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Summary
In this article, we address the task of setting up an optimal production plan tak-
ing into account an uncertain demand. The energy system is represented by a
system of hyperbolic partial differential equations and the uncertain demand
stream is captured by an Ornstein-Uhlenbeck process. We determine the opti-
mal inflow depending on the producer’s risk preferences. The resulting output
is intended to optimally match the stochastic demand for the given risk crite-
ria. We use uncertainty quantification for an adaptation to different levels of
risk aversion. More precisely, we use two types of chance constraints to formu-
late the requirement of demand satisfaction at a prescribed probability level. In
a numerical analysis, we analyze the chance constrained optimization problem
for the Telegrapher’s equation and a real-world coupled gas-to-power network.
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1 INTRODUCTION

In recent years, significant attention has been paid to the energy market. On the one hand, this is due to climate pro-
tection policies. On the other hand, the decision of the German government on the nuclear phase-out by the end of
20221 will cause significant changes in the energy sector. Those changes are to a large extent triggered by the specifica-
tion to have 65% of the gross electricity consumption generated out of renewable energy sources by the end of 2030. One
major challenge is the handling of uncertainty in the renewable energy production. It heavily depends on the weather
conditions and is subject to large fluctuations. Those fluctuations can heavily affect the grid operation or even lead to
outages.1

Other sources of uncertainty also play an important role in the planning of energy systems. In Reference 2, various
types of uncertainties have been taken into account to solve an expansion planning problem for electricity and gas net-
works. One source of uncertainty in the power grid operation of particular interest in the present manuscript are power
demands (see Reference 3). This makes it difficult to guarantee a sufficient supply thereby influencing reliability and
profitability in power system operation (see Reference 4). It is crucial for all players in the electricity sector to cope with
stochastic demand fluctuations.

1https://www.bmwi.de/Redaktion/EN/Artikel/Energy/nuclear-energy-nuclear-phase-out.html, last checked: 4 April 2019

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Optimal Control Applications and Methods published by John Wiley & Sons Ltd.

Optim Control Appl Meth. 2020;1–24. wileyonlinelibrary.com/journal/oca 1

https://orcid.org/0000-0002-8512-4525
https://www.bmwi.de/Redaktion/EN/Artikel/Energy/nuclear-energy-nuclear-phase-out.html
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.2689&domain=pdf&date_stamp=2020-11-02


2 GÖTTLICH et al.

In the context of gas-to-power, those fluctuations might carry over to the gas network being coupled to the electricity
grid. The amount of gas converted to power and fed into the electricity system depends on the power demand and therefore
inherits its stochasticity. Furthermore, the gas demand itself is uncertain (see, eg, Reference 5).

There are several ways to formulate stochastic optimization problems. As pointed out in Reference 6, unlike for deter-
ministic optimization, in the presence of uncertainty, there is a lack of standard modeling and solution frameworks. One
popular approach is (multistage) stochastic programming, also frequently applied in the energy sector (see, eg, References
7,8). However, here, as in Reference 9, we distinguish between robust optimization and chance constrained optimization
(CCOPT). A robust formulation is appropriate if the distribution of the uncertain parameter in the system is unknown
because it cannot be measured or observed (no historical data), whereas CCOPT is suitable in the presence of historical
observations where a distribution of the unknown quantity can be derived (see Reference 9).

In this article, we focus on uncertain demands. In this context, it is reasonable to assume access to historical demand
data and we therefore focus on CCOPT for the remainder of the present manuscript. Chance constraints have been intro-
duced in 1958 in Reference 10 by Charnes, Cooper, and Symonds in the context of production planning, and further
developed in Reference 11. A lot of work has been done in CCOPT. It is worthwhile to particular mention the contribu-
tions of Prékopa. His monograph on stochastic programming from 199512 nowadays still serves as a standard reference.
A general overview on properties, solution methods, and fields of application such as hydroreservoir management,13,14

optimal power flow,1,3 energy management,15 and portfolio optimization16 can be found in Reference 4.
In this work, we are interested in a constrained optimization problem composed of three constraints: a stochastic

differential equation (SDE) that models the uncertain demand, a system of hyperbolic balance laws to describe the energy
system (electricity or gas), and a chance constraint ensuring demand satisfaction with a certain probability (risk level).
Chance constraints in the context of PDE-constrained optimization are also considered in Reference 17. However, the
requirement of a continuously Fréchet-differentiable solution of the PDE rules out most hyperbolic PDEs due to the
possibility of discontinuous solutions even for continuously Fréchet-differentiable initial data.

In Reference 18, they apply their results on semicontinuity, convexity, and stability in an infinite-dimensional setting
to a simple PDE-constrained control problem. Again, the PDE is not of hyperbolic nature.

There already exist a few investigations of CCOPT for systems of hyperbolic nature such as gas networks. Accounting
for the stochasticity of demand, Gotzes et al19 presents a method to compute the probability of feasible loads in a stationary,
passive gas network. Note that the steady-state assumption on the network entails constraints formulated in terms of
purely algebraic equations instead of full hyperbolic dynamics. In Reference 9, they extend the aforementioned work
by also allowing for uncertainty with respect to the roughness coefficient. They analyze the question of the maximal
uncertainty allowed such that random loads can be satisfied at a prescribed probability level within a stationary, passive
gas network. The feasibility of random loads, again in a stationary gas model, this time with active elements in terms of
compressor stations is considered in Reference 20. In Reference 21, they also account for the transient case. However,
they do not take into account the full hyperbolic dynamic but the linear wave equation instead.

In contrast to the abovementioned contributions, here, we consider the full isentropic gas dynamics. Note however
that the full stochasticity of the demand in the power-to-gas setting presented in Section 4.3 does not enter the nonlinear
dynamics of the gas flow directly but is coupled to it via the objective function.

Another important difference to the aforementioned contributions is the modeling of the uncertain demand. In many
cases, (truncated) Gaussian random vectors are used as proposed in Reference 5 and used in for example References
9,20,21. Similarly, in a holistic chance-constrained approach to the planning of energy systems in Reference 22-24, the
aggregated uncertainty is modeled as Gaussian disturbances. Using stochastic processes to model the demand enables to
capture time dynamics. Sometimes the demand is modeled by a discrete time stochastic process as, for example, in Refer-
ence 13. In Reference 14, they use a continuous time stochastic process additively decoupled in a deterministic trend and
a causal process generated by Gaussian innovations. In contrast to that, we consider a dynamic demand model for the
random loads via a continuous time stochastic process, the so-called Ornstein-Uhlenbeck process, where the determinis-
tic trend and the stochastic evolution of the process are coupled. This is also a popular choice to model demand in various
fields (see, eg, Reference 25 in the context of electricity). In References 26,27, they use a multivariate Ornstein-Uhlenbeck
process from the supply-side point of view. They model uncertain injections into the power network and assess the prob-
ability of outages. A desirable feature for both supply and demand modeling is the mean reverting property. The process
is always attracted to a certain predefined mean level, which may result from historical supply/demand data. In con-
trast to those contributions, we use a time-dependent mean level, which enables us to depict seasonal and daily patterns
appearing in historical data also in our mean-demand level (no longer assumed to be constant) and set up an optimization
framework based thereon.
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The article is organized as follows: in Section 2, we introduce the stochastic optimal control setting. We define the
energy system as well as the stochastic demand process, and introduce the considered cost functional. We distinguish
between a single chance constraint (SCC) as well as a joint chance constraint (JCC). In Section 3, we consider a deter-
ministic reformulation of both the cost functional and the SCC, and present a stochastic reformulation of the JCC, which
allows to incorporate it in our numerical framework. In Section 4, we validate the numerical framework for a simple case
of a hyperbolic supply system, that is, the scalar linear advection with source term. It represents a suitable test case setting
as we are able to derive the corresponding analytical solution in case of an SCC. We then apply our numerical routine to
the Telegrapher’s equations, a linear system of hyperbolic balance laws. We conclude with a numerical investigation of a
nonlinear system of hyperbolic balance laws in terms of a real-world gas-to-power application.

To wrap up, the novelty of our chance-constrained stochastic optimal control framework consists in a joint consider-
ation of the very generic choice of hyperbolic balance laws to describe the supply system on the one hand and the exact
deterministic reformulation of the SCC and in particular the JCC for the OUP modeling a time-dependent uncertain
demand stream on the other hand. This combination of the hyperbolic nature of the time-dependent supply system (no
steady-state assumption), and advantageous stochastic process modeling choice for the uncertain demand stream has not
been investigated yet to the best of our knowledge.

2 STOCHASTIC OPTIMAL CONTROL SETTING

In this section, we set up the mathematical framework for the task of finding an optimal injection plan taking into account
an uncertain demand for the time period from t0 = 0 to final time T. This has been done for a linear transport equation
in Reference 28. Here, we use the stochastic optimal control framework set up in Reference 28, and extend it to more
complex supply dynamics on a network. We model a general energy system by a system of hyperbolic balance laws on a
network, and the stochastic demand is described by an Ornstein-Uhlenbeck process (OUP).

