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Abstract To support the grid and integrate renew-
ables, demand response schemes reward the power
flexibility of energy consumers. Data centers can
profit from this by using power management tech-
niques on all levels of data center architecture:
infrastructure, hardware, workload, applications. Even
though lately, demand response with data centers has
been well researched, most works focus on just one or
two techniques and one or two valorization options.
This leaves data centers stranded that are not repre-
sented by the specific combinations of assumptions
and techniques presented in research, and thus a huge
potential remains barely touched. To address this chal-
lenge, the goal of the presented work is to provide
data centers with a framework that can be flexibly
instantiated by each data center to assess its individ-
ual demand response potential. To achieve this goal,
this work presents Sim2Win, a data center simulation
framework that can replay any set of different power
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management strategies in the face of any set of mar-
kets for power flexibility. A part of the framework
is then instantiated and applied to the workload of a
real high-performance data center. It uses workload
shifting and frequency scaling in order to market their
flexibility on the EPEX spot market and the secondary
reserve market in Germany. The results show that by
using the inherent flexibility of their power profile on
the EPEX spot market the considered data center in
2014 could have earned savings of 7.3% of their power
bill.

Keywords Power flexibility · Data centers ·
Demand response · Simulation

Introduction

Data center energy consumption continues to be a
major challenge of the digitization of lifestyle and
economy. Even though news coverage is slightly
reduced compared to the beginning of the decade, a
google scholar research of “data center” and “energy
consumption” reveals that the number of research
works in the area remains rather stable. In the early
years, research focused exclusively on saving energy
and power in data centers by setting up more efficient
equipment. First, results of these research activities
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can already be observed in practice. A recent anal-
ysis (Avgerinou et al. 2017) showed that the energy
efficiency of many data centers in Europe constantly
increased since 2008. Since then, attention has also
been directed at reducing the detrimental impact of
data center power consumption by adapting their
power profile to the requirements of the grid and the
intermittent supply of renewables.

The market approach to this idea is “demand
response,” which is the temporary adaptation of power
demand in response to a market signal. Today, in
Europe, the demand response mechanism is institu-
tionalized on the level of the transmission grid and
aimed at maintaining the frequency in a small band
around 50 Hz. This frequency is influenced by any
power fed into or extracted from the grid; therefore,
indirectly, answering to demand response requests
enables the system to reduce the curtailment of inter-
mittent renewable power and thus increases their share
at power consumption. There are many programs that
enable demand response with big industry consumers
like data centers both in the USA and the EU. These
can be grouped into explicit and implicit demand
response programs, also called incentive-based versus
price-based. According to Coalition (2014), explicit
demand response is contract-based programs where
users get directly paid to adapt their power profiles
upon specific requests; in Europe, these are issued
on primary, secondary, and tertiary reserve markets
and capacity markets. Implicit demand response is a
price-based reaction to sourcing energy at a higher or
lower price, e.g., at a wholesale market like the EPEX
stock market. Data centers are good candidates for
both explicit and implicit demand response schemes
as they are highly automated and technically can adapt
their power demand in a fine-grained way. Usually,
they can do this using a variety of power management
techniques on all levels of data center architecture:
infrastructure, hardware, workload, applications.

This area has been well researched with most
works focusing on single power management strate-
gies like powering off unused servers or geograph-
ically migrating virtual machines. Despite hundreds
of works showing a high potential of utilizing power
flexibility in data centers, in reality, there is hardly
any track of data center demand response, especially
in Europe. In Germany, for instance, where the here
presented simulation and experiments are located, data
centers have been monitored for the last 10 years by

the Borderstep Institute for Innovation and Sustain-
ability. They show that between 2007 and 2017 not
only the overall number of data centers in Germany
has increased from nearly 2000 to about 3000, but that
also within this time frame the number of big data
centers has doubled (Hintemann 2017). In 2017, the
overall energy demand from German data centers was
at 13.2 TWh (Hintemann 2018). Just assuming that
this was consumed using constant power during the
year, this would amount to 1.5 GW. This is a huge
load, considering that the peak load in whole Germany
was at 80.6 GW 1. Considering further, that in 2014,
Gils identified a theoretical load reduction demand
response potential in Germany of around 10% of the
country’s peak load; this figure is even more impres-
sive (Gils 2014). It has to be noted that Gils’ work
is based on identifying suitable processes in all eco-
nomic sectors; processes in data centers had not been
included.

There is a bundle of reasons for the gap between
theoretical demand response potential and referenced
implementation thereof, which ranges from a lack of
power flexibility market maturity in Europe (Coalition
2017) over business model obstacles, e.g., for colo-
cation providers, to risk aversion in the data center
community (Fernández-Montes et al. 2015; Whitney
et al. 2014). Among these is also a lack of awareness
of data center management about inherent flexibility
inside the data center.

The authors are currently also working on a theoret-
ical framework for using an integrated approach that
optimizes a set of power management strategies inside
the data center, selling the identified flexibility to a set
of power flexibility markets (“power flex markets”)
(Klingert and Becker 2018). However, the challenge
remains familiarizing the management of data cen-
ters with the general approach to demand response by
helping them to identify flexibility options for their
power profile and by presenting them opportunities
to offer these on power flex markets. One option
to do this and control the implementation risk is to
simulate several power management techniques and
marketing options before implementing them in real-
ity. This approach is selected for the work presented
here. There are other simulators for data centers, but as
will be shown in “Related work,” none of the generic

1https://www.agora-energiewende.de/fileadmin2/Projekte/2018/
Jahresauswertung 2017/Die Energiewende im Stromsektor 2017.
pdf
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simulators is targeted at simulating demand response
with data centers; simulation approaches, on the other
hand, that aim at evaluating demand response schemes
are regularly not built generically.

Contribution This work is the first to present
Sim2Win, a simulation framework that is targeted
at replaying any set of power management strate-
gies for any type of data center in the face of any
set of markets for power flexibility (“The Sim2Win
simulation framework”). A part of Sim2Win is then
instantiated and used to simulate workload shifting
and frequency scaling in a German high-performance
computing (HPC) environment in order to market their
flexibility on the EPEX spot market and the secondary
reserve market in Germany (“Implemented simulator
based on Sim2Win”).

The results show that by using the inherent flexibility
of their power profile on the EPEX spot market the con-
sidered data center in 2014 could have earned savings of
7.3% of their power bill (“Validation and evaluation”).

The paper is organized in the following way:
it starts with explaining the merits against related
work in “Related work” and then introduces the gen-
eral architecture of the Sim2Win framework in “The
Sim2Win simulation framework.” The implemented
instance of Sim2Win2 and the considered experimen-
tal scenario are presented in “Implemented simulator
based on Sim2Win.” “Validation and evaluation” deals
with validation and evaluation on two German power
flexibility markets, and “Conclusion and outlook”
finally concludes with a short discussion and outlook.

Related work

The work presented spans two interrelated fields of
research. On the one hand, it relates to works dealing
with how to make data centers more energy efficient
in general and how the techniques developed in that
context can be used to participate in demand response
markets. On the other hand, it also relates to data
center simulation research.

Demand response with data centers

There has been a lot of research on demand response
with data center in the last decade. A general overview

can be found in Kong and Liu (2015); the sur-
vey of Giacobbe et al. (2015) is limited to cloud
computing environments. Also European projects as
All4Green2 and DC4Cities3 have been dedicated to
demand response with data centers. Contrary to the
presented work, however, they used simulation only
for a specific data center and did not present a generic
framework.

