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We present a model for a class of non-local conservation laws arising in traffic flow modelling at
road junctions. Instead of a single velocity function for the whole road, we consider two different
road segments, which may differ for their speed law and number of lanes (hence their maximal
vehicle density). We use an upwind type numerical scheme to construct a sequence of approximate
solutions, and we provide uniform L∞ and total variation estimates. In particular, the solutions of
the proposed model stay positive and below the maximum density of each road segment. Using a
Lax–Wendroff type argument and the doubling of variables technique, we prove the well-posedness
of the proposed model. Finally, some numerical simulations are provided and compared with the
corresponding (discontinuous) local model.

Key words: Non-local scalar conservation laws, upwind scheme, macroscopic traffic flow models
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1 Introduction

In recent years, conservation laws with non-local flux gained growing attention for a wide field of
applications. Indeed, they turned out to be suitable to describe several phenomena: flux functions
depending on space integrals of the unknown appear, for example, in models for sedimentation
[5], supply chains [19], conveyor belts [18], crowd motions [12] and traffic flows [8, 9, 17].
For this type of equations, general existence and uniqueness results have been established in
[3, 8, 17] for specific classes of scalar equations in one space dimension and in [2, 9] for systems
of equations coupled through the non-local term.

In this paper, we propose a one-dimensional scalar model, arising in traffic flow modelling.
The main difference with respect to the above-mentioned literature is that the flux function may
involve different velocity functions on different parts of the road. The model focuses on a non-
local mean downstream velocity and can therefore describe the behaviour of drivers on two
stretches of a road with different velocities and capacities, without violating the maximal density
constraint on each road segment. Hence, we are modelling a 1-to-1 junction, and this model
can be seen as a first step towards a network formulation for traffic flow models with non-local
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flux. Note that the work [29] is dealing with a similar setting, where the author studies travelling
waves profiles of conservation laws with non-local flux functions, describing traffic flow on a
road with just different maximum velocities.

We approximate the solution using an adapted Godunov or rather upwind type scheme.
Deriving several properties of the scheme and relying on a Kružkov type entropy condition,
we are able to prove the well-posedness of the model.

Since it is still an open question whether the solution of the non-local model tends to the
solution of the corresponding local equation when the support of the kernel function tends to
zero, see, for example, [11] for an overview, we investigate this issue only from the numerical
point of view.

This paper is organised as follows. In Section 2, we present our model and the main result of
this work. In Section 3, we prove the Lipschitz continuous dependence of weak entropy solutions
with respect to the initial data, which implies their uniqueness. In Section 4, we introduce an
adapted upwind type scheme and derive important properties: the maximum principle, uniform
bounded variation (BV) estimates and a discrete entropy inequality. Afterwards, we prove the
convergence of the scheme and the main theorem in Section 5. In the last section, we present
some numerical simulations of our non-local junction model, and we numerically investigate the
behaviour of the corresponding solutions as the support of the kernel function tends to zero.

2 Modelling

Based on the model presented in [17], we consider the following conservation law:

∂tρ(t, x) + ∂x f (t, x, ρ) = 0, x ∈R, t > 0, (2.1)

where

f (t, x, ρ) := ρ(t, x)V1(t, x) + g(ρ(t, x))V2(t, x), (2.2)

with

g(ρ) := min{ρ, ρ2
max}, (2.3)

V1(t, x) :=
∫ min{x+η,0}

min{x,0}
v1(ρ(t, y))ωη(y − x)dy, (2.4)

V2(t, x) :=
∫ max{x+η,0}

max{x,0}
v2(ρ(t, y))ωη(y − x)dy, (2.5)

for any η > 0. We couple the equation (2.1) with the initial datum

ρ(0, x) = ρ0(x) ∈ BV(R),

s.t. ρ0(x) ∈ [0, ρ1
max

]
for x < 0 and ρ0(x) ∈ [0, ρ2

max

]
for x > 0.

(2.6)

The model assumes that drivers adapt their speed based on a weighted mean of downstream
velocities. In the considered setting, changes in road characteristics at x = 0 may translate in
different velocity functions, v1 and v2, and in different road capacities, ρ1

max and ρ2
max, for x < 0

and x > 0, respectively. An example of such a situation on a road is illustrated in Figure 1. Here,
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FIGURE 1. Illustration of cars on a road with different parameters on each segment. The grey area rep-
resents the non-local traffic downstream information of the car in light grey. In this model, this car slows
down in advance with respect to the density of cars in front of it. The illustration describes a microscopic
evolution but can also be used for our macroscopic model.

different maximum capacities and different velocity functions can be ‘seen’ by the car in light
grey. In equation (2.2), the flux also accounts for the maximum capacity of the second road
segment.

The special structure of the flux function (2.2) does not fit into the framework proposed in, for
example, [8, 17, 23]. Only for v1 ≡ v2 and therefore ρ1

max = ρ2
max, the model coincides with the

one presented in [17]. Therefore, we have to investigate its well-posedness in the general case.
We impose the following reasonable hypotheses on vi, i ∈ {1, 2} and ωη:

vi ∈ C2
(
[0, ρ i

max]; R+) : v′
i ≤ 0, vi(ρ

i
max) = 0,

ωη ∈ C1([0, η]; R+) : ω′
η ≤ 0,

∫ η

0
ωη(x)dx = 1 ∀η > 0,

(2.7)

where η represents the look-ahead distance of the drivers.
Since the flux function (2.2) is continuous in x, entropy weak solutions of (2.1) and (2.6) are

intended in the following way:

Definition 1 (Entropy weak solution (see [25])) A measurable function

ρ ∈ C([0, +∞); L1(R)) : [0, +∞) ×R→ [0, max{ρ1
max, ρ2

max}]
is an entropy weak solution of the initial value problem (2.1)–(2.6) if for any test function ϕ ∈
C1

c ([0, +∞) ×R; R+) and for any constant c ∈R,∫ ∞

0

∫
R

(|ρ − c|∂tϕ + sgn(ρ − c)(f (t, x, ρ) − f (t, x, c))∂xϕ − sgn(ρ − c)∂x f (t, x, c)ϕ) dxdt

+
∫ ∞

−∞
|ρ0(x) − c|ϕ(0, x) dx ≥ 0. (2.8)

Remark 1 We note that the entropy condition is essential to obtain the uniqueness of solutions
in the framework of our proof’s technique. Under suitable assumptions, an alternative could be
to follow the approach considered in [23], where the uniqueness is obtained as a consequence of
the Banach fixed point theorem and therefore no entropy condition is needed.

