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1. Introduction

This dissertation explores two main topics: �rst, it asks how retail �rms interact with each other at
close quarters; and second, it explores how students bene�t from having more choice in the decisions
to choose a secondary school. Both topics have a spatial dimension: retail �rms compete with other
retail �rms who are nearby and, as we establish, students consider commuting times as an important
selection criterion so they choose schools which are closer more frequently. These aspects motivate
the reference to the spatial dimension of choice and competition in the title of this dissertation. This
thesis consists of three independent chapters, which I summarize in turn.

1.1. Dynamic spatial entry

The �rst two chapters of this dissertation are concerned with the empirical analysis of dynamic spatial
entry models. The �rst chapter examines the e�ect of price competition on the location choices of retail
pharmacies in large cities. I exploit a regulatory change in 2004 that introduced price competition for
non-prescription drugs to estimate the parameters of a dynamic spatial entry model. To this end, I use
a comprehensive panel dataset of retail pharmacy locations that was especially constructed for this pur-
pose. I estimate the dynamic model by means of a nested �xed point approach, because the asymmetric
nature of the entry game renders conventional two-step estimators inapplicable. The computational
burden of this approach is alleviated by tailoring the concept of an oblivious equilibrium to the spatial
nature of the game, resulting in what I call a spatial oblivious equilibrium. I �nd that the regulatory
change lead to more intense local competition and lower entry costs. The estimated structural model
is then used to decompose the e�ects of the regulatory change on market structure and consumers’
travel distances. I �nd that one third of the total decline in the number of pharmacies between 2004
and 2016 is attributable to increased local interaction, whereas this caused the consumers’ distance to
the nearest pharmacy to increase only marginally. This result suggests that price competition bene�ts
consumers not only because it lowers retail prices, but also because it leads to a more e�cient spatial
distribution of retail pharmacies. These results also apply in other contexts where �rms simultaneously
decide on the placement of their horizontally di�erentiated products.

The second chapter revisits the spatial dynamic entry model developed in the �rst chapter, and takes
a closer look at the estimation and identi�cation aspects. I use a simpli�ed version of the model
that has only three regular parameters of interest to assess the properties of the nested �xed point,
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maximum likelihood estimator by means of a Monte Carlo study. I classify the model parameters in
two categories: regular parameters that directly determine the payo� structure, and hyper-parameters
which govern the nature of the strategic and spatial interaction. I �nd that the regular parameters can
be consistently estimated and that they converge to a normal distribution as the size of the observed
markets increases, provided that the model is speci�ed correctly. This result is in line with standard
results on extremum and maximum likelihood estimators, and it serves to illustrate that the method
has been implemented correctly. I also �nd that the model’s regular parameters can be consistently
estimated even if some hyper-parameters of the model are unknown, and must be estimated via a
grid search procedure. Furthermore, my results imply that the model’s period return functions, but
not the entry cost parameter, can still be estimated if the researcher does not observe all potential
entry locations of the dynamic spatial entry game. This is a reassuring �nding because in practice, the
researcher often only observes rather short time horizons and so it is highly likely that some potential
entry locations are never observed in this short time period. At last, the Monte Carlo simulations have
also pointed to the limitations of nested �xed point procedures, because the computational burden
becomes rather excessive even for the simpli�ed strategic interactions that were developed in the �rst
chapter. Thus, the results demonstrate the need for developing the concept of the spatial oblivious
equilibrium further so as to accommodate computationally e�cient k-step methods.

1.2. School district consolidation

The third chapter concerns a di�erent topic altogether and is the result of a joint e�ort together with
Josue Ortega, who is a lecturer at Queen’s University in Belfast, and with Thilo Klein, who is a researcher
at the ZEW and a professor at Pforzheim University. We study the welfare e�ects of school district
consolidation, when both the de-centralized school markets as well as the consolidated school market
determine the allocation of students to schools by means of the deferred acceptance algorithm. We
show theoretically that there are expected welfare gains from district consolidation for all students, in
particular for those who belong to smaller and over-demanded districts.

Using administrative data from the Hungarian secondary school assignment mechanism, we compute
the actual welfare gains from district consolidation and compare these to our theoretical predictions.
Hungary has a nationwide, consolidated school market which uses the deferred acceptance algorithm
to assign students to schools. In this system, students submit their rank order lists of arbitrary length
to a matching platform, and schools provide a ranking of their applicants. Then, the deferred accep-
tance algorithm is used to allocate school seats to students. We compare the outcome of this deferred
acceptance algorithm when the market is consolidated, which corresponds to the status quo, to a
counter-factual scenario in which the school market is split into several smaller districts. To this end,
we us administrative data that includes students’ rank order lists, their standardized test scores and
socio-economic background, and schools’ applicant rankings.
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As an important building block of our empirical strategy, we describe a method to consistently estimate
students’ preferences across schools, and vice versa. Our method is based on the additive random utility
framework and it corrects for the strategic reporting bias by using a combination of two identifying
assumptions to construct latent feasible choice sets for students and for schools. Our method is im-
plemented as an R package, and is made available for use by other researchers. We also conducted a
Monte Carlo study to illustrate that the method works as intended and is indeed robust to strategic
misreporting of students’ preferences.

We �nd that students prefer schools that are nearby; they value schools with a high average academic
achievement; and we also �nd evidence for assortative preferences. Because the status quo in the market
under consideration is the consolidated school market, many students do not rank any school from their
home district, which is why we use the estimated preferences to construct hypothetical complete rank
order lists over all schools. We use these complete rank order lists to compute the deferred acceptance
assignment in the consolidated and in the counter-factual district-level school markets. The additive
random utility framework also allows us to determine the welfare gains and losses that students incur
as a result of market consolidation. Because our utility speci�cation includes a travel distance term, we
can express the gains from district consolidation in terms of distance equivalence units. Our results
imply large welfare gains from district consolidation for students, equivalent to attending a school �ve
kilometres closer to the students’ home address. We �nd that students with higher academic ability
have signi�cantly higher welfare gains from consolidation, but that there is also a large idiosyncratic
component to explaining the consolidation gains. Students living in smaller markets, or in markets
with less capacity, gain more from market consolidation than do other students. The secondary school
market in Hungary is characterized by having a lot more nominal capacity than there are students, and
so our results are not necessarily applicable to school markets which have less excess capacity. Indeed, if
the educational market as a whole is balanced with little excess capacity, then the average welfare gains
are much smaller, and the median student neither bene�ts nor looses from consolidation. In such cases,
there may be districts in which the share of students who gain due to market consolidation is smaller
than the share of students who loose due to market consolidation. These e�ects are highly dependent
on the speci�c market circumstances, but they show that it can be di�cult to obtain a majority consent
for market consolidation.

1.3. Discussion

The main �ndings in this thesis are that more competition can improve the spatial allocation of retail
pharmacies from a consumer perspective, and that bigger school choice markets can be bene�cial for
students because the positive choice e�ects outweigh the added competition e�ects. Taken together,
these results may be interpreted as unequivocal support for market liberalization and consolidation.
But far from it. The German retail pharmacy market is still regulated in many aspects and the intro-
duction of price competition for non-prescription drugs has been a rather small shift towards market
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liberalization. I have merely shown that this small intervention has likely lead to a more e�cient spatial
allocation of pharmacies, but this does not imply that a more thorough liberalization, possibly including
prices for prescription drugs, would be equally bene�cial. On the contrary, it is quite possible that
this would result in too much spatial di�erentiation (d’Aspremont et al., 1979), implying much higher
travel costs. Also, I restricted the empirical analysis to urban markets and it need not generalize to
rural markets where travel and hence competitive patterns are di�erent. Likewise, although we �nd
that the consolidated school market in Hungary bene�ts most students as opposed to the hypothetical
unconsolidated market, this result may not translate to other settings. For instance, the Hungarian
school market is characterized by substantial nominal excess capacity, but we found welfare gains to
dwindle in a completely balanced market lacking excess capacity. Moreover, the society’s objective
function may include the students’ aggregate welfare, but it could also include distributional or fairness
motives. And so I prefer to draw a cautious conclusion from this thesis must remain cautious: In two
important markets – allocating students to public schools in Budapest, and providing pharmaceuti-
cals to the German public – competition and market consolidation can be socially bene�cial, but this
assessment depends on the speci�c circumstances, and on the objectives of the society.
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2. Spatial e�ects of price regulation and
competition

2.1. Introduction

Modern developed economies spend about a tenth of their national incomes on health care, and phar-
maceuticals contribute a sizeable portion of this spending block. Figure 2.1 shows that the expenditure
share of pharmaceuticals alone is close to two percent in major industrial nations. And while online
pharmacies are pushing into this large market, the majority of prescription drugs is still sold in retail
pharmacies:1 their emblem is ubiquitous in many cities. This is also true in Germany, the world’s fourth
largest market for pharmaceuticals: In 2004, one �fth of all pharmacies were located closer than 110
metres apart from their nearest competitor.2 But to the consumer (or patient) in need of a prescription
drug, two adjacent pharmacies are in no way better than just one single pharmacy, because prescription
drugs are subject to quality and price regulations. Therefore, a more dispersed spatial allocation that
reduces travel costs would be preferable from a consumers’ perspective. In this paper, I develop a
spatial entry model to show that such a pattern has gradually emerged in Germany as a result of a
regulatory change in 2004 which introduced price competition for non-prescription drugs. The topic is
of current interest because the European Commission and the European Court of Justice have recently
challenged the German system of �xed prices for prescription drugs. My contribution is twofold: First,
I document a case where the introduction of price competition had a profound impact on the spatial
market structure. Second, I develop a feasible method to estimate a dynamic spatial entry model with a
large number of asymmetric agents and a very �exible notion of “space”. I motivate my research with
an illustrative theoretical model of space-then-price competition.

I illustrate the mechanism through which price competition a�ects location choices by means of a
simple variant of the classical Hotelling model. In this model, retail �rms typically face the trade-o�
between choosing a central location to attract high demand (“market share e�ect”) and di�erentiating
themselves from their competitors to increase their local market power (“market power e�ect”). The
market share e�ect should lead to spatial clustering, while the market power e�ect should lead to spatial
dispersion. If competition is mitigated due to price regulation, the market power e�ect should therefore
become more dominant and lead to more clustering, and vice versa. As a result, the inter-�rm distances

1The German statistical o�ce puts the share of revenue from e-commerce in this large retail sector below 1. (destatis,
2019, table 45341-0001)

2Source: Deutscher Apotheker Verlag (2016), own calculations
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Figure 2.1.: Spending on pharmaceutical products in 2018, by country. Share of national GDP in
parentheses. Source: author’s representation based on IQVIA (2019).

should increase, while the consumers’ average travel distances should decrease. This hypothesis will be
examined for the retail pharmacy sector in Germany. Of course, the process of gradual re-locations that
is at the heart of the Hotelling model cannot be observed empirically. It should rather be considered as
an approximation to the dynamic process of entry and exit which forms the aggregate market patterns.

Until 2003, the German market was characterized by three distinctive institutional features: retail prices
for prescription and non-prescription drugs alike were �xed, pharmacies were only allowed to operate
as a single-store business, and no minimum distance regulations were imposed. A major health reform
in 2004 changed the �rst two aspects: it introduced price competition for non-prescription drugs and
allowed local pharmacy “chains” of up to four branches. I document that, following this reform, the
number of pharmacies declined by about six percent, while the average consumer’s distance to the
nearest pharmacy only increased by a small amount, which suggests that the decline in the number of
pharmacies was largely due to intensi�ed competition between, and exit of, nearby or adjacent stores.
In order to isolate and quantify the e�ect that the introduction of price competition had on pharmacies’
location choices, I develop a dynamic structural model of spatial entry and �t it to the data on pharmacy
locations. Using this model, I �nd that the period following the reform can be characterized by lower
entry costs, lower period returns, and more intense competition among nearby competitors. I interpret
the latter as a direct consequence of introducing price competition for non-prescription drugs and use
simulations to isolate its e�ect on aggregate outcomes and consumer travel distances. The simulation
results show that the price competition e�ect alone can explain one third of the observed decline in
the number of pharmacies, but only one �fth of the observed increase in consumer travel distances.
Therefore, the introduction of price competition contributed to a very consumer-friendly change in the
spatial distribution of stores, with lower overall �xed costs and only marginally higher travel costs.

One particularly illustrative example is shown in �gure 2.2. That �gure shows the location of �ve
pharmacies in the small town “Hagenow” with about twelve thousand inhabitants. What is striking
about the picture – apart from the fact that such a small town can sustain �ve pharmacies – is the
observation that they are all situated very close to what one may call the “city centre”, an archetypical
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Figure 2.2.: Hotelling at work: agglomeration of pharmacies in a small town. Source: author’s
own representation.

outcome of the classical Hotelling model: competitors exhibit an “undue tendency [. . . ] to imitate each
other in quality of goods, in location, and in other essential ways” (Hotelling, 1929). I show that such
ine�cient market outcomes have become less prevalent due the health care reform of 2003.

I have structured this chapter as follows. Following a description of the institutional background, the
relevant literature on spatial competition and location choice is reviewed in depth, and related to my
approach. Section four develops a very stylized model of space-then-price competition to motivate the
research question. Section �ve sets up a dynamic spatial entry model, section six describes my data and
section seven applies the model to the data and estimates its structural parameters. The last section
concludes.

2.2. Institutional background

This section brie�y describes the German pharmacy market and then outlines the most relevant legis-
lations. More detailed accounts of the pharmacy market in Germany can be found in Horvath (2010)
or Coenen et al. (2011).

2.2.1. Business structure

In order to obtain a brief overview on the market under consideration, some key �gures from two years,
2005 (the earliest year for which these data are available) and 2015, are compiled in table 2.1. The table
shows that the industry has undergone some important changes from 2005 to 2015. First, the number
of stores has declined by approximately six percent. After having reached a peak of 22 thousand stores
in 2005, there are currently around 20 thousand pharmacies in Germany which amounts to 25 stores
per 100,000 inhabitants. More importantly, the net pro�t margin – that is, the overall pro�tability of a
store relative to its generated revenues – has halved from twelve to six percent. That �gure is roughly
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2005 2015

Stores 21,968 20,639
Employees (’000) 157 210
Revenues per store (’000) 1,392 2,110

% prescriptions drugs – 83
% from e-commerce 0.3 1.0

Number of packages sold (bn.) – 1405
% prescriptions drugs – 53

Gross earnings on sales per store† (’000) 402 509
% margin on revenues 29 24

Operating pro�ts per store§ (’000) 159 125
% margin on revenues 12 6

Sources: Destatis (2017), ABDA (2016)
† revenues less wholesale cost

§ Earnings after costs, wages, taxes, rents

Table 2.1.: Business indicators of retail pharmacies.

comparable to the pro�tability of bakery shops in that period (Destatis, 2017). The table further shows
that retail pharmacies are rather small, with revenues that average around 2m Euros in 2015 and roughly
ten employees per store. Pharmacies sell medicine to patients that can be classi�ed into prescription
(Rx) and non-prescription, or over-the-counter (OTC) drugs. The table shows that prescription drugs
account for the bulk of aggregate revenues, but make up only slightly more than half of the packages
that were sold. The share of revenues generated online is still very small in this retail sector. However,
online resellers from abroad, who are not subject to price regulation on prescription drugs3 are pushing
into the market meaning this market segment could become more important in the future.4

2.2.2. Regulatory framework

The retail pharmacy market is subject to a large body of regulations that sets standards for the operation
of pharmacies. This regulatory framework consists of several separate laws which, taken together,
determine who may operate a pharmacy, set standards for the establishment of one and govern the
compensation schemes. The relevant regulations are summarized below.

First and foremost, the German pharmacies act (Apothekengesetz, ApoG) lays out the general conditions
under which a pharmacy may be operated. It states that pharmacies are responsible to guarantee the
“proper supply” of medication to the population. A pharmacy may only be operated by a certi�ed
pharmacist who has obtained a licence from the authorities. This licence expires if the business ceases
to exist or if the operator dies. While a pharmacy may be operated jointly by more than one pharmacist
(each of whom requires a licence), partnerships which make the compensation of one partner, indirectly
or directly, contingent on pro�ts or revenues, are in general not allowed. Neither may a pharmacy
commit to exclusively sell the products of certain manufacturers, or strike special deals with physicians

3Ruling of the European Court of Justice, Case C-148/15, retrieved from http://curia.europa.eu on 5 June 2020.
4On July 08, 2017, the Swiss company “Zur Rose Group AG” has collected CHF 200m with its IPO and declared that it

would use the proceedings to expand its German online business. (BZ, 2017)
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to prescribe a certain range of products. All pharmacies are obliged to participate in a scheme which
guarantees the provision of emergency services during night times or on public holidays. It is admissible
for pharmacies to distribute products by post, although the numbers from Destatis (2017) suggest that
this is a niche market. Since 2004, a licenced pharmacist may obtain permission to operate up to three
subsidiary branches that must be in the same district as the main branch, or in an adjacent one. Each
subsidiary branch must be operated by a licenced pharmacist, and ful�l all the requirements of a regular
pharmacy with the exception that it need not have an own laboratory. Most importantly, the pharmacist
is free to choose the location of his or her pharmacy, subject of course to residential zoning regulations
but independent of the locations of other competitors.5

Further legislation is delegated to the ordnance on the operation of pharmacies (Apothekenbetriebsord-
nung, ApoBetrO) issued by the federal health ministry: �rst, the pharmacist who operates a pharmacy
must do so in person, i.e. they cannot hire a manager to run the store. Every pharmacy must have a
�oorspace of at least 110 sq.m. and a laboratory that is fully equipped to produce custom medications,
unless it is a subsidiary branch of another store in which case a laboratory is not mandatory. Stocks
must be su�cient to cover the needs of the population for at least one “average” week, notwithstanding
the obligation to always maintain further stocks of medications and vaccines for emergency purposes.6

In most European health insurance systems, patients pay some share of the costs of their prescribed
medication out of their own funds (Panteli et al., 2016) and this is also the case in Germany. In what
follows, the price that the patient sees under this cost-sharing rule will be referred to as the retail price.
Usually, this retail price is a function of the list price, and it is in general the same for all members of a
public health insurance. Unlike in most other retail markets, the pharmacy’s variable pro�t per unit
of prescription drug sold is not the di�erence between retail prices and list prices. Instead, markups
are regulated directly, again as a function of the list price.7 Figures 2.3a and 2.3b show how the implied
markups and consumer retail prices as a function of list prices changed due to the reform in late 2003.
The �gure implies that prior to the reform, pharmacies had a strong incentive to sell expensive drugs,
while consumers had no or little incentive to ask for cheap generics. The reform partially reversed
this, as pharmacies now have a very small incentive to sell expensive drugs, while patients now have a
stronger incentive to ask for a cheaper generic product. Until 2003, retail prices of OTC and Rx drugs
were both regulated. The health care reform in late 2003 changed this: the price regulation scheme for
non-prescription drugs was abandoned so that today, roughly half of all packages accounting for 15%
of total revenues are sold competitively (see table 2.1). On the other hand, retail prices and markups of
prescription drugs remain subject to regulation.8

5§§1, 3, 8, 9, 10, 11, , 11a, 14, and 18 Apothekengesetz (ApoG), retrieved from gesetze-im-internet.de/apog on 28 June
2017

6§§2, 4 and 15, Apothekenbetriebsordnung (ApoBetrO), retrieved from gesetze-im-internet.de/apobetro_1987 on 28 June
2017

7cf. §3 Arzneimittelpreisverordnung (AmPreisV) as of 1 January 2002 and 11 May 2019; and §§31,61 SGB V as of 1 January
2003 and 1 January 2005. Retrieved from research.wolterskluwer-online.de on 24 July 2019.

8See Art. 1 (39,92,94) and 24 (1,3), GKV Modernisierungsgesetz. Bundesgesetzblatt I, 2003(55):2190–2258
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Figure 2.3.: Price regulation for prescription drugs, until and after 2003. Source: own representa-
tion based on the relevant legislative texts.

The European Commission (EC) has repeatedly called on its member states to liberalize their pharmacy
markets, and was often supported in its view by the European Court of Justice (ECJ).9 While the EC sees
pharmacies as part of the retail sector and applies the rules of the common market to it, the prevailing
view in some member states, manifested in their regulatory frameworks, regards pharmacies as part
of the health care system where price competition should not play a role. Therefore, it is possible that
the near future will see signi�cant changes of the regulatory regimes in Europe.

To summarize, the health care reform of 2003 has changed the pharmacies’ compensation scheme in
Germany, it has likely changed the entry costs by permitting up to three subsidiary branches, and it
has presumably increased competition among adjacent pharmacies by introducing price competition
for non-prescription drugs. These considerations will guide my empirical approach.

2.3. Related Literature

2.3.1. Theoretical literature

For a long time, economists and social scientists have discussed the question of where and how eco-
nomic agents locate. Nearly two centuries ago, Johann Heinrich von Thünen provided an economic

9For example, the European Commission (EC) has urged members to take action in the following areas: legislation
restriction the freedom of establishment in Italy, Spain and Austria (EC press release IP/06/858, ECJ ruling C-367/12); legislation
restricting the number of pharmacies that may be owned in Italy (EC press release IP/06/1789); and legislation concerning
the delivery of pharmaceuticals (EC press release IP/09/438). In 2016, the ECJ ruled that online pharmacies that are located in
a member state of the European Union outside Germany are not obliged to comply with the German price regulation scheme
for prescription drugs if they ship to Germany (ECJ ruling C 148/15). In July 2019, the EC reiterated its request for Germany
to abandon its price regulation scheme (EC press release MEMO-18-3446). In response, the German cabinet has drafted a law
that makes adherence to the German price regulation scheme a precondition for medical expenses to be accounted for with
the German public health insurers (“Gesetz zur Stärkung der Vor-Ort-Apotheken”, currently under parliamentary revision,
document no. 373/19, retrieved from bundestag.de on 5 June 2020).
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explanation for di�erent agricultural structures around cities. Weber and Pick (1909) discussed where
production facilities should optimally be located, taking into account the locations and transport costs
of di�erent inputs and keeping market conditions constant. Next Christaller (1933) developed theories
on the ideal spatial constellation of cities (or “central places”), and Lösch (1940) adopted a more general
equilibrium approach which predicts that economic agents will be positioned such that each unit serves
a hexagonal market area giving rise to a “honeycomb pattern” of market areas. Neither of these authors
has considered the problem of price competition. A review of these classical approaches can be found
in Kulke (2013) and Fischer (2011). An interesting extension to the works of Lösch and Christaller is
Rushton (1972) who computes optimal market structures under non-uniform consumer distributions
using a numerical approach. This leads to skewed point patterns, while the original hexagonal structure
is still visible.

Taking into account that �rms choose their locations strategically, and also compete on attributes other
than their location complicates the analysis. Hotelling (1929) was the �rst to point out that pro�t
maximizing competitive �rms may choose to agglomerate, thus in�icting ine�ciently high travel costs
on the consumer side. He applies his �nding to the political economy sphere:

The competition for votes between the Republican and Democratic parties does not lead to
a clear drawing of issues, an adoption of two strongly contrasted positions between which
the voter may choose. Instead, each party strives to make its platform as much like the
other’s as possible. (Hotelling, 1929, p. 54)

Of course, there is no price competition in politics so what may be true for political parties must not nec-
essarily hold for competitive �rms. This was already apparent to Hotelling who noted that “Bertrand’s
objection applies” as soon as both competitors are in the same place (p. 52). An early extension of
his work is Smithies (1941) who introduced elastic aggregate demand, thus disposing of the zero-sum
nature of the original set up. Smithies �nds that minimal di�erentiation is not a necessary outcome
under this assumption. This �nding has been con�rmed by d’Aspremont et al. (1979) who even show
that Hotelling’s model with linear transport costs does not have an equilibrium at all, and, by assuming
quadratic transport costs, derives a contrary outcome: that �rms will optimally tend to locate at both
extremes of the market. From there onwards, quadratic transportation costs have become a standard
in the theoretical literature. For instance, Bester et al. (1996) is an in-depths game theoretic analysis of
the location-then-prices model with quadratic transportation costs and deterministic consumers and
Anderson et al. (1997) derive conditions for general, non-uniform population distributions under which
an equilibrium exists.

The di�culties with establishing an equilibrium outcome are closely linked to �rms’ incentive to
undercut each others’ prices when both �rms are located at the same point and perfect competition
causes consumers to purchase the cheapest product (adjusted for travel costs) in a deterministic way.
Thus, as soon as consumers are assumed to posses preferences over attributes other than the delivery
price, price competition is softened and this problem can be expected to be alleviated. The �rst to note
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this were de Palma et al. (1985) who modelled consumer demand for two spatially di�erentiated �rms
by using the discrete choice framework that has now become standard in the literature on empirical
industrial organization. Consumers care about travel costs and prices, but also posses idiosyncratic
preference shocks over visiting di�erent stores, and �rms are assumed to sell their products at a given
price. As a consequence, consumers may now purchase from a store that o�ers a higher travel cost
adjusted retail price because this store appeals to the consumer in some other, unknown dimension.
It will now be worthwhile for both �rms to locate at the centre, because consumer heterogeneity
“eliminates discontinuities in the pro�t function” (p. 771) so that any deviation from the market centre
leads to lower demand. A similar conclusion is reached by Ben-Akiva et al. (1989) who introduce price
competition and a second dimension along which products are di�erentiated, but which the �rms do
not choose strategically. This set up achieves the same e�ect in that it eliminates the incentive to
undercut and thus makes the agglomeration a feasible equilibrium. Finally, (Anderson et al., 1992,
p.343–392) combine logit demand, price competition and location choices along the real line. They
show analytically that the location-then-prices game has a centralized equilibrium if consumers are
su�ciently heterogeneous. They also solved their game numerically with two �rms and locations on
the real line, yielding both symmetric non-central equilibria and agglomeration as the outcome. They
do not derive de-centralized equilibrium locations analytically.

The literature in the previous paragraph modelled space as a unidimensional line for the sake of analytic
simplicity. Yet, most spatial patterns observed in the real world are two-dimensional. Eaton and
Lipsey (1975) were the �rst to take spatial competition to the two-dimensional space, by simulating the
movements of up to seventeen �rms that sequentially re-locate so as to maximize their market shares
while keeping prices �xed. They �nd that the honeycomb pattern of Lösch quickly breaks up and thus the
authors “strongly suspect, but as yet cannot prove, the non-existence of any equilibrium con�gurations
in the disc beyond n = 2” (Eaton and Lipsey, 1975, p. 44). Irmen and Thisse (1998) consider the
case with quadratic transport costs and deterministic consumers who care about multiple product
characteristics. Their �nding is that �rms will, in equilibrium, choose maximum di�erentiation in the
dimension which consumers care about most, and minimum di�erentiation in the other dimensions.
A similar result appears to have been simultaneously derived by Ansari et al. (1998) for the case of
three product attributes. A more recent attempt to characterize equilibrium locations in a competitive
environment is worked out by the four computer scientists Ottino-Lo�er et al. (2017) who follow the
approach of Eaton and Lipsey (1975) and �nd stable spatial patterns with up to seven �rms, using
deterministic consumers who care about travel costs. Yet, their pricing stage is not modelled explicitly
and they employ a rather coarse grid such that their results should be considered with some caution.
In a theoretical paper, Vogel (2008) studies location-then-price equilibria on the unit circle and �nds
that more productive �rms locate in more isolated areas. Yet, his main contribution is a mathematical
trick that establishes equilibrium existence in such a game despite using linear transportation costs. In
a more recent paper, Allen and Arkolakis (2014) derive the existence of spatial equilibria in a general
equilibrium setting. A continuum of consumers (who are also workers) equipped with CES preferences
is distributed across a compact two-dimensional space. Each consumer also produces exactly one unit
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of the output good, and bilateral trade is then governed by a gravity equation. A spatial equilibrium is
a distribution of consumers/workers such that their incomes equal their expenditures, and there are no
pro�table relocations. Finally, a recent review article by Biscaia and Mota (2013) reiterates that research
on location-then-price competition in the two-dimensional plane is still not so abundant.

Speci�cally concerned with price regulation in the health care sector are theoretical papers by Brekke
et al. (2006, 2011). Both add a quality dimension to �rms’ decision space letting �rms e�ectively compete
on locations and on quality. The theoretical paper (Brekke et al., 2006) is cast in a Hotelling duopoly
environment with a linear choice of location and quality-speci�c investment. Representative consumers
have a linear utility function and care about the price, quadratic transportation costs and quality of the
service. The basic insight of their model is that, while price regulation leads to an agglomeration of
�rms, quality competition counteracts this force, leading to more spatial di�erentiation. A regulator
who cares for social welfare would attempt to choose a price so as to maximize welfare, taking into
account the subsequent quality and location decisions of �rms. If location decisions are exogenous,
the optimal quality level can be attained whereas if both location and quality choices are exogenous,
the second best outcome would either entail too much spatial di�erentiation and too low quality or
vice versa. In Brekke et al. (2011), the relation between quality choice and competition is examined
theoretically, but the total number of hospitals and their location is taken as given.

2.3.2. Empirical literature

For the empirical analysis of spatial competition, it is necessary to model both consumers’ spatial
demand, and �rms’ location choices. Modelling spatial demand empirically does not pose substantial
challenges. The standard ARUM model of consumer utility over spatially di�erentiated alternatives
with random coe�cients and logit choice probabilities can be found in papers such as Davis (2006), Ho
and Ishii (2011), Crawford (2012) and the references therein and Aguirregabiria and Vicentini (2016).
Most of the insights from Berry (1994) can be readily applied to the spatial context, using a distance
function that enters a consumer’s utility function. Further works who use this framework are Chisholm
and Norman (2012) and Davis (2006) who examine the market for cinemas and Ho and Ishii (2011) who
study retail banking.

It is far more di�cult to model location choice in a tractable, yet plausible and �exible way. Some
implications of the theoretical literature on multi-attribute competition in a spatial context have been
tested empirically by Netz and Taylor (2002) who �nd evidence that gasoline stations respond to tougher
competition with more spatial di�erentiation. Further, Thomadsen (2007) uses a structural pricing
model to derive demand parameters and builds on (Anderson et al., 1992, p.343-392) to examine the
optimal location decisions under di�erent cost structures. Yet, his counter-factual simulations are
restricted to spatial competition along one dimension. Contrary to the theoretical literature, empirical
models of the supply side often assume that �rms choose to enter in a discrete set of locations and
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derive equilibria under incomplete information. This approach was pioneered by Seim (2006) who uses
relatively few locations and a reduced form pro�t function.

A few studies exist that are dedicated to competition in the retail pharmacy market. Horvath (2010)
analyses the nexus of price regulation and quality and spatial competition on the German pharmacy
market. However, he reviews models of quality and circular spatial competition and free entry which are
less suited to study location choices because �rms will usually locate at equidistant locations around
the circle. His empirical results are based on rather coarse county-level data. Hence, an important
extension of this work is to model spatial entry in a more detailed fashion, and to link it more tightly
to detailed data sources. A related study published by Coenen et al. (2011) also features a very detailed
institutional description of the pharmacy market in Germany. In a scenario-based approach, they
compare di�erent reform options with regard to their cost saving potential. The competitive reactions
of �rms in the market are not endogenously determined in their approach. In both aforementioned
studies, the focus seems to be more on the equilibrium number of pharmacies rather than on their
location choices. Similarly, Schaumans and Verboven (2008) set up a model of joint entry by physicians
and pharmacies in small local markets but again, the focus is on entry and exit as opposed to the
small-scale geographical distribution of economic units.

2.3.3. Dynamic empirical literature

The empirical approach that this paper presents relies on a dynamic entry game with a large number
of players. These players interact with each other the more intensely, the closer they are together, but
in principle, every agent interacts with every other agent. In solving dynamic discrete games with
many players such as the one described below, a direct solution of the game becomes infeasible even for
moderately-sized problems. The crucial point here is that the size of the state space grows exponentially
in the number of players, which poses computational problems for two principal reasons: �rst, the large
amount of computer storage required to store the entire value function, and second, the computational
burden associated with computing an expectation over the future state space. The state space of the
game presented above is of magnitude 2N and so will be usually too large to estimate the full model
using conventional methods – a typical city in Germany has around eighty pharmacies, and it is often
not desirable to delineate ad hoc market boundaries.10 The literature on dynamic discrete games has
put forward a few approaches to modify the problem in such a way to be able to solve it, or at least to
be able to estimate its key parameters. These approaches will be discussed in turn.

A �rst branch of the literature has evolved around the so-called two-step estimators that were initially
proposed by Hotz and Miller (1993) and later re�ned by Aguirregabiria and Mira (2002) for single agent
decision processes. Two-step (or k-step) estimators rely on obtaining non-parametric estimates of either
the policy function, or the continuation values in a �rst stage, which are then used to compute the
players’ best responses and a likelihood function in a second stage. These ideas have been applied to

10To get an idea of the magnitudes, 280 ≈ 1024 so even storing the value function infeasible.
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games with many players by Aguirregabiria and Mira (2007) who use estimates of the conditional choice
probabilities, and by Pakes et al. (2007) who estimate continuation values in a �rst step. Bajari et al.
(2007) extend these methods to allow for continuous choice variables. A recent addition to this literature
is proposed by Aguirregabiria and Magesan (2019) who study dynamic entry when players’ beliefs are
not in equilibrium. Their approach also relies on obtaining non-parametric choice probabilities in a �rst
stage. But while being computationally e�cient and elegant, two-step estimators are unfortunately not
applicable to my setting, for the following reasons. First, the size of the state space which is much larger
than the number of observed decisions obviously prevents a direct application of the concept. Second,
the nature of spatial competition is not symmetric: in a certain state of the world, one �rm may face a
lot more local competition than another �rm and so their policy choices, or their strategies, would be
very di�erent. And even if one conditions on the local environment of each �rm, certain con�gurations
of their nearest competitors mean very di�erent things to di�erent �rms due to di�erences in their
relative spatial constellation to each other. Thus, in a spatial entry game, the asymmetry of players’
strategies prevents a direct application of these two-step estimators.

The asymmetry of the problem at hand instead calls for a nested �xed point estimator where each
�rm solves a distinct dynamic problem and therefore has its own policy function. To alleviate the
computational burden associated with solving such a dynamic discrete model, several approaches have
been put forward that will be reviewed �rst, followed by a description of the approach followed in this
paper.

First, Doraszelski and Judd (2012) set up a dynamic model in continuous time which signi�cantly
reduces the computational burden of calculating the expected future state. The expectation is easier
to compute because it becomes increasingly unlikely that more than one player makes a move, as the
time periods become shorter and eventually approach a continuum. Therefore, at each point in time
there are only as many possible future states as there are players in the game. However, an empirical
application of this setting requires that the precise timing of all entry and exit decisions be known,
which is not the case in the data at hand.

Pakes and McGuire (2001) propose a stochastic algorithm to compute an approximation to the MPE.
The algorithm relies on the fact that in many cases, the Markov chains that are induced by dynamic
discrete games have a very large state space, but eventually wander into a smaller set of states that is
known as the recurrent class. Their algorithm draws a new state in every iteration according to the
current policy function, and updates the current state’s continuation value with the new state’s value. It
reduces the number of states that are visited, and the computational burden associated with computing
the expectation over future states, but adds a simulation error to the problem so that more iterations
are necessary for the problem to converge. Their ideas cannot readily be applied to the setting at hand,
mainly because the sampling procedure is not guaranteed to sample uniformly from the recurrent class
of the game. The recurrent class of many dynamic discrete games encompasses the entire state space
because the transition cost shock has, by assumption, full support, so that “anything goes” (albeit it
may do so with very low probability). However, even if the MPE is unique, the transition dynamics
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in some games are likely to imply that the recurrent class is partitioned into a number of sub-classes
which are almost recurrent in themselves. Once the Markov Chain that is induced by equilibrium play
has wandered into one of these subclasses it is likely to remain there (although it is not certain that it
does so). To make this point clearer, consider a dynamic entry model in which an even number of �rms
is located on a circle, and let the parameters be such that having two active direct nearest neighbours
leads to negative (or very small) period returns, while the presence of an active indirect neighbour does
not a�ect pro�ts. If the market entry costs are chosen su�ciently large, it becomes equally likely that
only �rms with even numbers are active, or only �rms with odd numbers. Small permutations of these
con�gurations may arise, but it will be very unlikely to see a complete reversal of fortunes. Therefore,
an unguided sampling procedure similar to the one described by Pakes and McGuire (2001) is likely to
miss a large part of the state space that may be equally likely to occur as the one that was sampled, and
so the procedure is not well suited for the empirical application at hand.

A di�erent approach is taken by Weintraub et al. (2008, 2010) who develop an equilibrium concept in
an entry game with quality investment that they call oblivious equilibrium, wherein individual �rms
condition their actions only on their own state and on the long-run average aggregate industry state.
This aggregate industry state can be assumed to remain approximately constant over time if the number
of �rms and potential entrants is large so that individual decisions are averaged out. A requirement
for being able to condition the decision process is that the period returns of each �rm depend only
on its own state, and on an aggregate state because all competitors are the same. Thus, the oblivious
equilibrium is easier to compute because it greatly reduces the dimensionality of the problem. But in
a spatial context, not all competitors are the same and it is di�cult to reduce the spatial distribution
of �rms to an aggregate statistic with low dimensionality so that the concept of oblivious equilibrium
is not readily applicable. Furthermore, the separation of the state space into an aggregate industry
state that remains constant, and an individual state, e�ectively restricts the permissible state space
very strongly. In my empirical spatial entry model, I will adapt and extend the oblivious equilibrium
concept of Weintraub et al. to the spatial domain in order to address the aforementioned concerns. This
extension of the oblivious equilibrium concept constitutes the main methodological contribution of
this paper.

2.3.4. Contribution

This paper extends the literature on empirical dynamic entry models to incorporate a large number of
heterogeneous, spatially interacting players without having to resort to simplifying symmetry consid-
erations. I extend the ideas put forward in the concept of an oblivious equilibrium to develop a heuristic
approach that reduces the dimensionality of the problem, and yet maintains the spatial and dynamic
features of the model. As an empirical contribution, this paper presents evidence that the introduction
of price competition in a retail market has profound e�ects on the spatial equilibrium distribution of
retail �rms’ locations.
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2.4. A stylized model

To illustrate the characteristic mechanisms and trade-o�s of the market under consideration, and to
motivate my research, I �rst set up a very simple modi�ed Hotelling model of space-then-price compe-
tition on the real line. The analysis is related to the work of Brekke et al. (2006) who consider quality
competition and location choices of hospitals.

Consider the case of two pharmacies competing on prices and locations: �rst, both pharmacies choose
their location and next, taking location choices as given, they compete on prices. Denote the location
of both stores by xa and xb and assume that admissible locations are restricted to the unit interval
[0, 1], and that xa ≤ xb. Pharmacies sell prescription drugs (Rx) at a regulated price r̄ = 0 and non-
prescription drugs (OTC) at price pj , j ∈ {a, b}. To re�ect the institutional characteristics of the
retail pharmacy market, I assume that both pharmacies earn a regulated margin on each sold unit of a
prescription drug. For simplicity, the regulated margin on prescription drugs is assumed to be equal to
one. The marginal costs of non-prescription drugs are assumed to be zero, so that the margin on each
unit of non-prescription drugs that is sold is equal to its retail price pj . Hence, pharmacies’ pro�ts are
given by

πj = QRxj + pjQ
OTC
j

whereQRxj andQOTCj are the demands for prescription and non-prescription drugs, respectively. A unit
mass of consumers is distributed uniformly on this unit interval and indexed by their location i ∈ [0, 1].
Consumers incur quadratic travel costs and there is no outside option so that one consumer certainly
purchases a product from one of the competitors. Each consumer purchases either a prescription drug
or a non-prescription drug, but not both, from one of the stores. With probability α, the consumer
purchases a prescription drug at the regulated price r̄ = 0. Her (normalized) utility from obtaining the
drug at store j is

νij = −(i− xj)2

Therefore, consumers will always obtain their prescription drugs from the nearest pharmacy. On the
other hand, a consumer purchases a non-prescription drug with probability 1 − α. Her utility when
purchasing it from pharmacy j is given by

uij = −pj − τ(i− xj)2

I assume that 0 < τ < 1, as consumers purchase a prescription drug because they are seriously ill
so they should have higher travel costs than those who are not. Since d’Aspremont et al. (1979) have
shown that quadratic travel costs are su�cient to guarantee equilibrium existence, this has become a
standard in the literature, and I abide by it.
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2.4.1. Equilibrium

As a benchmark, consider �rst the trivial case were prices of non-prescription drugs are also regulated,
so that pa = pb = p̄, but �rms choose their locations freely. This is the classical Hotelling model in
which both �rms tend to locate at the market centre so as to maximize their market shares, that is
xa = xb = 1/2.

Next, I investigate whether the introduction of price competition for non-prescription drugs can lead
to a market outcome that is preferable from a consumer’s perspective. I focus on symmetric equilibria.
The following proposition characterizes a symmetric space-then-price equilibrium of the model:

Proposition 1. A symmetric space-then-price equilibrium of the model is given by location choices xa =

x∗ and xb = 1− x∗ with

x∗ =


0 if α ≤ τ

3+τ ,

−1
4 + 3

4
α

τ(1−α) if τ
3+τ < α < τ

1+τ ,

1
2 if α ≥ τ

1+τ ,

(2.1)

and prices pa = pb = p∗ with

p∗ =


τ if α ≤ τ

3+τ ,

3
2

(
τ − α

1−α

)
if τ

3+τ < α < τ
1+τ ,

0 if α ≥ τ
1+τ .

(2.2)

The proof is standard, and it is given in appendix A.1 for completeness. This result encompasses two
interesting polar cases: �rst, when the share of consumers purchasing price regulated prescription
drugs, α, is equal to one, the locational equilibrium sees both �rms located at the market centre – this
is Hotelling’s minimal di�erentiation result. Second, if pharmacies sell only non-prescription drugs
(α = 0), the market power e�ect dominates and both �rms are located at the market boundaries. This
corresponds to the principle of maximum di�erentiation of d’Aspremont et al. (1979). This result is
interesting because it shows that the introduction of price competition for non-prescription drugs
does not necessarily lead to an increase in spatial di�erentiation, as the centralized equilibrium may
prevail for a large range of parameters. Whether this happens or not will depend crucially on local
market circumstances that a�ect consumers’ relative and absolute travel costs, and on the share of
either consumer type.