2.1 Energy system with uncertain demand

We consider different types of 2-dimensional energy systems. The network is modeled by a finite, connected, directed
graph  = ( , ) with a nonempty vertex (node) set  and a nonempty set of edges  . For v ∈  , we define the set of
all incoming edges by 𝛿−(v) = {e ∈  ∶ e = (⋅, v)}, and the set of all outgoing edges by 𝛿+(v) = {e ∈  ∶ e = (v, ⋅)}. In the
sequel, we identify an edge e= (vin, vout) by the interval [ae, be], where ae denotes the starting point of the edge, and
be its end point. We further define the set of inflow vertices by in = {v ∈  ∶ 𝛿−(v) = ∅}, and the set of outflow ver-
tices by out = {v ∈  ∶ 𝛿+(v) = ∅}. As a simplification, here, we restrict our network to |in| = |out| = 1. Note however
that an extension to several inflow nodes (|in| > 1), and outflow nodes (|out| > 1) is straightforward by considering
a vector-valued inflow control, and a multivariate Ornstein-Uhlenbeck process as used in Reference 27. An exemplary
network structure with |in| = |out| = 1 is depicted in Figure 1. This particular network topology will later be used in
Section 4.2 for the network of transmission lines and Section 4.3 for the gas network (see lower part of Figure 5). Each
edge then represents a power transmission line or a gas pipeline, respectively.

As can be seen in Figure 1, the inflow control u(t) acts on the vertex vin ∈ in, and the demand Y t is realized at the
vertex vd ∈ out. We require be =L for all e ∈ 𝛿−(vd).

F I G U R E 1 Example of an energy network with uncertain demand at vd [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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The dynamics of the energy system on one edge e are formulated in terms of a hyperbolic balance law.29,30 This type
of equation is often used when it comes to model the flow of a conserved quantity (see, eg, Reference 31). The presence
of a source term in those equations accounts for a gain or a loss in this otherwise conserved quantity (eg, due to friction).
The hyperbolic balance law with initial condition (IC) and boundary conditions (BCs) reads as

𝜕tqe + 𝜕xf e(qe) = s(qe), x ∈ [ae, be], t ∈ [0,T]
qe(x, 0) = qe

0(x),
Γe

a(qe(ae, t)) = 𝛾e
a(t), Γe

b(q
e(be, t)) = 𝛾e

b(t). (1)

Thereby, f ∶ R2 → R2 is a given flux function and s ∶ R2 → R2 the source term. 𝜌e
0 ∶ [ae, be] → R2 describes the initial

state of the system on edge e. The functions Γe
a∕b ∶ R2 → R

ml∕r enable to prescribe a certain evaluation of a certain number
of components of the density at the boundary. Thereby, 0≤ml, mr ≤ 2 denote the number of prescribed BCs at the left
respectively right boundary. A value of ml/r = 0 has to be interpreted in a way that no left/right boundary condition is
prescribed. For a scalar conservation law, choosing ml = 1, mr = 0, and Γe

a = f corresponds to prescribing only the flow at
the left boundary.

The boundary conditions (BCs) themselves are given in terms of the functions 𝛾e
a ∶ [0,T] → Rml at the left boundary

ae of edge e, and 𝛾e
b ∶ [0,T] → Rmr at the right boundary be of edge e. The numbers of BCs ml/r, and the functions 𝛾e

a∕b need
to be chosen carefully such that they are consistent with the characteristics of the conservation law. This will be further
specified below for each setting (Sections 4.2-4.3).

Moreover, for the nondegenerate network case, that is, ∃ v ∈  ∶ |𝛿−(v)| + |𝛿+(v)| ≥ 2, suitable coupling conditions
cv ∶ R2×(|𝛿+(v)|+|𝛿−(v)|) → Rmc for each vertex need to be imposed. Thereby, mc denotes the number of coupling conditions.
This will be made explicit in Subsection 4.3.

For e ∈ 𝛿+(vin), the function 𝛾e
a(t) depends on the inflow control u(t).

To simplify notation, we do not explicitly write down the dependence of the supply on the density at the end points
of all ingoing edges and denote the supply at vd at time t simply by Su(t) meaning

Su(t) = Su

( ⨉
e∈𝛿−(vd)

qe(be, t)

)
. (2)

Clearly, the supply at vd depends on the inflow but due to the finite speed of propagation the proper formulation is via the
function Su ∶ R2×|𝛿−(vd)| → R. Thereby, the symbol

⨉
in Equation (2) generates the |𝛿−(vd)|-tuple of elements in R2 given

by the densities evaluated at the end points of corresponding ingoing edges at time t.
Formulation (1) of the energy system in terms of a hyperbolic balance law has the advantage that time-dependency

can be appropriately taken into account, see, eg, Reference 32 for their usage in controlling a network of power lines. In
the gas context (see, eg, Reference 33), it allows to account for nonlinear phenomena inherent to gas flow such as shocks
and rarefaction waves. With model (1), we have a very generic building block for the energy system that can also be seen
in the general light of the study of flows on networks. For example, the stochastic optimal control approach might also
be useful for control tasks related to water flow considerations (see References 34,35).

Discretization scheme

For the numerical investigation in Section 4, the considered hyperbolic energy systems need an appropriate discretization
scheme. Motivated by our real-world example, we choose an implicit box scheme (IBOX)36 for all considered scenarios.
For a general system of balance laws (on any edge)

𝜕tq + 𝜕xf (q) = s(q),

the considered scheme reads

Qn+1
j−1 + Qn+1

j

2
=

Qn
j−1 + Qn

j

2
− Δt

Δx
(f (Qn+1

j ) − f (Qn+1
j−1 )) + Δt

s(Qn+1
j ) + s(Qn+1

j−1 )

2
. (3)



GÖTTLICH et al. 5

Here, Δt and Δx are the temporal and spatial mesh size, respectively, and the numerical approximation is thought in the
following sense:

Qn
j ≈ q(x, t) for x ∈ Xj =

[
a + (j − 1

2
)Δx, a + (j + 1

2
)Δx

)
∩ [a, b], t ∈ Ii = [iΔt, (i + 1)Δt) . (4)

To avoid undesired boundary effects, the discretization of the initial condition on bounded domains is done pointwise,
that is,

Qn
j = q0(a + jΔx). (5)

As remarked in Reference 36, for a discretization xl < xl+ 1 < … < xr − 1 < xr, we obtain r − l equations for r − l+ 1 variables
(in the scalar case). This entails the need to prescribe BCs at exactly one boundary specified by the characteristic direction.
This also explains the abovementioned assumption of no change in the signature of the characteristic directions on the
considered domain. The discrete version of the BCs is given by

Γa(Qi
0) = 𝛾a(ti), Γb(Qi

NΔx
) = 𝛾b(ti) ∀ i ∈ {1, … ,NΔt}. (6)

Note that the implicit box scheme has to obey an inverse CFL condition,36 which is beneficial for problems with large
characteristic speeds whereas the solution is merely quasi-stationary. This is usually the case for daily operation tasks in
gas networks and therefore motivates the choice within this work.

Uncertain demand

The uncertain demand stream is modeled by an Ornstein-Uhlenbeck process (OUP), which is a well-established choice
for modeling demand uncertainty (see, eg, Reference 25). As emphasized in the Introduction, this choice of a dynamic
demand model allows for a coupling of a deterministic trend and the stochastic evolution of the process. Here, we consider
the OUP in terms of the unique strong solution of the following stochastic differential equation

dYt = 𝜅(𝜇(t) − Yt)dt + 𝜎dWt, Yt0 = yt0 (7)

on the probability space (Ω, ,P) as it has been previously done in Reference 28. We restrict ourselves to state some of
its crucial properties for our upcoming treatment here and refer the reader to Reference 28 for further assertions on the
particular choice of (7). W t is a given one-dimensional Brownian motion on the same probability space, and y0 describes
the demand at time t0 = 0. The constants 𝜎 > 0 and 𝜅 > 0 describe the speed of mean reversion and the intensity of
demand fluctuations. By mean reversion, we refer to the property of the process that it is always attracted by a certain
time-dependent level 𝜇(t), called the mean demand level. This is due to the sign of the drift term 𝜅(𝜇(t) − Yt), which
ensures that being above (below) the mean demand level, the process experiences a reversion back to it.

The latter property qualifies it to depict fluctuations around a given mean demand level while at the same time staying
close (in terms of 𝜎) to it. This is a crucial property in the modeling of the demand as one usually has some deterministic
prediction (eg, based on historical data) of its evolution but the stochastic nature leads to deviations therefrom. The
role of the deterministic forecast in the model is taken by the time-dependent mean demand level 𝜇(t). Moreover, the
time-dependency of 𝜇(t) allows to capture daily or seasonal patterns in the demand further motivating the choice of (7)
as demand process.