The main result of this paper is the following theorem:
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Theorem 1 Let ρ0 ∈ BV(R; [0, max{ρ1
max, ρ2

max}]) such that ρ0(x) ≤ ρ1
max for x < 0 and ρ0(x) ≤

ρ2
max for x ≥ 0, and hypotheses (2.7) hold. Then, the Cauchy problem{

∂tρ(t, x) + ∂x f (t, x, ρ) = 0, x ∈R, t > 0,

ρ(0, x) = ρ0(x), x ∈R,

admits a unique entropy weak solution in the sense of Definition 1 and

0 ≤ ρ(t, x) ≤ ρ1
max for a.e. x < 0, t > 0,

0 ≤ ρ(t, x) ≤ ρ2
max for a.e. x ≥ 0, t > 0.

(2.9)

Theorem 1 is proved at the end of Section 5.

3 Uniqueness

Let us start to prove the Lipschitz continuous dependence of weak entropy solutions with respect
to the initial data, which ensures the uniqueness of entropy solutions of the model (2.1)–(2.6).
We follow [6, 8, 17], using Kružkov’s doubling of variables technique [25].

Theorem 2 Under hypotheses (2.7), let ρ and ρ̃ be two entropy solutions of (2.1) with initial
datum ρ0 and ρ̃0, respectively. Then, for any T > 0, there holds

‖ρ(t, ·) − ρ̃(t, ·)‖L1 ≤ exp(KT)‖ρ0 − ρ̃0‖L1 ∀t ∈ [0, T], (3.1)

with K given by (3.7).

Proof The functions ρ and ρ̃ are weak entropy solutions of

∂tρ(t, x) + ∂x (ρ(t, x)V1(t, x) + g(ρ)V2(t, x)) = 0, ρ(0, x) = ρ0(x),

∂tρ̃(t, x) + ∂x

(
ρ̃(t, x)Ṽ1(t, x) + g(ρ̃)Ṽ2(t, x)

)= 0, ρ̃(0, x) = ρ̃0(x),

respectively. Vi and Ṽi for i = 1, 2 are defined as in (2.4) and (2.5), where the convolution is
computed over the velocity of ρ and ρ̃, respectively. They are bounded measurable functions
and Lipschitz continuous with respect to x since ρ, ρ̃ ∈ (L∞ ∩ BV) (R+ ×R; R).

Using the classical doubling of variables technique, see [21, 25], we get the following
inequality:

‖ρ(t, ·) − ρ̃(t, ·)‖L1 ≤‖ρ0 − ρ̃0‖L1 +
∫ T

0

∫
R

|∂xρ(t, x)|∣∣V1(t, x) − Ṽ1(t, x)
∣∣dxdt

+
∫ T

0

∫
R

|∂xρ(t, x)|∣∣V2(t, x) − Ṽ2(t, x)
∣∣dxdt (3.2)

+
∫ T

0

∫
R

|ρ|∣∣∂xV1 − ∂xṼ1

∣∣dxdt +
∫ T

0

∫
R

|g(ρ)|∣∣∂xV2 − ∂xṼ2

∣∣dxdt,

where ∂xρ must be understood in the sense of measures. Applying the mean value theorem and
using the properties of the kernel function, we deduce∣∣Vi(t, x) − Ṽi(t, x)

∣∣≤ ωη(0)
∥∥v′

i

∥∥∞‖ρ(t, ·) − ρ̃(t, ·)‖L1 , for i = 1, 2. (3.3)
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Using the Leibniz integral rule and again the mean value theorem, we can also obtain for a.e.
x ∈R

∣∣∂xV1(t, x) − ∂xṼ1(t, x)
∣∣=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x > 0,∣∣∣∫ 0
x (v1(ρ(t, y)) − v1(ρ̃(t, y)))ω′

η(y − x)dy

+ (v1(ρ̃(t, x)) − v1(ρ(t, x))) ωη(0)
∣∣ , if − η < x < 0,∣∣∣∫ x+η

x (v1(ρ(t, y)) − v1(ρ̃(t, y)))ω′
η(y − x)dy

− (v1(ρ̃(t, x + η)) − v1(ρ(t, x + η))) ωη(η)

+ (v1(ρ̃(t, x)) − v1(ρ(t, x))) ωη(0)
∣∣ , if x < −η

≤ ∥∥ω′
η

∥∥
∞
∥∥v′

1

∥∥∞‖ρ(t, ·) − ρ̃(t, ·)‖L1 (3.4)

+ ωη(0)
∥∥v′

1

∥∥∞ (|ρ − ρ̃|(t, x + η) + |ρ − ρ̃|(t, x)) .

Similarly, we obtain∣∣∂xV2(t, x) − ∂xṼ2(t, x)
∣∣≤ ∥∥ω′

η

∥∥
∞
∥∥v′

2

∥∥∞‖ρ(t, ·) − ρ̃(t, ·)‖L1 (3.5)

+ ωη(0)
∥∥v′

2

∥∥∞ (|ρ − ρ̃|(t, x + η) + |ρ − ρ̃|(t, x)) . (3.6)

Plugging (3.3), (3.4), and (3.5) into (3.2), we obtain

‖ρ(t, ·) − ρ̃(t, ·)‖L1 ≤ ‖ρ0 − ρ̃0‖L1

+ max
i=1,2

{∥∥v′
i

∥∥∞
} ∫ T

0
‖ρ(t, ·) − ρ̃(t, ·)‖L1 dt

[
2ωη(0) sup

t∈[0,T]
‖ρ(t, ·)‖BV(R)

+∥∥ω′
η

∥∥
∞

(
sup

t∈[0,T]
‖ρ(t, ·)‖L1 + sup

t∈[0,T]
‖g(ρ(t, ·))‖L1

)]

+ max
i=1,2

{∥∥v′
i

∥∥∞
}

ωη(0)

(
sup

t∈[0,T]
‖ρ(t, ·)‖∞ + sup

t∈[0,T]
‖g(ρ(t, ·))‖∞

)

∫ T

0

∫
R

(|ρ − ρ̃|(t, x + η) + |ρ − ρ̃|(t, x)) dxdt

≤‖ρ0 − ρ̃0‖L1 + K

∫ T

0
‖ρ(t, ·) − ρ̃(t, ·)‖L1dt,

with

K := max
i=1,2

{∥∥v′
i

∥∥∞
} [

2ωη(0) sup
t∈[0,T]

‖ρ(t, ·)‖BV(R)

+ ∥∥ω′
η

∥∥
∞

(
sup

t∈[0,T]
‖ρ(t, ·)‖L1 + sup

t∈[0,T]
‖g(ρ(t, ·))‖L1

)

+2ωη(0)

(
sup

t∈[0,T]
‖ρ(t, ·)‖∞ + sup

t∈[0,T]
‖g(ρ(t, ·))‖∞

)]
. (3.7)
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By Gronwall’s lemma, we get the thesis and for ρ0 = ρ̃0 the uniqueness of entropy
solutions.

