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INTEGRATING PROBABILITY AND
NONPROBABILITY SAMPLES FOR SURVEY
INFERENCE

ARKADIUSZ WISNIOWSKI*
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ANNELIES G. BLOM

Survey data collection costs have risen to a point where many survey
researchers and polling companies are abandoning large, expensive
probability-based samples in favor of less expensive nonprobability sam-
ples. The empirical literature suggests this strategy may be suboptimal for
multiple reasons, among them that probability samples tend to outperform
nonprobability samples on accuracy when assessed against population
benchmarks. However, nonprobability samples are often preferred due to
convenience and costs. Instead of forgoing probability sampling entirely, we
propose a method of combining both probability and nonprobability sam-
ples in a way that exploits their strengths to overcome their weaknesses
within a Bayesian inferential framework. By using simulated data, we
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evaluate supplementing inferences based on small probability samples with
prior distributions derived from nonprobability data. We demonstrate that
informative priors based on nonprobability data can lead to reductions in
variances and mean squared errors for linear model coefficients. The method
is also illustrated with actual probability and nonprobability survey data. A
discussion of these findings, their implications for survey practice, and pos-
sible research extensions are provided in conclusion.

KEYWORDS: Bayesian inference; Data integration; Online panels;
Quota sampling; Web surveys.

1. INTRODUCTION

For more than a decade, the survey research industry has witnessed an increas-
ing competition between two distinct sampling paradigms: probability and
nonprobability sampling. Probability sampling is characterized by the process
of drawing samples from a population using random selection, with every pop-
ulation element having a known (or knowable) nonzero inclusion probability.
In contrast, nonprobability sampling involves some form of arbitrary selection
of elements into the sample for which inclusion probabilities are unknowable
(and possibly zero for some population elements). Both paradigms have
strengths and weaknesses. The primary appeal of probability sampling is its
theoretical basis in design-based inference, which permits unbiased estimation
of the population mean along with measurable sampling error. However, in
practice, unbiased estimation is not assured as response rates in probability sur-
veys can be quite low. Another challenge of probability sampling is the need
for large sample sizes for robust estimation, which can be problematic for sur-
vey organizations working with small- to medium-sized budgets.

A key advantage of nonprobability sampling, relative to probability sam-
pling, is costs. Nonprobability samples can be drawn and fielded in a number
of relatively inexpensive ways. The most common way is through volunteer
web panels where survey firms entice large numbers of volunteers to take part
in periodic surveys in exchange for money or gifts (Callegaro, Baker,
Bethlehem, Géritz, Krosnick et al. 2014). However, nonprobability sampling
has limitations. For instance, the lack of an underlying mathematical theory
akin to probability sampling is problematic with respect to achieving accuracy
and measuring uncertainty (sampling error) for estimates derived from non-
probability samples (Baker, Brick, Bates, Battaglia, Couper et al. 2013). Most
benchmarking studies show that nonprobability samples tend to be less accu-
rate than probability samples for descriptive population estimates (Malhotra
and Krosnick 2007; Chang and Krosnick 2009; Yeager, Krosnick, Chang,
Javitz, Levendusky et al. 2011; Blom, Ackermann-Piek, Helmschrott,
Cornesse, and Sakshaug 2017; Dutwin and Buskirk 2017; MacInnis, Krosnick,
Ho, and Cho 2018; Pennay, Neiger, Lavrakas, and Borg 2018). Multivariate
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estimates (e.g., regression coefficients), on the other hand, tend to be less sus-
ceptible to discrepancies between probability and nonprobability samples
(Ansolabehere and Rivers 2013; Pasek 2016).

A variety of methods have been proposed to improve the accuracy of non-
probability sample survey estimates, such as quota sampling, sample matching,
and weighting techniques. These methods attempt to adjust the composition of
the nonprobability sample to that of a reference probability sample or popula-
tion figures based on a set of adjustment variables (Lee 2006; Rivers 2007;
Lee and Valliant 2009; Rivers and Bailey 2009; Valliant and Dever 2011;
Ansolabehere and Rivers 2013). These methods generally assume that
the  adjustment  variables—which  often  comprise  demographic
characteristics—explain the selection mechanism that led to inclusion in the
nonprobability sample. This can be a strong assumption if the target variable
of interest subject to selection bias is not strongly related to the adjustment var-
iables. Moreover, these methods do not solve the problem of quantifying un-
certainty in nonprobability estimates, which is why measures of variability are
infrequently reported alongside nonprobability survey estimates.

Because neither sampling paradigm is a panacea, efforts have been under-
taken to combine both probability and nonprobability samples to produce a
single inference that compensates for the limitations of each standalone para-
digm. Elliott and Haviland (2007) evaluate a composite estimator to supple-
ment a standard probability sample with a nonprobability sample. They show
that the estimator, based on a linear combination of both sample types and a
bias function, can produce estimates with a smaller mean squared error (MSE)
relative to a probability-only sample. DiSogra, Cobb, Chan, and Dennis
(2012), with further enhancements by Fahimi, Barlas, Gross, and Thomas
(2014), propose a method they coin “blended calibration,” where a probability
sample weighted to known population totals is combined with an unweighted
nonprobability sample, and the combined sample is calibrated to differentiator
variables in the probability-only sample. The authors present evidence that this
method produces estimates with smaller bias and MSE relative to more tradi-
tional sample adjustment methods. Elliott (2009) (see also Elliott and Valliant
2017) proposes a pseudo-design-based estimation procedure that uses a proba-
bility sample to estimate pseudo-inclusion probabilities for elements of a non-
probability sample. Both samples are then combined to derive estimates that
are shown to have improved accuracy and smaller MSE compared with esti-
mates derived from a probability-only sample.

