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Abstract

We study the role of commitment in a first-price auction environ-

ment. We devise a simple two-stage model in which bidders first submit

an initial offer that the auctioneer can observe and then make a coun-

teroffer. There is no commitment on the auctioneer’s side to accept

an offer as is or even to choose the lowest bidder. We compare this

setting to a standard first-price auction both theoretically and exper-

imentally. While theory suggests that the offers and the auctioneer’s

revenue should be higher in a standard first-price auction compared

to the first-price auction with renegotiation, we cannot confirm these

hypotheses in the experiment.
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1 Introduction

The question whether to commit to clear rules when selecting the winner plays a

large role in most real-life procurement processes. The multi-attribute nature of the

goods or services to be procured makes a binding price-only auction a suboptimal

choice. In this type of auction, the buyer cannot account for factors that she deems

relevant for her awarding decision in the auction itself. From her perspective, a

non-binding negotiation format where she chooses the winner after having seen all

the offers might seem attractive. This non-commitment to rules on how a winner is

chosen allows for flexibility when taking other, non-price attributes, into account.

To support this, Jap (2002) points out that many auctions in procurement are

carried out in a non-binding fashion.

This paper investigates the role of commitment in a concise setting and exam-

ines whether participants react to commitment, or a lack thereof, in a first-price

auction. We compare a standard first-price auction with commitment to a first-

price auction where renegotiation is possible, while varying as little as possible

between the two settings. In our simple two-stage mechanism, bidders first submit

an offer that the auctioneer can observe. In the second stage, the auctioneer then

selects a winner and can make a counteroffer. There is no commitment on the

auctioneer’s side to accept an offer as is or to choose the lowest bidder.1 In theory

and considering that the auctioneer makes a counteroffer, this means that bidders

pool on bids that reveal no information about their costs. This means, in equilib-

rium, bids are uninformative and the auctioneer implements the ex-ante optimal

take-it-or-leave-it offer.

We then take these mechanisms into the laboratory where we benchmark the

theoretical model of step two against a standard first-price auction. Contrary to

theoretical predictions, we observe no significant difference in the offers between the

setting with renegotiation and the standard first-price auction. Also, we find evi-

dence that first-stage offers are correlated to the private information of the bidders

in both settings.

1Even if the auctioneer did commit to choosing the lowest offer, the offers would still
be uninformative.
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There is evidence in the literature that having a binding auction, or an auc-

tion with commitment, is an important factor when designing the procurement

process. The most related study was conducted by Fugger, Katok, and Wambach

(2016). They show that conducting auctions without commitment can lead to non-

competitive prices. In their study, a quality component is introduced that is un-

known to the auctioneer before the auction. The authors then compare two settings

of a dynamic reverse auction: with and without commitment. The auctioneer con-

ducts either a price-only auction, where the lowest bid wins, or a buyer-determined

auction. In the latter, she chooses the winner after having seen all the offers and

qualities. Since bidders do not know their quality ranking, they cannot be sure

that a reduction in price leads to a higher winning probability. Therefore, bidders

lack an incentive to submit competitive offers and collusion on high prices pre-

vails. They show theoretically that these non-competitive offers become profitable

once the auctioneer does not commit to clear rules on how the winner is chosen.

This theoretical finding is then confirmed via a laboratory experiment. Our study

is focussed on keeping the mechanism as simple as possible to isolate the role of

commitment. There exists one type of equilibria in both our settings with clear

predictions, collusion is not profitable. While offers in the standard first-price auc-

tion are competitive, theory predicts that bidders pool on offers that reveal no

information about their type in the first-price auction with renegotiation.

Commitment has been studied mainly in the multi-attribute literature and the

optimal mechanism-design without commitment literature. Che (1993) analyzes

the role of commitment in multi-attribute auctions. If the auctioneer is able to

commit to a scoring rule, then the optimal scoring rule undervalues quality with

respect to the auctioneer’s utility. If not, the only scoring rule she can implement

is given by her utility. In contrast to this paper, their perspective is to derive

optimal buyer behavior in the presence and absence of commitment power. They

also theoretically show the importance and benefits of commitment. We, on the

other hand, focus on bidder behavior in settings with and without commitment.

In the optimal mechanism-design literature Vartiainen (2013) shows that if a

sequentially rational auctioneer cannot commit to the mechanism rules, the only
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mechanism she can implement is a variant of the English auction. Mechanisms in

which offers directly depend on a bidder’s type are generally not possible. The

English auction has the property that the winner of the auction does not reveal

his offer (and type), while in our first-price auction, this is not the case. Also, in

our paper, the auctioneer cannot choose the procurement mechanism and is bound,

depending on the setting, to either a standard first-price auction or a first-price

auction with renegotiation. McAfee and Vincent (1997) assume more structure.

The auctioneer sets a reserve price but cannot commit to not reauction the good

if the reserve-price is not met. They show that in this case, the revenue of the

auction drops to the static auction without reserve price. This is related to our

setting, where in the first-price auction with renegotiation, the buyer can enforce a

reserve-price via take-it-or-leave-it offer if the offers do not meet her expectations.

This is possible because the buyer still wields some commitment power, namely that

reauctioning is not possible. Once the chosen bidder has declined the counteroffer,

no deal is made.

Related to commitment in auctions is Tan (1996). The author studies a pro-

curement setting where a buyer is privately informed about her own demand. If

the buyer is able to commit a reserve price, it is always in her interest to do so.

This means that she reveals her private information. In our setting, the auctioneer

does not possess private information. Also, communication is only possible from

the suppliers to the auctioneer in the form of offers.

