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Abstract

In this thesis novel algorithms for the segmentation and classification of video objects are

developed. The segmentation procedure is based on motion and is able to extract moving

objects acquired by either a static or a moving camera. The classification of those objects

is performed by matching their outlines gathered from a number of consecutive frames of

the video with preprocessed views of prototypical objects stored in a database.

This thesis contributes to four areas of image processing and computer vision: motion

analysis, implicit active contour models, motion-based segmentation, and object classi-

fication. In detail, in the field of motion analysis, the tensor-based motion estimation

approach is extended by a non-maximum suppression scheme, which improves the identi-

fication of relevant image structures significantly. In order to analyze videos that contain

large image displacements, a feature-based motion estimation method is developed. In

addition, to include camera operations into the segmentation process, a robust camera

motion estimator based on least trimmed squares regression is presented.

In the area of implicit active contour models, a model that unifies geometric and

geodesic active contours is developed. For this model an efficient numerical implementa-

tion based on a new narrow-band method and a semi-implicit discretization is provided.

Compared to standard algorithms these optimizations reduce the computational com-

plexity significantly. Integrating the results of the motion analysis into the fast active

contour implementation, novel algorithms for motion-based segmentation are developed.

Since both static and mobile cameras are taken into account, motion-based segmentation

is possible even when camera motion is present.

In the field of object classification, a shape-based classification approach is extended

and adapted to image sequence processing. Finally, a system for video object classification

is derived by combining the proposed motion-based segmentation algorithms with the

shape-based classification approach.

For each contribution experimental results are reported that demonstrate the effec-

tiveness of the proposed algorithms.
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Chapter 1

Introduction

Making a computer see was something that leading experts in the field of Arti-

ficial Intelligence thought to be at the level of difficulty of a summer student’s

project back in the sixties.

Olivier Faugeras in 2001 [46]

Despite very optimistic predictions1 in the early days of Artificial Intelligence research,

a computer vision system that interprets image sequences acquired from arbitrary real-

world scenes remains out of reach to this day.

Nevertheless, there has been great progress in the field since then, and a number of

applications have emerged within different areas. Computer vision techniques are used

in the industrial manufacturing process, for instance, to navigate industrial robots or

inspect products during quality control. Security and surveillance applications are based

on machine vision algorithms that analyze biometric properties like faces and fingerprints

or monitor sensitive areas. Gesture recognition and the tracking of facial expressions

help to define new paradigms in human computer interaction. Furthermore, computer

vision-based road and traffic analysis might someday lead to automatic guidance of road

vehicles. Medical image analysis applied to the spatial image sequences acquired by

computer tomography or magnetic resonance imaging can indicate areas of interest and

provides additional information about individual patients. Systems for document analysis

1Compare, for instance, Herbert A. Simon who predicted in 1965 that machines will be capable, within
twenty years, of doing any work that a man can do, or recall a statement from the Dartmouth summer
conference in 1956 (Dartmouth Summer Research Project on Artificial Intelligence): “Every aspect of
learning or any other feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it.”.

1



2 CHAPTER 1. INTRODUCTION

and image/video indexing support user retrieval of relevant information from large media

archives. Computer vision techniques are employed in the entertainment industry in the

production process of movies and in media distribution.

Of particular interest with regard to several applications in the above-mentioned fields

are capabilities for object segmentation and object recognition. Algorithms of the former

category support the segregation of the observed world into semantic entities, providing

a transition from signal processing towards an object-oriented view. Object recognition

approaches support the classification of objects into categories and enable conceptual

representations of still images or video sequences.

The goal of this thesis is to develop a classification system for video objects. By video

object we mean the collection of all two-dimensional appearances (projections) of a real-

world object within an image sequence. A single appearance is called an object view. The

classification results obtained with our system can be used to index and/or categorize

videos and thus support object-based video retrieval.

In order to keep the subject manageable, the algorithms developed throughout the

thesis are embedded into a set of constraints. First of all, since visual motion as perceived

from changing color (or gray-value) patterns in successive frames is a specific property of

video sequences (in contrast to still images), our segmentation algorithms rely on motion

cues. Focusing on motion allows the segmentation of objects regardless of color or texture

and thus captures a wide range of possible object variations. Second, our approach to

video object classification relies solely on an object’s shape and assumes that a collection

of segmented object views is available.

To categorize the components of our approach systematically, let us follow a systems

approach as proposed by Nagel [94]. Figure 1.1 depicts an image sequence evaluation

system structured in layers. Real-world scenes are captured at the lowest layer, the

sensor-actuator level (SAL), for instance, by a video camera. The corresponding signal

stream is analyzed at the image signal level (ISL), which performs local signal processing.

The results from the ISL are fed forward to the picture domain level (PDL) and aggregated

spatio-temporally by non-local approaches. The PDL provides so-called picture domain

cues to the scene domain level (SDL), where scene knowledge, e. g., an illumination model,

is exploited. Results from the SDL will then be converted to conceptual representations

within the conceptual primitives level (CPL). The behavioral representation level (BRL)

aggregates SDL information into an even more abstract representation and might lead to

a text description of the observed scene (natural language level (NLL)). Note that there

are also feedback loops between the different layers.
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Behavioral Representation Level (BRL)

Conceptual Primitives Level (CPL)

Scene Domain Level (SDL)

Picture Domain Level (PDL)

Image Signal Level (ISL)

Sensor-Actuator Level (SAL)

Natural Language Level (NLL)

Figure 1.1: Layered structure of an Image Sequence Evaluation system (from [94]).

Thus, in accordance with the above model, the approach developed throughout this

thesis comprises four levels, namely ISL, PDL, SDL, and CPL. However, we concentrate

on the bottom-up process and do not consider feedback loops included in the model.

First, local operators determine image features and their motion characteristics from the

acquired image sequence. Then, for each frame of the sequence these features are grouped

in order to approximate semantically meaningful objects, or so-called object views. To

allow for both static and moving cameras, a global motion model is assumed and its

parameters are calculated from the motion estimation results. Finally, object views from

consecutive frames are used for video object classification.

1.1 Contributions

This thesis contributes to four areas of computer vision: motion analysis, implicit active

contour models, motion-based segmentation, and object classification.
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Motion Analysis

Two techniques for motion estimation have been developed. In both cases we introduce

optimizations to earlier algorithms which facilitate subsequent object segmentation tasks.

The first technique relies on the three-dimensional structure tensor. In this approach,

motion is calculated from orientation estimates in spatio-temporal neighborhoods. Since

spatial coordinates and the temporal axis are treated equally, tensor-based motion es-

timation turns out to be robust to noise. Our contribution is the development of a

non-maximum suppression scheme for the 3D structure tensor. This scheme enables an

accurate localization of the boundaries of moving objects. Consequently, motion-based

segmentation algorithms that employ the structure tensor with non-maximum suppression

benefit from the additional precision.

Second, since the tensor-based approach is limited to small image displacements, we

develop a feature-based motion estimator. In this approach, image features that can be

reliably tracked are extracted and the corresponding motion field is determined. Here, we

develop specific reliability measures to improve the feature density.

In addition, in order to cope with moving-camera scenarios, we develop a novel al-

gorithm for robust camera motion estimation based on a global motion model. This

approach relies on the motion estimation techniques mentioned above. The model pa-

rameters are calculated from the motion information by least trimmed squares regression

(LTS), a robust regression technique which has not been considered for this task before.

Implicit Active Contour Models

To group image features into regions, we employ implicit active contour models. Their

main advantages are topological adaptivity and numerical stability. However, commonly

used implementations of those models are computationally expensive. Thus, we develop

efficient implementations of the geometric active contour model and the geodesic active

contour model. In particular, we provide a novel narrow-band algorithm that limits the

calculations to a small area around the evolving contour. Additionally, a unified semi-

implicit updating scheme is presented for both models. These implementations reduce

the computational complexity significantly compared to standard algorithms.

Motion-based Segmentation

For motion-based segmentation, novel algorithms are developed by integrating the results

from motion estimation and camera motion estimation into the fast implicit active contour
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algorithms. Since both static and moving cameras are taken into account, motion-based

segmentation is possible even when camera motion is present.

Object Classification

Based on the segmentation results object classification is performed. For this purpose,

a shape-based classification approach is extended and adapted to image sequence pro-

cessing. The object classification is achieved by matching a collection of object views

extracted from consecutive frames with preprocessed views of prototypical objects stored

in a database. By adapting the database appropriately, different problem domains can be

addressed.

1.2 Structure of the Dissertation

This dissertation is structured as follows. Chapter 2 presents our approaches in the field of

motion analysis. Following a discussion of the structure tensor for motion estimation, the

non-maximum suppression extension is developed. The limitations of this approach are

outlined, and as a remedy, feature-based motion estimation is introduced. The chapter

concludes by presenting the robust camera motion estimator.

Chapter 3 introduces active contour models. First, explicit active contour models,

where the evolving contour is modeled by a parametric curve, are summarized and their

limitations are discussed. Second, implicit active contour models that solve several prob-

lems of their explicitly modeled counterparts are presented. Since standard algorithms

for implicit active contours suffers from computational complexity, efficient numerical im-

plementations are developed for this type of model. Then, by integrating the results of

Chapter 2 into the fast contour evolution methods, motion-based segmentation algorithms

are developed.

Chapter 4 presents our system for video object classification. First, an efficient shape-

based representation for video objects is discussed. Afterwards, matching algorithms

for single object views and for entire video objects are provided. Combining the motion-

based segmentation algorithms with the classification approach yields our system for video

object classification.

Chapter 5 concludes this thesis by providing a summary and discussing future work

related to object segmentation and classification.
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Chapter 2

Motion Analysis in Video Sequences

2.1 Introduction

An image sequence from a video is a collection of single frames that have been recorded at

consecutive points in time. Thus, in addition to the spatial information already contained

in still images, techniques for image sequence evaluation [94] also can exploit temporal

information. Motion analysis which relies on changes in the image intensities over time,

is fundamental in this context.

Motion analysis might indicate scene motion resulting from a moving camera. In the

context of object segmentation, motion cues provide regions of interest and enable the

pursuit of those regions over time (object tracking). Furthermore, motion information

facilitates the inference of three-dimensional scene structures (structure-from-motion).

Various applications ranging from video compression to video content analysis rely on

techniques of motion analysis [86, 92, 94].

Image sequence evaluation, and in particular motion analysis, has been under study

for over three decades now. First publications on image sequence analysis date back to

the ’60s, and an early review on techniques for analyzing image sequences was provided

by Nagel in 1978 [91]. Reviews dedicated particularly to motion analysis can be found

in [10, 50, 86].

A widely acknowledged categorization discriminates the different motion analysis tech-

niques into gradient-based, correspondence-based, and frequency-based approaches. Since

our work concentrates on the former two categories, a brief overview of them is given in

the following. With regard to frequency-based methods we refer to [10, 86].

Gradient-based methods estimate motion by calculating spatial and temporal deriva-

tives of image intensities. Let us represent an image sequence as a function f(x, y, t) ∈ IR,

7



8 CHAPTER 2. MOTION ANALYSIS IN VIDEO SEQUENCES

where x, y denote the spatial coordinates and t is time. Under the assumption that local

intensity structures remain constant under motion during short periods, the following

approximation is valid:

f(x, y, t) ≈ f(x+ u(x, y), y + v(x, y), t+ τ). (2.1)

Here, (u(x, y), v(x, y)) denotes the two-dimensional velocity at the position (x, y) and τ

is the time step. Application of Taylor series expansion yields the so-called optical flow

constraint equation

∂xfu+ ∂yfv + ∂tf = 0, (2.2)

where ∂k, k ∈ {x, y, t}, denote the spatial and temporal partial derivatives.1
Obviously, it is not possible to determine both velocity components from a single

linear equation. Instead, additional constraints have to be imposed on the problem [49,

72, 93, 141]. Gradient-based methods demand small displacements because large image

motions might lead to aliasing effects and thus render accurate numerical differentiation

impractical.

Correspondence-based motion analysis techniques can handle displacements of any

size. Motion is calculated in these approaches by identifying corresponding image struc-

tures in consecutive frames. Appropriate image structures include unprocessed image

regions, image blocks of a predefined size, corners, and edges [17]. Those structures can

be matched in consecutive frames in different ways, e. g., by relying on a two-dimensional

search within a window, graph theoretic methods, or relaxation labeling [86].

The following discussion on motion analysis is guided by the segmentation problem

that is one of the main topics of this thesis. Thus, the motion analysis techniques presented

below are particularly optimized to facilitate subsequent motion-based segmentation al-

gorithms. First, we present two motion analysis techniques, namely, tensor-based motion

estimation, which belongs to the class of gradient-based approaches, and feature-based

motion estimation, which relies on the correspondence of image features. By applying

these techniques, moving image areas can be reliably detected. Thus, assuming a static

camera, subsequent object segmentation steps discussed in Chapter 3 are enabled to ex-

tract moving objects from those image areas. However, in the event of a moving camera,

the simple provision of moving image areas to the segmentation algorithm will not be

sufficient. Instead, in order to separate objects from the background, information about

1We employ the usual short notations for partial derivatives, e. g., ∂f
∂x is abbreviated by ∂xf .
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the camera motion must also be available. We develop therefore a robust camera motion

estimator that determines the camera parameters from a given motion vector field.

In the subsequent sections the following novelties are presented:

(1) A gradient-based motion estimation technique, the three-dimensional structure ten-

sor, is equipped with a non-maximum suppression scheme. The use of this scheme

enables a more accurate localization of the boundaries of moving objects. Conse-

quently, subsequent motion-based segmentation approaches benefit from this im-

provement.

(2) On the basis of specific reliability measures, a feature-based motion estimation tech-

nique is developed. The reliability measures increase the feature density significantly

compared to other, widely used schemes. This also improves subsequent segmenta-

tion stages.

(3) A robust camera motion estimator is developed. The camera parameters are deter-

mined from the motion computations by least trimmed squares regression, a robust

regression technique that has not been considered for this task before.

The remainder of this chapter is structured as follows: First of all, Section 2.2 discusses

related work. Section 2.3 introduces tensor-based motion analysis of spatio-temporal

images (two-dimensional) and spatio-temporal volumes (three-dimensional) and provides

our extensions, which enhances the localization of relevant image features significantly. In

Section 2.4, the feature-based motion analysis technique and the corresponding reliability

measures are presented. Section 2.5 discusses our approach to robust estimation of camera

parameters based on least trimmed squares regression.

2.2 Related Work

Let us first discuss related work concerning tensor-based motion estimation. The idea of

a structure tensor for estimating local orientations dates back to [41, 63].

Bigün, Granlund, and Wiklund [14, 15] and Jähne [53] extended the basic principles

of the structure tensor to include spatio-temporal volumes and provided approaches to

motion estimation in image sequences. In addition, they developed reliability measures

that indicate at each image position whether or not motion estimation is possible.

Haußecker and Jähne [47] introduced an extension to the structure tensor approach

for estimating dense motion vector fields. They employed a backprojection technique in

order to calculate motion estimates in regions suffering from the aperture problem.
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However, none of these approaches employ the underlying spatio-temporal structure to

adapt the structure tensor to local image structures. Such an adaptation might improve

accuracy and robustness, and would thus facilitate subsequent segmentation steps.

Nagel and Gehrke [94,95] proposed a spatio-temporally adaptive gray-value local struc-

ture tensor (GLST). In their approach, an initial structure tensor is computed and then

used to adapt subsequent computations to the underlying spatio-temporal structure.

Spies and Scharr [121] developed an anisotropic diffusion process based on the 3D

structure tensor in order to improve the robustness of optical flow computation. They

employed coherence enhancing diffusion [137, 138], a technique that smooths the im-

age/volume along gray-value flow lines. Thus, the calculations are adapted to local gray-

value structures.

Our work differs from the latter two approaches in that we do not employ an iterative

strategy. Instead, the standard structure tensor is calculated within the spatio-temporal

domain. Then, using non-maximum suppression, only those image positions are retained

where our reliability measure indicates local maxima.

Next, we discuss related work concerning feature-based motion estimation. Here,

techniques for feature (or so-called interest point) detection and a correspondence process

for mapping those features from one image to another are developed [86].

A number of interest-point detectors have been proposed that can be categorized

as contour-based, intensity-based, or parametric model-based methods [111]. A popular

feature detection method based on image intensities was developed by Harris and Stephens

[45]. In their approach, the local neighborhood around an image position is captured by

a matrix that averages derivatives of the signal. Interestingly, this is similar to a two-

dimensional variant of the structure tensor as mentioned above.

The correspondence process is based on template matching. For this purpose, the

cross-correlation of templates from different images can be calculated or distance functions

based on similarity can be employed [17, 86].

While we use an approach similar to that proposed in [45], our non-maximum suppres-

sion scheme differs in that it retains considerably more interest points. In our context,

this is a prerequisite for a successful segmentation.

With regard to camera motion estimation, our work is closely related to that of

[46, 130]. In their work, feature-based correspondences are established between consec-

utive frames. Under the assumption of a global motion model, these correspondences

are exploited to calculate the model parameters. Our work differs in that we rely on

correspondences resulting from tensor-based motion estimation or feature-based motion
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estimation. In addition, we employ least trimmed squares regression for robust determi-

nation of the model parameters.

2.3 Tensor-based Motion Estimation

Within consecutive frames stacked on top of each other, a video sequence can be repre-

sented as a three-dimensional volume with two spatial coordinates (x, y) and one tempo-

ral coordinate (t). Then, under the assumption of a non-varying illumination, stationary

parts of a scene will result in lines of equal gray values that run parallel to the time axis

t. Moving parts, however, will produce iso-gray-value lines of different orientations.

Figure 2.1 illustrates this observation by means of the hall-and-monitor sequence. In

this sequence, recorded with a static camera, two persons are walking down a hall. As we

can see from Figure 2.1b, the static parts in the scene like the floor and the walls yield iso-

gray value lines running parallel to the temporal axis. The walking persons, however, cause

gray-value flows in other directions (cf. Figure 2.1c). From this perspective, motion in

image sequences can be estimated by analyzing orientations of local gray-value structures

[15].

x

y

t

Figure 2.1: Spatio-temporal volume created from the hall-and-monitor sequence. (a)
Left: Entire volume, (b) Middle: Cut taken at vertical position y0, (c) Right: Cut
taken at vertical position y1.

A specific property of the tensor-based approach is the inclusion of multiple frames into

the motion estimation process. Calculations are performed in a spatio-temporal volume;

thus, all dimensions are treated equally. In the following two sections, we summarize

the main properties of tensor-based motion estimation [15,53,54]. To illustrate the basic

concepts, we first consider only spatio-temporal images (one spatial coordinate (x) and one

temporal axis). For instance, those images might result from a one-dimensional pattern
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moving over time. Then, we discuss tensor-based motion estimation in spatio-temporal

volumes (two spatial coordinates (x, y) and one temporal axis t) created from consecutive

frames of an image sequence.

2.3.1 Tensor-based Motion Estimation in Spatio-temporal Im-

ages

To simplify matters we start our analysis in the two-dimensional domain, i. e., our coor-

dinate system is restricted to one spatial (x) and one temporal dimension (t). Thus, in

the following a spatio-temporal image is denoted by f(x, t).

Consider a one-dimensional pattern that moves constantly to the right against a static

background, as depicted in Figure 2.2. Hence, with respect to the temporal axis, the

spatio-temporal image f(x, t) consists of sloped iso-gray-value lines in areas of motion

and straight iso-gray-value lines in static regions. For certain image areas (areas A1, A2

in Figure 2.2a) or so-called local neighborhoods, a single vector n can be found, along which

the gray values remain constant. Furthermore, the gray values change only in these areas

in the direction perpendicular to n. A local neighborhood characterized in this way is

called a linear symmetry [14] or simple neighborhood [42]. We denote the axis represented

by the unit vector n (and of course also by −n) as local orientation. To put it differently,

local orientation is given by the direction of constant gray values.2

A1

A2

t t

t0

x xx0

n = (nx, nt)

nx

nt
α

Figure 2.2: Two-dimensional spatio-temporal images. (a) Left: One-dimensional pattern
against a textured background moving constantly to the right, (b) Right: Schematic
diagram of the moving one-dimensional pattern.

Determining motion is closely related to the orientation of local gray-value structures.

2Note that local orientation is often represented by the vector n⊥ (and −n⊥) [54]. However, in the
setting of motion estimation we feel that our definition is more intuitive.
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When estimating motion we are interested in following a certain structure contained in

an image over time. Thus, under the assumption of constant illumination, the direction

to follow is the one with the least gray-value deviation. In a simple neighborhood this

direction is determined by the local orientation. Figure 2.2b illustrates this relationship

by means of a gray one-dimensional pattern moving constantly to the right. The angle α

indicates how fast the one-dimensional pattern is moving. From the vector n = (nx, nt)
T ,

the corresponding one-dimensional velocity v can be determined directly as v = nx/nt.

How can we determine local orientation and thus estimate motion? A straight-

forward approach is to model local orientation by using the spatio-temporal gradient

∇f = (∂xf, ∂tf)
T . Since the local orientation within simple neighborhoods is perpendic-

ular to the gradient, we can determine the unit vector n = (nx, ny)
T from the equations

nT · ∇f(p) = 0 and
(
n2
x + n2

y

)1/2
= 1 (2.3)

where nT ·∇f(p) denotes the scalar product. Consequently, we can formulate a gradient-

based approach to motion estimation in simple neighborhoods as follows:

(1) Calculate the spatio-temporal gradient ∇f = (∂xf, ∂tf)
T at each image position

p = (x, t).

(2) If ∇f �= 0, determine the local orientation n(p) = (nx, nt)
T from the gradient

according to Equation 2.3.

(3) If nt �= 0, then calculate the one-dimensional velocity v(p) = nx/nt.

Figure 2.3 illustrates motion estimation results obtained for a synthetic sequence by

means of the gradient-based method. Figure 2.3a depicts a constantly moving pattern,

while Figure 2.3b shows the motion vectors calculated by means of the gradient-based

approach. Of course, only at the boundaries of the moving object can motion vectors be

calculated. In real-world video sequences however small gray-value changes always occur

due to noise and render our ideal scenario inappropriate. Thus, a simple neighborhood can

no longer be assumed. As depicted in Figure 2.3d, a small amount of additive Gaussian

noise disturbs the motion estimates obtained from gradient directions severely.

Therefore, it is useful to relax our definition of local orientation. Instead of requiring

constant gray values along lines of local orientation, we now state local orientation as the

axis defined by the direction of the least gray-value change. Furthermore, we can add

reliability by determining local orientation not just from a single image position but from

an entire local neighborhood of a certain size.
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Figure 2.3: Gradient-based motion estimation. From left to right: (a) One-
dimensional pattern moving constantly to the right, (b) motion vectors obtained from
motion estimation on (a), (c) one-dimensional moving pattern with additive Gaussian
noise, (d) motion estimation on (c).

Then, under ideal conditions, i. e., a linear symmetric neighborhood without noise,

the local orientation is given as the unit vector n being perpendicular to all gray-value

gradients in a local neighborhood Ω. However, taking local variations into account, we

minimize at each image position p = (x, t)∫
p′∈Ω(p)

w(p− p′)(∇f(p′)T · n)2dx′ dt′, (2.4)

where w denotes a Gaussian weighting function. Since the squared scalar product
(∇fT · n)2

is large for gradients parallel or anti-parallel to the vector n, unfavorable directions are

penalized.

As derived in Appendix A, minimizing Equation 2.4 is equivalent to determining the

eigenvector of the minimum eigenvalue of the structure tensor

J =

[
jxx jxt

jxt jtt

]
, (2.5)

where the matrix elements jkl, k, l ∈ {x, t} are calculated from

jkl(p) =

∫
p′∈Ω(p)

w(p− p′) (∂kf(p′)∂lf(p′)) dx′ dt′. (2.6)

Consequently, we can determine local orientation by solving the eigenvalue problem.

Since the matrix J is symmetric, it possesses orthonormal eigenvectors v1 = (v1x, v1t)
T ,

v2 = (v2x, v2t)
T and real eigenvalues λ1 ≥ λ2 ≥ 0 given as
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λ1,2 =
1

2

(
jxx + jtt ±

√
(jxx − jtt)2 + 4j2xt

)
. (2.7)

By analyzing the two eigenvalues λ1 ≥ λ2 ≥ 0 of the structure tensor, we can classify
the motion of the local neighborhood. In general, an eigenvalue λi greater than zero

indicates that the gray values change in the direction of the corresponding eigenvector vi.

We can discriminate three combinations of eigenvalue magnitudes. Figure 2.4 illustrates

the different cases.

(1)
(1)

(2)

(2)

(3)

(3)

λ1 = λ2 = 0 λ1 > λ2 = 0 λ1, λ2 > 0

Figure 2.4: Moving one-dimensional pattern. The right half of the spatio-temporal image
is distorted by Gaussian noise.

(1) λ1 = λ2 = 0

Both eigenvalues equal to zero indicates an area of constant gray values. It is

not possible to determine a unique local orientation. Therefore, motion cannot be

estimated.

(2) λ1 > 0, λ2 = 0

If λ1 > 0 and λ2 = 0, gray values change only in one direction. Consequently,

the local orientation is given by the eigenvector v2, and we can calculate velocity

v = v2x/v2t.

(3) λ1 > 0, λ2 > 0

If both eigenvalues are greater than zero, gray values change in both directions.

This is the case, for instance, in noisy image areas. Hence, local orientation cannot

be identified uniquely.

In real-world video sequences, it is impractical to compare the eigenvalues to zero since

due to noise in the sequence small gray-value changes always occur. Thus, we introduce

a normalized coherence measure c that quantifies the certainty of the calculations. The

coherence measure c indicates whether or not a reliable calculation of motion is possible.
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It is defined as

c =

{
0 λ1 = λ2,

exp
(

−C
|λ1−λ2|

)
else

(2.8)

where C > 0 denotes a contrast parameter. Figure 2.5 depicts the coherence measure for

different contrast parameters. Areas with |λ1 − λ2| � C are regarded as almost constant

local neighborhoods [138]. A value of the coherence measure c near 1.0 indicates that

λ1 
 λ2, therefore motion can be estimated reliably. The coherence measure approaches

zero if the eigenvalues are equal or do not differ significantly.

0
0

1

50 100|λ1 − λ2|

c

C = 5
C = 10
C = 20
C = 35

Figure 2.5: Coherence measure c for different contrast parameters.