In this research, area markets for power flexibil-
ity are basically modeled along the characteristics of
either certainty versus uncertainty and explicit ver-
sus implicit demand response. Whereas the market
for implicit demand response is generally modeled as
a (set of) price vector(s), models of explicit demand
response are more complex. Wang et al. (2012), for
instance, is an early work of an optimization frame-
work that uses an HPC data center network with
geographical load balancing reacting to signals from
the utility. They model the US emergency demand
response, where the reward is based on the locational
market price on the wholesale market. This is not
comparable to the secondary reserve market in Ger-
many which is modeled as an example for European
reserve markets in the presented paper, where there
is an increased complexity through the combination
power and energy rewards. To our knowledge, only the
research group of the EU project Geyser as in Arnone
et al. (2017) deal with the European version of sec-
ondary reserve markets. However, rather than looking
into the economics of a data center bidding into the
reserve market, they take a pure electro-physical point
of view.

Grouping the research according to the power man-
agement techniques applied, it can be easily seen that
many works focus on just one strategy (Le et al. 2016;
Ghamkhari and Mohsenian-Rad 2012; Bhattacharya
et al. 2013; Wang et al. 2012; Tran et al. 2016;
Ghasemi-Gol et al. 2014; Liu et al. 2013). Examples
are, among others, Aksanli and Rosing (2014), who
use batteries to store energy for times of high energy
prices and through peak shaving estimate energy cost
savings of $480,000 per year for an event-based sim-
ulation of a 21 MW data center. Ghasemi-Gol et al.
(2014) developed an approach that uses load shed-
ding, which is achieved by switching off/on servers to

2www.fim.uni-passau.de/en/computer-networks/research/projects/
all4green
3www.fim.uni-passau.de/en/computer-networks/research/projects/
details/forschungsprojekt/dc4cities
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adjust the power consumption. They found that their
data center model with an interactive workload using
trace-based inter-arrival times can reduce the energy
costs by up to 13% when the load shedding optimiza-
tion is applied, i.e., the electrical load is reduced while
response times are still within limits.

Apart from the here presented approach, only few
works look into more than one power management
technique of shaping a data center’s power demand
profile. In Liu et al. (2013), electricity costs are min-
imized by avoiding the critical peak intervals through
the use of workload shifting and local renewable
energy generation. Using real data traces for a mixed
workload (batch and interactive), they show that the
application of their algorithms can provide cost sav-
ings of up to 40% due to controlling uncertainty.
Tang et al. (2013) examine the potential for a very
small data center (300 kW) to participate in a demand
response program. For the power demand provision,
they consider to change both the temperature setpoint
of the cooling equipment and then apply an optimal
workload dispatch algorithm using regression power
models. Recently, Cioara et al. (2018) conducted
a simulation-based experiment combining workload
shifting, thermal storage facilities, and battery stor-
age within a data center to provide power demand
flexibility to demand response markets. Cupelli et al.
(2018) used a model predictive control approach, inte-
grating the thermal characteristics of a specific data
center testbed to simulate data center optimization as
a response to dynamic prices and simulated workload
profiling requests using thermal buffering and work-
load shifting. Also, Arnone et al. (2017) performed a
simulation based on a real data center in order to show
demand response participation options. They focus on
the physical interaction between the data center and
the power grid.

What makes all these works different from our
approach is that they deal with but one specific use
case in one specific data center, whereas we provide
a generic framework to enable data centers to assess
their individual demand response potential through
simulation.

There is one work of Postema and Haverkort (2018)
which also proposes a simulation framework for the
evaluation of different power management strategies
in data centers. However, in contrast to this work, it
does not focus on the aspect of assessing the potential
to participate in demand response markets.

Another research area that is interesting in the con-
text of demand response with data centers is the area
of energy efficiency in data centers in general. As
many approaches in this area also use techniques and
strategies to change the power profile of a data cen-
ter, these techniques could also be used to participate
in demand response markets. One example is the work
of Wilde et al. (2015), who optimized the control of
hot-water cooling circuits to simultaneously ensure
stable operating conditions and make the data center
more energy efficient. To make the results of these
approaches comparable, many performance metrics
for data centers were developed. One of these met-
rics, the power usage effectiveness (PUE), is also used
in this work to calculate the cooling power consump-
tion. Capozzoli et al. (2014) provide an exhaustive
overview of the existing performance metrics. How-
ever, as this research area has a different focus than
our work, it is only of minor importance.

Data center simulation

In recent years, energy costs have a share of up to
50% at the total operational cost of a data center
(Laganà et al. 2018), and a lot of effort was invested
in the development of energy- and workload manage-
ment approaches to make data centers more efficient
(Kliazovich et al. 2012). In order to test these before
going live, a variety of simulation environments were
developed (Calheiros et al. 2011).

Ostermann et al. (2011) proposed the simulation
framework GroudSim. It was made for scientific work-
loads and relies on a discrete-event simulation core.
The framework provides some basic analysis features
for the evaluation of the simulation runs and allows the
user to model computational and network hardware,
job submissions, component failure, background load,
and data center costs. Meisner et al. (2012) devel-
oped the BigHouse simulation framework. Instead of
a micro-architectural model for each server, BigHouse
uses a combination of several queuing theory and
stochastic models to simulate the data center, thus cre-
ating a distributed discrete-event simulation core. Just
recently, Ahmed et al. (2017) created a simulation
environment to show the results of demand response
–based scheduling on the trade-off between the work-
load’s energy consumption and performance in terms
of execution time. However, as in many cases, there is
no cost or benefits at all associated with this approach.
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Additionally, the evaluation is based on data from var-
ious different sources that are wildly combined. The
GreenCloud framework, an extension to the Ns24 net-
work simulator, was introduced by Kliazovich et al.
(2012). This simulator focuses on recording the power
consumption of data center components and thus its
energy cost. It can be used to simulate two-tier, three-
tier, and three-tier high-speed data centers. Recently,
Rahmani et al. (2018) developed a model for a mod-
ular simulation of the energy consumption of a data
center. They laid the focus especially on the detailed
modeling of the energy consumption of each compo-
nent of the data center.

In contrast to the previously mentioned frame-
works, EMUSIM is a combination of a simulator and
an emulator (Calheiros et al. 2013). The emulator of
EMUSIM is used to create application profiles that are
fed into the simulator. The authors designed this frame-
work to improve the evaluation of application behavior
when executed on cloud data centers. The simulation
part of EMUSIM is based on CloudSim (Calheiros
et al. 2011). CloudSim enables the user to model sys-
tem resources as well as the behavior of each data center
component (e.g., virtual machines (VM) vs. resource
provisioning). It also provides the possibility to model
inter-networked federations of several data centers and
not only the simulation of a single data center. This
framework is widely used, e.g., by HP Labs in the
USA and has been extended frequently, for example,
with network models (NetworkCloudSim (Garg and
Buyya 2011)) or just lately with a physical cooling model
(CoolCloudSim (Cristian et al. 2018)). CloudSim is
also the basis of the simulator DCSim (Schulze et al.
2012), which was used as a basis for this work.

In contrast to these frameworks, the presented
Sim2Win framework explicitly focuses on simulating
the participation of data centers in demand response
markets.

