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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• Electric vehicles (EVs) charge with non- 

linear profiles where power decreases 

over time. 
• Smart charging for EV fleets aims to 

maximize use of charging infrastructure. 
• Infrastructure capacity is wasted if de- 

creasing power is not taken into account. 
• Machine learning models can be used to 

predict EV power draw. 
• Smart charging supported by such mod- 

els use the infrastructure more effec- 

tively. 
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a b s t r a c t 

The ongoing electrification of mobility comes with the challenge of charging electric vehicles (EVs) sufficiently 

while charging infrastructure capacities are limited. Smart charging algorithms produce charge plans for indi- 

vidual EVs and aim to assign charging capacities fairly and efficiently between vehicles in a fleet. In practice, 

EV charging processes follow nonlinear charge profiles such as constant-current, constant-voltage (CCCV). Smart 

charging must consider charge profiles in order to avoid gaps between charge plans and actual EV power con- 

sumption. Generally valid models of charge profiles and their parameters for a diverse set of EVs are not publicly 

available. In this work we propose a data-driven approach for integrating a machine learning model to pre- 

dict arbitrary charge profiles into a smart charging algorithm. We train machine learning models with a dataset 

consisting of charging processes from the workplace gathered in 2016–2018 from a heterogeneous EV fleet of 

1001 EVs with 18 unique models. Each charging process includes the time series of charging power. After pre- 

processing, the dataset contains 10.595 charging processes leading to 1.2 million data points in total. We then 

compare different machine learning models for charge profile predictions finding that XGBoost yields the most 

accurate predictions with a mean absolute error (MAE) of 126W and a relative MAE of 0.06. Simulations show 

that smart charging with the integrated XGBoost model leads to a more effective infrastructure usage with up 

to 21% more energy charged compared to smart charging without considering charge profiles. Furthermore, an 

ablation study on regression model features shows the EV’s model is not a necessary attribute for accurate charge 

profile predictions. However, charging features are required including the number of phases used for charging. 
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. Introduction 

Mobility is in a phase of transition towards electrification. With

lectric vehicles (EVs) turning from a niche into a mainstream choice

he operation and charging of EVs turns into a widespread challenge.

nfrastructure charging capacities are limited by the capacity of grid

onnection lines. In limited charging infrastructures, charging needs to
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e organized intelligently to be able to charge fleets of EVs. Charging

nfrastructures are run by charge point operators (CPOs) who are

esponsible for implementing smart charging. This work views smart

harging from the perspective of the CPO. 

A common example for fleet charging is the scenario of employee

harging at the workplace [1] . Workplace charging is characterized

y an accumulation of many EVs in one location, long parking dura-
ffairs and Energy during the TRADE EVs project. 
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Fig. 1. CCCV: Simulation vs observed process. 
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ions and comparatively low charging needs due to limited commute

istances. In this work we consider heterogeneous EV fleets which

onsist of different EV models. The challenge in workplace charging

s to assign the available charging capacity fairly between EVs. A

eal-time application of smart charging assigns charging resources by

ontinuously prioritizing between EVs. For this purpose, smart charging

elies on information about each EV, including its state of charge (SoC)

nd the remaining parking time. 

Existing approaches to smart charging [2–4] have achieved real-time

harge scheduling with increasing efficiency in the assignment of scarce

harging resources. However, in practice the execution of the charge

chedules deviates from the theoretically planned schedules when the

omplex charging behavior of the EVs themselves are not reflected in

he scheduling decisions [5] . Battery management systems (BMS) in

Vs control the charging behaviour of the battery [6] . In particular,

MS limit the power drawn during charging to protect battery health

nd safety. Consequently, reserved infrastructure charging capacity is

asted when batteries draw less power than planned by the central

mart charging system. 

Battery behavior during charging is determined via the BMS’

mplementation of charging profiles . Charging profiles express charging

urrents drawn over time. Common charging profiles include constant-

urrent, constant-voltage (CCCV) [7] . Charging profiles represent

atterns that can be observed in every charging process. Fig. 1 shows

 simulation of a CCCV process compared to a real process. 

One approach to modelling battery behavior are equivalent cir-

uit models (ECMs) [8] . ECMs are a standard modelling technique

n electrical engineering which can be used to approximate battery

ehavior [9] . ECMs conceptually enable close approximations of the

attery behavior. However, detailed parameters of an ECM as well

s the battery pack composition generally equate to trade secrets of

he manufacturers and are cumbersome to determine via experimental

attery measurements and reverse engineering. Modelling battery

ehavior with factors such as temperature and battery state of health

SoH) requires more complex ECMs and more data. 

In this work, we use an alternative approach to modelling battery

ehavior. Instead of approximating battery behavior by adding more

nd more refining elements in an ECM we infer charge profiles from a

achine learning model that has been trained on real historical data. 

The ECM model requires battery parameters (resistance and ca-

acitance) and battery inputs and outputs (voltage and current). In

ontrast, the model learned via machine learning only requires the car

odel and its state of charge. We compare different machine learning

odels, namely linear regression, neural networks and XGBoost. The

earned battery behavior is directly incorporated in smart charging. 
c  
We thus propose an integrated approach which produces charge

lans for a heterogeneous set of EVs while considering their battery

ehavior. A charge plan is a time series of discrete timeslots and a

rescribed charging power per timeslot. To summarize, we propose a

ractical, data-driven approach to smart charging reflecting not only

he fair assignment of scarce charging resources but also incorporating

he effects of battery behavior. 

