions without background stations.

This proves that the new emission fields lead to different immission patterns

besides providing a higher level of precision.

The refined rasters are computed retroactively for past years and are

currently available for the years 2004-2016, which precludes their usage for

the analysis in Chapter 1. Researchers evaluating a more recent time period

have the opportunity to use the refined OI rasters for the entirety of their

research design and can reap the benefits of an enhanced emission field

generation supported by E-PRTR data. One caveat is that high quality E-

PRTR data is only available since 2007 and that the computation of emission

fields in previous years relies on the less detailed EPER reports for 2001 and

2004 as described in Chapter 3.2.6.

Moreover, all limitations of OI rasters discussed in Chapter 3.2.2 with

respect to identification strategies relying on short term variation pertain

to these rasters as well. Short term variation persists in raster areas in

which adjustments from background stations or diligently reported E-PRTR

emissions are able to override the underlying emission fields. Last but not

least, these rasters provide the first instance of gridded PM2.5 concentrations

in Germany, albeit only for years since 2009. Consequently, the 2× 2km2 OI

rasters certainly have the potential to become a valuable source of immission

estimates in combination with an appropriately defined research question.

3.2.5 Particulate Matter - 2.5µm

Comprehensive data on PM2.5 concentrations is not available in gridded UBA

datasets before 2009 and is only reported by a small sample of point source

measuring stations before 2009. Figure 3.7 depicts the locations of those

stations reporting PM2.5 values after 1995 and shows that many counties

do not contain a single station. The map is based on the 402 counties in

existence in 2014. This means that many Eastern German counties have

completed mergers in the meantime, which give them a higher chance of
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containing at least one station with PM2.5 measurements (identified by dark

green colouring).

The 2 × 2km2 rasters contain values for PM2.5 across the entirety of

Germany since 2009. These values are also based on the sophisticated top-

down methods of emission field creation and local field corrections discussed

in Chapter 3.2.4.3. A comparison of PM2.5 and PM10 measurements for the

time period of mutual availability performed in Table 3.10 of Chapter 3.4.1

demonstrates a high degree of correlation. This confirms that the emergence

of particles from the two diameter classifications is likely coupled and that

PM10 concentrations can be used as a sufficiently reliable proxy for PM2.5

concentrations in their absence. This finding is not surprising as the two

particle groups contain derivatives of the same chemical substances such that

health effects are often impossible to disentangle due to the high level of

correlation (e.g. Janssen et al., 2013).

Satellite images combined with modeling techniques from geoscience and

statistics provide the basis for recent fine-resolution datasets containing

PM2.5 measures, which have been developed by van Donkelaar et al. (2019)

and provide an attractive but computationally more demanding alternative

for researchers interested in evaluating particles with lower diameter76.

76These datasets incorporate predictions based on geographically weighted regressions
(GWR) and can be obtained from the website of the Atmospheric Composition Analysis
Group (http://fizz.phys.dal.ca/˜atmos/martin/?page id=140#V4.EU.02) or the Socioeco-
nomic Data and Applications Center (SEDAC) website (https://sedac.ciesin.columbia.edu/
data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod). Fowlie et al. (2019) ex-
plore satellite-based PM2.5 measurements for the USA and compare their implications to
those from EPA station-level measurements.
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Figure 3.7: UBA Point Source Stations with PM2.5 measurements (All
stations active in 1995 - 2018)

3.2.6 Facility-level Reports via E-PRTR

3.2.6.1 E-PRTR: General Information

Pollutant emissions on the facility-level can be obtained from the European

Pollutant Release and Transfer Register (E-PRTR) established in 2009 fol-

lowing EU legislation (i.e. Regulation (EC) No 166/2006 implementing the

UNECE PRTR Protocol signed in 2003). The E-PRTR is a web-based register

maintained by the European Environment Agency (EEA) that is accessible to

the public and obliges industrial facilities within EU member states to report

emitted pollutant quantities. It is based on similar disclosure principles as the

US Toxics Release Inventory (TRI) and follows the general idea of fostering
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“regulation by information” through the dissemination of data on negative

externalities to the public. The implementation of such regulation has been

motivated by the Aarhus Convention77 signed in 1998.

German facilities have to report their emissions to the UBA under certain

criteria. Most importantly, the respective industrial acitivities have to be

included in a list defined within the regulation and pollutant emissions have

to exceed predefined quantity thresholds78. National agencies then compile

this information, forward it to the EEA and make it available to the public.

The reported emissions are afterwards available as raw data for researchers

and as post-processed aggregates or mapped data on the website hosted by

the EEA and on localized websites of the national reporting agencies79.

The complete database containing point source information for scientific

use is hosted by the EEA and lists pollutant emissions from non-anonymized

point sources on the facility-level in absolute quantities for all EU member

states80. It contains releases into air, water and soil measured in kg as well as

transfers to external waste treatment sites. The E-PRTR reports differentiate

between 96 pollutant categories including aggregate classes and 91 individual

pollutants, out of which 66 pollutant reports actually occurred in Germany

in 2008. This reporting year marks the second E-PRTR wave and contains

4,834 German point source releases to air and water across 1,762 individual

facilities. The first E-PRTR wave for the year 2007 contains 4,727 point

source releases and 952 waste transfers across 70 pollutant categories and

77The full title is “UNECE Convention on Access to Information, Public Participation
in Decision-making and Access to Justice in Environmental Matters”.

78All 65 relevant economic activities are listed in the Annex (p. 8ff) to the regulations
published in European Union (2006b). The register at the European level includes in-
formation for over 33000 facilities in 33 countries (EU28, Iceland, Liechtenstein, Norway,
Switzerland and Serbia) as of April, 2019. The specific thresholds have been chosen
to ensure that about 90% of industrial emissions are captured by E-PRTR reports (see
http://prtr.ec.europa.eu/#/faq).

79The main website is managed by the EEA (https://prtr.eea.europa.eu/#/home).
German data is also made available to the public on a localized website maintained by
the UBA (https://www.thru.de/daten/suche/). Citizens can use these websites to obtain
information on the reported emissions from non-anonymized industrial facilities filtered by
self-selected criteria such as zip-code.

80The database is accessible via the EEA website (https://www.eea.europa.eu/data-
and-maps/data/member-states-reporting-art-7-under-the-european-pollutant-release-and-
transfer-register-e-prtr-regulation-22).
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1,976 individual facilities and was published in 2009. Chapter 2 analyzes

whether this publication event had an impact on housing prices since actual

or perceived air quality can be seen as a determinant of real estate values.

The predecessor of this register is the European Pollutant Emission Regis-

ter (EPER), which can be seen as an extended test-run with nearly the scope

of the E-PRTR. It differentiated between 50 key pollutants from large and

medium-sized industrial facilities in at least 17 EU member states. EPER

reports have been integrated into the available E-PRTR database and provide

the data base for the years 2001 and 2004. German EPER data for the year

2001 comprises 3,665 individual point source releases across 1,635 facilities

and 44 individual substances81.

Table 3.5: Volume of German EPER and E-PRTR Data

Selected Reporting Years Pollutant Categories Point Source Releases Reporting Facilities
(Air, Water & Soil) (FacilityIDs)

Year 2001 (EPER) 44 / 50 3,665 1,635
Year 2007 (E-PRTR First Wave) 70 / 96 4,727 1,976
Year 2008 66 / 96 4,834 1,762
Totals over the Years 2001 - 2013 70 / 90 40,098 4,547
Year 2017 (E-PRTR Latest Report) 67 / 96 ≥4,358 ≤1,784
Note: Table contains own calculations for the years 2001-2013 and summary statistics provided by the UBA for 2017.

Since the end of 2007, facility-level reports have to be submitted annually

and the resulting E-PRTR revisions are published over the course of the

following 1-2 years with varying lags. Table 3.5 and Figure 3.8 summarize

descriptive statistics and publication timing for the waves under study.

Figure 3.8: Timeline of EPER and E-PRTR Publications

81Information on EPER is stored in the EEA archives (https://www.eea.europa.eu/data-
and-maps/data/eper-the-european-pollutant-emission-register-4).
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3.2.6.2 E-PRTR: Data Exploration and Empirical Research

All facilities engaging in at least one of the specified economic activities are

obliged to report their yearly emissions of specified substances as long as

these exceed thresholds defined in kg for each pollutant and release medium.

The database contains longitude and latitude coordinates (WGS84) of each

facility and GIS tools can be used to locate the point source measurements

and to aggregate these across spatial units such as counties or zip-codes

(“Postleitzahlen”, PLZ). This spatial data can be exploited for the computa-

tion of emission developments at both the industry-level and the regional level

but suffers from several issues such as misreporting82 and sample attrition

due to the reporting thresholds.

Garcia-Perez et al. (2008) demonstrate that the point source coordinates

in EPER records differ significantly from the actual facility locations. Since

the switch to E-PRTR, coordinates have to be provided with an imprecision

of less than 500m (e.g. Garcia de Gurtubay and Telletxea, 2010) and are

likely more reliable than the zip-code and the physical address of the facility

as these entries are often misreported. While it is tempting to use zip-code

information, the data exploration described in Chapter 2.4.2.2 reveals that

these frequently belong to the headquarter of a firm rather than the location

of the point-source emitter. The research design in Chapter 2 therefore uses

geocoded information to allocate emission quantities onto the zip-code level.

Another promising application of the E-PRTR database is the construction

of emission time-series. The dataset suffers from sample attrition at the lower

end, though, as firms close to the reporting threshold may drop out of the

82According to European Union (2006a), penalties for non-compliance are within the
discretion of the individual member states. Rathmer et al. (2009) explain that the reporting
agency can force facilities to disclose their internal records on the reported emissions if
there is reasonable doubt regarding the credibility of reports. If facilities violate their
reporting obligations, they can potentially be fined for an administrative offense. The
latter requires a reasonable suspicion, though, and it is a priori difficult for agencies to
ascertain, whether a lack of reported values is due to negligence or due to an undercutting
of emission thresholds. Because of the existence of a convenient online reporting tool
(https://www.bube.bund.de/), the UBA assumes a high rate of compliance among German
firms but has few levers to audit reports as long as these fall within a credible range. Even
if intentional misreporting is rare, erroneous and accidental misreporting remains an issue
in the database that can never be ruled out.
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sample and report infrequently over the observation period. This becomes

a serious issue in the context of time-series as individual firms may drop

from a positive quantity to zero even though their annual emissions have

barely changed. Because the E-PRTR does not capture emissions from firms

below the reporting threshold and because important polluters are able to

claim exemption status in order to blind exact emission quantities83, total

emission quantities are an incomplete and imprecise representation of real

emission patterns. The reporting thresholds also non-randomly eliminate

small polluters from the panel, which can introduce severe selection bias.

In fact, this divergence leads the UBA to allocate a significant fraction of

industrial emissions via top-down methods in the GRETA tool as discussed

in 3.2.4.

On the other hand, the E-PRTR database contains information on the

NACE1.1 or NACE2.0 codes of the main industrial activities of a given

facility, which makes assigning emissions to industry sectors feasible84. It is

possible but challenging to construct a balanced panel of facilities reporting

over an observation period by utilizing the “FacilityID” field and textual

information on company names, locations and ownership structure. This is

complicated by the fact that the ownership structure of corporations and

company identities may change over time, making it impossible to correctly

track the emission output of a single firm over time. In contrast to processing

firm identities, the aggregation of emissions at the sectoral level is therefore a

comparatively straight-forward endeavour. One major caveat is that firms

maintain operations and activities in several NACE codes and that emissions

are not proportionally assigned to the individual activities. Using only the

NACE code of the main activity is a practical but strong assumption that

distorts the correct assignment of emission quantities.

I therefore use the geocoded location parameters for the spatial alloca-

tion of emissions and develop simple algorithms for attributing emissions to

83For example if their production is relevant for military purposes.
84Appendix A.3.1 contains details on the procedures performed for the analysis in

Chapter 3.4.2. Individual facilities are identified by a unique “FacilityID” and their annual
reports are identified by a unique “FacilityReportID”, which can pertain to multiple
pollutant release quantities.
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industrial sectors. Figure 3.9 depicts all EPER and E-PRTR point sources

with NOX , PM10 or SOX emission reports at the facility-level in either

2001 (EPER) or 2008 (E-PRTR). The regional distribution of point sources

in Figure 3.9 illustrates that researchers need to overcome severe challenges

when trying to exploit regional variation in E-PRTR quantities. Chapter 3.4.2

demonstrates that restricting E-PRTR records to subsamples or individual

pollutants soon limits the statistical power of econometric identification ap-

proaches. Nevertheless, the database provides a treasure trove of information

that has not yet been properly exploited by environmental economists.

Consequently, I use E-PRTR point source data to validate the spatial

analysis in Chapter 1. To this end, I combine records from the years 2001 and

2008 in order to approximate the given period of observation and to facilitate

a supplementary analysis at the industry-level. Chapter 3.4.2 presents the

results of this supplementary analysis, while Appendix A.3.2 provides a review

of important aspects when combining EPER and E-PRTR data.
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Figure 3.9: Map of EPER (2001) and E-PRTR (2008) Point Sources
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3.2.7 Auxiliary Datasets

When working with environmental data, it has to be taken into account that

pollutant concentrations are dispersed by the wind and that the sedimenta-

tion of pollutants depends on weather phenomena such as precipitation and

temperature. When using data at daily or higher frequency, it is therefore

essential to control for weather characteristics in regressions. Weather phe-

nomena can even have an impact on yearly averages if these are persistent

over the entire year or exhibit extreme seasonal spikes. I control for such

spikes in Chapter 1 by smoothing environmental variables over several years,

which reduces the need for weather controls. At a higher frequency or across

larger areas, the inclusion of weather controls becomes imperative.

For Germany, gridded weather data at 1×1km2 resolution is available from

the Climate Data Center (CDC) of the German Weather Service (“Deutscher

Wetterdienst”, DWD) at annual or higher frequency. Alternatively, researchers

can use hourly or daily measurements from point source station but have

to deal with an unbalanced panel, panel attrition and regional gaps by

employing reasonable aggregation methods85. For research limited to urban

areas, meaningful averages can be constructed from individual weather stations

as in Holub (2015) and Klauber et al. (2020), whereas the gridded products

fill spatial gaps outside of urban areas using the inverse-distance weighted

interpolation methods described in Maier and Müller-Westermeier (2010) and

Müller-Westermeier (1995).

85Gridded DWD datasets with annual averages for temperature, precipitation, sun-
shine duration and other variables can be downloaded from the CDC open data archive
(https://opendata.dwd.de/climate environment/CDC/grids germany/annual/). This data
is stored in an ESRI-ASCII-Grid-Format and represents non-vectorized rasters defined by
x-y-point-coordinates pertaining to one vertex of the respective raster cells (e.g. bottom-
left) and by the spatial extent of the cells. The values assigned to these cells can be
stacked onto a single polygon layer by creating a grid from the original raster with
GIS vector operations and adding the raster values from a chronological sequence of
rasters to the grid features. The available documentation discusses the correct pro-
jection (DHDN / Gauss-Kruger zone 3, EPSG:31467) and the properties of the file
format (https://opendata.dwd.de/climate environment/CDC/help/Hilfe Gauss-Krueger-
Raster2GIS.pdf). Historical records from point source stations are available at daily or
hourly frequency in the same archive (https://opendata.dwd.de/climate environment/CDC/
observations germany/climate/daily/kl/).
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Both Chapter 1 and Chapter 2 combine environmental data with socio-

economic control variables obtained from the INKAR database hosted by the

German Federal Institute for Research on Building, Urban Affairs and Spatial

Development (BBSR). This database provides a broad range of indicators at

the level of varying territorial units 86.