Remark 2 Note that we cannot directly apply previous results in the literature [10, 13, 21] to
the present model, because it does not fit precisely the assumptions therein. Moreover, direct
computations allow to recover sharper estimates on the coefficients.

4 Numerical scheme

In order to prove the well-posedness of model (2.1)–(2.6), we prove the existence of solutions
via a numerical scheme which is based on the scheme from [17]. Even though this scheme has
been introduced in [17] as a Godunov type scheme, it reduces to an upwind type scheme.

For j ∈Z and n ∈N, let xj−1/2 = j�x be the cell interfaces, xj = ( j + 1/2)�x the cells centres,
corresponding to a space step �x such that η = Nη�x for some Nη ∈N, and let tn = n�t be the
time mesh. In particular, x = x−1/2 = 0 is a cell interface. We aim at constructing a finite volume
approximate solution ρ�x such that ρ�x(t, x) = ρn

j for (t, x) ∈ [tn, tn+1[ ×[xj−1/2, xj+1/2[. To this
end, we approximate the initial datum ρ0 with the cell averages

ρ0
j = 1

�x

∫ xj+1/2

xj−1/2

ρ0(x)dx, j ∈Z.

Following [17], we consider the numerical flux function

Fn
j+1/2(ρn

j ) := ρn
j V 1,n

j + g(ρn
j )V 2,n

j (4.1)

with

V 1,n
j =

min{−j−2,Nη−1}∑
k=0

γkv1(ρn
j+k+1), V 2,n

j =
Nη−1∑

k=max{−j−1,0}
γkv2(ρn

j+k+1), (4.2)

γk =
∫ (k+1)�x

k�x
ωη(x)dx, k = 0, . . . , Nη − 1, (4.3)

where we set, with some abuse of notation
∑b

k=a = 0 whenever b < a. In this way, we can define
the following finite volume numerical scheme:

ρn+1
j = ρn

j − λ
(

Fn
j+1/2(ρn

j ) − Fn
j−1/2(ρn

j−1)
)

with λ := �t

�x
. (4.4)

Note that, due to the accurate calculation of the integral in (4.3) and the definition of the
convoluted velocities in (4.2), there holds

0 ≤ V 1,n
j ≤ v1

max, 0 ≤ V 2,n
j ≤ v2

max, 0 ≤ V 1,n
j + V 2,n

j ≤ max{v1
max, v2

max}, ∀ j ∈Z, n ∈N.

We set

‖v‖ := max{‖v1‖∞, ‖v2‖∞}, ‖v′‖ := max{‖v′
1‖∞, ‖v′

2‖∞}, ‖ρ‖ := max{ρ1
max, ρ2

max}
and consider the following Courant–Friedrichs–Lewy (CFL) condition:

λ ≤ 1

γ0‖v′‖‖ρ‖ + ‖v‖ . (4.5)
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We will show that, under this CFL condition, the numerical scheme (4.1)–(4.4) satisfies a max-
imum principle, uniform BV estimates and a discrete entropy inequality. Equipped with these
properties, we will show in Section 5 that the sequence of approximate solutions

{
ρ�x

}
con-

verges towards the entropy solution of (2.1)–(2.6). Note that, for v1 ≡ v2, the scheme (4.1)–(4.4)
coincides with the scheme in [17].

In the following proofs, we will omit the dependence on n of the flux function and the velocity
whenever possible, in order to simplify the notation.

4.1 Maximum principle

The solutions generated by the numerical scheme (4.4) stay always positive, and they are
bounded by the maximum road capacity of each road segment as stated by the following lemma.

Lemma 1 Under hypothesis (2.6) and the CFL condition (4.5), the sequence generated by the
numerical scheme (4.1)–(4.4) satisfies the following maximum principle:

0 ≤ ρn
j ≤ ρ1

max for j ≤ −1 and 0 ≤ ρn
j ≤ ρ2

max for j ≥ 0, ∀n ∈N.

Proof We start by showing the positivity. We directly obtain

ρn+1
j = ρn

j − λ

(
Fn

j+ 1
2
(ρn

j ) − Fn
j− 1

2
(ρn

j−1)

)
≥ ρn

j − λFn
j+ 1

2
(ρn

j ) ≥ ρn
j − λ‖v‖ρn

j ≥ 0.

Here, we used the CFL condition (4.5) and g(ρn
j ) ≤ ρn

j .
The rest of the proof follows closely the proof of [17, Theorem 3.1]. Therefore, we compute

the differences of the velocities and obtain

V 1,n
j−1 − V 1,n

j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑Nη−1
k=1 (γk − γk−1) v1(ρn

j+k) − γNη−1v1(ρn
j+Nη

) + γ0v1(ρn
j ), j ≤ −Nη − 1,∑−j−1

k=1 (γk − γk−1)v1(ρn
j+k) + γ0v1(ρn

j ), −Nη ≤ j ≤ −2,

γ0v1(ρn
−1), j = −1,

0, j ≥ 0,

(4.6)

and

V 2,n
j−1 − V 2,n

j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j ≤ −Nη − 1,

−γNη−1v2(ρn
0 ), j = −Nη,∑Nη−1

k=−j (γk − γk−1)v2(ρn
j+k) − γNη−1v2(ρn

j+Nη
), −Nη + 1 ≤ j ≤ −1,∑Nη−1

k=1 (γk − γk−1)v2(ρn
j+k) − γNη−1v2(ρn

j+Nη
) + γ0v2(ρn

j ), j ≥ 0.