We address the following research question: How do integrated

redictions of battery charge profiles affect smart charging? Our main

ontributions are: 

• A methodology for preprocessing a dataset and training a regression

model to predict battery charge profiles, 
• the integration of the regression model into a smart charging

algorithm and 
• a quantification of the impact of integrated charge profile predic-

tions on smart charging in simulations of historical data 

The remainder of the paper is organized as follows. Section 2 dis-

usses the related work of smart charging and prediction in the context

f electric mobility. Section 3 introduces the data-driven methods, in-

luding the methods for data preparation, the machine learning models

nd the embedding smart charging heuristic. Sections 4 and 5 describe

he experimental setup and the experimental results for smart charging

ith an integrated prediction mechanism for battery behavior. Finally,

ection 6 discusses the applicability and limitations of the results while

ection 7 presents the conclusions of this work. 

. Related work 

Smart charging. There is a large body of related work on smart

harging for EV fleets. We refer to recent surveys such as [2–4] for an

verview. Common goals include driver satisfaction [10–13] , energy

ost minimization [14–16] and mitigating battery aging [17] . In this

ork, we focus on driver satisfaction which in our context corresponds

o maximizing the average SoC across all EVs. Furthermore, we consider

 real-time smart charging approach. 

Battery models in smart charging. Smart charging approaches implic-

tly (or explicitly) contain a model of EV batteries and their charging

rofiles. The simplest model and charging profile is represented by the

ssumption that the EV can always charge at maximum power indepen-

ent of SoC [12,17,18] . Traditional approaches to modelling batteries

nclude ECMs [6,19,20] and physical models [9] . Physical models are

ore accurate compared to ECMs but are also more expensive computa-

ionally and thus unsuitable to apply in real-time [8] . Additionally, ma-

hine learning (ML) models present a recent development to predicting
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attery behavior [21,22] . We refer to a recent survey [8] for an overview

f the state of the art for predicting battery behaviour based on internal

V battery data such as voltage, current and battery pack configuration.

Smart charging approaches using ECMs for single battery cells or

acks have been proposed to maximize battery life [7,23,24] . Regarding

mart charging for EV fleets, examples of related work with integrated

CMs [25,26] use model predictive control (MPC) to schedule EV

harging while minimizing energy costs. 

However, the parameterization for ECMs, physical models and

L models is limited in practice by data availability on operational

onditions such as temperature and state of health. Additionally, the

V’s BMS controls the selection of the charging profile [7] . From the

erspective of the charge point operator such battery models are even

ore difficult to apply for heterogeneous fleets. Different EVs each

equire one set of model parameters. In this work we thus consider an

pproach without knowledge of detailed battery model parameters. 

Predicting EV charging demand. Predicting the charging demand of

 fleet of EVs without detailed battery knowledge is a well studied

roblem. For example, a fleet of EVs is simulated based on three

ifferent static charging profiles in [27] . EVs are assumed to arrive

ccording to a probability distribution of arrival and departure times.

n artificial neural network (ANN) is used in [28] to predict daily

rrival time and travel distance to allow forecasting load. Data on

raffic patterns is used to forecast power demand of a fleet of EVs [29] .

astly, [30] uses a support vector machine (SVM) to predict building

ower load while taking into account an EV fleet. 

More granular approaches predict the charging demand of individ-

al EVs. GPS data from 76 (conventional) vehicles is used in [31] to

imulate PHEV charging processes. A constant battery size (24kWh)

nd charging rate (3.7kW) is assumed. Similarly, an ANN is used

n [32] to predict individual charging profiles. The ANN is trained on

ata generated by a stochastic random process. In this work we use

egression models trained on real data to predict individual charging

rofiles while taking into account EV specific characteristics. 

In contrast to considering charge profiles, there is also work on

redicting individual EV energy consumption during driving [33,34] .

owever, in this work we focus on EV charging profiles. 

An obvious approach to predicting EV charge profiles would be

o use traditional time series approaches for forecasting. Traditional

ime series models for forecasting univariate time series include Auto

egressive Moving Average (ARMA) and Auto Regressive Integrated Moving

verage (ARIMA) [35] . For example, [36] uses an ARIMA model for

orecasting the load demand of a parking lot. A fleet of heterogeneous

Vs is considered with a discrete set of constant charging rates. Fore-

asts are then used in day-ahead scheduling. Furthermore, [37] uses an

RMA model to predict PV generation. The ARMA model is combined

ith an EV scheduling approach. Lastly, charging process time series

rom 20 real charging stations are divided into fragments and fragments

re clustered using the Euclidean distance measure in [38] . Future

nergy consumption for a given fragment is predicted using the most

imilar existing fragment via k-nearest neighbours. 

In this work, time series forecasting would be of interest for pre-

icting individual EV charge profiles. However, the integration of

ime series forecasting with real-time smart charging is conceptually

roblematic because charge plans influence the course of each time

eries. Instead of time series forecasting we predict individual EV power

n relation to SoC. 

Data-driven approaches. Previous work on data-driven approaches in

he context of electric mobility typically makes use of private datasets

onsisting of aggregated information on charging processes. For exam-

le, the statistics of 400.000 charging processes in the Netherlands are

escribed in [39] . A dataset consisting of 21.918 charging processes in

012–2013 from 255 different charging stations in the UK is analyzed

n [40] . The dataset is combined with weather data to characterize

he load demand of a fleet of EVs. Similarly, 8.929 processes from

014 to 2016 are analyzed in [41] . Compared to other work in this
ategory, the timestamp of reaching full SoC is included. The popularity

f EV charging infrastructure is predicted in [42] based on geographic

nformation system (GIS) data. A large dataset of 500.000 charging

rocesses and 2.000 charging stations in the USA from 2013 is used

o estimate the benefits of smart charging in [43] . Charging profiles

re considered as static profiles depending on temperature in [34] .

he profiles are computed based on 8.300 EVs in 2011–2013. Lastly,

44] uses GPS and trip meter data of 490 PEV taxis in 2013 to simulate

harging profiles. In [44] , a single EV model (75kWh) is modelled to

harge using constant-power at 22kW up to 80% SoC even though a

wo-stage charging profile is mentioned. 