The paper is organized as follows. In section 2, we develop the model and

analyze it. In section 3, we describe our experimental setting and present the

results.

2 Model

In this section, we introduce the formal model. We consider an auctioneer and

n bidders that compete for one indivisible good in a two-stage mechanism.2 We

2We write our model as a selling rather than a procurement mechanism, since our
experiment is framed as a selling auction, too. This has the advantage that we have
consistency in notation throughout the paper. This is, of course, without loss of generality.
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assume that both bidders and the auctioneer are risk-neutral profit maximizers.

Bidders’ values for the good are independently and identically distributed ac-

cording to a cumulative distribution function F over the set V = {
¯
v, . . . , v̄},

¯
v ≥ 0

and V ⊂ N0.3 The auctioneer assigns zero value to the good.

In the first stage, bidders send an offer to the auctioneer. Offers are binding,

the auctioneer may acquire the good for any offer that was submitted. The set of

possible offers is given by B = N0.

In the second stage, the two settings we compare differ. In the first-price auction

with renegotiation, there is no commitment on the auctioneer’s side. She observes

the offers and can choose the winner arbitrarily. She then makes a counteroffer to

the chosen bidder or accepts the offer as-is. The bidder can accept or decline the

counteroffer. In the standard first-price auction, the auctioneer observes the offers

and chooses one of them.

Utilities are identical in both settings. For the auctioneer, her utility is given

by the price paid by the winner of the auction if the trade takes place. The utility

of the chosen bidder with value v winning with a price of p is given by

ub(v; p) = v − p. (1)

The bidder that was not chosen has a utility of zero. If no trade takes place, the

utility of everyone is zero.

2.1 Analysis

We show that there exists a continuum of equilibria in the no-commitment setting.

Each equilibrium is characterized by bidders mixing over a subset Uo ⊂ B such

that max{Uo} ≤
¯
v. Note that Uo may contain only one element, po. In that case,

bidders pool on po. For
¯
v = 0, the equilibrium is unique.

Proposition 1. The equilibria are characterized by

1. Bidders: randomize over a subset Uo ⊂ B such that max{Uo} ≤
¯
v in the first

stage

3The exact spacing between types and bids is not important, as long as the spacing in
the bid and type spaces stays constant.
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2. Auctioneer:

i) observes that all offers are ∈ Uo: she chooses a bidder at random and

makes a counteroffer. The counteroffer pco is equal to the ex-ante opti-

mal take-it-or-leave-it offer, pco = arg max
p∈{

¯
v,...,v̄}

(1− F (p))p.

ii) observes one or multiple offers /∈ Uo: she chooses a deviating offer and

makes a counteroffer that is equal to v̄.

We start by showing that the proposed behavior indeed forms an equilibrium.

Bids are binding, so every bidder submitting offers above his value has an incentive

to deviate to a lower offer. This means for any value larger than
¯
v, there is a non-

zero possibility that the bidder cannot make that offer. This means bidders cannot

pool on any value larger than
¯
v and it follows that bidders pool by mixing over a

subset Uo ⊂ B such that max{Uo} ≤
¯
v. Off-equilibrium beliefs of the auctioneer

are given by µ(vi = v̄|oi /∈ Uo) = 1, meaning that if she observes any signal /∈ Uo in

the first stage, she assumes that the bidder is of the highest type. Hence, deviating

always yields a revenue of zero for the bidder, he receives a counteroffer of v̄. The

intuition behind these off-equilibrium beliefs comes from how an auctioneer would

eliminate possible types.

Suppose there are n + 1 types, V = {0, 1, . . . , v̄} and let 0 < pco < v̄. If

the auctioneer observes an offer of 1, this bidder must be of type v ∈ {1, . . . , v̄}.

Bidders of type v = 1 can send offers of 0 or 1. But the smallest counteroffer an

auctioneer could commit to after observing 1 would be 1. This means bidders of

value v = 1 are indifferent and submit only offers of 0. Bidders of type v = 2 can

send offers of 0, 1 or 2. Since bidders of type v = 1 do not send offers of 1, the

smallest counteroffer an auctioneer could commit to after observing 1 or 2, would

be 2. Therefore, the expected profit of a bidder of type v = 2 who submits an offer

of 1 or 2 is 0 and 1
2 max{2− pco, 0} if he submits an offer of 0. It follows that, like

the type-v = 1 bidders, bidders of type v = 2 will only submit offers of 0. This

argument can be chained n times until only the bidder of type v̄ is left. The best

response of the auctioneer facing these uninformative offers is setting the optimal

reserve price, pco = arg max
p∈{

¯
v,...,v̄}

(1− F (p))p.
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We will now show that this is the unique type of equilibrium. Bidders are

assumed to be profit maximizers. This means they will accept any counteroffer

that is larger or equal than their value. Assume the bidders submit offers according

to a separating equilibrium bidding function.4 A separating equilibrium bidding

function implies that the auctioneer can infer the value of each bidder from the

offer. She would then make a counteroffer to the bidder with the highest and

extract full surplus in the second stage equal to his value for the good. The bidder

would then accept this counteroffer and make a profit of zero. This means bidders

would always prefer to imitate a lower type. This rules out the existence of any

separating equilibrium. The same logic can be applied over any subset of V .