The research in Chapter 2 incorporates land use datasets resulting from

the CORINE (Coordination of Information on the Environment) Land Cover

(CLC) project initiated by the EU and described in Keil et al. (2011). The

research design uses the CLC2006 version to construct land use percentages

per zip-code area in order to enhance the matching procedures as explained in

Chapter 2.4.3.1. The CORINE land cover maps are powerful tools determining

the main land use per area by evaluating satellite imagery at a high level of

precision (5-25ha). They provide researchers with additional control variables

that capture static land use characteristics87. I do not touch upon other

satellite based datasets in this chapter, although they represent attractive

alternatives if not constrained by temporal and spatial limitations. The

datasets based on satellite imagery described in Chapter 3.2.5 provide precise

spatial rasters for PM2.5 and are a valuable source of information for the

evaluation of local air quality.

86The database can be accessed via the official website (http://inkar.de/) and is referred
to as “Indicators and maps on spatial and urban development in Germany and Europe”
(“INdikatoren und KARten zur Raum- und Stadtentwicklung in Deutschland und in
Europa”, INKAR). Appendix A.1.10 and Appendix A.2.1 provide examples of variables
that are useful for empirical analysis at the county-level .

87Land use characteristics may change over a long period of time, however, which
makes using CLC versions pertaining to different reference years (e.g. CLC1990 and
CLC2000) necessary if long-term effects are to be analyzed. Recent versions of the dataset
along with other data based on satellite imagery can be obtained from the website of
the German Aerospace Center (“Deutsches Zentrum für Luft- und Raumfahrt”, DLR,
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-8799/) or from the UBA website
(https://gis.uba.de/catalog/Start.do).
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3.3 Technical aspects of German

Environmental Data

3.3.1 Spatial Units

3.3.1.1 Available Territorial Definitions

First of all, it has to be decided which spatial unit an empirical project will

be based on. For Germany, several options are available:

� Rasters with environmental and socio-economical data in grid cells

� Administrative territorial units (municipalities = “Gemeinden”, coun-

ties= “Landkreise”, states = “Bundesländer”)

� Zip-Codes (“Postleitzahlen”, PLZ)88

� Customized spatial definitions based on unifying characteristics (such

as labor market clusters)

The information contained in these rasters can be transferred onto other

spatial entities by aggregating the information by overlapping, intersecting

or joining the raster cells with spatial pbservation units at different levels

of precision. Since the available rasters offer a higher precision than most

administrative units, they are used for the empirical project in Chapter 1.

German zip codes typically offer a higher precision than the county-level and

overlap non-trivially with German municipalities especially in rural areas.

Since government agencies, institutions and firms can possess own zip-codes,

not all zip-codes are linked to a spatial entity. Shapefiles are often limited to

88There were 8412 zip-codes representing actual geographical territories in 2008 and
according to correspondence tables there are 8168 left in 2019. Several websites provide
recent correspondence tables and shapefiles for German zip-codes (e.g. https://www.suche-
postleitzahl.org/downloads).
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zip-codes with spatial extent, so restricting the analysis to such zip-codes is a

reasonable approach that was also used in Chapter 2.

The optimal choice of spatial units is sometimes dictated by the availability

of important data but also depends on the research question. Hsiang et al.

(2017) emphasize that the choice of spatial units and thus the aggregation level

may alter observed relationships. Their empirical findings imply that richer

households typically live in more polluted cities but will sort into the cleaner

areas within such cities. Aggregating data and interpreting the relationships

at only one level of aggregation then results in an incomplete or even false

interpretation of the evidence89.

The research project in Chapter 1 aggregates data at the county level

due to the availability of trade data but benefits from the multitude of

socio-economic control variables available at this level and the disaggregated

nature of counties in Germany with 865.8km2 per county and 413 counties in

2008. While counties and the zip-codes may exhibit meaningful distributional

patterns within spatial entities, they both offer a high level of precision and

counties or municipalities have the additional advantage that many socio-

economic control variables are readily available for these official territorial

units (e.g. via INKAR as described in Appendix A.1.10 and Appendix A.2.1),

while socio-economic variables at the more disaggregated zip-code level may

be costly to obtain. There is ample cross-sectional variation across German

counties allowing for reasonable identification of economic effects and zip-

codes overlap these territorial units in a non-trivial manner but can provide

a useful spatial structure for research questions requiring a higher resolution.

Working with gridded data at a superior precision level (e.g. OI or GRETA

rasters) allows for an aggregation of these raster values at any level of spatial

segmentation, so they can be paired with data from both administrative units

and zip-codes.

89In Hsiang et al. (2017), plotting NO2 pollution exposure against the average income
of US households per Metropolitan Statistical Area (MSA) reveals a positive relationship
between wealth and pollution exposure. On the other hand, plotting pollution against
household income of individual households in the United States reveals a U-shaped relation-
ship, while plotting pollution against household income within individual MSAs reveals a
negative relationship. This is a direct outcome of the sorting patterns within metropolitan
areas and highlights the importance of aggregation levels for research design.
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3.3.1.2 Time Frame and Territorial Reforms

The scope of the research question and the availability of data inform the

choice of an adequate time period of observation. However, researchers have

to decide on the reference year of the analysis and should take the territorial

definitions of spatial units into account, which can change over a given time

frame. For the analysis in Chapter 1, using the years 1998 to 2008 ensures

comparability with Dauth et al. (2014). With 2008 being the final period of

this analysis, the territorial status of German counties on December 31st, 2008,

is chosen to define the spatial parameters of the cross-section. Coincidentally,

the same territorial status is a chosen for the analysis in Chapter 2 as these

territorial definitions were in place when the E-PRTR data release occurred in

2009. The analysis of more recent policy interventions in Germany requires the

inclusion of more recent data and encourages the construction of a database

pertaining to a recent territorial status90).

Since 1998, significant structural changes at the German county level have

taken place in Lower Saxony (2001 & 2016), Saxony-Anhalt (2007), Saxony

(2008), North Rhine-Westphalia (2009) and Mecklenburg-Vorpommern (2011).

Especially the mergers and splits across Eastern German counties make

a bidirectional and unambiguous linkage challenging. Most of the publicly

available datasets use the most recent territorial definitions and historical data

is automatically recalculated to fit this definition, so reported values have to

be reallocated to previous county definitions with the aid of a correspondence

table based on relative size or population91. In order to reallocate data from

contemporaneous county definitions to 2008 definitions, relative weights based

on the number of registered employees per county in the year 2008 have been

90In order to ensure consistency between datasets, the territorial status of German
counties as of 2012-2014 has been used in research projects on Low-Emission Zones (LEZs)
such as Klauber et al. (2020). The merger of the counties “Osterode am Harz” and
“Göttingen” in 2016 resulted in a territorial status with 401 counties and represents the
current status quo.

91The file “Referenzschlüssel Kreise von 1990 bis 2014.xlsx” has been obtained from the
German Federal Office for Building and Regional Planning (“Bundesamt für Bauwesen und
Raumordnung”, BBR) and provides correspondence tables across all territorial reforms that
allow for a reallocation of variables according to relative population, area or employment
(“sozialvers.pflichtig Beschäftigte am Arbeitsort am 30.6.2008 in 1000”).
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used in Chapter 1 following official guidelines.

I suggest using the most recent reference year possible as German counties

have generally been merged together over the course of the past three decades

reducing the number of counties over time. Choosing a recent year of reference

means that little official data has to be reallocated and that historical data can

be reassigned to recent territorial definitions using a simple correspondence

table. If it is necessary to choose an earlier reference year, the following

operations assign appropriate values to counties that have been restructured

(or vice versa). Given a county i only exists until the year T , this entity

inherits relative or absolute variables from the more recent county definitions

j overlapping i by using the official employment figures from intersection areas

(j ∩ i) in the year T . Instead of employment figures, other county-level charac-

teristics can be considered if they are more relevant for the respective variable.

The overlapping counties j are contained in Overlap(i) = {k | k ∩ i 6= ∅}
such that

AggregatedAbsoluteV ariableit =∑
jεOverlap(i)

[
EmploymentTj∩i·AbsoluteV ariablejt

EmploymentTj

] (3.1)

AveragedRelativeV ariableit =∑
jεOverlap(i)

[
EmploymentTj∩i·RelativeV ariablejt∑

jεOverlap(i) Employment
T
j∩i

] (3.2)

3.3.1.3 Processing of Territorial Definition Files

Official shapefiles plotting the borders of territorial entities in Germany can

be obtained from the German Federal Agency for Cartography and Geodetics

(“Bundesamt für Kartographie und Geodäsie”, BKG)92. Some of the databases

discussed in this chapter report unprojected coordinates (e.g. point source

92The current definition files can be downloaded from the “Geodatenzentrum” website
(https://gdz.bkg.bund.de/index.php/default/open-data.html) but files containing historical
definitions have to be ordered individually and may be subject to charges. I have been
able to obtain a large collection of historical definition files from the now defunct archive
(http://www.geodatenzentrum.de/auftrag1/archiv/vektor/vg250 ebenen/2008/) and use
WGS84 projection layers with county polygons throughout Chapter 1 (e.g. “vg250 2008-
12-31.geo84.shape.ebenen.zip”).

145



locations from E-PRTR or UBA measuring stations) but most vector layers

are already provided in a projected format by UBA and BKG. The usually

available Universal Transverse Mercator projection (e.g. ETRS89 / UTM32N

- EPSG:3044) based on the WGS84 (“World Geodetic System 1984”) standard

yields an optimized and undistorted image of central Europe and can easily

be combined with unprojected source files using GIS software. Geocoded

datasets vary in resolution, which can make creating correct intercepts and

overlaps challenging. The zip-code definition files described in Chapter 3.3.1.1

for example are provided at a different level of precision than the county

definition files provided by the BKG. Borders that should align in reality

therefore create tiny pockets of unwanted overlaps and intersections that need

to be accounted for when performing subsequent actions by either merging

polygons or specifying a margin of error within the initial GIS procedure.

24 of the 413 counties in the territorial status files for 2008 contain

adjacent water bodies with structures or off-shore islands. These areas appear

as separate polygons and have been merged with the respective mainland areas

for the analysis in Chapter 1 before the computation of perimeters, surface

areas and pollution concentration averages93. While the BBR correspondence

files discussed in Chapter 3.3.1.2 provide sufficient statistics for transforming

data between territorial statuses from different years, auxiliary datasets may

not always account for restructuring processes in a timely and correct manner.

In this case, manual corrections according to the formulas in Chapter 3.3.1.2

or standard GIS operations have to be performed to synchronize datasets94.

93The affected counties are Flensburg, Kiel, Dithmarschen, Nordfriesland, Ostholstein,
Pinneberg, Plön, Rendsburg-Eckernförde, Schleswig-Flensburg, Emden, Wilhelmshaven,
Aurich, Friesland, Leer (2 water bodies), Wittmund, Bremen, Bremerhaven, Greifswald,
Rostock, Stralsund, Nordvorpommern, Ostvorpommern, Rügen and Uecker-Radow. An
attribute field indicates whether a feature represents the land-based portion of a county
(GF=4) or a water body containing construction (GF=2). For the analysis in Chapter 1,
water bodies with construction are merged with the overall county area as infrastructure
contained within these areas may be related to industrial operations and measured emissions
may be indicative of manufacturing production patterns.

94This includes the mergers of “Aachen” with the surrounding county into the region
“Stadtregion Aachen” in 2009 and of “Osterode im Harz” with “Göttingen” in 2016.
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3.3.2 Raster Data Aggregation

3.3.2.1 Raster Data Aggregation: Methodology

Average pollution concentration measures for a county i or other territorial

entities can be computed by taking the unweighted average of all overlapping

raster cells j contained in Overlap(i) = {j | j ∩ i 6= ∅} . This simplified

methodology can be useful when the precision of the raster or the spatial

extent of the area under study create computational constraint. It is more

accurate, however, to take the weighted average of the overlapping fractions

of these raster cells with jεOverlap(i) and to use the respective overlapping

areas (Areaj∩i) as weights.

PollutantConcentrationUnweighted,Yit =∑
jεOverlap(i)[PollutionConcentrationYjt]∑

j 1[j∩i 6=∅]

(3.3)

PollutantConcentrationWeighted,Y
it =∑

jεOverlap(i)[PollutionConcentrationYjt·Areaj∩i]
Areai

(3.4)

The first measure (Unweighted) is obtained by performing a “spatial join”

operation on the pollution concentration raster for pollutant Y at the level of

the outcome territorial unit i and by selecting “means” as desired outcome

variable. The latter measure (Weighted) is obtained by intersecting the

raster grid with the shapefile of the territorial county definitions in order to

obtain segmented raster cells and by then performing a collapse of the gridded

pollution concentrations onto the county level i with the areas of segmented

raster cells chosen as weights for the weighted sum. The following figures

depict these procedures for the city of Rostock in Mecklenburg-Vorpommern

by highlighting the raster grid segments j which intersect with the county

territory.
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Figure 3.10: Aggregation of raster data via unweighted overlaps

Figure 3.11: Aggregation of raster data via weighted overlaps
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A visual illustration of the aggregation of a raster onto a target shapefile

performed for the empirical analysis in Chapter 1 can be found in Appendix

A.3.3. Such thematic maps that plot summary statistics across geographical

regions through shading in proportion to normalized variable values (e.g.

densities or percentiles) are called “choropleth” maps.

When finely gridded data is available (such as the 1×1km2 grids in GRETA

or DWD rasters), the additional gain in precision achieved by using weighted

overlaps vanishes as the finely gridded cells circumscribe the territorial entities

with sufficient precision. It should be noted that individual grid cells then

contribute to several averages. High spatial correlation makes this an even

smaller issue but calls for the use of spatial autocorrelation methods. The

above county intersected with a 1×1km2 grid of yearly DWD weather averages

demonstrates the feasibility of this computationally less intensive approach,

which is suitable for grids with high precision relative to the size of the target

areas95.

Figure 3.12: Aggregation of fine grid raster data (DWD yearly averages)

95Background map provided by openstreetmap.org (Contributors) (2019).
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3.3.2.2 Raster Data Aggregation: Comparison

The pollution concentration differences between the year 2008 and 1998 in

Chapter 1 are currently based on a non-weighted overlap of the 7× 8km2 grid

onto the 2008 definition of German county borders. I have also performed

a weighted overlap that takes the exact overlapping area of each grid cell

into account to compute the yearly county-wide averages. While this is an

improvement in precision, the difference in resulting averages is minor even

for the coarse 7× 8km2 grid, which is not surprising given the construction

of the grid data and the close relationship between neighbouring grid cells.

The yearly averages per county computed by these two methods are highly

correlated and do not yield meaningful deviations in the resulting dependent

variables (∆1998→2008PollutionConcentration
Y ):

Table 3.6: Correlation Matrix of Changes in Pollution Concentrations

Unweighted Overlap (7× 8km2) Weighted Overlap (7× 8km2)

NO2 PM10 SO2 NO2 PM10 SO2

Unweighted

Overlap

(7× 8km2)

NO2 1 - - - - -

PM10 0.3222 1 - - - -

SO2 0.1812 0.0087 1 - - -

Weighted

Overlap

(7× 8km2)

NO2 0.9703 0.2975 0.1657 1 - -

PM10 0.3062 0.9916 0.0118 0.2829 1 -

SO2 0.1907 0.0003 0.9967 0.1789 0.044 1

Note: Correlations between Changes in Pollution Concentration (1998-2008) at the county level. All coefficients

based on 413 long-difference pairs at the county level.

As can be seen from Table 3.6, there exist different but positively correlated

patterns in the cross-sectional development of pollutant concentrations but

almost no deviation due to the spatial overlap. While it is computationally

feasible to aggregate gridded data onto other territorial definitions using

the exact intercepting areas as weights96, the simplified method employed in

Chapter 1 represents a useful and innocuous approximation.