2.4.2. Welfare analysis

Next, I compute consumer welfare and producer surplus in the competitive market, and compare these
to the outcomes under complete price regulation, and to the social optimum. Throughout, I will assume
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that pharmacies can freely choose their location. Note �rst that the consumers’ aggregate travel costs
in any given symmetric locational equilibrium x ∈ [0, 1/2], with xa = x and xb = 1− x, are given by
τT (x), where

T (x) = 2

∫ 1
2

0
(i− x)2di =

1

12
− 1

2
x+ x2

Then, consumer welfare with retail prices of non-prescription drugs p and regulated prescription prices
r̄ = 0 is

W (x, p) = −(1− α)p− (α+ (1− α)τ)T (x)

and equilibrium pro�ts are always given by π∗ = 1
2 (α+ (1− α)p∗).

Price regulation Consider �rst the case where both prescription and non-prescription drugs are
regulated at prices r̄ = 0 and p̄ ≥ 0, respectively, but �rms can choose their locations freely. This case
will be denoted as the regulatory benchmark in the discussion that follows. As was discussed above,
the absence of price competition induces �rms to locate at the market centre, and consumer welfare in
this setting is given by

W
(

1
2 , p̄
)

= (1− α)p̄− (α+ (1− α)τ)

12

As is well known, the tendency of the two �rms to bunch together at the market centre in�icts an
ine�ciently large amount of travel costs on consumers. The welfare maximizing location pattern
would be the one that minimizes travel costs, with xa = 1

4 and xb = 3
4 . Aggregate pro�ts remain the

same, but consumer welfare would increase to

W
(

1
4 , p̄
)

= −(1− α)p̄− (α+ (1− α)τ)

48

In fact, it is easy to see that any symmetric location pattern with xa ∈ (0, 1
2) and xb = 1−xa improves

welfare compared to the laissez-faire case. Hence, a social planner could improve welfare by imposing a
minimum distance regulation, but of course such a regulation could induce adverse e�ects that are not
captured by this simple model: by e�ectively creating local monopolies, pharmacies have less incentives
to invest in quality, or to expand opening hours – Brekke et al. (2006) discuss such aspects of quality
competition in the context of hospital regulation in much greater detail.

Price competition Next, consider the case where pharmacies choose their locations �rst and then
compete on prices for non-prescription drugs. For any given symmetric locational equilibrium x∗ ∈
[0, 1

2 ] retail prices are given by p∗ = τ(1− 2x∗) where x∗ is itself a function of α and τ . I am interested
in conditions on α, τ , and p̄ under which consumers’ welfare in the location-then-prices equilibrium
is larger than in the regulatory benchmark, i.e. when W (x∗, p∗) ≥W (1

2 , p̄). The change in welfare in
the competitive equilibrium relative to the regulatory benchmark is given by

∆W (p̄) = W (x∗, p∗)−W (1
2 , p̄) (2.3)

19



where both x∗ and p∗ depend on parameters α, τ , and p̄.

Welfare comparison To compare consumer welfare in both scenarios, I �rst consider the case where
the non-prescription price in the regulatory benchmark is set to marginal costs (which are zero), p̄ = 0,
so that prices must weakly increase under competition relative to the regulatory benchmark. Under this
condition, I show that consumer welfare in the competitive equilibrium is weakly smaller than under
the regulatory regime. Then I consider the case where the non-prescription price in the regulatory
benchmark is initially larger than marginal costs. I argue that this opens up the possibility that consumer
welfare is larger in the competitive equilibrium with free location choices.

The following proposition shows that consumer welfare in the competitive equilibrium is weakly
smaller than in the regulatory benchmark if prices are initially regulated at marginal costs, which are
zero:

Proposition 2. Suppose that the regulated price of non-prescription drugs, p̄, was initially zero. Then:

1. if α and τ are such that x∗ = 1
2 , consumer welfare is the same in the competitive equilibrium as in

the regulatory benchmark (∆W (0) = 0);

2. if α and τ are such that x∗ < 1
2 , (a) the di�erence of consumer welfare in the competitive equi-

librium relative to the regulatory benchmark increases strictly in the share of prescription con-
sumers ( d

dα∆W (0) > 0), and it decreases strictly in the travel costs of non-prescription consumers
( d
dτ∆W (0) < 0); and (b) consumer welfare is smaller in the competitive equilibrium (∆W (0) < 0).

The proof is delegated to appendix A.1. Now consider the case where the initial regulated price of the
non-prescription drug, p̄, was larger than zero. This leads to the possibility that consumer welfare in the
competitive equilibrium is strictly larger than under the regulatory benchmark for a range of parameter
values. To see this, note that price competition in the competitive location-then-prices equilibrium will
drive down the price of the non-prescription drug to zero in such parameter constellations where �rms
choose to locate at the market centre. Under those parameter constellations, consumer welfare will
therefore be larger in the competitive equilibrium than under the regulatory benchmark, as travel costs
are the same, but non-prescription prices are lower. Now note that the di�erence between consumer
welfare under the competitive equilibrium and consumer welfare under the regulatory benchmark at a
non-prescription regulated price p̄ is ∆W (p̄) = ∆W (0) + (1− α)p̄. By the above proposition, there
are parameter constellations for which x∗ is smaller than, but su�ciently close to 1

2 so that ∆W (0)

is large enough to obtain ∆W (p̄) > 0. This result is illustrated in �gure 2.4 which shows the sets of
α and τ , at which consumer welfare in the competitive location-then-prices equilibrium is equal to
consumer welfare with regulated prices and free location choice, for di�erent values of the regulated
price p̄. That �gure con�rms that welfare is strictly larger in the competitive equilibrium for a large
range of parameter values if the regulated non-prescription price p̄ is larger than zero. This insight is
summarized in the following corollary:
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Figure 2.4.: Sets of α and τ , at which consumer welfare in the competitive location-then-prices
equilibrium is equal to consumer welfare with regulated prices and free location choice,
for di�erent values of the regulated price p̄. Consumer welfare in the competitive
equilibrium is (weakly) larger than under the regulatory benchmark to the south east
of the curves.

Corollary. If the regulated price of prescription drugs was initially larger than zero, and the share of
prescription consumers α is less than one, consumer welfare in the competitive equilibrium is strictly larger
than in the regulatory benchmark, provided that the share of prescription consumers is su�ciently large,
and the travel costs of non prescription consumers are su�ciently small.

The theoretical analysis in this section is very stylized because it abstracts from entry and exit, assumes
�rm locations along a univariate line, and leaves the question open how the economy will transition
from the regulatory to the competitive equilibrium. Still, this simple model serves to illustrate the
fact that the introduction of price competition, apart from its impact on prices, can induce �rms to
enter in di�erent locations so as to better serve the consumer. The model also illustrates that this
re-location is not guaranteed to be bene�cial for consumers: �rms di�erentiate themselves in space
because it increases their local market power, so they can raise their prices. Thus, in order to generate
consumer welfare gains, the prices of non-prescription drugs must have been rather high initially, so
that competitive prices decrease relative to the regulatory benchmark.

2.5. Empirical Model

This section develops a spatial dynamic entry model of pharmacy competition that will be �tted to
data on retail pharmacy locations. It is designed to describe the process of entry and exit by which
the spatial distribution of retail locations gradually responds to a regulatory change that introduced
price competition for non-prescription drugs. I �rst outline a general framework of dynamic spatial
entry that su�ers from the curse of dimensionality. Then, I develop a new, computationally tractable
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approach to model the spatial entry dynamics in a large market. Finally, I describe how the model’s
structural parameters can be estimated. Importantly, I do not rely on symmetry or anonymity to ease
the computational burden of the model.

The focus of this paper is on the spatial structure of the German pharmacy market, and how it reacts
to regulatory changes, so one may ask why a dynamic model component is needed. The answer is
twofold: �rst, the data on pharmacy locations spans a large time period of sixteen years, which makes
it necessary to include a notion of time in the analysis. But more importantly, what is observed in these
data are entry and exit decisions and such decisions are invariably dynamic in nature. Any decision
maker who decides whether to set up a pharmacy, or whether to close it, will necessarily try to make
some educated guess about the future, and most importantly, about the decisions of his current or
future competitors. The interplay of these considerations is what drives the spatial industry structure
over time. Therefore, a model needs to include both a spatial and a dynamic aspect. A more detailed
argument is given in section 2.5.4.

2.5.1. Dynamic entry decisions

The economy consists of N �rms (or potential entrants) indexed by j, which are located at a �xed
location xj . In each discrete time period t, each of these �rms can either be active or inactive, indicated
by ajt ∈ {0, 1}. Let at = (ajt)j∈N be called the state of the economy at time t, and denote the entire
state space as A = {0, 1}N . The usual notation is adopted where a−jt = (ait)i 6=j denotes the states
of all �rms but �rm j. Sometimes, the tuple (ajt,a−jt) is used as an alternative way of writing the
aggregate state ajt. Each �rm earns a period return πj(at) when the aggregate state of the economy
is at, and it is assumed that πj(at) = 0 if ajt = 0. The timing is as follows: at the beginning of
every period t, every �rm earns its period return πj(at), and all �rms learn the realization of a private
information idiosyncratic random variable ξjt that follows a distribution function F with full support
over R. Upon learning this value, each potential entrant decides whether it should enter the market in
period t+ 1 and incur an entry cost of θx + ξjt. Similarly, every incumbent decides whether it should
stay in the market, or leave the market in which case it receives a sell-o� value θe+ξjt. The introduction
of privately known transition costs ξjt is a common assumption in the literature on dynamic discrete
games because it guarantees equilibrium existence, see e.g. Seim (2006), Doraszelski and Satterthwaite
(2010), or Aguirregabiria and Magesan (2019). I do allow for re-entry because it is observed in the data.
In the empirical application, it will be assumed that there are M independent large markets indexed by
m = 1, . . . ,M , and T observed periods indexed by t, but the market subscripts will often be omitted
for convenience.
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The solution concept employed here is a Markov Perfect Equilibrium (MPE) where all players base
their decisions solely on the current state of the economy (including their own activity status) and on
a privately known disturbance to their transition costs. Let the strategy of �rm j be denoted by

σj : (ajt,a−jt, ξjt) 7→ ajt+1 ∈ {0, 1} (2.4)

and collect all strategies into σ = (σj)
N
j=1. Note that the behaviour of �rm j is deterministic conditional

on its latent variable ξjt, but stochastic from the point of view of its competitors.11 From the perspective
of another �rm k, and of the econometrician, the probability that �rm j chooses to be active in period
t+ 1 is given by qj(at) =

∫
σj(ajt,a−jt, ξ)dF (ξ). Taking the strategies of their competitors and the

realization of the transition cost shock as given, each �rm j decides whether to be active or not in the
next period. Let the value function V σ

j (ajt,a−jt, ξjt) denote the expected discounted future pro�ts of
�rm j when the state is (ajt,a−jt) and the transition cost shock is ξjt. The value function is given by

V σ
j (ajt,a−jt, ξjt) = πj(at) + max

{
ajt (θx + ξjt) + βE[V σ

j (0,a−jt+1, ξjt+1)|at],

− (1− ajt) (θe + ξjt) + βE[V σ
j (1,a−jt+1, ξjt+1)|at]

}
(2.5)

The expectation operator integrates over the distribution of all future states that is induced by σ, and
over the future idiosyncratic shocks ξ. Since there is a one-to-one mapping from players’ actions to
states (unlike in many dynamic investment games, where idiosyncratic and market-speci�c shocks
a�ect the success of an investment), this amounts to integrating over all conceivable actions of �rm j’s
competitors, taking their strategies as given. The σ-superscript was added to clarify this dependence
on the other �rms’ strategies.

To write this problem in a more compact form, I will follow Aguirregabiria and Vicentini (2016) and
integrate out the idiosyncratic error term ξjt: �rst, let

V
σ
j (ajt,a−jt) =

∫
V σ
j (ajt,a−jt, x)dF (x) (2.6)

be the integrated value function of �rm j. Sometimes I will write V σ
j (at) as a shorthand. Further, let

the choice-speci�c integrated value function

vσj (1,at) = πj(at)− (1− ajt)θe + βEσ
[
V
σ
j (1,a−jt+1)|at

]
(2.7)

denote the expected value of choosing to be active in the next period, and let

vσj (0,at) = πj(at) + ajtθ
x + βEσ

[
V
σ
j (0,a−jt+1)|at

]
(2.8)

11Or, as Doraszelski and Satterthwaite (2010, p.216) put it: “Although a �rm formally follows a pure strategy in making
its entry/exit decision, the dependence of its entry/exit decision on its randomly drawn, privately known setup cost/scrap
value implies that its rivals perceive the �rm as though it were following a mixed strategy.”
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denote the expected value of choosing to be inactive in the next period, where the current activity
status ajt ∈ {0, 1} governs whether the �rm incurs any transition costs or period returns.12 Then, the
value function can be written more compactly as

V σ
j (ajt,a−jt, ξjt) = max

{
ajtξjt + vσj (0,at),−(1− ajt)ξjt + vσj (1,at)

}
(2.9)

and the integrated value function is

V
σ
j (ajt,a−jt) =

∫
max

{
ajtx+ vσj (0,at),−(1− ajt)x+ vσj (1,at)

}
dF (x) (2.10)

Given strategies σ and conditional on its own transition cost shock ξjt, �rm j decides to be active in
the next period if the second part of the above equation (2.9) is greater than the �rst, i.e. if

−(1− ajt)ξjt + vσj (1,at) ≥ ajtξjt + vσj (0,at)

⇔ ξjt ≤ vσj (1,at)− vσj (0,at)

The above equation implicitly de�nes cuto� values which govern each �rm’s behaviour conditional
on its observed private information shocks. The probability of being active next period can then
conveniently be expressed as

Pr(ajt+1 = 1|at) = F
(
vσj (1,at)− vσj (0,at)

)
=: qj(at) (2.11)

where F is the distribution function of the latent errors ξ. De�ne q(at) ≡ {qj(at)}Nj=1. These condi-
tional choice probabilities (CCPs) are a best response probability to other �rms following the strategy
σ in state at, and they “contain all the information about competitors’ strategies that a �rm needs to
construct its best response” (Aguirregabiria and Vicentini, 2016, p.726). The reason is that the value
functions depend on the strategy only through the CCPs that feed into the expectation operator Eσ :

E
σ
[
V j(ajt+1,a−jt+1)|ajt+1,at

]
=∑

a−jt+1∈{0,1}N−1

V j(ajt+1,a−jt+1)
∏
i 6=j

qi(at)
ait+1(1− qi(at))1−ait+1

︸ ︷︷ ︸
≡Eq[V j(ajt+1,a−jt+1)|ajt+1,at]

(2.12)

12Note that the arguments of the integrated value function, ajt and a−jt, are di�erent from the arguments of the choice-
speci�c value functions, ajt+1 and at.
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Therefore, the problem of �nding equilibrium strategies σ is equivalent to determining equilibrium
CCPs q that satisfy the following equations at all states at, and for all �rms j (Aguirregabiria and Mira,
2007, p.11):

qj(at) = F
(
vqj (1,at)− vqj (0,at)

)
, where

vqj (1,at) = πj(at)− (1− ajt)θe + βEq
[
V

q
j (1,a−jt+1)|ajt+1 = 1,at

]
vqj (0,at) = πj(at) + ajtθ

x + βEq
[
V

q
j (0,a−jt+1)|ajt+1 = 0,at

]
V

q
j (ajt,a−jt) =

∫
max

{
ajtξ + vqj (0,at),−(1− ajt)ξ + vqj (1,at)

}
dF (ξ) (2.13)

The function qj(at) embodies �rm j’s best response, given all other �rms’ CCPs. By Brower’s theorem,
this system of best response functions is guaranteed to have a �xed point, as it de�nes a continuous
mapping from the compact space [0, 1]N onto itself. This motivates using an iterative procedure to solve
for an equilibrium vector of CCPs, as will be outlined in more detail below. However, it must be noted
that the above mentioned problem su�ers from a “curse of dimensionality” that prevents its computation
in all but the simplest problems. This is a common problem encountered in dynamic discrete games,
as was outlined in section 2.3.3. According to Pakes and McGuire (2001), the computational burden
of �nding an equilibrium in such problems is principally determined by the size of the state space,
the time it takes to compute the expectation, and the time to convergence. In the above problem, the
computational burden to check whether a given vector q is in equilibrium grows exponentially in the
number of �rms.13 Therefore, without further simplifying assumptions, the model is of little practical
use when it comes to examining real-world economies with many �rms.

Contrary to many empirical applications, I will not restrict attention to symmetric and anonymous
equilibria. An equilibrium is symmetric if the equilibrium strategies are the same for all �rms, i.e.
qj(a) = qk(a) for every state a ∈ A and for all �rms j, k, and it is anonymous if the equilibrium
strategies are invariant to arbitrary permutations of the vector of its competitors’ states a−j (Doraszelski
and Pakes, 2007). While being very convenient from a computational point of view, symmetry is not
a good assumption in the context of spatial competition because the payo�s of a certain �rm in any
given state depend crucially on its location relative to its competitors, i.e. πj(a) is in general di�erent
from πk(a) and therefore, the equilibrium CCPs di�er too. For the same reason, players’ period return
functions are in general not anonymous which leads to strategies that are not anonymous. I consider
asymmetry and non-anonymity to be crucial characteristics of spatial dynamic interaction processes.

13The state space is of size 2N so that the memory requirements to store CCPs, conditional and unconditional value
functions for each �rm are of order 4N2N . The computational burden of evaluating (2.13) for a given vector q is determined
by the expectation operator in each of two choice-speci�c integrated value functions that integrates over the entire state
space A−j of size 2N−1, and by evaluating and integrating the distribution function F . Thus, abstracting from the costs of
memory look-up operations, the time to compute (2.13) for all �rms and states is proportional to N × 2N × (2 + 2N ), so the
computational burden is O(N22N ).
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2.5.2. A spatial oblivious equilibrium model

To obtain a computable equilibrium model while maintaining asymmetry and non-anonymity, I de-
velop a procedure that is close in spirit to the oblivious equilibrium concept of Weintraub et al. (2008),
but adapted to �t the spatial, asymmetric structure of my data. My approach can be summarized as
follows: �rms principally assume that the spatial market structure remains constant, except in a close
neighbourhood around their own location. Why �rms are restricted in their strategic reasoning in this
way is not speci�ed; but it could be a rational decision to do so if planning ahead per se is costly. Indeed,
given the sheer size of the unrestricted state space, it would be unreasonable to assume that any �rm
can accurately form and store expectations for all possible spatial market structures.

To be more concrete, I will restrict the strategy space by assuming that �rms follow a time-varying
heuristic strategy

σ̃jt : (ajt, ã−jt, ξjt) 7→ {0, 1}

where ãjt = (ajt, ã−jt) is a member of what I call the “oblivious state space” Ãjt of �rm j at time
t that is composed of the observed actual state outside a close neighbourhood around �rm j, and all
possible market con�gurations of �rms within a neighbourhood around �rm j. In what follows, let ât
denote the observed state at time t, and let âjt denote the observed status of �rm j at time t. Then, the
oblivious state space of �rm j at time t is de�ned as

Ãjt ≡
{(
ai : ai ∈ {0, 1} if i ∈ nnkj , else ai = âit

)
i∈N

}
That is, in any given period t, �rm j takes the state of its competitors beyond the range of k “strategic
nearest neighbours” nnkj 14 as given, and heuristically assumes that only its k nearest neighbours will
ever change their state. Note that the magnitude of the oblivious state space is only 2k. Figure 2.5
illustrates the idea. The model is solved analogously to the full problem described above by �nding
equilibrium entry probabilities that satisfy (2.13), but using the restricted state space Ãjt for all �rms
and observation periods.

One problem that arises in computing the equilibrium entry probabilities is that the oblivious state
spaces of any two �rms j and i will often be di�erent, because these two �rms have di�erent strategic
neighbourhoods, i.e. Ãjt 6= Ãit. This implies that the expectation in (2.12) is not well de�ned: consider
�rm j and some state ãjt ∈ Ãjt such that ãjt /∈ Ãit. Since this state is not in �rm i’s oblivious state
space, its strategy σ̃it is not de�ned at that point, so that �rm j cannot form the conditional expectation
in (2.12). However, an appropriate interpretation of the oblivious state space still allows for a coherent
formation of this expectation in the following sense: For any �rm i at time t, de�ne the mapping
Mit : A→ Ãit as

Mit(a) =
(
ãs : ãs = as if s ∈ nnki , else ãs = âst

)
(2.14)

14I specify that j ∈ nnkj so that each �rm is its own nearest neighbour. But this is only . In principle, one could also de�ne
the neighbourhood based on the inter-�rm distance, but using a �xed number of k neighbours has the advantage of allowing
the usage of equally sized matrices in the computational implementation.
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Figure 2.5.: The left side of the �gure shows a sample market with six �rms, four of which are
active (indicated by a solid dot) and two of which are inactive (hollow dot). Firm one
assumes that all �rms except its two nearest neighbours will remain in their current
status quo, and so the oblivious state space of �rm two consists of only eight distinct
states which are illustrated in the right part of the �gure. In contrast, the unrestricted
state space encompasses (26 = 64) distinct states.

For any state a ∈ A, this mapping extracts the relevant local state as seen from the perspective of �rm i,
and uses the actual state â for any �rm outside the strategic neighbourhood nnki . This idea is illustrated
in �gure 2.6. Using this mapping, I de�ne the conjecture that �rm j has about �rm i’s behaviour as
follows:

j q̃it(a) ≡

q̃it(a) if a ∈ Ãit
q̃it (Mit(a)) else.

(2.15)

where q̃it are the CCPs that are implied by �rm i’s strategy σ̃it. Note that Mit(at) di�ers from at only
for �rms that are outside the strategic neighbourhood of �rm i, and so the conjecture about �rm i’s
strategy that other �rms may have can be assumed to be reasonably close to the actual strategy of a
�rm i.

I assume that �rms use these conjectures about their competitors’ strategies to form approximate
expectation over the future states. For a �rm j that chooses an action a, this approximate expectation
is:

E q̃
[
V j(ajt+1,a−jt+1)|ajt+1 = a,at

]
=∑

ãt+1∈Ãjt
ãjt+1=a

V j(a, ã−jt+1)
∏

i∈nnkj \{j}
j q̃it(at)

ãit+1(1− j q̃it(at))
1−ãit+1 (2.16)

for all states at ∈ Ãjt. The above expression di�ers from that in equation (2.12) in two important
ways: �rst, �rm j assumes that all �rms outside of its k-neighbourhood neither enter nor exit, and
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Figure 2.6.: This �gure shows the oblivious state spaces of two �rms that have only one common
neighbour, so that their two oblivious state spaces di�er. By construction, the observed
state ât (blue) is contained in both oblivious state spaces, but another state ãt is not.
Instead, �rm 1 maps this state to another similar state ã′t that is identical to ãt for all
�rms that are contained in �rm 3’s strategic neighbourhood.

second, �rm j forms a conjecture about the strategies of those �rms inside its k-neighbourhood that
is consistent with that assumption. Because �rm j assumes that the future state will remain in its
oblivious state space, which is of magnitude 2k, the expectation E can be computed very quickly. Using
the above expression (2.16), I de�ne a spatial oblivious equilibrium to be a vector of CCPs q̃∗ such that,
for all �rms j, at each time t, it holds for every state ãt ∈ Ãjt that

q̃∗j (ãt) = F
(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
, where

vq̃j (1, ãt) = πj(ãt)− (1− ãjt)θe + βE q̃
[
V

q̃
j (1,a−jt+1)|ajt+1 = 1, ãt

]
vq̃j (0, ãt) = πj(ãt) + ãjtθ

x + βE q̃
[
V

q̃
j (0,a−jt+1)|ajt+1 = 0, ãt

]
V

q̃
j (ãjt, ã−jt) =

∫
max

{
ãjtξ + vq̃j (0, ãt),−(1− ãjt)ξ + vq̃j (1, ãt)

}
dF (ξ) (2.17)

Again, Brower’s �xed point theorem can be applied so that an equilibrium q̃∗ is guaranteed to exist.

2.5.3. Estimation and identification

The structural parameters of the model are estimated using a nested �xed point approach to accom-
modate the asymmetric and non-anonymous nature of spatial strategic interactions. I assume that the
private information shocks ξjt follow a standard normal distribution Φ so that the conditional choice
probabilities in equation (2.13) can be expressed in convenient form as:

Pr(ajt+1 = 1|ãt) = q̃j(ãt) = Φ
(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
(2.18)
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The integrated value function can then be computed as

V
q̃
j (ajt, ã−jt) = φ

(
vq̃j (1, ãt)− vq̃j (0, ãt)

)
+ (1− q̃j(ãt)) · vq̃j (0, ãt) + q̃j(ãt) · vq̃j (1, ãt) (2.19)

where φ is the probability density function of the standard normal distribution.15 For the empirical
application, the reduced form pro�t equation is parametrized as follows:

πj(at) =



(
αXj +

βYj

1 +Nd
jt

)
︸ ︷︷ ︸

local demand

(
1− δNd

jt)
)

︸ ︷︷ ︸
local competition

, if ajt = 1

0 else.

(2.20)

where Yj is the local population around store j that is divided by the number of active �rms in �rm
j’s d-neighbourhood, Nd

jt (and including �rm j). Xj is a vector of pro�t shifters of store j that is
common knowledge to all players. The �rst composite term captures local demand at a given location
in market state at, and the second term captures the market power e�ect of local competition. The
parameter δ measures the relative reduction of a pharmacy’s pro�tability due to the presence of one
additional active competitor within a distance d. In order to test the main hypothesis of the paper,
namely whether spatial competition has increased after 2004, δ was estimated separately before and
after 2004 (δpre and δpost). The spatial co-variates include measures of the local residential population
within a radius x around the �rm’s location and measures such as the number of nearby supermarkets
or doctors. A summary of these variables can be found in table 2.4. As part of a robustness check, the
population variable was scaled with aggregate municipality-level population growth rates, and further
time-varying and municipality-level covariates were included. However, for the sake of simplicity this
time dependence is not explicitly modelled: in the model, agents act as if all variables are time-constant
while they actually change over time. This naturally introduces some error, but I believe that this error is
small because the time-varying variables change rather slowly so that the assumption of time-constant
co-variates may be a good approximation to actual decision processes.

Using the parametric pro�t function in (2.20), the conditional expectation in (2.16), the conditional
choice probabilities (2.18) and the integrated value function (2.19), the system of equations in (2.13) for
some market m and time period t < T can be computed as follows:

Procedure 1 (Fixed point algorithm).

0. initialization:

a) set k ← 0

b) compute πj(a) for all a ∈ Ãjt, and for all �rms j ∈ 1, . . . , N

15This follows from the last equation in (2.17) and from the fact that the expectation of a truncated normally distributed
random variable x is given by E[x|x ≤ y] = −φ(y)

Φ(y)
, where Φ is the normal c.d.f. and φ is the normal p.d.f..
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c) for all �rms j = 1, . . . , N , initialize the vectors qj , v0
j , v

1
j and V̄j of length 2k to zero,

representing the corresponding functions qj(·), vqj (0, ·), vqj (1, ·) and V q
j (·) evaluated at each

state ajt ∈ Ãjt. Collect all �rm-speci�c vectors into q,v0,v1 and Vq.

1. at step k:

a) set ∆← 0, and for all �rms j do:

• v
ajt+1

j ←
(
vqj (ajt+1, ã)

)
ã∈Ãjt

for ajt+1 ∈ {0, 1} using (2.8), (2.7), (2.20) and (2.16).

• V̄j ←
(
V

q
j (ã)

)
ã∈Ãjt

using (2.19)

• ∆j ←
∥∥∥qj − (q̃j(ã))ã∈Ãjt

∥∥∥
∞

and qj ← 1
2

(
qj + (q̃j(ã))ã∈Ãjt

)
using (2.18)

• ∆← max{∆,∆j}

b) if ∆ ≥ ε go back to step 1 with k ← k + 1, else STOP.

Technically, this is a Gauss-Seidel algorithm because the updates in step k are always computed using
the most recent available conditional choice probabilities from either of steps k or k−1. Doraszelski and
Pakes (2007) write that this leads to faster convergence in many cases, and I found that this applied also to
my setting. The dampening that is introduced in updating the conditional choice probabilities was found
to signi�cantly improve convergence speeds, as is also suggested by Doraszelski and Pakes (2007).16 In
my examples, with more than two hundred �rms per market, the algorithm usually converged within
one hundred iterations to a tolerance of ε =

√
3 · 10−10, irrespective of the starting values. In each

market, I computed the equilibrium only up to time period T − 1 because the equilibrium in period T
makes predictions about transition patterns in period T + 1 which are not observed.17

The model’s parameters of interest are α, δ, θe and θx. As outlined above, the spatial interaction
parameter δ is estimated separately before and after the reform in 2003. I also estimated θe separately,
and included a dummy variable for t ≥ 2004 in the pro�t equation. I assume that the decision making
units do not anticipate this change in parameters, i.e. the parameter change in 2004 comes as a surprise
to them, and the market then transitions into a new steady state that is consistent with new parameter
values. In Monte Carlo simulations, I found that I could not identify all parameters separately, so I

16I implemented this model in Python (version 3.7) using the Numpy (version 1.15.4), Scipy (version 1.1.0) and Numba
(version 0.42.0) libraries. The actual estimation was conducted on a fast compute node of the bwHPC cluster, using the
multiprocessing library.

17The oblivious state space is of size 2k so that the memory requirements to store CCPs, conditional and unconditional
value functions for each �rm in every period are of order 4NT2k . The computational burden of evaluating (2.13) for a given
vector q̃ is determined by the expectation operator E in each of two choice-speci�c integrated value functions that integrates
over the oblivious state space Ã−jt of size 2k−1 in each time period t, and by evaluating and integrating the distribution
function F . Thus, abstracting from the costs of memory look-up operations, the time to compute (2.13) for all �rms and states
is approximately O(NT2k(2 + 2 · 2k−1)) = O(NT2k(2 + ·2k). The actual time that it takes to compute an equilibrium
will also crucially depend on the number of iterations that it takes to converge to q̃∗.
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chose to normalize the market exit value to unity, i.e. θx = 1.18 Thus, the parameters of interest can be
summarized in a vector θ = (α, δpre, δpost, θ

e
pre, θ

e
post) with θx = 1 and α including a pre/post dummy.

In order to estimate θ, for each market m, and conditional on parameters θ, the equilibrium q̃∗mt is
computed for all years t = 1, . . . , T − 1. Thus, the log likelihood of the observed market outcomes
{amt}Tt=2, conditional on the market states {amt}T−1

t=1 is computed as follows:

llm(θ) =
T∑
t=2

Nm∑
j=1

amjt log q̃∗mjt−1 + (1− amjt) log(1− q̃∗mjt−1)

These market likelihoods are then aggregated to form the total log-likelihood

ll(θ) =

M∑
m=1

llm(θ)

The likelihood is optimized with respect to parameters θ using the BFGS algorithm.19 Standard errors
are computed using the estimated Hessian matrix that is returned by the BFGS algorithm.

Economic agents in the model that is described above are heterogeneous with respect to the realization
of their private information shocks, and with respect to their spatial con�guration relative to each
other. As in Seim (2006), the multiplicity of observed outcomes that may arise in a pure strategy
equilibrium due to the presence of a spatial interaction e�ect is circumvented by modelling entry and
exit probabilities. Thus, players form their expectations ex ante and they may eventually end up in a
state which is not an equilibrium outcome ex post. Yet, Berry and Reiss (2007, p.1878) note that the entry
probabilities in such a model may not be unique: as the variance of the unobserved error decreases so
that the model approaches one of perfect information, multiple equilibrium entry rates that mirror the
multiple equilibria in pure strategies can arise. Thus, for the model to predict unique equilibrium entry
and exit rates it is necessary that the private information shocks, relative to the observed component of
the player’s payo�s, are su�ciently important. I believe that this is the case in my empirical application,
because the Gauss-Seidel algorithm that is described above always converged to the same equilibrium
probabilities regardless of the initial conditions.

Given that the conditional entry and exit rates are uniquely determined, the model is primarily identi�ed
by matching the predicted transition rates between observed market states to the observed transition
rates. Period returns and entry costs are only identi�ed relative to the variance of the errors, which is
set to unity. The magnitude of the entry costs is identi�ed by matching the degree of turnover in the
data: larger entry costs imply higher persistence, i.e. fewer �rms enter and leave the market. Larger
exit values have the opposite e�ect, and this is why I constrain the parameter θx to unity so as to
circumvent near collinearity issues. The magnitude of the period returns are identi�ed – relative to the

18This problem was alleviated when payo�s were assumed to depend on market-level variates, and one had many markets.
But although my model does include market-level covariates, it is by no means certain that these are the correct ones, so I
decided to normalize the scrap values nonetheless.

19as implemented in the Scipy (version 1.1.0) library
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logit error scale – by the average number of active �rms in the market: Larger period returns alone
imply that more �rms will be active, on average. The parameters that govern local demand vary across
locations, and are thus identi�ed by the spatial variation in entry and exit rates. Finally, the spatial
interaction parameter δ is identi�ed through the e�ect that every additional active �rm has on entry
and exit rates in nearby locations.

2.5.4. Remarks

Before proceeding to describe the data, and the estimation results of this paper, I discuss certain aspects
of the method and the model by means of illustrative examples. In particular, I will outline why a
structural model that incorporates dynamic strategic interactions is needed, rather than a reduced form
model.

Why a dynamic model is needed

Reduced form estimates lead to inconsistent results of the interaction parameter because the competi-
tors’ actions are endogenous with respect to own actions, which renders reduced form estimators
inconsistent. A structural model such as the one put forward in this paper can alleviate this problem
by imposing appropriate behavioural assumptions. To explore this issue further, I set up a dynamic
entry and exit model with two �rms. The notation and timing structure is the same as in the full model
above. Their period returns are given by

πi(ait, a−it) =

1
2 − δa−it, if ait = 1 with δ ∈ [0, 1]

0, else

Entry costs are given by θe = 4 and scrap values are given by θx = 1, and both are subject to
a standard normally distributed shock ξit as in the full model above. The state space of this small
illustrative model encompasses only four distinct states so that it can easily be solved exactly. A Markov
Perfect Equilibrium (MPE) of this model is a set of conditional choice probabilities (CCPs), denoted
by q∗i (ait, a−it), for i ∈ {1, 2} and ait, a−it ∈ {0, 1}2 such that the system of equations (2.13) holds.
Suppose only the interaction parameter δ is to be estimated from a sequence of observed market states
{at}Tt=1. This can be achieved by choosing δ such that the model-implied CCPs match the observed
transition rates as closely as possible. I computed the equilibrium CCPs for a range of parameter values
δ, ranging from zero to one. These CCPs are shown in �gure 2.7, in terms of entry and exit probabilities
for di�erent states of the competitor (solid and dotted blue lines). Alongside the equilibrium CCPs I also
plotted CCPs that are derived non-strategically, i.e. with players that assume that their competitors do
not change their state (dashed red lines).

The interaction parameter is identi�ed if there is a unique mapping from entry and exit probabilities to
parameter values, and the presence of multiple equilibria may prevent this. Figure 2.7 shows that the
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model generates an asymmetric equilibrium (dotted blue lines) for very large values of δ in addition
to a symmetric equilibrium (solid blue lines), in line with what Berry and Reiss (2007, p.1878) write.
While a multiplicity of equilibria does not necessarily lead to non-identi�cation, in this case it does
lead to a non-unique mapping from CCPs to parameter values which can prevent identi�cation. To
alleviate this problem, I will assume that the interaction parameter is su�ciently small compared to the
period returns so as to admit a unique equilibrium. Figure 2.7 also shows that an identi�cation of the
interaction parameter comes mainly from matching entry and exit rates in the presence of an active
competitor (top right and top left panel) because in these cases, the CCPs exhibit monotonicity over a
large range of parameters δ.

If agents ignore the strategic reactions of their competitors, their optimal entry and exit decisions will
di�er from the ones obtained by a model of strategic decision making. This can be seen in the two
panels on the right hand side of �gure 2.7. The �gure shows that a potential entrant is less likely to
enter if it disregards the possibility that the incumbent will leave the market, and that a duopolist is
more likely to leave the market if it disregards the reactions of its competitor. Thus, strategic play leads
to more entry and delayed exit. This implies that any estimation procedure that attempts to match entry
and exit rates without modelling the strategic interaction will underestimate the interaction parameter
δ if agents act strategically, and it is the reason why a structural model of dynamic forward-looking
decision making is needed. Of course, it could be that agents do not behave in this manner and merely
take their competitors’ actions as given. This could indeed be a rational strategy to follow if entry
and exit rates are rather small, and the costs of strategic planning are large. In markets with more
than two �rms, intermediate cases of strategic decision making are likely to occur, where decision
makers do not pay attention to very distant competitors. This is precisely the idea behind the spatial
oblivious equilibrium concept; and my empirical approach will allow me to determine the degree to
which strategic dynamic decision making is important.

Why two-step estimators cannot be used

The spatial aspect of the entry game at hand introduces non-anonymity (Doraszelski and Pakes, 2007)
in �rms’ best response functions that render conventional two-step estimators of dynamic games in-
applicable. These estimators typically rely on some consistent �rst-stage estimates of �rm’s CCPs.
However, such estimates are hard to obtain in the current setting because CCPs depend crucially on
the precise spatial con�guration of �rms’ competitors: Even if the period return function depends only
on the number of active neighbours, but not on their identity or spatial con�guration, the same does
not hold for �rms’ CCPs. Therefore, the �rst stage estimates would have to be estimated conditionally
on the spatial con�guration. But this con�guration is drawn from a high dimensional space, which
precludes the usage of simple non-parametric estimators.

This point shall be highlighted in an illustrative example. Consider a linear market of length 2d with
four �rm locations as illustrated in �gure 2.8. Suppose that period returns of an active �rm are given by
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Figure 2.7.: Conditional choice probabilities in a two-�rm model of dynamic entry for di�erent
interaction parameters. The �gure shows the CCPs of �rm j conditional on �rm k’s
current status.
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d−d
1
2 0

3

(a) at = (1, 1, 1, 0), q∗0(at) = 0.46

d−d
1
2 0

3

(b) at = (1, 0, 1, 1), q∗0(at) = 0.59

Figure 2.8.: Non-anonymity. Solid circle: active �rm. Firm zero is less likely to remain active if
its two neighbours to the left are active, than if one �rm on either side is active. The
equilibrium CCPs were computed for α = 1, δ = 1

2 , θe = 4 and θx = 1.

πjt = 1− 1
2N

d
jt whereNd

j is the number of �rm j’s active neighbours within a radius d. The remaining
structure of the game is as described above, with θe = 4 and θx = 1, both being subject to privately
known random perturbations. I am interested in the equilibrium behaviour of the central �rm 0. Note
that this �rm’s pro�ts are negatively a�ected if any of its three neighbours is active. Conversely, �rms 1

and 2 have only two potential direct competitors, and �rm 3 has only one such neighbour. This means
that �rm 3 is a stronger competitor for �rm 0 than �rms 1 and 2 are. Keeping the number of �rm
0’s active neighbours �xed at two, �rm 0 is more likely to remain active if its weaker competitor 2 is
the potential entrant (�gure 2.8b), than if its stronger competitor 3 is a potential entrant (�gure 2.8a).
The same mechanisms are at play in spatial entry games more generally, and because of this inherent
non-anonymity, it is generally not possible to consistently estimate �rms’ CCPs conditional on some
low-dimensional market characteristic such as the number of active competitors, as would be required
for a two-step estimator.

Properties of the oblivious approximation to the MPE

The natural question is how the spatial oblivious equilibrium in (2.17) relates to the full MPE de�ned
in (2.13) above. Of course, if the number of strategic nearest neighbours is equal to the total number of
�rm locations in the market (k = N ), then the two equilibria are the same but the whole idea of the
spatial oblivious equilibrium is that the number of strategic neighbours (k) is smaller than the number
of �rms (N ). Thus, it is interesting to know whether the two quantities become closer as k increases
and eventually approaches N . A theoretical answer to this question along the lines of Weintraub et al.
(2008)20 is work to be done in the future. To approach this question from a computational point of view,
I created a sample of N = 10 �rm locations in a square market of length one thousand. The pro�t
of an active �rm is given by πjt = 1 − 1

3N
d
j where Nd

j is the number of �rm j’s active neighbours
within a radius d = 400. This radius is chosen such that, on average, �ve neighbour locations fall
within it.21 Entry costs are given by θe = 3, and scrap values are given by θx = 1, both being subject
to randomly drawn, normally distributed disturbances. Using the model-implied CCPs, the industry’s
long run distribution across states was computed, and the state with the largest long-run probability

20A direct application of their results is not possible because of the asymmetric structure of the problem at hand.
21Since �rm locations were generated randomly, the expected number of �rms within radius d is λπd2, where λ = N/A

is the density of locations on the area A.
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Figure 2.9.: The example market. The blue circles are drawn to represent half the interaction
radius. Hence, if the circles around to adjacent locations overlap, these two locations
interact directly through the pro�t equation.

of occurrence was selected as the industry’s initial state.22 This market con�guration is denoted as â
and is shown in �gure 2.9. At this initial industry state, I computed the equilibrium CCPs q̃(k)(â) that
satisfy (2.17) for di�erent choices of k, ranging from k = 1 (no strategic interaction) to k = 10 (full
strategic interaction; nine strategic nearest neighbours and self). For each value of k, I computed two
distance measures of the �rms’ CCPs between q̃(k)(â) and q̃(10)(â): the maximum absolute di�erence
(| · |∞), and the root of the mean squared di�erence (| · |2).

