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Abstract

In recent times, distributed consensus protocols have received widespread at-
tention in the area of blockchain and smart grid. Consensus algorithms aim to
solve an agreement problem among a set of nodes in a distributed environment.
Participants in a blockchain use consensus algorithms to agree on data blocks
containing an ordered set of transactions. Similarly, agents in the smart grid em-
ploy consensus to agree on specific values (e.g., energy output, market-clearing
price, control parameters) in distributed energy management protocols.

This thesis focuses on the security and privacy aspects of a few popular
consensus-based protocols in blockchain and smart grid. In the blockchain area,
we analyze the consensus protocol of one of the most popular payment systems:
Ripple. We show how the parameters chosen by the Ripple designers do not
prevent the occurrence of forks in the system. Furthermore, we provide the
conditions to prevent any fork in the Ripple network. In the smart grid area, we
discuss the privacy issues in the Economic Dispatch (ED) optimization problem
and some of its recent solutions using distributed consensus-based approaches.
We analyze two state of the art consensus-based ED protocols from Yang et
al. (2013) and Binetti et al. (2014). We show how these protocols leak private
information about the participants. We propose privacy-preserving versions of
these consensus-based ED protocols. In some cases, we also improve upon the
communication cost.





Zusammenfassung

Neuerdings haben verteilte Konsensprotokolle im Bereich Blockchain und Smart
Grid große Aufmerksamkeit erhalten. Konsensalgorithmen haben das Ziel, ein
Übereinstimmungsproblem zwischen einer Gruppe von Knoten in einer verteil-
ten Umgebung zu lösen. Teilnehmer an einer Blockchain verwenden Konsens-
algorithmen, um sich auf Datenblöcke zu einigen, die aus einer geordneten
Menge von Transaktionen bestehen. In ähnlicher Weise verwenden Teilnehmer
am Smart Grid einen Konsens, um bestimmte Werte (z. B. Energieausbeute,
Markträumungspreis, Steuerungsparameter) in Protokollen für das verteilte En-
ergiemanagement zu vereinbaren.

Diese Arbeit fokusiert die Sicherheits- und Datenschutzaspekte einiger
gängiger konsensbasierter Protokolle im Bereich Blockchain und Smart Grid. Im
Blockchain-Bereich analysieren wir das Konsensprotokoll eines der gängigsten
Zahlungssysteme: Ripple. Wir zeigen, wie die von Ripple-Designern gewählten
Parameter das Auftreten von Gabelungen im System nicht verhindern. Darüber
hinaus definieren wir die Voraussetzungen, um Gabelungen im System zu verhin-
dern. Im Bereich Smart Grid diskutieren wir die Datenschutzaspekte des Opti-
mierungsproblems Economic Dispatch (ED) und einige seiner neusten Lösungen
unter Verwendung verteilter konsensbasierter Ansätze. Wir analysieren zwei
State of the Art konsensbasierte ED-Protokolle von Yang et al. (2013) und
Binetti et al. (2014). Wir zeigen, wie diese Protokolle private Informationen
über die Teilnehmer preisgeben. Wir schlagen Versionen dieser konsenbasierten
ED-Protokolle vor, welche die Probleme hinsichtlich der Preisgabe persönlicher
Daten lösen. In einigen Fällen verbessern wir auch die Kommunikationskosten.
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Chapter 1

Introduction

1.1 Motivation

The consensus is one of the most fundamental problems in distributed systems
research and has been studied over the last four decades. The main goal of
the consensus algorithms is to ensure that nodes in a distributed setting can
agree on a particular shared state. This area of research has developed over the
years since its early theoretical results [1, 2, 3], practical implementations [4],
and most recently renewed overwhelming adaptation in blockchain [5, 6, 7] and
smart grid [8, 9].

The blockchain or distributed ledger stores a growing list of transactions or
records in the form of data blocks on top of a peer to peer (P2P) network. The
blockchain protocols employ consensus such that the participants can agree on
the set of transactions to be included in the database. From the security perspec-
tive, the consensus protocols in blockchain must be fault-tolerant from malicious
(or byzantine) attackers. However, the consensus algorithms used by different
blockchain protocols are often non-standard. They differ from traditional ones
[4] due to practical requirements such as network model, latency, number of
participants, etc. Therefore, these new-age blockchain-based consensus proto-
cols require rigorous security assessment and analysis such that claimed security
guarantees actually hold in practice.

The smart grid is the modern electricity network that supports the informa-
tion communication channel in parallel to the energy delivery network. It uses
a new generation of distributed energy management protocols. The network
nodes use consensus algorithms to agree on a set of common parameters such
as final electricity output, market-clearing price, estimates of different variables
for optimization. The development of consensus protocols for the smart grid
is currently an extension of multi-agent control and consensus research [10].
Traditional consensus research [1, 2, 3, 4] focuses on developing fault-tolerant
protocols in the presence of byzantine attackers. However, the consensus re-
search in industrial control systems concentrates on asymptotic behavior and

1



2 CHAPTER 1. INTRODUCTION

convergence rate of the agreement between nodes. Furthermore, the consensus
algorithms in the smart grid often consider several practical factors such as ac-
tuation, physical properties, non-linear optimization, network graph [10, 9], etc.
In the smart grid, the consensus protocols are iterative. The participants start
with some initial values, and asymptotically agree on a specific amount at the
end of the protocol. In this agreement process, participants share their inputs
with others for computation. However, the data from participants might be
privacy-sensitive or confidential. For instance, a set of participants would like
to agree on the average energy consumption per month in a locality. Henceforth,
if individual nodes send their consumption data to others, it could reveal per-
sonal behavioral traces. Therefore, the design of privacy-preserving distributed
consensus protocols in a smart grid is necessary and opens a new research di-
rection.

1.2 Contributions

This thesis analyses the security and privacy aspects of some of the new gener-
ation consensus protocols in the application area of blockchain and smart grid.

The Ripple payment system [11] has evolved as one of the most prominent
cryptocurrency and blockchain network. Its consensus algorithm [5] promises
much faster ledger closing speed than its competitor Bitcoin’s Proof of Work
(PoW) consensus. In this thesis, our first contribution is on the security analysis
of Ripple’s consensus protocol. We show that the parameters provided by Ripple
designers in the whitepaper [5] do not prevent blockchain fork, and might lead to
double spending in the system. We furthermore present the overlap conditions
between consensus participants to prevent any fork in its blockchain.

The Economic Dispatch (ED) is a fundamental optimization problem in
smart grid energy management. The problem involves the minimization of total
operating cost while satisfying some system constraints. As several distributed
consensus-based protocols to solve ED problem have been proposed lately to
replace traditional centralized calculation, we have observed that most of the
current solutions are not secure. In particular, we study two state-of-the-art dis-
tributed ED protocols from Yang et al. [8] and Binetti et al. [9]. In this work, we
demonstrate attacks to show how confidential information about participants is
leaking while running both protocols and developed two privacy-preserving ver-
sions. The first one is called as Privacy Preserving Economic Dispatch (PPED)
protocol [12], which is constructed on top of Yang et al. ED protocol [8]. We
have analyzed the security of PPED in the information-theoretic setting. In our
solution, we also improve upon the communication cost from the original Yang
et al. protocol. The second protocol is known as Privacy Preserving Binetti
(PPB) [13] based on Binetti’s ED protocol [9]. To construct such private ED
protocols, we have used cryptographic building blocks from secure multiparty
computation (SMC) [14, 15].

The PPED protocol considers quadratic cost function, whereas the PPB
protocol can be applied to more realistic non-convex cost function optimization
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in a smart grid. As the participants in a smart grid are identifiable and regu-
lated, we assume semi-honest attacker nodes instead of byzantine nodes in the
analysis of PPED and PPB protocols.

1.3 Thesis Structure

This thesis is organized into three parts, as follows:

• Part I consists of chapter 2, where we formally define various notions
related to consensus, multiparty computation, etc., which will be useful
in the latter part of the thesis.

• Part II focuses on the security of the Ripple payment system, partic-
ularly on its consensus protocol. Chapter 3 gives a brief introduction to
blockchain-related concepts and different blockchain consensus algorithms.
Chapter 4 overviews the Ripple payment system and surveys its related
security and privacy results. Chapter 5 describes Ripple’s consensus pro-
tocol and our analysis.

• Part III presents privacy in consensus-based distributed economic dispatch
protocols in the smart grid. First, we give the background on the smart
grid, its security and privacy challenges, privacy-enhancing technologies
in chapter 6. In chapter 7, the ED problem is introduced, and we survey
previous works related to privacy in ED protocols. Chapter 8 presents
an attack on existing consensus-based ED protocol from Yang et al. [8]
and introduces the PPED protocol to solve the distributed ED problem
in a privacy-preserving manner. Chapter 9 discuses consensus-based ED
protocol from Binetti et al. [9], we show how it leaks private information
and we transform it into a privacy-preserving distributed protocol named
PPB. Finally, we conclude our thesis in chapter 10.

Publications: The contents of this thesis are primarily based on three papers
and one poster, previously published in TRUST’15 [16], FNSS’16 [12], Nord-
Sec’18 [13] and EuroS&P’17 [17]. Some other papers written during the doctoral
research but not included in this thesis are [18, 19, 20].

• Chapter 4 and 5 of Part II extend the description and analysis of Ripple
previously published in [16].

• Chapter 7 of Part III extends the description and related works of ED
previously published in [12] and [13].

• Chapter 8 of Part III extends the results published in [12].

• Chapter 9 of Part III is based on [13].

• The attack discussed in chapter 9 of Part III was first presented in [17].
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Chapter 2

Preliminaries

This chapter introduces the necessary technical background to understand this
thesis. First, we discuss consensus in distributed systems and some well-known
results. Then we give some mathematical basis and present underlying concepts
of the cryptographic building blocks used in this thesis. We use the terms
“node”, “party”, and “participant” indistinctly.

2.1 What is Consensus?

The consensus is a fundamental problem in distributed systems that solves the
system reliability in the presence of faulty nodes. At the core, it is an agreement
problem where all non-faulty nodes have to agree on a specific value after some
nodes propose some value. In distributed systems research, this problem has a
long history and has been studied for the last 40 years [1, 2, 3, 4]. The goal of any
consensus algorithm is to reach identical decisions. We present the properties
of a consensus algorithm as given in [21, p. 150][22, p. 18] as follows:

Definition 2.1.1. (Consensus) In a n node system, suppose t nodes are faulty
and every node Pi has some input value xi. The consensus holds if the following
properties are satisfied:

• Agreement: All non-faulty nodes agree on the same value.

• Validity: The agreed value is one of the input values possessed by the
nodes.

• Termination: All non-faulty nodes should terminate within a finite time.

The security of any consensus algorithm is typically evaluated with property-
based approach, i.e., showing how these properties such as agreement, validity,
termination are satisfied. The quality of a consensus protocol depends on dif-
ferent measures such as maximum number of faulty nodes t (in terms of n)
a protocol can tolerate, worst case termination time of honest nodes, and the
communication complexity.

7
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2.1.1 Byzantine General Problem

The byzantine general problem [1, 2] was introduced by Lamport, Pease, and
Shostak, and is a fundamental problem in fault-tolerant distributed systems.
This problem states an agreement problem among a set of nodes(“generals”) in
the presence of faulty nodes (known as byzantine). A node is called byzantine if
it can have arbitrary behavior such as not sending any messages, sending wrong
messages to different nodes, lying about input. Byzantine nodes can collude to-
gether or can be controlled by one specific adversary. We call a system reached
byzantine agreement when the nodes reach consensus as defined in 2.1.1 in the
presence of byzantine nodes. Lamport et al. in [2] showed that the necessary
and sufficient condition to reach a byzantine agreement is t < n

3 . In the cryp-
tographic sense, byzantine attackers are the strongest possible attackers, also
known as malicious attackers. The genre of protocols that solves consensus with
byzantine faulty nodes are known as byzantine fault tolerant (BFT) protocols.

2.1.2 Models for Communication in Distributed Setting

There are different network models for communication to design distributed
consensus algorithms:

Synchronous Model

In this model, nodes function in synchronous rounds. In each round, each
node can send a message to the other nodes, receive messages from the other
nodes, and perform some local computation. More specifically, there exist a
known fixed upper bound δ for the time to send one message from one node
to another and a known fixed upper bound φ on the relative computational
speeds of different nodes [23]. In general, the synchronous model assumes point
to point communication channel such that nodes are connected with pairwise
secure and authenticated channels. Furthermore, a fully connected graph is a
standard setting for synchronous consensus protocols [2].

Partial Synchrony Model

Some models consider a relaxed setting to design consensus protocols in practice.
Dwork et al. in [23] introduced partial synchrony model where there exist fixed
bounds for message delivery (δ) and relative computation speed (φ). However, δ
and φ are not known beforehand by the protocol participants. Another variant
is known as the eventual synchrony model, where synchrony eventually holds
after some unknown but fixed time interval.

Asynchronous Model

In the asynchronous network model, messages arrive after finite but unbounded
time. This model is also known as the eventual delivery model. In a fully
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asynchronous model, messages might be arbitrary dropped or delayed. More
specifically, there are no upper bounds for δ and φ.

2.1.3 Fischer-Lynch-Paterson (FLP) Impossibility Result

Fischer, Lynch, and Paterson in [3] proved that no deterministic algorithm could
solve the consensus problem in a fully asynchronous network model even with
one faulty byzantine node. This influential result in distributed consensus is
known as FLP impossibility result1. In the eventual delivery model, even though
there exists no deterministic algorithm to reach the consensus, consensus pro-
tocol construction is possible with randomization [3].

For further reading about consensus problems in distributed systems, we
recommend the book by Lynch [21].

2.2 Mathematical and Cryptographic Prelimi-
naries

We describe some basic notions from graph theory and algebraic structures used
in this thesis in brief.

• A group G is a set and an associated binary operation · that takes two ele-
ments of the set and maps the elements to a third element. The operation
satisfies four group axioms.

– Closure: a, b ∈ G⇒ a · b ∈ G
– Associativity: a · (b · c) = (a · b) · c
– Identity: There exists e ∈ G, such that for all a ∈ G we have a · e =
e · a = a

– Inverse: For all a ∈ G, there exists a−1 ∈ G, such that a ·a−1 = a−1 ·
a = e, where e is the identity element from the previous condition.

• A group G is cyclic, if there exists a generator element g ∈ G, such that
any other element of G can be generated by repeated application of g with
itself. Equivalently, g ∈ G is generator of cyclic group G if for any h ∈ G
there exists an integer i such that h = gi.

• A group G is commutative if for all a, b ∈ G, we have a · b = b · a.

• A field F is a set, associated with two binary operations, addition + and
multiplication ·, such that:

– it is a commutative group over addition +.

– the additive identity is zero (0). There exists a different multiplicative
identity 1 6= 0.

1This paper was awarded Dijkstra Prize in 2001
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– G \ {0} is a commutative group over multiplication operator ·.
– The multiplication operator · distributes over the addition operator

+. That is for all a, b, c ∈ G, we have a · (b+ c) = a · b+ a · c.

• A field with finite number of elements is called Finite field or Galois Field.
The number of elements in a Finite Field is always pk, for some prime p
and non negative integer k. Finite fields are called prime field, if the total
number of elements is a prime p. All prime fields of size p are isomorphic
to set of natural numbers modulo p. This field is denoted as Fp or Zp.

• A graph consists of a set of nodes V and a set of directed edges E ⊆ V ×V .
In case of undirected graph, E consists of unordered tuples; in case of
directed graph E consists of ordered tuples. A graph (V,E) is connected,
if for any u, v ∈ V , there exists a sequence of nodes u1, u2, · · · , uk such
that (u, u1), (u2, u3), · · · , (uk, v) ∈ E. A graph (V,E) is fully connected if
for any u, v ∈ V , (u, v) ∈ E.

• A hash function H : {0, 1}∗ → {0, 1}h maps an arbitrary length string to a
short digest. Typically h is about 128 or 256. For a regular hash function,
the expected property is the output should be random for any input.
However, cryptographic hash functions exhibit additional properties.

– Pre-image Resistance: For any polynomial time adversary, given ran-
domly chosen y ∈ {0, 1}h it is hard to output any x ∈ {0, 1}∗, such
that H(x) = y.

– Collision Resistance: For any polynomial time adversary it is hard
to output any (x1, x2), such that H(x1) = H(x2).

– One-wayness: For any polynomial time adversary, for any randomly
chosen input string x of some length, given H(x) it is hard to output
x.

• A digital signature scheme is a public key cryptographic primitive consist-
ing of three algorithms Key Generation, Signing, and Verification. The
Key generation algorithm generates a public key and a corresponding pri-
vate key. Any party holding the private key can sign on arbitrary mes-
sages. Any other party having access to the public key can verify the
authenticity of message signature pairs.

2.3 Secure Multiparty Computation (SMC)

Secure multiparty computation (known as SMC or MPC or SMPC) is a family
of cryptographic techniques for privacy-preserving computation. The goal of
SMC is to enable multiple parties to jointly compute a function while keeping
input data private. The SMC protocols exist in two-party as well as multiparty
setting. One classic example of SMC is a solution to millionaires problem by
Yao’s garbled circuit construction [24], where two millionaires find who has more
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wealth without revealing their wealth. Since then, many SMC protocols have
been proposed, and existing literature includes [25, 14, 26, 27].

Succinctly, one can define a generic SMC protocol as following [28]:

Definition 2.3.1. (SMC) In a n node system, parties P1, · · · , Pn want to com-
pute the function y = f(x1, · · · , xn) where xi is the private input of Pi. Consider
an external adversary A that can corrupt and control a subset of participating
parties (minority). An SMC protocol should satisfy the following security prop-
erties:

• Input privacy: parties learn the output y and the information inferred
from y, nothing else can be learned from the protocol execution.

• Correctness: all honest parties are guaranteed to learn the correct out-
put y in presence of adversary A.

Let’s take an example of the generalized millionaire’s problem with n parties
where x1, · · · , xn be the wealth of individual parties. Clearly, f(x1, · · · , xn) = i
if xi > xj ∀ i 6= j. An SMC protocol to solve the generalized millionaire’s prob-
lem should follow the security properties as mentioned earlier in 2.3.1. While
running the SMC protocol, only the identity of the richest millionaire is allowed
to be revealed to all parties (input privacy). Second, the SMC protocol should
output the correct result, i.e., the richest party is guaranteed to win, and an
adversary A cannot alter the result (correctness).

There are two distinct approaches to construct SMC protocols. The first
genre is Yao’s garble circuit approach, where the function is computed as a
binary circuit. The gates of the circuit are “encrypted” to form a garbled circuit.
The security of such schemes relies on the computational assumption and follows
from the security of the encryption scheme. The second family of protocols is
secret sharing based, where the function is presented as an arithmetic circuit. In
general, the Yao-based garbled circuit approach is more suitable for two-party
computation, and the secret sharing based strategy is ideal for the multi-party
setting. In this work, our focus will be on secret sharing based SMC protocols.

The Simulation Paradigm

A more formal definition of SMC [29, 30][31, sec. 7.1] considers ideal/real sim-
ulation paradigm. In the “ideal world”, an incorruptible or trusted party helps
the parties to perform the computation. Parties can directly send their input
to the trusted party, trusted party computes the function, and send back the
output to them. It models the idealized version of the protocol, including any
allowable information leakage. In the “real world”, the parties run the protocol
among themselves to compute the function without any trusted party. The real
world SMC protocol is secure if compared to the ideal world execution, the real
world protocol execution does not reveal more information to the adversary. In
other words, if the adversary learns the same information in both worlds, the
real world protocol is secure.
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2.3.1 Adversarial Model

As we mentioned earlier in 2.3.1, the model for SMC considers an adversary
A that controls some subset of the participating parties and wants to attack
the protocol execution. The controlled subset by the adversary is known as cor-
rupted parties. The adversary can be classified based on the corruption strategy,
adversarial behavior, and computational power. The following classification is
based on [32]:

Corruption Models

The adversary can corrupt the participating nodes in two ways: static corruption
and adaptive corruption. In a static corruption model, the adversary can control
and corrupt a fixed number of participants. The role of honest parties and
corrupted parties are fixed throughout the computation in this model. In the
adaptive corruption model, the adversary has the ability to corrupt parties
during the computation. Once a party is corrupted at some point will remain
corrupted throughout the computation in this model. Another model known as
proactive corruption considers corrupted parties to be corrupted for a certain
amount of time. A computing party in a proactive corruption model can be
corrupted during computation like in adaptive corruption but can be honest
again after a specific time.

Adversarial Behavior

The adversarial behavior can be classified based on the action of the corrupted
parties during computation. Such as behavior can be classified as semi-honest
and malicious. In semi-honest (also known as passive or honest-but-curious)
adversary model, the corrupted parties strictly follow the protocol specification,
but may analyze the message exchanges to gain additional information dur-
ing the protocol execution. In malicious (also known as “active”) adversarial
model, the corrupted party can deviate arbitrarily from the protocol specifi-
cation. This model is a much stronger adversarial model than semi-honest,
because the adversary has additional freedom of deviating from the protocol.
Furthermore, another model in SMC known as rational adversary model consid-
ers game-theoretic strategies to model the rational behavior of corrupted parties.
This adversary model is a stronger adversary than semi-honest but weaker than
the malicious model.

Computational Power

In SMC, the adversarial power is modeled based on two computational complex-
ity categories. First, the adversary is computationally bounded. In this setting,
we assume probabilistic polynomial time (PPT) adversaries which cannot solve
cryptographic hard problems. This is known as computationally bounded set-
ting.
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The second type of adversary has no computational limits, known as
computationally unbounded adversary. This type of adversary comes under
information-theoretic setting. The results in this setting do not rely on any
cryptographic assumptions of complexity classes. Any protocol which is secure
in the information-theoretic setting is trivially secure in the computationally
bounded setting.