In this work, in contrast to the references above we use a historical

ataset which includes charging process data over time. The data-driven

pproaches above each use a dataset which includes only aggregated

ttributes such as energy (Wh), average power (W) or maximum

ower (W) and lack the accompanying time-series of power over time.

ue to the more granular dataset used in this work we are able to take

nto account arbitrary charging profiles. 

Public datasets. Public historical datasets in the domain of electric

obility lack the required granularity and diversity required for train-

ng machine learning models to predict charging profiles. Basic datasets

nclude charging station locations for use in navigation such as [45] . 

Charging process data is available in datasets such as [46] and

ypically includes information such as the total energy charged (Wh)

nd the duration of the process. Time series data (power over time) is

ot included. 

More granular charging process data includes the accompanying

ime series. For example, [47] provides a dataset which contains sim-

lated time series of charging currents for homogeneous EVs based on

ousehold energy consumption from 2009. A large dataset containing

 million charging processes from 8.300 EVs in 2011–2013 is analyzed

n [34,48] . The data includes 6 different car models such as the Nissan

eaf and the Toyota Prius. However, the dataset includes a limited

umber of sample charging process time series (19) without SoC and

s therefore not suitable for training machine learning models. A more

omprehensive dataset is discussed in [1] . The data is a result of ap-

lying a smart charging approach [5] in a real charging infrastructure.

he dataset contains over 30.000 charging processes and time series

ith charge schedules and the resulting charging current. However, the

ataset does not include SoC over time and the EV’s model. 

In this work, we make use of a charging process dataset containing

V models and the accompanying time series data. 

Literature gap. Related work on smart charging frequently positions

ntegrating nonlinear charge profiles as future work [2,5,49] . For

xample, an analysis of a practical application of smart charging [5] de-

cribes the difference between applied schedules and measured EV

ower and proposes reducing the difference by integrating nonlinear

harge profiles. There is thus a lack of work on integrating nonlinear

harge profiles with real-time smart charging. 

To address the literature gap, we propose taking into account

onlinear charge profiles by integrating charge profile predictions with

mart charging. We use a data-driven approach with machine learning

odels trained on historical time series data of EV charging processes.

e propose an approach based on data gathered by the charge point

perator thus ensuring the applicability of the approach in practice. 

. Method 

This section introduces the methods and techniques applied for data

riven smart charging. Data-driven smart charging is based on two

illars as visualized in Fig. 2 : model preparation and model application.

Model preparation is a one-off activity for training a regression

odel which is capable of predicting charging power based on SoC.

he process of training the regression model begins with the collection

f historical charging process data. In this work, we use a historical

ataset [50] with charge process data as described in Table 1 . The data
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Fig. 2. Overview of proposed methods. 

Table 1 

Dataset raw attributes. 

Attribute Sample value 

EV data (18 unique models) 

Battery capacity 41.000Wh 

Maximum power 22080W 

Three phase charging True 

Charging process data (10.595 processes) 

Arrival time 08:12:37 

End time 17:48:01 

Car model Renault Zoe (2018) 

Total power consumption 26120Wh 

Meter value data (Granularity: 1 min, 5.2 million data points) 

Timestamp 09:01:37 

Power 22.080W 
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reparation methods for the raw dataset include data cleansing and one-

ot encoding and are described in detail in Section 3.1 . Section 3.2 ex-

lains how the prepared dataset is used to train the regression model. 

Once trained, the regression model is ready to be applied for

eal-time smart charging. During daily operations the charge point

perator applies smart charging and repeats the process of scheduling a

harge plan for each EV when it connects to the charging infrastructure.

he smart charging algorithm is described in detail in Section 3.3 . The

ole of the regression model in the algorithm is to predict the charging

ower throughout the charging process and thus contribute to the

rioritization among EVs. 

.1. Data preparation 

This section discusses the methodology we use to clean and prepro-

ess a dataset of meter values collected from charging stations in order

o train regression models. We use the term charging process to refer to

he complete session of an EV charging. We use the term meter value to

efer to a single data point of a time series. For example, a measured

ower of 10kW at a charging station at 10:18 is one meter value. Each

harging process is associated with one time series of power over time.
n contrast to related work such as [32] , we do not simulate this time

eries but work with real data. We use the R programming language for

ataset preparation. 

Dataset structure. To begin with, we gather EV model data published

y manufacturers ( Table 5 ). We then combine the manufacturer’s EV

odel data with the charging process data and the meter value data.

eter value data is gathered with a granularity of 1 min. Table 1 shows

he raw attributes of the dataset. 

Dataset characteristics. The dataset consists of 10.595 uncontrolled

harging processes gathered from employee charging at the workplace.

he processes stem from the years 2016–2018 and from 1001 EVs

harging at 338 charging stations in 8 different cities. The EV fleet

s heterogeneous and is composed of 18 unique EV models, each of

hich has different values regarding maximum charging rate, battery

apacity, three phase charging (see Table 5 ). BEVs typically charge on

hree phases while PHEVs usually charge on a single phase. The mean

nergy charged per charging processes is 7.01kWh while the mean

uration is 7 h and 17 min. 