It is left to show that there exist no partial pooling equilibria where bidders pool

on multiple offers in V \{
¯
v}. Consider a setting with m pooling offers si ∈ V \{

¯
v}

with i ∈ {1, 2, ...,m}. W.l.o.g., let vi ∈ V be the lowest type that sends si. Let

pi, i ∈ {1, 2, ...,m}, be the respective prices an auctioneer sets after observing that

the highest bid is si. W.l.o.g., let p1 < p2 < · · · < pm. The auctioneer cannot

commit to any pi ≤ vi since she knows that the lowest type sending the signal si

has a value of vi. On the other hand, a bidder having a value of vi will never send

a signal that results in a price p ≥ vi since deviating to a lower signal would earn

him a strictly positive expected payoff. This is a contradiction to the assumption

that vi is the lowest type sending signal si, meaning that no pooling equilibrium

with one or multiple offers in V \{
¯
v} can exist.

In the standard first-price auction, bidders send an offer to the auctioneer in the

first stage. The set of possible offers is the same as before, B = N0. The auctioneer

then observes these offers and has to choose one of the offers. She cannot make a

counteroffer. This setting is equivalent to a first-price auction: A profit maximizing

auctioneer will always select the highest offer. First-price auctions are well-studied

in the literature, see for example Krishna (2009), for the discrete case see Chwe

(1989) and Cai, Wurman, and Gong (2010). The equilibrium bidding function for

a bidder with value v bidding against n− 1 other bidders is approximated well by

the continuous equilibrium bidding function if there are a sufficient number of bid

4This equilibrium bidding function does not need to be monotone.
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steps,

βI(v) =
1

F
(n−1)
1 (v)

∫ v

0

yf
(n−1)
1 (y)dy. (2)

Proposition 2. Bids in the standard first-price auction are higher or equal than

in the first-price auction with renegotiation.

Proposition 3. The standard first-price auction is more efficient than the first-

price auction with renegotiation is not.

From Chwe (1989) and Cai, Wurman, and Gong (2010), we know that for

any type, bids are higher or equal than
¯
v. This is in contrast to the first-price

auction with renegotiation where every submitted offer is smaller or equal to
¯
v,

proving Proposition 2. In the standard first-price auction, the good is always sold

in equilibrium. In the first-price auction with renegotiation, the bidder might reject

the counteroffer, making this format inefficient. This proves Proposition 3.

2.2 Quantal Response Equilibrium

The predictions for the first-price auction with renegotiation are extreme in the

sense that for any deviation from the equilibrium, the auctioneer’s counteroffer

jumps from the optimal take-it-or-leave-it offer to v̄. Bidders are assumed to per-

fectly understand that the auctioneer can infer their type in any separating bidding

strategy and that their bid should not contain any information about their type. In

comparison to the standard first-price auction, where small errors only lead to small

changes in winning probability and expected payment, the first-price auction with

renegotiation leaves no room for errors. Still, in real-life situations, bidders and the

auctioneer might err due to, for example, cognitive limitations. In this section, we

are interested in what happens when we relax the assumption that players’ choices

are always optimal and allow them to make mistakes.

One equilibrium concept choice to account for these type of deviations is the

quantal response equilibrium (QRE) (McKelvey and Palfrey, 1995). In this section

we model both the first-price auction with renegotiation and the standard first-

price auction settings and derive the corresponding response functions. We begin

with the first-price auction with renegotiation. Consider n = 2 bidders. Let T =
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{0, ..., 10} be the set of possible types.5 The action space of the bidders is given by

AB = T = {ti}i∈{0,...,10}. The auctioneer’s action space is given by

AA = {(t0, b1), (t1, b
1), . . . , (t10, b

1), (t0, b
2), . . . , (t10, b

2)} = {aAi }i∈{0,...,21}, (3)

where the first eleven entries denote a counteroffer of ti to bidder one while the

other entries denote the counteroffers to bidder two. Note that both offers and

counteroffers are capped by the highest possible type. In QRE, every action of

every player is chosen with a positive probability depending on the expected utility

of said action and on a precision parameter, λ ∈ [0,∞). We use the logit QRE

concept described in Goeree, Holt, and Palfrey (2016) in chapter 3.3.

Consider bidder 1. Let σBij be the probability that a bidder of type ti submits

an offer of tj . Let σAijk be the probability that, given the bids of bidder one and two,

b1 = ti and b2 = tj , the auctioneer chooses the action aAk . The weighting function

depends on the expected utilities. Then the expected utility of bidder 1 being of

type ti and submitting an offer of tj is given by

UB1 (ti, tj , σ
B , σA) =

10∑
k=0

k∑
l=0

σBkl︸ ︷︷ ︸
bidder 2: b2

21∑
m=0

σAjlm︸ ︷︷ ︸
action.: aAm


ti − tm aAm ∈ (·, b1) & m ≤ i

0 aAm /∈ (·, b1)

0 aAm ∈ (·, b1) & m > i

(4)

=

10∑
k=0

k∑
l=0

σBkl

i∑
m=0

σAjlm(ti − tm) (5)

:= UB1,ij(σ
B , σA). (6)

Analogously, the expected utility of the second bidder being of type ti and submit-

5We consider a reduced version with eleven types of the experiment that has 101 types.
This is due to computational limitations when numerically solving the QRE.
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ting an offer of tj is given by

UB2 (ti, σ
B , σA) =

10∑
k=0

k∑
l=0

σBkl

21∑
m=0

σAjlm


ti − tm aAm ∈ (·, b2) & m ≤ i+ 11

0 aAm /∈ (·, b2)

0 aAm ∈ (·, b2) & m > i+ 11

(7)

=

10∑
k=0

k∑
l=0

σBkl

i+11∑
m=11

σAjlm(ti − tm−11) (8)

:= UB2,ijk(σB , σA). (9)

The expected utility of the auctioneer having received the offers b1 = ti and b2 = tj

and taking action aAk is given by

UAijk(σB , σA) =



10∑
m=0

σBmi


tk m ≥ k

0 m < k

ak ∈ (·, b1)

10∑
m=0

σBmj


tk m+ 11 ≥ k

0 m+ 11 < k

ak ∈ (·, b2)

(10)

=


10∑
m=k

σBmitk ak ∈ (·, b1)

10∑
m=k−11

σBmjtk ak ∈ (·, b2).