Thus, by using the structure tensor in combination with Equation 2.8, we can refine

our simple motion estimation approach as follows:

(1) Calculate the structure tensor J at each position (x, t).

(2) Calculate the coherence c from the eigenvalues of J (Equation 2.8).

(3) For (c > 1 − ε) calculate the velocity from the eigenvector corresponding to the

lesser eigenvalue as v = v2x/v2t.

Figure 2.6 shows the result of this technique when applied to the noisy spatial-temporal

image where the simple gradient-based approach failed. As expected, motion estimation

is not possible in the object’s interior or in the background. However, at the border of

the object the coherence measure indicates that motion can be calculated reliably.
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Figure 2.6: Tensor-based motion estimation in two dimensions. (a) Left: One-
dimensional moving pattern, (b) Right: Motion estimation on (a) with σ = 1, C = 2.

We should note that motion estimates are not only obtained at the object’s bound-

ary but also nearby. The reason is that the approach works on local neighborhoods.

Consequently, the boundary of the moving object cannot be determined precisely from

motion information. As a remedy, we will present a novel scheme to improve localization

in Section 2.3.3.

2.3.2 Tensor-based Motion Estimation in Spatio-temporal Vol-

umes

The estimation of local orientation in three-dimensional spatio-temporal volumes resem-

bles the procedure described in the preceding section. Again, the eigenvector correspond-

ing to the lowest eigenvalue of the structure tensor provides the local orientation. However,

we have to adapt the problem definition to three dimensions. For the sake of clarity, we

employ the same notation as in the two-dimensional case and simply add the second

spatial dimension denoted by y. Then, at each image position p = (x, y, t) the functional∫
p′∈Ω(p)

w(p− p′)(∇3f(p
′)T · n)2dx′ dy′ dt′ (2.9)

is minimized, where ∇3 := (∂xf, ∂yf, ∂tf)
T denotes the spatio-temporal gradient. From

this minimization, the vector n = (nx, ny, nt) is determined that represents the local

orientation. Ideally, n is perpendicular to all gradients in the local neighborhood Ω.

Similar to Appendix A, we derive the 3× 3 structure tensor

J =


 jxx jxy jxt

jxy jyy jyt

jxt jyt jtt


 . (2.10)
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The tensor components jkl, k, l ∈ {x, y, t} are given as

jkl(p
′) =

∫
p′∈Ω(p)

w(p− p′)∂kf(p′)∂lf(p′)dx′ dy′ dt′. (2.11)

Solving the eigenvalue problem for the 3 × 3 structure tensor is not as simple as
it was in the two-dimensional case. However, it is a standard problem in numerical

mathematics, and efficient techniques can be found in [39, 103]. With respect to the

eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0, we can distinguish four cases (cf. Figure 2.7).

x

y

t

(1)

(2)

(3)

(4)

Figure 2.7: Moving two-dimensional pattern. The right half of the volume is distorted by
Gaussian noise.

(1) λ1 = λ2 = λ3 = 0

If all three eigenvalues are equal to zero, the local neighborhood consists of a constant

gray value (see Figure 2.7, case (1)). Thus, local orientation cannot be determined,

nor is it possible to estimate motion.

(2) λ1 > 0, λ2 = λ3 = 0

In this case, the gray values change only in one direction. This occurs if a linearly

symmetrical spatial pattern moves. Consider, for instance, the edge of a moving

black square against a white background (see Figure 2.7, case (2)). Consequently,

due to the aperture problem (see, e. g., [10]), we can calculate only normal velocity,
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i. e., the velocity vector perpendicular to the edge [15, 54]:

v = − v1t
v21x + v21y

[
v1x

v1y

]
. (2.12)

In addition, this eigenvalue combination may result from a motion discontinuity,

i. e., if the gray values are constant with respect to the spatial coordinates but

change in the temporal dimension. However, we can detect this case due to the fact

that the spatial components of eigenvector v1 are zero.

(3) λ1 > 0, λ2 > 0, λ3 = 0

Here, we are able to identify the local orientation uniquely. This configuration

appears in the case of a moving textured region. Consider, for example, the corner

of a moving black square against a white background (see Figure 2.7, case (3)).

Since gray values remain constant along the direction of the eigenvector v3, we can

calculate the full velocity, i. e., both components of the motion vector v, as

v =
1

v3t

[
v3x

v3y

]
. (2.13)

Note that the same eigenvalue magnitudes may result from a motion discontinuity,

i. e., the gray values change in one spatial dimension and in the temporal dimension.

In this case, the eigenvalue v3 is parallel to the spatial plane, thus, the temporal

component v3t is zero.

(4) λ1 > 0, λ2 > 0, λ3 > 0

All three eigenvalues greater than zero indicate a noisy spatio-temporal area (see

Figure 2.7, case (4)) or a motion discontinuity. In any case, there is insufficient

evidence to estimate motion.

Again, coherence measures are required that express the reliability of the calculations.

In contrast to the two-dimensional case, two different coherence measures are needed here:

one to indicate whether or not motion estimation is possible, and the other to distinguish

between full and normal motion estimation. The coherence measure ct indicates whether

or not motion calculation is possible and is defined as

ct =

{
0 λ1 = λ3,

exp
(

−C
|λ1−λ3|

)
else

. (2.14)
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A value of ct near 1.0 indicates that λ1 
 λ3, therefore a reliable calculation of

motion can be performed. To discriminate between full and normal motion estimation

the coherence measure cs is defined as

cs =

{
0 λ2 = λ3,

exp
(

−C
|λ2−λ3|

)
else

. (2.15)

Here, values near 1.0 allow the calculation of both motion components. Otherwise,

only normal velocities can be specified. Based on these coherence measures, a tensor-based

motion estimation approach in spatio-temporal volumes can be specified as follows:

(1) Calculate the structure tensor J at each position p = (x, y, t).

(2) Calculate the coherence measures ct and cs from the eigenvalues of J (Equations

2.14 and 2.15).

(3) Calculate for (ct > 1−ε)∧(cs > 1−ε) the velocity from the eigenvector corresponding

to the smaller eigenvalue. Determine for (ct > 1− ε) ∧ (cs ≤ 1− ε) normal motion.

In all other cases, motion cannot be estimated.

We conclude this section by applying tensor-based motion estimation to a synthetic

image sequence that contains a square moving constantly from bottom right to top left.

Figure 2.8a displays one frame of this sequence. In order to clarify the square’s motion,

several frames from different points in time have been superimposed. Figure 2.8b shows

the motion vectors obtained from the tensor-based motion approach.

Figure 2.8: Tensor-based motion estimation in three dimensions. (a) Left: Constantly
moving square at different points in time, (b) Middle: Motion estimation on (a) with
σ = 1, C = 2, (c) Right: Enlarged top left part of (b).

We observe that motion cannot be estimated inside the object or within the back-

ground. This is due to the fact that the local neighborhoods in these areas are uniform.

As stated earlier, in this case all three eigenvalues are zero, thus, the coherence measure
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ct is below (1 − ε). As expected, full motion can only be calculated near the corners of

the moving square (cf. Figure 2.8c). Here, gray values remain constant only in one direc-

tion. Thus, λ1 > 0, λ2 > 0, and both coherence measures indicate sufficient information.

Finally, near the edges of the square, normal motion, i. e., the motion of the object in the

direction of the spatial gradient, can be estimated. The gray values in these areas remain

constant in two directions. Therefore, the coherence measure ct is close to one and cs is

below (1− ε).

Similar to the two-dimensional case, we observe here that motion boundaries do not

coincide with the real boundaries of the object. Of course, this is also due to the com-

putations performed on local neighborhoods. Within the following section, this problem

will be addressed by a non-maximum suppression scheme.

2.3.3 Non-maximum Suppression for Tensor-based Motion Es-

timation

In the preceding sections, we introduced the structure tensor as an adequate means of

reliable motion estimation. By calculating the tensor components within a given spatio-

temporal neighborhood, the approach becomes robust to noise. However, we have ob-

served a shortcoming of the approach that will be discussed subsequently.

Tensor-based motion estimation entails a trade-off between robustness and localiza-

tion. Correct estimation of local orientation under the influence of noise is achieved by

averaging the calculations within a local neighborhood Ω. Increasing the size of the neigh-

borhood enlarges the area that is averaged, and thus adds reliability to the estimates. As

previously said, this is usually achieved by means of a Gaussian weighting function.

However, the smoothing process extends the support of local gray value structures.

Consequently, both at and near the original boundary of a moving object unique local

orientations are identified and contribute to motion estimation. Figure 2.9 exemplifies this

relationship for the two-dimensional case. Figure 2.9a displays local orientations for a one-

dimensional moving pattern. For illustrative purposes, the moving object’s boundary has

been superimposed on the orientation vectors. We observe that motion estimation is

possible in a certain neighborhood around the boundary; thus, motion boundaries do not

coincide with the true object boundaries.

Let us consider the coherence measure c for the given example. Recall that c(p)

indicates whether or not reliable estimation of motion is possible at the image position

p. Figure 2.9b displays the corresponding surface of coherence values calculated for the

entire image domain. We observe that local maxima exist at the exact position of the
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c

x
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c

x

Figure 2.9: Coherence value surface. (a) Left: Spatial boundaries of a one-dimensional
moving object superimposed on tensor-based orientation estimations, (b) Middle: Sur-
face of coherence values, (c) Right: Cross section of the coherence surface in the direction
of the greatest gray-value change.

moving object’s boundary. In particular, starting from a position on the boundary, the

coherence values decrease along the axis defined by the vector v1. Recall that v1 points

in the direction of the maximal gray value change. Figure 2.9c depicts a cross-section of

the coherence surface along the axis defined by the vector v1. The local maxima can be

clearly identified.

The local maxima of the coherence measure result from the fact that the greatest

gray-value change occurs at the boundary. Thus, the eigenvalue λ1, which measures the

amount of gray-value changes in the direction of v1, reaches its maximum at this position.

In addition, since the gray values do not change in the direction perpendicular to v1,

the eigenvalue λ2 is zero. Therefore, the coherence measure c reaches a local maximum

precisely at the boundary of the moving object. Note, however, that this observation

only holds true under the assumption of a simple neighborhood and a Gaussian window

function.

Thus, by developing a scheme to suppress coherence values that are not local maxima

(non-maximum suppression), we can determine the boundaries of moving objects more

precisely. A suppression scheme proposed by Harris and Stephens [45] in the context of

corner and edge detection in still images nominates a corner region pixel as a corner pixel

if it contains an 8-way local maximum. I. e., a value is not suppressed if it is a local

maximum with respect to a given neighborhood. An edge region pixel is retained as an

edge pixel if the corresponding response is a local minimum in either the x or y directions.

A different non-maximum suppression proposed by Canny [20] for edge detection in

still images marks edges at local maxima in gradient magnitude of a Gaussian-smoothed
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image. This is achieved by determining the edge direction from the gradient and sup-

pressing non-maximum gradient magnitudes in that direction.

In replacing the gradient by eigenvector v1 of the structure tensor and by suppressing

non-maxima of the coherence measure c in that direction, Canny’s technique can be

readily adapted to our setting. In the following, we outline non-maximum suppression

in two-dimensional spatio-temporal images. Subsequently, we extend the approach to

encompass three dimensions.

2.3.3.1 Non-maximum Suppression in Spatio-temporal Images

In the following, a two-dimensional spatio-temporal image f(x, t) is represented as a

uniform mesh of spacing h = 1 that divides the image domain into grid nodes (i, j).

The decision as to whether or not a pixel p is a local maximum is made within a 3 × 3
neighborhood (cf. Figure 2.10). Without loss of generality, we translate the position of

p to the origin of the coordinate system. Thus, the eight neighboring pixels are located

within [−1, 1]× [−1, 1].

x

t

v1

−v1

r

p = (0, 0)

q
local orientation

(−1, 1) (0, 1) (1, 1)

(−1, 0) (1, 0)

(−1,−1) (0,−1) (1,−1)

Figure 2.10: Non-maximum suppression in two-dimensional spatio-temporal images (cf.
[19]).

As depicted in Figure 2.10, to perform non-maximum suppression parallel to the di-

rection of the eigenvector v1 = (v1x, v1y)
T the values of three image positions are required:

the center point p of the 3× 3 neighborhood itself and the neighboring points r = (rx, rt)
and q = (qx, qt) displaced from p by v1 and −v1, respectively. To determine the image

positions r and q, one has to calculate the position at which the axis defined by v1 inter-
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cepts the two surrounding parallel grid lines. From the vector components (v1x, v1t), one

can easily determine which grid lines have to be considered: |v1t| > |v1x| indicates that
the axis given as v1 intersects the grid lines at t = ±1, whereas |v1x| > |v1t| leads to the
grid lines given as x = ±1.
More formally, let us represent the grid lines as two straight line equations

g1(s) = es + o

g′1(s) = es− o, s ∈ IR, (2.16)

where the unit vectors e = (ex, et)
T and o = (ox, ot)

T chosen from {(1, 0)T , (0, 1)T} with
e �= o denote direction and offset. For instance, in our example the grid lines at t = −1
and t = 1 are obtained from g1 and g′1 by setting e = (1, 0)T and o = (0, 1)T . In addition,

we denote the axis given as the eigenvector v1 = (v1x, v1t)
T as

g2(t) = v1t, t ∈ IR. (2.17)

Then, the point r is determined from the intersection of g1 and g2. Accordingly, q is

given as the interception point of g′1 and g2. Thus, denoting the determinant of a matrix

as |·|, r and q can be calculated as follows:

r =

�
�
�
�
�
�
�

ox ex

ot et

�
�
�
�
�
�
�

�
�
�
�
�
�
�

v1x ex

v1t et

�
�
�
�
�
�
�

· v1, q =

�
�
�
�
�
�
�

ox ex

ot et

�
�
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�
�
�
�

�
�
�
�
�
�
�

v1x ex

v1t et

�
�
�
�
�
�
�

· (−v1). (2.18)

For example, in Figure 2.10 the interception points are determined from e = (1, 0)T

and o = (0, 1)T as r = (v1x/v1t, 1) and q = −r.

Since only at the grid points are coherence values available, it is necessary to interpolate

whenever the direction of v1 is different from horizontal and vertical. By using linear

interpolation the coherence values at points r and q are approximated as

c(r) ≈ (1−min(|rx|, |rt|)) · c(�r�) + min(|rx|, |rt|) · c(�r�)
c(q) ≈ (1−min(|qx|, |qt|)) · c(�q�) + min(|qx|, |qt|) · c(�q�), (2.19)

where �r� denotes that the components of the vector r are truncated to the nearest integer
not larger in absolute value. Similarly, �r� denotes that the components of the vector r
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are rounded to the nearest integer not smaller in absolute value. In our example, the

coherence values c(r) and c(q) are computed from:

c(r) ≈
(
1− v1x

v1t

)
c(0, 1) +

v1x
v1t

c(1, 1)

c(q) ≈
(
1− v1x

v1t

)
c(0,−1) + v1x

v1t
c(−1,−1). (2.20)

Finally, the value at point p is retained only if it is a local maximum (c(p) > c(r) and

c(p) > c(q)), otherwise it is set to zero.3

Figure 2.11 displays the result obtained by tensor-based motion estimation combined

with this suppression scheme. In contrast to the tensor-based approach without non-

maximum suppression, the boundary of the moving object can be determined precisely.

Figure 2.11: Tensor-based motion estimation in two dimensions with non-maximum sup-
pression. (a) Left: One-dimensional moving pattern, (b) Middle: Motion estimation
on (a) with σ = 1, C = 2, (c) Right: Motion estimation on (a) with σ = 1, C = 2 and
non-maximum suppression.

2.3.3.2 Non-maximum Suppression in Spatio-temporal Volumes

Let us now turn to non-maximum suppression in spatio-temporal volumes. For this pur-

pose, the volume is represented as a 3D discrete grid. For the sake of clarity, we use the

same notation as in the two-dimensional case and simply add a third vector component.

Again, the suppression axis is given as the eigenvector v1 of the structure tensor. As

depicted in Figure 2.12, the suppression is carried out within a 3× 3× 3 neighborhood.
In analogy to the two-dimensional case, the coherence values are required at three

volume positions p = (0, 0, 0), r = (rx, ry, rt) and q = (qx, qy, qt). Note that to simplify

the notation, p is translated to the origin of the coordinate system. In order to determine p

3Note that in an implementation with respect to discrete images, one should employ (c(p) ≥ c(r) and
c(p) > c(q)) or (c(p) > c(r) and c(p) ≥ c(q)).
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Figure 2.12: Non-maximum suppression in three-dimensional spatio-temporal volumes.

and q, one has to calculate the points at which the straight line given by v1 intercepts with

two grid planes. The appropriate grid planes can be chosen according to the magnitudes

of the vector components v1x, v1y, v1t.

Let g2(t) = v1t, t ∈ IR, denote the axis given as v1 = (v1x, v1y, v1t)
T which represents

the direction of the maximum gray-value change. Additionally, two parallel grid planes

are represented by the plane equations

g1(p, s) = e1p+ e2s+ o

g′1(p, s) = e1p+ e2s− o, p, s ∈ IR, (2.21)

where the unit vectors e1 = (e1x, e1y, e1t)
T , e2 = (e2x, e2y, e2t)

T and o = (ox, oy, ot)
T are

chosen from {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T} with e1 �= e2, o �= e1, and o �= e2.

Considering the example displayed in Figure 2.12, the grid planes at t = −1 and t = 1

are obtained by setting e1 = (1, 0, 0)
T , e2 = (0, 1, 0)

T and o = (0, 0, 1)T . In general, r and

q are obtained from the points at which g2 intercepts with the two grid planes and can
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be calculated as follows:
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Returning to our example, r and q are determined from e1 = (1, 0, 0)
T , e2 = (0, 1, 0)

T ,

and o = (0, 0, 1)T , as r = (v1x/v1t, v1y/v1t, 1) and q = −r.

In order to calculate the coherence values for volume positions not located on the

discrete grid, interpolation is required. Let us again consider the example displayed

in Figure 2.12. Here, the coherence value at position r may be computed by bilinear

interpolation from the four surrounding values at the positions

x0 = (�rx�, �ry�, 1) = (0, 0, 1)
x1 = (�rx�, �ry�, 1) = (1, 0, 1)
x2 = (�rx�, �ry�, 1) = (0, 1, 1)
x3 = (�rx�, �ry�, 1) = (1, 1, 1) (2.23)

as follows:

c(r) ≈ (1− |ry|)(1− |rx|)c(x0) + (1− |ry|)|rx|c(x1)

+ |ry|(1− |rx|)c(x2) + |ry||rx|c(x3). (2.24)

The coherence value for q can be determined accordingly. To approximate coherence

values located on different grid planes, one has only to adapt Equation 2.24 appropriately.

Figure 2.13 illustrates the efficiency of the non-maximum suppression scheme for

spatio-temporal volumes. As depicted, the motion boundaries resulting from the en-

hanced tensor-based motion estimation approximate the real boundaries of the square

fairly accurately.

2.3.4 Experimental Results

To illustrate the main ideas and properties of tensor-based motion estimation, we have

concentrated so far on simple synthetic objects. In this section, the different approaches
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Figure 2.13: Tensor-based motion estimation in three dimensions with non-maximum
suppression. From left to right: (a) Constantly moving square at different points in
time, (b) motion estimation on (a) with σ = 1, C = 2, (c) motion estimation on (a) with
σ = 1, C = 2 with non-maximum suppression, (d) enlarged top left part of (c).

are investigated in more detail. First of all, however, we briefly discuss some imple-

mentation issues. Recall that a tensor component jkl, k, l ∈ {x, y, t}, is calculated on a
continuous domain as follows

jkl(p
′) =

∫
p′∈Ω(p)

w(p− p′)∂kf(p′)∂lf(p′)dx′ dy′ dt′. (2.25)

In the context of discrete digital images, the integration and the partial derivatives

have to be approximated appropriately. The integration is discretized by a convolution

in which the weights are calculated from the Gaussian weighting function w. The partial

derivatives are approximated by discrete operators. Here, we employ first-order discretiza-

tions optimized with respect to rotation invariance as proposed in [109, 121].

We proceed by presenting some quantitative results calculated with the proposed algo-

rithms. For this purpose, our implementations were applied to a common set of synthetic

image sequences, namely, the translating tree sequence and the diverging tree sequence [9].

Note that the exact motion fields for those sequences are known and thus can be com-

pared to the results of a motion estimation. Both sequences simulate camera motion

with respect to a textured surface (cf. Figure 2.14). The camera in the translating tree

sequence moves to the left at speeds between 1.73 and 2.26 pixels/frame. Consequently,

all motion vectors are parallel to the horizontal image axis. The camera in the diverging

tree sequence zooms into the scenery, where the focus of expansion is located at the image

center. Here, the velocities vary from 1.29 pixels/frame on the left to 1.86 pixels/frame

on the right.

For the sake of comparison, we employ the widely used angular error measure [9]. Here,

velocity is viewed as orientation in space-time. Let v = (vx, vy) and w = (wx, wy) denote

the correct motion vector and the estimated motion vector. Those vectors are represented
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Figure 2.14: Synthetic tree sequences. From left to right: (a) Surface texture, (b)
motion field of frame 20 of the translating tree sequence, (c) motion field of frame 20 of
the diverging tree sequence (cf. [9]).

as space-time vectors by v̂ = 1√
v2x+v2y+1

(vx, vy, 1)
T and ŵ = 1√

w2
x+w2

y+1
(wx, wy, 1)

T . Then,

the angular error between the correct motion vector and the estimate is given as

ψ = arccos(v̂T · ŵ). (2.26)

In order to evaluate our algorithms, we applied tensor-based motion estimation without

non-maximum suppression (3dst) and with non-maximum suppression (3dst-nonms) to

the tree sequences. Table 2.1 summarizes average angular error, standard deviation and

density of the estimated flow fields. In addition, for the purpose of comparison, several

results obtained in [9] with well-known optical flow techniques are displayed. In both cases,

we obtain excellent results, the motion fields estimated by the tensor-based approaches

match the correct motion fields very closely.

For visual inspection, Figures 2.15 and 2.16 display the flow fields as calculated by

the different algorithms. As expected, the algorithms do not provide dense motion vector

fields but eliminate some areas due to lacking texture. In particular, the non-maximum

suppression reduces the density of the flow field but also slightly reduces the average

angular error for the diverging tree sequence.

Next, we examine the results of 3dst and 3dst-nonms on well-known real-world se-

quences, namely, the hall-and-monitor (Figure 2.18) and the Hamburg taxi (Figure 2.19)

sequences, both acquired by means of a static camera. The former displays a street scene

and contains four moving objects: a taxi turning the corner; a car on the left, driving to

the right; a van on the right, driving to the left; and a pedestrian in the upper left. In
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sequence technique average
error

standard
deviation

density

translating tree (frame 20) 3dst 0.52◦ 0.45◦ 63.18%
diverging tree (frame 20) 3dst 1.38◦ 1.38◦ 53.25%
translating tree (frame 20) 3dst-nonms 0.52◦ 0.45◦ 13.33%
diverging tree (frame 20) 3dst-nonms 1.22◦ 1.25◦ 11.32%

translating tree (frame 20) Lucas-Kanade (λ2 > 5.0) 0.56◦ 0.58◦ 13.10%
diverging tree (frame 20) Lucas-Kanade (λ2 > 5.0) 1.65◦ 1.48◦ 24.30%
translating tree (frame 20) Horn-Schunck (modified) 1.89◦ 2.40◦ 53.20%
diverging tree (frame 20) Horn-Schunck (modified) 2.50◦ 3.89◦ 32.90%

Table 2.1: Tensor-based motion estimation: Full velocity results for translating and di-
verging tree sequences (ρ = 2, C = 1). The results for the Lucas-Kanade and the Horn-
Schunck techniques are taken from [9] for comparison.

Figure 2.15: Tensor-based motion estimation on the translating tree sequence. (a) Left:
Without non-maximum suppression, (b) Right: With non-maximum suppression.

the latter sequence, two persons are walking down a hall.

In contrast to the synthetic sequences above, the correct flow fields are not available

in either of these cases, and we have to rely on visual impressions. Since both sequences

were recorded by a static camera, we concentrate on the moving objects. To illustrate the

performance of the algorithms so-called motion images are calculated. In these images,

only those positions are marked where tensor-based motion estimation indicates motion.

Here, both full and normal velocities are included. Figures 2.18 and 2.19 display the

original frames of both sequences along with the motion images calculated by 3dst and

3dst-nonms. We observe that both algorithms detect motion areas reliably. Since the

calculations are performed within a spatio-temporal neighborhood, noise contained in
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Figure 2.16: Tensor-based motion estimation on the diverging tree sequence. (a) Left:
Without non-maximum suppression, (b) Right: With non-maximum suppression.

the sequence is efficiently suppressed. In addition, the non-maximum suppression scheme

enables a more accurate detection of the moving object’s boundary. Figure 2.17 underlines

this observation by depicting results from tensor-based motion estimation superimposed

on an original frame from the taxi sequence.

Figure 2.17: Motion image of a part of a frame from the Hamburg taxi sequence. (a)
Left: Tensor-based motion estimation, (b) Right: Tensor-based motion estimation
with non-maximum suppression.
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Figure 2.18: Motion images of frames from the hall-and-monitor sequence. (a) Left
row: Original frames, (b) Middle row: Tensor-based motion estimation, (c) Right

row: Tensor-based motion estimation with non-maximum suppression (ρ = 1.0, C = 15).
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Figure 2.19: Motion images of frames from the Hamburg taxi sequence. (a) Left row:

Original frames, (b) Middle row: Tensor-based motion estimation, (c) Right row:

Tensor-based motion estimation with non-maximum suppression (ρ = 1.5, C = 5).
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2.4 Feature-based Motion Estimation

Tensor-based motion estimation, as discussed in the preceding sections, relies on gradient

information and thus belongs to the class of gradient-based methods. However, gradient-

based motion estimation methods are applicable only under the assumption of small image

displacements [9,86]. It is therefore necessary to develop an additional technique that can

cope with large velocities. Before proceeding, let us first illustrate the limitations of

gradient-based methods and discuss two approaches to diminish those problems.

We applied tensor-based motion estimation to a synthetic image sequence similar to

those shown in Figure 2.3. In this sequence, a one-dimensional pattern moves to the right

at constant speed v. In order to determine the accuracy with respect to different image

displacements, several sequences of this type were created differing in the magnitude of v.

In detail, tensor-based motion estimation was applied to sequences resulting form v = 2,

v = 4, v = 8, and v = 16 (pixels/frame).

