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Abstract

Cross-domain knowledge bases are increasingly used for a large variety of appli-
cations. As the usefulness of a knowledge base for many of these applications
increases with its completeness, augmenting knowledge bases with new knowl-
edge is an important task. A source for this new knowledge could be in the form
of web tables, which are relational HTML tables extracted from the Web.

This thesis researches data integration methods for cross-domain knowledge
base augmentation from web tables. Existing methods have focused on the task of
slot filling static data. We research methods that additionally enable augmentation
in the form of slot filling time-dependent data and entity expansion.

When augmenting knowledge bases using time-dependent web table data, we
require time-aware fusion methods. They identify from a set of conflicting web
table values the one that is valid given a certain temporal scope. A primary concern
of time-aware fusion is therefore the estimation of temporal scope annotations,
which web table data lacks. We introduce two time-aware fusion approaches. In
the first, we extract timestamps from the table and its context to exploit as temporal
scopes, additionally introducing approaches to reduce the sparsity and noisiness of
these timestamps. We introduce a second time-aware fusion method that exploits a
temporal knowledge base to propagate temporal scopes to web table data, reducing
the dependence on noisy and sparse timestamps.

Entity expansion enriches a knowledge base with previously unknown long-
tail entities. It is a task that to our knowledge has not been researched before.
We introduce the Long-Tail Entity Extraction Pipeline, the first system that can
perform entity expansion from web table data. The pipeline works by employing
identity resolution twice, once to disambiguate between entity occurrences within
web tables, and once between entities created from web tables and existing entities
in the knowledge base. In addition to identifying new long-tail entities, the pipeline
also creates their descriptions according to the knowledge base schema.

By running the pipeline on a large-scale web table corpus, we profile the po-
tential of web tables for the task of entity expansion. We find, that given certain
classes, we can enrich a knowledge base with tens and even hundreds of thousands
new entities and corresponding facts.

Finally, we introduce a weak supervision approach for long-tail entity extrac-
tion, where supervision in the form of a large number of manually labeled matching
and non-matching pairs is substituted with a small set of bold matching rules build
using the knowledge base schema. Using this, we can reduce the supervision effort
required to train our pipeline to enable cross-domain entity expansion at web-scale.

In the context of this research, we created and published two datasets. The
Time-Dependent Ground Truth contains time-dependent knowledge with more than
one million temporal facts and corresponding temporal scope annotations. It could
potentially be employed for a large variety of tasks that consider the temporal as-
pect of data. We also built the Web Tables for Long-Tail Entity Extraction gold
standard, the first benchmark for the task of entity expansion from web tables.



Zusammenfassung

Domänenübergreifende Wissensbasen genießen eine stetig steigende Anwendung.
Da für viele Anwendungen der Nutzen einer Wissensbasis mit der Vollständigkeit
steigt, ist die Vervollständigung von Wissensbasen mit neuem Wissen eine wichtige
Problemstellung. Eine mögliche Quelle für solch neues Wissen sind sogenannte
Webtabellen, relationale HTML-Tabellen, die aus dem Web gewonnen werden.

Diese Arbeit handelt um Datenintegrationsmethoden für die Erweiterung von
Wissensbasen mittels Webtabellen. Bestehende Methoden schränken sich auf Slot-
Filling statischer Daten ein. Wir erforschen in dieser Arbeit Methoden, welche
zusätzlich Slot-Filling zeitabhängiger Daten und Entity-Expansion ermöglichen.

Für das Slot-Filling zeitabhängiger Daten benötigen wir zeitbewusste Fusions-
methoden. Diese erkennen zwischen widersprüchlichen Werten den Wert, welcher
für einen bestimmten Zeitrahmen gültig ist. Zeitbewusste Fusionsmethoden arbei-
ten deshalb primär daran, Zeitrahmen zu erkennen, welche in Webtabellen fehlen.
Wir führen zwei Methoden zur zeitbewussten Fusion ein. In der ersten extrahieren
wir Zeitstempel von Webtabellen und deren Webseiten, um diese als Zeitrahmen
einzusetzen. Ebenfalls erforschen wir Herangehensweisen, welche die Unvollstän-
digkeit und die Ungenauigkeit dieser Zeitstempel reduzieren. Die zweite Methode
propagiert Zeitrahmen von einer temporalen Wissensbasis zu Webtabellen, und re-
duziert dabei die Abhängigkeit von unvollständigen und ungenauen Zeitstempeln.

Entity-Expansion-Methoden erweitern eine Wissensbasis mit neuen noch un-
bekannten Long-Tail-Entitäten. Wir führen die Long-Tail Entity Extraction Pipe-
line ein, das erste System, welches Entity-Expansion aus Webtabellen ermöglicht.
Die Pipeline identifiziert neuartige Entitäten indem sie Duplikatenerkennung zwei-
fach durchführt, zuerst, um zwischen Erwähnungen von Entitäten in den Webtabel-
len zu unterscheiden, und dann, um zwischen aus Webtabellen geschaffenen Entitä-
ten und bestehenden Entitäten in der Wissensbasis zu unterscheiden. Die Pipeline
erkennt nicht nur neue Long-Tail-Entitäten, sondern verfasst auch ihre Beschrei-
bungen gemäß dem Schema der Wissensbasis.

Wir messen durch das Ausführen der Pipeline auf einen umfassenden Webta-
bellenkorpus die Eignung von Webtabellen für Entity-Expansion. Wir stellen fest,
dass wir je nach Klasse die Wissensbasis mit zehn- oder gar hunderttausenden neu-
en Entitäten erweitern können.

Zuletzt erarbeiten wir einen Ansatz zur schwachen Überwachung für Long-
Tail-Entitäten-Extraktion. Dieser ersetzt Überwachung durch eine hohe Anzahl
manuell annotierter Paare mit einer kleinen Anzahl grober Matching-Regeln, die
auf das Schema der Wissensbasis aufbauen. Dies reduziert den Überwachungsauf-
wand und ermöglicht automatisiertes und domänenunabhängiges Entity-Expansion.

Im Rahmen dieser Arbeit haben wir zwei Datensätze erstellt und veröffent-
licht. Die Time-Dependent Ground Truth enthält zeitabhängige Daten mit mehr als
eine Million zeitabhängiger Fakten und Zeitrahmen. Auch haben wir den Web Ta-
bles for Long-Tail Entity Extraction Goldstandard veröffentlicht, welcher als erster
Benchmark für Entity-Expansion aus Webtabellen dient.
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Chapter 1

Introduction

Cross-domain knowledge bases cover a large amount of structured data about enti-
ties from varying topical domains within a homogeneous data model. One example
of such a knowledge base is DBpedia [Lehmann et al., 2015]. It contains more than
735 thousand geographical places, including cities, mountains, and landmarks, 241
thousand organizations, including companies, universities and sports teams, 1.445
million living and historic persons, 87 thousand movies, 123 thousand music al-
bums and 251 thousand animal species. It describes these entities with hundreds
of millions of statements and facts.1

Yet, these knowledge bases are in no way complete. Many knowledge bases
like DBpedia and YAGO [Hoffart et al., 2013] are extracted from Wikipedia. Their
coverage is therefore limited to entities covered by the Wikipedia notability crite-
ria [Oulabi and Bizer, 2019a]. Other knowledge bases, like Freebase and Wikidata,
are manually curated. Their coverage might be limited to head knowledge, i.e. such
knowledge that is popular and well-known, whereas their coverage of less common
knowledge, i.e. from the long-tail, might be low [Dong et al., 2014a].

This thesis is concerned with completing an existing knowledge base, like DB-
pedia, with long-tail knowledge in the form of new entities and facts. In the context
of knowledge base completion, we term any knowledge covered by the knowledge
base as head knowledge, whereas any knowledge that is not covered as long-tail
knowledge. This definition is based on the assumption that knowledge bases, like
DBpedia, already cover notable entities and facts.

One approach to knowledge base completion is the integration of knowledge
from external data sources [Paulheim, 2017]. Web tables [Cafarella et al., 2008b,
Cafarella et al., 2008a,Lehmberg et al., 2016] are relational HTML tables extracted
from the Web. They contain large amounts of structured information, covering a
wide range of topics, and potentially describing long-tail knowledge. Web tables
are being employed for an increasing number of applications, including set ex-
pansion [Wang et al., 2015], question answering [Sun et al., 2016], table exten-
sion [Zhang and Balog, 2017], and also knowledge base construction and comple-

1https://wiki.dbpedia.org/data-set-2014, accessed 2020-01-16

1

https://wiki.dbpedia.org/data-set-2014
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P1 P2 P3 P4 … PN ? ? ? …

E1 ? ? ? F F F ? ? ? ?

E2 F ? F F ? F ? ? ? ?

E3 F F F F F F ? ? ? ?

… F F ? F F F ? ? ? ?

Em ? F ? ? ? F ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

… ? ? ? ? ? ? ? ? ? ?

P1 Known Property

? Missing Property

E1 Known Entity

? Missing Entity

F Known Fact

? Missing Fact

Entity Expansion
add new entities and 
corresponding facts

Schema Expansion
add new properties and corresponding facts

Slot Filling
add new facts for 

existing entities and 
existing properties

Figure 1.1: Three types of knowledge base augmentation tasks.

tion [Dong et al., 2014a, Sekhavat et al., 2014]. Web tables are thus a promising
external source for the task of augmenting cross-domain knowledge bases.

Figure 1.1 outlines three possible knowledge base augmentation tasks through
the view of a single topical class of the knowledge base. The rows E1 to Em
describe existing entities of that class in the knowledge base using facts for the
existing properties P1 to Pn of the schema of that class. A knowledge base does
not necessarily cover facts for all combinations of entities and properties [Cao et al.,
2020]. The task of augmenting the knowledge base with those facts is termed slot
filling [Surdeanu, 2013]. Adding new and previously unknown long-tail entities to
the knowledge base is termed entity expansion, while adding new and previously
unknown properties is termed schema expansion.

Table 1.1 shows for a selection of DBpedia classes the densities of head prop-
erties, which we define as properties that have at least a density of 30%. We find
that overall fact density for existing entities is limited, ranging between 60% and
75%. This shows that a large number of new facts can be added to the knowledge
base through slot filling.

Table 1.2 additionally compares for a set of classes the number of entities de-
scribed in DBpedia with the number of entities described in topic-specific data
sources. We show numbers for musical artists, musical recordings and Ameri-
can football players, and compare the numbers in DBpedia to the numbers in Mu-
sicBrainz2 and The Football Database3. We find that the number of entities covered
in DBpedia is much lower, which shows that we can potentially augment DBpedia
with new previously unknown entities through entity expansion.

In slot filling, a primary problem is truth discovery, i.e. finding the correct

2https://musicbrainz.org/
3https://www.footballdb.com/

https://musicbrainz.org/
https://www.footballdb.com/
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Table 1.1: Average density of head properties for three classes within DBpedia.

Types # of Entities Head Properties Avg. Density

GridironFootballPlayer 20,751 11 60.16%
Song / Single 52,533 8 75.05%
Settlement 468,986 5 61.59%

Table 1.2: Number of entities in DBpedia compared to domain-specific datasets.

Source Entity Type # of Entities

DBpedia MusicalArtist 45,107
MusicBrainz Artists 1,501,435

DBpedia Song / Single 52,533
MusicBrainz Recordings 20,520,333

DBpedia AmericanFootballPlayer 13,907
The Football Database Players 32,560

value given a set of conflicting inputs. This problem can be handled by using data
fusion methods, which have been studied extensively in the related work [Dong
and Srivastava, 2015b,Dong et al., 2013,Yin et al., 2008]. However, in knowledge
bases there exists time-dependent data, where the validity of a fact is dependent
on a certain temporal scope, i.e. a point in time or a time range. Slot filling time-
dependent data requires fusion methods that are time-aware [Dong et al., 2016].
We find that there is a lack of time-aware fusion methods for web table data.

Entity expansion requires long-tail entity extraction methods, which identify
new entities not yet part of the knowledge base by exploiting an external source.
They also create for these entities descriptions according to the knowledge base
schema. We find that there is a lack of methods for long-tail entity extraction.

This thesis investigates and attempts to overcome the challenges of augmenting
a cross-domain knowledge base using web table data. The focus hereby lies on the
two tasks of time-aware fusion and long-tail entity extraction.

For time-aware fusion, we first investigate the use of timestamps found in a
table and its context. We develop TT-Weighting, a time-aware fusion method that
considers the locations from which timestamps are extracted to propagate times-
tamps along them and to exploit their relationship to the slot being filled. We then
introduce Timed-KBT, a time-aware fusion method that instead of using times-
tamps, derives temporal scopes by exploiting the overlap of web table data with a
temporal knowledge base, as such, overcoming the dependence on timestamps.

In regard to the second task, we introduce the Long-Tail Entity Extraction
Pipeline, the first system that can find new entities and compile their descriptions
from a large corpus of heterogeneous web tables. The pipeline consists of various
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components, including schema matching, row clustering, entity creation, and new
detection. We run the pipeline on a large-scale web table corpus and find that, given
the class, we can extract tens and even hundreds of thousands new entities and cor-
responding facts. The pipeline however requires manually labeled training data
for each class of the knowledge base. We therefore introduce a weak supervision
approach that requires per class only a small set of easy-to-create bold matching
rules, which allows us to run entity expansion from web tables at web-scale.

1.1 Motivation

In recent years, the importance and relevance of knowledge bases has notably in-
creased. This is shown by the fact, that large tech companies, such as Google,
Microsoft, Yahoo!, and Facebook, have created their own knowledge bases and
that the "use of these knowledge graphs [i.e. bases] is now the norm rather than the
exception" [Mika et al., 2014]. The primary reason for the importance of cross-
domain knowledge bases is the large range of applications they can be employed
for [Lehmann et al., 2015, Mendes et al., 2012]. Among them are:

• Web search: knowledge bases can be used by search engines to enhance
search results. Google for example uses the Google Knowledge Graph to
understand search queries more effectively, provide summaries in addition
to search results, and link to information and entities related to the search.4

• Data mining: knowledge bases are increasingly being used as background
knowledge for data mining. An example of this is the RapidMiner Linked
Open Data Extension. It automatically connects local datasets with knowl-
edge bases like DBpedia to gain better insights into certain anomalies in the
data [Ristoski et al., 2015].

• Natural language processing: knowledge bases can be used to support nat-
ural language processing tasks. These include for example:

– Question answering: knowledge bases can be used in answering natu-
ral language questions to serve information needs [Ferrucci et al., 2010,
Bao et al., 2014, Bordes et al., 2014, Yao and Van Durme, 2014, Wang
et al., 2014].

– Named entity recognition and disambiguation: a knowledge base
can be used to detect named entities within text, disambiguate them and
annotate them with a corresponding entity in the knowledge base. An
example of such a system is DBpedia Spotlight [Daiber et al., 2013].

• Distant supervision: knowledge bases can be used to reduce supervision
effort for learning tasks. They have e.g. been used to distantly supervise

4https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html,
accessed 2019-08-26.

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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relation extraction from text [Mintz et al., 2009] and knowledge extraction
from semi-structured web data [Lockard et al., 2018, Lockard et al., 2019].

• Recommender systems: knowledge bases can also be used as background
knowledge to increase the effectiveness of recommender systems. They have
e.g. been used to provide semantic representations for items, allowing the
exploitation of implicit in addition to explicit relationships in collaborative
filtering [Zhang et al., 2016] and to attach semantics to hidden layers of
neural networks used for recommendations [Bellini et al., 2017].

• Integrating data from e-shops: a knowledge base that covers products can
be used to match offers from different online shops, e.g. for finding the offer
with the lowest price [Petrovski et al., 2017, Primpeli and Bizer, 2019].

The usefulness of a knowledge base is improved by refining it, which can
be done by either correcting errors within the knowledge base, or by extending
it [Paulheim, 2017]. In this thesis, we are concerned with refining knowledge bases
through augmentation from web table data.

1.2 Alternative Augmentation Approaches

This work is concerned with augmenting a cross-domain knowledge base using
external data in the form of web tables. However, there exist ways of extending a
knowledge base without needing an external data source. This section will briefly
outline these approaches and compare them to external knowledge base augmen-
tation. Primarily, these are internal knowledge base completion methods. We will
however also briefly discuss missing data imputation.

Internal Knowledge Base Completion and Relation Prediction

There exist many approaches for internal knowledge base completion. Unlike ex-
ternal approaches, they rely only on the knowledge already contained in the knowl-
edge base. There exist for example symbolic approaches, most prominently log-
ical rule learning [Galárraga et al., 2013, Galárraga et al., 2015, Meilicke et al.,
2019b, Meilicke et al., 2019a]. There are also subsymbolic or latent approaches,
i.e. using regression [Popescul et al., 2003], knowledge graph embeddings [Bordes
et al., 2013, Wang et al., 2017] or neural tensor networks [Socher et al., 2013].

However, these works suffer from one common disadvantage. They can be only
used to predict knowledge regarding relations. They can not be used to complete
a knowledge base with literal facts, nor can they add new long-tail entities to a
class of the knowledge base. While some authors have used literal facts in their
methodology, they still can only predict relations [Wang and Huang, 2019].

Additionally, not all types of relations can be predicted. Socher et al. [Socher
et al., 2013] introduce a popular approach for internal knowledge base completion
using neural tensor networks. In their evaluation set, they make use of the topical
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class People from Freebase, from which they however exclude six relation prop-
erties, which they deem too difficult for relation prediction. Among the removed
properties are for example place of birth, spouse and parents.

For enriching a knowledge base with literal facts, difficult relations, or new
entities, we can therefore not rely solely on the knowledge already present within
the knowledge base. This is likely because internal knowledge base completion
depends on the knowledge to have some form of regularity, which is possibly not
the case for these tasks. As such, we require an external source, e.g. in the form of
web table data, that explicitly states the knowledge to be added.

Ho et al. introduce a rule-based internal knowledge base completion approach,
where they exploit external sources during rule learning and prediction [Ho et al.,
2018]. However, their method is still only able to perform relation prediction. Clas-
sifying methods solely on whether they use an external source or not is therefore
insufficient to fully differentiate between knowledge base completion approaches.
We believe that a differentiation based on methodology is more appropriate.

In this thesis, we use data integration methods, whereas the approaches de-
scribed above make use of prediction. Prediction has its advantages. It does not
need new knowledge to be explicitly stated, which could allow it to achieve a high
coverage in some enrichment tasks. Data integration on the other hand requires
new knowledge to be explicitly stated in a source. However, it could potentially
enrich a knowledge bases with literals, difficult relations, and, as we show in this
work, long-tail entities.

Missing Data Imputation

There exist in the areas of data mining and statistical analysis approaches to impute
missing data. They can add missing values e.g. by using a measure of central
tendency, i.e. the mean or the median [Han et al., 2011], machine learning, i.e.
regression for continuous values and classification for categorical values, [Larose,
2014], or Bayesian inference [Little, 2020].

While these approaches could potentially be used to enrich knowledge bases
with literal values, they have not been applied in the area of knowledge completion.
They are used in data mining as a pre-processing step [Han et al., 2011], while in
statistical analysis they are employed to reduce the negative effect of missing data,
e.g. in the form of bias [Kang, 2013]. Their use might be limited for knowledge
base augmentation, as imputed values are by design only estimates. This conflicts
with the objective of knowledge bases to contain accurate knowledge.

1.3 Contributions

The contributions of this thesis are the following:

1. We profile extensively the topical domains within the publicly available Web
Data Commons 2012 web table corpus. We additionally evaluate the poten-
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tial of this corpus for slot filling a knowledge base using Knowledge-Based
Trust (KBT), a state-of-the-art fusion method. Existing works profiled either
small and not representative corpora or non-public corpora owned by large
search engine companies. This research is a joint contribution, as it was un-
dertaken with other researchers from the Data and Web Science Group at the
University of Mannheim.

2. TT-Weighting, a time-aware fusion method that exploits timestamps found in
and around a web table. The approach learns relationships between the loca-
tions from which timestamps were extracted and a knowledge base property.
Using timestamp locations, it also propagates timestamps between web ta-
ble values. We combine these approaches with KBT to yield an effective
time-aware fusion method. Previous works do not consider the effect of the
locations of timestamps. They also assign and propagate timestamps solely
by web table columns, instead of by web table values.

3. Timed-KBT, a time-aware fusion method that uses KBT to estimate the tem-
poral scopes of web table data given its overlap with a temporal knowledge
base. Unlike previous works on time-aware fusion, Timed-KBT is indepen-
dent from timestamps extracted from the web table or its context.

4. The Long-Tail Entity Extraction (LTEE) Pipeline, the first system that uses
web tables to extract previously unknown long-tail entities along with their
descriptions. The pipeline is made up of various components, which include
schema matching, row clustering, entity creation and new detection. Related
tasks presented in existing research are unsuitable for entity expansion, as
they were neither concerned with creating descriptions for new entities, nor
with fully disambiguating new entities among each other.

5. Using the LTEE Pipeline, we provide the first large-scale profiling of the
potential of web tables for the task of entity expansion. We investigate the
number of new entities and corresponding facts we can add to a cross-domain
knowledge base and additionally provide an extensive summary of lessons
learned for long-tail entity extraction from web table data.

6. A weak supervision approach for long-tail entity extraction, where class-
specific manually labeled data in the form of positive and negative entity
matches is substituted with a set of class-specific bold matching rules. Com-
pared to previous weak supervision approaches, our rules are easy to create,
and we only require a small set of rules for each class. This is important,
given the large number of classes within a cross-domain knowledge base.

7. We create and publish two datasets. The Time-Dependent Ground Truth
(TDGT) is a dataset that is useful for tasks that consider the time-aspect
of data. The Web Tables for Long-Tail Entity Extraction (T4LTE) dataset is
the first gold standard for the evaluation of long-tail entity extraction from
web tables. It acts as a benchmark when used with our experimental setup.
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1.4 Outline

This section summarizes the content of each chapter within this thesis.

Chapter 2: Cross-Domain Knowledge Bases. This chapter introduces cross-
domain knowledge bases, what they are, and what allows them to be useful for
many tasks. It then describes existing knowledge bases, focusing especially on
how they were constructed. Finally, this chapter describes in-depth DBpedia, high-
lighting its usefulness for research purposes.

Chapter 3: Web Tables. This chapter provides an introduction to web tables.
It first describes web tables within the broader context of unstructured and struc-
tured data found on the Web. It then highlights why web tables are especially
interesting for cross-domain knowledge base augmentation, while also elaborating
the potential challenges of working with web tables. Furthermore, it summarizes
the applications that web tables have already been used for. It finally discusses
methods of web table corpus extraction and describes the web table corpora made
publicly available by the Web Data Commons (WDC) project.

Chapter 4: Data Integration Methods. Augmenting a knowledge base with data
extracted from web tables is a data integration task. This chapter investigates the
data integration methods required for this task. It first introduces traditional data in-
tegration methods, and then describes state-of-the-art methods used for integrating
web data and web tables. The chapter then highlights how existing data integration
methods are not sufficient for slot filling time-dependent data and entity expansion
from web tables. Finally, the chapter introduces a collection of frameworks and
methods for data integration that we use throughout this thesis.

Chapter 5: Web Table Profiling. This chapter profiles the potential of web tables
for augmenting a cross-domain knowledge base. For this, we match the publicly
available 2012 WDC web table corpus to DBpedia. Based on the matching results,
we report detailed statistics about classes, properties, and entities. We focus in this
chapter on profiling the number of slots in DBpedia that could be filled using web
table data. In order to estimate the quality of newly filled slots, we use the Local
Closed-World Assumption, which we first confirm empirically. We additionally
compare three data fusion strategies and conclude that Knowledge-Based Trust
outperforms PageRank and voting-based fusion.

Chapter 6: Exploiting Timestamps for Time-Aware Fusion. This chapter in-
troduces TT-Weighting, a time-aware fusion method that exploits timestamps that
appear in different locations in the table and its context. These timestamps are
however potentially sparse and noisy. As such, we introduce an approach to prop-
agate timestamps based on their location between values to reduce sparsity, and
train machine learning models that weight the importance of timestamp locations
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given a certain property of the knowledge base to counteract their noisiness. We
investigate the extent to which the performance of static fusion strategies that rely
on voting, PageRank, and Knowledge-Based Trust can be improved by incorpo-
rating our approaches to exploiting timestamp information. We evaluate the data
fusion strategies using a large public corpus of web tables and a ground truth that
covers time-dependent properties. We find that our methods effectively propagate
timestamps and judge the importance of timestamp locations, as we are able to
increase average fusion F1 by 5 percentage points when compared to static fusion
strategies.

Chapter 7: Estimating Temporal Scopes Using Knowledge-Based Trust. This
chapter introduces Timed-KBT, a time-aware fusion approach that overcomes the
dependence on potentially sparse and noisy timestamps by propagating temporal
scopes from a temporal knowledge base to web table data using Knowledge-Based
Trust. It also derives a trust score that estimates both, the correctness of the data and
the validity of the assigned temporal scope. When evaluated on fusing data from a
large corpus of web tables for filling missing facts in a temporal knowledge base,
we achieve an increase in average F0.25 of 19 percentage points when compared to
Knowledge-Based Trust and 9 when compared to TT-Weighting. This chapter also
introduces and describes the Time-Dependent Ground Truth.

Chapter 8: The Long-Tail Entity Extraction Pipeline. This chapter introduces
the LTEE Pipeline, the first system for completing knowledge bases with formerly
unknown entities and their descriptions. The chapter outlines the individual com-
ponents of the pipeline, and investigates alternative methods for schema match-
ing, row clustering and new detection. We additionally introduce and describe the
T4LTE dataset, using it for evaluation and training. We achieve an average F1 of
0.83 for both, finding new entities and compiling their descriptions.

Chapter 10: Profiling Web Tables for Entity Expansion. This chapter uses the
LTEE Pipeline on the 2012 WDC web table corpus to profile the potential of web
tables for the task of entity expansion. We additionally evaluate how well our
pipeline performs and discuss a variety of lessons learned. We describe for in-
stance the relationship between the Wikipedia notability criteria and the potential
of adding new entities to DBpedia from web table data. We find that we can aug-
ment DBpedia with about 14 thousand new football players as well as 187 thousand
new songs, respectively described with about 44 and 394 thousand facts.

Chapter 9: Weak Supervision for Long-Tail Entity Extraction. The LTEE
Pipeline requires class-specific training data in the form of positive and negative
entity matches, which are laborious to create manually. This chapter investigates
reducing labeling effort by using weak supervision. In our approach, class-specific
supervision is provided in the form of bold matching rules, built using the schema
of the knowledge base. By ensembling these rules with a class-agnostic unsu-
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pervised matching model, we create a class-specific weakly supervised labeling
function. We use this function to label matching and non-matching pairs from ran-
domly chosen web table data and use these pairs to train random forests to finally
use within the pipeline. We find that using weak supervision, we perform only
slightly worse when compared to classifiers trained using traditional supervision.

Chapter 11: Conclusion. This chapter summarizes the thesis and provides our
concluding remarks. It also discusses open questions, future work, and the research
impact of this thesis.

1.5 Published Work

Research presented in this thesis has largely been published in the following works:

• Profiling the 2012 WDC web table corpus
Ritze, D., Lehmberg, O., Oulabi, Y., and Bizer, C. (2016). Profiling the po-
tential of web tables for augmenting cross-domain knowledge bases. In Pro-
ceedings of the 25th International Conference on World Wide Web, WWW
’16, pages 251–261, Republic and Canton of Geneva, Switzerland. Interna-
tional World Wide Web Conferences Steering Committee.

• Time-aware fusion using timestamps
Oulabi, Y., Meusel, R., and Bizer, C. (2016). Fusing time-dependent web
table data. In Proceedings of the 19th International Workshop on Web and
Databases, WebDB ’16, pages 3:1–3:7, New York, NY, USA. Association
for Computing Machinery.

• Time-aware fusion using Timed-KBT
Oulabi, Y. and Bizer, C. (2017). Estimating missing temporal meta-
information using knowledge-based-trust. In Proceedings of the 3rd In-
ternational Workshop on Knowledge Discovery on the WEB, KDWEB ’17,
Aachen, Germany. CEUR Workshop Proceedings, RWTH.

• The Long-Tail Entity Extraction Pipeline and profiling the 2012 WDC
web table corpus for entity expansion
Oulabi, Y. and Bizer, C. (2019). Extending cross-domain knowledge bases
with long tail entities using web table data. In Proceedings of the 22nd Inter-
national Conference on Extending Database Technology, EDBT ’19, pages
385–396, Konstanz, Germany. OpenProceedings.org.

• Weak supervision for long-tail entity extraction
Oulabi, Y. and Bizer, C. (2019b). Using weak supervision to identify long-
tail entities for knowledge base completion. In Semantic Systems. The Power
of AI and Knowledge Graphs, proceedings of the 15th International Confer-
ence on Semantic Systems, SEMANTiCS ’19, pages 83–98, Cham, Switzer-
land. Springer International Publishing.
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Chapter 2

Cross-Domain Knowledge Bases

The primary motivation behind this work is the increasing usefulness and rele-
vance of cross-domain knowledge bases. The number and diversity of applications
(see Section 1.1) that can exploit such a knowledge base is a strong advocate for
understanding, constructing, maintaining, and augmenting knowledge bases.

While all knowledge bases are possibly useful, not all are equal, nor are they
constructed equally. For example, some knowledge bases are openly available
and are the result of open, non-profit, and collaborative effort. These include for
example DBpedia [Lehmann et al., 2015] and Wikidata [Vrandečić and Krötzsch,
2014]. In strong contrast are knowledge bases that are created, owned, and used by
private companies, e.g. the Google Knowledge Graph.

This chapter provides an introduction to cross-domain knowledge bases, out-
lining first the general concept behind them. It also explores existing knowledge
bases and how they were constructed. Finally, it describes in depth DBpedia, a
cross-domain knowledge base.

The findings of this chapter are:

• The defining aspects of a knowledge base are interrelations between entities,
a graph-based structure, the presence of a well-defined schema or ontology,
and the coverage of multiple and versatile topical domains.

• Knowledge bases cover time-dependent data in two ways. They either try to
reflect only the most current information (snapshot-based knowledge bases)
or they provide a history of temporal facts (temporal knowledge bases). We
also argue that, when it comes to time-dependent data, knowledge bases gen-
erally cover temporal knowledge, in contrast to listing data.

• Open knowledge bases are primarily constructed through extraction from
Wikipedia or collaborative curation. More recently, approaches of construct-
ing knowledge bases from web data have shown to be promising.

• DBpedia is a highly useful and interesting knowledge base due to it being the
central hub of linked open data, its manually created high-quality ontology
and type hierarchy, and its broad application in related research.

13
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This chapter is structured as follows. The first section defines knowledge bases,
demonstrating why they are useful and explaining how they cover time-dependent
data. Section 2.2 describes existing knowledge base, while Section 2.3 explores
the methods used for their construction. In Section 2.4, we take an in-depth look at
DBpedia. The final section summarizes the chapter.

2.1 Understanding Cross-Domain Knowledge Bases

Each knowledge base is different, possibly exhibiting strong suitability for some
tasks, and less for others [Ringler and Paulheim, 2017]. Nonetheless this section
tries to provide a general introduction to knowledge bases. This is done by first
defining what a knowledge base is, and what its most common aspects are. Using
an example from DBpedia, this section also attempts to illustrate why knowledge
bases are useful for a broad range of tasks. Finally, this section highlights how
knowledge bases represent time-dependent data.

2.1.1 Defining a Knowledge Base

Many knowledge bases, e.g. DBpedia [Auer et al., 2007] and YAGO [Suchanek
et al., 2007], represent knowledge in the form of triples. A triple consists of sub-
ject, predicate, and object, where the subject is an entity with an instance in the
knowledge base, and the predicate is a property of the knowledge base schema.
The object can either be an entity with an instance, in which case the triple repre-
sents a relation between entities, or it can be a literal value, e.g. a date or a number.

However, how a knowledge base represents knowledge, is not what makes it a
knowledge base. There are generally four aspects that are used to define a knowl-
edge base [Paulheim, 2017, Ehrlinger and Wöß, 2016]:

1. Entity Interrelations: when Google introduced their Knowledge Graph in
2012, they did so with the subtitle "Things, Not Strings".1 Triples in knowl-
edge bases, where the object is an entity, point to the actual instance of that
entity, instead of simply to its name as a literal [Pujara et al., 2013]. Each
entity is, barring any mistakes, present only once in the whole knowledge
base, and all relations concerning this entity, reference its one instance.

2. Graph Structure: due to interrelations of entities, knowledge bases natu-
rally tend to be organized as graphs, with entities as nodes, and relations
between entities as edges.

3. Schema and Ontology: knowledge bases often employ a schema or an on-
tology. The latter can be defined as a "formal, explicit specification of a
shared conceptualization that is characterized by high semantic expressive-
ness required for increased complexity" [Ehrlinger and Wöß, 2016].

1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html,
accessed 2019-08-26.

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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4. Cross-domain: knowledge bases cover general knowledge, not limited to
a single topical domain [Paulheim, 2017, Färber et al., 2018]. As a result,
datasets that cover only one domain, are not considered a knowledge base,
regardless of how large they are [Paulheim, 2017].

While these four aspects tend to be universal, they are not necessarily complete.
Some authors for example include in the defining factors of a knowledge base the
representation using the Resource Description Framework (RDF) [Färber et al.,
2018]. Being linked to the Linked Open Data cloud as part of the Semantic Web,
is also typical for many knowledge bases [Paulheim, 2017].

2.1.2 Conceptualizing a Knowledge Base

To illustrate the concepts behind and the usefulness of a knowledge base, we built
Figure 2.1 from actual data in DBpedia. The figure shows a small sample of entities
and relations, which we selected on their general proximity in the knowledge base
to the German city of Stuttgart.

From the figure, we can first of all see that the knowledge base is structured as
a graph. Entities are nodes, while the relations between entities represent edges.
More importantly, entity interrelations are prominently visible throughout. For ex-
ample, all the entities <dbr:Daimler_AG>, <dbr:University_of_Hohenheim>,
<dbr:Baden-Württemberg>, <dbr:Mercedes-Benz_Arena_(Stuttgart)>, and addi-
tionally <dbr:Die_Fantastischen_Vier> all have something in common with the
city of Stuttgart. This relationship is therefore represented in the graph through a
relation to the same unique entity <dbr:Stuttgart>.

Some edges point to so-called literals, where the target is not an entity, but
a more primitive data type, like a date or a quantity. This is illustrated for ex-
ample in the properties <dbo:numberOfEmployees>, <dbo:numberOfStudents>,
<dbo:birthDate> and <dbo:releaseDate>.

Finally, the figure shows the cross-domain nature of the knowledge base. This
small sample contains at least 7 different and unique domains. Starting from the
top and moving clockwise we have domains about businesses and companies, uni-
versities and higher education, politics and political parties, sports, and music. In
the middle the domain about geographical and political divisions is covered. Fi-
nally, there are two relations, <dbo:birthDate> and <dbo:birthPlace> about per-
sons. This cross-domain nature of knowledge bases is what sets them apart from
specific single-domain datasets like MusicBrainz2 or GeoNames3.

The final aspect that defines a knowledge base is the presence of an ontology
or a schema. DBpedia has an extensive manually built and maintained ontology.
This ontology can also be reflected as a graph, but it does not give itself naturally
into a graph structure. We will therefore illustrate the ontology of DBpedia using

2https://musicbrainz.org/
3http://www.geonames.org/

https://musicbrainz.org/
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N-Triple statements [Beckett, 2014], shown in the listing below. We include state-
ments regarding the two entities about persons <dbr:Winfried_Kretschmann> and
<dbr:Mario_Gómez>, and the two properties <dbo:birthPlace> and <dbo:birthDate>
from Figure 2.1. Any concepts related to the ontology are prefix by <dbo:>, while
any actual entities are prefixed by <dbr:>.

1 <dbo:birthDate> <rdfs:domain> <dbo:Person> .
2 <dbo:birthDate> <rdfs:range> <xsd:date> .
3

4 <dbo:birthPlace> <rdfs:domain> <dbo:Person> .
5 <dbo:birthPlace> <rdfs:range> <dbo:Place> .
6

7 <dbr:Winfried_Kretschmann> <rdf:type> <dbo:Politician> .
8 <dbo:Politician> <rdfs:subClassOf> <dbo:Person> .
9

10 <dbr:Mario_Gómez> <rdf:type> <dbo:SoccerPlayer> .
11 <dbo:SoccerPlayer> <rdfs:subClassOf> <dbo:Person> .
12

13 <dbr:Riedlingen> <rdf:type> <dbo:Settlement> .
14 <dbo:Settlement> <rdfs:subClassOf> <dbo:PopulatedPlace> .
15 <dbo:PopulatedPlace> <rdfs:subClassOf> <dbo:Place> .

The triples with the predicates <rdfs:domain> and <rdfs:range> set the do-
mains and ranges of properties. The domain of both properties <dbo:birthDate>
and <dbo:birthPlace> is the class <dbo:Person>, as they both describe properties
of natural persons. However, their ranges differ. The range of <dbo:birthDate> is
a literal date, while the range of <dbo:birthPlace> is the class <dbo:Place>.

Based on this, both properties, <dbo:birthDate> and <dbo:birthPlace>, should
only be used in triples, where the subject is of type <dbo:Person>. However, the
types of <dbr:Winfried_Kretschmann> and <dbr:Mario_Gómez> respectively are
<dbo:Politician> and <dbo:SoccerPlayer>. It is those types, that are then sub-
classes of <dbo:Person>. These ontological specifications are denoted in the listing
with the properties <rdf:type> and <rdfs:subClassOf>. The city <dbr:Riedlingen>
is similarly of type <dbo:Place>, however over two hops in the class hierarchy.

Additional ontological specifications are present for all classes and properties
in Figure 2.1. Having this kind of an ontology imparts additional knowledge to the
raw relationships between entities, increasing the usefulness of a knowledge base.

From the small sample illustrated in this section, it becomes clear how the four
defining aspects of a knowledge base facilitate the representation of cross-domain
knowledge in a highly comprehensive yet practical and useful format.

2.1.3 Time-Dependent Data in Knowledge Bases

We differentiate between two types of data, static and time-dependent [Pal et al.,
2012, Dong and Srivastava, 2015b]. For time-dependent data, a fact is only valid
given a certain temporal scope, i.e. a point in time or a certain time range. This
yields a temporal fact, which is a fact within the knowledge base that is additionally
annotated with a temporal scope [Kuzey and Weikum, 2012].
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1948-05-17

dbo:birthDate

dbr:Winfried_Kretschmanndbr:Baden-Württemberg
dbo:capital

dbr:Stuttgart

dbo:leader

dbr:Alliance_'90/The_Greens

dbo:party

dbr:University_of_Hohenheim

dbo:city

dbo:numberOfStudents

8,767

dbo:ideology

dbr:Green_politics

dbo:elevation
245

dbr:Mercedes-
Benz_Arena_(Stuttgart)

dbr:VfB_Stuttgart

dbo:team

dbr:Mario_Gómez

dbo:tenant

dbo:almaMatar

dbr:Riedlingen

dbo:birthPlace

dbo:federalState

dbr:Daimler_AG

dbr:Automotive_industry

dbo:industry

dbo:location

dbo:numberOfEmployees

284,015 

dbo:location

dbr:Die_Fantastischen_Vier

dbr:Sony_BMG

dbo:recordLabel

dbr:4_Gewinnt

dbo:artist

dbo:musicalArtist

dbr:Lass_die_Sonne_rein

dbo:album

dbo:hometown

1992-08-28

dbo:releaseDate

Figure 2.1: Example of entities and their relations in DBpedia for entities related
to <dbr:Stuttgart>.

Listing Data versus Temporal Knowledge

When considering time-dependent data, especially in the context of web data, we
can additionally differentiate between two types. Listing data [Rekatsinas et al.,
2014] contains for example information about what the current price of a product
in an online store is, whether a certain apartment is still available for rent on a
real estate website, or whether there are still tickets for a certain upcoming event.
Temporal knowledge [Hoffart et al., 2013] contains e.g. the population numbers of
a country by year, the teams an athlete played for by season, or a listing of head of
states of a certain country along with the time periods in which they held office.

Knowledge bases in general tend to cover temporal knowledge, and not listing
data. The two differ primarily by the nature of the entities they describe. Entities
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Germany

population: 

continent:
fact

time-dependent property

static property

Europe

80,274,983 fact

triples

Figure 2.2: Illustration of an entity with a time-dependent property in a snapshot-
based knowledge base.

… 2007 2008 2009 2010 2011

… 82,266,372 82,110,097 81,902,307 81,776,930 80,274,983

Germany

population: 

temporal fact

continent:
fact

temporal scopetime-dependent property

Europe
triples

static property

Figure 2.3: Illustration of an entity with a time-dependent property in a temporal
knowledge base.

in listing data are more temporary in nature. On a real estate site for example, an
entity equals the listing for an apartment. While the apartment itself is permanent,
the listing exists only temporarily. The same can be said about a product listing
for a smartphone, where the offer is likely temporary in its nature. This is not
the case for the actual product behind the offer. A knowledge base is likely to
cover the smartphone, with properties related to the smartphone itself. However, a
knowledge base is unlikely to cover concrete offers for that smartphone.

In the remainder of this work, we focus on temporal knowledge when talking
about time-dependent data in the context of knowledge base augmentation.

Snapshot-based versus Temporal Knowledge Bases

Based on how they represent time-dependent data, knowledge bases can be catego-
rized into broadly two types. Snapshot-based knowledge bases, e.g. DBpedia, try
to reflect only the most recent facts, while on the other hand, temporal knowledge
bases store time-dependent data as series of temporal facts.

Figures 2.2 and 2.3 illustrate how a snapshot-based and a temporal knowledge
base differ in storing time-dependent data. Both figures show population numbers
for Germany and illustrate the case where both knowledge bases were released
in 2011. We can see how in a temporal knowledge base, all historic facts up to
the most current are reflected. Each fact is additionally annotated with a temporal
scope. On the other hand, in the snapshot-based knowledge base, only the most
current fact is reflected. While this fact is not annotated with any temporal scope,
we are aware that the knowledge bases was created in a certain year.
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2.2 Existing Cross-Domain Knowledge Bases

There exist many knowledge bases, some of which are openly available, while
others are commercial or owned and used solely by one organization. Additionally,
knowledge bases differ in the way they are constructed. This section introduces in
chronological order existing cross-domain knowledge bases.

Incepted in 1984, Cyc [Lenat, 1995] is a commercial and closed knowledge
base built using manual curation. It contains a large number of general-knowledge
and common-sense axioms, and its main purpose is to enable artificial intelligence
tasks. An open subset, OpenCyc, was released in 2001, covering 120 thousand
entities and 2.5 million facts, with a schema containing 45 thousand classes and 19
thousand properties [Paulheim, 2017]; it was however discontinued in 2017.

Freebase, DBpedia and YAGO were all launched in 2007. Like Cyc, Freebase
was maintained by manual curation, but through open collaboration by the crowd.
This allowed it to grow fast, from its initial size of 125 million facts [Bollacker
et al., 2008], to 1.9 billion in 20154. Freebase initially also imported other datasets
including Wikipedia, the Notable Names Database5 and MusicBrainz [Färber et al.,
2018].6 Google acquired and then shut down Freebase, using it for the creation of
the Google Knowledge Graph [Tanon et al., 2016].

DBpedia [Auer et al., 2007, Bizer et al., 2009, Mendes et al., 2012, Lehmann
et al., 2015], is automatically constructed from structured data within Wikipedia
infoboxes. The extracted knowledge is mapped using handwritten mappings to a
manually constructed ontology. Both, the mappings and the ontology, are created
collaboratively by the crowd. The latest DBpedia release (2016-10) has 760 classes
and 2,865 properties, covering 4.9 million entities and 124 million facts.7 We
describe DBpedia in more details below.

Similarly to DBpedia, YAGO [Suchanek et al., 2007, Suchanek et al., 2008] is
constructed automatically from Wikipedia and additionally integrates WordNet8.
YAGO2 considers spatial and temporal dimensions, integrating additionally the
GeoNames dataset [Hoffart et al., 2013]. YAGO3 [Mahdisoltani et al., 2015] fur-
thermore uses and fuses Wikipedia from multiple languages for its construction.
YAGO3 covers 4.6 million entities and 8.9 million facts.

NELL (Never-Ending Language Learning) [Mitchell et al., 2018,Carlson et al.,
2010b, Carlson et al., 2010a] is a knowledge base automatically constructed from
unstructured web data. It is the result of a long-running system that uses coupled
semi-supervised learning to continuously learn new facts, discover new entities,
and extend an ontology. One of the latest iterations of NELL (1115) has an ontol-
ogy with 335 classes and 937 properties and describes about 2 million entities with

4https://developers.google.com/freebase/, accessed 2019-06-17
5https://www.nndb.com/
6http://radar.oreilly.com/2007/03/freebase-will-prove-addictive.html, accessed 2019-06-20
7http://downloads.dbpedia.org/2016-10/statistics/, accessed 2020-01-04
8https://wordnet.princeton.edu/

https://developers.google.com/freebase/
https://www.nndb.com/
http://radar.oreilly.com/2007/03/freebase-will-prove-addictive.html
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2.8 million high confidence facts.9 This is a sharp increase from a 2016 release,
where NELL had an ontology of 285 classes and 425 properties and described only
0.43 million high confidence facts [Paulheim, 2017]. Unfortunately, NELL seemed
to have stopped learning, as the last learned fact is from September 2018.10

Incepted in 2012, Wikidata [Vrandečić and Krötzsch, 2014] employs, like
Freebase, open collaborative curation for growth and maintenance. It is owned by
the Wikimedia Foundation, which also owns Wikipedia. One unique characteris-
tic of Wikidata is, that it allows conflicting data to be included, which can then
be ranked by its quality or other qualifiers, e.g. how recent it is. Additionally,
any statement should be supported using references to external sources, assuring
credibility. Wikidata has grown fast immensely. While in 2013 it had 14 million
entities and 26 million statements, in 2019 it has 57 million entities and 724 mil-
lion statements.11 74.82% of the statements in 2019 were referenced successfully
to an external source, and while Wikidata was initially based heavily on Wikipedia,
only 7.25% of all statements in 2019 reference Wikipedia as a source. Wikidata
also makes extensive use of bots, which are programs that can make edits without
requiring human decision-making. Between May 2017 and May 2019 about 448
million edits were made in total. Of these, 271 million (60%) were made by bots.12

While the number of statements within Wikidata seems impressive, we have
looked at the number of statements per property to gain insights.13 Out of 6189
properties, the top 68, i.e. any property with more than one million statements,
make up 85% of all statements. Considering, within the top 68, only the proper-
ties about the domain publications, they contain more than 36% of all statements
in Wikidata. Properties linking to external ids and those that contain entity type
statements both individually make up 9% of all statements in Wikidata. Properties
that reference the source, from which a statement is imported, make up 15% of all
statements in Wikidata. By looking at the top 68 properties, we found that 69% of
all statements in Wikidata either describe meta-information or one single domain.
From the 85% of statements covered in the top 68 properties, only 16 percentage
points describe other knowledge. These are about 116 million statements.

Recently, knowledge bases have come to exist that are created, owned and
used by commercial companies. This includes for example the Google Knowledge
Graph, first announced in 2012. Afterwards, it was announced that Microsoft14

and Yahoo! [Blanco et al., 2013] also own such knowledge bases. Not much is
known about how these knowledge bases are constructed, but they likely rely on
existing public data, e.g. from Wikipedia or Freebase, and other sources [Paulheim,
2017]. They are larger than public knowledge bases, with the Google Knowledge
Graph having about 570 million entities and 18 billion facts, Microsoft’s Satori 300

9Numbers derived from datasets available here: http://rtw.ml.cmu.edu/rtw/resources
10As of 2019-11-15, retrieved from: http://rtw.ml.cmu.edu/rtw/
11https://tools.wmflabs.org/wikidata-todo/stats.php, accessed 2019-06-17
12https://stats.wikimedia.org/v2/, queried on 2019-06-17
13https://wikidata.org/wiki/Wikidata:Database_reports/List_of_properties, accessed 2019-06-18
14https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/, acc. 2019-08-26.

https://tools.wmflabs.org/wikidata-todo/stats.php
https://stats.wikimedia.org/v2/
https://wikidata.org/wiki/Wikidata:Database_reports/List_of_properties
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
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million entities and 800 million facts, and Yahoos!’s knowledge base 3.5 million
entities and 1.4 billion facts [Paulheim, 2017, Dong et al., 2014a].

Finally, Knowledge Vault, a non-open knowledge base presented in 2014 by
Google, is automatically constructed from web content by exploiting prior knowl-
edge derived from Freebase [Dong et al., 2014a]. The web content used for its
creation includes text, web tables, the DOM structure of websites and schema.org
annotations within websites. The authors are able to extract 271 million facts for
45 million entities. This is less than the knowledge bases owned by companies
like Google, Microsoft and Yahoo!, and also less than the knowledge bases created
using collaboration like Freebase and Wikidata, but far larger than other automati-
cally constructed knowledge bases like DBpedia, YAGO and NELL.

In their paper on Knowledge Vault, the authors write on the weaknesses of their
approach. They are e.g. unable to model temporal facts. They are also unable to
find new entities, and any fact extracted must be about an entity that already exists
in Freebase. Considering that one of the promising aspects of using web data for
knowledge base construction is the coverage of long-tail knowledge, limiting the
entities to those that already exist within a knowledge base significantly reduces
the amount of long-tail knowledge that can be extracted from the Web.

Resolving these two weaknesses of the Knowledge Vault approach is the focus
of this thesis. We attempt, similarly to Knowledge Vault, to extract knowledge
from the Web, using an existing knowledge base as prior knowledge, however with
the intent of augmenting that knowledge base. We focus in this thesis first on
researching fusion methods for time-dependent data, and then on methods that
identify and compile previously unknown long-tail entities from web table data.

2.3 Methods of Knowledge Base Construction

In the previous section we introduced existing knowledge bases chronologically. In
this subsection, we identify and describe the specific approaches used to construct
those knowledge bases. Among them are:

• Non-open manual creation and curation. The knowledge base is created
mainly using manual curation without external collaboration, e.g. Cyc. The
viability of this approach for fast large-scale construction of cross-domain
knowledge bases is however likely limited.