96The comparative analysis of different raster products in Chapter 3.4.1 relies entirely
on county averages from weighted overlaps.
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3.4 Additional Data Analysis

3.4.1 Point Sources vs. Grid Averages

3.4.1.1 Correlations and Descriptive Statistics

In order to validate the usage of OI raster products in Chapter 1 and other

projects, I compare the daily pollution measurements from UBA stations used

in Holub (2015) and Klauber et al. (2020) with annualized county averages

from the raster grids presented in Chapter 3.2. This comparison confirms that

the OI raster used in Chapter 1 mirrors station-level data from various station

types sufficiently well at the given aggregation level in all counties with actual

station measurements. The different raster products fill spatial gaps with a

mix of top-down emission field estimates and station measurement regimes as

discussed in Chapter 3.2. The use of different underlying emission estimates

becomes evident when comparing the averages from the 7× 8km2 OI raster

based on conventional emission fields (Chapter 3.2.2) to the averages from

the 2× 2km2 OI raster based on GRETA emission fields (Chapter 3.2.4). The

correlation coefficients imply that the two datasets are almost interchangeable

in most areas but exhibit differentiating patterns in areas with little station

coverage, which cannot be explained by the grid cell resolutions alone but are

likely due to the divergences in emission field generation.

I also aggregate station measurements at the county-level. Daily pollution

concentration means are averaged over the entire year for each individual

station. I then collapse yearly station averages onto the county-level by year

and type of station (“background”, “traffic”, “industrial”) and generate an

additional average across “all” stations. Stations are weighted equally despite

varying measurement frequency, which calls for the implementation of better

controls for panel attrition and reporting frequency97. County-level averages

rely on a time-varying number of stations, so I keep track of the number of

97These averages rely on a simple algorithm and are only used for comparative purposes
within Chapter 3.4.1.
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stations contributing to annual averages. The annual county-level averages

based on station data are compared to annual county-level averages derived

from the two immission raster products:

� 7× 8km2 OI raster

� 2× 2km2 OI raster based on emission fields from the GRETA tool

They are aggregated at the county-level via weighted overlaps as described

in Chapter 3.3.2.1. I perform the comparison on the basis of 2014 territorial

definitions (with 402 counties) since no auxiliary information is needed. Pollu-

tion concentration averages are measured in µg/m3 and compared by means

of simple unweighted Pearson’s correlation coefficients. I report pairwise

correlation coefficients computed across all county-year pairs for which both

averages are available. The correlation coefficients between station averages

and raster product averages are therefore always limited to the county-year

pairs with at least one station report.

The availability of data is presented in Table 3.7. It is possible to obtain

measurements from stations before 2000 from the UBA but environmental

data availability deteriorates for earlier time periods. It should be noted that

individual county-year pairs for a given station type contain missing values

if no station report exists for this observation, whereas the raster county

averages yield perfectly balanced panels.

Table 3.7: Availability of county-level pollution averages

7× 8km2

(balanced panel)

2× 2km2

(balanced panel)

Station Averages

(unbalanced panel)

NO2 1995, 2000-2014 2004-2016 2000-2014

PM10 1995, 2000-2014 2004-2016 2000-2014

PM2.5 - 2009-2016 2000-2014

SO2 1995, 2000-2014 2004-2016 2000-2014

In Table 3.8, I first compare the two immission raster products. The

number of observation pairs available for each pairwise coefficient is given in

parentheses. The correlation coefficients between the two rasters are usually
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based on 402 · 11 = 4422 county-year observation pairs because the rasters

overlap during the time period from 2004-2014.

Table 3.8: Correlation Matrices of county-year averages (Rasters)

Pairwise Correlation Coefficients (Unbalanced, 2000-2016)

NO2 NO2 PM10 PM10 SO2 SO2

(7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2)

NO2 1 - - - - -

(7× 8km2) (6432)

NO2 0.8977 1 - - - -

(2× 2km2) (4422) (5226)

PM10 0.6351 0.5159 1 - - -

(7× 8km2) (6432) (4422) (6432)

PM10 0.5709 0.5584 0.8771 1 - -

(2× 2km2) (4422) (5226) (4422) (5226)

SO2 0.5583 0.5399 0.6652 0.5468 1 -

(7× 8km2) (6432) (4422) (6432) (4422) (6432)

SO2 0.7327 0.6218 0.61 0.6341 0.8986 1

(2× 2km2) (4422) (5226) (4422) (5226) (4422) (5226)

Note: Pairwise correlations between county-year pollution averages (2000-2016). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps.

Pairwise Correlation Coefficients (Balanced, counties with continuous background station coverage only, 2004-2014)

NO2 NO2 PM10 PM10 SO2 SO2

(7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2)

NO2 1 - - - - -

(7× 8km2) 1848

NO2 0.9308 1 - - - -

(2× 2km2) (1848) 1848

PM10 0.6012 0.5464 1 - - -

(7× 8km2) (1650) (1650) (1727)

PM10 0.5192 0.511 0.9083 1 - -

(2× 2km2) (1650) (1650) (1727) (1727)

SO2 0.597 0.4921 0.6006 0.5897 1 -

(7× 8km2) (792) (792) (726) (726) (858)

SO2 0.615 0.5499 0.6625 0.6633 0.9144 1

(2× 2km2) (792) (792) (726) (726) (858) (858)

Note: Pairwise correlations between county-year pollution averages (2004-2014). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps. Only counties with full background station

coverage over the entire time period (2004-2014).

The coefficients demonstrate a highly positive relationship that is increased

even further when restricting the analysis to counties with a full set of 11

annual averages from background stations in the lower panel. First of all,

this reduces the number of available counties since only a subset of counties

fulfills the requirement of continuous background station coverage. The fact

that correlations are higher in the reduced sample implies that the rasters
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are more alike in counties with background station measurements, while the

underlying emission fields dominate immission concentrations in counties

without continuous coverage driving the raster values apart. This also implies

that chaining the two products together in order to obtain an extended time

series is risky as their patterns deviate systematically in such regions and

Stern (2015) finds national totals to deviate by up to 25%.

Table 3.9 explores the relationship between raster averages and averages

computed on the basis of the respective station types. The category “all sta-

tions” contains unweighted averages over all station types reporting pollutant

concentrations within a county. In the upper panel, all county-year pairs with

station values are taken into account for the resulting correlation coefficients,

while the lower panel restricts the correlation coefficients to counties with con-

tinuous coverage from the respective station type over the entire observation

period.

Overall, the positive coefficients in each column demonstrate that gridded

products and station measurements document similar patterns. It is striking

that measurements from background stations best reflect the patterns con-

tained in both raster products with respect to both NO2 and PM10 immission

concentrations. This is a direct consequence of the fact that background

measurements are used for the OI interpolation and readjustments in the

vicinity of stations.

The lower panel proves that restricting the analysis to counties with

continuous station reports severely limits the number of available observations.

While background station coverage and the respective correlation coefficients

remain decent, observations from traffic and industrial stations appear far

more spotty. This implies that using these station types as basis for an

empirical analysis over a longer time horizon is seldom feasible. OI rasters

and background stations provide researchers with a more consistent panel of

observations in most scenarios.
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Table 3.9: Correlation Matrices of county-year averages (NO2, PM10, SO2)

Pairwise Correlation Coefficients (Unbalanced, 2000-2016)

NO2 NO2 PM10 PM10 SO2 SO2

(7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2)

NO2 / PM10 / SO2 1 - 1 - 1 -

(7× 8km2) (6432) (6432) (6432)

NO2 / PM10 / SO2 0.8977 1 0.8771 1 0.8986 1

(2× 2km2) (4422) (5226) (4422) (5226) (4422) (5226)

NO2 / PM10 / SO2 0.6255 0.6693 0.6822 0.6791 0.8267 0.7788

(All Stations) (3616) (2603) (3427) (2557) (2459) (1538)

NO2 / PM10 / SO2 0.7937 0.8361 0.7412 0.7739 0.7856 0.7527

(Background Stations) (2963) (2101) (2781) (2061) (2047) (1264)

NO2 / PM10 / SO2 0.8553 0.8606 0.688 0.6795 0.9124 0.8313

(Industrial Stations) (301) (214) (391) (307) (257) (167)

NO2 / PM10 / SO2 0.4519 0.4132 0.5823 0.4987 0.6919 0.7438

(Traffic Stations) (1435) (1105) (1433) (1160) (469) (255)

Note: Pairwise correlations between county-year pollution averages (2004-2014). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps.

Pairwise Correlation Coefficients (Balanced, counties with continuous coverage only, 2004-2014)

NO2 NO2 PM10 PM10 SO2 SO2

(7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2) (7× 8km2) (2× 2km2)

NO2 / PM10 / SO2 1 - 1 - 1 -

(7× 8km2) (4422) (4422) (4422)

NO2 / PM10 / SO2 0.8977 1 0.8771 1 0.8986 1

(2× 2km2) (4422) (4422) (4422) (4422) (4422) (4422)

NO2 / PM10 / SO2 0.6808 0.7368 0.7548 0.7262 0.871 0.8032

(All Stations) (2288) (2288) (2178) (2178) (1111) (1111)

NO2 / PM10 / SO2 0.7997 0.8409 0.8295 0.7891 0.8041 0.7604

(Background Stations) (1848) (1848) (1727) (1727) (858) (858)

NO2 / PM10 / SO2 0.8991 0.9095 0.6992 0.6931 0.959 0.8676

(Industrial Stations) (132) (132) (176) (176) (110) (110)

NO2 / PM10 / SO2 0.5988 0.5518 0.6915 0.6515 0.6938 0.783

(Traffic Stations) (770) (770) (737) (737) (165) (165)

Note: Pairwise correlations between county-year pollution averages (2004-2014). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps. Station averages based on counties with

full coverage by the respective station type over the entire time period (2004-2014).

Table 3.10 sheds light on the availability and quality of PM2.5 measure-

ments. The main finding is that both the 2 × 2km2 and 7 × 8km2 rasters

approximate PM2.5 raster values well-enough through their PM10 values

during the period of mutual availability to justify using these concentrations as

proxy for PM2.5 concentrations. There is also a positive correlation between

both rasters and PM2.5 values at the station-level but the station averages

are severely hampered by the limited availability of consistent measurements

as demonstrated by the lower panel requiring continuous coverage.
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Out of 402 · 6 = 2412 potential county-year observations, only 73 · 6 = 438

pairs remain, which implies that only 73 counties exhibit a complete station

history of PM2.5 measurements over the given time period (2009-2014). This

reinforces the argument that working with German PM2.5 data derived from

the conventional sources described in Chapter 3.2.5 is still difficult.

Table 3.10: Correlation Matrices of county-year averages (PM2.5)

Pairwise Correlation Coefficients (Unbalanced, 2009-2014)

PM10 PM10 PM2.5 PM2.5 PM10

(7× 8km2) (2× 2km2) (2× 2km2) (All Stations) (All Stations)

PM10 1 - - - -

(7× 8km2) (2412)

PM10 0.8945 1 - - -

(2× 2km2) (2412) (2412)

PM2.5 0.8045 0.8101 1 - -

(2× 2km2) (2412) (2412) (2412)

PM2.5 0.717 0.666 0.7444 1 -

(All Stations) (646) (646) (646) (646)

PM10 0.7245 0.6712 0.6068 0.7718 1

(All Stations) (1387) (1387) (1387) (612) (1387)

Note: Pairwise correlations between county-year pollution averages (2009-2014). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps.

Pairwise Correlation Coefficients (Balanced, counties with continuous all station coverage only, 2009-2014)

PM10 PM10 PM2.5 PM2.5 PM10

(7× 8km2) (2× 2km2) (2× 2km2) (All Stations) (All Stations)

PM10 1 - - - -

(7× 8km2) (2412)

PM10 0.8945 1 - - -

(2× 2km2) (2412) (2412)

PM2.5 0.8045 0.8101 1 - -

(2× 2km2) (2412) (2412) (2412)

PM2.5 0.727 0.6878 0.8056 1 -

(All Stations) (438) (438) (438) (438)

PM10 0.7463 0.7136 0.6207 0.7806 1

(All Stations) (1188) (1188) (1188) (396) (1188)

Note: Pairwise correlations between county-year pollution averages (2009-2014). Available pairs for each

coefficient in parentheses. Grid averages are from weighted overlaps. Station averages based on counties with full

coverage by the respective station type over the entire time period (2009-2014).
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3.4.1.2 Maps of Coverage

I also plot the county-year averages stemming from both the 7 × 8km2 OI

raster and background stations in a series of maps covering the years 2000,

2005, 2010 and 2014. These maps are shaded according to the quantiles based

on immission concentration averages reported in µg/m3, whereas counties

without a single background station measurement in the given year are

blackened out. The leftmost panel contains quantiles from all weighted OI

raster averages, while the rightmost panel contains quantiles resulting from

the computable station averages. The panel in the center contains weighted

OI raster averages with quantiles based only on the counties with station

measurements for comparative purposes.

It can be seen that the maps for NO2 and PM10 in Figure 3.13 and

Figure 3.14 capture the station-level patterns very well, even when forced

onto the same reduced county sample. The rightmost panel for SO2, however,

reinforces the argument that raster values for this pollutant share the weakest

statistical foundation.
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Figure 3.13: NO2 County-Year Pollution Averages (2000, 2005, 2010, 2014)
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Figure 3.14: PM10 County-Year Pollution Averages (2000, 2005, 2010, 2014)
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Figure 3.15: SO2 County-Year Pollution Averages (2000, 2005, 2010, 2014)
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Overall, the columns in Table 3.9 along with the patterns in Figure 3.13 and

Figure 3.14 confirm that the 7× 8km2 OI immission rasters used in Chapter 1

are at least a valid approximation of background station measurements and

at best a significant improvement over any interpolation attempts based

on station data alone. Consequently, the rightmost panels demonstrate

the enormous extent of interpolation necessary for attaining Germany-wide

coverage.

The ability of OI rasters to fill these gaps with the aid of superior emission

fields derived from high-quality administrative data makes them a rational

choice for research projects relying on long-run cross-sectional variation. I

conclude that using them within the framework of my analysis, which relates

long-term developments in pollution averages to long-term developments in

trade exposure, is a convenient and accurate approach for obtaining the

required pollution exposure changes.
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3.4.2 Industry-level Emissions and

International Trade Flows

3.4.2.1 Preparation of E-PRTR Data

In an attempt to evaluate the positive aggregate effects of trade exposure on

emission concentrations demonstrated in Chapter 1 at a less aggregated level,

I construct a dataset based on the facility emissions contained in the E-PRTR

register described in Chapter 3.2.6. Analyzing patterns at the industry-level

can shed light on potential channels responsible for aggregate reductions and

on which industry sectors drive aggregate effects.

I therefore combine trade flow data at the industry-level with changes in

total E-PRTR facility reports between 2001 and 2008, which represent the

waves closest to the original time window. Emission reports are restricted to

the manufacturing sectors used in the main analysis and paired with sectoral

trade flows in order to conduct a graphical analysis of the relationship between

trade exposure and emission output at the micro-level. This analysis provides

initial evidence regarding the industries driving pollution emission reductions

in response to trade shocks.

The limited sample of facility reports precludes a detailed econometric

analysis at the facility-level. Table 3.11 contains descriptives demonstrating

these limitations. With at most 241 reports across the entirety of Germany,

this also leaves very little room for meaningful variation at the county-level.

Consequently, I aggregate annual figures at the NACE1.1 industry-level and

pair these with trade flows by employing methodologies presented in DFS.