The Sim2Win simulation framework

Section “Related work” shows that although there
are many general data center simulators they do not
extend to modeling demand response with data cen-
ter. And although there is a plethora of works that
deals with demand response with data center, most of

4https://www.isi.edu/nsnam/ns/

these only focus on one or two particular power man-
agement strategies and one or two particular power
flex markets. Tapping on the real potential for demand
response with data center requires the integration of
power management in general with power flex mar-
kets in general, i.e., on both direct, contract-based, and
indirect, price-based demand response markets. We
show how this can be achieved by creating a simula-
tion framework with the following requirements:

– R1: In order to represent various types of data cen-
ters, the simulation framework must be enabled to
model both batch and interactive workload, being
provided via physical servers or VMs.

– R2: In order to provide the user with the possi-
bility to test several different power management
strategies, the simulation framework needs to be
sufficiently flexible to integrate more than one
strategy and to allow for the later addition of
new, yet un-identified power management strate-
gies at all levels of the data center architecture
(infrastructure, hardware, workload).

– R3: Closely linked to R2, in order to allow for var-
ious types of strategies, the simulator must offer
starting points for manipulating power at all lev-
els of the architecture: infrastructure, hardware,
workload, applications.

– R4: In order to represent the value of a power
management strategy for the data center (e.g., fre-
quency scaling), the simulation framework has to
provide the possibility to model the impact of such
techniques on data center cost, e.g., via run-time
models and power consumption models.

– R5: In order to simulate the reaction of the data
center to explicit demand response requests, the
simulation framework has to provide an event-
based component that handles such requests, ini-
tiating power management accordingly.

– R6: In order to simulate the reaction of the data
center to an implicit demand response, the simu-
lation framework has to be able to continuously
adapt to dynamic energy prices.

Architecture

The architecture of the Sim2Win framework builds on
the data center simulation framework DCSim (Bas-
madjian et al. 2013). DCSim was aimed at optimizing
the interplay between the smart grid and a virtual-
ized data center for interactive workloads. In order

https://www.isi.edu/nsnam/ns/
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to become a generic solution for supporting demand
response with data center via simulation, DCSim was
extended to Sim2Win. To address this overall goal and
meet the whole set of requirements, the architecture
follows a modular design principle. Figure 1 illustrates
this approach.

The design follows a tree-like structure that
has its root at the SimulationController component.
Sim2Win’s design is basically structured into two
parts: Facade and Simulation Core. The Simulation-
Controller component, the only component in the
Facade part, is designed to provide functionality for
the control of a simulation. Through its connection
to a database, the SimulationController is able to
conveniently monitor and store important simulation
data. All the other design components are located
in the Simulation Core part. They provide the fea-
tures and functionalities which are required to form
a working simulation core. The data center com-
ponent represents a complete data center within the
simulation framework. As shown in Fig. 1, all other
design components in the Simulation Core part are
subcomponents of the data centere component. The
physical hardware components Server, Other Power

Consumers (OPC), and Heat, Ventilation, Air Condi-
tion (HVAC) each includes a specific instantiation of
a power model for servers, OPC, and HVAC respec-
tively. They are required to fulfill R3 and R4. Obvi-
ously, these power models might be interdependent.

The Sim2Win framework uses an event-based inter-
nal communication mechanism. Thus, it requires a
component that handles the events occurring during a
simulation. This task is taken care of by the Event-
Handler component which is also responsible for
allocating the data center’s hardware resources to the
current workload. The DRRequestHandler component
deals with the communication in the case of explicit
demand response (see R5), whereas the EnergyPrice
component simply weighs the total energy consumed
with—static or dynamic—energy prices (required by
R6). The workload running on the data center is rep-
resented in the lower part of the architecture: batch
workload is handled by BatchJob components, one
for each batch job, parenting SLA (where SLA stands
for service-level agreement) and RuntimeModel com-
ponents (feeding into requirements R1, R3, and R4).
For interactive workload consisting of services (e.g.,
web services), the design of Sim2Win contains a Ser-

Fig. 1 Overview of Sim2Win design
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vice component. It has two subcomponents, namely
the User, which models one distinct user (and SLA
contract) of a service, and Cloudlet components repre-
senting parts of complete services. Thus, a service can
be split into several parts that run on different hard-
ware devices causing different levels of Utilization.

The middle layer of the Sim2Win architecture deals
with managing the workload of the data center. In
the case of batch workload, this is done through the
Scheduler component, and for the case of interactive
workload, this is done through the LoadManager com-
ponent. Both of them are operated differently depen-
dent on “normal” vs. “DR event-based” operation.
For example, in the case of batch workload, address-
ing R2, the SchedulingStrategy component defines the
regular scheduling of a data center’s workload. How-
ever, when a demand response event is activated, the
DRStrategy components define strategies on how to
use the pre-defined power management techniques to
provide power demand flexibility. The more different
types of demand response strategies are available, the
more starting points for manipulation of power are avail-
able. Thus, the DRStrategy components address R4.

The components that are responsible for a data
center’s reaction to adaptation requests are the sched-
uler component and the load management component
for workload-related power management strategies,
the VM component for power management of virtual
machines and the physical hardware components for
hardware-based adaptation. The way that these power
management techniques are implemented depends on
the underlying power models in a concrete instantia-
tion of the framework architecture. Such an instantia-
tion will be described in the next section.

Implemented simulator based on Sim2Win

Parts of the framework introduced in “The Sim2Win
simulation framework” are instantiated5 in Java for a
German high-performance data center (HPC) with a
heterogeneous scientific batch workload running on a
cluster of almost identical compute nodes. The charac-
teristics of the concrete simulation instance are highly
dependent on the available data: as the data source
provided relates to the year 2014, also the evaluation
data of the German power flex markets are 2014 data.

5Code is available upon request.

The power market structure has not changed since
then; the share of renewable-based electricity gener-
ation has since then increased to 46% on average in
20196. For the database component, a SQLite database
is used. In the following, we present the experimen-
tal settings and data traces followed by the models
and demand response strategies implemented in this
instance.

Experimental settings

In this work, an experimental setting consists of a data
center and a demand response market in which the
data center participates.

Considered data center

The data traces used for the data center simulation
are provided by a large-scale HPC system in Germany
and cover the whole year 2014. Therefore, the results
are meaningful in the context of a real data center in
Germany; being an operating environment, the origin
of the data cannot be disclosed.7 In order to derive
more detailed models of some components, e.g., cool-
ing power, it would have been possible to add other
data sources and adapt them to the current system;
however, for reasons of consistency, this approach was
not chosen.

The traces are derived from a homogeneous (in
terms of the installed system software stack and sys-
tem hardware) HPC system with more than 9000
compute nodes, each of which features 2 × 8 core
Intel Sandy Bridge processors having a thermal design
power of 130 W8 and a maximum CPU frequency
of 2.7 GHz. The default operating frequency is set to
2.3 GHz. The system uses the IBM LoadLeveler9 for
the management of resources. The workload sched-
ule that is produced by the LoadLeveler system is
reused in the simulated baseline scenario. Workload
is mainly batch processing with complex algorith-
mic and computational background. In 2014, the total
energy consumption of the considered data center was

6www.energy-charts.de/ren share.htm?source=ren-share&period=
annual&year=all
7Upon personal request data access might be mediated.
8The thermal design power quantifies a power value that an
electric component should not exceed during operation.
9https://www.ibm.com/support/knowledgecentre/en/SSFJTW 5.
1.0/com.ibm.cluster.loadl.v5r1.load100.doc/am2ug ch1.htm
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roughly 20,000 MWh; its theoretical peak power is
near 4 MW. Cooling technology is hot-water cooling,
classified into the ASHRAE W4 (ASHRAE 2011).