• Collaborative crowdsourced curation. Open collaborative curation by the
crowd has proven to be able to construct and maintain large-scale cross-
domain knowledge bases like Freebase and Wikidata. These bots can also
be contributed by the crowd. In addition to exploiting the input from a large
number of users, Wikidata also allows the use of bots, which automatically
curate the knowledge base without human intervention.

• Extraction from Wikipedia. There are two approaches to constructing a
knowledge base from Wikipedia. In the first approach, the knowledge base
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is regularly completely reconstructed from Wikipedia, which applies to DB-
pedia and YAGO. Alternatively, the knowledge base is only initially con-
structed from Wikipedia but then introduces other methods to grow and cu-
rate the knowledge base. This applies to Freebase and Wikidata.

• Integration with large public domain-specific datasets. This has been
performed in the case of Freebase, where datasets like MusicBrainz were
imported early on. This is also used by Wikidata, where other topic-specific
datasets, even ones that regularly update, are continuously fed into Wikidata
using bots. However, this possibly skews the content of the knowledge base
into specific domains, as is the case in Wikidata and the domain publications.

• Automatically constructed from web data. NELL and the Knowledge
Vault are both large-scale cross-domain knowledge bases constructed from
web data. There exist other works which aim to extract knowledge from
web data [Etzioni et al., 2004,Bühmann et al., 2014,Cafarella et al., 2009b],
including open information extraction systems [Niklaus et al., 2018], and
works that focus on web tables [Crestan and Pantel, 2010,Gatterbauer et al.,
2007, Sekhavat et al., 2014, Cafarella et al., 2009b]. The benefits of this ap-
proach are, that it can be automated, and unlike bots, is domain-independent
and can curate a knowledge base with cross-domain knowledge.

2.4 Introducing DBpedia

DBpedia is a cross-domain knowledge base extracted from Wikipedia. It contains
knowledge about 4.58 million entities, and describes them using 153 million facts,
given its 2014 English language release.15 Throughout our research, we focus
mostly on DBpedia as the reference knowledge base to be extended, and otherwise
also base ground truths on the DBpedia schema or ontology. This section briefly
outlines why DBpedia was chosen, how DBpedia is constructed, and how DBpedia
is structured.

DBpedia as Reference Knowledge Base

DBpedia was chosen for this research for multiple reasons. It is one of the first
open cross-domain knowledge bases that is still maintained today. In addition to
providing releases every couple of years, the DBpedia community is now providing
regular snapshots in the form of DBpedia live.16

It is also the hub of the Linked Open Data cloud and has links to many other
datasets [Färber et al., 2018]. As such, it has also been used for research in the
area of Semantic Web [Färber et al., 2018]. More importantly, it has been used
extensively for research on web tables [Limaye et al., 2010, Hassanzadeh et al.,

15https://wiki.dbpedia.org/services-resources/datasets/dataset-statistics, accessed 2020-01-04
16https://wiki.dbpedia.org/online-access/DBpediaLive

https://wiki.dbpedia.org/services-resources/datasets/dataset-statistics
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Figure 2.4: Example of possibly im-
portant facts in DBpedia extracted
from Wikipedia using raw infobox
extraction, but not covered by the
mapping-based extraction.

Figure 2.5: Ontological knowledge
in DBpedia for the raw infobox ex-
traction property <dbr:nato>.

Figure 2.6: Ontological knowledge
in DBpedia for the mapping-
based extraction property
<dbo:almaMatar>.

2015,Ritze et al., 2015,Ritze and Bizer, 2017,Lehmberg and Bizer, 2016,Lehmberg
and Bizer, 2017, Lehmberg and Bizer, 2019a, Lehmberg and Bizer, 2019b].

Finally, DBpedia has a manually curated high-quality ontology. The presence
of an ontology to which e.g. constructed knowledge can be mapped increases the
usefulness of the knowledge base significantly [Suchanek et al., 2008]. As such,
the high-quality ontology facilitates the use of DBpedia as a target knowledge base,
and possibly reduces the impact of noise and inaccuracies within web table data
during knowledge base augmentation.

Wikipedia Infobox Extraction

DBpedia [Lehmann et al., 2015] is constructed by extracting knowledge from
Wikipedia. This is done from Wikipedia categories, geographical coordinates, dis-
ambiguation pages, and redirects, but primarily from Wikipedia infoboxes.

The infobox extraction is performed in two ways. The raw extraction parses the
infoboxes of individual Wikipedia pages to create relations with minimal mapping
and transformation. This could result in data within the knowledge base that is
inconsistent and heterogeneous. The mapping-based extraction on the other hand
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uses an underlying ontology and mappings from Wikipedia infobox properties to
that ontology, to homogenize the knowledge extracted from Wikipedia infoboxes.
The ontology and the mappings are both manually created and curated. Properties
within DBpedia that were created based on the raw extraction (raw properties) are
prefixed with <dbp:>, whereas properties that are part of the ontology (mapping-
based properties) are prefixed with <dbo:>.

As the mapping-based extraction requires a manual mapping for each property,
some knowledge might only be covered by raw properties. Figure 2.4 shows for
a given entity in DBpedia (<dbr:A>) a number of facts for raw properties, that are
not covered by the mapping-based extraction, but which however might still be
important. Figures 2.5 and 2.6 compare what ontological knowledge is provided
for a raw property (<dbr:nato>) and a mapping-based property (<dbo:almaMatar>).
We find that we know nothing besides the label for the raw property, but much more
for the mapping-based property. Data for raw properties can still be highly useful
and it is part of DBpedia, albeit with no ontological knowledge.

Within the English 2014 release of DBpedia, there are 68 million facts about
raw properties, 57 million about mapping-based properties, an additional 29 mil-
lion facts regarding types of entities. It also contains an additional 50 million links
to external datasets, e.g. YAGO categories.

Structure and Content

The DBpedia ontology structures classes within a hierarchy, where classes higher
in the hierarchy are broader and classes deeper more specific. For example, the
class GridironFootballPlayer is a subclass of Athlete, itself a subclass of Person,
which itself is a subclass of Agent. Overall, the DBpedia ontology contains more
than 680 classes, with the four largest top-level classes within the ontology being
Agent, Place, Work and Species.

Table 2.1 shows for a selection of classes the number of entities and facts for
the 2014 release of DBpedia. The classes are organized by hierarchy, where classes
within a certain level are sorted in descending order by their number of entities. We
include for each of the four largest top-level classes one to two subclasses, and for
each of those further one to two subclasses. For additional comparison, we also
include the next two top-level classes, MeanOfTransportation and Event.17

From the table we can first of all see, that DBpedia is quite comprehensive.
While the class Agent seems to be somewhat dominant, we can see from its sub-
classes that in fact it itself is quite versatile. Looking e.g. at its subclasses Person
and Organisation, we find that their largest two subclasses cover only 25% and
44% respectively. The class Athlete, the largest subclass within Person, is further
divided into a large number of subclasses.

17Technically, the next largest top-level classes would be PersonFunction and TimePe-
riod, however these include intermediary and helper entities like <dbr:Bill_Gates__1> or
<dbr:Andrew_Jackson__3>.
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Table 2.1: Number of entities and facts for selected DBpedia classes. In the table
+ denotes a second-level class, while |- denotes a third-level class.

Class Entities Facts
(thousands) (thousands)

Agent 1,688 14,318
+ Person 1,445 11,947
|- Athlete 269 3,799
|- Artist 96 1,259
+ Organisation 241 2,372
|- Company 58 518
|- EducationalInstitution 49 549

Place 735 7,436
+ PopulatedPlace 478 5,448
|- Settlement 449 5,236
+ ArchitecturalStructure 150 1,233

Work 411 3,915
+ MusicalWork 180 1,780
|- Album 123 1,102
+ Film 87 891

Species 252 2,021
+ Eukaryote 247 1,990
|- Animal 187 1,503
|- Plant 50 414

MeanOfTransportation 51 467
+ Ship 27 260
+ Aircraft 10 37
+ Automobile 8 135

Event 45 322
+ SocietalEvent 45 322
|- SportsEvent 24 123
|- MilitaryConflict 12 167

We also notice from the table, that the semantic meaning of each level is am-
biguous. If we consider the usefulness of a class to be determined by the fact that
almost all entities within the class are described with one common set of prop-
erties, then for athlete classes at the fourth level, i.e. GridironFootballPlayer, is
likely to be the most useful. In contrast, for MeanOfTransportation, the second
level might be the most useful, and in fact both Ship and Automobile have no fur-
ther subclasses. However, this might again be different for PopulatedPlace, also a
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second-level class, where Settlement is in regard to number of entities and facts, a
highly dominant subclass. This might overshadow other subclasses of Populated-
Place, i.e. the likely interesting class Country.

DBpedia differentiates between two types of properties. Object properties ref-
erence other entities, i.e. they represent relations between entities. On the other
hand, data-type properties reference literals of various types. There are 1079 ob-
ject properties within the DBpedia ontology, and 1600 data-type properties.

Finally, DBpedia also contains links between entities in DBpedia and entities in
36 external datasets.18 The number of links to external datasets is about 50 million,
of which 41.2 million are links to YAGO categories.19

Within DBpedia all entities, properties and classes are referenced using an URI.
Entity URIs all start with the prefix <dbr:>20, while classes and properties within
the ontology use the prefix <dbo:>21.

2.5 Summary

This chapter introduced cross-domain knowledge bases. It first defined knowledge
bases, showing how they function and why they can potentially be useful for a large
variety of tasks. It additionally outlined the importance of a high-quality ontology
or schema within a knowledge base.

This chapter also described time-dependent data, and how it is stored in knowl-
edge bases. We outlined the differences between listing data and temporal knowl-
edge, the latter being the main type of time-dependent data we consider throughout
this research. We also showed, that, based on how they store time-dependent data,
knowledge bases can be described as snapshot-based or temporal.

Moreover, the chapter described existing knowledge bases and what methods
were typically used in their construction. We found that using web data is a promis-
ing approach to automatic knowledge bases construction. As such, web data can
also be an interesting source for automatic knowledge base augmentation.

Finally, this chapter introduced DBpedia, a cross-domain knowledge base ex-
tracted from Wikipedia. We use DBpedia throughout this research due to its popu-
larity, high-quality ontology, and it being used for related research.

Augmenting a knowledge base with additional knowledge is an important task.
Web data is a promising source for knowledge base augmentation. It includes
web tables, which are relational HTML tables extracted from the Web. These web
tables could potentially be used for the large-scale enrichment of cross-domain
knowledge bases with long-tail knowledge. We will introduce web tables in the
following chapter.

18https://wiki.dbpedia.org/Downloads2014, accessed 2020-01-16
19https://wiki.dbpedia.org/data-set-2014, accessed 2020-01-16
20Unshortened prefix: http://dbpedia.org/resource/
21Unshortened prefix: http://dbpedia.org/ontology/

https://wiki.dbpedia.org/Downloads2014
https://wiki.dbpedia.org/data-set-2014


Chapter 3

Web Tables

The primary motivation behind this research is the augmentation of a cross-domain
knowledge base with long-tail knowledge. To achieve this, we first need an external
source that provides long-tail knowledge for a large variety of domains.

One potential source is the Web. Its size is immense, and it potentially contains
large amounts of long-tail knowledge that we can use to augment a cross-domain
knowledge base. Harnessing the knowledge found on the Web however is chal-
lenging, especially because the traditional Web was made for humans to consume,
and not for machines to process automatically.

However, on the Web there also exists some structure. Structured web data,
even if only semi-structured, facilitates automatic extraction and processing. Con-
sidering for example DBpedia. While it is extracted from Wikipedia, it is not in
fact extracted from the main component of Wikipedia, the unstructured text within
articles, but from semi-structured knowledge e.g. in the form infoboxes.

Web tables are a type of semi-structured data found on the Web. They are rela-
tional HTML tables, which unlike other HTML tables, e.g. those used for layout,
contain structured data potentially describing interesting long-tail knowledge. In
fact, among the applications of web tables are many knowledge completion tasks,
e.g. set expansion [Wang et al., 2015], attribute expansion [Yakout et al., 2012], or
table expansion [Zhang and Balog, 2017].

This chapter introduces web tables, their characteristics, and the challenges in
and the benefits of using web tables. The findings of this chapter are:

• Among various structured web data sources, web tables are especially inter-
esting as they are not limited to a certain topical domain. Additionally, web
tables are easily accessible, as they can be crawled from the surface of the
Web. Finally, web tables have a universal relational structure that facilitates
parsing and understanding. Methods that perform knowledge base augmen-
tation from web tables are potentially useful for other types of web data, if
this data can be transformed into a relational table format.

• Extracting knowledge from web tables however is challenging because web
tables are small in size, numerous in number, heterogeneous in their data

27
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model, and noisy in their data quality.

• While extracting web tables from HTML pages is a non-trivial task, there ex-
ists a large body of research on this topic. There also exist large-scale public
corpora of web tables provided e.g. by the Web Data Commons project.

This chapter is structured as follows. We will first contextualize web tables
within the broader context of data on the Web. Section 3.2 then describes in depth
the characteristics of web tables and for what tasks they have been used. It also
makes the case for choosing web tables as a source of for knowledge base aug-
mentation. Finally, Section 3.3 briefly introduces methods of web table corpus
extraction and then describes the publicly available Web Data Commons web table
corpora, which we use in this research. The final section summarizes the chapter.

Cafarella et al. [Cafarella et al., 2018] and Zhang and Balog [Zhang and Balog,
2020] provide recent survey papers on web tables in general. This chapter focuses
on introducing web tables in the context of knowledge base augmentation.

Datasets / Repository Source Statistics

DBpedia Extracted 4.5m entities
from Wikipedia 0.54b facts

WDC RDFa, Microdata, and Semantic 7.1b entities
Microformats (Nov 2018)1 Annotations 31.5b facts

WDC Web Table Tables 147m tables
Corpus 20122 in websites m 3.49 columns per table

m 12,41 rows per table

Data.gov3 US government 261k datasets
(Dec 2019)

EU Open Data Portal4 European Union 14k datasets
(Dec 2019)

GOVDATA5 German federal and 36k datasets
state governments (Dec 2019)

Deep Web Databases Estimation 43 to 96k databases
by [He et al., 2007] 7.5k TB of data

Table 3.1: Sources and statistics about a selection of structured web data datasets
and repositories.

1http://webdatacommons.org/structureddata/2018-12/
2http://webdatacommons.org/webtables/
3http://www.data.gov/
4https://data.europa.eu/
5https://www.govdata.de/

http://webdatacommons.org/structureddata/2018-12/
http://webdatacommons.org/webtables/
http://www.data.gov/
https://data.europa.eu/
https://www.govdata.de/
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3.1 Structured Data on the Web

There are numerous types of data found on the Web. They can first be categorized
broadly speaking into two types: unstructured and structured data.

Unstructured data on the Web comes in the form of text extracted from web-
sites. There exist many methods for extracting knowledge from text, e.g. in the
form of open information extraction systems [Niklaus et al., 2018]. There also
exist approaches to construct knowledge bases from text, including NELL (Never-
Ending Learning) [Carlson et al., 2010a,Carlson et al., 2010b,Mitchell et al., 2018]
and Knowledge Vault [Dong et al., 2014a].

Structured data on the Web includes for example, in the order of their struc-
turedness, the DOM of websites, web tables, microdata annotations and linked
data. These data sources have unlike text some structure and possibly even meta-
data that can be exploited. Web tables fall in the middle on the spectrum of struc-
turedness. They can be considered as semi-structured data [Abiteboul, 1997], gen-
erally describes structured data that does not follow strict rules and conventions
common among database systems. They also lack any meta-data.

To augment a knowledge base from structured web data, we generally require
data integration methods in the form of schema matching, identity resolution and
data fusion (see Chapter 4). In the case of unstructured web data however, the
primary challenge lies in extracting structured facts from natural language text.
These facts can then be used to augment a knowledge base, e.g. by semantifying
and then integrating them with the knowledge base [Dutta et al., 2015,Dutta, 2016].

The sources of structured and semi-structured data on the Web are numerous
and diverse. Among them are:

• Semantic Annotations in Websites. Many websites, including shops and
travel portals, have started using semantic annotations within their HTML
markup [Meusel, 2017]. These annotations provide structured knowledge
about a large variety of topics, including product data, and could potentially
be extracted and used to enrich knowledge bases [Yu et al., 2019].

• Web Tables. There exist hundreds of millions of HTML tables on the Web
that contain relational data, potentially covering long-tail knowledge about a
large variety of domains. Web tables are the focus of this thesis, and we will
introduce them more extensively below.

• Deep-Web Databases. A large amount of data on the Web is potentially
stored in databases hidden behind query forms [He et al., 2007]. Unlike the
surface web, the deep web can not be reached by search engine, so that it is
usually neither crawled nor indexed.

• Public Datasets. Many governments and other organizations, like research
institutes and libraries, publish structured datasets about a variety of domains

• Linked Open Data Cloud. There exists a large amount of structured data
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on the Web, which is published and interlinked using linked open technolo-
gies [Bizer, 2009].

Table 3.1 shows datasets extracted from different types of structured web data.
For each dataset, we provide numbers in regard to the size of the data within. We
also include statistics about DBpedia for reference. From the table we can see,
that regarding their size, many of the structured web data types potentially provide
large enough number entities, facts, or values to augment DBpedia. We also see
the benefits of the WDC project, as it handles extraction and other pre-processing
tasks, enabling others to use the datasets directly for a range of applications.

3.2 Introducing Web Tables

This section introduces web tables, what they are, and what types of web tables
exist. We will also elaborate on why we believe that web tables are especially
useful for knowledge base augmentation, while also elaborating on the challenges
faced when using web tables. Finally, this section summarizes common uses and
applications of web tables.

3.2.1 Definition and Structure

Web tables are relational HTML tables extracted from the Web. Unlike tables ex-
tracted from deep web databases, web tables do not have to queried using forms,
but can be crawled from websites directly, i.e. from the surface of the Web [Ca-
farella et al., 2008a, Dong and Srivastava, 2015a].

It is important to differentiate between HTML tables that describe relational
data, in contrast to those that are used for other purposes. For example, HTML ta-
bles are commonly used for layout purposes in websites. Genuine tables can be de-
fined as those which contain structured data and where the "two dimensional grid is
semantically significant in conveying the logical relations among the cells" [Wang
and Hu, 2002].

Genuine web tables can further be sub-divided into relational, entity and matrix
types [Eberius et al., 2015, Ritze, 2017, Balakrishnan et al., 2015]:

• Relational tables are those, where each row corresponds to a real-world en-
tity, and each column describes one specific property for the entities within
the table. We focus solely on relational tables in of this research.

• Entity tables typically describe one entity, where each row represents a dif-
ferent property of that entity. As such, entity tables often have two columns,
one for the property name, and one for the corresponding facts [Balakrishnan
et al., 2015]. Entity tables are also referred to as attribute-value tables [Yin
et al., 2011].

• Matrix tables typically describe one single property, and each cell in the
table is qualified by both its row and column [Eberius et al., 2015]. An
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example of a matrix table is one, where for a row of cities, and columns of
years, the cells of the table contain population numbers.

Figures 3.1 to 3.3 show real-world examples for each type of table.

In the 2015 WDC web table corpus (see below), relational tables number more
than 90 million, and make up 39% of all genuine tables, whereas entity and matrix
tables respectively make up 60% and 1%. The 2012 WDC web table corpus only
includes relational tables, which number more than 147 million.

Figure 3.1: An example of a relational web table describing football athletes.6

Figure 3.2: An example of an en-
tity table describing a personal com-
puter product.7

Figure 3.3: An example of a matrix
table describing statistics about a Ger-
man city.8

6https://www.footballdb.com/teams/nfl/los-angeles-chargers/roster/2019?sort�num
7https://www.amazon.com/Microsoft-Surface-Pro-Intel-Core/dp/B07K4FMSS8/
8https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/01515020.tab?R�GS222000

https://www.footballdb.com/teams/nfl/los-angeles-chargers/roster/2019?sort=num
https://www.amazon.com/Microsoft-Surface-Pro-Intel-Core/dp/B07K4FMSS8/
https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/01515020.tab?R=GS222000
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Name Capital Population Area

Germany Berlin 82.175.684 357.375,62 km²

United States Washington DC 322.755.353 9.826.675 km²

Namibia Windhoek 2.113.007 824.116 km²

Web table columns can 
correspond to properties of 
the knowledge base schema

Web table rows describe entities 
and correspond to an existing entity 
instance in the knowledge base or 
potentially an unknown entity

P1 P2 P3 P4 … PN

E1

E2

E3

…

Em
Knowledge base class

A whole web table can 
correspond to one class 
of the knowledge base

Relational web table

Figure 3.4: Illustration of how knowledge within a web table matches knowledge
within a knowledge base.

In this work, we will focus only on relational web tables. Figure 3.4 shows how
a relational web table can be matched to a knowledge base. First, all entities and
properties described in one web table are assumed to describe knowledge about
only one class of the knowledge base. Attribute columns in the web table, can be
matched to properties of that class. If the column does not describe structured data,
or does so for a property not present in the knowledge base, it can not be matched
and therefore not be used to extract knowledge for knowledge base augmentation.
Similarly, rows correspond to entities in the knowledge base. However, if a row is
not matched to an existing knowledge base entity, it could contain knowledge that
could be used to extend a knowledge base with long-tail entities.

3.2.2 Potential and Challenges of Using Web Tables

Web tables have the potential to be especially useful for cross-domain knowledge
base augmentation. First, they are not limited a specific topical domain, and could
possibly cover any class present in the knowledge base. Other data sources are
more likely to be limited to a topical domain. Semantic annotations e.g. have to
make use of vocabularies [Meusel et al., 2014], which could potentially limit the
domains they cover. More importantly, semantic annotations are often included
on websites for a specific purpose, e.g. to highlight information in search engines.
This could further limit what kind of knowledge is annotated. Datasets offered by
public institutions can be vast in number and size, but often cover information that
is in the public interest, containing for example statistics. These datasets, while
useful, might not cover the diverse topical domains within a knowledge base. In
Chapter 5, we will profile a large public web table corpus and investigate which
topical domains are potentially covered by web tables.
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When compared to deep web databases, web tables are relative straightforward
to extract. They are included on the surface web, and as such they can be extracted
from a crawl. Deep web databases, while potentially covering large amounts of
data, need to be accessed through query forms.

Relational web tables also provide knowledge in a semi-structured nature that
is useful for a large variety of purposes. The relational structure facilitates the
parsing, processing and understanding of tables. As we know that, given a row, all
cells of that row describe the same entity, we have information that we can exploit
to disambiguate this entity. Similarly, as a column always describes one property,
this gives us more than one value that we can exploit to detect the column data type
and match it to a property in the knowledge base schema. This is not the case for
entity tables, where for each property at most one value exists.

Finally, it is quite common to represent structured data in a relational format.
Methods developed for relational data, e.g. those we suggest and evaluate in this
thesis, could potentially be applied to any web data source, as long as this source
is converted into a relational format. Given for example a website that provides
a large number of individual entity tables that share a common format, these en-
tity tables could all be merged into one large relational table. Methods built for
relational data could then be used to enrich a knowledge base using this table.

Integrating web tables for the purpose of extracting knowledge for knowledge
base augmentation however also has its challenges:

• Size: web tables are usually small. Further below we describe the WDC web
table corpora, which contain relational tables that have on average between 3
and 5 columns, and 12 to 14 rows. The less knowledge covered by a source,
the potentially more difficult it becomes is to integrate and extract knowledge
from that source.

• Heterogeneity: web tables are heterogeneous and inconsistent. Each web
table has its own schema and data model, and must therefore be parsed,
processed and matched individually. This is made especially difficult by the
fact that web tables usually lack meta-data.

• Amount: there are billions of HTML tables that can be extracted from the
surface web. After applying filtering and classification (see Subsection 3.3.1
below), we are still left with more than hundreds of millions of small rela-
tional web table that need to be integrated. As such, working with web tables
requires scalable methods.

• Quality: web tables, as many web data sources, can generally be considered
noisy. We are dealing with tables that were potentially incorrectly extracted,
classified and parsed. We could also be dealing with inconsistent and incor-
rect data. Some knowledge on the Web is purposely fake, but might appear
to be genuine, e.g. websites of fantasy sports leagues.
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3.2.3 Uses and Applications of Web Tables

This section outlines the variety of uses and applications of web tables. Promi-
nently among them is using web tables to extract new knowledge, e.g. to perform
set, attribute, or table expansion. This indicates that web tables are especially
suitable for the task of augmenting cross-domain knowledge bases with long-tail
knowledge. However, there are also other uses.

Table Search. Web tables can be used to create a table search engine, which al-
lows users to quickly find versatile and specific structured data in the form of tables.
Google Tables is an example of a table search engine built using web tables [Bal-
akrishnan et al., 2015]. The authors implemented another version as part of the
Google Research Tool, which allows the users of Google Docs and Presentation to
search for information while working on a document to integrate structured tables.
Another system is OCTOPUS, which uses a search query to find clusters of web
tables, relevant to the query [Cafarella et al., 2009a].

Enhancing Web Search. Web tables can be used to enhance web search, providing
additional structured information that can be displayed for the user in addition or
as part of the search results. This has been implemented for example at Google,
where subsets or snippets from web tables are extracted based on a user search
query to be shown along with search results [Balakrishnan et al., 2015]. A team
at Microsoft developed FACTO, a fact lookup engine that also uses web tables to
enhance search results [Yin et al., 2011].

Set Expansion. Set expansion refers to the task of extending an incomplete set
of entities with more entities of that set. For this task, various sources can be
exploited, among which are e.g. web tables [Wang et al., 2015].

Attribute Expansion. Attribute expansion is the task of finding more attributes, or
attribute values, for a given set of entities. This task can also be performed using
web tables, as done by the InfoGather [Yakout et al., 2012] and InfoGather+ [Zhang
and Chakrabarti, 2013] systems, by the Mannheim Search Join Engine [Lehmann
et al., 2015], and the work by Kopliku et al. [Kopliku et al., 2011].

Table Expansion. Table expansion refers to the task of finding both, more entities
and properties given a certain input query. There exist works that perform this task
using web tables, for example EntiTables [Zhang and Balog, 2017].

Knowledge Base Construction and Augmentation. Given that web tables are
useful for set, attribute and table expansion, they naturally lend themselves to the
task of knowledge base construction and augmentation. There has been a large cor-
pus of work on matching and interpreting web tables using knowledge bases (see
Subsection 4.2.2 of the following Chapter). Some of these works match web tables
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specifically to enable knowledge base augmentation [Ritze et al., 2015, Sekhavat
et al., 2014, Lehmberg, 2019], however, few works exist that actually use web ta-
bles for cross-domain knowledge base augmentation. There exists the work by
Dong et al. [Dong et al., 2014a], who use web tables, among other web sources,
for constructing the knowledge base Knowledge Vault. However, they only extract
knowledge for head entities that already exist within Freebase. Hassanzadeh et
al. profile the class overlap between the 2012 WDC web table corpus and classes
in multiple knowledge bases, by matching web table columns to classes in knowl-
edge bases [Hassanzadeh et al., 2015]. In Chapter 5, we provide the first large
scale profiling of a public web table corpus for the specific task of slot filling a
cross-domain knowledge base.

3.3 Web Table Corpora

To make use of web tables for knowledge base augmentation, we need to extract
web tables at large-scale from the Web. This extraction is non-trivial. It requires ex-
tensive crawling of the Web, and a combination of heuristics and machine-learned
methods to filter out non-relational HTML tables.

The Web Data Commons (WDC) project9 extracts and provides large-scale
structured web data datasets to enable research and other purposes. Among the
datasets are two web table corpora, which we also use in this thesis.

This section first introduces the task of web table corpus extraction. We will
then briefly describe the 2012 and 2015 WDC web table corpora, providing statis-
tics and describing what kind of information they contain.

3.3.1 Web Table Corpus Extraction

Extracting web tables from web pages consists of two steps. First, pages are parsed
and HTML tables are extracted based on the <table> tag [Wang and Hu, 2002,
Cafarella et al., 2008b], which is generally a trivial process. In a second non-trivial
step, HTML tables that do not contain structured data need to be filtered out. These
tables, also denoted as non-genuine [Wang and Hu, 2002] can for example be used
for layout purposes. In contrast, tables that contain structured data are termed
genuine. However, we first require a large-scale crawl of the Web, from which can
actually extract web tables.

Crawling. Due to the historic lack of available large-scale public crawls of the
Web, work with large-scale web table corpora was initially limited to big web com-
panies. For example, the first works using a large number of web tables were con-
ducted at Google using non-public corpora [Cafarella et al., 2008b,Cafarella et al.,
2008a]. This however changed with the availability of the Common Crawl10 [Ca-
farella et al., 2018, Eberius et al., 2015]. The Common Crawl is the largest pub-

9http://webdatacommons.org/
10https://commoncrawl.org/

http://webdatacommons.org/
https://commoncrawl.org/
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licly available crawl of the Web. The December 2019 release contains 2.45 billion
web pages. Based on this, public web table corpora in the form of the Web Data
Commons web table corpora or the Dresden Web Table Corpus11 have become
available.

Filtering. Filtering out non-genuine tables can first be done using heuristics or
rule-based approaches. For example, tables can be filtered out when they are too
small, or because they are part of forms [Cafarella et al., 2008b]. HTML tables
can also be filtered out when they contain nested tables, i.e. keeping only the in-
nermost tables [Lehmberg et al., 2015]. In addition, supervised machine learning
approaches are used to disambiguate genuine and non-genuine tables [Wang and
Hu, 2002, Crestan and Pantel, 2011, Cafarella et al., 2008b]. A machine-learning
approach suggested by Eberius et al. [Eberius et al., 2015] classifies tables into a
taxonomy. First, tables are classified into genuine, i.e. those with actual structured
data, or non-genuine tables, e.g. those used for layout purposes. The genuine tables
are further divided into relational, entity, and matrix types.

Table 3.2 demonstrates how considerable the overall filtering of non-relational
table is. From the total of all HTML tables extracted, works report that only be-
tween 0.9 and 3.4% of tables are genuine relational tables. In the case of the 2015
WDC corpus there are additionally about 140 million and 3 million entity and ma-
trix tables respectively, which together with the relational tables still constitute only
about 2.25% of all extracted web tables.

Table 3.2: Number of relational web tables left after filtering, compared to the
total number of HTML tables extracted.

Web table corpus Total Tables Relational Tables Ratio

[Wang et al., 2012] 1.95b 66m 3.4%
[Cafarella et al., 2008b] 14.1b 154m 1.1%
WDC Web Table Corpus 2012 11.25b 148m 1.3%
WDC Web Table Corpus 2015 10.24b 90m 0.9%

3.3.2 Web Data Commons Web Table Corpora

The Web Data Commons (WDC) project has published two large-scale web table
corpora. Table 3.3 provides general statistics on both of them. The 2012 corpus
was extracted using the 2012 Common Crawl dataset, from which 3.3 billion pages
were parsed, while the 2015 corpus was extracted using the smaller July 2015 Com-
mon Crawl dataset, from which 1.78 billion pages were parsed. Correspondingly,
the 2015 corpus is smaller, containing only 90 million relational web tables, while
the 2012 corpus contains 147 million relational web tables.

11https://wwwdb.inf.tu-dresden.de/misc/dwtc/

https://wwwdb.inf.tu-dresden.de/misc/dwtc/
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Table 3.3: General statistics about the WDC web table corpora.

2012 corpus 2015 corpus

Common Crawl version 2012 July 2015
Parsed pages 3.30b 1.78b

All relational tables 147m 90m
English-language relational tables 92m 51m

Entity tables - 140m
Matrix tables - 3m

Table 3.4: Column and row statistics for the WDC web table corpora.

Min. Max. Average Median

2012 corpus
columns 2 2,368 3.5 3
rows 1 70,068 12.4 6

2015 corpus
columns 2 18,106 5.2 4
rows 2 17,033 14.5 6

For the extraction of the 2012 WDC web table corpus, classification-based
filtering methods based on those suggested by [Cafarella et al., 2008b], [Crestan
and Pantel, 2011], and [Wang and Hu, 2002] were used. For the 2015 WDC web
table corpus, the classification methods were based on [Eberius et al., 2015]. In
both cases, the authors first also filtered out any tables that contain nested tables,
keeping only the innermost tables.

Table 3.3 shows the number of tables within the WDC web table corpora.
In addition to the full set of relational tables extracted from the Web, the WDC
project also provides a subset of English-language web tables. For the 2012 corpus,
any web table from the following top-level domains was considered as English-
language: com, org, net, eu and uk. For the 2015 corpus, the language detec-
tion was performed using language profiles learned from Wikipedia abstracts. The
2012 English-language subset contains 92 million, while the 2015 subset contains
51 million relational tables.

In case of the 2015 corpus, entity tables and matrix tables were additionally
detected. Overall, there are 140 million entity tables, i.e. more than relational
tables, and 3 million matrix tables.

Table 3.4 provides statistics about the size of the relational tables within both
corpora. On average, the tables are rather small, with only an average number
of columns between 3 and 5, and an average number of rows between 12 and
14. However, this also means that each entity in a relational table is described on
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average by more than three properties, and each property has values for more than
12 entities. This is likely sufficient to parse, understand and match web tables, and
to use them for knowledge base augmentation.

In Chapter 5, we profile the topical domains covered within the 2012 web table
corpus and its potential for the task of slot filling missing knowledge in DBpe-
dia. We then use the 2012 web table corpus for our work on entity expansion in
Chapters 8 to 10.

The 2015 corpus also contains time and contextual data [Lehmberg et al.,
2016], among which are the page title, the table caption, 200 words before as
well as after the table, the last modified date on the HTTP header, and sentences
around the table that contain timestamps. We use this data in our works regarding
time-aware fusion methods in Chapters 6 and 7.

3.4 Summary

Web tables are relational HTML tables extracted from the Web. While they make
up only a subset of data found on the Web, they are a highly interesting source
for knowledge base augmentation. First, they cover knowledge in a relational for-
mat. This potentially makes it easy to parse and understand tables and match them
to a knowledge base. More importantly, web tables are not limited to a certain
domain, making them especially useful for cross-domain knowledge base augmen-
tation. Finally, methods that use web tables for knowledge base enrichment, could
potentially be used to enrich knowledge bases from any other type of structured
web data, as long as this data is transformed into a relational format.

However, using web tables for knowledge base augmentation is non-trivial.
First of all, each web table has a heterogeneous data model. Moreover, individual
web tables are relatively small, while the number of overall web tables is very
large. Additionally, web tables are likely to contain noise and low-quality data.

Additionally, to acquire web table corpora, we require a large-scale public
crawl of the Web and methods for web table extraction. Not all HTML tables
cover relational data, so that extraction methods need to distinguish web tables
from other HTML tables, e.g. those used for layout.

However, there exist publicly available web table corpora published as part of
the Web Data Commons project. We use these corpora throughout this research,
so that we do not need to extract or identify web tables ourselves. The WDC Web
Table Corpus 2012 consists of 147 million, while the 2015 consists of 90 million
web tables. The 2015 corpus additionally contains contextual information from
which we could extract timestamp information to exploit for time-aware fusion.

Augmenting a knowledge base from web tables is a data integration task. It re-
quires therefore data integration methods in the form of schema matching, identity
resolution and data fusion. We will introduce and discuss data integration methods
for web tables in the next chapter.



Chapter 4

Data Integration Methods

Augmenting a knowledge base from a large corpus of web tables constitutes a
data integration task, consisting therefore of schema matching, identity resolution
and data fusion. However, due to the nature of web data, traditional data integra-
tion methods, e.g. those used for integrating enterprise data sources, are not suffi-
cient [Dong and Srivastava, 2015a]. As each web table has a heterogeneous data
model, the data in a table is likely to be noisy, the number of tables is very large,
and we aim to augment a cross-domain knowledge base, we need data integration
methods that are automated, domain-independent, noise-resistant and scalable.

This chapter introduces the topic of integrating web tables with a knowledge
base for the purpose of augmentation. This will be done by first describing existing
approaches for web table data integration, discussing which augmentation tasks
they enable, and where they fall short. Filling these gaps in integrating web tables
with a knowledge base is the primary objective of this thesis. We also introduce a
set of frameworks of data integration methods that we use throughout this thesis.

The findings of this chapter are:

• For schema matching, there exist as part of the T2K framework methods that
are able to successfully match the schemata of a large number of heteroge-
neous web tables using a central cross-domain knowledge base. We make
use of these methods throughout this thesis.

• For identity resolution, there also exist methods that match entities using
a central knowledge base. While these methods allow us to perform slot
filling, they are insufficient for performing entity expansion.

• To fuse static data, we can make use of existing fusion techniques that rely on
source reliability estimation to determine the correctness of values for fusion.
For time-dependent data however, an approach that ensures correctness alone
is not sufficient, as we require time-aware fusion methods that additionally
ensure validity given a temporal scope. We find that there is little research in
regard to time-aware fusion methods for web table data.

This chapter is structured as follows. The next section illustrates the challenges
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Brady_Carson
GridIronFootballPlayer

height: 

team:

LA Chargers

-

birthDate: 

-

position: 

Linebacker

number: 

50

Name Height Position Birthdate

Carson, Brady 6-2 lb 04/08/1978

Gerard Anderson 5-9 de 09/09/1991

Brady, Carson 6-9 wr 01/08/1983

Player Team H W

Brady Carson LAC 188 -

Ranjid O’Neal CHI 193 240

Peter Frank MIN 210 225

# ply tm dob

12 C. Sarkandi Denver Broncos 24.05.87

87 A. Wong Atlanta Falcons 04.09.79

50 B. Carson San Diego Chargers 08.04.87

11 C. Brady New England Patriots 01.08.83

6

6

51

4

43

3

8

2
6

7

weight: 

112

9

Figure 4.1: Illustration of a slot filling task from web tables.

faced when integrating web tables with a knowledge base. Section 4.2 introduces
both, traditional data integration methods and the state of the art in web tables inte-
gration. It also highlights how existing methods are insufficient for both, slot filling
time-dependent data and entity expansion. In Section 4.3, we finally introduce a
set of frameworks with data integration methods that we rely on throughout this
thesis. The last section provides a chapter summary.

4.1 Challenges of Integrating Web Table Data

Section 3.2.2 describes the challenges faced when using web tables. In summary,
we are dealing with a large number of small web tables of varying quality and with
heterogeneous data models. To illustrate more explicitly the challenges in inte-
grating web tables, consider the example of a simple augmentation task in Figure
4.1. The shown task is slot filling for the static, non-time-dependent, properties
(height and birthDate), and the existing entity Brady_Carson. As such
this task, illustrates a rather simple augmentation task. It involves neither adding
new entities to the knowledge base, nor fusing time-dependent data.

The augmentation problem shown in the figure demonstrates some of the chal-
lenges faced when integrating web data, of which we have highlighted eight. The
highlighted challenges are:

1. Homonym problem for entity labels

2. Synonym problem for entity labels

3. Non-normalized quantities with unknown units

4. Synonym problem for reference data types (lb instead of Linebacker and
LAC instead of LA Chargers)
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5. Ambiguous date format (day / month unclear)

6. Heterogeneous (Birthdate and dob) and ambiguous (H / W / #) column labels

7. Missing information

8. Outdated label used for reference data types (San Diego Chargers being a
historic name of the LA Chargers)

9. Incorrect data

Some of these challenges are not present in traditional data integration tasks or
can otherwise be resolved. First, traditional sources cover more meta-information
and provide data in a more structured format. They usually cover units of numeric
quantities and formats of dates. Reference types are not represented using strings,
but usually refer to other entities within the source or to explicitly maintained tax-
onomies, so that is not necessary to disambiguate which entity is referenced by a
certain string literal. While heterogeneous and ambiguous schema labels also ex-
ist in traditional data integration methods, there is usually more meta-information
present to allow schema matching, i.e. the data type of a property. More impor-
tantly, we need to integrate millions of web tables, i.e. match millions of schemata.
These numbers are not common in traditional data integration methods. Finally,
missing data is also typically explicitly marked as missing in enterprise sources.

Enterprise data is also easier to integrate because it generally covers more data.
Enterprise sources first of all cover more information per property, which would al-
low us to more easily determine date formats or units of quantities. E.g., in the first
table in Figure 4.1, we only need one birthdate that occurs on a day of the month
beyond the 12th to determine the date format, however there is not enough data in
the web table to do this. Traditional sources also tend to cover more properties per
entity, allowing us to disambiguate synonyms and homonyms more easily.

4.2 Data Integration for Web Table Data

Data integration consists of three components. In schema matching, the schemata
of the sources to be integrated are first aligned and the properties that describe
semantically the same knowledge are linked. In identity resolution, also called
record linkage or entity matching, the records between sources that describe the
same entity are linked. Finally, in data fusion, when conflicting values exist for the
same property and entity, the true value is found.

This section outlines for all three components existing methods for web table
integration. We will show, where these existing are lacking, and identify the gaps
that we aim to close with this research. However,

4.2.1 Traditional Data Integration Methods

Before introducing data integration methods for web table data, we will first briefly
introduce traditional approaches to data integration methods.
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Traditional Schema Matching Methods

The purpose of schema matching is to align schemata of sources by first, identify-
ing which properties, or columns in the case of web tables, describe semantically
equal knowledge, and secondly create a mapping that specifies the semantic re-
lationship between the properties [Madhavan et al., 2001, Dong and Srivastava,
2015a]. Using for example the illustration in Figure 4.1, a schema mapping be-
tween the first and second table would relate the columns Height and H. It would
also specify that the units of both columns differ, including how they need to be
converted for integration.

For schema matching, a mediated schema can be used. The mediated schema is
a schema built for the data integration application and consists of the aspects only
relevant to the application [Doan et al., 2012a]. As this mediated schema has to be
created and refined by domain experts, it can pose a bottleneck for data integration
applications [Dong and Srivastava, 2015a].

Within the schema matching task, one can additionally differentiate between
the subtasks of finding semantic property matches and creating the actual schema
mapping. Semantic property matching refers to the task of finding which prop-
erties from different source describe semantically the same knowledge, without
explicitly stating how the data between the two is translated [Dong and Srivastava,
2015a]. On the other hand, creating the actual mapping, involves creating query
expressions that relate one schema to the other explicitly, allowing for example
the reformulation of a user query on the mediated schema into a set of queries
on underlying schemata [Dong and Srivastava, 2015a, Doan et al., 2012a]. Works
on schema matching however can focus on deriving a mapping that includes only
semantic property matches [Madhavan et al., 2001, Bernstein et al., 2011].

Matching approaches can generally be categorized into two types. Schema-
based matching exploits only information from the schema of a data source, with-
out making use of content within a data source. It e.g. makes use of linguistic
similarities between the names of properties, or exploits information about prop-
erty data types for matching. On the other hand, instance-based matchers make use
of the actual data within sources to match the schemata of the sources. This can
include for example linguistic comparison of the data, but also constraint-based
comparison using value overlap and value ranges [Rahm and Bernstein, 2001].

One instance-based method is duplicate-based matching [Bilke and Naumann,
2005]. It first requires deriving correspondences between the entities of two data
sources, i.e. duplicates, which are then used to better identify semantic property
matches. As finding duplicates generally requires identity resolution, which could
themselves rely on an existing schema mapping, an iterative approach can be used.

Traditional Identity Resolution Methods

Identity resolution refers to the task, where it is determined which records from dif-
ferent sources match, i.e. describe the same real-world entity [Christen, 2012,Dong
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and Srivastava, 2015c]. This is mainly done through pairwise matching, where
record pairs are compared individually, and a local matching decision for each pair
is made. As comparing every possible pair does not scale for large datasets, block-
ing methods are used to reduce the number of comparisons. To refine the matching
decision and to ensure global consistency, a clustering approach can be used.

Pairwise Matching. Pairwise matching is the basic step of identity resolution. A
candidate record pair is first compared to then make a decision whether the pair is
a match or a non-match. This is done by comparing the properties of both records,
either exactly, or using an approximate comparison that returns a similarity value.
In any case, the use of data pre-processing is required to ensure that records from
different sources are cleaned and standardized.

To perform the actual matching decision, rule-based or supervised classifica-
tion approaches can be used. Rule-based approaches can be tailored to complex
matching scenarios, however, they might require significant domain knowledge
to formulate, while being ineffective when records contain errors and noise. For
classification approaches, machine learning techniques are used along with a set
of labeled training pairs of matching and non-matching records to train a binary
classifier that decides whether a compared pair matches or not. The classifier can
additionally provide a confidence score for its matching decision.

Blocking. Employing pairwise matching directly has a quadratic complexity, as
each record from one source needs to be compared with each record from another
source. This does not scale when the number of sources is large. Using blocking,
the number of comparisons can be reduced by exploiting the fact that the majority
of record pairs are likely non-matches. Using a blocking function, the records
from each data source are first mapped to blocks. Only record pairs within the
same block are then compared using pairwise matching.

Clustering. As pairwise matching produces local matching decision for pairs, the
outcome might be globally inconsistent. Let’s consider a case with three records
ax, by, and cz from three different sources a, b, and c and a pairwise matching
outcome where pair ax and by and pair ax and cz are matches, while pair by and
cz is a non-match. This is a conflicting outcome, as by and cz themselves are
determined to be non-matches, while they both match the same record ax.

By performing identity resolution using clustering, we can create a globally
consistent outcome. Each resulting cluster of records refers to one unique entity,
where records in a cluster have a high intra-cluster similarity, and records between
clusters have a high inter-cluster dissimilarity. These similarities can e.g. be based
on the confidence scores returned by a supervised pairwise matching classifier.

Clustering can be performed as a post-processing step on the output of the pair-
wise matching, e.g. by building a graph where each edge corresponds to a match,
and transforming the graph using clustering into pairwise disjoint subsets. Alterna-
tively, clustering can be performed on pairwise similarities or dissimilarities com-
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puted between all pairs. In this case, pairwise classification would be substituted
by pairwise similarity computation.

As the number of clusters corresponds to the number of unique entities de-
scribed by all sources, the number of clusters can not be determined beforehand.
As a result, a clustering algorithm is required, that itself determines the optimal
number of clusters in the output. A possible candidate for clustering is for example
correlation clustering, which is robust, however also computationally expensive.

Traditional Data Fusion Methods

Data fusion methods [Dong and Srivastava, 2015b, Li et al., 2016, Dong et al.,
2014b] have become more important with the emergence of data extracted from
the Web. Traditional data fusion methods were rule based, i.e. by using voting to
take the value that is provided by the highest number of sources, by taking the most
recent value, by averaging or by taking the minimum or maximum value.

4.2.2 Schema Matching and Identity Resolution for Web Tables

The majority of schema matching and identity resolution methods for web table
data work on the same basic principle: a knowledge base, catalog or repository
are employed, towards which the schemata of the tables are matched, and towards
which the identity of entities described in the tables are resolved.

Limaye et al. [Limaye et al., 2010] use a graphical model to annotate columns
and cells in a table with references to a type hierarchy and an entity catalog ex-
tracted from YAGO. TabEL [Bhagavatula et al., 2015] is a system that performs
relation extraction between columns and entity linking between entity mentions in
web tables and a reference knowledge base, in their case also YAGO. Mulwad et
al. [Mulwad et al., 2010] link cells to entities in linked data datasets and assign DB-
pedia classes to web table columns. TableMiner+ [Zhang, 2017] is a system that
links cells in tables to entities in Freebase and assigns specific semantic relations
from Freebase to pairs of columns. Finally, T2K [Ritze et al., 2015] is a framework
that uses an iterative approach to match web tables to DBpedia. It matches web ta-
bles to classes and web table columns to properties in the DBpedia ontology, while
web table rows are matched to existing entities in DBpedia.

The focus of many works on linking tables to one central catalog or knowledge
base can be explained by the fact that the majority of works attempt to understand
and semantically interpret tables [Bhagavatula et al., 2015, Mulwad et al., 2010,
Zhang, 2017], in lieu of using them for knowledge base augmentation.

This usage of a central knowledge base towards which the schemata of the ta-
bles are matched, causes the schema of the knowledge base to take the role of the
mediated schema. As such, in the context of knowledge base augmentation, the
schema and data model are predetermined by the knowledge base and are them-
selves not extended using web table data. This is in line with the research in
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this thesis. However, schema expansion from web table data has also been stud-
ied [Lehmberg and Hassanzadeh, 2018, Lehmberg, 2019].

In the case of identity resolution however, this means, that if a row describes an
entity that does not have a corresponding instance in the knowledge base, the row
will remain unmatched. While this is an indication that the row likely describes
a new long-tail entity that could be added to the knowledge base, we do not have
any information about which other rows also describe this same entity. Performing
identity resolution by matching rows or cells to entities in the knowledge base,
therefore only enable slot filling missing facts for existing entities, but does not
allow us to perform entity expansion.

To enable entity expansion, we require an approach to identity resolution that
does not only link web table rows to instances of entities in the knowledge base, but
also creates correspondences between the rows, that describe entities not present in
the knowledge base. We solve this using our Long-Tail Entity Extraction Pipeline
described in Chapter 8.

4.2.3 Data Fusion Methods for Web Data

The task of data fusion [Dong and Srivastava, 2015b, Li et al., 2016, Dong et al.,
2014b] is to find true value given a set of conflicting values from different sources.
Given that web data is noisy, traditional data fusion methods are likely not suf-
ficient. Choosing for example the most common value, i.e. voting, is not useful
when the majority of sources provide a wrong value. Similarly, averaging correct
with incorrect values does not yield an accurate output.

In this section we will introduce data fusion methods for web data. We will
differentiate between fusion methods for static non-time-dependent web data, and
time-aware fusion methods for fusing time-dependent web data.

Fusing Static Web Data

To fuse static data, fusion methods must determine from the set of conflicting and
noisy values, the value that is correct. Fusion methods for static data generally
consist of two concepts: source reliability and truth table. Source reliability, also
referred to as source accuracy [Dong et al., 2015, Dong et al., 2013] or website
trustworthiness [Yin et al., 2008], refers to the reliability of a source in providing
accurate data. The reliability of a source in the context of the Web is sometimes
contrasted with its popularity based e.g. on the hyperlink structure of the Web [Yin
et al., 2008, Dong et al., 2015]. Truth table on the other hand refers to the true
values or likely true values given certain data items. The truth table is used to
estimate source reliability.