For the purpose of evaluation, we tracked one image feature through each sequence and

estimated its velocity. Then, the velocity estimate was compared to the real velocity v by

employing the angular error measure as defined in Equation 2.26. The calculations were

performed using different sizes of the spatio-temporal neighborhood Ω. Recall that the

tensor components are determined from this local neighborhood. Figure 2.20a displays

the angular error of tensor-based motion estimation with respect to a given velocity v and

the size of the local neighborhood. Note that in the figure, the radius of the neighborhood

denoted as ρ is given in pixels.
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Figure 2.20: Tensor-based motion estimation on sequences containing large displacements.
(a) Left: Angular errors for standard technique calculated for local neighborhoods of
different size (ρ denotes the radius in pixels), (b) Right: Angular errors for standard
technique combined with coherence-enhancing diffusion.
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We observe that for image displacements of more than two pixels per frame, calcula-

tions over small neighborhoods yield significant differences between motion estimates and

real velocities. Only for very large mask sizes is the accuracy sufficient. Unfortunately,

calculating the tensor components on such large neighborhoods is impractical since it is

likely that the basic assumption of linear symmetry is not fulfilled in these cases. There-

fore, one can employ the standard tensor-based technique only for small displacements.

The limitations discussed above are due to aliasing effects. If a sequence containing

a fast-moving object is recorded at a low frame rate, aliasing or “stair-case effects” will

occur. Figure 2.21 illustrates this relationship for a fast-moving one-dimensional pattern.

Iso-gray-value lines indicating the local orientation can be determined only by considering

a rather large local neighborhood.

x x

t t

Figure 2.21: Discretization of an image sequence. (a) Left: Continuously moving one-
dimensional pattern with pixel grid superimposed, (b)Right: Discretization of the image
sequence.

A standard solution to this problem is the use of multiresolution methods [7, 18, 33,

36]. A multiresolution method for tensor-based motion estimation has been proposed

in [67]. Here, the basic idea is to calculate an image pyramid containing images of different

resolutions or so-called levels. These levels are created by spatial subsampling, e. g., from

an original image of size 256× 256, three levels of sizes 256× 256, 128× 128, and 64× 64
might be constructed. It is then possible to determine large velocities by estimating

motion first at the coarsest level of the pyramid and propagating these estimates to levels

of finer resolutions. However, motion estimation is possible only for image features than

can be reliably identified at all levels of the pyramid. In addition, it is likely that at

coarser levels image features will merge and thus might steer motion estimates in the

wrong direction.

A different approach comprises the reduction of aliasing effects. To this end, we

combined tensor-based motion estimation with a specific anisotropic diffusion technique,

namely coherence-enhancing diffusion [137,138]. In this technique, the image is smoothed
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along local orientations or flow lines. Figure 2.22 displays the results of such a diffusion

process. As can be observed from the figure, the stair-case effects are significantly reduced.

To evaluate the impact of the diffusion technique on the accuracy of motion estimation,

we repeated the experiment with the one-dimensional patterns moving at different speeds.

Figure 2.20b shows the angular error for the combination of coherence-enhancing diffusion

and tensor-based motion estimation. In all cases, 200 diffusion iterations were applied to

the test sequences prior to motion estimation. We observe that the accuracy of the

motion estimates is sufficient even for small local neighborhoods up to displacements of 8

pixels/frame. For larger displacements, however, larger image areas have to be evaluated.

Figure 2.22: Reducing aliasing effects by coherence-enhancing diffusion. (a) Left: Orig-
inal spatio-temporal image, (b) Middle: Coherence-enhancing diffusion (20 iterations,
τ = 0.2), (c) Right: Coherence-enhancing diffusion (100 iterations, τ = 0.2).

While it is possible to extend the scope of tensor-based motion estimation by multires-

olution or diffusion-based approaches as discussed above, limitations still remain. Often,

it is more appropriate to employ correspondence-based or feature-based techniques in

the event of large velocities. Here, the basic idea is to identify certain image features in

a frame of the sequence and to determine corresponding features in consecutive frames.

Since this approach does not depend on continuous iso-gray-value lines but on correspond-

ing structures large velocities do not pose problems.

Our technique, which will be discussed in the following, relies on work conducted

in [14, 17, 41, 45, 110, 111, 130]. Similar to their results, appropriate feature points (also

called interest points) are detected in a frame of the sequence and correspondences in

consecutive frames are determined by a matching procedure. In addition, we develop

coherence measures that allow us to distinguish between features where full motion can

be calculated and those where only normal motion can be determined.



2.4. FEATURE-BASED MOTION ESTIMATION 37

2.4.1 Identifying and Tracking of Image Features

Let us recall some results from tensor-based motion estimation that will prove useful

further on. As discussed in Section 2.3.2, motion estimation is possible only for specific

patterns of spatio-temporal intensity. In detail, by considering the eigenvalues λ1, λ2, λ3 of

the three-dimensional structure tensor, these patterns can be distinguished. For instance,

λ1 > 0 and λ2 > 0 indicates a textured image patch or a corner. Since this patch is likely

to be found in consecutive frames, image positions where λ1 > 0 and λ2 > 0 are good

candidates for feature points.

Furthermore, λ1 > 0 and λ2 = 0 indicates a linearly symmetrical pattern, e. g., an

edge. Again, it is likely that we can determine the position of this structure in consecu-

tive frames. However, the aperture problem restricts the calculations to normal motion.

Nevertheless, keeping this limitation in mind, image positions where λ1 > 0 and λ2 = 0

are also candidates for feature points.

To apply the structure tensor to single frames rather than video sequences, we adapt

its two-dimensional variant which was discussed in Section 2.3.1. Replacing the temporal

dimension by the second spatial dimension (y) yields

J =

[
jxx jxy

jxy jyy

]
, (2.27)

where the matrix elements jkl, k, l ∈ {x, y} are calculated from

jkl(p) =

∫
p′∈Ω(p)

w(p− p′) (∂kf(p′)∂lf(p′)) dx′ dy′. (2.28)

Consequently, the meaning of the eigenvalues differs from the definition presented in

Section 2.3.1 and is given as follows [54]:

(1) λ1 = λ2 = 0

Both eigenvalues equal to zero indicates an area of constant gray values. Reliable

tracking of this area is not possible.

(2) λ1 > 0, λ2 = 0

If λ1 > 0 and λ2 = 0, gray values change only in one direction. One might be able

to establish correspondences between consecutive frames. However, the aperture

problem allows only calculation of normal motion.

(3) λ1 > 0, λ2 > 0
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Finally, if both eigenvalues are greater than zero, gray values change in both direc-

tions. Reliable tracking is possible.

To obtain coherence measures that indicate the reliability of the calculations, we adapt

the measures ct and cs as presented in Section 2.3.2 by setting λ3 = 0. Then, ct ≈
1 indicates a feature point which might be tracked in consecutive frames at least by

calculating normal motion. Furthermore, cs ≈ 1 indicates a textured image patch, thus,
the corresponding feature point can be tracked reliably. To further improve the extraction

of feature points, we employ the non-maximum suppression technique as presented in

Section 2.3.3.1. Here, non-maximum values of the coherence measure ct are suppressed in

the direction of the eigenvector belonging to the larger eigenvalue λ1.

These considerations result in the following approach for the identification of feature

points:

(1) Calculate the structure tensor J at each position p = (x, y).

(2) Calculate the coherence measures ct and cs from the eigenvalues of J .

(3) Perform non-maximum suppression on ct in the direction of the eigenvector belong-

ing to λ1.

(4) Mark image positions where (ct > 1− ε) and (cs > 1− ε) as feature points.

In addition to the identification of feature points, an appropriate tracking procedure

is required. In our approach, we apply standard block-based motion estimation methods

(see, e. g., [12]). Each feature point is considered to be the central point of a small image

patch, e. g., a 9 × 9 block. Then, using the L1 distance the best match for each block

centered on a feature point is determined within a given search range. The displacements

calculated this way determine the motion vector field.

2.4.2 Experimental Results

As in Section 2.3.4, we applied our algorithms for feature-based motion estimation to the

synthetic translating tree and the synthetic diverging tree sequences. Table 2.2 summarizes

the results with respect to angular error and feature density. We applied our algorithm in

two variants that differed only in their choice of the non-maximum suppression scheme.

In the first run, we employed the scheme for the detection of corner pixels as proposed

in [45]. In this scheme, an image position is marked as a corner pixel if it contains a local
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sequence technique average
error

standard
deviation

density

translating tree (fr. 20) suppression as in [45] 1.49◦ 1.64◦ 1.21%
diverging tree (fr. 20) suppression as in [45] 11.61◦ 6.62◦ 1.30%
translating tree (fr. 20) (ct > 1− ε) ∧ (cs > 1− ε) 1.43◦ 1.57◦ 9.94%
diverging tree (fr. 20) (ct > 1− ε) ∧ (cs > 1− ε) 11.35◦ 6.39◦ 9.84%

translating tree (fr. 20) Anandan 4.54◦ 3.10◦ 100.00%
diverging tree (fr. 20) Anandan 7.64◦ 4.96◦ 100.00%
translating tree (fr. 20) Singh 0.72◦ 0.75◦ 41.40%
diverging tree (fr. 20) Singh 7.09◦ 6.59◦ 3.90%

Table 2.2: Feature-based motion estimation: Full velocity results for translating and
diverging tree sequences (ρ = 1, C = 2). The results for the Anandan and the Singh
technique are taken from [9] for comparison.

maximum of the response function within a 3 × 3 neighborhood. In the second run, we
used our own feature selection scheme as described above.

For the purpose of comparison, we also display results for correspondence-based tech-

niques (Anandan and Singh) taken from [9]. In general, the results for all correspondence-

based techniques are inferior to those calculated by means of gradient-based approaches

(cf. Section 2.3.4). This is due to the fact that the sub-pixel accuracy of the latter class of

algorithms is higher. In the case of the translating tree sequence, the results for our algo-

rithms are better than those gained by Anandan’s method and inferior to Singh’s results.

Note, however, that we chose the best results for Singh’s method from those reported

in [9]. The results for the diverging tree sequence are inferior to both other methods.

This might be due to the fact that our current block-matching algorithm is restricted to

half-pixel accuracy. The large difference in angular errors between translating tree and

diverging tree sequence which can be observed for all correspondence-based algorithms is

due to the sub-pixel problem [9]. In the translating tree sequence, velocities are very close

to integer displacements, while the diverging tree sequence has a wide range of velocities

with noninteger displacements.

With respect to feature density, our feature selection scheme provides significantly

more interest points than the method proposed in [45]. In addition, we observe that the

results for our algorithms are almost identical for the different non-maximum suppression

schemes. Note that the density of 100% achieved by Anandan’s method results from an

additional smoothing constraint.

Let us now turn to real-world sequences. For the purpose of evaluation, we have applied
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the algorithm presented above to the Stefan sequence and the coastguard sequence. Since

the correct flow fields are not known in either case, one has to rely on qualitative results.

Figures 2.23 and 2.24 illustrate the feature detection step. At the top left of each figure,

sample frames from the sequences are displayed. In those frames, image features were

detected. The images at the top right depict corner pixels calculated using the structure

tensor and the non-maximum suppression scheme proposed in [45]. In the bottom row

on the left, features are shown which result from calculations where only the coherence

measure ct (ct > 1 − ε) has been evaluated. Thus, at positions marked in white in these

images, it is possible to determine motion by comparing features in consecutive frames.

Note that for some of those positions, only normal motion can be determined, e. g.,

vertical and horizontal lines. However, under the assumption of a static camera, it might

be useful to detect all features that move, regardless of whether or not normal or full

motion can be estimated. The bottom row on the right shows results that were obtained

by applying both coherence measures. Thus, for points marked white in these frames, it

should be possible to calculate full motion. These feature points are useful with respect

to any camera operation.

Figure 2.23: Feature point detection on the Stefan sequence. (a) Top left: Original
frames, (b) Top right: Corner pixels marked (cf. [45]), (c) Bottom left: Image
positions marked where (ct > 1− ε), (d) Bottom right: image positions marked where
(ct > 1− ε) and (cs > 1− ε).
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Figure 2.24: Feature point detection on the coastguard sequence. (a) Top left: Original
frames, (b) Top right: Corner pixels marked (cf. [45]), (c) Bottom left: image
positions marked where (ct > 1− ε), (d) Bottom right: image positions marked where
(ct > 1− ε) and (cs > 1− ε).

Based on the feature points obtained for ct ≈ 1 and cs ≈ 1, motion vector fields were
calculated for both sequences by using a block-matching technique. We chose parts of

the sequences that contain considerable image displacements. For instance, the frames

around frame 250 of the Stefan sequence contain image displacements of up to 30 pixels.

For the coastguard sequence, a part with displacements of about four pixels was chosen.

Figure 2.25 displays examples from both video sequences. In both cases, one can clearly

observe how the background moves. Due to the feature extraction step, only some outliers

emerge in the motion field of the background. In addition, it is possible to identify parts

that belong to the moving objects.

Thus, by calculating the basic camera operation from the flow field and by removing

motion vectors caused by camera motion, it should be possible to extract moving objects

from the sequence. The following section will discuss an approach to calculate camera

parameters from flow fields obtained by tensor-based or feature-based motion estimation.
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Figure 2.25: Feature-based motion estimation. (a) Left column: Original frames, (b)
Right column: Motion fields. The flow fields are subsampled for better visibility.

2.5 Estimation of Camera Motion

In the preceding sections we have discussed motion analysis techniques that indicate

moving image areas reliably. As depicted in Figures 2.18 and 2.19, these image areas

provide, under the assumption of a static camera, useful cues for subsequent segmentation

algorithms.

However, as noted above, the situation is different when a moving camera is involved.

Marking moving image positions while ignoring static areas is obviously not sufficient.

Instead, one has to distinguish between camera motion and object motion in the image

(cf. Figure 2.25). For this purpose, it is necessary to determine the parameters of the

camera motion.

Consequently, first of all, an appropriate camera motion model is required that covers
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the different camera operations. Then, a technique must be developed that estimates

the parameters of the model from the image sequence. In our approach, we employ the

perspective camera model, which will be summarized in the following section. Afterwards

we concentrate on a robust estimation algorithm that derives the model parameters from

motion information calculated by our motion analysis techniques presented above.

2.5.1 Modeling Camera Motion

Consecutive images acquired by a panning, tilting or zooming camera are related by a

planar homography [46, 130]. Thus, under perspective projection, corresponding image

positions (x′, y′) and (x, y) in two consecutive frames may be mapped to one another by

the following non-linear equations with eight parameters θ := {θ0, . . . , θ7}:

x′ =
θ0x+ θ1y + θ2
θ6x+ θ7y + 1

, y′ =
θ3x+ θ4y + θ5
θ6x+ θ7y + 1

. (2.29)

As a consequence, if the parameters are known, it is a straightforward process to

establish correspondences between image features detected in two consecutive frames of a

video sequence. Conversely, it is possible to determine the eight parameters from at least

four image features if the exact positions in the two frames are known.

For this purpose, Equation 2.29 can be rewritten as

x′ = θ0x+ θ1y + θ2 − θ6xx
′ − θ7yx

′

y′ = θ3x+ θ4y + θ5 − θ6xy
′ − θ7yy

′ . (2.30)

Consider four image features (e. g., corners) located in frame f0 at positions pi :=

(xi, yi), and in the consecutive frame f1 at positions p′i := (x
′
i, y

′
i). Then, each point

correspondence pi ↔ p′i generates two linear equations leading to a linear system of

equations. The camera parameters can then be determined by solving the following linear

system:
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


x′
0

y′0
x′
1

y′1
x′
2

y′2
x′
3

y′3



=




x0 y0 1 0 0 0 −x0x
′
0 −y0x

′
0

0 0 0 x0 y0 1 −x0y
′
0 −y0y

′
0

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3







θ0

θ1

θ2

θ3

θ4

θ5

θ6

θ7




. (2.31)

However, in most cases, more than four correspondences can be determined from

consecutive frames of an image sequence. In addition, several of these correspondences

either may be incorrect or cannot be approximated by a single camera motion model.

Therefore, it is necessary to develop estimation methods that take those cases into account.

2.5.2 Robust Estimation of Camera Motion

By applying motion estimation techniques to a video sequence, it is possible to establish

correspondences between image features in consecutive frames. Thus, in general, motion

analysis reveals a collection of N image features where their positions pi and p′i in two con-

secutive frames are known. Since both the motion estimation algorithms developed above

are accompanied by reliability measures, we can select appropriate motion estimates.

In fact, it would be possible to choose the four motion-based correspondences having

the highest reliabilities and then calculate the camera parameters according to Equation

2.31. However, since the correspondences might belong to different motion models (e. g.,

background motion and object motion), the calculations might turn out to be incorrect.

Consequently, it is more appropriate to integrate into the calculations all correspondences

reaching a certain level of reliability. As previously said, each point correspondence leads

to two linear equations, thus, N image features results in an overdetermined linear system

of 2N equations in eight unknowns.

The most popular technique for solving this linear system is the well-known least

sum of squares (LS) method. Let us denote estimates of the unknown parameters θi by

θ̂i. Given those estimated parameters, one can calculate estimates (x̂
′
i, ŷ

′
i) of the feature

positions (x′
i, y

′
i) from Equation 2.30. Then, determining the difference between the actual

feature positions (x′
i, y

′
i) and their estimates will yield the residuals rxi

and ryi given as:
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rxi
= x′

i − x̂′
i , ryi = y′i − ŷ′i, i = 1, . . . , N. (2.32)

The basic idea of the LS method is to determine the parameters by minimizing the

residuals, which yields

min
θ̂

N∑
i=1

(
r2xi
+ r2yi

)
. (2.33)

A number of efficient numerical algorithms are known for this standard problem [103].

However, since the LS method is optimal for a Gaussian error distribution, it is not

applicable in our context. Figure 2.26 illustrates the problems that occur when camera

parameters are estimated by means of the LS method. For testing purposes, we created

two synthetic flow fields: The first flow field simulates a camera panning over a constant

scene (cf. Figure 2.26a). About 10% of the image pixels were assigned to the background

motion, the remaining positions were ignored. The second flow field also indicates a

panning camera. However, in this case, a moving object is overlaid (cf. Figure 2.26c).

Here, about 8% of the image pixels were assigned to background motion and about 2% of

the motion vectors resulted from object motion. As expected, LS minimization reveals the

correct camera parameters in the first case of the perfect flow field without any interfering

object motion (cf. Figure 2.26b). However, the mixture of background and object motion

did not lead to satisfactory results (cf. Figure 2.26d). Instead, the camera parameters

were computed such that they minimized the residuals for both the displacements caused

by background motion and for the motion vectors resulting from the moving object. To

put it differently, in the event of outliers — resulting in our example from object motion

— LS minimization is not the method of choice. We should note that, in general, it is

not possible to discover outliers by examining the residuals of the LS minimization [106].

In order to estimate camera parameters reliably when both background and object

motion is present, one has to apply robust regression methods. Widely used robust re-

gression methods in computer vision comprise the random sample consensus (RANSAC)

proposed by Fischler and Bolles [34] and the least median of squares (LMedS) regression

developed by Rousseeuw [106]. Both methods are able to calculate the parameters of a

linear regression problem even though a large portion of the data consists of outliers.

However, RANSAC requires a thresholding procedure to classify data as inliers or

outliers. The LMedS method does not require this threshold but its convergence rate is

rather poor.
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Figure 2.26: Determining camera parameters by means of least sum of squares minimiza-
tion. (a) Top left: Flow field calculated from a sequence without moving objects, (b)
Top right: Estimated camera motion, (c) Bottom left: Flow field calculated from a
sequence containing one moving object, (d) Bottom right: Estimated camera motion.
The flow fields are subsampled for better visibility.

Another robust regression estimator, the least trimmed squares (LTS) regression, also

proposed by Rousseeuw [106], has received considerably less attention in the field of

computer vision. Indeed, surveys on robust regression methods in computer vision [84,

85, 122, 129] did not take LTS into account. To the best of our knowledge, only Ye

and Haralick [144] have considered LTS for a computer vision task, namely optical flow

computation. We should note that they developed a technique similar to ours at around

the same time [145].

Similar to LMedS regression, the LTS method does not require a selection threshold.

In addition, it has a higher convergence rate than LMedS. In spite of these advantages,

we concentrate in the following on LTS regression to estimate camera parameters from

motion information. To simplify the notation in the following, we combine the residuals

rxi
and ryi into a single vector ri of size M := 2N . The LTS estimator then may be

written as
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min
θ̂

h∑
i=1

(
r2
)
i:M

. (2.34)

Similar to the LS method, the sum of squared residuals is minimized. However, only

a subset of h cases is taken into account. These cases are chosen from the data set

according to the squared magnitude of the residuals. Let (r2)1:M ≤ . . . ≤ (r2)M :M denote

the squared residuals given in ascending order. Then, only the h cases belonging to the

least squared residuals (r2)1:M ≤ . . . ≤ (r2)h:M are considered. Setting h to approximately
n/2 eliminates half of the cases from the summation, thus, the method can cope with about

50% outliers.

Since the computation of the LTS regression coefficients is not straightforward, the

basic steps are summarized in the following. For a detailed explanation and a fast imple-

mentation called FAST-LTS we refer to [106, 107].

First of all, in order to calculate residuals, an initial estimate of the regression parame-

ters is required. Let us assume that we want to estimate p parameters θ̂0 := {θ̂00, . . . , θ̂0p−1}
(p = 8 in our context). Then, a subset of p cases, a so-called p-subset, denoted as S0,

is drawn randomly from the data set. Solving a linear system created by this subset

yields an initial estimate of the parameters. Note that if the matrix constructed from the

p-subset is of rank less than p, random cases are added until this requirement has been

fulfilled.

Using θ̂0, we can calculate the residuals for all cases in the data set. Let us denote

these residuals by r0i, i = 1, . . . , n. Sorting r0i by absolute value, we can create a subset

H0 that contains the h cases with the least absolute residuals. Furthermore, a first quality

of fit measure can be calculated from this subset as Q0 :=
∑

i∈H0 (r20)i:M . Then, based

on H0, a least squares fit is calculated, yielding a new parameter estimate θ̂1. Again, the

residuals r1i are calculated and sorted by absolute value in ascending order, yielding a

subset H1 that contains the h cases that possess the least absolute residuals with respect

to the parameter set θ̂1. The quality of fit for H1 is given by Q1 :=
∑

i∈H1 (r21)i:M . Due

to the properties of LS regression, it can be assured that Q1 ≤ Q0. Thus, by iterating the

above procedure until Qn = Qn−1, the optimal parameter set can be determined.

However, in general, Qn constitutes only a local minimum of the LTS objective function

(cf. Equation 2.34), which depends on the initial p-subset S0. In order to find the global

optimum, one must ensure that the initial subset does not contain any outliers. Let us

denote the fraction of outliers in the data set as ε. Then, the probability that a subset of

p cases will contain at least one outlier is (1− (1− ε)p). Consequently, if m initial subsets
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Si, i = 0, . . . , m− 1, Si �= Sj for i �= j, are drawn from the data set, the probability of one

“good” subsample, i. e., a p-subset without outliers, is given as

P (ε, p,m) := 1− (1− (1− ε)p)m. (2.35)

By requiring that this probability be close to one, a suitable value for m can be

calculated for given ε and p. For example, in the context of camera motion estimation

(p = 8), under the assumptions that nearly 50% outliers are present in the data set and

that P (0.5, 8, m) ≥ 0.95, 766 randomly drawn subsamples are required to obtain a good
p-subsample. Then, the parameters corresponding to the global minimum of Equation

2.34 can be estimated up to a certain probability by using each subsample Si as an initial

subset for the iterations as described above. Finally, the solution is retained that provides

the lowest value of the LTS objective function. We should note that the FAST-LTS

algorithm [107] applies several techniques to reduce the computational complexity. First,

the number of iterations is reduced by a technique called selective iteration. Second,

special data structures, so-called nested extensions, are employed in the case of very large

data sets.

We are now in a position to summarize our algorithm for the robust estimation of

camera parameters.

(1) Determine N feature correspondences (x′
i, y

′
i) ↔ (xi, yi) by employing the motion

analysis techniques described in the previous sections. Do not consider image posi-

tions where only normal motion can be calculated.

(2) Derive the overdetermined linear system of equations from the correspondences and

the underlying perspective camera motion model (Equation 2.30).

(3) Estimate the camera parameters θ0, . . . , θ7 by applying LTS regression to the linear

system (Equation 2.34).

2.5.3 Experimental Results

First of all, we illustrate the robustness of the algorithm by repeating our experiment based

on synthetic flow fields. Figure 2.27 displays the results obtained for different mixtures

of object and background motion. The first case shown in the top row resulted from the

configuration already used to illustrate the limitations of LS minimization (see Figure

2.26). As previously said, about 8% of the pixels were assigned to background motion

and 2% belonged to the moving object. In subsequent experiments, we changed this ratio
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and added further object pixels. The middle row of Figure 2.27 depicts a combination

of 5.5% background pixels and 4.5% object pixels. Similar to the first case, the robust

camera motion estimator was able to calculate the correct parameters as indicated by the

accompanying flow field.

In the last case (cf. Figure 2.27e), containing 4% background pixels and 6% object

pixels, the camera motion estimation fails. Since there are more object pixels than back-

ground pixels, the algorithm calculates the camera parameters from the moving object,

while it ignores the background pixels. Consequently, in order to function properly, the

camera motion estimator requires a dominant camera motion, i. e., the motion vectors

resulting from background motion must outnumber those obtained from moving objects.

Next, we applied our algorithm to the synthetic tree sequences already used in Sec-

tions 2.3.4 and 2.4.2. The goal in these experiments was to reconstruct a dense motion

vector field from sparse motion estimates and the estimated camera parameters. By com-

paring the reconstructed motion vector fields to the known motion fields of the synthetic

sequences, we examined the accuracy of the calculated camera parameters.

First, we employed tensor-based motion estimation (3dst-nonms) to calculate sparse

motion vector fields for both the translating tree and the diverging tree sequences (cf.

Section 2.3.4). The camera parameters were then determined, and a dense motion vector

field was constructed by evaluating the camera parameters at each image position. Finally,

we compared the reconstructed motion fields to the known motion vector fields for both

sequences. Table 2.3 shows the results obtained using our method. Both results indicate

that the camera parameters could be extracted from the sparse motion vector field fairly

accurately.

sequence average error standard deviation density

translating tree (frame 20) 0.51◦ 0.11◦ 100%
diverging tree (frame 20) 1.57◦ 0.30◦ 100%

Table 2.3: Camera motion estimation: Full velocity results for translating and diverging
tree sequences (ρ = 2, C = 1).