The results, presented in table 2.2, indicate that both distance measures become very small as k in-
creases, while at the same time the computational time increases rapidly. For this particular market, the
oblivious MPE for k = 6 o�ers a good approximation of the “true” MPE with k = N at an acceptable
computational cost. Of course, this depends crucially on the particular choice of the interaction range
d that determines how many of a �rms’ k nearest neighbours have a direct e�ect on its period returns.
In the extreme, if the interaction is such that every �rm is completely isolated, then any choice k ≥ 1

would obviously lead to the same result, and one did not need to worry about strategic interactions at
all. On the other hand, if all �rms interacted with every one of their competitors, then any choice of
k < 10 would be unlikely to produce a correct result. In this case, one could instead directly apply the
oblivious equilibrium concept of Weintraub et al. (2008) without any modi�cations. If the interaction
parameter is so large that multiple equilibria occur, it could even be that an approximation with k > 1

does worse than the myopic MPE with k = 1. Furthermore, the quality of the approximation depends
crucially on �rm turnover in the market: if turnover is very low, then the status quo is a good prediction
of the future state, and so a smaller strategic neighbourhood might su�ce. In future work, it would thus
be desirable to investigate the relationship between the spatial structure of �rms’ potential locations
and the properties of the approximative equilibrium in greater detail, and in more general terms.

22Given the CCPs, one can build the transition matrixQ that determines the probability of transitioning from each market
state a to any other state a′, with Q(a′,a) = Pr(a′|a). Then, the steady state distribution across market states is a vector
p∗ that satis�es Qp∗ = p∗ and

∑
s p
∗
s = 1.
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�rm j q̃
(1)
j q̃

(2)
j q̃

(3)
j q̃

(4)
j q̃

(5)
j q̃

(6)
j q̃

(7)
j q̃

(8)
j q̃

(9)
j q̃

(10)
j

0 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
1 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
4 0.69 0.82 0.86 0.83 0.88 0.85 0.85 0.85 0.85 0.85
5 0.69 0.80 0.87 0.93 0.89 0.85 0.85 0.85 0.85 0.85
6 0.69 0.68 0.68 0.70 0.78 0.85 0.85 0.85 0.85 0.85
7 0.69 0.80 0.87 0.82 0.81 0.85 0.85 0.85 0.85 0.85
8 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9 0.02 0.03 0.03 0.06 0.05 0.09 0.09 0.09 0.09 0.09

|q̃(k) − q̃(10)|∞ 0.161 0.166 0.168 0.147 0.071 0.000 0.000 0.000 0.000
|q̃(k) − q̃(10)|2 0.322 0.192 0.181 0.175 0.103 0.001 0.000 0.000 0.000

runtime [s] 0.03 0.04 0.04 0.04 0.04 0.07 0.30 0.82 9.24 54.82

Table 2.2.: Convergence of the spatial oblivious equilibrium to the MPE. This table shows the
equilibrium CCPs that were derived using di�erent levels of strategic sophistication
in a generic market of ten �rms, at a particular industry state. See the main text for
a description of how the market was constructed, and see �gure 2.9 for a graphical
depiction.

2.6. Data

2.6.1. Data sources

In order to address the research questions of this paper, extensive data on the German pharmacy market
were collected. The addresses of all active pharmacy locations23 were taken from sixteen editions of the
Bundesapothekenregister (Deutscher Apotheker Verlag, 2016) and were geocoded.24 An overview of the
resulting panel data set is given in table 2.3. The number of new establishments and �rm exits displays
substantial variability over time, which may be due to the fact the the data source is issued quarterly,
but it was not always possible to obtain the same issue in each year. Lacking a unique �rm identi�er,
I attempted to identify �rms whose location changed from year to year using fuzzy string matching
techniques. But because the number of �rm re-locations is rather small compared to the number of
entries and exits, I decided to abstract from �rm re-locations in the empirical model, and these �gures
are not reported here. Hence, a re-location is treated as simultaneous entry and exit in the same year
in two di�erent locations. In total, there are 26,964 distinct locations.

For the empirical analysis, attention is restricted to eighty German cities (excluding Berlin, Hamburg,
Munich and Cologne). This set of urban markets was chosen in order to create a homogeneous sample
in which the nature of spatial interaction is fairly similar. Rural areas, on the other hand, are likely to
exhibit very di�erent spatial interaction mechanisms due to di�erent travel and commuting patterns.
Also, the largest German cities are larger by an order of magnitude than the majority of other cities

23For this empirical analysis, a pharmacy is one outlet but may belong to a group of pharmacies
24This was done using an academic licence for Bing Spatial Data Services. Care was taken to obtain accurate locations,

and the results were double-checked manually where the geocoding API indicated that its result was imprecise.
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Germany 80 city sample

year active entries exits active entries exits

2001 16,286 5,449
2002 16,272 175 189 5,438 57 68
2003 16,300 120 92 5,442 48 44
2004 16,328 110 82 5,437 25 30
2005 16,184 313 457 5,307 91 221
2006 16,226 1,042 1,000 5,234 334 407
2007 16,307 420 339 5,233 129 130
2008 16,372 409 344 5,229 161 165
2009 16,342 101 131 5,209 33 53
2010 16,273 460 529 5,178 161 192
2011 16,168 266 371 5,126 84 136
2012 16,051 256 373 5,067 96 155
2013 15,845 266 472 4,953 93 207
2014 15,807 54 92 4,933 11 31
2015 15,645 181 343 4,856 62 139
2016 15,519 192 318 4,771 56 141

Total 26,964 4,365 5,132 6,741 1,441 2,119

Table 2.3.: Number of active �rms, entries, and exits across years for the entire dataset, and for
the sample of eighty large German cities that is used in the subsequent analysis.

and so they were excluded from the analysis. A list of the eighty sample cities is shown in table A.1 in
the appendix.

In the base line analysis, I only use locations where an active pharmacy has been observed at some
point as potential entry locations. In a robustness check, I extend the set of potential entry locations
in two di�erent ways. On the one hand, I use the locations of bakery shops.25 Since bakery shops and
pharmacies have approximately the same size, these locations therefore represent an appropriate set of
potential entry locations. Furthermore, they also respect local entry restrictions that may result from
zoning laws. As a second alternative, I generated random entry locations within the administrative
boundaries of each city. These random entry locations, of course, do not respect zoning laws, and they
also probably do not correspond to actual feasible entry locations. Therefore, these results should be
interpreted cautiously.

To model pharmacies’ variable reduced form pro�ts (see equation (2.20)), data on local demand and
supply conditions was obtained form various sources. First, data from the German census in 2011
(Zensus, 2011) was used which shows the spatial residential population distribution on a �ne grid
with a spacing of just one hundred metres. This allows me to compute the local residential population,
within a radius of 500 metres around each potential entry location. This variable proxies local residential
demand at each location and corresponds to the variable Yj in equation (2.20). Moreover, the share of
people aged 65 and older was computed for every potential entry location.

25These locations were extracted from OpenStreetMap (OpenStreetMap contributors, 2017).
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Second, I obtained the locations and outlines, respectively, of doctors, supermarkets, train stations,
pedestrian zones, and main roads from an OpenStreetMap data base (OpenStreetMap contributors,
2017).26 Using GIS software, the distances to the nearest doctor, supermarket, main road, etc. were
computed for each pharmacy location in the sample.27 The aforementioned variables are speci�c to
each distinct location, but do not vary over time because the census data are available only for 2011,
and because I used only a single year of OpenStreetmap data. To capture temporal changes in the
pro�tability of stores, I allow the intercept, entry costs, and the interaction term, to di�er before and
after the reform period. Table 2.4 shows summary statistics for these co-variates in the selected sample
of cities, and for the three sets of point locations – pharmacies, bake shops, and random dummy locations.
The table shows that pharmacy locations, and the bake shop locations are fairly similar in terms of
their observable statistics, although a formal t-test rejects the null of equal means for all variables (see
table A.2). In comparison, the random locations di�er substantially in their observable characteristics.

26The data were downloaded from download.geofabrik.de, and processed using the command line tool Osmosis
27This was done in the QGIS environment.
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Variable Explanation Variation mean SD min max

vacancy rate among all buildings, (2011) total 0.043 0.023 0.016 0.136

commuters (in) share of total population (2012) total 0.091 0.114 -0.056 0.452

sq. m. price annual price of construction land total 0.220 0.155 0.002 1.236
per square metre, in 1,000€ between 0.140 0.027 0.792

within 0.067 -0.098 0.793

unemployment annual unemployment rate total 0.099 0.035 0.031 0.237
between 0.029 0.042 0.169
within 0.019 0.038 0.172

income annual real disposable income total 2.069 0.281 1.569 4.337
per capita, in 10,000€ between 0.270 1.638 3.335

within 0.082 1.088 3.071

income growth annual growth rates total 0.002 0.018 -0.100 0.100
in per capita units between 0.004 -0.006 0.020

within 0.018 -0.109 0.106

population growth annual population growth total 0.003 0.008 -0.043 0.058
between 0.005 -0.008 0.013
within 0.006 -0.046 0.055

Table 2.5.: Summary statistics of variables that determine demand at the municipal level. Data from
80 large German cities (excluding Berlin, Hamburg, Munich, Cologne). The between
and within variations are only computed for variables which actually vary over time.
Author’s own calculations based on data from Statistische Ämter des Bundes und der
Länder (2018).

Third, further economic municipality-level co-variates from the German statistical o�ces (Statistische
Ämter des Bundes und der Länder, 2018) were assigned to each location based on municipal bound-
aries (Bundesamt für Kartographie und Geodäsie, 2018). The local population data were scaled with
municipality level population growth rates. As a robustness check, I also estimated the model with
unscaled population data. Table 2.5 shows the summary statistics of these variables across cities, and
across observational periods.

2.6.2. Descriptive analysis

The most interesting information contained in the panel data set are the pharmacies’ relative locations,
and how they change over time. The analysis of these spatial data is complicated by the fact that
individual observations are usually not independent of each other, so that classical statistical concepts
cannot be used. For this reason, a specialized branch of statistics has evolved that is concerned with the
analysis of such spatial point patterns. Although the methods from spatial point pattern statistics lack a
direct economic interpretation, they are nonetheless useful to describe the observed data appropriately.
This subsection describes the spatial data set using methods from point pattern statistics. A good
introduction to point pattern statistics is Diggle (2014).
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Figure 2.10.: Spatial con�guration of pharmacies in Germany

First, the data are described in terms of nearest neighbour distances. For each active pharmacy in every
year, the distance towards its nearest active competitor was computed. The average nearest competitor
distance is plotted in �gure 2.10b along with the average population weighted distance from consumer
cells (Zensus, 2011) to closest active pharmacies. That metric can be thought of as a crude welfare
measure that can be used to evaluate the importance of changes in the spatial distribution of stores
from a consumer perspective. The �gure shows that the average nearest pharmacy distance changes
very little over time, in the magnitude of only a few metres. On the other hand, there has been a marked
increase by 70 metres in the nearest competitor distance since 2004. This change is not a large one in
absolute terms, but it is still remarkable because changes in the spatial equilibrium con�guration are
naturally expected to be a rather slow process.28 The structural empirical estimation below will use a
subset of data from eighty large German cities (see table A.1). Figure 2.11 below shows the development
of the number of active pharmacies, as well as the nearest competitor and nearest pharmacy distances
over time for this sub-sample of the data. The patterns shown in �gures 2.10 and 2.11 are qualitatively
very similar, although the magnitudes of the nearest neighbour distances are naturally much smaller.
The descriptive evidence so far is consistent with the hypothesis of increased competition among nearby
competitors as a result of the introduction of price competition to the retail pharmacy market.

A key question that is addressed in spatial point pattern statistics is whether the observed events occur
independently of each other, or not. In particular, researchers are often interested in whether the
data generating process exhibits a tendency to produce clustered or, on the contrary, regular point
patterns. As a benchmark hypothesis, it is often assumed that the points are generated by a spatial

28Note that it is not straightforward to test for yoy changes because the data are not independent, and do not converge to
a normal distribution. That is why (Diggle, 2014, p.19) suggests using bootstrap tests in spatial point statistics.
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Figure 2.11.: Spatial con�guration of pharmacies in 60 large German cities

Poisson point process. Poisson processes generate point patterns that are characterized by complete
spatial randomness (CSR). Their theoretical properties are used to construct formal tests against the
null hypothesis of CSR. The interpretation of such tests is however complicated by the fact that it is
very di�cult to formally distinguish whether a point process exhibits inherent clustering, or whether
the observed clustering is an artefact of some unobserved spatial heterogeneity (Diggle, 2014, chapters
2 and 4). One frequently used statistic to describe the properties of spatial point processes is the
cumulative distribution function of the nearest neighbour distances between points (“events”), called
the G-function.29 It can be used to construct a test against CSR, but also more generally to test whether
two di�erent point patterns share the same distributive properties. The tests are usually constructed
as exact Monte-Carlo tests (Diggle, 2014, p.19).

The left panel of �gure 2.12 shows the estimated G-functions for all years from 2001 through to 2016.
The dotted line represents the theoretical G-function under CSR. The �gure clearly shows that the
empirical G-functions di�er from their theoretical counter-part under CSR, which can be formally
con�rmed by means of a bootstrap Monte Carlo test. But as discussed above, this is does by no means
imply that pharmacies have an inherent tendency to cluster together. Instead, it is far more likely
that the observed tendency to cluster is the result of spatial heterogeneity in local demand conditions,
which can be unobserved (the “attractiveness” of a location) or observed (such as the local residential
population).30 To ascertain whether the spatial pattern of pharmacies indeed exhibits clustering, one
would have to control for all factors that a�ect the probability to open up a pharmacy at a given location.
However, since the prime goal of this paper is whether the 2004 health care reform has changed the

29In Diggle (2014), the K-function is discussed as an alternative measure. It has the appealing property that it does not
depend on the total number of observations, but is also less intuitive to explain and thus requires a more extensive discussion.

30There are methods to compute the G-function in the presence of spatial heterogeneity, but these methods are highly
susceptible to obtaining an initial estimate of the spatial intensity function (Diggle, 2014).
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Figure 2.12.: The distribution of nearest-neighbour distances (G-function) over time

spatial pattern of locations over time, the panel structure of the data allows me to examine this more
directly. To make the changes over time more visible, the di�erence Gt(d) − G2001(d) is shown in
the right panel of �gure 2.12. That �gure clearly shows that the G-function has decreased over time
and moved gradually closer to the theoretical function under CSR. Therefore, the amount of clustering
has decreased over time. It seems plausible that this change has occurred as a consequence of price
competition among nearby competitors, because the most pronounced changes occur in the range from
zero to four hundred metres. In order to test whether the observed changes of the G-function are
statistically signi�cant, an exact Monte Carlo test for the equality of the G-function in two subsequent
years was constructed. Further, a variation of the test which uses the di�erences betweenGy andG2001,
y = 2002, . . . , 2016 was conducted in order to test whether the cumulative changes relative to the base
year are statistically signi�cant.31 The test statistics of these tests are shown in table 2.6, and the 0.95

Monte Carlo critical value was found to be 0.019. The null hypothesis that two distributions are the
same is rejected if the test statistic exceeds the critical value. So the table shows that the year-over-year
changes are never statistically signi�cant at the 5% level, but that the cumulative changes relative to
2001 are signi�cant from 2010 onwards.

The statistical analysis in this subsection has shown show that the spatial distribution of pharmacies
exhibits pronounced changes over time. The structural model in the next section will explore the causes
of this change from an economic perspective, and relate it to the introduction of price competition in
the retail pharmacy market.

31The test was conducted with the methods described in Diggle (2014, p.19), with the exception that the di�erence between
theG-functions of two point patterns is used as a test statistic. The distribution of this test statistic under CSR was computed
by repeatedly simulating random point patterns.
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Test statistics
t Gt −Gt−1 Gt −G2001

2002 0.00006 0.00006
2003 0.00001 0.00011
2004 0.00005 0.00023
2005 0.00378 0.00487
2006 0.00035 0.00708
2007 0.00065 0.00752
2008 0.00014 0.00908
2009 0.00007 0.01034
2010 0.00361 0.02543∗

2011 0.00138 0.03801∗

2012 0.00134 0.05337∗

2013 0.00453 0.08719∗

2014 0.00001 0.08622∗

2015 0.00146 0.10886∗

2016 0.00161 0.13525∗

H0: G-functions are the same.
0.95 critical value: q95 = 0.01933

Table 2.6.: Test statistics for the equality of the distribution of nearest neighbour distances, G, in
two subsequent years (�rst column) and relative to the base year 2001 (second column).
The Monte Carlo critical value is based on 199 simulations of two random spatial point
patterns.

2.7. Empirical results

The maximum likelihood estimator presented in section 2.5.3 is used to estimate the principal structural
parameters of the dynamic entry game in a set of large German cities. I am mainly interested in the
spatial interaction parameter δ in equation (2.20) that governs by how much the variable pro�ts of
a pharmacy change due to the presence of a nearby competitor. In order to assess the e�ect of the
2004 reform, this parameter is allowed to di�er before and after 2004. Following the discussion about
the institutional details of the market, I also allow for the entry costs to di�er before and after the
regulatory change in 2004. The empirical analysis proceeds as follows. In a �rst step, the spatial
interaction radius d is chosen by means of a simpli�ed model without strategic interaction. Then, the
model that allows for strategic interaction at the local level of k nearest neighbours is brought to the
data, and an appropriate value for k is chosen. The results of this model are discussed, followed by a
model validation exercise. Lastly, I use the estimated model parameters to isolate the e�ect of more
intense local competition on market outcomes, and also perform a counter-factual exercise to assess
the e�ect of a hard geographic entry restriction. As a robustness check, I re-estimate the model with
additional potential entry locations and with additional co-variates.

2.7.1. Specification search

In order to choose an appropriate spatial interaction radius d that determines whether two adjoining
pharmacies have a direct e�ect on each others’ pro�ts (c.f. the pro�t equation (2.20)), a stripped
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d[m] δ̂pre δ̂post ll d[m] δ̂pre δ̂post ll

100 0.051 -0.004 -14837.8 1100 0.003 0.009 -14783.7
200 0.023 0.022 -14833.9 1200 0.003 0.009 -14788.2
300 0.018 0.018 -14823.6 1300 0.003 0.009 -14789.8
400 0.011 0.014 -14810.7 1400 0.002 0.009 -14794.3
500 0.008 0.013 -14798.9 1500 0.002 0.009 -14797.4
600 0.005 0.011 -14789.4 1600 0.002 0.009 -14801.4
700 0.004 0.010 -14787.8 1700 0.002 0.009 -14805.6
800 0.003 0.009 -14786.6 1800 0.002 0.009 -14810.0
900 0.002 0.009 -14780.3 1900 0.002 0.009 -14814.4

1000 0.002 0.009 -14780.5 2000 0.002 0.008 -14820.3

Table 2.7.: Estimates of the spatial interaction parameter and the log-likelihood for di�erent values
of the spatial interaction radius d, in a simple model without strategic interaction. A
maximal log-likelihood is attained at d = 900m.

down version of the model that excludes any strategic interaction is estimated. This model is obtained
by setting the number of strategic nearest neighbours to one (so �rms assume that no competitor
changes its status), and solving the resulting single-agent dynamic decision problem. Pharmacies’
pro�ts are given by equation (2.20), with variables as given in table 2.4, and their decision was modelled
as outlined in section 2.5.2 with k = 1, i.e. no strategic neighbours are considered. Table 2.7 shows the
estimated spatial interaction parameters, and the resulting log-likelihood value for di�erent choices of
the interaction parameter. It can be seen that the log-likelihood attains a maximal value for d = 900,
and I use this value in the subsequent analysis. Also, the table shows that the estimates of the interaction
terms δ remain approximately constant as the interaction radius increases further. Since the number
of parameters is the same across all speci�cations, the Akaike information criterion would therefore
lead to the same model selection.

Next, I use a similar procedure to determine the number of strategic nearest neighbours that corresponds
to the size of the local state space which every �rm forms their expectations about. For a spatial
interaction radius of nine hundred metres, I estimate the model for k = 1, 2, . . . , 6 and record the
maximum likelihood value. Table 2.8 shows that the maximum likelihood is attained at k = 5. The
table also shows that there is initially a large improvement in the log-likelihood when just one strategic
nearest neighbour is added (going from k = 1 to k = 2). For larger values of k the log-likelihood
remains approximately �at, and parameter estimates change only marginally but the computational time
increases rapidly. Therefore, I am con�dent that larger values of k beyond of what is computationally
feasible would not lead to great improvements or changes in the model.

The full parameter estimates are shown in table A.3 in the appendix. An interesting insight of this table
is the apparent invariance of the estimated coe�cients with regard to the choice of the parameter k. A
formal test of one speci�cation against the other is work to be done in the future32 but the log-likelihood,
and the estimated coe�cients are virtually the same for any k > 1. The speci�cation without strategic
interaction (k = 1) attains a somewhat smaller log-likelihood, and estimated parameter values that are

32This is complicated by the fact that the models are not nested into each other
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k δ̂pre δ̂post ll runtime [s]

1 0.0024 0.0089 -14780.27 730.00
2 0.0021 0.0087 -14769.41 587.00
3 0.0020 0.0086 -14768.09 1170.00
4 0.0020 0.0087 -14768.42 2186.00
5 0.0020 0.0087 -14767.65 4067.00
6 0.0020 0.0088 -14768.27 15673.00

Table 2.8.: Estimates of the spatial interaction parameter and the log-likelihood for di�erent sizes
of the strategic neighbours k, at a spatial interaction radius d = 900m. A maximal
log-likelihood is attained at k = 5. The estimation with k = 1 had a larger runtime
because the parameters were not initialized in that speci�cation.

di�erent, albeit probably not signi�cantly so. This could indicate that very little strategic interaction
takes place among pharmacies and that players only take into account the actions of their immediate
nearest neighbouring location. On the other hand, the kind of strategic interaction that is built into the
model by means of adding “strategic neighbours” is of anticipatory nature, and so another explanation
is that �rms do not engage in anticipating their neighbours’ actions and instead base their decisions
solely on the currently observed market state. This behaviour is already captured by the panel structure
of the data.

Does this invalidate the chosen approach of building a dynamic entry model with strategic interaction?
The answer is no. For although the result is that anticipatory strategic interactions play a relatively
minor role in determining �rms’ behaviour in the industry under consideration, the answer could be a
di�erent one in a di�erent industry. The strength of the approach presented here is that it allows the
researcher to test to what degree agents make strategic anticipatory decisions. These insights can also
guide modelling approaches in other contexts with regard to how much emphasis is placed on dynamic
strategic interactions of agents.

2.7.2. Main result

Table 2.9 below shows the main estimation result that was obtained from a sample of eighty large
German cities with more than six thousand pharmacy locations, using d = 900m and k = 5 as outlined
above. Standard errors were computed using the estimated inverse Hessian matrix that is returned by
the BFGS optimization routine. The exit value θx was normalized to unity. Further results are deferred
to table A.4 in appendix A.2.5.

The estimated spatial interaction parameter δ is smaller and insigni�cant before the reform, and it is
more than four times as large in the post-period, and signi�cantly di�erent from zero. This con�rms
one key hypothesis of the paper, namely that the introduction of price competition for non-prescription
drugs has sti�ened competition among nearby pharmacies, and so increased the tendency of �rms to
locate further away from each other. The estimates imply that one additional active competitor within
a radius of 900m reduces pro�t margins by about 0.9%. The total e�ect on variable pro�ts is larger than
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Local demand
intercept 0.2941*** (0.0092)
post reform -0.0324*** (0.0065)
local population† 0.1682*** (0.0260)
elderly share 0.0968*** (0.0258)
pedestrian zone 0.0163*** (0.0042)
mainroad -0.0024 (0.0032)
doctor nearby 0.0272*** (0.0039)
supermarket nearby 0.0323*** (0.0038)
trainstation nearby 0.0187** (0.0074)

Local competition
δpre 0.0020 (0.0025)
δpost 0.0087*** (0.0017)

Entry costs
θepre 4.9005*** (0.0393)
θepost 4.3318*** (0.0179)

log-likelihood -14,767.7
N locations 6,741
T periods 16

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01

Table 2.9.: Estimates of the spatial entry model with a strategic neighbourhood of size �ve (self
and four nearest neighbours), and a spatial interaction radius of nine hundred metres.
N=6741 �rms, T=16 time periods in 80 large German cities. Exit values are normalized
to 1. †local population is the residential population within 500 metres of the store’s
location, divided by the number of active competitors in the respective time period or
future state. Standard errors in parentheses, computed from estimated Hessian matrix.

this, because local demand decreases as the number of active neighbours increases. Since the number
of active nearest neighbours within that radius can be quite large in urban areas, this implies that
competition has now sizeable e�ects on pharmacies’ pro�tability, whereas it was virtually nil before
the reform. Because the estimated interaction parameters are also rather small in comparison to the
magnitudes of the other parameters, the model is likely to possess only one single equilibrium, as is also
discussed in section 2.5.3. Entry costs are smaller in the post-reform period, and the post-reform dummy
is negative which points to smaller period returns in the post period. Lower entry costs and smaller
period returns together imply that there is more turnover. The size of the local population, divided by
the number of active stores within the interaction radius has a signi�cantly positive e�ect on period
returns, as well as the local share of the population that is older than 65 (elderly share). The coe�cients
for proximity to public transport, supermarkets and physicians generally have the anticipated signs,
whereas proximity to a main road seems to have a negative e�ect on pro�ts, albeit insigni�cant.

2.7.3. Model validation

In order to assess whether the model can replicate key trends that are observed in the data (see �gure
2.10), I simulated a large number of counter-factual market outcomes, starting from the observed market
state in the year 2004 and using either the pre-reform estimates (i.e. post reform dummy set to zero,
δ = δ̂pre, and θepre), or the corresponding post-reform estimates. The simulated market outcomes
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distance (metres)

Number of pharmacy to consumer to
year stores nearest competitor nearest pharmacy

observed
2004 5,437 423 514
2016 4,770 469 539

∆ -667 +45 +25

simulated
pre-reform parameters 2016 5,466 407 526
post-reform parameters 2016 4,850 441 558

∆ -615 +34 +32

Table 2.10.: Comparison of actual changes throughout the post-reform period, and the model-
implied di�erences between the pre- and the post-reform periods.

are analysed along three dimensions: (1) number of active stores, (2) average distance to the nearest
competitor and (3) average consumer distance to the nearest pharmacy.

The simulation results are shown graphically in �gure A.1 in appendix A.2.4. The top panel in �gure
A.1a shows that the model, when set up with the pre-reform parameter values, predicts that the total
number of active stores remains approximately constant, as desired. When using the post-reform
parameter values, shown in the top panel of �gure A.1b, this number exhibits a downward sloping
trend that does follow the observed number of active stores quite closely. On the other hand, the bottom
two panels in �gures A.1a and A.1b show that the simulated average store-to-store distance is smaller,
and the average simulated consumer travel distance is larger than what is observed prior to the reform,
and after the reform, respectively. Apparently, the model-implied competition among nearby stores is
too small to fully replicate the observed behaviour. This could also be due to the linear way in which
I modelled the competition among nearby stores, where every store within a radius d has the same
negative e�ect δ on its competitors’ pro�t margins. It seems plausible that stores which are closer
also exhibit more competitive pressure, but modelling this in a reduced form manner would require an
arbitrary choice of a functional form. Instead, one could integrate a truly spatial demand model in the
estimation routine, which would automatically capture such e�ects.33 This is work to be done in the
future.

Despite the discrepancies between the observed and the model-implied simulation results, I argue
that the di�erence between the two simulation results (pre- and post-reform) accurately re�ects the
changes that have occured due to the reform. This is supported by table (2.10). This table shows that the
model-implied di�erences between the pre- and the post-reform period are rather close to the observed
changes from 2004 to 2016, and it therefore con�rms that the changes of the structural parameters,
when suitably interpreted, can indeed explain a good part of what was observed in the post reform
period.

33On the other hand, such a structural demand model, possibly combined with a price equilibrium, is much harder to
interpret than the single interaction parameter δ.
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post2004 entry costs interaction outcome of interest

(A) compare 0 θ̂epre δ̂post t(0, θepre, δpost)

against 0 θ̂epre δ̂pre −t(0, θepre, δpre)
= ∆At

(B) compare 1 θ̂epost δ̂post t(1, θepost, δpost)

against 1 θ̂epost δ̂pre −t(1, θepost, δpre)
∆Bt

Table 2.11.: Counterfactual simulations to quantify the e�ect of sti�er price competition

2.7.4. �antifying the e�ect of price competition

What can be seen in the data as well as in the simulations in �gure A.1b is the total e�ect of three
changes: �rst, lower entry costs; second, lower per-period pro�ts; and third, increased local competition
due to price competition. To isolate the e�ect of increased local competition, the idea is to di�erentiate
the model’s predictions with respect to the spatial interaction parameter δ. Since no closed form
solutions are available, this is done numerically, as outlined in the following. The e�ect of increased
price competition can be evaluated using either the pre-reform parameter estimates as a starting point,
or by using the post-reform estimates as a starting point. More precisely, consider a simulated time
series of market outcomes that was generated using the parameters post_2004 ∈ {0, 1}, θe and denote
an arbitrary aggregate statistic that was computed from this simulated data as t(post_2004, θe, δ). Then,
the partial e�ect of changing δ from δpre to δpost can be computed as either ∆A = t(0, θepre, δpost) −
t(0, θepre, δpre) or as ∆B = t(1, θepost, δpost)− t(1, θepost, δpost). These two estimates of the partial e�ect
will in general be di�erent, but it turns out that they are quite close to each other. Table 2.11 summarizes
the procedure.

Table 2.12 shows the results of this decomposition exercise for the three aggregate statistics that are
also shown graphically in �gure A.1, using simulated data runs from 2004 to 2016. The table shows that
increased local competition due to changing the interaction parameter from δpre to δpost can explain
about one third of the decline in the number of pharmacies. The table also shows that about one third
of the observed increase in the inter-�rm nearest neighbour distance can be attributed to this change
of parameters, whereas only one sixth to one seventh of the total increase in consumer travel distances
are attributable to this factor.

Thus, from a consumer perspective, while increased price competition has lead to a substantial reduction
of the number of pharmacies, it did not lead to much greater travel distances, presumably because it has
caused the exit of retail pharmacies that were located very close to another competitor which can o�er
the same services and products. If the aim of the 2003 health care reform was to reduce the costs of the
health care system, introducing a modest degree of price competition into the retail pharmacy sector
has thus been a very consumer-friendly way of reducing the number of pharmacies and, thereby, the
total �xed costs of the health care system. One should note that a full welfare analysis is not possible
due to the lack of detailed price data. However, it seems reasonable to assume that prices did not

50



distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

Total change 2004-2016
actual -667 +45 +25
simulated -616 +34 +32

of which: competition e�ect
(A) t(0, θepre, δpost)− t(0, θepre, δpre) -224 +15 +4
(B) t(1, θepost, δpost)− t(1, θepost, δpost) -215 +16 +4

Table 2.12.: The e�ect of increased price competition on aggregate outcomes in 2016 using model
(5) in table 2.9, average over 100 simulations, 80 large Germany cities.

increase as a result of more intense price competition, and so the cost savings due to the lower number
of retail pharmacies probably outweigh the small increase in consumer travel distances.

2.7.5. Policy experiment: geographical entry restriction

The theoretical model in section 2.4 has shown that free location choice in the absence of spatial
competition leads to ine�cient, Hotelling-style clustering, thus in�icting ine�ciently large travel costs
on consumers. This is precisely the reason why many European countries have or had minimum
distance regulations in place whereby a minimum distance d̄ between any two active pharmacies must
be maintained at all times (see section 2.2.2). The estimated model allows me to evaluate the e�ect of
imposing such a regulation on the German pharmacy market, by changing the period return structure
to include a “penalty” parameter p that is subtracted from �rms’ pro�ts if any one of their active
neighbours is closer than the regulated minimum distance. Thus, new period returns are given by

πregj =

πj − p , if ∃k : djk ≤ d

πj , else.

where πj is speci�ed in (2.4). I chose to set p = θe, so that entry is unpro�table already after the �rst
period, as desired. Then, two hundred independent market con�gurations are simulated, starting from
the market con�guration in 2004.

The average statistics across two hundred independent simulations for a minimum distance of one
hundred metres are shown in �gure A.3a in appendix A.2.4. That �gure shows that such a regulation
would immediately reduce the number of active pharmacies by around six hundred stores, or by around
ten percent, followed by a further decline that is due to the changed pro�t and competition conditions
after the 2004 reform. As an immediate consequence, the nearest competitor distance would have
instantaneously increased by roughly seventy metres, followed by a further increase. Consumer to
nearest pharmacy distances would have increased, too.
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distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

Total simulated change 2004-2016
post-reform parameters –616 +34 +32
post-reform + distance regulation –1036 +93 +46

distance regulation e�ect –421 +60 +14

Table 2.13.: The e�ect of a minimum distance regulation on key market outcomes. The �rst line
shows the simulated changes from 2004 to 2016, using the post-reform parameter esti-
mates. The second line shows the simulated changes using the post-reform parameter
estimates and a minimum distance regulation of 100 metres. The last line denotes the
additional simulated e�ect of a minimum distance regulation. Numbers are averages
over 100 simulations.

To interpret these simulation results, it is important to keep in mind that neither the nearest competitor
distance, nor the nearest pharmacy distance, have been used as direct estimation moments. Therefore,
the model predictions for these statistics are biased, as was shown in section 2.7.3. Thus, to assess
the e�ects of a minimum distance regulation it is necessary to determine how these model predictions
change as such a policy change is implemented. The idea behind this is to “di�erentiate” the model
predictions with respect to a policy change by means of simulation, akin to the procedure used in
the previous section. To this end, I compared the simulated outcomes under the distance regulation
to those without such a regulation in table 2.13. That table shows that the total number of stores
in 2016 would have been smaller by about four hundred stores had such a regulation been in place
since 2004. The nearest competitor distance would have been larger by sixty metres, whereas the
nearest pharmacy distance would have increased by only fourteen metres. A graphical depiction of the
di�erence between the simulated market outcomes with and without a minimum distance regulation is
shown in �gure A.3b. The top panel of that �gure shows that the number of active �rms immediately
decreases relative to the base line scenario, but then the di�erence remains relatively constant. Also,
the nearest competitor distance remains approximately constant relative to the base line scenario. The
most important insight from this analysis is that the nearest pharmacy distances do not increase much
more than in the baseline scenario.

One apparent caveat of this exercise lies in the fact that I am only using observed locations, whereas
such a drastic regulatory measure may actually lead to new locations becoming feasible. Section A.2.5
in the appendix addresses this concern by including a larger set of potential entry locations. The results
however remain qualitatively the same. A second concern is that pharmacies compete along a quality
dimension, so such a regulatory scheme could lead to lower service quality because it actually creates
local monopolies. More generally speaking, since the period returns of the dynamic entry model are
modelled in a reduced form, counter-factual analyses are in principle subject to the Lucas’ critique
(Lucas, 1976) in that the estimated reduced form coe�cients tell us little about the agent’s reactions to
such a drastic change in the economic environment. But to a lesser extent, this would also be true for a
more elaborate model with a “structural” pro�t equation. Any model, be it reduced form or structural,
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can only inform us about those aspects of agents’ decision making that are built into it: a structural
model of price competition can make predictions about price reactions to the ownership structure only
if the ownership structure is part of the model. Similarly, a model of dynamic spatial entry can inform
us about the responses to minimum distance regulations, but not how pharmacies would change their
business model, their opening hours, or their service quality.

2.8. Conclusion

I have documented pronounced qualitative and quantitative changes in the spatial distribution of phar-
macies in Germany over time. Motivated by a simple theoretical model, I developed a structural dynamic
entry model and used it to estimate the key parameters that govern the process of spatial entry and
exit. These parameter estimates indicate that local competition has indeed increased after 2004, most
likely due to a large health care reform that introduced price competition for non-prescription drugs.
A simulation exercise shows that increased competition can explain one third of the total change in
the number of pharmacies, but only a small share of the increase in consumer’s travel distances. This
suggests that more price competition can lead to more e�cient spatial store con�gurations in that the
total number of stores is reduced, which implies lower �xed costs, while consumers do not have to
travel much farther. Thus, even abstracting from the fact that prices are likely to be smaller due to price
competition, increased price competition can lead to better market outcomes. I have also examined the
likely e�ects of introducing a geographic entry barrier that prevents stores from locating very close to
each other. My results show that the e�ects of such a regime are similar to those that are generated
by the introduction of price competition in that the total number of stores decreases, but consumers’
travel costs do not increase very much. But because such a regulatory regime amounts to establishing
local monopolies, it probably has detrimental e�ects on consumer welfare that are not captured in the
model. Therefore, the introduction of price competition is the more e�cient regulatory measure.

The analysis has a number of shortcomings which are left for future research. First of all, it restricts
the analysis to urban markets. An extension of the analysis to rural markets is possible, but because
consumers’ travel patterns and, in consequence, the range of spatial interaction among pharmacies, are
likely to be very di�erent in those markets, this calls for a separate analysis, perhaps using the isolated
market paradigm of Bresnahan and Reiss (1991). Second, the reduced form pro�t equation could be
replaced by a structural revenue model with spatial demand and endogenous prices, but this is currently
infeasible in the context of a dynamic model due to the large additional computational burden. Yet, my
results indicate that the anticipatory strategic component does not play a large role, and so a simpler
model of dynamic decision making could well be used to that e�ect.

On the methodological front, I have established a method to compute and estimate a spatial dynamic
entry model with a large number of asymmetric heterogeneous agents. The method has proves to work
well with thousands of potential entry locations, and could be extended to include more sophisticated
“structural” period return functions. Due to the �exible way in which the size of the strategic neighbour-
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hood is speci�ed, the model can be used to examine in how far strategic anticipatory motives play a role
in dynamic decision making. In principle, this model is applicable to a wide range economic questions,
but the main application lies in retail markets where spatial interaction and strategic decision making
are important factors.
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A. Appendix to Chapter 2

A.1. Proofs

First, consider the proof of proposition 1, repeated here for convenience:

Proposition. The symmetric space-then-price equilibrium of the model described above is characterized
by location choices xa = x∗ and xb = 1− x∗ with

x∗ =


0 if α ≤ τ

3+τ ,

−1
4 + 3

4
α

τ(1−α) if τ
3+τ < α < τ

1+τ ,

1
2 if α ≥ τ

1+τ ,

and prices pa = pb = p∗ with

p∗ =


τ if α ≤ τ

3+τ ,

3
2

(
τ − α

1−α

)
if τ

3+τ < α < τ
1+τ ,

0 if α ≥ τ
1+τ .

Proof. With quadratic travel costs, the consumer who is just indi�erent between purchasing a price
regulated prescription drug from either pharmacy is located at ı̄ = (xa + xb)/2, and the demand for
prescription drugs is hence given by QRxa = αı̄ and QRxb = α(1− ı̄). The indi�erent consumer who
purchases a non-prescription drug is located at

ı̌ =
xa + xb

2
+

1

2τ

pb − pa
xb − xa

so that demand for non-prescription drugs is similarly given by QOTCa = (1 − α)̌ı and QOTCb =

(1− α)(1− ı̌).

Consider �rst the price equilibrium, given location choices xa and xb. Because there are no complemen-
tarities across products, �rms will essentially set the price for non-prescription drugs so as to maximize
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variable pro�ts from that product category. Maximizing the �rms’ pro�t equations, and re-arranging
the �rst-order conditions, it is easy to derive the following price equilibrium:

p∗a =
τ

3
(xb − xa)(2 + xa + xb)

p∗b =
τ

3
(xb − xa)(4− xa − xb) (A.1)

Note that, in the symmetric location case where xb = 1− xa, I have p∗a = p∗b ≡ p∗symm = τ(1− 2xa).
The location of �rm a is a measure of centrality, and prices are lower when the two �rms are located
closer to the market centre (and therefore closer to each other).

Next turn to the equilibrium location decisions of both �rms. Anticipating the equilibrium e�ect on
prices, �rms now choose their locations simultaneously so as to maximize their pro�ts. In doing so,
they must trade o� the market share e�ect of being located closer to the market centre against the
market power e�ect of being located more distantly from their competitor:

dπj
dxj

= α
∂QRxj
∂xj

+ (1− α)pj
∂QOTCj

∂xj︸ ︷︷ ︸
market share e�ect

+ (1− α)pj
∂QOTCj

∂p−j

dp∗−j
dxj︸ ︷︷ ︸

market power e�ect

(A.2)

The equilibrium e�ect on own prices is cancelled out in equilibrium, so that the market power e�ect
only includes the equilibrium e�ect of one’s re-locations on the prices of other �rms. I am looking
for a symmetric equilibrium x∗ where xa = x∗ and xb = 1− x∗. The price equilibrium then implies
p∗a = p∗b = τ(1− 2x∗). Using results from above, equation (A.2) can be used to compute a candidate
equilibrium:

dπa
dxa

∣∣∣∣
x∗

= 0⇔ x∗ = −1

4
+

3

4

α

τ(1− α)

With locations restricted to the unit interval, and xa ≤ xb, the locational equilibrium must satisfy
x∗ ∈

[
0, 1

2

]
. Hence, an equilibrium location is an interior location whenever the share of consumers

purchasing price regulated prescription drugs α is su�ciently large, but not too large:

x∗ =


0 α ≤ τ

3+τ

−1
4 + 3

4
α

τ(1−α)
τ

3+τ < α < τ
1+τ

1
2 α ≥ τ

1+τ

(A.3)

The ensuing price equilibrium is then given by

p∗ =


τ α ≤ τ

3+τ

3
2

(
τ − α

1−α

)
τ

3+τ < α < τ
1+τ

0 α ≥ τ
1+τ

(A.4)
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This section continues with the proof for the proposition 2 in section 2.4, split up into two lemmas for
convenience.