The two concepts are related by the following principle: "The sources that pro-
vide true information more often will be assigned higher reliability degrees, and
the information that is supported by reliable sources will be regarded as truths" [Li
et al., 2016]. As the truth table is generally unknown beforehand, truth discovery
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is therefore a "chicken-and-egg problem" [Dong and Srivastava, 2015b], which is
why many methods for truth discovery are iterative.

Some works [Pasternack and Roth, 2010,Yin and Tan, 2011,Dong et al., 2015]
use a ground truth as an a priori truth table to initialize source reliability. For ex-
ample, the Knowledge-Based Trust approach [Dong et al., 2015], where Freebase
is used as a ground truth to bootstrap truth finding and source reliability estimation.

Dong et al. [Dong et al., 2015] also do not only estimate source trustworthiness,
but simultaneously also the trustworthiness of extractors. This approach is useful,
as conflicting data and noise are not just caused by incorrect data within the source
itself, but also by incorrect extraction or possibly incorrect schema matching and
identity resolution. In the fusion methods we employ in this thesis (see Subsec-
tion 4.3.3), we estimate source reliability using Knowledge-Based Trust per web
table column. As web table columns share similar extraction, matching and nor-
malization, estimating the trustworthiness per web table column potentially cap-
tures extraction, matching and normalization quality, in addition to source quality.

Fusing Time-Dependent Web Data

The above described fusion approaches assume that data is static [Pal et al., 2012,
Dong and Srivastava, 2015b], so that a certain truth does not change over time.
However, there also exists time-dependent data, where a value is only valid given
a certain temporal scope [Kuzey and Weikum, 2012], i.e. a point in time or a time
range. For this type of data, we require fusion methods that are time-aware [Dong
et al., 2016].

This section summarizes existing approaches for time-aware fusion. As in this
thesis we research data integration methods, we will only consider time-aware ap-
proaches that are in the area of data integration. There exist approaches for slot-
filling time-dependent data without data integration, e.g. through relation extrac-
tion from unstructured text [Surdeanu, 2013].

Dong et al. [Dong et al., 2016] provide an extensive survey on time-aware data
integration. They describe as the main challenges of time-aware integration the
identification and assignments of temporal scopes to data. Here they find rule-
based approaches, e.g. HeidelTime [Strötgen and Gertz, 2010], or approaches that
use a combination of combination of machine learning and syntactic analysis [Ling
and Weld, 2010]. In both cases, the temporal scopes are extracted from temporal
expressions found within the input data. This could for example be in the form of
timestamps, which are found in and around a web table [Zhang and Chakrabarti,
2013]. Other works exploit e.g. the crawl date [Dong et al., 2009]. Limiting the
source of temporal scopes solely to being explicitly stated in the input is however
problematic. The crawl date of a website has likely no direct relationship to the
temporal scope of the data and web tables extracted from the website. Timestamps
found in and around the table could be more relevant, however they are potentially
sparse and noisy [Zhang and Chakrabarti, 2013]. Chapter 6 elaborates more on
the issue of sparse and noisy timestamps, and presents approaches to deal with
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both. Chapter 7 introduces an approach that propagates temporal scopes from a
temporal knowledge base to web table data, thereby eliminating the dependence
on explicitly stated temporal scopes.

Time-ware methods also differ in the way they formulate the time-aware fusion
problem. Some works consider only finding the most current value from a set of
conflicting values [Dong et al., 2009, Alexe et al., 2014, Fan et al., 2014]. In the
work by Zhang and Chakrabarti however, a target temporal scope is provided as
part of the input query, so that the time-aware method is tasked with finding the
value that is valid given that scope [Zhang and Chakrabarti, 2013]. In this research,
we formulate the fusion problem similarly, such that a fusion method is aware of
the target temporal scope. We outline this further in Chapters 6 and 7.

In regard to their actual approaches, the works also differ strongly. Dong et
al. [Dong et al., 2009] estimate source reliability using a probabilistic model and
source quality indicators that consider the time-dependence aspect of data. To
measure these indicators however, the same source needs to change over time and
to be crawled repeatedly, which is not applicable to web table data. Zhang and
Chakrabarti [Zhang and Chakrabarti, 2013] employ probabilistic graphical models
to match web table columns with each other semantically, so that matched columns
also describe data for the same temporal scope. Alexe et al. [Alexe et al., 2014] use
a set of class-specific preference rules to determine the most recent value given a
set of conflicting alternatives, while Fan et al. [Fan et al., 2014] use class-specific
constraints, that are manually refined.

Only Zhang and Chakrabarti [Zhang and Chakrabarti, 2013] actually integrate
data from web tables, which they use to perform attribute expansion. Given a set
of input entities and a target property, they extract from a web table corpus corre-
sponding values for that property. For time-dependent data, the target property is
given a target temporal scope as part of the input query.

In summary, Zhang and Chakrabarti provide the only viable approach that en-
ables time-aware fusion of web table data. Other approaches additionally either
only enable finding the most recent value [Dong et al., 2009,Alexe et al., 2014,Fan
et al., 2014], require domain-specific supervision [Alexe et al., 2014, Fan et al.,
2014], or require a continuously crawled source that regularly updates [Dong et al.,
2009]. We provide an extensive comparison to the related work in Chapters 6 and 7,
with focus on the work by Zhang and Chakrabarti.

4.3 Data Integration Frameworks

This thesis focuses on investigating two augmentation tasks: slot filling for time-
dependent data, and entity expansion. For our research, we exploit a set of web
data integration frameworks, with methods based on the current state of the art.
This section introduces these frameworks.

First, we make use of the T2K matching framework. We use it throughout all
methods presented in this thesis for performing column data type detection, entity
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label column detection, and table-to-class matching. Additionally, we use it for
schema matching and identity resolution in Chapters 5 to 7. In Chapter 5, we use
it to profile a web table corpus, while in Chapters 6 and 7, we use it in the context
of researching and evaluating time-aware fusion methods. However, in regard to
our research on entity expansion, we require novel identity resolution methods.
For this purpose, we do not make use of T2K for schema matching and identity
resolution and introduce and evaluate an alternative approach in Chapter 8.

Secondly, we introduce a framework for data fusion that we use throughout
this thesis. This framework can make use of any fusion strategy by allowing it to
score candidate values given a certain target triple. Our fusion framework also
allows the use of time-aware fusion strategies, as it provides a target temporal
scope in addition to the target triple. This section also introduces a set of static
fusion strategies that we use throughout this thesis.

Moreover, we describe the Local Closed-World Assumption (LCWA) [Dong
et al., 2015], which we use in Chapters 5, 6, and 7 to evaluate slot filling perfor-
mance. For entity expansion we do not make use of this assumption, as we evaluate
using a gold standard, which we introduce in Chapter 8.

Finally, we use throughout this thesis a set of data types, and corresponding
data-type-specific similarity and equivalence functions. We will introduce these at
the end of this section.

4.3.1 T2K Matching Framework

The T2K matching framework [Ritze et al., 2015] has a broad range of function-
ality when it comes to matching web tables to a knowledge base. This includes
column data type detection, entity label column detection, table-to-class matching,
schema matching, and identity resolution in the form of row-to-instance matching.

Column Data Type Detection

T2K performs column data type detection by assigning to each table column one
of the following basic types: string, date and numeric. Before detecting the data
type, it pre-processes tables by cleaning them, e.g. from HTML characters, but also
by normalizing their values. The data type detection is performed using about 100
manually defined regular expressions. The data type of a column is chosen based
on the majority data type among its values. If necessary, the values of a column are
normalized based on the result of the data type detection.

Entity Label Column Detection

The entity label column contains natural language labels for the entities described
in the table. It acts as the key of the table and is necessary in determining the
main topical content of a table. T2K considers for the entity label column, only the
columns with the data type string, and chooses the one with the highest number of
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unique values. In case there is a tie between multiple columns, T2K chooses the
column that is furthest to the left.

Table-To-Class, Schema and Entity Matching

T2K performs table-to-class, attribute-to-property and row-to-instance matching
simultaneously. It first extracts from the entity label column a label for each row
and uses the label to find candidate entity instances from the knowledge base. A
class, for which many rows of a table have a candidate instance, is chosen as a
possible candidate class of that table.

T2K then performs value-based row-to-instance matching, scoring candidate
instances of a row based on the overlap of the values in the row, with the values of
the instance in the knowledge base. Only values of equal data type are compared.

Given a table’s candidate classes, T2K performs for each class attribute-to-
property matching, i.e. matching the table’s columns, besides the entity label col-
umn, to properties in the knowledge base schema. T2K first compares for each
property the values in the rows with facts of that property in the knowledge base.
This is done only for facts that are part of the candidate instances of a row, and only
for the properties from the knowledge base where the data types of the column and
the property match. These comparisons yield value-based similarities, which are
used by T2K to perform duplicate-based attribute-to-property matching [Bilke and
Naumann, 2005], additionally scoring the property candidates.

For each table, a score is computed for each of its candidate classes by aggre-
gating the instance and property matching scores for each class. We then choose
the class with the highest score and assign it to the table, which gives us table-to-
class correspondences.

Row-to-instance and attribute-to-property correspondences of the chosen class
are however further refined using an iterative approach. This is done by recomput-
ing the scores of candidate instances by weighting properties using their prelimi-
nary assigned matching scores and recomputing the scores of candidate properties
by weighting instances using their preliminary assigned scores. This is repeated
until scores converge, so that final sets of attribute-to-property and row-to-instance
correspondences are chosen.

The authors evaluated T2K using a gold standard with correspondences to DB-
pedia.1 It achieved an F1 score of 0.82 for row-to-instance, 0.70 for attribute-to-
property and 0.94 for table-to-class matching [Ritze et al., 2015].

4.3.2 Data Fusion Framework

All fusion strategies used in this thesis are based on one underlying fusion frame-
work. Within this framework, we assume as input a set of web table values matched
to a single triple, i.e. a combination of a certain entity and a certain property. In

1http://webdatacommons.org/webtables/goldstandard.html

http://webdatacommons.org/webtables/goldstandard.html
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this context, fusion should return from all candidates the value that is correct. In
the case of time-dependent data, time-aware fusion strategies must find the value
that is also valid given a certain target temporal scope.

The fusion framework consists of four steps, which we describe below. Within
our data fusion methodology, fusion strategies influence the outcome of fusion
solely through scoring.

1. Scoring. A fusion strategy computes a score for each candidate web tables
value. In case of time-dependent data, fusion strategies are also given a target
temporal scope as input for scoring. Scores are provided for a range from
0.0 to 1.0.

2. Filtering. Based on their assigned scores, values are filtered using a learned
threshold. The filtering is an important step as it strongly influences a possi-
ble precision/recall trade-off. A filter with a higher threshold could increase
precision at a possible cost of recall and vice-versa. To address this trade-off,
we optimize our thresholds, usually for the F1 score. Thresholds are learned
per fusion strategy and per property-class.

3. Grouping. For a given target slot, i.e. a triple, of the knowledge base, we
group all matched values that are equal into one group. To determine if
values are equal, we employ the data-type-specific equivalence functions we
describe further below. We sum the assigned scores of all values in a group
to calculate a group score.

4. Selection. We select the group with the highest summed score and determine
a value that represents that group. As values in a group can deviate slightly,
while still determined as equal by an equivalence function, we use data-type-
specific fusers to determine one value that represents a group. For string and
reference values, we use the value that has the highest sum of scores within
the group. For date and numeric values, we use the weighted median, where
values are weighted by the score assigned to them by the fusion strategy. For
nominal string and integer values, all values in a group are exactly equal,
as the equivalence functions do not allow for deviations. Data types are
described in more details in Subsection 4.3.5 below.

4.3.3 Static Fusion Strategies

This section introduces a set of fusion strategies for static data. Among them,
are simple baseline strategies like voting, and strategies that make use of source
reliability estimation, like Knowledge-Based Trust.

Voting. Voting is a common baseline fusion strategy [Dong et al., 2014b]. It as-
signs all values matched to a triple a score of 1.0 and is therefore effectively a
simple count of the number of web tables from which a specific candidate value
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was extracted. As all candidate values have the same score, filtering with a thresh-
old, i.e. step 2 of our fusion framework, is not applicable.

PageRank. PageRank [Brin and Page, 1998] uses the link structure of the Web to
rank websites. It is widely used to assess the quality of Web content and has also
previously been used for data fusion [Pasternack and Roth, 2010]. Therefore, it can
also be used to generate scores for the fusion of web table values. To implement
a fusion strategy based on PageRank, we use a full ranking of all hosts within
the 2014 Common Crawl provided by the WDC Hyperlink Graph2 [Meusel et al.,
2015]. The score of a candidate value, is equal to the PageRank score of the host
from which the value was extracted.

Knowledge-Based Trust. Knowledge-Based Trust [Dong et al., 2015] is a fusion
strategy that makes use of a ground truth to estimate the trustworthiness of sources.
It is based on the assumption that neighboring values share similar correctness, so
that a value extracted from a source can be considered trustworthy, if other values
extracted from that same source are correct. To determine if values extracted from
a source are correct, an external ground truth can be used. This ground truth can
for example be in the form of the knowledge base that we also aim to extend.

In their original work, the authors compute trust scores per source and extrac-
tor, as the trustworthiness of an extracted value depends on both, the quality of the
original source and the accuracy of the extractor. We employ Knowledge-Based
Trust by computing scores per web table column. This is done, because we believe
that a column possibly captures source, extraction, normalization and matching
quality. The trust score of a column is computed using the following formula.

KBT(column) �
# of correct overlapping values

# of overlapping values
(4.1)

Overlapping values are those for which we can find an existing triple in the
knowledge base, i.e., where the column is matched to a property of the knowledge
base schema, and the row to an instance of an existing entity in the knowledge base,
that contains a value for the property. An overlapping value is counted as correct,
if it is equal to the value in the knowledge base triple it was matched to. This is
determined using the data-type-specific equivalence function we describe below.

During fusion, the KBT score of a column is then assigned to the candidate
values extracted from that column as part of step 1 of the fusion framework. We
use this Knowledge-Based Trust approach as the primary fusion strategy for static
data throughout this thesis.

4.3.4 Evaluating Fusion Using the Local Closed-World Assumption

As suggested by Dong et al. [Dong et al., 2014a], we use the Local Closed-World
Assumption (LCWA) to enable the large-scale automatic evaluation of fusion strate-

2http://webdatacommons.org/hyperlinkgraph/

http://webdatacommons.org/hyperlinkgraph/
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gies. According to the LCWA, if for a given triple there exist one or more values
in the knowledge base, we assume that the correct value is among them. If a value
returned by a fusion strategy is among the existing values in the knowledge base,
it is assumed to be correct, otherwise it is assumed to be incorrect. On the other
hand, if for a triple, there exist no values in the knowledge base, we exclude the
triple from evaluation completely, as we can neither say if it is correct nor incor-
rect. Dong et al. show that this assumption is a valid approximation. We manually
test and empirically confirm the LCWA in Section 5.4.1 of the next chapter.

To compare the values fused from web table data with the values in the knowl-
edge base, we use the data-type-specific equivalence functions that we describe
below. As we cannot expect data from web tables to be perfectly clean, the equiva-
lence functions allow for minor deviations when comparing fused triples to values
of overlapping triples from the knowledge base.

Using the LCWA, we can estimate the precision of a fusion strategy using the
following formula:

Precision �
fusedcorrect
fusedtotal

(4.2)

However, we are also interested in estimating the recall of a fusion strategy.
To do this, we must find the maximum number of triples that exist in the knowl-
edge base for which a correct triple could potentially be fused from the web table
corpus. We determine this number by comparing for each triple its values from
the knowledge base with each individual value matched to it from web table data
using the equivalence functions described value. If an equal value exists among its
matches, we count the triple to the maximum number of triples for which a correct
value can be fused. Recall is then estimated using this formula:

Recall �
fusedcorrect
correctmax

(4.3)

In the formula, correctmax is the number of triples in the knowledge base, for
which a correct value exists among all the matched candidate web table values.

Finally, we use the harmonic of both precision and recall, the F1 score, to
measure fusion performance:

F1 � 2�
Precision�Recall

Precision�Recall
(4.4)

In Chapter 8, where we introduce methods for entity expansion, we do not
evaluate fusion performance using the LCWA, but using a gold standard. This is
because we are evaluating performance for long-tail entities, which by definition
do not exist in the knowledge base. Additionally, evaluating performance using a
gold standard is likely more accurate, especially in regard to recall.
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4.3.5 Data Types and Similarity and Equivalence Functions

Throughout methods in this thesis, we employ data types. The data types are used
to type individual values, facts, web table columns or knowledge base properties.
Each data type has a corresponding similarity function, which compares values and
produce similarity scores normalized from 0.0 to 1.0. We additionally make use
of equivalence thresholds on the similarity functions. This gives us equivalence
functions, which we use to determine if two values are equal.

Overall, we consider six different data types, however not all are used through-
out the thesis. T2K itself supports column data type detection for string, numeric
and date. Furthermore, in Chapters 5 to 7, we make use of the entity reference data
type. In Chapter 8, we additionally make use of nominal string and integer types.
The six types, including their similarity and equivalence functions are:

• String: a string value, where two strings do not have to be exactly equal
to be similar. Given for example two entity labels ‘Frankfurt am Main’ and
‘Francfort-sur-le-Main’, these labels are not equal, however still very similar,
and they should be scored as such. The similarity metric for this data type
first normalizes the two input strings, which includes the removal of special
characters, conversion to lowercase, and conversion accented characters to
non-accented characters. Afterwards, the two input strings are tokenized,
and compared using the Generalized Jaccard similarity metric, using Lev-
enshtein as the inner similarity [Doan et al., 2012b]. For this function we
learn two thresholds, one for the inner function, to determine if two tokens
are equal, and one for the outer, to determine if the two values are equal. The
thresholds are learned, using a manually annotated external dataset.

• Numeric: a numeric quantity, where numeric closeness has a semantic rele-
vance, e.g. population of a settlement, or height of an athlete. The similarity
between numbers equals their deviation subtracted from one. The deviation
equals the ratio of the absolute distance between the two numbers relative to
the larger magnitude of either number. The numbers are considered equal if
their deviation is smaller than 5% (Chapter 5 to 7) or 3% (from Chapter 8).

• Date: point in time with three possible granularities: year, year-month or
a specific date. This data type is used for example for the release date of a
song or the birth date of a person. When comparing dates, they must per-
fectly match, in which case they achieve a similarity of 1.0, otherwise 0.0.
However, they are always compared at the lowest available precision. E.g. a
date value with just the year equals a date specific to the day, if the years are
equal in both dates.

• Entity Reference: references to other entities, whether those exist in the
knowledge base or not, e.g. team of an athlete or musical artist of a song.
As values with type entity reference are simple string literals in web table
data, in Chapter 5 to 7 we match these literals to actual instances of exiting
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entities in the knowledge base before comparing them. They are then com-
pared using an exact similarity. However, this approach was error prone,
as the disambiguation was not always successful, and, it assumed that all
referenced entities are covered in the knowledge base. From Chapter 8, we
do not match literal values to existing entities in the knowledge base, but
instead use the literals extracted from web tables in our similarity and equiv-
alence functions. We use overlap similarity as the similarity function, with
Levenshtein as the inner similarity. If one of the compared values is already
disambiguated (i.e. the value is from the knowledge base, and for example
in the form of an URI), we utilize the labels and synonyms of its instance
present in the knowledge base, and choose the highest achieved similarity
score. The equivalence threshold is set at 1.0.

• Nominal String: a literal string, where the two strings are only similar if
they are exactly equal. e.g. postal code of a settlement3, or IATA code of an
airport. The similarity function used for this data type is an exact similarity,
where it is only checked if the two values are exactly equal or not.

• Nominal Integer: an integer data type, where numbers close to each other
are not semantically related. This include for example numbers of athlete,
where two numbers are close, have the same semantic relevance to each
other as two numbers that are numerically distant, i.e. none. The similarity
function used for this data type is also an exact similarity measure.

4.4 Summary

Knowledge base augmentation from web tables is a data integration task. This
chapter summarized existing methods for integrating web tables with a knowledge
base and investigated how far these methods enable knowledge base augmentation.

We showed that existing methods for identity resolution focus on slot filling
and are insufficient for performing entity expansion. We also found that there are
few viable time-aware fusion methods for slot filling time-dependent data.

This chapter also introduced a set of frameworks containing data integration
methods from the current state of the art. It includes web table schema match-
ing methods in the form of the T2K Framework, static data fusion method, e.g.
Knowledge-Based Trust, an evaluation approach for slot filling performance using
the Local Closed-World Assumption, and data-type-specific similarity and equiva-
lence functions for value comparison.

We use these frameworks throughout this thesis. This includes e.g. the next
chapter, where we use them to profile the information described by web tables and
assess the potential of web tables for the task of slot filling.

3While postal codes in Germany are numeric, they are not in all countries, e.g. in the UK, where
they are alphanumeric.



Chapter 5

Web Table Profiling

Existing works on using web tables for augmenting knowledge bases [Limaye
et al., 2010, Zhang et al., 2013, Dong et al., 2014a] are evaluated on either small
and thus not representative web table corpora or on large web table corpora owned
by search engine companies, which do not allow information about the content and
coverage of their crawls to be published. Further, none of the existing publications
answers the question of which topical areas of the knowledge bases can be com-
plemented using web table data. For these reasons, we believe that a large publicly
available corpus, such as the 2012 WDC web table corpus1, along with an in-depth
profiling of its contents can provide significant insights into the topical domains
covered by web tables and their potential for knowledge base augmentation.

This chapter reports about the results of matching 33 million web tables from
the 2012 WDC web table corpus to DBpedia. Based on the matching results, we
profile the potential of web tables for augmenting different parts of the knowledge
base and report detailed statistics about correspondences between web tables and
classes, properties, and entities of the knowledge base. In order to explore the
degree of overlap between the web tables, we group values extracted from web
tables by their matched triple. We are thus able to report the size distribution of the
resulting groups with alternative values extracted from different tables. Finally, we
estimate fusion performance and profile the potential for slot filling new facts in
the knowledge base using web tables.

The contributions of this chapter are:

• An in-depth profiling of a publicly available web table corpus, providing
insights into its topical contents.

• A confirmation that the Local Closed-World Assumption is valid and that its
results are transferable to new facts fused from web table data.

• A verification that Knowledge-Based Trust outperforms PageRank- and voting-
based data fusion strategies.

1http://webdatacommons.org/webtables/#toc3
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This chapter is organized as following. First, we briefly introduce our experi-
mental setup. Section 5.2 then discusses statistics about class, property, and entity
correspondences created by web table matching, while Section 5.3 analyzes the in-
ternal overlap of web table data using triple groups. Section 5.4 verifies the Local
Closed-World Assumption, compares various data fusion strategies, and provides
statistics about fused triples and their slot filling potential. Section 5.5 discusses
related work, while the final section summarizes this chapter.

The work presented in this chapter has previously been published in [Ritze
et al., 2016]. It is a joint contribution, as the research has been conducted together
with Dominique Ritze [Ritze, 2017] and Oliver Lehmberg [Lehmberg, 2019]. Our
primary contribution within this research is in regard to fusion, i.e. Section 5.4.

5.1 Experimental Setup

This section outlines the experimental setup of this chapter. We first introduce and
provide statistics about the 2012 WDC web table corpus. We then briefly introduce
the reference knowledge base, in our case DBpedia, and quickly introduce the
matching methodology used to match web tables to DBpedia.

5.1.1 Web Table Corpus

We profile the 2012 WDC web table corpus, which we have previously introduced
in Section 3.3. We only consider web tables from the English-language subset,
i.e. from the top-level domains (TLDs) com, org, net, eu, and uk. As shown in
Table 5.1, the majority (83%) of these tables originate from com-domains.

We further exclude all tables without an entity label column, which we define as
the column that contains the names of the entities described within a table. Without
such a column, we cannot determine the topical content of a table. We also exclude
very small tables with less than five rows or three columns. The resulting subset of
the corpus consists of 33,403,411 tables.

The entity label column is detected using T2K (see Section 4.3), along with the
data types of the other columns. This assigns each column one of the three data
types string, numeric or date. Table 5.2 shows statistics about columns, rows and
values in general and per data type, excluding columns without obvious data types.
We find that most values are of data type string, followed by numeric.

The tables in our corpus originate from 97,932 different websites. Here, we use
the term website for each pay-level-domain (PLD), that is, the part of an URL’s host
that is paid for. Table 5.3 shows the most frequent PLDs. The most prominent PLD
is apple.com (iTunes Music), while the other PLDs often refer to sport websites,
such as baseball-reference.com, or retailers, such as amazon.com.

Table 5.4 shows the most frequent column headers. These are derived from the
first non-empty row of a table. The headers give us a first impression about the
topics within the web tables. Frequently used headers are for example “5 star” and
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“price”, indicating that the corpus contains a large number of tables about products.
Headers like “replies” or “latest post” point to the fact that the corpus contains data
from blogs or forums. About 8.5% of all columns have an empty header.

Table 5.1: Number of tables per top-level domain (TLD) in the profiled corpus.

TLD .com .org .net .eu .uk Σ

Tables 26.7m 3m 3m 216k 6k 33.4m

Table 5.2: Number of columns, rows and values in the profiled corpus.

Per data type

Σ µ per table Numeric Date String

Columns 137m 4.1 46m 4m 86m
Rows 716.6m 21.5 - - -
Values 2.95b 88.6 995m 101m 1.9b

Table 5.3: Most frequent pay-level-
domains (PLDs) in the profiled corpus.

PLDs Tables

apple.com 50,910
patrickoborn.com 455,005
baseballreference.com 25,647
latestf1news.com 17,726
nascar.com 17,465
amazon.com 16,551
baseballprospectus.com 16,244
wikipedia.org 13,993
inkjetsuperstore.com 12,282
flightmemory.com 8,044
sportfanatic.net 7,596
tennisguru.net 7,504
windshieldguy.com 7,305
donbergelectronique.com 6,734
citytowninfo.com 6,293
juggle.com 5,752
deadline.com 5,274
blogspot.com 4,762
7digital.com 4,462
electronicspare-parts.com 4,421

Table 5.4: Most frequent column
headers in the profiled corpus.

Headers Tables

no header 14,495,456
5 star: 2,402,376
name 1,813,064
price 1,771,361
date 1,603,938
amazon price 1,178,559
formats 1,066,836
title 9,132,60
time 856,401
description 773,883
size 692,251
replies 605,075
used from 589,278
new from 589,259
year 579,726
location 546,856
album 526,375
type 501,747
latest post 421,737
discussion 412,672
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5.1.2 Reference Knowledge Base

As the reference knowledge base, we use the 2014 release of DBpedia. We have
described DBpedia and specifically profiled the 2014 release in Section 2.4. It
contains 4.58 million entities, describing them with 153 million facts using more
than 2600 different properties and 680 classes. Table 2.1 profiles a selection of
classes with their number of entities and facts from the DBpedia hierarchy.

5.1.3 Matching Methodology

To profile the content of web tables, we must first match each individual table to
the reference knowledge base. This includes finding correspondences between web
tables and classes of the knowledge base, web table columns and knowledge base
properties, and, finally, web table rows and entities within the knowledge base. To
match the tables from the web table corpus to our reference knowledge base, we
make use of the T2K framework, which we have already described in Section 4.3.

5.2 Matching and Correspondences Profiling

This section profiles and provides statistics on the correspondences returned by the
matching. Table 5.5 summarizes these statistics by a selection of DBpedia classes.
T0 is the overall number of tables matched to the class, while Tc is the number
of tables which have at least one property correspondence besides the entity label
column. Vc is the number of cells (values) contained in the tables Tc that have
both an entity and a property correspondence. These numbers are further divided
according to their data type in the last four columns of the table.

Matched Tables. Altogether, 949,970 of 33.3 million web tables have correspon-
dences to DBpedia entities (T0q, distributed over 361 different classes from the
DBpedia ontology. Such tables describe entities that already exist in DBpedia,
but potentially also describe previously unknown entities, making them useful for
entity expansion. 301,450 tables (Tc) additionally have at least one property corre-
spondence. They match altogether 274 different DBpedia classes. In these tables,
8 million values (Vc) were successfully matched to a triple, i.e. a combination of a
property and an entity. If this triple is missing in DBpedia, these values could po-
tentially be used for slot filling. The fact that only 2.85% of all web tables can be
matched to DBpedia indicates that the topical overlap between the tables and DB-
pedia is rather low. This is also in line with the frequent column headers as shown
in Table 5.4, as the most frequent headers are centered around product offerings,
which is knowledge not typically covered in DBpedia.

Class Overlap. To profile the topical overlap between the web tables and DBpedia,
we provide statistics about the most frequently matched DBpedia classes from the
higher levels of the DBpedia class hierarchy in Table 5.5. Almost 50% of the web
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Figure 5.1: Complementary cumulative distribution of the number of correspon-
dences per entity.

tables describe Person and Organisation entities, followed by tables covering Work.
It is no surprise that we find a majority of correspondences for these classes, as they
are also the three most frequent classes in DBpedia (see Table 2.1 in Section 2.4).
More interesting is the fact that the second most frequent class in DBpedia, Place,
is much less frequently matched in the web tables, although it is twice as large as
Work. This either indicates that places are underrepresented in the web table corpus
or that the matching framework has trouble detecting this class. We can further see
that only 18% of the tables about places have a property correspondence. Thus,
besides being underrepresented, we also find signs for a schema mismatch between
DBpedia and the web tables for Place and its subclasses.

Data Types Distribution. In the full corpus, the majority of values had the data
type string, followed by numeric. Among the matched tables however, date is the
data type with the most values, followed by numeric and reference2, while string
has the least values. The change in distribution of data types could indicate that
the actual schema overlap between the tables and DBpedia consists of properties
with these data types. In DBpedia, the data types among triples are approximately
distributed as following: 40% for reference, 39% for numeric, 15% for string, and
7% for date. The change in distribution for the string data type between all and
the matched values could be explained by the smaller prevalence of string triples
in DBpedia. However, the opposite seems to be true for date, where there is a
disproportionately high overlap in the schemata of web tables and DBpedia.

Row-To-Instance Correspondence Distribution. In total, we find 13,726,582
row-to-instance correspondences for 717,174 unique entities, which is 15.6% of
all entities in DBpedia. Figure 5.1 shows the complementary cumulative distri-

2As the reference type requires a matching step, these values appear as string in the statistics
about the full corpus in Table 5.2.
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Figure 5.2: Complementary cumulative distribution of the number of correspon-
dences per property.

Table 5.6: Entities and properties with the highest number of correspondences.

Class Entity # Property #

Athlete Jeff Gordon 15,826 team 7,982
Fernando Alonso 14,870 championships 4,464

Country China 13,515 capital 965
France 13,300 currency 508

Office- John McCain 329 religion 74
Holder Barack Obama 328 vicePresident 66

Company Toshiba 59,112 formationDate 1,016
Nortel 45,573 iataAirlineCode 714

Musical- Can’t Help Falling in Love 1,403 releaseDate 60,473
Work Hold It Against Me 1,801 musicalBand 27,832

Educational- University of Phoenix 2,486 state 998
Institution Purdue University 2,325 numberOfStudents 707

Species Great Egret 541 genus 3,706
Rainbow trout 329 sire 207

bution function (or tail distribution) of the fraction of entities (y-axis) that have
correspondences in a given number of web tables (x-axis). We can see that 70% of
all entities with a correspondence can be found in more than one web table. 55%
have three or more sources, while 25% have at least ten sources. 3% of entities are
described within more than 100 tables.

Table 5.6 lists some examples of frequently matched entities (and properties)
for selected classes. All of the frequently matched entities are more or less com-
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monly known, which is in line with the intuitive expectation that more popular
entities are likely to be described more often in web tables.

Attribute-To-Property Correspondence Distribution. Aggregated over all ta-
bles, we find a total of 562,445 column attribute-to-property correspondences for
721 unique properties of the knowledge base. Figure 5.2 shows the tail distribution
of the fraction of properties (y-axis) that have correspondences in a given number
of web tables (x-axis). 88% of all properties have correspondences from at least
two web tables. 81% can be found in three or more web tables and 60% of all
properties have correspondences from at least ten web tables. About 30% of all
properties have more than 100 correspondences.

5.3 Triple Groups Profiling

Through the row-to-instance and attribute-to-property correspondences, extracted
web table values (Vc) are matched to a specific triple, i.e. a combination of an en-
tity and a property. Based on this, we group values matched to the same triple to-
gether. E.g., all values from rows mapped to <dbr:Germany> and columns mapped
to <dbo:populationTotal> are grouped. The remainder of this section profiles these
groups and provides insights into the internal overlap in the web table corpus.

Group Size Distribution. Out of the 8 million values (Vc) extracted from web
tables, 929,170 triple groups can be formed. Figure 5.3 shows the tail distribution
of group sizes. 58% of all groups contain values from at least two sources, 39%
from at least three sources. Values from ten or more sources can be found in 13%
of all groups. Very large groups with values from at least 100 sources constitute
1% of all groups. Triples described by less sources are more likely to be new to the
knowledge base, as we expect frequently described, i.e. popular, triples to already
exist in the knowledge base. But these new triples come with a drawback: as they
are only supported by few sources, it will be difficult for a fusion strategy to find
the correct values in the groups. For 42% of groups only a single value is present,
meaning that a fusion strategy cannot ‘fuse’ values, but only determine if it wants
to accept or discard a single value.

Classes. Table 5.7 shows the number of groups (G) by class. The table also states
the ratio of the number of groups to the total number of extracted values. This ratio
is high if we cannot group many values per triple, i.e. most groups are small and
contain fewer values. If the ratio is low, this means that more values are grouped
together, i.e. more groups are larger in size. The ratio is potentially lower for
classes with less entities. An example is the class Country, which has the lowest
ratio. Given that the number of countries is limited, so is the number of potential
triple groups, causing the groups to be relatively large. We find generally that this
ratio differs per individual class of the knowledge base.
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Figure 5.3: Complementary cumulative distribution of group sizes.

Table 5.7: Triple group statistics by DBpedia class.

Class G G/Vc

+ Person 366,048 .088
|- Athlete 284,213 .074
|- Artist 6,842 .362
|- OfficeHolder 6,559 .354
|- Politician 11,362 .086
+ Organisation 87,527 .153
|- Company 25,164 .123
|- SportsTeam 2,453 .077
|- EducationalInstitution 35,736 .150
|- Broadcaster 21,687 .233

Work 331,071 .145
+ MusicalWork 201,186 .178
+ Film 56,610 .221
+ Software 33,552 .069

Place 100,673 .117
+ PopulatedPlace 71,981 .091
|- Country 5,709 .027
|- Settlement 1,879 .107
|- Region 1,193 .212
+ ArchitecturalStructure 17,697 .384
+ NaturalPlace 12,037 .468

Species 23,809 .286

Σ 929,170 .012



64 CHAPTER 5. WEB TABLE PROFILING

Table 5.8: Data type distribution for different stages of web tables integration.

Data Type Corpus Matched Grouped M/G
Numeric 995m 2,751,105 202,362 13.59
Date 101m 3,437,420 379,240 9.06
String 1.90b 536,526 86,330 6.21
Reference - 1,312,511 261,238 5.02

Σ 2.95b 8,037,562 929,170 8.65
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Figure 5.4: Data type distribution for different stages of web tables integration.

Data Type Distribution. Table 5.8 shows the data type distribution at different
stages of the data integration process. At first, we have the full web table corpus
(Corpus). We then derive correspondences through matching (Matched) and finally
group matched values by triple (Grouped). As we already discussed the change in
the distribution between the full corpus and the correspondences in Section 5.2
above, we now focus on the transition from correspondences to groups. The last
column in Table 5.8 shows the ratio of this grouping process. We see that on av-
erage, each group contains 8.65 values. The largest group sizes can be observed
for numeric triples, where on average 13.59 values form a group. Date groups are
also relatively large with about 9 values. String and reference groups are smaller
with only about 5 to 6.2 values. This indicates that more tables describe the same
numeric and date triples, whereas in the case of string and reference, there is a
stronger diversity among the described triples. Figure 5.4 shows the proportion of
data type in each step. Here it becomes obvious how the large fraction of string
values in the complete corpus is overtaken by date and numeric in the correspon-
dences. In the grouped stage, we see how the relative size of string and reference
increases again, as many date and numeric values are grouped together.
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5.4 Data Fusion and Slot Filling

This section profiles the potential of slot filling DBpedia from web table data. This
is done by primarily investigating the quality of new triples that can be fused from
web table data. For this, we use the evaluation methodology for slot filling de-
scribed in Section 4.3. In summary, we use the Local Closed-World Assumption
(LCWA) to evaluate the correctness of fused triples by comparing them to triples
which already exist in the knowledge base, i.e. overlapping triples. Additionally,
we test and confirm in this section this assumption through manual evaluation.

To fuse triples, we make use of a fusion framework and a fusion strategy based
on Knowledge-Based Trust (KBT), both also described in Section 4.3. We addi-
tionally compare fusion performance when using KBT to using PageRank and a
voting-based baseline approach. As KBT also uses the knowledge base for learn-
ing, we use 5-fold cross-validation in our experiments.

5.4.1 Fusion Performance Evaluation

We evaluate the performance of a fusion strategy using precision and recall. To
compute precision, we must determine the fraction of fused triples returned by
a fusion strategy that are correct. Based on the LCWA, we can determine if a
fused triple is correct by comparing it to a corresponding existing triple in the
knowledge base. However, we find that for only 691,622 of the 929,170 groups a
corresponding triple exists within DBpedia, i.e. these groups overlap. We run and
evaluate our fusion strategies for these overlapping groups only.

To compute the recall, we must determine the upper bound of a fusion strategy.
This upper bound equals the number of groups, for which a perfect strategy should
be able fuse the correct value. We estimate this upper bound by checking which
groups that correspond to an existing triple contain a value that equals the exist-
ing value in the knowledge base. This is determined using the data-type-specific
equivalence functions (see Subsection 4.3.5). We find that the number of groups
containing the correct value is equal to 310,284.

This means that only 45% of groups with an existing triple in the knowledge
base actually contain at least one correct value within them. While this seems quite
low, to match a value to a knowledge base triple we need to perform class, property
and entity matching and, in the case of a reference data type, also string-to-instance
matching. Along these matching processes, errors are likely to compound. Addi-
tionally, web table values might simply be wrong or outdated.

Fusion Strategy Performance Comparison

In this section, we report the performance of three fusion strategies: Knowledge-
Based Trust (KBT), PageRank and voting. This is done to highlight the effect of
fusion strategies and examine the claim by Dong et al. [Dong et al., 2015] that KBT
outperforms a strategy using PageRank.
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Table 5.9: Number of overlapping and non-overlapping triples and fusion perfor-
mance by fusion strategy.

Strategy FO FNO P R F1

Voting 691,622 237,548 .369 .823 .509
KBT 378,892 64,237 .639 .785 .705
PageRank 691,622 237,548 .365 .814 .504

Table 5.9 shows the number of overlapping (FO) and non-overlapping fused
triples (FNO) that are generated by the different fusion strategies. Note that the
non-overlapping triples are the previously unknown triples which could be added
to the knowledge base. The last three columns present the performance in terms of
precision, recall and F1. The performance values are calculated using the LCWA.

Voting does not apply any filtering. Hence, the precision can maximally be
45%. This is because out of the 691,622 triples groups included in our evalua-
tion, only 310,284 actually contain a correct value). Taking this into account, the
achieved precision of 36.9% is at an acceptable level for a simple approach.

KBT, filters out attribute-to-property correspondences with a low trust score
and can hence decide not to produce a triple from a given group. This results in a
large 27 percentage point increase in precision with only a small decrease of 3.8
percentage points in recall.

The third strategy, PageRank, does not result in any improvement over the
voting baseline (not even if we completely filter out values with low PageRank
scores). Thus, we can confirm the finding of Dong et al. [Dong et al., 2015] that
the quality of a web source is not necessarily determined by its popularity.

In summary, we find that KBT, a strategy that uses source reliability estimation,
is able to provide the best performance fusion performance. In the remainder of
this section, we will employ KBT for fusion.

Manual Evaluation of Fusion Performance

We perform two manual evaluations in order to verify the fusion results and the
use of the LCWA for estimating fusion performance. First, we test how well the
LCWA determines the precision of overlapping fused triples. Second, we test how
far the precision of overlapping triples can be used to estimate the performance of
non-overlapping triples. We evaluate in this section triples fused using KBT.

Precision of Overlapping Triples. We manually determine for a set of 1,000
overlapping fused triples whether they are correct or not. The automatic evaluation
of this sample using the LCWA results in a precision of .678, while three human
annotators determined a precision of .716. Overall 958 out of 1,000 triples were
evaluated correctly by the automatic evaluation, which results in an error rate of
4.2%. This result is a signal for the validity of the LCWA and justifies its appli-
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cation for our experiments. However, during the manual evaluation we spot some
error categories, which shed light on possible shortcomings of this approach:

• Time-Dependent Data. The knowledge base could contain outdated infor-
mation for time-dependent data, leading to an incorrect evaluation of more
up-to-date web tables.

• Different Granularity. Objects can have different levels of granularity, e.g.
the city of the Emroy university is Druid Hills Georgia in DBpedia. In the
web tables, we find a reference to the entity “Atlanta”. These labels do not
look similar to string comparison functions, but knowing that Druid Hills
Georgia is a community in the metropolitan area of Atlanta, this triple can
be regarded as correct.

• Missing Objects in Lists. If a list is incomplete in the knowledge base, the
automatic evaluation fails for cases in which a web table contains a correct
value, that is not covered by the knowledge base.

Precision of Non-Overlapping Triples. We manually determine the precision
for a set of 500 randomly selected non-overlapping fused triples. As the non-
overlapping fused triples are candidates for slot filling new facts, we are especially
interested in determining whether the performance of overlapping fused triples can
be transferred to non-overlapping fused triples.

The sample has a precision of .624.3 The precision determined using the
LCWA for overlapping fused triples for the KBT strategy was .639 (see Table 5.9).
The two numbers are very close, which is an indication for the validity of transfer-
ring fusion accuracy of overlapping to non-overlapping fused triples.

5.4.2 Slot Filling Potential Profiling

Now that we have tested our methodology, we report details about the data fusion
results with respect to the potential of web tables for slot filling. We show separate
performance statistics for data types, classes and properties.

Data Types. Table 5.10 shows the fusion performance by data type. The first
column FO contains the number of fused triples that overlap with DBpedia, the
second column FNO the number of non-overlapping fused triples. All performance
measures are calculated on the overlapping fused triples using the LCWA. While
the date, reference and string data types have a comparable performance, the recall
of data type numeric is considerably lower. As it seems, some numeric properties
tend to be noisier due to conflicting objects, changes over time or different interpre-
tations of certain properties. Thus, even correct triples are filtered out by the KBT

319 triples were excluded, as the human annotators could not determine the correct facts. This
happened for example for rare properties like bSide of a record or upperAge of colleges.
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fusion, as the trust score is not high enough. We further identified the following
reoccurring causes of incorrect fusion results:

• Conversion Issues. Some conversions, e.g. converting date formats, are not
easily resolved. As an example, the birthDate of Jeff Zatkoff is “6/9/1987”
according to DBpedia, however we find the object “9/6/1987” in the web
tables. Without knowing which date format is used within the web table, it
is hard to parse the date correctly. This problem constitutes a large part of
the error for the data type date.

• Ambiguous Entities. The identity resolution both for the subjects or values
of type reference can be incorrect, especially if the label of the subject or
object is ambiguous. This can occur with very common names of people
or with musical works like album or single names, e.g. cover versions. A
wrongly identified subject can lead to incorrect results for all data types, i.e.
all fused triples are mapped to the incorrect knowledge base instance.

Table 5.10: Fusion results by data type.

Data Type FO FNO P R F1

Numeric 28,364 10,613 .644 .452 .531
Date 171,653 23,301 .627 .806 .705
String 34,260 14,285 .755 .811 .783
Reference 144,615 16,038 .629 .871 .730

Classes. Table 5.11 shows the fusion results for the same set of classes also shown
in Table 5.5. The second column contains the number of overlapping triples FO
per class while the third column shows the set of non-overlapping triples FNO.
All performance measures in the last three columns are computed on FO using
the LCWA. We find the highest amount of non-overlapping fused triples for Work,
especially Film, and for Person, especially Athlete. This gives another hint for
which parts of DBpedia slot filling using web tables can be beneficial. Concerning
precision and recall, we achieve the best results for Species and Place.

Properties. Tables 5.12, 5.13, and 5.14 show performances for three different
selection of properties. The first table shows properties with the highest number of
overlapping fused triples, while the second table shows properties with the highest
number of non-overlapping fused triples. Finally, the third table shows a selection
of properties with a high precision and for which at least 50 non-overlapping triples
can be fused. The columns titled FO and FNO show the number of overlapping
and non-overlapping fused triples respectively, while the column titled P shows
the precision. For the first two tables, we also include ratios relative the existing
number of triples in DBpedia (DBP).
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Table 5.11: Fusion results by DBpedia class.

Class FO FNO P R F1

+ Person 117,522 15,050 .639 .723 .678
|- Athlete 84,562 9,067 .646 .679 .662
|- Artist 2,019 427 .711 .830 .766
|- OfficeHolder 3,465 510 .698 .849 .766
|- Politician 3,124 1,167 .533 .765 .628
+ Organisation 20,522 7,903 .645 .691 .667
|- Company 6,376 2,547 .700 .834 .761
|- SportsTeam 790 132 .671 .892 .766
|- Educational Institution 8,844 3,132 .638 .714 .674
|- Broadcaster 4,004 1,924 .557 .459 .503

Work 189,131 27,867 .614 .828 .705
+ MusicalWork 118,511 8,427 .599 .830 .695
+ Film 29,903 12,143 .573 .803 .669
+ Software 17,554 2,766 .591 .760 .665

Place 32,855 9,871 .767 .858 .810
+ PopulatedPlace 16,604 6,704 .711 .779 .743
|- Country 2,084 433 .738 .690 .713
|- Settlement 540 224 .583 .669 .623
|- Region 362 70 .587 .784 .671
+ Architectural Structure 10,441 1,775 .834 .940 .884
+ NaturalPlace 743 64 .843 .940 .889

Species 9,016 1,429 .783 .892 .834

Table 5.12: Fusion results for properties with most overlapping triples.

Property FO P FO /DBP

releaseDate 92,383 .628 .670
birthDate 61,636 .769 .055
artist 25,563 .649 .268
musicalArtist 20,663 .288 .527
musicalBand 18,160 .498 .463
director 8,082 .623 .095
activeYearsStartDate 7,934 .658 .116
activeYearsEndDate 7,861 .710 .140
deathDate 7,448 .625 .015
number 6,160 .383 .103
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Looking at the properties with the most overlapping fused triples, we can again
see that a large portion of the topical overlap is about Work (releaseDate) and Per-
son (birthDate). Concerning the precision, most properties are close to our overall
average performance, with exceptions being musicalArtist and number, which have
a lower precision. Likely, this is caused by number (e.g. the number of a baseball
player in a certain team) being a time-dependent property. For musicalArtist, the
identity resolution could be a problem, as this property is applied to songs, which
can often have ambiguous labels, e.g. also in the case of cover versions.

For the properties with the most non-overlapping fused triples, we approximate
the precision with the precision that was achieved on the overlapping fused triples
for the same property. The ratio column shows the potential for slot filling. We
can almost double the number of publicationDate triples and increase the amount
of releaseDate triples in the knowledge base by 11%.

Table 5.13: Fusion results for properties with most non-overlapping triples.

Property FNO P FNO /DBP

releaseDate 15,836 .628 .115
number 3,557 .383 .059
publicationDate 2,693 .688 .964
alias 1,471 .436 .011
locationCountry 1,304 .564 .089
country 1,242 .667 .002
synonym 1,240 .559 .014
status 1,116 .421 .042
birthDate 1,000 .769 .001
artist 971 .649 .010

Table 5.14: Fusion results for properties with highest fusion precision.

Property FNO P

numberOfIslands 157 1.00
province 67 1.00
seniority 60 1.00
sire 366 .990
games 247 .973
illustrator 81 .969
iso6391Code 236 .967
throwingSide 2,500 .961
icaoLocationIdentifier 5,459 .941
family 4,760 .846
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To illustrate in which cases a slot filling approach would result in very high-
quality data, the last table shows properties with high precision. While the proper-
ties with the highest precision can only add a rather small amount of non-overlap-
ping fused triples, the properties throwingSide (for BaseballPlayer), icaoLoca-
tionIdentifier (for Place) and family (for Species) add thousands of triples with
an above average precision.

5.5 Related Work

There exists research on the topic of large-scale web table profiling by Hassanzadeh
et al. [Hassanzadeh et al., 2015]. The authors profile the same 2012 WDC web ta-
ble corpus to analyze the topical distribution of web tables, by matching web table
columns to classes in DBpedia, but also other knowledge bases including YAGO,
Wikidata and Freebase. They show that the distribution of derived class correspon-
dences is determined by which knowledge base the web table corpus is matched to.
We confirm their finding, by showing that the most-matched classes correlate with
the largest classes in DBpedia. The authors also find that only a relatively small
fraction of the web tables can be matched to a cross-domain knowledge base. This
is also a finding of our profiling. In our work however, we go beyond their analysis
and do not only consider classes, but also properties and entities. We also examine
the potential of web tables for slot filling missing values in the knowledge base.

Dong et al. in their work on Knowledge Vault [Dong et al., 2014a] present a
method for automatically constructing a web-scale probabilistic knowledge base by
combining data from four types of sources: web texts, DOM trees, web tables and
semantic annotations. They extract overall 1.6 billion values matched to existing
entities and properties in Freebase. Only about 0.5% originate from web tables,
and around 3.8 million of those have an expected accuracy higher than 0.7. We
extracted overall 8 million values that were successfully matched to a triple in the
knowledge base. When fusing (and filtering) those values using KBT, we end up
with about 443 thousand facts with an expected precision of 0.639. Dong et al.
do not list the number of unique triples those 3.8 million web table values match
to. As such, we believe that our numbers are generally comparable. To evaluate
their approach, Dong et al. use the LCWA and show its validity. We also confirm
the validity of the LCWA and use it to evaluate performance. However, we also
show that the performance approximations based on the LCWA can be transferred
to non-overlapping new triples.