2.3.2 SMC Security Guarantee

The security guarantees in SMC protocols can be categorized as following [33,
32, 34]:

Information-theoretic Security

An SMC protocol achieves information-theoretic security or unconditional secu-
rity or perfect security if the adversary does not obtain any additional informa-
tion running the real world protocol than it learns under ideal setting (with a
trusted third party). The result of a real world execution with a real adversary
should be the same as the result of ideal execution with a trusted party and
ideal world adversary. This security level is achievable with a computationally
unbounded adversary in the information-theoretic setting. In this model, it
is usually assumed that the parties are connected with ideal private channels
where the adversary cannot eavesdrop or modify the message communication
between two honest parties.

Statistical Security

The statistical security level is quite similar to perfect security. In this security
level, the adversary learns no additional information than in an ideal setting
but with a negligible probability. The result of a real world protocol execution
with a real adversary should be statistically close to the result of ideal execu-
tion with a trusted party and ideal world adversary. Once again, it considers
computationally unbounded adversary in the information-theoretic setting.

Computational Security

An SMC protocol can achieve computational security level against a PPT ad-
versary such if breaking the security of the protocol, implies the adversary has
to solve a computationally hard problem. Any functionality can be securely
computed under appropriate cryptographic assumptions achieves computational
security [35, 36].

2.4 Secret Sharing

Secret sharing is one of the important techniques used in SMC protocols. Infor-
mally speaking, it involves distributing a secret among a group of participants
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such that the share of each party does not reveal anything about the secret, but
together they can reconstruct the secret value. The idea of secret sharing came
independently from Adi Shamir [37] and Bob Blakley [38] to overcome the single
point failure problem of secret data storage. It has been a subject of research
by its own with various applications (e.g., SMC, byzantine agreement, threshold
cryptography, attribute-based encryption). A detailed survey on different secret
sharing mechanisms can be found in [39]. Some scheme needs everyone’s shares
to reconstruct the secret; on the other hand, some schemes require only a subset
of the parties are needed to reconstruct the secret. The latter ones are known as
threshold sharing schemes. A threshold secret sharing scheme can be described
as [40]:

Definition 2.4.1. ((t, n) threshold secret sharing scheme) A (t, n) threshold
secret sharing scheme can take s as a secret input and output n shares guaran-
teeing two following properties:

• Recoverability: Any subset of t shares can be used to reconstruct the
secret s.

• Secrecy: A subset of less than t shares does learn anything about s.

In our work, we particularly focus on Shamir’s secret sharing scheme [37],
which is a backbone of BGW protocol [14].

2.4.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme [37] is based on polynomials over a finite field
F. A (t, n) Shamir’s threshold scheme is perfectly secure against a semi-honest
adversary controlling t − 1 nodes. The necessary condition for this scheme is
|F| > n, where n is the number of participants. For simplicity, we can con-
sider F = Zp such that the prime p is bigger than n (p > n). In real-world
applications, the prime p that defines the field size is much bigger than n to
avoid overflows. If we want to design a (2, n) threshold secret sharing scheme,
the secret could be the slope of a line, and each share can be distinct points
on the line. Henceforth, 2 parties can find the slope of the line, but one point
on the line says nothing about the secret. Similarly, this idea can be general-
ized as for (3, n) scheme with a quadratic function and for (t, n) scheme with
a (t − 1) degree polynomial function. Note, any t points in a two-dimensional
plane uniquely determines a polynomial of degree ≤ t− 1 (if such a polynomial
exists). Shamir’s scheme consists of three steps: i) Initialization, iii) Distribu-
tion of Shares, and iii) Reconstruction. In the following, we explain the steps
using Shamir’s (t, n) threshold secret sharing scheme:
Consider a dealer who wants to share the secret s ∈ Zp among the parties
P1, . . . , Pn.

i) Initialization:

The dealer selects n distinct non-zero elements x1, . . . , xn from Zp (public).
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ii) Distribution of Shares:

The dealer constructs a random polynomial fs(x) ∈ Zp[X] of degree at most
t− 1 such that fs(0) = s. This can be done by choosing uniformly random t− 1
elements from Zp as a1, . . . , at−1 and defining fs(x) as follows:

fs(x) = s+ a1x+ · · ·+ at−1x
t−1 mod p (2.1)

Thereafter, the dealer can compute yi = fs(xi) (for 1 ≤ i ≤ n ) and distribute
the share yi to Pi. As a result, every party Pi gets the a point (xi, yi) on the
polynomial fs(x) as a secret share.

iii) Reconstruction:

The secret reconstruction can be done with polynomial interpolation. If t dis-
tinct points are known from t parties, the polynomial (degree ≤ t − 1) can
be constructed with some interpolation methods (e.g., vandermonde matrix,
lagrange interpolation). One can use lagrange interpolation method for recon-
struction of the secret as solving a system of linear equation with vandermonde
matrix is costlier. Without the loss of generality, we suppose that the shares
use for reconstruction are y1, . . . , yt. The polynomial fs(x) can be represented
as follows:

fs(x) =

t∑
i=1

yi · δi(x) (2.2)

Here, δ1(x), . . . , δt(x) are lagrange basis polynomials of degree at most t − 1.
Let’s take an example of δ1(x) polynomial, it has at most t−1 roots as x2, · · · , xt
and δ1(x1) = 1 (as fs(x1) = y1). This polynomial can be represented as:
δ1(x) = C1·(x−x2)·(x−x3) · · · (x−xt) where C1 is a constant. Now, the constant

term C1 can be found as C1 = δ1(x1)
(x1−x2)·(x1−x3)···(x1−xt)

= 1
(x1−x2)·(x1−x3)···(x1−xt)

.

Henceforth, δ1(x) = (x−x2)·(x−x3)···(x−xt)
(x1−x2)·(x1−x3)···(x1−xt)

and similarly one can define δi(x)
as:

δi(x) =

t∏
j=1,j 6=i

x− xj
xi − xj

(2.3)

Recoverability: Let’s see how any t shares can recover secret s. First, one can
find:

δi(0) =

t∏
j=1,j 6=i

−xj
xi − xj

This δi(0) is a constant depends on which share holders are involved but
independent of the shares yi’s. This value can be pre-computed and as we have
the shares y1, . . . , yt’s, the secret can be found as: s = fs(0) =

∑t
i=1 yi · δi(0).

Secrecy: Here we verify whether Shamir’s scheme satisfies the secrecy
property i.e. less than t shares reveal anything about the secret s or not.
Without the loss of generality, suppose t− 1 parties P2, . . . , Pt are contributing
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their respective shares y2, . . . , yt to reconstruct the secret. We need to
show these t − 1 shares do not reveal any information about the secret s.
The secret s can be written as: s = fs(0) =

∑t
i=1 yi · δi(0). This implies

y1 · δ1(0) = s−
∑t
i=2 yi · δi(0). Note that δ1(0) =

∏t
j=2

−xj

x1−xj
, is non-zero as all

xj and x1 − xj ’s are non-zero. Hence it follows that without knowing the value
of y1, the secret value s remains unknown. Perfect security is achieved as we
have a bijective relation between any possible value of s ∈ Zp and any possible
value of the missing share y1 ∈ Zp.

Example:

Let’s assume a dealer wants to distribute a secret among three parties P1, P2, P3

using (2, 3) Shamir’s scheme i.e., can tolerate upto one corrupt party. The dealer
chooses to work in the field F = Z13 and share the secret s = 7. He picks a1 ∈ F
uniformly at random. Suppose a1 = 5 and he constructs the polynomial:

fs(x) = s+ 5x mod 13

Now the dealer can compute the shares y1 = fs(1) = 7 + 5 mod 13 = 12,
y2 = fs(2) = 7 + 10 mod 13 = 4 and y3 = fs(3) = 7 + 15 mod 13 = 9. Each
share yi is sent privately to respective party Pi. Let’s assume P1 and P3 together
want to reconstruct the secret from their share. We can use lagrange method
as explained previously. We use equation 2.3 to get:
δ1(x) =

∏
j=3

x−xj

x1−xj
mod 13 = x−3

1−3 mod 13 = (x − 3)(1 − 3)−1 mod 13 =

(x−3)(−2)−1 mod 13 = (x−3)(11)−1 mod 13 = (x−3)·6 mod 13 = (6x−18)
mod 13. Similarly, we can find δ3(x) =

∏
j=1

x−xj

x3−xj
mod 13 = x−1

3−1 mod 13 =

(x− 1)(2)−1 mod 13 = (x− 1) · 7 mod 13 = 7x− 7 mod 13. Finally, we can
find the secret s by using equation 2.2 as:
s = fs(0) =

∑
i∈1,3 yi ·δi(0) = y1 ·δ1(0)+y3 ·δ3(0) = 12 · (6 ·0−18)+9 · (7 ·0−7)

mod 13 = (−216− 63) mod 13 = −279 mod 13 = 7.

2.5 Secure Computation from Secret Sharing

Ben-Or, Goldwasser and Widgerson (BGW) protocol [14] is a foundational SMC
protocol in information-theoretic model. They demonstrated that any function
with n-ary input can be computed with perfect (information-theoretic) security,
assuming private encrypted channel. The main results of their paper were as
follows considering a complete synchronous network of n parties with pairwise
private encrypted channel:

Theorem 1. For every n-ary input function f , there exits a protocol to compute
f with perfect security in presence of τ semi-honest adversaries as long as τ < n

2 .

Theorem 2. For every n-ary input function f , there exits a protocol to compute
f with perfect security in presence of t malicious adversaries (or Byzantine) as
long as τ < n

3 (requires a broadcast channel).
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In the following, we describe how addition and multiplication gates are se-
curely evaluated. The idea can be extended to arbitrary functions, as any arbi-
trary function can be expressed in terms of addition and multiplication gates.

2.5.1 Secure Addition

A secure addition protocol can be implemented using the homomorphic property
of additive secret sharing [41]. Suppose the set of participants of the multiparty
protocol hold shares of a value x ∈ Fp. The ordered set of shares is denoted
by [x]p, the order denotes which share is owned by which participant. If the
shares are generated by using a degree t polynomial f , then the set of shares
is also denoted as [x; f ]p. As the secret sharing scheme is linear, the following
properties hold for any x, y, α ∈ Fp and degree t polynomials f, g : Fp → Fp

• [x; f ]p + [y; g]p = [x+ y; (f + g)]p

• α[x; f ]p = [αx; f ]p

• [x; f ]p · [y; g]p = [xy; (fg)]p

Here, share addition (+) and share multiplications (·) are defined as follows.
Suppose, [x]p = (x1, x2, · · · , xn) and [y]p = (y1, y2, · · · , yn), then

• [x]p + [y]p = (x1 + y1, x2 + y2, · · · , xn + yn)

• α[x]p = (αx1, αx2, · · · , αxn)

• [x]p · [y]p = (x1y1, x2y2, · · · , xnyn)

Because of the linear homomorphic property of the secret sharing scheme,
the secure addition protocol can be trivially realized where parties generate
[x+y]p by calculating [x]p+[y]p. This is a non interactive protocol with perfect
security.

2.5.2 Secure Multiplication

As described in the previous section, [x]p · [y]p which can be calculated locally
is in fact [xy]p. However, the polynomial corresponding to the resultant share
is a degree 2t polynomial, even though the original polynomial is of degree t.
Genaro, Rabin and Rabin [42] described a secure multiplication protocol to
address this issue.

Suppose, we have sets of shares [x; f ]p and [y; g]p which have been distributed
to a set of players P1, · · · , Pn. As we have discussed before, [xy; (fg)] can be
calculated locally by individual players. We know,

xy = (fg)(0) =

n∑
i=1

λi(fg)(i) mod p.
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Here λi’s (for 1 ≤ i ≤ n) are known Lagrange multipliers,

λi =
∏

1≤k≤n
k 6=i

k

k − i
mod p.

Every player Pi can share their share of xy (i.e. (fg)(i)) using a degree t
polynomial hi. i.e. player Pi can choose a random degree polynomial hi s.t.
hi(0) = (fg)(i) and send hi(j) to every other player Pj . Now every player can
locally compute shares of xy with respect to the degree t polynomial

H(x) =

n∑
i=i

λihi(x).

This holds because,

1. H(0) =
∑n
i=1 λihi(0) =

∑n
i=1 λi(fg)(i) = xy, which implies

(H(1), · · · , H(n)) are valid shares of xy.

2. each share H(i) =
∑
λjhj(i) can be locally computed by player Pi.

Combining secure addition and multiplication we can securely evaluate any
arithmetic circuit.

2.5.3 Bit Decomposition and Bitwise Circuit Evaluation

If we want to compare two numbers, the resultant circuit cannot be written as a
small constant depth arithmetic circuit. If we write the operation as a polyno-
mial, the resultant circuit will have gates proportional to the field size which can
be huge. Suppose, we have access to the bitwise sharings ([a0]p, · · · , [a`−1]p),
([b0]p, · · · , [b`−1]p). Here, ai, bi ∈ {0, 1} ⊂ Fp for i ∈ [0, `−1]. Then the function∑`−1
i=0 ai2

i
?
<
∑`−1
i=0 bi2

i can be securely computed in constant rounds.
In [15], Damg̊ard et al. presented a novel constant round unconditionally

secure bit decomposition protocol. Suppose [a]p are shares of a ∈ Fp. The
bit decomposition protocol takes [a]p as input and outputs ([a0]p, · · · , [a`−1]p),

where a =
∑`−1
i=0 ai2

i. Using this bit decomposition protocol we can securely
evaluate any bitwise circuit e.g. comparison or finding maximum index.

2.6 Summary

We have described the necessary background on consensus, mathematical pre-
liminaries, and secure multiparty computation (SMC) to understand this thesis.
In the SMC section, we have focused primarily on secret sharing-based arith-
metic circuit protocols.
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Chapter 3

A Brief Introduction to the
Blockchain

3.1 Introduction

The term blockchain is often used to refer to current distributed ledger technolo-
gies. Generally speaking, a blockchain is a distributed database that stores a
growing list of transactions or records in the form of a chain of blocks. Each data
block is immutable through cryptographic algorithms to ensure the integrity of
the transactions. In a blockchain, instead of a central authority, a group of nodes
that do not necessarily trust each other, maintain shared ledger states through
some distributed protocol. The blockchain stores an ordered set of transactions
where distributed notes run a consensus protocol to agree on the contents of the
transactions and their order. The information is stored in a sequence of blocks,
and individual blocks can contain one or more transactions. The concept of
the blockchain originated from Satoshi Nakamoto’s Bitcoin whitepaper in 2008
[43] and further open-source deployment in 2009 as a part of Bitcoin software.
The Bitcoin is a decentralized electronic payment system and a cryptocurrency
which uses blockchain as its public ledger for monetary transaction. It uses
the Proof of Work (PoW) based consensus mechanism. The Bitcoin system al-
lows parties to transfer monetary values without any central institution such as
a bank. As a central authority cannot verify the validity of a transaction, the
distributed network of nodes has to reach a consensus on whether or not a trans-
action is valid. In Bitcoin PoW, a group of nodes known as miners solve a hard
computational problem to generate new blocks. Since the inception of bitcoin,
many blockchain initiatives such as Ethereum [6], Ripple [11], and Hyperledger
[7] have received considerable attention in academia as well as in industry. The
current usage of blockchain is not only limited in decentralized cryptocurrency
similar to Bitcoin but also applied in smart contracts, supply chains, Internet
of Things (IoT), Industry 4.0, smart grid, etc. In this chapter, we will give an
overview of blockchain systems and consensus algorithms related to this thesis.

21
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3.2 Blockchain Overview

3.2.1 Definition

The definition of a blockchain can be application-specific, and one can find
several definitions with its evolving features and requirements [44, 45]. Cachin
and Vukolić in [44] defined a blockchain as:

“a distributed database holding a continuously growing list of
records, controlled by multiple entities that may not trust each
other.”

The International Organization for Standards (ISO) is currently working on
the standards for blockchain terminologies in ISO/TC 307. They have infor-
mally described blockchain in [46] as:

“a shared, immutable ledger that can record transactions across dif-
ferent industries, thus enhancing transparency and reducing trans-
action costs. It is a digital platform that records and verifies trans-
actions in a transparent and secure way, removing the need for mid-
dlemen and increasing trust through its highly transparent nature.”

In 2018, NIST released a technical overview of blockchain and informally
defined it as [45]:

“Blockchains are distributed digital ledgers of cryptographically
signed transactions that are grouped into blocks. Each block is cryp-
tographically linked to the previous one (making it tamper evident)
after validation and undergoing a consensus decision. As new blocks
are added, older blocks become more difficult to modify (creating
tamper resistance). New blocks are replicated across copies of the
ledger within the network, and any conflicts are resolved automati-
cally using established rules.”

3.2.2 Key Concepts

We discuss some key concepts in blockchain to get a better understanding.

Blocks

A block (also known as a ledger) is a data structure that contains a header
and a list of transactions in the blockchain. Every block is identifiable with its
hash value in the block header. Each block has a hash pointer connected to the
previous block, thus creating a blockchain (see Fig. 3.1). A Hash pointer points
to the address where the data is stored and includes the hash of that data. The
hash pointers link data blocks together, starting from the genesis block to make
blockchain tamper-resistant. If an adversary wants to tamper a specific block
in the blockchain, he needs to change every hash pointer of all preceding blocks
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Figure 3.1: Blocks in Blockchain

leading up to the genesis block. Generally, a block header has five attributes,
such as block hash value, previous block hash value, nonce, timestamp, and
Merkle root. The nonce is a random value found during the mining process in
PoW based blockchains. Finding out an appropriate nonce that creates a valid
block in PoW blockchain is a hard problem. Miners use the majority of their
computation power to find such nonces. The set of transactions in a block uses
Merkle tree data structure representation. It is a binary hash tree, where at
a lower level, every two transaction hashes are grouped into one to make new
parent hash and finally converges to the Merkle root hash at the top of the tree.
Merkle tree helps to preserve the transaction orders in a block, and one can
verify a transaction in a block against the root efficiently in logarithmic time.

Transactions

Transactions are the atomic elements inside a block, particularly in
cryptocurrency-based blockchains. A transaction is a transfer of some monetary
tokens or coins which is broadcasted and collected in a block. A user needs to
sign a transaction with its private key before broadcasting to the network. The
transactions are irreversible once they get confirmed in the blockchain. Anyone
can see every transaction details inside a block as they are unencrypted. In
blockchain, there are two types of transaction models: i) unspent transaction
output (UTXO), and ii) account-based transaction. Bitcoin and cryptocurren-
cies based on Bitcoin use UTXO transaction model. The key elements of a
UTXO transaction are a set of inputs, outputs, and the transaction hash known
as transaction identifier. In UTXO, the entire history of a coin transaction is
recorded with unspent outputs where each output has an owner and a value.
The total monetary value in all inputs must be greater or equal, then the to-
tal value of all outputs to produce a valid transaction. Cryptocurrencies like
Ripple and Ethereum use account-based transaction model. It is much simpler
where all transactions are recorded based on sender accounts. The blockchain
records the changes in the user account balance due to a transaction rather than
recording the history of a coin movement.
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Nodes

A blockchain operates on top of a peer to peer (P2P) network where nodes can
have different roles while running a specific blockchain protocol. For example,
Bitcoin supports three types of nodes such as full node, miners, and lightweight
clients [47]. In general, the whole blockchain is shared across distributed nodes,
and every node can have a replicated copy of the blockchain. A full node in the
Bitcoin network maintains a complete copy of the blockchain. Full nodes are
dedicated to check for new incoming transactions and blocks in the network and
forward them to other nodes. They can also validate the transactions inside a
new block. The miners are full nodes who are additionally responsible for doing
PoW computation to add a new block on top of the existing Bitcoin blockchain.
Finally, the lightweight clients use Simple Payment Verification (SPV) protocol
to verify a transaction included in the blockchain. These nodes only require to
store the block header rather than maintaining the full blockchain. As Ripple
blockchain does not employ PoW, it does not have miner nodes like Bitcoin or
Ethereum. Instead, a set of nodes called validators (also known as validating
nodes) take part in the consensus process to validate and add new blocks in the
blockchain. Other than the nodes, a network user is a person or an entity who
uses the blockchain network such as making or receiving a transaction.

Digital Signatures

Digital signatures play an important role in blockchain while sending a trans-
action or a block. Transactions or blocks are hashed and digitally signed by the
sender before broadcasting to the other nodes for data integrity and authen-
ticity. The digital signature algorithms have three steps: i) key generation, ii)
signing, and iii) verification. In the key generation, anyone can create a private
key and a public key. In signing, the sender signs data such as transaction
with its private key and broadcasts the transaction with the signature to other
nodes. In verification, other nodes can verify the authenticity of the transaction
using the signature, the transaction, and the public key of the sender. In a cen-
tralized system, a Public Key Infrastructure (PKI) is required to bind the user
identity with its public key. Cryptocurrency-based blockchains (e.g., Bitcoin,
Ripple, Ethereum) use public keys as pseudonyms instead of PKI. Blockchain
users can generate as many key pairs by themselves, and the hash of the public
key is known as the user address. Some blockchain protocols include some fees
to create a new address to prevent Sybil attacks. In Sybil attacks, the attack-
ers create a large amount of pseudonyms to hamper reputation of a network.
Most of the blockchain protocols use elliptic curve digital signature algorithm
(ECDSA) over the secp256k1 curve, which provides 128-bit security.

Blockchain Consensus Mechanism

In a centralized banking system, a trusted central authority controls the validity
of a specific transaction. The central authority has access to control privileges
and can take the necessary measures against attacks such as double-spending.
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A decentralized blockchain replaces these centralized trust systems with a con-
sensus mechanism. When a new transaction seeks validation, each validating
nodes can add or reject that transaction in its candidate block locally on top
of the global ledger. In the consensus phase, the nodes communicate with each
other, and the majority reach an agreement on the next candidate block to be
added to the global blockchain. As some participant nodes can be byzantine and
behave arbitrarily with malicious intent, blockchain consensus protocols need to
be byzantine fault-tolerant. In general, blockchain consensus protocols assume
eventual synchrony time model [44]. The blockchain protocols typically use a
broadcast channel where honest nodes receive the same set of messages with the
same order. As pointed out by Cachin et al. [44], the blockchain form of con-
sensus is similar to atomic broadcast or total order broadcast in crash tolerant
distributed computing. Note that the blockchain consensus is not only agree-
ing on the total order and it involves a validation step for BFT consensus. In
blockchain, consensus protocols require to follow safety and liveness properties
[44, 48, 49].