Lemma 1. Suppose that the regulated price of prescription drugs p̄ was zero, and that parameters are such
that x∗ < 1

2 in the competitive equilibrium. Then, the di�erence of consumer welfare in the competitive
equilibrium relative to the regulatory benchmark increases strictly as the share of prescription consumers
α increases ( d

dα∆W (0) > 0).

Proof. One can distinguish two cases here. Case 1: Suppose that α ≤ τ
3+τ so that x∗ = 0. Then,

∆W = (α−1)τ < 0 and the change in consumer welfare is obviously increasing strictly in α, as τ > 0

by assumption. Case 2: If 0 < x∗ < 1
2 it must hold that τ

3+τ < α < τ
1+τ . Because 0 ≤ τ < 1, this

implies 0 < α < 1. Note �rst that the marginal change of the �rms’ equilibrium locations with respect
to α is given by

dx∗

dα
=

3

4τ(1− α)2

Because this expression is increasing strictly in α for any α ∈ (0, 1), and because α > τ
3+τ it can be

bounded below by the function f(τ) = 1
12

(3+τ)2

τ . This term, in turn, is strictly decreasing for τ ∈ [0, 1]

and hence, its minimum is attained at τ = 1 with f(1) = 4
3 . Therefore,

dx∗

dα
≥ 4

3
(A.5)

with a strict inequality if τ < 1. Also, note that α < τ
1+τ is equivalent to τ(1− α) > α which will be

convenient below. The change in consumer welfare in (2.3) can equivalently be written as

∆W = (α− 1)τ +
1

2
(5τ + α(1− 5τ))x∗ − (τ + α(1− τ))x∗2

The marginal change of ∆W with respect to changes in α is

d∆W

dα
= τ +

[
1− 5τ

2
− (1− τ)x∗

]
︸ ︷︷ ︸

≡A

x∗ +

[
1

2
(α+ 5τ(1− α))− 2x∗(α+ τ(1− α))

]
︸ ︷︷ ︸

≡B

dx∗

dα
(A.6)

First, consider term A. Substituting for the expression of equilibrium location choices, one obtains

A =
1

2
(1− 5τ)−

(
−1

4
+

3

4

α

τ(1− α)

)
(1− τ)

= −3

4

α(1− τ)

τ(1− α)
+

1

4
(1− τ) +

1

2
(1− 5τ)

= −3

4

α(1− τ)

τ(1− α)︸ ︷︷ ︸
<1−τ

+
3

4
− 11

4
τ

> −3

4
(1− τ) +

3

4
− 11

4
τ = −2τ.
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Next, consider term B. Because x∗ < 1
2 and with τ(1− α) > α, it can be bounded below as follows:

B >
1

2
(α+ 5τ(1− α))− (α+ τ(1− α))

= −1

2
α+

3

2
τ(1− α)︸ ︷︷ ︸

>α

> α

Finally, substituting for the lower bounds of A, B, dx∗

dα , and x∗ in (A.6), one can derive the following
inequality

d∆W

dα
> τ +

4

3
α− 2τ

(
−1

4
+

3

4

α

τ(1− α)

)
=

3

2
τ +

4

3
α− 3

2

α

1− α

So, a su�cient condition for d∆W
dα > 0 is

3

2
τ(1− α)︸ ︷︷ ︸

>α

+
4

3
α(1− α)− 3

2
α ≥ 0

⇐ 4

3
α(1− α) ≥ 0

which is true for all α ∈ [0, 1].

Lemma 2. Suppose that the regulated price of prescription drugs p̄ was zero, and that parameters are such
that x∗ < 1

2 in the competitive equilibrium. Then, the di�erence of consumer welfare in the competitive
equilibrium relative to the regulatory benchmark decreases strictly as the share of prescription consumers
τ increases ( d

dτ∆W (0) < 0).

Proof. Case 1: Again, one can �rst consider the trivial cases where x∗ = 0 so that ∆W = (α − 1)τ

which is strictly decreasing in τ since α < 1 is implied (see above). Case 2: If 0 < x∗ < 1
2 it must

hold that τ
3+τ < α < τ

1+τ . Note �rst that the marginal change of the �rms’ equilibrium locations with
respect to τ is given by

dx∗

dτ
= −3

4

α

τ2(1− α)︸ ︷︷ ︸
> 1
τ

> − 3

4τ

The change in welfare (2.3) compared to the baseline case where prices are regulated can also be written
as

∆W = (α− 1)τ +
1

2
(α+ 5τ(1− α))x∗ − (α+ τ(1− α))x∗2,
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the marginal change of which with respect to τ is

d∆W

dτ
= −(1−α)+

(
5(1− α)

2
− x∗(1− α)

)
︸ ︷︷ ︸

≡C

x∗+

(
1

2
(α+ 5τ(1− α))− 2x∗(α+ τ(1− α))

)
︸ ︷︷ ︸

≡B

dx∗

dτ
.

(A.7)
Note that term B in the above equation is the same as term B in equation (A.6), and so I already know
thatB > α. Substituting for x∗ in C and observing that α > τ

1+τ is equivalent to writing α/τ > 1−α,
I obtain

C =
5(1− τ)

2
−
(
−1

4
+

3

4

α

τ(1− α)

)
(1− α)

=
11

4
(1− α)− 3

4

α

τ︸︷︷︸
>1−α

< 2(1− α).

Noting that 0 < x∗ < 1
2 and putting together the established lower bounds for B, C , and dx∗

dτ I can
derive that

d∆W

dτ
< −(1− α) + (1− α)− 3

4

α

τ
= −3

4

α

τ
< 0

because α > 0 is implied, and τ > 0 by assumption.

Lemmas 1 and 2 now allow me to prove the validity of proposition 2, repeated below for the reader’s
convenience:

Proposition. Suppose that the regulated price of non-prescription drugs, p̄, was initially zero. Then:

1. if α and τ are such that x∗ = 1
2 , consumer welfare is the same in the competitive equilibrium as in

the regulatory benchmark (∆W (0) = 0);

2. if α and τ are such that x∗ < 1
2 , (a) the di�erence of consumer welfare in the competitive equi-

librium relative to the regulatory benchmark increases strictly in the share of prescription con-
sumers ( d

dα∆W (0) > 0), and it decreases strictly in the travel costs of non-prescription consumers
( d
dτ∆W (0) < 0); and (b) consumer welfare is smaller in the competitive equilibrium (∆W (0) < 0).

Proof. Point (1) is trivial. Point (2a) follows immediately from lemmas 1 and 2. To see point (2b), pick
any point (α′, τ ′) ∈ [0, 1]2 with α′ < τ ′

1+τ ′ so that x∗(α′, τ ′) < 1
2 . Choose a di�erent point (α′′, τ ′′)

with α′′ = τ ′′

1+τ ′′ , α
′′ > α′ and τ ′′ < τ ′. Such a point, by construction, always exists. Then,

∆W (0)α′,τ ′ = ∆W (0)α′′,τ ′′︸ ︷︷ ︸
=0

+

∫ α′

α′′
∆W (0)α,τ ′′dα︸ ︷︷ ︸

>0 ∀α<α′′

+

∫ τ ′

τ ′′
∆W (0)α′,τdτ︸ ︷︷ ︸

<0

< 0

which concludes the proof (note again that α′′ > α′ and τ ′′ < τ ′).
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A.2. Supplementary empirical material

A.2.1. List of cities

city AGS8 N city AGS8 N

1 Düsseldorf 05 111 000 237 41 Oberhausen 05 119 000 66
2 Frankfurt a.M. 06 412 000 236 42 Ludwigshafen 07 314 000 64
3 Hannover 03 241 001 203 43 Hamm 05 915 000 63
4 Essen 05 113 000 200 44 Würzburg 09 663 000 61
5 Stuttgart 08 111 000 199 45 Heidelberg 08 221 000 61
6 Dortmund 05 913 000 197 46 Potsdam 12 054 000 60
7 Nürnberg 09 564 000 190 47 Paderborn 05 774 032 59
8 Bremen 04 011 000 179 48 Mülheim (Ruhr) 05 117 000 59
9 Leipzig 14 713 000 174 49 Darmstadt 06 411 000 57

10 Duisburg 05 112 000 157 50 Herne 05 916 000 54
11 Dresden 14 612 000 146 51 Leverkusen 05 316 000 54
12 Bonn 05 314 000 135 52 Neuss 05 162 024 53
13 Bochum 05 911 000 133 53 Koblenz 07 111 000 53
14 Münster 05 515 000 121 54 Solingen 05 122 000 51
15 Mannheim 08 222 000 118 55 Pforzheim 08 231 000 51
16 Wuppertal 05 124 000 109 56 Trier 07 211 000 50
17 Augsburg 09 761 000 109 57 Göttingen 03 152 012 50
18 Bielefeld 05 711 000 106 58 Ulm 08 421 000 49
19 Halle (Saale) 15 002 000 105 59 Erlangen 09 562 000 48
20 Karlsruhe 08 212 000 102 60 Recklinghausen 05 562 032 46
21 Wiesbaden 06 414 000 102 61 Ingolstadt 09 161 000 45
22 Gelsenkirchen 05 513 000 99 62 Zwickau 14 524 330 45
23 Mönchengladbach 05 116 000 96 63 Kaiserslautern 07 312 000 45
24 Aachen 05 334 002 96 64 Salzgitter 03 102 000 45
25 Braunschweig 03 101 000 93 65 O�enbach 06 413 000 44
26 Kiel 01 002 000 91 66 Heilbronn 08 121 000 44
27 Lübeck 01 003 000 89 67 Bremerhaven 04 012 000 43
28 Freiburg 08 311 000 87 68 Hildesheim 03 254 021 43
29 Krefeld 05 114 000 87 69 Wolfsburg 03 103 000 42
30 Magdeburg 15 003 000 83 70 Fürth 09 563 000 41
31 Mainz 07 315 000 82 71 Bamberg 09 461 000 40
32 Chemnitz 14 511 000 82 72 Flensburg 01 001 000 39
33 Kassel 06 611 000 81 73 Remscheid 05 120 000 39
34 Osnabrück 03 404 000 74 74 Cottbus 12 052 000 39
35 Erfurt 16 051 000 71 75 Gütersloh 05 754 008 39
36 Saarbrücken 10 041 100 70 76 Worms 07 319 000 38
37 Rostock 13 003 000 69 77 Siegen 05 970 040 38
38 Hagen 05 914 000 69 78 Bergisch Gladbach 05 378 004 38
39 Regensburg 09 362 000 68 79 Wilhelmshaven 03 405 000 37
40 Oldenburg i.O. 03 403 000 66 80 Esslingen 08 116 019 37

Table A.1.: List of eighty large German cities that were used in the empirical application, their
unique identi�er codes, and the number of unique locations per city, across all years.
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A.2.2. Comparison of pharmacy and bake shop locations

bake shops pharmacies di�erence

local population 0.467 0.495 0.028***

(0.284) (0.269) (0.005)
elderly share 0.194 0.198 0.004***

(0.066) (0.062) (0.001)
pedestrian zone 0.212 0.216 0.004

(0.408) (0.411) (0.007)
mainroad 0.263 0.331 0.068***

(0.440) (0.471) (0.008)
doctor 0.141 0.217 0.076***

(0.348) (0.412) (0.006)
supermarket 0.298 0.231 -0.068***

(0.458) (0.421) (0.007)
trainstation 0.061 0.045 -0.015***

(0.239) (0.208) (0.004)

Observations 7,382 6,741 14,123

Table A.2.: Comparison of local spatial co-variates for pharmacy locations, and bake shops.
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A.2.3. Choosing the strategic neighbourhood

The following table shows the estimates that were obtained using di�erent sizes of the strategic neigh-
bourhood in greater detail than table 2.8 does. Overall, the changes between the di�erent speci�cations
are largest when increasing k from one to two. For greater values of k, the changes become virtually
nil.

(1) (2) (3) (4) (5) (6)

Local demand
intercept 0.298*** 0.295*** 0.294*** 0.294*** 0.294*** 0.294***

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
post reform -0.032*** -0.032*** -0.032*** -0.033*** -0.032*** -0.032***

(0.007) (0.006) (0.007) (0.007) (0.007) (0.007)
local population† 0.134*** 0.162*** 0.166*** 0.167*** 0.168*** 0.167***

(0.044) (0.026) (0.026) (0.026) (0.026) (0.026)
elderly share 0.098*** 0.096*** 0.096*** 0.097*** 0.097*** 0.097***

(0.021) (0.025) (0.026) (0.026) (0.026) (0.025)
trainstation 0.018** 0.018** 0.019** 0.019** 0.019** 0.019**

(0.007) (0.007) (0.007) (0.007) (0.007) (0.008)
pedestrian zone 0.015*** 0.016*** 0.016*** 0.016*** 0.016*** 0.016***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
supermarket 0.032*** 0.032*** 0.032*** 0.032*** 0.032*** 0.032***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
mainroad -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003)
doctor 0.027*** 0.027*** 0.027*** 0.027*** 0.027*** 0.027***

(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)
Local competition

δpre 0.002 0.002 0.002 0.002 0.002 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

δpost 0.009*** 0.009*** 0.009*** 0.009*** 0.009*** 0.009***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Entry costs

θepre 4.908*** 4.902*** 4.901*** 4.901*** 4.901*** 4.900***

(0.049) (0.039) (0.039) (0.039) (0.039) (0.039)
θepost 4.335*** 4.333*** 4.332*** 4.332*** 4.332*** 4.332***

(0.027) (0.018) (0.018) (0.018) (0.018) (0.018)

interaction radius [m] 900 900 900 900 900 900
strategic neighbours§ 1 2 3 4 5 6
total entry locations 6,741 6,741 6,741 6,741 6,741 6,741
runtime [s] 730 587 1,170 2,186 4,067 15,673
log-likelihood -14,780.3 -14,769.4 -14,768.1 -14,768.4 -14,767.7 -14,768.3

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01
†Local residential population ÷ # local active stores

§ Including “self”

Table A.3.: Estimates of the spatial entry model with various sizes of the strategic neighbourhood
(including self). N=6741 �rms, T=16 time periods in 80 large German cities. Exit values
are normalized to 1. Standard errors in parentheses, computed from estimated Hessian
matrix.
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A.2.4. Simulation results

(a) pre-reform parameters (b) post-reform parameters

Figure A.1.: Simulation results using the parameters in table 2.9, starting from the observed market
state in 2004 and simulating forward with two hundred parallel samples. The blue
shaded areas represents the 95% simulation envelope.

63



(a) Scenario A (b) Scenario B

Figure A.2.: Incremental e�ects of increased local competition, model (3) in table 2.9. See table
2.11 and section 2.7.4.
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(a) Simulated counter-factual outcomes (b) Di�erence to baseline (see �gure A.2b)

Figure A.3.: The e�ects of a mandated 100m minimum distance between store locations, remaining
parameters as in model (5) in table 2.9
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A.2.5. Robustness checks

d = 800m d = 1000m const. pop. more cov. bake shops random loc.
(1) (2) (3) (4) (5) (6)

Local demand
intercept 0.295*** 0.295*** 0.293*** 0.259*** 0.293*** 0.201***

(0.009) (0.009) (0.010) (0.022) (0.007) (0.006)
post reform -0.033*** -0.031*** -0.032*** -0.033*** -0.036*** -0.042***

(0.007) (0.007) (0.007) (0.007) (0.005) (0.004)
local population† 0.136*** 0.180*** 0.172*** 0.171*** 0.066*** 0.397***

(0.021) (0.023) (0.032) (0.027) (0.015) (0.017)
elderly share 0.102*** 0.096*** 0.098*** 0.096*** 0.075*** 0.116***

(0.027) (0.025) (0.025) (0.026) (0.017) (0.013)
trainstation 0.018** 0.019** 0.019** 0.019** 0.005 0.022***

(0.008) (0.008) (0.008) (0.008) (0.005) (0.004)
pedestrian zone 0.017*** 0.015*** 0.016*** 0.016*** 0.008*** 0.028***

(0.006) (0.004) (0.004) (0.004) (0.003) (0.003)
supermarket 0.033*** 0.032*** 0.032*** 0.032*** 0.011*** 0.051***

(0.004) (0.004) (0.005) (0.004) (0.002) (0.003)
mainroad -0.003 -0.002 -0.002 -0.003 0.004* 0.020***

(0.003) (0.003) (0.004) (0.003) (0.002) (0.002)
doctor 0.028*** 0.027*** 0.027*** 0.028*** 0.024*** 0.042***

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003)
vacancies 0.048

(0.066)
sq. m. price -0.014

(0.010)
unemployment -0.021

(0.061)
income 0.019**

(0.008)
income growth -0.008

(0.090)
in commuters -0.005

(0.016)
Local competition

δpre 0.003 0.002 0.002 0.002 0.005 -0.021***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
δpost 0.009*** 0.009*** 0.009*** 0.009*** 0.012*** -0.021***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Entry costs

θepre 4.903*** 4.902*** 4.900*** 4.898*** 5.643*** 5.435***

(0.032) (0.039) (0.018) (0.040) (0.032) (0.029)
θepost 4.334*** 4.332*** 4.332*** 4.332*** 5.106*** 4.929***

(0.018) (0.018) (0.019) (0.018) (0.015) (0.016)

interaction radius 800 1000 900 900 900 900
strategic neighbours§ 5 5 5 5 5 5
total entry locations 6,741 6,741 6,741 6,741 14,150 16,728
.. of which pharmacies 6,741 6,741 6,741 6,741 6,741 6,741
runtime [s] 4,800 3,678 4,930 5,188 14,604 13,894
log-likelihood -14,774.5 -14,768.3 -14,766.7 -14,764.0 -17,374.4 -16,821.8

∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01

Table A.4.: Robustness checks. Exit values are normalized to 1. †local population is the residential
population within 500 metres of the store’s location, divided by the number of active
competitors in the respective time period or future state. Except for columns three,
the local residential population was scaled with municipality-level population growth
rates. Standard errors in parentheses, computed from estimated Hessian matrix. § The
number of strategic nearest neighbours always includes the decision maker.
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Model specification

The spatial interaction radius was chosen in a non-strategic version of the model, with k = 1. To
ensure that the choice of the interaction radius remained optimal after having chosen the size of the
strategic neighbourhood, I re-estimated the model with k = 5 and for two di�erent interaction radii,
eight hundred and one thousand metres. These results are shown in columns one and two of table A.4.
The table shows that the estimated coe�cients are very close to the ones obtained with an interaction
radius of nine hundred metres. Also, the log-likelihood in either case is smaller than the one obtained
for an interaction radius of nine hundred metres; so the choice of the interaction radius remains optimal.

The population data are derived from the 2011 census and also, the spatial co-variates that are derived
from OpenStreetmap re�ect only one particular point in time, as the data were downloaded in 2016.
Unobserved temporal variation of these co-variates may lead to biased estimates but unfortunately,
there are no comparable data sources for earlier years. I controlled for unobserved population growth
by scaling the spatial population distribution with observed municipality-level growth rates, but this
obviously leaves the spatial variation unchanged. It would be desirable to obtain the spatial population
distribution for at least one additional time period, so that a population growth rate could be computed
at every given point in space. Currently, such data is unavailable, but a new census is planned for
20211 so that this could, in principle, be achieved in the future. For the current analysis, I assessed
the robustness of the estimation results only with respect to the temporal aggregate variation of the
population data, by re-estimating the model’s parameters with the unscaled, constant, local population
data. These results are shown in column three of �gure A.4. That column shows that the estimated
population coe�cient (0.172) is not statistically di�erent from the coe�cient that is derived with the
annually scaled population data (0.168, see table 2.9). Also, the other coe�cients remain largely the
same.

As a further robustness check, I added municipality level co-variates that are described in table 2.5 to
the model. These results are shown in column four of table A.4. The column shows that all added
coe�cients are insigni�cant, except for municipality level income per capita. All other coe�cients
retain their sign, magnitude, and signi�cance. Apparently, city-level heterogeneity is unlikely to have
a large e�ect on the results.

Potential entry locations

The analysis in section 2.7.2 is based on the assumption that the set of potential entry locations can
be approximated well by the set of locations where a pharmacy has been active at least once. In this
section, I will assess the robustness of the main result with respect to this assumption by including
additional entry locations. As explained in section 2.6.1, the additional entry locations are generated

1See www.zensus2021.de, accessed 03/18/2020

67

www.zensus2021.de


from two sources: �rst, I used the locations of bake shops in Germany and second, I generated a set of
uniformly distributed random entry locations in all cities of my sample.

Column �ve in table A.4 shows the estimation results with bake shop locations, and column six displays
the estimation results with additional random locations. First, consider column �ve. These results are
quantitatively very similar to the main estimation results in table 2.9. The estimated coe�cient for the
local population density is substantially smaller than in the base line results, and the estimated entry
costs are larger than in the base line case. The spatial interaction coe�cients remain about the same,
which is also true for the estimated coe�cients for the local elderly share, and for the proximity to a
physician, a supermarket, a trainstation, a pedestrian zone, or a main road. An explanation for this is
that the inclusion of many locations that are not pharmacies has forced the model to attribute a greater
weight to locations that are speci�cally important to pharmacies, as opposed to being just favourable
to small retail stores in general. This increases the external validity of the model and therefore it can be
a useful tool to conduct out-of-sample predictions and simulations. I repeated the model validation and
counterfactual simulations described in section 2.7, using the additional set of entry locations. These
results are shown in table A.5. The table shows that the simulated change from 2004 to 2016 does
not match the actual change quite as well as does the base line model. The magnitudes of the partial
competition e�ect are comparable to those derived in the base line model, and the e�ect of a minimum
distance regulation is estimated to be larger than under the base line scenario.

The time needed to estimate the parameters increased more than proportionally with respect to the
number of entry locations. This could be due to the fact that it takes longer for the Gauss-Seidel
algorithm to reach the MPE. Still, the increase in computational time is very modest, and so the
oblivious spatial equilibrium has proven to be a viable approach to estimate spatial dynamic entry
models with a large number of agents.

Next, consider the results that were obtained by using the random set of dummy locations in column
six. The estimated coe�cients di�er substantially from the base line results. In general, all estimated
coe�cients that govern local demand, except for the intercept and the post reform dummy, are larger
than in the base line result. Moreover, the estimated interaction coe�cients are now negative, and do not
di�er in the pre and post reform periods. This can be explained as follows. Pharmacy locations, and also
the locations of bake shops, do exhibit a substantial amount of spatial clustering, as was shown in section
2.6.2. This is most likely an artefact of unobserved spatial heterogeneity, and not due to an inherent
tendency of �rms to cluster. On the other hand, the dummy locations were generated at random,
and so do not exhibit any spatial clustering; and further, these dummy locations are never “active”.
Therefore, it is natural for the model to explain the higher likelihood that a “true” pharmacy location
is active relative to a randomly generated dummy location by a positive point-to-point interaction,
which is re�ected in a negative interaction coe�cient (recall that the interaction coe�cient denotes by
how much variable pro�ts decrease due to the presence of a nearby competitor). Another interesting
observation is the fact that the interaction coe�cient is estimated to be the same in both the pre- and
the post-periods. This is rather unintuitive, because the pattern of randomly generated entry locations
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distance (metres)

Number of pharmacy to consumer to
stores nearest competitor nearest pharmacy

observed outcomes
2004 5,437 423 514
2016 4,770 469 539
∆ -667 +45 +25

simulated outcomes
pre-reform, 2016 5,403 403 536
post-reform, 2016 4,982 423 571
∆ –511 +20 +35

competition e�ect
(A) t(0, θepre, δpost)− t(0, θepre, δpre) -226 +17 +4
(B) t(1, θepost, δpost)− t(1, θepost, δpost) -267 +20 +6

minimum distance regulation
simulated change 2004-2016 –680 +81 +30

Table A.5.: Comparison of actual changes throughout the post-reform period; incremental e�ect
of increased spatial competition; and the e�ect of a minimum distance regulation.

does not change over time, whereas the pattern of pharmacy locations does (as is re�ected in the larger
interaction coe�cients in column �ve, and in table 2.9). The most likely explanation is an inaccuracy
of the estimation procedure which prematurely stopped the algorithm before having reached the true
global optimum.

How should these two additional results be interpreted, and compared to each other? Many of the
randomly generated dummy locations would fall in residential zones, or even in uninhabited areas
where it is either not permitted, or not possible to open a store. Thus, these locations can hardly be
considered to be “potential entry locations”. On the other hand, many bakery shops have a size that is
similar to that of a pharmacy, and so their locations can arguably be a potential entry location. At the
same time, the underlying behavioural assumption of the dynamic entry model is that each potential
entrant plays an entry game (in entry probabilities, essentially) with each of its k − 1 strategic nearest
neighbours. The model therefore presupposes that at every entry locations sits a potential competitor
which could conceivably become an active �rm. But as discussed above, this is not true for many of
the randomly generated locations and so the estimation results obtained with random entry locations
may not accurately re�ect the true parameters, and should be interpreted cautiously.
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3. Oblivious estimates of spatial dynamic entry
games with many firms: Monte Carlo
evidence

3.1. Introduction

Dynamic entry games are complex phenomena because decision makers must speculate about what
the future will bring, conditional on their own actions and on those of their competitors. The necessity
to consider a large number of possible future outcomes in these games means that their theoretical
treatment, and their empirical analysis alike, is challenging. However, the di�culties in the theoretical
and in the empirical literature are of a di�erent nature altogether. Whereas the theorist is very much
concerned with formally establishing that a certain game, under certain conditions, has desired prop-
erties and possesses an equilibrium, the large number of possible future states poses no substantial
challenge as these are rarely spelled out explicitly. On the contrary, the empiricist who ventures to
build a structural model of dynamic decision making will have to quantify the value of being in one
state of the game, or another. He will thus almost certainly face the situation where his own computer
is not able to store, let alone compute, all the di�erent states of the dynamic model which looked rather
innocent in the beginning. The reason for this is commonly called the curse of dimensionality, and it
e�ectively prevents a direct computation of the equilibrium in all but the simplest dynamic games. A
number of approaches have been developed to overcome this problem, and some of these have been
shown to perform rather well. The problem is that none of these solutions lends itself to a spatial
context, because they all assume some form of symmetry, or require a non-parametric �rst stage.

In chapter 2, I presented a feasible method to add a spatial dimension to an empirical dynamic entry
model at an acceptable computational cost, and applied it to the German pharmacy market. This chapter
examines the properties of that estimator in greater detail by means of a Monte Carlo study. In particular,
I will provide evidence that the estimator is consistent and asymptotically normal if the likelihood is
speci�ed correctly. I will also examine its properties in cases where the researcher does not know certain
aspects of the dynamic decision making process, and may thus have to approximate the likelihood.
Most importantly, it follows from my results that it is possible to obtain good estimates of a subset of
the model parameters even if other parameters are unknown, or are known only approximately.
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3.2. Related literature

This paper relates to various strands of literature. First, it is related to the theoretical study of dynamic
and spatial entry and exit processes. Second, I relate to the empirical treatment of dynamic entry games,
and to the methods that have been proposed therein to reduce the curse of dimensionality. More
speci�cally, this paper is related to small literature on spatial dynamic entry games.

In the theoretical literature, there has been a dichotomy between static models of location choice,
and dynamic models of entry. The literature on location choices started with the seminal work of
Hotelling (1929) who found that free location choice leads to an ine�cient amount of spatial clustering,
which was termed as the principle of minimum di�erentiation. This �nding was re-examined by
d’Aspremont et al. (1979) who found on the opposite that price competition may actually lead to
maximum spatial di�erentiation. They also showed that a game in which �rms choose their locations
�rst, and subsequently compete on prices, may not possess a pure-strategy subgame-perfect Nash
equilibrium unless the consumer’s travel costs increase quadratically in distance. From there onwards,
quadratic travel costs have become the de facto standard in the theoretical literature on location-then-
price competition. Most theoretical work is constrained to location choices on a line, or on a circle.
Exceptions are e.g. Economides (1986), or Irmen and Thisse (1998), but the insights are very stylized
at best. The most fundamental insight that can be gained from the theoretical literature on location
choices is that �rms trade-o� the bene�ts of reaching more customers in a central location against the
added value by increasing their market power in a more remote location. These two motives form the
basis for building models of spatial entry where the pro�tability of a particular location depends on
local demand characteristics, and on the distance to any active competitors.

On the other hand, dynamic entry games are often modelled without explicit regard to a spatial aspect.
Seminal articles include Ghemawat and Nalebu� (1985) who model dynamic exit in shrinking markets,
and Hopenhayn (1992) who studies equilibrium and the steady state dynamics in a model with a con-
tinuum of �rms that produce a homogeneous product, subject to idiosyncratic productivity shocks.
Ericson and Pakes (1995) have presented a model to describe the dynamics in markets with idiosyn-
cratic random shocks to the pro�tability of an investment, and with increasing external competitive
pressure. The equilibrium concept that is most commonly used in dynamic games is the Markov Perfect
equilibrium (MPE), due to Maskin and Tirole (1988), where decision makers condition their choices
only on the immediate past so that the dynamics give rise to a Markov Process. Doraszelski and Sat-
terthwaite (2010) have contributed signi�cantly to simplifying the treatment of dynamic entry games.
They showed that the addition of small perturbations to entry and exit costs leads to an equilibrium in
pure strategies, that can be computed relatively easily.

Dynamic games are notoriously hard to tackle numerically, because the value of choosing one action,
or another, depends on its implications for the future course of a�airs through their direct e�ect on out-
comes, and through the indirect e�ect via the competitors’ actions. Dynamic programming techniques
are commonly used to attach a value to a particular action, and to compute the MPE. These techniques
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require the evaluation of a value function for every possible state of a�airs, and are usually solved
iteratively by a contraction mapping scheme, because analytical closed form solutions are seldomly
available. Because dynamic games often possess state spaces that are too large to �t into a physical
computer, researchers have considered various options to reduce the computational burden of �nding
an equilibrium in these games. As Pakes and McGuire (2001) pointed out, this computational burden is
primarily determined by three factors:

1. the number of di�erent states for which a value function must be computed,

2. the computational complexity of each single operation, and

3. the number of iterations until convergence is reached.

Most approaches rely on reducing the size of the state space (1.) but is is also important to keep points
(2.) and (3.) in mind in any practical application. For instance, Pakes and McGuire (1994) developed an
algorithm that relies on the �rms’ symmetry to compute the MPE of the Ericsson and Pakes entry and
investment model. The same authors developed a stochastic algorithm to compute the MPE in the same
model that works when the dynamic game eventually wanders into a small absorbing subset of the state
space, so that many states can be ignored because they are unlikely to occur, which greatly reduces the
computational demands (Pakes and McGuire, 2001). Weintraub et al. (2008, 2010) have introduce the
important concept of an “oblivious equilibrium” (OE) in which agents consider the aggregate state to be
constant, because thy face a large number of competitors and so their actions cancel out in equilibrium.
That concept can, without further modi�cations, only be applied in situations where the market is in a
stationary equilibrium.

The econometric treatment of dynamic discrete games started with the seminal article of John Rust
(1987) who estimated a single agent optimal stopping problem by means of a nested �xed point like-
lihood. These estimators require that the equilibrium strategies of all economic agents be computed
for every candidate value in the numerical parameter search, and thus are relatively ine�cient from
a computational standpoint. Their advantage is a close link to theory, and their �exibility. To ease
the computational burden, two-step estimators (Hotz and Miller, 1993) and K-step estimators were
developed (Aguirregabiria and Mira, 2002). These estimators build on the optimal strategy response of
dynamic decision makers to a consistent non-parametric assessment of choice and transition probabil-
ities, rather than solving the optimal programming problem explicitly for every candidate parameter
value. In the case of the K-step estimator, the initial non-parametric estimate of the players’ best re-
sponse probabilities is updated iteratively, which gives rise to what is called a nested pseudo likelihood
estimator. Aguirregabiria and Mira (2007) extended this approach to dynamic games with more than
one player. A similar approach was developed by Pakes et al. (2007) who, instead of relying on non-
parametric estimates of choice probabilities, used non-parametric estimates of players’ continuation
values to elicit their optimal strategy responses. Based on Monte Carlo simulations, Pakes, Ostrovsky,
and Berry argue that their estimator may outperform several other estimation approaches, including
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the nested �xed point and two-step approaches. Berry and Reiss (2007) and Aguirregabiria and Mira
(2010) provide a comprehensive treatment of the empirical entry literature.

The synthesis of the empirical dynamic entry literature with the spatial entry literature is still not very
well developed. A �rst pass to an empirical analysis of spatial entry models was made by Seim (2006)
who estimated a static spatial entry game among retail video rental stores. She reduces the state space
by using a static setting with ex-ante identical potential entrants and asymmetric information. Her
estimation approach is a nested �xed point approach. Because players are identical up to the realization
of a private-value location-speci�c idiosyncratic pro�tability shock, and because all players are entrants,
their strategies are symmetric, and are conditioned only on the realization of their pro�tability shock.
This leads to fairly small computational burden of �nding the �xed point of players’ strategies. However,
this method does not extend easily to a dynamic entry game because (i) entrants and incumbents have
di�erent strategies; (ii) players condition their strategy on the observed state and so the strategy space
quickly explodes in the number of players; and (iii) points one and two imply that players’ strategies
are no longer symmetric. Aguirregabiria and Vicentini (2016) were the �rst to develop a framework
of a spatial dynamic entry game. In their model, a multistore retailer decides on where to locate its
branches in an oligopolistic market. Unfortunately, they do not apply their concept to observational
data. They use value function interpolation and a restriction of the entrants’ action spaces to reduce
the dimensionality of the problem, and to obtain a computationally feasible algorithm to compute
the equilibrium. That approach has two main drawbacks. First, the authors do not specify how the
support points for the value function interpolation are chosen. But the size of the state space grows
exponentially in the number of players and or entry locations. Therefore, any computationally feasible
subset of the state space can only capture a minuscule proportion of the entire state space, even for
dynamic games with a moderate number of potential entry locations. Thus, the interpolation becomes
very sparse, and also probably quite inaccurate. Second, the desire to compute the “true” MPE on the
full state space may be leading nowhere, because it seems unreasonable to assume that any decision
maker could solve a problem, the very size of which would overwhelm any currently existing computer.
Therefore, to analyse spatial dynamic entry games it seems necessary to reduce the state space in a
way that re�ects the manner in which real-work agents think about the future, and I have proposed a
possible method to do so in chapter 2.

In chapter 2 I showed how a spatial dynamic entry game in the spirit of Aguirregabiria and Vicentini
(2016) can be applied to the OE concept of Weintraub et al. (2008). The result is a “spatial oblivious
equilibrium” which can be used to estimate structural parameters of the model by means of a nested
�xed point estimator. The degree of simpli�cation is governed by a single intuitive parameter. The
aim and the contribution of this paper is to determine the statistical properties of that estimator under
various conditions. First, I provide evidence that the estimator is consistent, and root-n asymptotically
normal – if the likelihood and all the hyper-parameters are speci�ed correctly. This is to be expected,
and so the con�rmation of these properties merely serves as a proof that the method was implemented
correctly. Second, I show that some of the model parameters can still be estimated if the model’s
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hyper-parameters are unknown. Finally, I investigate how the presence of unobserved potential entry
locations a�ects the estimation results.

3.3. Methodology

The purpose of this paper is to learn more about the properties of the maximum likelihood estimator
outlined above. This is achieved by means of a Monte Carlo study, the basic work�ow of which is
as follows: a data-generating process is set up with certain “true” parameters, and generates market
observations. Then, a maximum likelihood estimator is used to estimate these parameters, and the
deviance of the estimated parameters relative to the true parameters is measured. This is repeated a
many times, so that the empirical distribution of parameter estimates approximates their theoretical
distribution, which is the object of interest. The data generating process is based on a simpli�ed version
of the dynamic entry model that was developed in chapter 2. Also, I discuss how the model can be used
to estimate parameters via nested �xed point approach, and which data are necessary for identi�cation.
Finally, I describe the data generating process and some technicalities of the Monte Carlo study in some
detail and I discuss some general theoretical properties of maximum likelihood estimators.

3.3.1. Model and estimation

The basic framework consists of N potential entrants, each one of which is indexed by j and equipped
with a �xed location xj ∈ X ⊂ R

2. The market area X is a subset of the Euclidean space, and so it is
equipped with a distance norm. There is an in�nite horizon of future time periods t = 1, . . . ,∞ and
in each period, an entrant can be either active, or inactive. The status of �rm j in time t is denoted by
ajt ∈ {0, 1} and the aggregate state of all �rms is at = (at1, . . . , atN ) ∈ A = {0, 1}N . A denotes the
state space of the game, and it encompasses 2N distinct states. Without any further modi�cations, the
state space is too large to be of practical signi�cance. Period returns of an active �rm in time period t
and state at are given by

πj(at) = α
(

1− δN d
j (at)

)
(3.1)

whereN d
j (at) denotes the number of active competitors around �rm j’s location, given the state vector

at. Inactive �rms receive a payo� of zero. Thus, δ governs the relative decrease in period returns for
every additional active competitor within a distance d, and α is a monopoly pro�t. This pro�t function
should be thought of as a reduced form of a more elaborate pro�t function, and it is chosen for clarity
here. The equilibrium concept that follows does not rely on a simple functional form, and could indeed
accommodate any kind of pro�t function.

The timing is as follows. At the beginning of every period, each active �rm receives its current per-
period return according to equation (3.1). Also, every �rm learns the realization of a private information,
idiosyncratic, and normally distributed random variable ξjt with distribution function Φ. Upon learning
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this value, all potential entrants decide whether they choose to enter the market by paying an entry
fee θe + ξjt. Similarly, all incumbent �rms decide whether they continue their business, or exit the
market and receive a pay-o� value ξjt. After these decisions have been made, all entry cost and exit fee
payments are carried out, and the state evolves to the next period accordingly. The future is discounted
by a common discount factor β. This sequence continues ad in�nitum, and multiple re-entries are a
possibility in this framework.

Following Doraszelski and Satterthwaite (2010), the introduction of a private information transition
cost shock greatly simpli�es the analysis because �rms can compute the expected value of their actions
by integrating out their competitors’ cost shocks. Then, they choose an optimal action based on the
realization of their own cost shock. From the point of view of their competitors, their actions seem
stochastic because they depend on the realization of ξjt and so they can equivalently be expressed by
their conditional choice probabilities (CCPs) q, where qj(at) is the probability that �rm j’s cost shock
realization is such that it chooses to be active in period t + 1, given the current state and the CCPs
of its competitors q−jt. Then, an MPE of the dynamic entry game is a set of CCPs for each �rm that
constitute mutual best responses. These equilibrium CCPs can be found as follows: Let V j(at) denote
�rm j’s expected value of being in state at – that is, before the realization of ξjt is known. Following
the notation of Aguirregabiria and Vicentini (2016), the ex-ante expected value of being active next
period for that �rm j is

ν̄1
j (at) = πj(at)− (1− ajt)θe + E

[
V j(at+1)|ajt+1 = 1,a−jt

]
(3.2)

and similarly, the expected value of being inactive is given by

ν̄0
j (at) = πj(at) + E

[
V j(at+1)|ajt+1 = 0,a−jt

]
(3.3)

The term (1− ajt)θe re�ects the fact that a new entrant must pay the entry fee, but an incumbent does
not. The competitors’ CCPs induce a distribution over the entire future state space A, based on which
the expectation operator returns the expected future value. Note that the ex-ante expected values ν̄
do not include the random shock ξjt which must be added to the entry costs for an entrant, and to
the exit value for an incumbent. Thus, upon learning the realization of the transition cost cost ξjt,
the ex-interim expected value of choosing to be active next period is ν1

j = ν̄1
j − (1− ajt)ξjt, and the

corresponding expected value of being inactive next period is ν0
j = ν̄0

j + ajtξjt. Then, �rm j decides
to be active in the next period if, and only if

ν̄1
j (at)− (1− ajt)ξjt ≥ ν̄0

j (at) + ajtξjt

the probability of which to happen is

qj(at) = Φ
(
ν̄1
j (at)− ν̄0

j (at)
)
. (3.4)
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With ξjt being distributed normally, the ex ante expected value function can be expressed as1

V j(at) = φ
(
ν̄1
j (at)− ν̄0

j (at)
)

+ qj(at)ν̄
1
j (at) + (1− qj(at))ν̄0

j (at). (3.5)

where φ is the density of the standard normal distribution.2 Equations (3.2), (3.3), (3.4), and (3.5) de�ne
a system of highly non-linear equations in CCPs that can be solved for equilibrium CCPs q∗ by means
of a �xed point algorithm (Aguirregabiria and Vicentini, 2016).3

Note that the value functions and CCPs are de�ned on, and the expectation operator in equations
(3.2) and (3.3) integrates over the entire state space A, the magnitude of which is 2N . Therefore, this
equilibrium concept su�ers from the curse of dimensionality and cannot be solved explicitly due to
numerical constraints when the number of �rms is large.4 At the same time, the researcher typically
only observes a very small set of states, and so one possible solution is to compute the MPE only for
states that are “close” to the observed ones. This is closely related to the idea of the oblivious equilibrium
due to Weintraub et al. (2008), where �rms take the aggregate state as given, and make their choices
based solely on their own individual state. However, due to the spatial nature of this game, it is not
reasonable to draw a clear distinction between the aggregate state and the individual state. Instead, a
subset of the unbounded state space must be selected to achieve a distinction between states which the
decision maker should care about, and other states which fall into oblivion. A structured approach to
select such a subset of states was presented in chapter 2 and I repeat the main idea below.