5.6 Summary

In this chapter, we profiled the 2012 WDC web tables corpus with regard to its
topical distribution and its potential for slot filling missing values in knowledge
bases. We do this by first matching the corpus to DBpedia using T2K to then fuse
matched values using Knowledge-Based Trust.
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Our profiling shows that the majority of web tables does not contain data that
can be related to DBpedia. Of the tables within the corpus, only about 2.85% could
be matched to a class in DBpedia. We also found that the distribution of matched
classes is similar to the overall distribution in DBpedia.

On the other hand, we find that 70% of matched DBpedia entities are described
within at least two web tables. For properties this holds for 88%. Overall, 8 million
web table values were successfully matched to 930 thousand unique triples, i.e. on
average 8.5 values per triple.

We also examined recent results in the area of data fusion. We can first of all
experimentally confirm the applicability of the Local Closed-World Assumption.
We even show that the performance approximation for overlapping fused triples
using the assumption is transferable to fused triples with no overlap in the target
knowledge base, i.e. those that can be used for slot filling. Using the LCWA, we
compare several fusion strategies and find that KBT outperforms PageRank as well
as a voting-based fusion strategy.

Finally, we investigated the outcome of fusion to examine the potential of web
tables for slot filling DBpedia in terms of quality as well as quantity. We provide
detailed statistics for different classes and properties to get an impression which
parts of DBpedia can especially benefit from slot filling with web table data. We
can e.g. almost double the number of publicationDate triples in DBpedia.

Throughout this chapter, we focused on the task of static slot filling. Adding
new entities to the knowledge base was not investigated, nor did we consider the
aspect of validity in the case of time-dependent data. The remainder of this thesis
is concerned with both, researching time-aware fusion methods for fusing time-
dependent data from web tables and long-tail entity extraction methods to add new
and formerly unknown entities to the knowledge base from web tables.
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Chapter 6

Exploiting Timestamps for
Time-Aware Fusion

Consolidating information from a large number of web tables into a single knowl-
edge base for slot filling requires two basic steps. First, the web tables are matched
to the knowledge base. Second, data fusion is applied in order to select for a triple
from among a set of conflicting web table values, the value that is most likely true.

Existing fusion methods for web data use source reliability estimation, which
enables fusion methods to ensure the correctness of a fused value. A specific chal-
lenge in data fusion is that a large fraction of web table data is time-dependent.
In time-dependent data, the validity of a value is dependent on a certain temporal
scope [Kuzey and Weikum, 2012], i.e. a point in time or a time range. This time-
dependent data includes for example the population of a city or the teams that an
athlete plays for. Fusion methods for time-dependent data need to be time-aware,
ensuring in addition to the correctness of the fused value, the validity of the value
given a temporal scope.

For this, time-aware fusion methods require temporal scopes. However, in the
case of web tables, which generally lack meta-information, explicit temporal scope
annotations do not exist. As laid out by Dong et al. [Dong et al., 2016], fusing
time-dependent web data therefore generally requires three subtasks: (1) identify-
ing temporal references, (2) mapping them to a certain temporal scope, and then
(3) assigning temporal scopes to values. For the first two subtasks, there exist rule-
based approaches that are able to extract temporal scopes from timestamps found
in web tables and HTML documents [Dong et al., 2016], e.g. in the form of the
HeidelTime framework [Strötgen and Gertz, 2010, Strötgen and Gertz, 2015].

Regarding the third task, assigning an extracted temporal scope to a specific
value or a set of values within a web table, two major challenges arise in the context
of web table data [Zhang and Chakrabarti, 2013]. First, timestamp presence is
sparse. Only few timestamps are present within web tables and web table column
headers. This means that we are often unable to extract temporal scopes to assign
to values in the first place. Second, while more timestamps might be present in

75



76 CHAPTER 6. EXPLOITING TIMESTAMPS FOR TIME-AWARE FUSION

other cells of a web table as well as the page around the web table, it is challenging
to determine whether this information applies to a specific web table value or not.
As such, temporal scopes extracted from timestamps are also potentially noisy.

We propose TT-Weighting, a time-aware fusion approach that deals with the
sparsity and the noisiness of temporal scopes extracted from timestamps. This is
done by first categorizing extracted temporal scopes into timestamp types based on
the location in the table or on the web page from which the scopes were extracted.
To reduce sparsity, we introduce a method to propagate temporal scopes between
values by timestamp type. E.g., given a web table value for which a temporal scope
could not be extracted from the column header, we estimate this scope by propagat-
ing scopes extracted from column headers for other similar values. To deal with the
noisiness of timestamp information, we train a regression model that learns weights
for individual timestamp types, allowing us to aggregate noisy timestamp informa-
tion into a single model with a possibly less noisy output. Finally, to ensure the
correctness of a fused value in addition its validity, we combine these approaches
with static fusion strategies that use source reliability estimation.

The contributions of this chapter are:

• Taxonomy of timestamp types: a taxonomy that allows us to exploit times-
tamps while differentiating between the locations from which they were ex-
tracted. We also introduce hierarchy types, that favor a timestamp given
a certain predetermined order of locations. While existing works extract
timestamps from various locations, timestamps from all location are treated
equally and assigned the same weight [Zhang and Chakrabarti, 2013].

• Temporal scope propagation: an approach that deals with the sparsity of
timestamps by propagation temporal scopes between values based on times-
tamp types. Existing works [Zhang and Chakrabarti, 2013] do not consider
the location of the timestamp when propagating, while additionally, they
propagate by whole table column, instead of more fine-grained by value.

• Weighting timestamp types by property: an approach that uses weighted-
multiple-linear regression to learn weights for timestamp types given a prop-
erty of the knowledge base schema. Existing works [Zhang and Chakrabarti,
2013] first do not assign weights to timestamps based on their location, and
secondly, do not explicitly exploit a relationship between timestamp loca-
tions and the given property of the triple for which a value is being fused.

• A time-aware fusion strategy that combines these three approaches with
source reliability estimation. We find that this strategy outperforms meth-
ods that only exploit source reliability when fusing time-dependent data.

We publish both our code and the datasets used for this research, while using
a publicly available web table corpus within our experimental setup. As such, all
resources required for the replication of this work are publicly available.1

1http://data.dws.informatik.uni-mannheim.de/expansion/time-aware-fusion/

http://data.dws.informatik.uni-mannheim.de/expansion/time-aware-fusion/
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Country Capital [15] Current leader  [98] Population Population 1990 National day

Germany Berlin Angela Merkel 81.69 M 79.43 M 3rd October 1990

France Paris Emmanuel Macron 66.81 M 58.51 M 14th July 1790

United Kingdom London Theresa May 65.14 M 57.25 M -

Japan Tokyo Shinzō Abe 127 M 123.5 M 11th February 660 BCE

United States Washington, D.C. Donald Trump 321.4 M 249.6 M 4th July 1776

….

Page Title: Country Data 2017

…

The following table provides information about those five countries, including capital, the national day, the current leader and
current population. In comparison we provide population numbers from the year 1990

© 2014 – FactsFactsFacts.com

Figure 6.1: An illustration of a web table with time-dependent data and various
timestamps.

This chapter is organized as follows. The next section presents an exploration
of the task of fusing time-dependent web table data for slot filling. Section 6.2
outlines our experimental setup. Sections 6.3 and 6.4 respectively describe our
methodology and discuss our results. We compare our approach to related work in
Section 6.5 and discuss it in Section 6.6. The final section concludes this chapter.

The work presented in this chapter has previously been published in [Oulabi
et al., 2016].

6.1 Motivating Example

Figure 6.1 illustrates a web table with three columns that describe time-dependent
data: one leader and two population columns. The leader column corresponds to
the year 2017, the first population column to 2015, and the second to 1990.

The table first of all shows that timestamps on the web page are not explicitly
associated with data in the table. While a human might be able to understand which
timestamp corresponds to which data, this task is non-trivial for a machine. Ad-
ditionally, we find that not all relevant temporal scopes are present as timestamps.
For example, the first column with population numbers contains data from 2015.
This is a date not found anywhere on the web page, i.e. lacking a timestamp. Fi-
nally, timestamps unrelated to the data also exist, e.g. the year found in the footer
of the website, or the national days found in the last column of the table.

We aim to use this data to complete time-dependent properties in a knowledge
base. As outlined in Section 2.1.3, knowledge bases can represent time-dependent
data in different ways. In this chapter, we test our methods on slot filling time-
dependent data in a snapshot-based knowledge base, where the knowledge base
tries to reflect the most current facts at the time of its release.2

2In the next chapter, we introduce time-aware fusion methods and test them on extending a tem-
poral knowledge base, where time-dependent data is stored as a series of temporal facts.
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Germany

population: 

continent:
fact

dynamic property (numeric type)

Europe

slot

static property (reference type)

Figure 6.2: An illustration of an entity with an empty slot for a time-dependent
property within a snapshot-based knowledge base.

Figure 6.2 illustrates an entity in a snapshot-based knowledge base. Within
the entity, there is an empty slot for the time-dependent property population, i.e. a
missing fact in the knowledge base. While this slot is not further annotated with
a temporal scope, we know for example that the knowledge base was created at
a certain point in time, e.g. the year 2015. As such, we can assume that the slot
should reflect the population number for Germany in the year 2015.

We define this as targeted slot filling, where, in addition to knowing the entity
and the property of a slot, we know that the slot corresponds to a certain target
temporal scope. A similar task is performed by the InfoGather+ table augmentation
system [Zhang and Chakrabarti, 2013]. In their approach, the authors require as
part of the input query, in addition to the specific property for which values which
should be extended using web tables, the target temporal scope of those values.

To use the data from the table in Figure 6.1 for targeted slot filling, we must
first match the data to the knowledge base. Rows in the table are matched to en-
tities in the knowledge base, while columns are matched to properties. Cells are
therefore matched to triples. As a result, for a given triple in the knowledge base,
population numbers from the both columns of the table are taken as candidate val-
ues for fusion. The task of time-aware fusion methods is then to find the candidate
value that is both correct and valid given the target temporal scope of the slot. This
can be done for example by assigning candidate values a temporal scope extracted
from timestamps found in the table or the page around it.

6.2 Experimental Setup

This section outlines the experimental setup of this chapter. In summary, we built a
ground truth for the two topical domains countries and NFL athletes, describing for
each facts for two time-dependent properties. All facts within the ground truth are
annotated using temporal scopes. We use the ground truth to evaluate fusion strate-
gies for the task of targeted slot filling using web tables from the 2015 WDC web
table corpus. To create correspondences between the web tables and the ground
truth, we match both to the schema of and the entities within DBpedia using the
T2K matching framework. We evaluate targeted slot filling on the ground truth
using the Local Closed-World Assumption (see Subsection 4.3.4). As we also use
the ground truth for training regression models, we perform our experiments using
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five-fold cross validation. Throughout this chapter, we assume that all temporal
scopes are points in time and with a granularity of years. This is similarly done in
the experimental setup of related work [Zhang and Chakrabarti, 2013].

6.2.1 Ground Truth

While DBpedia is a snapshot-based knowledge base and it attempts to always re-
flect the most recent facts for time-dependent data, this is not ensured. As such, we
refrain from using DBpedia for our experiments and create our own ground truth
for a selection of two classes and four time-dependent properties from the schema
of DBpedia. The classes included are Country and GridironFootballPlayer (GF-
Player). The ground truth was built using data from the Worldbank3 for Country,
and from The Football Database4 for GF-Player.

We overall extracted facts for 212 different countries for the years 2008 and
2014 and for the two properties, Population and Population Density. For GF-
Player, we extracted facts for 737 athletes for the years 2010, 2012, and 2014
and the two properties Team and Number. We included in the ground truth only
athletes that switched their team at least once within the three years.

In a temporal knowledge base, multiple temporal facts can exist per entity and
property. In the context of a snapshot-based knowledge base, only one fact can
exist. As such, for each triple we randomly choose the year for which we include
the fact. For each included fact, we also include its temporal scope annotation to
enable the evaluation of targeted slot filling.

Mixing the years in our ground truth is important. A non-time-aware fusion
strategy that measures source reliability by using its overlap with a ground truth,
e.g. Knowledge-Based Trust, could possibly implicitly capture the temporal scope
of data in their source reliability score. In fact, this is the premise of Timed-KBT,
an approach we introduce in the next chapter. By mixing values from different tem-
poral scopes, we ensure that a time-aware fusion strategy that explicitly estimates
temporal scope annotations is required for achieving a good performance.

We match both, the web tables and the ground truth to DBpedia. This is done
automatically for the web tables using T2K (see Section 4.3). For the ground truth,
the properties were matched manually, and only the entities were matched auto-
matically using T2K. To evaluate the correctness of the entity matching, we ran-
domly sampled and manually evaluated for each class 50 entity correspondences.
In both classes, we achieve an accuracy of 100%. However, for countries, 49 out
of 242 countries were not matched, while 286 out of 737 football athletes were not
matched. We assume that all countries should have a match in the knowledge base.
In the case of GF-Player, we looked at 15 unmatched entities, and found that all
have a corresponding instance in DBpedia, so that we also assume that all entities

3http://data.worldbank.org/indicator/SP.POP.TOTL and
http://data.worldbank.org/indicator/EN.POP.DNST

4https://www.footballdb.com/

http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/EN.POP.DNST
https://www.footballdb.com/
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Table 6.1: Number of facts in the ground truth and corresponding number of can-
didate values matched from web tables.

Class Property Type Facts Matches

Country Population Numeric 212 7, 437
Country Pop. Density Numeric 212 80, 598
GF-Player Team Reference 737 2, 112
GF-Player Number Numeric 737 473

should have been matchable. This gives us estimates of recalls of 0.80 for coun-
tries, and 0.61 for football athletes. Using the accuracy to estimate precision, this
gives us an estimated F1 of 0.89 for countries, and 0.76 for football athletes.

6.2.2 Web Table Corpus

For our experiments, we use the 2015 WDC web table corpus (see Section 3.3),
which consists of 90 million web tables. This corpus also includes contextual
information, possibly containing useful timestamp information. We use Heidel-
Time [Strötgen and Gertz, 2010] for both, detecting timestamps and extracting
temporal scopes from those timestamps. For this, HeidelTime uses hand-crafted
language-specific rules in the form of regular expression patterns, combined with
additional post-processing and normalization. It achieved an F1 score of 86% on
the TempEval-2 English-language Task A challenge, the best score achieved by
any participating system [Verhagen et al., 2010].

As outlined above, correspondences between the web tables and the ground
truth were generated by matching both to DBpedia. This was done for web tables
using T2K (see Section 4.3). Table 6.1 shows the resulting number of matches
between the web tables and the facts contained in the ground truth. Except for the
property Number of the class GF-Player, we could on average find more than one
candidate matched value in the web tables per triple in the ground truth.

Table 6.2 provides an overview of matched values by individual property. The
first row shows the overall number of web table values matched to triples of that
property, while the remaining rows show the number of matched values with a
temporal scope extracted from a certain timestamp location. The locations before
table and after table include timestamps found in text within 200 characters before
and after the table respectively. On page includes on the other hand timestamps
found anywhere on the page. We also extracted timestamps from the titles of the
page and the table, the column header of the matched value as well as other cells
of the same row. The last row of the table concerns temporal scope propagation,
which we describe in Subsection 6.3.2.

Overall, we observe that most timestamps are found in text around the extracted
table, while the second most frequent source is the page title. Few timestamps are
found in the table title and for most properties few are also found in the column
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Table 6.2: Timestamps present within the web table corpus.

Class Country Country GF-Player GF-Player
Property Pop. Pop. Density Team Number

Matched values 27,297 104,502 35,035 12,472

Before table 6,254 82,512 27,413 8,268
After table 12,911 78,189 16,240 6,702
On page 4,893 4,576 4,224 4,787
In page title 4,615 44,128 17,425 6,904

In table title 0 297 8 0
In column header 284 71,399 42 0
In cells of same row 5 14 11,289 1,290

Inc. by Propagation 12.62% 29.30% 22.19% 2.35%

header. For GF-Player, we find a lot of timestamps in the cells of the same row
of a value. Generally, the distribution of timestamp locations differs per property,
which suggests that the usefulness of certain locations also differs per property.

6.2.3 Evaluation

We report performance using precision, recall and F1. We estimate all three using
the Local Closed-World Assumption (LCWA), where we assume that facts present
in the ground truth are correct and can be used to determine whether fused facts
are correct. We outline this further in Subsection 4.3.4.

In order to measure recall, it is necessary to calculate the number of triples for
which a perfect fusion strategy should be able to find a correct and valid fact. We
include all triples where at least one of its matched web table values is equal to its
fact in the ground truth. This is a very strict approach, as this does not ensure that
this value, which happens to be equal to the fact in the ground truth, actually comes
from data that has the same temporal scope as the target temporal scope.

6.3 Methodology

The fusion strategies outlined in this chapter are based on the underlying fusion
methodology described in Section 4.3.2. Within this methodology, we assume
that values extracted from web tables are already matched to a specific triple in
the knowledge base, and fusion strategies influence the fusion outcome solely by
scoring these matched values. In the context of time-aware fusion, fusion strategies
are additionally provided a target temporal scope as input. As such, time-aware
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fusion strategies can score matched candidate values additionally by how likely
they are valid, given that target temporal scope.

We first introduce an approach to score candidate values given an extracted
timestamp and a target temporal scope. We then introduce a taxonomy of times-
tamp types based on the location from which timestamps were extracted, allowing
us to derive scores per timestamp location. To reduce timestamp sparsity, we sug-
gest the propagation of timestamps along the timestamp type taxonomy, while to
aggregate timestamp scores, we suggest an approach using linear regression. Fi-
nally, we also use linear regression to aggregate our time-aware fusion methodol-
ogy with static fusion strategies.

6.3.1 Timestamp Type Scoring

To score matched candidate values from web tables using timestamps, we compare
the temporal scope extracted from a timestamp (t) with the target temporal scope
of the slot (TStarget). Assuming that all temporal scopes are years, the score is
computed as following:

T ptq � maxp1�
|t� TStarget|

d
, 0q (6.1)

This means that the score is 1.0 if the years a equal, and discounted by 1
d

for each year of difference, where the lowest score is 0.0. With this, we score
matched candidate values with temporal scopes closer to the target scope higher. If
no temporal scope is assigned to the matched value, a score of 0.0 is returned.

The described scoring method requires one single temporal scope for each
matched value. As discussed above, temporal scopes can be extracted from any
timestamp present in the web table or its webpage. To differentiate between all
those timestamps, we categorize them into timestamp types. This is done based on
the location in which they were found.

Using the timestamp types and Formula 6.1, we generate a score for each indi-
vidual timestamp type for every matched value. This still leaves us with multiple
scores per matched value, however, these scores are now categorized into a taxon-
omy. As such, they can be aggregated using machine learning and regression, e.g.
through the approach we introduce in Subsection 6.3.3.

We limit ourselves to temporal scopes in the form of points in time and with the
granularity of years. Based on this, the different timestamp types that we extract
are the following:

• ColumnHeader: year is extracted from the column header. Most recent
year is chosen, if multiple exist.

• RowCell: year is extracted from cells in the same row of the matched
value. Most recent year is chosen, if multiple exist.

• PageTitle: year is extracted from the page title of website. Most recent
year is chosen, if multiple exist.
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• TableTitle: year is extracted from the title of the table. Most recent
year is chosen, if multiple exist.

• TableContext: year is extracted from text that surrounds the table. Most
frequent year is chosen, if multiple exist.

For all of these types, except for TableContext, we expect them to contain
only a single year value. In case of multiple values (e.g. within the header of
the table), we choose the most recent value. For the TableContext, where we
expect multiple year values, we choose the most frequent one.

In addition, we generated three hierarchy timestamp types, which we derive
from the other non-hierarchy timestamp types. This is done by returning the tem-
poral scope of one of the non-hierarchy timestamp types in a predetermined order.
If the timestamp type highest in the hierarchy does not have a temporal scope,
the temporal scope of the next timestamp type in the hierarchy is returned. The
hierarchy timestamp types are:

• Hierarchy: hierarchy type with the order ColumnHeader, RowCell,
TableTitle and PageTitle.

• FullHierarchy: hierarchy type with the order Hierarchy and
TableContext.

• TableHierarchy: hierarchy type with the order TableTitle and
TableContext.

The intuition behind the hierarchy types is that a certain location is more likely
to be relevant than another. For example, a timestamp found in a column header is
more likely to be relevant than a timestamp found in the text somewhere after the
table. The hierarchies attempt to reflect this intuition.

6.3.2 Temporal Scope Propagation

Given that timestamp information is often sparse, we implement a temporal scope
propagation approach based on timestamp types. This approach is able to induce
temporal information for web table values where timestamp information is absent.

Given for example a web table describing countries and their populations with-
out any timestamps, this table might not be considered by a time-aware fusion
strategy that relies solely on extracted timestamps. Given however a second ta-
ble containing very similar population numbers for the same countries as well as
explicit timestamps, we could use this second table to propagate timestamp infor-
mation to the original table. This is because, these numbers likely refer to the same
point in time as the numbers in the table containing the timestamps.

For deciding whether or not to propagate timestamp information, we use the
equivalence functions described in Subsection 4.3.5. Given a certain triple for
which we matched a set of candidate values from the web tables, we cluster all
matches using the equivalence measures. For each timestamp type, we investi-
gate the values in each cluster for which we could find a corresponding timestamp
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Value: Denver Broncos

ColumHeader 2015

PageTitle 2015

TableContext 2000

Value: Denver Broncos

ColumHeader 2015

PageTitle

TableContext 2013

Value: Denver Broncos

ColumHeader

PageTitle

TableContext 2015

Entity: dbr:Peyton_Manning
Property: dbo:team

2015

2015

2015

Figure 6.3: An illustration of temporal scope propagation based on timestamp
types within a value cluster.

and identify the timestamp that appears most frequently. We then propagate this
timestamp to all values in that cluster that do not have their own timestamp for that
type.

Figure 6.3 provides an illustration of our propagation approach. We see a clus-
ter of equal candidate values for the entity Peyton Manning and the property Team.
This value cluster has a correct value that is valid for the year 2015, which is also
the temporal scope of the target slot. The cluster however competes against other
clusters with different candidate values. For the cluster to be returned as the clus-
ter with the correct value, the individual candidate values within the cluster must
achieve a high score when compared to the target temporal scope. However, two
values lack temporal scopes for some timestamp types. We detect the most com-
mon temporal scope of those timestamp types within the cluster and propagate
them to the values that lack the temporal scopes. In the end, the third matched
candidate value, which had the least number of original temporal scopes, ends up
with the highest number of correct temporal scopes.

In Table 6.2 we show how many new temporal scopes were created by property
of our evaluation set. The increase in on average 16.62%.

6.3.3 Timestamp Type Weighting and Aggregation

As already mentioned in Subsection 6.3.1, there are possibly multiple scores as-
signed to a candidate matched value, each for a different timestamp type. As
the extracted temporal scopes might differ per timestamp type, the various scores
might conflict with each other. As such we require an approach that derives from
these multiple scores one score per matched value. While with the hierarchies we
attempt to reflect the importance of each type using a certain ordering, the chosen
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order is based on our own judgment and should represent only a suggestion for
which timestamp type is to be preferred.

We suggest therefore the use of trained weighted-multiple-linear regression
models to aggregate the scores of multiple timestamp types using this formula:

y � c�
I̧

t�1

pxt � T ptqq (6.2)

In the formula, t refers to the temporal scope extracted for a timestamp type
for a value, and I is the overall number of timestamp types, including hierarchies,
as described above. T ptq refers to Formula 6.1.

The models are trained using existing facts in the knowledge base and indi-
vidual candidate values matched to the triples of those facts. By comparing the
values to the facts in the knowledge base using our equivalence functions, we can
determine whether they are equal or not. We assign to candidate values a y value
of 1.0 if they are equal, and of 0.0 if they are unequal. The regression algorithm
then learns c and all the x variables.

A separate model is trained for each individual property of the knowledge base
schema. Assuming that there is a certain relationship between a property and a
timestamp type, we could capture this relationship by learning weights using re-
gression. With these weights, we can then aggregate the various individual score
into one score. This score is then assigned to the candidate value to be used within
the fusion framework.

6.3.4 Aggregation with Static Fusion Strategies

A fusion strategy that aggregates all timestamp types using regression, while time-
aware, does not consider the aspect of source quality. Incorporating source reliabil-
ity estimation into a fusion strategy might be required, if we want a fusion strategy
that ensures the correctness of a fused fact, in addition to its validity given a tar-
get temporal scope. We therefore suggest to combines both, scores computed by
exploiting extracted timestamps and scores derived using static fusion strategies.

This is done by first simply including the score assigned to a candidate matched
value by a static fusion strategy into our regression model. In addition, we also
include another set of features, where we multiply the score returned by a static
fusion strategy, with the score of every individual timestamp type. The intuition
behind multiplying the timestamp type scores with static fusion scores is that a
low score in estimating the correctness of a value would render a high score in the
aspect of time-validity irrelevant, and vice versa.

Given for example the case, where we combine our timestamp types with
Knowledge-Based Trust, the regression model would correspond to the formula
below. KBT in the formula refers to the score assigned to a candidate value by a
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fusion strategy based on Knowledge-Based Trust.

y � c� xKBT �KBT �
I̧

t�1

pxt � T ptq � xtKBT � T ptq �KBT q (6.3)

6.4 Experiments and Results

In this section we first evaluate a set of baseline static fusion strategies, to which
we then compare a set of time-aware fusion strategies based on the methodology
introduced above. The results for all experiments are presented in Table 6.3. We
finally discuss in this section the importance of the weights assigned during regres-
sion. All regression models are trained by property of the knowledge base schema
using five-fold cross-validation.

6.4.1 Static Fusion Strategies

Following, we will discuss the performance of three static fusion strategies. These
include voting, PageRank and Knowledge-Based Trust. We describe these strate-
gies in more details in Subsection 4.3.2.

Voting

Voting assigns all candidate values matched to a triple an equal score of 1.0. Within
our fusion framework this strategy effectively resembles a simple count of the num-
ber of web tables that contain a specific value matched to a specific triple. This
strategy is termed Voting in Table 6.3, and it achieves an average F1 of 0.27.

As all values have the same score, filtering values with a threshold is not ap-
plicable. In the case of only incorrect matched values, this necessarily leads to an
incorrect fused value. Improving on this baseline method can therefore be achieved
in two ways: (1) by scoring the values to allow a more effective selection of the
correct group, and (2) thresholding possibly incorrect values with low scores.

Weighted PageRank

PageRank [Brin and Page, 1998] uses the link structure of the Web to rank web-
sites. As such, PageRank can also be used to score candidate values for fusion.

To employ PageRank, we implement a scoring strategy based on the precom-
puted WDC Hyperlink Graph5 [Meusel et al., 2015], which contains a full ranking
of all hosts of the Common Crawl (2014). We score each candidate value with the
precomputed score of its host.

We found that using the PageRank scores directly leads to a decrease of per-
formance in comparison to Voting. While the precision increases marginally, the
recall drops. We therefore learn a regression model using the PageRank scores for

5http://webdatacommons.org/hyperlinkgraph/

http://webdatacommons.org/hyperlinkgraph/
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each class-property combination. The learned model, containing a weight for the
PageRank score and a learned constant, reflects the importance of the PageRank
score for that particular property.

The results for this fusion strategy are presented as wPr in Table 6.3. We find
that we are able to outperform Voting in three out of four properties, however
only marginally. On average we achieve an increase of 2 percentage points in F1.

When investigating the assigned weights, we find that the weight assigned to
the PageRank score is the highest for the property Population, where the weight
is six times larger than the fixed constant, followed by Population Density. The
lowest relative weight was assigned to the property Number, where the learned
weight of the PageRank score is about six times smaller than the constant. Given
that the differences in the learned weights, this could potentially show that the
importance of the PageRank score varies by property.

Knowledge-Based Trust

Knowledge-Based Trust (KBT) [Dong et al., 2014b, Dong et al., 2015] estimates
the trustworthiness of a source by exploiting its overlap with a ground truth. As
described in Subsection 4.3.2, we estimate using KBT the trustworthiness of a
single web table column. For this, we first find the number of values in the column
for which a fact exists in the knowledge base. This means, that the row of the
value must be matched to an entity in the knowledge base, and that entity must
have a fact present for the property to which the column is matched to. For those
overlapping values, we then find the proportion of values that are correct. This
proportion constitutes the KBT score of the column.

In Table 6.3, this strategy is termed Kbt. In comparison to voting and PageR-
ank, using KBT for fusion has a large positive impact on performance for all prop-
erties. We achieve an average increase of 23 percentage points in F1 when com-
pared to Voting.

6.4.2 Time-Aware Fusion Strategies

This subsection shows and discusses the performance of time-aware fusion strate-
gies based on the methodology we introduced in Section 6.3. We differentiate
between time-aware strategies by whether they were combined with a static fusion
strategy, like KBT, or not. For all time-aware strategies tested in our experiments,
we set the value of d in Formula 6.1 to 4.

Without Combination with a Static Fusion Strategy

We will first test two time-aware fusion strategies that do not integrate any static
fusion strategy. First, Ts is a time-aware method, that uses linear regression to
combine scores computed for all timestamp types, including the hierarchy types.
TsProp is a strategy that additionally makes use of propagation.
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When compared to Voting, Ts improves the performance for three of the
four properties, on average by 2 percentage points in F1, equal to the increase
achieved by wPr. On the other hand, TsProp is able to increases the performance
for all properties when compared to Voting, achieving an average increase of 6
percentage points in F1. It also outperforms wPr by 4 percentage points in F1 on
average. Both Ts and TsProp are still outperformed by Kbt.

Combined with PageRank

We then learned linear regression models that combine our time-aware fusion ap-
proaches with PageRank. This yields two strategies, one without propagation
(wPrTs) and one with propagation (wPrTsProp).

The results, as shown in Table 6.3, are rather mixed. For wPrTs, only in two of
the properties do we see an improvement, while in the other two we see a decrease
in performance.

Combined with Knowledge-Based Trust

As we have seen, Kbt outperforms both Voting and wPr. We are therefore in-
terested in the potential improvements achieved by extending this strategy with
timestamp information. For this, we learn a regression model that combines the
KBT score with all timestamp scores as outlined above in Subsection 6.3.4. We
implement two strategies, one without propagation (KbtTs) and one with propa-
gation (KbtTsProp). The results are shown in Table 6.3.

KbtTs is able to outperform Kbt in three out of four properties. The increase
is even larger for KbtTsProp, where on average, we achieve an increase in 4
percentage points in F1 to Kbt. The performance for property Number is however
anomalous. We find that F1 decreases by 10 percentage points when using KbtTs.
While we are able to recover 8 of those points when using propagation, we are
still unable to outperform Kbt when using timestamp information for the property
Number.

At the bottom of the table we compare the best performance numbers achieved
when using KBT with timestamp information with both Voting and Kbt. This
is done by computing the absolute difference between the performance of either
KbtTs or KbtTsProp, whichever is better, and both Voting and Kbt.

We find that, when compared to Voting, we are able to achieve on average an
increase of 29 percentage points in F1. Compared to Kbt, the increase is 5 points
on average. This could indicate that of the 29 points, 24 are due to KBT, while 5
are due to the inclusion of timestamp information. When excluding the Number
property, which is comparatively anomalous, the increase compared to Voting is
on average 26 points, while compared to Kbt it is 7 points.

The increase of 5 (or 7) percentage points in F1 from Kbt to either KbtTs or
KbtTsProp is quite similar to the increase achieved by TsProp when compared
to Voting. This could indicate that KBT and our time-aware fusion methodology
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Table 6.4: Highest weighted timestamp types by fusion strategy and property for
the class Country.

Strategy Population Pop. Density

Ts PageTitle TableHierarchy
FullHierarchy

TsProp PageTitle
TableTitle
PageTitle

PrTs PR_FullHierarchy PR_Hierarchy

PrTsProp PR_PageTitle TableTitle
PageTitle
PR_TableTitle
PR_PageTitle

KbtTs KBT
KBT_TableHierarchy
KBT_FullHierarchy

KBT_TableContext
KBT_Hierarchy
KBT

KbtTsProp KBT_PageTitle
KBT

KBT_PageTitle
KBT_TableHierarchy

are, as intended by design, dealing with separate aspects of conflict resolution, i.e.
ensuring either correctness or validity.

Combined with PageRank and Knowledge-Based Trust

Finally, we implement a fusion strategy that combines timestamp information with
PageRank and KBT. The performance of the resulting strategies, which are titled
AllTs and AllTsProp can be seen in Table 6.3.

We find that for one property, our method is able to increase performance
marginally, when compared to a time-aware method that makes use of only KBT.
The performance for the remaining properties decreases. As such, we conclude
that a time-aware method that already estimates source reliability using KBT, does
not benefit from additionally integrating PageRank.

6.4.3 Utility of Weighting Timestamp Types

From the results presented in Table 6.3, we observe a positive impact when em-
ploying a method that weights features based on timestamp types and static fusion
strategies using weighted-multiple-linear regression. However, the numbers do not
provide any insight into which timestamp types are the most useful, whether the
hierarchies are beneficial, and weather the learned weights differ per property.

Tables 6.4 and 6.5 show the features within the learned regression models
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Table 6.5: Highest weighted timestamp types by fusion strategy and property for
the class GF-Player.

Strategy Team Number

Ts RowCell FullHierarchy

TsProp RowCell,
FullHierarchy,
PageTitle

FullHierarchy

PrTs RowCell,
PR_FullHierarchy,
PR_RowCell

PR_FullHierarchy

PrTsProp PageTitle,
RowCell,
FullHierarchy,
somewhat lower for
PR_RowCell,
PR_FullHierarchy,
PageRank

PR_FullHierarchy

KbtTs Hierarchy, KBT,
KBT_PageTitle

KBT,
somewhat lower score for
KBT_FullHierarchy

KbtTsProp KBT,
RowCell,
somewhat lower score for
FullHierarchy

KBT,
somewhat lower score for
KBT_FullHierarchy

where the weights were noticeably higher than other features. This is shown per
fusion strategy and class-property combination. Features that multiply both, a
timestamp type and a static fusion strategy are denoted with an underscore, e.g.
KBT_FullHierarchy.

From the tables, we can observe that the timestamp types assigned higher
weights clearly differ per property, but less so by strategy. We observe for ex-
ample that the properties Population and Population Density often rank the type
PageTitle very high. The importance of PageTitle for both properties is
even more pronounced when using propagation. For Team the types RowCell
and FullHierarchy have higher weights. While it seems that for the prop-
erty Team and strategy KbtTs, the timestamp type RowCell is missing among
the highest weighted timestamps, it is actually part of the Hierarchy timestamp
type, where it is ranked second highest.

These observed patterns clearly indicate that there is a likely relationship be-
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tween the importance of a timestamp type and a property of the knowledge base
schema. This also suggest that with our learned weights, we are able to capture this
relationship. This supports the idea of training a separate model for each property
of each class.

Finally, we find that the hierarchies are an effective way of dealing with times-
tamps, as they are very often weighted highly. This applies especially to the hier-
archy type FullHierarchy, indicating that all timestamp types included in the
hierarchy are actually considered.

6.5 Related Work

This section provides a detailed overview of existing truth discovery and fusion
methods for time-dependent web data. On the general topic of time-aware data
integration methods for web data, there is a comprehensive survey by Dong et
al. [Dong et al., 2016]. In their paper, the authors describe the requirements and
challenges of integrating time-dependent web data. They also differentiate between
the extraction of timestamps and their explicit mapping as temporal scopes, they
however perceive both steps to be part of the extraction process, while we perceive
the mapping as part of the fusion process. For the identification of timestamps, the
authors suggest HeidelTime [Strötgen and Gertz, 2010], which is the method we
also use in this work.

Table 6.6 provides an overview of works that introduce and evaluate time-aware
fusion methods. TT-Weighting is the method introduced in this chapter, while
Timed-KBT is another method that we introduce in the next chapter.

We describe and compare the methods in the table based on four aspects:

• Time-Dependent Data. There are generally two types of time-dependent
data found on the Web that could require time-aware fusion: listing data and
temporal knowledge. We describe the two types further in Subsection 2.1.3.
For the case of extending a cross-domain knowledge base, we generally re-
quire methods that work on temporal knowledge.

• Task Specification. In this work, we focus on the task of targeted slot filling,
where the fusion method is tasked with choosing from the conflicting values,
the value that is valid given a target temporal scope. Another common task
for time-aware fusion is to find the newest value.

• Class Agnosticism. As we are interested in extending knowledge bases that
are cross-domain, time-aware fusion methods must be class-agnostic. They
i.e. should not require class-specific implementations or supervision.

• Temporal Scope Estimation. Finally, web table data lacks explicit temporal
scope annotations. A time-aware fusion method must in some way estimate
temporal scopes. In the case of TT-Weighting, we exploit timestamp infor-
mation to estimate missing temporal scopes.
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Table 6.6: Overview of related work for time-aware fusion.

Method Data Task CA Temporal Scope Estimation

[Dong et al., 2009] LD NO Yes Crawl date of source
[Zhang and Chakra-
barti, 2013]

TK TF Yes Timestamp extraction / propag.

[Alexe et al., 2014] TK NO No Assumes existence
[Fan et al., 2014] TK NO No Not required
TT-Weighting TK TF Yes Timestamp extraction / propag.
Timed-KBT TK TF Yes Estimation using ground truth

LD listing data NO Newest Only
TK temporal knowledge TF Targeted Fusion
CA class-agnostic

Generally, the majority of time-aware fusion methods are not fully applicable
for extending a cross-domain knowledge base from web table data. The primary
issue is the estimation of missing temporal scope annotations. One work simply
assumes the existence of annotations [Alexe et al., 2014]. Another work [Dong
et al., 2009] employs the crawl date on which a source was crawled as the temporal
scope of the crawled data. This is possible because the authors focus on listing data,
however the crawl date of the web page from which a web table has been extracted
has likely no relation to the temporal knowledge within the table. As such, estimat-
ing temporal scope annotations for web table data remains the primary problem of
time-aware fusion, and is a task that remains unsolved by many methods. In addi-
tion, some works are either not class-agnostic [Alexe et al., 2014,Fan et al., 2014],
consider primarily listing data [Dong et al., 2009], or attempt to find the newest
value only [Dong et al., 2009, Alexe et al., 2014, Fan et al., 2014].

From the related work presented in this chapter, only InfoGather+ [Zhang and
Chakrabarti, 2013] is an approach that considers a similar task to ours. The method
performs targeted slot filling, estimates temporal scope from timestamps, is class-
agnostic and is tested on temporal knowledge. We provide an in-depth look at this
method, and other methods, in this section.

Truth Discovery and Copying Detection in a Dynamic World [Dong et al.,
2009]

Dong et al. investigate a use-case where they regularly, i.e. every week, crawl and
integrate a number of web sources. The authors suggest a method that estimates
source reliability by considering transitions, which are changes in the data that oc-
cur between crawls. This is done by using a probabilistic model with three data
quality measures: (1) coverage, which captures how up-to-date a source is, (2)
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Table 6.7: Reported performances for time-aware fusion approaches by Dong et
al. [Dong et al., 2009].

Closed

Method Ever-existing P R F1

All n/a 0.60 1.00 0.75
All2 n/a 0.94 0.34 0.50
Naive 1192 0.70 0.93 0.80
CEF 5068 0.83 0.88 0.85

exactness, which captures how correct updates are when they occur, and (3) fresh-
ness, which captures how quickly sources change when an update is present.

The authors test their approach on real listing data for restaurants, considering
only one property. They evaluate how well a time-aware fusion method is able to
find whether at the end of the crawled period a restaurant is closed or not, when
sources provide conflicting information. Table 6.7 shows the performance of their
approach in comparison to three baselines. The first baseline (ALL) is a simplistic
time-aware fusion method, where a restaurant is marked as closed when one source
marks it as closed. The second baseline (ALL2) is similar, but there has to be at
least two sources that change and mark a restaurant as closed, for a restaurant to
be considered as closed. They also test their method on a non-time-aware method,
which they term Naive. It resembles a voting strategy, as a restaurant is only
considered open, when the majority of sources describe it as open. This achieves a
good F1 score in regard to detecting what restaurants haves closed at the end of the
crawled period, but it would fail in returning a complete list of open restaurants.
This is because it considers a restaurant to actually ever exist, when it is mentioned
as open by the majority of sources, which is not a realistic assumption.

From the table we can see that the author’s approach (CEF), outperforms the
baselines in time-aware fusion. This indicates that their model is able to effectively
capture through the three quality measures the quality of a source when it comes
to time-dependent data.

While the approach is evaluated on data, that is closer to listing data, i.e. restau-
rant listings, this itself does not reduce the applicability of the approach for extend-
ing a cross-domain knowledge base. For example, the approach can just as well
be used to find the current team an athlete plays for, by regularly crawling football
websites. The fact that the approach is only limited to finding the most recent value
might reduce its applicability for extending some knowledge bases.

However, the approach can not be applied for fusing web table data, primarily
because it relies on transitions between crawls and specific crawl dates. First, the
crawl date of a web table can not be assumed to be the temporal scope of data in
the web table. The authors can assume this for their sources, as they crawl sources
that are by design supposed to show the most recent data. Additionally, while it
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is possible to recrawl 12 web sources, web tables are extracted from the whole
Common Crawl, and recrawling every web table repeatedly is not realistic.

Finally, the authors fail to compare their method to a state of the art non-time-
aware method, i.e. one that measures source reliability. While a source reliability
method primarily captures whether a source has a high quality or not, this quality
might also cover how up-to-date a source is.

InfoGather+: Semantic Matching and Annotation of Numeric and Time-Vary-
ing Attributes in Web Tables [Zhang and Chakrabarti, 2013]

InfoGather+ is an approach that enables attribute expansion from web table data.
For this, an input query defines a set of entities and one target property to be filled
for those entities using data extracted from web tables. In case the property de-
scribes time-dependent data, a target temporal scope is also provided as part of the
query. As such, the task resembles targeted slot filling. InfoGather+ also exploits
timestamp information for the fusion of time-dependent data. Combined, these
aspects make InfoGather+ comparable to our approach.

However, the authors have a highly different data integration and fusion ap-
proach. InfoGather+ employs probabilistic graphical models to build a semantic
graph between web tables. This graph contains semantic matches between web ta-
ble columns. A semantic match is defined as a match, where both the property and
the temporal scope of the two columns are equal. As a result, the authors identify
the assignment of temporal scopes as part of schema matching instead of fusion.
Generally speaking, the authors perceive InfoGather+ as a matching approach, and
not a fusion method. Regarding fusion and in case of conflicting candidates, they
choose the ones with the highest aggregate score, computed based on the con-
fidence of a semantic matches within the graph. In addition to temporal scope
annotations, the authors also focus on other semantic labels like units or scales.

When it comes to slot filling for time-dependent data, InfoGather+ first cre-
ates the graph by finding columns matched to the same property that also contain
values for the same temporal scope. This is done using an approach that resem-
bles duplicate-based matching (see Section 4.2.2). This yields a graph between
columns that likely describe the same property for the same temporal scope. To
assign actual temporal scopes to a column, the authors extract scopes from times-
tamps within the column header and the context of a table. The temporal scopes
are then propagated along the previously computed graph of semantic matches. As
in our work, the authors focus solely on the year as the granularity of temporal
scopes in their experiments.

Table 6.8 contains five experiments conducted within the paper for queries with
a time-dependent property. For cities and companies, there are multiple experi-
ments with different query sizes. We show the two experiments with the lowest
and the highest query sizes. For company, the authors additionally conduct experi-
ments for the property Revenue, which we do not include in the table, due to their
similarity to the experiments for the property Profit.
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Table 6.8: A selection of time-aware fusion experiments conducted by Zhang and
Chakrabarti [Zhang and Chakrabarti, 2013].

# Class Property Ground Truth Query Size Years

1 Country Tax rate OECD members < 34 multiple
2 Cities Population 600 largest cities 100 2011
3 Cities Population 600 largest cities 400 2011
4 Company Profit Forbes Global 2000 100 2011
5 Company Profit Forbes Global 2000 500 2011

Table 6.9: Reported performances for experiments conducted by Zhang and Cha-
krabarti [Zhang and Chakrabarti, 2013].

Baseline (S-Syn) Collective Inference

# P C Correct Facts P C Correct Facts

1 0.54 0.94 17 0.92 0.85 27
2 0.08 1.00 8 0.90 0.90 81
3 0.08 0.98 31 0.87 0.87 303
4 0.10 0.43 4 0.88 0.73 64
5 0.05 0.43 11 0.72 0.45 162

Table 6.9 shows the reported results for the given experiments. The authors
report the precision (P) of returned facts. They also report coverage (C), which
is the number of returned facts compared to the query size, no matter if the fact
is correct or not. We believe that coverage is not a useful measure, as it does not
indicate at all the correctness of the outcome. By multiplying the coverage with the
query size and the precision, we can retrieve the number of correct facts returned.

The baseline approach treats target temporal scopes within the query as key-
words, and considers tables only as matched to the query if the keywords are all
contained in the column header. This baseline approach however still makes use
of an underlying semantic matching graph when processing a query. The main ap-
proach suggested by InfoGather+ is titled Collective Inference. The authors do not
compare their work to a method that exploits source reliability estimation.

InfoGather+ can achieve a large positive increase in precision, larger than the
one we achieve. Compared to their baseline, they achieve an average increase in
precision of 0.69, whereas compared to voting, we achieve an increase of 0.34.

However, the direct comparability of the results is limited. First, in experiments
2 to 5, the methods resolve both temporal scope and semantic labels like unit and
scale. It is unclear what the individual impact of the use of timestamp information
is. In experiments 4 and 5, the returned values must for example be in US dollars
and in millions. This requirement for numeric conversions can explain the differ-
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ence in performance between experiments 2 to 5 and experiment 1. In experiment
1, semantic labels for unit and scale do not matter. This could possibly explain
why the increase from the baseline approach is smaller with just 0.38. However, it
is still somewhat larger than the one we achieve with TT-Weighting.

The testing sets used by Zhang and Chakrabarti are however much smaller than
the sets we use. They also consist entirely of head entities. In regard to countries,
we use a ground truth with 212 entities, whereas they use a set with 34 entities. We
include in our set almost all countries, whereas they only include countries that are
part of the OECD, i.e. well-known and popular countries.

Table 6.9 also shows the number of correct facts per experiment conducted by
Zhang and Chakrabarti. For comparison, in case of the better achieving properties
Population and Team and the strategy KbtTsProp, we are able to retrieve 79 and
110 correct facts respectively. This means we are able to fill 37% and 15% of all
facts in the ground truth from web table data.

TT-Weighting and InfoGather+ differ primarily in three ways when it comes
to dealing with time-dependent data. First, Zhang and Chakrabarti consider Info-
Gather+ a matching method, whereas we focus entirely on the fusion of conflicting
candidate values. This means that normalization of units and scale is part of Info-
Gather+, whereas in our case this is done by T2K during schema matching. Sec-
ondly, the authors consider temporal scopes only per column, and not per value.
Any timestamps considered by InfoGather+ are always mapped to whole columns,
not individual values. This for example, does not allow each value in a column
to be assigned a different temporal scope, e.g. when using timestamps from other
cells in the same row. We have shown that such timestamps are especially use-
ful e.g. for the property Team of the class GF-Player. Thirdly, the propagation of
timestamp information happens only on the basis of columns, and not on the basis
of values or specific to the location from which a timestamp was extraction.

Finally, the authors make use of a non-public web table corpus, and do not pro-
vide code to replicate their methods. We provide all resources required to replicate
our work, including code and the ground truth, while the web table corpus we use
is publicly available.

Preference-aware Integration of Temporal Data [Alexe et al., 2014]

The authors present an operator that makes use of domain-specific preference rules
that use the schema of integrated sources to determine which values are the most
current. The work is not focusing on web data, nor on a large number of hetero-
geneous sources. As such, they also assume that temporal scope annotations are
present. In some presented examples, the temporal scope annotations correspond
to the time a dataset was released. In other examples the temporal scope annota-
tions are provided through a time property that is part of the schema, and where
schema mappings are known. Examples of preference rules described in the paper
are: (1) ‘if the values conflict, choose the value where the date in the time property
is higher’, or (2) ‘if the values conflict, choose the values from source A’. In their



98 CHAPTER 6. EXPLOITING TIMESTAMPS FOR TIME-AWARE FUSION

Table 6.10: Reported performance for time-aware fusion approaches by Fan et
al. [Fan et al., 2014].

NBA Career

Strategy F1 F1

Random 0.38 0.84
Consistency CFD 0.78 0.91
CFD + currency constraints 0.80 0.97

approach the authors do not actually evaluate how correct the fused information is.
There are two main limitations of this work. First, temporal scope annotations

are assumed to exist, limiting its applicability on web tables. More importantly,
the approach is class and even source-specific. As the number of classes with a
cross-domain knowledge base is large, a class-specific approach is not feasible.

Conflict Resolution with Data Currency and Consistency [Fan et al., 2014]

The introduced algorithm uses currency constraints to find the most current value
given conflicting candidate values. The constraints are domain-specific, and have
for example the following form: (1) ‘given a conflict in the property Points Scored
for the same NBA player, prefer the source where the number is higher’, (2) ‘given
a conflict, where one source says that a person is retired, and the other the person is
employed, prefer the source that for this case claims retired’, or (3) ‘given an iden-
tical author with two published paper where his affiliated institution differs, prefer
the institution in one of the paper, if it cites the other paper’. The currency con-
straints are mined using a manually labeled domain-specific dataset, that contains
temporal-scope annotations. The constraints are further manually refined.

The authors evaluate their approach on two datasets, one for NBA player statis-
tics, and one extracted from Citeseer, for author career information. For the NBA
dataset they extracted 760 players with 19,573 possibly conflicting facts, and for
career information they extracted 65 authors with 2,080 facts. In addition to the
currency constraints, the authors also make use of conditional functional depen-
dencies (CFG) to ensure consistency of fused facts using other facts of an entity.

Table 6.10 shows the performance in F1 of the method as reported by the au-
thors. The authors compared their time-aware fusion method (CFD + currency
constraints) with one that solely ensures consistency (Consistency CFD) and one
that fuses conflicting values by choosing a random value from the candidates. The
absolute increase in performance from a non-time-aware fusion method to the time-
aware is 2 percentage points in F1 for the dataset NBA, and 6 percentage points in
F1 for the dataset Career. As such, the performance increase is comparable to ours.