From a mathematical point of view, this process has some nice analytical properties. For example, we can derive the
solution to Equation (7) explicitly via the Itô formula. It reads as

Yt = yt0 e−𝜅(t−t0) + 𝜅 ∫
t

t0

e−𝜅(t−s)𝜇(s)ds + 𝜎 ∫
t

t0

e−𝜅(t−s)dWs. (8)

Moreover, it is possible to derive its distribution explicitly as

Yt ∼ N
(

yt0 e−𝜅(t−t0) + 𝜅 ∫
t

t0

e−𝜅(t−s)𝜇(s)ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mOUP(t)

,
𝜎2

2𝜅
(1 − e−2𝜅(t−t0))

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

vOUP(t)

. (9)

For further details on the demand process, we refer the reader to Reference 28.
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2.2 Chance constraints

Requiring demand satisfaction for every realization of the demand process might be too restrictive as, in some cases, it
might lead to an infeasible optimization problem.37(p5)

One possibility to overcome problems of infeasibility and to reduce the average undersupply is to introduce an under-
supply penalty term in the cost function. The effect of an undersupply penalty on the optimal output has been analyzed
in Reference 38. A comparison of different types of undersupply can be found in Reference 39.

Another approach is to guarantee with a certain probability that there is no undersupply within a prescribed time
interval ICC ⊂ [t*, T], where t* is the first time that a supply is realized at vd. Mathematically this is formulated in terms of
a chance constraint (CC). One possibility is to require at each point in time that the probability of a demand satisfaction
is at least equal to one minus a given risk level 𝜃 (see (10a)). This results in a so called single chance constraint (SCC).
Another possibility is a joint chance constraint (JCC), that is, we require that the probability of a demand satisfaction is
at least equal to one minus a given risk level 𝜃 on a whole interval simultaneously (see (10b)).

P(Yt ≤ Su(t)) ≥ 1 − 𝜃 ∀ t ∈ ICC, (10a)

P(Yt ≤ Su(t)∀ t ∈ ICC) ≥ 1 − 𝜃. (10b)

2.3 Objective function and stochastic optimal control problem

Having formulated all the optimization constraints, we now address the objective function. We aim at minimizing the
arising costs. We construct our cost function out of several components. One component consists of deterministic costs
Cu(t) such as operating costs for a gas compressor (C1). Another component are tracking type costs that arise from a
mismatch between the externally given demand (7) and our supply Su realized at the demand vertex vd. We measure
the tracking type costs in terms of the expected quadratic deviation between the demand and supply (C2). Particularly
accounting for negative mismatches, we introduce undersupply costs as a third cost component (C3). If a sale of excess
supply is possible, the revenue can be included into the cost function as a fourth component (R).

Putting the deterministic costs C1, the tracking costs C2, the undersupply costs C3, and the excess revenue C4 together,
we obtain a cost function of the following type:

OF(Yt, t0, yt0 , Su(t)) = w1 ⋅ Cu(t)
⏟⏞⏟⏞⏟

C1

+ w2 ⋅ E[(Su(t) − Yt)2|Yt0 = yt0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C2

− w3 ⋅ E[(Su(t) − Yt)−|Yt0 = yt0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C3

− w4 ⋅ E[(Su(t) − Yt)+|Yt0 = yt0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R

, (11)

where

(Su(t) − Yt)− =

{
Su(t) − Yt if Su(t) < Yt

0 if Su(t) ≥ Yt
.

All together, we come up with the stochastic optimal control (SOC) problem

min
u∈ad ∫

T

t∗
OF(Yt; t0; yt0 ; Su(t))dt subject to (1), (7), and (10). (12)

To determine the optimal control, we need to specify measurability assumptions on the control by defining the space of
admissible controls ad.

ad = {u ∶ [t0,T] → R | u ∈ L2([t0,T]),u(t) ≥ 0, and u(t) is t0 -predictable for t ∈ [t0,T]}. (13)

Results for this control method and two other control methods with an objective function of pure tracking type
(w1 =w3 =w4 = 0, w2 = 1) for the linear advection equation without imposing CCs can be found in Reference 28.
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3 DETERMINISTIC REFORMULATION OF THE STOCHASTIC PROBLEM

Having set up the SOC problem (12), the question of how to solve this minimization problem naturally arises. One way is to
trace back the SOC problem (12) to a deterministic setting, in which we can apply well-known methods from deterministic
PDE-constrained optimization such as adjoint calculus. In order to do so, in Section 3.1, we analytically treat both types
of CCs presented in Subsection 2.2. The deterministic expression of the objective function introduced in Section 2.3 is
derived in Section 3.2.

3.1 Reformulation of chance constraints

The reformulation of the CC heavily depends on the type of CC. Whereas the SCC (10a) can be reformulated via quantiles
of a normal distribution, the reformulation of the JCC (10b) is not obvious. Therefore, we need to treat the different types
of CCs separately.

Single chance constraint

For the SCCs (10a), we use a quantile-based reformulation as mentioned in Reference [13, p580]. By using the known
distribution (9) of the OUP, this results in the deterministic state constraints

Su(t) ≥ mOUP(t) + vOUP(t)Φ−1(1 − 𝜃) ∀t ∈ ICC, (14)

where mOUP(t) = yt0 e−𝜅(t−t0) + 𝜅 ∫ t
t0

e−𝜅(t−s)𝜇(s)ds, vOUP(t) = 𝜎2 ∫ t
t0

e−2𝜅(t−s)ds, and Φ is the standard normal cumulative
distribution function.

Joint chance constraint

JCCs (10b) are mathematically by far more involved than SCCs (see Reference [4, p1213]). No longer considering the
constraint pointwise in time, we now have to deal with a joint probability distribution. Unfortunately, we can no longer
make use of the deterministic reformulation as state constraint as for (10a).

As the integration of the JCC into the optimization framework is a core issue to tackle the SOC problem (12), we need
to come up with a different approach. As in Reference 27, we now use a nondeterministic reformulation of the JCC as a
first passage time problem. We denote by

y0 = inf
t≥t0

(t | Yt > Su(t))

for Yt0 = yt0 < Su(t0) the first passage time of the OUP, and obtain the equivalent formulation of the JCC (10b) as a first
passage time problem of the form

P(y0 > t) ≥ 1 − 𝜃. (15)

For further details on first passage times, we refer the reader to Reference [40, chapter 4]. We will see that reformulation
(15) enables to include constraint (10b) into our SOC framework.

However, this is not obvious. The drawback is that we have to deal with the distribution of the first passage time of the
OUP with time-dependent mean demand level for a time-dependent absorbing boundary. The time-dependency rules out
some classical approaches. Furthermore, even for a constant boundary, the task turns out to be by far more complicated
than deriving the distribution of the first passage time of a Brownian motion (see References 41,42). A closed-form solution
is only known for a few special cases.

One reason making the present case particularly hard is that there is no pure diffusion equation any more that would
allow to apply the formula presented in the paper.43 So far, to the best of our knowledge, no closed-form solution of the first
passage time density in our case is known. Several semianalytical approaches exist: In Reference 44, they derive an integral
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representation of the first-passage time of an inhomogeneous OUP with an arbitrary continuous time-dependent barrier
and extend their results to continuous Markov processes. The idea of exploiting transformations among Gauss-Markov
processes to relate the problem to the known first passage time density of a Wiener process. However, as stated in Ref-
erence 45, the transformation of the OUP to the Brownian motion entails exponentially large times. In an alternative
approach presented in Reference 45, they consider this broader class of real continuous Gauss-Markov process with
continuous mean and covariance functions. The latter approach is the one that we tailor to our time-dependent OUP.

In a first step, we show that the approach in Reference 45 is applicable to our case of the time-dependent OUP, and in
a second step, we introduce the method itself.

Verification of prerequisites

As we want to apply a result on the first passage time density formulated in a general Gauss-Markov setting, we first need
to verify that the time-dependent OUP given by Equation (7) is indeed a Gauss-Markov process.

Lemma 1. The OUP given by Equation (7 ) is a Gauss-Markov process.

Proof. We first verify that the OUP is a Gauss process, that is, that for any integer n≥ 1 and times 0≤ t1 < t2 < … < tn ≤T,
the random vector (Yt1 ,Yt2 , … ,Ytn) has a joint normal distribution. From (9), we know that, for any n≥ 1, and arbitrary
k∈ {1, … , n}, Ytk is normally distributed. From Reference [46, p259], we know that, to verify the joint normal distribution
of (Yt1 ,Yt2 , … ,Ytn), it is sufficient to show that any linear combination of Yt1 ,Yt2 , … ,Ytn is normally distributed. This
holds true due to the linearity of the Itô integral.