Dataset preprocessing. Next, we describe the steps we perform for

leaning and preprocessing the dataset. To begin with, we estimate SoC

ssuming a charging efficiency 𝜂 of 0.85. Based on studies [51–53] on

V charging, this is an optimistic value. EV charging efficiencies com-

uted from experimental data include values of 85% [51] , between 60%

nd 85% [52] or between 64% and 88% [53] . In practice, charging

fficiency is not constant but a function of attributes of EV charging

uch as heat, SoC and power. For the sake of simplicity, we assume a

onstant value. 

We use Eq. (1) to estimate the SoC z n,t for EV n at t . We use the time

eries X of a charging process to compute the SoC as the difference be-

ween the EV’s capacity Q n (Wh) and missing relative capacity based on

he previously charged energy X t (Wh) taking into account efficiency 𝜂. 

 𝑛,𝑡 = 𝑄 𝑛 − 𝜂 ∗ 
𝑋 𝑒𝑛𝑑 − 𝑋 𝑡 

𝑄 𝑛 

(1)

Data cleansing. First, we remove processes without an associated car

odel. Such processes can be a result of backend system tests. Next, we

emove processes with negative SoC values. Negative SoC values are

enerated by Eq. (1) in processes where our efficiency estimate (85%)
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Table 2 

Sample data point in cleaned and preprocessed dataset (1.2 million data points) 

used for training regression models. The car model is included as a one-hot 

encoded feature leading to 18 individual Boolean features. 

Feature name Sample value 

Input features (23 features) 

Is model BMW i3? false 

Is model Renault Zoe? true 

... false 

Is model Mercedes Benz C 350e? false 

Three phase charging? true 

Is BEV? true 

Is PHEV? false 

State of charge 0.3892 

Arrival time (seconds after midnight) 29,557 

Target feature 

Power (W) 21,358 
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i  
s too optimistic. We also limit processes to those with a maximum

ength of 24 hours. We assume longer stays contain irregular charging

ehaviour not in the scope of charging at the workplace. Similarly, we

emove processes shorter than 10 min. 

We remove charging processes with missing data due to charging

tation connectivity problems. Furthermore, we remove charging

rocesses with a flat charging profile. We assume processes with a

at charging profile were stopped before reaching full SoC and thus

ave no second charging profile stage. We identify such processes by

nalyzing whether the values of the time series are all within 95% of

he maximum value of the time series. 

The remaining cleaned dataset consists of 10.595 charging processes.

Regarding the time series, we remove meter values after power

eaches 0W for the first time. Artifacts such as remote air conditioning

ometimes results in a power draw greater zero just before the end of

he process. This leaves us with 1.2 million data points (from 5.2 million

riginally). 

Feature engineering. Table 2 shows the preprocessed attributes of the

ataset. We use the standard approach of one-hot encoding categorical

eatures. In one-hot encoding each value of a categorical feature is con-

erted to its own Boolean feature and the original categorical feature is

emoved. We one-hot encode the categorical variable EV model leading

o 18 individual Boolean features. In regression models requiring only

umerical features we use values of 0 and 1 for the Boolean features. 

.2. Learning regression models 

Training regression models is a proven data-driven methodology for

stimating one output feature given a set of input features. In the con-

ext of battery-aware smart charging the charging power is the feature

o be predicted via a regression model. This section discusses how we

rain different regression models and which baseline we use to predict

harging power given the EV model, SoC and arrival time from the

reprocessed dataset described in Table 2 . We train a linear regression

odel, an XGBoost regression model as well as a neural network. 

Constant. We use a constant predictor as a baseline with the simplest

ossible predictions and to represent prior work [14] . For the constant

redictor, we use the maximum power draw per EV model according

o manufacturers (see Table 5 ). 

Linear regression. Linear models represent a common benchmark for

egression models. We fit the model in Eq. (2) with predicted power y ,

3 features x i and error 𝜖j per data point j . 

 = 𝛽0 + 

𝑚 ∑
𝑖 =1 

𝛽𝑖 ∗ 𝑥 𝑖 + 𝜖𝑗 (2)

We also fit a second linear regression model on data where the

arget feature y has been logarithmically transformed to maximize

rediction accuracy. The motivation for logarithmically transforming
ower y is that the power in the second stage of charging profiles is

ften modelled as an exponential decrease [49,54] . In Section 5 both

inear regression models are evaluated independently. 

Neural networks. Recent related work on predicting or modelling

attery behaviour with neural networks includes [55,56] . Both ap-

roaches use neural networks to predict SoC taking into account battery

oltage, current and temperature. 

In this work we use Keras [57] for training neural networks. To

egin with, we use the commonly applied standardization approach

here each input feature has a mean value of 0 and a standard deviation

f 1. The neural network consists of two hidden layers, each of which

as 128 neurons with rectified linear activation functions. Weights are

egularized using L1 regularization. Because we use the neural network

or regression on a single target feature (power) the final layer is a

ingle neuron. An 80-20 train and test split was used for evaluation. Ad-

itionally introducing dropout layers, a higher number of hidden layers

r a different number of neurons did not result in an improved MAE. 

XGBoost. Gradient boosting machines are a popular regression model

or structured data. XGBoost (eXtreme Gradient Boosting) in particular

as become widespread [58] . In the domain of battery technology,

ork such as [21] uses gradient boosted trees to predict the remaining

seful life (RUL) of batteries. Similarly, [22] uses XGBoost to predict

oC. Both approaches require internal variables such as battery voltage

nd current. However, charge point operators do not have access to

nternal battery variables. 

We perform hyperparameter tuning via grid search using the

lr package in R. To avoid overfitting, hyperparameters are tuned

sing 10-fold cross validation. For reference, the best parameters

ased on the grid search are booster = gbtree , nrounds = 100 ,
ta = 0.1 , max_depth = 9 , min_child_weight = 1 , gamma = 0 ,
olsample_bytree = 1 and objective = reg:linear . 