(4.7)

It is easy to see that the following estimates hold:

V 1,n
j−1 − V 1,n

j ≤
⎧⎨
⎩

γ0v1(ρn
j ) j ≤ −1,

0, j ≥ 0,
and V 2,n

j−1 − V 2,n
j ≤

⎧⎨
⎩

0 j ≤ −1,

γ0v2(ρn
j ), j ≥ 0.
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Using v1
(
ρ1

max

)= v2(ρ2
max) = 0 and the mean value theorem, we get

V 1,n
j−1 − V 1,n

j ≤
{

γ0‖v′‖(ρ1
max − ρn

j ) j ≤ −1,

0, j ≥ 0,
and

V 2,n
j−1 − V 2,n

j ≤
{

0 j ≤ −1,

γ0‖v′‖(ρ2
max − ρn

j ), j ≥ 0.

Now we consider the case j ≤ −1 and multiply the first inequality by ρ1
max, subtract V 1,n

j ρn
j and

we get

V 1,n
j−1ρ

1
max − V 1,n

j ρn
j ≤

(
γ0‖v′‖‖ρ‖ + V 1,n

j

)
(ρ1

max − ρn
j ).

Similarly, we get

V 2,n
j−1g

(
ρ1

max

)− V 2,n
j g(ρn

j ) ≤ V 2,n
j

(
g
(
ρ1

max

)− g(ρn
j )
)

≤ V 2,n
j (ρ1

max − ρn
j ).

Adding the last two inequalities, we obtain

V 1,n
j−1ρ

1
max − V 1,n

j ρn
j + V 2,n

j−1g
(
ρ1

max

)− V 2,n
j g(ρn

j ) ≤ (γ0‖v′‖‖ρ‖ + ‖v‖) (ρ1
max − ρn

j ).

Due to the CFL condition (4.5), we have for j ≤ −1

ρn+1
j ≤ ρn

j + λ
(

V 1,n
j−1ρ

1
max − V 1,n

j ρn
j + V 2,n

j−1g
(
ρ1

max

)− V 2,n
j g(ρn

j )
)

≤ ρ1
max.

For j ≥ 0, the bound

V 2,n
j−1ρ

2
max − V 2,n

j ρn
j ≤ (γ0‖v′‖‖ρ‖ + ‖v‖) (ρ2

max − ρn
j )

follows analogously to above. Note that V 1,n
j = 0 for j ≥ −1. Since g(ρn

j−1) ≤ ρ2
max holds even for

j = 0 and g(ρn
j ) = ρn

j for j ≥ 0, we obtain

ρn+1
j ≤ ρn

j + λ
(

V 2,n
j−1ρ

2
max − V 2,n

j ρn
j

)
≤ ρ2

max.

This concludes the proof.

Remark 3 The role of the limiter g given by (2.3) in the flux function (2.2) is essential for
the discrete maximum principle above. Indeed, let us consider the model without this limiter. In
order to deal with meaningful velocities, we set v2(ρ) = 0 if ρ > ρ2

max, such that we have

V2(t, x) =
∫ max{x+η,0}

max{x,0}
max{0, v2(ρ(t, y))}ωη(y − x)dy.

For this model, it is possible to prove a maximum principle on [0, max{ρ1
max, ρ2

max}] as above and
similar BV estimates as below, so that the convergence to a solution is ensured. Nevertheless,
this solution has an interesting behaviour for η → ∞ and an initial datum of compact support;
in this case, V1(t, x) + V2(t, x) converges pointwise to v2(0), and it is possible to prove that the
solution will converge to the solution of a linear transport with velocity v2(0) (see [8, Corollary
1.3] for a similar result). Therefore, it is obvious that, if ρ1

max > ρ2
max, for any initial datum ρ0
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of compact support, such that ρ2
max < ρ0(x) ≤ ρ1

max for x < 0, the corresponding solution does not
satisfy (2.9), that is, ρ(x, t) > ρ2

max for x ∈ ]0, a[, a > 0, and t and η large enough.

4.2 BV estimate

In addition to the L∞ bound, we also need a uniform estimate on the total variation of the
sequence of approximate solutions. The crucial part here lies in the presence of the limiter g
at x = 0.

Lemma 2 Let ρ�x be constructed by (4.1)–(4.4) and let the CFL condition (4.5) hold, then for
every T > 0, the following discrete space BV estimate is satisfied:

TV (ρ�x(T , ·)) ≤ exp
(
Twη(0)

(
2‖v‖ + ‖v′‖‖ρ‖)) (TV (ρ0) + T2ωη(0)‖v‖‖ρ‖)=: K(T). (4.8)

Proof For all j ∈Z, we set

�n
j := ρn

j+1 − ρn
j .

In the following, we consider a regularisation of the function g defined in (2.3), namely

gε(ρ) = 1

2

(
ρ + ρ2

max −
√

(ρ − ρ2
max)2 + ε

)
, ε > 0. (4.9)

The function gε is differentiable for every ε > 0 with ‖g′
ε‖ ≤ 1 for all ε > 0. This will allow us to

use the mean value theorem in the following computations. In particular, we will denote by ξ n
j a

value between ρn
j and ρn

j+1 such that g′
ε(ξ n

j )�n
j = gε(ρn

j+1) − gε(ρn
j ) holds. We obtain

�n+1
j =�n

j − λ

(
Fn

j+ 3
2
(ρn

j+1) − 2Fn
j+ 1

2
(ρn

j ) + Fn
j− 1

2
(ρn

j−1)

)

=�n
j − λ

((
V 1,n

j+1 + g′
ε(ξ n

j )V 2,n
j+1

)
�n

j −
(

V 1,n
j−1 + g′

ε(ξ n
j−1)V 2,n

j−1

)
�n

j−1

+ρn
j

(
V 1,n

j+1 − 2V 1,n
j + V 1,n

j−1

)
+ gε(ρn

j )
(

V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1

))
.