Furthermore, the drift coefficient b(t, x) = 𝜅(𝜇(t) − x) and the diffusion coefficient 𝜎(t, x) ≡ 𝜎 of (7) satisfy the assump-
tions for existence and uniqueness of a strong solution in Reference [47, thm 3.1]. Hence, Reference [47, thm 3.9] is
applicable, which states that the corresponding SDE, in our case (7), is a Markov process (see Reference [48, def 4.6]) on
the interval [0, T]. ▪

We are now in the Gauss-Markov setting of Reference 45. To prepare the numerical computation of the first passage
time density, we need to calculate some basic characteristics of our OUP. We recall, that Y t is normally distributed with
mean

mOUP(t) = yt0 e−𝜅(t−t0) + 𝜅 ∫
t

t0

e−𝜅(t−s)𝜇(s)ds,

and variance given by

vOUP(t) =
𝜎2

2𝜅
(1 − e−2𝜅(t−t0)),

both being C1([0,T])-functions. The probability density function of the OUP starting at time t0 in yt0 coincides with a
normal density with mean mOUP(t), and variance vOUP(t).

We proceed with the covariance function. Note that the covariance is determined by the stochastic integral term
It = 𝜎 ∫ t

t0
e−𝜅(t−s)dWs in (8) and the deterministic part can be neglected for its calculation. Moreover, note that E[It] = 0.

Cov(Ys,Yt) = 𝜎2
E

[
∫

s

t0

e−𝜅(s−u)dWu ∫
t

t0

e−𝜅(t−v)dWv

]
= 𝜎2e−𝜅(s+t)

E

[
∫

s

t0

e𝜅udWu ∫
t

t0

e𝜅vdWv

]
= 𝜎2e−𝜅(s+t)

E

[
∫

t

t0

e𝜅u1[t0,s](u)dWu ∫
t

t0

e𝜅vdWv

]
= 𝜎2e−𝜅(s+t)

E

[
∫

s

t0

e2𝜅udu
]

= 𝜎2 e−𝜅(t−s) − e−𝜅(s+t−2t0)

2𝜅
. (16)
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The covariance function (16) can be decomposed in

Cov(Ys,Yt) = e𝜅s(1 − e−𝜅(2s−2t0))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h1(s)

⋅
𝜎2

2𝜅
e−𝜅t

⏟⏟⏟
h2(t)

.

Also, the functions h1, and h2 are elements of C1([0,T]), and their derivatives are

h′
1(t) = 𝜅e𝜅t + 𝜅e−𝜅(t−2t0), and

h′
2(t) = −1

2
𝜎2e−𝜅t.

Numerical calculation of the first passage time density

In Reference 45, it is shown in a first step that the first passage time density for a C1-barrier satisfies a nonsingular Volterra
second-kind integral equation. In a second step, this equation is iteratively solved by a repeated Simpson’s rule yielding
an approximation to the desired first passage time density in discretized form.

Below, we state theorem 3.1. of Reference 45 adapted to our OUP (7) and our notation.

Theorem 1. Let S(t) be a C1([0,T])-function. Then, the first passage time density g(S(t), t|yt0 , t0) = 𝜕

𝜕t
P(y0 < t) solves the

nonsingular second-kind Volterra integral equation given by

g(S(t), t|yt0 , t0) = −2Ψ(S(t), t|yt0 , t0) + 2∫
t

t0

g(S(t)s, s|yt0 , t0)Ψ(S(t), t|S(s), s)ds, yt0 < S(t0). (17)

Thereby, the function Ψ is defined via

Ψ(S(t), t|y, s) =
(S′(t) − m′

OUP(t)
2

− S(t) − mOUP(t)
2

h′
1(t)h2(s) − h′

2(t)h1(s)
h1(t)h2(s) − h2(t)h1(s)

−
y − mOUP(t)

2
h′

2(t)h1(t) − h2(t)h′
1(t)

h1(t)h2(s) − h2(t)h1(s)

)
⋅ py,s(S(t), t).

We adopt the notational short cuts introduced in Reference [45, p466]:

g(t) ∶= g(S(t), t|yt0 , t0), t, t0 ∈ [0,T], t0 < t
Ψ(t) ∶= Ψ(S(t), t|yt0 , t0), t, t0 ∈ [0,T], t0 < t

Ψ(t|s) ∶= Ψ(S(t), t|S(s), s) t, s ∈ [0,T], t0 < s ≤ t.

We introduce a grid t0 < t1 < … <TN , where tk = t0 + k ⋅ Δt, k ∈ {1, … ,N}. The iterative procedure based on the
repeated Simpson’s rule to obtain an approximation g̃(tk) of the first passage time density g(tk) reads as follows:

g̃(t1) = −2Ψ(t1),

g̃(tk) = −2Ψ(tk) + 2Δt
k−1∑
j=1

wk,jg̃(tj)Ψ(tk|tj), k = 2, 3, … ,N, (18)

where the weights are specified by

w2n,2j−1 = 4
3
, j = 1, 2, … ,n; n = 1, 2, … ,

N
2
,

w2n,2j =
2
3
, j = 1, 2, … ,n − 1; n = 2, 3, … ,

N
2
,
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w2n+1,2j−1 = 4
3
, j = 1, 2, … ,n − 1; n = 2, 3, … ,

N
2
− 1,

w2n+1,2j =
2
3
, j = 1, 2, … ,n − 2; n = 3, 4 … ,

N
2
− 1,

w2n+1,2(n−1) =
17
24

, n = 2, 3, … ,
N
2
− 1,

w2n+1,2n−1 = w2n+1,2n = 9
8
, n = 1, 2, … ,

N
2
− 1.

The iterative procedure has been proven to converge in Reference 45.

Theorem 2. We shall be given the above discretization t0 < t1 < … < tN , where tk = t0 + k ⋅ Δt, k ∈ {1, … ,N}, where Δt is
the discretization step. The first passage time density obtained by the iterative procedure (18) converges to the true first passage
time density as the step size tends to zero, that is,

lim
Δt→0

|g(tk) − g̃(tk)| = 0 for all k ∈ {1, … ,N}.

To use the iteratively approximated first passage time density to obtain the risk level corresponding to S(t), we apply
Algorithm 1. It enables to integrate the JCC (10b) in our optimization procedure to solve the SOC problem (12). In our
case the optimal inflow control will take the role of the C1-boundary S(t). As this control is a result of the optimization
procedure, the calculation of the first passage time density needs to be repeated in every optimization iteration. It is there-
fore worthwhile to mention that the above introduced iterative procedure is well suited for computational efficiency. This
is because the algorithm only requires the characteristics of the OUP in terms of its initial data (t0, y0), its mean mOUP(t),
its variance vOUP(t), its covariance decomposition in terms of the functions h1 and h2 as well as a prespecified boundary
S(t) and a chosen discretization step Δt. No Monte Carlo (MC) methods, and no high-dimension integral computations
are involved and no particular software packages are necessary (see Reference 45).

Algorithm 1. Algorithm to calculate the risk level corresponding to S(t)

Require: OUP characteristics: mean mOUP(t), variance vOUP(t), covariance decomposition in terms of h1(t), h2(t), and its
derivatives h′

1(t), h′
2(t); boundary S(t); discretization step Δt, final active time TCC of CC; risk level 𝜃

Ensure: First passage time density g, and cumulative distribution function G
1: Define parameters of OUP.
2: Choose time discretization Δt.
3: Calculate mOUP(t), h1(t), h2(t), S(t),m′

OUP(t), h′
1(t), h′

2(t), S′(t) for discretized time interval [0,TCC] with step size Δt.
4: Calculate approximation of first passage time density via (18).
5: Calculate the corresponding discrete values of the cumulative distribution function G.
6: if G(end)< = 𝜃 then
7: JCC fulfilled.
8: else
9: JCC violated.

10: end if
11: return g and G.

Validation of first passage time simulation

For a validation of Algorithm 1, we consider the following test case setting: t0 = 0, 𝜅 = 1
3600

, 𝜎 = 0.003, 𝜇(t) = 0.7 + 0.3 ⋅

sin( 1
7200

𝜋t), y0 = 0.8, S(ti) = mOUP(tk) + 0.2 + 0.25 ⋅ tk
T

, where tk, k ∈ {1, … ,NΔt} are the discretization points, and NΔt +
1 denotes the number of discretization points for the interval [0, T] that corresponds to the chosen time stepΔt. We denote
by M the number of MC repetitions used.