The authors overcome the issue of missing temporal scopes, which is a problem
that the authors explicitly mention in their work, by not requiring any during fusion.
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Their method is able to fuse time-aware data solely by comparing the values among
each other. However, the method requires manually labeled class-specific data with
temporal scope annotations to be able to mine the currency constrains in the first
place. The currency constraints additionally require manual refining. The issue
of the labeled datasets can be resolved by using a temporal knowledge base as
a ground truth. However, manual refinement limits the potential of applying the
methods to extend a cross-domain knowledge base.

Additionally, the method requires a type of knowledge, where from the avail-
able data itself it becomes obvious which value is newer. This might be possibly for
points scored by an NBA player, but might not be possible for population of a coun-
try, or the profit of a company. Also, the task solved by the authors is not targeted
slot filling, but finding the most current value. This might limit its applicability
for some knowledge bases. Finally, the authors test their data on conflicts within a
small number of rather clean sources with known schema mappings, which yields
an easier task than integrating data from a large-scale, noisy and heterogeneous
web table corpus.

6.6 Discussion

Through the taxonomy of timestamp types, we are able to both, propagate temporal
scopes at a more fine-grained level, and, learn relationships between certain times-
tamp locations and properties of the knowledge base. Based on our analysis of the
weights assigned during regression, there is clear indication that these relationships
exist, supporting the idea of exploiting them for time-aware fusion.

We are also able to successfully combine time-aware fusion strategies that ex-
ploit timestamps with strategies based e.g. on source reliability estimation. This
yields a fusion method that considers both, the correctness of a candidate value,
and its validity given a target temporal scope. We find in Section 6.4 that ag-
gregating time-aware fusion with either, a static strategy based on voting or on
Knowledge-Based Trust yields a similar average increase in F1 in both cases. This
indicates that a strategy based on source reliability estimation and the time-aware
fusion approaches introduced in this chapter are indeed dealing with different as-
pects of conflict resolution, i.e. correctness and validity.

Our approach could be improved in two ways. First, we can additionally con-
sider learning a relationship between a certain web table column and the timestamp
types. This would allow us to be capture more specific relationships, when com-
pared with just learning per property of the knowledge base schema. Secondly, we
could alternatively train regression models that are more expressive than the ones
learned using weighted-multiple-linear regression.

The primary weaknesses of this chapter lie in the experimental setup. First, we
evaluate on too few properties. More importantly, the way we use the LCWA to
determine the maximum recall is possibly too strict. We assume that our fusion
strategy should be able to find a correct and valid value, if a value, that happens



100 CHAPTER 6. EXPLOITING TIMESTAMPS FOR TIME-AWARE FUSION

to be correct, exists among the matched candidates. However, this value might
actually be valid for a different temporal scope, than the one in the target slot. An
improvement could be, that values from one table column, if they are to be counted
towards recall, all just count for slots with one equal target temporal scope. A more
comprehensive approach would be to manually identify the maximum recall using
an annotated gold standard, instead of using the LCWA.

6.7 Summary

In this chapter, we presented a time-aware fusion method for fusing time-dependent
data from a large corpus of web tables. To the best of our knowledge, we introduce
with this the first work to perform time-aware fusion explicitly for the task of slot
filling time-dependent data for knowledge base augmentation.

Our approach works by exploiting timestamps found in the table and the page
around it. We first introduce a taxonomy of timestamp types, where we differen-
tiate between the timestamps based on which locations they were extracted from.
This taxonomy allows us to be much more particular when using timestamp infor-
mation. We also introduce timestamp hierarchies, where we exploit timestamps in
a predetermined order of locations.

We first introduce an approach to propagating timestamps on the basis of times-
tamp types. This allows us to reduce timestamp sparsity by estimating timestamps
for some web table data using other web tables within the corpus. Using this ap-
proach, we are able to increase the number of timestamps by 16.62% on average.

Using weighted-multiple-linear regression, we then learn models that capture
relationships between timestamp types and a given property from the knowledge
schema. These models allow us, given conflicting and noisy timestamp informa-
tion, to identify which timestamps are relevant when fusing a web table value and
to score values accordingly. When investigating learned weights, we find that some
timestamp types are assigned higher weights for some properties, which indicates
that there is indeed a relationship between the locations from which timestamps
are extracted and a given knowledge base property.

Finally, we introduce an approach that again uses regression to combine the
approaches described above with a static fusion strategy like Knowledge-Based
Trust (KBT). This yields a time-aware fusion strategy that considers both aspects
of conflict resolution, i.e. correctness and validity given a target temporal scope.

We find that while KBT outperforms other baseline static fusion strategies, we
can further improve KBT by around 5 percentage points in F1 by aggregating it
with our time-aware fusion approaches that exploit timestamp information.

While the time-aware fusion methods introduced in this chapter are useful in
reducing the noisiness and sparsity of timestamps, they still rely on timestamps ex-
tracted from the table and its context. In the next chapter, we introduce an approach
that is able to overcome the reliance on timestamps by estimating temporal scope
annotations using a temporal knowledge base.



Chapter 7

Estimating Temporal Scopes
Using Knowledge-Based Trust

To fuse time-dependent web table data, time-aware fusion strategies require tem-
poral scope annotations. Existing approaches like InfoGather+ [Zhang and Cha-
krabarti, 2013] and TT-Weighting, the method introduced in the previous chapter,
estimate the temporal scopes of web table data by extracting timestamps from ta-
bles and their contexts.

Fusion strategies that solely make use of timestamp information suffer from
two problems. First, the relationship between timestamps and the data in the table
is often unclear. More than one timestamp can usually be extracted per table and
many of the extracted timestamps likely have no relevance to the data in the table
at all. Secondly, web tables suffer from timestamp sparsity, so that for many tables
we are unable to extract any timestamps. Given these limitations, it would be
highly useful to be able to estimate missing temporal scope annotations using other
sources and without depending solely on timestamps.

This chapter introduces Timed-KBT, an approach that estimates missing tem-
poral scopes using Knowledge-Based Trust (KBT) [Dong et al., 2015]. KBT esti-
mates the trustworthiness of data sources using their overlap with a ground truth.
It is based on the idea that non-overlapping data shares similar quality with neigh-
boring overlapping data. This shared quality possibly incorporates multiple dimen-
sions, e.g. data, extraction, and matching quality.

Timed-KBT is based on the assumption that the temporal dimension is one of
the qualities shared by neighboring data. The idea is to use a temporal knowledge
base as ground truth to detect temporal scopes for overlapping values and propagate
these scopes to neighboring non-overlapping values. For example, let’s consider
a web table column with time-dependent data, where there are values within this
column that are already covered by our knowledge base, i.e. they overlap, and
values that we could potentially use for slot filling. If we are able to determine
that a majority, if not all, overlapping values correspond to one certain temporal
scope, we could, based on our assumption, assign this temporal scope to the non-

101
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overlapping values. This temporal scope could then be used to enable time-aware
fusion.

The contributions of this chapter are:

• Timed-KBT: a method that can estimate missing temporal scope annota-
tions for web table data using a temporal knowledge base as ground truth.
This approach overcomes the dependence on timestamp information and en-
ables the time-aware fusion of time-dependent web table data that lacks any
timestamps. Previous works [Zhang and Chakrabarti, 2013] for fusing time-
dependent web table data always relied on the existence of timestamps.

• The Time-Dependent Ground Truth (TDGT): a publicly available dataset
consisting of 7 classes with overall 19 time-dependent properties. The dataset
resembles in structure a temporal knowledge base, in our case based on the
schema of and matched to entities within Wikidata. TDGT can be used as a
ground truth for any tasks that consider the time aspect of data. We employ
it as a ground truth to be exploited by Timed-KBT.

• We evaluate Timed-KBT on the use case of data fusion using a large corpus
of web tables and TDGT as a target knowledge base. We find that Timed-
KBT is able to estimate missing temporal scope annotations effectively and
improve fusion results.

• We further introduce and evaluate a version of Timed-KBT, where the set
of scopes that can be assigned to web table data is restricted to timestamps
present in the table or its context. By using timestamps as a restriction for
Timed-KBT, we are furthermore able to derive a precision-orientated time-
aware fusion method.

.
We publish both our code and the datasets used for this research, while using

a publicly available web table corpus within our experimental setup. As such, all
resources required for the replication of this work are publicly available.1

This chapter is structured as follows. The next section provides a motivating
example and describes the overall use case at hand. Section 7.2 describes our
experimental setup, while Section 7.3 describes the Timed-KBT approach. The
results are discussed in Section 7.4, while Section 7.5 frames this chapter within
related work and provides a discussion. Section 7.6 is our conclusion.

The work presented in this chapter has previously been published in [Oulabi
and Bizer, 2017].

7.1 Motivating Example

Figure 7.1 shows a modified version of the illustration of a web table presented
in Figure 6.1 in the previous chapter. Like the original, it has two columns with

1http://data.dws.informatik.uni-mannheim.de/expansion/time-aware-fusion/

http://data.dws.informatik.uni-mannheim.de/expansion/time-aware-fusion/
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Country Capital [15] Current leader  [98] Population Past Population National day

Germany Berlin Angela Merkel 81.69 M 79.43 M 3rd October 1990

France Paris Emmanuel Macron 66.81 M 58.51 M 14th July 1790

United Kingdom London Theresa May 65.14 M 57.25 M -

Japan Tokyo Shinzō Abe 127 M 123.5 M 11th February 660 BCE

United States Washington, D.C. Donald Trump 321.4 M 249.6 M 4th July 1776

….

Page Title: Country Data 2017

…

The following table provides information about those five countries, including capital, the national day, the current leader and
current population. In comparison we provide population numbers from the year 1990

© 2014 – FactsFactsFacts.com

Figure 7.1: An illustration of a web table with time-dependent data and various
timestamps.

time-dependent data for the same property Population. One column corresponds to
the year 1990, and one to the year 2015. As in the original example, the year 2015
is a date not found anywhere on the web page, i.e. lacking a timestamp. In this
version of the example however, the column with the 1990 population additionally
lacks the timestamp in the column header.

The previous chapter introduced TT-Weighting, a time-aware fusion strategy
that exploits timestamps by learning weights for timestamp types. While TT-
Weighting has a positive impact on performance, the weights were learned per
property of the knowledge base, and therefore capture a relationship between the
timestamp types and a property. In the example in Figure 7.1, we see that two
columns, that both describe data for the property Population, have however differ-
ent relationships with the timestamps on the web page. For one of the columns,
one temporal scope is additionally not even present at all amongst the timestamps
found on the website. TT-Weighting is first of all not able to capture the difference
between the columns, and secondly not even able to find the correct temporal scope
for one of the columns due to timestamp sparsity.

In TT-Weighting, we attempt to reduce this problem using propagation at the
level of values. Propagation is used to fill in the sparsity of missing temporal scope
annotations by looking at what timestamps were assigned to equal matched values
in other tables of the corpus. In the example in Figure 7.1, individual values within
the population columns, might through propagation be assigned a correct temporal
scope for the timestamp type of the column header. However, this means that prop-
agation still essentially requires that correct timestamp information to be present in
the first place somewhere in the web table corpus. As such, the primary approach to
improving time-aware fusion is to find additional sources for estimating temporal
scopes and reduce the dependency on timestamps.

To capture the difference between the two population columns in the example,
we need a method for estimating temporal scope annotation that is both, specific to
a web table column, instead of a knowledge base property, and does not require the
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… 2012 2013 2014 2015 2016

… 80,425,823 80,645,605 80,982,500 82,348,669

Germany

population: 

timed fact

continent:
fact

temporal scopedynamic property(numeric type)

Europe

slot

static property (reference type)

Figure 7.2: An illustration of an entity with an empty slot for a time-dependent
property within a temporal knowledge base.

actual presence of timestamps. Timed-KBT is able to deal with those challenges
by learning a temporal scope per web table column using a temporal knowledge
base as a ground truth.

We evaluate Timed-KBT for the task of targeted slot filling. Unlike in the previ-
ous chapter, where we investigated this task for a snapshot-based knowledge base,
in this chapter we make use of a temporal knowledge base. Temporal knowledge
bases store time-dependent data as a series of temporal facts, where each fact is
annotated with a temporal scope. For each triple, a temporal knowledge base tries
to reflect all current and historic facts.

Figure 7.2 illustrates knowledge for the entity Germany in a temporal knowl-
edge base. The example contains two properties, one static (Continent), and one
time-dependent (Population). While the knowledge base contains data for both
properties, for Population one fact is missing for the year 2015. The task of tar-
geted slot filling is to find the missing fact for this specific target temporal scope.

Targeted slot filling for a temporal knowledge base is therefore in essence equal
to that for a snapshot-based knowledge base. A temporal knowledge however con-
tains a large number of temporal facts, which contain explicit temporal scope anno-
tations. When it is used as a ground truth, it can possibly enable types of learning
not possible with a snapshot-based knowledge base. This is the case for Timed-
KBT, which exploits the temporal scopes in a temporal knowledge base to estimate
missing temporal scopes for web table data.

7.2 Experimental Setup

This section describes the experimental setup of this chapter. First, we built from a
large number of sources and using the schema of and entities within Wikidata [Vran-
dečić and Krötzsch, 2014] a dataset that contains time-dependent data. We employ
this dataset in lieu of a temporal knowledge base to be extended and as a ground
truth that can be used for learning. As in the previous chapter, we use the 2015
WDC web table corpus, and create correspondences to the ground truth using the
T2K matching framework. Finally, we set up experiments using the Local Closed-
World Assumption, to evaluate how well we are able to perform time-aware fusion
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Table 7.1: Overview of classes, entities, time-dependent properties and facts in the
Time-Dependent Ground Truth.

Class Entities Prop. Facts Sources

Basketball Athl. 3,781 1 10,625 basketball-reference.com
City 11,372 2 40,666 wikidata.org
Country 197 7 44,013 worldbank.org, wikidata.org
NFL Athlete 12,756 2 96,711 footballdb.com
Office holder 22,062 1 36,816 wikidata.org
Soccer Athlete 134,617 1 778,602 wikidata.org
Traded Company 1,646 5 73,806 stockrow.com

using Timed-KBT. Throughout this chapter, we assume that all temporal scopes are
points in time and of the granularity year. This is similarly done in the experimental
setup of related work [Zhang and Chakrabarti, 2013].

7.2.1 The Time-Dependent Ground Truth

We build the ground truth on a subset of the schema of the temporal knowledge
base Wikidata [Vrandečić and Krötzsch, 2014]. The properties in the subset were
chosen based on a profiling of the web table corpus to ensure overlap with web
table data. However, for some of the chosen time-dependent properties, Wikidata
did not contain sufficient data for a proper evaluation. To create the ground truth,
we therefore extended the subset with various datasets that cover time-dependent
data. The resulting Time-Dependent Ground Truth (TDGT), has been published as
part of the WDC project.2

Table 7.1 provides an overview of the classes, entities, properties and facts in
TDGT. The table also shows by class from which sources datasets were used to
complement Wikidata. We acquired data from these sources either by manually
written crawlers and extractors, or through data dumps. Acquired datasets were
matched to entities in Wikidata using class-specific matchers, while the schema
was mapped manually.

Not all the classes and properties within TDGT were used in the experimen-
tal setup of this chapter. Table 7.2 shows the properties actually included in the
experiments and provides further statistics for each property.

7.2.2 Web Table Corpus

For our experiments, we use the 2015 WDC web table corpus3, which was ex-
tracted from the July 2015 Common Crawl. The corpus consists of 90 million rela-
tional HTML tables, containing additionally timestamp and contextual data [Lehm-

2http://webdatacommons.org/TDGT/
3http://webdatacommons.org/webtables/#toc2

http://webdatacommons.org/TDGT/
http://webdatacommons.org/webtables/#toc2


106 CHAPTER 7. ESTIMATING TEMPORAL SCOPES USING KBT

Table 7.2: Overview of properties included in our experimental setup, the number
of triples (series of temporal facts), and the overlap with the web table corpus.

Average #
Class Property Triples of matches Overlap

Basketball Athl. Team (R) 2,296 2.64 1,064
City Population (N) 5,884 4.25 3,120
Country Nominal GDP (N) 191 15.14 2,020
Country Nom. GDP p. capita (N) 191 68.27 7,734
Country Population (N) 193 43.93 8,032
Country Pop. Density (N) 193 100.37 8,805
NFL Athlete Number (N) 11,295 4.35 9,344
NFL Athlete Team (R) 8,962 3.56 1,075
Soccer Athlete Team (R) 14,970 2.12 4,688

Table 7.3: Proportion (in %) of matched values containing timestamps extracted
from certain locations.

on page table column in at least
Class Property before after page title caption header row one

BA Team 52.10 38.75 21.86 26.27 1.14 1.45 30.70 72.16
CI Population 58.04 55.88 21.74 20.48 2.68 16.74 10.19 83.00
CO Nom. GDP 45.38 46.07 24.49 12.38 0.80 3.01 26.25 68.21
CO Nom. GDP-PC 53.71 55.90 23.71 21.29 3.70 12.99 19.65 76.01
CO Population 52.47 56.03 27.72 27.07 0.96 14.58 21.70 78.65
CO Pop. Density 56.28 55.42 26.62 27.40 1.98 9.17 19.00 78.62
NA Number 62.20 39.46 30.37 45.31 1.23 0.46 28.87 83.22
NA Team 69.24 44.14 23.78 51.18 1.17 2.50 30.79 84.56
SA Team 69.38 47.41 38.64 63.72 2.91 0.04 8.31 89.11

Average 57.64 48.79 26.55 32.79 1.84 6.77 21.72 79.28

berg et al., 2016]. We use the matching component of the T2K Framework [Ritze
et al., 2015] to match the corpus to TDGT. Columns in the web tables are matched
to properties, while the rows are matched to entities.

Table 7.2 describes the properties which we include in our experimental setup.
Properties of datatype reference and numeric are denoted by (R) and (N) respec-
tively. The column ‘Triples’ lists the number of triples of a property for which
values from the web tables were matched. Each triple consists of a series of tem-
poral facts, where each fact is annotated with the temporal scope for which it is
valid. If a series is lacking one of its temporal facts, it is seen as a slot with a target
temporal scope. Any web table value matched to a triple is seen as a candidate for
any of its slots. The next column in Table 7.2 shows how many matched values
exist per triple on average. The column ‘Overlap’ measures for how many tempo-
ral facts in the knowledge base there were candidate matched values which were
equal to the fact, i.e. possibly correct matches. We have filtered from the corpus all
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tables extracted from sources that were used to create the TDGT.
We additionally extracted timestamps using HeidelTime [Strötgen and Gertz,

2010, Strötgen and Gertz, 2015]. Table 7.3 shows the proportion of sources that
have timestamps in certain locations. Columns ‘before’ and ‘after’ refer to time-
stamps found in the context before and after the table respectively. Column ‘on
page’ refers to timestamps found anywhere on the page, while column ‘page title’
refers to those found in the page title. The following three columns refer to time-
stamps extracted from table captions, column headers and cells of the same row of
a value. The final column gives the proportion of sources for which a timestamp
can be extracted from at least one location.

Most timestamps are found in the context of the table, which could mean that
they have no explicit relation to the data in the table. Timestamps extracted from
cells of the same row could similarly describe an unrelated date attribute, e.g. the
‘National day’ column in Figure 7.1. Timestamps in table captions and column
headers, which are likely to be the most relevant, are also the least present. Pres-
ence also differs by class: For Country and City we find many timestamps in the
column header, while for NFL Athlete we find more in cells of the same row.

7.2.3 Evaluation

To test our fusion methods, we make use of the Local Closed-World Assumption
(LCWA), where we assume that facts present in the knowledge base are correct
and can be used to determine whether fused facts are correct. We described how
we use the LCWA in Subsection 4.3.4 and empirically examined it in Chapter 5.

We use the Fβ score [Manning et al., 2008], as shown in Formula 7.1, to mea-
sure fusion performance. The F1 score, which is the most commonly used Fβ sore,
has equal weights for both precision and recall. For the task of slot filling, we must
ensure the correctness of filled facts, so that we care primarily about precision. We
therefore compute results for Fβ score at β of 1.0 and 0.25, where the latter weights
precision four times as high as recall. The choice of β also affects the learned fil-
tering thresholds, as we will describe further below. We measure performance per
class-property combination.

Fβ � p1� β2q �
Precision�Recall

β2 � Precision�Recall
(7.1)

One difficulty of using the LCWA is measuring recall, i.e. for how many of
the evaluated slots we can actually find a correct value assuming a perfect fusion.
We consider every slot, for which a candidate value from the web table corpus is
matched to, while at the same time a value is equal to the existing fact of the slot in
the ground truth, as a slot that counts towards recall. This is a very strict approach,
as this does not ensure that the web table value, which happens to be equal to the
fact in the ground truth, actually comes from data that has the same temporal scope
as the slot.
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As the ground truth is used for both, learning and testing, we split the data
four times, each time placing approximately 25% of the data in the testing set,
and the remainder in the learning set. To replicate the use-case of targeted slot
filling, where some missing slots within a series are to be filled, we split by series
of temporal facts, so that some temporal facts of a triple are in the testing set, while
the remaining are used for learning. To ensure that the temporal scopes of removed
facts are well distributed, we randomize how each series is split.

7.3 Methodology

This section introduces the underlying methodology behind Timed-KBT. It works
by exploiting the temporal scopes in a temporal knowledge base, and the overlap
between a web table column and the knowledge base, to assign an explicit tem-
poral scope to that column. While Timed-KBT itself does not require timestamp
information, we additionally introduce an approach that limits the temporal scopes
that can be assigned to a web table column to the scopes extracted from timestamps
present in the table and its context.

This section also introduces neighboring scope estimation. This is an approach
we use with Timed-KBT to allow web table data that was assigned a specific tem-
poral scope to be used for the fusion of a slot with a neighboring temporal scope.

This section however starts by first describing the fusion framework all strate-
gies are based on, and second by introducing two baseline static fusion strategies,
voting and Knowledge-Based Trust. We compare Timed-KBT to both.

7.3.1 Fusion Framework

All strategies introduced in this section make use of one common fusion framework
introduced in Subsection 4.3.2. Essentially, we assume that all candidate web table
values are matched to a slot of the knowledge base, where each slot is defined by
an entity and a property. In the context of targeted slot filling, each fusion strategy
is also given a target temporal scope for each slot to be filled.

Within our fusion framework, we learn per strategy and property of the knowl-
edge base a threshold, that filters out matched values that were assigned a low
score by the fusion strategy. This threshold is learned on the training set, and is
optimized for Fβ , so that different threshold will be learned, based on what β we
use for evaluation.

7.3.2 Static Fusion Strategies

Voting is a common baseline strategy [Dong et al., 2014b], where all matched
candidate values are assigned a score 1.0. Given a target slot, the value that hast
the highest number of matched candidates is simply chosen, regardless of the cor-
rectness of the value or the validity given the target temporal scope. E.g., values
from the table in Figure 7.1, which has only correct data, will share the same score
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as values of a table with mostly incorrect data. As all scores are equal, no thresh-
olding is possible. Additionally, Voting is not time-aware, so that the fused facts
for all target slots within the same triple will be the same.

KBT is a static fusion strategy based on Knowledge-Based Trust [Dong et al.,
2015]. It uses the correctness of data that overlaps with the knowledge base to
estimate a trust score for the remaining data. It is based on the assumption that
neighboring values share similar qualities. As data within a single web table col-
umn has equal extraction, normalization, matching, and potentially factual quality,
we compute, using the following formula, KBT scores per web table column.

KBT(column) �
# values in column with correct overlap

# values in column with overlap
(7.2)

As KBT is not time-aware, the fused facts of all target slots within one triple
will be the same. With KBT, the values in the table in Figure 7.1 will have a higher
score than a table with mostly incorrect data, while both population columns will
still be used as fusion candidates for a target slot with any target temporal scope.

7.3.3 Timed-KBT

Timed-KBT assigns explicit temporal scopes to web table data by exploiting its
overlap with a temporal knowledge base. It is based on the assumption that neigh-
boring values, e.g. within one column, share a common temporal scope. The idea is
to use the knowledge base to detect this scope for overlapping values and propagate
the scope to neighboring non-overlapping values.

To generate missing temporal scopes, we find the temporal scope t that max-
imizes the KBTt score of a column. The KBTt score is computed by only using
values from the knowledge base that are annotated with the given temporal scope
t. We assign t to the to the web table column, while the KBTt score itself is then
used as the fusion score of the matched values. In the table in Figure 7.1, Timed-
KBT will e.g. be able to assign different scopes to the population columns, as the
temporal scope t that maximizes KBTt will likely differ per column.

KBTt(column) �
# values in column with correct overlap given scope t

# values in column with overlap given scope t
(7.3)

tcolumn � arg max
tPT

KBTt(column) (7.4)

Timed-KBT(column) � KBTtcolumn
(column) (7.5)

As mentioned above, a fusion strategy needs to assign a score to a candidate
value given a target slot. Given e.g. that Timed-KBT assigned the column of a
candidate value a temporal scope that equals the target temporal scope of a certain
slot, the score given to that candidate value for that slot equals the Timed-KBT
score of the column as computed in Formula 7.5. If the temporal scopes are not
equal, but close, we use the neighboring scope estimation as described below.
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In Formula 7.4, T is a set of temporal scopes. The first Timed-KBT-based
strategy we introduced (TKBT), derives this set from all the temporal scopes present
in the knowledge base. T can however also be restricted to a smaller set.

Restricting Timed-KBT Using Timestamp Information

We implement a second Timed-KBT-based fusion strategy. Unlike in TKBT, where
T in Formula 7.4 is the set of all temporal scopes that exist in the knowledge base,
in TKBT-Rstrict, we restrict T to temporal scopes extracted from timestamps
in the table and its context.

This would mean that in the specific case of the table in Figure 7.1, that the
first population column cannot be assigned a scope of 2015. TKBT-Rstrict is
therefore likely to cause a drop in recall, which could however be offset if precision
increases favorably.

TKBT-Rstrict also makes use of neighboring scope estimation. We intro-
duce neighboring scope estimation below.

Neighboring Scope Estimation

As we assign only one temporal scope to a table column, its values are only used
for the fusion of slots with that assigned scope. Assuming that temporal scopes
are years and that facts of certain properties do not completely change annually,
it would make sense to allow values that were assigned one scope, to be used
to fuse facts for neighboring scopes. Given for example Figure 7.1 and that the
first population column was assigned the scope 2015, its values can be used as
candidates for slots with scope 2014, with an adapted score computed as

estimatedScore �

#
Timed-KBT� diff � α diff  � maxDiff

0 diff ¡ maxDiff
(7.6)

, where Timed-KBT equals the score of the column as computed in Formula 7.5, diff
equals the absolute difference between the assigned year and the target year, while
maxDiff equals the maximum difference allowed. This maximum difference is
learned per class-property combination from 0 to 10. We define α to be 0.1 � 1{10.

7.4 Results and Findings

This section presents and discusses the overall results of the implemented fusion
strategies. We will also discuss the impact of timestamp information and neighbor-
hood scope estimation.

7.4.1 Fusion Results

Table 7.4 shows the average performance by fusion strategy. We can first of all see
that KBT outperforms Voting by a large margin for F1 and F0.25. Additionally,
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Table 7.4: Average performance by fusion strategy.

Optimized for F1.0 Optimized for F0.25

Strategy P R F1.0 σF1.0 P R F0.25 σF0.25

Voting 0.14 0.32 0.19 0.18 0.14 0.32 0.15 0.14
KBT 0.31 0.46 0.37 0.29 0.32 0.43 0.32 0.27
TT-Weighting 0.33 0.45 0.37 0.30 0.45 0.25 0.42 0.30
TKBT 0.49 0.47 0.47 0.23 0.54 0.34 0.51 0.22
TKBT-Rstrict 0.52 0.38 0.43 0.20 0.66 0.23 0.57 0.23

KBT has the highest recall for F0.25 and among the highest for F1, which means
that any strategy that outperforms KBT, does so mainly by increasing precision.

TT-Weighting is the approach introduced in the previous chapter, i.e. the
fusion strategy titled KbtTsProp in Table 6.3. When evaluating using a β of
1.0, the difference between KBT and TT-Weighting is minimal, however in the
case of a β of 0.25, there is an increase in F0.25 and a larger increase in precision
when comparing KBT to TT-Weighting. This shows that the scores computed
by TT-Weighting are relevant to the fusion precision, but also that they are
only effective when a drop in recall is acceptable. The results could indicate that
some timestamps are relevant to the data in the table and that timestamp locations
have certain relationships with properties, which is the main assumption behind
TT-Weighting. The fact that this possible relationship only has a positive effect
when assigning recall a lower weight than precision, possibly indicates that the
way we measure maximum recall is too strict.

Both Timed-KBT-based approaches show an increase in performance when
compared to other methods for both F1 and F0.25. TKBT for F1 even has the highest
recall. Through this we can infer that a temporal knowledge base can successfully
be used to estimate temporal scopes for web table data.

TKBT-Rstrict outperforms TKBT for F0.25. While its increase in precision
comes at the cost of recall, the decline happens at a favorable rate. TKBT is unable
to yield a higher precision for F0.25, e.g. by increasing the threshold, without a
performance drop, whereas the precision increase for TKBT-Rstrict is large
enough to compensate for the drop in recall. This shows that timestamps from the
tables and their context can be relevant to the data and that TKBT-Rstrict is
able to use them effectively.

7.4.2 Impact of Using Timestamp Information

There are two fusion strategies that make use of timestamp information. These
are TKBT-Rstrict and TT-Weighting. Both strategies, generally speaking,
come at a cost of recall. When optimizing and testing for F1.0, this can not be
offset by TT-Weighting to achieve a higher performance than KBT. Similarly,
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Table 7.5: Effect of neighboring scope estimation on fusion performance.

No estimation With estimation Change

Method β P R Fβ P R Fβ ∆P ∆R ∆Fβ

TKBT 1.0 .290 .299 .233 .495 .467 .471 +.204 +.168 +.237
TKBT-Rstrict 1.0 .355 .299 .239 .517 .380 .430 +.162 +.081 +.190

TKBT 0.25 .427 .131 .367 .541 .340 .513 +.114 +.209 +.146
TKBT-Rstrict 0.25 .567 .121 .444 .658 .231 .571 +.092 +.110 +.127

while TKBT-Rstrict can outperform KBT, it can not outperform TKBT.
This however changes when we care more about precision than recall, e.g.

when optimizing and testing for F0.25. In that case the drop in recall is favor-
ably offset by a rise in precision. TT-Weighting can outperform KBT, while
TKBT-Rstrict outperforms TKBT.

These findings indicate that timestamp information is too sparse for a high
recall fusion strategy, however useful enough to enable an effective precision-
oriented fusion strategy.

7.4.3 Impact of Neighboring Scope Estimation

Table 7.5 shows that incorporating neighboring scope estimation into the Timed-
KBT-based strategies had a large positive effect on fusion performance. The rela-
tive increase was more than 40% for F1 and 20% for F0.25 for both strategies. A
rather unexpected result is that neighboring scope estimation increases precision in
addition to recall. The reason for the increase in precision is likely that matched
values of neighboring temporal scopes with a high score can outweigh low-scoring
and probably incorrect values that were assigned the target scope.

7.5 Related Work and Discussion

The related work has been extensively discussed in Section 6.5 and summarized in
Table 6.6 of the previous chapter. Table 6.6 shows how Timed-KBT is one of the
only three approaches that allow targeted fusion using a class-agnostic approach
with focus on temporal knowledge. Unlike TT-Weighting and InfoGather+ how-
ever, Timed-KBT is not dependent on the existence of timestamp information to
estimate temporal scope annotations. This means that Timed-KBT can be applied
to a much broader range of applications, even those that completely lack tempo-
ral scopes and timestamp information. For this, Timed-KBT requires a temporal
knowledge base. In the context of slot filling for time-dependent data, the presence
of such a temporal knowledge base is likely.

When compared to the overall average performance achieved by InfoGather+
[Zhang and Chakrabarti, 2013] (see Table 6.9), it seems that Timed-KBT lacks
behind in precision. However, the results are not directly comparable, as they are
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Table 7.6: Fusion performance of Timed-KBT for the property Population
of the class City compared to reported performances for the InfoGather+ ap-
proach [Zhang and Chakrabarti, 2013].

P Correct Facts

Voting 0.19 1,172
KBT 0.37 1,664
TKBT 0.66 1,518
TKBT (Opt. for F0.25) 0.71 979
TKBT-Rstrict (Opt. for F0.25) 0.84 774

InfoGather+ Baseline 0.08 31
InfoGather+ 0.87 303

performed on different datasets. In the case of InfoGather+, these datasets contain
mostly head entities, and the experiments are limited by query size.

We can however compare performances for the property Population of the class
City, as both, the evaluation in this chapter and in the paper by Zhang and Chakra-
barti run experiments for this property. Table 7.6 compares reported performances.
As Zhang and Chakrabarti do not measure recall, we will focus on comparing per-
formances based on precision.

We find that our approach somewhat lacks behind in regard to precision. How-
ever, this can be explained by the fact, that our testing set is much larger. Overall,
we include 11,372 cities in our ground truth, where 5,884 triples within the prop-
erty Population have an actual candidate among the matched web table values.
Zhang and Chakrabarti on the other hand use a dataset with just the 600 largest
cities, i.e. containing mostly head entities, and have query sizes of just 400 entities.

As we tune most of our fusion strategies for F1, where recall and precision
are weighted equally, we might lack behind in precision, but are able to fuse a
considerably larger number of facts. The strategy TKBT e.g. fuses 1518 correct
facts, five times more than the 303 correct facts returned by InfoGather+. When we
tune our performance for F0.25, we achieve with TKBT-Rstrict a very similar
precision, lacking behind in just 3 percentage points. However, we are able to fuse
2.5 times as many correct facts. As such, we believe that our approach is more
suitable for knowledge base augmentation, where enriching the knowledge base
with a large number of facts is an important aspect.

Timed-KBT could be extended and improved in two ways. First, temporal
scopes could be estimated for other than just the column of a web table. There
exist tables where every row corresponds to a different temporal scope, e.g. a table
that lists the teams an athlete has played for over a year. In other cases, the whole
table might correspond to a single temporal scope. An approach that estimates
temporal scopes per row and table in addition to by column could further improve
performance.
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Second, the lessons learned from the previous chapter could be integrated with
Timed-KBT. When restricting temporal scopes, we could take into consideration
the timestamp types, and their relevance given a certain property of the knowledge
base schema. Alternatively, we can consider the output of temporal scope propa-
gation during restriction, which could have a positive effect on recall.

7.6 Summary

In this chapter, we introduced Timed-KBT, an approach that enables time-aware
fusion of time-dependent web table data by generating missing temporal scopes
using a temporal knowledge base. We test Timed-KBT using a large web table
corpus on the task of targeted slot filling. As a target knowledge base, we make use
of the Time-Dependent Ground Truth, a dataset with time-dependent data that we
created and published.

We find that Timed-KBT is able to assign useful explicit temporal scopes to
web table data. We also find that using scores estimated by Timed-KBT for fusing
time-dependent web table data yields a performance increase when compared to
other fusion methods.

We then utilized timestamps extracted from the web tables and their contexts
as a restriction for candidate temporal scopes assignable by Timed-KBT. This ap-
proach yields a higher performance in regard to precision, and therefore a possibly
more favorable performance for knowledge base augmentation. We conclude that
timestamps in the table and its context are useful for a precision-oriented time-
aware fusion strategy. Finally, we also show that explicitly assigned temporal
scopes are highly useful for fusing data for neighboring temporal scopes.

Overall, we demonstrate that a temporal knowledge base can be used to esti-
mate missing temporal scope annotations for web table data. We also show that
with Timed-KBT, we are able to perform knowledge base augmentation from web
table data for historic facts in addition to current facts. Our findings enable the
time-aware fusion of time-dependent web data even if that data lacks timestamp
information completely.
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Chapter 8

The Long-Tail Entity Extraction
Pipeline

Entity expansion is a knowledge base augmentation task that involves adding new
and formerly unknown entities, including their descriptions, to the knowledge base.
As such, entity expansion from web tables consists of two primary subtasks, first,
identifying entities of a specific class that are not yet part of a knowledge base, and
second, compiling descriptions of these new entities according to the schema of
the knowledge base. For identifying new entities, it must be taken into considera-
tion that classes in knowledge bases are very large, so that many different entities
within a class could share surface forms, i.e. are homonyms. As such, we need to
disambiguate entities by more than just their label.

There are two tasks related to or share similarities to the task of entity expan-
sion: set expansion and emerging entity detection. Set expansion methods [Wang
et al., 2015,Pantel et al., 2009,Wang and Cohen, 2007] complete a certain set of en-
tities e.g. by using web data in the form of lists or tables. However, these methods
by definition focus solely on determining new entities that are missing to complete
a certain set and are not concerned with compiling structured descriptions of those
entities according to a schema of a knowledge base. Additionally, set expansion
methods disambiguate solely by names, as they attempt to complete a set of entity
labels. This is because the sets evaluated in set expansion are small enough that
homonyms are not an issue, unlike a class in a knowledge base.

Emerging entity detection [Hoffart et al., 2014, Färber et al., 2016, Derczynski
et al., 2017] is an NLP task that determines if a certain entity mention in text
specifically refers to a long-tail entity that is not yet part of a knowledge base.
Existing approaches however do not attempt to link mentions of the same emerging
entity together, and as such can not identify the exact number of long-tail entities.
They are also unable to create descriptions for those entities. Therefore, they are
unable to perform entity expansion.

As a result, no viable methods for entity expansion from web tables exist. In
the work presented in this chapter, we close this gap by introducing and evaluating

117



118 CHAPTER 8. THE LONG-TAIL ENTITY EXTRACTION PIPELINE

Row 
Clustering

Entity 
Creation

New 
Detection

Knowledge 
base

New entities added
to knowledge base

Schema 
Matching

Web tables

Output of first iteration used to refine the 
schema mapping in a second iteration

Figure 8.1: Overview of the Long-Tail Entity Extraction Pipeline.

the first system that is able to extract formerly unknown long-tail entities with their
descriptions from a corpus of relational web tables.

The contributions of this chapter are:

• The Long-Tail Entity Extraction Pipeline: we introduce the first system
that is able to identify new entities and generate their descriptions using a
corpus of relational web tables for the purpose of entity expansion. Existing
approaches with similar tasks are either unable to create descriptions (set
expansion and emerging entity detection), disambiguate entities solely by
their label (set expansion), or are unable to derive the exact number of unique
long-tail entities (emerging entity detection).

• The Web Tables for Long-Tail Entity Extraction (T4LTE) dataset: we
introduce the first gold standard for the task of entity expansion using web
tables. This gold standard can be used for both training and evaluation. En-
tities marked as new in the gold standard are actually non-existing in DB-
pedia, which is the target knowledge base to be extended within the context
of T4LTE. As such, T4LTE contains annotations for actual long-tail enti-
ties. When employed with our evaluation metrics and cross-validation folds,
T4LTE acts as a benchmark for the task of entity expansion from web tables.

• We evaluate our pipeline using the T4LTE gold standard. We suggest, imple-
ment, and test alternative approaches for various components of the pipeline
and extensively describe lessons learned.

Figure 8.1 gives an overview of the overall process performed by our pipeline.
It consists of four components which are executed in two iterations. We first ap-
ply schema matching methods to match web tables and their attribute columns to
classes and properties in the knowledge base schema. Second, a row clustering
method identifies rows that describe the same entity. From these row clusters, the
entity creation component creates entity descriptions according to the schema of
the knowledge base. Finally, the new detection component determines whether an
entity is new, by comparing it to all instances of existing entities in the knowledge
base. We iterate over the pipeline a second time, using row clusters and entity-to-
instance correspondences derived from the first run in order to refine the schema
mapping using duplicate-based matching. After the second run of the pipeline,
entities identified as new are added to the knowledge base.
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We publish both our code and our gold standard, including the used cross-
validation folds. As such, all resources used within this chapter are publicly avail-
able, allowing the replication of our work.1

This chapter is structured as follows. First, we describe our experimental setup,
including the design and contents of the T4LTE dataset. Section 8.2 introduces our
methodology by describing the individual components of the overall pipeline. For
most components, we suggest and evaluate alternative implementations and discuss
lessons learned. Section 8.3 presents the overall performance of the pipeline for the
task of entity expansion. We evaluate both, how accurately we found new entities
and how accurately we created their descriptions. Section 8.4 compares our system
to the related work. We summarize this chapter in the final section.

The work presented in this chapter has previously been published in [Oulabi
and Bizer, 2019a]. However, this chapter contains the following additions and
changes: (1) an extended class-specific feature set for the two features ATTRIBUTE
and IMPLICIT_ATT, (2) additional similarity metrics for comparing labels, and
(3) the use of nested cross-validation instead of out-of-bag error for hyperparam-
eter tuning. The changes have a positive increase on performance, especially in
comparison to related work.

8.1 Experimental Setup

The experimental setup of this chapter, including that of Chapter 10, revolves
around the T4LTE (Web Tables for Long-Tail Entity Extraction) dataset. It is a
gold standard we created specifically for the task of entity expansion from web
tables. It was created with DBpedia as a target knowledge base, and as a result,
entities annotated as new in T4LTE are actually missing in DBpedia.

This section introduces the T4LTE dataset, including its design and statistics.
This section also describes how we use T4LTE to evaluate our pipeline.

T4LTE has been made available publicly.2 With the exact evaluation metrics
used in this work, and the specific cross-validation folds, which we also provide,
T4LTE acts a benchmark for entity expansion from web tables.

8.1.1 The T4LTE Gold Standard

We created T4LTE specifically for this research as a gold standard for evaluating
the extraction of long-tail entities from web tables. It fulfills three tasks. First, it al-
lows measuring the performance of long-tail entity extraction, including recall. By
focusing on recall, we can evaluate how far methods retrieve all long-tail entities,
instead of just evaluating whether retrieved entities are correct. Secondly, T4LTE
enables the automatic evaluation of implemented methods. Finally, the dataset can
also be used as supervision to train long-tail entity extraction methods.

1http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
2http://webdatacommons.org/T4LTE/

http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
http://webdatacommons.org/T4LTE/
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Following, we describe how we created the T4LTE gold standard, including
what target knowledge base we employed, which classes we included, and how
we extracted web tables from which web table corpus to be included in T4LTE.
Finally, we will also provide statistics about T4LTE.

Target Knowledge Base

We employ DBpedia [Lehmann et al., 2015] as the target knowledge base to be
extended. It is extracted from Wikipedia, and as a result the covered entities are
limited to those identified as notable by the Wikipedia community. We use the 2014
version of DBpedia, as it has been used in related work [Ritze et al., 2015, Ritze
et al., 2016, Oulabi et al., 2016, Oulabi and Bizer, 2017] and its release date is also
closer to the extraction of the web table corpus from which we created T4LTE.

Class Selection

From DBpedia, we selected three classes for which we built the dataset. This
selection was broadly based on two criteria:

• Versatility: the chosen classes must be from different first-level classes,
which in DBpedia are Species, Work, Agent and Place. This allows us to
ensure that the included classes cover domains that are sufficiently diverse.

• Name conflict likelihood: we utilize the labels of entities in the knowledge
base to measure the potential for homonyms given a certain class. Classes
with a higher relative occurrence of homonyms were preferred. This was
done to ensure that we select the classes for which the task of entity expan-
sion is likely more difficult than easy.

Based on this approach we chose the following three classes: (1) GridironFoot-
ballPlayer (GF-Player), (2) Song and (3) Settlement. The class Song also includes
all entities of the class Single.

Source Web Table Corpus

We extract the tables included in T4LTE from the English-language relational ta-
bles subset of the 2012 WDC web table corpus3. The set consists of 91.8 million
tables. Table 8.1 below gives an overview of the general characteristics of tables
in the corpus. We can see that the majority of tables are rather short, with an av-
erage of 10.4 rows and a median of 2, whereas the average and median number of
columns are 3.5 and 3. As a result, a table on average describes 10 entities with 30
values, which likely is a sufficient size to understand a table and be potentially use-
ful for finding new entities and their descriptions. In Chapter 5, we have profiled
the potential of the same corpus for the task of slot filling.

3http://webdatacommons.org/webtables/#toc3
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Table 8.1: Characteristics of the employed 2012 WDC web table corpus.

Average Median Min Max

Rows 10.37 2 1 35,640
Columns 3.48 3 2 713

Web Tables Selection

For the gold standard we had to select a certain number of tables per class to an-
notate. We first matched tables to classes in the knowledge base using the T2K
framework (see Section 4.3). Tables were then selected for each class individually.

We attempted to include tables with entities of varying degrees of popularity.
For this, we first divided the entities in the knowledge base into quartiles of pop-
ularity using the indegree count based on a dataset of Wikipedia page links.4 We
then select three entities per quartile, overall 12 per class.

Using the 12 selected entities, we searched for tables that contain the labels of
those entities. We then looked for labels that co-occur in those tables, but which do
not have any entity with a matching label in the knowledge base. This was done,
to ensure that there are enough long-tail entities in the selected tables.

For each of those labels and the labels of the 12 selected entities, we then
extracted up to 15 web tables. During this extraction, we additionally ensured that
few tables are chosen from the same PLD, and that tables have a variety in their
attribute columns.

Labeling Process

We did not label all tables and especially not all rows, but rather aimed to label new
entities and entities with conflicting names (homonyms).

We first annotated rows that describe the same entity to create row clusters.
We then annotated if the entity of a cluster already exists in DBpedia, or whether
it describes a new entity. For existing entities, we additionally annotated clusters
with the URI of the corresponding entity instance in DBpedia.

We annotated all web table columns with corresponding properties from the
knowledge base schema, if a matching property exists. These attribute-to-property
correspondences allow us to identify how many candidate values exist for each
triple, i.e. a certain combination of entity and property. For all triples which have
candidate values, we finally annotated the correct fact, and additionally annotated
whether that correct fact exists among the candidate values. This allows us to
precisely measure the precision and recall of descriptions created for new entities.

4https://wiki.dbpedia.org/Downloads2014#owikipedia-pagelinks, provided along with DBpedia.

https://wiki.dbpedia.org/Downloads2014#owikipedia-pagelinks
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Table 8.2: Statistics for the T4LTE gold standard.

Class GF-Player Song Settlement Sum

Tables 192 152 188 532
Attribute columns 572 248 162 982
Rows 358 195 413 966

Existing clusters 80 34 51 165
New clusters 17 63 23 103

Matched values 1,177 428 487 2,092
Value groups (facts) 460 231 152 843
Correct value present 436 212 124 772

Statistics

Table 8.2 provides an overview of the number of annotations in T4LTE. The first
three rows show the number of table, attribute and row annotations. On average, we
have 1.85 attribute annotations per table, not counting the entity label column. The
two following rows show the number of annotated clusters. We overall annotated
268 clusters, of which 103 are new, and where each cluster has on average 3.60
rows and 7.81 matched values.5 The number of matched values is given in the
next row and equals the number of cells, which are both part of a row within an
annotated cluster and a column with an attribute correspondence. Value groups is
the number of unique triples the matched values correspond to, for each of which
we have also annotated the correct fact. The last row shows how many of those
groups actually contain the correct value. Per cluster we can derive on average
3.15 facts, for 92% of which the correct value is present.

8.1.2 Cross-Validation Splitting and Evaluation Metrics

As we use the T4LTE gold standard for learning and testing, we apply three-fold
cross-validation. For this, we split by cluster, so that the rows of one cluster are
always fully included in one fold. We ensured that we evenly split both new clusters
and homonym groups. A homonym group is a group of clusters with highly similar
labels. All clusters of a homonym group were always placed in one fold.

Using T4LTE, we evaluate the performance of five aspects of our pipeline:
(1) schema matching, (2) row clustering, (3) new detection, (4) end-to-end entity
expansion, and (5) created descriptions of new entities. The evaluation metrics are
described in the sections where we also present the results. For schema match-
ing, row clustering, and new detection, we evaluate the performance within the
methodology section, as we test alternative implementations for each component.

5For the class Song, we additionally annotated 17 existing clusters. These are included for train-
ing purposes only, and are not fully labeled, as they are missing fact annotations.
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8.2 Methodology

In this section, we present our long-tail entity extraction system by describing the
individual components of the pipeline. As shown in Figure 8.1, the pipeline be-
gins with the web tables and ends with new entities being added to the knowledge
base. In between, the pipeline consists of four components: schema matching,
row clustering, entity creation and new detection. For all components, except en-
tity creation, we will suggest and evaluate alternative approaches throughout this
section.

We iterate over the pipeline twice. During the second run, we utilize the output
of the row clustering and the new detection to generate a refined schema map-
ping using duplicate-based matching. The attribute-to-property correspondences
derived by the schema matching are important, because they allow us to extract
for each row a set of values which correspond to the schema of the knowledge
base. These values are utilized as similarity features by the row clustering and new
detection components with a positive impact on performance. More importantly,
these values are required to create descriptions for new entities.

During the schema matching phase, we also match each table to a class in the
knowledge base. Afterwards we run the remainder of the pipeline for each class
separately.

8.2.1 Schema Matching

The first step in the pipeline is to create a mapping between the schemata of the
individual web tables and the schema of the knowledge base. As the web tables
have heterogeneous schemata, this task is non-trivial. Overall, there are four steps
necessary: (1) data type detection, (2) entity label column detection, (3) table-to-
class matching and (4) attribute-to-property matching. Regarding the first three
steps, we have provided a more detailed description in Section 4.3 of Chapter 4.

Data Type Detection

Throughout our pipeline we utilize a number of data types to type individual val-
ues, facts, attribute columns and knowledge base properties. Each type has a cor-
responding similarity function and an equivalence threshold, which are used to
determine if two compared values of that type are equal. We employ overall six
data types:

• String: string, where two strings do not have to be exactly equal to be
similar, e.g. label of an entity.

• Entity Reference: reference to an entity, e.g. team of an athlete or musical
artist of a song.

• Date: date with two possible granularities: year or specific day, e.g. release
year of song, or birth date of a person.
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• Numeric: numeric quantity, where numeric closeness has a semantic rele-
vance, e.g. population of a settlement.

• Nominal String: string, where two strings are either completely equal or
otherwise unequal, e.g. ISO code of a country.