Let us now consider the differences of the velocities. With the differences already computed in
(4.6) and (4.7) and the help of the mean value theorem, where ζ n

j is a value between ρn
j and ρn

j+1

for which v′
i(ζ

n
j )�n

j = vi(ρn
j+1) − vi(ρn

j ) for i ∈ {1, 2} holds, we derive

V 1,n
j+1 − 2V 1,n

j + V 1,n
j−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑Nη−1
k=1 (γk−1 − γk)v′

1(ζ n
j+k)�n

j+k + γNη−1v
′
1(ζ n

j+Nη
)�n

j+Nη
− γ0v

′
1(ζ n

j )�n
j , j ≤ −Nη − 2,∑Nη−1

k=1 (γk−1 − γk)v′
1(ζ n

j+k)�n
j+k − γNη−1v1(ρn

−1) − γ0v
′
1(ζ n

j )�n
j , j = −Nη − 1,∑−j−2

k=1 (γk−1 − γk)v′
1(ζ n

j+k)�n
j+k + (γ−j−1 − γ−j−2)v1(ρn

−1) − γ0v
′
1(ζ n

j )�n
j , −Nη ≤ j ≤ −3,

(γ1 − γ0)v1(ρn
−1) − γ0v

′
1(ζ n

j )�n
j , j = −2,

γ0v1(ρn
−1), j = −1,

0, j ≥ 0,
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and

V 2,n
j+1 − 2V 2,n

j + V 2,n
j−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j ≤ −Nη − 2,

γNη−1v2(ρn
0 ), j = −Nη − 1,

γNη−1v
′
2(ζ n

j+Nη
)�n

j+Nη
+ (γNη−1 − γNη )v2(ρn

0 ), j = −Nη,∑Nη−1
k=−j (γk−1 − γk)v′

2(ζ n
j+k)�n

j+k + γNη−1v
′
2(ζ n

j+Nη
)�n

j+Nη

+(γ−j−2 − γ−j−1)v2(ρn
0 ), −Nη + 1 ≤ j ≤ −2,∑Nη−1

k=1 (γk−1 − γk)v′
2(ζ n

j+k)�n
j+k + γNη−1v

′
2(ζ n

j+Nη
)�n

j+Nη
− γ0v2(ρn

0 ), j = −1,∑Nη−1
k=1 (γk−1 − γk)v′

2(ζ n
j+k)�n

j+k + γNη−1v
′
2(ζ n

j+Nη
)�n

j+Nη
− γ0v

′
2(ζ n

j )�n
j , j ≥ 0.

Putting everything together, we have

�n+1
j =

(
1 − λ

(
V 1,n

j+1 + g′
ε(ξ n

j )V 2,n
j+1 − γ0an

j

))
�n

j + λ
(

V 1,n
j−1 + g′

ε(ξ n
j−1)V 2,n

j−1

)
�n

j−1

+ λ

Nη−1∑
k=1

(γk−1 − γk)bn
j+k�

n
j+k + λγNη−1cn

j+Nη
�n

j+Nη

+ λdn
j

(
ρjv1(ρn

−1) − gε(ρn
j )v2(ρn

0 )
)

, (4.10)

where

an
j =

⎧⎪⎪⎨
⎪⎪⎩

v′
1(ζ n

j )ρn
j , j ≤ −2,

0, j = −1,

v′
2(ζ n

j )ρn
j , j ≥ 0,

bn
j+k =

⎧⎪⎪⎨
⎪⎪⎩

−v′
1(ζ n

j+k)ρn
j , j + k ≤ −2,

0, j + k = −1,

−v′
2(ζ n

j+k)gε(ρn
j ), j + k ≥ 0,

cn
j+Nη

=

⎧⎪⎪⎨
⎪⎪⎩

−v′
1(ζ n

j+Nη
)ρn

j , j ≤ −Nη − 2,

0, j = −Nη − 1,

−v′
2(ζ n

j+Nη
)gε(ρn

j ), j ≥ −Nη,

dn
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j ≤ −Nη − 2,

γNη−1, j = −Nη − 1,

γ−j−2 − γ−j−1, −Nη ≤ j ≤ −2,

−γ0, j = −1,

0, j ≥ 0.

Since the coefficients in (4.10) are positive due to the CFL condition (4.5), we take absolute
values, sum over j and rearrange the indices, which gives us∑

j

|�n+1
j | ≤

∑
j

[(
1 − λ

(
V 1,n

j+1 + g′
ε(ξ n

j )V 2,n
j+1 − γ0an

j

))
|�n

j | + λ
(

V 1,n
j−1 + g′

ε(ξ n
j−1)V 2,n

j−1

)
|�n

j−1|

+ λ

Nη−1∑
k=1

(γk−1 − γk)bn
j+k|�n

j+k| + λγNη−1cn
j+Nη

|�n
j+Nη

|

+λ|dn
j |
∣∣∣ρjv1(ρn

−1) − gε(ρn
j )v2(ρn

0 )
∣∣∣]
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=
∑

j

[
1 − λ

(
V 1,n

j+1 + g′
ε(ξ n

j )V 2,n
j+1 − V 1,n

j − g′
ε(ξ n

j )V 2,n
j

)

+ λ
(
γ0an

j +
Nη−1∑
k=1

(γk−1 − γk)bn
j + γNη−1cn

j

)]
|�n

j |

+
∑

j

λ|dn
j |
∣∣∣ρjv1(ρn

−1) − gε(ρn
j )v2(ρn

0 )
∣∣∣ .

Now we use that V i,n
j − V i,n

j+1 ≤ γ0‖v‖ and ‖g′
ε‖ ≤ 1 for the first term and for the second term we

have an
j ≤ 0 and bn

j , cn
j ≤ ‖v′‖‖ρ‖, which gives us

∑
j

|�n+1
j | ≤ (1 + λγ0

(
2‖v‖ + ‖v′‖‖ρ‖))∑

j

|�n
j |

+
∑

j

λ|dn
j |
∣∣∣ρjv1(ρn

−1) − gε(ρn
j )v2(ρn

0 )
∣∣∣ .

Since
∑

j |dn
j | = 2γ0 holds, using also λγ0 ≤ �tωη(0), we finally obtain

∑
j

|�n+1
j | ≤ (1 + �tωη(0)

(
2‖v‖ + ‖v′‖‖ρ‖))∑

j

|�n
j | + �t2ωη(0)‖v‖

(
‖ρ‖ +

√
ε

2

)
.

This estimate holds for any ε > 0, and for ε → 0, we obtain the following estimate for the total
variation

TV (ρ(T , ·)) ≤ (1 + �tωη(0)
(
2‖v‖ + ‖v′‖‖ρ‖))T/�t (

TV (ρ0) + T2ωη(0)‖v‖‖ρ‖)
≤ exp

(
ωη(0)

(
2‖v‖ + ‖v′‖‖ρ‖) T

) (
TV (ρ0) + T2ωη(0)‖v‖‖ρ‖) .