In Table 1, we show the risk of hitting the boundary S(t) based on a MC simulation (risk-MC) and based on the
evaluation of the cumulative distribution function G from Algorithm 1 (risk-fptd), and calculate the differences (diff). We
observe that our Algorithm 1 gives rather precise results already for large step sizes. This is beneficial when using it within
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T A B L E 1 Comparison of risk-MC and risk
values based on Algorithm 1

T 𝚫t M Risk-MC Risk-fptd Diff

4 ⋅ 3600 480 1000 0.086 0.1481 0.0621

10 000 0.0883 0.1481 0.0598

100 000 0.0901 0.1481 0.058

60 1000 0.124 0.1479 0.0239

10 000 0.1214 0.1479 0.0265

100 000 0.1201 0.1479 0.0278

1 000 000 0.1198 0.1479 0.0281

6 1000 0.131 0.1479 0.0169

10 000 0.1399 0.1479 0.008

100 000 0.1384 0.1479 0.0095

1 1000 0.149 0.1479 -0.0011

10 000 0.1409 0.1479 0.007

0.1 1000 0.156 0.1479a -0.0081

10 000 0.1435 0.1479a 0.0044

100 000 0.1463 0.1479a 0.0016

500 000 0.1461 0.1479a 0.0018

0.01 10 000 0.1472 0.1479a 0.0007

a Result based on step size Δt = 1 for capacity reasons

the optimization of large gas networks in Subsection 4.3. The MC-risk values are obtained using the plain MC method.
Note the rare event character of undersupply. This is even more pronounced in real-world settings where most likely the
chosen risk tolerance is 5% or lower instead of values around 15% in our test case. Therefore, a rare event simulation
technique as, for example, in Reference 27 in the context of power flow reliability, where the probability of an outage is
very small, might lead to more accurate risk estimates even for larger step sizes.

However, even with the plain MC method, we observe that the MC-risk and the risk-fptd values approach up to a
precision in the range of 103 indicating the correct functioning of the algorithm.

3.2 Reformulation of the cost function

We benefit from an analytical treatment of the cost function that has been set up in Reference 28 for the tracking type
costs C2 of (11). We use the slightly more general formulation of it allowing for arbitrary t0 instead of only t0 = 0:

E[(Yt − Su(t))2|Yt0 = yt0] = y2
t0

e−2𝜅(t−t0) + 2y0e−𝜅(t−t0) ∫
t

t0

e−𝜅(t−s)𝜅𝜇(s)ds +
(
𝜅 ∫

t

t0

e−𝜅(t−s)𝜇(s)ds
)2

+ 𝜎2

2𝜅
(1 − e−2𝜅(t−t0)) − 2y(t) ⋅

(
y0e−𝜅(t−t0) + 𝜅 ∫

t

t0

e−𝜅(t−s)𝜇(s)ds
)
+ y(t)2. (19)

It remains to extend the approach for the undersupply cost component C3 and the excess supply revenue component R.
To this end, we make use of the truncated normal distribution. The following definition is taken from Reference [49, p.81]
and adapted to our notation.

Definition 1. Let X be a random variable on a probability space (Ω,,P). We say that X follows a doubly truncated
normal distribution with lower and upper truncation points a and b, respectively (X ∼  b

a (𝜉, 𝜎2)) if its probability density
function is given by

𝜌X ,a,b(x) =

(
1
𝜎
𝜑

(
x − 𝜉

𝜎

)(
Φ
(

b − 𝜉

𝜎

)
− Φ

(
a − 𝜉

𝜎

))−1
)
1[a,b](x),
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where 𝜑 is the density, and Φ the cumulative distribution function of a standard normally distributed random variable.
We denote by 𝜉 and 𝜎2 the mean and the variance of the nontruncated normal distribution.

We call the distribution singly truncated from above respectively from below if a is replaced by −∞ respectively b is
replaced by ∞.

Proposition 1 (cf Reference [49, p81]). Let X ∼  b
a (𝜉, 𝜎2). Then, the expected value of X reads as

E[X] = 𝜉 +
𝜑
(

a−𝜉
𝜎

)
− 𝜑

(
b−𝜉
𝜎

)
Φ
(

b−𝜉
𝜎

)
− Φ

(
a−𝜉
𝜎

)𝜎. (20)

We use Equation (20) denoting the expectation of a truncated normally distributed random variable to reformulate
the expectations in C3 and R in (11). For C3, we obtain

E[(Su(t) − Yt)−|Yt0 = yt0] = ∫
∞

Su(t)

(Su(t) − y)𝜌Yt (y)dy

= Su(t) ⋅ (1 − ΦYt (Su(t))) − ∫
∞

Su(t)

y𝜌Yt (y)dy

= Su(t) ⋅ (1 − ΦYt (Su(t))) − ∫
R

y𝜌Yt ,Su(t),∞(y)dy ⋅ P(Yt > Su(t))

= Su(t) ⋅ (1 − ΦYt (Su(t))) −
(

mOUP(t) +
𝜌Yt (Su(t))

1 − ΦYt (Su(t))
√

VOUP(t)
)
⋅ (1 − ΦYt (Su(t))), (21)

where 𝜌Yt denotes the density, andΦYt denotes the cumulative distribution function of Y t, and 𝜌Yt ,Su(t),∞ denotes the density
of the singly truncated random variable from below by Su(t). The last equation results from formula (20) with a= Su(t),
and b=∞.

In a similar manner, by setting a=−∞, and b= Su(t) in (20), for the expectation in R, we have

E[(Su(t) − Yt)+|Yt0 = yt0] = Su(t)ΦYt (Su(t)) −
(

mOUP(t) −
𝜌Yt (Su(t))
ΦYt (Su(t))

√
VOUP(t)

)
ΦYt (Su(t)). (22)

With Equations (19), (21), and (22), we have a completely deterministic reformulation of our cost function (11) at hand
and denote it by OFdetReform(Yt, t0, yt0 , Su(t)). This reformulation of the cost function together with the reformulation of the
CC as state constraint (14) allows us to drop the OUP (7) as constraint in the optimization problem (12).

We are left with a completely deterministic PDE-constrained optimization problem, that is, (12) without the OUP
(7) as constraint and with (11) replaced by OFdetReform(Yt, t0, yt0 , Su(t)), and (10) replaced by (14). Hence, we are free to
apply a suitable method from deterministic PDE-constrained optimization of our choice to solve the problem. Here, we
use a first-discretize-then-optimize approach, and numerically calculate the discrete optimal solution based on discrete
adjoints. All together, we come up with the deterministic reformulation of the stochastic optimal control (SOC) problem
given by

min
u∈ad ∫

T

t∗
OFdetReform(Yt; t0; yt0 ; Su(t))dt subject to (1), (14), and/or (15). (23)

Note that the JCC (15) is still a probabilistic constraint, which can, however, be handled in a deterministic way by applying
Algorithm 1.

4 NUMERICAL RESULTS

We apply deterministic discrete adjoint calculus (see, eg, References 50-52) to solve the deterministically reformulated
SOC problem (23). Numerically, this is implemented in ANACONDA, a modularized simulation and optimization envi-
ronment for hyperbolic balance laws on networks that allows the inclusion of state constraints, which has been developed
in Reference 34. Note that the inclusion of state constraints is important for the inclusion of the SCC (14). Further note



GÖTTLICH et al. 13

T A B L E 2 Specification of
energy systems

Parameter setting (PS) Tele 4.2 GtP_a 4.3 GtP_b 4.3

Time horizon in hour T 4 12 4

Initial demand y0 1 0.7 0.8

Mean demand level (t in hour) 𝜇(t) 1 + sin(𝜋t) y0 + 0.3 sin( 1
2
𝜋t) 0.7 + 0.3 sin( 1

2
𝜋t)

Speed of mean reversion 𝜅 3 3 1

Intensity of demand fluctuations 𝜎 0.2 0.2 0.003

Dimension n 2 2 2

# of prescribed BCs left ml 1 1 1

# of prescribed BCs right mr 1 1 1

Functional relation of left BC Γe
a 𝜌e

2 p(𝜌e
1) p(𝜌e

1)

Functional relation of right BC Γe
b 𝜌e

1 𝜌e
2 𝜌e

2

Flux function f (𝜌e)
⎛⎜⎜⎝
−C−1𝜌e

2

L−1𝜌e
1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝜌e
2

p(𝜌e
1) +

(𝜌e
2)

2

𝜌e
1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝜌e
2

p(𝜌e
1) +

(𝜌e
2)

2

𝜌e
1

⎞⎟⎟⎠
CC active ICC [1.5, 4] [6, 12] [0, 4]

Risk level 𝜃 5% 5% 5%

that ANACONDA allows for regularization terms in the objective function to tackle finite horizon effects or oversteering
for coarse discretizations. Both effects can be reduced by penalizing control variations, which has been activated within
the computations in Sections 4.1 and 4.2 with penalty parameter 10−5. To be more precise about the applied schemes, we
use the IBOX scheme (3) to discretize the energy system (1), and the IPOPT solver53 as well as the DONLP2 method54,55

within ANACONDA for the optimization procedure.
We start this section with a validation of our numerical routine in Subsection 4.1 for a special case of (1), for which

we are able to derive an analytical solution of the SOC problem in case of an SCC. In Subsections 4.2 and 4.3, we apply
our numerical routine in case of three different parameter settings. The choices in the energy system (1), the uncertain
demand (7), and the CCs (10) stated in Table 2 correspond to the settings for the Telegrapher’s equation (Tele) in Section 4.2
and the ones for the gas-to-power system (GtP) in Section 4.3.