• Safety: The safety property (or consistency or common prefix [49]) en-
sures that if a honest node accepts or rejects any transaction, then every
other honest nodes will eventually decide for the same transaction.

• Liveness: The liveness property ensures that all honest nodes are guar-
anteed to decide for a value and terminate to reach a consensus. This
assures that the blockchain grows at a steady rate.

3.2.3 A Simple Blockchain Model: How does it Work?

Current blockchain technologies include many functionalities of the Bitcoin net-
work. Some common functionalities are transaction integrity of the ledger, pre-
vention of double-spending, anonymity of user identity, etc. The general work-
flow in a blockchain is depicted in Figure 3.2. Suppose Alice wants to send some
bitcoin to Bob. So Alice creates a bitcoin transaction transferring the funds to
Bob, digitally signs it with her private key and broadcasts it to the network.
Next step, the transaction has to be validated by the validating nodes (miners
in case of Bitcoin) to check different requirement for a correct transaction (e.g.,
if Alice has sufficient funds). All validating nodes collect all received transac-
tions in a block and run a consensus protocol (PoW for Bitcoin) for network
approval. If the majority of the miners reach a consensus that the transactions
in a block are valid, the block is appended to the blockchain. After the block
containing Alice’s transaction added to the blockchain, the transition from Alice
to Bob become successful. The current blockchain technologies include differ-
ent cryptographic techniques such as hashchain, Merkle tree, digital signatures,
pseudonyms, consensus protocols to prevent double-spending attacks and create
an immutable ledger.
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Figure 3.2: How does a Blockchain work

3.2.4 Blockchain Classification

Blockchain can be classified depending on its deployment, access rights, and
verification [44]:

Permissionless Blockchain

Permissionless or public blockchain is open for anyone. Anyone can run a node
to maintain the blockchain. Anyone can write to the shared state and add a
new transaction by paying the transaction fee. Anyone can join the consensus
protocol to validate correct blocks and become a miner. Some examples of
permissionless blockchain are Bitcoin and Ethereum.

Permissioned Blockchain

Permissioned blockchain can be further divided into a consortium and a pri-
vate. In consortium blockchain, only a pre-selected group of participants within
a consortium can write to the blockchain. This restricted write permission gives
that group of participants to run and influence the consensus protocol. They
can also control who can issue a transaction. On the other hand, anyone can
read the written transactions in the blockchain. A private blockchain is similar
to consortium blockchain where the write permission is limited to a single par-
ticipant or single organization. The read permission can be open to the public
or could be limited to a subset of the blockchain users. One use case can be
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data management and information sharing inside an organization. Hyperledger
network [7] is an example of a permissioned blockchain.

3.3 Fork in Blockchain

A blockchain fork is a situation where two or more blocks have the same distance
from the genesis block. Suppose, the block height hb is the distance between the
genesis block g and the block b such that hg = 0. The blockchain head is a
block with maximum block height h = hhead. Furthermore, let us define Bh
being the set of blocks with a block height h. Then a blockchain fork happens
when |Bhead| ≥ 2 [50]. In this situation, the nodes in the network can not
reach an agreement that which block is the current blockchain head; thus, one
chain becomes two or multiple chains. In other words, a fork happens when
two or numerous different blocks get clear majority votes from the network
participants to get accepted in the blockchain. A fork is always undesirable
in any blockchain system as it could lead to a double-spending attack, create
confusion in the network or reduce network performance, etc. For instance,
Alice has only two bitcoins, but if the blockchain forked, she might be able to
perform two bitcoin transactions to Bob and once again to Eve. In PoW based
blockchains, a fork happens when two or more miners find the solution for a
block around the same time. In other consensus-based blockchains, it is possible
when two or more different blocks get clear majority votes. We will discuss the
forks in the Ripple payment system in chapter 5. Bitcoin resolves forks in its
blockchain by longest chain rule. It means the network will eventually select
the chain with the most work and drop the others. Note that some forks can be
intentionally and permanently introduced due to software upgrades or protocol
changes. However, these type of forks are not relevant to our topic of discussion.

3.4 Blockchain Consensus Algorithms

We review different consensus algorithms in blockchain in focus on security and
privacy.

3.4.1 Proof of Work (PoW)

Bitcoin and Ethereum employ PoW consensus each node has to perform some
amount of work to add a block to the blockchain. The PoW systems use some
mathematical problem, for which it is difficult to find a solution, but it is easy
to verify valid solutions. To get a solution to the challenge, a miner node has
to perform a considerable amount of computational work. The first miner finds
the answer gets to add its proposed block to the blockchain and receive some
reward. As verifying the correctness is easy, other nodes can agree on a correct
block. The steps of PoW consensus in Bitcoin can be simplified as follows:
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1. Nodes listen for the new transactions on the network, validate its correct-
ness, and accumulate new transactions in a block.

2. Each miner node works on the PoW puzzle for its block. The puzzle
includes finding a nonce such that H(hprev||htx||nonce) < target, where
H is a cryptographic hash function (SHA-256 for Bitcoin), hprev is hash of
the previous block, htx is the Markle root of its proposed block including
new transactions and target is a 256 bit number which is publicly known.

3. The first miner who solves the puzzle broadcasts its block in the network.

4. Other nodes verify the correctness of the solution, accept the block, and
start working on the next block. The miner who found the correct solution
receive its mining fee.

The PoW difficulty depends on the target value. The puzzle becomes harder
when target value is reduced, resulting in smaller number of possible solutions.
The Bitcoin network updates the target value in every 2016 blocks to make
the puzzle more difficult. Any node can take part in PoW based consensus by
starting mining; thus, it is suitable for permissionless blockchain. The miners
together can make a corporate network (known as mining pool) to generate
more hashing power thus increases the probability of finding a new block. The
PoW based systems are susceptible to 51% to attack. This attack is possible
when colluding attackers control more than 51% of the computing power in the
network. PoW based consensus can support a large number of nodes; however,
the transaction confirmation is slow. On average, a Bitcoin transaction takes
ten minutes to get confirmed in its blockchain.

3.4.2 PBFT

Byzantine Fault Tolerant (BFT) based consensus algorithms aim to solve the
consensus problem with a voting process in the presence of Byzantine nodes.
Castro and Liskov showed that BFT could be practical with Practical Byzantine
Fault Tolerance (PBFT) protocol in [4]. The PBFT protocol assumes that
the number of Byzantine nodes t < n

3 where n is the number of total nodes
in the network. The protocol is leader-based, and only the leader node (also
known as primary replica) is responsible for committing a new block with the
ordered transaction. PBFT based protocols require every node to know all other
nodes participating in the consensus protocol. The primary node is selected by
the other participant nodes (also known as secondary replica). Each round of
PBFT has a view which is a configuration of replicas with a primary. Secondary
replicas can collectively replace the primary node with a secondary node by view-
change voting procedure if the first shows some Byzantine behavior. The PBFT
protocol works in asynchronous network assuming that messages between non-
faulty nodes arrive within fixed but unknown time delay. This network model
is known as eventual synchrony and known to be a reasonable assumption for
blockchain implementations [44]. The protocol can be described in three phases:
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pre-prepare, prepare and commit. We can briefly describe PBFT in blockchain
scenario:

1. Client sends a transaction request to the primary node.

2. In pre-prepare, the primary node assigns the transaction request with a
unique sequence number and broadcasts it to secondary replicas.

3. In prepare, each non-faulty replica agree on a valid transaction (e.g., check-
ing the signature, transaction hash) with the corresponding sequence num-
ber.

4. In the commit phase, each replica sends its commit message to other
replicas for reaching consensus, executes the transaction and replies to
the client.

5. Clients receives replies from the replicas and t + 1 identical acknowledg-
ments confirm the transaction validation.

Some variants of PBFT algorithm is currently used in Hyperledger Fabric [7],
BFT-SMaRt [51] and Tendermint [52] consensus protocol. On scalability per-
spective, PoW based blockchain protocols suffer from high latency for a trans-
action to get validated, where PBFT based protocols can support low latency
in transaction validation. On the other hand, PBFT based protocols behave
poorly with a higher number of nodes (currently maximum 20 nodes) thus more
applicable in permissioned blockchain.

3.4.3 Consensus with Flexible Trust

In the last two sections, we discussed PoW based consensus, which is suitable
for permissionless blockchain and PBFT based consensus being used in permis-
sioned blockchain. The credit networks like Ripple [5] and its offspring Steller
[53] stand in between, and their blockchains operate in a semi-permissioned
manner. Both blockchains are permissionless as any node can join the consen-
sus protocol, but each node must trust a consortium of nodes, thus somewhat
similar to permissioned blockchains. This trust assumption is known as flexible
or subjective or asymmetric trust i.e. each node must trust a group of nodes of
its choice to run the consensus protocol [54].

The Ripple blockchain (known as XRP ledger) consensus is a voting based
protocol performed by so-called validating nodes or validators in the network.
Any node is open to join the network and run as a validator. Each validator
requires to define a Unique Node List (UNL). Every validator trusts its own
UNL member that they would not collude to make malicious attempts such as
validate an invalid transaction. However, Ripple validators are not free to make
their trust assumption as Ripple network provides “a default and recommended
list” in every UNL. Thus it caused disputes over its decentralization [5]. The
consensus protocol in Ripple assumes the number of byzantine nodes t < n

5
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whereas traditional PBFT can tolerate upto n
3 , where n is the number of con-

sensus participants. We will discuss Ripple’s consensus protocol in detail and
give our security analysis in chapter 5.

The Stellar blockchain has evolved independently with similar design prin-
ciple like Ripple. Similar to Ripple, it is also a credit network for cross border
transactions. The Steller Consensus Procotol (SCP) [55] introduces Federated
Byzantine Quorum Systems (FBQS), where any node is open to join the con-
sensus process and can define its own trusted set of nodes known as a Quorum
Slice. Different quorum slices may overlap and make a Quorum which is the
sufficient number of nodes to reach consensus. For example, if a PBFT system
has total nodes n = 3t + 1 with t byzantine nodes, the Quorum consists with
2t+ 1 nodes. Recently, Kim et al. [56] (Figure 2) showed current SCP deploy-
ment might fail in a sequence in the absence of two particular nodes controlled
by Stellar foundation.

This idea type “UNL” or “Quorom Slice” in consensus protocols can be
traced back to Byzantine quorum systems [57] to achieve BFT. However, Byzan-
tine quorum systems consider symmetric trust assumption, whereas the trust
assumption in Ripple or Steller is asymmetric. Recently, Cachin and Tackmann
in [54] have formalized a model of Byzantine quorum systems with asymmetric
trust assumption.

3.4.4 Other Alternatives

Some other alternatives have emerged in parallel for blockchain consensus mech-
anism. As PoW mining is costly in terms of energy usage, proof of stake (PoS)
came as a substitution where computational power is replaced with the “stake”
in the network. The idea is that the more capital a node has invested in the
network, it is more likely that the node will want the network to succeed rather
than attacking the system. In PoS, the probability of adding the block in the
blockchain by a node is proportional to the relative stake of that node in the
network. PoS can be incorporated with PoW as well as BFT based protocols.

In Algorand blockchain [58], the authors proposed a PoS Byzantine agree-
ment protocol with participant replacement mechanism. Ethereum’s Casper [59]
is another permissionless blockchain implementation with PoS consensus.

Proof of Elapsed Time (PoET) is a consensus algorithm proposed by Intel
where the computational puzzle in PoW systems get replaced by trusted execu-
tion environment (TEE) such as Intel’s Software Guard Extension (SGX). The
consensus mechanism is leader based, and leader must be randomly chosen to
add a new block. Each node has to wait a random time interval and node with
the shortest waiting time will be the leader to finalize a block.

Furthermore, SGX can verify the proof that waiting time is indeed random,
and the winner has completed that time duration. Currently, Hyperledger Saw-
tooth platform deployed PoET in its permissionless and permissioned version.
The security of PoET depends on the trusted hardware modules as an attacker
nodes might perform rollback attacks and key extraction [44].
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3.5 Summary

We have discussed the necessary background on blockchain, its key components,
and particularly different types of consensus mechanism. We outlined how con-
sensus in Ripple or Stellar differ from PoW and standard BFT based consensus.
In the next chapters, we will talk about the Ripple credit network, its consensus
algorithm, and our security analysis.
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Chapter 4

Ripple Credit Network

4.1 Introduction

Ripple is a distributed payment system and global remittance service based on
credit networks [11]. The initial idea behind Ripple network started with I Owe
You (IOU). It was drafted by Ryan Fugger back in 2004 [60]. Since then Ripple
payment system [61] has evolved independently of Bitcoin and gained consid-
erable popularity over the years after its public inception in 2013. Originally,
Ripple has emerged as a competitor of Bitcoin with much faster transaction
validation speed (average 5 seconds). In recent times, the Ripple network has
flourished more as an alternative platform for traditional cross border payment
systems (e.g., SWIFT). As a cross border transaction between two banks in-
volves hefty processing fees and considerable time, the Ripple network promises
to reduce both significantly. Over 200 banks and financial institutions (e.g.,
CBW Bank, Royal Bank of Canada, Santander) have already adopted the Rip-
ple network to improve its payment processing [62]. For example, Spanish bank
the Santander group has estimated using Ripple could save them 20 billion US
dollars annually [63].

Ripple’s built-in currency XRP is consistently among the top three cryp-
tocurrencies by market capital along with Bitcoin and Ethereum [64]. The
XRP does not involve any mining like Bitcoin, and initially, a total of 100 bil-
lion XRP units were created to start the system. In the beginning, Ripple
founders held 20% of those units, Ripple Labs retained 25%, and the remaining
55% was planned to promote the growth of the network. It is by far, one of the
largest holdbacks in any cryptocurrencies; however, it did not stop Ripple to
attract a large pool of users. Currently, Ripple Labs releases that 55% of total
XRP for public trading into a series of escrows [65]. For instance, the XRP
circulating supply is increased from 27 billion units in 2013 to 43 billion units
in 2019 [64]. On January 4th, 2018, XRP market capita momentarily surpassed
148 billion US dollars and recorded each XRP unit worth 3.84 US dollars [66].
At the time of writing, Ripple network claims to have a total network value
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of approximately 26 billion US dollars over 1.8 million accounts [67, 68]. This
has been a significant increase in terms of network growth since the time of our
study in 2015 [16] when Ripple had a market value of 960 million US dollars
with little above 150,000 accounts.

One can relate Ripple’s transaction mechanism to medieval Hawala system.
At the core, Ripple’s transaction model is built upon a network of pairwise trust
among users in terms of credits [69]. Ripple payment system enables the transfer
of traditional fiat currency (e.g., USD, Euro) together with cryptocurrencies
(e.g., BTC, XRP) through IOU credit paths in user-defined currency. An IOU
transaction is only possible if there exists a credit path between two users.
In 2014, the International Ripple Business Association deployed several Ripple
gateways and market makers [70] around the world to make Ripple credit graph
complete. The Ripple ledger (also known as XRP ledger) is an immutable
public blockchain which keeps track of the transactions, account information,
credit links since the genesis block. The Ripple consensus protocol [5] supports
its blockchain and helps participants to agree on a new block containing a set of
transactions. However, Ripple’s consensus protocol is non-standard and differs
from traditional PBFT consensus [4], which makes its security an open problem.

The presented work in this chapter and the next chapter is based on the
January 2015 version of Ripple protocol and previously published description
in [16]. In this chapter, we give an overview of the Ripple system and related
works on its security and privacy.

4.2 Overview of Ripple

In the following, we introduce and give details of the Ripple credit network and
its blockchain components.

4.2.1 Key Roles in Ripple Network

The Ripple code is available for the public and open-source so that anyone can
deploy a Ripple instance. Ripple nodes can take a few different roles in the
system as follows:

User

A user in the network which runs the Ripple client application to make/receive
payments. A user has a public-private key pair for signing transactions. Ripple
users are referenced with its public key address as pseudonyms. If a user wants
to make a payment to another user, she can cryptographically sign the transfer
of money in XRP or other currency. Ripple has no way to enforce non-XRP
payments, and only records the amounts owed by one entity to the other.
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Validating server

The validating servers (also knowns as validators) execute Ripple consensus
protocol to check and validate all transactions in the system. Other than vali-
dation, nodes running rippled server software can receive and relay messages and
running back-end applications, etc. Each validating server has a public-private
key pair for transaction validation.

Gateway

A gateway is a reputed user who helps to create trust links when a new user
joins the network. For instance, a new user creates a new account wallet with
her public-private key pair upon registering in the network. However, it is not
enough to use the system as she needs to have some trust links with other users
and some account balances (known as bootstrapping problem). Ripple addresses
this problem by deploying several gateways in the network. These gateways
are highly connected and aim to make Ripple credit graph complete. Therefore
a new user can trust a gateway to make a credit link and start sending IOU
transactions to other parties.

Market Maker

The market makers act as the trade enablers for cross-currency transactions in
the system. They are equivalent to currency exchange services in the physical
world. For instance, a market maker receives payment in some specific currency
through one of its credit links. Then she can initiate an exchange in different
currency through another credit link.

4.2.2 Credit Network

A credit network [69, 71] can be presented with two weighted directed graphs
G(V,E1) and G(V,E2) sharing same set of vertices V . The set of vertices V are
the user nodes in the network. The set of edges E1 presents pairwise account
balances between users. More specifically, a edge weight oi,j ∈ E1 denotes the
IOU obligations that the user i has to user j. In the other graph, the set of
edges E2 shows pairwise credit limit between users. An edge cj,i ∈ E2 represents
the credit line (or trust line) which quantifies the amount of credit user j has
trusted to give to user i. Hence, an direct IOU payment worth of oi,j units from
user i to j is possible if oi,j ≤ cj,i. Note that i and j do not need to be neighbors
to send IOU payments as long there exists a path with sufficient credit limit.

4.2.3 How does Ripple Work?

The basic idea of Ripple is that of a public billboard containing IOUs. Whenever
a sender Alice (or A) wants to issue a payment to a receiver Bob (or B), she
puts up a signed message with the relevant transaction data to the billboard.
This way, the billboard keeps track of all the transactions in the community.
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In the case of Ripple, the “billboard” is a distributed database known as ledger
or blockchain that is managed by a peer to peer (P2P)network. Thus, a new
IOU is not sent to the receiver directly, but to the Ripple P2P network where
each peer keeps its own copy of the ledger. If a clear majority of the servers
agrees that the IOU indeed constitutes a valid payment, then it becomes a valid
part of the ledger. Since Ripple itself has no power to enforce actual payments
(it only keeps track of payment promises), the system relies on transitive trust
from one user to another.

Figure 4.1: (Intended Payment) Alice wants to pay 100.0 $ to Bob. (Payment
Path) Since Bob does not accept IOUs directly from Alice, she has to get help
from intermediaries, who in turn may charge a fee. (Actual Messages) The real
IOU messages are not sent between the involved parties directly, but to the
server network.

An IOU payment from A to B is only possible if B is willing to accept an
IOU from A, i.e., B trusts A and give enough credit to A. Therefore, A can
only make a correct payment to B if the payment value is less than equal to the
credit balance allocated by B to A. To make such type of transaction model
work, both users need to know each other beforehand, or the amount should be
small. However, it requires some intermediary such as a market maker to process
a typical payment in the Ripple system. Therefore, Ripple credit graph must
have good connectivity and liquidity to perform payments between arbitrary
users [71].
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Figure 4.1 illustrates how a typical IOU payment in Ripple credit network
looks. The actual payment is procured by sending a sequence of payments
along a payment path, where intermediaries may receive a fee for their service.
The requirement to make a payment successful is that enough credit must be
available throughout the payment path. To start using the system, A can deposit
some amount to a market U1 to generate a trust line between U1 to A. For
instance, Alice (A) intends to make a payment of 100 US dollars to Bob (B).
As A and B are not neighbors, the payment is routed through the path A →
U1 → U2 → U4 → B. This payment is possible as each credit line in the path
is larger than the payment amount for each atomic transactions. Note that
we could not route through U3 because of insufficient credit limit given to U1
from U3. Nevertheless, it is possible to distribute the amount such that 90 US
dollars through U1 → U3 → B and the rest through U1 → U2 → U4 → B. In
this case, A needs to spend more as U3 requires an additional fee. As market
makers have different fees, Ripple employs a path-finding algorithm for the most
suitable path from source to destination.

Also, note that there is no payment message directly from A to B. Instead,
the atomic unit of a Ripple transaction is the single payment message sent from
the users to the network. Additionally, Ripple’s currency XRP can be used as
a bridge currency in case of currency pairs that are traded rarely.

4.2.4 Ripple Ledger

Ripple ledger or XRP Ledger is the public blockchain of the Ripple network.
This distributed ledger keeps track of all the transactions made in the system.
A new ledger (or a block) is created in every few seconds containing a set
of transactions agreed by the majority of validating servers. The agreement
process is achieved through Ripple consensus protocol [5] which is executed
among validating servers. The information stored in a Ripple ledger L can be
categorized as follows: (i) a set of transactions, (ii) account-related information
such as account settings, total balance, trust lines, (ii) a timestamp, (iv) a ledger
number, and (v) a status bit which indicates whether the ledger is validated or
not. A validated ledger with most recent timestamp is known as last closed
ledger. If the status bit is 0, we call it open ledger, which reflects the current
operational ledger and not it yet confirmed by the network.

4.2.5 Ripple Transactions

At the time of writing [16], Ripple supported six types of transactions [72] as
follows:

Payment: This is the most regular type of transactions that allows a user to
send funds from one account to another.

AccountSet: This transaction grants a user a set options relevant for one’s
account. Note that it is possible to cancel a transaction with the same
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SequenceNumber by an AccountSet transaction given that the transaction
has not been validated in a ledger yet.