For the sake of comparability, the facility reports and trade flows are limited

to those manufacturing sectors corresponding to the WZ93 codes defined in

Chapter 1: WZ93 ∈ [150, ..., 369] \ [231, 232, 233]. This is done via a number

of correspondence tables linking NACE1.1, NACE2.0, SITC (rev. 3/4) and

WZ93 codes98.

98Refer to Appendix A.1.6 and Appendix A.3.1 for details.
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Table 3.11: Summary table of E-PRTR facility reports: Manufacturing

Year 2001 (EPER) Reports Mean (kg) STD (kg) Min (kg) Max (kg)
NOX 241 624161.83 55806.15 101000 7670000
PM10 63 206998.41 48207.14 50500 2300000
SOX 134 785940.30 121385.25 153000 11800000
Year 2008 (E-PRTR) Reports Mean (kg) STD (kg) Min (kg) Max (kg)
NOX 233 488008.58 45451.58 100000 6630000
PM10 32 266387.50 339884.54 51100 1440000
SOX 111 839396.40 141042.83 154000 12700000
Note: Table contains descriptive statistics for the reduced manufacturing sample.

Reporting requirements have changed between EPER and E-PRTR legisla-

tion, so Appendix A.3.2 provides a review of these changes in order to validate

the strategy of appending EPER to E-PRTR data within the framework of

this analysis.

3.4.2.2 Graphical Analysis using E-PRTR Data

For this descriptive industry-level analysis, absolute differences in trade vol-

umes per industry are paired with aggregate differences in reported EPER/E-

PRTR emissions between 2001 and 2008. The values have been collapsed onto

the 2-digit NACE1.1 level in order to obtain a sufficiently dense dataset of 22

industry observations when constructing relative changes. The resulting tuples

of percentage changes (∆2001→2008PollutionReleasesk·100%
PollutionReleasesk2001

, ∆1998→2008TradeV olumek·100%
TradeV olumek1998

)

for each industry k have been compiled in scatter plots to allow for a graphical

analysis.

This approach isolates and reveals those industry sectors that drive changes

in emission exposure. A negative relationship in Figure 3.16 or Figure 3.17

indicates that trade volume increases within affected industries are associated

with emission reductions and therefore positive environmental effects. The

linear fits (black lines) are simple OLS regression over tuples in the scatter

plot and the estimated equations are reported containing the slope and

heteroskedasticity robust standard errors. These regressions do not take

control variables, the relative size of industries or the relative size of trade

flows into account and suffer from high standard errors due to the small sample

size. Whenever industry categories lack reports in only one of the reference
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years, I approximate the emission quantities in that year by multiplying the

number of reporting facilities in the other year by the respective reporting

thresholds. This results in conservative estimates for the absolute changes in

emissions, as they are bounded by the reporting thresholds99.

Despite the simplicity of this approach, Figure 3.16 yields a distinctly

negative slope for NOX emissions with respect to changes in import expo-

sure, whereas the relationship in Figure 3.17 is not statistically significant.

There is also a negative relationship between E-PRTR reports for PM10 and

trade exposure in both Figures, which does not reach conventional levels of

significance, however. The graphs still hint towards the existence of beneficial

environmental effects along the intensive margin driven by manufacturing

sectors such as “motor vehicles” and “basic metals”. Given the limitations

and the discrepancy in time frames, the linear fits should be interpreted with

caution and only as descriptive evidence. Nevertheless, it is noticeable that

negative patterns are driven by categories containing 3-digit industries with

large production volumes and absolute changes in trade flows according to

Dauth et al. (2014) and Dauth et al. (2021). This is especially true for the

categories “manufacturing of motor vehicles”, “manufacturing of machinery”

and “manufacturing of basic metals”. Figure 3.16 and Figure 3.17 therefore

confirm that individual industries with strong trade dynamics and a high

emission reduction potential can be singled out as drivers of the observed

aggregate effects.

In order to evaluate the role of emission intensity, it would be necessary

to construct measures weighted by real production volumes. De Loecker

(2011) argues that price dynamics often distort estimates when intensities

99 Changes in industry sectors experiencing adaptation processes below the reporting

thresholds are excluded from the cross-sectional analysis by design but are bounded by

the thresholds and therefore negligible. The sector “Manuf. Other Transport” has to be

dropped from the cross-sectional analysis because it solely contains misreported quantities

from two communal electricity providers, which have been labeled as “Manufacture of air

and spacecraft and related machinery” and result in extreme outliers of 1, 450, 000kg in

NOX emissions and of 371, 000kg in SOX emissions in 2008.
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are computed using value-denoted denominators. Export opportunities may

increase prices for domestic goods, while additional import competition

will lower domestic prices. Without sophisticated methods for discounting

currency-denoted quantities at the industry-level, these price dynamics will

bias emission intensities downwards or upwards. Compiling a dataset that is

able to correctly address the emission intensity channel is therefore a difficult

but insightful extension to this analysis.
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Figure 3.16: Industry-level (%-Changes): Reported E-PRTR Emissions vs.
Import Volumes
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Figure 3.17: Industry-level (%-Changes): Reported E-PRTR Emissions vs.
Export Volumes
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3.5 Summary

This guide provides researchers with an overview of available spatial data from

the Umweltbundesamt (UBA) and with practical information for choosing

the right dataset for a given research question. A comparison of the main

products reveals their limitations, trade-offs and advantages:

� Conventional 7× 8km2 OI rasters

� Sectoral NFR information from GRETA emission rasters

� Refined 2× 2km2 OI rasters

� Point source industry emissions from E-PRTR

� Point source data from measuring stations

I suggest using point source information if the identification strategy

relies on short term variation or localized emission exposure and does not get

invalidated by the prevalence of missing values in low-coverage areas, whereas

projects with a long-term focus and a need for comprehensive spatial data

benefit from the intricate interpolation approach behind the raster products

and the perfectly balanced panels they provide.

Research projects that exploit recent data and recent policy interventions

can use the refined raster products with higher precision available after 2004.

They also reap the benefits of having a database built on more accurate

emission fields due to the GRETA framework, which distributes industry

emissions more precisely on the basis of E-PRTR data, especially after the

year 2007. Research projects relying on historical data will naturally lean

towards the conventional rasters as these allow for the acquisition of gridded

values reaching as far back as the year 1995 in exchange for precision.

In regions without stations, raster values become more model-driven and

thus share some of the beneficial and detrimental aspects of the reanalysis

products used in climate science and weather forecasting. According to

Auffhammer et al. (2013), such reanalysis elements do improve estimates in
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regions with sparse observations of poor quality but may offer a false sense of

security because they will never match the accuracy of data from observation-

rich regions. Both rasters provide estimates of immission concentrations,

which can be used as proxy for local emission exposure within research

projects that can account for underlying dispersion patterns or aggregate at

a high enough level to mitigate disturbances.

Finally, E-PRTR records can provide powerful but incomplete data on

industry-level or even facility-level emissions that represent pure short term

variation but suffer from misreporting and a more complex data structure

requiring burdensome data manipulation procedures during the preparation

phase. Combined with a suitable research design, however, this database has

a lot of potential that empirical researchers have not tapped into yet.

Figure 3.18: Simplified Visualization of Spatial Data Properties
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The diagram in Figure 3.18 provides a simplified visualization of the

datasets by tentatively rating them along the three dimensions “spatial

/ temporal completeness”, “short-term / local identifying variation” and

“underlying methodological complexity”. The 7 × 8km2 OI rasters occupy

the space on the very left due to their high combined spatial and temporal

availability - even compared to the 2× 2km2 OI rasters, which incorporate

methodological innovations introduced by the GRETA tool.

This chapter also provides researchers with a head start in dealing with

the technical challenges of German spatial data. Overcoming these hurdles is

a worthwhile endeavour, though, as it enables ambitious empirical research

projects based on German data. The excellent availability of statistical data

for control and outcome variables as well as a plethora of relevant policy

interventions make Germany a prime target for research in environmental

economics, which can be enhanced significantly by harnessing the full potential

of yet unexploited spatial data.

The above comparison of data properties validates the 7 × 8km2 OI

raster as most suitable option for the research project in Chapter 1 and I

present descriptive evidence in Chapter 3 justifying its use over the obtainable

alternatives. It is clear, however, that the alternatives may be more adequate

for other projects. This chapter highlights the pros and cons of currently

available alternatives measuring pollution exposure at an appropriate spatial

resolution and assesses their potential for empirical research projects. Taking

this information into account when deciding on the ideal combination of

data products will certainly improve the empirical rigor and strengthen

the identification strategies of research projects with a thirst for German

environmental data.
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Appendix A

Appendices by Chapter

A.1 Appendix - Chapter One

A.1.1 Information on Pollutants

The UBA provides information on individual pollutants 100 and links the

pollutants under study (NO2, SO2 and PM10) to their most important

sources and their scientifically proven health effects. NO2 (nitrogen dioxide)

is a chemical compound originating from the burning of fuels in combustion

engines and from reactions in the chemical industry. Both industrial produc-

tion and traffic are important sources of this pollutant and chronic exposure

to NO2 causes lung diseases and pneumonia. SO2 (sulfur dioxide) is another

toxin affecting the respiratory system, which is linked to the transportation

and the energy sector. Its volume has been on a steep decline since the mid

90’s with the largest savings concentrated in Eastern Germany due to the

rapid transformation of this region after the German Reunification. This

can be illustrated by comparing the 1995 data points in Figure 1.2. While

the relative importance of chemical, metal and petroleum industries in the

generation of this pollutants has declined over the years, they are still a

major source of SO2 emissions. Both pollutants can also be released as

isotopes and oxidate over their lifetime, which means that reported NOX

or SOX concentrations are typically highly correlated with NO2 and SO2

100Refer to the UBA website (https://www.umweltbundesamt.de/daten/
luftbelastung/luftschadstoff-emissionen-in-deutschland) for more information and
the source of Figures A.1 to A.3.
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concentrations. PM (particulate matter) is the result of the deterioration

of other toxic substances and may contain a mix of derivatives from SO2,

NO2 or their other isotopes. The severity of health risks is determined by

the size, the geometry and the underlying base substances of these PM

components. Since industrial processes are one of the prime sources of fine

particle aerial pollutants, PM10 concentrations of those particles with a

diameter smaller than 10µm represent a useful benchmark for local pollution

immissions, although more recent studies tend to focus on PM2.5, the even

smaller and even more detrimental particles with a diameter of less than

2.5µm (e.g. Williams and Phaneuf, 2019, and Williams et al., 2018). However,

accurate measurements of this type of particulate matter are not available for

the majority of German counties before the year 2009 and it can be shown

that the immission concentrations are highly correlated during the time frame

of mutual availability101.

Figures A.1 to A.3 demonstrate the overall downward trends in pollutant

emissions in Germany and highlight the relative importance of sources over

time , while Figure A.4 presents a summary of health effects provided by

the European Commission 102. According to the European Commission, air

pollution is the “largest single environmental risk and a leading cause of

disease and death globally. It is a risk factor for ischemic heart disease, stroke,

chronic obstructive pulmonary disease, asthma and cancer”. The reductions

visible in Figure A.1 to Figure A.3 are partly the result of implemented

thresholds and better abatement technologies. In the case of the Clean Air

Act Amendments (CAAA) in the US, Bento et al. (2014) have shown that the

ensuing pollution reduction trends benefit especially low-income households

101See Chapter 3.2.5 and Chapter 3.4.1 for details. Table 3.10 in Chapter 3.4.1 compares
the availability and correlation between PM2.5 and PM10 measurements in Germany
and demonstrates the rarity of comprehensive PM2.5 records. Table 3.10 also proves that
an approximation through PM10 is reasonable based on the time of mutual availability.
According to the UBA website (https://www.umweltbundesamt.de/daten/luft/feinstaub-
belastung), thresholds of 50mg/m³ for PM10 have been established by the German govern-
ment in 2015, which are not to be exceeded on more than 35 days per year. EU Directive
2008/50/EG (https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32008L0050)
has confirmed these thresholds and has introduced additional thresholds for PM2.5.

102Refer to the EC learning module (https://ec.europa.eu/environment/legal/law/5/
e learning/module 1 1.htm) for the original figure.
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and highly polluted areas, which implies the existence of catch-up effects. It

is therefore advisable to control for pre-sample pollution levels. According to

the UBA103, the year 2003 marks a distinct outlier with respect to high PM10

values, whereas threshold violations have become less frequent in recent years.

Nevertheless, seasonal and annual variation in PM10 concentrations due to

weather phenomena and other causes requires the use of smoothed averages

or weather controls in empirical settings.

Figure A.1: Sources of Pollution Emissions (NO2) over time

103Refer to the UBA website (https://www.umweltbundesamt.de/daten/luft/feinstaub-
belastung) for further information.

189



Figure A.2: Sources of Pollution Emissions (PM10) over time

Figure A.3: Sources of Pollution Emissions (SO2) over time
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Figure A.4: Health Effects of Pollutants

A large body of literature has linked emission exposure to detrimental

health effects. Landrigan et al. (2020) document that fuel combustion in

industry and transportation accounts for 85% of global airborne pollution and

that local aerial pollutants are the cause of severe respiratory and cardiovas-

cular diseases. Among others, they can be linked to incidences and mortality

related to chronic obstructive pulmonary disease (COPD), asthma and is-

chaemic heart disease. According to their review, pollution-related diseases

cause global welfare losses of US$4.6 trillion (6.2% of global economic output).

Empirical studies on the economic impact of pollution exposure concentrate

on a similar set of pollutants and find causal links between exposure on the

one hand and mortality, hospitalizations and medical costs on the other hand

(e.g. Williams and Phaneuf, 2019, Deryugina et al., 2019, and Deschenes

et al., 2017). Overall, NO2, SO2 and PM10 concentrations are reasonable

outcome variables for the evaluation of industry-related pollution emissions

because they can be empirically linked to industrial production and have

been proven to bear severe health risks for the population in its vicinity.

191



A.1.2 Free Trade in the Environmental Kuznets Curve

The proponents of the Environmental Kuznets Curve hypothesis postulate

that the growing wealth of a nation, captured by its GDP per capita, stands

in an inverted U-shape relationship with observed domestic pollution levels.

This hypothesis is derived from empirical observations (e.g. Grossman and

Krueger, 1991, and IBRD, 1992) and its originators attribute the effect to

a growing awareness in the populace suffering from externalities, increasing

resources available for combating pollution and stronger regulatory institu-

tions. This theory offers the compelling argument that economic growth will

eventually lead to environmental improvements through channels inherent in

the development process. The EKC hypothesis has been criticized for various

reasons and empirical examples have since contradicted an inevitably inverted

U-shaped relation.

When taking the role of trade into account, it can be argued that the

observed relationship is exacerbated by free trade between developed and

developing nations (Copeland and Taylor, 2004, and Stern, 2004). The former

can abuse their bargaining power and the existing terms of trade to effectively

outsource unwanted production, which is costly in terms of environmental

compliance or detrimental to the environment, to developing countries looking

for growth opportunities. Some developing nations may actively foster these

developments by keeping environmental standards low or by not enforcing

regulations, thus creating “pollution havens” that attract industries under

pressure from environmental regulations. Broner et al. (2012) for example

study the comparative advantages coming from regulatory differences in

polluting industries. They combine data on environmental policies with data

on pollution intensity at the industry and country level and demonstrate that

countries with laxer environmental regulation have a comparative advantage

with respect to polluting industries. Environmental regulation according

to these empirical findings shapes the patterns of trade in a causal and

economically relevant manner.

Strict regulations within Germany may be a driving factor behind the exit

of polluting industries, which are under pressure from unregulated import

192



competition or embrace the low production costs offered by the policy regimes

of the new trading partners. Reductions in pollution concentrations that can

be linked to trade liberalization towards China and Eastern Europe may then

be seen as evidence that Germany is moving along the right-hand side of the

EKC diagram (downward sloping arc in Figure A.5). Linking the regional

trade exposure changes to environmental quality therefore has the potential to

expose, which role trade openness plays in the transformation of the German

industry and whether developed nations can secure a locally higher air quality

through terms of trade.