4.1 Validation via scalar linear advection with source term

For a numerical validation of our optimization routine, we consider the special case of the linear advection on one edge
with velocity 𝜆 ∈ R, and nonzero, linear source term s𝜌. As we only consider the dynamics on one edge, we omit the
dependence on the edge e. The latter equation results from (1) by setting the dimension n= 1, the number of prescribed
left, and right BCs to ml = 1, and mr = 0, ae = 0 and by choosing the functional relation of the left BC as Γa = id, where id
denotes the identity function, and by setting the flux function to f (𝜌) = 𝜆𝜌. It reads as

𝜕t𝜌 + 𝜆𝜕x𝜌 = s𝜌
𝜌(x, 0) = 𝜌0(x),
𝜌(0, t) = u(t), x ∈ [0, b], t ∈ [0,T]. (24)

This IBVP has the advantage that we are able to derive an analytical solution to the corresponding SOC problem (23) with
SCC (14) and can compare our numerical implementation against it.

Analytical solution of the linear advection with source term

To derive the analytical solution of the SOC problem, we first need the analytical solution of the IBVP (24). Therefore,
we divide the time interval [0, T] in two subintervals I0 = [0, x

𝜆
], and Ib = ( x

𝜆
,T] depending on the position x ∈ [0, b]. The
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solution on I0 is determined by the initial condition 𝜌0(x), and the solution on Ib is determined by the inflow control u(t)
acting as a left BC.

For the solution of (24) on Ib, we can change the role of x, and t as we deal with an empty system at the beginning.
Then, we can use the explicit solution of the IVP for the linear advection equation with source term (see Reference 56).
All together, the solution of (24) reads as

𝜌(x, t) =
⎧⎪⎨⎪⎩

est𝜌0(x − 𝜆t) t ∈ I0

es x
𝜆 u(t − x

𝜆
) t ∈ Ib

. (25)

The solution of (24) is illustrated graphically in Figure 2 based on the choices 𝜆 = 4, Δx = 0.1, Δt = Δx
𝜆

(exact
CFL-condition), T = 1, s=−1, 𝜌0(x) = sin(x), and u(t) = sin(10 ⋅ t). Note that the solution at t = 0 is the prescribed initial
condition. For x ∈ [0, 0.4), t = 0.1 is an element of Ib, that is, the inflow control determines the solution, and for x ∈ [0.4, 1],
t = 0.1 belongs to I0, which means that, thereon, the solution results from the shifted initial condition. The solution at
t = 0.275 depends only on the inflow control.

For the particular case of (24), we are able to derive an analytical expression for the optimal control for the particular
cost function OFdetReform with w1 =w3 =w4 = 0, and w2 = 1.

Theorem 3. Let the supply dynamics (1 ) be given by (24 ), and the uncertain demand by the OUP (7 ) with existing second
moment. Furthermore, set w1 =w3 =w4 = 0, and w2 = 1 in (11). Then solving (12) with (10) being an active SCC (10a) on the
whole interval [0, T] yields the optimal control

u∗(t) = mOUP(t) + vOUP(t)Φ−1(1 − 𝜃) ∀t ∈ [0,T − 1
𝜆
]. (26)

Proof. From Reference 28, we know that the optimal supply without imposing a CC in the linear advection setting (24)
with s= 0 for CM1 is given by the conditional expectation Su(t) = E[Yt+ 1

𝜆

|Y0]. As the source term, does not influence
the characteristics of the linear advection (see Equation (25)), we again have a constant time delay between inflow and
outflow. That enables us to still consider the solution pointwise in time. Due to the analytical solution (25), the optimal
supply is always reachable as long as Su(t) ∈ [umin, umax], where umin, and umax are lower and upper bounds on the control
(umin = 0, and umax =+∞ in (12)). Since we have for the chance constraint level

mOUP(t +
1
𝜆
) + vOUP(t +

1
𝜆
)Φ−1(1 − 𝜃) ≥ mOUP(t +

1
𝜆
) = E[Yt+ 1

𝜆

|Y0],

and the objective function is quadratic with vertex in (t,E[Yt+ 1
𝜆

|Y0]), the optimal control is obtained at the left boundary
of the feasible region at each point in time. ▪
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Numerical validation

We now validate our numerical procedure by considering the particular SOC problem given by

min
u(t),t∈[0,T],u∈L2 ∫

T

t∗
OFdetReform(Yt; t0; yt0 ; Su(t))dt subject to (10a), and (24), (27)

where we set w1 =w3 =w4 = 0, and w2 = 1 in (11). We consider the interval [0, 1]. For this setting, we derived the analytical
optimal control in Theorem 3 such that we can compare our numerical solution against the analytical one.

We activate the SCC within ICC = [0.6, 1]. The transport velocity is 𝜆 = 4 and we consider a rate for the source term
of s=−0.1. In the numerical implementation, we have included a nonnegativity constraint u(t)≥ 0 on the inflow con-
trol. Note however that this constraint does not affect our test case (see Figure 3). Therefore, a direct comparison of our
numerical solution against the analytical one is possible.

In our validation, we used the parameters y0 = 1, 𝜇(t) = 1 + 2 sin(8𝜋t), 𝜅 = 3 and 𝜎 = 0.1 for the OUP. In Figure 3,
we observe that the numerical optimal control is close to the analytical control (26). This finding suggests the correct
functioning of our routine. Note that the small spike at the activation time of the SCC in the numerical optimal control is
inherited from the jump in the analytical solution.

4.2 Linear system of hyperbolic balance laws: Telegrapher’s equation

Having seen that our numerical routine provides very good approximations to the analytical solution in the case of the
linear advection with source term, in this section, we now consider the Telegrapher’s equation on a network to model
power flow along transmission lines as it has already been done in References 32,57,58. This model is generic in the sense
that a steady-state consideration of the Telegrapher’s equation leads to the well-known power flow equations. We apply
our routine to the Telegrapher’s equation on a network here. The corresponding energy system is obtained by specifying
the quantities in the IBVP (1) according to the values in Table 2 according to the parameter setting Tele 4.2. In the following
assertions, we stick to the conventional notation of the Telegrapher’s equation and denote (q1e, q2e)T = (Ue, Ie)T , where
Ue is the voltage, and Ie is the current on edge e. We deal with a system of linear hyperbolic balance laws with linear
source terms, where we assume the same constant parameters R, L, C, G for resistance, inductance, capacitance, and
conductance on each edge. We endow the system with initial conditions (ICs) U0e, and I0e. On the bounded domain
X = [a, b], where a = min {ae | e ∈ }, and b = max {be | e ∈ }, we prescribe boundary conditions (BCs) vext(t) as an
externally given function to prescribe the voltage at the end of the line, and u(t) as the voltage control at the beginning of
the line, taking the role of the inflow control into the energy system.

𝜕tUe + C−1𝜕xIe = −GC−1Ue

𝜕tIe + L−1𝜕xUe = −RL−1Ie, (28a)

F I G U R E 3 Numerical vs analytical solution of (27)
[Colour figure can be viewed at wileyonlinelibrary.com]
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Ue(x, 0) = Ue
0(x), Ie(x, 0) = Ie

0(x), (28b)

Ue(a, t) = u(t), Ue(b, t) = vext(t). (28c)

Before we present our numerical results for the Telegrapher’s equation, we first address the question of well-posedness
of the system on one edge, and in a second step the well-posedness of the system in the network case as well as the
existence of an optimal control.

Note that the system (28a) is diagonalizable. Hence, we can rewrite it in characteristic variables denoted by 𝜉 =
(𝜉+, 𝜉−)T (see Reference 32). In case of lossless transmission (R=G= 0), we trace the system back to a decoupled system of
two classical linear advection equations by splitting the dynamics into left- and right-traveling waves with characteristic
speeds 𝜆− and 𝜆+. In the lossless case for one edge normed to a length of 1, the IBVP (28) reads as

𝜕t𝜉
+ + 𝜆+𝜕x𝜉

+ = 0,
𝜕t𝜉

− + 𝜆−𝜕x𝜉
− = 0,

𝜉+(x, 0) = 0, 𝜉− = 0,
𝜉+(0, t) = g+(t), 𝜉−(1, t) = g−(t),

where 𝜆
+− = +−(

√
LC)−1. Note that voltage U, and current I can be expressed in terms of the characteristic variables as

U(x, t) =
√

L
C
(𝜉+ − 𝜉−), and I(x, t) = 𝜉+ + 𝜉−.

As we deal with an empty system at the beginning, we can change the role of x, and t, and obtain for 𝜆+ > 0, and 𝜆− < 0

1
𝜆+

𝜕t𝜉
+ + 𝜕x𝜉

+ = 0,

1
𝜆−

𝜕t𝜉
− + 𝜕x𝜉

− = 0,

𝜉+(0, t) = g+(𝜉+(1, t)), 𝜉−(1, t) = g−(𝜉−(0, t)),

whose solution is

𝜉+(x, t) = 𝜉+(0, t − 1
𝜆
+ x) = g+(t − 1

𝜆+
x),

𝜉−(x, t) = 𝜉−(1, t − 1
𝜆
− x) = g−(t − 1

𝜆−
x).