Data provided were acquired via a real-time moni-
toring toolset for the year 2014.

Job data The job data trace contains information for
every job that was executed in the operating environ-
ment of the considered data center in 2014. It includes
among others JobID, submission-, start-, and end-
time, allowed maximum frequency, energy (EN), and
average power consumption (AP). After data clean-
ing, the job data trace contained almost 400,000 job
records. Job runtimes are very heterogeneous with an
average of 3.5 h, a maximum of 52 h and a median
of 0.104 h. The same holds true for the EN and AP
values, as well as for the occupation of nodes: On
average, jobs run on 32 nodes, the mean, however,
is 2 nodes only. As expected, the average frequency
was 2.38 GHz, very close to the default frequency of
2.3 GHz. Through a simple script, the job data was
turned into time series data (see Fig. 2).

PUE and IT power time series The two other data
traces available are time series data: The “IT power
trace” is the power in KW measured at the main power

lines that supply the room which contains servers,
storage, network, internal cooling pumps, and PDUs.
In 2014, the average IT power consumption was 1892
kW with a standard deviation of 312 kW. The “PUE
data trace” contains hourly values for the PUE for the
complete year of 2014 so that cooling power could
be calculated (Fig. 2). It has a range between 1.06
and 1.35, and regression analyses showed that cooling
reacts only little to changes in jobs and IT power and
follows rather a seasonal than a diurnal pattern. Some
missing values were estimated by linear interpolation.

Considered markets for power flexibility

For the evaluation of the Sim2Win framework, two
German power markets were chosen: the EPEX Day
Ahead market representing implicit demand response,
and the secondary reserve market for explicit demand
response.

EPEX Day Ahead market. The EPEX Day Ahead
market is a European Exchange market where by
trading at 12 pm hourly prices are determined for
each hour of the consecutive day.

Secondary reserve market. The European system of
reserve power is made up of generally three reserve

Fig. 2 Data traces of IT, job, and cooling power, March 2014
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markets that amend each other: the primary reserve
market is servicing unexpected shortfalls of supply
and demand until the resources of the secondary
reserve market are up and running. They bridge the
time until the tertiary reserve market takes over. The
German secondary reserve market has an activa-
tion period of maximum 15 min with full provision
after maximum 5 min. It is auction based; in 2014,
auctions were carried out weekly. There are four
separate auctions, one for each combination of the
provision times (main vs. secondary) and reserve
types (positive vs. negative) (Consentec 2014). A
bid includes the maximum amount of provided
reserve power (in MW), a power compensation
price (PP) (e/MW), and an energy compensation
price (EP) (e/MWh).

Bids are chosen after the offers are sorted accord-
ing to their prices and accumulated until the nec-
essary adaptation size is reached (Consentec 2014).
As the minimum bid size (5 MW) is much larger
than what the considered data center can offer, it
is assumed that the data center participates in the
secondary reserve market via an aggregator who in
return is estimated to keep 30% of the returns. 10

Market data traces. The data traces used for the sec-
ondary reserve market are accessible via the trans-
parency pages of the German transmission opera-
tors 11. For the Day Ahead market, the data traces
are sourced from the EPEX Day Ahead website.12

Implemented models

There are two sets of implemented models: one refers
to power and cost of data center operation and the
other to the handling of the power market side.

Server power model

Dayarathna et al. (2016) provide a well-structured
overview of existing power models in the data cen-
ter environment, among these server and server cluster
power models. In order to be enabled to use CPU
frequency as a starting point for demand response
strategies, the server power model of Elnozahy et al.

10This is an educated guess based on discussions with stake-
holders.
11https://www.regelleistung.net/ext/tender/
12http://www.epexspot.com/en/market-data/dayaheadauction/

(2002) was slightly adapted. Server power is here
defined as Pserv(f ) = Af 3 + Pidle, where A is a
server and application-specific constant that repre-
sents server capacitance and the activity of the server
gates, Pidle is the server’s idle power, and f is the CPU
frequency of the server. This implies that we assume
servers to be either idling or fully utilized so that
server power can be described frequency based. As
for this model, data for both server characteristics and
the nature of applications are required which our data
traces do not contain, finally, a modified version val-
idated on benchmark application data (Shoukourian
et al. 2015) was chosen:

Pserv(f ) = k1f
3 + k2 (1)

where k1 and k2 are application- and server-specific
fitting parameters (Shoukourian et al. 2015). The
structure of the model in Eq. 1 is similar to a linear
regression model that uses f 3 as its only variable. This
model has the advantages of being closely linked to
the causal frequency-based power model on the one
hand and being easy to fit to any data center on the
other hand.

To fit the model to the available data traces (see
“Considered data center”) in this work, the WEKA
data mining framework is utilized (Hall et al. 2009).
However, the model could not be applied directly,
as the provided data contains only the maximum
allowed values of frequency for each application, not
the implemented frequencies. In order to do a model
fit, jobs with similar characteristics with regards to
the En, AP, and AP/node values are clustered into 30
pseudo-job classes, by the k-means implementation
of the WEKA framework. Thus, the job records that
end up in one cluster have similar power consumption
characteristics, which is beneficial to jointly model
the APC/node values of these records, but they can-
not be considered to be actually records of the same
application type.

Cooling power model

As with all models, obviously, also for cooling mod-
els there is a trade-off between explanatory power
and data availability. Many data center simulators use
thermodynamics-based power models, linking work-
load, wet-bulb temperature, airflows, and/or server
inlet temperatures in order to create a full picture of
the causalities involved. However, this also leads to

https://www.regelleistung.net/ext/tender/
http://www.epexspot.com/en/market-data/dayaheadauction/
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huge requirements for data monitoring which most of
today’s data centers do not fulfill. The same applies to
the data center that provides us with cooling data: they
monitor PUE (power utilization effectivenes (Tipley
et al. 2009)) traces on an hourly basis; apart from
this only outside and wet-bulb temperature values are
available. Data analysis shows that the PUE depends
on both IT power (PIT ) and temperature (more or less
equally on wetbulb and outside temperature), which
is accounted for by using hourly and not average val-
ues to calculate cooling power, so that the following
formula can be used:

CoolingPower = (PUE ∗ PIT ) − PIT (2)

Unfortunately, this model does not allow to apply cooling-
based demand response strategies and thus reduces the
demand response potential in this simulation. Even
though this is a drawback of the current simulator, it
reflects reality as cooling infrastructure in legacy data
centers often consists of heterogeneous technologies;
and in these cases, according to many conversations
with data center operators, they are just content to see
that the cooling environment is working well with all
kinds of workload profiles. The modular architecture
of the presented data center simulating frame-
work of course allows to easily exchange this model
for a more complex one should more data be available.

Other power consumers

The same issue applies to data on the power consump-
tion of other consumers like PDUs, storage equipment,
lighting, and network equipment. Server and cooling
power generally account only for about 80% of data
center power (Rahmani et al. 2018; Hintemann et al.
2017). Most of the components of other power con-
sumers (OPC) depend to a considerable degree on
server power; in the currently considered data center,
the correlation coefficient is at 0.85. Therefore, due to
a lack of fine-grained data, OPC are modeled simply
as the fraction of the server power consumption that is
equal to the difference between IT power consumption
and server power consumption:

OPC = PIT − Pserv

Pserv
(3)

where Pserv is the server power consumption and PIT

the IT power consumption, i.e., data that were taken
from the monitoring system in the server room.