In the remainder of the section, we examine the performance of the algorithm on

real-world sequences containing moving objects. For this purpose, we calculated camera

motion estimates for four well-known video sequences, namely the Hamburg taxi sequence

(static camera), the hall-and-monitor sequence (static camera), the coastguard sequence

(panning and tilting camera), and the Stefan sequence (panning and zooming camera).
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Figure 2.27: Determining camera parameters by means of least trimmed squares regres-
sion. (a) Top left: Flow field calculated from a sequence containing one moving object
(8% background pixels, 2% object pixels), (b) Top right: Estimated camera motion,
(c) Middle left: 5.5% background pixels, 4.5% object pixels, (d) Middle right: Es-
timated camera motion, (e) Bottom left: 4% background pixels, 6% object pixels, (f)
Bottom right: estimated camera motion. The flow fields are subsampled for better
visibility.

Correspondences between image features in consecutive frames were determined by either

tensor-based motion estimation or feature-based motion estimation.
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Figures 2.28–2.31 display several examples from the different sequences. The top

row of each figure shows the original frame and the calculated flow field. The bottom

row displays the flow field generated from the estimated camera parameters. For better

visibility, all flow fields are subsampled. Note that the camera flow fields indicate how

image positions in consecutive frames are mapped to one another rather than show how

the camera moves.

In all cases, the robust camera motion estimator was able to determine the camera

operation, despite the presence of considerable object motion in each case. In detail,

for the example from the Hamburg taxi sequence, 8871 feature correspondences were

calculated by tensor-based motion estimation. As can be seen in Figure 2.28, four moving

objects, namely a taxi (middle), a car (left), a van (right), and a pedestrian (top left) are

the source of image motion. However, the features in the static background outnumber

the motion vectors resulting from the moving objects. Thus, the camera parameters could

be calculated reliably.

The flow field of the coastguard example (cf. Figure 2.29) resulted from 9315 motion

vectors determined by means of tensor-based motion estimation with non-maximum sup-

pression. Here, object motion results from two boats. Again, it was possible to detect

sufficient features in the background and thus enable camera motion estimation.

Since the Stefan sequence (cf. Figures 2.30 and 2.31) contains large displacements, we

employed feature-based motion estimation. In the first example from the Stefan sequence,

6880 correspondences were determined. Motion vectors that did not fit into the camera

motion model resulted from the moving player and motion in the audience. Nevertheless,

the algorithm determined the camera parameters correctly, indicating a pan. In the

second example from the Stefan sequence, 9618 features could be identified. From these

features, some belonging to the moving player and the tennis net, the camera zoom could

be calculated.
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Figure 2.28: Camera motion estimation for the Hamburg taxi sequence.

Figure 2.29: Camera motion estimation for the coastguard sequence.
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Figure 2.30: Camera motion estimation for the Stefan sequence (1).

Figure 2.31: Camera motion estimation for the Stefan sequence (2).
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Chapter 3

Motion-based Object Segmentation

3.1 Introduction

The motion-based approaches developed in the previous chapter are able to detect motion

areas reliably. However, as described above, the aperture problem might cause parts of

the objects to be left out. Due to areas of constant gray values within the moving objects,

we do not receive dense motion vector fields. The identified regions of a moving object

thus contain gaps and holes. Consequently, to extract the complete object from the

video sequence, a grouping step is needed that integrates local information obtained from

the motion detection algorithms. Ideally, such a grouping step should fulfill a number

of properties: The final contour which separates objects from the background should

reproduce the boundaries apparent in the image. In addition, the contour should be

piecewise smooth and respect singularities such as angles and corners. Furthermore,

missing parts should be approximated naturally, and the grouping step should be able

to find several objects simultaneously. Finally, since we are working on image sequences,

computational efficiency is an another important aspect.

Widely used in the problem domain of grouping local information are active contour

models, also known as deformable models, snakes (in 2D), or active surfaces (in 3D). In

the following we restrict our discussion to the two-dimensional case. However, most of

the explanations below can be extended to three dimensions.

Thus, by applying active contour models to information gained from the motion anal-

ysis techniques as developed in the previous chapter, we can develop efficient approaches

for moving object segmentation. Furthermore, by taking camera motion into account,

segmentation becomes possible in the event of a moving camera.

The novelties presented in this chapter can be subdivided as follows:

55
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(1) Efficient numerical implementations for implicit active contour models are devel-

oped. In particular, we provide a unified model for geometric and geodesic active

contours. The implementation consists of a novel narrow-band approach and an

efficient semi-implicit numerical discretization.

(2) Two new algorithms for moving object segmentation based on the motion detection

results from the previous chapter and the new implicit active contour algorithms

are developed. The first algorithm is related to object segmentation from sequences

recorded with a static camera, while the second is able to cope with a moving

observer.

The remainder of this chapter is organized as follows: After discussing related work

in Section 3.2, Section 3.3 introduces active contour models. In Section 3.4 our fast

algorithms for implicit geometric and implicit geodesic active contours are presented.

Section 3.5 describes the motion-based segmentation algorithms based on the integration

of motion information into the implicit active contour models and provides experimental

results.

3.2 Related Work

Motion-based segmentation techniques can be categorized based on their basic assump-

tions as to sequence acquisition. In the simplest case it is taken for granted that a static

camera records a moving object. Even more constraining is the assumption that a back-

ground reference frame of the sequence be available.

Performance of the segmentation task under the assumption of a moving camera is

a greater challenge. Here, it is often assumed that a dominant camera motion can be

determined from the sequence. Usually this implies that a large part of the image domain

is taken up by background. Given these assumptions, camera motion compensation can

be performed.

The most general approaches partition an image into regions of different motion char-

acteristics, so-called motion regions. However, this may result in a large number of regions

since different parts of a non-rigid moving object might undergo different motions. Con-

sequently, recovery of objects from motion regions is no trivial task.

In recent years various motion segmentation algorithms have been proposed. An early

survey dating from 1981 can be found in [104], while a more recent overview is provided

by Mitiche and Bouthemy [86]. Since our approach is based on the integration of motion
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cues into an implicit active contour model, we restrict our discussion on related work to

that which also employs implicit contour evolution methods.

Caselles and Coll [22] proposed a geometric partial differential equation for segmenting

and tracking moving objects in a video sequence. For this purpose, they modified their

earlier geometric model for active contours [21] by adding a motion-based term. First,

the object to be tracked is detected from an initial image based on spatial edges. Then,

the motion vector field along the contour of the detected object is calculated and used

to compute an initial estimate of the contour in the next frame. Finally, to account

for possible errors, the estimated contour is dilated, and the process iterates. While the

approach of Caselles and Coll combines segmentation and tracking, the segmentation part

holds only under the assumption that the object can be segregated from the background

based on its spatial edges, i. e., either the object must be placed on a uniform background

or an initial contour close to the object must be provided by the user. Moreover, the

model does not include any camera operations.

Goldenberg, Kimmel, Rivlin, and Rudzsky [37, 38] developed a fast version of the

geodesic active contour model and demonstrated the capacity of their method to segment

and track moving objects. In their approach, object segmentation is achieved by integrat-

ing temporal and spatial edges into the contour model. The segmentation procedure as

proposed by Goldenberg et al. assumes that the moving objects have been recorded by a

static camera. Note that a specific reinitalization procedure has to be carried out in each

iteration of the contour evolution.

Paragios and Deriche [99] proposed a variational framework based on geodesic active

contours to segment and track moving objects. Segmentation is performed by using

inter-frame differences within a statistical framework. In addition, the spatial edges in

the original frame contribute to the boundaries of the moving object. Like the other

techniques discussed above, the approach of Paragios and Deriche is limited to the static

camera scenario.

Jehan-Besson, Barlaud, and Aubert [55,56] employed region-based active contours to

segment moving objects in a video sequence captured by a moving camera. Camera motion

compensation and segmentation are formulated jointly in their approach within a mini-

mization criterion. First, the motion vector field is computed by a classical block-matching

algorithm. Then, by using a 6-parameter affine motion model and by introducing a poten-

tial function for eliminating outliers, a descriptor for the region-based model is obtained.

While Jehan-Besson et al. provide a powerful framework for object segmentation under

dominant camera motion, they do not discuss any efficient numerical implementations.
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Zhang, Gao, and Liu [146] combine similar to our approach the 3D structure tensor

with an implicit active contour model. However, in their approach the structure tensor

is not used for computing motion estimates explicitly. Instead, the smallest eigenvalue of

the tensor is used as a robust frame difference. To handle camera movements, a global

motion compensation is performed prior to the tensor calculations. Since the structure

tensor in its standard implementation can be applied only to sequences containing small

displacements, the approach of Zhang et al. is not applicable in the event of large object

motion.

Sifakis, and Tziritas [118] propose a multi-label fast marching algorithm for segmen-

tation. Moving objects are detected by means of inter-frame differences modeled within

a statistical framework. Based on these statistics the boundary of the moving object is

determined by means of two curves evolving in opposite directions. Sifakis, Grinias, and

Tziritas [116, 117] extend this approach by also considering moving cameras. For this

purpose, they estimate a three-parameter camera motion model (two translation and one

zoom parameter). Finally, Sifakis, Garcia, and Tziritas [115] integrate also the segmen-

tation of motion fields.

Mansouri, Sirivong, and Konrad [75] provide a level set based approach for multiple

motion segmentation. In contrast to the approaches of Jehan-Besson et al., Zhang et

al. summarized above and to our own they do not assume a dominant camera motion.

Instead, based on the correspondence of feature points and an affine motion model a

number of motion classes are determined. These motion classes serve to initialize the

segmentation process.

In our approach, we develop motion-based segmentation algorithms that incorporate

both fast implicit active contour models and camera motion estimation. In addition, we

provide a unified model for geometric and geodesic active contours.

3.3 Active Contour Models

Active contours are based on ideas of curve evolution. Basically, a closed planar curve

is placed around image parts of interest and evolves under equations of motion. Usually

smoothness control (internal contour energy) and force terms derived from the image

(external image energy) are included in the evolution process. The main advantage of this

approach is the imposition of geometric constraints on the segmentation problem. Missing

information, e. g., parts of object boundaries, are approximated by smooth segments of

the evolving contour.
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A fundamental aspect is the representation of the evolving curve. A straightforward

approach is to describe the contour explicitly as a parametric curve. On the other hand,

the curve can be represented implicitly by embedding it as a level set into a function.

Both representations will be considered in more detail in the following.

We now discuss the main active contour models while concentrating upon implicit

snakes. We begin with a description of explicit snakes, and then present implicit active

contour models. Finally, we proceed to develop novel fast algorithms for the latter class

of models.

3.3.1 Explicit Active Contour Models

An explicit snake is represented as a parametric curve C0(s) = (x(s), y(s)), s ∈ [0, 1],
where s is the arc length parameter, and x(s), y(s) denote the x and y coordinates of the

curve at arc length s. Let us recall the basic principle of parametric curves by considering

Figure 3.1. As depicted, a curve in the plane is represented by two independent functions

both depending on a parameter s ∈ [0, 1].

x(s)

y
(s
)

−1−1
1

1

x
(s
)

s

y
(s
)

s

Figure 3.1: A parametric curve C0(s) = (sin(7πs) cos(πs), sin(7πs) sin(πs)), s ∈
[0, 1]. (a) Left: The curve C0(s), (b) Right: Individual components x(s) =
sin(7πs) cos(πs), y(s) = sin(7πs) sin(πs).

In the context of explicit snakes, however, only planar curves are considered. Figure

3.2a displays an example. In our discussion, the curve is parameterized counterclockwise,
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thus, its interior is on the left in the direction of increasing s. In order to facilitate the

transfer of the results obtained below to digital images, we chose a different orientation

of the y-axis as usual. In the context of digital images, the parametric curve must be

discretized. As illustrated in Figure 3.2b, this is usually achieved by placing marker points

along the curve. During curve evolution these marker points are relocated on their way

through the fixed grid. The final contour can be determined from the marker particles

by linear or spline interpolation. In the following sections two classical approaches for

developing curve evolution equations are summarized.

x(s)

y(s)

C0(s)

n

(0, 0)

Figure 3.2: Explicit representation of an active contour. (a) Left: Parametric curve
C0(s) = (x(s), y(s)) in IR2, with outward normals ni (b) Right: Discretization by placing
marker particles and interpolating linearly.

3.3.1.1 Explicit Geometric Active Contour Model

Consider a planar curve C0 placed at a certain distance around an object of interest. To

extract the object it is necessary to move the contour towards the object’s boundary.

Consequently, some kind of shrinkage procedure has to be developed. In the following we

discuss such a procedure based on geometric considerations. The final model obtained in

this section is termed the geometric active contour model.

Let C(s, t) denote the family of curves parameterized by s ∈ [0, 1], where t ∈ [0,∞)
is time. Then, the following evolution equation propagates the curve along its normal

vector field (see Figure 3.2a) at a fixed speed [112]:

∂C(s, t)

∂t
= k · n(s, t) on [0, 1]× (0,∞)

C(s, 0) = C0(s) on [0, 1]. (3.1)
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In the equation, k is a scalar value (the force term) and n(s, t) denotes the outward unit

normal vector at a curve position (x(s, t), y(s, t)) given as

n =
1

(x2
s + y2s)

1/2

(
−ys

xs

)
. (3.2)

In this context, xs and ys denote the usual abbreviations for the first derivative with

respect to s. Figure 3.3 illustrates the evolution process under the constant force k.

While for a positive force term the contour expands (top row), a negative value for k

causes the contour to shrink (bottom row).

Thus, using a negative force term, the evolution equation guides an explicit snake

surrounding an object of interest towards the object boundary. However, stopping the

curve when reaching the boundary requires additional terms in the equation. Furthermore,

it is often desired to keep the evolving contour as smooth as possible. For instance, this

is useful when missing parts of the object must be replaced by curve segments.

Figure 3.3: Explicit snake evolving at constant speed. (a) Top row: k > 0, (b) Bottom

row: k < 0.

To impose smoothness constraints on the evolution process the constant force term k

can be replaced by the contour’s curvature κ [112]. Recall that the curvature expresses

how much the curve “bends” at each point. It is well known that the curvature of a

parametric curve at a point p = (x, y) is calculated as follows:

κ =
yssxs − xssys

(x2
s + y2s)

3/2
. (3.3)
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According to the chosen parameterization and the underlying coordinate system, the

curvature of a concave curve segment is positive, while a convex segment results in a

negative curvature. Consequently, different segments of the curve cause motion in different

directions. In our case, the contour moves outwards for κ > 0, but inwards for κ < 0.

Figure 3.4 displays the curve’s evolution under mean curvature motion. We observe that

the evolving curve is smoothed, becoming convex after a certain period of time. In fact,

each planar curve evolving under mean curvature becomes convex and shrinks to a round

point [43].

Figure 3.4: Explicit snake evolving under mean curvature motion.

In order to allow initially convex curves to become non-convex, and so as to detect

non-convex objects, constant evolution and curvature-based smoothing must be combined,

yielding the following equation:

∂C(s, t)

∂t
= (k + κ(s, t)) · n(s, t). (3.4)

Finally, to integrate information from the object to be detected, we need an external

force that will stop the evolution once the contour reaches the object’s boundary. Let us

define a stopping function g : IR2 → (0, 1] based on a simple edge detector (we will discuss
the integration of results gained from the motion analysis later on):

g(x) =
1

1 + |∇fσ(x)|2 . (3.5)

Here, ∇f = (∂xf, ∂yf)
T denote the spatial gradient and fσ denotes the image containing

the object under consideration smoothed with a Gaussian kernel of standard deviation σ.

While close to edges (high gradient magnitudes) the stopping function approaches zero,

it reaches one in flat areas of the image (low gradient magnitudes).

Thus, the final curve evolution equation is obtained from Equations 3.4 and 3.5 as
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follows:

∂C(s, t)

∂t
= g(C(s, t))(k + κ(s, t)) · n(s, t). (3.6)

3.3.1.2 Explicit Energy-based Active Contour Model

Energy-based snakes were introduced by Kass, Witkin and Terzopoulos in [57, 58] and

have been used in a wide range of applications since then. In their approach a parametric

curve is embedded into an energy-minimizing framework. The energy

E(C(s, t)) = Eint + Eext (3.7)

is composed of an internal and an external energy term.

The internal energy of the snake is given as

Eint(C(s, t)) =

∮
C(s,t)

(
α
2
|Cs(s, t)|2 + β

2
|Css(s, t)|2

)
ds (3.8)

where the parameters α > 0 and β > 0 are the elasticity and the rigidity coefficient,

respectively. Minimizing the internal energy results in a smooth contour.

The external energy depends on image features, for instance, on edge information, as

in the following definition

Eext (C(s, t)) = −
∮

C(s,t)

γ|∇fσ(C(s, t))|2ds. (3.9)

Minimizing Eext pushes the contour towards the selected image features.

In [58] the functional defined in Equation 3.7 is minimized using the calculus of vari-

ations. From the Euler-Lagrange equations the following iterative procedure is derived:

∂C(s, t)

∂t
= αCss(s, t) + βCssss(s, t)− γ∇(|∇fσ(C(s, t))|2). (3.10)

The final contour is obtained by iterating Equation 3.10 until stability has been achieved.

Several alternate approaches to energy minimization have been proposed. For instance,

in [5, 6] an algorithm based on dynamic programming is described. Williams and Shah

developed a greedy optimization technique that relies on local neighborhood search [143].

In addition to the different energy minimization techniques a number of modifications

to the original model were introduced. Here, we mention only the balloon force proposed
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by Cohen [27, 28] since it is related to the constant force term of the above-mentioned

geometric model. In Cohen’s approach the following force term is added to the right-hand

side of Equation 3.10:

k · n(s, t) (3.11)

where k denotes the amplitude of the force and n(s, t) is the unit normal vector to the

curve at point C(s, t).1 Depending on the sign of k, this additional term acts as an

inflation or deflation force in the model. Thus, the curve evolution is not disturbed by

weak external forces such as those caused by small image gradients.

3.3.1.3 Numerical Implementation

In the following we discuss the numerical implementation of the active contour models

described above. While we concentrate on the geometric model, the results obtained

below can be adapted to energy-based snakes as well.

In order to provide a numerical algorithm for Equation 3.6, one has to consider dis-

cretizations of space (xs, ys, xss, yss) and time (∂C/∂t). First, we discretize the parametric

curve by a collection of equally distributed marker points (xi, yi) (cf. Figure 3.2b). Each

marker point corresponds to some location i · h on the contour, where h denotes the

distance between two neighboring marker points. Second, we employ discrete time steps

by dividing the continuous time interval [0, T ] into discrete steps τ . Thus, combining

space and time discretizations, the collection of marker particles (xn
i , y

n
i ) approximates

the parametric curve C at time nτ .

We approximate the spatial derivatives needed for the calculation of the normal and

the curvature by central differences based on Taylor series as

∂x(s)

∂s

∣∣∣∣n
i

≈ xn
i+1 − xn

i−1

2h
,

∂y(s)

∂s

∣∣∣∣n
i

≈ yni+1 − yni−1

2h

∂2x(s)

∂s2

∣∣∣∣n
i

≈ xn
i+1 − 2xn

i + xn
i−1

h2
,

∂2y(s)

∂s2

∣∣∣∣n
i

≈ yni+1 − 2yni + yni−1

h2
.

(3.12)

The time derivatives are discretized by forward difference approximations

∂x(s)

∂t

∣∣∣∣n
i

≈ xn+1
i − xn

i

τ
,

∂y(s)

∂t

∣∣∣∣n
i

≈ yn+1
i − yni

τ
. (3.13)

1Note that in the original formulation, Cohen also modified the external force term. However, to keep
things simple, we neglect this detail.
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Using the above discretizations, the computation of an approximation to the curvature

κn
i from Equation 3.3 is straightforward:

κn
i = 4

(yni+1 − 2yni + yni−1)(x
n
i+1 − xn

i−1)− (xn
i+1 − 2xn

i + xn
i−1)(y

n
i+1 − yni−1)

((xn
i+1 − xn

i−1)
2 + (yni+1 − yni−1)

2)3/2
. (3.14)

Using these approximations we can now formulate a simple updating scheme for evolv-

ing an active contour under Equation 3.6, i. e., for producing new values (xn+1
i , yn+1

i ) from

the marker particles given at the previous time step:

xn+1
i = xn

i + τgxn
i y

n
i
(κn

i + k)
−(yni+1 − yni−1)

((xn
i+1 − xn

i−1)
2 + (yni+1 − yni−1)

2)1/2

yn+1
i = yni + τgxn

i y
n
i
(κn

i + k)
xn
i+1 − xn

i−1

((xn
i+1 − xn

i−1)
2 + (yni+1 − yni−1)

2)1/2
.

(3.15)

Note that gxn
i y

n
i
approximates the stopping function g at position (xn

i , y
n
i ). Since the

positions of the marker particles are not necessarily integers, the values of the stopping

function must be determined by a suitable interpolation (e. g., bilinear interpolation).

Implementation of the approach described so far is straightforward. However, it suffers

from a number of limitations [21, 112]. First of all, since the number of marker particles

determines the accuracy of the boundary detection, the segmentation result, i. e., the

placement of the final contour, depends on the chosen parameterization.

Second, as marker particles come closer together during curve evolution, quotients of

Equations 3.14 and 3.15 approach zero over zero. Thus, the simple iterative updating

scheme might become unstable. This problem might be avoided by introducing a re-

distribution process. Based on given minimum/maximum distance thresholds or a fixed

time interval, the marker points are redistributed on the contour according to arc length.

However, such a redistribution process might introduce unwanted smoothing effects into

the curve evolution.

Finally, the preceding model is not able to handle topological changes, thus, it can-

not segment several objects simultaneously. Figure 3.5 illustrates this problem. Here,

the goal is to separate four objects from the background. For this purpose, an explicit

active contour is initialized appropriately and evolves under the above-mentioned motion

equations. Although during the iterations the curve approaches the objects, a correct

segmentation cannot be achieved due to its topological inflexibility. Since the marker

particles are tracked explicitly and stored, e. g., in an array, the neighborhood relations
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between the marker particles are fixed. Therefore, it is not trivial to rearrange the marker

particles and split up the snake into multiple curves. We should note, however, that

several modifications have been proposed to overcome this limitation [77–81].

Figure 3.5: Object segmentation using an explicit geometric snake.

Implicit active contour models that will be discussed in the following section are not

constrained by these limitations. Indeed, numerical stability, accuracy and topological

adaptivity are naturally included in the model.

3.3.2 Implicit Active Contour Models

So far we have represented an active contour by a parametric curve. In a numerical

implementation this curve might be approximated by a collection of equidistant marker

particles. In the following a different, less intuitive, representation for the active contour is

chosen. To remove the need for parametrization, the contour is embedded into an image.

For instance, the contour is given by all image positions containing a value of zero. To

evolve this implicitly represented contour, the entire image has to be considered, and the

values must be changed appropriately. Note that the image that represents the contour

is different from those which contains, for instance, some objects to segment. Of course,

the latter guides the evolution process, but it is independent of the image that holds the

contour.

More formally, to represent a snake implicitly, the initial curve C0 is embedded as a

level set into a function u : IR2 → IR [98], i. e., the snake is represented by a collection of

points having the same value. Figure 3.6a illustrates the level set idea. Here, C0 is given

as the set of points xi ∈ IR2 colored in black. To put it differently, under the assumption

that a black pixel corresponds to a value of zero, the contour is represented by the set of

points xi with u(xi) = 0. Usually the signed distance function is employed to create such
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a level set representation:

u0(x) =




d(x, C0), if x is inside C0

0, if x is on C0

−d(x, C0), if x is outside C0

(3.16)

where d(x, C0) denotes the distance from an arbitrary position to the curve. Thus, the

initial curve C0 is embedded as a zero level set into the function u0.

Figure 3.6: Implicit representation of an active contour. (a) Left: Discretization by a
Euclidean distance transform, (b) Right: Bi-level discretization.

We should emphasize the fundamental difference between explicit and implicit snakes.

To evolve an explicit snake, the equations of motion have to be evaluated for a collection

of marker particles representing the curve. Moving an implicit active contour, however,

requires the evaluation of the motion equations on the entire image domain. This is due

to the fact that the contour is modeled implicitly, its exact location is not given explicitly

by a collection of marker particles.

In order to work with digital images, we have to consider an appropriate discretization

of the level set representation. The signed distance function can be transferred to the

discrete domain by applying a Euclidean distance transform and setting the signs of the

resulting distance values appropriately. Figure 3.6a illustrates the discretization of the

level set representation by such a transform. Note that only absolute values are shown.

The contour is represented as the set of points where u = 0 (black pixels in the figure).

The Euclidean distance for a point lying inside or outside the contour is assigned to the

corresponding pixel (the greater the distance, the brighter the pixel value).

Several algorithms have been proposed for calculating the signed distance function. As

mentioned above, a straightforward approach is to apply a Euclidean distance transform
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and set the signs afterwards. Van den Boomgard [134] introduced an efficient algorithm for

computing the exact Euclidean distance based on separable erosions. Another approach to

calculate distances is provided by the fast marching method [48,113,132]. In this method

grid points near the contour are detected, and their distances are calculated with sub-pixel

accuracy. Those grid points are used for initialization, and the distances are propagated

away from the contour. However, in order to obtain a signed distance function, the fast

marching method has to be executed twice, first, to calculate the distances outside and

second, to compute those inside the contour.

The PDE-based reinitialization technique introduced by Sussman, Smereka, and Osher

[125] and modified in [102, 123, 124] does not have this drawback. In their approach, the

auxiliary partial differential equation

∂φ(x, t)

∂t
= sign(φ0(x))(1− |∇φ(x, t)|)

φ(x, 0) = φ0(x) (3.17)

is solved. Given any initial data for φ0, iterating this equation until convergence results

in a signed distance function whose zero level set is the same as that of the initial data.

Note, however, that usually a number of iterations are necessary for convergence.

In addition to the signed distance representation, we consider a simpler discretization

that we call bi-level representation in the following. The level set function is discretized

by two values a and b, a < b, with one value (a) for positions outside the curve and the

other (b) for positions inside the curve. The curve itself is given as the transition between

the two levels. Figure 3.6b displays a bi-level representation.