A limitation of these studies is the necessity of a large probability sample to
produce robust calibration weights or pseudo-inclusion probabilities. Given
the high costs of probability samples, it is unlikely that survey firms can always
afford to field a large probability sample in parallel with a nonprobability sam-
ple. A more practical scenario—one we consider in the present investigation—
is to field a small probability sample survey and integrate it with a parallel non-
probability sample survey to improve the efficiency (i.e., reduce the variance)
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of the small sample estimates. Such a strategy is commonly used in small area
estimation where relatively inexpensive auxiliary information collected from
external data sources is used to improve the efficiency of estimates derived
from small samples for specified domains (Rao 2003).

In this article, we consider a Bayesian approach for integrating a relatively
small, presumably unbiased, probability sample with a parallel, relatively less
expensive, but possibly biased, nonprobability sample. The Bayesian frame-
work offers several advantages in this context. First, the Bayesian framework
offers a natural apparatus for integrating data from different sources with vary-
ing levels of quality. Second, the Bayesian framework provides an intuitive
structure that incentivizes the higher-quality data (in our case, the probability
sample survey data) by giving decreasing weight to the lower-quality “prior
information” (in our case, the nonprobability sample data) as the number of
high-quality (i.e., probability sample) observations increases. Further, the
Bayesian framework is capable of quantifying the uncertainty in estimation—a
feature which is currently lacking for estimates based on nonprobability sam-
ples. A related idea of integrating probability and nonprobability samples is
also explored in Sakshaug, Wisniowski, Perez Ruiz, and Blom (2019) who de-
scribe a simulation-based approach rather than the simple and direct analytical
derivations presented in this article.

The aims of this research are threefold. First, we evaluate the extent to
which informative nonprobability-based prior information can reduce the vari-
ability of regression estimates derived from small- and medium-sized probabil-
ity samples. Further, we evaluate the trade-off between variance and bias,
particularly when the nonprobability samples are subject to large biases.
Lastly, we evaluate the MSE of estimates for different sample sizes and bias
parameters to determine whether the method is likely to be practically useful
from an error perspective. The evaluation is performed using simulation stud-
ies and a real-world application involving a probability sample web survey and
eight nonprobability sample web surveys conducted in parallel by different
survey vendors using the same questionnaire.

The remainder of the article is organized as follows: In section 2, we de-
scribe the methodology and notation. In section 3, we describe the setup and
present results of the simulation assessment. In section 4, the data sources are
described and results of the application are presented. Final conclusions and
limitations of the method are discussed in section 5.

2. METHODOLOGY AND MODELING APPROACH

We consider the situation in which the researcher’s primary interest is to pro-
duce estimates of effect sizes for covariates specified in a model for predicting
a certain outcome variable. For that purpose, we employ a linear regression
model in which we estimate the coefficients. Let us denote the nx 1
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vector of the response variable by y = (yy, ..., yn)T and an n X p design ma-
trix X = [Xy,...,X,] containing the fixed and nonstochastic covariates that are
of substantive interest. We assume that

y ~N(XB, v 'I,), (1)

where = (f;,..., ﬁp)/ is a column vector of length p, 7 is a precision (in-
verse variance, T = 1/ ) parameter, and I, is the n X n identity matrix. This
specifies the likelihood p(y|B, 7, X) for the outcome variable.

For a fully Bayesian model specification, we require a prior distribution for
model parameters f and 7 in (1) to produce a marginal posterior distribution
for the coefficient of interest, which might be one (or many) of the elements
belonging to vector f. The posterior, p(f, |y, X), is obtained by applying
Bayes theorem (Bayes 1763):

p(B,7ly,X) < p(y|B, 7, X) x p(B, 1), 2)

where p(f,7) = p(B|t)p(7) is the prior distribution for the model parameters.
This specification is scale-dependent because the prior for B coefficients
depends on the scale of the outcome variable as measured by t. We employ a
conjugate prior specification, that is, a probability distribution that leads to the
posterior distribution belonging to the same distributional family as the prior
(Carlin and Louis 2008).

The conjugate prior for p(7) is a gamma distribution with shape parameter a
and rate b:

p(t) o 1% e 3)

For a = b = 0, this distribution reduces to Jeffrey’s noninformative invariant
prior (Jeffreys 1946; Zellner 1971), which can be interpreted as an improper
uniform distribution for log . This noninformative prior for precision is used
throughout this article.

The conjugate prior for the regression coefficients vector f is a multivariate
normal distribution:

B~ Ny(pg, v 'koV), )

where subscript p denotes the length of the vector B, kg is a scalar, and Vis a
p X p matrix of hyperparameters. This specification is an extension of the ver-
sion presented by Ntzoufras (2011) as it allows a separate specification of the
matrix and scalar scaling factors for the prior variance of the regression
coefficients.