• Nominal Integer: integer, where numbers close to each other are not se-
mantically related. This include e.g. numbers or draft rounds of athletes.
Nominal integers are similar to nominal strings. However, typing nominal
integers in addition to nominal strings allows some components, especially
the attribute-to-property matcher, to use methods tailored for this type.

We run the data type detection algorithm of the T2K matching framework [Ritze
et al., 2015], which detects data types using manually defined regular expressions.
It assigns to each table column one of the following basic types: string, date and
numeric. Detecting types with a higher granularity requires an understanding of
the actual semantics of the data in the column. This is done by the attribute-to-
property matcher we suggest below. The types are assigned to a column after the
column attribute has successfully been matched to a knowledge base property.

Entity Label Column Detection

For each table, we assign one column as the entity label column, which contains
natural language labels for the entities described in the table. This is done by
finding the column with the data type string and the highest number of unique
values. In case there is a tie between multiple columns, we choose the column that
is furthest to the left. This is the approach employed by T2K.

Table-to-Class Matching

For table-to-class matching, we again utilize the approach that is part of the T2K
framework. It performs both row-to-instance and attribute-to-property matching
iteratively to find the class of a table. We describe their approach in more details in
Subsection 4.3.1 of Chapter 4. The approach was evaluated by Ritze et al., where
authors find that it can achieve an F1 score of 0.97 on a gold standard of web
tables [Ritze et al., 2015].

Attribute-to-Property Matching

Our attribute-to-property matching approach consists of three steps. We first select
candidate properties from the knowledge base schema based on data types. For
string columns, we choose all properties with types entity reference, nominal string
and string, for numeric columns, we choose properties with types numeric and
nominal integer and finally for date columns, we choose properties with types date,
numeric and nominal integer as candidates. After successful matching, the data
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Table 8.3: Attribute-to-property matching performance by pipeline iteration.

Iteration P R F1

First 0.929 0.608 0.735
Second 0.924 0.916 0.920
Third 0.929 0.916 0.922

type of the column is changed to the data type of the matched property and the
values of the column are accordingly normalized.

Secondly, we use various matchers, described further below, to compute match-
ing scores. Given a candidate knowledge base property, a matcher finds a score
from 0.0 to 1.0 that measures the likelihood that the attribute described by a col-
umn matches the property. Scores of multiple matchers are aggregated using a
weighted average, where weights are learned for each class individually.

Finally, we utilize thresholds on the aggregated scores to determine if a cer-
tain candidate property matches an attribute. The thresholds are also learned per
property of the knowledge base schema. An attribute is matched to a property if it
is both, a property that achieves a score above the property-specific threshold, and
the property with the highest aggregated score.

Overall, we implement five matchers, three of which exploit the knowledge
base. KB-Overlap computes the proportion of values in the attribute that gen-
erally fit the candidate property in the knowledge base. KB-Label compares the
label in the attribute header row to the labels of the candidate property in the knowl-
edge base. KB-Duplicate assumes the existence of row-to-instance properties
generated by a previous iteration of the pipeline. It computes the proportion of
values in a column that are equal to the fact present for a candidate property in the
knowledge base for the entity instance matched a value’s row.

We further implement two matchers that exploit the web table corpus. For this,
we first match attributes using the above described matchers that exploit the knowl-
edge base for a preliminary mapping. We then rerun the matching using two ad-
ditional matchers that exploit this preliminary mapping and the web table corpus.
WT-Label utilizes the column headers of columns matched in the preliminary
run, to derive label-to-property scores, where the score represents the likelihood
that an attribute with a certain header row label corresponds to a certain candi-
date property of the knowledge base. WT-Duplicate assumes the presence of
row clusters generated by the row clustering component of a previous run of the
pipeline. Using the clusters, we know which values in web tables match the same
entity. Using the preliminary mappings, we additionally know which values match
which property. WT-Duplicate measures and returns the proportion of values
in a column, for which an equal value exists in the corpus, that is matched to same
entity and property.

Table 8.3 shows by iteration the performance of an attribute-to-property match-
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ing method that aggregates all the matchers described above. The duplicate-based
methods are not included in the first iteration, as they require output from the other
pipeline components. We evaluated the methods on the attribute annotations in the
gold standard using three-fold cross validation.

From the table, we can see that a second iteration and the utilization of the
output of the row clustering and the new detection components for duplicate-based
matching have a large positive effect on schema matching performance. The table
also shows that a third iteration has only a marginal positive effect, so that two
iterations suffice.

To determine the usefulness of each individual matcher, we evaluate the rela-
tive weight assigned to it in the aggregated method of the second iteration. As we
learn weights per class, the following weights are averages for all three classes. The
duplicate-based matchers have a combined weight of 0.43, where KB-Duplicate
with a weight of 0.25 is more important. The label-based matchers achieve a higher
combined weight of 0.46 where the WT-Label with a weight of 0.25 is very ef-
fective. Finally, the KB-Overlap method is the least important method with a
weight of 0.10. The distribution of weights for the individual classes were similar
to the here mentioned averages.

From the weights we can first of all see, that the label is quite an effective
method for schema matching. The labels of the web table corpus are possibly more
important, because the corpus includes a larger diversity of attribute labels than the
knowledge base. On the other hand, for duplicate-based matching, it makes sense
the method that uses facts in the knowledge base for matching is more important,
as facts in the knowledge base are likely more accurate.

Overall, we also find that the most effective approach is one that combines
various matchers and thereby exploits the highest number of individual signals for
schema matching.

8.2.2 Row Clustering

After matching tables to classes and table columns to properties of the knowledge
base, we cluster rows that describe the same entity together. This step is especially
important, as it reveals the overall number of unique entities described in the tables.

Our row clustering methods consist of two parts: (1) a method that computes
row similarity, which measures the likelihood that two rows describe the same
entity, and (2) a clustering algorithm, that utilizes the row similarities to create the
actual row clusters.

Clustering Algorithm

In the context of this work, a required feature of the clustering algorithm is its abil-
ity to determine the correct number of clusters itself. In case of a perfect clustering,
this number would correspond to the exact number of unique entities described by
the rows of all tables.
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Correlation clustering approaches [Bansal et al., 2004, Demaine et al., 2006,
Ailon et al., 2008, Bonchi et al., 2014] fulfill this requirement. Clustering here is
viewed as an optimization problem that aims to find the optimal partitioning of a
set of vertices. The optimal partition maximizes a fitness function that aggregates
similarities within clusters and dissimilarities between clusters.

Due to the large number of tables and rows in a web table corpus,6 we need
clustering methods that scale. As correlation clustering approaches try to find a
globally optimum solution, they do not scale for the task at hand. We therefore
look at greedy or local search clustering algorithms, that are able to approximately
determine the optimum number of clusters, while still remaining scalable.

ElsnerVOTE [Elsner and Charniak, 2008,Elsner and Schudy, 2009] is a greedy
clustering algorithm. It attempts to sequentially assign each vertex (i.e. a row) to
the optimum cluster, by summing the weights of the edges between the vertex and
all the vertices within an already created cluster. The vertex is assigned to the
cluster with the highest aggregated score, if the score is positive (this assumes a
similarity score normalized from –1.0 to +1.0). If all aggregated scores are nega-
tive, the vertex can not be assigned to any cluster and a new cluster is created with
that vertex in it. As every vertex assignment or cluster creation would only maxi-
mize the fitness function at the time of the operation, this possibly does not result
in an optimal solution.

Kernighan-Lin with Joins (KLj) [Keuper et al., 2015] is an extended version of
the Kernigen-Lin [Kernighan and Lin, 1970] heuristic algorithm. KLj improves an
existing preliminary clustering, by comparing two clusters and attempting to move
individual vertices between those clusters or merging the clusters fully, in case this
has a positive increase on the fitness function locally. Similarly, each cluster is
compared with an empty set to find whether splitting a cluster increases the fitness
function locally. The operations are repeated until no further operation can increase
the fitness function. As such, unlike ElsnerVOTE, KLj finds a local optimum.

We use in this work the greedy ElsnerVOTE as a preliminary clustering step.
To achieve further scalability, we perform the row assignment in parallel instead
of sequentially. While this parallelization is much faster, it can result in additional
non-optimal assignments during clustering. We therefore run the the KLj algorithm
on the output of parallelized ElsnerVOTE. The KLj algorithm would compare all
created clusters and correct possible mistake to reach a local optimum.

Combining a greedy with a local search algorithm is also suggested by the re-
lated work on clustering [Keuper et al., 2015,Elsner and Schudy, 2009]. As a result,
we are able to quickly build a preliminary clustering with complete parallelization,
while with a second step, we ensure that clustering quality is still high and at least
a local optimum has been reached. Scalability is further ensured by the blocking
approach, which we describe further below.

6While in this chapter, we evaluate our pipeline only on the gold standard, in the next chapter
we use it on the whole web table corpus. For the class Song, this means clustering more than two
million rows.
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An alternative greedy algorithm to ElsnerVOTE would be Greedy Additive
Edge Contraction (GAEC). GAEC works by joining per iteration two clusters,
starting with each vertex as its own cluster. The two clusters to be joined are cho-
sen such that joining them has the largest positive increase on the fitness function.
We prefer ElsnerVOTE as it lends itself well to parallelization. With ElsnerVOTE,
we parallelize by row, so that we attempt to assign more than one row at the same
time, given the most recent state of clusters already created.

Row-To-Row Similarity Features

As mentioned above, we compute row-to-row similarity scores that measure the
likelihood that two rows refer to the same entity. The scores are then used by the
clustering algorithm to cluster rows.

To compute these scores, we first exploit a set of features and corresponding
metrics. This allows us to generate large number of individual similarity scores.
These scores are then aggregated to yield a single row-to-row similarity score.

Depending on the feature, other input, e.g. from the knowledge base or the
web table corpus, might be utilized. Overall, our implemented features can be
categorized into six different types:

• LABEL. We use the values within the entity label column of a table to derive
a label for each row. We then compare these labels to derive similarity scores
using three different approaches. First, we compare using the Generalized
Jaccard similarity measure, using Levenshtein as the inner similarity [Doan
et al., 2012b]. Secondly, we use the overlap similarity measure, where the
intersection is also computed using Levenstein. Finally, we again use the
Generalized Jaccard similarity, however this time additionally checking for
surface forms when comparing labels. These surface forms are extracted
from various label properties within DBpedia7, Wikipedia redirects8, and a
large surface forms dataset, which itself is extracted from Wikipedia and the
Common Crawl [Bryl et al., 2016].

• BOW. For each row we create a bag-of-words binary term vector that contains
the terms that occur in all cells of a row. For this, cell values are cleaned,
normalized and tokenized. To compare two rows, we compute the cosine
similarity of their vectors.

• PHI. This approach allows us to compare two rows by comparing their ta-
bles. It derives a similarity between two tables using the phi correlation of
row labels. The phi correlation of two labels is computed as following:

7These include foaf:name, foaf:nick, dbo:formername, dbo:longName, dbo:birthname, dbo:alias,
and rdfs:label.

8https://wiki.dbpedia.org/Downloads2014#oredirects, provided along with DBpedia.

https://wiki.dbpedia.org/Downloads2014#oredirects
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phipx, yq �
n� nxy � nx � nya

nx � ny � pn� nxq � pn� nyq
, (8.1)

where n � total number of unique labels,

nab � occurrence of labels a and b in same table,

na � occurrence of label a in a table.

For each label, we compute a vector that consists of all labels in the cor-
pus and contains the phi correlation with those labels. We then create such
a vector for each table, by averaging the vectors of the table’s row labels.
We attempt to reflect with this vector semantic information about all rows
described in a given table. When comparing two rows, we return the cosine
similarity of the vectors of their tables.

• ATTRIBUTE. Using the attribute-to-property correspondences, we can de-
rive a set of values for each row, where each value is matched to a property
of the knowledge base schema. This allows us to apply data-type-specific
similarity functions when comparing the values of two rows. This is possi-
ble because we only compare two values matched to and normalized for the
same knowledge base property, whereas for example in BOW, we compare
tokens without considering if they semantically match.

We return for a row pair two scores for each property from the knowledge
base schema with a range from 0.0 to 1.0. One score measures the confidence
of the pair having equal values given that property, the other of the pair
having unequal values. If no overlap between the attribute columns exist,
both scores are returned as –1.0.

The number of similarity scores generated therefore depends on the number
of properties that exist in the schema of the knowledge base given a certain
class.9 This means that the exact feature set is therefore class-specific.

• IMPLICIT_ATT. Many tables have rows that describe entities that are sim-
ilar, e.g. cities in Germany or athletes drafted in 2010. This information is
not stated explicitly in any of the row cells. Using the following approach,
we attempt to derive for a table implicit property-value combinations that
apply to all entities described by the table. We can then use these implicit
property-value combinations to compare rows with each other.

We first use the row labels to find candidate instances in the knowledge
base for all rows of a table. Using these candidate instance, we then de-
rive all property-value combinations that exist for at least one candidate in
the knowledge base. For each property-value combination, we then derive
a score for the whole table, which equals the proportion of rows for which

9In our experiments, we only consider properties that have a density of at least 30% in DBpedia.
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we could derive this combination. We keep only combinations with a score
above a certain threshold, which are then assigned to the table as implicit
attributes with their scores included as confidences.

Given two rows, we compare the implicit attributes of one row with overlap-
ping implicit attributes and column attributes of the other row and vice versa.
Again, when comparing two rows we compute a similarity score for each
property in the knowledge base schema, given a certain class. This means
that the exact feature set differs per class and is therefore class-specific.

• SAME_TABLE. This feature builds on the observation that rows in a single
table usually describe different entities. We assign two rows of the same
table a similarity of 0.0, otherwise 1.0.

Class-Specific and Class-Agnostic Feature Sets

The features of type ATTRIBUTE and IMPLICIT_ATT are class-specific. In
the published work on the LTEE Pipeline [Oulabi and Bizer, 2019a], we used a
version of those features that were class-agnostic, i.e. the set of features is the
same for any class. We use these class-agnostic versions in Chapter 10 for building
a class-agnostic unsupervised matching model. To allow comparability, we will
additionally describe how we create these class-agnostic versions of those features
and compare their effect on performance in this chapter.

The class-specific versions of ATTRIBUTE and IMPLICIT_ATT yield two
scores with a range from 0.0 to 1.0 for every single property of a class. One score
describes the likelihood that, given that property, the values of a compared pair are
equal, while the other describes the likelihood that they are unequal. Scores of –1.0
mean that there exists no overlap between the values of the compared pair for that
property. We compute one single class-agnostic score for each feature by averaging
all the scores that describe the likelihood that the values are equal, and for which
overlap exists, ignoring the scores that measure if two values are unequal.

These class-agnostic scores therefore discard two types of information. First,
they do not consider scores per individual knowledge base property, but only an
aggregate. Second, they are unable to reflect whether there actually exists any
overlap, as a score of 0.0 could indicate either no overlap or unequal values.

To reduce some of these limitations, we introduce a class-agnostic confidence
score, that returns the actual number of value pairs compared per aggregated score.
When no values overlap, the confidence score would be equal to zero, indicating
that there was nothing to compare. This potentially allows the differentiation be-
tween the cases where no values overlap, or all compared value pairs were unequal.

Similarity Score Aggregation

We implement two methods to aggregate the row similarity scores. We first uti-
lize a weighted average, where the weights assigned to each similarity score are
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learned. We then learn a threshold, where aggregated scores above the threshold
indicate that the rows describe the same entity. To learn the weights, we model
the data in the learning set as row-pairs that either match or not, i.e. with scores
of either 1.0 or 0.0. When learning weights, we utilize a genetic algorithm that
attempts to maximize the F1 classification performance on the learning set. The
confidence of each classification is the relative distance from the aggregated score
to the threshold.

As a primary aggregation approach, we use random forest classifiers [Breiman,
2001], where the similarity scores are included as features. We again model the
data as row-pairs, where rows within one cluster in the learning set are labeled as
matching, otherwise as non-matching. To train the random forest we utilize the
WEKA library. We learn the hyperparameters of the algorithm using three-fold
nested cross-validation.10

Blocking

To ensure that the row clustering scales to large web table corpora, we implement a
blocking algorithm. We block comparisons at two points. First, we block to reduce
the number of clusters a row is compared to during the parallel greedy clustering,
and, second, we block to limit the cluster pairs that are compared with each other
during the KLj clustering.

For blocking, we make use of the row labels. We first normalize the labels of
all rows and use them to build a Lucene index. Each label in the index forms a
block that includes all rows with that exact label. Given a row, we use the row’s
label to retrieve from the Lucene index similar labels. The blocks of rows behind
each retrieved label are candidates to which the original row is compared to.

During the parallelized greedy clustering, we compare a row only to clusters
with which the row shares a block. The blocks of a cluster are the union of the
blocks of all rows in that cluster. Similarly, during the KLj clustering, two clusters
are only compared when they share at least one block.

The blocking yields no decrease in F1 on the gold standard, which shows that
it is an effective approach with minimal loss in recall.

Evaluation

To evaluate the performance of the row clustering, we employ the evaluation ap-
proach proposed by Hassanzadeh et al. [Hassanzadeh et al., 2009]. We use the set
of clusters annotated in the gold standard, denoted as G, and the set of clusters
returned by our method, denoted as C, to first compute a one-to-one mapping be-
tween the clusters in G and the clusters in C. We map a cluster in C to a cluster in

10Tables 8.4 and 8.5 show performances for methods that aggregate features in a given order. We
use nested cross-validation to learn the hyperparameters only for the method in the last row, i.e. the
method that aggregates all features. We however also use these hyperparameters for all the methods
in the rows above the last, i.e. we do not tune the parameters for every row. They are however tuned
per aggregation method, also by agnostic or class-specific feature sets, and class separately.
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Table 8.4: Average clustering performance and feature importance (FI) scores for
alternative row clustering methods.

Agnostic Features Class-Specific Features

WA RF RF

Method F1 F1 PCP R F1 FI

LABEL 0.76 0.74 0.69 0.80 0.74 0.25
+ BOW 0.82 0.82 0.78 0.86 0.82 0.07
+ PHI 0.82 0.81 0.78 0.86 0.82 0.03
+ ATTRIBUTE 0.82 0.81 0.80 0.87 0.83 0.26
+ IMPLICIT_ATT 0.81 0.84 0.85 0.89 0.87 0.36
+ SAME_TABLE 0.81 0.84 0.86 0.90 0.88 0.02

G, if it contains the highest fraction of rows that are from that cluster in G. In case
two clusters in C have the same proportion, we take the cluster with the highest
absolute number of overlapping rows. We denote the mapping as M .

Using this mapping we compute average recall (AR), penalized clustering pre-
cision (PCP) and their F1 score. Average recall is the average of the individual
recalls of the clusters in G. The recall of a cluster in G is equal to the fraction
of rows in G that are inside a mapped cluster from C. If no cluster from C was
mapped to a cluster in G, the recall of that cluster is zero.

To compute the clustering precision, we compute the precision of all row pairs
that are part of the same cluster in C. A pair is determined to be correct if both
rows are part of the same cluster in G. Unlike the average recall, this does not
measure how well we find cluster, but how well we place rows in the same cluster.

As finding the correct number of unique entities described in the web tables
is important, finding the correct number of clusters is important. We therefore
penalize the clustering precision, as is also suggested by [Hassanzadeh et al., 2009],
if the number of returned clusters deviates from the correct number of clusters. We
penalize by multiplying the clustering precision by a penalizing factor. This factor
is computed by finding the sizes of C, G or M and dividing lowest by the highest.

Results and Lessons Learned

Table 8.4 shows the performance of various row clustering methods. All numbers
in the table are first averaged per fold and per class. We then average the results of
the three classes together. The first two columns show row clustering methods that
only make use of class-agnostic features. The first uses the weighted average ap-
proach to aggregation, while for the second we train a random forest classifier. The
following three columns show the performance when using a class-specific feature
set and training a random forest classifier. The first row contains the results when
using only the label-based similarity scores. For every following row we aggregate
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one additional feature or feature set. The last column of the table shows the feature
importance, which is the average of the relative importance of the feature inside the
learned random forest, for the method with class-specific features. The importance
scores shown are derived for the method that aggregates all feature, i.e. the one that
corresponds to the last row of the table.

As mentioned above, we use the class-agnostic feature set and the weighted
average aggregation to allow comparability. From the table we can see that the
class-specific feature set yields a much better performance. We also find that using
a random forest outperforms using a weighted average aggregation, at least when
it comes to the method shown in the final row. This shows that the expressiveness
of the random forest alone, already has a positive impact on performance.

In the remainder of this discussion, we will focus on the class-specific feature
set with the random forest aggregation, i.e. the last four columns of the table. The
numbers show that the similarity of row labels is a very good indicator if two rows
describe the same entity, as it has a high average feature importance of 0.25 and
with it we are able to achieve a moderate F1 of 0.74. At the same time, it alone
is not enough, and all other similarity features positively impact the row cluster-
ing performance when aggregated. This applies especially to the features BOW,
ATTRIBUTE and IMPLICIT_ATT, which either have a high feature importance
or a large increase in F1.

Both PHI and SAME_TABLE have smaller feature importance scores and cor-
responding small effects on F1. It is however important to note, that the increases
in F1 is highly influenced by the order in which scores are aggregated. For exam-
ple, if we remove PHI but keep the remaining features, we would end up with an
F1 of 0.86 instead of 0.88. As such, the feature importance is likely a better indica-
tor of how useful a feature is. PHI however also has a low importance, very close
to SAME_TABLE, which is a rather primitive method. PHI likely achieves a low
impact because it does not measure the similarity of two rows directly, but rather
compares their tables. On the other hand, the same applies to IMPLICIT_ATT
and it has a considerably higher impact. This in turn shows the benefit of utilizing
the knowledge base as background knowledge.

From the overall results, we can conclude that the best approach is to aggre-
gate multiple features, thereby combining the different signals exploited by the
individual features. The LABEL feature utilizes the output of the entity label
column detection, while the ATTRIBUTE feature utilizes the knowledge base as
background knowledge to semantically understand the attributes of the table. The
IMPLICIT_ATT feature also exploits a knowledge base, but to assign semantics
to the table as a whole. Finally, the BOW method exploits all information of a row,
whether it could be mapped to a schema or not.

8.2.3 Entity Creation

The entity creation component receives clusters of rows and transforms each cluster
into an entity. An entity first consists of one or more labels, which we extract from
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the entity label column of all rows within the cluster. More importantly, an entity
contains a set of values mapped to the properties of the knowledge base. Given that
at the row-level, each row can have multiple values matched to certain knowledge
base properties, and that we have multiple rows in a cluster, there are likely to be
conflicting candidate values for one property when creating an entity. We therefore
apply the following four-step method to fuse candidate values:

1. Scoring: we score candidate values using the Knowledge-Based Trust score
of the column from which they were extracted.

2. Grouping: we group equal values together. This is done using the data-
type-specific equivalence functions.

3. Selection: we then select the group with the highest sum of individual can-
didate value scores.

4. Fusion: we fuse a group into one value by using data-type-specific fusers.
For string and entity reference types, we utilize the majority value in a group,
whereas for numeric and date types we use a weighted median approach. For
nominal string and nominal integer, no fusion is necessary, as all values in
a group are equal due to the fact that their data-type-specific equivalence
functions do not allow for deviation.

For scoring of candidate values, we make use of Knowledge-Based Trust [Dong
et al., 2015], where we measure for a certain table column the correctness of its
overlapping values, i.e. those matched to an existing fact in the knowledge base, to
estimate the trustworthiness of the whole column. We describe Knowledge-Based
Trust, the fusion framework and the data-type-specific equivalence functions in
more details in Section 4.3.2.

8.2.4 New Detection

After creating entities from row clusters, we now determine whether a created en-
tity describes a new entity, not yet present in the knowledge base. This is done by
attempting to match the created entities to the instances of existing entities in the
knowledge base. For this, we suggest a set of entity-to-instance similarity features.
If there are no matching instances found or the distance between a created entity
and an instance in the knowledge base is large enough, the entity is determined to
be new. For created entities classified as not new, we attempt to match them to an
existing entity in the knowledge base. This allows us to derive row-to-instance cor-
respondences, which are fed back into a second iteration of the pipeline to refine
the schema mapping.

Our new detection approach consists of three steps:

1. Candidate Selection: we find a list of candidate instances from the knowl-
edge base using a Lucene index built on their labels. To search candidates
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for a created entity, we utilize the labels attached to the entity in the entity
creation component. Additionally, candidates found must be of the class of
the created entity or share one parent class.

2. Similarity Score Computation: we compute a score to measure the sim-
ilarity between the created entity and a candidate instance in the knowl-
edge base. We present multiple different approaches to computing entity-
to-instance similarity scores, including how we aggregate them.

3. Classification: if the highest similarity for any candidate instance is lower
than a learned threshold, we classify the created entity as new. Otherwise we
find the candidate instance with the highest similarity score, and in case its
score is higher than another threshold, the created entity is classified as ex-
isting and a correspondence from the created entity to that instance is gener-
ated. The first threshold is optimized for the F1 score of new classifications,
while the second threshold is optimized for the F1 score of existing entities
correspondences (see Evaluation below).

Entity-To-Instance Similarity Features

We use the following features and metrics to compute a variety of similarity scores
between a created entity and one candidate instance from the knowledge base.
There are overall six feature types:

• LABEL. We compute the similarity between the labels of the created entity
and the labels of the candidate instance. This is done using two ways. First,
we compare the labels of the created entity solely to the label derived from
the URI of the knowledge base instance in DBpedia. Second, we compare
the labels of the created entities with all surface form labels. The source
of these surface forms equals the one used for row clustering (see Subsec-
tion 8.2.2). In both cases, we use the Generalized Jaccard similarity [Doan
et al., 2012b] with Levenshtein as its inner similarity to compare the labels.

Using a label extracted from the URI on its own is important for entities with
highly ambiguous labels. This is because the label chosen for the URI is
usually the one with the least ambiguity. For example, Delhi and New Delhi
have equal surface forms in the knowledge base. Only the label extracted
from the URI allows us to disambiguate both entities.

• TYPE. In DBpedia every class is part of a hierarchy with a certain number
of parent classes. We compute the overlap of the classes of the candidate
instance with the class of the created entity, including in both cases the parent
classes. If the candidate instance only shares a parent class with the created
entity, it is still deemed somewhat similar.

• BOW. We create a bag-of-words binary term vector for each created entity
by combining the vectors of all its rows, which themselves are created as
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described for row clustering above. We then create a vector for the candidate
instance in the knowledge base, using its labels, abstract and facts of indi-
vidual proprieties. We then compute the cosine similarity of both vectors.

• ATTRIBUTE. For each property, where a fact exists in both the created en-
tity and the candidate instance in the knowledge base (i.e. an overlap), we
determine if the fused fact is equal to the fact in the knowledge base using
data-type-specific similarity functions. As there could be multiple overlap-
ping properties, we return a class-specific set of scores, two for each property
of a class. This resembles the approach used for row clustering.

• IMPLICIT_ATT. We utilize the implicit property-value combinations de-
rived for tables, as described for row clustering above, to derive property-
value combinations for a created entity. For this, we sum up the confidence
scores of all property-value combinations for the tables of all rows in the
entity and divide by the total number of rows to compute an entity-level con-
fidence score. We then compare these property-value combinations at the
entity level with overlapping facts of a candidate instance in the knowledge
base. We again derive a set of class-specific, two for each property.

• POPULARITY. We use a dataset of Wikipedia page links11 to rank all can-
didate instances of a created entity by their number of incoming page links.
A similarity score is assigned to each candidate instance based on its rank.

Class-Specific and Class-Agnostic Feature Sets

As described in the subsection regarding row clustering, we create class-specific
and a class-agnostic versions of the ATTRIBUTE and IMPLICIT_ATT feature
sets for the purpose of comparability. This is done for new detection using the
same approach used for row clustering.

Similarity Score Aggregation

We aggregate various similarity scores using the same aggregation approaches uti-
lized for row clustering.

Evaluation

We evaluate the new detection component using the clusters annotated in the gold
standard. Before we run new detection on those clusters, we create entities from
them as outlined in Section 8.2.3 above. From the gold standard, we know whether
a certain created entity describes a new entity or not. In case it describes an exist-
ing entity, we additionally know from the gold standard the exact knowledge base
instance it describes.

11https://wiki.dbpedia.org/Downloads2014#owikipedia-pagelinks, provided along with DBpedia.

https://wiki.dbpedia.org/Downloads2014#owikipedia-pagelinks
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Table 8.5: Average performance and feature importance (FI) scores for alternative
new detection methods.

Agnostic Features Class-Specific Features

WA RF RF

Method ACC ACC ACC F1E F1N FI

LABEL 0.59 0.57 0.56 0.55 0.72 0.13
+ TYPE 0.72 0.70 0.70 0.69 0.83 0.05
+ BOW 0.82 0.80 0.78 0.79 0.79 0.07
+ ATTRIBUTE 0.87 0.89 0.88 0.86 0.90 0.43
+ IMPLICIT_ATT 0.86 0.90 0.89 0.89 0.90 0.26
+ POPULARITY 0.86 0.89 0.91 0.90 0.91 0.06

We run our new detection component on those entities to receive a set of entities
classified as new, and another set classified as existing with additional correspon-
dences to existing instances in the knowledge base. We use the gold standard to
first determine the accuracy of those classifications. The accuracy equals the frac-
tion of correctly classified entities. Existing entities must additionally be matched
to the correct instance in the knowledge base to be counted as correctly classified.

We additionally evaluate classification for new and existing entities separately
using F1. The precision of the new entities equals the fraction of entities returned
with a new classification that are actually new, whereas recall is equal to the frac-
tion of total new entities in the gold standard that were correctly classified as new.
The same applies to the existing entities, with a second condition that the entity
must be matched to the correct entity instance in the knowledge base as well.

Results and Lessons Learned

Table 8.5 shows the performance of various new detection methods. All numbers
are first averaged per fold and per class. We then average the performances of all
three classes. The first row shows a method that only utilizes the label-based fea-
tures. For each following row we aggregate an additional feature into the method.

We show the performances of three methods of aggregation. First, we use the
weighted average and random forest aggregation with a class-agnostic feature set.
The last four columns all concern the use of class-specific feature set and random
forest aggregation. The feature importance shown in the last column is derived
for a method that aggregates all features, i.e. the one presented in the last row.
Both aggregating using a random forest and using a class-specific feature set have
a positive impact on performance.

In the remainder of this discussion we will focus on the class-specific feature
set with the random forest aggregation, i.e. the last four columns of the table. From
the table we can see that with an accuracy of 0.91, the final aggregated method per-
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forms quite well. It achieves a performance considerably better than the LABEL
method, which only has an accuracy of 0.56. Additionally, we can see that all sim-
ilarity features are important and contribute positively to the overall performance.
This shows that the combined approach is able to leverage the different signals
exploited by the individual features.

The later a feature set is aggregated, the more difficult it is to yield a large
absolute increase in performance. As such, the features TYPE and BOW increase
accuracy by 14 and 8 percentage points respectively, which is much larger than
for the features we include in the rows that follow. At the same time, we see that
IMPLICIT_ATT, which has a higher importance score than BOW, only increases
accuracy by 1 percentage point. This is likely, because at this stage, improving
performance further is more difficult. However, it does increase F1 for existing
entities by 3 percentage points.

We find that BOW, while highly useful for existing entities, causes a drop in
performance for new entities. This anomaly could be caused by the fact that we
tune the hyperparameters only for the method in the last row, while also using them
for the remaining methods. If we would actually remove the BOW from the method
in the last row, we would not gain any increase in performance in F1N. As such,
the anomaly does not appear in the method presented in the last row.

The feature with the largest impact is ATTRIBUTE. It has the highest impor-
tance score and high impacts on both accuracy and F1 of new classification. While
BOW is aggregated before ATTRIBUTE, its positive impact on accuracy is lower.
This indicates the benefit of using the knowledge base and its schema to semanti-
cally understand the table.

POPULARITY has a high positive impact on F1E for the class Settlement, in-
creasing it from of 0.85 to 0.91. This indicates that, given just the name of a settle-
ment, it is safe to assume that the most well-known settlement is meant. This makes
sense, as this assumption is typically made when speaking about cities. However,
the same feature had a negative impact on the F1E for the class Song, decreasing it
from 0.83 to 0.81. The F1E remained the same at 0.98 for the class GF-Player.

In this section, we have discussed performances on average, without investi-
gating them at the class-level. In the next section, we will show end-to-end per-
formances per class, additionally discussing also the impact of row clustering and
new detection on the overall entity expansion performance per individual class.

8.3 Results

Using the row clustering and new detection methods that aggregate all similarity
features and exploit the class-specific feature set, we run the whole pipeline on the
testing folds and evaluate its output. We will first evaluate how many of the new
entities were correctly found. In the second part, we will evaluate how accurately
facts were compiled for new entities. Throughout this evaluation, we utilize three-
fold cross-validation, so that the numbers represent averages of all three folds.
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Table 8.6: Performance of the LTEE Pipeline in finding new entities.

Class Clustering New Detection P R F1

GF-Player GS ND 0.90 0.95 0.92
GF-Player RC ND 0.80 0.95 0.87

Song GS ND 0.89 0.94 0.91
Song RC ND 0.74 0.84 0.78

Settlement GS ND 0.88 0.90 0.89
Settlement RC ND 0.80 0.90 0.84

Average GS ND 0.89 0.93 0.91
Average RC ND 0.78 0.90 0.83

8.3.1 New Entities Found Evaluation

To evaluate how well new entities were found, we utilize precision and recall. To
compute precision, we determine the proportion of entities returned as new that are
correct. An entity is only correctly new, if its cluster includes the majority of the
rows of a new cluster in the gold standard, and these rows at the same time form
the majority within the entity’s cluster. Recall is the fraction of new entities in the
gold standard for which a correct new entity was returned.

Table 8.6 shows the performance of our system for the three classes separately.
To evaluate the individual impact of row clustering and new detection, we once
evaluate using the row clusters annotated in the gold standard (GS), and once with
the row clusters returned by our suggested row clustering method (RC). For new
detection, we run in both cases our suggested new detection method (ND).

We generally achieve good performances for all classes, with the best F1 being
0.87 for GF-Player and the lowest 0.78 for Song. This is likely because for songs,
the homonym problem is much larger, as there exist many songs of the same name
by different artists. Sometimes, these homonyms even represent cover versions, so
that they are highly similar in their descriptions, e.g. in runtime or writer.

We find that both new detection and row clustering have a similar negative im-
pact on performance. For GF-Player and Settlement, the new detection component
causes a slightly larger decrease, while for Song, the clustering has a higher neg-
ative impact. We find that errors of both components compound, e.g. entities that
are noise due to bad clustering are returned as new by the new detection, instead of
being filtered out. We find that bad clusters often consist of rows that describe ex-
isting entities, which is also why new entities found recall is higher than precision.

8.3.2 Facts Found Evaluation

This subsection evaluates how well our pipeline can generate facts for new entities.
Again, we need a mapping between entities returned and new entities in the gold
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Table 8.7: Performance of the LTEE Pipeline in finding facts for new entities.

New Entities Penalized

Class Clustering New Detection P R F1 P F1

GF-Player GS GS 0.84 0.80 0.82 0.84 0.82
GF-Player GS ND 0.85 0.78 0.81 0.79 0.79
GF-Player RC ND 0.85 0.78 0.81 0.74 0.76

Song GS GS 0.79 0.84 0.81 0.79 0.81
Song GS ND 0.80 0.79 0.80 0.73 0.75
Song RC ND 0.80 0.69 0.74 0.60 0.65

Settlement GS GS 0.97 1.00 0.98 0.97 0.98
Settlement GS ND 0.96 0.89 0.93 0.86 0.88
Settlement RC ND 0.96 0.89 0.93 0.81 0.85

Average GS GS 0.87 0.88 0.87 0.87 0.87
Average GS ND 0.87 0.82 0.85 0.79 0.81
Average RC ND 0.87 0.79 0.83 0.72 0.75

standard, for which we utilize the same approach used for the new entities found
evaluation. To determine if returned facts for matched entities are correct, we com-
pare them to the facts in the gold standard using the data-type-specific equivalence
functions (see Subsection 4.3.5). Recall is measured relative to the number of facts
that have been annotated as present for all new entities in the gold standard.

Table 8.7 shows performance per class. We compute two precisions, the first
considers only the facts of entities returned as new that were successfully matched
to a new entity in the gold standard. The second additionally penalizes precision by
counting as wrong all facts of entities returned as new but that could not be matched
to a new entity in the gold standard. The first measures how well we actually
create descriptions for new entities, while the second additionally highlights the
error compounding due to bad row clustering and new detection.

In order to measure the individual impacts of new detection and row clustering
on the overall performance, we again perform multiple runs. For the first run, we
utilize for both components the correct annotations from the gold standard and
evaluate solely fusion performance. In the following run, we use our new detection
methods, while for the third run, we additionally use our row clustering methods.

From the table we can see that for football players and songs, we respectively
lose 18 and 19 percentage points in average F1 even when row clustering and new
detection are perfect. We looked at a sample of errors and were able to identify
two main causes. The largest amount of errors is due to the attribute-to-property
matching component, where the proportion of errors caused by wrong or missing
column matches makes up 43% of all errors. This is followed by 35% of errors
that occurred as a result of wrong or outdated data in the tables.
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Row clustering and new detection both cause less correct new entities to be
created, i.e. they reduce recall. This is especially the case for the class Song. On
the other hand, we find that the correctly created new entities consistently have
high quality descriptions, as both components do not cause a decrease in precision
when not penalizing. For GF-Player, the recall also barely drops, so that the loss in
precision when penalizing is due to existing entities being incorrectly determined
to be new. Computing separate precisions allows us to differentiate between loss
in precision due to low quality descriptions for new entities, which we want to
evaluate in this subsection, from loss in precision because entities were incorrectly
classified as new. The latter, we have already considered in the previous subsection.

We are able to successfully create descriptions for new entities with an average
F1 of 0.83 (0.75 when penalizing). We however find that errors compound through-
out the pipeline, which shows the difficulty of the task at hand. Every component
has to perform very well for the pipeline to achieve a good performance.

8.4 Related Work

Entity expansion for knowledge base completion requires two subtasks. First, the
method must identify the unique entities that are not yet part of a knowledge base,
and second, creating descriptions for those entities according to the schema of the
knowledge base. To the best of our knowledge, the LTEE Pipeline is the first
system to handle the problem of entity expansion.

While there exist approaches for completing a set of incomplete entities (set
expansion) or detecting which entities are not part of the knowledge base (emerg-
ing entity detection), these fall short when it comes to the two subtasks of entity
expansion. Set expansion approaches disambiguate solely by name, and as such
are not concerned with the homonym problem, while emerging entity detection do
disambiguate between existing and new entities by more than just their label, but
are not concerned with actually identifying the exact number of unique new entities
to be added to the knowledge base. In regard to the second subtask, both do not
create any descriptions for new entities.

However, as both set expansion and emerging entity detection solve similar and
related tasks, we are still able to compare our work to both, which we do in this
section. Additionally, we compare the performance of individual components of
our pipeline to the performances of related work for similar tasks. These are slot
filling, schema matching and identity resolution. Finally, we will briefly compare
our research to recent and yet unpublished work on long-tail entity extraction.

Set Expansion

Set expansion is a task, where new entities are retrieved to complete a set [Wang
et al., 2015, Pantel et al., 2009, Wang and Cohen, 2007]. Set expansion methods
however only focus on finding the labels of new entities. The methods rely on
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Table 8.8: Comparing the performance of the LTEE Pipeline with reported perfor-
mances of works on set expansion.

Work MAP@256 P@5 P@20 P@50 P@100

LTEE Pipeline 0.94 0.90 0.81 0.79 0.79

[Bing et al., 2013] 0.94 0.91 0.77 0.52
[Zhang and Balog, 2017] 0.63
[Wang and Cohen, 2007] 0.95
[Wang et al., 2015] 0.78

a small number of seeds to find more entities from that set. Both the complete
sets and the number of seeds are however often small. In contrast, we focus on a
scenario in which large sets of entities, already contained in the knowledge base,
are extended with potentially large sets of new entities. Finally, most set expansion
methods make use of ranked evaluation, where the precision of the top k found
entities is measured. In contrast, our evaluation also considers recall.

To compare our work with works of set expansion, we need to utilize ranked
evaluation and therefore implement a ranking algorithm for new entities. We rank
based on the similarity scores returned by the new detection. These scores measure
the distance between one or more existing instances in the knowledge base, and an
entity created from web tables. We rank new entities higher, the higher the distance
to the closest knowledge base instance is.

Table 8.8 shows the performance of our method when using ranked evaluation
compared to the reported performance of set expansion methods. In regard to MAP,
we are able to achieve a performance of 0.92, so that we outperform two related
works, and are very close to a third. For precision at 5 and 20 we achieve 0.90
and 0.81 respectively, while a related work achieves 0.94 and 0.91. We therefore
find that our performance is generally comparable, even though the task we are
solving is more difficult. This is because we require new entities to be correctly
disambiguated, whereas set expansion methods only care about their labels without
disambiguating further.

One work in the area of set expansion also finds descriptions in addition to
entities when completing a set [Zhang and Balog, 2017]. For this, the authors
exploit a corpus of tables extracted from Wikipedia and DBpedia to augment an
incomplete relational table with more entities and their descriptions. To find more
entities, the method uses 1 to 5 seeds and first searches for candidates in the web
tables and the knowledge base. For this, it exploits the labels of the seeds and
the caption of the seed table, and also the ontology of DBpedia. Candidates are
then ranked based on how often they co-occur with the seeds and how similar their
tables’ captions are. Similarly, the method searches for candidate columns in the
corpus and ranks them based on how well they fit the seed table. The method
then returns a fixed number of entities, where the authors use 256 as their cut-
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off. While this approach does generate descriptions, it does not resolve the other
limitations of set expansion. Their approach still ranks candidate entities based on
their similarity to the seeds, and, more importantly, always returns a fixed number
of entities. More importantly, the entities in the testing set are not actual long-tail
entities, i.e. no new entities are added to the knowledge base. Finally, the homonym
problem is not discussed, and the disambiguation of entities is still primarily based
on surface forms. The authors achieve a MAP of 0.63, which is much lower than
our of 0.94.

Emerging Entity Detection

Emerging entity detection (EED) is an NLP task about recognizing when a certain
mention of a named entity in unstructured text refers to an entity that is out-of-
knowledge-base [Hoffart et al., 2014] or that is trending and has only recently
become notable [Färber et al., 2016]. EED is considered a sub task of named
entity disambiguation or entity linking, where named entity mentions that were
recognized in text, are linked to an existing entity in a knowledge base [Hoffart
et al., 2014, Färber et al., 2016, Derczynski et al., 2017].

The purpose of EED is to specifically discover that a certain entity mention
refers to an actual long-tail entity, not yet present in a knowledge base. This ap-
proach differs conceptually from other named entity disambiguation tasks, that
could only declare mentions as unlinkable, e.g. due to low confidence, without
explicitly identifying them as new [Hoffart et al., 2014].

There exist various approaches to EED [Hoffart et al., 2014,Hoffart et al., 2016,
Singh et al., 2016, Wu et al., 2016, Yeo et al., 2016, Färber et al., 2016, Derczynski
et al., 2017]. There also exist one widely used benchmark titled AIDA-EE, which
was published by Hoffart et al. [Hoffart et al., 2014], and a second benchmark titled
WNUT2017, published by Derczynski et al. [Derczynski et al., 2017].

However, EED approaches are not comparable with our pipeline. While EED
methods detect if a named entity mention recognized in text is specifically about
an out-of-knowledge-base entity, they do not perform any linking between those
mentions to determine which mentions are about the same unique emerging entity.
As a result, the approaches do not determine the exact number of emerging entities
that can be added to the knowledge base, and as such do not attempt to extend
knowledge bases with emerging entities.

EED approaches actually resemble our new detection component, as they clas-
sify whether an entity is new without a broader context of determining the unique
number of entities to be added to the knowledge base, nor creating their descrip-
tions. We can therefore compare the performance of our new detection method
with the results reported by emerging entity detection works, which we do in Ta-
ble 8.9. We are able to compare two measures: the accuracy of correctly classifying
entities as either new or existing, and the F1 score of classifying entities as new.

From the table we can see that we outperform all EED methods in both accu-
racy and F1. It is important to note that the tasks are different, and the results are



144 CHAPTER 8. THE LONG-TAIL ENTITY EXTRACTION PIPELINE

Table 8.9: Comparing the new detection performance of the LTEE Pipeline with
reported performances of works on emerging entity detection.

Work Dataset ACC F1N

LTEE New Detection T4LTE 0.91 0.91

Best in [Derczynski et al., 2017] WNUT2017 - 0.42

[Hoffart et al., 2014] AIDA-EE 0.76 0.69
[Wu et al., 2016] AIDA-EE 0.78 0.72
[Zhang et al., 2019] AIDA-EE 0.79 0.70

therefore not directly comparable. Most importantly, EED methods are in the area
of NLP, whereas our methods are data integration methods.

Slot Filling

Many works that exploit web table data for knowledge base augmentation [Dong
et al., 2014a, Sekhavat et al., 2014, Ritze et al., 2015, Ritze et al., 2016, Ritze and
Bizer, 2017] focus on the task of slot filling, i.e. adding missing facts for existing
entities. Dong et al. [Dong et al., 2014a] introduce a probabilistic approach that
exploits background knowledge, in their case Freebase, to construct a large knowl-
edge base using web data, including web tables. The extracted facts however only
describe entities that already exist in Freebase. For more than 200 million facts,
they report an expected accuracy higher 0.90. In Chapter 5, we were able to achieve
for slot filling an F1 of 0.71, and a precision of 0.64. While we focus on finding
facts for new entities, which is likely a more difficult task, we achieve with an F1
of 0.83 and a precision of 0.87 (see Table 8.3.2) a performance comparable to that
achieved by Dong et al., and higher than the one achieved in Chapter 5.

Schema Matching and Identity Resolution

Throughout the components of the pipeline, we apply approaches for which a large
corpus of related work exists. This includes schema matching methods, which are
surveyed in [Bernstein et al., 2011]. For row clustering and new detection, we em-
ploy identity resolution methods, which are extensively surveyed in [Christophides
et al., 2015, Dong and Srivastava, 2015c].

For the specific use case of matching web table attributes to DBpedia proper-
ties, authors from our research group were able to achieve an F1 score of 0.81 [Ritze
and Bizer, 2017]. While our performance of 0.92 (see Table 8.3) is higher, we con-
sider a smaller number of classes and properties.

We can compare our identity resolution methods to work that perform row-to-
instance matching, for which a large corpus of research exists. We can compute
row-to-instance correspondences by looking at all entities returned as existing by
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Table 8.10: Comparing the row-to-instance matching performance of the LTEE
Pipeline with reported performances of related work.

Work F1 ACC

LTEE Pipeline 0.87 0.89

[Ritze and Bizer, 2017] 0.80
[Zhang, 2017] 0.87
[Limaye et al., 2010] 0.83
[Bhagavatula et al., 2015] 0.93

our method. For every row in the cluster of those entities, we can derive a row-
to-instance correspondence. Using the testing folds of the gold standard, we can
compute the accuracy and F1 score of those correspondences. Table 8.10 compares
our performance to reported performances of related work.

We achieve an average F1 score of 0.88, compared to 0.80 [Ritze and Bizer,
2017] and 0.87 [Zhang, 2017] in the related work, and we achieve an accuracy of
0.90, compared to 0.83 [Limaye et al., 2010] and 0.93 [Bhagavatula et al., 2015] in
the related work. Our performance is therefore comparable to existing methods for
finding row-to-instance correspondences. This shows that our pipeline is generally
robust, and could be used for a range of tasks, not just for entity expansion.

Recent Work on Long-Tail Entity Extraction

There exists one work by Zhang et al. [Zhang et al., 2020] in the area of long-tail
entity extraction that has recently been presented at the Web Conference (WWW).
We will briefly compare their approach to the LTEE Pipeline.

Similar to our pipeline, the approach performs identity resolution twice, albeit
in reverse. We first disambiguate entities described in rows among each other in
the row clustering component, and then determine in the new detection component
whether an entity described by a cluster is new. Zhang et al. first perform novel
entity discovery classification, where they determine whether entity mentions in
rows describe entities that are out-of-knowledge-base. They then disambiguate
between those entity mentions in a second step, which they term entity resolution.

The authors also use DBpedia as a target knowledge base. For their web table
corpus, they use the 2015 WDC corpus. They evaluate their novel entity discovery
classification on a sample of 20k individual rows drawn from the corpus, where
they achieve an accuracy of 0.83. Our new detection component, which resembles
novel entity discovery classification, achieves an accuracy of 0.91.

To evaluate their entity resolution approach, Zhang et al. randomly select 250
entity mentions, further selecting for each 5 candidate mentions with similar la-
bels. They then evaluate how well they can disambiguate each of the 250 mentions
with its candidates. We believe this to be an ineffective way of building a testing
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set for entity resolution. The authors did not ensure that corner cases, especially
homonyms, are covered. In fact, they achieve a performance of 0.97 in F1 simply
by exploiting lexical string similarities on the labels of entity mentions. In contrast,
considering homonyms is a primary aspect of our experimental setup.

Overall, the focus of Zhang et al. remains on the two identity resolution tasks.
They do not perform end-to-end evaluation or profiling, nor do they create descrip-
tions for new entities. One interesting aspect of their work is that they consider
for novel entity discovery classification, i.e. new detection, features that go beyond
comparing to existing entities in the knowledge base. E.g., they consider the origin
table of a row and the correlation between rows to determine whether a row de-
scribes a novel entity. This could be a potential additional signal for new detection.

8.5 Summary

In this chapter, we introduced the LTEE Pipeline, which to the best of our knowl-
edge is the first system that enables entity expansion from web tables. The pipeline
consists of multiple components, including schema matching, row clustering, en-
tity creation and new detection. With the pipeline, we are able to successfully
compile from a web table corpus new and previously unknown entities along with
their descriptions according to the schema of the knowledge base.

We evaluated our pipeline using T4LTE, a manually annotated gold standard
of web tables. We built T4LTE for evaluating entity expansion for three versatile
classes in DBpedia. In the gold standard, we annotate entities not yet present in
DBpedia, so that we evaluate our methods on actual long-tail entities. We addi-
tionally annotate facts for those entities, for the purpose of evaluating how well we
can compile their descriptions.