In order to move the curve, the function u is evolved under a partial differential

equation. Thus, instead of being tracked explicitly, the curve is implicitly captured on

the fixed grid. The final contour can be easily extracted from the function u.

To carry over curve evolution results obtained above on explicitly modeled (paramet-

ric) curves to the implicit domain, we consider the zero level set of the function u and

its changes over time. Recall that the zero level set represents the curve. Therefore, we

differentiate u(C, t) = 0 with respect to time t, yielding

0 =
∂u

∂t
(x(t), y(t), t) =

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t
+

∂u

∂t

= ∇uT · Ct + ut. (3.18)

Thus, we can employ Equation 3.18 to advance from explicit curve evolution ∂C/∂t
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to image evolution ∂u/∂t.

As for the explicit contour models described above, implicit snakes were derived (1)

under geometric considerations and (2) within an energy minimization framework. We

consider both approaches in the following. Let us first provide two definitions that will

prove useful further on. It is well known that normal n and curvature κ with respect to

a level set are given by

n = − ∇u

|∇u| , κ = div

( ∇u

|∇u|
)
=

uxxu
2
y − 2uxuyuxy + uyyu

2
x

(u2
x + u2

y)
3/2

. (3.19)

Here, with respect to the definition of the level set representation in Equation 3.16, n is

the outward normal to a level set. While the curvature κ is negative for convex curve

segments, it is positive for concave parts of the curve.

3.3.2.1 Implicit Geometric Active Contour Model

The implicit geometric active contour model was proposed by Caselles, Catté, Coll, and

Dibois [21] and later on by Malladi, Sethian, and Vemuri [73]. It can be obtained by

replacing Ct in Equation 3.18 by Equation 3.6:

∂u

∂t
= −∇uT · (g(x)(κ+ k) · n) . (3.20)

The original model is obtained by replacing the normal n and the curvature κ by the

expressions from Equation 3.19:

∂u

∂t
= g(x)|∇u|

(
div

( ∇u

|∇u|
)
+ k

)
. (3.21)

Remember that k denotes a constant force that causes the contour either to shrink or

to expand. And g denotes the stopping function as given in Equation 3.5.

In order to illustrate how the level set function evolves under constant force and mean

curvature, we applied the above model to a test image once without the curvature term

(pure erosion/dilation) and once without the force term (mean curvature motion). Fig-

ures 3.7 and 3.8 display the evolution of the signed distance representation, the bi-level

representation and the zero level set (extracted from the signed distance representation)

over time. Note that the evolution of a contour represented by a signed distance func-

tion slightly differs from the corresponding bi-level representation. We will discuss this

difference later on.
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Figure 3.7: Implicit snake evolving at constant speed (k < 0). (a) Top row: Signed
distance representation, (b) Middle row: Bi-level representation, (c) Bottom row:

Extracted contour (zero level set) from signed distance representation.

Let us now consider object segmentation with the implicit geometric active contour

model. Figure 3.9 displays the segmentation of an object (shown in light gray) by an

implicit snake. Setting the force amplitude k to zero (see top row) yields the following

observations: The shrinking process of the contour starts at the corners of its initialization.

This is due to the fact that the local curvature κ is unequal to zero at these points. Thus,

the temporal change ∂tu = g(x)|∇u|κ is also unequal to zero, hence the contour moves.
During the evolution process the contour approximates a circle. When approaching the

object’s boundary, parts of the contour cease to move due to the vanishing stopping

function (g ≈ 0). Note that the contour remains always convex. Consequently, the
model is not able to approximate concave parts of the boundary. This property can

also be obtained directly from the equation ∂tu = g(x)|∇u|κ. The temporal change
at a position is (close to) zero if (1) the stopping function g vanishes, i. e., an object

boundary is reached, or (2) if the local curvature κ is zero, i. e., the contour segment

under consideration approximates a straight line.

In the bottom row of Figure 3.9, the force term pushes the curve towards the object

boundaries. Note, however, that the model fails to approximate the object boundaries
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Figure 3.8: Implicit snake evolving under mean curvature motion. (a) Top row: Signed
distance representation, (b) Middle row: Bi-level representation, (c) Bottom row:

Extracted contour (zero level set) from signed distance representation.

Figure 3.9: Evolution of an implicit geometric snake. (a) Top row: k = 0, (b) Bottom

row: k = −0.25.

near the center. At these positions large curvature values of the contour neutralize the

constant force term.

Thus, we observe that the force term and its value are of crucial importance for the
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geometric model. Next, we discuss the geodesic model that introduces an additional term,

which reduces the role of the force term.

3.3.2.2 Implicit Geodesic Active Contour Model

An implicit snake model has also been developed based on energy minimization. This

model is usually called the implicit geodesic active contour model and has been proposed

simultaneously by Caselles, Kimmel and Sapiro [23] and Kichenassamy, Kumar, Olver,

Tannenbaum and Yezzi [59]. In general, the shortest distance between two points on

a surface is denoted as geodesic. By defining an image-induced distance metric that is

minimal at object boundaries, a geodesic curve will be attracted to these positions and

thus segregates the object from the background.

Based on the observation that minimizing the explicit snake energy defined in Equation

3.7 with α > 0 and β = 0 decreases also the curvature [21], a modified contour energy is

proposed, namely,

Eint(C(s, t)) =

∮
C(s,t)

(
α
2
|Cs(s, t)|2 − γ|∇I(C(s, t))|2) ds. (3.22)

Under some additional assumptions (see [23]) the following curve evolution equation

is derived
∂C(s, t)

∂t
= g(x)κ(s, t)n(s, t)− (∇g(x)T · n(s, t))n(s, t). (3.23)

Again, the balloon force kn introduced in Equation 3.11 can be easily integrated into

the model, yielding

∂C(s, t)

∂t
= g(x)(κ(s, t) + k)n(s, t)− (∇g(x)T · n(s, t))n(s, t). (3.24)

By embedding Equation 3.24 as zero level set into u, we obtain the implicit geodesic

active contour model, namely,

∂u

∂t
= |∇u|div

(
g(x)

∇u

|∇u|
)
+ kg(x)|∇u|. (3.25)

Using the fact that

div

(
g(x)

∇u

|∇u|
)
= g(x)div

( ∇u

|∇u|
)
+∇gT · ∇u

|∇u| (3.26)
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we can rewrite Equation 3.25 as

∂u

∂t
= g(x)|∇u|

(
div

( ∇u

|∇u|
)
+ k

)
+∇uT · ∇g. (3.27)

We observe that the implicit geodesic active contour model differs from its geometric

counterpart only by the addition of the term ∇uT · ∇g.

Figure 3.10 displays the behavior of the implicit geodesic model. As in the geometric

model, the shrinkage process starts at the corners of the initialization. During the first

period the contour approximates a circle due to the mean curvature component. However,

we observe that even without a force term the model is capable of approximating the

concave parts of the object under consideration. This is due to the additional term

∇uT · ∇g which increases the attraction of the contour near the object boundary.

Figure 3.10: Evolution of an implicit geodesic snake. (a) Top row: k = 0, (b) Bottom

row: k = −0.25.

Finally, we repeat the segmentation task as depicted in Figure 3.5. This time an

implicit geodesic snake is employed for object segmentation. Figure 3.11 displays the

evolution of the implicit snake. In contrast to the explicit model, this model is able to

split up and to detect the four objects simultaneously. The topological flexibility is due to

the implicit representation of the contour. Since calculations are performed on the entire

image domain rather than on explicit contour particles, splitting and merging is naturally

included in the process.
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Figure 3.11: Object segmentation using an implicit geodesic snake.

3.3.2.3 Numerical Implementation

Let us rewrite Equation 3.27 to emphasize the different terms involved in the process of

curve evolution:

∂u

∂t
= g(x)|∇u|κ︸ ︷︷ ︸

mean curvature motion

+

constant force︷ ︸︸ ︷
g(x)|∇u|k + ∇uT · ∇g︸ ︷︷ ︸

pure advection

. (3.28)

In the following we consider discretizations of these three terms separately [8,114]. To

simplify matters we assume for a moment that the stopping function g is equal to one on

the entire image domain (g := 1).

Again, we employ discrete times tn := nτ , where n ∈ IN0 and τ denotes the size of

the time step. Additionally, an image is divided by a uniform mesh of spacing h = 1

into grid nodes (i, j). Thus, using standard notation, un
ij denotes the approximation of

u(ih, jh, tn).

We employ the following discretizations for space and time derivatives. The time

derivatives are discretized by forward difference approximations:

∂u

∂t

∣∣∣∣n
ij

≈ un+1
ij − un

ij

τ
. (3.29)

For the spatial derivatives, we define the following approximations. First, similar to the

approximations used for the explicit active contour models, we define central differences
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as usual:

∂u

∂x

∣∣∣∣n
ij

≈ un
i+1j − un

i−1j

2h
,

∂u

∂y

∣∣∣∣n
ij

≈ un
ij+1 − un

ij−1

2h

∂2u

∂x2

∣∣∣∣n
ij

≈ un
i+1j − 2un

ij + un
i−1j

h2
,

∂2u

∂y2

∣∣∣∣n
ij

≈ un
ij+1 − 2un

ij + un
ij−1

h2

∂2u

∂x∂y

∣∣∣∣n
ij

≈ (u
n
i+1j+1 − un

i+1j−1)− (un
i−1j+1 − un

i−1j−1)

4h2
.

(3.30)

Additionally, we define forward (D+) and backward (D−) approximations of the spatial

derivatives:

D+xun
ij =

un
i+1j − un

ij

h
, D−xun

ij =
un
ij − un

i−1j

h

D+yun
ij =

un
ij+1 − un

ij

h
, D−yun

ij =
un
ij − un

ij−1

h
.

(3.31)

First, we provide a discretization of the mean curvature term [8,114], thus considering

the evolution equation ∂tu = |∇u|κ. This equation is a parabolic partial differential
equation, it can be approximated by using central differences in space. Therefore the

curvature and the gradient are approximated by using the spatial derivatives as given in

Equation 3.30.

Thus, we obtain the following discretization for the mean curvature motion equation

un+1
ij = un

ij + τκn
ij |∇0un

ij| (3.32)

where ∇0 denotes the approximation of the gradient by using central differences.

Second, we discretize the erosion/dilation equation ∂tu = k|∇u|. This equation derived
for constant speed evolution is a hyperbolic partial differential equation. Therefore, it is

necessary to approximate the gradient by an upwind scheme, for instance [90, 114],

|∇un
ij| ≈




|∇−un
ij| =

(
max(D−xun

ij, 0)
2 +min(D+xun

ij, 0)
2

+max(D−yun
ij, 0)

2 +min(D+yun
ij, 0)

2
)1/2

, if k < 0

|∇+un
ij| =

(
min(D−xun

ij, 0)
2 +max(D+xun

ij, 0)
2

+min(D−yun
ij, 0)

2 +max(D+yun
ij, 0)

2
)1/2

, if k > 0

(3.33)
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Consequently, the numerical algorithm for constant speed evolution is given as

un+1
ij = un

ij + τ
(
min(k, 0)|∇−un

ij|+max(k, 0)|∇+un
ij|
)

(3.34)

where the appropriate gradient approximation is chosen depending on the sign of the

constant force k.

Finally, we consider the advection equation ∂u/∂t = ∇uT · ∇g. Again, we employ a

simple upwind scheme, using only information from the appropriate direction,

un+1
ij = un

ij + τ
(
max(D0xgij, 0)D

+
x u

n
ij +min(D

0xgij, 0)D
−
x u

n
ij

+max(D0ygij, 0)D
+
y u

n
ij +min(D

0ygij, 0)D
−
y u

n
ij

)
. (3.35)

Putting things together, we can formulate a discretization of the implicit geometric

and the implicit geodesic active contour model, respectively. To this end, we combine

the terms given in Equations 3.32, 3.34, 3.35 and integrate the stopping function g. This

results in

un+1
ij = un

ij + τ
(
gijκ

n
ij|∇0un

ij |+min(kgij, 0)|∇−un
ij|+max(kgij, 0)|∇+un

ij|
)

(3.36)

for the geometric model. Similarly, the geodesic model is given by

un+1
ij = un

ij + τ
[
gijκ

n
ij |∇0un

ij|+min(kgij, 0)|∇−un
ij|+max(kgij , 0)|∇+un

ij|
+
(
max(D0xgij, 0)D

+
x u

n
ij +min(D

0xgij, 0)D
−
x u

n
ij

+max(D0ygij, 0)D
+
y u

n
ij +min(D

0ygij, 0)D
−
y u

n
ij

) ]
. (3.37)

We are now able to compare the numerical implementations of the explicit and implicit

active contour models presented so far. For this purpose we highlight an experimental

result that will be discussed in detail in Section 3.4.3. A simple segmentation task, the

segregation of a square from a uniform background, was performed by both an explicit and

an implicit geometric active contour model. With parameters set to τ = 0.25, k = −0.1,
both implementations required the same number of iterations. However, a single iteration

of the implicit model is computationally more complex. Thus, the explicit snake was

about 100 times faster than the implicit implementation.

The main reason for the computational inefficiency of the latter implementation is the

implicit representation of the contour. Since computations are not limited to a certain
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number of marker particles but are carried out on the entire image domain, the simple

algorithm for implicit active contours is considerably slower than its explicit variant.

Thus, in the following section we will discuss methods that improve the computational

efficiency of implicit active contour models significantly.

3.4 Efficient Implementation of Implicit Active Con-

tour Models

Reconsidering the numerical implementation for implicit snakes presented in the previous

section, we observe two areas with room for improvement. First, although only the zero

level set is relevant to the final segmentation result, the partial differential equation is

evaluated on the entire image domain (full-matrix method). Therefore, it might be useful

to limit the calculation area. However, special care must be taken to retain the splitting

and merging capabilities of the implicit model.

Second, in all experiments conducted so far, we have employed a rather small time step

τ ≤ 0.25. This is due to the fact that the above-mentioned numerical implementations
are stable only for small time steps. Developing a numerical scheme that would remove

this limitation should thus improve the computational efficiency.

We start with so-called narrow-band methods which exploit the first observation and

develop a novel scheme for creating small calculation areas based on simple morphological

operators. We then proceed with efficient numerical schemes and present a unified nu-

merical approximation of the implicit geometric and the implicit geodesic active contour

models. Note that our algorithms can be easily combined with well-known multiresolution

methods [18].

3.4.1 Narrow-band Methods

The narrow-band method was introduced by Chopp [26]. The basic idea is to perform

calculations only within a small tube around the evolving curve. Positions outside the

tube do not change their values. Figure 3.12 displays an example of a narrow band.

During the evolution of the curve the narrow band must also move or has to be rebuilt

once the curve reaches the tube’s boundary. A number of approaches to constructing and

maintaining narrow-band structures have been proposed [3, 102].

The main advantage of our scheme is that it is applicable to both the signed distance

and the bi-level representations. Furthermore, it relies on simple morphological operators
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Figure 3.12: Narrow band constructed around an evolving contour.

which can be implemented very efficiently. The only condition that must be fulfilled is

that pixels outside the contour have smaller values than those inside. Note that both the

signed distance discretization and the bi-level representation meet this requirement by

definition. In the following we show that for the purpose of narrow-band creation both

representations can be reduced to binary images.

Consider an initial image u0 constructed from an initial contour C0 by a signed distance

transform. Then, as described above, the contour is given as the zero level set and at each

image position the distance to the contour is known. In addition, pixel values inside the

contour are positive, while those outside are negative. It is straightforward to construct a

narrow band of width 2M +1 (2M if the zero level set is located on a sub-pixel position)

from the initial image u0 by only considering image positions xj with |u0(xj)| ≤ M . Then,

to evolve the curve only positions within the tube are considered, while the values outside

are frozen. After a number of iterations, the contour, i. e., the zero level set, might reach

the boundary of the narrow band at some position. To capture the contour in further

iterations, it is necessary to rebuild the tube. This is not as simple as in the initial case

since the values outside the tube are frozen. Thus, considering image positions xj with

|u0(xj)| ≤ M does not necessarily move the boundary of the narrow band away from the

curve.

Hence, we must develop a technique that constructs a new narrow band based on the

contour’s current location. Using the fact that values outside (inside) the contour are

negative (positive), we can reduce the problem to a binary image:

b(x) =

{
0, if u(x) < 0

1, if u(x) ≥ 0 . (3.38)
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When the bi-level representation is used, the pixel values do not contain distance

information. Therefore, the straightforward narrow-band creation as described above is

not possible. However, we also can reduce the bi-level representation to a binary image:

b(x) =



0, if u(x) <

a + b

2

1, if u(x) ≥ a+ b

2

(3.39)

where a and b (a < b) denote the two values of the bi-level initialization.

The construction of the new narrow band is then achieved by applying two basic

morphological operators, binary dilation and binary erosion, to the image f . Let us recall

the definitions of the following morphological operators:

binary erosion: (f(p)� B) := min{f(q)|q ∈ B(p)},
binary dilation: (f(p)⊕ B) := max{f(q)|q ∈ B(p)}, (3.40)

morphological gradient: (f(p)⊕ B)− (f(p)� B),

where B is a so-called flat-structuring element usually centered over the image position p.

Figure 3.13 displays the results of the operators applied to a binary image. While erosion

shrinks the white blob on the background, dilation inflates its boundaries. Finally, the

morphological gradient detects edges. Note that the radius of shrinkage, inflation, and

edge detection depends on the size of the structuring element.

Figure 3.13: Narrow-band construction with morphological operators. From left to

right: (a) Binary image from signed distance function, (b) erosion with square-shaped
structuring element, (c) dilation with square-shaped structuring element, (d) morpholog-
ical gradient.

We observe that to construct a narrow band of size 2M , one simply has to apply

the morphological gradient with a structuring element of radius M . The gradient value
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determines whether an image pixel belongs to the narrow band or not: Image positions

with a gradient value equal to zero are outside the tube while the other positions are

located in the narrow band.

In the case of a binary image, the morphological operators defined above can be

calculated by logical and operations (erosion) and logical or operations (dilation) in the

area of the structuring element. When a square-shaped structuring element is used, both

the erosion and the dilation operator are separable; thus, they can be implemented very

efficiently.

To illustrate the process by an example, we consider in the following a one-dimensional

image evolving under the equation ∂tu = −|∂xu| over time. This equation is the one-
dimensional equivalent to the constant force term (k < 0) used in both implicit active

contour models. The numerical implementation is given by

un+1
i = un

i − τ

√(
max

(
un
i − un

i−1

h
, 0

))2

+min

((
un
i+1 − un

i

h
, 0

))2

. (3.41)

Consider as the initial image u(x, 0) the following pixel data obtained from a signed

distance function. We use a narrow band of width 5 and print values inside the narrow

band in bold face.

u(x, 0.0): -5 -4 -3 -2 -1 0 1 2 3 4 5

Iterating u under Equation 3.41 considering only the image position within the narrow

band yields the following:

u(x, 0.5): -5.0 -4.0 -3.0 -2.5 -1.5 -0.5 0.5 1.5 3.0 4.0 5.0

u(x, 1.0): -5.0 -4.0 -3.0 -2.8 -2.0 -1.0 0.0 1.0 3.0 4.0 5.0

u(x, 1.5): -5.0 -4.0 -3.0 -2.9 -2.4 -1.5 -0.5 0.5 3.0 4.0 5.0

u(x, 2.0): -5.0 -4.0 -3.0 -2.9 -2.6 -1.9 -1.0 0.0 3.0 4.0 5.0

We observe that the zero level set reaches the tube’s boundary at T = 2.0. Thus, a

reconstruction of the narrow band is necessary. According to Equation 3.38, the following
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binary image is derived from u:

b(x, 2.0): 0 0 0 0 0 0 0 1 1 1 1

By applying the morphological gradient with a structuring element of radius M = 2,

the new narrow band (of size 2M) is obtained. Note that we assume that the border

values have been replicated.

b′(x, 2.0): 0 0 0 0 0 1 1 1 1 0 0

u(x, 2.0): -5.0 -4.0 -3.0 -2.9 -2.6 -1.9 -1.0 0.0 3.0 4.0 5.0

We observe that the signed distance function is not maintained on u during the evolu-

tion. This is due to the fact that the values outside the narrow band are frozen.2 To keep

u as a signed distance function inside the narrow band, a technique as the one described

in Section 3.3.2 might be used.

Returning to our example, we apply the numerical implementation of the one-dimensional

variant of Equation 3.17, ∂tφ = sign(φ0)(1 − |∂xφ|), to the one-dimensional image u

(see [125] for details). This yields after a few iterations

u′(x, 2.0): -5.0 -4.0 -3.0 -2.9 -2.6 -2.0 -1.0 0.0 1.0 4.0 5.0

As previously mentioned, the narrow band must be reconstructed if the contour is

close to the tube’s boundary. Thus, indicators are required to trigger the reconstruction

process. For this purpose we place so-called guards at the boundaries of the narrow

band [3, 114]. If the approaching contour is detected at one of these guard positions, the

narrow band will be reconstructed. In the case of the signed distance representation this

detection is straightforward since at each position within the narrow band the distance

to the contour is known.

For the bi-level representation the situation is different. Let a < b denote the two

levels used to create the initial image u0 and let g = (gi, gj) denote a guard position.

Then, a transition from a to b at such a guard position indicates that the contour has

passed by the narrow band’s boundary:

2Even if narrow-band techniques are not employed, u might deviate from the signed distance function
during evolution [8, 102, 124, 125].
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(
un+1
g − a + b

2

)(
un
g −

a+ b

2

)
< 0. (3.42)

However, since the narrow band should be reconstructed when the contour is close to

the boundary but has not yet passed it, it is useful to introduce a distance offset into

the previous equation. For instance, denoting the distance offset by d, the reconstruction

process is triggered if (
un+1
g − a+ b

2
− d

)(
un
g −

a+ b

2
− d

)
< 0, (3.43)

or (
un+1
g − a+ b

2
+ d

)(
un
g −

a+ b

2
+ d

)
< 0. (3.44)

The distance offset d moves the transition point closer to a or b depending on its sign.

Therefore the reconstruction process is triggered before the contour reaches the boundary

of the narrow band.

3.4.2 Semi-implicit Discretization

Obviously, the performance of implicit snake algorithms depends on the time step. How-

ever, the numerical implementations presented so far restrict the time step to small

values. As we will see further on, this restriction results from the chosen temporal

discretization. Let us recall the discretization of the mean curvature motion equation

∂tu = div (∇u/|∇u|), namely,

un+1
ij = un

ij + τκn
ij |∇0un

ij|. (3.45)

Note that only values from the previous time level n are used to compute values on

the time level n + 1. This updating scheme is often referred to as the explicit updating

scheme.3

To overcome the limitation caused by the explicit updating scheme, we can employ

different temporal discretizations, for instance, an implicit updating scheme as

un+1
ij = un

ij + τκn+1
ij |∇0un+1

ij |. (3.46)

Here, in contrast to the explicit scheme, values on time level n + 1 depend on other

3We should note the different meanings of the word explicit in the terms explicit snake and explicit up-
dating scheme. While in the first case the word explicit is used to define a specific contour representation,
it describes a numerical approximation in the latter case.
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values at the same time level. Note that the solution un+1
ij cannot be directly determined

from this scheme. Instead, a system of equations has to be solved. However, the implicit

updating scheme is well behaved for any choice of τ , thus, it is referred to as being

unconditionally stable.

In the following we develop a numerical algorithm for both the geometric and the

geodesic active contour models based on a semi-implicit updating scheme [68, 140]. It

provides the same stability properties as an implicit scheme. In addition, it is much

easier to implement. Note that the narrow-band technique developed above can be easily

combined with this implementation.

We should note that our approach is not the first semi-implicit scheme proposed for

implicit snakes. The first proposal for geodesic active contours was made by Goldenberg,

Kimmel, Rivlin, and Rudzsky [37, 38]. Their implementation is based on the observation

that the magnitude of the gradient of an image initialized by the signed distance function

is equal to 1.0 at each position, |∇u|ij = 1 for all i, j. Thus, Equation 3.25 (without the
force term) reduces to the following equation

∂u

∂t
= div (g∇u) . (3.47)

which is closely related to the nonlinear diffusion equation [24].

An efficient and reliable scheme for this equation, the so-called additive operator split-

ting (AOS) scheme, was introduced by Weickert et al. [142] (see also [71]). However, as

observed in the previous section, the image u deviates quickly from the signed distance

function under image evolution. Therefore, the scheme by Goldenberg et al. requires a

reinitialization of u in each iteration. As a remedy Weickert [139] proposed an AOS-based

scheme for geodesic snakes with harmonic averaging. In the following we extend Weick-

ert’s scheme to include both the geometric and the geodesic active contour models and

also cover the force term that is of crucial importance in the geometric model.

Let us consider the following equation which unifies the geometric (Equation 3.21)

and the geodesic active contour models (Equation 3.25) by introducing two additional

functions a and b:

∂u

∂t
= a(x)|∇u|div

(
b(x)

|∇u|∇u

)
+ |∇u|kg(x). (3.48)

Setting a := g, b := 1 yields the geometric model, while a := 1, b := g results in the

geodesic model. For the sake of clarity, we assume a constant force k = 0 in the following

and discuss the complete model later on.
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Interpreting the term b(x)
|∇u| as “diffusivity”, we can employ techniques similar to those

described in [142] in the context of nonlinear diffusion filtering. As usual, an image is

divided by a uniform mesh of spacing h = 1 into grid nodes xi. Again, u
n
ij denotes the

approximation of u(ih, jh, τn). Then, the term div ((b(x)/|∇u|)∇u) can be discretized as

follows:

div

(
b(x)

|∇u|∇u

)
≈ ∂x

((
b

|∇u|
)

ij

ui+ 1
2
j − ui− 1

2
j

h

)
+ ∂y

((
b

|∇u|
)

ij

uij+ 1
2
− uij− 1

2

h

)

≈
(

b

|∇u|
)

i+ 1
2
j

ui+1j − uij

h2
−
(

b

|∇u|
)

i− 1
2
j

uij − ui−1j

h2
+(

b

|∇u|
)

ij+ 1
2

uij+1 − uij

h2
−
(

b

|∇u|
)

ij− 1
2

uij − uij−1

h2

≈

(
b

|∇u|

)
i+1j
+
(

b
|∇u|

)
ij

2

ui+1j − uij

h2
−

(
b

|∇u|

)
ij
+
(

b
|∇u|

)
i−1j

2

uij − ui−1j

h2
+(

b
|∇u|

)
ij+1
+
(

b
|∇u|

)
ij

2

uij+1 − uij

h2
−

(
b

|∇u|

)
ij
+
(

b
|∇u|

)
ij−1

2

uij − uij−1

h2
.