To finally apply Helly’s theorem, we also need an estimate for the discrete total variation in
space and time, which we are now able to provide.

Lemma 3 Let ρ�x be constructed by (4.1)–(4.4) and let the CFL condition (4.5) hold, then for
every T > 0, the following discrete space and time total variation estimate is satisfied:

TV (ρ�x; R× [0, T]) ≤ TK(T)(1 + ‖v′‖‖ρ‖ + ‖v‖)

with K(T) defined as in (4.8).

Using the regularisation of g given by (4.9), the proof is entirely analogous to the one of [17,
Theorem 3.3].

4.3 Discrete entropy inequality

In the following, we use the notation a ∧ b = max{a, b}, a ∨ b = min{a, b} and follow [3, 8, 17].

Lemma 4 Let ρ�x be constructed by (4.1)–(4.4). If the CFL condition (4.5) holds, then for c ∈R,
we have the following discrete entropy inequality:
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j − c

∣∣∣≤ ∣∣∣ρn
j − c

∣∣∣− λ
(

Hn
j+1/2(ρn

j ) − Hn
j−1/2(ρn

j−1)
)

(4.11)

− λ sgn(ρn+1
j − c)

(
Fn

j+1/2(c) − Fn
j−1/2(c)

)
,

where

Hn
j+1/2(u) = Fn

j+1/2(u ∧ c) − Fn
j+1/2(u ∨ c).

Proof Let

Gn
j (u, w) = w − λ(Fn

j+1/2(w) − Fn
j−1/2(u)).

Under the CFL condition (4.5) and using the regularisation (4.9) of g, Gj is monotone in both its
arguments, since we obtain

∂Gn
j

∂w
= 1 − λ

(
V 1,n

j+ 1
2
+ g′

ε(w)V 2,n

j+ 1
2

)
≥ 0,

∂Gn
j

∂u
= λ

(
V 1,n

j− 1
2
+ g′

ε(u)V 2,n

j− 1
2

)
≥ 0.

The monotonicity implies that

Gn
j (ρn

j−1 ∧ c, ρn
j ∧ c) ≥ Gn

j (ρn
j−1, ρn

j ) ∧ Gn
j (c, c) (4.12)

Gn
j (ρn

j−1 ∨ c, ρn
j ∨ c) ≤ Gn

j (ρn
j−1, ρn

j ) ∨ Gn
j (c, c). (4.13)

Subtracting (4.13) from (4.12), we obtain∣∣∣Gn
j (ρn

j−1, ρn
j ) − Gn

j (c, c)
∣∣∣≤ ∣∣∣ρn

j − c
∣∣∣− λ

(
Hn

j+1/2(ρn
j ) − Hn

j−1/2(ρn
j−1)

)
. (4.14)

The left side of (4.14) is
∣∣∣ρn+1

j − c + λ(Fn
j+1/2(c) − Fj−1/2(c))

∣∣∣, and we get

∣∣∣ρn+1
j − c + λ(Fn

j+1/2(c) − Fn
j−1/2(c))

∣∣∣
≥ sgn(ρn+1

j − c)
(
ρn+1

j − c + λ(Fn
j+1/2(c) − Fn

j−1/2(c))
)

=
∣∣∣ρn+1

j − c
∣∣∣+ λ sgn(ρn+1

j − c)
(

Fn
j+1/2(c) − Fn

j−1/2(c)
)

. (4.15)

The proof is completed by combining (4.14) and (4.15).

5 Convergence

Lemma 5 Let ρ = ρ(t, x) ∈ L∞ ∩ BV([0, +∞) ×R; [0, max{ρ1
max, ρ2

max}) be the L1
loc-limit of

approximations ρ�x generated by the upwind scheme (4.4) and let c ∈R, ϕ ∈ C1
c ([0, +∞) ×R).

Then, ρ satisfies the entropy inequality given by (2.8).

Proof Let ϕ ∈ C1
c ([0, +∞) ×R) and set ϕn

j = ϕ(tn, xj). We multiply the discrete entropy
inequality (4.11) by ϕn

j �x and then apply summation by parts to get

�x�t
∑
n≥0

∑
j∈Z

∣∣∣ρn+1
j − c

∣∣∣(ϕn+1
j − ϕn

j )/�t + �x
∑

j

∣∣∣ρ0
j − c

∣∣∣ϕ0
j (5.1)
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+ �x�t
∑
n≥0

∑
j∈Z

Hn
j−1/2(ϕn

j − ϕn
j−1)/�x (5.2)

− �x�t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
Fn

j+1/2(c) − Fn
j−1/2(c)

)
ϕn

j /�x ≥ 0. (5.3)

By Lebesgue’s dominated convergence theorem, as �x → 0, we have

(5.1) →
∫ ∞

0

∫
R

|ρ − c|ϕtdxdt +
∫ ∞

−∞
|ρ0(x) − c|ϕ(0, x)dx.

As �x → 0, the sums in (5.2) converge by standard arguments, see [5], [6, Sec. 4 Proof of
Theorem 1], [20], to ∫ ∞

0

∫
R

sgn(ρ − c)(f (t, x, ρ) − f (t, x, c))ϕx dxdt.

Now let us study the sum (5.3), and we have

(5.3) = − �x�t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
cV 1

j + g(c)V 2
j − cV 1

j−1 − g(c)V 2
j−1

)
ϕn

j /�x

= − �x�t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)

(
c

V 1
j − V 1

j−1

�x
+ g(c)

V 2
j − V 2

j−1

�x

)
ϕn

j

= − �x�t
∑
n≥0

∑
j∈Z

(sgn(ρn+1
j − c) − sgn(ρn

j − c))

(
c

V 1
j − V 1

j−1

�x
+ g(c)

V 2
j − V 2

j−1

�x

)
ϕn

j

− �x�t
∑
n≥0

∑
j∈Z

sgn(ρn
j − c)

(
c

V 1
j − V 1

j−1

�x
+ g(c)

V 2
j − V 2

j−1

�x

)
ϕn

j .

The second term in the last equality clearly converges to

−
∫ ∞

0

∫ ∞

−∞
sgn(ρ − c) (c(V1)x + g(c)(V2)x) ϕ)dxdt.