SetRegularKey: This transaction permits a user to change/set its previously
used key to sign future transactions.

OfferCreate: This transaction initiates an intent to exchange currencies.

OfferCancel: This transaction withdraws an offer from the ledger.

TrustSet: This transaction allows to change/set a trust link between two user
accounts.

As presented in Table 4.1, all six types of transactions contain some standard
fields. When a new user opens an account in Ripple, she would require to issue
a payment of minimum 20 XRP for account activation. After this transaction
is validated in the global ledger, that new account will be included in the global
ledger.

4.2.6 Ripple Consensus Process

Ripple network includes new blocks in its blockchain known Ripple Ledger by a
round-based consensus mechanism. The Ripple consensus protocol is carried out
by a set of validating servers. After running the consensus protocol, they decide
on which set of transactions to add to the Ripple ledger. First, a transaction
operation is initiated by a user when she signs it with her private key. The
transaction is then forwarded to validating servers and seeks validation. The
validating servers, on the other hand, are responsible for checking the correctness
of the transactions received from different users. The correctness of a transaction
depends on the current state of the ledger and consensus rules. Due to the
asynchronous nature of the network, validating servers may receive a different
set of transactions from each other. Finally, the goal of the consensus is to reach
an agreement on the set of transactions.

In a round-based process, each validating server first broadcasts its own set
of proposed transactions known as candidate set to other peers. Among many
unconfirmed candidate sets, the final validation comes through a round-based
voting process. In the first iteration, the voting requirement is 50% of the
validating servers and later on increased to 60%, 70%, and 80% in each round.
When a candidate set receives 80% votes, validating servers add the candidate
set in the global ledger. Note that any transaction that has been initiated
during the consensus rounds but did not appear in the ledger is discarded and
considered as invalid by the users.

Each validating server maintains a list of servers known as Unique node list
(UNL) including herself that she collectively trust or subjectively trust. More
specifically, the collective trust symbolizes that a server trusts a set of servers
who will not “collude to defraud” [5]. Therefore, servers only trust the votes
issued by other servers in her UNL.
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4.3 Related Works

To the best of our knowledge, our work in 2015 [16] was the first analysis of
the Ripple payment system. In [16], We analyzed the Ripple ledger consensus
protocol and found that the parameters chosen by Ripple designers did not
prevent a fork in the network. We will discuss our results on Ripple ledger
consensus protocol from [16] in the next chapter. Furthermore, an analysis of
usage patterns and trade dynamics of Ripple ledger till 2015 is given in [16].
The first observation was that the number of transactions in the Ripple platform
had increased from late 2014. However, most transactions (> 70%) relate to
OfferCreate and OfferCancel rather than an actual XRP transaction. It showed
that Ripple was used more as a platform for currency exchange instead of actual
payments. Second, the majority of the accounts contain a small amount of XRP
and barely performed transactions. Third, most ledger indeed closes within a
few seconds where a few could take up to 30-40 sec maximum. Interested readers
are recommended to read [16] for in-detailed results in usage patterns and trade
dynamics of the Ripple network.

There exist some works to improve privacy in Ripple like credit networks in
[71, 73, 74, 75, 76, 77, 78]. In [71], Moreno-Sanchez et al. presented a provably
secure privacy-preserving protocol for credit networks. Their work introduces
the different privacy notions ( e.g., value privacy, sender/receiver privacy) for
credit networks. Furthermore, the authors in [71] enforce privacy in transactions
in a centralized manner with trusted hardware and oblivious RAM. Malavolta
et al. in [73] proposed a distributed privacy-preserving protocol for credit net-
works called SlientWhispers which uses SMC in the universal composability
(UC) framework [30, 79].

On Ripple transaction anonymity, authors in [78] proposed two types of
heuristics based on the Ripple network graph to perform deanonymization at-
tacks. The first heuristic could link Ripple accounts with Bitcoin addresses,
whereas the second one identifies co-related Ripple accounts by the same user.

Luzio et al. in [75] have analyzed the statistics of the first three years
of Ripple network usage (till September 2015). They studied the consensus
agreement data and behavior of Ripple network participants and concluded
most of the blocks indeed are validated by a small number of validating servers
hosted by Ripple Labs. They also showed a new deanonymization approach to
link users identities from Ripple transaction fingerprints. In PathSuffle paper
[80], authors proposed a mixing protocol for the Ripple network to anonymize
path-based transactions. In order to improve privacy and routing in credit
settlement in Ripple, Roos et al. in [74] designed a privacy-preserving routing
algorithm SpeedyMurmurs which achieves efficiency improvement by a factor of
two for path-based transactions in Ripple network.

Moreno-Sanchez et al. in [77] analyzed statistics of Ripple network up to
August 2017. It showed that the number of Ripple accounts and credit link
have grown substantially in 2017 and accessed the health of the network. They
estimated 13M USD are at risk due to the inappropriate setting of the flag
known as no-ripple on the credit links. Furthermore, they observed more than
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112,000 accounts are prone to isolation from main Ripple network, and its credit
are at risk due to insufficient gateway connections.

The Ripple consensus protocol [5] assumes Byzantine accountability, which
enforces a limitation on byzantine nodes such that sending different messages
to different nodes is not permitted. Recently in 2018, Chase and MacBrough
[81] suggested this assumption is not practical due to network partitioning and
asynchrony. We will discuss the results of [81] in the next chapter.

4.4 Summary

We gave an overview of Ripple credit network and its blockchain specifications.
Additionally, we present the related works in the security and privacy aspects of
Ripple. We detail and analyze Ripple consensus protocol in the next chapter.
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Field Internal Type Description
Account Account The unique address of the account

that initiated the transaction.
AccountTxnID Hash256 (Optional) Hash value identifying

another transaction. This field allows
the chaining of two transactions
together so that a current transaction
is only valid unless the previous one
(by Sequence Number) is also valid
and matches the hash.

Fee Amount (Required) Integer amount of XRP,
in drops, to be destroyed as a fee for
distributing this transaction to the
network.

Flags UInt32 (Optional) Set of bit-flags for this
transaction.

LastLedgerSeq UInt32 (Optional) Highest ledger sequence
number that a transaction can appear
in.

Memos Array (Optional) Additional information
used to identify this transaction.

Sequence UInt32 (Required) A transaction is only valid
if the sequence number is exactly 1
greater than the last-validated
transaction from the same account.

SigningPubKey PubKey (Required) ASCII representation of
the public key that corresponds to
the private key used to sign this
transaction.

SourceTag UInt32 (Optional) Arbitrary integer used to
identify the reason for this payment.

TransactionType UInt16 The type of transaction.
TxnSignature VariableLength (Required) Transaction signature.

Table 4.1: Standard fields present in all Ripple transaction types [16]
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Chapter 5

Analysis of Ripple’s
Consensus Protocol

5.1 Introduction

In this chapter, we describe Ripple’s consensus protocol and give our analysis
on its security. Primarily, our contribution is on the safety property of Ripple’s
consensus protocol, which is previously published in [16]. The following Ripple
protocol description is based on Ripple client (version 0.2.48-2), Rippled server
(version 0.23.0), original Ripple white paper [5], the Ripple Wiki [82], and our
publication in [16]. After presenting our analysis on safety and fork in Ripple
blockchain, we will also discuss some improvement of our results by Chase and
MacBrough [81].

5.2 Ripple Workflow

The Ripple client requires an email id to create the Ripple wallet, and the user
gets a public-private key pair. The account only gets activated, i.e., network
stores its public account address (derived from public key) in the blockchain,
when it receives more than some fixed amount of funds from another existing
Ripple account. The ripple network consists of servers that run a P2P server
software known as Rippled. If a user wants to make some payment to someone,
he creates a transaction and signs it with his secret key. Then, the client submits
the transaction to a trusted (locally operated) Ripple server so the user can
be sure the transaction is submitted in the network. Now, this provisional
transaction will be forwarded by different servers throughout the network in a
P2P fashion. Upon receiving the transaction, servers will check if it is well-
formed, and if the transaction is malformed, it will be rejected instantly. If the
transaction is well-formed, servers will run a consensus protocol to include it to
the ledger permanently.

43
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5.2.1 Protocol Components

Any entity that runs the Ripple client application is a participant in the Ripple
network. The participant could be a gateway, web wallet, or financial bank, etc.
A participant has a public-private key pair for signing transactions.

Any server in the network runs the Rippled server software. Servers are
used for running consensus protocol, receive and relay messages, running back-
end applications, etc. Our main focus is on validating servers, which take
part in consensus protocol in addition to performing other server roles. It has
a separate public-private key pair for validation. We use the notation v to refer
to a validating server. Note that the validating servers might be referred to as
just servers or nodes in this chapter description.

The network has a shared ledger which records all information about trans-
actions: the states of account balances, account details, different offers, times-
tamp, etc. The ledger gets continuously updated and stores all transactions,
which passes the consensus phase. A five-element tuple can represent a Ripple
ledger L:

L = (τ, λ, γ, η, α),

where τ is a set of transactions; λ denotes set of different information like account
settings, balances, trust information; γ is the timestamp; η is the ledger number,
and α ∈ {0, 1} signifies if the ledger L is validated or not. If α is 1, we call it a
validated ledger (published). A validated ledger with the most recent timestamp
is known as last closed ledger. If α is 0, we call it open ledger, which reflects
the current operational ledger and not it yet confirmed by the network.

Each validating server maintains a set of trusted servers known as the
unique node list (UNL), including itself. Note that it not necessary that
every server is connected with another server in the network. We denote, UNL
of server v as UNLv . Only the votes from the members of UNLv is relevant
when v checks for consensus of a transaction. During the consensus protocol,
any v can broadcast a proposal i.e., a set of transactions that v proposes to be
included in the public ledger L. Another validating server u considers a proposal
from v only if v ∈ UNLu .

5.2.2 Sending a Payment in the Network

Similar to Bitcoin, Ripple uses 256 bit ECDSA keys and the Secp256k1 elliptic
curve for its digital signature scheme. In the following, by H and Sign, we
denote a hash function and a signature algorithm, respectively. Let X be an
arbitrary user in the network. Upon joining the Ripple network, X generates
Ripple wallet with a public key pkX and a corresponding secret key skX . The
public key is hashed to form the pseudonymous identity of X, namely IDX

(= H(pkX)) and stored in the distributed ledger L (in λ). Consider a sender A
and a receiver B. Then an IOU is issued as follows:
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1. A composes a transaction message:

t = (IDA, IDB , trans data, seq nr , pkA),

where trans data includes transaction data like payment amount and rel-
evant fees, and seq nr is a A’s current IOU sequence number.

2. A signs hash of the message:

σt = Sign(skA, H(t)).

3. A submits the signed message (t, σt) to the network and it gets forwarded
by the servers.

5.3 The Ripple Consensus Protocol

Candidate transaction t
signed by user A,
submitted to the

network

Correct
signature?

t still correct?

NO

Collection
Phase

Consensus
Phase

Close 
Ledger

A (pkA, skA)

Round r

Add t to CS

Reject t

Close
ledger

Consensus
 on t ?

Add t to 
CS for
round
r+1 

YES

YES

NO

YESNO

. . . . . . .

CS = Candidate Set

Figure 5.1: Phases of round-based consensus protocol

5.3.1 Network Assumptions

The Ripple consensus protocol assumes byzantine accountability as mentioned
in the Ripple consensus white paper [5]. This accountability assumption is a
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limitation on byzantine nodes such that sending different messages to different
nodes is not permitted. Also, the trust between node u and its unique node
list UNLv is asymmetric. For instance, it’s possible that a node u ∈ UNLv but
v /∈ UNLu .

5.3.2 Protocol Overview

When transactions are submitted to the network, they are forwarded peer to
peer by different servers in the network (receive and relay servers). The goal is
to update the ledger with all new payment information periodically, and usually,
this happens less than 20 seconds in most cases. Since the ledger is a distributed
database, the participants should reach an agreement on the transactions to
include it in the next version of the ledger. This consensus protocol is run by
the network’s validating servers and is the core building block of Ripple. The
protocol is asynchronous and round-based. At the end of every round, a new last
closed ledger is published by all participating servers. The Ripple’s consensus
protocol has three phases (Figure 5.1): the collection phase, the consensus phase,
and the ledger closing phase. If any consensus round takes more than a fixed
amount of time, it gets aborted, and a new consensus round starts. Furthermore,
the consensus phase is divided into sub-rounds. The threshold for voting on a
transaction is increased in every sub-round. As the protocol is asynchronous,
time synchronization helps to achieve better ledger closing time.

Collection Phase

In the collection phase, the validating servers accumulate the transactions that
they receive from the network. Remember that the candidate transactions are
broadcasted in the network. Upon receiving a candidate transaction, the vali-
dating servers verify its authenticity. To do that, they verify the issuer’s public
key (from the ledger), and they check the validity of the corresponding signa-
ture. Transactions that come with valid signatures are temporarily stored in
the candidate set CS for further validation.

The validating servers then subsequently inspect the correctness of trans-
actions stored in CS . This procedure includes verifying that sufficient credit
is available in the issuing account by going over the history of all transac-
tions related to that account (in case of XRP transactions), or availability of
a trust path between the sender and receiver (for IOU payment), etc. For
simplification, we denote the transaction verification actions by a single func-
tion Verify(transaction, ledger). Then each validating server packages validated
transactions (voted by more than a certain threshold θ percent of its UNL) in an
(authenticated) proposal, and broadcasts its proposal in the network. In Ripple,
this is performed by constructing a hash tree of all validated transactions, and
then signing the root of the tree.

More specifically, when a validating server v receives a new proposal from
the network, it checks if the issuer is a server which belongs to its UNL, and does
correctness verification of all transactions included in the received proposal. For
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Input: Ledger L, signed transaction (t, σt), candidate set CS ,
transaction list TLv, vote list Votet, vote threshold θ, unique
node list UNLv , and v’s private key skv

Output: Update CS , TLv, Votet, create proposal (P, σP ), and broadcast
(P, σP )

1 P ← ∅
2 v receives candidate transaction (t, σt) with a valid signature
3 CS ← CS ∪ {t}
/* Other checks (trust path, credit balance, etc.) on t from

the ledger history */

4 if Verify(t, L) = true then
5 TLv ← TLv ∪ {t}
6 Votet ← Votet ∪ {v}
7 foreach t ∈ TLv do

8 if
(
|Votet|
|UNLv | ≥

θ
100

)
then

9 P ← P ∪ {t}
10 end
11 σP ← Sign(skv, H(P ))
12 v broadcasts proposal (P, σP ) to other servers in the network

Algorithm 1: Processing a Transaction and Creating a New Proposal

the positive case, these transactions are added into a locally managed transac-
tions list TLv. Furthermore, the server v maintains a vote list Votet for every
transaction t ∈ TLv. The server v also updates the vote list Votet according
to the received proposal (see Algorithm 2). For instance, if the transaction t is
part of the proposal P received from a server w (t ∈ TLv and w ∈ UNLv ), v
will register a vote from w in the vote list Votet.

As outlined in Algorithm 1, an incoming candidate transaction t is processed
for verification and added to the candidate set. After that, each validating server
creates a proposal based on its UNL vote and broadcast to the network. The
Algorithm 2 shows the processing of a new proposal, update mechanisms of the
transaction list, and vote list. CS and TLv are initially empty at round zero
(genesis ledger) but continually updated in each round.

Consensus Phase

During the consensus phase, a validating server frequently processes (Algorithm
2) and sends proposals (Algorithm 1) to the network. First, v sends proposals
which are agreed by more than θ percent of the servers in its UNL. Initially,
the value of the voting threshold θ is fixed at 50% of the servers in the UNL.
Then θ is gradually increased in each iteration by 10% until a proposal reaches
consensus from 80% . The iterations of consensus phase sub-rounds are triggered
by a local timer maintained by each validating server.
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Input: Ledger L, proposal (P, σP ) from a server w, transaction list TLv,
vote list Votet, and unique node list UNLv

Output: Updated TLv and Votet

1 v receives an authenticated proposal (P, σP ) from w
2 if w ∈ UNLv then
3 foreach t ∈ P do
4 if Verify(t, L) = true then
5 TLv ← TLv ∪ t
6 end

7 foreach t ∈ TLv do
8 if t ∈ P then
9 Votet ← Votet ∪ {w}

10 else
11 Votet ← Votet \ {w}
12 end

Algorithm 2: Processing a New Proposal

Input: Last closed ledger L, candidate set CS , transaction list TLv, vote
list Votet, unique node list UNLv , and v’s private key skv

Output: Current closed ledger L, updated CS , TLv, and Votet

1 Lv ← L
2 foreach t ∈ TLv do

3 if
(
|Votet|
|UNLv | ≥ 0.8

)
then

4 CS ← CS \ {t}
5 if t /∈ Lv then
6 Lv.apply(t)
7 TLv ← TLv \ {t}
8 Votet ← ∅
9 end

10 σLv ← Sign(skv, H(Lv))
11 v broadcasts its (Lv, σLv )
12 foreach u ∈ UNLv do
13 v receives (Lu, σLu

)
14 end
15 Find the ledger L′ among Lu’s with valid signature which has clear

majority (more than 80%)
16 L← L′

Algorithm 3: Close the Ledger
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Ledger Closing Phase

As shown in Algorithm 3, once a transaction t reaches 80% acceptance rate,
t gets removed from the candidate set CS, checked for double-spending (i.e.,
examined against the transactions included in the ledger). Next, this transaction
will be appended to the open ledger (L.apply(t)), and the account balance of
the sender/recipient will be accordingly updated. Every validating server v will
broadcast a signed hash of its version of the ledger to the network. A ledger
is treated as validated (and closed) by a server v when a clear majority 80%
of validating servers which are contained in v’s UNL also sign the same ledger
L. After closing the ledger, the transactions that have been received during the
consensus phase will be processed, and the next round will begin.

5.4 Analysis of Forks in Ripple

Figure 5.2: UNL intersection between two servers u and v

The security of Ripple relies on the fact that the majority of the validating
servers are honest and correctly verify all the received transactions. Ledger
forks constitute a major threat to the correct operation of the system. Forks
can occur if two conflicting ledgers get clear majority votes, and could lead to
double-spending attacks [83].

Ripple designers claim that fork cannot happen if intersection size of UNL
of any two servers is bigger than 20% of their individual UNL size [5]. For any
two validating server u and v:

|UNLu ∩UNLv| ≥
1

5
max{|UNLu|, |UNLv|} (5.1)

However, recently several forks [84, 53] lead to serious concerns about the
correctness of the Ripple consensus protocol and the requirements for no fork
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guarantee in the system. In this section, we take a deep dive into the conditions
which can prevent forks in Ripple network. For any two validating servers u
and v, suppose:

wu,v =
|UNLu ∩UNLv|

max{|UNLu|, |UNLv|}
(5.2)

Current Ripple protocol mandates for any two validating servers u and v, the
value of wu,v must be greater than or equal to 0.2. Clearly, We now show
that this threshold is not sufficient to prevent forks in the system by means
of a counter-example. Namely, consider the situation where for some u and v,
|UNLu| = |UNLv| = 5 and |UNLu ∩ UNLv| = 2. Clearly, wu,v = 0.4 ≥ 0.2.
Assume now that one server in UNLu ∩ UNLv votes for L1 and the other for
(conflicting ledger) L2. Moreover, assume that all servers in UNLu \UNLv vote
for L1 and similarly all servers in UNLv \UNLu vote for L2. This means that a
majority of 80% in UNLu vote for L1 and likewise a majority of 80% in UNLv
vote for L2. This clearly results in a fork in the system.

As this example shows, the condition displayed in Equation 5.2 cannot pre-
vent forks in general for values wu,v ≤ 0.4. In the following, we will prove that
if the intersection set size between the UNL of any two servers is more than
40% of size of the largest UNL, that is wu,v > 0.4, then forks in Ripple are
impossible. In other words, forks in Ripple are impossible if and only if for all
validating servers u and v:

|UNLu ∩UNLv| > 0.4 ·max{|UNLu|, |UNLv|} (5.3)

We denote the threshold value for any transaction to get clear majority votes
by ρ where 0.5 < ρ ≤ 1.

Recall that a fork refers to the situation that two different validating servers
u and v agree on conflicting ledgers L1 6= L2. This means that at least a fraction
ρ of servers in UNLu agree on ledger L1 and at least a fraction ρ of servers in
UNLv agree on ledger L2. We consider the following sets:

A := UNLu \UNLv, B := UNLu ∩UNLv, C := UNLv \UNLu. (5.4)

For each server ∈ UNLu ∪UNLv, three possible cases might occur:

Case 1: The server publishes ledger L1.

Case 2: The server publishes ledger L2.

Case 3: The server does not publish or publishes some ledger other than L1

and L2.

In the following, we denote the subset of servers in set A that publish L1 by
A1, the subset of servers in A that publish L2 by A2, and the subset of servers
that publish neither L1 nor L2 by A3. Clearly, A1, A2, and A3 are mutually
exclusive, and |A1|+ |A2|+ |A3| = |A|. Analogously, we define the sets B1, B2,
B3, C1, C2, and C3 (cf. Equation 5.4).