By interchanging the role of x and t again (empty system at the beginning), the existence of a unique weak solution of (28)
with nonzero source term is ensured as a special case of the IVP for the system of hyperbolic balance laws with dissipative
source term studied in Reference 59. For further details, we refer the reader to Reference 56.

As we consider the dynamics given by the Telgrapher’s equation (28a) on each edge of our network, we need to
impose suitable coupling conditions at the inner nodes v ∈ int =  ⧵ (in ∪ out). Therefore, we define the set of all edges
connected to node v ∈  as

 v = {ev
1, … , ev

kin
} ∪ {ev

kin+1, … , ev
kin+kout

}.

We define the coupling function as

cv ∶ R
2×(|𝛿+(v)|+|𝛿−(v)|) → R

mc , c(qe, e ∈ 𝛿−(v) ∪ 𝛿+(v)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uev
1(bev

1 , t) − Uev
2(bev

2 , t)
⋮

Uev
1 (bev

1 , t) − Uev
kin (bev

kin , t)
Uev

1(bev
1 , t) − Uev

kin+1(aev
kin+1 , t)

Uev
1 (bev

1 , t) − Uev
kin+kout (aev

kin
+kout , t)∑

i∈𝛿−(v)
I(bi, t) −

∑
j∈𝛿+(v)

I(aj, t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for each vertex v ∈ int. Thereby, mc denotes the number of coupling conditions. Now, we simply state the coupling
conditions as cv = 0 for all v ∈ int.

Remark 1. The coupling conditions with respect to Uev
, ev ∈  v, state the equality of the voltages at the corresponding

boundaries of all edges with common node v. The coupling condition for Ie at node v models the conservation of the flow
of current.

We are interested in the existence of an optimal inflow control u(t) for the system (28). Similar problems have been
tackled in Reference 60. There, they derive the well-posedness of a system of nonlinear hyperbolic balance laws on a
network with edges represented by the interval [0,∞), and the existence of an optimal control minimizing a given cost
functional under certain conditions in the context of gas networks and open canals.

As our flow function f e(𝜉) = Λ𝜉 is linear with 𝜆− < 0 < 𝜆+, it satisfies the assumption (F) in Reference 60. Moreover,
our source term s(𝜉) = B is a constant function implying its Lipschitz property and its bounded total variation. Hence,
condition (G)from Reference 60 is also fulfilled. This gives us the well-posedness of our IBVP (28) on a network on the
positive half-line (see Reference 60, theorem 2.3).

We now turn our attention to the full SOC problem (23) in consideration. An existence result of an optimal control
in a gas network setting in the presence of state constraints has been derived in Reference 61, where the state constraints
enter the optimization problem via a barrier method. Note that the SCC (10a) for our SOC problem can be incorporated
as a state constraint. The existence of a minimizer in the presence of a JCC (10b) is more involved as a reformulation as
state constraint is no longer possible.

Therefore, we focus on the numerical analysis of the SOC problem (12) with particular focus on the influence of
different types of chance constraints.

Telegrapher’s equation with single chance constraint

We start with a single chance constraint (10a) in the Telegrapher’s setting on the network depicted in Figure 1 with
parameters specified in Table 2 (Tele 4.2), and consider the cost function (11) with w1 =w3 =w4 = 0, and w2 = 1. We con-
sider the network topology from Figure 1. The initial conditions are set to Ue(x, 0)= 1 on all edges and Ie(x, 0)= 1 for e1
and e7, Ie(x, 0)= 0.5 for e2, e3, e5 and e6 as well as Ie(x, 0)= 0 for e4. We consider [ae, be]= [0, 1] for edges e∈ {e1, … , e6}
and [ae, be]= [0, 2] for e7. We set the model parameters in (28) to R= 0.01 (resistance), L= 0.5 (inductance), C = 0.125
(capacitance), and G= 0.01 (conductance).

Our numerical results in Figure 4 show that the optimally available current I (purple solid line) at node vd matches
the expected value of the OUP (blue dashed line) till t = 1.5, and follows the course of the optimally available current
without SCC (black dotted line). For t ∈ ICC, the optimal available current matches the given CC-Level (turquoise solid
line). This goes along with our intuitive understanding: the optimal available current matches the 95%-confidence level.
This is because a higher supply results in an even higher tracking-type error in the cost function, and a lower supply
violates the SCC at the risk level of 5%. This numerical finding is in line with the theoretical result in Theorem 3.

F I G U R E 4 Optimal supply for Telegrapher’s
equation on network of Figure 1 [Colour figure can be
viewed at wileyonlinelibrary.com]
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4.3 Nonlinear system of hyperbolic balance laws: Gas-to-power system

The energy transition phase comes with a lot of challenges in its realization. Aiming for a high percentage of energy
provided from renewable energy sources, one has to somehow cope with the large volatility in the energy generation.
One possibility to react to fluctuations to still ensure a stable demand satisfaction are gas turbines. The possibility of
gas-to-power, that is, the withdrawal of gas from the gas system and its transformation to power, seems to be a promising
approach. A gas turbine can be booted to full performance within several minutes. Thus, a gas turbine might be appropri-
ate to overcome short-term bottlenecks in energy generation. Therefore, we finally focus on the modeling of gas-to-power
in the context of uncertain demands. We particularly pay attention how the withdrawal of gas affects the behavior of the
gas network. Hyperbolic balance laws can capture complex phenomena inherent to gas flow such as shocks or rarefac-
tion waves. We refer the reader to Reference 29 for more details. To account for the latter, we do not make a steady-state
assumption here (see also Reference 62), which clearly complicates the control task.

Using a time-dependent model for the gas flow, one major mathematical challenge is that its governing equations
are no longer a linear system of hyperbolic balance laws. The nonlinear gas transport can be described by the so-called
isentropic Euler equations. They can be obtained from Equation (1) by putting in the parameters of GtP_a 4.3 of Table 2:(

𝜌e

qe

)
t

+

(
qe

p(𝜌e) + (qe)2

𝜌e

)
x

=

(
0

g(𝜌e, qe)

)
, (29a)

𝜌e(x, 0) = 𝜌e
0(x), qe(x, 0) = qe

0(x). (29b)

Thereby, q1e is denoted by 𝜌e and describes the density, q2
e is identified with q and gives the flow, g a given source term

chosen as in Reference 63, and pe is the pressure on edge e, which is specified by the pressure law pe(𝜌e) = d2 ⋅ 𝜌𝛽 for all
edges e (with 𝛽 = 1 and d = 340 m

s
in the examples below). Note that the exponent 𝛽 = 1 means that we deal with the

isothermal Euler equations, a special case of the isentropic Euler equations. However, the analysis is not limited to this
choice and results for various pressure laws can for example be found in Reference 62.

To ensure the well-posedness of the system, we also need coupling conditions at the nodes. As in Reference 63, we
use pressure equality and mass conservation at all nodes at all times (Kirchhoff-type-coupling), that is, for all v ∈  and
for all t ∈ [0, T], we have

pv
in(t) = pv

out(t),∑
e∈𝛿−(v)

qe(t) =
∑

ẽ∈𝛿+(v)
qẽ(t).

To couple the gas network to the power system, we adapt the deterministic coupled gas-to-power-system described in
Reference 63, and extend it by an uncertain power demand given by the OUP (7). The adapted setting is sketched in
Figure 5. In our case, the power system is shrinked to only one node vd, where the aggregated uncertain demand is realized.
This is because our focus is on matching this demand Y t best possible by the power Su(t) provided by the gas-to-power
turbine, whereas the distribution within the power system is considered as a separate task.

The power demand is attained preferably by the gas-to-power conversion amount Su(t). The missing power Ỹ t needs
to be covered by an external power source.

The gas consumption to generate the power is described by a quadratic function

𝜖(Su(t)) = a0 + a1Su(t) + a2(Su(t))2.

As the amount of gas withdrawn from the network is our control, we have

u(t) = 𝜖(Su(t)).

Pressure bounds play an important role in gas networks. In our case, we add a lower pressure bound at node v5, which is

pv5(t) ≥ 43 (bar) (30)

in the first scenario below, appearing as an additional algebraic constraint in the SOC (23).
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F I G U R E 5 Coupled gas-to-power
system [Colour figure can be viewed at
wileyonlinelibrary.com]

There is a pressure drop in the gas network caused by the gas withdrawal for the conversion to power. It can be
compensated by a compressor station. The modeling of the compressor station is taken from Reference 63: the compressor
is modeled as edge e1 with time-independent in- and outgoing pressure pv0 and pv1 , and flux values qv0 , and qv1 through
the nodes v0 and v1. We assume that the compressor is run via an external power source only linked to the scenario in
Figure 5 via the cost component C1 in (11) accounting for operator costs of the compressor. This entails the flux equality
qv1 = qv0 . Note that the operating costs increase if the ratio pv1

pv0
increases. The compressor can be controlled by the gas

network operator. Therefore, a second control variable, that is, the control of the compressor station ucompr(t), is added to
the SOC problem (23) in terms of

ucompr(t) = pv1(t) − pv0(t).