We will show now that the first term vanishes as �x → 0. We follow here [5, 6], and we perform
a summation by parts, which gives us

�t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)ϕn

j

[
c
[(

V 1,n+1
j − V 1,n+1

j−1

)
−
(

V 1,n
j − V 1,n

j−1

)]

+g(c)
[(

V 2,n+1
j − V 2,n+1

j−1

)
−
(

V 2,n
j − V 2,n

j−1

)]]
+ �t�t�x

∑
n≥0

∑
j<0

sgn(ρn+1
j − c)

×
⎡
⎣c

(
V 1,n+1

j − V 1,n+1
j−1

)
�x

+ g(c)

(
V 2,n+1

j − V 2,n+1
j−1

)
�x

⎤
⎦
(
ϕn+1

j − ϕn
j

)
�t

.

As can be seen in (4.6) and (4.7), V i,n+1
j − V i,n+1

j−1 ≤ �xωη(0)‖v‖ holds, and due to the compact-
ness of the support function, the second term vanishes as �x, �t → 0. For the first term, we first
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obtain that(
V 1,n+1

j − V 1,n+1
j−1

)
−
(

V 1,n
j − V 1,n

j−1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nη−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k − v1(ρn

j+k))

+ γNη−1(v1(ρn+1
j+Nη

) − v1(ρn
j+Nη

)) − γ0(v1(ρn+1
j ) − v1(ρn

j )),

j ≤ −Nη − 1,

−j−1∑
k=1

(γk−1 − γk)(v1(ρn+1
j+k ) − v1(ρn

j+k)) − γ0(v1(ρn+1
j ) − v1(ρn

j )), −Nη ≤ j ≤ −2,

γ0(v1(ρn+1
−1 ) − v1(ρn

−1)), j = −1,

and (
V 2,n+1

j − V 2,n+1
j−1

)
−
(

V 2,n
j − V 2,n

j−1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j ≤ −Nη − 1,

γNη−1(v2(ρn+1
j+Nη

) − v2(ρn
j+Nη

)), j = −Nη,
Nη−1∑
k=−j

(γk−1 − γk)(v2(ρn+1
j+k ) − v2(ρn

j+k)) + γNη−1(v2(ρn+1
j+Nη

)

−v2(ρn
j+Nη

)),

−Nη + 1 ≤ j ≤ −1.

Now we use the compact support of the test function. There exist T > 0 and R > 0 such
that ϕ(t, x) = 0 for t > T and |x| > R. Let NT ∈N and j0, j1 ∈Z be such that T ∈]nT�t, (nT +
1)�t], −R ∈]xj0− 1

2
, xj0+ 1

2
], R ∈]xj1− 1

2
, xj1+ 1

2
]. We only consider j0 < 0, since otherwise the term

is already 0. In addition, similar to [17, Theorem 3.3], the following estimate is derived during
the proof of Lemma 3:

NT∑
n=0

∑
j

�x|ρn+1
j − ρn

j | ≤ K̃,

By plugging in the equality obtained before, using the mean value theorem, the above-mentioned
estimate and g(c) ≤ c we obtain

�t
∑
n≥0

∑
j<0

sgn(ρn+1
j − c)ϕn

j

[
c
((

V 1,n+1
j − V 1,n+1

j−1

)
−
(

V 1,n
j − V 1,n

j−1

))

+g(c)
((

V 2,n+1
j − V 2,n+1

j−1

)
−
(

V 2,n
j − V 2,n

j−1

))]

≤ �t

�x
‖ϕ‖‖v′‖c

⎡
⎣γNη−1

NT∑
n=0

min{−1,j1}∑
j=j0

�x|ρn+1
j+Nη

− ρn
j+Nη

|+

Nη−1∑
k=1

(γk−1 − γk)
NT∑
n=0

min{−1, j1}∑
j=j0

�x|ρn+1
j+k − ρn

j+k | + γ0

NT∑
n=0

min{−1, j1}∑
j=j0

�x|ρn+1
j − ρn

j |
⎤
⎦

≤ �t‖ϕ‖‖v′‖cK̃2ωη(0),

which goes to zero as �x → 0 (and then �t → 0). This concludes the proof.
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Proof of Theorem 1.
Similar to [8, Theorem 1], [17, Theorem 2.3] or [6, Theorem 1], the convergence of the
approximate solutions constructed by the upwind scheme (4.4) to the unique weak entropy
solution can be proven by applying Helly’s theorem (see [16, Lemma 5.6]). Due to Lemma
1 and Lemma 3, there exists a sub-sequence of approximate solutions that converges to some
ρ ∈ (L∞ ∩ BV)([0, +∞) ×R; [0, max{ρ1

max, ρ2
max}]). Lemma 5 shows that the limit function ρ is

a weak entropy solution of (2.1)–(2.6) in the sense of Definition 1. Adding the uniqueness result
in Theorem 2, we conclude the proof of Theorem 1. �

6 Numerical simulations

In this section, we show some simulation results to illustrate the numerical solutions of the non-
local model (2.1). The behaviour of solutions is also studied as the look-ahead distance η tends
to zero. To this end, we will consider Riemann initial data of the type

ρ0(x) =
{

ρL, if x < 0,

ρR, if x > 0.
(6.1)

We take a spatial step size of �x = 10−3. Due to the CFL condition (4.5), the time step size �t
is given by �t ≈ 0.9�x/(γ0‖v′‖‖ρ‖ + ‖v‖).

We divide this section into three parts. In the first part, we analyse how our model behaves for
a fixed look-ahead distance η > 0. For non-local conservation laws, it is still an open question
whether the model tends to the corresponding local equation for η tending to zero (see, e.g., [11]
for a recent overview). For this reason, we will investigate the limit question as η → 0 from the
numerical point of view in Section 6.2. Overall, we will consider the following settings:

Test 1: vi(ρ) = vi
max

(
1 −

(
ρ

ρi
max

)2
)

for i ∈ {1, 2}, with v1
max = 1, v2

max = 2, ρ1
max = ρ2

max =
1, ρL = 0.75, ρR = 0.5;

Test 2: as in Test 1, but with v1
max = 2, v2

max = 1;

Test 3: vi(ρ) = vi
max

(
1 − ρ

ρi
max

)
for i ∈ {1, 2}, with v1

max = 2, v2
max = 1, ρ1

max = 0.5, ρ2
max =

1, ρL = 0.25, ρR = 0.5;
Test 4: vi as in Test 3, but with v1

max = 1, v2
max = 2, ρ1

max = 1, ρ2
max = 0.5, ρL = 0.5, ρR = 0.25.