(11)

The logit QRE response function to determine the σ’s in the quantal response

equilibrium is generally of the form

σi =
eλU(σi)∑
σj
eλU(σj)

. (12)

In our case, we have the following system of equations,

σBij =
eλU

B
1,ij(σB ,σA)∑i

k=0 e
λUB

1,ik(σB ,σA)
∀ ti, tj ∈ T

σBij =
eλU

B
2,ij(σB ,σA)∑i

k=0 e
λUB

2,ik(σB ,σA)
∀ ti, tj ∈ T

σAijk =
eλU

A
ijk(σB ,σA)∑21

m=0 e
λUA

ijm(σB ,σA)
∀ ti, tj ∈ T and ∀ aAk ∈ AA.

(13)

We make some assumptions on the behavior of both the bidders and the auctioneer.

9



The bidders cannot submit bids strictly higher than their type, so σBij = 0 for all

j > i. The auctioneer takes this into account and forgoes strictly dominated choices

when submitting the counteroffer. Therefore, she does not make counteroffers lower

than the highest of offers she has received. This means σAijk = 0 for all k < max{i, j}

and 11 < k < max{i, j}+ 11. Additionally, we assume that the auctioneer chooses

the highest of the two bidders for the counteroffer, σAijk = 0 for k < 12 if i < j

and σAijk = 0 for k > 11 if i > j. While this assumption increases the pressure on

prices, it does not change the results qualitatively and makes the presentation of

the results easier. This is due to the fact that the probability of an action aAk then

depends only on the highest bid, which yields a probability matrix that is easier to

interpret. The standard first-price auction is modeled analogously, see Appendix

5.2.

In Goeree, Holt, and Palfrey (2016) it is shown that for λ → ∞, the QRE

converges to the unique Bayes-Nash-equilibrium derived in the last section. This

means QRE gives us three predictions for the behavior of bidders and auctioneer:

Proposition 4. For the limit case λ→∞, bids are lower in the first-price auction

with renegotiation than in the standard first-price auction.

As shown in Goeree, Holt, and Palfrey (2016) section 3, the logit QRE converges

to the unique Bayes-Nash-equilibrium derived in the last section. Then the results

derived in that section apply.

Proposition 5. For the limit case λ → 0, bids are identical in the first-price

auction with renegotiation and the standard first-price auction. Bidders are unre-

sponsive to expected payoffs and submit all valid offers with equal probability.

For λ→ 0, the system (13) simplifies to

σBij =
1

i+ 1
∀ ti, tj ∈ T

σBij =
1

i+ 1
∀ ti, tj ∈ T

σAijk =
1

22
∀ ti, tj ∈ T and ∀ aAk ∈ AA.

(14)
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Proposition 6. In contrast to the unique Bayes-Nash-equilibrium derived in the

last section, for any λ > 0, there is correlation between the offers submitted by the

bidders and the counteroffer submitted by the auctioneer.

For λ > 0, bidders submit all offers larger than zero and smaller or equal

than their type with strictly positive probability. The auctioneer then conditions

her counteroffer on the bids she received and forgoes strictly dominated actions,

namely those counteroffers smaller than the highest of offers. This means that

there exists a correlation between the offers and the counteroffer.

We can numerically compute the equilibrium probability weights as described

in Goeree, Holt, and Palfrey (2016) for different λ values. The results can be found

in Figure 1 – Figure 3.

The QRE of the standard first-price auction can be found in Figure 1. As ex-

pected, for the higher λ-value, the offers are less “washed out” around the standard

equilibrium bidding strategy of around v/2.

The QRE of the first-price auction with renegotiation can be found in Figure 2

and Figure 3. For the bidders, one can still see some pressure to pool offers in the

λ = 15 case, while in the more error-prone λ = 3 case, offers start resembling those

of the first-price auction. For the counteroffers, the auctioneer makes use of the

information she gets from the bidders and mixes her response.

In conclusion, we might observe offers in the first-price auction with renegoti-

ation that are closer to the offers in the standard first-price auction than standard

theory would predict.

3 Experiment

In this section, we introduce our experimental design and state our hypotheses for

the experiment.

3.1 Experimental Design

We conducted three different treatments: the standard first-price auction (FPA),

the first-price auction with renegotiation (FPR) and the first-price auction with
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(b) λ = 3

Figure 1: Numerical QRE of the standard first-price auction for two different
values of λ. The rows represent the probability a certain offer is submitted
for each of the types (rows). A darker shade represents a higher probability.
The red line marks the offer with the highest probability for each type.
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(a) λ = 15
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v=0 v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 v=9 v=10

(b) λ = 3

Figure 2: Numerical QRE of the first-price auction with renegotiation for
the bidders for two different values of λ. The rows represent the probability
a certain offer is submitted for each of the types (rows). A darker shade
represents a higher probability. The red line marks the offer with the highest
probability for each type.
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(b) λ = 3

Figure 3: Numerical QRE of the first-price auction with renegotiation for
the auctioneer for two different values of λ. The rows represent the
probability a certain counteroffer is submitted after a certain highest of-
fer (columns) was observed. A darker shade represents a higher probability.
The red line marks the counteroffer with the highest probability for each
highest offer.

renegotiation and feedback (FPRF). In all settings, the valuations of the bidders

are drawn from the set {0, 1, ..., 100} ECU, all valuations are equally likely. In the

FPA treatment, both bidders can submit offers ∈ {0, 1, ..., 100} in a first stage. The

auctioneer than observes these offers and chooses one of them at will. In the FPR

treatment, the auctioneer can additionally make a counteroffer. The counteroffer

is automatically accepted if it is below or equal to the value of the chosen bidders,

and is rejected if it is higher than his value. This is done to reduce noise from an

additional decision of the participants.