5.4. ANALYSIS OF FORKS IN RIPPLE 51

Necessary Conditions for Forking: According to the specification of Rip-
ple, it holds that if more than a fraction ρ of the servers present in any server’s
UNL publishes the same validation ledger hash, that ledger will be accepted by
that server. Hence,

1. Ledger L1 will be accepted by server u if and only if

|A1|+ |B1| ≥ ρ(|A|+ |B|)
|A1|+ |B1| ≥ ρ(|A1|+ |A2|+ |A3|+ |B1|+ |B2|+ |B3|)

⇔ (1− ρ)(|A1|+ |B1|) ≥ ρ(|A2|+ |A3|+ |B2|+ |B3|)

⇔ |A1|+ |B1| ≥
ρ

1− ρ
(|A2|+ |A3|+ |B2|+ |B3|) (5.5)

2. Likewise, ledger L2 will be accepted by server v if and only if

|B2|+ |C2| ≥
ρ

1− ρ
(|B1|+ |B3|+ |C1|+ |C3|) (5.6)

Minimum Intersection Size: Notice that a fork is only possible if both

Equations 5.5 and 5.6 are satisfied. Recall wu,v = |UNLu∩UNLv|
max{|UNLu|,|UNLv|} , we show

that wu,v ≥ 0.4 ensures fork cannot occur in Ripple.
Observe that:

|UNLu ∩UNLv| > wu,v · |UNLu|
|B1|+ |B2|+ |B3| > wu,v(|A1|+ |A2|+ |A3|+ |B1|+ |B2|+ |B3|)

(1− wu,v)(|B1|+ |B2|+ |B3|) > wu,v(|A1|+ |A2|+ |A3|)

(|B1|+ |B2|+ |B3|) >
wu,v

1− wu,v
(|A1|+ |A2|+ |A3|) (5.7)

Similarly, we have:

(|B1|+ |B2|+ |B3|) >
wu,v

1− wu,v
(|C1|+ |C2|+ |C3|) (5.8)

Now, adding Equations (5.7) and (5.8) we get,

(|B1|+ |B2|+ |B3|) >
wu,v

2(1− wu,v)
(|A1|+ |A2|+ |A3|+ |C1|+ |C2|+ |C3|)

(5.9)

Assuming that both Equations 5.5 and 5.6 are satisfied, it follows that:

|A1|+ |B1|+ |B2|+ |C2| ≥
ρ

1− ρ
(|A2|+ |B2|+ |B1|+ |C1|+ |A3|+ |C3|)

+
2ρ

1− ρ
|B3|

|A1|+ |C2| ≥
ρ

1− ρ
(|A2|+ |C1|+ |A3|+ |C3|)

+
2ρ− 1

1− ρ
(|B1|+ |B2|+ |B3|) +

1

1− ρ
|B3| (5.10)
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Combining Equations 5.9 and 5.10, we get the following strict inequality:

|A1|+ |C2| >
ρ

1− ρ
(|A2|+ |C1|+ |A3|+ |C3|)

+
(2ρ− 1)wu,v

2(1− ρ)(1− wu,v)
(|A1|+ |A2|+ |A3|+ |C1|+ |C2|+ |C3|)

+
1

1− ρ
|B3|

This can be rephrased to:

(1− (2ρ− 1)wu,v
2(1− ρ)(1− wu,v)

) >

1

(|A1|+ |C2|)︸ ︷︷ ︸
≥0

·

(
ρ

1− ρ︸ ︷︷ ︸
≥0

+
(2ρ− 1)wu,v

2(1− ρ)(1− wu,v)︸ ︷︷ ︸
≥0

) (|A2|+ |A3|+ |C1|+ |C3|)︸ ︷︷ ︸
≥0

+
1

1− ρ
|B3|︸ ︷︷ ︸

≥0


As already marked, the right-hand side is ≥ 0. Hence, this cannot hold if:

(1− (2ρ− 1)wu,v
2(1− ρ)(1− wu,v)

) ≤ 0

(2− 2ρ)(1− wu,v)− (2ρ− 1)wu,v ≤ 0

(2− 2ρ− wu,v) ≤ 0

wu,v ≥ 2(1− ρ)

As a consequence, if |UNLu∩UNLv| > 2(1−ρ) max{|UNLu|, |UNLv|} for all
pairs of validating servers u, v, then no fork can occur in Ripple for sure. Since
ρ = 0.8 in the current Ripple system, a sufficient condition for preventing forks
is to ensure wu,v > 0.4 for all validating servers u and v.

5.5 Analysis from Chase and MacBrough [81]

As aftermath, Ripple Labs have agreed and acknowledged our security analysis
in their public web-page [85] in 2015. Following our work [16], Chase and
MacBrough have extended the analysis of Ripple’s consensus protocol in 2018
[81]. In the last section, the necessary condition for no fork was established with
a counter example. We showed that if the intersection does not have more than
40% of the maximum size between two UNLs, a fork might happen. We saw that
a fork can happen when |UNLu| = |UNLv| = 5 and |UNLu ∩ UNLv| = 2 with
an overlap exactly 40% of the maximum size between two UNLs. This example
implicitly assumes that both UNLs have same size. Chase and MacBrough have
shown that the necessary condition can be relaxed by taking average instead of
maximum [81]. The necessary and sufficient condition can be restated as:

|UNLu ∩UNLv| > 2(1− ρ) · avg{|UNLu|, |UNLv|} (5.11)
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For simplicity let’s denote, |UNLu| = nu and |UNLv| = nv. The condition
can be rewritten as: |UNLu ∩UNLv| > (1− ρ)(nu + nv).

To show this condition is necessary, we can have two cases:

Case 1: |B| = |UNLu ∩ UNLv| ≤ (1 − ρ)nv. In this scenario, it is possible
for all servers in UNLu to publish ledger L1 and on other hand all servers in
C = UNLv \UNLu can publish another ledger L2 as |C| ≥ ρ · nv, which results
in a fork.

Case 2: |UNLu∩UNLv| ≤ (1−ρ)(nu+nv) and |UNLu∩UNLv| > (1−ρ)nv.
Hence,

|A| =|UNLu \UNLv| = |UNLu| − |UNLu ∩UNLv|
≥nu − (1− ρ)(nu + nv)

≥ρ · nu + (ρ− 1)nv

Now as per the assumption |B| = |UNLu ∩ UNLv| > (1 − ρ)nv, (1 − ρ)nv
servers in B can publish L1. Furthermore, if all validating servers in A publish
the ledger L1, UNLu can receive at least (1− ρ)nv + ρ · nu + (ρ− 1)nv = ρ · nu
many validations for ledger L1. Thus UNLu can publish the ledger L1. On the
other hand, only (1 − ρ)nv validating servers in B publish for L1. Hence, it
is possible for UNLv to publish another ledger L2 as, nv − (1 − ρ)nv = ρ · nv,
resulting a fork.

Next, we look whether Equation 5.11 is sufficient to prevent fork. Assume,
the validating server u accepts the ledger L1 from its UNL and Equation 5.11
is true. The set A1 ∪ B1 ⊆ UNLu publish the ledger L1 i.e. |A1 ∪ B1| > ρ · nu
(see Equation 5.5). To prove that Equation 5.11 is sufficient to prevent fork,
it is enough to show |B1| > (1− ρ)nv, because in that case UNLv cannot have
sufficient validation for another ledger L2.

|B1| =|A1 ∪B1| − |A1|
≥|A1 ∪B1| − |A|
=|A1 ∪B1| − (|UNLu| − |UNLu ∩UNLv|)
>|A1 ∪B1| − (nu − (1− ρ)(nu + nv))

≥ρ · nu − (nu − (1− ρ)(nu + nv))

=(1− ρ)nv

Thus Equation 5.11 is necessary and sufficient to prevent any fork.
Chase and MacBrough further investigated the current version of Ripple’s con-
sensus protocol without the original byzantine accountability assumption. They
concluded that in that case the UNL intersection has to be atleast 90% [81, Thm
8] to avoid forks. Furthermore, they provided a counterexample of liveness prop-
erty [81, Sec. 4.2], where protocol can get stuck as soon as the UNL intersection
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is less that 99%. This results essentially shows Ripple consensus protocol is
far away from being a distributed BFT protocol and rigorous improvement is
required for its decentralization.

5.6 Summary

We describe the Ripple consensus protocol in detail and discuss its security.
Our finding shows that the parameters suggested in Ripple whitepaper [5] do
not prevent forks in the system. We also discuss the conditions to prevent forks
[16] and an improvement suggested by Chase and MacBrough [81].
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Chapter 6

A Brief Introduction to the
Smart Grid

6.1 Introduction

In this chapter, we give some background information on Smart Grid, its com-
ponents, agents, and its security, privacy issues. Traditionally, the electricity
is generated in bulk and transported via a high voltage transmission line. Af-
terward, it is transformed into medium voltage and finally distributed among
end consumers at low voltage. In a traditional grid, the electricity cannot be
stored, and generation should match the consumption. In this model, electricity
mainly comes from some central generators, and generated electricity relies on
the predicted consumption. Since the last decade, the traditional electricity grid
has undergone some major infrastructural changes in the direction to become
smarter. This smart grid builds a bi-directional information communication
network on top of the existing energy network aiming at a more efficient, sus-
tainable, and reliable use of energy [86, 87]. This modern electrical grid includes
several advantages over the traditional electricity grid, such as real-time energy
monitoring, distributed generation, energy storage, energy trading, integration
of renewable energy resources, refined energy measurement, and management,
etc. Each consumer is equipped with smart meters for refined consumption mea-
surement, and data is shared with suppliers for smooth operation in the grid.
However, it raises severe privacy concerns as the shared measurement data re-
veals private information about the users [88]. Furthermore, current energy
management protocols in the smart grid are vulnerable to private information
leakage [12]. In the next sections, we give an overview of the smart grid and
discuss current security and privacy issues.
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6.2 Smart Grid Overview

6.2.1 Definition

The term “smart grid” is not a specific state but used more like a continuous de-
velopment over the “traditional grid”. The definition of a smart grid varies under
different circumstances and is interpreted on the basis of requirements from dif-
ferent stakeholders. The smart grid stakeholders can be different entities as such
users, electricity network companies, electricity service companies, technology
providers, traders, researchers, generation companies, regulators, government
agencies [89]. First, we quote the definition given by the European Commission
Task Force on Smart Grid [90]:
“A Smart Grid is an electricity network that can cost efficiently integrate the
behaviour and actions of all users connected to it - generators, consumers and
those that do both - in order to ensure economically efficient, sustainable power
system with low losses and high levels of quality and security of supply and
safety.”

However, this above definition lacks some clarity as it mostly consists of re-
quirement specifications. Later on, a more concrete definition of the smart grid
was given by Jawurek [91] w.r.t. Consumer privacy and privacy-enhancing tech-
nologies. We present the following definition of smart grid inspired by Jawurek
[91]:

Definition 6.2.1. (Smart Grid) The smart grid is a modern electricity grid
which deploys additional interconnection and communication between agents of
the traditional electricity grid with information and communication technologies
(ICT) to improve quality of operation (w.r.t different aspects).

The traditional grid agents are consumers, generators, transmission opera-
tors, distribution operators, and other service providers. Whereas the quality of
operation can be in different aspects like sustainability (use of more renewable
energy), reliability (such as fault detection), resilience against attacks, safety,
data security, privacy, etc. Additionally, the agents are interconnected with a
bi-directional communication network using ICT. Some ICT components in the
smart grid are smart meters, distributed energy resources, demand response
techniques, privacy-preserving technologies, etc.

6.2.2 A Simple Smart Grid Model

In Figure 6.1, we depict a simple scenario of power and information flow in a
smart grid. The utility providers are some agents who can do a distributed gen-
eration of electricity with different power sources (renewable, non-renewable).
Then they supply it to the transmission line, and finally, the electricity is deliv-
ered among the household consumers via a data aggregator. On the consumer
side, some households or small businesses are capable of producing (e.g., with
solar cells) and storing (e.g., with a battery) low-voltage electricity. As these
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Figure 6.1: Power and Information flow in a Smart Grid

consumers can act as producers and consumers both, they are known as pro-
sumers. The prosumers can sell or trade their excess electricity in the local
electricity market. Every consumer is equipped with smart meters for refined
consumption reading, billing purposes, and can communicate over internet pro-
tocols (IP). The role of the data aggregator is to find the total demand based
on the consumption of the local prosumer network (also known as microgrid)
and supply the needed electricity from the utility providers. On the generation
side, utility providers can communicate with each other and decide how much
electrical power to generate.

6.2.3 Agents in Smart Grid

Several agents are stakeholders in the smart grid infrastructure. These agents
directly or indirectly need smart meter data for smart grid operation. Some
main agents in the smart grid are as follows:

Consumers

Consumers are the agents who consume electricity at the supply end and pay for
it. Consumers are also referred to as customers, users, households, small busi-
ness enterprises, etc. If a consumer produces electricity with some Distributed
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Energy Resources (DER) and it is known as a prosumer.

Utility Providers

Utility providers (UP) are the agents who are mainly are responsible for elec-
tricity generation. They can be a large corporation to a medium or small size
enterprise. The network of UPs can generate electricity in a distributed manner
to provide consumer demand. Different strategies of distributed energy manage-
ment can be found in [8, 9]. Some examples of utility providers are Distribution
System Operator (DSO) and Independent System Operators (ISO) [92]. The
DSOs generate and distribute power in a medium voltage scale, whereas ISOs
generate power at a high voltage scale. A utility provider has its generation
units, and the cost of production depends on its cost function.

Data Aggregator

Data aggregator (also known as control center) is an agent who can monitor
the aggregated data of a microgrid or network of consumers. Every consumer’s
smart meter is connected to the data aggregator so that it can calculate the total
demand of the network. Data aggregator can act as the supplier of electricity
from utility providers to consumers.

Transmission System Operator

The Transmission System Operator (TSO) is an agent who is responsible for
the electricity transmission network. TSO generally operates and maintains the
high voltage transmission line. TSO is also responsible for balancing demand
and supply of electricity in a smart grid.

Energy Regulators

Regulators are the governing body in the smart grid industry. They have various
roles, such as make policies, regulate requirements, give permits, monitor the
energy market, and perform an audit on smart grid agents, etc.

Third Party

Third parties are the agents who are not directly involved in usual smart grid
operations such as generation, transmission, distribution, and consumption but
provide some extra services. Some examples of third parties in the smart grid
are energy trading platform, consultancy services, flexibility aggregator, etc.
The third parties are usually interested in user consumption data to perform
analytics.

6.2.4 Smart Grid ICT Components

We describe some of the main ICT components in current smart grid operations:
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Smart Meters

Smart meters are advanced electricity meters capable of bidirectional communi-
cation and can send data to other grid agents over the IP. With smart meters,
a consumer can measure electricity consumption from the grid as well as the
amount of electricity it produces from renewable energy resources. Additionally,
smart meters can also measure different parameters like voltage level, frequency
in the electricity flow. The smart meters require a collection of protocols and
infrastructure as such Advance Metering Infrastructure (AMI) [93] to collect
data and send data. AMI includes form physical deployments such as sensors,
smart meters, monitoring devices to information communication infrastructure,
data management software, etc. According to EU directive 2009/72/EC [94],
the European Union encourages households for the installation of smart meters
in the EU and expects 80% of consumers will be equipped with smart metering
systems by 2020. Smart meter readings are collected for several reasons like
load monitoring, demand response, billing, settlement, fraud detection, etc.

Distributed Energy Resources

Distributed Energy Resources (DES) are small scale decentralized generators
located mainly on the distribution side. They are mainly powered by Renewable
Energy Sources (RES) such as solar or wind and comes with battery storage.
In consumer premises, DERs are connected with their smart meter.

Communication Networks

Smart grid agents are connected through different power and information com-
munication networks. Power network structures are not necessarily the same as
the information communication network. For example, it is possible that UPs
form a fully connected graph for information communication, but their power
network structure forms ring topology. On networking aspects, whereas Home
Area Network (HAN) is used between the smart meter and home appliances,
long-distance communication between UPs is done through Wide Area Network
(WAN).

Demand Response Techniques

Demand Response (DR) strategies are implemented to balance the demand of
consumers and electricity generation. As the electricity price is costly during
the peak hours, a consumer might reduce its electricity bill by using heavier
electric appliances at cheaper hours and lighter applications at peak hours. A
TTP/DSO can offer different DR services (e.g., incentive-based, price-based) to
the consumers.
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Energy Management System (EMS)

Energy Management System (EMS) is used by the UPs to monitor, control,
and optimize the electricity generation and transmission. One existing imple-
mentation of EMS could be with Supervisory Control And Data Acquisition
(SCADA) system. SCADA system can accurately measure electrical data (e.g.,
voltage, frequency, current) from sensors and actuators. EMS is deployed
at the microgrid level for performance improvements of DERs. EMS system
and software help grid agents to perform some important functionalities like
Economic Dispatch (ED) [95], which we will discuss in latter chapters.

For some detailed surveys in smart grid infrastructures, we suggest the
readers [87, 96, 97, 98].

6.3 Security and Privacy in Smart Grid

6.3.1 Security and Privacy Challenges

The electricity grid is rapidly transforming with continuous integration of data
communication infrastructure and protocols between the agents. However, it
is important before large scale deployments data security and privacy issues
should be identified and carefully mitigated. In the current development of the
smart grid, it faces a handful number of data security and privacy challenges.
McDaniel and McLaughlin identify some of the important challenges in the
smart grid in [99]. The challenges are classified into four main categories:

Privacy of Agents

The private data of consumers can be revealed by analyzing consumption traces
of smart metering data. It is possible to find a user’s behavior of using electrical
appliances over time from smart meter consumption data. For example, smart
meter consumption data can tell which television channel is being watched by
the user at what time. An attacker could abuse inferred information with price
discrimination, use it in legal cases, marketing manipulation, financial gains,
etc.

Smart Grid Protocols

Protocols for grid functionality and additional services in the smart grid should
meet security and privacy requirements before deployment. Distributed pro-
tocols are replacing old centralized protocols in recent years. Such distributed
protocols include economic dispatch, load balancing, optimal power flow, en-
ergy trading, etc. However, it has been shown in previous literature that many
distributed protocols are not secure and reveals privacy-sensitive confidential
information about agents [12, 100].
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Standardization

There has been a continuous effort of standardization in smart grid infrastruc-
ture [97, 101]. The security requirements and practices in the smart grid are
different than in a generic IT communication system. For example, the lifespan
of a smart meter is much longer than usual mobile or computer devices. Hence,
the smart meters should be compatible with security updates for a longer period.

Furthermore, availability is a critical measure; agents and services should
be in operation at any point in time. However, many circulated smart grid
standards do not meet security requirements and should be evaluated before
large scale deployments. European Telecommunications Standards Institute
(ETSI) approved the Open Smart Grid Protocol (OSGP) standard is currently
deployed in the smart grid over 5 million smart meter users [102]. However,
Jovanovic et al. in [103] showed that OSGP’s authenticated encryption scheme
uses some non-standard composition of RC4 and so-called “OMA digest” and
successfully performed key recovery with negligible time complexity.

Cyber-Security Threats in Infrastructure

Cyber-security attacks can be costly for smart grid infrastructure [104]. At-
tackers can hack remotely online smart grid services and cause a blackout on
a massive scale. Furthermore, components of infrastructure such as smart me-
ters should be tamper-resistant to prevent billing fraud or false data injection
attacks. One example of a cyber attack was the Ukrainian power grid attack in
2015, which compromised IT infrastructure and interrupted power grid opera-
tion [105].
In the next sections, we discuss the state of the art privacy preservation ap-
proaches in the smart grid in relevance to our work.

6.3.2 Privacy Policies and Data Protection Laws

The definition of privacy has a different meaning from multiple standpoints.
Its definition has been discussed expensively among legal, social, physiology,
and computer science researchers. The very first definition of privacy can be
found in the 1890 law review article by Warren and Brandies [106], where they
defined it as “right to be let alone”. Alan Westin in 1967 [107] defined privacy as
one’s fundamental right to self-determine what information about himself to be
transferred to others in what circumstances. Current European data protection
laws follow from Westin’s definition about which encompasses about right to
determine which personal information to give. The privacy laws and regulations
states set rules under which conditions personal data can be collected and used.
For instance, the German data protection law describes that the personal data
can only be collected under the user’s consent and for some specific use. The
protection of private data in current smart grid deployment is mostly achieved
through privacy policies from the regulators. Regulators can frequently perform
audits to check if data collecting agents are following the policies. The General
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Data Protection Regulation (EU) 2016/679 (GDPR) 1 has been implemented in
the EU in 2018. The GDPR framework includes “Data protection by design and
by default” (Art. 25 GDPR) and is applicable in the context of data aggregator
collecting smart meter data.

6.3.3 Privacy Enhancing Technologies

The privacy policies do not inherently ensure the privacy of agents. For exam-
ple, some legislations might require to pseudonymize the metering data, and
the smart meters are deployed with static pseudonyms. However, the aggrega-
tor might able to link the smart meters with pseudonyms by matching user’s
attributes with one pseudonym’s attribute, thus resulting in a privacy violation.
In contrast, the smart grid needs Privacy Enhancing Technologies (PET) to
support the privacy policies from a technical standpoint. Where privacy laws
can protect the agents and give a legal basis (e.g., lawsuit) against privacy vio-
lators, PETs should prevent privacy violations from happening beforehand. In
literature, different PETs have been used to propose secure smart grid protocols
to perform data aggregation, electricity billing, economic dispatch, electricity
trading, load scheduling, optimal power flow, demand response, etc. On the
privacy perspective, we define three roles of grid agents in a generic smart grid
protocol as Data Owners (DO), Computing Agents (CA), and Output Parties
(OP). An agent in the role of DO is the owner of its private data. The task of
CA is to perform the necessary computation. Finally, the role OP is to receive
the result of the calculation. It possible that one agent might act in multiple
roles in some protocol execution. For instance, UPs can operate in three types
of functions as DO, CA, and OP in a distributed economic dispatch protocol
[13]. In local energy trading, the prosumers act as both DO and OP, and trading
platform acts as CA [108]. In the case of most data aggregation protocols, the
consumer is DO, the aggregator is OP, and CA can be consumers themselves or
aggregator or a trusted third party. We discuss some PETs used in smart grid
protocols as follows:

Anonymization

Anonymization or pseudonymization techniques are extensively used in cur-
rent smart grid protocols such as aggregation. The goal is that CA can per-
form computation on data from all DOs, but specific smart meter data and its
originator should be unlinkable. Where pseudonymization replaces the iden-
tity of DO’s with a pseudonym, anonymization requires complete unlinkability.
Pfitzmann and Hansen provide a concrete set of definitions about anonymity,
pseudonymity, and unlinkability in [109]. Some pseudonymization methods can
be ineffective depending on the features and frequency of the data, as some
classification based attacks could reveal the identity of the originator. In [91],
Jawurek et al. showed de-pseudonymization of the consumer metering data.
They can link user profiles with its pseudonym by unusual pattern detection

1https://gdpr-info.eu/

https://gdpr-info.eu/
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and machine learning techniques. Anonymization techniques are not suitable in
electricity billing protocols as the electricity provider needs to send the bill to
the consumer.