Then, the joint posterior distribution is of the normal-gamma form
(Ntzoufras 2011, p. 11). Our interest is in the marginal distribution of f, which
is a multivariate noncentred ¢ distribution with expectation
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E(Bly) = WB+ (I, — W)ug, 5)
W= XX + (koV)"''X"X, (©6)
B=x"x)"'x"y, (7)
and variance
Var(Bly) = [X"X + (koV) '] " (SS + 2b)(n +2a — 2) ", (8)
SS = RSS+ (B — pp)" [(X"X)™" + koV] ™' (B — mp), ©)
RSS = (y — XB)" (y — XP), (10)

where 1, is the p X p identity matrix. Equation (7) is a maximum likelihood es-
timator (MLE) for the linear regression coefficients. Matrix W in (6) can be
viewed as a “weight” assigned to a data-driven MLE and /, — W a weight for
the prior. If the scaling factor, k¢ V, is very large (implying large prior variance
for p), the weight assigned to the prior mean pug; will be very small
Alternatively, if the prior for B is relatively tight, more weight is assigned to
the prior mean. The RSS in (10) is the residual sum of squares in the classical
regression analysis, whereas SS is the sum of RSS and a measure of the dis-
tance between the MLE for f and the prior mean (Ntzoufras 2011, p. 13).

The marginal posterior for the precision is a gamma distribution with shape
parameter n/2 + a and rate SS/2 + b. With a noninformative Jeffrey’s prior,
ie., a =b =0 in (3), the expected value of the posterior is equivalent to the
MLE for precision.

2.1 Specification of the Prior Distributions

We consider five specifications of the prior in (4) for the regression coeffi-
cients. The first one is a reference specification, hereafter referred to as
“noninformative,” in which we “let the (probability) data speak for
themselves”. That is, we assume

.“/}:07
ko = n, an
V=1,

This specification leads to a posterior (2) with the expectation of f in (5) being

E(Bly) = WB, (12)

-1
with W = gXTX + (1/n)1,) X"X. This prior allows a probability sample of
size n to dominate the inference. With n becoming larger, the posterior
converges to the MLE. Interestingly, the expected value of the posterior
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(equation 12) is a ridge estimator (Hoerl and Kennard 1970; Amemiya 1985).
By using (8) and (9-10), the posterior variance of f is

1 1\ T _ 13
Var(Bly) = — (XTX + ;1,,) {RSS+ B [(X"X)"" +n1,] "B}, (13)
which, for sufficiently large n, yields values equivalent to the MLE variance.

The second prior specification, denoted as “conjugate,” is informative in the
sense that it utilizes a nonprobability sample to inform the posterior. Here, we
assume

Hg = BNP7
1 ) 1 .
ko = 1 Hotelling < 0.05 | Hotelling > 0.05 (]4)
0= g (7 )+ 21 2 0.05),
V=1,

where ﬁNP is an MLE of the coefficients in a regression model based on a non-
probability sample of size nyp, and 1(w) is an indicator function taking the
value one if w is true and zero otherwise. Additionally, p™*"™$ is a p-value
from a Hotelling 7° test for equality of two vectors (Anderson 1984; Khuri
2003, p. 48). The Hotelling 7> test is a multivariate generalization of the
Student ¢ test. In our application of the test, the null hypothesis is
Hy : iINP = ii, and we assess whether the two vectors of coefficients are equal.
The implicit assumption is that the results based on the probability sample are
unbiased with respect to the target population. Hence, if the difference between
all coefficients based on the nonprobability sample, IINP, is statistically signifi-
cant at the 5 percent level (p/°“/"¢ < (.05 and By, is “biased” with respect to
the probability sample-based ﬂ), then the prior variance for f is relatively
large: the scaling factor ko is 1/ lognyp, which is larger than the 1/nyp pro-
posed for the cases when the difference between probability and nonprobabil-
ity coefficients is not statistically significant (p/**#"s > (.05).

The rationale for using one of the two scaling factors is that we prefer to
avoid any potential biases that might be present in the nonprobability samples.
Again, the bias considered here is assessed in relation to the probability sam-
ple. If the nonprobability MLE coefficients show significant differences in
comparison with the probability ones, then the prior variance will not tend to
extremely small values with an increase in nonprobability sample size. On the
other hand, when the MLE coefficients from the nonprobability sample are un-
biased compared with the probability sample, then as the nonprobability sam-
ple size increases, the smaller the prior variance becomes, which, in turn,
allows further shrinkage of the posterior variance of f, comparing with (13).
Our approach to assessing bias in coefficients is dictated by typical applica-
tions, in which practitioners rarely have information about the gold standard
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against which they could assess bias. However, if such information is avail-
able, then the procedure can easily be modified to allow setting ko depending
on the true bias of the nonprobability coefficients and correcting for it in the
prior mean p.

The third specification of the prior is a Zellner’s g-prior (referred to as
“Zellner;” see Zellner 1986; Liang, Paulo, Molina, Clyde, and Berger 2008)
where the Fisher’s information matrix (inverse covariance matrix of covariates)
is used to rescale the prior variance. This permits accounting for the scale and
correlation structure of the covariates in the posterior, which might be relevant
if strong multicollinearity is present and various scales are used for different
variables. The prior is specified with hyperparameters

Hp = ﬁNP:
kO — n[ZVP]l(pHotelling < 005) + ]I(I)Hofelling > 005), (15)

V= (XLpXnp)

where Xyp is a matrix of covariates from the nonprobability sample, and k, is a
scaling hyperparameter g as in the original specification. Zellner’s g-prior is a
convenient and widely used prior in the linear regression setting, mainly due to
its simplicity, computational efficiency, and understandable interpretation
(Liang et al. 2008, p. 411). It requires selecting only one hyperparameter, k,
as a measure of prior dispersion of the model parameters. Various recommen-
dations for this choice have been proposed, including k, being set to the sample
size, squared number of model dimensions, or values obtained from using em-
pirical Bayes methods (Liang et al. 2008, p. 413).