The FPRF treatment includes additional feedback for the auctioneer: After

each round finishes, the offers and values of the two bidders are revealed to her.

With standard preferences, this does not have any implications on the equilibrium

bidding strategies derived in 2.1.

3.2 Organization

The experiments were conducted in the Cologne Laboratory for Economic Re-

search (CLER) at the University of Cologne, Germany. Using the recruiting system
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ORSEE (Greiner, 2015), we invited a random sample of the CLER’s subject pool

via email with cash as the only incentive offered. Our participants were mostly

students at the University of Cologne, mostly undergraduates, from a variety of

majors, and they therefore represent the larger university community. The whole

experiment was computerized using the programming environment oTree (Chen,

Schonger, and Wickens, 2016). Upon their arrival at the laboratory, participants

were seated in visually isolated cubicles and read instructions on their screens (see

Appendix 5.1) describing the rules of the game. Following this, they were handed

control questions which they had to answer correctly to proceed.

In total, 138 subjects participated in the experiment, with 36 subjects partici-

pating in the FPA treatment, 48 subjects participating in the FPR treatment and

54 subjects participating in the FPRF treatment.

Payoffs were stated in ECU, the conversation rate used was 1ECU = 0.01 EUR.

Participants were paid out in private after the completion of the experiment. All

138 participants were paid their total net earnings. The average payoff for the

entire experiment was 16.17 EUR corresponding to approx. 18.95 USD at the time

of the payment.

Participants were randomly assigned to one of two rooms where two different

treatments were conducted simultaneously. We randomly assigned one of the two

roles, bidder and auctioneer, to every participant. Participants kept their assigned

role for the whole experiment. Participants were grouped into cohorts of six where

two auctioneers and four bidders were matched randomly in each of the 50 rounds

within a cohort.

3.3 Hypothesis

Our theory predicts that offers in the FPR and FPRF treatments are not correlated

with the value of the respective bidder, they submit offers of zero in equilibrium.

With this, we can state the following hypotheses:

Hypothesis 1. There is no correlation between the value and the offers in the FPR

and FPRF treatments.
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Hypothesis 2. Offers are lower in the FPR and FPRF treatments than in the

FPA treatment.

When we compare offers between the FPR and the FPRF treatment, the differ-

ence in feedback could improve learning in the FPRF treatment. The equilibrium

bidding strategy in this setting requires a certain depth of reasoning, a bidder needs

to understand that any separating bidding strategy leads to full surplus extraction.

The additional feedback allows the auctioneer to see how much money she “left on

the table” in each round. This, in turn, should lead to higher counteroffers which

should lead bidders to adjust their offers downwards. Thus, we expect that the

additional feedback pushes bidders closer to the equilibrium bidding strategy. This

is also related to our QRE results from subsection 2.2: The additional feedback

could lead to less errors, or a higher λ value.

Hypothesis 3. Offers in the FPRF treatment are lower than in the FPR treatment.

Theory predicts that counteroffers of the auctioneer do not depend on the offers

received in the first stage.

Hypothesis 4. There is no correlation between the offer of the chosen bidder and

the counteroffer of the auctioneer in the FPR and FPRF treatments.

The next hypothesis concerns the revenue of the auctioneer. In the FPA treat-

ment, the competition between bidders helps the auctioneer while in the FPR and

FPRF treatments, she can only propose the ex-ante optimal take-it-or-leave-it offer

to one of the bidders. A numerical simulation confirms this intuition. We can also

approximate the revenues with continuous types, since our bid grid is fine enough.

For uniformly distributed values, F = U [0, 100], the bidding strategy simplifies to

βI(v) =
v

2
. (15)

The expected revenue for the first-price auction for the uniform distribution over

the interval [0, 100] is given by

E
[
R
]

=
100

3
. (16)
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The optimal take-it-or-leave-it offer in the same setting is given by 50. Offering

this to one of the bidders at random results in an expected revenue of 100
4 = 25.

Hypothesis 5. The auctioneer’s revenue is strictly higher in the FPA treatment

than in the FPR and FPRF treatments.

If the additional feedback of the FPRF really leads to less errors and with that

to a QRE that is closer to the unique Bayes-Nash equilibrium, than revenue should

be lower in the FPRF treatment.

Hypothesis 6. The auctioneer’s revenue is lower in the FPRF treatment than in

the FPR treatment.

Related to Proposition 3, the FPA should be efficient, while theory predicts

that the FPR and the FPRF are not.

Hypothesis 7. The FPA is more efficient, in the sense that the bidder with the

highest value is more often the winner, than in the FPR and FPRF treatments.

For the FPA treatment, we should observe that bidders bid according to the

equilibrium bidding strategy (15).