Its median value is 0.4, meaning that around 71%
of the IT power consumption originates in the servers.
In the simulation model, this fraction is used to calcu-
late an estimated total IT power consumption from the
server power consumption. This calculated IT power
consumption is then multiplied with the real PUE to
derive cooling and thereby total facility power.

Data center cost

The cost of running the data center is modeled in
terms of energy and SLA cost. The energy baseline
cost is computed merely by multiplying the consumed
energy (kWh) with the baseline energy price (e/kWh)
which also contains a fraction of averaged power cost.
In order to keep track of peak power changes due to
power management strategies, the overall peak power
is monitored in the simulation tool and taken into
account in cost where necessary.

SLA cost is considered in so far as they are affected
by power management strategies. As the SLA model
of the considered data center is not to be published,
SLA cost was modeled based on Garg et al. (2014):
Constructing artificial deadlines based on Garg et al.
(2014), a relative delay D is computed that is penal-
ized with a default usage price, so that

D = (AFT − SLADL)

def aultRuntime
(4)

where def aultRuntime is the runtime of a job as
originally specified in the workload trace. The AFT

of a job is calculated using the necessary adaptation
time for shifting workload and the run-time model
explained in “Implemented demand response strate-
gies” for power management through frequency scal-
ing. And SLADL, finally, is the contractual SLA
deadline.

Power flexibility markets

As mentioned in “Considered markets for power flex-
ibility” the Sim2Win framework is evaluated on the
market side through the EPEX spot market and the
secondary reserve market in Germany.

Secondary reserve market. As explained in “Con-
sidered markets for power flexibility,” a demand
response event on the reserve market is described
in terms of provision type (positive or negative),
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adjustment height, starting time, duration, and com-
pensation. The product implemented here is posi-
tive reserve power. It is assumed that the data center
reacts to the request in real time and thus provides the
total offered reserve power for the whole timespan
of the demand response event. In order to take the
decision on how to reply to the request the adjust-
ment height must be below the maximum techni-
cally achievable adjustment height: This is defined
by shifting the entire affected workload out of the
demand response event time window and scaling
the unshiftable remains to minimum frequency.

When workload is shifted, the new schedule is
optimized so as to cause minimal energy and SLA
cost, with the energy cost being calculated with the
energy price of the timestep at which the demand
response request is issued. The optimization pro-
cedure evaluates the combination of each possible
amount of shifted jobs with all possible scaling
frequencies in order to determine the combina-
tion that fulfills the requirements of the demand
response event and causes minimal costs. Finally,
the costs for an adaptation to a demand response
event are determined by copying the simulation
twice in the starting condition. In one copy, the
demand response event is issued, whereas the sec-
ond copy will not be adjusted and thus executes
the original schedule. Subsequently, the simulation
is advanced in the two copied instances until the
two instances are in the same state again. The addi-
tional costs that are caused by the reaction to the

demand response event are then calculated as the
difference between the energy and SLA cost of the
two simulation instances (see Fig. 3).

EPEX Spot market. In contrast to the secondary
reserve market, the EPEX spot market is an implicit
market. This means that it is not based on demand
response events, but on the implicit signal of
dynamic changes in the energy price. As mentioned
in “Considered markets for power flexibility,” the
EPEX Spot market can be used until 12 pm to
buy energy for specific hours of the following day.
Thus, the data center can optimize its energy costs,
by scheduling workload preferably into periods in
which the energy price is low. However, in contrast
to the secondary reserve market, the data center can
decide voluntarily to adapt to the dynamic price.

The workload is scheduled in a way that tries to
minimize the energy and SLA cost of a job, with the
energy cost being calculated with the dynamic EPEX
Spot energy price. For each job, the optimization pro-
cedure evaluates the combination of all possible start
times in the next 24 h in 5 min steps and all possible
execution frequencies, in order to determine the com-
bination that induces minimal costs. If a start at the
optimal timestep is not possible, it checks less optimal
ones where combinations that cause less cost are tried
first. If a job cannot be scheduled, the entire schedul-
ing process stops in order to ensure that large jobs will
be scheduled eventually.

Fig. 3 Procedure to determine additional cost caused by the adaptation to a demand response event
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Implemented demand response strategies

The power models implemented in the simulator allow
the manipulation of two knobs, thus currently enabling
two power management strategies to control the data
center’s power profile: CPU frequency can be changed,
and jobs can be scheduled to another point in time.
These two power management strategies are obviously
interdependent, as only the CPU frequency of such
workload can be manipulated that has not been shifted.

Shifting workload. The shifting strategies in Sim2Win
are executed based on the assumption that jobs can-
not be halted and resumed later, as the considered
data center does not use a virtualization technique.
This means that only those jobs that are in the queue
but have not started at the considered time slot can
be shifted in time. The earliest time they can be
resumed is after the necessary adaptation duration.
The earliest starting time in the case of preponing
is the submission time. The shifting strategy, which
is used for explicit demand response, uses a “short-
est time to deadline first” heuristic to determine
the order in which the jobs should be shifted. This
means that in the case of a request of positive power
reserve provision, this heuristic is applied by order-
ing the jobs in a descending order with regards to
�ST DF values, which are calculated as follows:

�ST DF (x) = SLADL(x) − testFinish(x)

numberOf Nodes(x)
(5)

where x is a batch job, SLADL(x) is the SLA
deadline of x, testFinish(x) is the estimated finish
time of x, and numberOf Nodes(x) indicates the
number of nodes that x utilizes. In the scenario
in which no SLA cost is considered, shifted jobs
are re-scheduled on a “first come, first serve” basis
with backfilling. For implicit demand response, a
strategy is used that schedules each job in such a
way that the sum of energy cost and SLA cost is
minimized.

Frequency scaling. The frequency scaling power
management strategy, which is used for explicit
demand response, simply scales all jobs to a
requested frequency. After a possible demand
response event, all jobs are scaled back to their
originally specified execution frequency. The strat-
egy, which is used for implicit demand response,
determines a frequency for each job such that the
SLA and energy costs are minimized. Frequency

scaling has an impact on the runtime of a job
which influences the SLA cost associated with
this strategy (see “Data center cost”). To calcu-
late the “actual finish time,” the runtime of a job
needs to be assessed. This is done using the con-
cept of computational versus memory boundedness
of a job: CPU frequency proportionally increases
or decreases computing time—the share of a job
that is memory bound, however, is unaffected. This
observation leads to a slightly adapted formula of
Etinski et al. (2012):

T (f )

T (fmax)
= β(

fmax

f
− 1) + 1 (6)

where T (f ) is the job’s runtime at frequency f ,
T (fmax) is the job’s runtime at a nominal frequency
fmax, and β is a fitting parameter that depends on
the degree of memory boundedness of a job. A
value of β = 0 indicates a purely memory-bound
application; a value of β = 1 a purely CPU bound
application (Etinski et al. 2012). Fitting the parame-
ter with typical applications from the currently used
data center leads to 15 different β values, one for
each level of frequency. However, as the spread
among those is rather small (± 4.5%), an average
value is chosen.

Validation and evaluation

In order to first test the correctness of the simulation
system, it is validated against the real baseline data in
“Validation.” In order to evaluate the methodology, the
following challenge needs to be considered: The data
center concerned did not participate in any power flex
markets. As a direct comparison of real versus simu-
lated participation of this data center is therefore not
possible, we evaluate the simulation system against
baseline situation (no participation) in “Evaluation”
thus testing its usefulness.