To create the prior based on nonprobability data, we propose using the scal-
ing factors V and k, that depend on the potential bias in the MLE of the coeffi-
cients based on nonprobability sample data, which is assessed against the MLE
based on the probability sample data. The two scaling factors are a function of
the nonprobability design matrix and sample size, respectively.

We suggest using the nonprobability-based MLE for the prior mean and the
Fisher’s information matrix of the nonprobability covariates Xyp for V. In the
case of bias in the MLE estimates, we recommend using ko = n3, which
implies smaller variance and a more informative prior compared with, for ex-
ample, probability sample size n as recommended by Kass and Wasserman
(1995). When bias is not present in the nonprobability MLE, then the even
more informative prior depends only on the Fisher’s information matrix from
the nonprobability sample and ko = 1.

The next two informative prior specifications are variations of the previ-
ously described conjugate and Zellner’s priors. The key part of them is the dis-
tance between the MLEs based on the probability and nonprobability data, if
and f,p, respectively, and the standard error of the MLEs based on nonprob-
ability data, 6 np (cf. Sakshaug et al. 2019). These distance and standard error
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are used to rescale the variance of the prior distribution for the regression coef-
ficients. Thus, the fourth prior specification (referred to as ‘“‘conjugate-dis-
tance”) is specified as

Hp = Bnp,
1
0 = )
log nyp

V= diag{max[(ﬁ - ﬁNP)zv &%’,NP]}?

(16)

whereas the fifth proposed specification (referred to as ‘“Zellner-distance™) is
an extension of the Zellner prior from (15):

tg = Brp,
ko = nyp,

_ 17
V = Va(XEpXap) " Vo, an

Va = diag{max[\/ (B — Byp)”. 6p.np]}-

Here, diag(v) denotes a diagonal matrix with elements of v on its diagonal,
max(a,b) is an element-wise maximum of two vectors a and b, and Gpnp is a
vector of ML standard errors of the regression coefficients estimated using
nonprobability data. Since nonprobability samples are usually larger than the
probability ones, an implicit assumption here is that 6 yp are much smaller
than the respective standard errors based on probability data. This specification
implies that the prior variance does not depend on the binary outcome of the
Hotelling 7” test and allows the prior variance for each coefficient to be
rescaled by its own factor that depends on the distance between the coefficients
or the standard error of the coefficient based on nonprobability data—which-
ever is larger for a given coefficient.

The squared distance introduced to the prior variance permits shrinking the
prior distribution in cases where the difference is relatively small and allows
for larger variability if discrepancies between probability and nonprobability
data arise. Further, the probability-based MLE is used only in relation to the
nonprobability-based MLE to construct the prior for coefficient variability,
rather than central tendency. Hence, the shrinkage in the posterior estimator
depends on the relative distance between probability and nonprobability sam-
ples (measured by a difference between MLEs) or nonprobability MLE stan-
dard error, rather than a probability sample alone.

The role of the nonprobability-based MLE standard errors is to serve as
“safety vents” should the distance between the MLEs be extremely small. In
such cases, it prevents the prior from being overly tight, which may cause nu-
merical matrix inversion problems. If one decides that there is no risk of
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extremely small differences arising between if and ﬂ vp» then the prior can eas-
ily by transformed to rely on the distance between the two coefficients only.

3. MODEL ASSESSMENT USING SIMULATED DATA

To assess the proposed methods, we generate both probability and nonprob-
ability data from a simple linear regression model with assumed known coeffi-
cients. We also introduce bias in one of the coefficients in the simulated
nonprobability samples. We then estimate the parameters using these generated
probability samples and, as described in the previous section, priors con-
structed based on nonprobability samples as specified in (11) and (14-17).
Lastly, we assess how bias introduced in the nonprobability data affects the
posteriors for the coefficients.

The simulated data were created by assuming various sets of coefficients
and using data generating models: x; ~ N(0,01), x; ~ N(5,0,),
y ~ N(By+ B1x1 + Pyx2,0,). We also assume that x; and x, are correlated
with correlation p = 0.1. Here, we present two scenarios. In the first one
(denoted as scenario A), we assume 0y = 0 =g, = 1, f; =1, f; = 0.5 and
p, = 0.1. This scenario reflects a situation in which the effect of the covariate
of interest, say x,, on the outcome is relatively small compared with the
other covariate. In scenario B, we assume o1 =4, 0, = 0.5, g, = 2, ff, = 1,
f; = 0.5 and f, = 2, which reflects a relatively strong effect of x,.

Next, by using both scenarios, we generate one hundred sets of probability
data with sample sizes n € {50,100, 150, 200, 300, 500, 750, 1,000}. For
each of the probability sets, we generate fifty nonprobability samples of sizes
nyp € {10%,10*,5 - 10*} by using the same models but with bias in coefficient
B> induced by multiplying it by a factor f € {0.5, 1, 1.5,2, 3}. This bias in the
coefficient leads to bias in the generated response; factor f= 1 implies the non-
probability sample is unbiased. These assumptions about bias are rather ex-
treme, implying that the nonprobability samples are severely biased, as
compared with the probability data (e.g., in scenario B, the expectation of the
response variable under no bias is E(y) = 11, but when f= 3, this almost triples
to E(y) = 31.