(3.49)

Note that the values for (b/|∇u|)i+1/2j and (b/|∇u|)ij+1/2 are obtained by linear interpo-

lation.

To simplify the notation, a discrete image is represented in the following as a vector

f ∈ IRN , whose components fi, i ∈ {1, . . . , N} contain the pixel values. Consequently,
pixel i corresponds to a grid node xi. Then, u

n
i denotes the approximation of u(xi, tn).

Thus, using the above discretization, Equation 3.48 with k = 0 can be written as

un+1
i = un

i + τ


 ai|∇u|ni

∑
j∈N (i)

(
b

|∇u|

)n
i
+
(

b
|∇u|

)n
j

2

un+1
j − un+1

i

h2


 , (3.50)

where N (i) denotes the 4-neighborhood of the pixel at position xi. Note that this dis-

cretization is referred to as semi-implicit since values from both the time levels n and

n+ 1 are required in the calculations.

However, in order to compute Equation 3.50, we must ensure that the gradient mag-
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nitude is larger than zero in the entire image domain. When the signed distance function

and frequent reinitializations are used this is not a problem because |∇u| ≈ 1 can be
guaranteed. However, when the bi-level representation is used, the situation is different.

First, in flat image areas the gradient vanishes. We can solve this problem by evaluating

only image positions with |∇u| �= 0. In addition, even if the gradient magnitude is larger
than zero at a certain image position, it might vanish in the 4-neighborhood of the pixel.

Thus, a straightforward finite difference implementation such as the one above would give

rise to numerical problems.

These can be avoided by employing a finite difference scheme with harmonic averaging

[139]. Thus, replacing the term

((
b

|∇u|

)n
i
+
(

b
|∇u|

)n
j

)
/2 in Equation 3.50 by its harmonic

counterpart 2/

((
|∇u|
b

)n
i
+
(

|∇u|
b

)n
j

)
yields the following semi-implicit discretization:

un+1
i = un

i + τ


 ai|∇u|ni

∑
j∈N (i)

2(
|∇u|
b

)n
i
+
(

|∇u|
b

)n
j

un+1
j − un+1

i

h2


 . (3.51)

Note that by evaluating only image positions with |∇u|i �= 0, the denominator in this
scheme cannot vanish. In matrix-vector notation we can rewrite this as follows:

un+1 = un + τ


 ∑

l∈{x,y}
Al(u

n)


un+1. (3.52)

The matrix Al(u
n) = (âijl(u

n)) is given by

âijl(u
n) :=




ai|∇u|ni 2

( |∇u|
b )

n

i
+( |∇u|

b )
n

j

, j ∈ Nl(i)

−ai|∇u|ni
∑

m∈Nl(i)

2

( |∇u|
b )

n

i
+( |∇u|

b )
n

m

, j = i

0, else,

(3.53)

where Nl(i) represents the two neighboring pixels with respect to direction l ∈ {x, y}.
Due to the semi-implicit character of the scheme, the solution un+1,

un+1 =


I − τ

∑
l∈{x,y}

Al(u
n)


−1

un, (3.54)

cannot be directly computed. Instead, it is necessary to solve a linear system of equations.

Reformulating Equation 3.54 within the AOS scheme [142] yields
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un+1 =
1

2

∑
l∈{x,y}

(I − 2τAl(u
n))−1 un. (3.55)

Note that the term (I − 2τAl(u
n)) results in a strictly diagonally dominant tridiagonal

linear system which can be solved very efficiently [90]. As previously said, this semi-

implicit scheme is unconditionally stable, so, we can apply arbitrarily large time steps.

However, we have so far neglected the constant force term |∇u|kg (cf. Equation 3.48).
This term stems from the hyperbolic equation ∂tu = ±|∇u|. Consequently, in a numerical
implementation the gradient has to be approximated by an upwind scheme (cf. Equation

3.33). Integrating the constant force term into Equation 3.55 is straightforward and yields

for k < 0:

un+1 =
1

2

∑
l∈{x,y}

(I − 2τAl(u
n))−1 (un + τ |∇−u|nkg) . (3.56)

Since the dilation/erosion equation approximated on a grid with h = 1 is stable only

for τ ≤ 0.5 [98], the constant force term limits the applicable time step. Consequently,
Equation 3.56 is stable only for |τkg| ≤ 0.5. However, since g is bounded by one, k is

usually a small fraction of 1.0, and very large time steps (τ > 5.0) degrade accuracy

significantly [139, 142], this constraint is not severe.

3.4.3 Experimental Results

In this section we investigate the accuracy and the computational efficiency of the vari-

ous active contour algorithms developed above. We discuss some implementation details

and provide the results of a number of implicit snake implementations, namely, the full-

matrix method, the narrow-band method, the AOS-based method, and the combined

AOS/narrow-band method. In addition, for the purpose of comparison, we develop a

simple algorithm for explicit snakes.

All algorithms are applied to three test images (cf. Figure 3.14) using a standard PC

(AMD Athlon 1.4 GHz running Linux). The goal in each case is to approximate the object

boundaries by the contour. We use the single-square image to check whether the contour

is able to approximate the corners well. In the shamrock image the object boundary

has varying curvatures, thus, the evolving contour must meet different demands. Finally,

the 4-square image is used to demonstrate the splitting capabilities of the contour under

consideration.

Since the objects can be easily segregated from the background, the true object bound-
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Figure 3.14: Test objects (light gray) and initial contours (black). (a) Left: Single-
square image, 256 × 256 pixels, (b) Middle: Shamrock image, 128 × 128 pixels, (c)
Right: 4-square image, 128× 128 pixels.

aries are well-known and can be compared to the final contour. To this end, a simple

distance measure was developed: Given a final contour and a reference contour (e.g.,

the true object boundary), the distance to the nearest pixel on the reference contour is

calculated for each pixel on the final contour. Averaging these values yields the average

distance (in pixels) between the two contours and thus the error.

3.4.3.1 Explicit Snake Implementation

Based on Section 3.3.1.3, we can formulate a simple algorithm to evolve an explicit snake.

Recall that in this approach the contour is modeled explicitly by a collection of marker

particles. As noted above, numerical problems may occur when two neighboring marker

particles come together. Thus, we employ a periodic redistribution procedure that rear-

ranges the marker particles on the contour. The different steps of the algorithm are as

follows:

(1) Distribute equally spaced marker particles p0i = (x
0
i , y

0
i ) with distance h on the

initial contour C0.

(2) If a neighboring marker particle pair pi, pj , i �= j exists with |pi − pj | < ∆s,

then interpolate the contour linearly from the current set of marker particles and

redistribute marker particles with distance h.

(3) Calculate relocated contour Cn+1 from Cn using Equation 3.15.

(4) Iterate steps 2 and 3 until stability has been attained.

To indicate a stable steady state, the following criterion is used:
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∑
i

√(
xn+1
i − xn

i

)2
+
(
yn+1
i − yni

)2
< ε. (3.57)

We applied the preceding algorithm to the three test images single-square, shamrock,

and 4-square. In each case we ran the algorithm without the force term (k = 0) and

with the force term (k = −0.1). However, we did not consider the 4-square image in

conjunction with k = −0.1. This constellation requires topological adaptivity which is
not included in the explicit approach. The results are summarized in Table 3.1. Note

that the stopping criterion was not employed. Instead, to facilitate comparisons with the

implicit models that will be discussed later, we employed a fixed number of iterations and

a standard parameter set. Therefore, as indicated in the distance column of the table,

the final contour might differ from the true object boundary.

explicit active contour model (∆s = 2.0, h = 5.0)
image τ k iterations CPU time distance

single square 0.25 0.0 24800 2.15 s 1.89
single square 0.25 -0.1 3200 0.34 s 1.45
shamrock 0.25 0.0 13800 3.05 s 3.05
shamrock 0.25 -0.1 11400 1.73 s 1.73
4 squares 0.25 0.0 13200 0.79 s 5.51
4 squares 0.25 -0.1 - - -

Table 3.1: Performance of the explicit active contour model.

The shamrock image illustrates that the force term is of crucial importance for the

model. A force term with k < 0 significantly improves the final placement of the contour.

The computation times required by the explicit snake implementation will serve as a

reference for the implicit snake implementations discussed in the following.

3.4.3.2 Implicit Snake Implementation: Full-matrix Method

We start our discussion on implicit snakes with their simplest implementation, namely,

the full-matrix method. This method calculates the underlying PDE on the entire image

domain. Consequently, we can expect poor computational efficiency.

The purpose of this section is twofold. We present computation times for different

models and parameter sets. In addition, we compare the accuracy and efficiency of the

signed distance initialization and the bi-level initialization as presented in Section 3.3.2.

Let us first turn to the different initialization methods. When using signed distance
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initialization two situations must be considered: (1) the construction of the initial image

u0 and (2) keeping u as a signed distance function during image evolution. To obtain the

initial image u0 we applied a fast distance transform algorithm based on one-dimensional

erosion [134]. In order to maintain u as a signed distance function, the magnitude of

the gradient of u must be monitored. Remember that an image initialized to a signed

distance function has a gradient magnitude of 1.0 at each image position. If the average

gradient magnitude differs from this by a certain amount, a reinitialization process will

be triggered. In our implementation we employed an auxiliary PDE for reinitialization as

proposed by Peng et al. [102]. Usually a few iterations suffice to reinitialize u to a signed

distance function.

The bi-level initialization is simpler. Here, the construction of the initial image u0

is straightforward. Furthermore, a reinitialization procedure is not employed. However,

numerical problems may occur in areas of flat gradients when using bi-level initialization

since the denominator of the curvature term div(u/|∇u|) vanishes. This case is treated
numerically by not imposing changes at these image positions.

Figure 3.15 displays the evolution of an implicit geodesic active contour on the two

different initializations. We observe that the signed distance representation leads to a

slightly quicker evolution than its bi-level counterpart. The final placement of the contour

is identical.

Figure 3.15: Evolution of an implicit geodesic snake under signed distance and bi-level
initialization. From left to right: Iterations 1000, 2000, 3000, 4000, 6000. (a) Top

row: Bi-level initialization, (b) Bottom row: Signed distance initialization.

After these visual inspections we shall investigate these differences more precisely. For

this purpose we extract two contours at every 100 iterations, one from the signed distance
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image and the other from the bi-level image. These two contours are compared using

the above-mentioned contour distance measure. This is done for each pair of extracted

contours yielding minimum, average, and maximum distance for the entire curve evolution

process. Table 3.2 summarizes the results. Each row contains the minimum, average, and

maximum distance of a contour evolving on a bi-level initialization to a contour evolving

on a signed distance function. We note that despite large differences at certain points in

time, the average distance is still rather small. Especially when a force term is applied

the results are nearly identical.

contour distance (pixels)
model image k minimum average maximum

geometric single square 0.0 0.29 1.60 4.00
geometric single square -0.1 0.14 0.83 1.08
geometric shamrock 0.0 0.87 1.35 3.15
geometric shamrock -0.1 0.88 1.50 2.41
geometric 4 squares 0.0 0.26 0.95 2.20
geometric 4 squares -0.1 0.56 1.37 4.05
geodesic single square 0.0 0.02 2.81 11.77
geodesic single square -0.1 0.02 0.67 1.45
geodesic shamrock 0.0 0.01 1.36 8.67
geodesic shamrock -0.1 0.00 0.27 2.15
geodesic 4 squares 0.0 0.05 1.65 5.97
geodesic 4 squares -0.1 0.05 0.47 1.81

Table 3.2: Contour differences caused by initialization methods.

Table 3.3 which displays the results calculated on the test images with different mod-

els, parameters, and initializations underlines this observation. In all cases the chosen

initialization method hardly influenced the final result. The signed distance function

leads to a slightly higher accuracy.

Let us discuss Table 3.3 in detail. First of all, the number of iterations required in each

case resulted from a simple stopping criterion. To indicate that a contour has reached a

stable state we used the following stopping criterion: Every time a certain period ∆tk has

elapsed the average value of the evolving image u will be calculated. E. g., when setting

∆tk = 50 and τ = 0.25, the average value is computed every 200 iterations. The process

stops if two consecutive measurements differ by less than an accuracy parameter α. In all

experiments conducted on bi-level initializations the parameters for the stopping criterion

were set to ∆tk = 50 and α = 0.01. In order to facilitate comparisons we used the same

number of iterations in the cases with signed distance initialization.
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geodesic model (τ = 0.25)
image initialization k iterations CPU time reinit. distance

single square bi-level 0.0 19200 288.72 - 0
single square signed dist. 0.0 19200 555.75 9118(1) 0
single square bi-level -0.1 3200 46.52 - 0
single square signed dist. -0.1 3200 92.84 1535(1) 0
shamrock bi-level 0.0 13800 43.88 - 0.04
shamrock signed dist. 0.0 13800 99.97 3064(2.8) 0.04
shamrock bi-level -0.1 11600 47.01 - 0.04
shamrock signed dist. -0.1 11600 72.96 1533(3) 0.04
4 squares bi-level 0.0 5800 9.78 - 4.32
4 squares signed dist. 0.0 5800 51.27 2505(2.4) 4.39
4 squares bi-level -0.1 2600 22.70 - 0
4 squares signed dist. -0.1 2600 21.13 599(3.7) 0

geometric model (τ = 0.25)
image initialization k iterations CPU time reinit. distance

single square bi-level 0.0 24800 461.77 - 1.00
single square signed dist. 0.0 24800 665.02 4292(1) 0.77
single square bi-level -0.1 3200 37.25 - 1.00
single square signed dist. -0.1 3200 69.22 773(1) 1.00
shamrock bi-level 0.0 11400 28.73 - 3.14
shamrock signed dist. 0.0 11400 56.51 2537(1.4) 2.30
shamrock bi-level -0.1 15200 40.54 - 1.60
shamrock signed dist. -0.1 15200 65.66 1057(2.3) 1.63
4 squares bi-level 0.0 13200 17.73 - 4.80
4 squares signed dist. 0.0 13200 61.52 2147(1.5) 4.72
4 squares bi-level -0.1 5800 19.99 - 1.00
4 squares signed dist. -0.1 5800 28.60 710(2.4) 0.26

Table 3.3: Performance of the implicit active contour model (full-matrix method).

For the geodesic model we observe that independent of the force term, the objects in

the single-square and the shamrock image could be approximated very well. However, the

topological change required to approximate the four objects in the 4-square image could

be made only possible with an additional force term (k = −0.1).
The findings for the geometric model differ on some points. Here, the force term is

necessary to guide the contour into the narrow parts of the shamrock and to enforce the

topological change required for the 4-square image. The accuracy was slightly worse than

that of the geodesic model.
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With regard to computational efficiency the results are rather poor compared to those

of the explicit snake implementation discussed in the previous section. For instance,

averaging the timing results for the single square (k = 0 and k = −0.1), the shamrock
(k = 0 and k = −0.1), and the 4 squares (k = 0) reveals that the explicit snake is about 75
times faster than the full-matrix implementation of an implicit geometric snake (bi-level

representation).

Note that maintaining the evolving image as a signed distance function requires ad-

ditional computations. The column labeled “reinit.” in Table 3.3 shows the number of

reinitializations carried out during the image evolution. In brackets the number of itera-

tions required to reinitialize the image to a signed distance function is quoted. As stated

above, the method proposed by Peng et al. [102] needed only a few iterations to converge.

For typical image processing tasks such as object segmentation the accuracy obtained

using either initialization method is sufficient. Thus, in the following we prefer the bi-level

initialization since it is computationally more efficient. We should note, however, that for

applications in different areas the signed distance representation is a prerequisite [125].

For instance, in the field of medical image analysis, the segmentation of the cortex using

two coupled surfaces requires that the distance between the surfaces is known at any

time [40].

3.4.3.3 Implicit Snake Implementation: Narrow-band Method

Let us now examine the narrow-band method as described in Section 3.4.1. We start with

some implementation details, and proceed to discuss results on efficiency and accuracy.

In our approach the narrow band is obtained from a binary morphological gradient

operator. Thus, image positions belonging to the narrow band are marked by one, posi-

tions outside by zero. To exploit the narrow-band information one can iterate through all

image positions and check whether the corresponding narrow-band flag is set. Of course,

the narrow-band information can be stored more efficiently [3, 114]. One possibility is to

use run-length encoding. Consider a row of the image obtained from the morphological

gradient. This row might contain runs of zeros alternating with runs of ones. Thus, to

represent the narrow-band pixels within this row, we store only the start and end positions

of the runs containing ones. By doing so for all rows of the gradient image, an efficient

narrow band structure can be constructed.

Obviously, the computational effort required for an iteration in the curve evolution

process depends on the width of the narrow band. Additionally, as the curve moves

through the image, rebuilds of the narrow band become necessary. Thus, while a small
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narrow band reduces the computational load within each iteration, it still may result in

frequent rebuilds of the narrow band structure itself.

Table 3.4 displays the results calculated on our test images. As expected, the compu-

tation times drop as the width of the narrow band is reduced. Note that although the

number of rebuilds increases these do not affect the efficiency severely.

geodesic model (τ = 0.25)
image k width iterations time (s) time/iter. (ms) rebuilds distance

square 0.0 16 19200 109.49 5.70 3 0
square 0.0 4 19200 42.47 2.21 22 0
square -0.1 16 3200 16.45 5.14 3 0
square -0.1 4 3200 6.70 2.09 20 0
shamrock 0.0 16 13800 23.37 1.69 2 0.04
shamrock 0.0 4 13800 7.32 0.53 17 0.07
shamrock -0.1 16 11600 22.63 1.95 2 0.04
shamrock -0.0 4 11600 7.06 0.61 13 0.05
4 squares 0.0 16 5800 9.04 1.56 1 4.32
4 squares 0.0 4 5800 2.97 0.51 10 4.32
4 squares -0.1 16 2600 6.03 2.32 3 0
4 squares -0.1 4 2600 1.47 0.57 16 0

geometric model (τ = 0.25)
image k width iterations time (s) time/iter. (ms) rebuilds distance

square 0.0 16 24800 116.16 4.68 3 1
square 0.0 4 24800 44.75 1.80 19 1
square -0.1 16 3200 13.44 4.20 3 1
square -0.1 4 3200 6.16 1.93 18 1
shamrock 0.0 16 11400 28.99 2.54 1 3.15
shamrock 0.0 4 11400 5.05 0.44 7 3.15
shamrock -0.1 16 15200 27.56 1.81 2 1.62
shamrock -0.1 4 15200 6.45 0.42 8 1.66
4 squares 0.0 16 13200 16.68 1.26 0 4.80
4 squares 0.0 4 13200 5.06 0.38 7 4.80
4 squares -0.1 16 5800 9.55 1.65 2 1
4 squares -0.1 4 5800 2.68 0.46 15 1

Table 3.4: Performance of the implicit active contour model (narrow-band method).

For greater precision, we evaluated our narrow-band construction algorithm sepa-

rately. Note that binary one-dimensional dilations and erosions can be implemented very

efficiently. We applied the narrow-band construction algorithm to a collection of images.
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Note that the image content is irrelevant, only size matters. The results on different

image sizes were as follows (the computation times in milliseconds are given in brackets):

128×128 (1.7 ms), 256×256 (6.8 ms), 512×512 (39.7 ms), 352×288 (11.4 ms), 704×576
(71.0 ms). The latter two formats occur frequently in video processing. We observe that

in comparison to a single iteration of the contour algorithm (see “time/iter.” column in

Table 3.4), the computational cost of the narrow-band construction is greater up to a

factor of four. Thus, infrequent rebuilds of the narrow band are negligible for the overall

performance.

As we can see decreasing the narrow band width does not only reduces computation

times but also decreases accuracy. To investigate the influence of the narrow-band imple-

mentation on accuracy we compared its results to those of the full-matrix method. For

this purpose the contours of both implementations were extracted at every 100 iterations

and compared by using our edge distance measure. Table 3.5 summarizes some results for

different narrow-band sizes. As the narrow-band width decreases, the contours differ from

those obtained by the full-matrix implementation. Note, however, that the final contour

placements are almost identical to those of the full-matrix method.

contour distance (pixels)
model image k nb width minimum average maximum

geodesic single square 0.0 16 0.00 0.05 0.32
geodesic single square 0.0 8 0.00 0.41 2.53
geodesic single square 0.0 4 0.00 1.63 8.87
geodesic single square -0.1 16 0.00 0.25 0.94
geodesic single square -0.1 8 0.00 0.81 2.60
geodesic single square -0.1 4 0.00 1.89 5.80
geometric single square 0.0 16 0.00 0.06 0.30
geometric single square 0.0 8 0.00 0.35 1.51
geometric single square 0.0 4 0.00 1.37 4.84
geometric single square -0.1 16 0.00 0.28 0.99
geometric single square -0.1 8 0.00 0.86 2.48
geometric single square -0.1 4 0.00 2.00 5.33

Table 3.5: Contour differences caused by the narrow-band method.

We close this section by comparing the computation times of the full-matrix imple-

mentation to those gained by our narrow-band method (cf. Tables 3.3 and 3.4). Averaging

over all test cases, the narrow-band method (width = 4) is about seven times faster than

its full-matrix counterpart. Note, however, that this ratio depends on the size of the

image and the width of the narrow band.
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3.4.3.4 Implicit Snake Implementation: the AOS Scheme

In this section we cover the semi-implicit implementation of the geometric and the geodesic

models as presented in Section 3.4.2. Remember that this implementation differs from the

explicit full-matrix algorithm in two aspects. First, of course, the AOS-based implementa-

tion allows larger time steps. Second, the discretization of the (modified) curvature term

div(∇u/|∇u|) (resp. div(g∇u/|∇u|) in the geodesic model) is different. To discriminate
between those differences we discuss them separately.

Recall that in the geometric model the curvature term is given as

div

( ∇u

|∇u|
)
=

uxxu
2
y − 2uxuyuxy + uyyu

2
x

(u2
x + u2

y)
3/2

. (3.58)

In the standard implementation as used in the above-mentioned full-matrix method

this term is approximated straightforwardly by central differences. In the AOS-based

implementation, however, a discretization based on harmonic averaging is used. Thus,

the curvature term is approximated at image position i as follows:

div

( ∇u

|∇u|
)∣∣∣∣

i

≈
∑

j∈N (i)

2

|∇u|i + |∇u|j
uj − ui

h2
. (3.59)

The geodesic model employs a modified curvature term, namely,

div

(
g
∇u

|∇u|
)
= g · div

( ∇u

|∇u|
)
+∇gT · ∇u

|∇u| (3.60)

Here, the standard implementation discretizes the first term by central differences and

the second term by an upwind scheme. The AOS-based implementation is again based

on harmonic averaging and reads

div
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g
∇u

|∇u|
)∣∣∣∣
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j∈N (i)

2(
|∇u|
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j

uj − ui

h2
. (3.61)

To investigate the influence of the different spatial discretizations on the curve evolu-

tion we compared the standard implementation to an implementation based on harmonic

averaging. In both cases we employed an explicit updating scheme. The results obtained

by our usual distance measure are shown in Table 3.6. The final results obtained by

the implementation based on harmonic averaging of the geodesic model are slightly worse
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than those of the standard implementation. The average distance in all test cases is about

one pixel larger than for the standard implementation. With respect to our segmentation

task this is an acceptable result. In the case of the geometric model, however, the impor-

tance of the force term is further increased. Let us consider the results for the 4-square

image as an example. Without the force term the distance of the final contour is about

seven pixels away from the original object boundary. Adding the force term significantly

improves the result.

contour distance
model image k minimum average maximum distance

geodesic single square 0.0 0.04 0.85 6.70 1
geodesic single square -0.1 0.10 0.53 1.46 1
geodesic shamrock 0.0 0.02 0.95 4.26 1
geodesic shamrock -0.1 0.10 0.82 1.05 0.77
geodesic 4 squares 0.0 0.02 1.05 3.63 4.53
geodesic 4 squares -0.1 0.08 0.91 1.29 1
geometric single square 0.0 0.04 1.37 3.78 4.64
geometric single square -0.1 0.10 0.53 1.77 1.96
geometric shamrock 0.0 0.02 1.21 2.04 4.41
geometric shamrock -0.1 0.07 0.85 1.02 2.44
geometric 4 squares 0.0 0.02 2.18 3.18 6.65
geometric 4 squares -0.1 0.08 1.35 4.01 1.88

Table 3.6: Contour differences caused by spatial discretization using harmonic averaging.

Let us now turn to the semi-implicit implementation. To assess the influence of the

time step, we compare the AOS-based implementation with different time steps to the

explicit updating scheme with harmonic averaging as used above. Table 3.7 displays

the corresponding results. We observe that the contours differ significantly during the

evolution. In addition, we note that a larger time step results in a larger deviation.

To inspect these differences visually let us consider Figure 3.16 which shows the curve

evolution of an AOS-based geodesic snake in comparison to an explicit implementation.

We observe that the evolution process with a time step of 0.125 reaches the object faster

than the same process with a time step of 5.0. Of course, the former requires a much

larger number of iterations. Thus, increasing the time step by a factor of 20 does not

reduce necessarily the number of iterations at the same amount.

Consequently, in order to assess the performance of the AOS-based implementation,

it is not sufficient to simply cut down the number of iterations and increase the size of

the time step. Instead, we applied the same stopping criterion here as for the full-matrix
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contour distance
model image k τ minimum average maximum
geodesic single square 0.0 1.0 0.00 0.53 2.81
geodesic single square 0.0 2.5 0.00 1.37 6.53
geodesic single square 0.0 5.0 0.00 2.87 11.91
geodesic single square -0.1 1.0 0.00 1.54 3.39
geodesic single square -0.1 2.5 0.00 4.14 8.44
geodesic single square -0.1 5.0 0.00 8.69 16.25
geometric single square 0.0 1.0 0.04 0.51 1.23
geometric single square 0.0 2.5 0.10 1.20 2.99
geometric single square 0.0 5.0 0.17 2.39 5.85
geometric single square -0.1 1.0 0.03 1.53 3.03
geometric single square -0.1 2.5 0.09 4.09 7.93
geometric single square -0.1 5.0 0.21 8.60 15.74

Table 3.7: Contour differences caused by different time steps.