A spatial oblivious equilibrium of order k, denoted by SOE(k),5 is a set of CCPs q̃∗ such that q̃∗j (ãj) is
the best-response probability with which �rm j chooses to be active in the next period, conditional on
the game being in state ãj , and all other �rms playing according to q̃∗−j . Importantly, these states ãj
are contained in a �rm-speci�c subset of the state space, called the oblivious state space and denoted
by Ãj ⊆ A. Given a realized state â, this oblivious state space for �rm j is constructed under the
assumption that all other �rms remain in their currently observed state âj , except for the k �rms that
are closest to �rm j (including �rm j itself). This set of �rms is called the strategic neighbourhood.
Thus, an SOE is intricately linked to, and always contains, an observed market state, which will be
important for constructing a likelihood function below. The equilibrium concept basically remains as
in the MPE, but since all functions are only de�ned for the oblivious state spaces of the respective �rms,
the state spaces of two �rms at the same time period may di�er, because these two �rms may have
di�erent strategic neighbourhoods. That is why some adjustments have to be made in order to still
allow for a coherent formation of the �rms’ expectations, the details of which can be found in chapter
2. If the size of the strategic neighbourhood is smaller than the total number of �rms (k < N ), then
the oblivious state space is a strict subset of the unrestricted state space and the dimension of the state

1See chapter 2.
2See chapter 2 for a detailed derivation.
3For instance, a Gauss-Seidel algorithm can be used, see also chapter 2 and the references therein.
4Depending on the type of the system, one could possible store the required matrices for problems up to N = 30, but

the time to compute the equilibrium would probably be prohibitive much earlier.
5The reference to k is often dropped where this causes no confusion.
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space reduces from 2N to 2k. As a result, an SOE can often be computed in markets where a full MPE
would be impossible to compute due to the curse of dimensionality.

Besides being a convenient computational device, the SOE also serves as a behavioural model that
actually describes how individuals make decisions in an overly complex game theoretical setting. The
parameter k governs how sophisticated these individuals are in terms of dynamic strategic decision
making. Two polar cases can be distinguished: �rst the completely spatially myopic case (k = 1) where
�rms assume that no other �rm changes their status, and second, the full MPE with k = N . However,
it is an open question whether the SOE(k) converges to the MPE if either k or N grows large, and if
so, how.

If one assumes that the SOE is a good model for how �rms make their dynamic entry decisions, then its
equilibrium CCPs can easily be used to compute the conditional likelihood of transitioning from one
observed state to another one. Given a set of observed market states {ât}Tt=1, this likelihood can then be
used to estimate the structural parameters of the entry model. In this simple version of the entry model,
there are only three parameters, α, δ, and θe, which are subsumed under the vector γγγ. I call γγγ regular
parameters. For convenience, I de�ne �rm j’s equilibrium CCP in the observed state at time period
t as q̃∗jt ≡ q̃∗j (ât). Note that this probability is always well-de�ned, because the currently observed
state forms the basis, and is always part of, the current oblivious state space. Then, the conditional
log-likelihood is given by

ll(γγγ) =
T−1∑
t=1

N∑
j=1

âjt+1 log q̃∗jt + (1− âjt+1) log
(
1− q̃∗jt

)
(3.6)

This expression is called a nested �xed point likelihood because it is based on a nested �xed point
algorithm to determine the transition probabilities (Rust, 1987). It is important to point out that this
expression is constructed from a sequence of SOEs, because a new SOE must be computed for every
time period. Each SOE will be slightly di�erent from its predecessor, because as the observed state
changes, so does the oblivious states space. The maximum likelihood estimator (MLE) for γγγ is the
parameter which maximizes the above expression. In many empirical applications, the researcher has
data from distinct markets, which have no strategic connection to each other. In that case, the aggregate
likelihood is simply the sum of the individual market-level likelihoods.

As outlined in chapter 2 regular parameters are identi�ed follows. First, all parameters are only identi�ed
up to the scale of the error variance, as in most variants of empirical discrete choice models. The entry
cost parameter governs how much turnover there is in the market, that is, whether �rms change their
status frequently. Technically speaking, higher entry costs introduce a hysteresis, i.e. a tendency to
cling to the status quo. Thus, based on an observed set of market states, the entry cost parameter
can be identi�ed by matching the model-implied turnover rates to the empirically observed ones. The
constant payo� parameter α governs how pro�table �rms are, and so it determines how many �rms
are active, on average. This parameter is identi�ed by bringing the average number of observed active
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�rms in line with its model-implied counter-part. Finally, the local competition parameter δ determines
how strongly �rms’ pro�ts are a�ected by the presence of an active nearby competitor. It is identi�ed
by the di�erential entry and exit rates of �rms with di�ering numbers of active competitors. Point
identi�cation may not be possible in certain cases. First, it could be that the SOE is non-unique in which
case the likelihood would not be well-de�ned. In chapter 2 I have provided some evidence that this is
rather unlikely if the local interaction parameter δ is not too large. Another problematic case arises when
there is no observed entry or exit, because the maximum likelihood for this to happen is attained in the
limiting case where θe approaches in�nity, and so the entry costs are not (point) identi�ed. Also, it may
be the case that no single �rm is ever active, or that all �rms are active at all times. This would also lead
to α being non-identi�ed (or rather, being identi�ed at plus and minus in�nity, respectively). At last, if
all �rms had exactly the same number of neighbours within the interaction distance d, or if no �rm had
any adjacent neighbour within that radius, then the identi�cation of δ would be impossible because no
di�erential entry and exit patterns between �rms with many, and those with few competitors, could be
observed and matched to the model-implied entry and exit rates. Therefore, identi�cation requires that
these identifying features6 be present in the data, and that the data does not exhibit the aforementioned
pathological patterns.

Besides the regular parameters, two additional parameters are important in this model: the distance
term d, which determines the radius within which �rms exerts a negative e�ect on each other, and the
size of the strategic neighbourhood k, which determines the level of strategic sophistication. I call d and
k hyper-parameters, and subsume them into the vector ψψψ = (d, k). Because the likelihood function is
not continuous in either of these hyper-parameters and since k can take only positive integer values, it
is not possible to include the continuous search for these parameters in the MLE for γγγ, which typically
makes use of routines to �nd the maximum of a continuous function. Two alternative approaches to
handle this are possible. On the one hand, one could specify some ad hoc hyper-parameters which seem
reasonable, possibly supported by suggestive evidence. Alternatively, it is possible to conduct a grid
search for these hyper-parameters. In the next section, I will assess the robustness of these approaches.

3.3.2. Theoretical properties of ML estimators

The nested �xed point algorithm belongs to the class of maximum likelihood estimators (MLE) which
have attractive theoretical properties in that they are consistent, asymptotically normal, and among
those estimators that share these properties, they are also e�cient – if they are speci�ed correctly
(Cameron and Trivedi, 2005, chapter 5.6). In what follows, I will brie�y discuss these concepts, and
explore whether their prerequisites apply to my model at hand.

The following conditions, taken from Cameron and Trivedi (2005, p.142), are su�cient to ensure that a
generic MLE for some parameter θ is both consistent and asymptotically normal:

6I call them features, but they could also be called moments.
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Proposition 3 (Distribution of the MLE). (Cameron and Trivedi, 2005, proposition 5.5) Make the follow-
ing assumptions:

1. The data generating process is the conditional density f(yi|xi, θ0) used to de�ne the likelihood
function.

2. The density function f(·) satis�es f(y, θ(1)) = f(y, θ(2)) i� θ(1) = θ(2).

3. The matrix

A0 = plim
1

n

∂2Ln(θ)

∂θ∂θ′

∣∣∣∣
θ0

exists and is �nite non-singular.

4. The order of di�erentiation and integration of the log-likelihood can be reversed.

Then, the maximum likelihood estimator θ̂ is consistent for θ0, and

√
n(θ̂ − θ0)

d→ N
(
0,−A−1

0

)
.

The notation is as follows: yi is a dependent variable, xi is a set of independent variables, and θ0 is
the true parameter value. The dynamic entry model �ts into this framework by setting yi = ait+1 and
xi = at. The parameter to be estimated is θ = γγγ, and the hyper-parameter ψψψ is required to be known.
Note that since all entry and exit decisions are carried out simultaneously, and because the transition
cost shocks are independent and identically distributed, the observations of each �rm’s future status,
conditional on the previous market state, are also independent. Essentially, the log-likelihood speci�ed
in equation 3.6 is that of a binary probit model, albeit with a rather complicated and highly non-linear
link function.

The �rst condition requires that the likelihood be speci�ed correctly, so that it is based on the same
conditional density function as the true data generating process. When applied to the current setting,
this condition simply demands that the model is correct, and the hyper-parameters be known precisely.
However, even if the likelihood is misspeci�ed it may still be possible to obtain consistent estimates of
the “pseudo-true” value of γγγ via the quasi maximum likelihood approach (Cameron and Trivedi, 2005,
p.147). For example, this could be the case if the distribution of transition cost shocks ξjt does not follow
the standard normal distribution, contrary to what is assumed. Therefore, it should be kept in mind
that the proposed MLE can only identify parameters up to the distribution of the structural transition
cost shocks, and that any departure from the assumed distribution results in a di�erent, pseudo-true
parameter estimates. A violation of this assumption would arise if the transition cost shocks were
not iid, or had some observable component in which case the equilibrium concept would break down.
The second condition demands that the parameter γγγ be identi�able. This was discussed in some detail
above, and is explored in greater depth in chapter 2. In particular, this condition could fail if the local
interaction parameter δ is large because this may give rise to multiple equilibria. The third condition
is necessary in order to derive the asymptotic distribution, and it states that the likelihood function be
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twice di�erentiable in θ, and that its Hessian matrix be non-singular. Because the likelihood function
is a continuous function and twice di�erentiable in the model’s CCPs, this condition is satis�ed if the
CCPs of the underlying SOE are di�erentiable twice in the model parameters γγγ. That, however, is not
easily established because no closed form solutions of the CCPs exist. The fourth condition is a technical
one, and according to (Wooldridge, 2010, p.395) it may fail “if the conditional support of yi depends on
the parameters θ0”. This is however not the case in the proposed model, because the transition cost
shocks have full support over R and so a transition to any market state is possible, independent of the
current market state or on the parameter vector γγγ. So it seems probable that this condition is satis�ed
in the proposed model.

In summary, it seems hard to establish from �rst principles that the MLE for γγγ is consistent and asymp-
totically normal. However, the above conditions are rather strong, and not necessary if one is merely
concerned with consistency. The following proposition, replicated from Wooldridge (2010), states
milder su�cient conditions for consistency alone:

Proposition 4 (Consistency of the MLE). (Wooldridge, 2010, based on Theorem 13.1) Let {(xi,yi) :

i = 1, 2, . . .} be a random sample with xi ∈ X ⊂ R
K ,yi ∈ Y ∈ R

P . Let Θ ⊂ R
P be the parameter

set and denote the parametric model of the conditional density as {f(·|x; θ) : x ∈ X , θ ∈ Θ}. De�ne
lli(θ) ≡ ll(yi,xi, θ) = f(yi|x; θ). Assume that

1. f(·|x; θ) is a true density with respect to the measure for all x and θ so that it integrates to one;

2. for some θ0 ∈ Θ, p0(·|x) = f(·|x; θ0), all x ∈ X , and θ0 is the unique maximizer of E[lli(θ)];

3. Θ is a compact set;

4. for each θ ∈ Θ, ll(·, θ) is a Borel measurable function on Y × X ;

5. for each (y,x) ∈ Y × X , ll(y,x, ·) is a continuous function on Θ; and

6. |ll(w, θ)| ≤ b(w), all θ ∈ Θ, and E[b(w)] <∞.

Then the MLE θ̂ = arg max 1
n

∑n
i=1 log f(yi|xi; θ) exists and plim θ̂ = θ0.

The likelihood estimator for the dynamic entry model in (3.6) can be put in this framework as follows.
Consider �rst the case where only one transition from state at to a future state at+1 is observed. Let
X = Y ≡ A and de�ne yi ≡ ait+1, and xi ≡ at. The model parameters are θ ≡ γγγ, θ ∈ Θ ⊂ R

3. Then,
the conditional density f is de�ned as the binomial density over the future state space,

f(yi|xi; θ) =
N∏
i=1

q̃
∗ait+1

it (1− q̃∗it)1−ait+1

where q̃∗it is de�ned as in equation (3.6). Since q̃∗it ∈ [0, 1] for all at and γγγ, this density clearly integrates
to one and so the �rst condition is satis�ed. The second condition requires that this conditional density
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is equal to the true density of the DGP, here denoted p0, at some value θ0. This requirement is therefore
weaker than the second condition in proposition (3), because it only refers to one particular point in the
parameter space. Further, it is required that this particular value θ0 maximizes the expected likelihood,
as de�ned in equation (3.6). Similarly, this second assumption cannot be tested, as the likelihood is
derived directly from an underlying theoretical model, and so the conditional density of the DGP is
assumed to be identical to the one used to formulate the likelihood. At the very least, this requires
that the hyper-parameters are known, or can be estimated, with su�cient accuracy. Conditions three,
four, and six are technical conditions that do not need to be checked in practice (Wooldridge, 2010,
p.391). Thus, the remaining key assumption is that the likelihood function be continuous in θ. This
is considerably weaker than what is required in proposition (3) for asymptotic normality, and for this
condition to hold it would be su�cient that the MPE of the game be “regular” in the sense outlined by
Doraszelski and Escobar (2010), who also show that this applies to most dynamic discrete games.

In summary, while it seems probable that the structural likelihood in equation (3.6) satis�es the re-
quirements for consistency, provided that the model is speci�ed correctly, it is not certain that the
requirements for asymptotic normality, which are stricter, are satis�ed. Therefore, a Monte Carlo study
is needed to examine whether and under which conditions the MLE for θ is indeed consistent, and
possibly asymptotically normal.

3.3.3. Monte Carlo approach

For the purpose of the Monte Carlo study, I set up a data generating process (DGP) that produces
a sequence of observed market states in M independent markets with N �rms each, given a set of
(hyper-)parameters. Then, the (hyper-)parameters are estimated via the nested �xed point maximum
likelihood algorithm (NFXP). The empirical distribution of these estimates approximates the theoretical
distribution of the estimator and is used to study its properties under various assumptions about the
DGP and the NFXP. The DGP is constructed as follows:

Procedure 2 (Data generating process DGP).
Required parameters: N ,T ,M ,γγγ,ψψψ, seed, and burnin.
Seed the random number generator with seed. For each market m ∈ {1, . . . ,M}, draw a uniformly
random set of N �rm locations with xjm ∈ [0, 100]2 for j ∈ {1, . . . , N}; initialize an empty list of
observed market states Âm; and an initial market state amt = (0, 0, . . . , 0). Set i = t = 0, and

1. compute the SOE(k) with cuto� distance d around the market state amt, resulting in a set of CCPs
denoted by q̃∗m;

2. draw a future state a′ from the distribution over A that is induced by the choice probabilities
q̃∗jm(amt);

3. update amt ← a′;
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4. if i >burnin, append amt to Âm and increment t by one;

5. if t < T , increment i by one and go to step 1, else stop.

Return the collection of simulated market state sequences Â = {Âm}Mm=1 and the simulated �rm locations
X = {xjm}.

Given the returned data on �rm locations and market states, the parameters and possibly the hyper-
parameters can be estimated via maximum likelihood. Importantly, the SOE underlying the NFXP may
di�er from the SOE underlying the DGP. For example, the data may be generated with a large strategic
neighbourhood, and the NFXP may be based on a less sophisticated type of reasoning with a smaller
strategic neighbourhood. Also, the distance cuto� d may be di�erent, and even the �rm locations need
not be the same, because the DGP could lead to some �rms being inactive in all periods, so that they
would be unobserved for the researcher. Then, the NFXP would be constructed by using a smaller set
of potential entry locations. And of course, if the hyper-parameters are not estimated via grid search,
these could di�er, too. The procedure, due to Rust (1987), is formalized as follows.

Procedure 3 (Nested �xed point alorithm NFXP).
Required data: observed market states Â and �rm locationsX.
Required parameters: initial value γγγ0, and a set of hyper-parameters Ψ

Initialize an empty list L. For each ψψψ ∈ Ψ:

1. set up the aggregate likelihood constructed from a sequence of SOEs for each observed market state,
using the hyper-parameters ψψψ and �rm locationsX;

2. obtain maximum likelihood estimates γ̂γγψψψ , starting the optimization routine at the initial values γγγ0.

3. append the triple
(
ψψψ, γ̂γγψψψ, ll(γ̂γγψψψ)

)
to L

Determine ψ̂ψψ ∈ Ψ that maximizes ll(γ̂γγψψψ); and return ψ̂ψψ and γ̂γγ ≡ γ̂γγ
ψ̂ψψ
.

Of course, Ψ could be a singleton and so the last grid search step would be trivial. Having laid out the
DGP and the MLE, the Monte Carlo routine can be described as follows:

Procedure 4 (Monte Carlo Simulation). For each of S samples,

1. run the DGP with N ,T ,M , and true parameters γγγ0, and ψψψ0;

2. if desired, identify �rms which are never active, and delete the corresponding locations and market
states from Â andX;

3. obtain estimates γ̂γγs, ψ̂ψψs from the MLE that is set up with market states Â and �rm locations X, the
initial value γγγ0, and a set of hyper-parameters Ψ;

83



Note that the model makes predictions about state-to-state transitions, so that the total number of
observations is n = N(T −1)M , rather thanNTM . This fairly general description of the Monte Carlo
simulation encompasses many di�erent cases that can be used to examine the small-sample properties
of the MLE as well as its limiting behaviour under di�erent assumptions.

As was outlined above, identi�cation of the regular parameters requires that the data does not exhibit
pathological behaviour, and contains the required features. Thus, it is necessary to select the (hyper-
)parameters for the DGP such that these requirements are met. To this end, I followed an informed
trial and error process to obtain simulated market sequences that resemble the data that were used in
chapter 2. First, I chose a value for the spatial interaction radius d. Because �rm locations are simulated
on a square with side length one hundred, the expected number of nearest neighbours for any �rm is
approximately7

E

[
N d
j (a)

]
≈ Nπd2

1002
(3.7)

With d = 35 and N = 10 �rms, this expectation evaluates to 3.8. I keep this number constant by
adjusting d whenever I change the number of �rms, so that a larger number of �rms is equivalent to
a larger market, but not to a denser market. With E

[
N d
j (a)

]
= 3.8, I chose δ = 0.1 so that �rms

experience substantive competitive pressure, as their period returns are decreased by a share of 0.38,
on average. Depending on the spatial constellation of all �rms, this will be quite di�erent for various
�rm locations.8 Next the entry cost parameter was determined such that the simulated data exhibit a
small amount of turnover. Also, I chose α to be equal to 0.3 because this lead to a large number of
active locations. The strategic neighbourhood was chosen to be of size k = 5 because it is about the
same as the number of nearby competitors within the radius d, 3.8, plus one. Also, it still allows for
a fairly quick computation of the SOE, which is an important aspect for the feasibility of the Monte
Carlo study. To summarize, the default parameters for the DGP are as follows:

ψψψ0 : d =

√
10 · 352

N
; k = 5 (3.8)

γγγ0 : α0 = 0.3; δ0 = 0.1; θe0 = 2 (3.9)

Because I expect that most real-world data are generated by a stationary process in the sense that the
number of active and inactive �rms remains roughly the same, I initialized the DGP with an initial
state where all �rms are inactive, and then discarded the �rst thirty samples. However, the NFXP does
not, in general, rely on the observational data coming from a stationary distribution. An example of
the market patterns that are generated by the DGP with the aforementioned parameters and twenty
�rms is shown in �gure 3.1. Initially, all �rms are inactive, and no burn-in samples were discarded
for illustrative purposes. The �gure encompasses all the data that are necessary to obtain maximum
likelihood estimates of the structural parameters – �rm locations, and activity status for a number of
successive periods.

7This is an approximate �gure because edge e�ects are not taken into account.
8For N > 10 �rms, I adjusted the pro�t equation (3.1) to πj(at) = αmax

{
0,
(
1− δN d

j (at)
)}

.
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t=0 t=1 t=2 t=3 t=4

Figure 3.1.: Five simulated market states in a market with twenty �rms. Active �rms indicated
by �lled circles; inactive �rms indicated by hollow circles. Circles around each �rm
location are drawn with half the interaction radius d, so that �rms interact if their
circles overlap.

Consistency and asymptotic normality To assess whether the MLE for the dynamic model out-
lined in section 3.3.1 is consistent and asymptotically normal, I initialized the DGP with varying numbers
of �rms per market, time periods, and number of markets, and then determined whether the MLE ap-
proaches the true parameter values (3.9). I assumed that the econometrician observes all potential entry
locations, and knows the hyper-parameters ψψψ0. As a base line scenario, I set up the DGP in a very
small market with only ten �rms, eleven observed time periods (i.e., ten observed state transitions),
and a single market. I then let increased the number of �rms to N ∈ {20, 50, 100}, the number of time
periods to T ∈ {21, 51, 101}, and the number of independent markets to M ∈ {2, 5, 10}, all the while
keeping the other dimensions �xed. Throughout, I used S = 100 Monte Carlo samples.In addition, I
conducted a speci�cation with an even larger data set (N = 10, T = 21,M = 50) in order to better
study the limiting behaviour. Recall that the regular model parameters are contained in the vector γγγ
with γγγk, k = 1, 2, 3 denoting its individual elements α, δ, and θe, respectively.

There are di�erent ways to de�ne how a stochastic variable converges. In theorems 3 and 4, it is
de�ned as convergence in probability. A stronger concept is convergence in mean squared error (MSE),
which states that a stochastic variable θn converges to θ if E[(θn − θ)2)] → 0 as n → ∞. MSE
convergence implies convergence in probability (Cameron and Trivedi, 2005, p.946). To see whether
the proposed estimator for γ̂γγ exhibits MSE convergence, I constructed the empirical analogue of the
mean squared estimation error across all Monte Carlo samples, and inspected whether this measure
decreases monotonically as the sample size is increased.

Testing whether the MLE is asymptotically normally distributed is less straightforward, and so I used
a variety of approaches. First, I plotted the quantiles of the re-scaled Monte Carlo estimates tk,s ≡√
n(γ̂γγk,s−γγγk,0) against the quantiles of the normal distribution (QQ plot).9 As a formal test for normality

of the scalar estimates for α, δ, and θe, I used the test developed by Shapiro and Francia (1972). In
addition, the method by Doornik and Hansen (2008) was employed to test whether the parameter
estimate γ̂γγ converges to a multivariate normal distribution. In both cases, the null hypothesis is that

9The QQ-plot as implemented in Stata was used. According to Stata’s documentation, it is constructed as follows: Given
a set of data points {xs}Ss=1, the data is brought in ascending order x(1) < . . . < x(S). For each s = 1, . . . , S, the the
coordinate (x(s), qsσ̂ + µ̂) is plotted, where qs = Φ−1(ps) and ps = S

N+1
.
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the data are normally distributed, while for the purpose at hand it would be better if this was the
alternative hypothesis so as to minimize the risk of falsely concluding that a distribution is normal.
With the available tests, a failure to reject the null hypothesis may be due to a lack of power against the
alternative, rather than being a de�nite proof that the distribution is indeed normally distributed. To
alleviate this concern, I used tests that are speci�cally tailored for tests against a normal distribution.10 If
the estimates converge to a normal distribution, I expect that the p-values of the tests become larger, so
that the null hypothesis is rejected less frequently. Thus, increasing p-values are taken as an indicator
for convergence towards a normal distribution. Both tests were conducted using the statistical software
Stata (Stata Corp., 2017, pp. 590–597; 2712–2717).

Hyper-parameter search I further tested whether it is possible to estimate the model’s hyper-
parameters by using a maximum likelihood grid search. In the baseline case, the DGP was initialized
with the parameters given in (3.9) and (3.8), and I set up a market with ten �rms, eleven observed time
periods, and one observed independent market. In order to see whether the result of the grid search
improves as more data becomes available, I increased the number of observed time periods 51 and 101.11

The search grid for the is visualized in �gure 3.2. I ran a total of one hundred Monte Carlo iterations
for each scenario.

Convergence in probability requires that the probability, with which a stochastic variable deviates from
its probability limit by more than an arbitrary amount, approaches zero. For instance, this implies that
we should expect the estimates for the hyper-parameters to fall within the region delineated by the
dashed box in �gure 3.2 more frequently in our Monte-Carlo samples, as the number of observed time
periods is increased. The dashed box is subsequently called the “ε-box”. Of course, the converse is not
true; if the proportion of estimates falling into the ε-box increases, this does by no means imply that
the probability of the estimator to fall in any region around the true values increases and approaches
one. But it would still lend support to the hypothesis that the estimator for the hyper-parameters
ψψψ is consistent. To formalize this idea, I conducted an approximate two-sample t-test, with the null
hypothesis being that the proportion of estimates falling into the ε-box is larger in the scenario with
51 or 101 observed time periods, than in the scenario with only eleven observed time periods. The
tests were conducted using the statistical software Stata (Stata Corp., 2017, pp. 2070–2079). In addition,
I computed the mean squared error (MSE) for k̂ and d̂ in the three Monte Carlo scenarios, to see
whether it decreases as the number of observed time periods increases, as would be consistent with
MSE convergence.

Robustness with respect to unobserved entry locations Lastly, I assessed whether it is important
to know all potential entry locations even if some are never observed to be active. For this purpose,

10The Kolmogorv-Smirnov test that is more commonly known does not possess this desired property, and is thus less
powerful against alternative distributions (Shapiro and Francia, 1972).

11I found that increasing the number of time periods is the least time consuming way to obtain more data, because the
equilibria across subsequent time periods can be re-used if market states occur repeatedly.
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Figure 3.2.: Search grid for the hyper-parameters ψψψ.

I initialized a DGP with twenty �rms, twenty-one observed time periods, and one observed market.
The true parameter values are as given in (3.8) and (3.9), with the exception that I did not adjust the
local interaction radius, and decreased the period return parameter to α0 = 0.2 so that fewer �rms
will be active, on average. I also increased the entry costs slightly to θe = 3 so that there is a higher
chance that some �rms will never enter. I then set up the MLE to use only those �rm locations that
are observed to be active at least once during the observed time horizon. The hyper-parameters were
assumed to be known.

3.4. Results

3.4.1. Consistency and asymptotic normality

Graphical results from the Monte Carlo study are shown in �gure 3.3. Each panel of that �gure depicts
a box plot of the estimation errors for each of the parameters (α, δ, and θe = EC), as one dimension
of the data is increased. In the top left panel, T = 11 time periods and M = 1 market is held constant,
and the number of �rms is increased. In the top right panel, the number of observed time periods is
increased, and in the bottom right panel, the number of independently observed markets is increased.
For each data set, the total number of observed state transitions at the �rm level is n = N(T − 1)M ,
and the bottom right panel shows the evolution of the estimation error as n increases. Notably, all
panels show that the estimation errors for all three structural parameters are rather small, and that
there is no discernible bias for sample sizes of two hundred state-�rm transitions and more. Also, the
variance of the estimation errors decreases as more data becomes available. I also computed the MSE
for each of α, δ, and θe as the total number of observed �rm-state transitions n increases, shown in table
3.1. That table shows that the MSE for all parameters decrease monotonically, albeit at a decreasing
rate, as more data becomes available to the MLE. Taken together table 3.1 and �gure 3.3 lend strong
support to the hypothesis that the proposed MLE is consistent.
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Figure 3.3.: Consistency: Box plots of the estimation errors γ̂γγ − γγγ for di�erent sample sizes. EC
denotes the entry cost parameter θe.

Next, I determined the asymptotic distribution of the estimators. Figure 3.4 shows the QQ-plots of
the re-scaled parameter estimates against the normal distribution. The �gure clearly shows that the
estimates follow a highly non-normal distribution for small sample sizes with only a few hundred �rm-
state observations. However, as the sample size increases to one thousand, or ten thousand observed
�rm-state transitions, the distribution of the re-scaled estimates begins to resembles that of the normal
distribution. I also conducted formal tests for normality of the re-scaled parameter estimates, shown
in the following table 3.1. The tests are actually based on the QQ-plots (Shapiro and Francia, 1972) and
so it is unsurprising that their results are in line with the visual impression of the those plots. Table 3.1
shows the p-values of these tests; the null hypothesis is always a normal distribution of the re-scaled
parameter estimates. The test for univariate normality of the entry cost parameter cannot reject the
null hypothesis for all sample sizes. Rather surprisingly, the p-value is very large for small sample
sizes, and tends to decrease as the sample size becomes larger, albeit non-monotonically. A plausible
explanation is that the estimator is indeed normally distributed, so that the null hypothesis is true, and
in consequence, the p-value is distributed uniformly on the interval [0, 1]. On the contrary, the small
p-value for small sample sizes point to a strongly non-normal distribution of α̂ and δ̂. For the largest
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sample size, the null hypothesis cannot be rejected for all univariate components of the parameter
vector. However, the Doornik-Hansen test for multivariate normality of the entire parameter vector
γ̂γγ would still reject the null hypothesis at a conventional level of signi�cance of 0.05. Still, it can be
suspected, albeit not proven, that the MLE will come close to a multivariate normal distribution as the
data size is increased even further.

3.4.2. Consistency of the hyper-parameter grid search

I now turn to the question whether the hyper-parameters ψψψ of the model – namely, the size of the
strategic neighbourhood k, and the local interaction range d – can be estimated consistently by means of
a grid search. Table 3.2 shows the distribution with which each of the grid points attained the maximum
likelihood for a di�erent number of observed time periods, with 100 Monte Carlo samples each.

Consider �rst panels (a) through to (c) of table 3.2. In table 3.2a, representing the small sample case
with eleven observed time periods, a share of 0.43 of all estimates fell within the ε-box (see �gure 3.5).
The corresponding proportions for 51 and 101 observed time periods were 0.48 and 0.52, respectively.
Since there are a total of seventeen grid points, and the ε-box consists of nine grid points, one would
expect a share of 9

17 ≈ 0.53 to fall in the ε-box even if the MLE was completely uninformative. The
fact that the actual share of estimates to fall in the ε-box is smaller than this expected share suggests
that the grid search procedure for the hyper-parameters is not very good, even in a comparatively large
sample with 101 observed time periods. Yet, this could be due to a bias that vanishes as the sample
size increases. Indeed, the share of estimates that fall into the ε-box increases as more time periods
are observed. But an approximate t-test fails to con�rm that this increase is statistically signi�cant.12

While this lack of signi�cance could of course be due to the small power of the test as a result of the
relatively small number of Monte Carlo simulations (S = 100), the combined evidence so far does
not allow me to conclude that the grid search result improves as the number of observed data points
increases. At last, consider the MSE statistics in table 3.2d. This table shows that the MSE for both k̂
and d̂ decreases as the number of observed time periods increases, but this decline is rather slow.

consistency p-values (H0: normality)

n S MSE(α̂) MSE(δ̂) MSE(θ̂x) α̂ δ̂ θ̂x γ̂γγ

100 100 0.8671 0.7952 0.1547 <0.0001 <0.0001 0.8588 <0.0001
200 300 0.0253 0.0657 0.0551 <0.0001 <0.0001 0.6012 <0.0001
500 300 0.0064 0.0111 0.0239 <0.0001 <0.0001 0.8545 <0.0001

1,000 300 0.0025 0.0037 0.0101 0.0292 0.0001 0.5512 <0.0001
10,000 100 0.0002 0.0003 0.0010 0.1463 0.6654 0.2591 0.0370

Table 3.1.: The table shows the mean squared errors (MSE) and the p-values of distributional tests
against the normal distribution (H0: normality), for di�erent data sizes n. S is the
number of Monte Carlo simulations that are available for each sample size.

12Let qεT ≡ Pr
(
ψ̂ψψT ∈ ε-box

)
. (1) H0 : qε11 ≤ qε51 yields p = 0.239 (2) H0 : qε11 ≤ qε101 yields p = 0.101
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Figure 3.4.: QQ plots of the re-scaled parameter estimates
√
n(γ̂γγk,s − γγγk,0) against the normal

distribution.

Surprisingly, the estimates of the regular parameters γ̂γγ are still rather good. This is shown in �gure 3.5
which depicts box plots of the distribution of estimation errors for the regular parameters, depending
on the sample size, and on whether the hyper-parameters were known, or estimated. The �gure shows
that the grid search introduces a slight bias in parameter estimates, and a lot more variance, for small
sample sizes. However, as the sample size is increased, bias and variance decrease considerably. This
is also re�ected in table 3.3, which shows the corresponding estimates of the MSE. The last bloc of
that table shows the ratio of the MSE as the hyper-parameters are known, or estimated. The table
shows that the MSE of the regular parameters decreases as the number of observed time periods T is
increased, even though the hyper-parameters are unknown and estimated via the grid search procedure.
Furthermore, the ratio of the MSEs for α̂ and δ̂ decreases steadily. Interestingly, this is not true for the
MSE of the entry cost parameter estimate θ̂e. Taken together, �gure 3.5 and 3.3 make it seem likely
that the model’s regular parameters can be estimated consistently even if the hyper-parameters are
unknown and must be estimated via a grid search.
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Figure 3.5.: Distribution of regular parameters’ estimation errors γ̂γγ − γγγ0 if the hyper-parameter
are known, or estimated via a grid search.

3.4.3. Robustness with respect to unobserved entry locations

Figure 3.6 shows the distribution of estimation errors that obtains with, and without the presence of
unobserved entry locations. The �gure shows that the estimates of the pro�tability parameter α, and
the local interaction parameter δ, are almost una�ected by the presence of unobserved entry locations.
On the other hand, the presence of unobserved entry locations leads to a clear bias in estimating the
entry cost parameter. A Kolmogorov-Smirnov test (with exact p-values) was used to test whether the
distribution of estimation errors di�ers depending on whether unobserved entry locations are included
in the estimation approach. This test did not reject the combined null hypothesis that the distribution
functions for the estimation errors α̂s−α0 and δ̂s−δ0 di�er in the two estimation scenarios (p = 0.908

and p = 0.368, respectively), but it did reject this hypothesis for the entry cost parameter (p < 0.001).
I take note of the fact that this test has the equality of the two distributions as its null hypothesis, and
so a failure to reject the null hypothesis may be due to a lack of power, rather than proving that the two
distribution functions are statistically the same. Still, the failure to reject the null for the distribution
functions of α̂ and δ̂, combined with the visual impression of �gure 3.6 leads me to conclude that the
parameters of the period return function can be robustly estimated in the presence of unobserved entry
locations.

3.5. Conclusion

I have revisited the spatial dynamic entry model that was developed in chapter 2, and used Monte
Carlo simulations to examine if its structural parameters can be estimated consistently. My results are
threefold. First, my results con�rm that model’s regular parameters can be consistently estimated, and
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Figure 3.6.: Distribution of regular parameters’ estimation errors γ̂γγ − γγγ0 in the presence of unob-
served entry locations.

that the estimates are asymptotically normally distributed, provided that the model’s hyper-parameters
– the spatial interaction radius, and the size of the strategic neighbourhood – are known. Second, if
these hyper-parameters are unknown, the results in this paper imply that it is di�cult to estimate them
via a grid search approach. But despite this fact, it appears that the model’s regular parameters can still
be consistently estimated. Lastly, it is possible to obtain good estimates of the period return parameters
even if some potential entry locations are unknown. However, in that case the entry cost parameter
cannot be estimated consistently.

These results were derived by using a simpli�ed version of the original model, and with a certain set
of parameters. I expect that the conclusions in this paper can be upheld if the model’s parameters
are changed slightly, but I cannot prove that this is the case for all possible parameter constellations.
In particular, there may be parameter constellations that generate market outcomes with insu�cient
variation to identify all parameters in realistically small samples.

Keeping in mind these caveats, my results have a number of interesting implications. First, the fact that
the estimates appear to be normally distributed for larger sample sizes validates the use of asymptotic
theory in order to derive standard errors in chapter 2. The fact the the model’s parameters can still
be estimated quite accurately without knowing the model’s hyper-parameters, or in the presence of
unobserved entry locations, lends support to the results obtained in chapter 2. On the other hand, it
raises the question whether those parameters could not have been estimated in a substantially simpler
framework, possibly neglecting dynamic forward-looking behaviour altogether. Furthermore, the fact
that the model’s hyper-parameters cannot be estimated well by means of a grid search make it appear
unlikely that one could succeed in identifying the parameters of a more elaborate period return function
without making substantial additional assumptions.
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At last, the Monte Carlo simulations were only possible because I had access to potent computer
infrastructure,13 because the maximum likelihood estimator used a nested �xed point approach. This
meant that I could not examine the estimator’s behaviour in sample sizes that were as large as I wished
them to be, or conducted as many Monte Carlo simulations as would actually be warranted to derive
small-sample and asymptotic distributions. Future research should therefore focus on ways in which
the spatial oblivious equilibrium concept developed in chapter 2 can be embedded in a more e�cient
(in terms of computer resources) estimation approach, such as a k-step estimator with a structural
transition matrix.

13I used the MLS/WISO cluster within the bwHPC project, funded by the state of Baden-Württemberg.
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d̂

25 30 35 40 45

k̂

3 0.13 – 0.08 – 0.13
4 – 0.11 0.03 0.08 –
5 0.09 0.01 0.02 0.03 0.04
6 – 0.05 0.02 0.08 –
7 0.03 – 0.02 – 0.05

(a) T = 11

d̂

0.25 0.3 0.35 0.4 0.45

k̂

3 0.06 – 0.09 – 0.13
4 – 0.03 0.07 0.14 –
5 0.05 0.03 0.08 0.03 0.04
6 – 0.05 0.04 0.01 –
7 0.06 – 0.04 – 0.05

(b) T = 51

d̂

0.25 0.3 0.35 0.4 0.45

k̂

3 0.09 – 0.11 – 0.11
4 – 0.09 0.09 0.06 –
5 0.01 0.05 0.05 0.07 0.07
6 – 0.03 0.02 0.06 –
7 0.05 – 0.02 – 0.02

(c) T = 101

T MSE(d̂) MSE(k̂)

11 56.00 2.13
51 46.25 2.06

101 44.00 1.95

(d) Mean squared estimation error

Table 3.2.: (a)–(c): Empirical distribution function of maximum likelihood estimates for the hyper-
parameters k and d. The true values are k0 = 5 and d0 = 0.35. N = 10 �rms and
M = 1 market. S = 100 Monte Carlo samples in total. Cells denoted by – were not
part of the search grid. (d): estimated mean squared error, based on panels (a) through
to (c).

MSE: ψ known (1) MSE: ψ estd. (2) ratio (2) / (1)

T α̂ δ̂ θ̂e α̂ δ̂ θ̂e α̂ δ̂ θ̂e

11 0.856 0.264 0.156 3.737 4.470 0.154 4.4 16.9 1.0
51 0.006 0.018 0.021 0.013 0.086 0.023 2.3 4.8 1.1

101 0.003 0.006 0.009 0.006 0.013 0.012 2.2 2.1 1.4

Table 3.3.: The table shows the estimated mean squared errors (MSE) of the regular parameter
estimates for di�erent data sizes, and depending on whether the hyper-parameters
ψψψ = (k, d) were known, or were estimates via a grid search.
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4. What Happens when Separate and Unequal
School Districts Merge?

joint work with Thilo Klein1 and Josue Ortega2

4.1. Introduction

For students in many countries, the transition from primary to secondary school marks an impor-
tant step towards adolescence that also a�ects their future educational and professional careers. The
modalities of this transition vary between, and sometimes also within countries, but frequently involve
an element of choice whereby students can express their preferences over a set of schools.3 This set
of alternative schools can be quite large and cover the entire country, or it can be limited to local
school districts or other administrative boundaries. In the latter case, every district typically constitutes
an independent assignment market. School district consolidation is the process by which previously
independent assignment markets are merged so that students can now choose from a greater set of
alternative schools. This phenomenon has taken place in the US for over a hundred years: the number
of school districts has fallen from 125,000 in 1900 to 84,000 in 1950 to under 15,000 today (Brasington,
1999).4 School district consolidations have also occurred in several other countries, e.g. in Germany
(Riedel et al., 2010), Hungary (Bukodi et al., 2008), Sweden (Söderström and Uusitalo, 2010), and New
Zealand (Waslander and Thrupp, 1995).

School district consolidation can be undertaken to reduce administrative costs, or to foster integration
of racially and economically segregated areas. But in the case of the U.S., this consolidation of school
districts is rarely a smooth process and is often met with reluctance by some of the independent districts
that are to integrate (Berry and West, 2008). One of the many reasons for the reluctance of districts to
merge is the concern that their students will have to attend worse schools after consolidation takes place
(Fairman and Donis-Keller, 2012). This concern is not entirely unwarranted, as district consolidation
not only leads to more choice, but also to more competition. Which e�ect dominates is unclear a priori
and depends on many factors, not least on students’ characteristics and preferences. We shed light on

1ZEW and Pforzheim University
2Queen’s Management School, Queen’s University, Belfast and formerly ZEW
3See matching-in-practice.eu, accessed on 19 September 2019
4Source: Institute of Education Sciences, U.S. Department of Education.
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these e�ects of school district consolidation by means of a theoretical model, and an empirical analysis
that is based on data from the Hungarian nationwide school assignment system.

In our theoretical model, we study district consolidation as the merger between disjoint Gale-Shapley
many-to-one matching markets that are possibly di�erent in terms of their size and their ratio between
students and school seats. Students are assigned to schools using the student-optimal stable matching
(SOSM) before and after consolidation takes place. Before district consolidation takes place, students
can only attend schools within their own district.5 We compute the expected welfare gains from consol-
idation for students in those markets (Proposition 2) and we show that district consolidation generates
expected welfare gains for all students, particularly for those who belong to districts that are relatively
small, or have a high ratio of local students per school seat.

These theoretical predictions are compared to empirical results that are obtained by using data from
secondary school admissions in Hungary, and in particular, from its capital Budapest during 2015. We
focus on Budapest because i) we have data of students’ stated preferences over all schools in its 23
districts, as well as schools’ priorities over all students from the 23 districts; ii) students are assigned
using the student-optimal stable matching (SOSM) (Biró, 2008); iii) Hungary consolidated primary
school districts in 2013 (Kertesi and Kézdi, 2013), and thus the analysis of the unconsolidated case is
particularly meaningful; and iv) we have additional data on students’ and schools’ characteristics that
allow us to tell which school features drive students’ preferences, such as schools’ previous results in
mathematics and Hungarian, distance to the students’ home address, and socio-economic status. Our
empirical strategy is to compare the SOSM in the integrated market to the matching that results in a
counterfactual disintegrated market. In order to compute the counterfactual matchings, we need to
construct a complete set of preferences over all market participants – schools and students. To this
end, our strategy is to estimate a parametric form of students’ preferences over schools, and schools’
priorities over students. Despite our data being remarkably detailed, we need to overcome two technical
problems here.