We evaluate the performance of each of the priors by calculating the mean-
squared error for the posterior characteristics of the parameters ff. For a given
posterior distribution, we define the MSE as

MSE(p(B,<ly. X)) = E[(p(B. tly, X) — B)], (18)

where f* is the vector of true parameters used to generate data. The MSE can
be decomposed into variance and squared bias:

MSE(p(B,ly, X)) = Bias*(p(B, |y, X)) + Var(p(B,ly,X)). (19
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130 Wisniowski et al.

We calculate the bias as the difference between the mean of the posterior
means for all iterations, p(f, t|y,X) and the true coefficients:

BlClS(p(ﬁv‘dy,X)) :p(ﬁaT|YaX) _ﬁ*v (20)

with variance being the average posterior variance of the coefficient across all
iterations.

In figure 1, we present the bias as measured by the difference between the
posterior mean and the true coefficient, posterior variance, and mean-squared
error (i.e., the sum of squared bias and posterior variance) of the coefficients
Bo, P1, and f3 in scenario A. All methods except for Zellner lead to reductions
in variance even with a large level of bias induced in f, (i.e., f=3). Further,
substantial reductions in MSE compared with noninformative results are ob-
served when using conjugate (for fy and f5;) and conjugate-distance (fo, f1,
and f,) priors, which stems from the low posterior bias produced by these
methods. For the Zellner method, however, gains in efficiency are minimal,
and for Zellner-distance, they are offset by a larger bias observed even for large
probability sample sizes, except for the cases with relatively low levels of in-
duced bias (i.e., f € (0.5, 1.5)).

In figure 2, we present the analogous results for the scenario B simulation.
Here, we observe that gains in efficiency (reduction in MSE) are obtained
when using the conjugate-distance method, even for large (in terms of absolute
value) values of induced bias (e.g., f=3). Both conjugate and Zellner-distance
methods lead to large bias in f, and 5, which, for Zellner-distance, cannot be
offset by relatively small gains in efficiency if induced bias is present (f # 1).
The Zellner method does not lead to large bias, but gains in efficiency are ob-
served only when no induced bias is present (f=1). This is also indicated by
the increasing proportions of the Hotelling test rejecting the null hypothesis
stating the probability and nonprobability-based coefficients are the same (sec-
tion 2.1) in scenario B compared with scenario A (see figure A.1 of the appen-
dix). In figure A.2 of the appendix, we also present the coefficients of
variability for the two simulations.

Overall, the conjugate and conjugate-distance methods seem to yield gains in
efficiency and produce the posterior estimates least sensitive to bias induced in
nonprobability samples, especially for coefficients directly affected by this bias
(Bo and f,). The Zellner and Zellner-distance methods are much more susceptible
to potential bias in the nonprobability samples. Nevertheless, one should keep in
mind that when the bias implied by any informative prior distribution is very
large, the posterior will be overwhelmed by it, especially when nonprobability
samples are much larger than probability samples. Also, if the posterior distribu-
tion for a coefficient based on the probability data alone is tight (or when using
MLEs, the standard errors are small), then even small amounts of bias in the prior
based on nonprobability sample may lead to reduced rather than improved effi-
ciency. Thus, the proposed methods are recommended when precision of the
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Figure 1. Simulation Scenario A. Bias, variance, and mean squared error (MSE)
for fo, i1, and f, coefficients. NP_ss denotes nonprobability sample size (nyp).

probability-based estimates is relatively low and it is desirable to increase it.
Typically, such situations occur when small probability samples are available.

4. APPLICATION TO THE GERMAN INTERNET
PANEL

4.1 Probability and Nonprobability Data

Next, we evaluate the method and four informative prior specifications using
actual survey data. The probability survey data come from the German Internet
Panel (GIP). The GIP is an ongoing, probability-based longitudinal survey
designed to represent the population of Germany 16-75 years of age. The sur-
vey is funded by the German Research Foundation (DFG) as part of the
Collaborative Research Center 884 “Political Economy of Reforms” based at
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Figure 2. Simulation Scenario B. Bias, variance, and mean squared error (MSE) for
Po, 1, and f coefficients. NP_ss denotes nonprobability sample size (1nyp).

the University of Mannheim. Sample members are selected through a multi-
stage stratified area probability sample. At the first stage, geographic districts
are selected from a database of 52,947 districts in Germany. A random sample
of listed households are then drawn, and all age-eligible members of the sam-
pled households are invited to join the panel (Blom, Gathmann, and Krieger
2015). The GIP is designed to cover both the online and offline populations
and provides internet service and/or internet-enabled devices to facilitate partic-
ipation for the offline population (Blom, Herzing, Cornesse, Sakshaug, Krieger
et al. 2016). The first GIP recruitment process occurred in 2012, achieving an
18.5 percent recruitment rate (based on Response Rate 2; AAPOR 2016). A
second recruitment effort occurred in 2014 and achieved a recruitment rate of
20.5 percent (AAPOR Response Rate 2). Panelists receive a survey invitation
every two months to complete a web survey of approximately 20-25 minutes.
The interview covers a range of social and political topics. The questionnaire
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Table 1. List of Nonprobability Surveys

Survey N Quota variables Total cost (€)
1 1,012 Age, gender, region, education 0 (pro bono)
2 1,000 Age, gender, region 5,392.97
3 999 Age, gender, region 5,618.57
4 1,000 Age, region 7,061.11
5 994 Age, gender, region 7,411.00
6 1,002 Age, gender, region, education 7,636.22
7 1,000 Age, gender, region 8,380.46
8 1,038 Age, gender, region 10,676.44

module we utilize was administered in March 2015. During this month, com-
pleted interviews were obtained from 3,426 out of 4,989 (or 68.7 percent of)
panelists. After removing responses with partial missing information and
adjusting the age range of the GIP to match the age range of the nonprobability
samples (discussed below), we utilize a sample size of 2,681 cases.