We achieve an average F1 of 0.83 for both finding new entities and compiling
their descriptions. We find that the task is non-trivial, as errors compound along the
individual components of the pipeline. As such, we suggest and evaluate alternative
methods for all components of the pipeline.

Throughout all components, we generally find that aggregating multiple fea-
tures that exploit different signals yields the best performance. We also find that
features that make use of label similarity, while important, are not sufficient to yield
good results. Additionally, we show that features that use the knowledge base as
background knowledge, e.g. to semantically understand cell values or to derive
semantic information about web tables, have a positive impact on performance.
Finally, we are able to utilize the output of the pipeline in a second iteration to
achieve a large improvement in schema matching performance.

While evaluating the pipeline on a gold standard gives us insight into how
well our methods work in extracting long-tail entities from web tables, it does not
provide insight into how many new entities can actually be extracted from web
tables to be added to a knowledge base. In the next chapter, we run our pipeline on
the full web table corpus to profile the potential of web tables for entity expansion.



Chapter 9

Profiling Web Tables for Entity
Expansion

The previous chapter introduced the LTEE Pipeline, the first system for extracting
long-tail entities from web tables. We evaluated the pipeline on web tables that are
part of the T4LTE gold standard. While evaluation on a gold standard facilitates
method development and enables comparability between different approaches, we
are ultimately interested in running and evaluating our methods on an actual web
table corpus. More importantly, we are interested in understanding how well web
tables are suited for entity expansion, and what their potential in adding new enti-
ties to a cross-domain knowledge base is.

This chapter aims to answer those question by presenting the results of running
our pipeline on the 2012 WDC web table corpus. As the pipeline is trained using
T4LTE, we are able to run the pipeline to extend the three classes included in
T4LTE: GridironFootballPlayer (GF-Player), Song and Settlement. We evaluate
the output based on the number of new entities and the corresponding number of
new facts we are able to add DBpedia. We also estimate the accuracy of the pipeline
output by manually evaluating the accuracy of a sample of entities returned as new
by the pipeline. Finally, we also compare the densities of properties for extracted
long-tail entities with the densities of the same properties in DBpedia.

To the best of our knowledge, this research is the first to profile web tables for
the task of entity expansion. The contributions and findings of this chapter are:

• Profiling the Potential of Web Tables for Entity Expansion: by running
the LTEE Pipeline on a whole web table corpus, we are able to profile the
potential of web tables for the task of entity expansion. We find that we are
able to add approximately 14 thousand new entities with 44 thousand new
facts for the class GF-Player, an increase of respectively 67% and 32% when
compared to the existing entities in DBpedia. For Song, we are able to add
about 187 thousand new entities with 394 thousand new facts, an increase of
356% and 125% respectively.

147
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• Pipeline Performance: we find that the LTEE Pipeline is able to success-
fully perform entity expansion using web tables. The accuracy of new enti-
ties returned by the pipeline is 60% for GF-Player, and 70% for Song. The
created descriptions of new entities have a high accuracy of 95% for GF-
Player and 85% for Song. We describe extensively the sources of errors and
discuss why the accuracy of new entities is lower than the one achieved by
the pipeline on the T4LTE gold standard.

• Profiling of Property Density Distribution for Long-Tail Entities: we
find that the property densities among the new entities is moderately high,
but lower than the density in DBpedia. We also find that the distribution
of property densities between web tables and DBpedia differs. We attribute
this difference to the fact that data in web tables is relational, whereas in a
knowledge base, the entity itself is in focus. This changes the likelihood of
inclusion for certain properties.

• Web Table Potential and Wikipedia Notability Criteria: we discuss how
the potential of using web tables to extend DBpedia with new entities likely
depends on both the Wikipedia notability criteria, which determines which
entities are ultimately included in DBpedia, and the likelihood of niche enti-
ties within a class. We find that for the class Settlement, the criteria for the
inclusion within Wikipedia is very lenient, while at the same time, no settle-
ment is truly niche. As such, we are unable to successfully perform entity
expansion for the class Settlement from web tables.

We publish both our code and T4LTE, which is used to train the pipeline. The
2012 WDC web table corpus is already publicly available. As such, all resources
used within this chapter are available, allowing the replication of our work.1

This chapter is organized as following. In the next section we will outline
our experimental setup, which includes statistics of the existing knowledge present
in the knowledge base and a look at the web table corpus for the three evaluated
classes. Section 9.2 outlines how we trained the LTEE Pipeline and ran it on the
web table corpus. Section 9.3 presents the results of the profiling, an evaluation of
the accuracy of the pipeline output, and an extensive discussion on lessons learned.
The final section summarizes this chapter.

The work presented in this chapter has previously been published in [Oulabi
and Bizer, 2019a].

9.1 Experimental Setup

This section describes the datasets we use within this chapter. Primarily, we use
DBpedia as the target knowledge base to be extended, while the 2012 WDC web
table corpus is used as input by our pipeline. We limit ourselves to the evaluation

1http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/

http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
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of three classes GF-Player, Song and Settlement, as we use the annotations within
the T4LTE gold standard (see Subsection 8.1.1) to train our pipeline.

9.1.1 Target Knowledge Base

We employ DBpedia [Lehmann et al., 2015] as the target knowledge base to be
extended. We have described DBpedia in more detail in Section 2.4. It is extracted

Table 9.1: Number of entities and facts for the three profiled classes in DBpedia.

Class Entities Facts

GF-Player 20,751 137,319
Song 52,533 315,414
Settlement 468,986 1,444,316

Table 9.2: Fact and density statistics for the profiled properties in DBpedia.

Class Property Facts Density

GF-Player birthDate 20,218 97.43%
GF-Player college 19,281 92.92%
GF-Player birthPlace 17,912 86.32%
GF-Player team 13,349 64.33%
GF-Player number 11,430 55.08%
GF-Player position 11,240 54.17%
GF-Player height 10,059 48.47%
GF-Player weight 10,027 48.32%
GF-Player draftYear 7,947 38.30%
GF-Player draftRound 7,932 38.22%
GF-Player draftPick 7,924 38.19%

Song genre 47,040 89.54%
Song musicalArtist 45,097 85.85%
Song recordLabel 43,053 81.95%
Song runtime 42,035 80.02%
Song album 40,666 77.41%
Song writer 33,942 64.61%
Song releaseDate 31,696 60.34%

Settlement country 433,838 92.51%
Settlement isPartOf 416,454 88.80%
Settlement populationTotal 292,831 62.44%
Settlement postalCode 154,575 32.96%
Settlement elevation 146,618 31.26%
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from Wikipedia and, as a result, the covered entities in DBpedia are ultimately
limited to those identified as notable by the Wikipedia community. We use the
2014 release of DBpedia, as this release has been used in related work [Ritze et al.,
2015, Ritze et al., 2016], and its release date is also closer to the extraction of the
web table corpus used in this chapter.

Tables 9.1 provide an overview of the number of entities and facts in DBpedia
for the three classes profiled in this chapter. We only consider facts for properties
that have an initial density of at least 30%. The table shows that DBpedia already
covers tens of thousands of entities for the profiled classes. This could indicate
that most of the well-known entities are already covered, so that we are especially
interested in finding entities from the long tail.

Table 9.2 shows on the other hand the densities of the individual properties.
The table reveals that the density differs considerably from property to property.
Only the properties of class Song have consistently high densities larger than 60%.
GF-Player has many properties, but half of them have a density below 50%. The
class Settlement suffers from both, a small number of properties, and low densities
for some of them.

Table 9.3: Characteristics of the employed 2012 WDC web table corpus.

Average Median Min Max

Rows 10.37 2 1 35,640
Columns 3.48 3 2 713

Table 9.4: Number of matched and unmatched values for the profiled classes when
using the T2K matching framework.

Class Tables VMatched VUnmatched

GF-Player 10,432 206,847 35,968
Song 58,594 1,315,381 443,194
Settlement 11,757 82,816 13,735

9.1.2 Web Table Corpus

As input for our pipeline we utilize the English-language relational tables set of
the 2012 WDC web table corpus, which consists of 91.8 million tables.2 We have
described this corpus in more detail in Section 3.3.

Table 9.3 gives an overview of the general characteristics of tables in the cor-
pus. We can see that the majority of tables are rather small, with an average of 10.4
rows and a median of 2, whereas the average and median number of columns are

2http://webdatacommons.org/webtables/#toc3

http://webdatacommons.org/webtables/#toc3
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Figure 9.1: Overview of the Long-Tail Entity Extraction Pipeline.

Table 9.5: A comparison of the performances in row clustering (RC), new detec-
tion (ND) and end-to-end entity expansion (ETE) for the version of LTEE Pipeline
introduced in [Oulabi and Bizer, 2019a] (CA-WA+RF) and the one introduced in
the previous chapter (CS-RF).

GF-Player Song Settlement

RC ND ETE RC ND ETE RC ND ETE

CA-WA+RF 0.90 0.91 0.87 0.76 0.90 0.72 0.82 0.87 0.80
CS-RF 0.94 0.92 0.87 0.81 0.92 0.78 0.89 0.89 0.84

3.5 and 3 respectively. As a result, a table on average describes 10 entities with
30 values, which likely is a sufficient size and potentially useful for finding new
entities and their descriptions.

In Chapter 5, we have profiled the potential of the same corpus for the task of
slot filling, i.e. finding missing values for existing DBpedia entities. To match the
tables to DBpedia, we employed the T2K matching framework. Given the map-
ping generated by T2K, Table 9.4 shows matching statistics for the three evaluated
classes. The first column shows the number of matched tables that have at least one
matched attribute column. Rows of those tables were matched directly to existing
entities in DBpedia. From the second and third columns we see how many val-
ues were matched to existing entities and how many values remained unmatched.
While more values were matched, the number of unmatched values is still large,
especially for the class Song. It is from these unmatched values that we can poten-
tially find new entities and create their descriptions.

9.2 Methodology

We run a version of our pipeline introduced in [Oulabi and Bizer, 2019a]. Table 9.5
compares the performance of this pipeline with the one introduced in the previous
chapter. The performance is measured using the T4LTE gold standard and includes
numbers for row clustering, new detection and end-to-end entity expansion. While
in essence, the structure of the pipelines is equal (see Figure 9.1), the pipeline
in [Oulabi and Bizer, 2019a] uses only a class-agnostic feature set, and aggregates
the similarity scores by combining both, a weighted average and a random forest
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aggregation method. The pipeline introduced in the previous chapter uses a class-
specific feature set and trains only a random forest. The performance of the pipeline
from [Oulabi and Bizer, 2019a], i.e. the one used in this chapter, is somewhat lower,
albeit comparable.

Before running our pipeline, we need to train various components within the
pipeline using the T4LTE dataset. The components of the pipeline that contain
trained models are the attribute-to-property matching, the row clustering and the
new detection components. We train three separate instances of the pipeline, one
per profiled class.

When running our pipeline on the web table corpus we first match all web
tables jointly to all classes in DBpedia using T2K. The table-to-class matching
approach of T2K is described in detail in Section 4.3.1.

After having a set of web tables matched to each of the three evaluated classes,
we run the pipelines for each class separately. To make use of the duplicate-based
matching in the schema matching component (see Subsection 8.2.1), we need row
clusters and entity-to-instance correspondences. These are created using a prelim-
inary run of the pipeline. The results shown in the next section therefore represent
the output of the second iteration of the pipeline.

9.3 Results and Lessons Learned

Table 9.6 shows per class the results of the large-scale profiling. The first two rows
list the number of tables and rows per class. The three rows below describe existing
entities found by the pipeline, to how many unique instances in the knowledge base
they were matched, and the ratio of the two numbers. The next two rows contain
the number of new entities found by the pipeline, the number of corresponding
facts, and for both the relative increases when compared to existing entities and
facts in the knowledge base (i.e. the numbers in Table 9.1).

From the entities returned as new by the pipeline, we pull a stratified sample of
50 entities per class. For this, we first group the returned entities by the number of
facts their descriptions contain. We then pull from each group a number of entities
proportional to the size of the group in relation to the total number of new entities.
The accuracy of new entities equals the fraction of entities that are actually new,
given the 2014 version of DBpedia. The accuracy of facts equals the proportion
of correct facts, within new entities that were determined to be correct. These
accuracies are given in the final two rows of Table 9.6.

9.3.1 Existing Entity Matching Ratio

We find that the ratio of existing entities returned by the pipeline to matched in-
stances in the knowledge base differs by class. While for players and settlements
the number is good, i.e. it is close to 1, it is less so for songs. When evaluat-
ing the pipeline on the T4LTE gold standard, Song was the class with the worst
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Table 9.6: Results and evaluation of running the LTEE Pipeline on the 2012 WDC
web table corpus.

Class GF-Player Song Settlement

Tables 10,432 58,594 11,757
Total Rows 648,741 2,173,536 1,472,865

Existing Entities 30,074 40,455 28,628
Matched KB Instances 24,889 29,140 27,365
Matching Ratio 1.21 1.39 1.05

New Entities 13,983 (+67%) 186,943 (+356%) 5,764 (+1%)
New Facts 43,800 (+32%) 393,711 (+125%) 7,043 (+0%)

N. Entities Accuracy 0.60 0.70 0.26
N. Facts Accuracy 0.95 0.85 0.94

performance at row clustering, i.e. identifying the exact number of unique entities
described in the web tables. This shows that we need to implement more sophisti-
cated clustering methods or, alternatively, perform deduplication after clustering.

As mentioned before, the pipeline used for the profiling in this chapter however
differs from the one we actually suggested in this thesis. Table 9.5 shows that the
one introduced in this thesis already improves row clustering methods, achieving a
better performance for all classes, including Song.

9.3.2 New Entities Added and the Wikipedia Notability Criteria

Table 9.6 shows for both entities and facts the relative increase that was achieved
by the LTEE Pipeline by extracting long-tail entities and adding them to the knowl-
edge base. Figure 9.2 visualizes in addition to the table the increases for the classes
Song and GF-Player.

We find that the number of new entities we can add differs considerably per
class. For the class Song we have a very large number of new entities and facts,
even if we would correct the number of new entities by the matching ratio. For Set-
tlement, there are in comparison very few new entities. When considering that only
26% of them are actually new, we would achieve a relative increase in knowledge
base entities of only 0.3%. While for the class GF-Player the absolute increase
in the number of entities and facts is smaller than for the class Song, the relative
increase is still quite large, as we achieve an increase of 67% for entities and 32%
for facts.

The differences between the three classes can be explained by investigating the
notability rules of Wikipedia and the nature of the classes themselves. There is
a very large number of obscure songs. It is very common, even for well-known
artists, to release only a few songs from an album as singles, which are then often
the only songs that become popular enough to be actually covered by Wikipedia.
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Figure 9.2: Visualization of the number of new entities and facts added to DBpedia
for the classes GF-Player and Song relative to the number of existing entities and
facts.

Here, the notability rules compound the issue, as songs only receive their own
Wikipedia article if they are notable on their own. This applies even when they
were independently released as a single.3

For Settlement, almost the opposite is true. While there are many small vil-
lages, they are never irrelevant, as there are always enough people living in them
who might contribute to a Wikipedia article. More importantly, Wikipedia deems
any place notable if it has legal recognition, which applies to any settlement, no
matter how small it is.4 As a result, Wikipedia already covers a lot of settlements,
and it is difficult to find new ones.

Football players are in the middle of both classes. There are not as many ob-
scure football players as songs. This is because the number of professional teams is
somewhat limited. However, there are still many football players that are obscure
enough not to be covered in a Wikipedia article.

9.3.3 Property Densities for New Entities

Table 9.7 shows the property densities for new entities. As one would expect,
the properties are not as dense as in DBpedia (see Table 9.2). More importantly,
the distribution of densities differs considerably between the new entities and the
existing entities in the knowledge base. For football players, personal properties
like birthDate and birthPlace have a very low density for new entities extracted
by the pipeline, but a very high density for existing entities in the knowledge base.
This might be, because the focus in Wikipedia is on describing one entity, i.e. the
athlete, whereas in web tables, the games, teams, and drafts are more in focus. The
date or place of birth might not be very relevant when looking at a table of athletes
of a team, a draft, or a ranking. For those tables, a property like position might be

3https://en.wikipedia.org/wiki/Wikipedia:Notability_(musicq, accessed 2020-03-26
4https://en.wikipedia.org/wiki/Wikipedia:Notability_(geographic_featuresq, accessed 2020-03-

26

https://en.wikipedia.org/wiki/Wikipedia:Notability_(music)
https://en.wikipedia.org/wiki/Wikipedia:Notability_(geographic_features)
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Table 9.7: Property densities for new entities extracted using the LTEE Pipeline.

Class Property Facts Density

GF-Player position 9,204 65.82%
GF-Player team 7,637 54.62%
GF-Player college 6,849 48.98%
GF-Player weight 5,915 42.30%
GF-Player height 4,253 30.42%
GF-Player number 2,951 21.10%
GF-Player birthDate 2,537 18.14%
GF-Player draftPick 2,404 17.19%
GF-Player draftRound 1,538 11.00%
GF-Player draftYear 386 2.76%
GF-Player birthPlace 126 0.90%

Song musicalArtist 143,656 76.84%
Song runtime 115,652 61.86%
Song album 52,664 28.17%
Song releaseDate 47,377 25.34%
Song genre 23,814 12.74%
Song recordLabel 10,278 5.50%
Song writer 270 0.14%

Settlement isPartOf 2,889 50.12%
Settlement postalCode 1,605 27.85%
Settlement country 1,232 21.37%
Settlement populationTotal 1,214 21.06%
Settlement elevation 103 1.79%

more relevant, as it allows comparability between players, which explains why its
density is even higher than in the knowledge base.

For songs, the properties writer, genre, and recordLabel have very low densi-
ties when compared to DBpedia. It is likely that for genre, this is a column match-
ing issue, as genres are not always objectively defined. For writer and recordLabel
there could be two causes. First, they might be uninteresting properties, and sec-
ond, there are often multiple correct facts. The record label might even differ by
country. This makes these properties difficult to match, and, more importantly, un-
likely to be included in a web table. We can confirm the latter, as these properties
occurred very rarely in the tables we annotated in the T4LTE gold standard.

9.3.4 Accuracy and Sources of Errors

When looking at the accuracies of new entities, we also find differences per class.
We achieve a moderate accuracy for songs, a sub-par accuracy for players and a
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low accuracy for settlements.
The primary reason for the low accuracy for settlements are conflicting values

in an existing entity extracted from web tables and its corresponding instance in
the knowledge base. This includes outdated population numbers, but also isPartOf
values, where the values in the entity and in the knowledge base are both correct,
but different, preventing the entity from matching. This problem makes up 36%
of all errors. On the other hand, 25% of errors are because the new entity does
not describe a settlement, but a different place, like a region or a mountain. This
error is caused by incorrect table-to-class matching. These problems are magnified
because there are so few new entities to begin with, so that these corner cases make
up a huge proportion of the new entities returned.

For GF-Player, the sources of errors include bad attribute-to-property match-
ing, entities not being football players due to bad table-to-class matching, and in-
complete information in DBpedia. The latter happened primarily when a football
athlete was not assigned the correct class in DBpedia.

For songs, the sources of errors are versatile. The main contributors are bad
new detection, incorrect table-to-class matching, and bad clustering. The latter
meaning that an entity was incorrectly detected as new, as a result of being created
from rows that describe different entities. Such entities would in fact constitute
noise and should be filtered out.

9.3.5 Comparison with Gold Standard Performance

We generally notice that the end-to-end performance is not at the same level as
the one achieved when evaluating the pipeline on T4LTE. This might indicate that
T4LTE either does not completely reflect the nature of the task, or the it is not large
enough. However, we believe it is because we did not annotate noise in the gold
standard. This includes for example explicitly adding tables incorrectly matched
to the evaluated class, rows that are inconsistent in the entities they describe, or
tables that describe knowledge that is simply incorrect or fake. All this is present
in the real web table corpus and requires consideration to achieve a high end-to-end
performance during actual entity expansion.

On the other hand, we are able to achieve a higher performance when restricting
evaluated entities to those with more than two facts. For example, for the class GF-
Player, if we do not consider entities with one value, the accuracy of new entities
rises to 0.72.5 If we further do not consider entities with two values, we achieve
an accuracy of 0.85. This would mean excluding 6,360 entities, but also that with
an accuracy of 0.85 we can add 7,623 entities with 34,922 facts to the knowledge
base, a relative increase of 37% for entities, and 25% for facts. This indicates that
the more we know about an entity, the better we can determine if it is actually new
or not, which is reasonable. However, this would also come at a loss of the number
of new entities we can add to the knowledge base.

5The same effect can be observed for the other two classes, however the positive impact on
performance is not as large.
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We also achieve a consistently high accuracy for new facts, similar to the high
performance on the gold standard, as seen in Section 8.3.2. This means that when
it comes to finding descriptions, our performance is quite good, even if densities
are lower when compared to DBpedia.

9.3.6 Comparison to Related Work on Slot Filling

While there is no related work that profiles the potential of web data for entity
expansion, we can compare our results to works that focus on slot filling.

In Chapter 5, we use web tables to perform slot filling for DBpedia. We are
able to fuse 378,892 facts, 64,237 of which are new facts for existing entities. The
expected precision of those new facts is 0.64. Compared to that work, we are
able to extract a higher number of new facts with a higher accuracy, especially
considering that we are profiling only three classes.

When looking at numbers in Tables 5.5 and 5.11 of Chapter 5, we find that
the classes Athlete and MusicalWork, i.e. the parent classes of GF-Player and
Song respectively, have high numbers for matched tables, extracted values and
fused triples. The opposite is true for Settlement, where the numbers of both,
tables with attribute-to-property correspondences and fused triples, are compara-
tively very low. These numbers are in line with the finding of this chapter that the
potential for entity expansion from web tables is low for settlements.

In their work on Knowledge Vault [Dong et al., 2014a], Dong et al. are able to
extract from the Web 90 million new facts for existing entities in Freebase with an
expected correctness higher than 0.9. While the amount of facts that we discover
is much smaller, we are only dealing with three classes and looking at facts only
for new entities. Additionally, we only use web tables to extract new facts, while
Dong et al. also use free text, HTML DOM trees and schema.org annotations. In
fact, only about 600 thousand values can be extracted from web tables with an
expected accuracy higher than 0.9. These values correspond to both, triples that
either exist or not in the knowledge base, and are not fused, i.e. multiple values
could correspond to the same triple. Compared to this, the 445 thousand facts we
are able to extract for only new entities and only three classes is quite a comparable
number. Our average accuracy of 0.91 for these facts is also similar.

9.4 Summary

This chapter explored the potential of web tables for entity expansion, i.e. aug-
menting a knowledge base with new and formerly unknown long-tail entities. For
this, we run the LTEE Pipeline on the 2012 WDC web table corpus, using DBpe-
dia as the target knowledge base to be extended. To train the pipeline, we use the
annotations in the T4LTE gold standard, which covers the classes GF-Player, Song
and Settlement.

Depending on the class, we are able to successfully add to DBpedia tens and
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even hundreds of thousand new entities and corresponding facts. We find that the
numbers differ considerably per class and discuss in this chapter how this could be
caused by the notability criteria of Wikipedia, from which DBpedia is extracted.

While the performance of our system is generally good, there is potential for
improvements throughout all components of our pipeline. Many of the new enti-
ties are not actually new to a given class, but from a different class. This requires
improvements in the table-to-class matching. By investigating the pipeline output
for existing entities, we also find that our row clustering components is too strict
in splitting clusters. An improvement in the clustering method or a deduplication
component could reduce this problem. Finally, when looking at new entities ex-
tracted from web tables, we find that entities with more facts are more accurate. A
filtering component that, based on this observation, computes a confidence for enti-
ties and filters out low-confidence entities could significantly improve the accuracy
of the pipeline output.

Our pipeline currently requires for each class of the knowledge base class-
specific manually annotated training data in the form of positive and negative en-
tity matches. Considering the number of classes in a cross-domain knowledge base
like DBpedia, this would ultimately limit the viability of our pipeline for automatic
cross-domain entity expansion from web tables. In the next chapter, we introduce
an approach that counteracts the dependence on manually labeled training exam-
ples by using weak supervision in the form of a small number of bold matching
rules.



Chapter 10

Weak Supervision for Long-Tail
Entity Extraction

In Chapter 8, we introduced the Long-Tail Entity Extraction Pipeline, the first sys-
tem that performs entity expansion from web table data. In the previous chapter,
we ran the pipeline on a complete web table corpus to evaluate the potential of web
tables for the task of entity expansion. For this, models within the pipeline were
trained using a large dataset of manually labeled class-specific data. Given that
knowledge bases can have many classes, manual labeling limits the applicability
of automatic entity expansion from web tables.

Weak supervision approaches aim at reducing labeling effort by using supervi-
sion that is more abstract or noisier compared to traditional manually labeled high-
quality training examples, in this context also termed strong supervision [Ratner
et al., 2017]. Data programming [Ratner et al., 2016] is a paradigm where experts
are tasked with codifying any form of weak supervision into labeling functions.
These functions are then employed within a broader system to generate training
data by assigning labels and confidence scores to unlabeled data. Recently, var-
ious different systems based on the data programming paradigm have been sug-
gested [Bach et al., 2019, Ratner et al., 2017, Varma and Ré, 2018].

For many types of entities, humans generally possess knowledge about when
entities definitely match, and what are strong signals that entities do not match.
Writing down this general knowledge in the form of simple bold matching rules
requires far less effort than manually labeling a large set of entity pairs as match-
ing and non-matching. Building on this observation and the data programming
paradigm, this paper investigates for the task of long-tail entity extraction whether
strong supervision in the form of positive and negative entity matches can be re-
placed by a set of simple bold matching rules. In order to make it easy to write
down such rules, we restrict the rule format to conjuncts of equality tests. These
tests are expressed using the schema of the knowledge base without requiring ex-
perts to assign weights or specify similarity metrics.

We ensemble these matching rules with an unsupervised matching model to
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create a weakly supervised labeling function. We then introduce a bootstrapping
method that exploits the weakly supervised labeling function to generate training
data and train a supervised machine learning algorithm. Using these approaches,
we are able to considerably reduce supervision effort compared to manually la-
beling positive and negative entity matches, while achieving a comparable perfor-
mance.

The contributions of this chapter are:

• Weak supervision using bold matching rules: we introduce a weak super-
vision approach that substitutes manually labeled training pairs by a small set
of user-provided bold matching rules. These rules are easy to create, as they
use simple attribute tests built on the schema of the knowledge base. Pre-
vious approaches to weak supervision use labeling functions that are black-
boxes and possibly much more complex in their nature. They can be depen-
dent on external resources, contain actual hand-written programs, or require
pre-trained and separately maintained models.

• Ensembling of weak supervision with an unsupervised model: we in-
troduce an approach for ensembling weak supervision in the form of bold
matching rules with an unsupervised model to create a weakly supervised la-
beling function. The unsupervised model ensures full coverage, while simul-
taneously counteracting the negative impact of possibly biased rules. This
allows us first to require only a small number of rules per class and second
to require rules to be only somewhat accurate. This further reduces the effort
required to create these matching rules. Existing approaches make use of a
larger number of individual labeling functions, while not actually explicitly
considering their low coverage. To reduce the negative impact of inaccurate
or biased labeling functions, generative algorithms are used.

• Bootstrapping a supervised model using weak supervision and random
forests: we introduce a bootstrapping approach that uses the weakly su-
pervised labeling function and a set of unlabeled web tables to generate,
possibly noisy, training data for both row clustering and new detection. We
discuss why random forests are especially useful for learning from noisy
training data and what parameter choices reduce the impact of noise on the
performance of the trained model. Using our approach, we can train a su-
pervised machine learning model that outperforms the weakly supervised
labeling function from which it was bootstrapped. While existing weak su-
pervision approaches have suggested bootstrapping supervised models from
labeling functions, they have not discussed the usefulness of random forests
or optimal hyperparameter choices when lacking a validation set for tuning.

We publish both our code and our gold standard, including the used cross-
validation folds. As such, all resources used within this chapter are publicly avail-
able, allowing the replication of our work.1

1http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/

http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
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This chapter is structured as follows. First, we recap the experimental setup,
which equals that of Chapter 8. Section 10.2 describes our weak supervision
methodology, while Section 10.3 presents the results. In Section 10.4, we dis-
cuss our work. This includes discussions on the importance of ensembling with
an unsupervised model, the impact of parameter choices for bootstrapping, and the
ability of random forest to train on noisy training data. Section 10.5 compares our
approach to the related work. The final section summarizes this chapter.

The work presented in this chapter has previously been published in [Oulabi
and Bizer, 2019b], however it contains the following additions and changes: (1) we
describe, investigate, and discuss the effect of parameters chosen for the bootstrap-
ping approach, and (2) we evaluate the impacts of the unsupervised class-agnostic
model and the user-provided matching rule sets extensively in our discussion.

Table 10.1: Overview of the number of labels in the T4LTE gold standard.

Label type GF-Player Song Settlement Sum

Row pair 1,298 231 2,768 4,297
Entity-instance-pair 80 34 51 165
New entity classification 17 63 23 103

Sum 1,395 328 2,842 4,565

10.1 Experimental Setup

In this chapter, we again utilize the Web Tables for Long-Tail Entity Extraction
(T4LTE) gold standard, which we built and published specifically for evaluating
entity expansion tasks.2 It is built with the 2014 release of DBpedia [Lehmann
et al., 2015] as the target knowledge base, and includes annotations for the three
classes GridironFootballPlayer (GF-Player), Song3, and Settlement. The web ta-
bles included in T4LTE were selected from the English-language relational tables
subset of the 2012 WDC web table corpus. We have previously introduced and
extensively described T4LTE in Section 8.1.1.

Table 10.1 provides an overview of the number of labels in T4LTE. Creating
this dataset was rather laborious, as we labeled 4,297 matching row pairs, 165
entity-instance-pairs and 103 new entity classifications.

When evaluating the LTEE pipeline using the T4LTE gold standard, we were
able to achieve an F1 score in the task of finding new entities of 0.83 (see Chap-
ter 8). When running the pipeline on the whole web table corpus, we were able
to add 14 thousand new gridiron football players and 187 thousand new songs to
DBpedia, an increase of 67% and 356% respectively (see Chapter 9).

2http://webdatacommons.org/T4LTE/
3The class Song also includes all entities of the class Single.

http://webdatacommons.org/T4LTE/
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Figure 10.1: Overall methodology for introducing weak supervision using sets of
class-specific bold matching rules. We ensemble the bold class-specific rules with
a class-agnostic unsupervised matching rule to create a labeling function. Using
this labeling function and a set of random web tables, we bootstrap the training of
a supervised matching model using the random forest algorithm.

10.2 Methodology

This section describes our approaches for the task of reducing labeling effort using
weak supervision. The overall methodology is illustrated in Figure 10.1.

We first introduce as a baseline two unsupervised class-agnostic matching rules
for row clustering and new detection. These rules exploit class-agnostic similarity
scores and aggregates them using a weighted average.

We then introduce an approach that exploits user-provided class-specific rule
sets as weak supervision. The rules are bold by design, which is why we ensemble
them with the unsupervised matching rule to derive weakly supervised labeling
functions for both row clustering and new detection.

The unsupervised matching rules and the ensembled weakly supervised label-
ing functions can both be used within the row clustering and new detection com-
ponents of the LTEE Pipeline directly. We additionally introduce an approach that
exploits these methods as labeling functions to bootstrap a supervised learning al-
gorithm. This is done by using a set of unlabeled web tables to label training pairs
for both row clustering and new detection. The labeled data is then used to train
random forest classifiers to be used in our pipeline.

10.2.1 Unsupervised Class-Agnostic Matching Rules

We suggest two unsupervised matching models in the form of matching rules that
aggregate using a weighted average the individual scores generated by the features
described in Sections 8.2.2 (row clustering) and 8.2.4 (new detection) of Chapter 8.
To be used in a rule, all features must produce scores that are normalized and class-
agnostic, as such we use the class-agnostic feature sets.

We determine the weights of the rules by assigning, based on our own judge-
ment, importance factors from 4 to 1 to the individual features. The weight of a fea-
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ture is equal to it assigned factor normalized by the sum of all factors. For the row
clustering rule, we assign a factor of 4 to LABEL, 2 to BOW and ATTRIBUTE, and 1
to PHI, IMPLICIT_ATT and SAME_TABLE. For new detection we assign a fac-
tor of 4 to LABEL, 3 for BOW and ATTRIBUTE, 2 for TYPE and IMPLICIT_ATT,
and 1 for POPULARITY.

The rules determine whether a pair matches or not using a fixed threshold,
simply set at 0.5 for both rules. The absolute distance of a computed weighted
average from the threshold constitutes the confidence of a matching decision.

10.2.2 Class-Specific User-Provided Matching Rule Sets

Humans often possess general knowledge about which conditions need to be ful-
filled for entities of a certain domain to clearly match or clearly not match. Based
on this observation, we suggest as weak supervision a set of class-specific user-
provided bold rules that classify a given candidate pair as matching or non-match-
ing. They can codify obvious knowledge, e.g. that a settlement can not be in two
different countries, or non-obvious knowledge, e.g. that only one unique football
athlete can be drafted in the same year with the same pick number.

The rules consist of conjuncts of attribute tests, expressed using the schema of
the knowledge base. We only require rules to be somewhat accurate, regardless of
their coverage. This makes it simple to identify suitable rules and is the reason why
we term these rules as bold. For our experiments, we created per class four rules.
For GF-Player we came up with two matching and two non-matching rules:

pdraftYear � Equalq ^ pdraftPick � Equalq Ñ Match (10.1)

pLABEL � Equalq ^ pbirthDate � Equalq Ñ Match (10.2)

pdraftYear � Unequalq Ñ Non-Match (10.3)

pdraftPick � Unequalq Ñ Non-Match (10.4)

For Song we also came up with two matching and two non-matching rules:

pLABEL � Equalq^partist � Equalq^preleaseDate � Equalq Ñ Match (10.5)

pLABEL � Equalq ^ partist � Equalq ^ palbum � Equalq Ñ Match (10.6)

partist � Unequalq Ñ Non-Match (10.7)

preleaseYear � Unequalq Ñ Non-Match (10.8)

Finally, for Settlement we have three matching and one non-matching rule:

pcountry � Equalq ^ ppostalCode � Equalq Ñ Match (10.9)

pLABEL � Equalq ^ pisPartOf � Equalq Ñ Match (10.10)

pLABEL � Equalq ^ ppostalCode � Equalq Ñ Match (10.11)

pcountry � Unequalq Ñ Non-Match (10.12)
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The effort spent creating these rules is minuscule compared to manually label-
ing the correspondences in the gold standard. While for each class we created only
4 rules, they are intended to substitute 1,395, 328, and 2,842 labels for the classes
GF-Player, Song, and Settlement respectively.

To apply a rule, we exploit the equal and unequal scores generated by the
ATTRIBUTE and IMPLICIT_ATT features, as described in Subsections 8.2.2
and 8.2.4. A rule fires, when all equality and non-equality tests within the rule
have corresponding equal and unequal scores higher than zero. From these scores
we then derive for each rule firing a confidence score, which equals the product of
all scores used within the rule. We also use the LABEL feature and the data-type-
specific equivalence functions to allow attribute tests on labels.

10.2.3 Ensembling a Weakly Supervised Labeling Function

As the rules fire only when certain conditions are met, the set of rules is not ex-
haustive and only covers a subset of compared pairs. We therefore ensemble the
rules with the unsupervised matching model described above through averaging.
Given a compared pair, we first check how many rules fire. If no rule fires, we
simply return the output of the unsupervised model. If multiple rules fire, which
is possible as the rules are not mutually exclusive, we consider only the rule with
the highest confidence, preferring negative rules in case of a tie. If the confidence
of this rule is higher than the confidence of the output of the unsupervised model,
the outputs of both are averaged and returned. Otherwise, if the confidence of the
fired rules is lower than the unsupervised model, we simply return the output of the
unsupervised model.

10.2.4 Bootstrapping Random Forests Using a Labeling Function

In our experiments, we, on the one hand, directly apply both the unsupervised rules
and the weakly supervised labeling functions as models within our pipeline. On the
other hand, we can use either method to create a pool of labeled, possibly noisy,
pairs and use them to train a supervised machine learning model. We suggest in this
section an approach to bootstrapping a supervised machine learning model using
the random forest algorithm.

Labeling Pairs

We employ both, the unsupervised rule and the weakly supervised ensembled la-
beling function to label row pairs and entity-instance-pairs derived from 1000 ran-
domly selected web tables as matches or non-matches. Additionally, the labeling
functions assign confidences to the labeled pairs, using the confidence scores re-
turned by the underlying method. Using these labeled pairs, we train a supervised
machine learned model, which is then used within the pipeline.
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To derive pairs to be labeled, we employ label-based blocking using Lucene
for both row clustering and new detection. We additionally include random pairs
to be labeled, for row clustering as many as there are positive pairs, and for new
detection 8 random instances selected from the knowledge base from within the
same class of an entity or its parent classes. As we will see in the following section,
this leads to 1.99 million row pairs and 1.36 million entity-instance-pairs selected
to be labeled.

For row clustering, we use the confidence scores to additionally perform corre-
lation clustering. If after clustering, the two rows within a pair labeled as a match
are placed in different clusters, the pair is discarded. A pair is also discarded from
the training pool, if it was labeled as a non-match, but was then placed in the same
cluster during clustering.

When bootstrapping for new detection, we need a set of row clusters from
which we can create entities. Using these entities, we can then generate entity-
instance-pairs and label them using our labeling functions. To create the clusters,
we use the row clustering models trained by bootstrapping from a labeling function
of equal supervision. E.g., when bootstrapping a supervised new detection model
using the unsupervised rule as a labeling function, we use the clustering method
also trained using bootstrapping from the unsupervised rule to create row clusters.

For new detection, multiple entity-instance-pairs for the same created entity
could be labeled by our labeling functions as matching. A created entity should
however only match at most one knowledge base instance. As such, we only in-
clude the entity-instance-pair with the highest confidence as a positive training
example, discarding the rest.

Training a Machine Learning Model

Given the labeled pairs, we train models using the random forest algorithm. It
uses bagging (bootstrap aggregation), where a number of trees are each grown
on different samples of the training data.4 To use the forest for prediction, the
outcomes of the individual trees are averaged. Additionally, more randomness
is introduced while growing trees, by randomly limiting the number of features
available for each split. Trees are not pruned and fully grown by default.

We use random forest, as it is an expressive and popular general-purpose algo-
rithm, which we have already used in the context of entity expansion. However, we
also believe it has properties that are especially useful when training a model form
noisy training data. We elaborate on this in the discussion in Subsection 10.4.3.

The random forest algorithm, as any machine learning algorithm, has a number
of hyperparameters that can be tuned. However, we lack a validation set to perform
hyperparameter optimization. Tuning the parameters on the pool of noisy labeled
training examples, even when using cross-validation or a holdout set, is likely to
yield hyperparameters that overfit and replicate the labeling function. As such,

4Samples usually have the same size as the original training pool. However as sampling is done
with replacement, i.e. a sampled pair is returned to the pool, the samples differ in their composition.
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any hyperparameter choices must be justified theoretically and conceptually. We
overall adjust four parameters from the default choice:

Reformulation as a Regression Problem: we reformulate the problem from clas-
sification to regression, where the confidences of the labeled pairs are converted
into numeric values. For a matching pair, the value of pair used for training equals
its confidence score, whereas for a non-matching pair the confidence is multiplied
by –1.0. The range of the regression model is therefore –1.0 to 1.0.

We reformulate the problem into a regression problem because we believe that
the classification method will not fully exploit the information present among the
confidence scores in the training data. A random forest grown as a classifier takes
the confidences only into account as weights when sampling for bagging, and not
when actually growing the tree. Given for example a leaf with two pairs, where
both are labeled as matching, but have confidences of 1.0 and 0.1 respectively, the
leaf would be considered as ‘pure’ and the tree would not be grown any further.
However, in the regression case, the leaf would be split further, possibly discover-
ing a useful split that allow us to differentiate high from low confidence pairs.

To use the learned regression model for classification, we make use of a thresh-
old. For clustering, the threshold was set at 0.0, whereas for new detection the
threshold was learned by optimizing the F1 for new entities on the learning set.

Weighting Pairs With the Square Root of Their Confidence When Bagging:
during bagging, samples are drawn from the training pool to build a sample of a
certain size. This sampling can be affected by weighting the individual training
pairs. Giving all pairs the same weight, would sample high and low confidence
pairs with the same probability. However, we believe that higher confidence pairs
should be sampled more often than lower confidence pairs. We can assign each pair
its confidence as its weight, however this would cause pairs with a moderate confi-
dence to be sample with a very low probability. E.g. a pair with a confidence of 1.0
would be four times as likely to be sampled than a pair with a moderate confidence
of 0.25. This could give us a sample that e.g. consists mostly of uninteresting high
confidence pairs. We therefore assign each weight the square root of its confidence
as a weight, where a pair with a confidence of 1.0 would be approximately two
times as likely to be sample as a pair with a confidence of 0.25. This weighting
scheme is likely to give us diverse and useful training samples.

Limiting Maximum Tree Depth: individual trees within a random forest are by
default fully grown, so that they likely overfit their individual training samples.
This is usually compensated by the properties of the random forest algorithm, i.e.
bagging and the introduced randomness. Additionally, when using strong supervi-
sion, noisy or incorrect training examples are the exception. When training on data
that is noisy by design however, overfitting could become a significant issue.

As such, we limit the tree depth to 20 levels. This would still allow more
than one million leaves per individual tree. A max depth of 15 would only allow
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about 32 thousand leaves, which we consider too low, while a max depth of 25
would allow more than 33 million leaves.5 Through previous bootstrapping runs,
we know that our noisy training pools have a size of about 500 thousand to 1.5
million pairs per class, and, considering, that many branches are likely to stop
growing before they reach the maximum depth, a maximum number of leaves of
about 1 million is likely an appropriate compromise. Limiting the tree depth is also
beneficial as it reduces computation time and memory requirements.

Reducing Size of Bagging Samples: each tree is grown on a sample drawn from
the pool of labeled pairs. This, along with the randomness introduced in each
tree, reduces the correlation among the individual trees of the forest. By averaging
the predictions of many weakly correlated and individually grown trees, a random
forest reduces the errors due to variance, i.e. the errors caused by overfitting a po-
tentially noisy learning set [Geurts, 2010]. Reducing this type of error is especially
important in our case, as we are dealing with data that is potentially noisy. There-
fore, we reduce the sample size from 100% to 25% of the size of the pool. Through
a previous run of our bootstrapping approach, we are aware of the number of la-
beled pairs. A sample size of 25% still amounts to 125 thousand to 375 thousand
in the learning set of each individual tree. Reducing the size of the sample is also
beneficial as it reduces computation time and possibly also memory requirements.

In Subsection 10.4.2, we discuss the effect of these choices in more details. Finally,
per forest, we train 2000 trees, which we consider to be sufficient to average out the
errors of the individual trees. All hyperparameters are kept constant for all classes
and for both row clustering and new detection.

10.3 Evaluation and Results

In this section, we evaluate on the T4LTE gold standard the approaches described
above and compare them to a model trained using strong supervision. As for the lat-
ter, the gold standard is also used for training, we apply three-fold cross-validation
throughout all experiments. As there are random components in our model, e.g.
the randomly selected tables, all results are the average of 5 runs.

We first evaluate the performances of both row clustering and new detection
individually. We then evaluate end-to-end entity expansion performance. In all
cases, we use the evaluation methodologies described in Chapter 8.

10.3.1 Row Clustering Evaluation

We test a row clustering method by running it on the rows of the testing set. We
evaluate the output by comparing it to the row cluster annotations in the gold stan-
dard using an evaluation methodology proposed by Hassanzadeh et al. [Hassan-

5We considered only multiples of fives as candidates for the maximum tree depth.
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Table 10.2: Row clustering performance for runs with various types of supervision.

Average GF-Player Song Settl.

Method PCP AR F1 σF1 F1 F1 F1

Unsupervised .73 .86 .781 .003 .90 .62 .83
+ Bootstrapping .76 .88 .810 .004 .90 .67 .85

Weak supervision .79 .87 .824 .004 .90 .74 .83
+ Bootstrapping .82 .90 .859 .003 .92 .81 .84

Strong supervision .86 .90 .880 .004 .94 .82 .89
+ Bootstrapping .90 .93 .912 .000 .94 .88 .91

zadeh et al., 2009]. The methodology emphasizes replicating the exact number of
clusters in the evaluation set and penalizes if this is not the case. It computes two
metrics termed average recall and penalized clustering precision. We also compute
the harmonic mean of both metrics using F1. We describe the evaluation method-
ology in detail in Section 8.2.2.

Table 10.2 shows row clustering performance for different types of supervision.
The first two rows show performances when using the unsupervised matching rule
alone, while the following two rows show the performances when using the weakly
supervised ensembled classifier. The final two rows show the performances when
using strong supervision. For each supervision type, we apply and evaluate the
underlying method directly on the test set, and then use it as a labeling function
to bootstrap a random forest, which we then also apply and evaluate on the test
set. For strong supervision, the bootstrapped method resembles a semi-supervised
learning approach. We additionally provide the standard deviation for the F1 of the
five averaged runs.

From the table, we can see that the difference in average F1 between a model
trained using strong supervision, which has an F1 of 0.880, and the unsupervised
rule without bootstrapping is about 10 percentage points. We find that using boot-
strapping with the unsupervised matching rule allows us to increase F1 by 2.9
percentage points on average, with an increase of 5 percentage points for the class
Song. Using the weakly supervised labeling function, we achieve an average F1
score of 0.824, which is an increase of overall 4.3 percentage points from the un-
supervised rule. Bootstrapping from the weakly supervised labeling function in-
creases performance by further 3.5 percentage points, achieving an F1 only about
two points below strong supervision. When bootstrapping from a model trained
using strong supervision, we gain 3.2 percentage points on the strongly supervised
model.

We investigated a run, to evaluate how many pairs were labeled during boot-
strapping, and for how many pairs the rules fired. The labeling functions were
given overall 1.99 million row pairs to label, which were selected either by the
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Table 10.3: New detection performance for runs with various types of supervision.

Average GF-Player Song Settl.

Method P R F1 σF1 F1 F1 F1

Unsupervised .85 .80 .804 .000 .82 .73 .87
+ Bootstrapping .88 .87 .857 .000 .90 .78 .91

Weak supervision .85 .84 .831 .000 .82 .81 .87
+ Bootstrapping .88 .89 .877 .006 .90 .84 .89

Strong supervision .77 .87 .909 .000 .92 .92 .89
+ Bootstrapping .79 .87 .900 .001 .92 .91 .87

label-based blocker or chosen randomly. Given as labeling function the weakly su-
pervised classifier, 266 thousand pairs were labeled as matches, while 1.72 million
pairs were labeled as non-matches. For this output, the user-provided matching
rules fire in total 36 thousand times (14% relative to number of pairs labeled as
matching), whereas the non-matching rules fire 169 thousand times (10% relative
to number of pairs labeled as non-matching).

10.3.2 New Detection Evaluation

To evaluate new detection, we run it on the entities, existing and new, in the testing
set, and measure how well we find new entities using precision and recall. Precision
equals the proportion of entities returned as new by the method that are actually
new, while recall equals the proportion of new entities in the testing set that were
returned as new by the method.

Table 10.3 shows new detection performance for runs with various types of
supervision, similar to Table 10.2. We find that a model trained using strong su-
pervision outperforms the unsupervised matching rule in F1 by 10.5 percentage
points on average, and by 19 points for the class Song. By employing the user-
provided rule sets as weak supervision, we are able to increase average F1 by 2.7
percentage points. Bootstrapping is also effective, as it increases average F1 in
the unsupervised case by 5.3, and in the weakly supervised case by 4.6 percentage
points. Overall, we are able to recover 7.3 of the 10.5 percentage points differ-
ence between the unsupervised and the supervised model. Bootstrapping using the
strongly supervised model does not work, as overall average performance falls by
about one percentage point.

We investigated a run, to evaluate how many pairs were labeled during boot-
strapping, and for how many pairs the rules fired. A sum of 1.36 million entity-
instance-pairs are chosen to be labeled. When using the weakly supervised labeling
function, we find that 26 thousand pairs were labeled as matches, and the remain-
der as non-matches. Within the ensembled classifier, the user-provided matching
rules fire 14 thousand times (54% relative to number of pairs labeled as matching),
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Table 10.4: End-to-end performance for runs with various types of supervision.

Average GF-Player Song Settl.

Method P R F1 σF1 F1 F1 F1

Unsupervised .70 .74 .693 .000 .76 .53 .79
+ Bootstrapping .74 .82 .746 .005 .81 .61 .83

Weak supervision .72 .79 .737 .005 .76 .65 .80
+ Bootstrapping .75 .87 .791 .005 .82 .74 .82

Strong supervision .79 .90 .835 .004 .88 .78 .84
+ Bootstrapping .79 .93 .853 .000 .89 .84 .83

whereas the non-matching rules fire 174 thousand times (13% relative to number
of pairs labeled as non-matching).

10.3.3 End-To-End Evaluation

We will now evaluate a full run of the pipeline using our suggested weak supervi-
sion approaches. As input, all methods receive the same set of rows and output a
set of created entities determined to be new. We compare this output with the actual
new entities annotated in the gold standard. As this runs row clustering and new
detection sequentially, the errors of the methods tend to accumulate and reduce
overall end-to-end performance, as we have discussed in Chapter 8.

To evaluate how well new entities were found, we utilize precision and recall.
To compute precision, we determine the proportion of entities returned as new that
are correct. An entity is only correctly new, if its cluster includes the majority of
the rows of a new cluster in the gold standard, and these rows at the same time
form the majority within the entity’s cluster. Recall is the fraction of new entities
in the gold standard for which a correct new entity was returned.

Table 10.4 shows end-to-end performance for different types of supervision
similar to Table 10.2. The model trained using strong supervision achieves an
average F1 of 0.835, while the performance of the unsupervised method without
bootstrapping is the lowest, with an F1 of 0.693. The performance achieved by our
weakly supervised method using bootstrapping is 0.791. Therefore, we find that
we are able to achieve a performance much closer to that when using strong super-
vision, and much better than a simple unsupervised matching rule. Out of the 14.2
percentage points gap between the strongly supervised and the unsupervised run,
we are able to recover 9.8 points. The effect is especially large for Song, where
we are able to recover 21 percentage points in F1 from the 25 points difference be-
tween the supervised and the unsupervised model. As a result, we can successfully
perform long-tail entity extraction with considerably reduced labeling effort.