Perturbation

Perturbation based-approaches can be used in aggregation, economic dispatch
protocols. In perturbation based protocols, DO can add some random noise
in its metering data before sending it to the CA; OP can find computed value
from CA with some marginal error without knowing any private data. In [110],
authors achieved differential privacy with perturbation for generic distributed
optimization protocols in the smart grid. In [111], authors performed central-
ized privacy-persevering economic dispatch computation with the perturbation
method. Perturbation techniques are generally not applicable in billing proto-
cols as its bills are expected to be exact.

Cryptographic Computation

Cryptographic computation techniques like SMC or homomorphic encryption
(HE) can be integrated into smart grid protocols to perform secure compu-
tations. DO can secret share or encrypt their private data for computation.
These protocols ensure that CA can not deduce private DO information while
performing computation from secret shares or on ciphertexts (HE).
Li et al. [112] proposed some aggregation protocol where DOs encrypts its
data items with paillier encryption, routes, and aggregates through a minimal
spanning tree to a root OA. Kursawe et al. [113] proposed several smart me-
ter aggregation and comparison protocols. Their protocols use unidirectional
communication links and techniques like secret sharing and Diffie-Hellman key
exchange to bind the meter measurements before aggregated by CA. Erkin et
al. [114] presented a system where DO uses paillier encryption to send the data
to CA for aggregation. In [12, 13], we have proposed SMC-based distributed
privacy-preserving protocols to solve the economic dispatch problem, which we
will discuss in latter chapters. Abidin et al. proposed a SMC-based energy trad-
ing protocol for local electricity market in [108]. In their protocol, prosumers
secret share their bids in a decentralized trading platform to trade their excess
electricity. The trading platform controlled by independent agencies can do the
bid selection and trading price calculation. They could able to compute market
tasks with 2500 bids in less than 4 minutes. One of the other works include Li
et al. [115], where they presented a privacy-preserving demand response scheme
with homomorphic encryption and adaptive key evolution.

Verifiable Computation

Verifiable computation is used when the CA is untrusted, and CA needs to pro-
vide proof to the DO that the required computation has been performed as it
should be. These type of protocols ensures the integrity of the computational
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results. Verifiable computation is a common tool building privacy-preserving
billing protocols. In [91], a billing scheme is shown where smart meter users
commit their consumption data with Pedersen commitment. The protocol gets
tariff from the supplier and can generate a proof for correct bill calculation
with Zero-Knowledge Proof (ZKP). On the other hand, the supplier can ver-
ify the correctness of the bill calculation from the proof and commitments of
consumption data.

Protected Module Architectures

Protected Module Architectures (PMA) are hardware security architectures for
trusted computation. PMA supports a trusted CA to securely execute some
software modules in an isolated environment, even if CA gets infected. A re-
mote DO can use PDA and collect trust evidence that CA is still in a trust-
worthy state. Intel Software Guard Extensions (SGX) is an implementation of
PDA where one can run private protocols in isolated memory containers called
enclaves. These hardware enforceable containers are protected from any pro-
cesses outside the enclave [116]. In [117], authors form KU Leuven presented
a prototype of a smart metering security infrastructure with Sancus, a PMA
implementation for low-powered microcontrollers.
For a detailed survey in privacy-enhancing technologies in the smart grid, we
recommend the readers [88].

6.4 Summary

In this chapter, we have outlined the necessary background on the smart grid,
its components, and agents. We have provided an outline of different security
and privacy concerns and the current use of privacy-enhancing technologies in
smart grid protocols. In the next chapters, we will introduce the economic
dispatch (ED) problem and develop our privacy solutions for consensus-based
distributed ED protocols for the smart grid.



Chapter 7

Economic Dispatch (ED)
Problem

7.1 Introduction

In the last chapter, we gave an overview of the smart grid, its security, and
privacy challenges. A good number of ideas have been proposed to solve smart
metering privacy problems such as aggregation and billing at the microgrid level
[88]. However, privacy issues in the area of energy management protocols have
received a relatively modest amount of research interest. In this chapter, we
introduce a crucial smart grid energy management problem called economic
dispatch (ED), identify its privacy problems, and survey existing literature.

7.2 What is Economic Dispatch?

Economic dispatch (ED) is one of the fundamental optimization problems in
the electrical power grid. Over the past few decades, it has been an important
topic of research by itself in the power grid community [95, 118, 119, 120]. Its
goal is to find the optimal power output of all generator nodes in the grid that
meets the power demand of the consumers at the lowest possible cost.
To give the readers a concrete example, we recall some of the smart grid agents
introduced in the last chapter: a set of utility providers (UP), a data aggrega-
tor, and a set of consumers. Each UP has its generation facility, and together
they form a generation network. The job of the data aggregator is to act as
an intermediary agent to supply electricity from the generation network to all
consumer loads at the lowest possible cost. To perform this, the aggregator has
to know what is the total electricity demand of all consumers. Secondly, the ag-
gregator needs different information from the UPs. For instance, some essential
information is the generation limits, the amount of electricity each generator
can produce at what cost, etc. After getting related data, the aggregator runs
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an optimization algorithm and decides on the amount of energy he would buy
from different UPs to deliver consumer demand at a minimum cost.
The ED problem considers two system constraints:
i) Total energy generation must be equal to total demand.
ii) Utility providers must produce electricity within its generation capacity.
Hence, the ED solution gives a power output combination of all UPs, which
offers minimum total operating cost while maintaining generator and demand
constraints. In traditional electricity grids, a central operator is responsible
for meeting the customer’s demand by coordinating the power production of a
group of UPs. It solves the ED problem centrally and attempts to minimize the
global cost. However, for smart power grids, decentralized solutions are becom-
ing increasingly popular. Note that in this Chapter, Chapter 8, and Chapter
9, the terms utility providers, parties, and generator nodes are synonymously
used.

7.2.1 Centralized Solutions for Traditional Grid

Traditionally, the ED problem is usually solved in a centralized fashion. One
agent (e.g., data aggregator or a third party) acts as a trusted entity. The
trusted agent collects different parameters and associated constraints (e.g., gen-
erator limits, cost function) from all UPs. It performs optimization calculations
and sends the optimal solution to every generator. The trusted agent can use
different optimization algorithms to solve the ED problem. While numerical
methods like lambda-iteration or gradient search [121] are conventionally used,
use of more computationally intensive techniques like particle swarm optimiza-
tion [119] and genetic algorithms [118] have also been investigated in the lit-
erature. However, a small change in the smart grid or failure of the trusted
leader requires a drastic change in the centralized scheme. As a result, these
centralized schemes fail to achieve many requirements of the modern smart grid,
which needs a robust and reliable infrastructure.

7.2.2 Consensus-based ED Solutions for Smart Grid

Recently, researchers are applying distributed consensus algorithms to solve the
ED problem to overcome the challenges of centralized schemes [120, 8, 9].
In [120], the authors adopted the equal incremental cost (IC) (also known as
marginal cost) optimization criterion with lambda-iteration method and the IC
of each generator is chosen as the consensus variable. IC is the increase in total
cost resulting from an increase in power generation. The proof of the same
incremental cost criterion (i.e., when each generator has the same IC values, we
have an optimal solution of the ED problem) can be found in [121]. In [120],
each generator sends its own IC to its neighbor, and the proposed consensus al-
gorithm drives all individual IC to a common value. Importantly, the mismatch
between demand and the total power generated is fed back to the consensus
algorithm to meet the demand constraint. However, their algorithm is not com-
pletely distributed because a trusted agent has to be deployed to collect the
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power generated by each generator to calculate the total mismatch.
In [122], the authors took a different approach to solve the ED problem. They
considered the total power generated by all UPs as a linear piece-wise continu-
ous function of IC. In their decentralized approach, the ED problem is solvable
with a ratio consensus algorithm if the demand lies in one of the linear seg-
ments. However, the ratio consensus algorithm reveals confidential consensus
parameters and generator constraints.
Yang et al. in [8] use similar IC criteria as in [120]. The authors in [8] considered
a strongly connected network. They claimed that as opposed to [120], in their
algorithm, every generator does not need to know the cost function parame-
ters of the other generators. In this algorithm, generators agree on the optimal
IC, and estimation of mismatch between demand and total power are obtained
collectively through local interactions between the generators. Moreover, their
solution is distributed as no trusted agent is needed to collect all the power
generated by every UPs.
Binetti et al. [9] proposed a consensus-based distributed ED protocol based on
an auction mechanism. Unlike IC as the consensus variable in [8], the partici-
pants in Binetti’s ED protocol [9] agree on winning bids and winning parties.
In contrast to [8], which considers the quadratic cost function of UPs, Binetti’s
protocol can solve ED even with non-convex cost functions.

7.3 ED Problem Formulation

We assume that n number of UPs (P1, · · · , Pn) are forming a generation network
to deliver consumer electricity demand of D units. Suppose, Pi generates xi
units of power, and we denote its cost function for power generation by Ci.
Hence, Pi can produce xi units of power with a cost Ci(xi). We also assume
generation limits of Pi are from xi to xi i.e., Pi has to produce at least xi units
of power to be in operation and can produce up to xi units. The produced
power xi is generally represented in MWh or KWh depending on the generator
capacity. MWh is commonly used wholesale electricity trading market, whereas
in a microgrid level it is expressed in KWh. In a n node generation network,
the total cost of operation Ctotal can be formulated as:

Ctotal =

m∑
i=1

Ci(xi) (7.1)

Definition 7.3.1. (Economic Dispatch (ED)) In a n node generation network,
the ED protocol optimizes a combination of xi’s such that Ctotal is minimum
while meeting two system constraints:

• Demand Constraint: The total produced power meet the customer
demand D as:

D =

m∑
i=1

xi (7.2)
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• Generator Constraint: Pi produce power within its generator limits:

xi ≤ xi ≤ xi (7.3)

Cost Function

In the ED problem, the cost function of Pi is usually represented by a quadratic
function of the power output xi [8]:

Ci(xi) = aix
2
i + bixi + ci (7.4)

where ai, bi and ci are the cost function parameters of party Pi.

Incremental Cost (IC)

Incremental cost or marginal cost of a generator is the cost of producing one
unit of extra power and is linear for quadratic cost function:

λi =
dCi(xi)

dxi
= 2aixi + bi (7.5)

Non-convex ED Problem

A non-convex ED problem is considered more practical in smart grid systems
as the cost function includes valve point effect, multiple fuel option and prohib-
ited operating zones [9]. An additional sinusoidal term is included in the cost
function for a non-convex ED problem as:

Ci(xi) = aix
2
i + bixi + ci + |di sin (ei(xi − xi))| (7.6)

7.4 Privacy in ED

7.4.1 Attacker Model

The ED protocol attackers can be internal, as well as external. External at-
tackers can be completely malicious. Internal attackers, such as UPs might
choose to behave maliciously. For instance, a UP may modify their input data
to gain maximum profit or collude with other UPs to outplay their competitors.
However, the electricity market is highly regulated. For smart grid participants
behaving maliciously might be a risky endeavor, since a convicted cheater might
face a permanent ban from the energy market by the regulatory board. There-
fore, the internal attackers in ED protocols are assumed as semi-honest entities.

7.4.2 Privacy Goals

In ED problem, the UP’s output power, cost function parameters, and mini-
mum/ maximum output power are privacy-sensitive data [12].
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Output Power (xi):

Revealing output power to other UPs may harm the business model of the
utility company. In a competitive market, if the power output gets leaked to
other competitors, competitors might generate more power during peak hours,
and the UP might get outplayed from the energy market.

Cost Function Parameters (ai, bi, ci):

The cost function of a UP is confidential and critical business information.
Hence, the cost function parameters of the generators are privacy-sensitive. By
knowing the operational cost of the competitors, a UP can set up a target
to reduce its own operational cost, and establish itself as the least-cost utility
provider in the market. Moreover, sharing one UP’s cost function might further
reveal salary-related information of its employees, business process strategies,
etc. Revealing the parameters (ai, bi, ci) of a UP Pi, a competitor will get to
know UP’s cost function of Pi.

Minimum (xi) and Maximum (xi) Power Output:

Individual generator constraints are privacy-sensitive. A UP might want to keep
its generating capacity private. A competitor can adjust its power generation
based on other generator’s output capacity and the demand curve to be the key
player in the market. Furthermore, prior knowledge of generator ratings can
lead to system attacks in ED protocols [123].

7.5 A Survey of Privacy-preserving ED

There are only a few works on security and privacy of ED protocols (or simi-
lar energy management problems like optimal power flow (OPF) [124] or load
scheduling (LS) [125]) in the current literature. In this section, we give a com-
prehensive survey of related works. ED and OPF are a similar type of energy
optimization problem. Whereas OPF considers line flow limits and constraints
in a transmission network, ED calculation does not consider power losses and
transmission constraints. Furthermore, OPF models are approximated to linear
models and not accurate after certain operating points [126]. On the contrary,
LS problem [125] aims to optimize energy distribution across different facilities
at a low voltage level.

At the time of writing, we list previous security and privacy related works
in ED protocols in Table 7.1. We further classify the related works based on
centralized and distributed as follows:
Centralized: State of the art centralized privacy solutions for ED are mostly
perturbation based approaches. The participants add random noise to their
input data and send it to a semi-trusted control center for calculation. The per-
turbation approach aims to provide a trade-off between the level of achievable
privacy and solution accuracy. Early work on privacy in the OPF problem can
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Paper Year Problem Model Method Optimization
Borden et
al.[124]

2012 OPF Central Perturbation Linear Program-
ming

Borden et
al.[127]

2013 OPF Central Perturbation Quadratic Function

Rottondi
et al.[125]

2013 LS Distributed SMC Linear Optimiza-
tion

Huang et
al.[110]

2015 Generic Distributed Perturbation Quadratic Function

Mandal
[12]

2016 ED Distributed SMC Quadratic Function

Wu et
al.[128]

2016 OPF Central Perturbation Non-convex

Shelar et
al.[123]

2017 ED Central System At-
tack

Quadratic Function

Zhao et
al.[129]

2017 LS Distributed Perturbation Quadratic Function

Zhao et
al.[100]

2017 ED Distributed Injection
Attack

Quadratic Function

Yang et
al.[130]

2017 OPF Central Perturbation Quadratic Function

Zhao et
al.[131]

2018 ED Distributed Perturbation Linear Approxima-
tion

Liu et
al.[132]

2018 OPF Distributed Perturbation Quadratic Function

Mandal
et al.[13]

2018 ED Distributed SMC Non-convex
Auction-based

Sarker et
al.[133]

2018 ED Central Cloud
Framework

Linear Program-
ming

Wu et
al.[111]

2018 ED Central Perturbation Linear Program-
ming

Lu et
al.[134]

2018 Generic Distributed HE Gradient-based

Wu et
al.[135]

2019 ED Central Perturbation Linear Program-
ming

Table 7.1: Security and Privacy in ED by Work
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be found in [124, 127]. In 2012, Borden et al. in [124] proposed a privacy solu-
tion to preserve power system parameters in a centralized linear OPF problem
by obfuscating the transmitted data. In [127], authors extended their solution
of [124] for quadratic OPF problem. Wu et al. in [128] has shown a similar
masking approach for the non-convex OPF problem. Some similar perturbation
based approaches have been applied for the centralized ED problem [135, 130].
Yang et al. [130] provided a centralized solution for optimal power flow while
introducing Gaussian noise from the parties, and achieved differential privacy.
In 2018, Sarkar et al. [133] provided a general framework on privacy-preserving
centralized outsourcing framework for perturbation based ED with linear pro-
gramming optimization. Some orthogonal work related to ED security is shown
by Shelar et al. in [123], where authors performed a semantics-based attack
on the tools used by the control centers. They demonstrated the attack by
manipulating control parameters in insecure energy management software for
centralized ED calculation. The attack essentially gives false ED solutions (e.g.,
power output exceeding generator constraints), which violates the safety of the
smart grid infrastructure.

Distributed: Even though a handful of consensus-based distributed solutions
for ED have been proposed, academic efforts for privacy-preserving distributed
ED is still in the early development. As far we are aware, our work in [12] was the
first contribution towards privacy-preserving ED solution. In [12], we gave an at-
tack on the ED protocol from Yang et al. [8] and proposed a privacy-preserving
distributed protocol in the information-theoretic model with a quadratic cost
function. We will discuss the work [12] in detail in Chapter 8.

Liu et al. introduced a distributed OPF protocol with privacy leakage mit-
igation using a stochastic noise method for a radial topology [132]. Huang et
al. in [110] has given a generic distributed algorithm for constraint minimiz-
ing of a quadratic cost function and achieves differential privacy. Zhao et al.
proposed a consensus-based load scheduling algorithm by a zero-sum and noise
reduction technique [129] for privacy preservation. Furthermore, in [129], the
authors considered the LS problem as quadratic and aim to maximize a social
welfare function consisting of a profit function and cost function. Related to the
LS problem, Rottondi et al. also gave a privacy-friendly solution for distributed
LS considering a linear function by using SMC. In [100], the authors showed
a false data injection attack on consensus-based ED protocols in a distributed
setting.

In [13], we proposed a privacy-preserving distributed ED protocol for non-
convex cost function using SMC. In chapter 8, we will discuss our work in de-
tail. Further ED related work includes [131], where authors gave a leader based
distributed ED protocol with linear approximation and perturbation. More re-
cently, Lu et at. [134] has given a generic gradient-based constraint optimization
with homomorphic encryption (HE).
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7.6 Summary

We introduced the necessary ED background for our work, privacy goals, and
related works. In the next two chapters, we construct two distributed privacy
solutions for the ED problem. Our first solution is based on [8] and the other
one on [9].



Chapter 8

Privacy-preserving ED
Protocol I

8.1 Introduction

In this chapter, we construct our first privacy solution for distributed economic
dispatch (ED). We first describe a well-established distributed ED protocol in
the smart grid community from Yang et al. [8]. Then we propose the privacy-
preserving ED (PPED) protocol for distributed ED, which is based on Yang et
al.’s protocol. The presented work here is previously published in FNSS’16 [12].
To the best of our knowledge, this work was the first attempt to solve privacy
problems in the distributed ED protocols. The contributions of this work are
as follows:

• We identify which information should be private in the ED calculation
(defined in the Chapter 7, section 7.4).

• We analyze the security of distributed ED protocol from Yang et al. [8].
We show how privacy-sensitive information is leaking even under a simple
semi-honest attacker model without any collusion.

• We provide a solution to privacy problems in distributed ED by adding a
privacy layer with a secure sum protocol on top of Yang et al. [8].

• We propose an information-theoretic privacy model for this type of pro-
tocols and give a security proof for the proposed protocol in our model.

• We improve upon the version presented in FNSS’16 [12], by achieving
better communication complexity.

75
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Notation Description
G Network graph of the protocol participants
V,E Set of vertices and edges in G
n Total number of generator nodes in the network G
i, j Different UP or generator nodes in network
t Discrete time step for each round
xi(t) Output power estimate of node i at round t
Ci Cost function of node i
λi(t) Incremental cost of node i at time step t
ai, bi, ci Cost function parameters
αi, βi, γi Cost function parameters used in [8]
Di Local power demand for node i
D Total power demand in the network (D =

∑n
i=1Di)

xi, xi Minimum and maximum output power limit of generator i
yi(t) Power mismatch of node i at round t
pij , qij Different elements of admittance matrix P and Q of the network
N+
i , N

−
i In and out neighbors of node i

ε Very small public constant

Table 8.1: Nomenclature

8.2 Yang et al.’s Consensus-based ED [8]

The existing state of the art distributed ED solutions in [120] [8] use similar
structures. The Yang et al.’s ED protocol [8] is an iterative algorithm, uses
incremental cost (IC) as the consensus variable and considers quadratic cost
function.

8.2.1 Incremental Cost Criteria and Notations

Recall the ED problem defined in the Chapter 7, section 7.3. We consider, a
group of generator nodes V = {1, . . . , n} jointly aims to solve the ED problem.
At time step t, we assume, the estimated power production of the generator node
i ∈ V is xi(t). We also consider, every generator node i ∈ V has a quadratic cost
function Ci. For instance, the cost of power production of node i at time step t
is Ci(xi(t)). The total customer demand is denoted by D, which the network V
must produce and supply. Moreover, Yang et al.’s ED protocol considers a local
customer demand Di for initialization of node i such that D =

∑n
i=1Di. The

incremental cost IC is the increase in total cost resulting from an increase in
power generation. We define the IC of generator node i at time step t is λi(t).

The equal incremental cost criterion [121] met when every node has equal
incremental cost, resulting in an optimal solution for the ED problem. The
notation used in the chapter is given in Table 8.1. The incremental cost (IC) is
used as the consensus variable and every nodes aims to reach the same IC after
rounds of communication and computation.
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8.2.2 System Model

In [8], authors assumed a strongly connected network topology as a directed
graph G = (V,E). The set of vertices V = {1, . . . , n} represent the generator
nodes (or utility providers) of the network and the set of edges E ⊆ V × V
represent the communication structure between the nodes. Strongly connected
means, there exists a path between any pair of two vertices in the directed
graph. A direct edge from i to j is denoted by an ordered pair (i, j) ∈ E
and means that a node j can receive information from i. The in-neighbors
and out-neighbors of ith node are represented by N+

i = {j ∈ V |(j, i) ∈ E}
and N−i = {j ∈ V |(i, j) ∈ E} respectively. A node can receive information
from in-neighbors and send information to out-neighbors. As each node can
know its own state information, each vertex belongs to both its in-neighbors
and out-neighbors (i ∈ N+

i and i ∈ N−i ).