As part of a separate methodological project studying the accuracy of non-
probability surveys (Blom et al. 2017), the GIP team sponsored several non-
probability web survey data collections that were conducted in parallel with
the GIP in March 2015. The nonprobability web surveys were carried out by
different commercial vendors in response to a call for bids. The key stipulation
of the call was that each vendor should recruit a sample of approximately one
thousand respondents that is representative of the general population 18-70
years of age living in Germany. The call for bids did not explicitly specify how
representativeness should be achieved. A total of seventeen bids were received,
of which seven were selected based on technical and budgetary criteria. An
eighth commercial vendor voluntarily agreed to perform the data collection
without remuneration after learning about the study aims. Additional informa-
tion about the eight nonprobability surveys can be found in table 1, including
the quota sampling variables used and costs. For confidentiality reasons, we do
not disclose the names of the survey vendors and identify them simply as sur-
vey one, survey two, etc., ordered from least expensive (pro bono) to most ex-
pensive (10,676.44 EUR).

In this application, the outcome variable is body mass index (BMI), a com-
monly studied variable and disease risk factor. A histogram of BMI, as derived
from the GIP, is provided in appendix B. The variable has been constructed by
using respondents’ self-reported height and weight. Body mass index follows an
approximate normal distribution with a slight right skew. In practice, height and
weight (and hence, BMI) may not be properly recorded due to measurement er-
ror (e.g., respondents adding to their height or reducing their weight). We neglect
this limitation in the application. Mean BMI for the GIP and eight nonprobability
surveys are shown in figure 3. We observe that all of the nonprobability surveys
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Figure 3. Means and 95 Percent Confidence Intervals for Body Mass Index in the
German Internet Panel and Nonprobability Surveys.

produce a larger mean BMI than the probability-based GIP survey. The most se-
vere bias is apparent in nonprobability surveys six and one, respectively.'

Following from the simulation assessment in Section 3, our interest lies in
estimating coefficients from a linear regression model using BMI as the out-
come variable. The model is fitted using the following covariates: age (continu-
ous), sex (1 =female, 0 = male), self-reported health status (1 = fair/poor/very
poor, 0 =very good/good), marital status (1 =single, 0= other), education
(mutually exclusive binary variables, that is, 1 = Hauptschulabschluss [basic
secondary level] and O otherwise, 1 = Mittlere reife [extensive secondary level]
and O otherwise, 1 =Fachhochschule [vocational school] and O otherwise,
with university degree being the baseline category), and regularly employed
full or part time (1 =no, 0=yes). Each respondent characteristic was mea-
sured in both the GIP and nonprobability surveys using the same questionnaire
items. In addition, we include a survey weight variable produced by the GIP
team that includes a raking adjustment to population benchmarks as a covariate
in the model. Incorporating the survey weight variable as a covariate in the
analysis of survey data and Bayesian inference has been considered in previous
work (Rubin 1985; Pfeffermann, 1993; Skinner 1994). We do not have access
to further sample design information (clustering, stratification) for the GIP.
Incorporating such information in the modeling approaches is a topic we leave
for future work. Both continuous covariates (age and weights) are standardized
to put coefficients on a comparable scale.

1. Similar conclusions can be drawn when bootstrapped confidence intervals are produced for the
nonprobability surveys.
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Figure 4. MLE of Regression Coefficients and 95 Percent Confidence Intervals
for Body Mass Index in the German Internet Panel (Black) and Eight
Nonprobability Surveys (Gray). Abbreviations: notregemp, not in employment;
genhlth, self-reported health; educ_fh, vocational school; educ_mr, extensive second-
ary school; educ_haupt, basic secondary school; single, marital status; female, sex;
age, standardized age; wtlog, standardized weights (log-scale).

Maximum likelihood estimators of the regression coefficients of BMI on the
covariates, fitted using eight nonprobability surveys, are plotted in figure 4,
with the MLE of the coefficients fitted using 2,681 available cases in the GIP
data (in gray). The fitted coefficients are similar between the GIP and the eight
nonprobability surveys. The largest differences occur for education where the
lowest education classification (hauptschulabschluss) has a larger positive ef-
fect on BMI in the nonprobability surveys than in the GIP survey. Females are
negatively associated with BMI, and this effect is slightly weaker in the non-
probability surveys compared with the GIP. Other variables that tend to have a
significant effect on BMI include age (+) and fair-poor general health status
(+). As a whole, the coefficients are roughly comparable between surveys, and
there is no strong indication of bias in the nonprobability surveys.

4.2 Computation and Evaluation

We compare the performance of the five specifications of the prior (noninfor-
mative, conjugate, Zellner, conjugate-distance, and Zellner-distance; see sec-
tion 2 for details) by estimating posteriors under different probability sample
size scenarios and using different nonprobability surveys to construct the prior
distributions. We consider the probability sample sizes n € {50, 100, 150, 200,
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Figure 5. Bias, Variance and MSE for Regression Coefficients (Averaged Over
One Hundred Samples) in Bayesian Model of Body Mass Index on Respondent
Covariates in the German Internet Panel. Prior distributions constructed using non-
probability survey six. Age and weight (wtlog) covariates are standardized.