Validation

According to Sargent (2004), validation consists of
conceptual model validation, model verification, oper-
ational validation, and data validation. Data validity
was discussed in “Considered data center.” Concep-
tional model validation and verification are partially
implied in “Implemented models” as the presented
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instance of Sim2Win builds on well-known and val-
idated power and runtime models. Explicitly, valida-
tion is carried through by checking the data created
by the simulation without power adaptation against all
available real data traces for the entire year of 2014.
The validation simulation run was executed on a Win-
dows 10 Pro machine with an Intel i7-7600U CPU,
which has 2 physical cores at 2.8 GHz, and 16-GB
RAM. The validation run, which started at January
1, 2014, and ended at January 6, 2015, needed 558 s
(approximately 9.3 min) to complete. As the provided
workload trace is on seconds basis, a simulation step
length of one real-time second is used. The schedul-
ing interval length is set to one simulation step. This
is necessary, because the minimum time difference
between the submission time and start time is 0 s in
the provided data trace.

Table 1 shows the statistics of this comparison. The
high correlation (0.985) and R2 (0.97) and the low
error values between the original data trace and the
simulated job data indicate that the simulation repro-
duces the job power very accurately on the basis of
the pseudo-job classes. The accuracy of the simulated
IT power consumption, total facility power consump-
tion, and cooling power consumption are not quite
as high as for the simulated job power consumption.
The reason is that those are based on the IT power
consumption of the data center, which contains par-
tially unexplained components, and not on the server
data. For the objective of this work, i.e., to demon-
strate the value of simulation for a data center to assess
the benefit of their inherent flexibility, the accuracy is
sufficient.

Evaluation

The current section will show how the simulated data
center might have profited from controlling its power

profile in March 2014 by valorizing their flexibility
on two German power markets. The baseline values
against which the demand response simulation runs
are compared are given by the real data originating
from 2014 provided by the data traces. All evalua-
tion runs were executed on the same machine as the
validation run.

The simulation is able to account for two differ-
ent market side stimuli: event-based adaptation as a
form of direct demand response, using the secondary
reserve market in Germany as an example. The rea-
son for this choice is that the primary reserve market
requires automated adaptation implemented directly
by the grid provider—an operational power which
a data center will refuse to cede—and the tertiary
reserve market rewards amount to merely around half
of the rewards on the secondary reserve market (Con-
sentec 2014). And continuous adaptation to hourly
changing prices on the European EPEX Day Ahead
market as an example for indirect demand response.
For the baseline energy price, the static average indus-
trial energy price of 0.1532e/kWh (der Energie-und
Wasserwirtschaft 2018) from 2014 is used for the sec-
ondary reserve market scenario and the hourly chang-
ing price for the EPEX scenario. For the usage price of
one compute node hour, the price of 0.36e/node hour,
which is the price of a comparable offer (HLRS 2018).
This usage price is necessary to calculate the SLA cost
on the basis of formula (4).

Secondary reserve market

Consistent with the available data center data trace,
2014 data was used for the secondary reserve market.
As explained in “Power flexibility markets,” prices on
the German reserve markets are determined via bid-
ding for each market participant individually. All suc-
cessful bids, corresponding PPs (PowerPrice) and EPs

Table 1 Statistics of the comparison between original data traces and simulated data traces

Correlation R2 MAE MAPE

Job power 0.985 0.97 51.2 4.37%

IT power 0.812 0.659 165.764 10.11%

Cooling power 0.896 0.803 21.508 10.11%

Total facility power 0.808 0.654 187.269 10.11%

Active nodes 0.999 0.999 1.329 0.03%

Running jobs 0.999 0.999 0.007 0.02%
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Table 2 Simulation scenarios

Scenarios/power offered 0.2 MW 0.5 MW 0.6 MW

Max bid with SLA MaxSLA0.2 MaxSLA0.5 MaxSLA0.6

Max bid w/o SLA Max0.2 Max0.5 Max0.6

Min bid with SLA MinSLA0.2 MinSLA0.5 MinSLA0.6

(EnergyPrice) are published on regelleistung.net13,
which is the internet platform on which the auctions
for the different reserve power markets take place.
For the evaluation, it is assumed that the data center
participated in the auction for positive reserve power
provision (main time) from Monday, March 3, 2014,
to Sunday, March 9, 2014. This week was chosen,
because it is quite representative of the year 2014 in
terms of total facility power consumption. The mean
total facility power consumption in this week was only
3.6% below the mean total facility power consump-
tion throughout the entire year of 2014. In addition,
in this week, an interesting volatility pattern of the
job power consumption (see Fig. 2) was observed. As
the amount of volatility in the job power consump-
tion strongly affects the potential power consumption
flexibility of a data center, it is important to use data
from a week that includes such volatility patterns to
get high-quality evaluation results.

The successful bids in the considered week are used
to construct two artificial bids “as if” the data center at
hand had participated in the secondary reserve market.
The historic data state how often secondary reserve
power was requested from each participant. Thus, it
is possible to reconstruct the distribution of activation
events for the artificial bid in terms of number and
times.

The artificial bids of the simulated data center
are constructed in the following way in order to
assess the range of possible financial benefits: The
“Max bid” scenario is composed of the maximum
accepted PP and the energy price EP that generated
the highest income, whereas the “Min bid” scenario
combines the minimum accepted PP and the EP that
generated the lowest positive income. The maximum
accepted PP in this week for positive reserve power
was 382e/MW and the EP of the provider that earned
the highest revenue through activation compensations

13https://www.regelleistung.net/ext/tender/

was 63.1e/MWh. The provider that offered this maxi-
mum energy price was activated in 90 15-min intervals
during the considered week in 2014. The minimum
accepted PP in this week for positive reserve power
was 271e/MW and the EP of the provider that earned
the lowest revenue trough activation compensations
was 64.1e/MWh. The provider that offered this mini-
mum energy price was activated in 4 15-min intervals.

Thus, the demand response request trace in the case
of the “Max bid” has 90 entries and in the case of
the “Min bid” 4 entries, where each entry specifies
a demand response event request at the same time at
which the real world provider was activated. As the
data center has to offer the same product for the entire
week, the adjustment height, adjustment length, and
provision type values are equal for all entries in the
demand response event trace. In order to determine
the adjustment height, simulation test runs were car-
ried through. The prognostic power of simulations to
assess the adjustment height of power profile adapta-
tions obviously depends on either how well known the
workload is by experience or how good the workload
forecast of the considered data center is.

The simulations showed that adjustments beyond
700 KW are infeasible, so for each scenario (“Max
bid” and “Min bid”) three simulations were executed,
offering 0.2 MW, 0.5 MW, and 0.6 MW. Representa-
tive for these simulation runs, the execution time of the
0.5MW simulation run was recorded. It started at Jan-
uary 1, 2014, and ended at May 15, 2014, and needed
a total of 1373 s (approximately 22.9 min) to com-
plete. For the “Max bid” scenario, also a simulation
run without SLA cost was carried out, due to the fact
that the real SLA cost of the real data center are not to
be published: thus, the whole scope of potential ben-
efit from offering power flexibility on the secondary
market is shown. In this run, scheduling was done in
“first in, first out” order combined with backfilling.
Table 2 summarizes the scenarios.