8.2.3 Description of the Incremental Cost Consensus Al-
gorithm (Yang et al. [8])

Here, two matrices are defined as P,Q ∈ Rn∗n based on the topology of the
graph G. Let, pij and qij be the elements of matrices P and Q respectively. All
the elements of P and Q are public. They are defined as:

pij =

{
1
|N+

i |
if j ∈ N+

i

0 otherwise

qij =

{
1
|N−

i |
if i ∈ N−j

0 otherwise

The standard cost function used for ED calculation is quadratic as shown in
(7.4). In [8], a slightly different quadratic cost function is being used (quadratic
convex).

Ci(xi) =
(xi − αi)2

2βi
+ γi (8.1)

Where αi ≤ 0, βi > 0 and γi ≤ 0. However, the cost functions (7.4) and
(8.1) are basically equivalent if we replace αi = −(bi)/(2ai), βi = 1/2ai and
γi = ci−(b2i )/(4ai). The IC of node i at a discrete time index t can be formulated
as:

λi(t) =
xi(t)− αi

βi

– Initialization: Di is the local demand associated with the node i. Hence,
the total demand is D =

∑
i∈V Di.

Initially, ∀i ∈ V , we have:

xi(0) =


xi, if xi < Di

Di, if xi ≤ Di ≤ xi
xi, if Di < xi
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λi(0) =
xi(0)− αi

βi

yi(0) = Di − xi(0)

– Main Algorithm: At round t+ 1, the variables get updated as follows:

λi(t+ 1) =
∑
j∈N+

i

pijλj(t) + εyi(t)

xi(t+ 1) = βiλi(t+ 1) + αi

yi(t+ 1) =
∑
j∈N+

i

qijyj(t)− (xi(t+ 1)− xi(t))

At each round, every node updates its own IC λi(t) from the IC values
of the previous round received from its in-neighbors N+

i . Then, each
node updates its output power xi(t) from the updated IC. Subsequently,
i calculates the mismatch yi(t) and forwards to its out-neighbors N−i for
the next round. ε is a positive scalar and controls the convergence speed.
Suppose, λ∗ is the optimal value for IC and xi

∗ is the optimal power output
of node i for ED solution. Yang et al. claimed that if ε is sufficiently small
the algorithm converges to the ED solution i.e.,

λi(t)→ λ∗, xi(t)→ xi
∗, yi(t)→ 0 as t→∞,∀i ∈ V [8, Thm. 2 and 3].

8.3 Attack on Yang et al.’s ED Protocol

In this section, we show an attack to the Yang et al.’s protocol described in the
previous section.

8.3.1 Attacker Model

We assume the attacker i is a non-colluding semi-honest node in the network,
i.e. i strictly follows the protocol but it may analyse the messages exchanged
during the execution of the protocol to gain additional information. We also
assume that the attacker knows the local demand Dj of any other node j in the
network. This assumption is realistic as the local demand Dj is basically the
aggregated demand from the consumers of j and can be a public information.
The privacy goals in distributed ED is given in section 7.4.2. An attack will be
successful if the attacker achieves full knowledge about output power, generator
constraints, and any cost function parameter corresponding to another node.

8.3.2 Privacy-sensitive Data Leakage

Let us assume that the messages are exchanged between two nodes, i (attacker)
and j (another node) where i ∈ N−j and N+

j ⊆ N
+
i .
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– Leakage of Output Power (xj): At t = 0, i receives λj(0) and yj(0).
As i knows the local power demand Dj , i can simply get the value of xj(0).
Then, i can find out the output power estimate xj(t) at every round as i
can get

∑
k∈N+

j
qjkyk(t) from each k in N+

j at round t and yj(t+ 1) from

j at round t+ 1:

xj(t+ 1) =
∑
k∈N+

j

qjkyk(t)− yj(t+ 1) + xj(t)

If the protocol ends at round T , xj(T ) is the final power output estimate
for node j. This can be easily estimated by node i.

– Leakage of Cost Function Parameters (aj, bj): i knows values of
λj(t) and xj(t), from two rounds t and t+ 1:

xj(t) = βjλj(t) + αj

xj(t+ 1) = βjλj(t+ 1) + αj

Solving two linearly independent equations, node i can find the values of
αj and βj which will give values of aj and bj .

– Leakage of Generator Constraint Parameters (xj and xj): At

initial round t = 0, i observes xj(0), so i might get one of the values of xj
or xj .

8.4 Privacy-preserving ED (PPED) Protocol

To prevent the privacy leakage, we present our PPED protocol which uses a pri-
vacy layer in each round using a secure sum protocol. We can use the consensus-
based algorithm proposed by Yang et al. [8] described in section 8.2.3 as the
basis. The secure sum protocol used in PPED is similar to the n − private
protocol for summation presented by Benaloh in [41] but uses (n−1) partitions
instead of n.

8.4.1 System Model

We consider a complete synchronous network G = (V,E) with n nodes and a
secure and reliable point to point communication channel between every node
(no eavesdropping). As G is a complete graph, every element in P and Q matrix
will be 1

n .
A practical assumption would be that all numerical values we want to compute
are fixed point values for ED algorithms. We can multiply any fixed point
elements with a suitable constant and convert them into integers. In Step 2
(next section), we convert λi(t) and yi(t) to integer and in Step 7 we convert
these values back to the fixed point domain.
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Figure 8.1: PPED protocol for n = 4

8.4.2 PPED protocol

The diagram of our PPED protocol with 4 nodes is illustrated in figure 8.1. The
protocol is outlined as follows:

– Step 1: Initialization of every node at t = 0:

xi(0) =


xi, if xi < Di

Di, if xi ≤ Di ≤ xi
xi, if Di < xi ∀i ∈ V

λi(0) =
xi(0)− αi

βi

yi(0) = Di − xi(0)

– Step 2: In step 2 to step 6 we map λi(t) and yi(t) values to integer values
and map it back in step 7. We consider ZM as the additive group of inte-
gers from 0 to M − 1 (M is a large integer such that M >

∑n
i=1 λi(t) and

M >
∑n
i=1 yi(t)). Every node i, chooses (n − 1) numbers independently

with uniform distribution from ZM , such that their sum (in modulo M) is
equal to λi(t). The same is done for breaking yi(t) into n− 1 parts where
each segment is allotted for a specific node. For example, i creates the
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segment y
(j)
i (t) for the node j. All calculations are done in modulo M .

λi(t) =
∑

∀j∈V ,j 6=i

λ
(j)
i (t)

yi(t) =
∑

∀j∈V ,j 6=i

y
(j)
i (t)

– Step 3: Every node i sends segments λ
(j)
i (t) and y

(j)
i (t) to the respective

j in the network. We can use some token to distinguish between λi(t) and
yi(t) segment values.

– Step 4: Each node i will receive a total of n−1 data segments for λ(t) and
y(t) respectively from the other n − 1 nodes in the graph. All the nodes
add all their received segments for λ(t) and y(t) separately. At node i, the
total received sums λiS4(t) and yiS4(t) is calculated as follows:

λiS4(t) =
∑

∀j∈V ,j 6=i

λ
(i)
j (t)

yiS4(t) =
∑

∀j∈V ,j 6=i

y
(i)
j (t)

– Step 5: Every node i sends λiS4(t) and yiS4(t) to the remaining n − 1
nodes in the network.

– Step 6: Every node i adds all received λjS4(t)’s from the other n−1 nodes
and its own λiS4(t). Hence, every node gets sum value without knowing
the individual inputs:∑

∀i∈V

λi(t) =
∑

∀j∈V ,j 6=i

λjS4(t) + λiS4(t)

Do the same for y(t).

– Step 7: Node i finds:

λi(t+ 1) =
1

n

∑
∀i∈V

λi(t) + εyi(t)

– Step 8: For all nodes i, the power output is calculated as:

xi(t+ 1) = βiλi(t+ 1) + αi

– Step 9: For all nodes i, the power difference is compared as:

yi(t+ 1) =
1

n

∑
∀i∈V

yi(t)− (xi(t+ 1)− xi(t))
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– Step 10: Check:
if

∀i ∈ V , yi(t+ 1) ≈ 0

then ED solution found break

else t = t+1, Repeat ∀i ∈ V Step 2 to Step 10.

Remark. (Correctness of PPED) If Yang et al.’s ED protocol [8] is correct,
the PPED protocol is also correct.

Proof. Correctness of Yang et al.’s ED protocol is shown in [8, Thm 2 and
3]. Hence the correctness of PPED protocol follows from, for any round for
t = {0, 1, . . . , T},

∑
∀i∈V λi(t) =

∑
∀j∈V ,j 6=i λ

j
S4(t) + λiS4(t) and

∑
∀i∈V yi(t) =∑

∀j∈V ,j 6=i y
j
S4(t) + yiS4(t).

8.5 Security Analysis of PPED Protocol

We consider a non-colluding semi-honest adversary for the security analysis.
The privacy model proposed in this section is information-theoretic and inspired
from [136, 32]. To formally analyze the security of PPED protocol, we define
the security model. We start with the following notation:

– Let Γ be a randomized protocol which computes the optimal solution of
the economic dispatch problem.

– At the beginning of Γ, each node i has 5 private inputs ai, bi, ci, xi and
xi without any probability space associated with them. We can represent
private inputs of all nodes as Z, a 5 × n matrix where ith column is
−→zi = (ai, bi, ci, xi, xi) and 1st row is −→za = (a1, a2, .., an−1).

– viewΓ
i is the set of information received by the ith node during an execution

of the protocol Γ.

Then protocol Γ under a non-colluding semi-honest adversary should satisfy the
following privacy property:

Definition 8.5.1. (Privacy) None of the nodes should learn anything more
than what follows from its input and allowed output from the execution of the
protocol. A non-colluding semi-honest adversary i does not learn any additional
information from the execution of Γ if the following holds:
For any two input matrices Z and W , which find the same output for the ith

generator node (i.e., if the protocol ends at round T , then xi(T ) = outputΓi (Z) =
outputΓi (W )) and agree with i such that −→zi = −→wi, the probability distributions
of the set of information received by node i are equal i.e. each information
received does not depend on any input. Hence, Pr(viewΓ

i |Z) = Pr(viewΓ
i |W )
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outputΓi consists of
∑
∀i∈V λi(t) and

∑
∀i∈V yi(t) for t = {0, 1, ..}. This

security definition guarantees in the worst case that any adversary only gains
knowledge of outputΓi . This is not the strongest security notion, where any
adversarial node i would only gain knowledge of the optimal power output
of node i. However, even with the knowledge of outputΓi or

∑
∀i∈V λi(t) and∑

∀i∈V yi(t) for t = {0, 1, ..}, the adversarial node i can not gain any information
about (aj , bj , cj , xj , xj) or the optimal xj for j 6= i. Note that even if the attacker
node i knows Dj for some other node j, the attacker can only gain knowledge
that yj(0) might be zero (if xj ≤ Dj ≤ xj then xj(0) = Dj ) and that λj(1)

might be
∑
k∈V λk(0) but everything else remains private as individual λj(t)

and yj(t) values are unknown.

Theorem 3. (PPED protocol is private against any non-colluding semi-honest
adversary i if n ≥ 4.)

Proof. The view of node j consists of (λ
(j)
i (t), λiS4

(t), y
(j)
i (t), yiS4

(t)), for i ∈
V, i 6= j, t ∈ {0, 1, . . .}. For node i, all of these are uniformly distributed with
the constraints, ∑

i∈V
λi(t) =

∑
i∈V,i 6=j

λ
(j)
i (t) +

∑
i∈V,i 6=j

λiS4
(t)

∑
i∈V

yi(t) =
∑

i∈V,i 6=j

y
(j)
i (t) +

∑
i∈V,i6=j

yiS4
(t)

This shows that the view of node i only depends on outputΓi , not on input
matrices Z or W , unless |V | = n ≤ 3 (in which case node j can recover values
of λi(t) for i 6= j).

8.5.1 Communication Cost

Now, let us see how much communication overhead is produced by our PPED
protocol compared to a non-private economic dispatch protocol. A non-private
protocol finds the solution by sending 2tn(n− 1) messages, whereas the PPED
protocol takes 4tn(n− 1). In PPED, for step 3 there are n(n− 1) messages sent
for
∑
∀i∈V λi(t) and n(n− 1) messages sent for

∑
∀i∈V y(t). In step 5, another

2n(n−1) messages are sent. Hence, the total number of communication messages
is 4tn(n − 1) for a t round PPED protocol. In terms of order of complexity,
both protocols have O(tn2).

8.6 Communication Cost Improvement for
PPED

In Yang et al. [8], at every round t, the IC λi(t) and the mismatch yi(t)
are broadcasted to other nodes. Every node needs to know

∑n
i=1 λi(t) and∑n

i=1 yi(t) at every round for ED calculation. We observe that each node could
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still calculate
∑n
i=1 λi(t) and

∑n
i=1 yi(t) with a reduced communication round

than in Yang et al. [8] for a fully connected network. The communication
rounds can be reduced by a factor of two for Yang et al. as follows:

1. Every node broadcasts only λi(0) at t = 0.

2. Every node broadcasts yi(t) at every round.

We show how every node can calculate
∑n
i=1 λi(t) and yi(t) at every round

t from the aforementioned steps:

– At first at t = 0, each node finds:
∑n
i=1 λi(0) and

∑n
i=1 yi(0).

– At t = 1, every node i finds:

λi(1) =
1

n

n∑
i=1

λi(0) + εyi(0)

Node i calculates power output:

xi(1) = βiλi(1) + αi

And the power mismatch at node i:

yi(1) =
1

n

n∑
i=1

yi(t)− (xi(1)− xi(0))

Notice that:

n∑
i=1

λi(1) =

n∑
i=1

λi(0) + ε

n∑
i=1

yi(0)

Hence, node i finds
∑n
i=1 λi(1) as i knows

∑n
i=1 λi(0),

∑n
i=1 yi(0), and

the parameter ε.

– Therefore by mathematical induction, node i can calculate
∑n
i=1 λi(t) and

yi(t) at round t.

Similarity, the communication complexity of PPED can be reduced by
a factor of two with this approach instead of the original Yang et al.
protocol. Hence, the total number of communication messages will be
2tn(n− 1) for t rounds.



8.7. SUMMARY 85

8.7 Summary

We believe the attack scenario and our privacy solution will be applicable to
other existing ED solutions. This work assumes a fully connected bidirectional
topology. It would be interesting to extend this work to a relaxed topological
constraint. Also, analyzing a stronger security notion with malicious adversaries
is a future direction. Our assumption for the cost function here is quadratic as
per the standard used by power engineers. However, the cost function could
behave differently with different requirements in the smart grid. In the next
chapter, we will analyze the security of ED solutions when the cost function
changes to non-convex.
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Chapter 9

Privacy-preserving ED
Protocol II

9.1 Introduction

In this chapter, we provide our second privacy solution for distributed ED. The
content of this chapter is previously published in [17] and [13]. We have shown
a privacy-preserving distributed ED protocol for quadratic cost function in the
previous chapter 8. In real-world smart grid scenarios, more practical consider-
ations include valve point loading effects, multiple fuel options and prohibited
operating zones. For example, to consider a valve-point loading effect, a sinu-
soidal term is added to the cost function with some non-differentiable points
which makes the cost function non-convex. More details about the non-convex
cost function for ED can be found in chapter 7, section 7.3. A realistic dis-
tributed ED solution is provided by Binetti et al. [9] for a non-smooth and
non-convex cost function. In this chapter, we aim to solve the privacy problem
in distributed ED with non-convex cost function. We use the same notations
for ED problem defined in the Chapter 7, section 7.3. The main contributions
of this work are as follows:

– We show that the ED protocol by Binetti et al. [9] leaks confidential
information of the generator nodes.

– We transform the Binetti protocol into a privacy-preserving distributed
protocol for ED calculation for smart grid systems.

– We analyze the security of our proposed protocol and give results of a
prototype implementation of our protocol.

87



88 CHAPTER 9. PRIVACY-PRESERVING ED PROTOCOL II

9.2 Binetti et al.’s ED Protocol [9]

9.2.1 System Model

We consider a power generation network consisting of a set V of m utility
providers (UPs). Each UP Pi is a generator node with its own generation
facility. The cost of power generation of a UP depends on its individual cost
function. The UPs together are responsible for producing power for the con-
sumers of a specific zone. The UPs generate power individually and feed it into
the power line to meet the demand. We assume that the communication net-
work between the UPs is time-synchronized and that each UP can send securely
and anonymously, i.e., without revealing its ID, messages to any other UP. All
power system measurements are treated as fixed-point numbers throughout our
paper.

9.2.2 Protocol Description

1 All parties in V agree on a precision parameter s
2 All parties initialize power output to meet the demand
3 while True do
4 Each party Pi sets πi(t) and µi(t):
5 if (xi ≤ xi(t) + s ≤ xi) then
6 πi(t) := Ci(xi(t) + s)− Ci(xi(t)
7 else
8 πi(t) := 0
9 if (xi ≤ xi(t)− s ≤ xi) then

10 µi(t) := Ci(xi(t))− Ci(xi(t)− s)
11 else
12 µi(t) := 0
13 Every Pi sends πi(t) (if 6= 0) and µi(t) (if 6= 0) to all other Pj)

14 Every party Pi ∈ V finds i and j such that:
15 πi(t) = min{π1(t), . . . , πm(t)}
16 µj(t) = max{µ1(t), . . . , µm(t)}
17 Every party Pi ∈ V computes δ = µj(t)− πi(t)
18 if (δ > 0) then
19 xi(t+ 1) = xi(t) + s
20 xi(t+ 1) = xi(t) + s

21 else
22 Exit
23 Increment t: t := t+ 1

24 end

Algorithm 4: Binetti et al. Protocol

Binetti et al. [9] proposed an auction-based distributed consensus protocol.
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It is a heuristic algorithm that can be shown analytically to get close to an
optimal solution. Note that this is best solution, one can expect in practice as
finding the global optimum in non-convex optimization is an NP-hard problem.
The core idea of the Binetti et al. protocol is based on a double auction [137],
where each UP can change their output power by negotiating with other UPs
and drive the overall cost towards a global minimum.

Step 1: Bids Evaluation

In the initialization phase, all parties agree on a (non-optimal) output for each
UP such that the global demand is met. Subsequently, they start a round-based
protocol where with each round t, two UPs change their production by a fixed
amount s. In order to determine the parties in question, each UP sends two
bids πi(t) and µi(t) to all participants:

πi(t) = Ci(xi(t) + s)− Ci(xi(t)) (9.1)

µi(t) = Ci(xi(t))− Ci(xi(t)− s) (9.2)

The πi(t) value denotes the estimated additional cost when increasing the power
output from xi(t) to xi(t) + s while µi(t) is the estimated cost decrease when
reducing the power production from xi(t) to xi(t)− s. No bids are placed if the
power increase or reduction violates the generator constraint equation (7.3).

Step 2: Consensus Procedure

The goal of the consensus process is to agree on the winning bids and the
winners. First, each nodes sends its own bid πi(t) (bid π) and µi(t) (bid µ) to its
neighbours. After receiving bids from the other nodes, every node updates the
current value of the winning bid (as well as the bidder) as its local information
and forwards. The node with the lowest value for πi(t) wins the bid π and the
node with the highest value for µi(t) wins the bid µ. For example, each node
achieves a consensus on the values πi,µi,i and j:

πi(t) = min
i∈V

πi(t)

µj(t) = max
i∈V

µi(t)

Step 3: Auction Resolution and Swap Operation

The winner i is the node who can generate extra s units of power at the lowest
additional cost. The winner j is the node who can save the most by reducing the
power production by s units. If the difference δ = µj(t) − πi(t) > 0, swapping
the production of s units of power will lead to a cost reduction δ. Therefore, if
δ > 0, the update rule for i and j is:

xi(t+ 1) = xi(t) + s and xj(t+ 1) = xj(t)− s (9.3)
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The algorithm iterates until no exchange of s units of power between two nodes
is possible to reduce the cost further. The demand constraint (Eq (7.2)) is
always maintained as D =

∑m
i=1 xi(t) at any time t.

9.3 Security Model

In this section, we give the attacker model, privacy goals and show how the ED
protocol by Binetti et al. leaks private information.

9.3.1 Attacker Model

We assume the grid infrastructure to be secure against outsider attackers, i.e.,
to be tamper-resistant and that no external malicious attacker can tamper with
or insert false data without being detected. In a competitive energy market,
the UPs could be malicious as well, e.g., may modify their input data to gain
maximum profit or collude with other UPs to outplay their competitors. How-
ever, such behavior is risky since a convicted cheater might face a permanent
ban from the energy market by the regulatory board. Consequently, we focus
on the honest-but-curious adversary model. An honest-but-curious adversary
will strictly follow the protocol specification but may analyze the messages ex-
changed during execution or collude with others to obtain private information
about other participants. More precisely, in the considered scenario the aim is
to derive information about the cost function and the upper and lower bounds
on the power production. We assume an honest-but-curious internal attacker
Pj that may be part of a colluding set A ⊆ V of cardinality τ in the network.

9.3.2 Privacy Goals

The main attack motivation is that the attackers are interested in any specific
UP’s business information such as the cost function, e.g. in order to be able to
choose a pricing strategy that will drive competitors out of the market. In [12],
the author pointed out the privacy sensitivity of such information and demon-
strated an attack against an existing distributed ED protocol for quadratic cost
functions. If we consider non-convex cost functions, the non-convex parameters
of the function should be also protected.

Thus, the privacy goal of our ED protocol is to protect the output power
xi(t), the generator function parameters (e.g. ai, bi, ci for a quadratic cost
function), and the generator constraints xi and xi for every participant Pi.

9.3.3 Privacy Leakage in Binetti et al.’s Protocol

In the following, we demonstrate the need for a new privacy-preserving ED
solution. To best of our knowledge, currently the most practicla real-world
distributed ED solution is given by the protocol from Binetti et al. [9]. We
show that it leaks the cost function parameters when an honest-but-curious
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adversary Pj analyzes the information received during several iterations. The
attacker Pj gets the value of πi(t) and µi(t) at t = 0:

πi(0) = Ci(xi(0) + s)− Ci(xi(0)) = 2aixi(0)s+ ais
2 + bis (9.4)

µi(0) = Ci(xi(0))− Ci(xi(0)− s) = 2aixi(0)s− ais2 + bis (9.5)

Now, subtracting the equations (9.4) and (9.5) yields

2ais
2 = πi(0)− µi(0)) =⇒ ai =

πi(0)− µi(0)

2s2
.