Hypothesis 8. Bidders submit offers according to the equilibrium bidding function

of βI(v) = v/2 in the FPA treatment.

3.4 Results

We begin with the hypotheses concerning the bidding strategy of the bidders in FPR

and FPRF treatments and the comparison with the FPA treatment, Hypothesis 1

and Hypothesis 2.

As a reminder, the equilibrium offers are given by zero in these two settings.

However, we observe only four out of 68 bidders who submit an offer of zero when

their value is larger than five and of these, only three do so more than once. Also

as can be seen in table 2, value has a significant influence on the offers in the FPR

and FPRF treatments. Thus, we must reject Hypothesis 1.

In the FPR treatment, the average offer is given by 36.82, while in the FPRF

treatment, it is given by 34.25, see table 1. In the FPA treatment, the average
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Mean Std. Dev. Min Max

FPA

Participants 36 – – –
Values 50.56 29.41 0 100
Offers 34.56 21.46 0 95

FPR

Participants 48 – – –
Values 49.58 28.97 0 100
Offers 36.81 23.19 0 98

Counteroffers 53.08 18.24 1 100

FPRF

Participants 54 – – –
Values 50.52 28.99 0 100
Offers 34.25 21.73 0 99

Counteroffers 53.49 18.66 1 99

Table 1: Summary statistics for the treatments.
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Figure 4: Offers and the corresponding linear regressions in the FPR (left),
the FPRF (right) and the FPA treatment (below).
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offer is given by 34.56. While the treatment dummy for the FPR treatment has a

significant effect on the offers (see Table 3), it is positive, contrary to Hypothesis 2.

We find no significant difference in the offers between the FPRF and the FPA

treatments. Thus, we must reject Hypothesis 2 as well.

Result to Hypothesis 1 Offers are correlated with the respective values

in the FPR and FPRF treatments (p=0.000, linear regression).

Result to Hypothesis 2 There is no significant difference between the

offers in the FPA and the FPRF treatment (linear regression, p = 0.6897).

Offers are significantly higher in the FPR treatment than in the FPA treat-

ment (linear regression, p = 0.097).

However, offers in the FPR are significantly higher than in the FPRF treatment

(students’ t-Test p = 0.06). This can also be seen in Table 3.

Result to Hypothesis 3 Offers in the FPRF treatment are significantly

lower than in the FPR treatment (students’ t-Test p = 0.0587).

The average counteroffer is given by 53.08 in the FPR treatment and 53.49 in

the FPRF treatment, which are both slightly higher than the ex-ante optimal take-

it-or-leave-it offer of 50 in the unique equilibrium. A regression of the counteroffer

on the offer of the chosen bidder suggests a high correlation between the two in both

treatments (see Table 4). Therefore me must reject Hypothesis 4, as predicted by

our analysis of the QRE (Proposition Proposition 6) in the FPR setting.

Result to Hypothesis 4 Counteroffers in the FPR and FPRF treat-

ments are correlated with the offer of the chosen bidder. (linear regression

p=0.000).

The revenues for the auctioneer are very similar in all three treatments (means:

FPA: 46.47 FPR: 47.96 FPRF: 45.37). All three average revenues are higher than

expected from theory but with a prediction of around 33 ECU in the first-price

auction setting and around 25 ECU in the FPR and FPRF treatments (numerical
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simulations), we can conclude that the auctioneers were able to exploit some of the

private information shared by the bidders.

Result to Hypothesis 5 There is no significant difference between the rev-

enues in the FPR and FPRF treatments with respect to the FPA treatment

(students’ t-Test: FPA-FPR: p = 0.6883; FPA-FPRF: p = 0.3652).

The difference between the FPR and the FPRF treatment is indeed significant.

Result to Hypothesis 6 The revenue in the FPRF treatment is signifi-

cantly lower than in the FPR treatment (students’ t-Test: p = 0.0757).

Regarding the efficiency, we observe no significant differences between the treat-

ments.

Result to Hypothesis 7 There is no significant difference concerning the

efficiency between the FPA and the FPR, and the FPA and the FPRF

(students’ t-Test, FPA-FPR: p = 0.6310; FPA-FPRF: p = 0.2929).

Summary statistics for the FPA treatment can be found in table 1. We observe

overbidding in line with the experimental literature, the average offer is given by

34.56, the median offer is 33. From table 2, we must reject Hypothesis 5. The slope

is significantly different from 0.5.

Result to Hypothesis 8 Bidders bid significantly higher than predicted

in the FPA treatment (students’ t-Test p = 0.000).

4 Conclusion

In this paper, we investigate how bidders react to commitment in first-price auctions

in a simple and concise setting. While theory clearly predicts that the offers of the

bidders should be higher in the standard first-price auction than in the first-price

auction with renegotiation, we cannot verify this experimentally. The same holds

true for the revenue of the auctioneer and the efficiency of the mechanisms, however,

we find evidence for neither hypothesis. Offers are informative of the bidders’ type

19



Dependent variable: Offer

Treatment: FPA FPR FPRF

Value 0.66∗∗∗ 0.66∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.66∗∗∗ 0.66∗∗∗

(22.35) (22.33) (31.16) (31.14) (28.78) (28.88)

β0 0.85∗ 1.20 -0.24 0.30 0.88 1.92∗∗

(1.66) (1.16) (-0.44) (0.26) (1.47) (2.00)

Period -0.01 -0.02 -0.04
(-0.36) (-0.56) (-1.46)