BenefitPP = Poweroffered × PP (7)

https://www.regelleistung.net/ext/tender/
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Fig. 4 Comparison of facility power between baseline and demand response events

Assuming that for the duration of each event the total
offered reserve power is provided, the compensations
are calculated by adding the reward for offering the
power BenefitPP (7) and the reward for the energy
supplied in the events BenefitEP (8).

BenefitEP =#DREvents × EP × Poweroffered × 0.25 (8)

Here, Poweroffered is the power offered on the reserve
market, which in the case of the energy reward must be

turned from power into energy values and multiplied
with #DREvents, the number of demand response
events.

Results from bidding into the secondary reserve
market

First, the three different scenarios described in the first
line of Table 2, i.e., the Max bid scenario with SLA

Fig. 5 Comparison between baseline run and demand response simulations, 7th of March
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cost for the three reduction levels 0.2 MW, 0.4 MW
and 0.6 MW, were carried through. The results are
shown in Fig. 4.

It can be seen that some demand response events
were directly adjacent to each other, with the high-
est number of activations on Friday, 7 March, and that
adjustments linger a while after the completion of the
adjustment week (March 7). This day can be found in
detail in Fig. 5. It traces the job power and the number
of active nodes for the said scenarios.

There are two noteworthy events depicted in Fig. 5,
the first being in the morning (8:00–10:45 hours).
Power reduction starts immediately, evoked by a
reduction of CPU frequency, which, as assumed,
is implemented instantaneously. That the adaptation
is frequency-based and not shifting-based can be
deduced from the curve of non-idling nodes in the
lower part of the picture: For all three scenarios, these
remain constant for a couple of minutes, before peak-
ing and then being sharply reduced. This is, because
jobs with a low energy consumption (i.e., small and
short) are preponed, even though only a few jobs are
shifted away from the demand response window. The
reason is that inside the activation period, as explained
in “Implemented demand response strategies,” the job
schedule is optimized to keep the load as steadily
reduced as possible. The figure also shows, that only
in the case of MaxSLA0.6 a considerable part of the
workload is shifted away from the demand response
window, i.e., the number of active nodes remains well
reduced. At the end of the event, as described in many
other works (e.g., Palensky and Dietrich 2011), there
is a tiny peak, also called “rebound effect” that goes
beyond the baseline load recapturing the shifted jobs
partially, just before the next activation starts.

The other notable event in Fig. 5, from 1815 to
2000 hours (6:15–8 pm) seems more disruptive. Even
though it is a shorter than the first one (i.e., less

energy), when the activation begins, the adaptive data
center is still struggling with two issues: One is the
great number of former adaptations, and the second
is a sharp increase of the baseline job power, i.e., an
increase of real demand of a real data center, directly
before this last activation. The MaxSLA0.6 simula-
tion is therefore still dealing with shifted jobs and
reduces power just by frequency scaling. MaxSLA0.2
and MaxSLA0.4, to the contrary, increased nodes in
order to respond to the sudden increase in workload.
Therefore, they also react to the reduction request by
frequency scaling without job shifting.

On the whole, technically and economically, fre-
quency scaling is much preferred to workload shifting:
Because on the one hand, due to the heterogeneity of
the workload trace with regards to size and duration,
only the small fraction of jobs that are submitted but
have not yet been started can be shifted out of the
demand response window. And also, with regards to
cost, depending on the event duration, frequency scal-
ing is a more fine-grained technique, as it only scales
the power and runtime of a job instead of reducing its
total power and inducing a “total” delay. This is also
reflected in the SLA cost as can be seen in Table 3,
which for all scenarios sums up energy and SLA cost,
the power and energy rewards (PP and EP) as well as
the gross benefit. The gross benefit is calculated as
the sum of the difference between the baseline energy
costs and the scenario energy costs, the EP benefit
and the PP benefit. The gross benefit percentage is
calculated as

GrosBenef it/BaselineEnergyCost × 100 (9)

As only the MaxSLA0.6 run includes shifting to a
considerable degree, it results in SLA cost that over-
compensates the benefit from the secondary reserve
market. This is why the MaxSLA0.5 run maximizes
the benefit in this setting: the revenue on the secondary

Table 3 Comparison of costs: MaxSLA scenarios

Baseline MaxSLA0.2 MaxSLA0.5 MaxSLA0.6

Energy cost 53,283.6 52,760.57 52,371.10 52,327.74

SLA cost 0 176.23 699.12 2,501.33

Benefit EP 0 283.90 709.90 851.90

Benefit PP 0 76.40 191.00 229.20

Gross benefit 0 707.11 1,114.29 −464.35

Gross benefit % 0% 1.3% 2.1% −0.9%
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Fig. 6 Comparison of number of nodes between baseline and demand response events with and without SLA, 7th of March

reserve market amounts to 2.1% of the baseline energy
cost.

Therefore, as a sensitivity analysis, the same runs
were carried through without activating SLA cost.
As expected, the picture does not change much (see
Fig. 6). Only as the challenges from the increas-
ing number of activations build-up, there are slight
differences between the runs with (MaxSLA0.2 and
MaxSLA0.6) and without SLA (Max0.2 and Max0.6).
The reason is that only workload shifting leads to
noteworthy delays and thus SLA cost—and only in
the Max0.6 run, the necessary reduction in the sec-
ond event is big enough that additionally to frequency
scaling, shifting is evoked. However, even then, dif-
ferences are small due to the technical feasibility of
shifting which is impossible for jobs that have already
started.

The cost (see Table 4), however, do change; and
as again expected, in this case, the highest power
reduction offer (Max0.6 scenario) is the most benefi-
cial one, creating an income which is worth 3.8% of
the energy cost. As mentioned, the benefit from the
secondary reserve market compensation (EP and PP)
must be shared with the aggregator (−30%). In the
case of the MaxSLA0.5 scenario, that means that the
net benefit would be 780.00e instead of 1114.29e and
thus 1.5% of the total energy costs. Also important to
note is that the benefits from the reduced energy cost
might be partially compensated by possible rebound
effects after the last demand response event.

In order to assess the whole range of possible ben-
efits or losses, the data center could have made by
participating in the secondary reserve market, a third
set of runs includes the “Min bid” scenarios that were

Table 4 Comparison of costs: Max scenarios

Baseline Max0.2 Max0.5 Max0.6

Energy cost 53,283.61 52,470.26 52,303.75 52,320.57

SLA cost 0 0 0 0

Benefit EP 0 283.90 709.90 851.90

Benefit PP 0 76.40 191.00 229.20

Gross benefit 0 1,173.65 1,880.77 2,044.05

Gross benefit % 0% 2.2% 3.5% 3.8%
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Fig. 7 Comparison of job power consumption between baseline and remand response events of all “Min bid” scenarios, 7th of March

constructed by the combination of the minimum PP
and minimum EP that were activated during the con-
sidered week in March 2014 (third line in Table 2).
Compared to the 90 events that took place in the “Max
bid” scenarios, in the “Min bid” scenarios, there were
only four events. The last three of these four events
happened on 7 March and are shown in Fig. 7. It
can be seen that the job power consumption of the
MinSLA scenarios equals the baseline power con-
sumption until the second event on 1445 hours. This
is, because the first event happened very early on the 3
March and since then, the data center had enough time
to compensate the adjustment it faced in the first event.
Similarly, also immediately after the second and third
event there is much less difference between the base-
line power consumption and the power consumption
in the MinSLA scenarios than for the MaxSLA sce-
narios. This is also caused by the fact that, due to the

heavily reduced amount of demand response events,
the data center is much less stressed by the com-
pensation of the effects of the adjustments. Another
difference between the load profiles of the MinSLA
scenarios and the MaxSLA scenarios is that the power
profiles of the different MinSLA runs do not differ as
much as they do for the MaxSLA runs. This can also
be explained by the much lower compensation effort
that the data center faces in the MinSLA scenarios.