Figure A.5: The role of free trade in shaping the EKC

A.1.3 Decomposition of Impact Channels

According to Antweiler et al. (2001) and Copeland and Taylor (2004), the

impact of trade on pollution concentrations can be attributed to three principal

channels and can be decomposed into a pure scale effect, a composition effect

and a technique component. Levinson (2009) empirically analyzes these

drivers of pollution emission reductions by distributing these reductions

onto the individual main channels (production volume, inter-sectoral shifts,

technological improvements) and holding other factors fixed such that
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∆Emissionst = θ′tEtdQt︸ ︷︷ ︸
Scale

+ QtE
′
tdθt︸ ︷︷ ︸

Composition

+ Qtθ
′
tdEt︸ ︷︷ ︸

Technique

(A.1)

with θt being the vector of economy-wide industry output shares, Et being

the vector of industry-specific emission intensities and Qt being aggregate

output. A similar decomposition at the firm level proposed by Barrows

and Ollivier (2018a) is based on a methodology introduced by Foster et al.

(2008) and examines changes in emission intensity ej,t at the industry-level.

Individual firm effects are aggregated over the individual firms denoted by

f , which either belong to the set of continuing firms (Continuej), the set

of exiting firms (Exitj) or the set of entering firms (Enterj) within a given

industry j. Furthermore, θjf,t is the output share of firm f with respect to

industry j’s total production and ef,t denotes firm f ’s emission intensity at

time t. The resulting decomposition demonstrates that both developments

along the extensive margin and the intensive margin can shape emission

intensities in a given industry:

∆ej,t =
∑

f∈Continuej

[θjf,t−1∆ef,t]︸ ︷︷ ︸
Technology /WithinF irm

/

+
∑

f∈Continuej

[ef,t−1 − ej,t−1]∆θjf,t +
∑

f∈Continuej

∆ef,t ·∆θjf,t︸ ︷︷ ︸
IntensiveMarginReallocation

+
∑

f∈Enterj

θjf,t[ef,t − ej,t−1] +
∑

f∈Exitj

θjf,t−1[ef,t−1 − ej,t−1]︸ ︷︷ ︸
ExtensiveMarginReallocation

(A.2)
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A.1.4 Discussion of Impact Channels

The observed aggregate effects of regional trade exposure on local environmen-

tal quality will usually be the result of several underlying channels. Possible

channels acting as main drivers behind observed aggregate effects have been

identified across a large body of literature. These channels sometimes repre-

sent countervailing effects that counteract each other. Consequently, it is not

always clear in a given scenario, which channels dominate and dictate the

overall outcome. Table A.1 provides an overview of the identified channels and

the predicted signs of the effects. One caveat is that due to the simultaneity

and countervailing nature of effects, these are generally difficult to disentangle

empirically. An emission volume increase due to higher demand (e.g. in the

exporting industry), for example, may either be offset by improvements in

emission intensity at the firm-level or by improvements in the energy intensity

of production. Another caveat is that some empirical results pertain to CO2

emissions but can be expected to hold for local pollutants as well if these

are co-pollutants at the facility-level or byproducts of the manufacturing and

energy provision cycle104.

First of all, product-mix changes within individual firms may yield a

significant reaction along the intensive margin. Barrows and Ollivier (2018a)

develop a multi-factor model within monopolistic competition based on Melitz

and Ottaviano (2008) and the multi-product-firm framework by Mayer et al.

(2014), which explains product-mix decisions of exporting firms and demon-

104My research evaluates the aggregate effect of trade openness on pollution concentration
profiles and relies on the literature presented in this subchapter to summarize possible
channels underlying the empirically observed aggregate effects. I conduct a descriptive
analysis of responses at the industry-level using E-PRTR data and present the results,
which partly confirm the industry dynamics highlighted by DFS, in Chapter 3.4.2. While
the regional variation observed in Chapter 1 provides hints for the identification of possible
drivers, additional industry-level or facility-level data is required to produce conclusive
evidence on the relevance of individual channels in the German case. Furthermore, energy
intensity and energy demand reductions lead to potential emission savings remote from
the affected facilities or even outside of Germany. For the sake of complexity reduction,
I assume that savings from energy consumption are distributed evenly across German
counties and do not claim to fully capture this channel in my analysis except for facilities
consuming energy generated locally (e.g. on-site). The capturing and transportation of
pollutants to remote waste processing facilities is less of a concern for the validity of this
analysis due to the characteristics of the pollutants under study.
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strates that firms can lower emissions by focusing on their core competencies

and most competitive product lines. Such heterogeneous firm models rely on

the monopolistic competition setup introduced by Dixit and Stiglitz (1977)

and can be augmented by the inclusion of multiple factors and technology

adoption in order to study the effect of trade liberalization on CO2 emission

intensity. Empirical test conducted by Barrows and Ollivier (2018a) with

Indian data reveal an aggregate drop in CO2 emission intensity mainly driven

by reallocation across firms. At the firm level, core competencies are found to

be cleaner than non-core production for most Indian manufacturing sectors

but export opportunities incentivize a movement away from these core compe-

tencies. They conclude that trade liberalization may reshape emission profiles

due to the relative emission intensities of different product lines and that

export opportunities and import competition can alleviate pollution as long

as they strengthen the focus of individual firms on their core competencies

and less energy intensive product lines105.

The emerging theoretical and empirical literature suggests that trade has

an important role in shaping the heterogeneity of firms. Trade liberalization

incentivizes a reallocation reinforcing within-industry efficiency and forces

exporters to adopt newer and cleaner technology. Cui et al. (2015) develop a

heterogeneous firms model, which predicts that productive exporting firms

are more likely to adopt emission-saving measures. Their US manufacturing

firm-level data indicates that facility productivity is negatively correlated with

emission intensity per sales volume and that exporters within a given industry

have lower emissions intensities even after controlling for regulatory pressure

and non-attainment status (with respect to SO2 and other substances). Bom-

bardini et al. (2016) examine the relationship between the import networks

of Canadian firms and their productivity. They find that broader and deeper

import relationships allow firms to be larger, more productive and more suc-

105These empirical results pertain to CO2 emissions in India and the main drivers in the
model of core competencies are the rates at which energy and labor efficiency decline for
products further away from the core. The main insights and reactions along the intensive
margin from the model are transferable to the German setting with local pollutants as
long as the production functions with respect to energy intensity and labor intensity yield
a similar pattern of cleaner core competencies compared to non-core varieties.
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cessful in export markets. Koren et al. (2019) find that Hungarian machine

operators benefit from importing high-end machinery, which establishes a

beneficial channel of import opportunities on environmental quality through

productivity gains in addition to trivial scale effects.

While Bloom et al. (2016) do not look at the environmental aspects of

innovation, they are able to demonstrate the existence of significant innovation

pressure due to import competition. The resulting technological upgrades

at the firm-level and the reallocation of employment towards technologically

advanced firms, however, can have positive effects on air quality if these

firms operate at higher efficiency, implement abatement measures and erect

state-of-the-art high-tech facilities. Bloom et al. (2013) demonstrate that

R&D spending for innovation creates spillover effects beyond the individual

firm possibly also multiplying the domestic impact of emission reduction

technologies. Based on empirical results from India, however, Barrows and

Ollivier (2018b) and Barrows and Ollivier (2018a) caution researchers not

to ascribe firm-level emission intensity reductions entirely to technological

adoption.

Forslid et al. (2018) argue that exporting firms are cleaner because produc-

tion scaling supports investments into CO2 abatement, while trade weeds out

less productive and dirtier firms. Their argument is largely supported by tests

relying on Swedish firm-level data. Holladay (2016) supports the hypothesis

that import competition leads to the exit of pollution intensive establish-

ments and highlights the relationship between firm productivity and emission

intensity. The protection of low-productivity domestic plants through trade

policies and subsidies counteracts the development but estimates show that

exporting firms in the US report 9-13% less emissions than non-exporting

firms after controlling for output with some heterogeneity across industries.

Import competition is associated with the exit of the most polluting firms

regardless of environmental regulation measures, which implies that envi-

ronmental effects are not entirely explained by a relocating to “pollution

havens”. This section of the literature convincingly establishes an empirical

link between productivity, environmentally friendly production, high energy

efficiency and exporting opportunities, which lets initially productive firms
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enter a “virtuous circle” once hit by trade shocks. Despite the existence

of a production scale effect, it may then be possible to observe a negative

correlation between exporting opportunities and emission intensity.

De Loecker (2011) looks at the impact of trade liberalization on the Belgian

textile industry and provides a cautionary tale against the use of sales volumes

and other revenue-based productivity measures when computing the effect

of trade on productivity. Correcting for unobserved price dynamics yields

productivity increases through trade liberalization of 2% instead of 8% in the

Belgian context. This research therefore implies that estimates of the impact

of trade on productivity and environmental benefits may be biased upwards

when production and emission intensity measures are generated without

properly controlling for price mechanics. While the author argues that not

addressing price effects and mark-ups correctly may lead to an upward bias in

estimated productivity responses to trade openness, the strands of literature

presented in this synopsis provide ample evidence that import competition

and export opportunities can yield an overall positive effect on domestic

environmental performance. It is the aim of my research to test whether this

hypothesis holds true for air quality at the German county level and trade

liberalization towards China and Eastern Europe between 1998 and 2008.
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Table A.1: Overview of Impact Channels on Pollution Concentrations

Channel
Trade

Exposure

Domestic Impact

Prediction
Empirical Evidence References

Scale

Export Opportunities ∆Exports > 0 ∆Pollution > 0
Evidence for global SO2

reductions

Levinson (2009),

Antweiler et al. (2001)
Import Competition ∆Imports > 0 ∆Pollution < 0

Product Mix &

Reallocation

Between Sector

Reallocation

∆Exports > 0

Empirically ambiguous

Positive impacts for

India, early exit of dirty

competitors

Holladay (2016),

Barrows and Ollivier

(2018a), Cui et al. (2015)

∆Imports > 0

Within Sector

Reallocation

∆Exports > 0 Reallocation across firms

lowers emissions,

firm-level counteracts∆Imports > 0

Cleaner Core

Competencies

∆Exports > 0
Non-core varieties

increase emissions
Positive impacts only

through a focus on core

competencies

Barrows and Ollivier

(2018a)

∆Imports > 0 ∆Pollution < 0

Productivity &

Technology

Virtuous circle for

productive/clean

exporters

∆Exports > 0 ∆Pollution < 0

Empirical link between

productivity, export

chances & environmental

performance

Cui et al. (2015),

Forslid et al. (2018)

Modernization

through imported

inputs and machinery

∆Imports > 0 ∆Pollution < 0
Evidence from Canada

and Hungary

Bombardini et al. (2016),

Koren et al. (2019)

Modernization due to

export revenues and

preferences

∆Exports > 0 ∆Pollution < 0

Theoretically important

channel, weaker

empirical evidence

requiring large trade

shocks

Barrows and Ollivier

(2018a), Cui et al. (2015),

Forslid et al. (2018)
∆Imports > 0 ∆Pollution < 0

Innovation Pressure ∆Imports > 0 Reductions possible
Reallocation towards

High-Tech
Bloom et al. (2016)

Environmental

Regulation

Pollution Haven

Hypothesis

∆Exports > 0 ∆Pollution < 0
Outsourcing to less

regulated countries

Copeland and Taylor

(2004), Stern (2004),

Wagner and Timmins

(2009), Dechezlepretre

and Sato (2017)∆Imports > 0 ∆Pollution < 0

Incentives for

abatement
∆Imports > 0 ∆Pollution < 0

Confounding effect

unrelated to trade

openness (-> IV)

Autor et al. (2013),

Shapiro and Walker

(2018)
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A.1.5 Sample and Data Availability

The empirical analysis within this research project utilizes the sample 1998-

2008, which corresponds to the main phase of trade liberalization as defined

by DFS. It thereby ensures comparability and avoids confounding effects

tied to the Financial Crisis after 2008. The introduction of the EURO on

January, 1st, 1999, may have further reinforced the competitivity of the

German exporting industry and the subsequent trade integration as argued

by Xianbai (2015).

The timeline in Figure A.6 also contains information on the available

trade data representing absolute values from COMTRADE and regionalized

exposure changes between 1998 and 2008 as computed by DFS and discussed

in Chapter 1.4.1.1. The availability of corresponding pollutant concentration

rasters provided by the UBA (1995, 2000-2014) is also highlighted in the

timeline and discussed in Chapter 1.4.1.2.

Additional data on the facility level is available via the European Pollutant

Emission Register (EPER) for the years 2001 and 2004 and via the European

Pollutant Release and Transfer Register (E-PRTR) for the years 2007-2017.

EPER is the precursor of the E-PRTR, which is a register maintained at the EU

level by the EEA and based on similar disclosure principles as the US Toxics

Release Inventory (TRI). Industrial facilities are obliged to report emissions

above predefined thresholds to national authorities and these compile the data

for publication in a register containing information on over 90 pollutants at

the facility level. This data can be exploited for the computation of emission

developments at the industry-level. Refer to Chapter 3.2.6 and Chapter 3.4.2

for more information and descriptive evidence from this register.
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Figure A.6: Timeline of Globalization from the German perspective and
Timelines of Data Availability
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A.1.6 Data Generation Process for Trade Volumes

The IAB raw data is categorized according to the German WZ93 classification

of industry sectors (“Klassifikation der Wirtschaftszweige, Ausgabe 1993”)

and all WZ93 categories are dropped for this analysis except for the categories

with WZ93 ∈ [150, ..., 369]\ [231, 232, 233]. Coke oven products (231), refined

petroleum products (232) and the processing of nuclear fuels (233) are dropped

because these sectors are highly affected by energy legislation and shifts in oil

prices. The economic size of these shocks would likely dominate the effects of

any other trade shocks.

A correspondence table provided by DFS and tables from EUROSTAT

allow for the conversion of three digit NACE1.1/WZ93 codes into NACE2.0

codes or SITC rev. 3 codes and vice versa106. The trade flow data acquired

from the COMTRADE database provides yearly USD-values broken down

by SITC rev. 3 (4digit) goods classifications. These can be transformed

into NACE1.1/WZ93 industry classifications through the correspondence

tables. All transformation and weighting schemes performed by DFS have

been reiterated for my own calculations if necessary107.

A.1.7 Correlation of Explanatory Variables

Computing correlation coefficients for the exposure changes per worker be-

tween 1998 and 2008 yields the correlation matrix in Table A.2. Exports

to Eastern Europe and China are highly correlated over this time period as

exporting industries are unlikely to discriminate against either trade partner.

Furthermore, imports and exports to Eastern Europe are highly correlated

106NACE1.1 codes are equivalent to the German WZ93 (3 digit) classifi-
cations and DESTATIS provides correspondence files for these classifications
(https://www.klassifikationsserver.de/klassService/jsp/common/url.jsf?variant=wz1993).
The results can be combined with EUROSTAT tables
(http://ec.europa.eu/eurostat/de/web/nace-rev2/correspondence tables).

107COMTRADE records have been acquired from the website
(https://comtrade.un.org/data) and supplementary material has been provided by
DFS. Additional information on the data generation process can be obtained from the web-
site of the published article (https://onlinelibrary.wiley.com/doi/abs/10.1111/jeea.12092).
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across counties implying equally strong trade flow increases in both ways.

This is due to the exchange of intermediate goods with German facilities

importing intermediary inputs and exporting these after assembly.