Figure 3.16: Evolution of an AOS-based geodesic snake. From left to right: T = 250,
T = 375, T = 500, T = 625, T = 750. (a) Top row: Explicit updating scheme with
harmonic averaging (τ = 0.125), (b) Middle row: AOS scheme (τ = 1.0), (c) Bottom

row: AOS scheme (τ = 5.0).
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implementation. Table 3.8 displays the results achieved by the AOS-based implemen-

tation. Comparing these results to those calculated by the full-matrix implementation

(cf. Table 3.3) we observe that the accuracy is slightly worse but still acceptable for our

segmentation task. Concerning computational efficiency, the AOS-based implementation

is significantly faster. Averaged over all test cases the AOS-based implementation reduces

the computation time by a factor of 12.

geodesic model (τ = 5.0)
image k iterations time (s) distance

square 0.0 1290 39.63 1
square -0.1 190 6.13 1
shamrock 0.0 340 2.32 1.01
shamrock -0.1 130 0.89 1.02
4 squares 0.0 2190 15.33 0.49
4 squares -0.1 140 0.95 1

geometric model (τ = 5.0)
image k iterations time (s) distance

square 0.0 1270 38.17 3.16
square -0.1 200 6.41 1.01
shamrock 0.0 820 5.40 3.89
shamrock -0.1 680 4.54 2.29
4 squares 0.0 620 4.13 5.67
4 squares -0.1 550 3.67 1.01

Table 3.8: Performance of the implicit active contour model (AOS-based method).

We conclude this section by highlighting an experimental result in Table 3.8. We

observe that the AOS-based implementation of the implicit geodesic model is able to detect

the four objects in the 4-square image even without the force term (average distance =

0.49) (recall that a geodesic snake implemented with an explicit updating scheme required

a force term for the same task). This indicates that the AOS-based implementation is

more diffusive with respect to the evolving contour. While this is desirable in the context

of the 4-square image, it may cause problems with regard to closing small gaps in the

object boundaries.

As a remedy one might employ an ad hoc modification of the implicit geodesic snake

by introducing an additional parameter β ∈ [0, 1]:
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∂u

∂t
= g(x)|∇u|

(
div

( ∇u

|∇u|
)
+ k

)
+ β∇uT · ∇g. (3.62)

For β = 1 we obtain the standard geodesic snake, setting β = 0 implements the geo-

metric active contour model. Thus, the additional parameter allows a smooth transition

between both models and controls the influence of the advection term.

3.4.3.5 Implicit Snake Implementation: Narrow-band Method

and AOS Scheme

As stated earlier the narrow-band method and the AOS-based implementation both sig-

nificantly reduce computation times. Thus, it might prove useful to combine them. For

this purpose the above-mentioned narrow-band construction algorithm is employed, and

the AOS-based calculations are only performed within the narrow band. However, since

the contour moves significantly faster under AOS-based iterations, we should expect that

accuracy demand a larger narrow band than in the case of the explicit updating scheme.

First of all, we must refine our narrow-band structure due to the specific properties of

the AOS scheme. Recall that in the AOS-based implementation an additive splitting is

employed. First, new values are calculated separately along the different coordinate axes.

These values are then averaged. In order to support this splitting with an appropriate

data structure, we modify the storage of narrow-band information. Until now we have

considered the rows of an image and stored the start and ending positions of pixel runs ly-

ing inside the band. This can be easily extended by performing the same operations along

image columns [38]. Consequently, for each image dimension a narrow-band structure is

created.

Let us first examine the influence of the narrow-band structure on the contour evolu-

tion process. To this end, we compare the results of the AOS-based implementation to

those of AOS combined with the narrow-band method. Contours are extracted from both

evolution processes at regular intervals and compared by the usual distance measure. Ta-

ble 3.9 displays the results for different widths of the narrow band. As expected, accuracy

decreases as the width of the narrow band is reduced.

Concerning computational efficiency, Table 3.10 summarizes the results obtained with

the combined AOS/narrow-band method for the different test images. In comparison

to the pure AOS-based implementation the computation times are cut by half on the

average. Note that the efficiency could be further improved by reducing the width of the

narrow band. However, as discussed above the AOS-based implementation demands a

certain minimum width.
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contour distance
model image k nb width minimum average maximum

geodesic square 0.0 25 0.00 2.06 12.39
geodesic square 0.0 20 0.00 2.98 12.39
geodesic square 0.0 10 0.00 10.35 23.91
geodesic square -0.1 25 0.00 0.39 1.85
geodesic square -0.1 20 0.00 0.44 2.00
geodesic square -0.1 10 0.00 2.12 5.33
geometric square 0.0 25 0.00 1.61 5.31
geometric square 0.0 20 0.00 2.84 8.59
geometric square 0.0 10 2.07 13.72 23.83
geometric square -0.1 25 0.00 0.36 1.53
geometric square -0.1 20 0.00 0.48 2.00
geometric square -0.1 10 0.00 2.20 5.16

Table 3.9: Contour differences caused by narrow-band method (AOS).

geodesic model (τ = 5.0)
image k width iterations time (s) rebuilds distance

square 0.0 20 1290 14.97 3 1
square -0.1 20 190 2.12 3 1
shamrock 0.0 20 340 2.02 2 1
shamrock -0.1 20 130 0.73 2 1
4 squares 0.0 20 2190 12.12 2 0.49
4 squares -0.1 20 140 0.77 2 1

geometric model (τ = 5.0)
image k width iterations time (s) rebuilds distance

square 0.0 20 1270 13.98 3 4.33
square -0.1 20 200 2.05 3 1.01
shamrock 0.0 20 820 5.23 1 3.73
shamrock -0.1 20 680 3.86 1 1.93
4 squares 0.0 20 620 3.47 1 5.64
4 squares -0.1 20 550 2.88 2 1

Table 3.10: Performance of the implicit active contour model (combined AOS/narrow-
band method).

We are now in a position to summarize our experimental results obtained with dif-

ferent implicit snake implementations. The proposed narrow-band method and the AOS



3.5. INTEGRATION OF MOTION CUES 101

scheme each decrease the accuracy of the segmentation slightly, however, the computa-

tional efficiency improves significantly. Averaging over all test cases, we observe that (a)

the narrow-band method reduces computation time by a factor of 7, (b) the AOS scheme

by a factor of 12, and (c) the combination of both by a factor of 20. In comparison to

our simple explicit snake implementation, the fastest implicit implementation is about six

times slower while retaining topological adaptivity.

3.5 Integration of Motion Cues

In the previous sections we discussed active contour models for grouping local information.

However, for illustrative purposes we restricted ourselves to still image segmentation based

on spatial edges. In the following we replace edge-based information by motion cues

calculated by the algorithms developed in Chapter 2. This combination of motion cues

and implicit active contour models constitutes our approach to motion segmentation.

For the sake of clarity we first discuss the combined approach under the assumption

of a static camera [67, 69]. We then proceed to discuss motion segmentation under the

assumption of a moving camera.

3.5.1 Motion Segmentation under the Assumption of a Static

Camera

Let us recall how the integration of image features into the snake-based segmentation

process works. In all models a function is employed that stops the curve evolution pro-

cess near certain image features. For instance, as described above, a simple edge-based

stopping function is given as

g(x) =
1

1 + |∇fσ(x)|2 . (3.63)

By redefining the stopping function g appropriately we can integrate motion cues into

the segmentation process. Let r(x) ∈ [0, 1] denote a measure that indicates the reliability
of a motion estimate v(x) = (vx, vy) at an image position x.

Then, replacing ∇fσ in Equation 3.63 by sσ where s is given as

s(x) =

{
wmax, (r(x) ≥ 1− ε) and (|v(x)| ≥ Tv)

0 , else
(3.64)

stops the curve evolution (g ≈ 0) upon reaching positions that coincide with “motion
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pixels”. Here, wmax denotes the maximum gray value of an image. An image position is

considered to be a motion pixel if the reliability measure is close to 1.0 and the magnitude

of the corresponding motion vector is larger than a certain minimum value Tv (typically

Tv is set to 0.1). To compensate for camera jitter it is useful to consider only motion

vector magnitudes that exceed this threshold.

Figure 3.17 illustrates our segmentation approach on a sample frame of the hall-and-

monitor sequence. Displayed in the top row are the original frame and the motion pixel

image calculated by the structure tensor with non-maximum suppression. In the bottom

row of the figure the evolution of a geodesic snake is superimposed on the frame. As

described above, a stopping function based on the motion pixel image interrupts the

curve evolution process.

Figure 3.17: Motion segmentation under static camera. (a) Top left: Frame from
the hall-and-monitor sequence, (b) Top right: Motion pixel image calculated by the
structure tensor with non-maximum suppression. (c) Bottom row: Evolution of a
geodesic active contour superimposed on the hall-and-monitor frame.
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3.5.2 Motion Segmentation under the Assumption of a Moving

Camera

When acquiring a video sequence by means of a moving camera and estimating the cor-

responding motion vector field, motion vectors result from both the camera motion itself

as well as by the movement of objects. Consequently, in order to determine the camera

parameters reliably from the motion vector field, one has to discard the vectors caused by

object motion. Conversely, we can identify motion vectors belonging to moving objects

by eliminating those vectors which fit to the camera motion model.

In Chapter 2 we developed a robust algorithm for camera motion estimation. Let

us recall its basic steps: First, reliable motion estimates are calculated from the video

sequence. Of course, both camera motion and object motion contribute to the 2D vector

field. Second, camera parameter estimates are calculated by a robust statistical estimator

that compensates for outliers caused by object motion.

Henceforth, we are interested not in the dominant camera motion but in the motion

vectors that deviate from the camera motion model. Fortunately, the least trimmed

squares (LTS) estimator used to estimate the camera parameters enables us to detect and

analyze outliers. Remember that the LTS estimator is given as

min
θ̂

h∑
i=1

(
r2
)
i:n

(3.65)

where n is the number of cases, θ̂ := {θ̂0, . . . , θ̂7} denote the parameters to estimate, and
(r2)1:n ≤ (r2)2:n ≤ . . . ≤ (r2)n:n are the ordered squared residuals. By setting h = n/2 the

“best half” of the test cases is obtained and thus the best robust properties are achieved.

By considering only the “good data” (resp. the best half) we can define a robust error

scale estimate σ̂, namely,

σ̂ =

√√√√1
h

h∑
i=1

(r2)i:n (3.66)

Then, considering a test case i, a large value |ri/σ̂| indicates that the case i is identified
as an outlier, and thus belongs to a moving object.

To clarify the process, we consider the following example. We assume that the camera

parameters θ̂0, . . . , θ̂7 and the error scale estimate have already been calculated by the

least trimmed squares estimator. Then, for each pixel p = (x, y) we proceed as follows.
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The apparent position of p in the succeeding frame is given as its 2D motion vector

v(p) = (vx, vy) as p
′ = (x′, y′) = (x + vx, y + vy). Additionally, the new position of p,

p̂′ = (x̂′, ŷ′), can be predicted from the estimated camera parameters as

x̂′ =
θ̂0x+ θ̂1y + θ̂2

θ̂6x+ θ̂7y + 1
, ŷ′ =

θ̂3x+ θ̂4y + θ̂5

θ̂6x+ θ̂7y + 1
(3.67)

Thus, we can compare the residuals rx = x′ − x̂′ and ry = y′ − ŷ′ to the error scale

estimate σ̂ and identify whether pixel p is an outlier or whether it fits into the camera

motion model.

By redefining the stopping function g employed in the active contour models, infor-

mation on outliers can be included in the segmentation process. Again, the term ∇fσ is

replaced by a function sσ. This time, however, s is defined as

s(x) =

{
wmax, (r(x) ≥ 1− ε) and (|rx(x)/σ̂| ≥ Tc or |ry(x)/σ̂| ≥ Tc)

0 , else
. (3.68)

Recall that r(x) indicates the reliability of a motion estimate and rx(x), ry(x) denote

the residuals at position x as described above. Thus, an image position is classified as

part of a moving object if the certainty of the corresponding motion estimate is close to

1.0 and if the residuals calculated from the vector components and the camera motion

model are large compared to the error scale estimate. Note that in practice the threshold

Tc that decides whether an estimate is an outlier or not has to be determined empirically.

In the following we illustrate our segmentation approach under camera motion by

means of an example. Figure 3.18 displays a frame from the coastguard sequence and

illustrates the different steps. Note that in this part of the sequence the camera follows

the moving boat, panning to the right. The corresponding motion vector field is shown

in the top row on the right. White areas indicate insufficient certainty for reliable motion

calculation. The camera parameters are calculated from the motion field using the robust

camera motion estimator. The resulting global camera motion field is shown in the middle

row on the left, clearly indicating the pan. Using the camera parameters and the motion

field, we are now able to detect outliers according to Equation 3.68. Figure 3.18 depicts

the result in the middle row on the right. As said previously, the outlier detection is the

basis for the active contour algorithm. The curve evolution process superimposed on the

original frame is shown in the bottom row of the figure.
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Figure 3.18: Motion segmentation under camera motion. (a) Top left: Frame from
the coastguard sequence, (b) Top right: Motion vector field calculated by feature-based
motion estimation, (c) Middle left: Estimated global camera motion, (d) Middle

right: Outlier detection, (e) Bottom row: Evolution of a geometric active contour
superimposed on the coastguard frame.

3.5.3 Experimental Results

We conclude this chapter by presenting some results obtained with our motion-based

segmentation approaches. For this purpose, we applied the algorithms to four well-known

video sequences:

• The Hamburg taxi sequence was acquired by a static camera and contains four
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moving objects: three cars and a pedestrian.

• The hall and monitor sequence, also recorded by a static camera, contains two

persons walking.

• The coastguard video sequence was recorded by a panning camera and shows two

boats.

• The Stefan sequence displays a tennis player during a match. It was recorded by a

camera that followed the player.

Figure 3.19 depicts the segmentation results for the Hamburg taxi sequence. We

observe that the contour detected all four objects simultaneously. The segmentation of

the taxi and the car on the left is accurate. Even the body of the pedestrian could be

segregated from the background. However, due to the low contrast and a tree in the

foreground, the detection of the van on the right is erroneous.

Segmentation results for the hall-and-monitor sequence are shown in Figure 3.20.

Again, the algorithm detected the moving objects and in most cases provided a fairly

accurate segmentation. However, the first two frames in the second row in the figure

illustrate the limitations of our approach. Here, the left person stops and turns towards

the wall. Since some parts of the person do not move during this action, they are ignored

in the segmentation process.

Let us now turn to the sequences recorded by a moving camera. Figure 3.21 displays

the results for the coastguard sequence. The achieved segmentations are promising, how-

ever, we observe some problems. Since the camera moves, we can only take feature points

into account where full motion can be calculated. Remember this calculation is only pos-

sible at image positions that are surrounded by a texture changing in two dimensions.

Consequently, some positions belonging to the moving objects are not selected as feature

points. Consider, for instance, the bottom line of the smaller boat. Here, due to the

lack of a two-dimensional structure, points are excluded from the feature correspondence

process. Since the resulting gap is rather large, the active contour does not approximate

the real boundary of the object correctly. To overcome this limitation, one might include

region information, e. g., obtained from a spatial segmentation step.

Next, we discuss the segmentation results for the Stefan sequence displayed in Figure

3.22. In order to suppress small motion areas resulting from movements in the audience,

we erased small regions from the image that were only a few pixels in size. Note that

in the last frame of the bottom row the ball hits the net and therefore a second moving
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Figure 3.19: Motion segmentation of the Hamburg taxi sequence (Tensor-based motion
estimation, implicit geodesic active contour).

object is segmented. We observe the same problem as for the hall-and-monitor sequence:

Parts of the player that do not move are ignored in the segmentation process (e. g., see

the first frame in the second row). One possibility to overcome this limitation would be

the inclusion of an “object memory” into the segmentation algorithm [82].

In order to obtain quantitative results for our segmentation algorithm, we compared

our results to those provided within the European COST (Coopération Européenne dans

la recherche scientifique et technique) 211 framework [4]. Within this activity, a seg-
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Figure 3.20: Motion segmentation of the hall-and-monitor sequence (Tensor-based motion
estimation with non-maximum suppression, implicit geometric active contour).

mentation algorithm, the so-called COST Analysis Model (COST-AM), was developed

[30, 35, 82, 83]. The COST-AM includes components for color segmentation, global mo-

tion analysis, local motion analysis, and change detection. Intermediate results from the

different modules are fused by a rule processor. In addition, temporally accumulated
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Figure 3.21: Motion segmentation of the coastguard sequence (Feature-based motion es-
timation, implicit geometric active contour).

information is used to improve the segmentation result.

To include both static and moving camera, we chose the hall-and-monitor and the

coastguard sequences. For the former sequence a reference segmentation created manually

was provided within the COST activity. Using this reference segmentation, we compared
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Figure 3.22: Motion segmentation of the Stefan sequence (Feature-based motion estima-
tion, implicit geometric active contour).

the results of our segmentation algorithm to those calculated with the COST-AM. The

comparison was carried out using the spatial quality measure (sQM) as proposed by [136].

The spatial quality measure is based on the mask error value, i. e., it accumulates pixels

that deviate from the reference mask. To integrate a perceptive weighting, two error types
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(missing foreground points, added background points) are distinguished. For both types,

the distances of wrong pixels to the reference mask are taken into account. In order to

obtain an SNR-like presentation, the sQM measure is converted to an upper-bounded

logarithmic scale by using

sQM(dB) = 10 · log
(

1

1 + sQM

)
. (3.69)

Therefore, a perfect segmentation sets the above spatial quality measure to zero, while

negative values indicate segmentation errors.

Figures 3.23 and 3.24 display evaluation results for segmentations of the hall-and-

monitor sequence obtained by the COST-AM and by our algorithm.
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Figure 3.23: Spatial quality measure for the segmentation of the hall-and-monitor se-
quence (left person).

Figure 3.23 depicts the segmentation of the walking person on the left (cf. Figure

3.20). We observe that our segmentation outperforms the COST-AM up to frame 180.

The inferior results obtained by the COST-AM are due to the temporal accumulation

which clutters the object with background information. Around frame number 200, the

segmentation quality of our algorithm suddenly drops. In this part of the sequence, the

distance between the two walking persons is rather small. Here, the evolving contour does
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Figure 3.24: Spatial quality measure for the segmentation of the hall-and-monitor se-
quence (right person).

not split and segments the two persons as one object. Consequently, the segmentation

error becomes rather large. In Figure 3.24 the evaluation with respect to the walking

person on the right is displayed (cf. Figure 3.20). Here, both algorithms yield comparable

results up to frame 180. Again, we observe the decreasing segmentation quality of our

algorithm around frame 200 due to the above-mentioned problem.

Let us now turn to segmentation results of the coastguard sequence calculated by the

COST-AM and by our algorithm. For this example a reference segmentation was not

available. Therefore, we have to rely on visual comparisons. Figure 3.25 displays segmen-

tations of the frames 50, 100, 150, 200. We selected those frames because they illustrate

the characteristics of the different approaches. Note that for other parts of the sequence

the results are similar. We observe that our algorithm provides acceptable segmenta-

tion results for each frame. However, since we do not employ temporal accumulation,

the segmentation of a single frame does not benefit from results obtained on frames ear-

lier in time. In contrast, the COST-AM requires several frames to provide acceptable

segmentation results by aggregating object regions temporally. Therefore, the COST-AM

results for the frames 50, 100, and 150 are rather poor. However, the segmentation results

achieved for frame 200 (and also for consecutive frames) are very accurate.
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Figure 3.25: Segmentation of the coastguard sequence. (a) Top row: results of our algo-
rithm, (b) Bottom row: results of the COST-AM.

Summarizing, we demonstrated the performance of our segmentation algorithms on a

collection of well-known real-world sequence. For sequences recorded by a static camera,

we obtained good segmentation results. In this case, all image features where normal or

full motion could be determined are integrated in the segmentation procedure. In the

case of a moving camera, however, only image features surrounded by an appropriate

texture can be considered for motion estimation and thus for motion-based segmentation.

Consequently, the segmentation results for sequences recorded by a moving camera are

less accurate.
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Chapter 4

Contour-based Classification of

Video Objects

4.1 Introduction

The algorithms for moving object segmentation developed in the previous chapter can be

used in a variety of applications ranging from video compression [52,131] to object-based

video abstracting [60]. One of the most exciting application areas is the recognition of

objects appearing in video sequences. In general, object recognition can be addressed at

different levels of abstraction. For instance, an object might be classifiable as a “cat”

(entry level or object class), as a “Siamese cat” (subordinate level) or as “my neighbor’s

cat” (exemplar level or individual object) [128].

In the following, we concentrate on the recognition of video objects with respect to the

object-class level and develop a system for the classification of moving objects appearing

in video sequences. Since our approach relies on object shapes, an appropriate object

segmentation is required. This segmentation is provided by our motion-based segmenta-

tion algorithms as developed in Chapter 3. The classification system is not restricted to

a special class of objects. Instead, our purpose is to provide a generic approach that can

be tailored to specific application areas.

To classify objects, two aspects have to be considered. First, a representation of the

object is needed that captures its characteristics. For this purpose, one could consider

features extracted from a 3D object model (object-centered representation) or rely on in-

formation gathered from two-dimensional views taken from different perspectives (viewer-

centered representation). In both cases, within the visual feature scope, color [51,100,126],

texture [44, 74], shape [16, 32, 70, 101], or motion [25, 66, 97] cues and their combina-

115
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tion [108,119,135] can provide appropriate representations. Second, for assigning objects

to different classes, class definitions are required. This might be achieved by providing a

reference set containing manually classified objects.

Our system for object classification [67,105] consists of two major parts: (1) a database

containing representations of prototypical video objects and (2) an algorithm for matching

extracted video objects with the database entries. The object representation is viewer-

centered and relies on shape information which is sufficient for many common objects [133].

In detail, curvature features of the contour of each two-dimensional appearance of an

object in a video frame are calculated. These features are matched to those of views of

prototypical video objects stored in the database. The final classification of the object

is achieved by integrating the matching results for a number of successive frames. This

adds reliability to the approach, since unrecognizable single object views occurring in the

video sequence are insignificant with respect to the whole sequence.

The main innovation of our approach is that we consider video object retrieval rather

than still image retrieval. For this purpose, we propose an accumulation process that

integrates the results for a collection of frames from the video sequence. In addition, we

discuss classification results for both manual and automatic segmentations.

The remainder of the chapter is structured as follows. After discussing related work,

the representation of prototypical video objects within the database is described in Sec-

tion 4.3. Section 4.4 discusses the matching procedure. Finally, Section 4.5 presents

experimental results on a collection of real-world video sequences.

4.2 Related Work

A large body of literature is available on object recognition. A recent survey including

both object-centered and viewer-centered representations can be found in [11]. With

respect to viewer-centered representations, typical techniques for representing a single

view rely on principal component analysis [96], shape templates [29], or shape features [87].

In our work, we focus on shape descriptions calculated with the curvature scale space

(CSS) method developed by Mokhtarian et al. [1, 2, 87–89]. Recently, an extension of

this technique has been selected for inclusion into the MPEG-7 standard [16]. The main

advantages of the CSS method are robustness, efficiency, size invariance, and rotation in-

variance. Concerning robustness, small perturbations of the object outline do not disturb

the classification process. This makes the CSS method appropriate when working with

automatic object segmentations which might contain segmentation errors. Efficiency is
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especially important in the context of video sequences, since a large number of frames

has to be evaluated. In addition, classifying a large variety of objects requires a large

reference set of pre-classified objects.

The CSS technique has its roots in still image retrieval. The main difference of our

approach is that video objects rather than single images are to be classified. Thus, we

extend the CSS technique for the processing of video sequences. In addition, we extract

additional information from the object’s shape and the curvature scale space to minimize

ambiguities in the classification process.

While the CSS technique is appropriate for representing single object views, one has

to consider the representation of complete 3D real-world objects. A possible approach is

to capture views of those objects by walkarounds. Then, using the aspect graph repre-

sentation [64, 65], a minimal set of prototypical views is selected from these views. For

instance, a shape similarity-based aspect graph has been employed in [31].

However, to create views from walkarounds, the corresponding real-world object must

be available. Also, this procedure can be very time consuming. Therefore, we follow a

different approach: we select images from clip art libraries and group them into different

object classes. Note that we collect arbitrary views not necessarily of one individual ob-

ject, but instead capture a large variety of objects belonging to the same class. Obviously,

this complicates the decision on the optimal number of views. However, since CSS-based

matching can be performed very fast, additional database entries do not pose problems

with respect to computational complexity.

4.3 Representation of Video Objects

As noted above, there are two ways to generate object-related information. First, one

could extract features from a 3D object model, and second, one can use a collection of two-

dimensional views of an object, taken from different perspectives as a basis. In cognitive

psychology, a number of theories have been developed with regard to object representation

in the human brain [13,76,133]. Although a general theory is not available, psychophysical

evidence indicates that humans encode three-dimensional objects as multiple viewpoint-

specific representations that are largely two-dimensional [127].

We adhere to this theory and store a number of different two-dimensional views for

each object class, so-called object views. Furthermore, we pool different views of different

objects into one object class to obtain a reliable class definition. Figure 4.1 illustrates the

object class car by depicting several object views from this class.
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Figure 4.1: A subset of the two-dimensional views representing the object class car.

Of the views that can be generated from different perspectives, we prefer so-called

canonical views. A canonical view shows an object in a — with respect to human per-

ception — typical perspective and provides a sufficient number of object characteristics

to allow for rapid recognition. For instance, for a car, one possible canonical view is a

slightly elevated view of the frontal and side parts of the object (see Figure 4.1). A view

of the bottom of a car is generally not considered canonical.

Different sources of information are available to characterize a two-dimensional view

(e. g., contour, color, texture, or motion). However, many common objects can be identi-

fied by their contours only [133]. In our approach, for each object view a few parameters

are extracted from its contour and stored in conjunction with the object view’s class

name in a database. The parameters are calculated using a modified curvature scale

space technique that will be discussed in the following.

4.3.1 Basic Curvature Scale Space Representation

The curvature scale space (CSS) technique [1,2,87–89] is based on curve evolution ideas,

i.e., the deformation of a curve over time. Basically, it provides a multi-scale represen-

tation of the curvature zero-crossings of a closed planar contour. The CSS technique is

closely related to mean curvature motion [61, 62] that has already been discussed in Sec-

tion 3.3.1.1. Recall that a curve evolving under mean curvature motion is smoothed and

becomes convex after a certain time period. Figure 4.2 depicts an example of an object

outline evolving under mean curvature motion. We observe that the shape of the object

becomes simpler as the number of iterations increases, and, finally, approaches a convex

form. Thus, mean curvature motion provides a scale-space, i. e., a continuum of gradually

simplified versions of the initial contour.