300, 500, 750, 1,000}. We use these various sample sizes to simulate a situa-
tion in which a survey sponsor can only afford a small to medium size proba-
bility sample alongside a potentially larger nonprobability sample. These
probability sample sizes are drawn at random from the full GIP sample and are
constructed cumulatively so that the same cases used in the smaller sample
size scenarios are included in the larger sample size scenarios. The size of the
nonprobability sample used to construct the informative prior distributions is
not manipulated, and the full sample size (roughly one thousand respondents;
see table 1) is used.

Next, we evaluate the five prior specifications by calculating the bias, vari-
ance, and MSE (sum of the variance and squared bias) for the estimated regres-
sion coefficients as in (18-19) described in section 2. To calculate bias in (20),
we use a vector of MLEs calculated with the entire GIP sample, which we as-
sume to be unbiased. This strong assumption can be relaxed if more reliable
sources of data on a given characteristic (in our case, BMI) are known.

The entire evaluation procedure (including drawing of the probability sam-
ples) is repeated one hundred times to produce one hundred sets of variance,
bias, and MSE values for each sample size scenario. In the following results
section, we report the average of these values across the one hundred iterations
for each sample size.
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4.3 Results

The results for bias, variance, and MSE of each regression coefficient are pre-
sented in figure 5. For brevity, we present here the results only for the case
where one of the more biased nonprobability surveys, survey six, is used to
construct the prior distributions for the four informative models. The results us-
ing each of the other nonprobability surveys can be found in appendix figures
C.1 (bias), C.2 (variance), and C.3 (MSE).

The second column in figure 5 shows that conjugate and Zellner prior speci-
fications yield coefficient estimates with considerably smaller variances rela-
tive to the estimates derived under the noninformative (reference) prior,
particularly for the smaller probability sample sizes. We observe moderate
reductions in variance for the conjugate-distance prior and significantly smaller
reductions under the Zellner-distance prior. The largest reductions occur for
the smallest sample sizes (fifty and one hundred cases). These reductions con-
tinue at a decreasing rate until a probability sample size of about five hundred
cases is reached; at this point, the variances converge under all five priors.
Further, the variances produced under the conjugate and Zellner priors for the
smallest probability sample sizes are roughly equivalent to the variances pro-
duced under the noninformative prior for the much larger probability sample
sizes (starting with five hundred or more cases). The same variance reduction
patterns are observed when each of the other seven nonprobability surveys are
used to construct the priors (see appendix figure C.2).

Next, we turn to bias. Figure 5 (first column) shows that a few of the coeffi-
cients are biased when the informative priors are used. This is particularly true
for the variables sex and education, which were previously identified as being
biased in the nonprobability surveys (see MLEs in figure 4). A relatively
smaller bias is observed for marital status (single) and health status (genhlth).
As expected, the biases are most prominent for the smallest probability sample
sizes, where the influence of the informative priors is at their peak. All infor-
mative priors have very similar impact on bias, although one can see a slight
indication that the conjugate and Zellner priors yield a slightly larger and more
persistent bias than the other two priors, but this depends on the coefficient. As
with the variance results, the bias induced by the informative priors tends to
converge to the noninformative reference model as the probability sample size
increases and the influence of the priors weaken.

Lastly, we examine the joint impact of variance and bias in the form of
mean squared errors for the regression coefficients. Figure 5 (third column)
shows the MSE results, which share a similar pattern to the variance results de-
scribed previously. That is, the MSEs produced by the model with the informa-
tive priors are considerably smaller than the MSEs under the noninformative
reference model for the smallest probability sample sizes. The reductions in
MSE are smallest for the Zellner-distance prior. This pattern holds even for the
biased covariates identified earlier, except for the Zellner-distance prior. Thus,
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it is apparent that reductions in variance outweigh the increase in bias under
the informative prior models. As with the variance results, the MSE gap be-
tween the values yielded by using informative and noninformative priors
closes as the probability sample size increases and reaches an equilibrium at
about five hundred cases. For nearly all coefficients, the MSEs under the infor-
mative priors for the smallest probability sample sizes are approximately
equivalent to the MSEs produced under the noninformative (reference) prior
for the largest probability sample size (n = 1,000).

S. DISCUSSION

In this article, we evaluate a method of integrating relatively small probability
samples with nonprobability samples to improve the efficiency (i.e., reduce
variability) and reduce the mean squared error for estimated regression coeffi-
cients. We exploit a Bayesian framework and consider four prior specifications
constructed using nonprobability sample survey data that inform posterior esti-
mations based on small probability sample survey data. This approach may be
considered a reversal of the more traditional approach of adjusting a nonprob-
ability sample toward a supplementary probability sample (or other high-
quality benchmark source), as we deliberately “borrow strength” from the
nonprobability survey data and use these data to influence the probability sam-
ple survey estimates.

Using simulations and a real-data application, we show that the
nonprobability-based informative priors can yield reductions in variance and,
subsequently, MSE for linear regression coefficients estimated from small
probability samples. The reductions in variance/MSE yielded such values that
were consistent with the variance/MSE values of much larger probability-only
samples, suggesting that smaller probability sample sizes coupled with rela-
tively inexpensive nonprobability samples could produce levels of error that
are comparable with large and more expensive probability samples.