Furthermore, urban counties with strong international connections will

likely possess active import and export firms. Chinese import and export

volumes on the other hand are not as highly correlated, which implies that

individual counties may either be focused on importing goods or exporting

goods to China. When including too many of these as explanatory variables,

multicollinearity may become an issue but the existing degree of variation

across counties should allows for the identification of effects from individual

trade exposures in setups with a careful selection of explanatory variables.

Table A.3 shows that dividing exposure measures by area instead of

employees increases unweighted correlations especially at the lower end as it

inflates the absolute size of exposure measures in small urban counties.

Table A.2: Correlation Matrix of Trade Exposure Changes per Worker

Imports from
China

Imports from
Eastern Europe

Exports to
China

Exports to
Eastern Europe

Imports from
China

1 - - -

Imports from
Eastern Europe

0.3624 1 - -

Exports to
China

0.2102 0.7328 1 -

Exports to
Eastern Europe

0.3604 0.8511 0.8653 1

Note: Correlations between Changes in Trade Exposure per Worker (1998-2008) at the county level.

Table A.3: Correlation Matrix of Trade Exposure Changes per Area

Imports from
China

Imports from
Eastern Europe

Exports to
China

Exports to
Eastern Europe

Imports from
China

1 - - -

Imports from
Eastern Europe

0.7363 1 - -

Exports to
China

0.6026 0.8899 1 -

Exports to
Eastern Europe

0.7027 0.9573 0.9157 1

Note: Correlations between Changes in Trade Exposure per Area (1998-2008) at the county level.
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A.1.8 Processing of Pollutant Concentrations

Yearly concentration averages from the raster data set have been converted

into averages for the respective counties by taking the unweighted means

of all overlapping rectangular raster sectors for each individual year before

computing the absolute changes in concentration levels. For each pollutant

Y , each county i and each year t, the unweighted average over all grid cells j

overlapping the county area is:

PollutantConcentrationYit =
∑
j 1[j∩i 6=∅]·PollutantConcentrationYjt∑

j 1[j∩i 6=∅] (A.3)

Chapter 3.3.2.2 presents correlations between the individual pollutants and

between this method of aggregation and a method generating area-weighted

averages. Figure A.7 provides a graphical example for the county of Rostock

and Figure A.18 in Appendix A.3.3 visualizes the aggregation procedure using

colour gradients.

Figure A.7: Aggregation of raster data onto the county-level
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The data section in Chapter 3.3.1 describes the technical details of this

procedure and presents alternatives. Since individual years may see spikes in

emission concentrations due to weather phenomena, I compute smoothed av-

erages over several years in line with UBA observations and recommendations
108. In order to obtain a smoothed estimate for the year 1998, I compute the

unweighted average over the available concentrations in 1995109, 2000 and

2001. For the year 2008, I have access to the years 2005-2011 and compute

an unweighted average over 7 observations.

This strategy provides smoothed concentration estimates for the initial

time period and the post-treatment period. It reduces the risk that individual

years create significant outliers, which may be a concern especially with

respect to Eastern German data due to a lower density of measuring stations

after the reunification and the risk of weather phenomena exacerbating the

confounding influence of Eastern European production facilities close to the

border110. Figure 1.2 depicts the time series of yearly average pollution

concentrations over all 413 counties along with the smoothed averages for the

initial period (1998) and the end of the sample (2008). There is no noticeable

drop during the initial stages of the Financial Crisis, which underscores that

the time window of the analysis avoids confounding influences. Based on

unweighted averages over all German counties, I observe a decrease of roughly

2.84µg/m3 in PM10 concentrations and of 3µg/m3 in NO2 concentrations

over the given time period.

108The UBA website (https://www.umweltbundesamt.de/daten/luft/feinstaub-belastung)
documents the impact of weather spikes (e.g. on PM10 concentrations in Eastern Germany).

109The emission rasters for the year 1995 are the earliest grid values available and are
partly based on lower resolution datasets at the European level, which require additional
steps and temporal interpolation methods to arrive at a raster of comparable resolution
according to Stern (2015). The SO2 average at the beginning of the time period may
therefore be a particularly biased representation of concentrations in 1998, as there has
been a steep drop in SO2 emissions over the years 1995 to 2001 (see Figure 1.2). This
makes estimations based on the SO2 average for 1998 potentially less reliable. Alternatively,
averages can be computed based on asymmetrical time frames or on a shorter time span,
which further reduces the information contained in the early average but preserves the
main results for NO2 and PM10.

110Another safeguard against Eastern German outliers is to restrict the sample to Western
German counties as in the robustness check presented in Chapter 1.6.1.
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A.1.9 OI Raster Properties and Robustness

Auffhammer et al. (2013) argue that the interpolation from a number of point

sources to a continuous map may not be straight-forward and that a number of

pitfalls have to be avoided when using gridded information. The methodology

addresses some of these concerns by employing an advanced interpolation

approach. It does, however, rely on both model-based components and actual

short-term variation from local measurements. While the underlying emission

fields capture long-term movements along the extensive margin by attribut-

ing aggregate emissions to local sources based on industry characteristics,

short-term variation enters the grid through adjustments towards hourly

“background” station measurements. Over the entire period of observation

(1995-2008), there have been up to 488 background stations in up to 246 (of

413) counties actively reporting concentrations for each individual pollutant

depending on the substance and year111. One advantage of raster data over

inverse distance-weighted averages from point sources is the reduction of

measurement errors in regions with scarce point source data through more

sophisticated interpolation methods.

On the other hand, pollutant concentrations are inherently a measure of

immissions (i.e. the locally resulting accumulation of pollutants) instead of

emissions and are therefore an imperfect proxy for developments in industry-

level pollution output. The pollutants under study disperse to a certain

degree and the dispersion calculation takes these patterns and corrections

from local measurements into account. This means that my analysis suffers

from some spatial distortion as aerial pollutant concentrations are known to

occur at places locally distant from their sources. Facility-level emission data,

in contrast, is gated behind reporting thresholds and therefore incomplete.

Emission fields are therefore created by allocating aggregate emissions from

national accounts to local sources using detailed information on land use,

regional characteristics and industry composition gathered in regular intervals

(≤ 5 years). This top-down allocation overrides some short-term variation

but is able to reflect changes at the extensive margin through the usage of

111See Chapter 3.2.3 for the exact coverage by pollutants.
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statistical data from the national account systems and the national emission

inventory (“Zentrales System Emissionen”, ZSE)112.

The identification strategy of this research project does not rely on short-

term variation in emission concentrations but on long-term changes. It

therefore benefits from several properties of the dataset. The raster creation

process addresses potential pitfalls listed in Auffhammer et al. (2013) by taking

topology and meteorology into account, by closing gaps between measuring

stations without exacerbating measurement errors and by refining grid values

ex-post through local background station measurements113. Panel attrition

among the measuring stations is minimized through the exclusion of those

with infrequent reports and outliers are avoided through the exclusion of

“hot spot” stations close to traffic or industrial facilities. The resulting raster

values represent the mean level of pollution exposure experienced by the local

populace and provide a valuable basis for welfare considerations.

Nevertheless, I validate the OI raster data used in this Chapter and verify

its conformity with actual measurements from “background” stations by

comparing it to station-based averages at the county-level in Chapter 3.4.1. I

also restrict the dataset to the sample of counties that have station reports

during the whole period of observation114 and perform robustness checks on

these samples. Table A.4 demonstrates that the coefficients from the preferred

112See Flemming and Stern (2004) and Stern (2009) for detailed information on the
dispersion calculation and the OI adjustments. Thiruchittampalam et al. (2013) and
Joerss et al. (2013) describe the allocation of emissions. For more information on the data
processing and the properties of the available pollution concentration datasets refer to
Appendix A.1.8 or Chapter 3, which is dedicated to the various datasets.

113In the OI framework, spatial autocovariance models yield weights for station values
that take representativity and proximity into account. Ex-post OI adjustments therefore
yield a smooth raster without singularities, in which background station measurements
take precedence over model computations in the vicinity of stations and in which model
computations take precedence in areas without station measurements (e.g. Stern, 2015).
These are areas that would be afflicted by severe measurement errors when following
conventional interpolation approaches. Aggregating grid values at the county level means
that counties containing a background station display a higher amount of short-term
variation, while values from counties without background stations are more top-down
model driven. Refer to Chapter 3.2.3 and Chapter 3.4.1 for information on coverage and
station density.

114Defined as continuous background station coverage for a given pollutant over the
entire period 2000-2008, since there is a limited sample of station data at my disposal.
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IV specification in Table 1.3 can be replicated very well by the much smaller

samples of counties with background station coverage. This is reassuring as it

implies that the identifying variation in the IV regression comes from actual

measurements and not from the emission fields dominating the grid values in

areas without station coverage.

Table A.4: IV Regression (2SLS) with Area-Weighted Exposures (Counties
with Station coverage)

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -563.3** -420.3*** 139.9

(265.7) (95.03) (198.3)

∆EPA 172.9 151.1** -144.6

(163.4) (64.90) (141.1)

China

∆IPA -691.0*** -512.9*** 114.2

(208.7) (111.4) (220.0)

∆EPA 22.87 114.3 -368.7

(247.6) (209.5) (309.4)

EasternE

∆IPA 168.3 204.4 1028.3

(1096.6) (656.9) (753.9)

∆EPA -378.5 -296.0 -556.5

(535.5) (319.1) (402.6)

Const -2.523 -2.518 -3.337* -4.523*** -4.402*** -5.313*** -5.232** -5.116** -5.600**

(1.670) (1.671) (1.762) (1.052) (1.173) (1.253) (2.302) (2.206) (2.523)

First Stage F-Tests of excluded instruments

∆IPW 169.996 1200.587 100.940 135.829 2995.325 72.675 994.959 178.674 66.027

∆EPW 134.777 32.068 89.107 160.565 75.980 75.672 240.000 119.441 91.138

Controls Standard Set plus Region Dummies

Uncentered R2 0.884 0.881 0.875 0.885 0.884 0.882 0.889 0.890 0.889

F-Statistic 2.481 4.295 2.856 72.29 42.96 45.75 7.583 8.390 7.562

Observations 180 180 180 119 119 119 107 107 107

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.
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A.1.10 Control Sets

A set of labor market control variables has been provided by DFS including the

percentage of workers employed in the manufacturing sector for tradable goods

and the percentage of workers performing routine tasks as well as the fraction

of college graduates, women and foreigners within the manufacturing work

force. These variables have been computed on the basis of IAB raw data at

the firm-level and control for industry characteristics and industry mix within

a given county. The underlying IAB Establishment History Panel (“Betriebs-

Historik-Panel”, BHP) covers the universe of German establishments with at

least one employee subject to social security since 1975 and currently represents

a panel with approximately 2.7 million annual observations constructed on

the basis of mandatory social security notifications to authorities115.

For the regressions in this chapter, I construct a baseline control set

containing the initial unemployment rate, the number of Green votes in the

1998 general election (“Bundestagswahl”) and the percentage of manufacturing

workers. The control set is further augmented by including the regional

dummies suggested by DFS and presented in Chapter 1.4.2 as well as traffic

accidents per 100,000 inhabitants as a proxy for the traffic density and the

nature of traffic across counties. Using changes in traffic characteristics over

the time period under study bears the risk of introducing a control variable

that depends endogenously on trade opportunities and environmental quality.

The additional variables have been obtained from the INKAR database 116,

which provides a rich set of socio-economic variables at various aggregation

levels that has also been employed in Chapter 2.

The database is hosted by the German Federal Institute for Research on

Building, Urban Affairs and Spatial Development (BBSR) and tracks the

115Refer to DFS, Spengler, 2008, and the IAB website (https://fdz.iab.de/en/
FDZ Establishment Data/Establishment History Panel.aspx) for more information. As
the data stems from the German social security system, access is restricted and records are
subject to data protection.

116The database can be accessed via the official website (http://inkar.de/) and is officially
referred to as “Indicators and maps on spatial and urban development in Germany and
Europe” (“INdikatoren und KARten zur Raum- und Stadtentwicklung in Deutschland und
in Europa”, INKAR).
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demographic, economic and social composition of counties and municipalities.

A list of important county level characteristics can be found in Table 1.1 and

and definitions of INKAR variables are available in Table A.5. As the county

area definitions in Germany have changed significantly over the course of

the past two decades, variables pertaining to the current status of county

definitions have to be reassigned to the 2008 sample of 413 counties according

to reference keys provided by the Federal Office for Building and Regional

Planning (BBR)117.

Sources for the INKAR database include statistical records at the Ger-

man federal and state level as well as individual data collections of federal

ministries, the Eurostat Regio database, GfK (“Gesellschaft für Konsum-

forschung”) records, official tax records and the BBSR. The variables used

in this research project are capturing socio-demographic, labor market and

traffic characteristics. The variables providing the best pre-sample controls

are contained in the 1998 wave of county-level parameters, which are unlikely

to have been influenced by the 1998-2008 changes in trade patterns. Other

variables can be used regardless of their reporting year if content has not

changed significantly over the observation period (e.g. distance measures).

117Absolute variables pertaining to new county definitions have been redistributed onto for-
mer county definitions according to the number of registered employees (“sozialvers.pflichtig
Beschäftigte am Arbeitsort am 30.6.2008 in 1000”). Percentage values have been distributed
according to weighted averages based on the numbers of registered employees. Chapter
3.3.1.2 contains more information on this reassignment of variables due to changing territo-
rial definitions in Germany.
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As discussed in Chapter 1.4.4.1 and Chapter 1.6.3, an indicator of initial

dirtiness can be constructed to control for initial county-level heterogeneity.

Including such a variable in regressions captures underlying heterogeneous

trends and allows for the identification of the relative effect of trade intensity

on counties with different initial conditions. I obtain such an indicator by

assigning a normalized score according to the initial pollution level in counties.

The normalized score has been computed for each aerial pollutant Yit by

weighting the smoothed averages in t0 = 1998 with the maximum value over

all counties i:

DirtyYi1998 =
Ȳi1998

maxi(Ȳi1998)
(A.4)
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A.1.11 Shapefiles and Geographical

Information Systems

The shapefiles rendering German counties and their borders have been ob-

tained from the website of the German Federal Agency for Cartography and

Geodetics (“Bundesamt für Kartographie und Geodäsie”, BKG)120. With

respect to point sources, I usually obtain files containing unprojected coor-

dinates but some of the UBA and BKG raster or vector layers are already

provided as projected versions for common Universal Transverse Mercator

(UTM) specifications based on the WGS84 (“World Geodetic System 1984”)

standard. I generate maps using either the standard WGS84 (EPSG:4326)

projection or the ETRS89 / UTM zone 32N [N-E] (EPSG:3044) projection,

as the latter offers an optimized and undistorted image of central Europe.

The shapefiles used in Chapter 1 reflect the status quo of German county

definitions on December 31st, 2008. They contain 413 separate counties

(“Landkreise” and “Kreisfreie Städte”) and 24 of these counties possess

adjacent water bodies with structures or off-shore islands. These shapes have

been merged with the respective mainland areas and have been included in

the computation of perimeters and surface areas. Refer to Chapter 3.3.1.3 for

additional information on the technical preparation steps.