Now, the basic assumption of the CSS technique is that these simplifications occurring

over time are characteristic for a shape under consideration. Consequently, one has to

identify appropriate features on the evolving contour that reflect the simplification process.

Since convex and concave segments of the contour merge during evolution, and therefore

transitions between them vanish, inflection points (zero-crossings) of the curvature located
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Figure 4.2: Object contour evolving under mean curvature motion. The number of itera-
tions increases from left to right.

at these positions are a reasonable choice.

Figure 4.3 displays an example with regard to zero-crossings of the curvature. On the

left the outline of an object view evolves under mean curvature motion. The small dots

on the contour depict the zero-crossings of the curvature. We observe that convex and

concave segments merge during iterations, and the number of inflection points decreases.

Note that certain zero-crossings survive for a large number of iterations. Let us now track

the position of these points on the contour during the iterations. For this purpose, the

closed curve is parameterized by arc length denoted by a parameter s. Then, we are able

to locate the zero-crossings of the curvature with respect to s at each iteration. From

the positions of the zero-crossings at different iterations a so-called CSS image can be

constructed. The CSS image shows the zero-crossings with respect to their position on

the contour and the scale, i. e., the number of iterations (see Figure 4.3). We observe that

significant contour properties are visible for a large number of iterations which results

in high peaks in the CSS image. However, segments with rapidly changing curvatures

caused by noise produce only small local maxima.

In detail, consider the closed planar parametric curve C0 = (x(s), y(s)) with the nor-

malized arc length parameter s ∈ [0, 1] that represents the initial outline of the object
view. Then, curve evolution similar to mean curvature motion can be achieved by smooth-

ing the components x(s) and y(s) iteratively with a one-dimensional Gaussian kernel of

width σ. The curvature κ of a point on the parametric curve can be calculated according

to Equation 3.3. Consequently, a CSS image I(s, n) is defined by

I(s, n) = {(s, n)|κ(s, n) = 0} (4.1)

where s denotes the arc length parameter and n denotes the iterations.
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(a) object view (b) 10 iterations

(c) 30 iterations (d) 100 iterations

(e) 200 iterations (f) 300 iterations 10
30

100

200

300

iterations

arc length

Figure 4.3: Construction of an CSS image. Left: (a)-(f) Smoothed contour after 10, 30,
100, 200 and 300 iterations. The small dots on the contour mark the zero crossings of the
curvature. Right: Resulting CSS image.

A numerical implementation of the CSS technique can employ similar techniques as

those discussed in Section 3.3.1.3. Again, we discretize the parametric curve by a collection

of equally distributed marker points (xi, yi). However, to include size invariance into the

CSS technique, we sample for each contour a fixed number of equidistant contour points

(in our implementation we use 200 sample points). Curve evolution can then result from

mean curvature motion or the iterative Gaussian smoothing as described above.

In many cases the peaks of the CSS image provide a robust and compact representation

of an object view’s contour [2,88,89]. Note that a rotation of an object view in the image

plane can be accomplished by shifting the CSS image left or right in a horizontal direction.

Furthermore, a representation of a mirrored object view is obtained by mirroring the CSS

image. However, due to the dependence on zero crossings of the curvature, convex object

views cannot be represented appropriately with the CSS technique.

To obtain a compact representation, in the basic CSS technique a peak is represented

by its height (given by the number of iterations) and its position on the contour. Further-

more, only significant peaks, i. e., those above a certain noise level, are extracted from

the CSS image. For instance, for the example depicted in Figure 4.3, only four data pairs

have to be stored, assuming a noise level of 30 iterations.
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4.3.2 Modifications to the Curvature Scale Space Representa-

tion

A major drawback to the basic CSS technique as described in the last section is the

occurrence of ambiguities. Under certain conditions shallow and deep concavities on a

contour may result in peaks of the same height in the CSS image. Figure 4.4 depicts

this problem: The shallow concavity of the object contour shown in (a) and the deep

concavity of the object contour shown in (b) result in peaks of nearly the same height

(relative difference about 1%) in the CSS images (c). Consequently, certain contours

differing significantly in their visual appearance are claimed to be similar by the basic

CSS technique.

(a) (b) (c)

499 504

41 23

Figure 4.4: Ambiguities in CSS images. (a) shallow concavity: object view (left), contour
(right) (b) deep concavity: object view (left), contour (right), (c) left: CSS image of (a),
right: CSS image of (b).

As a remedy Abbasi et al. [2] presented several approaches for avoiding these ambigu-

ities. However, the proposed strategies increase the computational cost significantly. In

our extension [105], we utilize additional information already available in the CSS image.

In addition to the height of a peak in the CSS image, we also extract its width at the

bottom of the arc-shaped contour corresponding to the peak. As depicted in Figure 4.4c,

the shallow and the deep concavity result in peaks of similar height but their widths differ

significantly (the relative width difference is about 80%). Note that the width specifies

the normalized arc length distance of the two zero-crossings bordering the contour seg-

ment represented by the peak in the CSS image. Thus, for each peak in the CSS image

three values have to be stored: the position of the maximum, the corresponding number

of iterations, and the width at the bottom of the arc-shaped contour.

Furthermore, it is possible to combine the CSS representation with other descriptors.

Commonly used shape descriptors include area, perimeter, elongation, eccentricity and
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circularity [16,120]. These descriptors, consisting only of a single value, can be compared

very efficiently. Consequently, they might be used within a prefiltering step to avoid

subsequent computations. In our approach, we store in addition to the CSS-related in-

formation the aspect ratio of the shape given by the division of height and width of the

shape’s bounding box. Note that this descriptor is not invariant to rotation of the object’s

shape. While this restriction is not useful in the context of generic image retrieval, it is

appropriate in our context. Recall that we populate the database by collecting canonical

views, i. e., views from which an object can be easily recognized. For many video ob-

jects (e. g., cars, ships) it can be assumed that they appear in typical perspectives in the

video sequence. Then, using the aspect ratio as a filter criterion includes only reasonable

database entries in further matching procedures. Note that the aspect ratio is invariant

to mirroring.

Let us summarize our approach to representing video objects and thus creating ap-

propriate database entries. Each object is represented by a collection of object views.

For each object view, its aspect ratio and a number of data triples consisting of position,

height, and width of the CSS peaks are stored in the database. The matching algorithm

described in the following section utilizes this information to compare segmented video

objects with the prototypical video object views in the database.

4.4 Matching of Video Objects

Our classification of segmented video objects is based on a two-step matching process.

Let us denote a segmented video object by S = {S1, . . . , Sk} where Si, i ∈ {1, . . . , k},
is a single object view segmented from a frame of the video sequence. The database

contains a collection of prototypical video objects represented by a number of object

views. Let us denote all object views contained in the database by P = {P1, . . . , Pn}
where Pj, j ∈ {1, . . . , n} denotes a single prototypical object view. Note that for each
object view Pj the corresponding object class is known.

In the first step of the matching process to be discussed in detail in the following

section each segmented object view Si is compared to all object views Pj in the database.

Thus, for each Si a best match and a corresponding class label is determined. However,

the classification might be incorrect for several views due to segmentation errors or an in-

significant object outline. Therefore, a second matching step (see Section 4.4.2) considers

the different classifications. Here, the results are accumulated and a confidence value is

calculated. On its basis, the object class of the object in the sequence is determined.
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4.4.1 View-based Matching

In order to find the most similar object view Pj for a query object view Si, a view-

based matching algorithm is required. The general idea is to calculate distances between

database views and an object view under consideration by comparing the peaks in the

corresponding CSS images. Recall that those peaks are represented by triples (height,

position, width). The matching algorithm has to take into account that the object shape

might be mirrored or rotated compared to the best match in the database. As mentioned

before, rotation of the original object corresponds to shifting the CSS image. Thus, the

matching procedure needs to be executed many times until the best-matching position is

found. A heuristic is used to reduce execution time. Only the most promising rotations

are calculated. These are determined by shifting the CSS images so that the highest peaks

are aligned. Since not all possible rotations of an object view are stored in the database, it

is reasonable to compensate this during the matching process. Several requirements exist

which need to be met in the matching process. For all peaks, the matched peak needs to

be within a certain height, position and width range. These ranges are set via threshold

parameters that have to be chosen empirically. Note that setting these threshold values

is not very critical. As noted above, the aspect ratio might be employed for prefiltering.

In detail, the algorithm works as follows [105]:

(1) Alignment: First of all, an alignment of the peaks in the CSS images might be

necessary to account for rotation or different starting positions when sampling object

outlines. Recall that the rotation of an object shape corresponds to shifting the CSS

image. In the following, C1 and C2 denote the CSS images to compare. Alignment

is achieved by shifting C2 until the position of the highest peak matches the position

of the highest peak in C1. Since there might be several peaks of similar height, a

number of possible alignments are calculated. For each alignment the following step

is performed.

(2) Peak matching: For each significant peak in C1 we examine whether a related peak

in C ′
2 exists. Note that C

′
2 denotes an aligned version of C2 according to the previous

step. Two peaks match if their height, position and width are within a certain range.

If a matching peak can be determined the Euclidean distance with respect to height

and position is calculated. Otherwise a distance value is obtained by multiplying the

height of the peak under consideration with a penalty factor. Finally, the distance

between C1 and C ′
2 is given by summing up the distance values obtained for the

different peaks.
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(3) Matching distance: For each alignment position the distance between both CSS

representations is calculated. In addition, to account for horizontal mirroring steps

1 and 2 are performed for a mirrored version of C2. Finally, the matching distance

of C1 and C2 is given by the minimum distance calculated for the different versions

of C2.

The algorithm might return a maximum value if none of the peaks can be matched

within the given tolerance range. If this is the case, the two objects are considered

significantly different, and therefore a match is not possible. A clear rejection helps to

improve the overall results of the matching algorithm since object views which do not

bear much resemblance to objects from a sequence are eliminated in this way.

4.4.2 Sequence-based Matching

The matching procedure returns a list of matches for each object view in the sequence.

This list contains the differences of the object view from the sequence to object views in

the database and their object class. Only the top match, i .e., the object view with the

minimal difference, and its corresponding class is used for evaluation. In some cases no

match at all can be found in the database. Thus, no conclusive statement can be made

about the class of the object view from the sequence. Since the database does not contain

all possible object views, such a result might occur frequently, depending on the object

in the sequence.

All available top matches are used for accumulation. In the accumulation process, the

inverse difference for each object view in the sequence to its top match is added to an

entry for the specific recognized object class Oi (e. g., car, people). For each object class

Oi this procedure yields one accumulated inverse distance value di. The sum of these

accumulated values gives the total accumulated inverse difference for the sequence under

consideration. In order to normalize the result, each di is divided by this sum, yielding

normalized inverse distance values d′i ∈ [0, 1]. The object class with d′i larger than a

reliability threshold (e. g., d′i > 70%) is considered to be the object class of the sequence.

4.5 Experimental Results

For the purpose of evaluation we created a test database containing 247 views of the object

classes cars, people, and other. For each object class a number of images was collected

from a clip art library. We chose these categories to represent a specific class of rigid
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objects (cars) and a specific class of non-rigid objects (people). The third class (other)

was introduced to increase the variability of object shapes in the database.

The object class people contains most objects (102 images). The contours of humans

differ greatly in image sequences, e. g., the positions of arms and legs have considerable

impact on the contour. Thus, to enable for recognition of query objects displaying a

human, it is necessary to have a large variety of images in the database. The object class

car is very well represented in the database. With a limited number of 48 cars most

perspectives and types are covered. The object classes other holds 97 images. Thus,

by randomly choosing an object view from the database, the probabilities for the object

classes cars, people, and other objects are about 41%, 19%, and 40%.

The indexing of the database with about 250 objects required 30 seconds computation

time on a standard personal computer1, thus 8 CSS images per second could be calculated.

The database stores for each CSS image the name of the object class, the data for the

relevant peaks (height, position, width), and the aspect ratio of the original object outline.

4.5.1 Experimental Results on Manually Segmented Video Ob-

jects

First of all, we evaluated our approach on manually segmented video objects to indicate

the performance in absence of segmentation errors. In particular, we chose two types

of sequences, either containing rigid objects (cars) or non-rigid objects (walking people).

Consequently, the 97 objects belonging to the class other complicate the classification

process.

To match a sequence to the database, the CSS features of the sequence need to be

calculated first. In a second step, the calculated CSS features of the sequence are matched

to the pre-calculated CSS features of the object views stored in the database. The whole

matching process can be done in 5 frames per second. Of course, the matching time

increases linearly with additional object views added to the database.

Our classification results for the different sequences are shown in Table 4.1. For each

sequence the number of frames and the number of frames where a match was possible are

given. The last column indicates the classification performance.

We observe that in the case of non-rigid objects (cars) the classification is excellent.

Since all cars enter or leave the scene, images in the first or last frames exist in which parts

of the car are missing. These frames were mostly rejected which explains the unmatched

1AMD Athlon 700 MHz CPU running Linux
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sequence segmentation no. of frames matched frames object class

car-1 manually 51 33 cars (100%)
car-2 manually 21 11 cars (87%)
car-3 manually 51 40 cars (100%)
car-4 manually 19 14 cars (100%)
car-5 manually 22 17 cars (100%)
walking-1 manually 29 26 people (71%)
walking-2 manually 13 6 people (67%)

Table 4.1: Classification results for manually segmented real-world sequences. The height,
position, and width ranges are set to 20%, 20%, and 40%.

frames. In some cases, however, the contours extracted from these frames resemble object

views of different classes and, thus, result in incorrect matches (see sequence car-2 ).

However, the accumulation process over time compensates these mismatches. Sample

images of the sequence car-4 in conjunction with their top matches from the database are

displayed in Figure 4.5.

Figure 4.5: Classification results for the car-4 sequence. Top row: Manually segmented
objects views. Bottom row: Best matches from the database for the object views
displayed above.

The results obtained on non-rigid objects are less convincing. Since there are a lot

of deformations over time some contours in those sequences happen to have no similar

representation in the database. Consequently, several mismatches occur and reduce the

reliability of the classification. Including additional views for non-rigid objects, however,

should improve the classification performance in these cases. Figure 4.6 displays several

frames from the walking-2 sequence and the corresponding top matches. Here, one mis-

match is visible. The database contains no human in a similar pose, and the CSS peaks of

the helicopter and the human are just in range of the parameters. Although the matching

distance is rather large compared to the other frames of the sequence, this indicates that
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ambiguities might occur within the proposed CSS method.

Figure 4.6: Classification results for the walking-2 sequence. Top row: Manually seg-
mented objects views. Bottom row: Best matches from the database for the object
views displayed above.

In addition to the recognition of the object class, it is possible to make out the per-

spective of the object in the frame. Comparing the top matches in Figures 4.5 and 4.6,

the perspectives of the objects in the sequence and the top matches are quite similar.

4.5.2 Experimental Results on Automatically Segmented Video

Objects

Let us now turn to the classification of automatically segmented video objects. The

segmentations were calculated using our motion-based segmentation algorithms as dis-

cussed in Chapter 3. Similar to the previous section, we examine the performance for

sequences containing rigid and non-rigid objects. A representative for the first category

is the Hamburg taxi sequence already used in previous chapters. Table 4.2 displays the

results obtained for the three objects (car, taxi, van) contained in this sequence.

Obviously, the classification result depends on the accuracy of the segmentation (see

Figure 4.7). The car, shown in a characteristic perspective, could be classified reliably

throughout the sequence. Also, the classification of the taxi is rather good. However, we

should note that the contour of the taxi does not show many significant details. In fact,

for a human observer it is hardly possible to identify the object class only by means of
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sequence segmentation no. of frames matched frames object class

Hamburg taxi (car) automatic 15 14 cars (92%)
Hamburg taxi (taxi) automatic 15 11 cars (68%)
Hamburg taxi (van) automatic 15 15 cars (29%)
walking-3 automatic 42 34 people (93%)
hall-and-monitor automatic 195 78 people (74%)

Table 4.2: Classification results for automatically segmented real-world sequences. The
height, position, and width range are set to 20%, 20%, and 40%.

the contours. Thus, several correct matches might be due to the specific structure of our

test database. As expected, in the case of the van the classification fails completely. The

segmentation does not provide the correct outline of the van but can only extract certain

parts of it. Figure 4.7 provides top matches for the object outline of the car.

︷ ︸︸ ︷

Figure 4.7: Classification results for the Hamburg taxi sequence. (a) Top row: Auto-
matically segmented object views, (b) Bottom row: Classification of the car (left) in
the third frame, the matches 1–4 (for the same object view) are displayed.

Next, we discuss the performance on automatic segmentations of non-rigid objects.

For this purpose we first examine the walking-3 sequence. In this sequence a person

walks around and changes orientation towards the camera. Only the upper part of the

person is visible. Figure 4.8 displays several object segmentations in conjunction with the

best matches of the database. The classification result is shown in Table 4.2. Since the

object outline does not change very much and typical shapes are available in the database,

the classification result is very good. Even several segmentation errors do not disturb the

classification process severely. Indeed, the robustness of the CSS method against small
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Figure 4.8: Classification results for the walking-3 sequence. (a) Top row: Automati-
cally segmented objects views, (b) Bottom row: Best matches from the database for
the object views displayed above.

variations in the contour allows a reliable classification.

More challenging with respect to contour deformations is the hall-and-monitor se-

quence also used in previous chapters. Again, the classification result (person walking

on the left in the sequence) is shown in Table 4.2. Furthermore, Figure 4.9 depicts some

example matches for the sequence. Note that only 78 out of 195 frames could be matched

to object views in the database. In addition, most matching distances were rather large

compared to those for the Hamburg taxi and the walking-3 sequence. As in the previous

section, this indicates that the variability of non-rigid objects requires additional database

entries. In particular, the automatic segmentation of the hall-and-monitor sequence re-

sults in several object outlines whose identification pose problems even to the human

observer.

Let us discuss the results as displayed in Figure 4.9 in more detail. The first segmented

object view contains several segmentation errors. The segmented area is too large, and

a part of the left leg is missed by the algorithm. Nevertheless, characteristic parts of

the contour remain and enable a successful classification. The last two object views

can not be identified correctly. Since in these cases contour features hardly suffice for

a unique classification mismatches occur. The last object view displays another type of

segmentation error. Due to the proximity of the two walking persons, the segmentation

algorithm provides one object rather than two separate segmentations. Consequently, the

matching algorithm finds an object that approximates the shape of both walking people.

In this case the matching distance is dominated by the two concave parts of the shape.

Summarizing, the proposed object classification approach is able to cope with seg-
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Figure 4.9: Classification results for the hall-and-monitor sequence. (a) Top row: Auto-
matically segmented objects views, (b) Bottom row: Best matches from the database
for the object views displayed above.

mentation errors up to a certain extent. Small perturbations of the object shape are

eliminated due to the scale-space approach. In addition, the temporal accumulation com-

pensates for occasional mismatches. We obtained excellent results for rigid objects and

for objects that do not deform to much over time. However, the classification of non-rigid

objects requires additional considerations and would certainly benefit from an extension

of the database.
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Conclusions and Perspectives

In the preceding chapters, algorithms for the extraction and classification of moving video

objects were developed. Basically, we followed a bottom-up approach, starting at the

image signal level and ending at the conceptual primitives level.

First, we proposed two local operators for estimating motion in image sequences. These

operators were especially optimized to facilitate subsequent segmentation tasks. The

three-dimensional structure tensor turned out as a robust motion estimator. By adding a

non-maximum suppression scheme, we were able to improve the localization of a moving

object’s boundary significantly. This scheme is easy to implement and computationally

efficient. Since gradient-based optical flow approaches such as the structure tensor are

limited to small image displacements, an additional technique was required. For this

purpose, a feature-based motion estimator was developed. In particular, we proposed

specific reliability measures that allow to discriminate between features where normal

velocity and those where full velocity can calculated. In addition, as opposed to widely

used detection schemes, these measures increased the feature density. To account for

camera motion and thus enable the segmentation of image sequences acquired by a moving

camera, a robust camera motion estimator was developed. For this purpose we estimated

global motion parameters by a robust regression method, namely least trimmed squares

regression.

Second, based on our motion estimators, motion-based segmentation algorithms were

developed. To group selected features into semantically meaningful regions or objects,

we investigated implicit active contour models. These models provide a powerful frame-

work that comprises numerical stability and topological adaptivity but does not require a

parametrization. However, the computational complexity of standard implementations is

not acceptable for video processing. Therefore, we developed fast algorithms for both the

131
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implicit geometric and the implicit geodesic active contour model. In particular, a new

narrow-band algorithm and a unified semi-implicit discretization were developed. Apply-

ing our contour algorithms to motion pixels, we proposed an efficient algorithm for the

segmentation of moving objects under the assumption of a static camera. Through inte-

gration of the robust camera motion estimator into the algorithm, object segmentation is

possible even when the camera moves. The performance of both segmentation algorithms

was demonstrated on a collection of well-known image sequences.

Finally, video objects formed by the segmentation algorithms were classified. For

this purpose, we compared the shape features of object views obtained from successive

frames to a collection of pre-classified prototypical object views stored in a database.

This accumulation procedure allows classification of objects even when a certain number

of the extracted object views are distorted by occlusion or segmentation errors. The object

classification results were twofold. For rigid objects like cars or talking heads, we obtained

excellent results. For non-rigid objects like walking persons, however, the results were

inferior. Non-rigid objects result in a great variety of possible shapes. Consequently, this

variety needs to be reflected in the database. The advantage of our object classification

approach is that a large variety of video objects can be covered without the need of a

training procedure. In addition, specific databases can be created for certain classification

tasks. Furthermore, the classification process is very fast since only small descriptors have

to be compared. The main disadvantage of the approach is that it requires a fairly accurate

segmentation of the object.

Future work may comprise a number of improvements and extensions. The segmen-

tation approach proposed so far works by aggregating local motion information within

a single frame. It might be useful to extend the integration process to 3D and perform

segmentation on several frames simultaneously. For this purpose, one could extend the

proposed contour algorithms to 3D and develop an implicit active tube model that oper-

ates like a “shrinking tube” on several consecutive frames. Using this approach, missing

information could be interpolated not only in the spatial dimensions but also on the

temporal axis. In addition, the segmentation algorithms can be extended by tracking

object features over time. In the current implementation, parts of the object that cease

to move are lost during segmentation. The situation could be improved by developing an

appropriate tracking procedure.

Several extensions with regard to our classification approach are possible. So far, we

have collected prototypical object views and stored them in the database on the same

level. Thus, to classify an object view, each database entry has to be compared to the
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query. Since the matching procedure operates very fast this does not pose problems up

to a certain database size. However, in the case of very large databases, it would be

useful to store prototypical object views hierarchically. Based on this hierarchy, only

a certain number of general entries would have to be compared first. Then, only the

entries subordinated to the best matching general view would be considered. However,

creating these general entries is no trivial task. Another possible structure of the database

might lead to the representation of object behavior. For this purpose, one could establish

relations between views of the same object taken at different phases of object motion.

Given such a database organization and an appropriate matching algorithm, it should be

possible to determine an object’s behavior, for instance, “a car turning the corner”, “a

person walking slowly”, or “a person is running”.

Establishing behavioral representations could lead to further improvements. On their

basis one could consider the feedback loops within an image sequence evaluation system

as depicted in Figure 1.1. For instance, when a certain motion phase of an object has

been identified, the object view following chronologically might be used as a template to

guide the segmentation of the next frame of the image sequence. By using object view

templates, it should be possible to improve segmentation and to account for occlusion.

Let us conclude with a quotation by Hans-Hellmut Nagel, one of the pioneers in the

field of computer vision. Already in the ’70s he recognized the potential of image sequence

analysis. Considerable progress has been made since then, however, many open issues still

remain.

The analysis of image sequences is therefore likely to contribute to the sciences

of image understanding as well as to the solution of a wide variety of applica-

tions problems.

Hans-Hellmut Nagel in 1978 [91]



134 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES



Appendix A

Derivation of the Structure Tensor

Our goal is to find the unit vector n that minimizes

J(x) =

∫
x′∈Ω(x)

w(x− x′)(∇f(x′)T · n)2dx′ dt′. (A.1)

Denoting ∇f = (fx, ft)
T and n = (nx, nt)

T we can rewrite Equation A.1

J(x) =

∫
x′∈Ω(x)

w(x− x′)(∇f(x′)T · n)(∇f(x′)T · n)dx′ dt′

=

∫
x′∈Ω(x)

w(x− x′)[(fxnx)
2 + 2fxftnxnt + (ftnt)

2]dx′ dt′

=

∫
x′∈Ω(x)

w(x− x′)[nx(f
2
xnx + fxftnt) + nt(f

2
t nt + fxftnx)]dx

′ dt′

=

∫
x′∈Ω(x)

w(x− x′)

(
f 2
xnx + fxftnt

fxftnx + f 2
t nt

)
n

=

∫
x′∈Ω(x)

w(x− x′)nT

(
f 2
x fxft

fxft f 2
t

)
n

= nTJn

(A.2)

with the structure tensor

J =

[
Jxx Jxt

Jxt Jtt

]
(A.3)
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where the tensor elements Jpq, p, q ∈ {x, t} are calculated from

Jpq(x, y) =

∫
x′∈Ω(x)

w(x− x′) (∂pf(x′, t′)∂qf(x′, t′)) dx′ dt′. (A.4)

Since J is a symmetric matrix we can replace J by

J = UDUT (A.5)

where D is a diagonal matrix with the eigenvalues λ1, λ2 of J as elements and the

columns of U are the corresponding unit eigenvectors v1, v2.

Consequently, Equation A.2 can be rewritten as follows.

J(x) = nTJn

= nTUDUTn

= nT
(

v1 v2

)( λ1 0

0 λ2

)(
vT1

vT2

)
n

=
(

nT · v1 nT · v2
)( λ1 0

0 λ2

)(
vT1 · n
vT2 · n

)

= λ1(n
T · v1)2 + λ2(n

T · v2)2

(A.6)

By virtue of (nTv1)
2+ (nTv2)

2 = cos2 α+ sin2 α = 1, we can simplify Equation A.6 to

J(x) = λ1(1− a) + λ2a (A.7)

with a ∈ [0, 1]. Under the assumption that λ1 > λ2, a = 1 minimizes Equation A.7.

Finally, since vT2 · v2 = 1 choosing n = v2 solves our minimization problem.
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