.3. Integration with smart charging algorithm 

In this work we improve on the real-time smart charging algorithm

ntroduced in prior work [14] . The algorithm is a heuristic method

hich creates individual charge plans for a set of vehicles. It represents

 practically oriented method with goals similar to the method proposed

n [5] . 

The algorithm solves the decision problem of assigning charging

ower to EVs over time. Charging capacities are limited by fuses in the

nstalled charging infrastructure and ultimately by the connection to

he power grid. The goal of the algorithm is to maximize the average

oC over all vehicles while respecting charging capacities of the infras-

ructure. The output of the algorithm is one charge plan per vehicle.

he charge plan is a time-series discretized into 15 min timeslots and

pecifies the charging power for each time slot. From the perspective of

he CPO, a charge plan specifies desired values for charging power. On

 technical level, the charging station implements the charge plan as an

pper bound to EV power draw. The actual power draw is controlled

y the EV’s BMS. 

The flow of the algorithm is depicted in Fig. 3 and involves the

ollowing scheduling and prioritization steps. Each time a vehicle

egins a charging process the smart charging algorithm is triggered

nd computes a charge plan for the newly connected vehicle. The

cheduling step iterates over all timeslots and includes a timeslot in

he vehicle’s charge plan as long as the vehicle has a charging need.

he initial charge plan is optimistic in the sense that it uses the earliest

vailable timeslots for each vehicle. The prioritization step deals with

 conflict resolution when capacity allocations reach the limits of the

nfrastructure. Allocations are reassigned between vehicles and between

imeslots. When reassigning charging capacities, vehicles with higher

harging urgency are preferred. The charging urgency is associated with

he charging priority and is related to the remaining parking time Δt

nd the state of charge z ( t ) as detailed in Eq. (3) and initially introduced

n prior work [14] . Each vehicle’s departure time t departure is assumed to
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Fig. 3. Smart charging algorithm integrating the data-driven charge profile sim- 

ulation. 

b  

m  

b  

e

𝑝

 

c  

w  

m  

a  

p  

t  

t  

d  

c  

t  

c

 

c  

a  

p  

i  

p  

i  

e  

i  

p  

s  

a

 

s  

t  

d  

a  

Table 3 

Simulation parameters: 600 simulations total. 

Parameter Values 

Number of cars {5, 10, ..., 100} 

Number of charging stations 100 

Charging station power rating 22kW 

Charging efficiency 0.85 

Power prediction method {Constant, XGBoost, ... } 

RNG seed {0, 1, ..., 9} 
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1 https://github.com/komiya- atsushi/xgboost- predictor- javaversion0.3.1 . 
e known in advance. Vehicles are first prioritized by whether and how

uch they are charged above their minimum required SoC 𝑧 min at time t

y using a large artificial constant M (e.g., 𝑀 = 10 5 ). Vehicles’ charged

nergy is normalized by the maximum current I ( t ) they can draw. 

𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑄 ∗ ( 𝑧 min − 𝑧 ( 𝑡 )) 
|Δ𝑡 | ∗ 𝐼( 𝑡 ) + 𝜖

, if 𝑧 ( 𝑡 ) < 𝑧 min 

𝑄 ∗ (1 − 𝑧 ( 𝑡 )) 
|Δ𝑡 | ∗ 𝐼( 𝑡 ) + 𝜖

− 𝑀, otherwise 

(3) 

where Δ𝑡 = 𝑡 departure − 𝑡 (4) 

This work enhances the algorithm so that it takes into account

harge profiles such as CCCV when computing charge plans. Prior

ork [14] creates charge plans assuming each EV is able to draw its

aximum power irrespective of SoC and charge profile. Fig. 4 depicts

 sample CCCV process without a charge plan, with a charge plan as

er previous work [14] and with a charge plan from this work. In

he constant current phase of the charging profile the vehicle follows

he charging plan directly. In the constant voltage phase, the current

rawn follows a steadily declining curve which is only affected by the

harge plan if the charge plan current is below the CV current. When

he vehicle draws less power than is reserved by the charge plan then

harging capacity is wasted from allocation to other vehicles. 

The improvement proposed in this work consists of reducing wasted

apacity by considering the anticipated power drawn during the cre-

tion of charge plans. The approach is to introduce a data-driven charge

rofile simulation which integrates a regression model as introduced

n Section 3.2 . The regression model is used to predict the maximum

ower drawn by the vehicle at any point in time based on features

ncluding the state of charge. The smart charging algorithm uses the

stimated maximum power to reserve a more realistic charging capac-

ty. Consequently, the resulting charge plan reflects the actual charge

rofile more closely as visualized in the last diagram within Fig. 4 . The

trength of integrating a regression model is that it allows to reflect

rbitrary charge profiles and is not restricted to CCCV charging only. 

Regarding performance requirements of the algorithm: In a real life

etting, vehicles connect and disconnect from the charging infrastruc-

ure frequently. In the scenario of workplace charging the frequency

istribution of arrivals and departures is characterized by a peak of

rrivals between 8 and 9 am and a peak of departures after 5 pm. In the
ataset [50] used in this work the median arrival is at 8:22 am while

he median departure is at 5:01 pm. Fig. 5 shows the distributions for

V arrival and departure times. 

During peak arrival several new charging processes are started each

inute. The fact that every connection triggers a computation of charge

lans and potentially a reallocation of charging capacities motivates the

eed for a real-time capable algorithm. The smart charging algorithm

s designed to perform with sub-second response times for charging

nfrastructures with 300 charging stations while achieving comparable

mart charging quality compared to an approach involving a mixed

nteger linear programming model [14] . 