120The most recent definition shapefiles can be downloaded
from the open data section of the “Geodatenzentrum” website
(https://gdz.bkg.bund.de/index.php/default/open-data.html) but historical shape-
files have been obtained from the now defunct archive before January 2020
(http://www.geodatenzentrum.de/auftrag1/archiv/vektor/vg250 ebenen/2008/) and are
now subject to charges.
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A.1.12 Area-Weighted IV Regressions without Con-

trols

Table A.6: IV Regression (2SLS) with Area-Weighted Exposures (No Controls)

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -436.7** -696.1*** 186.6

(220.6) (258.8) (133.6)

∆EPA 86.31 135.9 -89.93**

(114.9) (135.0) (45.76)

China

∆IPA -601.7** -787.5*** 352.2

(301.0) (253.9) (225.9)

∆EPA -89.98 -403.6 -332.0**

(287.1) (677.1) (137.0)

EasternE

∆IPA -495.2 -2150.3 -206.0

(669.2) (1389.8) (428.9)

∆EPA -49.85 597.9 163.2

(260.9) (534.1) (217.0)

Const -2.788*** -2.792*** -2.799*** -2.507*** -2.514*** -2.507*** -3.283*** -3.281*** -3.276***

(0.159) (0.152) (0.180) (0.256) (0.260) (0.246) (0.417) (0.414) (0.417)

First Stage F-Tests of excluded instruments

∆IPW 703.961 157.238 239.180 703.961 157.238 239.180 703.961 157.238 239.180

∆EPW 695.298 113.621 156.089 695.298 113.621 156.089 695.298 113.621 156.089

Controls None

Uncentered R2 0.807 0.807 0.808 0.777 0.775 0.776 0.798 0.798 0.797

F-Statistic 9.876 11.28 6.177 3.536 5.201 4.492 1.828 2.748 0.371

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the difference in smoothed concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.
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A.1.13 Dirtiness Indicator: Area-Weighted IV Regres-

sions

Table A.7: Dirtiness Indicator: IV Regression (2SLS) with Area-Weighted
Exposures

Regression ∆NO2 ∆NO2 ∆NO2 ∆PM10 ∆PM10 ∆PM10 ∆SO2 ∆SO2 ∆SO2

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Pooled

∆IPA -27.24 1020.7 989.6*** -104.7 -715.9*** -1490.1

(303.0) (1040.9) (147.0) (911.5) (262.2) (1064.5)

∆IPA*Dirty 221.3 -1644.0 -1526*** -85.38 2438.7*** 5553.5

(435.0) (1979.0) (187.3) (1440.7) (646.8) (3385.9)

∆EPA -165.8 -858.4 852.3*** 890.3 -468.6*** 555.4

(214.5) (812.4) (137.5) (689.4) (181.0) (609.6)

∆EPA*Dirty 392.9 1484.7 -1251*** -1155.8 1433.1*** -2195.2

(306.5) (1483.6) (195.7) (1064.8) (399.7) (2010.0)

Dirty -7.038*** -7.351*** -7.108*** -10.39*** -10.50*** -10.45*** -10.44*** -9.783*** -10.57***

(1.629) (2.186) (1.841) (0.638) (0.626) (0.605) (2.113) (2.189) (2.053)

Const 0.642 0.787 0.659 2.797*** 2.838*** 2.819*** 0.559 0.406 0.615

(1.024) (1.236) (1.083) (0.410) (0.385) (0.388) (0.681) (0.708) (0.678)

First Stage F-Tests of excluded instruments

∆IPA 1767.323 2437.400 730.638 1358.802 837.093 715.186

∆IPA*Dirty 1042.689 2569.335 858.569 1906.869 267.833 1353.871

∆EPA 1015.517 590.141 175.342 244.703 378.509 441.265

∆EPA*Dirty 593.064 486.627 287.333 592.230 379.162 359.021

Controls Regional Dummies only (dirtiness indicator used instead of controls to capture county heterogeneity)

Uncentered R2 0.859 0.860 0.859 0.918 0.919 0.919 0.961 0.962 0.956

F-Statistic 24.39 4.496 113.2 141.0 2034.1 873.1 28.54 24.17 38.62

Observations 413 413 413 413 413 413 413 413 413

Note: Dependent variable is the smoothed averaged difference in concentration levels between 1998 and 2008.

*/**/*** Significant at the 10%/5%/1% level. Standard errors clustered at the federal state level in parentheses.

First stage regressions yield highly significant coefficients for the relevant instruments and the reported F-Statistics.
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A.2 Appendix - Chapter Two

A.2.1 Data on postal code area sociodemographic char-

acteristics

Sources for the INKAR database include statistical records on the German

federal and state level as well as individual data collections of Federal Min-

istries, the Eurostat Regio database, GfK (Gesellschaft für Konsumforschung)

records, official tax records and the accessibility model of the BBSR (Bun-

desinstitut für Bau-, Stadt- und Raumforschung). The variables in the data

set are described in Table A.8. The INKAR data we use is the 2010 pub-

lication, which contains information about the municipalities at the end of

2008.

The data on postal code characteristics is available at the municipal

level (“Gemeinde”) and for aggregated municipalities (so-called “Gemeinde-

verbände”), but the unit of analysis is a postal code area as mentioned in the

main text. Unfortunately, these two spatial entities do not perfectly overlap.

As a result we used GIS software to match postal code areas to municipalities

based on the spatial overlay of the two entities. For this purpose we combined

a postal code area shape file with a shape file of 11,329 municipalities, both

provided by GfK GeoMarketing GmbH as of 2012. A number of municipal

reforms have led to restructuring of a few hundred municipalities between

2008 and 2012. As a result, we were unable to merge sociodemographic data

to a small number of postal code areas. In total we were able to match 8,194

out of our 8,212 postal code areas to an INKAR unit.

The spatial overlay analysis was done based on urban area in the munici-

palities as the INKAR data mainly refers to sociodemographic data such as

unemployment levels, tax revenues, and the prevalence of types of residential

buildings. Each urban area was identified by the municipality code within

which it lay. The postal code area was then allocated to the municipality with

the largest share of urban area within the postal code area. Almost 300 postal

code areas contained no urban areas. These were matched based on the simple

spatial overlap to the municipality with the largest share of the postal code
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area. Once this allocation was complete based on the 2012 municipalities,

we used information on changing municipalities from the German Statistical

authorities (Destatis) to trace the municipalities that changed back to their

2008 identification number. For the 8,194 postal code areas thus matched to

the INKAR units, 4,618 where allocated to a single municipality and 3,576 to

an aggregate (“Gemeindeverband”).
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A.2.2 Construction of Weighted Emission Scores

In order to create postal code quantiles with respect to the severity of

treatment (relative severity of emitted substances) we add up the individual

emission reports for each postal code weighted by their emission thresholds.

For the E-PRTR data release in 2009 this is done according to the following

formula:

WeightedEmissionScorei(2009) =

Fi∑
fi=1

[
P∑
p=1

Quantityp,fi(2007)

Thresholdp

]
(A.5)

Here, fi = 1, ..., Fi denotes the individual facilities in the respective postal

code while p = 1, ..., P denotes all substances listed in the database with

Quantityp,fi(2007) being the reported quantity of an individual substance by

the respective facility for the year 2007. This emission quantity is weighted

by the reporting threshold defined in the E-PRTR regulations. Overall, this

measure is a good proxy for the severity of emissions recorded for a certain

postal code. As the reporting thresholds are reasonable proxies for toxicity

and are also available to the public as possible guidelines for interpreting

the values in the database, this aggregate measure constitutes a sound basis

for creating treatment quantiles. A few examples of computed Weighted

Emission Scores are presented in Figure A.8 below.
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Figure A.8: Examples for the construction of Weighted Emission Scores
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A.2.3 Logit estimations for propensity score matching
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Table A.9: Logit estimates for matching, part I

Treatment status Western Germany Eastern Germany
No buffer 500 m buffer No buffer 500 m buffer

Unemployment 0.0753 0.0853* -0.0106 0.00257
(0.0416) (0.0353) (0.0408) (0.0385)

Long term unempl. -0.0117 -0.0138* 0.00993 0.00806
(0.00648) (0.00551) (0.0136) (0.0130)

Change in l.t. unempl. 0.000381 0.0000277 0.00124 -0.00195
(0.00207) (0.00176) (0.00723) (0.00694)

New construction -0.0144 -0.0155 -0.0489 -0.0130
(0.0320) (0.0268) (0.0561) (0.0451)

Secondary sector employment 0.0190 0.0225 -0.00373 -0.0111
(0.0216) (0.0180) (0.0165) (0.0156)

Tertiary sector employment -0.00624 0.000278 -0.0167 -0.0198
(0.0222) (0.0185) (0.0169) (0.0161)

Commuters into area 0.00677 0.00910 0.0175 0.0226*
(0.00588) (0.00509) (0.0115) (0.0108)

Commuters out of area -0.0142** -0.00790 -0.0256* -0.0287**
(0.00522) (0.00452) (0.0115) (0.0108)

Total tax revenues 0.000747 0.00121** -0.000142 -0.00000669
(0.000417) (0.000448) (0.000710) (0.000695)

Population density -0.0000113 -0.000137 -0.000624** -0.000303
(0.000136) (0.000113) (0.000222) (0.000184)

Value-added tax revenues 0.00462 0.00249 -0.0101 -0.0126
(0.00270) (0.00241) (0.00706) (0.00676)

Commercial tax revenues -0.000446 -0.000819* 0.000404 0.000189
(0.000372) (0.000368) (0.000736) (0.000718)

Income tax revenues -0.00411*** -0.00335*** 0.00782* 0.00694*
(0.00100) (0.000874) (0.00373) (0.00344)

Distance to highway -0.00497 -0.00761 -0.00827 -0.00734
(0.00558) (0.00485) (0.00766) (0.00727)

Distance to airport -0.00351 -0.00553* -0.00146 -0.00443
(0.00278) (0.00235) (0.00319) (0.00297)

Distance to train station -0.00195 -0.00287 0.00175 -0.000664
(0.00388) (0.00340) (0.00542) (0.00513)

ll -1926 -2526.4 -624.5 -708.5
Observations 6791 6788 1402 1370

Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.
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Table A.10: Logit estimates, part II

Treatment status Western Germany Eastern Germany
No buffer 500 m buffer No buffer 500 m buffer

Distance to large urban center -0.00367 -0.00746* -0.000606 -0.00194
(0.00385) (0.00334) (0.00527) (0.00498)

Distance to medium urban cent. -0.0528*** -0.0588*** -0.0241 -0.0300*
(0.00904) (0.00791) (0.0125) (0.0119)

Distance to European center -0.00571 -0.00268 0.00471 0.00774
(0.00354) (0.00296) (0.00594) (0.00550)

Apartment buildings -0.00465 0.0167 0.00927 -0.00547
(0.0114) (0.00956) (0.0168) (0.0156)

Small apt. -0.0236 -0.0201 -0.0285 -0.00827
(0.0220) (0.0184) (0.0437) (0.0395)

Large apt. -0.0181 -0.00805 -0.00421 -0.00521
(0.0108) (0.00909) (0.0179) (0.0168)

Size of postal code area (m2) 1.29e-08*** 1.17e-08*** 1.10e-08*** 1.06e-08***
(1.30e-09) (1.18e-09) (1.18e-09) (1.17e-09)

Land use agriculture 0.0113*** 0.00983*** 0.0213*** 0.0130***
(0.00257) (0.00216) (0.00441) (0.00389)

Land use water 0.0497*** 0.0445*** 0.0316 0.0102
(0.0106) (0.00937) (0.0169) (0.0160)

Land use natural area -0.00509 0.00137 -0.00119 -0.00379
(0.00400) (0.00315) (0.00769) (0.00597)

Land use industry 0.0530*** 0.0520*** 0.0587*** 0.0395***
(0.00564) (0.00534) (0.0116) (0.00974)

Land use landfills 0.144*** 0.198*** 0.173*** 0.166***
(0.0230) (0.0257) (0.0380) (0.0385)

Constant 0.945 -1.141 -3.009 -2.168
(2.650) (2.207) (2.689) (2.541)

ll -1926 -2526.4 -624.5 -724.9
Observations 6791 6788 1402 1402

Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.
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A.2.4 Development of Housing Prices in Germany
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Figure A.9: Price trends (House Price Index), unmatched sample

A.2.5 Testing the common trend assumption

The common trend assumption is tested by estimating the following regression

setup:

Yit = β0 + β1(1− Postt) · t+ β2Postt · t+ β3(1− Postt) · Treatedi · t

+β4Postt · Treatedi · t+ β5Postt · Treatedi + β6Postt + β7
i + εit

(A.6)

The main coefficient of interest is the one for a possible trend divergence

prior to treatment for the treatment group (β3, “Pre-Trend*Treatment” in

Table A.11). Given the graphical representation of the trends in housing

prices, a linear trend model is the preferable choice for our analysis. A

sharp turn in the development of German housing prices can be seen to

coincide roughly with the publication of the first E-PRTR wave and is not

restricted to either of the groups but a universal feature of housing prices in

Germany, which can be explained by the notion that there has been a surge in

housing prices after the recent financial crisis due to other investment options
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Table A.11: Common trend regressions

Western Germany Eastern Germany
Full sample Matched sample Full sample Matched sample

Pre-Trend -0.138*** -0.094*** -0.075*** -0.196***
(0.005) (0.011) (0.014) (0.024)

Post-Trend 0.612*** 0.599*** 0.525*** 0.386***
(0.007) (0.021) (0.019) (0.037)

Pre-Trend*Treatment 0.037* -0.006 -0.148*** -0.024
(0.013) (0.020) (0.024) (0.031)

Post-Trend*Treatment 0.015 -0.016 -0.188*** -0.036
(0.018) (0.028) (0.037) (0.050)

Post*Treatment 0.249 -0.154 -1.020*** -0.099
(0.129) (0.192) (0.211) (0.292)

Postal code FE Yes Yes Yes Yes
R2 0.317 0.377 0.169 0.114
Observations 6799 1312 1413 595
Treated observations 741 727 377 368
Note. Dependent variable is House Price Index; clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level. Matched sample based on nearest neighbor matching.

becoming less attractive. Most importantly, we observe in Table A.11 that

the common trend assumption holds for both parts of Germany after the

matching procedure has been completed. Any pre-treatment trend differences

that may have prevailed in the unmatched sample between treatment and

control group are eliminated by nearest neighbor matching. It is also worth

noting that in the matched sample there is no significant trend differential

after 2009Q2, which already indicates that the treatment (consisting of at

least one E-PRTR report within a postal-code) may have had little effect on

the trend in housing prices.
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A.2.6 Histograms of propensity scores

0
5

10
15

0 .5 1 0 .5 1

0 1

D
en

si
ty

psmatch2: Propensity Score
Graphs by treat_T0

Histogram of propensity scores − full

Full sample

0
5

0 .5 1 0 .5 1

0 1

D
en

si
ty

psmatch2: Propensity Score
Graphs by treat_T0

Histogram of propensity scores − matched

Matched sample

Figure A.10: Propensity scores, Western Germany, no buffer
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Figure A.11: Propensity scores, Western Germany, 500 m buffer
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Figure A.12: Propensity scores, Eastern Germany, no buffer
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Figure A.13: Propensity scores, Eastern Germany, 500 m buffer
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A.2.7 Histograms of propensity scores (urban areas
only)
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Figure A.14: Histograms of propensity scores, urban areas, Western Germany
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Figure A.15: Histograms of propensity scores, urban areas, Eastern Germany
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A.2.8 Geographical distribution of treatment and con-

trol group (matched sample)

This figure is the corrected version released as erratum on the Springer website

“Erratum to: The Effect of Emission Information on Housing Prices: Quasi-

Experimental Evidence from the European Pollutant Release and Transfer

Register”. It depicts the control and treatment group counties contained in

the matched sample122.