Hence, ai can be found as s is public and known to the attacker. Similarly,
the value of bi can be determined after a few rounds of iteration. In the case
of a non-convex cost function, we can solve a system of non-linear equations
constructed during several rounds to find the cost function parameters (e.g. with
a numerical solver). Additionally, the initial power output is shared between
the parties during the initialization which violates our privacy goals.

9.3.4 Cryptographic Building Blocks

Our solution makes use of several established cryptographic building blocks that
we recap from chapter 2, section 2.3, in the following:

SMC: Secure Multiparty Computation (SMC) allows parties to compute a
function over their input while their input values are kept private. Many
different methods to perform SMC can be found in the existing literature
[14, 15, 138, 28]. In particular, Ben-Or et al. [14] proposed a protocol (BGW
protocol in the following) that allows to compute any function f with perfect
security in the presence of τ honest-but-curious adversaries as long as τ < m

2
(section 2.3, Thm. 1).

Shamir’s Secret Sharing: The BGW protocol uses Shamir’s secret sharing
scheme [37]. In this algorithm, a secret can be divided into a number of unique
shares such that a single share does not leak any information about the secret. In
a (τ,m)-secret-sharing scheme, τ out of m shares are required to reconstruct the
secret. Shamir’s secret sharing scheme achieves information-theoretic security.

Secure Sum Protocol: A secure sum protocol calculates the addition func-
tion while keeping inputs of the parties private. A secure sum protocol can
be constructed from some standard additive secret sharing scheme or by using
some SMC (e.g. BGW) with addition gates. Some information-theoretic secure
sum protocols can be found in [28, p. 8] [41].

9.4 Privacy-preserving Binetti (PPB) Protocol

The problem with the original Binetti protocol is that the xi(0) are shared
between the parties for initialization, and cost function parameters are leaked in
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Figure 9.1: PPB Protocol Workflow

several iterations which violates our privacy goals. We thus introduce a privacy-
preserving Binetti (PPB) protocol which preserves privacy of the individual UPs
and correctly implements Binetti’s protocol.

In this section, we give a high level overview of our PPB protocol and the
intuition behind our construction. A straightforward solution would be to im-
plement Binetti’s protocol with SMC. However, here we face two challenges:

1. The Binetti protocol assumes that the UPs start with a configuration of
the values xi such that the demand is met. Consequently, we introduce a
sub-protocol Meetdemand which at the beginning privately allocates the
power output among m parties such that

∑m
i=1 xi(0) = D. Note that this

sub-protocol only allocates the power to meet the initial demand initially;
optimization of the allocation is done in a second step.

2. In the Binetti protocol, each UP learns in each round the winning parties,
i.e., the parties with the highest/lowest bids. To avoid this leakage, we in-
troduce a sub-protocol for anonymous bid submission so only the winning
parties will know if they are the winner. The sub-protocol Permutation
securely permutes the indexes of the UPs such that a party will only know
its own index but not those of the other parties.
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Input: Xi as input for every party Pi
Output: Yi for every party Pi such that total cost is minimum
Setup :

1 All parties Pi ∈ V agree on a prime field IF = Zp for the SMC
Initialization:

2 All parties run protocol Meetdemand():
(P1 : (D,m, x1, x1); . . . ;Pm : (D,m, xm, xm))→ (P1 : x1; . . . ;Pm : xm)
to get private xi s.t.

∑m
i=1 xi = D

3 Every Pi initialize xi(0) := xi
Main :

4 while True do
5 All parties run the protocol Permutation() to its permuted index:

(P1 : s1; . . . ;Pm : sm)→ (P1 : ind(i); . . . ;Pm : ind(m))
6 Every parties Pi ∈ V set πi(t) and µi(t) same as Binetti protocol

/* (See section 9.2, algorithm 4, line. 4 to 12 */

7 Each Pi creates Shamir’s secret shares [πi(t)], [µi(t)] of πi(t) and µi(t)
8 Each party Pi sends shares [πi(t)] and [µi(t)] with its index ind(i) to

other Pj ∈ V (i 6= j) through an anonymous secure channel for SMC

9 All parties Pi ∈ V run SMC to find indπ(i) and indµ(i) s.t.:

indπ(i) := Index(min(π1(t), . . . , πm(t)))
indµ(i) := Index(max(µ1(t), . . . , µm(t)))
/* Function Index() returns the associated index ind(i) if

input is πi(t) or µi(t) */

10 All parties Pi ∈ V run SMC to evaluate a binary Flag ∈ {0, 1} where
(Flag := (δ > 0)) and
δ = max(µ1(t), . . . , µm(t))−min(π1(t), . . . , πm(t))

11 if (Flag = 1) then

12 if (ind(i) = indπ(i)) then
13 xi(t+ 1) := xi(t) + s

14 if (ind(i) = indµ(i)) then
15 xi(t+ 1) := xi(t)− s
16 else
17 Exit
18 Increment t: t := t+ 1

19 end

Algorithm 5: PPB Protocol
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The workflow of our protocol is presented in Fig. 9.1. A more detailed
overview follows. Here, we use the common notation for multi-party protocols.
The expression

Π : (P1 : X1; . . . ;Pm : Xm)→ (P1 : Y1; . . . ;Pm : Ym) (9.6)

means that parties Pi commonly execute a protocol Π with with Xi and Yi being
their inputs and outputs, respectively.

At the beginning of PPB, the input Xi of each party Pi can be presented
as Xi = (Ci, xi, xi, D, s,m). Here, the cost of function Ci, generator lower limit
xi, and generator upper limit xi are private whereas demand D, the precision
parameter s and the number of participants m are known to every participant in
the network. If t is the iteration index, then the private output is Yi = xi(t) such
that the total cost

∑m
i=1 Ci(xi(t)) is minimum. The PPB protocol is formally

described in Algorithm 5. The general idea is as follows:

Step 1: Initialization At the start, all parties Pi ∈ V run the sub-protocol
Meetdemand to get the initial value of power production xi(0). The protocol
Meetdemand does not reveal the output xi(0) to other parties like in the orig-
inal Binetti protocol. Each xi(0) meets the generator constraint of Pi and the
total power production

∑m
i=1 xi(0) meets the current demand D. We describe

protocol Meetdemand in detail in sub-section 9.4.1.

Step 2: Optimization Subsequently, the parties try to find the optimal
solution xi(t) starting from xi(0) similarly to Binetti’s protocol, but using SMC.
If the concrete SMC protocol works with integer input, the fixed-point inputs
can be converted by multiplying with a scaling factor. We also use Shamir
secret sharing of the bids for the SMC input. The shared bids πi(t) and µi(t)
are denoted by [πi(t)] and [µi(t)] respectively.

Step 3: Permutation As we explained above, a direct SMC realization of the
auction will leak the winning indexes. So, instead of sending πi(t) and µi(t) bids
directly for SMC, the parties send a permuted index along with the bids through
an anonymous channel. The main auction function from Binetti is implemented
with SMC (Algorithm 5, line 10-12) where it makes sure that the function input
is kept private. The Index() function returns the associated permuted index
ind(i) if the input is πi(t) or µi(t). Henceforth, all parties after SMC will only
find out the associated index of winning parties i.e. indπ(i) and indµ(i), however
parties can not trace where the index actually came from (as it came through
anonymous channel). Only the winning parties can determine whether they
are the winner and will update accordingly like in Binetti’s protocol. Protocol
Permutation is explained in details in the sub-section 9.4.2.

It is obvious that PPD correctly implements the Binetti protocol if the pro-
tocols Meetdemand and Permutation are correct. In the following, we explain
both protocols in detail and argue their correctness before we investigate the
security in Section 9.5.
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9.4.1 The Meetdemand Protocol

The sub-protocol Meetdemand is executed at the initial stage of our PPB pro-
tocol. It allows the UPs parties to allocate their respective power production
xi such that the demand D is met, i.e.,

∑m
i=1 xi = D. We assume that∑m

i=1 xi ≤ D ≤
∑m
i=1 xi, i.e. producing the current demand D is possible

in principle. We describe in the following two different variants of Meetdemand
that aim for different tradeoffs between efficiency and privacy. Variant 1 is more
efficient as it allows to select appropriate values xi immediately. The downside
however is that each party gains information about the initial value xi(0). In
contrast, variant 2 reveals no information about the values xi(0) but requires
several iterations until a satisfying configuration has been found.

Variant I:

We denote by x :=
∑m
i=1 xi and x :=

∑m
i=1 xi the minimum and maximum

amount of power that can be produced by all parties together. We assume that
x and x are known to every party. One can use a secure sum protocol to get a
x and x without revealing the private values for xi and xi.

Furthermore, we define for each party Pi the distance between the upper
and lower bound of power production as di := xi − xi. We denote the distance
between lower and upper bound of total power production as d := x− x. Note
that d =

∑m
i=1 di.

By assumption, it holds that x ≤ D ≤ x, i.e., the demand can be met by all
parties. Thus, there exists an r such that D = x+ r · d with 0 ≤ r ≤ 1. As D,
x and x are known, the value of r is also know to every party. The strategy is
that each party Pi contributes the same portion with respect to the power they
can produce by setting its power production to xi = xi + r · di. Thus, the total
initial production is

m∑
i=1

xi =

m∑
i=1

(xi + r · di) =

m∑
i=1

xi + r · (
m∑
i=1

di) = x+ r · d = D,

i.e. the demand D is met exactly.

Variant II:

Variant I of the Meetdemand protocol is highly efficient but leaks the fraction
r of xi − xi (which in turn is secret) of each party Pi. Variant II (Algorithm
6) provides higher privacy but requires several iterations. First, each party Pi
starts with a randomly chosen xi within its range of its power production. Then,
the participants determine

∑m
i=1 xi without revealing the individual xi to each

other by using a secure sum protocol. This
∑m
i=1 xi is also random as all xi

are. Then, every party can compute the amount of additional power needed
to be allocated, i.e. ∆ =

∑m
i=1 xi − D. Note that this ∆ can be positive or

negative. If ∆ is positive (negative), the parties have to decrease (increase) the
production.
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Input: D, m, private xi and xi for every party Pi ∈ V
Output: Private xi for every party Pi ∈ V s.t.

∑m
i=1 xi = D and

xi ≤ xi ≤ xi
Meetdemand.Main:

1 Every party Pi sets a random xi where xi ≤ xi ≤ xi and k = m
2 while (|∆| > 0) do
3 All parties Pi ∈ V run a secure sum protocol to get

∑m
i=1 xi

4 Every party Pi finds: ∆ :=
∑m
i=1 xi −D

5 At every party Pi:

6 if (xi ≤ xi − ∆
k ≤ xi) then

7 Set xi := xi − ∆
k and Outputi := 1

8 if (xi − ∆
k > xi) then

9 Set xi := xi and Outputi := 0

10 if (xi − ∆
k < xi) then

11 Set xi := xi and Outputi := 0
12 All parties Pi ∈ V run a secure sum protocol to update:
13 k =

∑m
i=1Outputi

14 end

Algorithm 6: Variant II of the Meetdemand Protocol

The idea is that ideally all parties should change their power production
by the same factor ∆/k where k denotes the number of parties than can still
increase (resp. decrease) their power production. That is each party Pi checks
if the new value xi := xi − ∆

k is within its production range and updates it
accordingly if possible. Otherwise, Pi chooses the minimum (xi for positive ∆)
or maximum (xi for negative ∆) limit and doesn’t participate anymore in the
following rounds. The number k of participating parties in the next round can
be also found with a secure sum.

We quickly explain the correctness. Let ∆ be the difference between
∑
i xi

and D and k be the number of parties that can still adapt their power pro-
duction. We show that there is at least one party that can adapt its power
production so that the overall power production gets closer to the demand with
each round. Without loss of generality, let ∆ ≥ 0. Moreover, let I0 be the in-
dices of all parties that already produce the minimum power and I1 the indexes
of k parties that still participate.

Assume that it holds for all Pi with i ∈ I1 that xi− ∆
k < xi, that is no party

can further update its power production. Then it follows by definition of ∆ that

D =

m∑
i=1

xi−∆ =
∑
i∈I0

xi+
∑
i∈I1

xi−∆ =
∑
i∈I0

xi+
∑
i∈I1

(xi−
∆

k
) <

∑
i∈I0

xi+
∑
i∈I1

xi = x.

That is, the demand D would be outside of the range that can be produced,
violating our initial assumption. Consequently, there needs to be at least one
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party Pi that can further update the power production as long as ∆ 6= 0. This
shows that eventually the demand will be met.

9.4.2 The Permutation Protocol

This sub-protocol allows to shuffle the indexes ind(i) of the parties to allow to
submit their bids anonymously during SMC. Formally, each of the m parties
{P1, . . . , Pm} gets one index ind(i) ∈ {1, . . . ,m} such that

1. each Pi knows its index ind(i) but does not know ind(j) for j 6= i.

2. ∃ a bijective function f : {ind(1), . . . , ind(m)} → {1, . . . ,m}.

Permutation.Setup:
1 All parties agree on a cyclic group (G, .) with generator g of order q, q

being prime
2 Set ind(i) := i for i = 1, . . . ,m
3 Each party Pi chooses a secret value si ∈ {2, . . . , q − 1} and computes

hi := gsi

4 Each party Pi publishes its hi to all parties
Permutation.Main(g, [h1, . . . , hm]):

5 for i = 1 to m do
6 Party Pi takes the current parameter ((g, [h1, . . . , hm])
7 Pi chooses a random value r ∈ {2, . . . , q − 1} and a permutation

Π : {1, . . . ,m} → {1, . . . ,m} to shuffle the indexes
8 Pi updates: (g, [h1, . . . , hm]) ← (gr, [hΠ[1]

r, . . . , hΠ[m]
r]

9 Party Pi publishes (g, [h1, . . . , hm]) to all parties and all parties take
it as the current parameter

10 end
11 for i = 1 to m do
12 Party Pi takes the current parameter ((g, [h1, . . . , hm]
13 Pi computes h∗ := gsi

14 Pi finds index j ∈ {1, . . . ,m} such that hj = h∗

15 Pi sets ind(i) = j

16 end

Algorithm 7: Protocol Permutation

The details of the protocol are given in Algorithm 7. It uses the Decisional
Diffie-Hellman Problem (DDH) [139] to securely permute a sequence of indexes.
Recall that the DDH is to distinguish tuples (ga, gb, gab) and (ga, gb, gc) from
each other when a, b and c are chosen randomly and independently from Zq and
is considered to be hard.

First, all parties agree on a cyclic group (G, .) with generator g of order q for
a sufficiently large prime q. Every party Pi chooses a secret si ∈ {2, . . . , q − 1}
and computes hi := gsi . The initial sequence of indexes is then specified by
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(g, [h1, . . . , hm]). Then, the parties round-wise permute the positions of the
values hi (via some randomly chosen permutation Π : {1, . . . ,m} → {1, . . . ,m})
and update each hi to h∗i := hri and g to gr for some random number r ∈
{2, . . . , q − 1} as explained in lines 6 − 9 of Algorithm 7. After each party
applied the transformation, the final result (g∗, [h∗1, . . . , h

∗
m]) is published and

made available to all parties.
Then, each party Pi can determine its new location, i.e., index ind(i), by

finding the index such that h∗ind(i) = (g∗)si . Such a location exists as it holds

that logg(hi) = loggr (hri ) for each i. Moreover, if q is large, it holds with
overwhelming probability that the values hi are pairwise different. Due to the
fact that the mapping h 7→ hr is a permutation (as q is prime), it follows that
the updated values hri are pairwise different as well.

With respect to security, assume an adversary who aims to link two
values from two successive rounds. That is, given (g, [h1, . . . , hm]) and
(g∗, [h∗1, . . . , h

∗
m]), the adversary aims to decide for any two values hi and h∗j

whether h∗j is the updated value of hi, i.e., if they are “linked”. Note that this
is equivalent to decide if (g∗, hi, h

∗
j ) has the form (gr, gsi , gr·si) for unknown val-

ues r and si, which means to solve an instance of the DDH. As this is assumed
to be hard (for large values of q), it follows that an attacker cannot track the
values hi and in particular cannot determine the new index of other parties.

9.4.3 SMC Protocols

In every iteration t in PPB, the parties can run some SMC protocols (e.g., BGW
[14] or SPDZ [138]) to evaluate the following functions:

1. Find the permuted index of the party who wins π auction.

2. Find the permuted index of the party who wins µ auction.

3. Find the value of Flag ∈ {0, 1} which tells whether δ > 0 or not.

9.5 Security Analysis of PPB Protocol

In the following, we discuss the information that is leaked by PPB. Recall that
its main components are the protocols Meetdemand, Permutation, and the SMC
protocols.

With respect to the latter, it is known that they reveal no information beyond
what can be learned from the individual inputs and outputs. Likewise, we
showed that Permutation leaks no information about the new index as long as
the DDH instance is hard.

The only potential critical component is Meetdemand (where we focus on the
more secure variant II). Here, any party learns the sequence by which it reaches
the solution, that is for each round the value k, i.e. the number of participating
parties in each iteration, and the

∑m
i=1 xi of values in each iteration. However,

as the values xi are randomly chosen at the beginning, we conjecture that this
leakage is not harmful.
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No. of UPs (m) Average time (ms)

2 557
5 5484
10 11707
20 24186
50 34677
100 49986

Table 9.1: Performance of single round SMC execution with BGW

9.6 Implementation Observation

We have implemented a proof of concept prototype of our privacy-preserving
protocol (single round). We used the BGW-based protocol suite from the Fresco
Framework [140], a Java framework for secure computation. We consider 3 ded-
icated SMC nodes in our setting. Having a small number of computational
nodes is recommended as the computational effort for SMC increases dramati-
cally with increasing the number of nodes. As the security bound for BGW for
τ honest-but-curious colluding adversary is τ < m

2 , we choose τ = 1 for 3 SMC
servers. We have performed our tests on a single 64 bit server with an Intel
Core i5-4590 processor (4 cores) with 3.30 GHz and 8 GB RAM. We run our
protocol locally for the 3 party setting with each instance run on a single core.
Table 9.1 gives us the performance metrics for different numbers of UPs for a
single round SMC execution as described in subsection 9.4.3.

We believe the results are reasonably good since in a realistic market the
number m is small. Moreover, the frequency of ED calculation in current set-up
ranges from hourly to once every few days. A report [141] by the Federal Energy
Regulatory Commission (FERC) of California states that currently, economic
dispatch is calculated hourly basis in a power grid. In the state of Baden
Württemberg, Germany, there are 12 main distributed system operators (DSO)
[142]. Now, if these 12 DSOs want to calculate ED privately on an hourly
basis, our PPB protocol can run around 250-300 rounds using the prototype
implementation and achieve a reasonably optimal solution. Also, we believe that
performance results can be improved significantly by using distributed cloud
servers with multiple cores, parallel processing of the data, and careful design
of the algorithms.

9.7 Summary

We made the first step towards privacy-preserving solutions for the distributed
economic dispatch problem. We hope that this works initiates further research
into this area. In fact, there are several directions for improving of our protocol
and its usability in a real world application.

For instance, the leakage of the Meetdemand protocol requires further inves-
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tigation. While we do not expect any harmful leakage due to the fact that the
starting values are randomly chosen, this does not exclude such possibility.

Another direction is to improve the implementation of the protocols, e.g.,
by using hybrid SMC protocols [138], by using some optimized technique for
secure comparison functions [143], or by exploiting parallel processing of multi-
plications for bit-wise comparison.

Our distributed privacy solution ED is designed for a non-competitive mar-
ket. The next step would be to design a privacy ED solution in a competitive
market and against malicious attackers.



Chapter 10

Conclusions

In this thesis, we studied a few popular consensus-based protocols in blockchain
and smart grid in the light of security and privacy.

We started with Part I, where we gave some preliminaries for this disser-
tation. First, we briefly overviewed the traditional consensus concepts and
mentioned important results. Then we gave readers some mathematics and
cryptography basis on graph theory and algebraic structures. Finally, in Part
I, we describe a well-known cryptographic primitive secret sharing based secure
multiparty computation (SMC).

In part II, we first discussed blockchain-related concepts. Then we briefly
reviewed different blockchain consensus algorithms with the goal of byzantine
tolerant. We saw that these blockchain consensus algorithms are often relaxed
(e.g., eventual synchrony) than the traditional ones due to their practical spec-
ifications and criteria. Henceforth, new research area has emerged in the last
few years as these algorithms are non-standard and solving its security prob-
lems brings new challenges. To the best of our knowledge, we made the first
academic effort to analyze the security provisions of one of the most popular
blockchain payment system, Ripple. In chapter 4, we describe the Ripple net-
work, its functionality, and provided a survey of current Ripple related research
results. In chapter 5, we discussed the Ripple’s consensus protocol in detail and
provided our security analysis. We showed that the Ripple consensus protocol
parameters [5] do not prevent a fork in the system. We then provided the safety
conditions for no fork in the system. Our findings led to further analysis of
the protocol in [81], and further confirmed the centralized deployment of the
protocol. We hope our findings will facilitate the need for rigorous analysis and
improvement for the decentralization of Ripple consensus protocol.

Chapter 6 of part III introduced a basic overview of the smart grid, its agents
and components, security and privacy problems, and different privacy-enhancing
technologies. In chapter 7, we described the formulation of a fundamental op-
timization problem in smart grid known as Economic Dispatch (ED), and sur-
veyed its security and privacy-related works. In chapter 8 and 9, we showed
attacks against state of the arts distributed consensus-based ED solutions and

101
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provided two privacy solutions based on Yang et al. (2013) and Binetti et al.
(2014) with SMC primitives . Our both privacy solutions assumed a semi-honest
attacker model and a fully connected topology. Future work includes the de-
sign of privacy-preserving ED protocols in a stronger attacker model, in relaxed
network topology, and performance improvements.
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