Observations 1200 1600 1800

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 2: Panel regression estimates for the offers in the FPR, FPRF and
FPA treatments

in the first-price auction with renegotiation but the auctioneers are not able to lever

this information into profit. This could reduce the pressure to pool of the bidders,

as the quantal response equilibrium analysis insinuates. For real-life procurement,

this would mean that a buyer does not need to focus on the commitment of her

mechanism and can expect competitive offers, even when the rules on how a winner

is selected are not clear. On the other hand, there have been studies that show a

strong reaction to a lack of commitment by laboratory participants. This opens

the door for further research. For example, it would be interesting to understand

how a mechanism can convey commitment in a way that bidders understand and

react to varying amounts of it.
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Offer

Value 0.689∗∗∗

(46.24)

Period -0.0146
(-0.38)

FPR 3.249∗

(1.66)
FPRF 0.751

(0.40)

FPR × Period -0.00612
(-0.11)

FPRF × Period -0.0282
(-0.58)

Constant -0.232
(-0.17)

Observations 4600

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Panel regression estimates for the effect of the treatment variables
on the offers of the bidders

Dependent variable: Counteroffer

FPR FPRF

Offer of chosen bidder 0.798∗∗∗ 0.919∗∗∗

(53.39) (72.56)

Period 0.00582 0.0576∗∗∗

(0.29) (3.58)

Constant 12.75∗∗∗ 9.089∗∗∗

(9.02) (8.45)

Observations 800 900

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Panel regression estimates for the effect of the treatment variables
on the counteroffers of the auctioneers
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5 Appendix

5.1 Instructions

5.1.1 FPA Treatment

Herzlichen Dank für Ihre Teilnahme an diesem Experiment. Während des Experiments ist es Ihnen nicht erlaubt, mit anderen 
Teilnehmern zu kommunizieren, Mobiltelefone zu benutzen, oder andere Programme auf dem Computer zu starten. Sollten Sie gegen
diese Regeln verstoßen, müssen wir Sie leider vom Experiment und all seinen Auszahlungen ausschließen. Im Anschluss an die 
Präsentation erhalten Sie die Anleitung noch einmal in gedruckter Form und müssen Verständnisfragen beantworten. Das eigentliche
Experiment startet erst, wenn alle Teilnehmer alle Verständnisfragen korrekt beantwortet haben. Falls Sie Fragen haben, heben Sie 
bitte die Hand. Ein Experimentleiter wird dann an Ihren Platz kommen, um Ihre Frage leise zu beantworten. 

Herzlich willkommen zum Experiment

Das Experiment besteht aus 50 Runden, die jeweils aus zwei Stufen bestehen und die gleiche Abfolge an Entscheidungen haben.

In diesem Experiment gibt es zwei Rollen. Ein Verkäufer, der ein Gut verkaufen möchte und Interessenten für das Gut. Zu Beginn des Experiments wird 
Ihnen zufällig eine der beiden Rollen zugewiesen. Sie behalten diese Rolle über das gesamte Experiment.

In jeder Runde werden neue Gruppen bestehend aus 2 Interessenten und einem Verkäufer zufällig gebildet. 
In der ersten Stufe gibt jeder Interessent ein Angebot für das Gut ab. 
In der zweiten Stufe beobachtet der Verkäufer die Angebote der Interessenten und wählt eines der Angebote aus.

Ihr Gewinn aus dem Experiment entspricht der Summe Ihrer Gewinne aus allen Runden, dabei entspricht 1 ECU einem Cent.

Übersicht 

Verkäufer

Interessent A Interessent A

Interessent B

Verkäufer

Stufe 2

Interessent BVerkäufer

Stufe 1

ODER

Figure 5: Instructions page 1 and 2 for the FPA treatment
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1. Zu Beginn der ersten Stufe beobachtet jeder Interessent, welchen Wert das Gut für ihn hat, dabei ist jede ganze 
Zahl zwischen 0 ECU und 100 ECU gleich wahrscheinlich. 

2. Die Interessenten geben jeweils ein ganzzahliges Angebot an den Verkäufer ab. Dieses Angebot muss kleiner als 
oder gleich dem Wert des Gutes für den Interessenten sein. 

Stufe 1: Angebotsabgabe der Interessenten

Verkäufer

Interessent A

Interessent B

1. Der Verkäufer beobachtet die beiden Angebote der Interessenten.
2. Der Verkäufer wählt eines der beiden Angebote aus.

Gewinn der Teilnehmer:

• Der Gewinn des ausgewählten Interessenten: Wert – Angebot + 5 ECU.
• Der Gewinn des nicht ausgewählten Interessenten: 5 ECU.
• Der Gewinn des Verkäufers: Angebot.

Stufe 2: Angebotsannahme des Verkäufers

Interessent AVerkäufer Interessent BVerkäufer

ODER

Figure 6: Instructions pages 3 and 4 for the FPA reatment
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5.1.2 FPR Treatment

Herzlichen Dank für Ihre Teilnahme an diesem Experiment. Während des Experiments ist es Ihnen nicht erlaubt, mit anderen 
Teilnehmern zu kommunizieren, Mobiltelefone zu benutzen, oder andere Programme auf dem Computer zu starten. Sollten Sie gegen
diese Regeln verstoßen, müssen wir Sie leider vom Experiment und all seinen Auszahlungen ausschließen. Im Anschluss an die 
Präsentation erhalten Sie die Anleitung noch einmal in gedruckter Form und müssen Verständnisfragen beantworten. Das eigentliche
Experiment startet erst, wenn alle Teilnehmer alle Verständnisfragen korrekt beantwortet haben. Falls Sie Fragen haben, heben Sie 
bitte die Hand. Ein Experimentleiter wird dann an Ihren Platz kommen, um Ihre Frage leise zu beantworten. 