It appears in the operating costs C1compr in the cost component C1 of OFdetReform. Moreover, costs occur for the gas
consumption to satisfy the power demand. These costs complete the deterministic costs C1 in (11) as

C1 = C1compr + 0.0001 ⋅ ∫
T

t0

u(t)dt.

For our purpose, it is important to note the deterministic nature of the compressor costs C1compr and the costs for the
gas consumption within the objective function (11).

Due to the active element in terms of the compressor station, we need to adapt two of the above coupling conditions
at v1 and v2 as

pv1
out(t) = pv1

in(t) + ucompr(t), and (31a)

qv2
out(t) = qv2

in(t) − u(t). (31b)

Equation (31aa) describes the gas coupling accounting for the possible pressure increase at v1. The mass conservation
at v2 except for the gas withdrawn for the gas-to-power conversion is modeled by Equation (31ab).

It might well be the case that the power demand cannot completely be served by the gas network due to pressure
bounds in combination with the maximal performance of the compressor station, or other physical or economical reasons.
In this case, the external power supplier comes into play. Hence, the difference Y t − Su(t) is covered by external power
supply.

http://wileyonlinelibrary.com
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Gas-to-power system with single chance constraint

For the numerical investigation of the impact of an SCC on the optimal amount of gas withdrawn from the network, we
consider the parameter setting GtP_a in Table 2. In the cost function (11) of the SOC (23), we consider a pure tracking
type functional by setting w1 =w3 =w4 = 0, and w2 = 1.

Our numerics refer to the setting schematically represented in Figure 5. The gas network is a subgrid of the GasLib-40
network, which approximates a segment of the low-calorific gas network located in the Rhine-Main-Ruhr area in
Germany.64 An extension of the gas network by a compressor station in a purely deterministic setting has already been
analyzed in Reference 63. Here, we present results including the compressor station in the presence of an uncertain
demand stream as well as an SCC. To the best of our knowledge, this has not been considered before. We choose a
discretization of dt = 900 seconds and dx ≈ 1 km, slightly adapted to the individual length of the edges. The specifica-
tions of the intervals [ae, be] for the edges are due to the network specifications in Reference 64 and can be found in
Reference [63, table 1] for the subgrid considered here.

In Figure 6, we see that the optimal amount of gas-to-power conversion (purple solid line) follows well the course of
the expected value of the OUP (7) (blue dashed line), and from t = 6 on matches the given SCC level (turquoise solid line)
until T = 12. This again coincides with the theoretical result for the linear advection with source term in Theorem 3.

In Figure 7, the necessity of the compressor station as an active element to keep the lower pressure bound is illustrated.
There is a pressure increase at the compressor station with time-shift to ensure the lower pressure bound at v5, which
is set to pv5 (t) ≡ 43 (bar) here. This behavior has already been observed and investigated in a deterministic setting in
Reference 63. As we would expect, this increase is particularly pronounced while the SCC is active. The lower bound on
the supply induces the need for a higher power level. This entails a higher gas withdrawal inducing a pressure drop in
the gas network. The latter drop needs to be compensated by the compressor station to keep the lower pressure bound at
the sink.
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F I G U R E 6 Optimal amount of gas-to-power
conversion [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 7 Pressure evolution [Colour figure can be viewed at wileyonlinelibrary.com]
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Gas-to-power system: Comparison of single and joint chance constraint

In a next step, we consider the general objective function (11) being able to depict real costs. To do so, we include operating
costs of the compressor station (C1), costs for external power supply (C3), as well as profit of selling excess power from
the gas conversion (R), and set w1 =w3 = 10−4, w2 = 0, and w4 = 10−6. Since the cost component C2 cannot directly be
interpreted as real costs, we set w2 = 0. To handle the terms in the cost function, we use the deterministic reformulation
of the additional cost components from Subsection 3.2. Furthermore, we impose a JCC on the interval ICC = [0, 4]. We
consider a discretization of dt = 60 seconds and dx ≈ 1 km, again slightly adapted to the individual length of the edges,
applied to the same subgrid of the GasLib-40 network64 as above. Note that this coarse discretization is possible due to
the chosen numerical scheme, the IBOX scheme (3). The coarse time discretization is possible due to the properties of
the IBOX scheme introduced in Subsection 2.1. The control grid differs from the one in the simulation. The amount of
gas-to-power conversion can be adapted every 15 minutes. We work with a lower pressure bound of pv5(t) ≡ 42.5. The
remaining parameters are stated as GtP_b in Table 2. In Figure 8, we compare the optimal amount of gas withdrawal for
the JCC with the one that would be obtained for an SCC at the same risk level of 𝜃 = 5% within the same interval ICC.
The gray scale shows the pointwise quantile levels of the OUP and the blue dashed line indicates the mean of the OUP.
Our numerical results reveal that the optimal supply for the JCC (red solid line) evolves in the same structural manner as
the SCC (purple dotted line) but at a higher level. This is in line with our intuitive understanding: the JCC acts pathwise
and thus represents a more restrictive constraint. Note that a path that once violated the constraint cannot be counted as
save path, that is, a path below the imposed CC, at any later point in time anymore. However, this is possible for an SCC.

We conclude our numerical investigation of the impact of chance constraints on the optimal supply with a Monte
Carlo (MC) investigation of the obtained optimal supply levels for the JCC. We introduce two time-dependent sets of
paths distinguishing those paths that at least once hit the prescribed supply boundary S(t) until time t from those that
stay below this level until time t, that is,

Ωhit(t) = {𝜔 ∈ Ω | ∃s ∈ [0, t] ∶ Ys(𝜔) > S(t)}, and
Ωsave(t) = {𝜔 ∈ Ω | ∀s ∈ [0, t] ∶ Ys(𝜔) ≤ S(t)}.

Note that Ωhit ∪ Ωsave = Ω. We denote the elements in Ωhit hit paths, and the elements in Ωsave save paths. In Figure 9A,
we depict the optimal supply level with JCC as the solid blue line. The confidence intervals of the OUP are shown in gray
scale. Note that they are calculated pointwise in time corresponding to an SCC. We investigate the running maximum
of the save paths (green dotted line) and over all paths (light blue solid line), which we define via the evaluations of the
numerical approximation Ŷj of the OUP obtained for M = 103 MC samples. This leads to

r(j) = max
{k∈1,… ,M}

Ŷj(𝜔k), j ∈ {1, … ,NΔt} and

rsave(j) = max
{k∈1,… ,M | Ŷj(𝜔k)≤S(tj)}

Ŷj(𝜔k), for j ∈ {1, … ,NΔt},

F I G U R E 8 Optimal amount of gas to power conversion with
JCC compared to SCC [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 9 MC analysis of
optimal supply with JCC [Colour figure
can be viewed at wileyonlinelibrary.com]

where NΔt + 1 is the number of time grid points. Note that the running maximum rsave(j) is only well defined if the index
set is nonempty. Furthermore, we depict the instances of the first passage time of each hit paths as black asterisks.

We observe that the running maximum rsave(t) stays close below the optimal supply S(t), whereas the running maxi-
mum rhit(t) evolves slightly above S(t). This can be interpreted in the following way: we minimize the expected quadratic
deviation between our supply and the demand at the market as a major component in our cost function. At the same
time, a guarantee that no undersupply occurs with a 95% probability is given. Hence, it appears logical that we control our
energy system in a way being close to this lower probabilistic undersupply bound to avoid costly oversupply occurrences.

With respect to the range where we expect the demand to evolve within (confidence intervals in gray scale), our opti-
mal supply with JCC appears by far too large. However, looking at the save distance dsave(j)= S(tj)− rsave(j) in Figure 9B,
we observe primarily values below 0.1 indicating a very limited buffer explaining the comparably large optimal supply.

5 CONCLUSION

In this work, we analyzed the optimal inflow control in hyperbolic energy systems subject to uncertain demand and
particularly focused on quantifying the related uncertainty. By imposing chance constraints, we were able to limit the risk
of an undersupply to a chosen probability level 𝜃. Thereby, we distinguished between SCCs and JCCs. Whereas it turned
out that there is a quantile-based reformulation of the SCC enabling us to include the SCC as a state constraint into the
optimization, the JCC case was more involved. We came up with a first passage time reformulation of the JCC, which we
solved by using an algorithm set up in the general context of Gauss-Markov processes.45

To show that our numerical procedure can be applied to real-world phenomena, we took a real-gas network from the
GasLib-40 library64 and calculated the optimal amount of gas withdrawn from the network to cover an uncertain power
demand stream described by an OUP in the presence of a JCC.

An interesting aspect for further research is the theoretical existence of an optimal control for the above analyzed
hyperbolic energy systems in the presence of a JCC.
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