122Quote from the website (https://link.springer.com/article/10.1007%2Fs10640-016-
0100-9): “The authors would like to replace Fig. 13 in the original article with the below
figure. Due to a misspecification in the corresponding shape file the original figure may
have given the impression that the treatment and control groups were not cleanly separated.
Figure 13 clearly demonstrates the spatial distribution and the correct separation of these
groups.”
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Figure A.16: Treatment and control groups with NN matching (Corrected)
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A.2.9 Geographical distribution treatment and control

group (matched sample, urban areas only)

Figure A.17: Map of treated areas and matched controls, urban areas
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A.2.10 Mean characteristics and bias comparison for

treatment and control group (urban areas only)
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Table A.12: Urban areas only: Treatment and control group before and after
matching (A), Western Germany

Unmatched Mean % reduction t-test
Variable Matched Treated Control %bias |bias| t p>|t|
Unemployment Unmatched 5.70 3.92 83.20 20.83 0.00

Matched 5.67 5.68 -0.60 99.20 -0.10 0.92
Unempl. longt. Unmatched 31.96 27.75 33.30 8.08 0.00

Matched 31.83 31.97 -1.10 96.80 -0.17 0.86
∆Unempl. longt. Unmatched -17.90 -26.72 22.50 5.24 0.00

Matched -18.04 -16.56 -3.80 83.30 -0.63 0.53
Construction Unmatched 2.03 2.46 -26.50 -5.65 0.00

Matched 2.04 2.01 1.60 93.90 0.34 0.73
Empl. secondary Unmatched 35.45 39.36 -24.20 -5.52 0.00

Matched 35.36 36.10 -4.60 81.20 -0.79 0.43
Empl. tertiary Unmatched 63.55 58.34 32.10 7.38 0.00

Matched 63.63 62.97 4.10 87.30 0.69 0.49
Commute in Unmatched 59.83 66.25 -54.70 -12.87 0.00

Matched 59.91 59.81 0.90 98.40 0.15 0.89
Commute out Unmatched 52.93 72.77 -96.20 -22.57 0.00

Matched 53.19 52.12 5.20 94.60 0.88 0.38
Tax rev. Unmatched 782.01 672.32 33.10 7.32 0.00

Matched 781.88 769.49 3.70 88.70 0.77 0.44
Pop. density Unmatched 1118.60 498.16 72.30 18.49 0.00

Matched 1104.30 1142.10 -4.40 93.90 -0.66 0.51
VAT rev. Unmatched 51.83 30.69 76.10 18.20 0.00

Matched 51.44 51.66 -0.80 98.90 -0.13 0.89
Corp. tax rev. Unmatched 523.36 334.41 46.40 10.95 0.00

Matched 521.91 509.35 3.10 93.40 0.58 0.56
Income tax rev. Unmatched 362.25 363.82 -1.90 -0.41 0.68

Matched 362.89 362.55 0.40 78.60 0.07 0.94
Dist. Autobahn Unmatched 9.89 14.45 -40.90 -8.80 0.00

Matched 9.97 10.02 -0.40 99.10 -0.08 0.94
Dist. airport Unmatched 43.85 58.06 -53.10 -11.89 0.00

Matched 44.13 43.95 0.70 98.80 0.12 0.90
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Table A.12: Urban areas only: Treatment and control group before and after
matching (A), Western Germany (cont.)

Unmatched Mean % reduction t-test
Variable Matched Treated Control %bias |bias| t p> |t|
Dist. train st. Unmatched 14.83 23.63 -57.20 -13.18 0.00

Matched 15.04 14.80 1.50 97.30 0.27 0.79
Dist. large urb. Unmatched 17.36 27.90 -57.20 .-13 51.0 00.

Matched 17.62 17.76 -0.80 98.70 -0.13 0.90
Dist. medium urb. Unmatched 2.97 10.20 -96.50 .-19 52.0 00.

Matched 3.03 2.77 3.40 96.50 0.80 0.43
Dist. Europe Unmatched 233.51 244.78 -42.60 .-9 96.0 00.

Matched 233.84 233.85 -0.10 99.90 -0.01 0.99
Share multiple family home Unmatched 23.44 12.33 87.20 . 22.11 0.00

Matched 23.22 24.02 -6.30 92.80 -0.97 0.33
Small apt. Unmatched 8.10 6.07 49.50 11.72 0.00

Matched 8.11 8.46 -8.40 83.00 -1.36 0.17
Large apt. Unmatched 41.39 55.08 -94.70 -22.26 0.00

Matched 41.61 40.94 4.70 95.10 0.79 0.43
Postal code size (km2) Unmatched 36.00 37.00 -0.70 -0.17 0.87

Matched 37.00 36.00 1.50 -122.40 0.23 0.82
pct agri Unmatched 40.29 54.25 -54.00 -12.76 0.00

Matched 40.84 39.77 4.20 92.30 0.70 0.49
pct water Unmatched 1.63 1.31 8.70 1.84 0.07

Matched 1.58 1.35 5.90 32.00 1.13 0.26
pct urban Unmatched 25.53 13.25 59.70 14.44 0.00

Matched 25.49 26.71 -5.90 90.10 -0.88 0.38
pct ind Unmatched 8.42 1.98 68.60 21.71 0.00

Matched 7.83 7.03 8.50 87.60 1.27 0.21
pct dep Unmatched 0.81 0.27 30.10 9.00 0.00

Matched 0.81 0.57 13.70 54.60 1.99 0.05
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Table A.13: Urban areas only: Treatment and control group before and after
matching (A), Eastern Germany

Unmatched Mean % reduction t-test
Variable Matched Treated Control %bias |bias| t p>|t|
Unemployment Unmatched 10.70 9.99 25.40 3.51 0.00

Matched 10.67 10.68 -0.60 97.50 -0.07 0.95
Unempl. longt. Unmatched 28.60 27.56 7.70 1.05 0.29

Matched 28.83 29.55 -5.50 29.40 -0.56 0.58
∆Unempl. longt. Unmatched -49.91 -50.59 2.70 0.36 0.72

Matched -49.45 -48.08 -5.40 -99.20 -0.56 0.57
Construction Unmatched 1.26 1.70 -25.20 -2.86 0.00

Matched 1.27 1.25 0.90 96.30 0.15 0.88
Empl. secondary Unmatched 32.35 31.00 8.70 1.16 0.25

Matched 32.36 31.76 3.90 55.50 0.42 0.68
Empl. tertiary Unmatched 62.95 64.43 -8.50 -1.14 0.25

Matched 62.88 63.61 -4.20 50.50 -0.45 0.65
Commute in Unmatched 57.18 56.32 5.00 0.65 0.51

Matched 57.15 58.05 -5.20 -4.40 -0.57 0.57
Commute out Unmatched 58.66 59.99 -5.10 -0.68 0.50

Matched 58.84 58.53 1.20 76.40 0.13 0.90
Tax rev. Unmatched 423.67 414.18 3.50 0.43 0.67

Matched 424.38 404.25 7.50 -112.20 1.16 0.25
Pop. density Unmatched 680.52 847.17 -13.90 -1.80 0.07

Matched 689.64 659.45 2.50 81.90 0.29 0.77
VAT rev. Unmatched 35.17 33.60 9.10 1.27 0.21

Matched 35.09 36.93 -10.70 -17.60 -1.15 0.25
Corp. tax rev. Unmatched 253.71 238.44 5.70 0.70 0.49

Matched 254.77 236.32 6.90 -20.90 1.01 0.32
Income tax rev. Unmatched 158.64 165.89 -14.40 -1.86 0.06

Matched 158.83 158.46 0.70 95.00 0.08 0.93
Dist. Autobahn Unmatched 15.79 16.74 -7.50 -1.00 0.32

Matched 15.71 15.81 -0.70 90.30 -0.08 0.94
Dist. airport Unmatched 68.71 66.93 4.00 0.54 0.59

Matched 68.77 72.52 -8.40 -110.30 -0.90 0.37
Dist. train st. Unmatched 23.46 23.10 1.90 0.26 0.79

Matched 23.20 22.18 5.40 -179.30 0.57 0.57
Dist. large urb. Unmatched 30.47 28.86 6.80 0.93 0.35

Matched 30.22 29.40 3.50 48.70 0.36 0.72
Dist. medium urb. Unmatched 8.13 9.40 -14.30 -1.92 0.06

Matched 8.28 8.05 2.50 82.60 0.27 0.79
Dist. Europe Unmatched 271.49 265.42 17.60 2.28 0.02

Matched 271.57 272.59 -3.00 83.20 -0.34 0.73
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Table A.13: Urban areas only: Treatment and control group before and after
matching (A), Eastern Germany (cont.)

Unmatched Mean % reduction t-test
Variable Matched Treated Control %bias |bias| t p>|t|
Share multiple family home Unmatched 24.26 23.73 3.50 0.47 0.64

Matched 24.28 24.61 -2.20 37.10 -0.23 0.82
Small apt. Unmatched 7.51 7.91 -10.20 -1.33 0.18

Matched 7.52 7.48 1.00 90.20 0.11 0.91
Large apt. Unmatched 33.07 33.42 -3.00 -0.41 0.68

Matched 33.07 32.91 1.40 54.10 0.15 0.88
Postal code size (km2) Unmatched 110.00 70.00 43.00 0.10 6.53 0.00

Matched 110.00 110.00 0.40 99.10 -0.04 0.97
pct agri Unmatched 54.99 46.03 30.10 4.12 0.00

Matched 54.70 57.40 -9.10 69.90 -0.99 0.32
pct water Unmatched 1.71 1.90 -4.50 -0.60 0.55

Matched 1.72 1.36 8.30 -85.30 0.99 0.32
pct urban Unmatched 17.02 22.02 -19.10 -2.44 0.02

Matched 17.29 16.55 2.80 85.10 0.34 0.73
pct ind Unmatched 4.68 3.22 17.90 2.61 0.01

Matched 4.76 4.44 3.90 78.40 0.37 0.71
pct dep Unmatched 0.77 0.47 14.70 2.24 0.03

Matched 0.79 0.51 13.30 9.30 1.42 0.16

A.2.11 Summary of mean comparisons and regression

results
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Table A.14: ATET vs regression coefficients (full and matched sample)

Full sample Full sample
Entire Germany West Germany East Germany

ATET 0.0005 0.217** -0.425*
(0.083) (0.090) (0.169)

Post*Treatment 0.053 0.236** -0.399*
(0.081) (0.091) (0.166)

Obs (T/C) 8212 (1118/7094) 6799 (741/6058) 1413 (377/1036)

Full sample (with 500 m buffers) Full sample (urban areas only)
West Germany East Germany West Germany East Germany

ATET 0.368*** -0.332* 0.287*** -0.397**
(0.078) (0.160) (0.097) (0.185)

Post*Treatment 0.408*** -0.286 0.319** -0.396*
(0.080) (0.154) (0.099) (0.185)

Obs (T/C) 6799 (1127/5672) 1413 (458/955) 6799 (603/6196) 1413 (223/1190)

Nearest neighbour matching (NN) NN (with 500 m buffers)
West Germany East Germany West Germany East Germany

ATET -0.069 -0.063 -0.010 -0.002
(0.136) (0.232) (0.117) (0.224)

Post*Treatment -0.074 -0.084 -0.011 -0.000
(0.138) (0.233) (0.117) (0.228)

Obs (T/C) 1312 (727/585) 595 (368/227) 1917 (1105/812) 710 (447/263)

NN (urban areas only, Match A) NN (urban areas only, Match B)
West Germany East Germany West Germany East Germany

ATET -0.113 -0.290 -0.094 -0.372
(0.154) (0.270) (0.163) (0.310)

Post*Treatment -0.118 -0.285 -0.080 -0.350
(0.156) (0.273) (0.164) (0.307)

Obs (T/C) 1070 (591/479) 400 (219/181) 991 (591/400) 357 (219/138)

Radius matching Mahalanobis matching
West Germany East Germany West Germany East Germany

ATET 0.036 0.125 -0.0017 -0.164
(0.114) (0.211) (0.131) (0.225)

Post*Treatment 0.041 0.121 -0.0018 -0.113
(0.113) (0.213) (0.131) (0.216)

Obs (T/C) 5617 (612/5005) 1140 (317/823) 1342 (727/615) 615 (368/247)
ATET: Treatment effects measured in differences in House Price Index (pre-post) including state fixed effects.

Robust standard errors in parentheses.

Regressions: Dependent variable is the House Price Index. Clustered standard errors in parentheses.

*/**/*** Significant at the 5%/1%/0.1% level.
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A.3 Appendix - Chapter Three

A.3.1 E-PRTR: Industry Classifications

Facility-level emission reports in the register are either identified by the

NACE1.1 code of the main economic activity (EPER) or by the NACE2.0

code (E-PRTR). I use the correspondence tables available from EUROSTAT

to convert all entries to three digit NACE1.1 codes. This is done because

conversions between NACE2.0 and NACE1.1 are unambiguous at the three

digit level and because the research project in Chapter 1 requires merging

information at the NACE1.1 level corresponding to the WZ93 classifications

used in DFS123.

In ambiguous cases, I consider the E-PRTR text entries “MainEconomic

Activity”, “MainSubEconomicActivity” and “FirmName” (in this order) for

manual assignment. For the cases that do not yield a unique NACE1.1 code

and for the frequent misreportings in EPER that provide only a more general

(e.g. two digit) classification, I refer to the description fields in the conversion

tables to manually assign the most fitting code. This results in a uniquely

identified correspondence table after the codes 284 (“Forging, pressing, stamp-

ing and roll forming of metal; powder metallurgy”) and 285 (“Treatment and

coating of metals”) have been assigned to code 287 (“Manufacture of other

fabricated metal products”) and after code 275 (“Casting of metals”) has been

changed to 271 (“Manufacture of basic iron and steel and of ferro-alloys”) in

order to correspond with DFS trade flows.

123For the supplementary analysis presented in Chapter 3.4.2, I limit trade flow data
from COMTRADE to the manufacturing categories WZ93 ∈ [150, ..., 369] \ [231, 232, 233]
in accordance with the research presented in Chapter 1 and combine these with E-PRTR
totals. This requires linking SITC (rev. 3/4) codes to WZ93 categories. EUROSTAT corre-
spondence tables can be obtained from the website (https://ec.europa.eu/eurostat/de/web/
nace-rev2/correspondence tables).
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A.3.2 EPER vs. E-PRTR

While the reporting requirements have changed between the two register ver-

sions, the substances (NOX , SOX , PM10) and the manufacturing industries

evaluated in Chapter 1 and Chapter 3.4.2 have not been subject to changes

in thresholds. These have remained at 100,000kg for NOX , at 150,000kg

for SOX and at 50,000kg per year for PM10 over the course of the sample

period124. Therefore, no limitations exist for the comparison of reported

EPER and E-PRTR values.

Capacity exemptions and the relevant facility definitions have also re-

mained unchanged across the manufacturing sectors under study125. Thus,

EPER and E-PRTR records can be combined within the framework of Chapter

3.4.2 to analyze trends in industry emissions between 2001 and 2008.

124The validity of comparisons over time and register versions for other pollutants has to
be checked by consulting the guidance document European Union (2006a) available online
(http://prtr.ec.europa.eu/docs/en prtr.pdf).

125According to European Union (2006a), changes in capacity thresholds have only
occurred for waste treatment sites, landfills closed before 07/2001 and the incineration
of non-hazardous wastes. Under E-PRTR regulation, certain types of facilities for the
chemical protection of wood, intensive aquaculture and the coloring of ships have been
added to the portfolio of reporting facilities but none of these report emission quantities
for the pollutants under study in Germany during the period of observation.
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A.3.3 Visual Example of Grid Aggregation

Figure A.18 contains the heat map of the underlying 7× 8km2 OI raster with

shading according to deciles in NO2 concentration changes over the period of

observation in Chapter 1 along with the target choropleth map of German

counties shaded according to the county-level deciles.

Pollutant concentrations are inherently normalized as they are densities

measured in µg/m3 which represent absolute quantities normalized by the

height of the air column and the ground area ((µg/m) ·(1/m2)). It can be seen

that colour gradients are usually smooth and that patterns at the grid-level

carry over into the county features of the target layer.

Figure A.18: Choropleth Map: Aggregation via unweighted overlaps
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