Table 5 sums up the costs of these runs. Com-
pared to the MaxSLA scenarios, the benefits of the
respective MinSLA scenarios are generally smaller by
roughly a factor of 10! The two main reasons for this
are that, due to a higher EP, the constructed bid is acti-
vated only 4 times (instead of 90 times) and the PP
is lower than for the MaxSLA scenarios. Out of the
three scenarios, the MinSLA0.6 scenario is the most
profitable scenario with 0.4% revenue. Again, please

Table 5 Comparison of costs: MinSLA scenarios

Baseline MinSLA0.2 MinSLA0.5 MinSLA0.6

Energy cost 53,283.61 53,259.96 53,243.28 53,240.03

SLA cost 0 10.01 13.87 10.35

Benefit EP 0 12.80 32.10 38.50

Benefit PP 0 54.20 135.50 162.60

Gross benefit 0 80.64 194.07 234.33

Gross benefit % 0% 0.2% 0.3% 0.4%
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Fig. 8 Results of the EPEXSLA runs in the considered week in March 2014

note that all the benefits from secondary reserve mar-
ket compensations are reduced by the aggregator’s
30% fee. When this is applied to the benefit of the
MinSLA0.6 scenario, the remaining benefit sums up
to 164,03e which equals 0.3% of the baseline energy
cost.

EPEX Day Ahead market

Day Ahead market data traces for the EPEXSLA
scenario are sourced from the EPEX Day Ahead web-
site.14 The potential benefit from participating in the
EPEX spot market is evaluated for the same week as
for the secondary reserve market in order to ensure the
comparability of results. Contrary to the event-based
simulation of the reserve market participation, here
the data center participates by continuously adjusting
the schedule of the workload to the dynamic EPEX
spot energy price as shown in Fig. 8 using the pro-
cedure described in “Considered markets for power
flexibility.” That means, that rather than an event
driven, temporary deviation of the adaptation from the

14http://www.epexspot.com/en/market-data/dayaheadauction/

original schedule, the whole schedule is computed in
dependence of the dynamic energy prices.

Results from sourcing on the EPEX Day Ahead market

The simulation run for the EPEX market started at
January 1, 2014, and ended at May 15, 2014. How-
ever, due to the higher complexity of the considered
scheduling procedure, it took a total of 48,629 s
(approximately 810.48 min) to complete. The results
of the EPEXSLA scenario are summarized in Table 6.
For the considered week in March, the baseline energy
cost is 10,339.5e, whereas the energy cost of the
EPEXSLA run sums to only 9201.75e, albeit at the
expense of some SLA costs, resulting in a net benefit
of 756.6e. This equals to 7.3% of the baseline energy
costs, where the baseline energy costs are calculated
by the use of the original schedule of the considered
HPC and the hourly changing EPEX price. However,
as the used scheduling procedure does not use back-
filling, it loses efficiency. Therefore, the data center
cannot compute the same amount of workload as in
the baseline run, thus also saving energy and thereby
energy cost. This effect can be observed in the statis-
tics of the average number of jobs: In the EPEXSLA

http://www.epexspot.com/en/market-data/dayaheadauction/
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Table 6 Comparison of
costs: EPEX scenario Baseline EPEX

Energy cost 10339.5 9201.75

SLA cost 0 381.1

Gross benefit 0 756.6

Gross benefit % 0% 7.3%

scenario, there were on average 11.9% less jobs active
than in the baseline run (see Fig. 8). Compared to the
benefit this is still reasonably efficient.

Recently, Cupelli et al. (2018) developed the flex-
ible optimizer for data center operations (FLODO)
framework. To evaluate the performance of their
framework in a price-based demand response sce-
nario, they also considered the EPEX Day Ahead
market in Germany and found that the participation
in this market reduces the electricity costs of the
considered testbed data center by 3.86%. The rea-
sons for the rather large discrepancy between the
results of Cupelli et al. and the results of this work
(7.3%) are significant differences in the considered
scenarios. Where in the here presented work solely
batch workload is considered, Cupelli et al. consider
three different classes of jobs, which also includes
a class for interactive workload that has to be exe-
cuted in real time. This is the most obvious factor
for the discrepancy of benefits, as the introduction
of real-time workload heavily reduces the flexibility
of a data center in terms of power demand adapta-
tion. In addition, Cupelli et al. use different knobs
via which the power consumption of the data center
can be controlled: Their framework can (de)charge on-
site batteries, adjust the inlet air temperature, or shift
workload (except real-time workload), but they do not
consider the application of frequency scaling at it is
done in this work. And finally, the size of the consid-
ered data centers differs. This might also account for
the gap between the results due to the efficiency of the
scale.

Conclusion and outlook

This work looked into options to support data cen-
ters in profiting from their inherent power flexibility
by engaging in different power flexibility markets via
demand response schemes. To this end, the simula-
tion framework Sim2Win was developed that can be

flexibly instantiated to simulate different power man-
agement techniques for different data center types
to offer their power flexibility on different demand
response markets. To the best of our knowledge, the
Sim2Win framework is unique in offering this high
degree of flexibility and therefore being able to repre-
sent a variety of different data centers and data center
types. This framework was then instantiated for a spe-
cific data center in Germany and subsequently eval-
uated to assess this data center’s individual demand
response potential by participating on the EPEX Day
Ahead spot market and the secondary reserve market
in Germany.

Simulation results show that, had the considered
data center bid into the positive secondary reserve
market in the week of March 3, 2014, it could have
created an income that compares to 2.1% of its total
electricity bill of that week. Even bidding with a
low power offer and requesting a high energy price
into this market, the data center could have gained a
modest income. The main risk involved in this strat-
egy would have been to bid too much power, which,
however, the simulation tool can help to avoid. An
alternative covered by the simulator based on the
Sim2Win framework would have been to source the
needed power in the EPEX spot market. Here, the data
center could have saved up to 7.3% with comparably
low SLA cost of 381.1e. The simulator thus illustrates
the different opportunities of the data center at hand
under different realistic demand response schemes.
It shows how the success of a data center’s demand
response strategy is impacted by concrete situational
factors as the heterogeneity of the workload under the
assumption that jobs cannot be interrupted. To our
knowledge, this is the only simulation work that is
based on the combination of a real HPC data cen-
ter and its real power flex market environment. This
concrete evaluation thus additionally evaluated the
original approach of creating a simulation framework
that empowers data center management to represent
their own situation and context.
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The main threats to the validity of the HPC simu-
lator created are the quality and detail of data which
needed a lot of data cleaning and clustering in order to
be useful. Also, due to the level of detail of available
data, only two different power management strategies
could be evaluated in this work. Certainly, evaluating
more strategies is an important point to consider in
future work. Also, regarding the concrete evaluation
of the Sim2Win framework, the EPEXSLA algorithm,
implementing constant optimization, did not include
backfilling, which reduces the profitability of indirect
demand response. It is part of the envisioned future work
to integrate backfilling into the optimization model.

However, the main advancement that could be
made through this work is to consistently show the
connection between a variable and generic simulation
framework architecture of demand response with data
centers and its application to a concrete scenario, thus
demonstrating the value of the overall approach.
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