Herzlich willkommen zum Experiment

Das Experiment besteht aus 50 Runden, die jeweils aus zwei Stufen bestehen und die gleiche Abfolge an Entscheidungen haben.

In diesem Experiment gibt es zwei Rollen. Ein Verkäufer, der ein Gut verkaufen möchte und Interessenten für das Gut. Zu Beginn des Experiments wird 
Ihnen zufällig eine der beiden Rollen zugewiesen. Sie behalten diese Rolle über das gesamte Experiment.

In jeder Runde werden neue Gruppen bestehend aus 2 Interessenten und einem Verkäufer zufällig gebildet. 
In der ersten Stufe gibt jeder Interessent ein Angebot für das Gut ab. 
In der zweiten Stufe beobachtet der Verkäufer die Angebote der Interessenten und wählt einen der Interessenten aus, um diesem ein Gegenangebot zu 
machen. 

Ihr Gewinn aus dem Experiment entspricht der Summe Ihrer Gewinne aus allen Runden, dabei entspricht 1 ECU einem Cent.

Übersicht 

Verkäufer

Interessent A Interessent A

Interessent B

Verkäufer

Stufe 2

Interessent BVerkäufer

Stufe 1

ODER

Figure 7: Instructions page 1 and 2 for the FPR treatment
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1. Zu Beginn der ersten Stufe beobachtet jeder Interessent, welchen Wert das Gut für ihn hat, dabei ist jede ganze 
Zahl zwischen 0 ECU und 100 ECU gleich wahrscheinlich. 

2. Die Interessenten geben jeweils ein ganzzahliges Angebot an den Verkäufer ab. Dieses Angebot muss kleiner als 
oder gleich dem Wert des Gutes für den Interessenten sein. 

Stufe 1: Angebotsabgabe der Interessenten

Verkäufer

Interessent A

Interessent B

1. Der Verkäufer beobachtet die beiden Angebote der Interessenten.
2. Der Verkäufer wählt einen der beiden Interessenten aus und macht diesem ein ganzzahliges Gegenangebot.
3. Das Gegenangebot des Verkäufers wird automatisch vom ausgewählten Interessenten akzeptiert, wenn es unter dem Wert des Gutes für den 

Interessenten liegt. Es wird automatisch vom ausgewählten Interessenten abgelehnt, wenn es über dem Wert des Gutes für den Interessenten liegt.

Gewinn der Teilnehmer:

a) Wird das Gegenangebot akzeptiert, ...
... ist der Gewinn des ausgewählten Interessenten: Wert – Gegenangebot + 5 ECU.
... ist der Gewinn des nicht ausgewählten Interessenten: 5 ECU.
... ist der Gewinn des Verkäufers: Gegenangebot.

b) Wird das Gegenangebot abgelehnt, ...
... ist der Gewinn des ausgewählten Interessenten: 5 ECU.
... ist der Gewinn des nicht ausgewählten Interessenten: 5 ECU.
... ist der Gewinn des Verkäufers: 0 ECU.

Stufe 2: Gegenangebot des Verkäufers

Interessent AVerkäufer Interessent BVerkäufer

ODER

Figure 8: Instructions pages 3 and 4 for the FPR treatment

25



5.1.3 FPRF Treatment

Figure 9: Instructions page 1 and 2 for the FPRF treatment
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Figure 10: Instructions pages 3 and 4 for the FPRF treatment
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5.2 Logit QRE for the FPA

The action space of the bidders is given by AB = T = {ti}i∈{0,...,10}. The auction-

eer’s action space is given by AA = {b1, b2} = {aAi }i∈{1,...,2}, either she chooses the

offer of bidder one or the offer of bidder two. The expected utility of bidder 1 being

of type ti and submitting an offer of tj is given by

UB1 (ti, tj , σ
B , σA) =

10∑
k=0

k∑
l=0

σBkl︸ ︷︷ ︸
bidder 2: b2

2∑
m=1

σAjlm︸ ︷︷ ︸
action.: aAm


ti − tj aAm = b1

0 aAm 6= b1
(17)

=

10∑
k=0

k∑
l=0

σBklσ
A
jl1(ti − tj) (18)

:= UB1,ij(σ
B , σA). (19)

Analogously, the expected utility of bidder 2 being of type ti and submitting an

offer of tj is given by

UB2 (ti, tj , σ
B , σA) =

10∑
k=0

k∑
l=0

σBkl

2∑
m=1

σAjlm


ti − tj aAm = b2

0 aAm 6= b2
(20)

=

10∑
k=0

k∑
l=0

σBklσ
A
jl2(ti − tj) (21)

:= UB2,ij(σ
B , σA). (22)

The expected utility of the auctioneer having received the offers b1 = ti and b2 = tj

and taking action aAk is given by

UAijk(σB , σA) =


ti ak = b1

tj ak = b2
(23)
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This yields the following system of equations,

σBij =
eλU

B
1,ij(σB ,σA)∑i

k=0 e
λUB

1,ik(σB ,σA)
∀ ti, tj ∈ T

σBij =
eλU

B
2,ij(σB ,σA)∑i

k=0 e
λUB

2,ik(σB ,σA)
∀ ti, tj ∈ T

σAijk =
eλU

A
ijk(σB ,σA)∑2

m=1 e
λUA

ijm(σB ,σA)
∀ ti, tj ∈ T and ∀ aAk ∈ AA.

(24)
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