The �rst problem that needs to be addressed is about estimating students’ preferences: although in the
SOSM it is a weakly dominant strategy for students to report their complete rank-order lists (ROLs) of
schools truthfully, stated ROLs may di�er from the real ones because students submit strategic ROLs by
either omitting schools which they deem unattainable or by truncating their ROLs if they are con�dent
to be assigned to more preferred schools. Both types of omissions have been consistently observed in
the �eld (Chen and Pereyra, 2019) and in the lab (Castillo and Dianat, 2016); and both are particularly
important for us because the average student in Budapest ranks only 4 schools, even when they are
allowed and encouraged to rank all schools. The fact that students submit rather short preference lists
is the reason why we need a parametric approach to construct “true” complete rank order list. But

5The SOSM is a stable matching such that there is no other stable matching in which a student is assigned to a more
preferred school. It is consistently chosen in real-life school choice and college admissions in several regions, including
Boston (Abdulkadiroğlu et al., 2014), Chile (Correa et al., 2019; Hastings et al., 2013), Hungary (Biró, 2008), Paris (Hiller and
Tercieux, 2014) and Spain (Mora and Romero-Medina, 2001).
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the fact that students may omit some of their top-ranked schools also renders standard approaches to
estimates multinomial preferences inapplicable.

A second closely linked technical complication arises with estimating schools’ priorities: Hungarian
schools only report priorities over the set of students who actually apply to them and not over the
entire set of students. In Hungary, and in many other countries, schools’ priorities are based on tests,
interviews, and previous grades with weights decided by each school (subject to basic governmental
guidelines). Therefore, the admission criteria at each school contain important idiosyncratic compo-
nents that are unobservable to us. Thus, even though Fack et al. (2019) have shown how to estimate
students’ preferences without assuming truth-telling behavior, we cannot directly apply their discrete
choice methods which rely on observing complete schools’ priorities over students (for example, when
schools’ priorities are based on a centralized exam). Yet, we draw on their insights and develop a method
to consistently estimate students’ preferences when their feasible choice sets are unknown, or latent.

To overcome these technical challenges in preference estimation, our empirical strategy builds on two
identifying assumptions. Our �rst assumption is that the observed assignment is stable, which implies
that a student’s assigned school must be her top choice among her ex-post feasible schools (and vice
versa for schools). The approach is similar to Fack et al. (2019) and Akyol and Krishna (2017). In their
settings, ex-post feasible choice sets can be constructed because each student’s priority at every school
is observed. This is not the case in our setting, where students’ and schools’ feasible choice sets are
latent and therefore need to be endogenized to point-identify parameters.6 Our second identifying
assumption is that students use undominated strategies, i.e. a school is ranked above another one
if the former is preferred to the latter. The submitted ROLs then reveal the true partial preference
order of students over schools (Haeringer and Klijn, 2009). The method is implemented as a Gibbs
sampler that imposes bounds on the latent match valuations that are derived from stability and from
the observed ROLs. This approach generalizes the matching estimator, proposed in Logan et al. (2008)
and Menzel and Salz (2013) for the marriage market, from a one-to-one matching to a many-to-one
matching setting, which is suitable for the school admissions problem studied in this paper. We test our
proposed estimation method in Monte-Carlo simulations, and we �nd that it yields unbiased estimators
for students’ preferences and schools’ priorities. Our estimator is available online.7

Our main �nding is that the consolidated school market in Budapest is advantageous for the majority of
students and yields large welfare gains when compared to a counter-factual situation in which students
are only allowed to attend schools in their home districts. Throughout, we compare market assignments
that obtain through the student-optimal stable matching. We can quantify these welfare gains as being
equivalent to attending a school that is �ve kilometres closer to the students’ home addresses. In other
words, the average student would be willing to incur an additional travel distance of �ve kilometres

6In the case where schools are not strategically submitting priority lists, a two-step approach to this problem could
be derived from He and Magnac (2019): First, estimate school priorities for all students using schools’ observed ranking
over applicants. Second, use the estimated priorities to construct personalized choice (or consideration) sets and apply the
estimation strategy in Fack et al. (2019).

7The estimator is available in C++ and R at github.com/robertaue/stabest.
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for being able to attend his assigned school in the consolidated market, rather than his counter-factual
assigned school in her home district. We can empirically con�rm our theoretical result which states
that students who live in smaller districts or in districts with less school capacity bene�t more from
school district consolidation than the average student. Also, the median student incurs a welfare gain
that is positive and almost as large as the average welfare gain. To explain these large utility gains, we
devise a method to de-compose the total gains into a choice e�ect and a competition e�ect. We �nd that
the large welfare gains are largely due to an enhanced choice set, and that the consolidated market does
not lead to greatly increased competitive pressure. This can be explained by the institutional details of
the school market in Hungary and in Budapest, which is characterized by a large nominal overcapacity
of school seats relative to the number of students. In particular, we show that the gains from school
district consolidation are much smaller if we adjust the schools’ capacity so as to have just as many
school seats as there are students in the aggregate.

The parametric speci�cation of students’ utility from choosing a school yields insights into what stu-
dents value most about their school. We �nd that travel distance is a very important factor that deter-
mines students’ choices, but students also prefer schools with a high average academic achievement,
and those with a higher average socio-economic status. Unsurprisingly, our results imply that students
dislike schools which hold additional oral entrance exams, all things else being equal. Moreover, we
�nd that students have assortative preferences. For instance, students with a high socio-economic back-
ground have a stronger preference for schools with a high average socio-economic status than other
students. The same holds for students who are particularly strong in Mathematics or in Hungarian
language.

Our results have implications for the design of school choice markets that can be summarized as follows.
Consolidated school choice markets generate expected welfare gains for students if there is enough
aggregate capacity. In our empirical setting, signi�cantly more than one half of all students gained
from market consolidation which makes it seem possible to obtain majority support for consolidation
projects.

Organization of the chapter This chapter proceeds as follows. Section 4.2 discusses the related
literature. Section 4.3 presents the model and our theoretical results. Section 4.5 presents the estimation
strategy. Section 4.4 introduces our data and the Hungarian school system. Section 4.6 presents our
results, namely the welfare gains from district consolidation using both stated and estimated preferences
for both students and schools. Section 4.7 concludes.

4.2. Related literature

Although there is a large literature in economics studying school district consolidation, the majority of
it is unrelated to that of matching markets. This literature has four main �ndings: i) there is evidence of
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overall improvement in students’ performance after district consolidation, yet these improvements are
not uniformly distributed and there may be losses for speci�c groups of students (Berry, 2005; Berry
and West, 2008; Cox, 2010; Leach et al., 2010);8 ii) small and look-alike districts are more likely to merge
(Brasington, 1999; Gordon and Knight, 2009); iii) although there is empirical evidence of increased �scal
e�ciency due to district consolidation, most of the e�ciency has already been achieved (Duncombe
et al., 1995; Howley et al., 2011), and iv) district consolidation has diversi�ed the racial composition of
schools (Alsbury and Shaw, 2005; Siegel-Hawley et al., 2017).

Our paper is more closely related to the literature on two-sided matching, to which we contribute on
two fronts. The �rst one is the theoretical study of consolidation of distinct Gale-Shapley matching
markets. From this area, the closest papers to ours are Ortega (2018, 2019), which study the integration
of di�erent one-to-one disjoint matching markets; all of them balanced and of the same size. He shows
that i) integration bene�ts more agents than those it harms, and ii) there are expected welfare gains
from integration for all agents in random markets. We extend these results to the substantially more
general setting of many-to-one matching markets in which each district has potentially di�erent sizes
and ratios between schools and students. Furthermore, we show that in any school choice problem
there exists a way to partition of students and schools into districts such that district consolidation
weakly harms every student when the SOSM is consistently chosen.

A related series of papers assume instead that the set of schools is disjoint and the pool of students is
shared. This implies that some students may receive several admission o�ers whereas others may get
none. Manjunath and Turhan (2016) and Turhan (2019) show that iterative matching procedures can
lead to larger welfare gains and fewer incentives to misrepresent preferences when the initial partition
of the society is coarser. Using a similar approach, Doğan and Yenmez (2017) show that students are
weakly better o� when all schools join a centralized clearinghouse, whereas Ekmekci and Yenmez (2019)
show that no school has incentives to integrate. Hafalir et al. (2019) also studies district consolidations,
but assumes that school districts are allowed to exchange students as long as each student becomes
better o� in the exchange. They identify conditions in which stable mechanisms satisfy individual
rationality, diversity, and balancedness desiderata.

All the aforementioned papers assume there is a school choice system before and after consolidation
occurs, but a few others assume instead that each school conducts its own admission system prior to
consolidation (Chade et al., 2014; Che and Koh, 2016; Hafalir et al., 2018). Some empirical papers examine
students’ welfare after school choice is established (Baswana et al., 2019; Braun et al., 2010; Machado
and Szerman, 2018), but to our knowledge none of those authors have studied district consolidation
with school choice before and after the merge of districts occurs.

The second strand of the literature to which we contribute is the estimation of students’ preferences
and schools’ priorities from observed data. There are several methods for preference estimation with
more or less restrictive underlying assumptions. The most common identifying assumption is truth-

8There is also a well-established link relating larger school sizes with lower students’ performances, which is not the
focus of this paper.
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telling, where under the SOSM, a student is truth-telling if she submits her k most preferred schools.
Abdulkadiroğlu et al. (2017) and Che and Tercieux (2019), for example, follow this assumption in their
analysis of the New York City high school match. However, truth-telling is only a weakly dominant
strategy, even when schools can be listed at no cost. Commonly observed and rationalizable strategies
that are inconsistent with truth-telling include skipping “infeasible” schools and truncating ROLs after
“safe” schools. Therefore, other identifying assumptions have been explored in the literature. Fack et al.
(2019) is the seminal reference for the estimation of students’ preferences when their feasible choice
sets are known to the researcher (and to the student).

A less restrictive identifying assumption is that students do not swap their true preference orderings
over schools when submitting a ROL, and Fack et al. (2019) have used this assumption to estimate
preferences in the Paris school choice context. This assumption is due to the fact that it is a strictly
dominated strategy in the student-proposing Gale Shapley mechanism to rank school s′ before school
s if a student actually prefers school s over school s′ (Haeringer and Klijn, 2009).

Another commonly used identifying assumption is stability of the observed matching, which implies
that a student’s assigned school must be the top choice among her ex-post feasible schools. Artemov et al.
(2017) argue that stability is a more innocuous assumption than undominated strategies in that it permits
inconsequential ‘mistakes’ (in the sense of playing dominated strategies). Also, asymptotic stability
of the matching is guaranteed ex-post under fairly general conditions (Fack et al., 2019). The most
pervasive problem for stablity-based inference in two-sided matching models is that stable matching
games may possess multiple (stable) equilibria for a given set of preferences. In the absence of an
equilibrium selection rule, models that rely on stability are therefore incomplete (Tamer, 2003). For
the most part, the literature has therefore focussed on complete models (see Chiappori and Salanié,
2016; Fox, 2009, for surveys of the literature). One means to ensure uniqueness of the stable matching
is to restrict the form of utility functions, mostly by assuming that preferences on both sides of the
market are aligned to each other. For instance, Agarwal and Diamond (2014) show that preferences
are non-parametrically identi�ed in many-to-one matching markets with perfectly aligned preferences.
This approach has been applied to capital and credit markets (Chen, 2013; Sørensen, 2007) and to the
US medical match (Agarwal, 2015). A unique stable matching is also guaranteed where administrative
admission rules guarantee a global ROL. In the school choice context, this has been applied for Paris
(Fack et al., 2019), for college admissions in Mexico (Bucarey, 2018), Turkey (Akyol and Krishna, 2017),
and Norway (Kirkebøen, 2012). If such assumptions are not met, then only the joint match surplus
may be identi�able from observational data (Logan et al., 2008; Menzel, 2015; Menzel and Salz, 2013).
Weldon (2016) also discusses the identi�cation of preference parameters in school choice markets, and
provides some Monte Carlo evidence on the convergence properties of stability-based estimators. He
�nds that estimation routines that rely exclusively on the observed matching being stable can be rather
slow to converge as the student-school ratio becomes larger, a �nding that we could con�rm in our
own simulations.
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Our methodological contribution to the literature lies in developing a method to simultaneously estimate
the parametric form of students’ preferences and schools’ priorities in such settings where only partial
ROLs and the �nal assignment are known to the econometrician, but where preferences and priorities
are not perfectly aligned. We follow the approach of Fack et al. (2019) in that we use the stability
assumption in conjunction with the undominated strategies assumption. Their approach, however, is
not directly applicable to our setting where the students’ feasible choice sets are unobserved, and so
we extend it to include latent feasible choice sets using a data augmentation approach.

4.3. Model

To study district consolidation from a theoretical perspective, we �rst introduce some notation. An
extended school choice problem (ESCP) is a tuple (T, S,D,�,B, q), where:

• T is a set of students.

• S is a set of schools. We refer to Ω = T ∪ S as the society.

• q is the number of students that each school can accept.

• D := {D1, . . . , Dr} is a partition of T ∪ S into r subsets such that each of them has some
students and some schools. TDi and SDi denote the set of students and schools in district Di. A
population P is the union of some (possibly all) districts.

• �t is the strict preference ordering of student t over all schools in S. We write s �t s′ to denote
that t prefers school s to school s′ (and s <t s

′ if either s �t s′ or s = s′). We use �:= (�t)t∈T
to denote the preference pro�le of all students.

• Bs is the strict priority structure of school s over all students in T . We use tBs t
′ to represent

that student t has a higher priority than student t′ at school s. We use B := (Bs)s∈S to denote
the priorities of all schools.

We assume that each district Di has qni students, ni + ki schools and q(ni + ki) school seats, where ki
is a positive or negative integer that re�ects the imbalance between the supply and demand for school
seats in each district. If ki > 0, the district is underdemanded; if ki < 0 the district is overdemanded; if
ki = 0 then the district is balanced and each student is guaranteed a seat in his own district. We will
assume that K :=

∑r
i ki ≥ 0, i.e. the society as a whole is either balanced or underdemanded and the

size of its unbalance is K .9 We also use N :=
∑r

i ni.

The admission policy of each school s is given by a choice rule Chs : 2T × {qs} 7→ 2T , which maps
every nonempty subset T ′ ⊆ T of students to a subset Chs(T ′, qs) ⊆ T ′ such that |Chs(T ′, qs)| ≤ qs.
We assume that for each school s, Chs(·, qs) is responsive to the priority ranking Bs, i.e. for each

9This assumption is satis�ed in our data and is often satis�ed in school choice markets.
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T ′ ⊆ T , Chs(T ′, qs) is obtained by choosing the highest-priority students in T ′ until qs students are
chosen.

Given a population P with students TP and schools SP , a matching µ : TP ∪ SP 7→ TP ∪ SP is
a correspondence such that for each (t, s) ∈ TP × SP , µ(t) ∈ SP ∪ {t}, µ(s) ⊆ TP , |µ(s)| ≤ qs

and µ(t) = s if and only if t ∈ µ(s). We write µ(t) = t if student t is unmatched under µ. A
matching scheme σ is a function that speci�es a matching for each district Di, denoted by σ(·, Di) :

TDi ∪ SDi 7→ µ : TDi ∪ SDi , as well as for the society as a whole, denoted by σ(·,Ω) : T ∪ S 7→
T ∪ S. As no confusion shall arise, when referring to an arbitrary district, we will simply write
σ(·, D). The matchings σ(·, D) and σ(·,Ω) denote the assignment of students to schools before and
after consolidation occurs, respectively.10

A matching µ : TP ∪SP 7→ TP ∪SP is stable if @(t, s) ∈ TP×SP such that i) µ(t) = t and |µ(s)| < qs,
or ii) s �t µ(t) and t Bs t

′ ∈ µ(s). A matching scheme σ is stable if all its corresponding matchings
σ(·, D) and σ(·,Ω) are stable. The students-optimal stable matching (SOSM) is the stable matching that
all students weakly prefer over any other stable matching and it is attained by the student-proposing
deferred acceptance algorithm (Gale and Shapley, 1962; Roth and Sotomayor, 1992).

Welfare E�ects of Consolidation To analyze students’ welfare changes we quantify the gains from
district consolidation in terms of the ranking of their assigned school. We focus on random ESCPs, in
which the schools’ priorities and students’ preferences are generated uniformly at random. Random
matching problems were �rst studied by Wilson (1972) and have been extensively studied ever since,
and they facilitate an analytical treatment of market outcomes. Of course, the preferences in actual
school choice problems are not random and so a failure of our theoretical predictions to hold empirically
could also be due to the random market assumption not being met in practice. Yet, we argue that the
random markets assumption is useful because it allows us to isolate the e�ects of a larger matching
market, rather than being distracted by compositional details of the students and schools.

The absolute rank of a school s in the preference order of a student t (over all potential schools in the
society) is de�ned by rkt(s) := |{s′ ∈ S : s′ <t s}|. Given a matching µ, the students’ absolute average
rank of schools can be de�ned by

rkT (µ) :=
1∣∣T ∣∣ ∑

t∈T

rkt(µ(t))

where T is the set of students assigned to a school under matching µ. Then, the welfare gains from
consolidation for students of district Di are de�ned as

γT (σSOSM) = rkT (σSOSM(·, Di))− rkT (σSOSM(·,Ω))

10Matching schemes are analogous to the concept of assignment schemes in cooperative game theory (Sprumont, 1990).
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Proposition 2 approximates the students’ welfare gains from consolidation as function of ni and ki,
providing a set of interesting comparative statistics as a corollary.

Proposition 2. In a random ESCP, the expected welfare gains from consolidation for students γT (σSOSM)

can be approximated by

N +K

q

(
log(ni+kiki

)

ni
−

log(N+K
K )

N

)
if ki ≥ 0 (4.1)

N +K

q

(
q(ni + ki)

ni log(niki )
−

log(N+K
K )

N

)
if ki < 0 (4.2)

We postpone the proof of Proposition 2 to appendix B.1. Expression (4.1) coincides with the one in
Proposition 4 in Ortega (2018) when ki = K = 0 and q = 1. The approximations presented have
several testable implications, which we present below.

Corollary 1. The gains from consolidation are positive for all districts, in particular:

1. If the whole society is underdemanded, students from overdemanded districts bene�t more from
consolidation than those from underdemanded districts.

2. A smaller size of the district size ni leads to larger expected welfare gains from consolidation.

3. A smaller size of the global imbalanceK leads to larger expected welfare gains from consolidation.

Before moving to the empirical part of this paper, where we test our theoretical predictions, we provide
some intuition for the comparative statistics. It is well-known that in a two-sided matching problem
with di�erent sizes, the agents in the short side choose whereas the agents in the large side get chosen,
a phenomenon that increases as the imbalance between the two sides of the market grows (Ashlagi
et al., 2017). Thus, if a local district is underdemanded, students get assigned to highly ranked schools
before consolidation, which makes the gains from consolidation smaller. On the contrary, if students
belong to an overdemanded district, they are assigned to a poorly ranked school before consolidation,
which leads to large potential gains from consolidation (which indeed occur, since the whole society is
underdemanded). This explains our �rst comparative statistic.

The two remaining comparative statistics have to do with the relationship between relative and absolute
rankings. In small districts, even if students are assigned to some of their preferred schools within their
district, it is unlikely that those schools are in the top of their preference list. Thus, in small districts
there is large potential for welfare gains. Similarly, the larger the global imbalanceK becomes, students
are assigned to more preferred schools after consolidation takes place.
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4.4. Data

This section describes the school admission system in Hungary, and the data that we use. Hungary
has a nation-wide integrated school market. This means that every student can apply to any school
in the entire country, and a centralized assignment mechanism is used to allocate students to schools.
In this system, every student submits a rank order list (ROL) of arbitrary length ranking the school
programmes that he would like to attend. In turn, each school programme ranks all the students that
applied to it according to several criteria such as grades, additional exams and entrance interviews.
The speci�c weighting of these criteria is decided upon by each school but must comply with speci�c
regulations (e.g. the weight of the interview score cannot be more than 25%). School programmes
submit a strict ranking of their more preferred students; the remaining students are simply deemed
unacceptable and are not ranked against each other. The assignment of students to schools is conducted
using the deferred acceptance student-proposing algorithm (Biró, 2008). This algorithm has been used
since 2000 in a fully consolidated fashion, allowing students to apply and be assigned to any school in
the entire country (see Biró (2012) for a detailed overview of its implementation).

For our empirical analysis, we use data from the national centralized matching of students to secondary
schools in Hungary, the so-called KIFIR dataset,11 along with student-level data from the national
assessment of basic competencies (NABC), both from the year 2015. Our data encompasses the universe
of all students in Hungary who apply to a secondary school programme in 2015 (at an age of 14, with
some exceptions). Each secondary school o�ers general or specialised study programmes with di�erent
quotas that are known ex-ante by students. The reader is referred to B.2.4 for some details on these
original data sources. Due to data protection arrangements, access to these data was restricted and
our estimation routines were run by o�cials at the Hungarian ministry of education on their local
computer.

We will restrict our attention to the greater Budapest area which comprises 23 well-de�ned districts,
so as to obtain a realistic setting within which the (un)consolidation of school districts can be studied.
Budapest lends itself to this type of analysis because it is a geographically relatively small market
that is tightly integrated, and yet the market is large enough to permit a meaningful study of the
unconsolidation into smaller and well-de�ned districts. Figure 4.1 shows the geographical area of
Budapest with school district borders, and with arrows between districts that send their students to study
to other districts. That �gure shows that there is a considerable amount of inter-district movements,
especially in the inner parts of the city.

Out of the 13,611 students from Budapest that we �nd in the NABC dataset, we are able to link 10,880
students to their corresponding application records in the KIFIR database. In order to attain comparable
competitive conditions, we adjust the schools’ capacities by removing any seats that were assigned to
students not in our sample. In total, there are 881 school programmes of 246 schools that are located

11KIFIR stands for Középiskolai Felvételi Információs Rendszer which translates to “Information System on Secondary
School Entrance Exams”
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flows of accepted students across Budapest
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Figure 4.1.: The districts in Budapest, and �ows of accepted students among those districts. Flows
from one district A to another district B are bent to the left, when viewed from A. The
width of the �ow arrows from one district D to another district D′ is proportional to
the number of students who live in district D and who were accepted at a school in
district D′.
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in the city of Budapest. A school programme can constitute of a particular class in which students
specialize on languages, or computer science, for instance. Thus, schools can o�er multiple programs
within the same age cohort. We aggregate school programmes at the school level in order to reduce
the sample size and the associated computational burden which is not negligible in our context.12

Combining the 246 schools with 10,880 students still leaves us with almost 2.7 million possible student-
school combinations to be considered. We focus on three school types – four-year grammar schools,
vocational secondary, and vocational schools – which the students apply to after having completed eight
years of primary education. For all students in the sample, their location of residence is approximated
by their zip code, and the Open Source Routing Machine (Luxen and Vetter, 2011) was used to compute
travel distances from each of Hungary’s zip code centroids to every known school location.

Table 4.1 shows student-level summary statistics of our data. Panel A shows that most students were
born in 2002, and that there are as many girls as boys, as one would expect. The students’ mean grade
average in the previous school year is four (�ve is the highest grade in the Hungarian grading system).
Their math, Hungarian, and SES scores from the NABC13 were standardized by us since their absolute
numbers have no meaning. The variable measuring students’ socio-economic status (SES) is a composite
measure that includes, amongst other variables, the number of books that the household has, or the
level of parental education. This indicator was also standardized. Since the students’ grade average,
their math, and their Hungarian NABC scores are highly correlated, we created a composite measure
that we call “ability” and which is constructed as the �rst principal component of these variables. Table
4.1 shows that the students from Budapest in our sample �le applications to roughly four schools, on
average.14 Roughly seventy percent of the students apply to at least one school in their home district,
and on average, students include only one school from their home district in their submitted rank order
list. Panel B shows some attributes of students’ �rst choice school, and panel C shows attributes of the
students’ actual assigned school. Panel C shows that the average match rank15 is 1.46 with more than
seventy percent of all students being assigned to their top choices. This is probably due to the fact that
there is much excess capacity: the schools in the sample reportedly have vastly more seats than there
are students (see below). This peculiar fact has been con�rmed in conversation with o�cials from the
Hungarian ministry of education on several occasions. The distribution of the number of programmes
the students apply to, and of the actual match rank in the 2015 matching round, are shown in �gure 4.2.
This �gure con�rms that most students submit rather short ROLs, and the vast majority of students is
assigned to their submitted top choice.

Table 4.2 shows the school-level summary statistics. School programmes in Budapest are very attractive
so that many students from outside Budapest rank a school in Budapest as their top choice. Therefore,
students from Budapest face strong competition in their “domestic” school market, and restricting

12We converted students’ ROLs to the school level by keeping the most preferred school programme of every school.
13Where these scores were missing in our data, we imputed the missing values using predictive mean matching, as

implemented in the package mice in R (van Buuren and Groothuis-Oudshoorn, 2011); see B.2.4.
14Actually, students apply for course programmes, many of which may be o�ered by the same school. Thus, the actual

length of the students’ rank order lists is larger than this.
15With 1 being the most preferred school.
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Mean SD Min Max N

Panel A. Student characteristics
birth year 2,000.1 0.550 1,996 2,002 10,880
female 0.495 0.500 0 1 10,880
grade average 4.064 0.693 1.000 5.000 10,880
math score (NABC)* 0.000 1.000 −3.825 3.521 10,880
hungarian score (NABC)* 0.000 1.000 −4.186 3.176 10,880
ability† 1.472 1.398 -3.662 6.006 10,880
SES score* 0.000 1.000 −4.111 1.651 10,880
ROL length 4.093 1.800 1 24 10,880
applies to home district 0.680 0.466 0 1 10,880
ROL length within home district 1.054 0.965 0 7 10,880

Panel B. Attributes of �rst-choice school
distance (km) 7.100 4.630 0.105 36.645 10,880
ave. math score (enrolled students) 0.320 0.716 −1.971 1.754 10,880
ave. hungarian score (enrolled students) 0.352 0.699 −2.006 1.686 10,880
ave. SES score (enrolled students) 0.090 0.582 −1.886 1.212 10,880

Panel C. Attributes of assigned school
match rank 1.476 0.924 1.000 11.000 9,783
matched to �rst choice 0.711 0.453 0.000 1.000 9,783
distance (km) 7.061 4.653 0.105 36.645 9,783
assigned to home district 0.297 0.457 0.000 1.000 9,783
ave. math score (enrolled students) 0.195 0.686 −1.971 1.754 9,783
ave. hungarian score (enrolled students) 0.230 0.669 −2.006 1.686 9,783
ave. SES score (enrolled students) −0.012 0.571 −1.886 1.212 9,783

Variables indicated with an asterisk are z-normalized. The 2015 Hungarian and math test scores are taken by the students as part of the
admissions process. † ability is the �rst principal component of the joint distribution of students’ grades, their math, and their hungarian
scores. Socioeconomic status is a composite measure which includes, amongst other variables, the number of books that the household
has, or the level of parental education.

Table 4.1.: Secondary School Applicants in Budapest: Summary Statistics.

Statistic N Mean St. Dev. Min Max

capacity 246 137.098 96.306 6 502
adjusted capacity 246 116.447 90.586 6 498
applications 246 411.199 456.929 7 2,392
ROL1 applications 246 44.228 44.254 0 251
acceptable applications 246 130.638 124.433 0 698
assigned students 246 39.768 31.499 0 157
ave. match rank 242 47.229 34.011 2.250 187.298
entrance interview 246 0.439 0.497 0 1
enrolled students’ average

math 246 −0.130 0.778 −1.971 1.754
Hungarian 246 −0.084 0.747 −2.006 1.686
SES 246 −0.185 0.643 −1.886 1.212

assigned students’ average
math 246 −0.248 0.670 −2.355 1.643
Hungarian 246 −0.253 0.694 −2.332 1.476
SES 246 −0.135 0.638 −1.789 1.282

Table 4.2.: Summary statistics of secondary schools in Budapest.
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Figure 4.2.: Distribution of the length of students’ ROLs, and of their realized match rank, in the
2015 KIFIR database for students in our sample. These numbers refer to rank order
lists that were aggregated at the level of the schools (see text for explanation).

the attention to students from Budapest will likely lead to a much more relaxed assignment problem.
In order to circumvent this problem, we subtracted the number of admitted students from outside
Budapest from the schools’ capacity so as to maintain the original “tightness” of the market – this is the
adjusted capacity that is used throughout our analysis. The average school receives over four hundred
applications, of which only 130 are deemed “acceptable”. In the end, about forty students are assigned to
each school on average. The comparably small number of acceptable applications could indicate that it is
quite costly for schools to rank all their applicants consistently, and so they focus on only ranking those
students which are most likely to be admitted to the school. Note that our estimation approach assumes
that schools submit their priority lists truthfully, i.e. that every student who is labelled “unacceptable”
really ranks lower than any other applicant. This assumption could be violated if schools strategically
choose to omit very high achieving students, because they feel that these students are more likely to
be admitted to a more prestigious school, and thus want to avoid the workload of prioritizing these
students. But we think that this is probably a minor problem, and that schools are overall truth-telling.
We also collected data on whether a school holds an additional entrance interview16 and we found that
about forty percent of all schools do so. The table also summarizes the school-level averages of admitted
and currently enrolled students. The standard deviation of these school-level averages is more than
two thirds of the total variance across students, which is normalized to one. Thus, there is evidence for
a substantial amount of sorting by ability and socio-economic status.

4.5. Empirical strategy

Our empirical strategy to estimate the gains from district consolidation in a school choice market can
be summarized as follows: we compute the SOSM in an unconsolidated, district-level school market

16This information was manually collected from the website felvizsga.eu which provides information about admission
procedures at di�erent Hungarian schools. Last accessed on 11 November 2019.
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Figure 4.3.: Our empirical strategy

and compare it to the SOSM in the consolidated, city-wide school market. In a �rst pass, we use the
submitted rank order lists to obtain an ad hoc measure of the consolidation gains. This approach has
some shortcomings due to the fact that the submitted rank order lists are incomplete, as will be outlined
below. To circumvent these shortcomings, we develop a procedure to estimate the complete preference
order of all market participants. This allows us to compute a more complete SOSM in the unconsolidated
market, and also to compare utility outcomes. Figure 4.3 summarizes our strategy at a glance.

In section 4.3 we have shown theoretically that one can expect overall welfare gains from school district
consolidation, but that the magnitude of these gains may depend on the speci�c market characteristics.
We test these predictions using student-level administrative data from the Hungarian school assignment
system KIFIR.17 The KIFIR dataset contains the stated preferences of students over all schools that
are included in their submitted rank order lists, and the respective rankings of schools over their
applicants. These submitted rank order lists allow us to perform an ad hoc qualitative assessment of
the consolidation gains in terms of foregone rank order items.

However, using the short submitted rank order lists two has shortcomings. The �rst problem is related
to the computation of the matching in an unconsolidated district-level school market. As table 4.1
shows, over thirty percent of all students have not included any school from their home district in their
submitted rank order lists, and on average, students included only a single school from their home
district in their submitted rank order list. This is probably due to the fact that the school market in
Budapest has been consolidated for a long time. As a result, many students would remain unmatched in
a counter-factual, disintegrated school market. Moreover, it seems reasonable to assume that students
would adjust their submitted rank order lists if the school market was to be disintegrated. Thus, the
SOSM in a disintegrated school market cannot be well described by using the submitted short rank

17See section 4.4 for details on the Hungarian school choice system, and of the data.
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order lists from the consolidated school market. Second, it is unclear how a change in a student’s match
rank translates to utility gains or losses, because the former is an ordinal concept, whereas the latter
is a cardinal concept. Also, the cardinal concept of utility is more appropriate to compute aggregate
welfare measures. To overcome these problems, we present a data augmentation approach to back out
the “true” complete preference ordering from the submitted rank order lists. Our method is based on
the discrete choice framework (Train, 2009) and we use it to compute the di�erent SOSM allocations,
and to evaluate their welfare consequences. The method is outlined in more detail below.

4.5.1. Preference estimation: methodology

We observe a school choice market with a set of students (T ) and a set of schools (S). We write students’
utilities over the set of schools Ut(s), and schools’ valuations over the set of students Vs(t) as

Ut(s) = Ut0 + Xtsβ + εts (4.3)

Vs(t) = Vs0 + Wstγ + ηst (4.4)

where Xts and Wst are observed characteristics that are speci�c to the school-student match st. Xts

could, for instance, include a school �xed e�ect or the travel distance from t to s. The terms Ut0 and
Vs0 are the outside utilities of not being matched to any student or school. These are assumed to be
zero, so that the latent utilities represent the net utility of being matched. The match valuations Ut(s)
and Vs(t) are treated as latent variables that are to be estimated along with the structural parameters β
and γ. Throughout, we will denote by Ut the vector of student i’s utilities over the entire set of schools,
and by Vs school s’s valuations over the entire set of students. We make use of the common indexing
notation whereby the elements of some vector Z that do not refer to the student-school pair ts are
denoted by Z−ts, i.e. U−ts denotes the entire set of utility numbers but for Ut(s). We further assume
that the structural error terms εts and ηst are independent across alternatives, and normally distributed
with unit variance. While one could in principle allow for more general correlation structures, it is
customary (and necessary) in the discrete choice literature to put some structure on the error terms
in order to ensure identi�cation (Train, 2009). We also think that including a su�ciently rich set of
controls and co-variates allows us to model the dependencies across alternatives in a more transparent
manner than if we had left the co-variance structure completely unspeci�ed.

Some more notation will be convenient below. The econometrician observes students’ submitted partial
rank order lists over schools, rk, and schools’ submitted partial priority orderings over students, pr.
Following the notation of Fack et al., we denote the observed rank order list of student t as Lt =

(s1
t , s

2
t , . . . , s

Kt
t ), where skt ∈ S is some school. Denote the rank that student t assigns to school s

as rkt(s), with 1 ≤ rkt(s) ≤ Kt if s ∈ Lt and rkt(s) = ∅ else. The observed rank order lists rk

encompass all individually observed rankings rkt(s). Similarly, denote the set of students who apply
to school s as Ls, and let the the priority number that school s assigns to student t be prs(t). Priority
numbers are like ranks, in that they take discrete values, and a lower priority number means higher
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priority. Schools are required to prioritize all students who apply to them, but they may rank some
students as “unacceptable”. We say that prs(t) = +∞ if student t is unacceptable to school s, and
prs(t) = ∅ if student t did not apply at school s. Thus, prs(t) ∈ {1, 2, . . . , |Ls|,∞, ∅}.

Given the speci�cation of the error terms and the observed rankings, equations (4.3) and (4.4) can
be regarded as representing two distinct rank-ordered probit models (Train, 2009, p.181). However,
the complications outlined in the introductory part of this section imply that an estimation as such is
unlikely to succeed in obtaining the true preference parameters. Because schools only rank students
who apply to them, and geographical distance is not an admission criterion, we cannot follow the
approach of Burgess et al. (2015) to construct the feasible choice set of each student in order to identify
her true preferences. For the same reason, the construction of the stability-based estimator that is
proposed in Fack et al. (2019) cannot by applied. Still, we follow the main ideas outlined in their paper
in that we use a combination of identifying assumptions to identify the model parameters. These will be
described in turn. We chose a Bayesian data augmentation approach, owing to its �exibility, and because
it allows us to directly estimate the latent variables U and V which are our prime objects of interest
for the purpose assessing the gains of integration. Similar approaches have been used by Logan et al.
(2008) and Menzel and Salz (2013) in the context of one-to-one matching markets. Following Lancaster
(2004, p.238), who describes a data augmentation approach for an ordered multinomial probit model,
we simulate draws from the posterior density of the structural preference parameters p(β, γ|data) by
considering the component conditionals p(U|β, γ,V, data), p(V|β, γ,U, data), p(β|γ,U,V, data)

and p(γ|β,U,V, data). We assume a vague prior for the structural preference parameters γ and β.
Details of the conditional posterior distributions are spelled out in B.2.2. Our data comprises of the
co-variates X and W, of the assignment µ and of the submitted rank order and priority lists. In general,
the Gibbs algorithm to sample for the posterior density can be described as follows:

1. for all t, s: draw Ut(s) from p(Ut(s)|β, γ,U−ts,V, data) = N(Xisβ, 1),
truncated to [U t(s), U t(s)]

2. for all s, t: draw Vs(t) from p(Vs(t)|β, γ,V−st,U, data) = N(Wstγ, 1) ,
truncated to [V s(t), V s(t)]

3. draw β from p(β|γ,U,V, data) = N
(
b, (X′X)−1

)
, with b = (X′X)−1X′U

4. draw γ from p(γ|β,U,V, data) = N
(
g, (W′W)−1

)
, with g = (W′W)−1W′V

5. repeat steps 1–4 N times

Key to our estimation methodology are the truncation intervals for Ut(s) and Vs(t). These intervals
are functions of the data and of the latent variables in the model, and they are speci�c to the particular
set of identifying restrictions that is used. The bounds of these intervals could be very tight, or they
could encompass the entire real line. We describe the various kinds of identifying restrictions below,
and outline how they can be used to construct these truncation intervals; a detailed derivation of the
truncation intervals is deferred to B.2.1.
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Weak truth-telling (WTT) Weak truth-telling requires that the student truthfully submits his or her
top-Kt choices, and that any unranked alternative is valued less than any ranked alternative. Formally,
this implies that Ui(s) ≥ Ui(s′) if (but not only if) rkt(s) < rkt(s

′) or s′ /∈ Lt. That is, any unranked
school is assumed to be less preferable than any ranked school. A similar reasoning can be applied to
schools’ priorities over students, with the di�erence that a school s cannot rank a student t unless t
applies to s. However, a school can label a student as “unacceptable” which implies that all students
labelled in this manner are valued less than any other ranked student. So we can bound Vs(t) ≥ Vs(t′)
if s ∈ Lt ∩ Lt′ and prs(t) < prs(t

′) or prs(t′) = +∞. Taken together, these bounds pin down the
truncation intervals and the component conditionals in steps 1 and 2 above.

Undominated Strategies (UNDOM) The assumption of undominated strategies is similar to that
of weak truth-telling, but is restricted to the submitted rank order lists. That is, we can bound Ut(s) ≥
Ut(s

′) if s, s′ ∈ Lt and rkt(s) < rkt(s
′). The bounds for the school’s valuation over students are the

same as in the weak truth-telling case because a school cannot decide to not rank a student; it must
at least decide whether the student is acceptable or not. Undominated strategies is thus a weaker, but
also more general, condition than weak truth-telling in the sense that the latter implies the former, but
not vice versa.

Stability If we assume that the matching of students to schools is stable in the sense outlined in
section 4.3, a di�erent set of bounds can be applied to the latent valuations. Denote the observed
matching as µ such that µ(t) = s and i ∈ µ(s) if student t is assigned to school s. Stability implies
that there is no pair of a student t and a school s such that Vs(t) > mint′∈µ(s) Vs(t

′) (so there is no
school s that would like to see student t enrolled rather than one of its currently enrolled students) and
Ut(s) > Ut(µ(t)) (no student t would prefer being enrolled at s rather than at his current school). This
condition implies that we can bound the realization of Ut(s) conditional on the matching µ, and on
the match valuations U−ts and V−ts. Analogous bounds can be placed on Vs(t) with straightforward
extensions for cases where schools are not operating at full capacity. These bounds are spelled out in
appendix B.2.1 in greater detail. This identifying assumption can be used on its own, or in conjunction
with the assumption of undominated strategies.

4.5.2. Identification

Fack et al. (2019) provide an illuminating discussion of the merits of di�erent estimation procedures
in the Paris school choice context where students’ priorities at all schools are observed by the econo-
metrician, and we draw on their insights below. They argue that the identifying restriction stability
alone allows for point-identi�cation in large markets as in the Paris setting,18 but can also be used in

18Weldon (2016, p.158) studies identi�cation of preference parameters using stability-based estimators in a large num-
ber of small independent matching markets, and concludes that identi�cation depends strongly on the precise parameter
con�gurations of the matching agents.
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conjunction with UNDOM. While we characterize our estimation approach in the same terms as they
do, our setting di�ers from theirs in that the students’ relative rankings at various schools is only incom-
pletely observed. Our preferred identifying assumption is the combination of undominated strategies
and stability because it allows point identi�cation, and it guarantees that the observed matching µ is
stable under the estimated latent match valuations. The stability property is also convenient because it
allows us to replicate the observed matching by computing the SOSM based on priority and preference
lists that are computed from the estimated latent match valuations.

The usual conditions on identi�cation in additive random utility models apply, and preference parame-
ters are identi�ed up to the variance of the unobserved random utility component which we restrict
to unity. In these models, only utility di�erences are identi�ed, and so we can identify only up to
J − 1 alternative speci�c constants in a choice situation with J alternatives, with one constant being
normalized to zero. Moreover, the e�ect of the decision makers’ characteristics are only identi�ed as
interactions with alternative-variant characteristics. Furthermore, since only utility di�erences matter,
only the di�erences of the error terms are identi�ed. This is handled implicitly in our data augmentation
approach, by drawing the errors subject to lower and upper bounds that are implied by the observed
rank order lists. Lastly, parameters are only identi�ed if there is su�cient heterogeneity in the observed
choices: If everyone were to choose the same option, then any parameter which leads to this option
being assigned a utility of plus in�nity could rationalize what is observed in the data (Cameron and
Trivedi, 2005; Train, 2009).