. Experimental setup 

We use a discrete event simulation implemented in Java. The

imulation models EVs and a three phase charging infrastructure. We

rigger reoptimization on new events. Events include new EV arrivals,

Vs reaching 100% SoC, EV departures and changes to the charging

nfrastructure. Reoptimizing includes recomputing charge plans via the

lgorithm discussed in Section 3.3 

For predicting individual EV charge profiles we use a pure Java

mplementation 1 of XGBoost. XGBoost models are trained with the

rogramming language R as discussed in Section 3.2 . For each sim-

lation run we select a random historical charging process per EV

nd simulate the charging profile via a lookup table consisting of SoC

nd power draw. We use a seed when selecting the random historical

harging processes to ensure reproducible results. A seed is used in

seudo-random number generators as a base value. The generator will

lways generate the same sequence of numbers with a given seed.

n other words, the results of a simulation are reproducible with a

iven seed because the same historical charging processes will be

elected. 

Table 3 shows the simulation parameters we use for simulations.

he number of cars is variable and is increased for each simulation

o show the impact of the infrastructure bottleneck (30kW). With a

mart charging algorithm this infrastructure should be sufficient to

ully charge roughly 40 EVs considering the main business hours of

8:00–17:00. The average energy consumption per session is 7 kWh

nd the infrastructure could be used for 270kWh spread out over

 hours. 

Each charging station is rated for a three phase BEV (22kW). We set

he number of charging stations to allow for every EV to plug in. We

se a constant charging efficiency of 0.85 as discussed in Section 3.1 .

inally, Table 5 shows the car model data published by manufacturers

hat we use. 

. Experimental results 

This section discusses results from the simulations in Section 4 . First,

n Section 5.1 we analyze the performance of the different regression

odels by comparing error metrics. Based on the error metrics we

iscuss the suitability of the regression models for integration in the

mart charging algorithm. We then show six examples of charging

https://github.com/komiya-atsushi/xgboost-predictor-javaversion0.3.1
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Fig. 4. Constant current, constant voltage 

(CCCV) charging with and without charge 

plans. The charge plan specifies an upper 

bound for the EV’s charging current. 

Fig. 5. EV arrival and departure time distribution. 
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Table 4 

Predicting charging profile power: Error metrics per prediction method. 

Method MAE RelMAE 

Baseline (predict maximum power) 2077.63 1.00 

Linear regression 656.13 0.32 

Linear regression (on log-power) 765.97 0.37 

Neural Network 151.28 0.07 

XGBoost (ablation study) 145.96 0.07 

XGBoost 126.21 0.06 

M  

m

 

b  

m  
rofiles and the accompanying predictions. Finally, we analyze feature

mportance in the best performing model (XGBoost). 

In Section 5.2 we directly measure the effect of the integrated regres-

ion models on smart charging by comparing charging output measured

s mean final SoC. We evaluate the relevance of individual features

ithin the model and present an ablation study to further quantify pos-

ible adverse effect when omitting features from the model. Lastly, we

nalyze two simulations in more detail and the influence of integrating

egression models on the computation time of smart charging. 

.1. Regression models 

Comparison of regression models. In this work, we use the metrics

ean absolute error (MAE) and the relative MAE (RelMAE) to quantify

egression model results. The relative MAE is computed by dividing the
AE of a method with the MAE of a baseline [59] . We use the EV’s

aximum power as the baseline. 

Table 4 shows the MAE and RelMAE per regression model. To

egin with, the baseline which assumes the EV will always draw its

aximum power has the highest MAE (2077.63) thus motivating the
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Fig. 6. Observed CCCV processes and predicted power using different regression models. 
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se of regression models. Next, the standard linear regression model

s well as the model fitted to logarithmically transformed power both

erform poorly with an MAE of 656.13 and 765.97, respectively. The

igh MAE of both linear regression models can be explained by the

ntrinsic nonlinear relation between SoC and power [2] . 

More sophisticated regression models which are able to deal with

onlinear relations between attributes show better results. Neural

etworks and XGBoost show a comparable MAE of 151.28 and 126.21.

owever, XGBoost shows slightly better performance. As described

n Section 3.2 we report the average MAE on each test set during

0-fold cross validation. We use the best performing regression model

XGBoost) for the simulations of EV fleets in Section 5.2 . 

As discussed in Section 3.1 in this work we assume an efficiency

alue of 𝜂 = 0 . 85 . A sensitivity study with varying efficiency values

howed no significant difference in prediction accuracy. 

Charge profile prediction examples. In the following we discuss six

xamples of charging processes to visualize the inherent nonlinearity

n charging profiles as well as regression model prediction accuracy.

ig. 6 shows the six processes involving three popular EV models from

he fleet. To show charging profile diversity in the dataset we present

hree processes with a high prediction accuracy (left column) and three

rocesses with a low prediction accuracy (right column). 

Interestingly, when observing the first stage in the charge profile

f each process, the Renault Zoe appears to implement CCCV while the

esla Model S and the BMW i3 appear to implement constant-power,

onstant-voltage (CPCV). We base this observation on the steady

ncrease of power in the first stage of CCCV. In comparison, the CPCV

rocesses show a first stage with recognizably constant power. 