However, using potentially biased nonprobability survey data to inform
estimations has the potential to introduce bias in the final estimations and off-
set gains in efficiency. This issue was not encountered in the case study
where only modest biases were present in the nonprobability surveys and
these biases did not affect the efficiency gains. Further, the simulation study
showed that large biases can potentially overwhelm the method and produce
larger MSEs, depending on the particular prior specification. In particular,
the Zellner-distance typically led to this behavior. The conjugate and
conjugate-distance methods were reasonably robust to large amounts of bias
induced in the simulated nonprobability samples. Nevertheless, one should
be cautious in implementing the proposed methods when fitting regression
models with covariates that are particularly susceptible to very large biases in
nonprobability surveys.

020z 1snBny €| U0 Jasn wisyuuey JeisiaAlun A €691 2G/0Z1/1/8/81o1le/wessl/woo dno-olwepeoe//:sdiy Woly pepeojumod



Integrating Probability and Nonprobability Samples 139

Some additional limitations of the method should be noted. First, the pro-
posed method relies on the assumption that the probability sample is unbiased,
particularly when compared with the nonprobability sample. This assumption
may not hold in some situations in which one is modeling rare or difficult to
measure phenomena (e.g., homelessness, HIV). We acknowledge that even
high-quality probability samples can be subject to measurement issues due to
nonsampling error and might sometimes provide biased estimates relative to a
nonprobability sample designed specifically for measuring these phenomena
(e.g., respondent-driven sampling). Second, the method presented here is lim-
ited to continuous outcome variables. Extending the method to handle other
variable types (e.g., ordinal, nominal, count) is possible and will be considered
in future work. Further research extensions include accounting for complex
sample design features, model misspecification, and alternative prior specifica-
tions. The four informative priors considered here are only a small subset of
possible specifications. Alternative specifications that, for instance, can correct
for bias in the nonprobability samples could be considered, as well. Further, a
strength of the study application was a demonstration of the method using sev-
eral nonprobability surveys collected by different commercial vendors. This
demonstration noted some variability in the results that warrants further inves-
tigation. Future work ought to investigate the properties of nonprobability sur-
veys that make them potentially good (or bad) candidates to construct useful
prior distributions.

Based on the results of our evaluation, we provide the following advice to
practitioners. For practitioners who utilize the probability sampling approach
but cannot afford to continue fielding large sample sizes, we view this method
as a means to reduce the probability sample size without inducing more vari-
ability in the estimates. Indeed, adopting this method and allocating some
resources to field a parallel nonprobability data collection, which need not be
so large itself (e.g., 1,000 cases), is likely to produce similar measures of vari-
ability (and MSE) compared with a large probability-only sample at a reduced
cost. The risk of inducing bias by introducing nonprobability data collection is
likely to be small as the proposed prior specifications, particularly the conju-
gate methods, were reasonably robust to varying levels of bias.

For practitioners who defend the nonprobability sampling approach, the pri-
mary concern would be the cost of fielding an additional (albeit, small) proba-
bility sample. In our view, the benefits of collecting a small parallel probability
sample outweigh the added costs for three reasons. First, the empirical litera-
ture continues to show that probability samples produce more accurate esti-
mates than nonprobability samples, thus introducing some probability data
collection is likely to be perceived as a more scientific and credible approach.
Second, the Bayesian framework is a natural system for incorporating multiple
data sources with varying levels of quality, is principally structured to incentiv-
ize sparse, yet high quality observations in the posterior estimations, and is a
commonly accepted method in official statistics for estimating small domains.
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Third, collecting a small probability sample need not be so costly if the data
are collected via an existing probability-based omnibus survey or relatively in-
expensive probability-based mail survey. While it would be important to
achieve a high response and minimize the risk of nonresponse bias, this might
be more feasible with a small sample than with a large one.

In conclusion, it is interesting to know that probability and nonprobability
samples can be integrated in a way that exploits their advantages to compen-
sate for their weaknesses and improve estimation of model parameters. It is fur-
ther possible that the method can lead to cost savings for a fixed variance (or
MSE) if the nonprobability sample units are significantly cheaper to interview
than the probability sample units. Another attractive quality of the method is
its computational efficiency. It is easily implemented using freely available
software such as R and any statistical software that allows Bayesian inference
and specification of the prior distributions for the linear regression model. The
R code used to obtain results is available in the online supplementary material.
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Appendixes

A. Hotelling Test Results for the Simulation Study
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Figure A.1 Proportion of rejected null hypotheses in the simulation scenario A
(left panel) and scenario B (right panel).
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Figure A.2 Coefficients of variability in the simulation scenario A (left panel) and
scenario B (right panel). Coefficient of variability is defined as the standard devia-
tion divided by the expectation of the posterior distribution.
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B. Distribution: Body Mass Index
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Figure B.1 Histogram of body mass index in the German Internet Panel.
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C. Application Using GIP Data
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Figure C.1 Bias for regression coefficients (averaged over one hundred samples)
in Bayesian model of body mass index on respondent covariates in the German
Internet Panel. Prior distributions constructed using one of eight nonprobability
surveys (in columns). Age and weights (wtlog) covariates are standardized.
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Figure C.2 Variance for regression coefficients (averaged over one hundred sam-
ples) in Bayesian model of body mass index on respondent covariates in the
German Internet Panel. Prior distributions constructed using one of eight non-
probability surveys (in columns). Age and weights (wtlog) covariates are

standardized.
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Figure C.3 Mean squared error for regression coefficients (averaged over one
hundred samples) in Bayesian model of body mass index on respondent covariates
in the German Internet Panel. Prior distributions constructed using one of eight
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