Preference parameters under the identifying restriction of weak truth-telling can in principle be identi-
�ed by means of a rank ordered model where the choice set encompasses the entire set of schools.19

However, because students may omit some of their most preferred schools if chances of admission
are small, this assumption is often violated and parameter estimates are biased in such a model (Fack
et al., 2019). To see this, consider some very popular school s+ to which chances of admission are so
small that most students, although they would rank it �rst, never actually include it in their submitted
ROL. But then, the probability that school s+ is the most preferred option di�ers from the probability
that it is ranked �rst, and so the likelihood is misspeci�ed. This may not be a problem at all if the
researcher was merely concerned with describing the actual application behaviour of students in an
existing school choice problem, but it becomes a problem if one is to study the e�ects of changing the
rules of an existing allocation mechanism. In that case, it seems reasonable to assume that students’
true underlying preferences would remain unchanged, but that the changed admission rules would
lead them to alter their applications behaviour. Therefore, an analysis that is based on student’s true
preferences would retain its validity in a counter-factual allocation mechanism, while an analysis based
on reported preferences would not be applicable.

The alternative, and weaker, identifying assumption of undominated strategies merely makes a state-
ment about how likely it is for an individual student to prefer school s over school s′, given the student’s

19Variants of this are the rank ordered logit model (Beggs et al., 1981) or a rank ordered probit model (Yao and Böckenholt,
1999). Whereas the rank ordered logit model has analytically tractable expressions for the likelihood, the rank ordered probit
model has not, and thus requires simulation or Bayesian estimation techniques.
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and the schools’ observable characteristics. This probability can be identi�ed non-parametrically from
the observed ROLs, conditional on s and s′ being part of the submitted ROL, even if some top choices,
or some very unattractive alternatives, were omitted due to strategic reasoning. If we assume that the
student’s decision to include both s and s′ in her ROL is independent of whether she ranks s or s′ higher,
then these conditional non-parametric estimates can be matched to the unconditional model-implied
probabilities, and hence the model is completely speci�ed. Therefore, the coe�cients on alternative-
varying covariates can in principle be identi�ed by their relative contribution to the probability that
a particular choice s is ranked before an alternative s′. Of course, the usual limitations that apply in
multinomial choice models also apply here; for example, preference parameters are only identi�ed up
to the scale of the error variance. In this regard we deviate from Fack et al. (2019, p.1507) who argue
that an econometric model based on undominated strategies is incomplete in the sense of Tamer (2003),
because “the assumption [. . . ] does not predict a unique ROL for the student”. From this they conclude
that this assumption alone does not permit point identi�cation of preference parameters.

If, in addition, one is willing to make the assumption that the observed matching is stable with respect
to the decision makers’ true preferences, this stability assumption can serve as an additional source of
identi�cation. To illustrate this, consider some school s− which is so unpopular that only few students
have included it in their ROLs. Because of this, the probability that this school is preferred to some
other school s′ is only poorly identi�ed, and this could lead to large uncertainties in the parameter
estimates. But if school s− has some vacant seats, the stability of the observed matching implies that no
other student prefers this school over her currently assigned school. In general, the stability assumption
imposes additional bounds on a student’s latent match valuation if some school has vacant seats and if
the student is matched to another school; or if a school’s latent valuation of this student is larger than
the least valued student who is currently assigned to that school. Similar considerations apply for the
bounds on schools’ valuations over students. So, the stability assumption places additional identifying
restrictions on the distributions of latent errors and structural parameters.

Measurement error As was described in section 4.4, we do not exactly observe the students’ char-
acteristics which the school can condition their admission choices on. Instead, we must rely on supple-
mentary information from the NABC, and we also make use of imputed data because it is important
to have a complete set of students for our empirical approach. Thus, the measurement error in our
explanatory variables is likely to attenuate our parameter estimates towards zero. Therefore, we may
overestimate the contribution of the unobserved idiosyncratic preference and priority shocks to the
formation of students’ preferences and schools’ priorities.

4.5.3. Monte-Carlo evidence

Complementary to the above discussion on identi�cation, we present Monte Carlo evidence below to
show that our method works as intended. Speci�cally, we compare various estimation approaches that
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are based on di�erent identifying assumptions as laid out above, and we show that a combination of
stability and undominated strategies allows us to obtain unbiased parameter estimates with a reasonably
small variance.

The data generating process of our Monte Carlo study is borrowed from Fack et al. (2019),20 but with
slight adjustments. We consider markets with T ∈ {100, 200, 500} students and six schools with a
total capacity of 0.95 · T seats, so there is slight excess demand.Students’ utility over schools is given
by

Ut(s) = δs − dts + 3 · (at · ās) + εts

where δs is a school �xed e�ect, dts is the distance from student t to school s, at is the students’ grade
and ās is the average grade of all students at school s (or put di�erently, the schools’ academic quality).
Hence, the true preference parameter in the data generating process is a vector β0 = (1,−1, 3)′.
εts follows a standard normal distribution. For the exposition, we assume that δs is known to the
econometrician and therefore enters the estimation as an additional co-variate. The schools’ valuation
over students (which translates into the students’ priorities) is given by

Vs(t) = at + ηst

where ηis is also standard normally distributed. Here, the true priority parameter γ0 is a scalar equal
to one. We subsume all preference and priority parameters as θ0 = (β′0, γ0)′. In the market, students
choose their optimal application portfolio, given their equilibrium beliefs about admission probabilities,
and a small application cost. This leads some students to skip seemingly unattainable top choices, or to
truncate their ROL at the bottom. As a result, the submitted ROLs are likely to violate the assumption of
WTT. Based on the simulated submitted ROLs, students and school seats are matched according to the
SOSM. We refer the reader to the online appendix of Fack et al. for further details. Our major departure
from their approach is the assumption that a student’s relative ranking at a school is unknown to
the econometrician. Instead, the econometrician only observes the relative rankings of students who
applied at school s. Also, normally distributed errors are used on both sides of the market instead of
the type-I extreme value distributed errors used by Fack et al..

For our Monte Carlo study, we simulated one hundred independent realizations of these markets. In
the simulated markets with two hundred students, a share of 0.69 of the submitted rank order lists
satis�ed WTT across all simulations.21 For every sample k, we estimated students’ preferences over
schools (β̂k), and schools’ priorities over students (γ̂k) using the data augmentation approach described
above. The following di�erent sets of identifying assumptions were used to compute the truncation
intervals based on the strategically submitted ROLs:

1. weak truth-telling (WTT)

20Their data generating process is described, and the code is made available, in their online appendix.
21See section 4.5.1. In the market with one hundred students, this share was 0.72, and in the market with �ve hundred

students, it was 0.64.
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2. stability

3. undominated strategies

4. stability + undominated strategies

As a benchmark, we estimated the model under the assumption of undominated strategies based on
true and complete ROLs.22 We let the Gibbs sampler run for 20,000 iterations, with a burn-in period of
10,000 iterations. To reduce the parameter estimates’ serial correlation, we used only every �fth sample,
and discarded the rest.

Figure 4.4 shows box plots23 of the estimation errors (θ̂k− θ0) across the one hundred realized data sets,
for di�erent estimation approaches. Table 4.3 shows the corresponding mean squared error and bias
statistics.24 The �rst three panels of �gure 4.4 depict the distribution of the estimation errors of students’
preference parameters (β̂k−β0). As expected, the benchmark case where the complete ROLs are known
on both sides allows us to identify the parameters very precisely. Furthermore, the estimates for student
preferences that are derived under the assumption of weak truth-telling are biased. This too is to be
expected because the assumption of weak truth-telling does not hold in the data generating process.
When the estimation is conducted using only the stability assumption, the results are very noisy, and
also biased. Under the stability assumption, the best estimation results are those for the coe�cient on
travel distances dts, but worse results are obtained for the schools’ quality δs and for the interaction
parameter. This is in line with the previous literature on stability based estimators of preferences
in small two-sided matching markets. That literature has reached a consensus that the preference
parameters are only identi�ed under certain assumptions on the observable characteristics (Weldon,
2016, pp.158-168) or certain preference structures such as perfectly aligned preferences (Agarwal and
Diamond, 2014), and may not be identi�ed at all in other circumstances. Note that this is not necessarily
at odds with Fack et al. (2019) who argue that a stability based estimator can be used to point-identify
preference parameters, for their stability-based estimator is based on the assumption that students’
feasible choice sets are known, whereas we assume that this is not the case. The estimates that are
derived under undominated strategies are much more precise, but also appear to su�er from a slight bias,
which could be a result of the small sample size. Finally, when we combine stability and undominated
strategies, our estimates are virtually indistinguishable from the benchmark estimates that are derived
using the true and complete ROLs. Interestingly, estimates for the schools’ priority function are quite
good in all estimation approaches, although the priority lists are only incompletely observed. This
insight could lend support to alternative two-step estimators where the schools’ priority structure is
estimated �rst, and students’ preferences are estimated in a second step, as in He and Magnac (2019).

To con�rm that the combination of stability and undominated strategies is indeed able to correct the
estimation bias due to strategic reporting, we computed the share of submitted ROLs satisfying WTT

22With completely observed ROLs, this is equivalent to the assumption of WTT.
23All box plots in this paper are drawn according to the “basic box plot” tyle as in McGill et al. (1978).
24B.2.3 presents the same results for T = 100 and T = 500 students.
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Figure 4.4.: Box plots of the distributions of estimation errors across one hundred simulated mar-
kets (six schools with 190 seats and 200 students).

preferences priorities

method dis δs ai · ās ai

benchmark (true prefs.) 0.0187 0.0038 0.0227 0.0016
weak truth–telling 0.0598 0.0581 0.3243 0.0032
stability 0.2903 0.1597 4.8612 0.0788
undominated strategies 0.0338 0.0103 0.0539 0.0030
stability + undom. strat. 0.0323 0.0088 0.0448 0.0030

(a) Mean squared error (MSE)

preferences priorities

method dis δs ai · ās ai

benchmark (true prefs.) -0.0066 -0.0023 -0.0027 -0.0009
weak truth–telling 0.1937 -0.2302 -0.5425 0.0004
stability -0.1273 -0.3132 0.9949 -0.0204
undominated strategies 0.0055 -0.0421 -0.1179 0.0001
stability + undom. strat. -0.0219 0.0134 -0.0183 0.0026

(b) Bias

Table 4.3.: MSE and bias statistics for various estimation methods based on the Monte Carlo sim-
ulation described above.
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Figure 4.5.: Dependence of the estimation error in di�erent speci�cations on the share of submitted
ROLs that satisfy the WTT assumption. Every dot represents one parameter estimate
in one sample market. One hundred simulated markets, six schools with 190 seats,
and 200 students.

in each sample market, and we plotted this share against the parameter estimate in that sample. This
is done in �gure 4.5. Each dot in that �gure represents one parameter estimate in one single simulated
market, the lines represent the least square estimates, and the shaded areas are the 0.95 con�dence
intervals around the least square predictions. Table 4.4 shows the corresponding regression coe�cients
from separate linear regressions of the estimation error on the share of ROLs satisfying WTT, by
estimation approach and parameter. Signi�cance is indicated by asterisks. The leftmost three panels of
that �gure show that the estimation error for students’ utility parameters under the WTT assumption
decreases in absolute terms as the share of submitted ROLs satisfying WTT increases (green line). On
the other hand, the benchmark estimates and the estimates under stability and undominated strategies
are not dependent on the share of ROLs that satisfy WTT. For schools’ priority parameters, there is no
signi�cant relation between either of the estimates and the WTT share, although the point estimates
are weakly positive. We conclude from this graph that the proposed estimation approach that relies on a
combination of undominated strategies and stability is robust to the strategic submission of preference
lists.
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preferences priorities

method dis δs ai · ās ai

benchmark (true prefs.) -0.155 -0.040 0.122 0.134
weak truth–telling -0.398 0.780*** 1.756*** 0.199
stability 0.488 0.143 -10.336* 1.670**

undominated strategies 0.157 0.083 -0.307 0.181
stability + undom. strat. 0.143 0.047 -0.381 0.153

p-values indicated by ∗ < 0.1; ∗∗ < 0.05; ∗∗∗ < 0.01

Table 4.4.: Robustness of estimation procedures to violations of the WTT assumption. The table
shows the coe�cients from separate linear regressions of the estimation error on the
share of ROLs satisfying WTT, by estimation approach and parameter. For an estima-
tion approach to be robust to violations of the WTT assumption, the estimation error
should not depend on the share of ROLs satisfying WTT.

4.6. Empirical results

This section reports our estimates of the gains from consolidation. First, we present results that are
based on the actual submitted preference lists. Next, we present our estimates of students’ preferences
that are used to construct complete preference lists. These complete preference lists are used to estimate
the consolidation gains, circumventing the restrictions that are imposed by the �rst approach. See �gure
4.3 for a brief depiction of our empirical strategy.

4.6.1. Gains from consolidation: using reported preferences

We �rst approach the problem of estimating the gains from consolidation from a purely descriptive
standpoint. To this end, we take the students’ submitted rank order lists (ROLs) as given, and re-
compute the SOSM under di�erent district consolidation scenarios.25 As a benchmark outcome, we use
the matching in the consolidated market comprising all districts in Budapest. This matching is denoted
by µBP and it is almost identical to the actual matching observed in the KIFIR dataset. This matching
is compared to the matching that obtains in a district-level school market (µd). For every student, we
compare the match rank obtained in the district-level market to the match rank in the benchmark
scenario. This di�erence in match ranks is used as a measure for the consolidation gains. There are
two major complications: �rst, a considerable number of students do not include any school from their
home district in their submitted rank order list, and second, some individual school districts actually
lack capacity to accommodate all domestic students, despite the fact that there is much excess school
capacity in the aggregate. These problems lead to a large number of students not being matched in
the counter-factual matching. We assume that these unmatched students would prefer being matched
rather than being unmatched, and that the option of being unmatched is as good as the school that
they ranked last. In doing so, we obtain a lower bound for the consolidation gains. Because district

25For all purposes, we made use of the implementation of the SOSM that is provided as part of the R package matching-
Markets, available on cran.r-project.org/package=matchingMarkets.
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number 23 has only one single school, it does not even o�er one school for every track (gymnazium,
secondary or vocational). Therefore, we merge this district to its neighbouring district number 20. We
show some summary statistics of the district-level and consolidated matches in table 4.5 below.

district markets:
# matched 6554
share top choice match 0.78
ave. match distance [km] 3.49

consolidated market:
# matched 10494
share top choice match 0.43
share matched in home district 0.30
ave. match distance [km] 7.10

Table 4.5.: Match statistics of the district-wise and consolidated student-school matching, using
reported partial preferences lists.

Table 4.6 contains a detailed account of the consolidation gains per district. That table shows that
the vast majority of students is strictly better o� in the consolidated market, either because they are
assigned to a more preferred school in the consolidated market, or because they are unmatched in the
unconsolidated market. In fact, there is not a single district in which more students would prefer the
unconsolidated market over the integrated market in Budapest. Motivated by the general insights of
corollary 1, �gure 4.6 shows how the share of students who strictly gain from consolidation varies
along two key dimensions: district size (left panel) and excess capacity (right panel). Figure 4.6a shows
that the share of consolidation winners is practically unrelated to district size, but is above �fty percent
throughout. The share seems to be negatively correlated with the excess capacity in a district, as shown
in Figure 4.6b. To test whether these relationships are signi�cant, we computed a linear regression of
the winners’ shares per district on the size and relative excess capacity per district. Column (1) in table
4.7 shows that the relationship with a district’s size is insigni�cant, albeit estimated to be negative. The
coe�cient for a district’s capacity is negative and signi�cantly di�erent from zero.

Despite the fact that the share of winners is above �fty percent in all districts, it is by no means clear that
district consolidation would also be politically feasible ex ante. Our majority share measure is composed
of those who strictly gain from consolidation ex post. As Fernandez and Rodrik (1991) have noted, ex
ante uncertainty about the identity of those who gain and those who loose due to a reform induces a
bias towards the status quo in majority votes. This bias can e�ectively prevent the implementation of a
reform even when it would be supported by a majority ex post. This would be especially true for those
districts where the majority share of winners is not so large.

Next, we examine how our theoretical predictions about the distribution of quantitative rank order
gains relates to our empirical results. Corollary 1 states that the expected gains from consolidation
are larger for smaller markets, and for markets with less capacity. Figure 4.7a shows that there is
practically no correlation between district size, as measured by the number of students per district, and

26The relative excess capacity in district i is computed as (Ni −Ki)/Ni, where Ni and Ki are the number of students,
and the total number of school seats in district i, respectively.

120



district seats students excess seats − 0 + unmatched

1 338 95 243 3 9 26 50
2 1191 634 557 36 241 190 148
3 928 743 185 32 263 227 213
4 865 746 119 32 319 241 151
5 625 217 408 5 50 32 122
6 1243 172 1071 14 24 51 77
7 1312 212 1100 14 73 48 70
8 2524 290 2234 11 79 77 119
9 2116 275 1841 19 73 98 77

10 2012 591 1421 45 120 224 194
11 1025 713 312 13 181 169 347
12 956 359 597 17 142 108 90
13 3290 449 2841 44 148 152 100
14 2893 796 2097 52 189 247 291
15 701 454 247 11 99 120 219
16 770 659 111 1 96 162 397
17 147 628 -481 0 40 107 481
18 503 873 -370 17 177 245 432
19 773 444 329 13 68 120 237
20 1643 573 1070 31 157 189 189
21 2518 641 1877 14 258 204 157
22 273 316 -43 7 51 92 165

Total 28646 10880 17766 431 2857 3129 4326

Table 4.6.: Losers (−) and winners (+) from integrating districts in Budapest. seats: number of
seats after removing seats given to students from outside Budapest; students: number
of students; excess seats: seats − students; −,0,+: number of losers, indi�erences and
winners from consolidation; unmatched: number of unmatched students. District 23
was merged with district 20 (see text for explanation).

the average rank gains from consolidation. Moreover, panel 4.7b shows that there is a strong negative
partial correlation between the average rank order gains, and the districts’ excess capacity. Column (2)
in table 4.7 contains the estimated coe�cients and standard errors from a regression of average rank
order gains per district on the size and capacity per district. The table shows that the coe�cient for
district size is rather small, and also insigni�cant, whereas the the coe�cient for district-level capacity
is signi�cantly negative. Therefore, we �nd robust empirical support for the �rst part of Corollary 1,
but we cannot statistically con�rm the validity of the second part.

4.6.2. Preference estimation results

We now turn to the key building block of our structural approach to computing the gains from consoli-
dation. In order to derive the complete preference ordering over schools and students, we estimate a
general model of students’ preferences and schools’ priorities that was described in detail in section
4.5.1. See section 4.4 for an in depth discussion of the data sources.

We assume that students’ preferences over schools depend on the geographical distance and on the
squared distance, between a student’s place of residence and the schools’ location. To proxy for the
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Figure 4.6.: Majority support for an integrated market in Budapest, using stated preference lists.
One observation denotes one district.
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Figure 4.7.: Rank order gains from an integrated market in Budapest, using stated preference lists.
One observation denotes one district.
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Dependent variable:

consolidation winners’ share average rank gain

district size (# students) −0.0002 −0.0008
(0.0001) (0.0005)

relative excess capacity −0.0256∗∗ −0.1191∗∗
(0.0111) (0.0478)

Observations 22 22
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard errors in parentheses, intercept not shown.

Table 4.7.: Formal tests for the relationship of consolidation gains to key district statistics.

schools’ academic quality, we computed the average of the mean NABC scores in math and Hungarian
of students currently enrolled at that school. Also, we computed the average SES score of those students.
Finally, we included the interaction terms of the students’ math, Hungarian, and socio-economic scores
with their respective school-level means in order to test whether there is evidence for assortative match-
ing, similar to what Fack et al. (2019) �nd. To account for any unobserved heterogeneity across schools,
we include school dummies, as we have a rather small set of observable school-level characteristics.27

We assume that schools select their students based on their gender, math and Hungarian NABC scores,
and the SES score. The NABC scores are a proxy for the outcome of a nationwide assessment center,
which we do not observe. We estimated a separate set of coe�cients for each tier of the Hungarian
school system. Our Gibbs sampler was initialized with zero values for all parameters and valuations.
Because the estimation procedure is rather time consuming, we let it run for only ten thousand itera-
tions and discarded the �rst �ve thousand iterations. To reduce the serial correlation, only every tenths
estimate of the remaining �ve thousand iterations was used so that the posterior means are averaged
across �ve hundred iterations. By visual inspection, we con�rmed that the coe�cient estimates had
converged to their stationary posterior distribution after about two thousand iterations.

The posterior means of the parameter estimates for two di�erent identifying assumptions that were
discussed in section 4.5.1 – weak truth-telling (WTT), and stability in combination with undominated
strategies – are shown in table 4.8 below and will be discussed in turn. Notice that our Bayesian
estimation approach allows us to directly sample from the posterior parameter distribution, so that
we do not need to rely on asymptotic results as in conventional estimation approaches. That is why
table 4.8 does not include asymptotic p-values but instead shows the 95% con�dence intervals of the
posterior distribution.

27Because we are essentially estimating a discrete choice model over the set of schools, the preference speci�cation cannot
include an intercept, as this would not be identi�ed. For the same reason, the �rst school dummy was omitted lest an intercept
is introduced by means of a linear combination of school dummies. In the empirical speci�cation, it turned out that some
multicollinearity problems arose even when excluding one school dummy, possibly due to numerical inaccuracies or the
presence of interactions. Thus, some more school dummies had to be excluded. To this end, we chose the following approach:
In a �rst step, all �xed e�ects for schools numbered 2 through to 246 were used to generate a design matrix X for the problem
at hand. In step k, we checked whether the matrix X′X had full rank. If not, we dropped one school �xed e�ect and continued
with step k+ 1, else we stopped. This procedure resulted in a set of �xed e�ects for the schools numbered 2 through to 243.
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First, consider the results of the college selection equation (top panel) across the two identifying as-
sumptions. These results are qualitatively similar to each other: students dislike schools that are further
away from them, but the marginal disutility of travelling is decreasing because the squared distance
term is positive. Students also value academic quality and prefer schools with a higher average SES
score, but they dislike the presence of an oral entrance exam. The coe�cient for the presence of an
entrance exam is much smaller (i.e. more negative) in the WTT result: this is an indication that students
strategically omit highly competitive schools which hold an entrance exam, so that the WTT estimates
of the oral interview are biased downwards, whereas our stability based estimator corrects for this bias.
This result con�rms how important it is correct for biases due to strategic reporting when estimating
students’ preferences. The interaction terms are all positive, which suggests that there is sorting on
both academic ability and on socioeconomic background. Both estimation approaches yield results
that are qualitatively quite similar. Note that the variance of the interacted variables is much larger
than that of the school-level variables, so that the interaction terms’ contribution towards explaining
student preferences is actually quite large.

The results of the student selection equation (bottom panel) show that students’ math and Hungarian
scores are important variables that schools condition their choices on. Somewhat surprisingly, the
female coe�cient is negative in the stability + undom. speci�cation, whereas it is very small in the
WTT speci�cation. The large negative estimated coe�cients for the female indicator is due to the
stability requirement: In the data, female students have higher Hungarian scores than male students.28

At the same time, the Hungarian score is also a key determinant of the schools’ priority decision.
But in the aggregate, roughly as many female students as male students are admitted to each school,
and so the negative female coe�cient is needed to ensure that not too many female students form
instabilities with school seats occupied by male students.29 Hence, we think that the negative female
coe�cient merely re�ects the schools’ desire to have a balanced gender composition, but it does not
indicate discrimination of female students per se. Also, all schools except for vocational schools appear
to select on the students’ socioeconomic status although the coe�cient is rather small compared to
the Hungarian score. Yet, in combination with the students’ taste for schools with a higher average
socio-economic status, and the tendency of students with higher socio-economic backgrounds to prefer
schools with a higher average socio-economic status, these results may be indicative of social sorting
patterns that could be interesting in their own right.

Contructing complete preference lists In order to obtain complete preference lists for the entire
market, we use the estimated coe�cients of the student and school selection equations as represented
in table 4.8 and combine them with one set of draws from the distribution of error terms that respect

28See table B.4 in the appendix.
29A quick way to check if this explanation is correct would be to re-estimate the model without the stability bounds.

However, we were as of now unable to re-do the analysis due to di�cult remote data access conditions.
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stability + undom. WTT
Student’s selection of schools β̄ 95% CI β̄ 95% CI

distance (km) -0.148 [-0.152;-0.144] -0.339 [-0.341;-0.336]
distance (km2) 0.002 [ 0.002; 0.003] 0.007 [ 0.007; 0.007]
academic quality 0.750 [ 0.681; 0.818] 1.487 [ 1.458; 1.515]
ave. SES 1.520 [ 1.411; 1.650] 0.462 [ 0.418; 0.509]
oral entrance exam -1.457 [-1.698;-1.240] -4.436 [-4.587;-4.288]
math × ave. math 0.183 [ 0.166; 0.196] 0.185 [ 0.175; 0.195]
hungarian × ave. Hungarian 0.222 [ 0.205; 0.237] 0.303 [ 0.293; 0.315]
SES × ave. SES 0.294 [ 0.279; 0.308] 0.356 [ 0.347; 0.368]

Schools’ selection of students γ̄ 95% CI γ̄ 95% CI

gymnazium
female -0.930 [-0.947;-0.909] -0.013 [-0.040; 0.014]
math score 0.049 [ 0.033; 0.066] 0.194 [ 0.171; 0.218]
Hungarian score 0.394 [ 0.376; 0.413] 0.224 [ 0.199; 0.249]
SES score 0.038 [ 0.024; 0.053] 0.096 [ 0.076; 0.116]

secondary school
female -0.439 [-0.481;-0.401] 0.124 [ 0.089; 0.159]
math score 0.184 [ 0.163; 0.205] 0.236 [ 0.208; 0.265]
Hungarian score 0.287 [ 0.262; 0.315] 0.231 [ 0.203; 0.259]
SES score 0.053 [ 0.032; 0.072] 0.103 [ 0.082; 0.123]

vocational school
female 0.094 [ 0.043; 0.158] 0.051 [-0.031; 0.131]
math score 0.101 [ 0.063; 0.136] 0.078 [ 0.025; 0.129]
Hungarian score 0.189 [ 0.152; 0.226] 0.144 [ 0.089; 0.200]
SES score 0.011 [-0.023; 0.044] 0.015 [-0.020; 0.051]

Table 4.8.: Posterior means of preference and priority parameters under two di�erent identifying
assumptions (see section 4.5.1). Fixed e�ects for schools numbered 2 through to 243
were included in students’ preference equation, and are not reported here. Academic
quality is the average of the school-level averages for the Hungarian and math scores.
Con�dence intervals from the posterior parameter distribution of the Gibbs sampler.
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the upper and lower bounds derived from stability and imposed by submitted preference lists. Thus,
the estimated utility for student i visiting school s is

Ût(s) = Xtsβ̄ + ε̂ts

where ε̂ts is one particular realization of the latent error distribution such that Ût(s) respects the bounds
that are imposed by the identifying assumptions. This estimated latent utility comes straight from the
Gibbs sampler. Schools’ latent match utilities are constructed analogously. These estimates of the latent
valuations can then be used to construct, for each market participant, a complete preference ordering
of the other market side. Note however, that every such set of valuations is only one particular draw
from an in�nite manifold of possible realizations. Currently, we only use a single realization of the
valuations, and we believe that the large market size validates this approach.

4.6.3. Gains from consolidation: using estimated preferences

We now repeat the analysis of section 4.6.1 above, but using the complete rank order lists described
above. Again, we compare the outcome of a consolidated city-wide match to the district-level matching
scheme. Instead of the rank order gains, we computed the average gains in latent utility. For a student t,
this is de�ned as the utility di�erence between visiting the assigned school in the consolidated market,
µBP (t), and the assigned school in the district level market, µd(t):

∆Ut ≡ Ût(µBP (t))− Ût(µd(t))

Utility is a unitless quantity which is hard to interpret per se, but our utility speci�cation allows us to
express these gains in terms of travel distances:

∆Ukmt ≈ ∆Ut∣∣∣∂Ût(µBP (t))
∂dtµBP (t)

∣∣∣ ,
with dtµBP (t) being the travel distance between student t’s zip code of residence and her assigned
school in the consolidated market.30 Because students dislike utility, we use the absolute value in the
denominator, so that ∆Ukmt > 0 corresponds to a positive welfare gain due to market consolidation.
Therefore, ∆Ukmt is a measure of the additional travel time that a student would be willing to incur in
order to visit the school in the consolidated market, rather than the assigned school in the district level
school market. As before, we merge district 23 to its neighbouring district number 20. As a robustness

30Because distance travelled enters the utility speci�cation quadratically, it matters in principle whether the partial
derivative is evaluated at the district level matching µd, or at the integrated matching µBP . However, the estimated quadratic
term is very small (see table 4.8), which allows us to use the following approximation:∣∣∣∣∣∂Ût(µBP (t))

∂dtµBP (t)

∣∣∣∣∣ =
∣∣−0.148 + 2(0.002dtµBP (t))

∣∣ ≈ 0.148.

Hence, one utility unit is approximately worth seven kilometres of avoided travel distance.
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district markets:
# matched 9,986
share top choice match 0.83
ave. match distance [km] 3.55

integrated market:
# matched 10,880
share top choice match 0.66
share matched in home district 0.29
ave. match distance [km] 7.14

(a) Assignment statistics of the district-wise and integrated student-school matching.

Mean SD Min Median Max N

total gains
in latent utility units 0.819 0.916 -1.895 0.600 5.799 9,986
in equivalent kilometres 5.532 6.187 -12.805 4.054 39.180 9,986

decomposition
choice e�ect I 0.750 0.798 0.000 0.548 5.010 10,880
competition e�ect I 0.103 0.590 -3.655 0.000 5.352 9,986
choice e�ect II 0.865 0.899 0.000 0.663 5.799 9,986
competition e�ect II -0.040 0.295 -3.000 0.000 2.000 10,880

(b) Various measures of consolidation gains, expressed in latent utility changes.

Table 4.9.: Gains from consolidation using inferred complete preferences lists

check, we also conducted the same analysis with arti�cially balanced markets where the number of
school seats was equal to the number of students in every district. Those results are reported in B.2.6.

Table 4.9a shows some summary statistics of the resulting district-level and consolidated, city-wide
matchings. The table shows that some students remain unmatched in the district-level matching. This
is because the school market in Budapest has been an integrated one for a long time already, so some
districts do not have enough school seats to accommodate all students of their own district. In the
consolidated market, all students are matched because there is enough capacity in the the aggregate,
and because preference lists are complete.

The �rst row in table 4.9b shows summary statistics of the consolidation gains ∆Ut. Because not all
students are matched in the unconsolidated market, those gains cannot be computed for all students.
The average gains are positive, but some students also lose due to market consolidation. However,
the median is positive so that the majority of all students gain. The second row of that table shows
the utility gains, converted to distance units ∆Ukmt . It shows that the average student’s gains are
equivalent to saving more than �ve kilometres in travel distances, even though students actually incur
longer travel distances in the consolidated market, as table 4.9a shows. Accordingly, the utility gains
greatly outweigh the additional travel distances that are incurred in the consolidated market.

As in section 4.6.1, we now ask whether market consolidation can be decided upon unanimously if
every district had one vote, and if those votes were bound to re�ect the majority view in those districts.
It is assumed that students who are unmatched in the district-level matching prefer the consolidated
matching. Of course, this is an ex post perspective, as was already discussed in section 4.6.1. Figure
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(b) Share of winners and excess capacity26

Figure 4.8.: Majority support for an integrated market in Budapest, using inferred complete pref-
erence lists. One observation denotes one district.

4.8 shows that a majority of all students in every district strictly prefers the consolidated market over
the disintegrated market. The left panel of that �gure shows that there is no correlation between
the majority shares and the district sizes, and the right panel of that �gure shows a strong negative
correlation between the majority shares and the relative excess capacities, by district.

Next, we relate the average consolidation gains in latent utility units per district to two key district char-
acteristics, size and capacity. Figure 4.9 shows that there is a weakly positive correlation between the
average utility gains and district size, and a negative correlation between average gains and district-level
excess capacity. A test based on a regression of district-level average gains on district characteristics
is reported in table 4.10 and shows that both the district size (as measured in hundreds of students)
as well as the district capacity (as measured by relative excess capacity) have a negative partial e�ect

Dependent variable:

share consol. winners ave. latent util. gain

district size (100 students) −0.0190 −0.0850
(0.0135) (0.0499)

relative excess capacity −0.0306∗∗ −0.1417∗∗∗
(0.0120) (0.0442)

Observations 22 22
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard errors in parentheses, intercept not shown.

Table 4.10.: Formal tests for the relationship of consolidation gains to key district statistics, using
complete rank order lists. One observation corresponds to one district.
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(b) Average rank gains and excess capacity26

Figure 4.9.: Average latent utility gains (∆Ut) of an integrated market in Budapest, using inferred
complete preference lists. One observation denotes average statistics in one district.

on the average gains in latent utility, but only the marginal e�ect of district capacity is signi�cantly
di�erent from zero. Qualitatively, these results are in line with parts one and two of Corollary 1 in
section 4.3. But the graphical results as well as the lack of signi�cance for the e�ect of district size show
that these postulated relationships are quite noisy. This can be explained by the fact that the theoretical
results were derived under the stark assumption of random preferences on both sides of the market.
But the previous subsection has just revealed the opposite, namely that preferences systematically
depend on market observables. It is therefore quite understandable that the district level results exhibit
a considerable amount of variability that cannot be explained by theory alone.

Decomposition of the utility gains As we write in the theoretical section, district consolidation
has two e�ects on students’ welfare: �rst, it leads to more choice, which is unambiguously good,
and second, it may increase or decrease competition. Increased competition means that it becomes
more di�cult for a given student to be admitted to his or her favourite schools. Whether competition
increases or decreases depends on many factors: If the schools in some sub-market are very attractive,
or if this market is not as tight as the aggregate market (from the students’ perspectives), then district
consolidation will lead to more competition, so that domestic students may be hurt. The composition
of choice and competition e�ects may help to explain the large utility gains from consolidation that we
�nd. In order to explain these gains, we isolate the e�ects of choice and competition in a decomposition
exercise. The idea is to keep an individual student t �xed, and assign her to the most preferred feasible
school, given that all other students are either restrained to attend only local schools, or may attend
any school in the integrated market. The competition e�ect is then the change of student t’s welfare
as all other students’ choice sets are enlarged to include the entire integrated market. Similarly, the
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Figure 4.10.: Decomposition of the gains from market consolidation into choice and competition
e�ects

choice e�ect is the change of that student t’s welfare as her choice set is expanded to include all schools,
keeping the other students’ choice sets constant. This is repeated for all students, and the results are
aggregated. The idea is illustrated in �gure 4.10, and more details on the procedure can be found in
B.2.5. As this �gure shows, there are always two ways to measure either the choice, or the competition
e�ect. We shall refer to the resulting statistics as type-I and type-II e�ects.

Table 4.9b shows summary statistics of the choice and competition e�ects that are calculated in both
ways. In general, the sum of the competition and choice e�ects of either type should be equal to the
total welfare e�ect of consolidation. However, because not all students are assigned to a school in the
district level matching (c.f. table 4.9a), the type-I competition e�ect and the type-I choice e�ect cannot
be computed for all students. But this a�ects only very few students and so the average choice gains
and the average competition e�ects approximately add up to the total gains. The results show that the
choice e�ects account for the vast share of total welfare gains, while the average competition e�ects are
much smaller in magnitude, and vary in sign. Whereas the average type-II competition e�ect is small
and negative, the type-I competition e�ect is small and positive. Therefore, it must remain an open
question whether competition is stronger in the consolidated market, or in the district-level markets.31

The fact that the competition e�ects are so small in magnitude is probably related to the fact that the
Hungarian school market is characterized by much excess capacity, as was already discussed elsewhere
in this paper. And so an integrated market leads to large welfare gains due to increased choice, but
increases the competitive pressure by only a small amount.

In order to further explain the gains from market consolidation, we related the student-level gains, and
the competition and choice e�ects that were computed above, on student- and district-level observables.
Table 4.11 shows the results of this linear regression analysis. The coe�cients describe a “consolidation
premium” that can be ascribed to various observable student characteristics. The results for the type-I

31At �rst glance, it may seem counter-intuitive that competition could be weaker in the consolidated, aggregate market.
But this can be explained by the fact that the school districts are very di�erent. A few districts have a large number of
school seats that far exceeds the number of their domestic students (see table 4.6). While the market tightness increases for
students in those districts as all districts are integrated, the aggregate market tightness may decrease as a result. Therefore,
the majority of students may experience more favourable competitive competitions in the aggregate market.
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and type-II decomposition are similar, and so we discuss only results related to the type-I choice and
competition e�ects. The �rst column of this table shows that students with a higher socio-economic
status (SES) bene�t relatively more from district consolidation. The italicised adverb is important
because all students bene�t on average, but some students bene�t more than others. However, the
e�ect is estimated imprecisely and so one cannot reject the null hypothesis of there being no e�ect at
all. The second and third columns reveal that this is due to the fact that students with a higher SES
bene�t more from increased choice, but bene�t less from more favourable competitive conditions in
the consolidated market.32 Again, these e�ects are insigni�cant although the e�ects in the fourth and
�fth column that are related to the type-II e�ects would indeed be signi�cantly di�erent from zero. A
similar, but exacerbated pattern can be observed for students with higher academic ability. High-ability
students bene�t more from district consolidation than average students, and they bene�t comparatively
more from an enhanced choice set, and less from more relaxed competitive conditions in the aggregate.
These e�ects are statistically signi�cant. Students in larger districts, or in those districts with a lot of
excess capacity, bene�t signi�cantly less than other students. This is consistent with the predictions of
corollary 1 and with the district-level �ndings reported in table 4.10. Contrary to what we �nd in that
table, the negative e�ect of district size on the consolidation gains is now estimated to be signi�cantly
di�erent from zero.

The results imply that there is a consolidation premium for high-ability students, and possibly for
students from a higher socio-economic background. As table 4.1 shows, the explanatory variable SES is
standardized and has unit variance, whereas the variance of “ability” is about 1.5. Because the estimated
coe�cient in table 4.11 is also larger for “ability” than for SES, it follows that an increase in student
ability by one standard deviation increases the consolidation premium by about 1.5× 0.014 ≈ 0.021

utility units, whereas an increase of the socio-economic status indicator by one standard deviation
increases the consolidation premium by only 0.009. So besides being insigni�cant, the estimated e�ect
of a higher socio-economics status on consolidation gains is also much less relevant. Thus it appears
that the highly selective consolidated Hungarian school system bene�ts high-ability students more than
those from higher socio-economic background, if the latter bene�t at all. But of course, there are some
caveats to this conclusion. First, the variables measuring SES and student ability are highly correlated
(r = 0.47) and so there will be a large overlap of high-SES and high-ability students among those who
bene�t a lot from market consolidation. Second, the overall e�ects are rather small compared to the
total variance of the consolidation gains, which is close to one (see table 4.9b). On that account, the
systematic factors driving the consolidation gains are rather small, and idiosyncratic factors seem to
be the most important determinants (but note our comment on measurement error in section 4.5.2).

32Recall that the type-I competition e�ects are positive on average.
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Dependent variable: latent utility gains
type-I decomposition type-II decomposition

total choice competition choice competition
(1) (2) (3) (4) (5)

socio-economic status SES 0.0085 0.0141 -0.0067 0.0187∗∗ -0.0097∗∗∗
(0.0097) (0.0086) (0.0062) (0.0095) (0.0034)

ability 0.0143∗∗ 0.0443∗∗∗ -0.0238∗∗∗ 0.0267∗∗∗ -0.0139∗∗∗
(0.0070) (0.0062) (0.0045) (0.0069) (0.0025)

district size (100 students) -0.1408∗∗∗ -0.2106∗∗∗ 0.0692∗∗∗ -0.1443∗∗∗ 0.0038
(0.0172) (0.0160) (0.0110) (0.0169) (0.0063)

relative excess capacity -0.3101∗∗∗ -0.0457∗∗ -0.2720∗∗∗ -0.2958∗∗∗ -0.0116
(0.0246) (0.0221) (0.0157) (0.0242) (0.0087)

school type: gymnazium -0.1308∗∗∗ -0.2487∗∗∗ 0.0785∗∗∗ -0.1544∗∗∗ 0.0368∗∗∗
(0.0352) (0.0311) (0.0225) (0.0346) (0.0123)

school type: secondary -0.0288 -0.0670∗∗ 0.0134 -0.0425 0.0188
(0.0331) (0.0292) (0.0211) (0.0326) (0.0115)

Constant 2.2938∗∗∗ 1.9240∗∗∗ 0.4160∗∗∗ 2.2997∗∗∗ -0.0215
(0.0767) (0.0691) (0.0490) (0.0755) (0.0272)

district FE Yes Yes Yes Yes Yes

Observations 9,986 10,880 9,986 9,986 10,880

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses.

Table 4.11.: Explaining gains from consolidation with students observables. The table shows re-
gression coe�cients of students’ gains on student observables. ’ability’ is a composite
variable (see table 4.1 and section 4.4). Variables ’district size’ and ’relative excess
capacity’ refer to the students’ home districts; the school type refers to the school
type of the assigned school in the integrated market.
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4.7. Conclusion

We have analysed the e�ects of school market consolidation theoretically under the random markets
assumption and empirically by means of a structural preference model. The theoretical predictions
have shown that market consolidation leads to substantial welfare gains for students, and that students
who live in smaller markets, or in markets with fewer available school seats, are expected to have larger
welfare gains. Our empirical results con�rm that the average student greatly bene�ts from having a
consolidated school market, and that more than half of all students are better o� in the consolidated
school market. We �nd that the gains from consolidation are larger in school districts which have very
little capacity compared to the number of students, and in smaller districts. By and large, these results
are independent of whether students’ stated preferences are used, or whether an inferred complete
preference ranking is used. Moreover, our results indicate that high-ability students bene�t more from
market consolidation than do other students. It is important to note that our empirical results are
derived in a school market having much excess capacity, and do not necessarily carry over to markets
which have just enough capacity for all students.