The user-provided rule sets have a positive impact on performance, increasing
F1 by 4.4 percentage points compared to the unsupervised model. Bootstrapping
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also increases average F1 by about 5.3 and 5.4 percentage points for the unsuper-
vised and weakly supervised runs respectively. Bootstrapping also has a positive
impact when used with strong supervision, where it improves performance by 1.8
percentage points.

When investigating the performance per class, we notice that precision is con-
tinuously lower than recall. For the method bootstrapped from weak supervision,
GF-Player and Settlement have e.g. precisions of 0.70 and 0.74, with recalls of
1.00 and 0.93 respectively. This is caused by bad clustering, primarily for existing
entities, which are then classified as new by the new detection, thereby reducing
only precision.

To investigate the issue further, we look at one of the five runs. We find that for
GF-Player there are in total 17 genuine new clusters annotated in the gold standard,
which were all correctly clustered and classified as new by the pipeline, hence a
recall of 1.0. However, existing entities were not clustered as well, as 5 clusters
were created that could not be assigned to any entity. These clusters should have
been filtered out, but were all determined to be new, considerably reducing entity
expansion precision. For Settlement, there are 23 genuine new clusters annotated
in the gold standard, 21 one of which were correctly clustered and classified as
new. The pipeline however generated 20 clusters too many, the majority of which
contain rows of existing entities. Out of these bad clusters 8 were classified as new,
reducing entity expansion precision considerably.

This shows that errors in the pipeline accumulate and that there is a need for
an additional component in the pipeline that detects and filters out bad clusters,
especially those that are created from rows that describe existing entities. While
the observed pattern does not exist for class Song, it is because it suffers from bad
clustering for new and existing clusters, leading to both lower recall and precision.
As such, it would in fact also benefit from a filtering component for bad clusters.

10.4 Discussion

In this section, we will discuss some of the choices made in regard to our method-
ology and highlight what their effects are. We will first show the importance of en-
sembling with an unsupervised model and how this actually enables the use of bold
class-specific matching rules in the first place. We will then discuss the bootstrap-
ping methodology in two parts. First, we will outline the effect of our parameter
choices, which we described in Subsection 10.2.4. Second, we elaborate on why
we believe that random forests are especially effective for learning a supervised
model from training data that is likely noisy.

10.4.1 Importance of Ensembling with the Unsupervised Model

While we focus in this chapter on weak supervision in the form of bold matching
rules, this form of supervision is enabled by ensembling the rules with an unsu-
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Table 10.5: End-to-end performance for runs that exploit various types of labeling
functions.

Average GF-Player Song Settl.

Method P R F1 σF1 F1 F1 F1

Matching Rules .43 .06 .095 .000 .00 .14 .14
+ Bootstrapping .27 .80 .330 .001 .12 .76 .11

Label .64 .30 .379 .000 .57 .20 .37
+ Bootstrapping .83 .28 .372 .019 .67 .12 .33

Label + Match. Rules .67 .31 .403 .000 .57 .27 .37
+ Bootstrapping .77 .31 .407 .008 .69 .17 .37

Unsupervised .70 .74 .693 .000 .76 .53 .79
+ Bootstrapping .74 .82 .746 .005 .81 .61 .83

Weak Supervision .72 .79 .737 .005 .76 .65 .80
+ Bootstrapping .75 .87 .791 .005 .82 .74 .82

pervised model in the first place. This is demonstrated by Table 10.5, where we
provide end-to-end performances for a set of alternative runs.

First, we use the matching rules on their own and without ensembling. With-
out bootstrapping, this yields a very low performance, which is not surprising as
the rules have very little coverage. With bootstrapping, we see for songs a very
large increase in performance, in fact one that outperforms our weakly supervised
bootstrapped method. However, this is an anomaly, as for the other classes the
performance is still very low.

We then attempt to ensemble the matching rules with an unsupervised model
that uses just label features. This has a positive impact on performance, and, more
importantly, we can see how ensembling the matching rules improves performance
consistently for all classes in the case of bootstrapping. However, the performance
is limited, and this seems to be caused by the ineffective label-based matching
method with which we ensemble the rules. It is interesting to note, that the match-
ing rules for the class Song are not as effective as they were without the label-based
model. This shows how an ineffective unsupervised model can actually reduce the
positive impact of the matching rules.

Unlike the label-based model, the unsupervised model is already quite effective
on its own. By ensembling the class-specific matching rules with it, we can create
effective labeling functions, that are able to bootstrap effective classifiers. It is also
interesting that when combined with the label-based models, the rules achieve an
increase of just 2.80 percentage points in F1, however when combined with the
unsupervised model, they achieve an increase of 4.50 points. This shows that with
a better unsupervised model, the rules have a higher positive effect.
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Table 10.6: End-to-end performance for bootstrapping when varying the underly-
ing machine learning method.

Average GF-Player Song Settl.

Method P R F1 σF1 F1 F1 F1

Classif. (default) .73 .85 .768 .005 .78 .69 .83
Classification .74 .84 .772 .004 .82 .67 .83
Regression .75 .87 .791 .005 .82 .74 .82

Table 10.7: End-to-end performance for bootstrapping when varying sampling
weighting during bagging.

Average GF-Player Song Settl.

Sampling Weighting P R F1 σF1 F1 F1 F1

Equal for all pairs .72 .88 .778 .000 .79 .75 .80
Confidence score (CS) .74 .85 .774 .006 .82 .73 .78
Square root of CS .75 .87 .791 .005 .82 .74 .82

The unsupervised model not only provides full coverage to our labeling func-
tion, it also allows us to require that the rules be only somewhat accurate. This
is possible, as we use the unsupervised model to average out the biases within
the individual matching rules. This is especially important when it is difficult to
find effective matching rules. This is the case for settlements, where we find that
the number and density of attributes in the web tables are too limited for schema-
based matching rules. However, using the unsupervised model, we are still able to
achieve an acceptable performance for settlements, lacking behind strong supervi-
sion by only two percentage points in F1.

Improving either the unsupervised model or the ensembling method would
likely increase the effectiveness of our method. In Subsection 10.5.3, we exten-
sively discuss the related work in regard to unsupervised entity matching, high-
lighting how we could improve the unsupervised matching rule.

10.4.2 Impacts of Bootstrapping Parameter Choices

In Subsection 10.2.4, we outlined our choices regarding the design and the param-
eters of the machine learning algorithm used during bootstrapping. In this subsec-
tion, we will discuss the impact of these choices. This is done by testing alternative
runs of the classifier bootstrapped from the weakly supervised labeling function.
In each run, we alternate one of the parameter choices made, while keeping the
others fixed. Tables 10.6 to 10.9 show the end-to-end performances of these runs.

We can first of all see, that no matter the choice of parameter, the performance
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Table 10.8: End-to-end performance for bootstrapping when varying maximum
tree depth within a trained random forest.

Average GF-Player Song Settl.

Maximum Depth P R F1 σF1 F1 F1 F1

10 .72 .84 .764 .004 .81 .69 .80
15 .72 .86 .771 .004 .81 .70 .80
20 .75 .87 .791 .005 .82 .74 .82
25 .74 .87 .789 .009 .81 .72 .83
30 .73 .86 .773 .007 .80 .69 .83
No maximum depth .73 .85 .764 .006 .79 .68 .82

Table 10.9: End-to-end performance for bootstrapping when varying bagging sam-
ple size.

Average GF-Player Song Settl.

Sample Size (%) P R F1 σF1 F1 F1 F1

10 0.74 0.88 0.786 0.003 0.81 0.74 0.81
25 0.75 0.87 0.791 0.005 0.82 0.74 0.82
50 0.75 0.86 0.785 0.003 0.81 0.74 0.81
75 0.74 0.86 0.785 0.004 0.81 0.74 0.81
100 0.75 0.86 0.786 0.003 0.81 0.73 0.82

for many runs is at least 0.77 or 0.78. So while the parameter choices are important
for achieving an additional one to two percentage points increase in end-to-end per-
formance, our method works even when the parameter choices are made naively.

Table 10.6 shows end-to-end performance when using regression instead of
classification. It also shows a run using classification with default hyperparam-
eters, i.e. no depth limit and full-sized bagging sample. We denote this run as
Classif. (default).6 As we have anticipated in Subsection 10.2.4, using regression
instead of classification has a positive impact on performance. The classifier, by
ignoring the confidence of training examples while splitting, ignores their noisy
nature. To generalize effectively from noisy training data, the confidence scores
must be taken into account in a form that is reflected in the predictions, and not just
during sampling for bagging.

Table 10.7 shows performance when changing the weighting method during
bagging. Both weighting all training pairs equally and directly with the confidence
scores, are in our opinion naive approaches to the issue. As such, it is understand-
able that they achieve a lower performance. Using the square root of the confi-

6We were unable to perform a run using regression and default hyperparameters, as we ran out of
memory, even when using a machine with 500 GB of RAM.
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dence scores ensures that all training pairs have a good chance of being included in
a sample. while still giving more prominence to high-confidence pairs, and lower
significance to low-confidence pairs.

In regard to the maximum tree depth, we see a clear pattern in Table 10.8. Not
limiting the tree depth enough leads to low performance, likely due to overfitting,
while limiting the tree depth too much leads to low performance, likely by ex-
cessively reducing the expressiveness of the trees. In fact, this parameter has the
highest impact on performance. As such it might make sense to choose a tree grow-
ing algorithm that limits depth by design, e.g. through pruning. However, we also
believe that the chosen value for maximum depth, is the only reasonable choice.7

A maximum depth of 15 would only allow a maximum of about 33 thousand leaf
nodes, while a maximum depth of 25 would allow about 33 million leaf nodes.
When considering the number of training pairs used for bootstrapping (see Sec-
tions 10.3.1 and 10.3.2), only a depth 20, which allows about 1 million leaf nodes,
is a reasonable choice.

Table 10.9 shows the effect on performance when alternating sample size dur-
ing bagging. While a sample size of 25% has the best performance, there is no
clear pattern between performance and sample size. When considering however
that reducing the sample size reduces correlation between trees, possibly leading
to lower variance and higher performance, while at the same time reducing com-
putation time and memory requirements, allowing us e.g. to train more trees, it is
still a reasonable choice.

It is important to add, that both the reduced sample size and the limited depth
are both helpful in ensuring that training the random forest is feasible in regard to
memory. When setting both parameters to default, i.e. a sample size as large as
the number labeled pairs, and trees with unlimited depth, we were unable to train
a random forest when using regression, even given more than 500 GB of memory.

10.4.3 Ability of Random Forests to Learn from Noisy Data

In our methodology, we train a supervised machine learned model on labeled data
that is possibly noisy. Ensuring that the trained model generalizes without overfit-
ting the training examples is therefore important. We believe that we are successful
at this task, as we are able to train a supervised machine learning model that out-
performs the labeling function form which it was bootstrapped. In this section, we
will discuss what possibly enables us to so.

First, the trained random forest has a different feature set than both, the un-
supervised rule and the bold user-provided matching rule sets. The unsupervised
rule, as it is class-agnostic, does not have any features specific to the schema of a
class, i.e. its properties. On the other hand, the matching rules almost exclusively
make use of class-specific properties. The bootstrapped random forest combines
both and is therefore possibly able to generalize without overfitting either the un-

7Considering only maximum tree depths that are multiples of 5.
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supervised class-agnostic rule or the user-provided class-specific rule sets.
However, we believe that the random forest algorithm itself is highly effective

at learning from noisy training data. This is due to it using bagging and introducing
randomness within each tree. The random forest does not overfit the noisy pool,
because it never trains directly on the noisy pool. It only trains on samples drawn
from that pool. While individual trees might overfit, this overfitting is likely av-
eraged out when aggregating the output of the trees. The randomness within each
tree additionally restrict the algorithm from always using the same features when
splitting, forcing it to always generalize using a different set of features.

There might be additional aspects, also in the context of using random forests,
that enable us to prevent overfitting the noisy training data and outperforming as
a result the labeling functions. By limiting the tree depth for example, we do not
allow the random forest algorithm to fully grow its trees, and as such prevent them
from overfitting their own training sample. Also, the way we weight training exam-
ples during bagging reduces the likelihood of overfitting low-confidence training
pairs, while ensuring that interesting training pairs are still included in the sample
a tree is trained on.

10.5 Related Work

Weak supervision approaches exploit supervision at a higher abstraction or that
is noisier in nature to efficiently generate a large number of training examples,
even if those are of a lower quality [Ratner et al., 2017, Ratner et al., 2016]. This
includes letting non-experts generate labels through crowdsourcing, using distant
supervision, or employing rules and heuristics for labeling data.

There exist other approaches to reducing required manual effort spent by ex-
perts for the purpose of supervision [Han et al., 2011]:8

• Semi-Supervised learning methods use a small set of labeled and a larger
set of unlabeled examples to train a model. This includes for example co-
training and self-training [Mihalcea, 2004], which train models on data that
they labeled themselves, using initially a small number of high-quality seed
examples. The method presented in this chapter that bootstraps from a
strongly supervised model resembles semi-supervised learning.

• Active learning approaches reduce labeling effort by querying a user to label
only examples that are chosen to provide the most information when labeled,
thereby using effort spent by experts more efficiently [Settles, 2012].

• Transfer learning approaches reduce supervision effort required for learn-
ing given a certain target domain or task by using knowledge gained for a
different source domain or task [Pan and Yang, 2010].

8The authors of Snorkel provide an extensive overview of weak supervision, comparing it to other
approaches to reducing supervision effort: https://www.snorkel.org/blog/weak-supervision.

https://www.snorkel.org/blog/weak-supervision
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These approaches to reducing effort differ conceptually from weak supervision.
While they work towards reducing the amount of manually labeled data required,
querying experts more efficiently, or exploiting knowledge from a different domain
or task, they still often rely on some form of manually labeled high-quality training
examples. Weak supervision approaches however differ, as they attempt to substi-
tute supervision in the form of high-quality training examples with supervision that
is noisier or more abstract in nature, thereby working towards reducing the reliance
on manually labeled training examples completely.

However, the distinction is not always clear. Semi-supervised learning ap-
proaches could be categorized as weak supervision approaches. While they start
with high-quality labeled training example as seeds, they essentially generate train-
ing data that is potentially noisy. There exist for example approaches that are de-
scribed by the authors as weak supervision, which could however be understood
as semi-supervised approaches. This applies to Snuba [Varma and Ré, 2018], that
uses a small set of high-quality labeled data to derive heuristics which are then used
to generate a larger set of noisy training data. This could be seen as semi-supervised
learning, whereas the authors present it as a weak supervision approach.

In the remainder of this section, we will compare our work to three areas of
related work. First, we will introduce works that use distant supervision and outline
why distant supervision can not be used for long-tail entity extraction. We will then
describe weak supervision approaches that use user-provided labeling functions or
constraints as supervision. We will compare our approach to them and outline the
contributions of our approach. Finally, we will look at related work in the area of
unsupervised entity matching and highlight how our unsupervised model could be
improved.

10.5.1 Distant Supervision

One method of weak supervision is distant supervision, where a knowledge base
or any other external resource is used to train a supervised machine learned model.
While originally applied in the context of relation extraction from text [Mintz et al.,
2009], it has been used for the task of augmenting a knowledge base from semi-
structured web data, including web tables [Dong et al., 2014a,Lockard et al., 2018].
Regarding identity resolution, Bizer et al. [Bizer et al., 2019] e.g. make use of
semantic annotations extracted from 43 thousand e-shops to distantly supervise a
deep neural network for product entity matching.

Distant supervision approaches rely on the assumption that the relationships
that exist among the data to be labeled are also reflected in the external source.
E.g., for relation extraction, when two entities that have a relation in the knowledge
base appear in one sentence, it is assumed that this sentence described this rela-
tion [Mintz et al., 2009]. By definition, long-tail entities are not part of knowledge
bases, therefore, no relationship or other knowledge about them exist in knowledge
bases. Especially for the task of new detection, we need the external source to ex-
plicitly state that this entity has no corresponding instance in a knowledge base.
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This is unlikely to be the case, which is why we do not consider distant supervision
to be an option for long-tail entity extraction.

10.5.2 User-Provided Labeling Functions and Constraints

Ratner et al. [Ratner et al., 2016] introduce the data programming paradigm, where
any weak supervision strategy, including domain heuristics and distant supervision,
can be codified into user-provided individual labeling functions. The authors focus
on denoising noisy and conflicting labels, by assigning accuracies to the labeling
functions using a generative algorithm. They evaluate their approach on a number
of machine learning tasks and find that using their approach gives an increase of 1
to 4 percentage points in F1 when compared to an approach that uses the labeling
functions in a manually tuned order. The authors do not compare their performance
to an unsupervised model.

Snorkel is a system that enables the use of weak supervision based on the data
programming paradigm [Ratner et al., 2017]. Snorkel Drybell adapts Snorkel to
exploit diverse organizational knowledge resources. Its effectiveness is evaluated
in a large-scale case study at Google [Bach et al., 2019].

Throughout all three works [Ratner et al., 2016,Ratner et al., 2017,Bach et al.,
2019], the number of labeling functions used per task is between 7 and 147. The
average number of labeling functions per task is 35.5, averaged over 12 tasks.

Shen et al. [Shen et al., 2005] introduce constraint-based entity matching,
where they suggest a probabilistic framework and a generative model within which
domain-specific constraints can be exploited to perform entity matching. The intro-
duced constraints are of a broad-variety, and not limited to a specific format. They
can also make use of specific characteristics of the datasets, between which entity
matching is performed. The authors view their work in the domain of unsupervised
entity matching methods, as they use the constraints as relaxation labeling within
a generative model that performs entity matching, and do not provide an approach
to generate training data for a supervised machine learning method. They achieve
for the two evaluated datasets increases of 13 and 3 percentage points in F1 using
seven and three constraints respectively.

In essence, our approach has the same primary effect as both, data program-
ming and constraint-based entity matching. It enables the use of supervision in a
more abstract form than high-quality matching and non-matching pairs. However,
our approach has the following contributions over the related work:

1. Easy-to-create bold matching rules instead of complex black-box label-
ing functions: in the data programming paradigm the labeling functions are
by design black-boxes [Ratner et al., 2017, Bach et al., 2019]. They consist
of actual programs, which could be complex in their nature or be dependent
on external resources. For example, the labeling functions could use named
entity recognition and topic models that require maintenance [Bach et al.,
2019]. Shen et al. e.g. use constraints that are dataset-specific [Shen et al.,
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2005]. We limit the format of the user-provided rules to conjuncts of simple
attribute tests using the schema of the knowledge base. We believe this fa-
cilitates the creation of rules for supervision, and as such is an improvement
over the state of the art.

2. Requiring only a small set of rules, by ensembling with an unsupervised
model: Ratner et al. [Ratner et al., 2016] report coverage numbers for their
weak supervision approach. They achieve an average coverage of 36%. We
overcome low coverage by ensembling the user-provided matching rule sets
with an unsupervised model. Additionally, the unsupervised model provides
not only full coverage, but by averaging with it we are able to reduce the
negative impact of possibly biased or even inaccurate rules.

Without these properties, weak supervision, e.g. using the data programming
paradigm, is difficult to apply to entity expansion for a knowledge base with hun-
dreds of classes. Providing a larger number of manually created black-box label-
ing functions for each class of the knowledge base is unlikely to be feasible. In
our case however, a base performance is ensured by ensembling with an unsuper-
vised model, reducing supervision effort spent on every single class. Additionally,
the fixed bold format of the rules does not only allow easy creation, but in can
even potentially allow automatic rule mining form the knowledge base, reducing
supervision effort even further.

10.5.3 Unsupervised Entity Matching

While the primary contribution of this chapter is the possibility of introducing
class-specific supervision with little effort, the unsupervised matching rule plays
an important role in enabling our approach. Following, we will briefly introduce
some related work regarding unsupervised entity matching, comparing our method
to it, and suggesting possible improvements to our approach.

An early approach to unsupervised entity matching is introduced by Chris-
ten [Christen, 2008], where they use a two-step classification approach. First, they
derive a set of seeds, then, using the seeds, they train a supervised classification
model. To derive seeds, they use the distance between the feature score vectors
of candidate pairs, to both, vectors of a perfect match (all scores 1.0) or a perfect
non-match (all scores 0.0). They then select a certain top-kM for matching and a
different top-kN non-matching seeds, where kM and kN are determined through a
specific ratio. When deriving seeds, all features were weighted equally. Christen
then suggest adapted versions of supervised classification algorithm: seeded k-NN
and seeded iterative SVM. In both, they iteratively increase the size of the training
data, starting with a model trained using the seeds. They achieve a performance
generally 10 to 20 percentage points lower than the F1 of a supervised algorithm.

Su et al. [Su et al., 2010] introduce an approach, where they use a weighted
average of feature scores to find training pairs. Unlike in our case, they learn the
weights using a preliminary set of seeds. These seeds, are determined using an
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iterative algorithm, starting with easy non-matching pairs. To use the weighted
average function for classification, the authors use a threshold, which they set by
hand. The training pairs returned by this weighted average function are then used
to train an SVM model. They evaluate their method on five datasets, and gener-
ally achieve very good results, all above 0.92 in F1. However, they compare their
performance to a supervised model only for one dataset, where they achieve 2.8
percentage points in F1 below the supervised model.

Kejriwal and Miranker [Kejriwal and Miranker, 2015] introduce a heuristics-
based method that creates training data for a supervised learning algorithm. In
their heuristics, they use bag-of-words vectors, similarities based on TF-IDF, and
a top-k approach, where they set k to 500. They use the labeled data to train an
iterative SVM. They achieve an F1 score on average 10 percentage points below a
supervised algorithm, when evaluating their method on 10 datasets. Unlike in our
approach, the features are not given, but actually created as part of the approach.
Additionally, the method also includes unsupervised schema matching.

Jurek et al. [Jurek et al., 2017] introduce an approach based on ensembling
multiple self-learned classifiers. Each individual classifier is trained using a differ-
ent feature set, where in each set, the similarity metric used to compare a certain
attribute is changed. Each classifier is trained using its own seeds, where the seeds
are derived by iterating between seed selection and assigning weights to features,
until the outcome converges. The first set of seed is selected using top-k approach
and a high threshold. During iterative seed selection, features are weighted by
how well they are able to distinguish matching and non-matching seeds of the
previous iteration. Given the seeds, classifiers are then trained using an iterative
SVM algorithm, giving us a set of self-trained classifiers, all using different feature
sets. These self-learned classifiers are then ensembled. However, before ensem-
bling, classifiers which conflict very often with the others are filtered out. The
authors compare their methods to a fully supervised model on four datasets and
achieve a performance below the supervised model by 2 to 9 percentage points in
F1. They perform entity matching on datasets that have a small number of sources
(mostly two), and where the schemata of all sources are equal. Like the approach
by Kejriwal and Miranker, the features are not given and are created as part of the
unsupervised method.

In summary, these approaches are similar to each other and to the approach
we suggest: using a threshold or a top-k approach, seeds are derived, which are
then used to train a supervised model. Two out of the four works, like us, use
a weighted average to label data, however they learn the weights automatically.
Finally, all works make some use of iteration in their approach.

Regarding performance, we achieve with our unsupervised model using boot-
strapping 7.0 percentage points in row clustering and 5.2 percentage points in new
detection below the average F1 of the supervised model. Our performance is better
than that achieved by Christen, somewhat better than that achieved by Kejriwal and
Miranker, and comparable to that that achieved by Jurek et al. Only Su et al. seem
to achieve much better results with their approach, however they only compare
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their method to a supervised model for one dataset.
Considering this summary on related work, our unsupervised approach could

possibly be improved using the following approaches:

• Ensembling: while we already ensemble an unsupervised matching model
with a class-specific user provided rule set, we could use ensembling to im-
prove the unsupervised model itself. One approach could be, to ensemble
multiple unsupervised rules, where in each rule, one feature is left out, or the
weights of features are otherwise alternated.

• Dynamic thresholding: the majority of approaches use either arbitrarily set
thresholds, or a fixed top-k to select seeds. We could improve our unsuper-
vised rule, by finding a method to dynamically find a threshold, based on the
actual distribution of the data, similar to Otsu’s Method [Otsu, 1979].

• Weighting: one possible way of improving our method is to choose weights
automatically, e.g. by how large their distinguishing impact is [Jurek et al.,
2017] or using a set of initial seeds [Su et al., 2010].

• Iteration: iteration is used throughout all related work on unsupervised
matching discussed above. Moreover, the method in this work that boot-
straps from strong supervision essentially uses iteration and it has the best
end-to-end performance. Introducing iteration in our approach could likely
have a positive impact on performance of the unsupervised model.

10.6 Summary

In this chapter, we investigated the possibility of reducing the effort spent on man-
ually labeling training data for the task of augmenting knowledge bases with long-
tail entities from web tables. For this, we introduce and evaluate a weak supervision
approach that exploits more efficient supervision at a higher level of abstraction.

Specifically, we suggest, as an alternative to manually labeling thousands of
entity pairs as matching or non-matching, the use of a small set of bold user-
provided class-specific matching rules. These rules are built upon properties from
the schema of a knowledge base, making them universal and semantically easy to
understand. More importantly, these rules require considerably less effort to create.
To overcome their likely limited coverage and reduce the impact of possible biases
within these rules, we suggest a method to ensemble these class-specific matching
rules with a class-agnostic unsupervised matching model. This yields an effective
weakly supervised labeling function for long-tail entity extraction.

We introduce an approach to bootstrap a supervised learning algorithm from
the weakly supervised labeling function using a randomly selected set of unlabeled
web tables. We find that with bootstrapping, we are able to achieve a performance
close to that of supervision with manually labeled data and as such, are able to
perform long-tail entity extraction with considerably reduced supervision effort.
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We believe that our approach has the potential to be improved in various ways.
As the class-specific bold matching rules are built using the schema of the knowl-
edge base, they could potentially be mined from the knowledge base itself, reduc-
ing supervision effort even further. Additionally, the unsupervised model, which
plays an important role in enabling supervision using bold matching rules, can be
improved in a variety of ways, which we have, based on the related work, sum-
marized within the chapter. Finally, we suggest and test only one approach for
ensembling the user-provided rule set with an unsupervised model. Alternative
ensembling methods could have a positive impact on the performance of the en-
sembled weakly supervised labeling function.

Our weak supervision approach can be highly useful for a variety of tasks.
In case where recall is a secondary objective, our approach can be tuned towards
precision and used to add highly accurate, albeit fewer, long-tail entities to a knowl-
edge base. The approach can also be used to facilitate generating training data for
manual labeling, where experts must only correct labels instead of creating them.
This would considerably reduce effort required for manually labeling training data.

We believe that an interesting direction for future work would be combining
our approach with active learning. Models bootstrapped using our methodology
could be used to select more effective pairs given to the user for labeling at the
beginning of the active learning process. This could possibly help alleviate the
cold-start problem.
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Chapter 11

Conclusion

Cross-domain knowledge bases are becoming increasingly useful for a large vari-
ety of tasks. Due to the fact that their usefulness increases with their completeness,
augmenting knowledge bases with new knowledge is an important task.

A source for this new knowledge could be in the form of web tables, which are
relational HTML tables extracted from the Web. We can exploit these web tables
to perform external knowledge base completion using data integration methods.
This could potentially allow us to enrich knowledge bases with new relations for
a versatile set of properties, with new literal values, and with new entities. More
importantly, web tables are not limited to a specific topical domain and could there-
fore allow us to augment a knowledge base with cross-domain knowledge.

However, integrating web tables is challenging. Individual tables are relatively
small, while the overall number of tables extractable from the Web is very large.
Each table employs its own heterogeneous data model, and the quality of knowl-
edge within web tables is inconsistent, potentially containing noise. To augment a
cross-domain knowledge base from web tables, we therefore need data integration
methods that are automated, domain-independent, noise-resistant and scalable.

Data integration consists of three tasks: schema matching, identity resolution
and fusion. We find that for schema matching there are existing methods that en-
able a variety of knowledge base augmentation tasks. However, for identity reso-
lution and fusion, we find that existing methods focus solely on the augmentation
task of slot filling static non-time-dependent data. They do not enable slot filling
time-dependent data, nor do they enable entity expansion.

Existing fusion methods make use of source reliability estimation, e.g. in the
form of Knowledge-Based Trust (KBT). These methods allow us to estimate the
correctness of extracted values for fusion, which generally is sufficient for fusing
static data. However, there also exists time-dependent data, where a value must
not only be correct, but also valid given a certain temporal scope. To perform slot
filling for time-dependent data, we require time-aware fusion methods that are able
to find from a set of conflicting web table values, the value that is first, correct, and
second, valid given a certain temporal scope.

185
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Entity expansion enriches the knowledge base with new and previously un-
known entities. Existing identity resolution methods for web tables are insufficient
for this task, as entities described within web table rows are matched solely to ex-
isting entities in the knowledge base. Unmatched rows, which potentially describe
new entities not yet part of the knowledge base, remain undisambiguated. As such,
we are neither able to determine the exact number of new entities described by web
table data, nor which unmatched rows describe the same new entity. The latter is
required to create from web table data entity descriptions according to the schema
of the knowledge base. To exploit web tables for entity expansion, we need identity
resolution methods that disambiguate entities within web tables among each other,
in addition to disambiguating them with existing entities in the knowledge base.

In this thesis, we researched data integration methods for slot filling time-
dependent data and for entity expansion. Regarding the former, we introduce two
time-aware fusion approaches: TT-Weighting, which exploits timestamps extracted
from the table and its context to estimate the temporal validity of a value extracted
from web tables, and Timed-KBT, which uses a temporal knowledge base to propa-
gate temporal scopes to web table data and uses these propagated scopes to perform
time-aware fusion. Regarding entity expansion, we introduce the Long-Tail Entity
Extraction Pipeline, the first system to enable the task of automatic long-tail en-
tity extraction from web table data. To ensure that the pipeline is scalable while
domain-independent, we additionally introduce a weak supervision approach for
long-tail entity extraction, which exploits as supervision, in lieu of manually la-
beled pairs, bold matching rules built using the schema of the knowledge base.

The remainder of this chapter summarizes our work regarding time-aware fu-
sion, long-tail entity extraction, and weak supervision for long-tail entity matching.
For each of the three parts, we introduce the task at hand, describe our contribu-
tions, and discuss open issues and future work. The last section additionally de-
scribes the research impact of our work.

11.1 Time-Aware Fusion

Time-aware fusion is the task of finding, among a set of conflicting values, the
value that is, in addition to being correct, valid for a given temporal scope. Time-
aware fusion methods are required when performing slot filling for time-dependent
data. Not considering the temporal aspect of time-dependent data might lead to
inconsistent or outdated data being added to the knowledge base. It could also
lead to the rejection of potentially new triples, because candidate values have been
classified as incorrect, while they were in fact valid for a certain temporal scope.

Existing Methods

Existing time-aware fusion approaches make use of timestamps extracted from the
table and its context. For this, timestamps are assigned to web table columns
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and propagated along web table columns as part of a holistic schema matching
method [Zhang and Chakrabarti, 2013]. However, using timestamps has its lim-
itations. As web tables lack explicit meta-data and annotations, the relationship
between the timestamps and web table values is unclear. While some timestamps
might be relevant, many might actually be noise. Additionally, some web tables
lack extractable timestamps completely. This sparsity among timestamps addition-
ally increases the difficulty of exploiting them for time-aware fusion.

Summary and Contributions

As part of TT-Weighting, we first present a taxonomy of timestamp types. This
taxonomy allows us to introduce methods that consider the locations from which
individual timestamps were extracted. To reduce timestamp sparsity, we intro-
duce an approach that propagates timestamp information along these timestamp
type by individual web tables values. We then introduce a regression approach,
that weights the importance of each timestamp type given a certain property of the
knowledge base schema. This would potentially discover a relationship between
a property and specific locations of timestamps in and around the web table. In
our discussion, we have demonstrated evidence that such relationships exist. With
these approaches, we are able to outperform KBT by 5 percentage points in aver-
age F1. Existing approaches [Zhang and Chakrabarti, 2013] do not consider the
individual locations of timestamps, treating timestamps extracted from different
locations equally. The authors also propagate timestamps only along whole web
table columns, and not by individual web table values.

With Timed-KBT, we introduce an approach that reduces the dependence on
timestamp information for time-aware fusion. Using a temporal knowledge base,
we propagate temporal scopes to web table columns by exploiting the overlap of
web table data with data in the knowledge base. We are able to outperform both
KBT and TT-Weighting by 10 percentage points in average F1. We then combine
Timed-KBT with timestamp information by restricting the temporal scopes that can
be propagated to web table data to those also described in extractable timestamps.
This yields a precision-oriented time-aware fusion method that outperforms KBT
and TT-Weighting by respectively 25 and 15 percentage points in average F0.25.
Existing works [Zhang and Chakrabarti, 2013], including TT-Weighting, relied
solely on the existence of timestamps for estimating temporal scopes.

Additionally, we have introduced the Time-Dependent Ground Truth (TDGT).
It is built using the schema of and entities from Wikidata, a temporal knowledge
base. Within the ground truth, we integrate data from 5 different sources, for 7
topical domains and overall 19 time-dependent properties, covering more than 180
thousand entities with more than one million temporal facts. TDGT could be used
for a variety of tasks that make use of the temporal aspect of time-dependent data.
We use TDGT to evaluate time-aware fusion performance using the Local Closed-
World Assumption.



188 CHAPTER 11. CONCLUSION

Open Issues and Future Research

There exist multiple ways in which our research on time-aware fusion methods
could be improved or extended. These issues could be the focus of future research.

First, we limit the evaluation of our approaches to temporal scopes that are
points in time, and only with the granularity of years. While this is also done in
related research [Zhang and Chakrabarti, 2013], future research could extend the
evaluation to temporal scopes that are ranges and have a finer granularity.

We also limit our evaluation to the case where the target temporal scope of
a slot is known. Again, while this is also done in the related work [Zhang and
Chakrabarti, 2013], future research on time-aware fusion could consider a task
where the fusion methods derive the temporal scope from web table data to enrich
the knowledge base with both new facts and corresponding temporal scopes.

While the Local Closed-World Assumption is useful in estimating fusion preci-
sion, in fact we confirm its validity in that regard in Chapter 5, it is potentially less
exact when estimating recall. This could especially be the case for time-dependent
slot filling, where we count a slot towards maximum recall when among any of its
candidates an equal value exists, regardless of the temporal scope of that value. As
such, an evaluation using a gold standard should be considered in future work.

In regard to our TT-Weighting approach, we believe that an extension where
timestamp types are weighted by web table columns in addition to knowledge prop-
erties could be a useful extension. Just like there is likely a relationship between a
certain location and a property, there is likely one between a certain location and
an individual web table column.

In regard to Timed-KBT, we currently propagate temporal scopes from the
knowledge base to web table columns only. While this makes sense, as each col-
umn in a web table generally describes similar data, the temporal scope could still
differ by individual row. Additionally, a whole table could potentially describe data
for one single temporal scope. As such, we could extend Timed-KBT by propagat-
ing temporal scopes to rows and tables in addition to columns.

Finally, the lessons learned from both approaches could be combined. When
restricting temporal scopes for Timed-KBT, we could take into consideration the
timestamp types and their relevance given a certain property of the knowledge base
schema. Additionally, we could also consider temporal scope propagation during
restriction, which could have a positive effect on recall.

11.2 Long-Tail Entity Extraction

Long-tail entity extraction from web data consists of two subtasks: (1) identifying
entities that are not yet part of the knowledge base and (2) compiling their descrip-
tions according to the schema of the knowledge base. To the best of our knowledge,
our research is the first to investigate long-tail entity extraction from web data.
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Existing Methods

There are two tasks that share similarities to long-tail entity extraction. In set ex-
pansion, a set of entities is completed using only a small number of seed entities
as input. Set expansion methods are tasked especially with finding entities that
have a high similarity to the seeds and are as such typically evaluated using ranked
evaluation. In this regard, set expansion is not in line with the task of long-tail en-
tity extraction, which aims to find all possible entities not yet part of a knowledge
base, and not only those that share a high similarity to a specific set of seeds. Set
expansion methods also by definition do not compile descriptions for new entities,
only compiling their labels. While set expansion methods can identify a distinct
number of entities to complete a set, i.e. they disambiguate among the new enti-
ties, this disambiguation is done solely by the label, and without considering other
attributes. Methods therefore do not disambiguate between homonyms.

Emerging entity detection is an NLP task about determining if a certain entity
mention in text refers to an entity not yet part of a knowledge base. Unlike set
expansion, emerging entity detection methods explicitly consider disambiguation
between homonyms. In this regard, emerging entity detection is more in line with
long-tail entity extraction than set expansion. However, emerging entity detection
is not concerned with compiling descriptions for emerging entities. More impor-
tantly, emerging entity detection is not concerned with disambiguating between
entity mentions among each other. As such, while it is known which mentions
describe long-tail entities, the number of distinct long-tail entities is not identified.

Regarding existing identity resolution methods for web tables, we find that they
match rows of web tables directly and solely to existing entities in the knowledge
base. As such, these methods, similar to emerging entity detection, can determine
if a row describes a long-tail entity without a corresponding instance in the knowl-
edge base, however they can not link rows that describe the same long-tail entity
with each other. This prevents us from both, identifying the exact number of unique
long-tail entities and compiling their descriptions. For rows that describe existing
entities, the links between rows are known automatically, as all rows describing
one unique existing entity are linked to its instance in the knowledge base.

Summary and Contributions

We introduce the Long-Tail Entity Extraction (LTEE) Pipeline, the first system that
is able to both, identify long-tail entities and compile their descriptions from web
table data. It consists of the four components schema matching, row clustering,
entity creation and new detection.

Our pipeline enables long-tail entity extraction by performing identity resolu-
tion twice. In the row clustering component, we disambiguate between web table
rows, where rows that describe the same real-world entity, existing or long-tail,
are placed in the same cluster. As a result, the row clusters give us, in the case of
perfect entity matching, the exact number of unique entities described in the web
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tables. Using the entity creation component, we create for all clusters descriptions
according to the schema of the knowledge base, giving us a set of entities extracted
and created from a web table corpus.

Identity resolution is performed again in the new detection component, where
we disambiguate between the entities created from the web table corpus and the en-
tity instances in the knowledge base. The output of the new detection component
is a set of entities, which are classified as new, i.e. they have no corresponding in-
stance in the knowledge base. These entities already have descriptions according to
the schema of the knowledge base, and, in case of perfect row clustering, each real-
world long-tail entity is at most described by one entity returned by the pipeline.
As such, we are able to identify long-tail entities and compile their descriptions,
enabling the task of long-tail entity extraction.

We create and publish the Web Tables for Long-Tail Entity Extraction (T4LTE)
gold standard. It consists of web tables with row-to-row and entity fact annota-
tions. It also includes attribute-to-property and entity-to-instance correspondences
to DBpedia. It allows us to evaluate long-tail entity extraction from web table data,
including how well we identify new entities and how well we create their descrip-
tions, but also how well we perform row clustering and new detection. T4LTE can
also be used to train supervised models. It contains 532 tables, with annotations for
268 entities, of which 103 are new, and 843 facts. The dataset was created for the
three DBpedia classes GridironFootballPlayer (GF-Player), Song and Settlement.
The T4LTE gold standard is the first for the task of entity expansion from web ta-
bles. It acts as a benchmark when used with our evaluation metrics and our testing
folds, which we also provide.

On the T4LTE gold standard, the LTEE Pipeline achieves for both tasks, iden-
tifying new entities from web tables and compiling their descriptions, an average
F1 of 0.83. Additionally, we evaluate our pipeline by how well it performs related
tasks. We compare the performance of the pipeline for reported performances in
the related work for the tasks of set expansion, emerging entity detection, column
attribute-to-property matching, and row-to-instance matching and find that the per-
formances of the LTEE Pipeline are comparable or better.

Finally, we run the LTEE Pipeline on a large-scale web table corpus and profile
the output. We also manually evaluate the accuracy of a sample of new entities
returned by the pipeline. We find that we are able to add about 14 thousand new
entities with 44 thousand new facts for the class GF-Player, an increase of respec-
tively 67% and 32% when compared to the existing entities in DBpedia. For songs,
we are able to add about 187 thousand new entities with 394 thousand new facts,
an increase of 356% and 125% respectively. The accuracy of these newly added
entities is on average 65%, while the accuracy of their descriptions is 90%.

As part of the profiling, we also extensively describe lessons learned. This
includes a discussion on the relationship between the Wikipedia notability criteria
and the potential of performing entity expansion from web table data. We also
compare the distributions of properties for long-tail entities extracted from the web
tables with that of existing entities in DBpedia. Additionally, we compare the
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performance of the evaluated sample with the performance achieved on T4LTE
and discuss how we could potentially improve the gold standard.

Open Issues and Future Research

The pipeline can first of all be improved by introducing noise detection and fil-
tering. We find that errors compound throughout the components of the pipeline.
Especially, we notice that a row clustering output with impure clusters leads to in-
consistent entities, which are then incorrectly classified as new, as no correspond-
ing instance is found in the knowledge base. This problem is demonstrated by
the fact that recall for new entities found is consistently higher than precision, i.e.
we are able to find many of the new entities, but we also classify noisy entities as
new (see for example Subsections 8.3.1 and 10.3.3). A filtering component before
or as part of new detection could significantly improve the performance and the
effectiveness of the pipeline.

Similarly, noise detection is needed to reduce effects of errors during schema
matching or entity creation. Considering that web tables are noisy in their nature,
it is important to introduce noise detection and filtering into the pipeline.

The classes included in the T4LTE gold standard were chosen to reflect the
diverse nature of DBpedia, while also being more difficult than other classes due
to a higher occurrence of homonyms. The diversity of these classes is also demon-
strated by the vastly different results we achieve in Chapter 9, and the different
Wikipedia notability criteria that affect each class. As such, we believe that the
classes were chosen well. However, future research should consider more classes to
evaluate the LTEE Pipeline. This also applies to the profiling, where more classes
would provide more insight into the potential of web tables for entity expansion.

One main limitation of the pipeline is the requirement for manually labeled
class-specific training data. This limits the applicability of the LTEE Pipeline
for cross-domain entity expansion at web-scale. However, we already researched
methods to overcome these limitations using weak supervision, which we summa-
rize in the next section.

11.3 Weak Supervision for Long-Tail Entity Extraction

Weak supervision refers to the task of reducing labeling effort by exploiting su-
pervision that is noisier or more abstract in nature than traditional supervision.
Given that the LTEE Pipeline requires class-specific supervision and that knowl-
edge bases have many classes, reducing supervision effort is important to ensure
that the pipeline is scalable when performing cross-domain entity expansion.

Existing Methods

There exist a variety of approaches to reducing supervision effort, e.g. in the form
of active learning, transfer learning and semi-supervised learning. While these ap-
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proaches also aim at reducing labeling effort, they differ conceptually from weak
supervision. They work towards reducing the amount of manually labeled data
required, e.g. by querying experts more efficiently, or exploiting existing labeled
data from a different domain. However, they often still rely on some form of man-
ually labeled high quality training data. Weak supervision approaches on the other
hand, by exploiting noisier or more abstract supervision, aim towards reducing the
reliance on high-quality manually labeled training examples completely.

There are two prominent approaches to weak supervision. Distant supervi-
sion [Mintz et al., 2009] uses the relations within an external source, e.g. a knowl-
edge base, to derive likely noisy training data for a supervised machine learning
algorithm. It relies on the fact that the relationships of the data to be labeled are
covered within the external source. As in long-tail entity extraction we are con-
cerned with explicitly identifying which entity is not yet part of a knowledge base,
we would need this specific relationship to be covered in a source. It is unlikely
to find such a source that covers this kind of knowledge, as by definition long-tail
entities are not generally found in sources, especially not cross-domain sources.

Data programming [Ratner et al., 2016, Ratner et al., 2017, Bach et al., 2019]
is a paradigm, where weak supervision is introduced in the form of user-provided
labeling functions, which can then be used to label training data for a supervised
machine learning algorithm. Existing works on weak supervision do not limit the
format of these labeling functions and treat them as black-boxes or individual pro-
grams. These labeling functions likely produce noisy and conflicting labels, so that
existing methods have primarily focused on denoising the output of such labeling
functions using generative models.

Summary and Contributions

We introduce in this work a weak supervision approach, where class-specific su-
pervision can be provided with a small set of class-specific bold matching rules
expressed using the schema of the knowledge base. The rules are termed bold,
as we require rules to be only somewhat accurate, while there is no requirement
for these rules to have a high coverage. In our methodology, the rules are ensem-
bled with a class-agnostic unsupervised matching model. This ensembling yields
a class-specific weakly supervised labeling function with a full coverage provided
by the unsupervised model. We use this labeling function in line with the data
programming paradigm to bootstrap a supervised matching model. This is done
by labeling training examples from a set of randomly chosen web tables and using
them to train a random forest classifier.

Our approach has two contributions when compared to existing work in the
area of weak supervision using heuristics or labeling functions. First, unlike black-
box labeling functions, rules within our methodology are easy to create and se-
mantically clear to understand. Individual rules are simple conjuncts of attribute
tests based on the schema of the knowledge base. Within these rules, there are no
weights, nor are there programs or external resources used. The rules are executed
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using features and equivalence functions already present within the LTEE Pipeline.
Additionally, the rules can be used as weak supervision for any matching tasks of
a given class, i.e. the same rules are used for row clustering and new detection.

Secondly, we require only a small set of rules per class. By ensembling the
rules with an unsupervised model, we are not only able to provide full coverage,
but though averaging the output of the rules and the unsupervised model, we are
able to reduce the negative impact of possibly biased or even inaccurate rules. We
have showed in our discussion how using a small number of rules alone, without
ensembling with the class-agnostic unsupervised model will not yield an effective
labeling function.

Finally, we have provided an extensive discussion on the design and parameter
choices of the actual machine learning algorithm we use to bootstrap a supervised
classifier using weak supervision. We present arguments, why random forests are
especially useful for this task, and discuss the hyperparameters choices most suit-
able when training from labeled data that is likely noisy.

Open Issues and Future Research

Regarding weak supervision for long-tail entity matching, there are multiple op-
portunities for future research. First of all and similar to the discussion on long-tail
entity extraction above, an evaluation of our weak supervision approach on a larger
number of classes could provide more insight into its universality and usefulness.

As the bold rules are based on the schema of the knowledge base, they could
potentially be mined from the knowledge base itself. In this case, no human experts
are required to provide supervision. Additionally, a large number of more diverse
rules could be minded, potentially improving the quality of the labeled data.

Given the importance of the unsupervised model, future research could focus
on improving it. We have outlined in Chapter 10 multiple approaches on how this
could be done. This includes ensembling multiple versatile unsupervised models,
dynamic thresholding, automatic weighting, and using multiple iterations.

Similarly, one could investigate alternative approaches to ensembling. Cur-
rently, we ensemble the unsupervised model with only one of the rules from the
set, i.e. the one fired with the highest confidence. A more sophisticated approach
could potentially lead to better results, by considering all fired rules.

Future research could also investigate the use of alternative supervised machine
learning algorithms during bootstrapping. This would allow a confirmation that
random forests are especially suitable for training on noisy training data.

Finally, our bootstrapping approach could be extended using an iterative pro-
cess. In our experimental results in Chapter 10, we already found that by using
bootstrapping and a supervised model trained using strong supervision, we could
train an even more effective model. This resembles a semi-supervised approach.
We could similarly use a model bootstrapped from weak supervision as a labeling
function to iteratively bootstrap a potentially more effective model.
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11.4 Research Impact

The methods researched in this thesis form the end within a long chain of data
integration tasks. Using web tables for knowledge base enrichment begins with
crawling websites and extracting web tables and continues with parsing and nor-
malizing these tables to then match them to a knowledge base schema. Finally, we
apply identity resolution and fusion methods to perform either slot filling or entity
expansion. This thesis focuses on these last two steps in the long list of methods
required to enrich a knowledge with long-tail knowledge from web tables.

This chaining of methods necessarily leads to the compounding of errors, in-
creasing the difficulty of tasks at the end of the chain. This also possibly explains
why problems like time-aware fusion and long-tail entity extraction are less stud-
ied in related work, when compared to web table matching. This thesis closes this
gap by extensively researching both tasks and enabling the actual enrichment of
cross-domain knowledge bases with long-tail knowledge using web tables.

The significance of web tables for knowledge base enrichment is highlighted
by the fact that our work on web table profiling [Ritze et al., 2016] is highly cited.
Similarly, two survey papers on web tables have recently been published [Cafarella
et al., 2018,Zhang and Balog, 2020], showing the interest in research on web tables.

Existing works on time-aware fusion view the temporal scope as an additional
semantic annotation, like unit and scale [Zhang and Chakrabarti, 2013]. However,
in the context of fusion, unit and scale fall into the aspect of correctness, whereas
the identification of the correct temporal scope falls in the aspect of validity. Our
research is the first to explicitly introduce and define the task of targeted slot-filling
(see Sections 6.1 and 7.1), while differentiating temporal from snapshot-based
knowledge bases and temporal knowledge from listing data. We additionally in-
troduce the Time-Dependent Ground Truth, which could enable a large range of
research for tasks that consider the temporal aspect of data.

To the best of our knowledge, we are the first to research the task of long-
tail entity extraction. There is currently one paper [Zhang et al., 2020] in preprint
on long-tail entity extraction to be presented at the World Wide Web Conference.
Unfortunately, the authors seem to be unaware of our research. However, this
shows the increasing importance of the topic of long-tail entity extraction. We
have compared their work to ours in Section 8.4. With the T4LTE dataset, we have
also introduced the first benchmark for long-tail entity extraction from web tables.

Finally, regarding our work on weak supervision for entity matching, there ex-
ists a recently published relevant work that also cites our research [Primpeli et al.,
2020]. The authors use an unsupervised model from which they bootstrap a super-
vised model to alleviate the cold-start problem of active learning. The unsupervised
model, similar to ours, uses a weighted average of normalized feature scores. How-
ever, the authors introduce and employ a dynamic thresholding method. Similar to
us, the authors also use random forests when bootstrapping and training supervised
models. The suggested approach is able to counteract the cold-start problem, while
additionally improving overall F1 and stability.
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