The first two settings are used to show that the obtained solutions are reasonable also for non-
linear velocity functions, while the last two settings turn out to be interesting in Section 6.2. For
all the tests, the kernel function is given by ωη(x) = 2(η − x)/η2 and the final simulation time is
T = 1.

Finally, in Section 6.3, we will show that our model can be easily extended to more than two
stretches and therefore to a sequence of 1-to-1 junctions to simulate traffic.

6.1 Fixed look-ahead distance η

We set η = 0.1. Let us consider the first test. Here, we start with a congested situation on the
first road segment. In addition, the maximum velocity on the first road is lower than the one
on the second road segment. Therefore, the traffic jam resolves over time as can be seen in
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FIGURE 2. Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right).
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FIGURE 3. Numerical solutions at T = 1 for the Test 3 (left) and Test 4 (right).

Figure 2 (left). In contrast to Test 1, Test 2 presents the opposite situation: the velocity on the
first road segment is now higher than the second one. Hence, the traffic jam cannot resolve, and
we get a backward traveling increase of the density (see Figure 2, right).

In the last two settings, we can see that the presence of the look-ahead distance results in
a smoothing of the density close to the end of the first and the beginning of the second road
segment (see Figure 3).

6.2 Look-ahead distance η tending to zero

As mentioned above, the behaviour of solutions for η tending to zero is of special interest for
non-local conservation laws. Concerning non-local LWR traffic flow models as in [8, 17], or
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FIGURE 4. Numerical solutions at T = 1 corresponding to Test 1 (left) and Test 2 (right) and different
values of η.

model (2.1) with v1 ≡ v2, so far the convergence to the classical LWR traffic flow model [27, 28]
can only be proven for monotone initial data (see [11, 24]), since the solution is monotonicity
preserving and therefore has a strict maximum principle and a bounded total variation, uniformly
in η. Unfortunately, similar results do not hold for model (2.1) with v1 �= v2, since the model is, in
general, not monotonicity preserving even for constant initial data. Therefore, we just investigate
the limit numerically.

The local (discontinuous) conservation law corresponding to model (2.1) is given by:

ρt + f (x, ρ)x = 0, with f (x, ρ) := H(−x)ρv1(ρ) + H(x)ρv2(ρ), (6.2)

where H(x) is the Heaviside function. As pointed out in [1, 7], (6.2) admits many L1 contraction
semigroups, one for each so-called (A, B)-connection. The two most common connections are
the one corresponding to the supply–demand approach [26], and the vanishing viscosity solu-
tion (see [22, Definition 3.1]), which is a weak solution satisfying, besides the Kruzkov entropy
inequalities for x < 0 and x > 0, the 
-condition of [14, 15], see also [22, Definition 3.1] and [4].

For instance, the vanishing viscosity solution can be obtained by a Godunov scheme
considering a grid where x = 0 is a cell midpoint (see [22]).

In the following, we will consider η ∈ {0.05, 0.01, 0.005, 0.001} and �x = 10−4 to keep the
non-local impact. We compare it to the solution of (6.2)–(6.1), which will be computed by the
Godunov scheme as presented in [22], since we are interested in the vanishing viscosity solution.
Note that, due to the different grids, we do not compute L1-errors between the different solutions.

We will now investigate the previous four test cases. In the first two settings, as η → 0, the
solution of (2.1) with initial conditions (6.1) is very similar to the vanishing viscosity solution of
the corresponding local problem (see Figure 4). We also remark that, in the parameters settings
Test 1 and Test 2, the solution obtained by the supply–demand approach is equal to the vanishing
viscosity solution.
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FIGURE 5. Numerical solutions at T = 1 corresponding to Test 3 (left) and Test 4 (right) and different
values of η

Let us now consider Tests 3 and 4. The initial datum in both of them is exactly the density
corresponding to the maximum fluxes attainable on each road segment. Therefore, the solution of
the supply and demand approach is given by a stationary discontinuity coinciding with the initial
datum. As can be seen in Figure 5, in both tests, the limit of model (2.1) behaves as the vanishing
viscosity solution. In Test 4, the numerical results also coincide with supply–demand solution.
The most interesting case is Test 3. For these parameters, the vanishing viscosity solution differs
from the supply–demand solution and, as can be seen in Figure 5 (left picture), the solution of
the model (2.1) seems to converge to the vanishing viscosity solution for η tending to zero.

6.3 Linear network scenario

Finally, we show that the model can be extended to more than two stretches of a road. We
consider the case of road works on a highway, modeled by the segment [0, L], with L = 2, where
the road capacity and the maximal speed are smaller. Therefore, we have three different road
segments, ] − ∞, 0[, [0, L[ and [L, ∞[, and we consider the linear velocity function as in Test 3,
with v1

max = v3
max = ρ1

max = ρ3
max = 1 before and after the road works, and v2

max = 0.5 and ρ2
max =

0.8 for x ∈ [0, L]. We start with a higher density on the segment with the road works, that is,

ρ0(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.4, if x < 0,

0.5, if 0 < x < L,

0.4, if L < x.

(6.3)

As in Section 6.1, the look-ahead distance is η = 0.1, and as in Section 6.2, we also present the
vanishing viscosity solution obtained by the Godunov scheme of [22] to get an impression of the
corresponding local problem. As can be seen in Figure 6, the presence of the road works results
in a traffic jam upstream and a decrease of the density downstream. As noticed in Section 6.2,
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FIGURE 6. Numerical solution for three road segments at T = 1.

the numerical solution of the non-local problem tends for small η towards the vanishing viscosity
solution.

7 Conclusion

In this work, we have presented a non-local flux model, which can handle different maximum
velocities and capacities, that is, different velocity functions, on the road and therefore models
a 1-to-1 junction. The model considers a non-local mean downstream velocity on both road
segments and satisfies a maximum principle on each road segment. We have proven its well-
posedness, that is, existence, uniqueness and continuous dependence of solutions with respect to
the initial data, via an upwind numerical scheme. Numerical examples suggest that the solution
tends to the vanishing viscosity solution of the corresponding local conservation law as the look-
ahead distance goes to 0. We intend to further investigate this question in future work.

In addition, the model can be extended to more than two stretches to model traffic behaviour
on a more complex road segment, as shown in Section 6.3. Hence, this model can be seen as a
first step towards non-local traffic flow models on networks. In the future, we aim to extend this
model from the current simple network structure to a more general network formulation.
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