As a by-product, we have established a method to consistently estimate students’ preferences in school
markets with school-speci�c admission criteria unknown to the researcher. Our estimation approach
avoids a bias that is otherwise introduced by students’ strategic reporting of their preferences, and
we showed by means of a Monte Carlo study that this method works as intended. We �nd – perhaps
unsurprisingly – that students favour nearby schools which have a high academic and social reputation,
but dislike having to write dedicated school-speci�c entrance exams. We also �nd that there is evidence
for sorting according to academic ability, and social status. Schools appear to base their admissions
mostly on the students’ abilities in Hungarian, with math scores and socio-economic background being
less important.

We have computed the consolidation gains under the assumption that the students’ and schools’ charac-
teristics remain �xed throughout, while only the admission system is changed. Thus, our results should
be interpreted as measuring the isolated, or partial e�ect of the admission system on students’ welfare.
We think that we can accurately describe and measure this partial e�ect, and that it is a valuable statistic
in itself that informs the debate on the merits of centralized assignment mechanisms. But of course,
there are other e�ects that could be taken into account. Recall that the status quo, and the starting
point of our analysis, is the completely consolidated school market in Budapest, so that the gains from
consolidation are more accurately described as hypothetical losses from market disintegration. But
if that school market were to be disintegrated, then both students and schools could probably react
in unforeseeable ways, and this could attenuate the losses of disintegration and, conversely, reduce
the gains from consolidation. For instance, schools could increase their capacity, but they could also
increase the diversity of their educational pro�le in response to the changed environment. Also, the
unobservable component to schools’ attractiveness that we subsume in a �xed e�ect for each school
could change as a result, so that the students’ preference orderings may actually change, thus leading
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to a di�erent counter-factual assignment. It could appear to the reader that one could estimate these
second order consequences of district consolidation by means of an iterative procedure whereby the
schools’ average academic qualities, and students’ preferences, are updated in turns until a “steady
state” is reached. But in our opinion, such a mechanistic steady state analysis is unlikely to mirror the
multitude of individual and institutional responses, and would thus be rather speculative. Therefore, we
refrained from this approach, focusing on what we can measure, and not on what we cannot measure.

Our results contribute to the growing literature on school market consolidation, and its e�ects on
student welfare. If the aggregate school market has excess capacity, then a consolidated school market
probably leads to large welfare gains that bene�t substantially more than half of all students. Intuitively,
students greatly bene�t from an expanded choice set, while the competitive pressure does not increase
by very much. On the other hand, our supplementary analysis in B.2.6 shows that if the school market as
a whole is about balanced, with just enough capacity to accommodate all students, then a consolidated
market does not increase students’ welfare very much and the median student neither gains nor loses
due to market consolidation. The reason is that the bene�ts of an expanded choice set in the consolidated
market are largely o�set by increased competitive pressure. High-ability students bene�t most from
school market consolidation, which is presumably due to a rather competitive assignment system
that allows those students to attend the best schools in an increased choice set. Students with a high
socio-economic background also bene�t relatively more, but less so than high-ability students.

The analysis that we presented here is concerned with the consolidation of formerly independent
deferred acceptance school markets into one large deferred acceptance school market. And so our
results are not applicable to an introduction of a school choice system where no such system has been
in place before. Also, the individual welfare e�ects may of course run counter to the objectives of a
social planner who would also be concerned about inequality and segregation. We do not study these
topics, but our approach to estimating student’s preferences could in principle be useful to analyse the
interplay of choice and institutions that determines these distributional aspects more closely.

Our results also have implications for the theoretical research on matching markets. As our estimates
show, students’ and schools’ preferences and priorities over each other have an observable and an
unobservable idiosyncratic component. Thus, theoretical results that rely on uniformly and randomly
generated preferences may be an inappropriate tool to describe a real-world matching market, and
future theoretical research should incorporate or explore this aspect in greater detail.
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B. Appendix to chapter 4

B.1. Proofs

The proof of proposition 2 is as follows:

Proof. Combining two existing results, we can show that in random ESCPs

rkT (σSOSM(·,Ω)) ≈ N +K

qN
log

(
N +K

K

)
+ 1

We obtain the expression above by combining two known properties of matching markets: i) each many-
to-one matching market with responsive preferences has a corresponding one-to-one matching market
(lemma 5.6 in Roth and Sotomayor, 1992), and ii) the students’ absolute average rank of schools in
random one-to-one matching markets can be approximated by N+K

N log(N+K
K ) (theorem 2 in Ashlagi

et al., 2017).1 This approximation maps remarkably well the simulation for many-to-one markets in
Table 4 in Ashlagi et al. (2017). For example with N = 198,K = 2, q = 5, their simulations give a
rank of 1.9 whereas the approximation gives 1.93. We emphasize that our approximation only works
for relatively small values of q; when q is large instead then there is a large probability that each agent
will be assigned to his most desired school, and thus rkT (σSOSM(·,Ω)) ≈ 1.

To compare the gains from consolidation, we only need to approximate rkT (σSOSM(·, D)). To do this,
we de�ne the relative rank of a school s in the preference order of a student t ∈ TDi (over potential
schools in within his own district) as r̂kt(s) :=

∣∣{s′ ∈ SDi : s′ <t s}
∣∣. Given a matching µ, the students’

relative average rank of schools is de�ned by

r̂kT (µ) :=
1∣∣T ∣∣ ∑

t∈T

r̂kt(µ(t))

where T is the set of students assigned to a school under matching µ.

1Ashlagi et al. (2017) prove that for any stable matching, the following inequalities hold with high probability: (1 −
ε) N+K

N
log(N+K

K
) ≤ rkT (µ) ≤ (1 + ε) N+K

N
log(N+K

K
).
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In a district with qni students, q(ki+ni) school seats and with ki > 0, we can approximate the students’
relative average rank of schools (using the same tools as before) as

r̂kT (σSOSM(·, D)) ≈ ni + ki
qni

log

(
ni + ki
ki

)
+ 1 (B.1)

whereas in a district with ki < 0, the approximation becomes

r̂kT (σSOSM(·, D)) ≈ ni + ki

1 + ni
ni+ki

log
(
ni
ki

) (B.2)

The �nal step in the proof closely follows the proof of Proposition 3 in Ortega (2018). To relate the
students’ relative average rank of schools before consolidation to the absolute ranking, suppose that
a school is ranked h among all schools in its district. A random school from another district could be
better ranked than school 1, between schools 1 and 2, ..., between schools h − 1 and h, ..., between
schools ni+ki−1 and ni+ki, or after school ni+ki. Therefore, a random school from another district
is in any of those gaps with probability 1/(ni + ki + 1) and thus has h/(ni + ki + 1) chances of being
more highly ranked than our original school with the relative rank h. There areN+K−ni−ki schools
from other districts. On average, h(N+K−ni−ki)

ni+ki+1 schools will be ranked better than it. Furthermore,
there were already h schools in its own district better ranked than it. This implies that his expected
ranking is h + h(N+K−ni−ki)

ni+ki+1 ≈ h(N+K)
ni+ki

. Substituting h for (B.1) and (B.2), respectively, we obtain
students’ relative average rank of schools before consolidation. After some algebra any by eliminating
the constants (which are irrelevant in large markets), it follows that

γT (σSOSM) ≈ N +K

q

(
log(ni+kiki

)

ni
−

log(N+K
K )

N

)

if ki ≥ 0, and

γT (σSOSM) ≈ N +K

q

(
q(ni + ki)

ni log(niki )
−

log(N+K
K )

N

)
if ki < 0.
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B.2. Supplementary material

B.2.1. Explicit computation of the bounds on latent valuations

The estimation procedure relies on imposing upper and lower bounds on the latent valuations. This
section describes explicitly how these bounds can be computed at every step of the estimation procedure,
under various identifying restrictions. For convenience, we repeat the notation that is used to describe
students’ and schools’ ordinal preferences and priorities here.

We denote the observed rank order list of student i of length Lt as Lt = (s1
t , s

2
t , . . . , s

Li
t ), where

skt ∈ S. Denote the rank that student t assigns to school s as rkt(s), with 1 ≤ rkt(s) ≤ Lt if s ∈ Lt
and rkt(s) = ∅ else. Collect all observed ranks into rk = {rkt(s)}t∈T,s∈S . The preference orderings
induced by these observed ranks are a subset of students’ unobserved strict preference ordering � =

{�t}t∈T , i.e. rkt(s) < rkt(s
′)⇒ s �t s′ but not vice versa, because students may �nd it optimal to not

rank all schools if the application procedure is costly. This is the „skipping at the top” and „truncation at
the bottom” problem that was discussed in the main text and that precludes the application of standard
revealed preference arguments to estimate a reduced-form model of students’ preferences.

Similarly, denote the set of students who apply to school s as Ls, and let the the priority number that
school s assigns to student t be prs(t). Priority numbers are like ranks, in that they take discrete values
and a lower priority number means higher priority. Schools are required to prioritize all students who
apply to them, but they may rank some students as “unacceptable”. We say that prs(t) = +∞ if student
t is unacceptable to school s, and prs(t) = ∅ if student t did not apply at school s. Furthermore, denote
the set of ranked students that are acceptable to school s as `s = {t ∈ Ls : prs(t) <∞} and de�ne the
largest priority number of any school s as prs = max{prs(t) : t ∈ Ls} ∈ {|`s|,∞}. Thus, prs(t) ∈
{1, 2, . . . , |`s|,∞, ∅}. The set of all observed priority rankings is given bypr = {prs(t)}t∈T,s∈S . Again,
the priority structure induced by prs is a subset of the unobserved true priority ordering B = {Bs}s∈S .

Because the bounds depend on the observed ranks and priorities, but also on the latent valuations
of students and schools, they must be computed anew in every iteration of the Gibbs sampler. More
concretely, the vector of latent utilities at the current iteration step k is constructed as

U
(k)
ij =

U
(k)
ij if the pair ij has been visited in iteration k

U
(k−1)
ij else.

An analogue updating scheme is used to construct the vector of latent valuations V. This Gauss-Seidel
style updating scheme ensures that, at any point in the iteration scheme, the upper and lower bounds
are satis�ed for the entire vector of latent utilities and valuations, but it comes at a higher computational
burden. The alternative would be to compute upper and lower bounds once in every iteration k, using
only the last estimates of the latent utilities U

(k−1)
ij . In what follows, we will omit the index of the
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current iteration round k, and assume that any reference to Uis = Ui(s) is made with respect to the
most recent available estimate of Ui(s), either from iteration k or from iteration k − 1.

Lastly, we will in the following exposition use the order> on the set of ranks, or priorities. Since either
a rank rkt(s) or a priority prs(t) can take the value ∅, it is necessary to de�ne the behaviour of this
operator with respect to ∅: we will assume that the statement a > ∅ is false for all values of a, whereas
a ≥ ∅ is true if, and only if, a = ∅. Also, as a convention, the minimum of an empty set returns∞ and
the maximum of an empty set returns −∞.

Weak truth-telling (WTT)

Having clari�ed the notation, we now turn to describe how upper and lower bounds implied by the
weak truth-telling assumption (WTT) are constructed. WTT posits that, on the side of the students, any
unranked alternative school s : rkt(s) = ∅ is worse than any ranked alternative s′ with rkt(s′) 6= ∅.
Given latent valuations U−it, and observed ranks rk, the upper and lower bounds for utility Ut(s) can
be expressed as follows:

U t(s) =


+∞ rkt(s) = 1

mins′∈Lt{Ut(s′) : rkt(s
′) < rkt(s)} rki(s) > 1

mins′∈Lt{Ut(s′)} rki(s) = ∅

U t(s) =


maxs′∈Lt{Ut(s′) : rkt(s

′) > rkt(s)} rkt(s) < Lt

maxs′ /∈Lt{Ut(s′)} rkt(s) = Lt < |S|

−∞ rkt(s) = ∅ ∧ rkt(s) = |S|

In our setting, schools only get to see those students who apply to them and hence, prs(t) = ∅ does not
imply that the school s considers student t worse than any or all of their ranked students t′ ∈ Ls that
showed up their application list. Therefore, WTT does not allow us to infer anything about the upper
and lower valuation bounds for those students that did not apply at school s. Schools are required to
prioritize all students that apply to them, but if school s deems student t ∈ Ls unacceptable, it assigns
prs(t) =∞ to that student, which implies that this student t is less preferred than any other ranked
student t′ ∈ Lt : prs(t

′) <∞. This, however, does not allow us to infer anything about how school s
prioritizes student t relative to other students that are equally unacceptable. Hence, the upper bounds
for school s’s valuation of student t, Vs(t), conditional on V−st and observed priorities pr are given by

V s(t) =

+∞ prs(t) ∈ {1, ∅}

mint′∈Ls{Vs(t′) : prs(t
′) < prs(t)} 1 < prs(t) ≤ prs
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and the lower bounds by

V s(t) =

−∞ prt(s) ∈ {prs, ∅}

maxt′∈Ls{Vs(t′) : prs(t
′) > prs(t)} 1 ≤ prs(t) < prs

Undominated Strategies (UNDOM)

Under undominated strategies (UNDOM), unranked alternatives are not assumed to be worse thank
ranked alternatives, from the students’ perspective. Therefore, UNDOM imposes fewer restrictions
than WTT. Given latent valuations U−it, and observed ranks rk, the upper and lower bounds for utility
Ut(s) can be expressed as follows:

U t(s) =

+∞ rkt(s) ∈ {1, ∅}

mins′∈Lt{Ut(s′) : rkt(s
′) < rkt(s)} rki(s) > 1

U t(s) =

−∞ rkt(s) ∈ {Lt, ∅}

maxs′∈Lt{Ut(s′) : rkt(s
′) > rkt(s)} rkt(s) < Lt

Because schools cannot choose to intentionally not rank a student who applies there, the upper and
lower bounds under UNDOM are exactly the same that were derived under WTT.

Stability

Finally, consider an observed matching µ where µ(s) denotes the set of all students that are assigned
to school s, and µ(t) denotes the assigned school of student t (a student can only be assigned to one
school at once). If student t is unassigned, µ(t) = t. Every school can accommodate at most qs students,
so we de�ne the convenience function

χ(s) = 1 (|µ(s)| = qs)

that indicates whether a school is at full capacity or not. Further, de�ne the feasible set of student t as
the set of schools that do not classify student t as unacceptable or have not ranked student t, and that
either have some vacant seats, or would favour student t over one of their currently admitted students:

Ft =

{
s ∈ S : (prs(t) <∞∨ prs(t) = ∅) ∧

(
¬χ(s) ∨ Vs(t) > min

t′∈µ(s)
Vs(t

′)

)}
.

This feasible set of student t is unobserved (it is a latent set) because it depends on the latent valuations
V.
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We now outline conditions on the valuations and utilities that, if satis�ed, guarantee that the observed
matching µ is stable. Logan et al. (2008) have used similar conditions to estimate the parameters of
a one-to-one marriage market model, and we adapt their setting to a many-to-one matching market.
Before we proceed, we introduce the following assumption:

Assumption 1 (Non-wastefulness). The matching µ is non-wasteful: all schools operate at full capacity
(|µ(s)| = qs) or no student is unmatched (µ(t) 6= t).

This assumption is convenient in order to ensure that one can always �nd utilities and valuations that
are consistent with a stable matching and it is also the approach that was taken by Sørensen (2007,
p.2732). Without this assumption, it would be necessary to specify outside options for agents, which
would complicate the analysis, but pose no substantial challenges to it. Conditional on the latent set Ft,
stability requires that student t’s utility for any school in this latent set be less than that of her currently
assigned school. Therefore, the upper bound for a student t’s valuation of school s is given by

U t(s) =

Ut(µ(t)) µ(t) /∈ {s, t} ∧ s ∈ Ft
+∞ else

Similarly, the lower bounds are given by

U t(s) =

maxs′∈Ft\{s}{Ut(s′)} µ(t) = s

−∞ else

Note that we assume that all schools are acceptable to the student. This implies that if student t is
unmatched (µ(t) = t), then we cannot bound her utility for any school, be it in her feasible set or not.
Instead, stability requires that her feasible set be empty. This places bounds on the schools’ valuations
for student t which will be described shortly.

We de�ne school s’s feasible set as the set of students who are acceptable to school s, and who would
prefer going to school s rather than to their current school, or are unassigned under the matching µ.
We chose to include only students that are acceptable to school s in this set because it simpli�es the
notation below. Thus, the feasible set is given by

Fs = {t ∈ T : prs(t) <∞∧ (Ut(s) > Ut(µ(s)) ∨ µ(t) = t)} .

Again, this is a latent set that depends on the latent student utilities U. Then, upper and lower bounds
of school s’s valuation of student t can be constructed if school s is at full capacity, i.e. if χ(s) is true:

V s(t) =

mint′∈µ(s){Vs(t′)} χ(s) ∧ t /∈ µ(s) ∧ t ∈ Fs
+∞ else.
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Similarly, the lower bounds are given by

V s(t) =

maxt′∈Fs\µ(s){Vs(t′)} χ(s) ∧ t ∈ µ(s)

−∞ else.

In general, the upper and lower bounds on utilities and valuations are interdependent, and are not
unique.

Combination of UNDOM and Stability

The combination of the two assumptions that students and schools play undominated strategies, and
that the assignment is stable, allows us to tighten the bounds. For instance, let [U rkt (s), U

rk
t (s)] be the

bound that is imposed by the assumption of undominated strategies on the valuation Ut(s), and let
[Uµt (s), U

µ
t (s)] be the bounds that follow from the requirement that the observed matching µ be stable.

An obvious way to combine these two bounds is to simply set

U t(s) = max
{
U rkt (s), Uµt (s)

}
U t(s) = min

{
U
rk
t (s), U

µ
t (s)

}
and for Vt(s) in an analogous manner. Now, the question is whether so truncation intervals that are
constructed in this way are non-empty, i.e. whether U t(s) ≤ U t(s). We will show that, for any given
stable matching µ, observed priorites pr and preference ranks rk, there is at least one set of preferences
U and valuations V such that the assumptions UNDOM and stability are satis�ed:

Lemma 3. Consider any given non-wasteful stable matching µ that is derived from the observed partial
rankings rk and priority structures pr. Then, there exists a complete preference structure � and priority
ordering B such that

1. � and B are consistent with rk and pr, respectively and

2. µ is stable under � and B.

Thus, the set of utilities U and valuations V that satis�es the bounds imposed by UNDOM and stability
is non-empty for any observed matching µ.

Proof. The �rst point is obvious: �x an arbitrary set of utility numbers {Ut(s) : s ∈ Lt} and valuation
numbers {Vs(t) : t ∈ Ls} that respect the ordering implied by the observed ranks rk and priorities
pr; there will always be such numbers. For the second point, note that we can equivalently express
students’ preferences and schools’ priorities in terms of their partial rank and priority order lists, or
in terms of their utilities and valuations. Since the observed matching µ is stable under the former, it
must also be stable under the latter representation and so, any set of utility and priority numbers that
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respects the bounds imposed by UNDOM also satis�es the bounds that are imposed by stability. Next,
we need to show that there are always utility and valuation numbers for the remaining non-ranked
pairs such that there are no blocking pairs. Consider any such pair t, s such that s /∈ Lt. Under the
student-proposing deferred acceptance mechanism, no student can be assigned to a school that she did
not include in her stated rank order list rkt, and hence s 6= µ(t). Then there are four remaining cases
to consider:

Case 1 Student t is not unmatched, and school s is at full capacity, i.e. µ(t) 6= t and |µ(s)| = qs.
Stability is satis�ed if Ut(s) < Ut(µ(t)) or Vs(t) < mint′∈µ(s) Vs(t

′), or both.

Case 2 Student t is not unmatched, and school s has spare capacity. Stability is satis�ed for allUt(s) <
Ut(µ(t)) and Vs(t) ∈ R.

Case 3 Student t is unmatched, and school s is at full capacity. Stability is satis�ed for all Vs(t) <
mint′∈µ(s) Vs(t

′) and Ut(s) ∈ R.

Case 4 Student t is unmatched, and school s has spare capacity. This case is ruled out under the
assumption that µ is non-wasteful.

Hence, if the matching µ is non-wasteful, it will always be possible to �nd utilities and valuations that
respect both the partially observed rank and priority structures, and stability properties.

However, we observe in our dataset that roughly ten percent of all students are not assigned to a
school in the �rst matching round (c.f. table 4.1) so that the allocation is not non-wasteful in the sense
outlined above, and the last case of the proof does not go through.2 This could appear to be a problem
for our estimation approach, because the existence of an unmatched student t and a school that has
spare capacity s necessarily leads to instability in our estimation approach. The solution would be to
endogenously determine “latent” unacceptable students, to exclude such students from the sample, or
to arti�cially label them as being “unacceptable”, neither approach of which is very attractive. Instead,
we note that if there exists a student t who is unmatched, and a school s with spare capacity, it must
either be that t did not apply to s, in which case the bounds on the latent utility and on the latent
valuation are±∞, or that student t did rank school s, but school s ranked student t as unacceptable, in
which case the valuation and utility bounds are well de�ned. Only the former case represents a case of
true instability, whereas the latter case is well covered by our estimation approach. Most importantly, if
such a case of true instability should occur, it will not a�ect the parameter estimates in either direction,
because the utilities and valuations are not restricted and simply add some white noise to the parameter
updates.

2In the Hungarian school choice system, the main matching round is followed by a subsequent round in which any
unmatched students are assigned to the closest feasible school.
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B.2.2. Posterior distributions

The Bayesian estimator uses the data augmentation approach (proposed by Albert and Chib, 1993) that
treats the latent valuation variables as nuisance parameters. This section describes the components
conditionals of the Gibbs sampler that is used to sample from the posterior distribution of the parameters
of interest β and γ, p(β, γ|data) where the data are observed co-variates, and possibly rank and priority
structures or matching information.

Conditional distribution of utilities and valuations

Recall that it is assumed that εts, ηst ∼ N(0, 1), as is customary and necessary in the discrete choice
literature. Then, the component conditionals for the unobserved latent utilities and valuations are given
by

p(Ut(s)|β, γ,U−ts,V, data) ∝ exp

{
−(Ut(s)−Xtsβ)2

2

}
1(Ut(s) ∈ [U t(s)U t(s)])

p(Vs(t)|β, γ,V−st,U, data) ∝ exp

{
−(Vs(t)−Wstγ)2

2

}
1(Vs(t) ∈ [V s(t), V s(t)])

Note that, although the error terms are uncorrelated and independent across alternatives, the utilities
are not because their truncation intervals are endogenously determined. For example, if we observe
a student’s ranking across three di�erent schools A, B, and C such that rkt(A) < rkt(B) < rkt(C),
this implies that Ut(A) > Ut(B) > Ut(C). Therefore, the distribution of utilities across schools is
not iid normal, but rather a multivariate normal distribution subject to a system of linear inequality
constraints (Train, 2009, p.181). Commonly known techniques for sampling from these distributions
with linear constraints are rather slow when the number of alternatives is very large, as is the case in
our setting with thousands of students, and hundreds of schools.3 Instead, we embed the sampling from
this intractable distribution into our Gibbs sampler. However, we found that this procedure is rather
slow to converge, and also exhibits very strong serial correlation so that a su�ciently large number of
Gibbs samples must be drawn.

Conditional distribution of utility and valuation parameters

We assume a vague prior for the structural parameters β and γ which, together with the assumption that
the error terms have unit variance, implies that the posteriors of β and γ follow a normal distribution
(Lancaster, 2004, p.120). Also, we note that the scale and the location of the utilities and valuations are
not identi�ed, as in any discrete choice model. Our assumption that the idiosyncratic errors have unit
variance pins down the scale of utility, and the assumption that these errors are zero in expectation pins

3The function rtmvnorm2 in the R package tmvtnorm (https://cran.r-project.org/package=
tmvtnorm, version 1.4-10) does provide such a a method
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down the location of utilities. Hence the component conditional distribution of the utility parameter is
given by

p(β|γ,U,V, data) = p(β|U, data) = N
(
b, (X′X)−1

)
for b = (X′X)−1X′U, and similarly, the conditional component for the priority parameter γ reads

p(γ|β,U,V, data) = p(γ|V, data) = N
(
g, (W′W)−1

)
for g = (W′W)−1W′V.
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B.2.3. More Monte Carlo results

100 students

In a smaller market with only one hundred students, the stability-based estimator performs very poorly
compared to any other estimation strategy:
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Figure B.1.: Distributions of estimation errors across one hundred simulated markets (six schools
with 95 seats and 100 students).
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(a) Mean squared error (MSE)

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) 0.0393 0.0065 0.0391 0.0028
weak truth–telling 0.0643 0.0496 0.2832 0.0048
stability 4.7436 0.3016 28.3876 0.1974
undominated strategies 0.0547 0.0114 0.0801 0.0049
stability + undom. strat. 0.0517 0.0107 0.0798 0.0047

(b) Bias

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) -0.0144 0.0091 0.0223 0.0001
weak truth–telling 0.1498 -0.2091 -0.4897 -0.0050
stability -1.0446 -0.2945 3.0821 -0.0283
undominated strategies -0.0016 -0.0073 -0.0323 0.0003
stability + undom. strat. -0.0213 0.0146 0.0093 0.0011

Table B.1.: MSE and bias statistics for one hundred simulated markets (six schools with 95 seats
and 100 students).
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500 students

The variance of the estimates improves considerably in larger markets, as �gure B.2 below shows.
However, the stability based estimator still produces estimates that are rather imprecise, and also
biased.
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Figure B.2.: Distributions of estimation errors across one hundred simulated markets (six schools
with 475 seats and 500 students).
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(a) Mean squared error (MSE)

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) 0.0083 0.0016 0.0093 0.0010
weak truth–telling 0.0549 0.0743 0.6863 0.0398
stability 0.0446 0.1207 0.3576 0.0328
undominated strategies 0.0158 0.0086 0.0343 0.0015
stability + undom. strat. 0.0163 0.0035 0.0217 0.0016

(b) Bias

preferences priorities
method dis δs ai · ās ai

benchmark (true prefs.) -0.0129 -0.0019 0.0152 -0.0208
weak truth–telling 0.2179 -0.2704 -0.8242 -0.1892
stability 0.0141 -0.3243 -0.2801 0.0242
undominated strategies -0.0207 -0.0726 -0.1198 -0.0181
stability + undom. strat. -0.0515 -0.0238 -0.0404 -0.0172

Table B.2.: MSE and bias statistics for one hundred simulated markets (six schools with 475 seats
and 500 students).
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B.2.4. Data sources and construction

Table B.3 shows summary statistics of the student-level NABC data. Most students are �fteen years old
at the time of the NABC test (in 2015). The NABC scores in Hungarian and mathematics are the results
of a standardized test procedure. The socio-economic status (SES) is a composite measure that is based
on responses given by students in an accompanying survey, so that this variable has more missing data.
Also, the grade average is based on student’s own responses and may thus be biased. Therefore, we use
the NABC scores as a proxy for student’s academic ability. The table also shows that, unsurprisingly,
students from Budapest perform better in the NABC test, and have a higher socio-economic status.

statistic mean SD min max N

Entire country 88967
Birth year 2000.1 0.58216 1996 2002 88959
Female 0.494 0.5 0 1 88967
Last grade average 3.9837 0.7668 1 5 60843
NABC score Hungarian 1559.9 202.36 820.97 2199.2 82237
NABC score math 1612.1 196.5 907.81 2307.3 82176
Socioeconomic status (csh) -0.0226 1.01 -3.15 1.88 64971
Budapest 13611
Birth year 2000.1 0.55451 1996 2002 13609
Female 0.497 0.5 0 1 13611
Last grade average 4.1929 0.65506 1 5 8392
NABC score Hungarian 1634.9 190.44 820.97 2199.2 12480
NABC score math 1685.7 190.24 947.4 2307.3 12467
Socioeconomic status (csh) 0.616 0.88 -3.15 1.88 9029

Table B.3.: Summary statistics of the original NABC (2015) data

Table B.4 shows that there are signi�cant di�erences in test outcomes and between male and female
students. Female students perform much better in Hungarian on average (almost one third of a standard
deviation), whereas male students perform better in math on average (one tenth of a standard deviation).
Also, female students obtain a slightly better SES index (�ve percent of the standard deviation) but
notice that the SES index is based on self reporting, so it could be due to di�erent reporting behaviour.
In all cases, the di�erences in means are signi�cant at the one percent level.

mean t-test

statistic N all male female di�. t-stat. p-value

NABC score Hungarian 12,480 1,635 1,583 1,636 -52.94 -14.379 <0.001
NABC score math 12,467 1,686 1,670 1,651 19.26 5.283 <0.001
Socioeconomic status (csh) 9,029 0.616 0.426 0.473 -0.047 -2.697 0.007

Table B.4.: Gender di�erences in test outcomes. Raw NABC (2015) data; all students from Budapest.
Two-sample t-test with equal variance.

Table B.5 shows key statistics of the nation-wide matching scheme. The data comprises almost four
hundred thousand applications from almost ninety thousand students to over six thousand school
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programs. Each record corresponds to the application of a student to a school and contains the ranks
rkt(s) and rks(t), an indicator whether the school �nds the student acceptable, and a match indicator.
On average, each student applies to 4.5 school programs, or to 2.8 di�erent schools. Almost 95% of all
students are assigned to a school, of which three quarters are eventually assigned to their top choice
program.4 We link this data to a school survey in order to obtain the precise location of each school,
and the school’s district.

# students 88, 401
# school programs 6, 181
# schools (OMid-telephely-tipus) 1, 793
# student-school applications 395, 222
length of submitted ROL (school programs) 4.471
length of submitted ROL (schools) 3.002
# assigned 83, 482
.. share top choice 0.759
.. average match rank 1.486

Table B.5.: Summary statistics of the original application data (KIFIR)

The analysis was conducted for us by the Hungarian ministry of education who used a con�dential
concordance table to link records from the KIFIR and NABC datasets. The following table B.6 shows
that a large share of the students from Budapest can be linked, which leaves us with a sizeable sample
of students. We further restricted the sample to include only those students who �led an application
for at least one school from Budapest (last row).

# students in KIFIR 88, 401
# students in NABC 88, 967
.. of which Budapest 13, 611
# students in KIFIR and linked to NABC 80, 385
.. of which Budapest 10, 962
.. of which in sample 10, 880

Table B.6.: Merging the KIFIR and the NABC datasets.

As table B.3 shows, the NABC scores and, in particular, the SES are missing for a quite substantial
share of our sample. Because the computation of the student-optimal stable matching depends on the
composition of the student sample, we were reluctant to drop records with missing data, as this would
have left us with rather few complete records. Instead, we opted for a data imputation approach and used
the R package mice to construct a complete dataset. Missing variables were imputed using predictive
mean matching, were missing values are replaced by actual values from other records that resemble the
incomplete record, conditional on other observed characteristics. As predictors, we used an extended
set of variables that included also some results from the 2017 NABC round (where available), and
further student level variables that are not shown here. This procedure is repeated a few times, until the

4The admission system ensures that any students who are unmatched at the end of the main matching round are assigned
to the nearest school which still has free capacity.
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imputed values converge in expectation. It is recommended that researchers construct multiple imputed
datasets to assess the robustness of their analysis with respect to these imputations, but due to the
substantial computational burden of our estimation procedures, this was infeasible in our context. The
following table B.7 shows details of the imputation procedure. It can be seen that the imputed mean of
the variables referring to academic ability is lower than in the original data. Our imputation procedure
naturally introduces measurement error into the data, which, in a classical regression framework,
should lead to estimated coe�cients that biased towards zero. We expect that this is also true for
our estimation procedure which essentially is a data augmentation approach with a linear regression.
Nevertheless, it is our opinion that the drawbacks of using an imputed data set are greatly outweighed
by the bene�t of having a comprehensive set of students for the estimation procedure (which relies on
stability considerations, and thus, on the entirety of the student population) and for the counter-factual
matches (which are more directly dependent on the entire student population).

statistic N mean sd N.imp mean.imp sd.imp pval

Birth year 10, 879 2, 000.06 0.55 1 2, 001 0.09
Sex (1=female,2=male) 10, 880 1.50 0.50 0
Last grade average 6, 598 4.12 0.68 4282 3.97 0.70 0
NABC score Hungarian 9, 934 1, 659.63 183.87 946 1, 612.10 192.57 0
NABC score math 9, 948 1, 607.88 186.60 932 1, 569.42 189.95 0
Socioeconomic status (SES) 7, 097 0.45 0.87 3783 0.41 0.88 0.02

Table B.7.: Results of the imputation procedure, using predictive mean matching and ten iterations.
The p-value is computed for a two-sided t-test with unequal variances.

In order to ease the interpretation of estimated preference parameters, we decided to standardize the
NABC scores and the SES index to having a mean of zero, and unit standard deviation. This is shown
in table 4.1 in the main text.
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B.2.5. Decomposing the gains from consolidation: details

This section presents in detail how we construct the decomposition of the students’ consolidation gains
into a choice e�ect and a competition e�ect. In doing so, we make use of the large market approximation
to matching markets (Azevedo and Leshno, 2016) by which school-speci�c cuto� scores play the role
of prices that balance the supply of, and the demand for school seats. The cuto� score at school s under
the matching µ is the lowest valuation among all students who where admitted to that school under µ,
or

cs(µ) = min
t∈µ(s)

Vs(t)

We assume that the school market consists of relatively few schools and a large number of students
so that the addition (or deletion) of a single student has practically no e�ect on a schools’ cuto� score,
in line with the framework Azevedo and Leshno (2016). In order to decompose the total consolidation
gains, we compute the school-level cuto� scores under the district wise matching µd and under the
integrated matching µBP . The e�ect of increased choice, keeping everything else constant, can then
be computed as the di�erence between student t being matched to her most preferred feasible school
in her own district, and globally, using either the district-level or the city-wide cuto�s. Let the feasible
set of student t under the cuto�s {cs(µ)}s∈S be

Fµt = {s ∈ S : Vs(t) ≥ cs(µ)}

and denote the set of schools in district d as Sd. Then, the choice gain of student t can either be
expressed as

∆ch−IUt = max
s∈FµBPt

Ut(s)− max
s∈FµBPt ∩Sd

Ut(s)

or
∆ch−IIUt = max

s∈Fµdt
Ut(s)− max

s∈Fµdt ∩Sd
Ut(s)

as is illustrated in �gure 4.10. The only di�erence between ∆ch−IUt and ∆ch−IIUt is the usage of a
di�erent baseline scenario to compute the cuto�s – the global cuto�s {cs(µBP )} for ∆ch−IUt and the
local cuto�s for ∆ch−IIUt. It is easy to see that the choice gains will always be weakly positive by
construction. It can also happen that a student is not assigned in one of the counter-factual scenarios.
In our empirical application, the choice gains ∆ch−IUt are missing for about one quarter of all students,
because their set of feasible schools within their home district is empty under the global cuto� scores.
In a similar manner, one can compute the change in student t’s welfare as the market is opened up
to external competition. We call this change a competition gain, but it is not a priori clear whether
students actually gain or lose from competition. The competition gain can be computed either as

∆co−IUt = max
s∈FµBPt ∩Sd

Ut(s)− max
s∈Fµdt ∩Sd

Ut(s)
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or as
∆co−IIUt = max

s∈FµBPt

Ut(s)− max
s∈Fµdt

Ut(s)

Now, ∆co−I
t di�ers from ∆co−IIUt in that student t’s choice set is restricted to feasible schools within

her home district d in the former, but not in the latter. It is easy to see that the sum of ∆ch−IUt and
∆co−IUt is identical to the sum of ∆ch−IIUt and ∆co−IIUt unless some type-I choice gains are missing.
Also, the sum of the choice and competition gains are equal to the total welfare gains.
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B.2.6. Balanced markets

The Hungarian school market is characterized by a great amount of nominal excess capacity. To see
whether, and if so, how, this a�ects the conclusions drawn in the main text, we repeated the analysis in
section 4.6.3 with an arti�cially balanced market. This was achieved by scaling the schools’ capacities
proportionally (up to the integer constraint) within each district until the total number of seats equals
the total number of students. In doing so, we guarantee that every student is matched to some school.
Of course, this is a highly arti�cial setting, but it serves as a useful comparison benchmark against
which the results from the main text can be viewed.

Table B.8a shows the match statistics for the balanced markets. The consolidation gains were computed
analogue to the main text. The �rst row of table B.8b shows that the consolidation gains are now
very small compared to the large gains achieved in the unbalanced markets, and the median student
neither gains nor looses due to district consolidation. The de-composition into choice and competition
e�ects, also shown in table B.8b, shows why this is the case: The choice, and the competition e�ects
now have about equal magnitudes and opposite signs, and so they cancel each other.5 Interestingly, the
competition e�ects are now strictly negative.6

Figure B.3a shows that there is a weakly negative relationship between ex post majority support for
market consolidation and district size. A linear regression analysis (not shown here) con�rms this,
but does not �nd a signi�cant e�ect (p = 0.139). The important di�erence to results from the main
text, which were derived with the original amount of excess capacity, is that not all districts have
a majority of consolidation winners. Figure B.3b shows that there is a weakly negative correlation
between average latent utility gains and district size, similar to �gure 4.9a. But again, this negative
e�ect is insigni�cant in a linear model (p = 0.448). Thus, we cannot con�rm the prediction of Corollary
1 in this case. Because all district-level school markets were exactly balanced in this exercise, it is not
possible to determine how the excess capacity a�ects the gains from consolidation.

We also estimated a linear regression of the students’ total gain and their choice and competition gains
on student and district observables, the results of which are shown in table B.9. Contrary to table 4.11,
students with a higher SES gain less than the average student, but the coe�cient is equally insigni�cant.
Furthermore, high-ability students have signi�cantly larger consolidation gains. Interestingly, the
estimated e�ect of a student’s home district size is now signi�cantly positive, contrary to the correlation

5The choice and competition e�ects of type-I could not be computed for one quarter of the students because the school
market is now balanced, and thus very tight. This leads to the situation where many students have no feasible school in their
home district, given the consolidated school-level cuto�. This problem does not arise with the choice- and competition e�ects
of type-II.

6This is a rather peculiar results, and it is worth some discussion. Recall that the competition gains are computed
by comparing the students’ feasible choice sets under di�erent scenarios, and that those are in turn based on the schools’
admission cuto�s (see section B.2.5). With balanced markets, it turns out that the school level cuto�s are empirically larger
than the district-level cuto�s. This holds true for all but one school. The fact that there is one exception leads to the
conclusion that this is an empirical phenomenon that arises in a large market, but that it is not a strict implication of the way
we constructed the feasible choice sets per se. The larger cuto�s in the integrated market results in smaller feasible choice
sets, and so the competition e�ects are negative in our sample.
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district markets
# matched 10,880
share top choice match 0.57
ave. match distance [km] 3.53
consolidated market

# matched 10,880
share top choice match 0.54
share matched in home district 0.18
ave. match distance [km] 8.99

(a) Assignment statistics of the district-wise and integrated student-school matching.

Mean SD Min Median Max N

total gains
in latent utility units 0.033 1.131 -7.000 0.000 5.000 10,880
in equivalent kilometres 0.223 7.639 -47.297 0.000 33.784 10,880

decomposition
choice e�ect I 1.190 1.203 0.000 0.929 7.445 7,536
competition e�ect I -1.055 1.289 -8.060 -0.566 0.000 7,536
choice e�ect II 1.050 0.981 0.000 0.888 6.725 10,880
competition e�ect II -1.017 0.818 -6.791 -0.924 0.000 10,880

(b) Various measures of consolidation gains, expressed in latent utility changes.

Table B.8.: Gains from market consolidation using inferred complete preferences lists and arti�-
cially balanced markets: summary statistics

in �gure B.3b. However, when the district FEs are not included (results not shown here), the e�ect is
signi�cantly negative.

In conclusion, this appendix shows that the results from the main text do not necessarily carry over
to situations where the aggregate school market has less excess capacity or is even balanced. With
arti�cially balanced markets, the median student neither gains nor losses due to market consolidation,
and the share of students who gain is below �fty percent in many districts. This is at odds with the the-
oretical predictions in chapter 4.3 where we showed that a smaller aggregate market imbalance should
lead to larger expected welfare gains (Corollary 1), and it could be due to the fact that those theoretical
results were derived under the stark assumption of uniform and random preferences. Therefore, it
seems imperative for theoretical researchers to extend the set of possible preference structures that are
accommodated by their models.
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(b) Average latent utility gains and district sizes

Figure B.3.: Majority support for, and average latent utility gains of market consolidation, using
inferred complete preference lists and balanced markets.

Dependent variable: latent utility gains
type-I decomposition type-II decomposition

total choice competition choice competition
(1) (2) (3) (4) (5)

socio-economic status SES -0.0099 0.0585∗∗∗ -0.0716∗∗∗ 0.0494∗∗∗ -0.0594∗∗∗
-0.0121 -0.0164 -0.017 -0.0106 -0.0091

ability 0.0839∗∗∗ 0.0404∗∗∗ 0.0235∗ 0.0066 0.0772∗∗∗
-0.0088 -0.0123 -0.0127 -0.0077 -0.0066

district size (100 students) 0.2044∗∗∗ -0.1431 0.2173 0.0203 0.1841∗∗∗
-0.0559 -0.1533 -0.1587 -0.0492 -0.042

school type: gymnazium 0.0993∗∗∗ 0.0854∗∗ -0.0089 -0.0193 0.1186∗∗∗
-0.0295 -0.0424 -0.0438 -0.0259 -0.0222

school type: secondary -0.5061∗∗∗ 1.4227∗∗∗ -1.4857∗∗∗ 1.3117∗∗∗ -1.8178∗∗∗
-0.1579 -0.4762 -0.4928 -0.1388 -0.1186

Constant -0.5061∗∗∗ 1.4227∗∗∗ -1.4857∗∗∗ 1.3117∗∗∗ -1.8178∗∗∗
-0.1579 -0.4762 -0.4928 -0.1388 -0.1186

district FE Yes Yes Yes Yes Yes

Observations 10,880 7,536 7,536 10,880 10,880

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses.

Table B.9.: Explaining gains from consolidation with students observables (balanced markets).
The table shows regression coe�cients of students’ gains on student observables. The
school type refers to the school type of the assigned school in the integrated market.
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