For each of the six charging processes we show the charge profile

redictions for two regression models. XGBoost shows significantly

etter prediction accuracy compared to a linear regression model

hich corresponds to the lower MAE in Table 4 (126.21 vs 656.13).

he diversity in such sample charging processes underscores the need

or data-driven approaches to take into account processes that do not

ollow the expected theoretical charge profiles. 

w  
Feature importance. Analyzing the feature importance in trained

egression models presents another approach to evaluation of regression

esults. For tree-based models such as XGBoost, feature importance

xpresses the impact on the regression when splitting on the feature. In

 single decision tree, the gain for a feature expresses how well splitting

n that feature improves results. An XGBoost model consists of multiple

rees and the gain is averaged over all trees. We refer to [58] for

 more in-depth explanation of feature importance in XGBoost

odels. 

Fig. 7 shows the feature importance for the trained model. The most

mportant feature is whether the EV is able to use three phases followed

y the state of charge and the charging process’ start time. The relative

mportance of three phase charging is explained by the fact that vehicles

harging on three phases draw significantly more power than vehicles

harging on only one phase, namely roughly by factor three. The fact

hat state of charge ranks high in feature importance emphasizes that

he power drawn changes significantly with the SoC. In particular, the

ower draw decreases significantly towards high SoC. 

.2. Impact of integrated regression models on smart charging 

Scheduling quality. Fig. 8 shows the mean final SoC for different

V fleet sizes. The mean final SoC is the average SoC after charging

omputed over all EVs in the fleet. Each point in the plot is the average

esult of 10 simulations (600 simulations total). All methods show a

ecline after 35 EVs in the mean final SoC because of the infrastructure

ottleneck (30kW). However, each method shows a different mean

nal SoC because the infrastructure is used more or less effectively. For

xample, the difference in SoC with 40 EVs is large. Assuming a constant

attery model leads to a mean final SoC of 87%. In comparison, a mean

nal SoC of 96% is reached when using XGBoost as a charge profile

redictor. 

Ablation study. An ablation study can be used to determine the

nfluence of certain features on ML models by retraining the models

ithout said features. In the following we discuss whether the knowl-
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Fig. 7. XGBoost feature importance. 

Fig. 8. Experimental results: Mean final SoC for differ- 

ent EV fleet sizes. 

Fig. 9. Power vs SoC for all data points in the dataset. 

e  

t  

c  

c  

a

 

t  

m  

f  

t  

M  

o

 

E  

a

 

f  

t  

p  

c  

v  

fi  

c  

f

 

p  

w  

t  

w  

v  
dge of the EV’s actual car model is necessary or whether it is sufficient

o know the EV’s type (BEV/PHEV) and whether the EV is able to

harge on three phases. The EV’s model may not be available to the

harge point operator, for example, in scenarios where users do not

uthenticate. 

In this work, we perform an ablation study assuming charging fea-

ures (car type, three phase charging) are available via organisational

easures. For example, parking spaces may be reserved specifically

or BEVs or PHEVs and charging stations may be connected on one or

hree phases. The regression results in Table 4 show a slightly higher

AE (145.96 vs 126.21) when training the XGBoost model without the

ne-hot encoded car model features. 

We thus conclude the car model itself is not needed. However, the

V’s charging features (BEV/PHEV, three phase charging) are needed

s per the following reasoning. 
Fig. 9 shows power in relation to SoC and contains all data points

rom the dataset. There are many different charging profiles and the

ypical charging levels are easily recognizable as horizontal lines (single

hase 3.7kW, three phase 11kW or 22kW). Intuitively, without the

ar type and the three phase charging characteristic there are multiple

alues on the y-axis per single value on the x-axis. It is thus infeasible to

nd a function to accurately predict power based solely on SoC which

onfirms the need to include further features such as the charging

eatures discussed above. 

Example simulation runs. Fig. 10 shows the aggregated consumed

ower for two different simulations using different predictors. Notably,

hen using Constant (max power) , there are large differences between

he actually drawn power and the aggregated charge plans. In other

ords, there is a gap between each EV’s power and the power assigned

ia a charge plan. Semantically, the gap represents the difference



O. Frendo, J. Graf and N. Gaertner et al. Energy and AI 1 (2020) 100007 

Fig. 10. Single simulation runs using different predic- 

tors (20 EVs). 

Fig. 11. Single simulation runs using different predic- 

tors (40 EVs). 
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etween assuming a constant battery model and taking into account EV

harge profiles. 

In the upper plot of Fig. 10 , 196kWh was planned but only 129kWh

as drawn which represents a charge plan utilization of 65.8%. In the

ower plot, XGBoost more accurately predicts charge profiles leading

o 144kWh planned and 136kWh drawn and a charge plan utilization

f 94.4%. 

Fig. 11 shows the aggregated consumed power for two simulations

ith 40 EVs. With 40 EVs, the impact of a lower charge plan utilization

s more pronounced and leads to 21% more energy being drawn in

otal (259kWh vs 213kWh) when using the more accurate prediction

ethod (XGBoost). That is, the accuracy of the charge profile prediction

mpacts how effectively the infrastructure is used. Consequently, using

GBoost leads to leads to a significantly higher mean final SoC of 98%

ompared to the baseline of constant (max power) of 90%. 

Smart charging computation time. Fig. 12 shows the average compu-

ation time per rescheduling operation of the smart charging algorithm.

n other words, how long does an EV wait, on average, before receiving

 charge plan? The computation time includes the time applying the

egression model as well as computing charge plans. 
a  
In a real-time context, charge plans should be computed as quickly

s possible in order to make the most of the EV’s stay. Both methods

how increasing computation time depending on the number of EVs.

sing Constant (max power) is clearly faster. The smart charging

lgorithm performs many charge profile predictions with the integrated

GBoost model. The computation time of each XGBoost prediction is

oughly 30ns and is independent of the number of EVs. The number of

Vs influences how often the prediction method is used. For the smart

harging algorithm, the overall computation time remains in the order

f 100s for fleets of up to 100 EVs. 

. Discussion 

Using a data-driven approach to reflect charging behavior in smart

harging leads to improved charge plans. Here, improvement is un-

erstood as reaching a higher mean final SoC for the vehicle fleet by

sing the limited charging infrastructure more efficiently. The EV type

BEV versus PHEV, three phase charging) and SoC data is sufficient to

rain a regression model reflecting charge profiles. The smart charging

pproach proposed in this work reaches an improvement of up to 21%
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Fig. 12. Computation time of the smart charging algo- 

rithm per integrated prediction method. 
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n charging power consumed in total over an approach which does not

ake into account charging behavior. An ablation study showed how

ontrary to initial intuition, the EV’s model is neither necessary nor

oes it produce a significant improvement in the performance of the

egression model. 

From a computation time perspective, the integration of the regres-

ion model is negligible with an average runtime of 30ns per prediction.

With regard to the impact of prediction accuracy: If the power

rediction is too low the EV will draw less power than it is capable

f. However, the smart charging algorithm can assign the unused

nfrastructure capacity to other EVs if available. If the power prediction

s too high the EV will follow its normal charging profile and draw less

ower than specified by the charge plan. Consequently, infrastructure

apacity is reserved which cannot be assigned to other EVs. 

The studied scenario of workplace charging generalizes to other

mart charging applications that involve EVs topping up batteries in

imited charging infrastructures. Such applications include charging

elivery fleets over night and topping up EV batteries at gyms, airports

r retail locations. It can be argued that the main gain of integrating the

egression model is leveraged when vehicles approach 100% SoC. How-

ver, it is to be expected that with an increasing number of charging

pportunities frequent topping up becomes common charging behavior.

The fact that the regression model for the charge profile prediction

s agnostic of EV models makes it versatile and applicable to use

ith any EV. Regarding continuous SoC data, the vehicles’ SoC is not

ommonly accessible in practice due to pending implementations of

he ISO15118 [60] standard in charging stations and EVs. The missing

ccess to SoC is expected to resolve with time. We describe how we es-

imate SoC for historical charging processes in this work in Section 3.1 .

Additional features such as EV internal temperature, battery SoH

nd charging efficiency may improve the accuracy of the regression

odels. However, such features are not reported to the charging station

nd thus not available to the CPO. Furthermore, we omit external

emperature from the set of regression model features. Retraining the

egression models with external temperature as an additional feature

id not improve accuracy. 

The limitations of the proposed approach relate to the availability

f historical data. A large enough dataset with car models and meter

ata from charging processes is necessary to train the regression model

or predicting charge profiles. The trained model only reflects the

harging behaviour of the EV models included in the historical dataset.

ith new EV models and EVs aging over time the dataset will need

o be continuously updated and the regression model will need to be
 n
etrained. Furthermore, in this work we assume we know each EV’s

eparture time. In practice, it is difficult to reliably estimate departure

imes. We propose an approach to predict EV departure time with

achine learning in previous work [61] . 

As far as alternative approaches to charge profile prediction are

oncerned, time series forecasting may at first seem to suggest itself.

owever, the application of charge plans influences the course of

ach time series making the integration of time series forecasting with

eal-time smart charging conceptually problematic. 

. Conclusion 

In this work we propose the integration of a regression model for

harge profile prediction in a smart charging algorithm. The regression

odel is trained on a large historical dataset of charging processes and

redicts the power drawn by the EV over the course of the charging

rocess. A data-driven regression model is more practical to infer charge

rofiles than traditional battery models such as ECMs and physical mod-

ls. Battery internal parameters such as current, voltage or state of

ealth are required for such analytical models but are not publicly avail-

ble. Additionally, the regression model is trained on arbitrary charge

rofiles and thus not restricted to a single charge profile such as CCCV.

We address the research question of how integrated EV charge pro-

le predictions impact smart charging. We show how with our approach

Vs charge up to 21% more energy and reach a 9 percentage point

igher mean final SoC in a limited infrastructure. Consequently, more

nergy can be delivered without the need for costly and time-consuming

pgrades of the charging infrastructure. 

Furthermore, an ablation study shows that the EV model is not a

ecessary attribute for considering charge profiles in heterogeneous

V fleets. However, EV characteristics are required including the type

BEV or PHEV) and the number of the phases used for charging. 

Future work includes studying the impact on smart charging of

ow well regression models generalize to new EV models as they enter

he fleet. Progress in battery technology leads to EV models with new

harge profiles not contained in the historical dataset. 
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ppendix A 

Table 5 

Car model data from manufacturers (2018 models). 

Car model Type Thr

Audi A3 e-tron PHEV ×
BMW 225xe PHEV ×
BMW 330e PHEV ×
BMW 530e PHEV ×
BMW i3 BEV ✓
Hyundai Kona 150kW BEV ✓
MINI Cooper S E Countryman PHEV ×
Mercedes Benz B250e BEV ✓
Mercedes Benz C 350e PHEV ×
Mercedes Benz E 300de PHEV ×
Mercedes Benz E 350e PHEV ×
Mercedes Benz GLC 350e PHEV ×
Mercedes Benz GLC 350e COUPE PHEV ×
Mercedes Benz GLE 500e PHEV ×
Nissan Leaf BEV ×
Renault ZOE BEV ✓
Smart ED BEV ✓
Smart fortwo ED BEV ✓
Smart fortwo EQ Cabrio BEV ✓
Tesla Model S BEV ✓
VW Golf GTE PHEV ×
VW Passat GTE PHEV ×
VW e-Golf BEV ×
Volvo V60 2,4 PHEV PHEV ×
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