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Abstract: 

Our study investigates firms’ internal digitalization as a crucial foundation for timely, data-

driven decision making. We evaluate the association between digital infrastructure and 

improved decision making in tax planning decisions to analyze if the benefits of digitalization 

expand beyond firms’ core business functions. The novel use of a survey that identifies 

European firms’ digital infrastructure over the period from 2005 to 2016 allows us to create an 

index of IT sophistication. Using this index, we extend prior approaches and observe the 

effectiveness of tax planning decisions in terms of a firm’s ability to exploit income shifting 

incentives. Our empirical analysis confirms the prediction that digitalized firms respond more 

efficiently to income shifting incentives. Further, we provide evidence that firms with 

sophisticated IT are more reactive to shocks in the income shifting incentive than non-digital 

firms. Our results suggest that internal digitalization allows firms to efficiently monitor and 

manage internal processes and to strategically price internal transactions. With this work, we 

are the first to document the association of digitalization and the performance of firms’ support 

functions. 
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1. Introduction

The intensive use of information technologies (IT) profoundly affects how firms produce and 

provide goods and services (Cardona et al. 2013; OECD 2015). However, not only the business 

models of multinational corporations (MNCs) become increasingly digital, also business 

processes, operations and the organization itself turn digital and transparent (Grover et al. 

2018). In this paper, we investigate whether highly digitalized firms1 make use of the abundance 

of data provided by digital infrastructure to improve the performance of their tax function in 

the sense that they take more effective tax planning decisions. We see this as an exemplary 

study shedding light on the question of how digital sourcing of intra-firm data affects decision 

making in integral parts of business functions.   

Prior research has shown that investments in IT and data-driven decision making 

positively impact firm performance (Brynjolfsson et al., 2011; Hitt et al., 2002). However, it 

remains understudied whether improved decision making capabilities can also expand beyond 

firms’ core business functions to support functions such as the tax department. We hypothesize 

that the use of sophisticated IT software, i.e., big data analytics, enables the tax department to 

monitor and manage global and complex value chains, business processes as well as internal 

capital markets more efficiently. To test our hypothesis, we focus on the relation between IT-

sophistication and tax-motivated income shifting because efficient income shifting has an 

immediate positive effect on after-tax returns and effective tax planning involves the decision 

rule of maximizing after-tax returns (Scholes et al. 2016). 

To observe firms’ internal digitalization, we employ novel survey data on the digital 

infrastructure of European firms. We create a unique dataset by combining this survey with 

unconsolidated financial data of multinational corporations from ORBIS. In a similar vein as 

1 In our context, when we refer to digitalized firms, we mean firms that use sophisticated IT software to monitor 

and manage their internal business processes and operations. 
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Bloom et al. (2012, 2016), we develop an IT sophistication index to identify the extent of a 

firm’s internal digitalization. Our IT sophistication index captures firms’ access to up to three 

key software solutions to digitally monitor and manage firm performance: Enterprise resource 

planning (ERP) software, database management systems (DBMS) and groupware software. 

Sophisticated IT infrastructure enables a comprehensive view of a firm’s operations and 

business processes and allows to efficiently and effectively monitor and manage multinational 

groups.  

Tax-motivated income shifting from high-tax to low-tax jurisdictions is considered the 

dominant method of tax departments to reduce the firm’s worldwide tax burden. To observe 

income shifting, the well-established approach of Huizinga and Laeven (2008) examines the 

relation between affiliate reported pre-tax profit and the income shifting incentive. The income 

shifting incentive is a weighted average of an affiliate’s tax rate differential to other affiliates 

within the corporate group.2 Hence, a positive value indicates that an affiliate has incentives to 

relocate income to other affiliates while a negative value indicates that an affiliate attracts 

income of other group’s affiliates. Consistent with prior literature, we find a negative relation 

between reported pre-tax profit and income shifting incentive. Considering a firm’s internal 

digitalization, we hypothesize that firms with higher IT sophistication better observe their 

income shifting incentive and can adjust the tax-planning decisions accordingly. For this 

reason, we extend the approach of Huizinga and Laeven (2008) by our IT sophistication index.  

Our initial graphical binned scatter analysis directly shows that within the group of firms 

that have a high incentive to shift income outwards, firms with high software sophistication 

report a relatively lower average profitability and vice versa. However, if firms have no 

incentive to relocate income, the level of software sophistication is irrelevant for firms’ average 

profitability. This suggests that firms with higher IT sophistication exploit their income shifting 

                                                 

2 See chapter 3.3. for a detailed description of the calculation and meaning of the income shifting incentive variable. 
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incentives more efficiently. Coherently, plotted regression lines for each group of IT 

sophistication indicate that the expected negative association between the income shifting 

incentive and firm profitability only exists for digitalized firms. The profitability of 

multinationals without sophisticated software seems to be relatively insensitive to the income 

shifting incentive measure.  

Regression analyses further corroborate these findings. The coefficient of interest is the 

interaction of the income shifting incentive variable and the IT sophistication index. We 

estimate an interaction coefficient of -0.240. The statistically significant coefficient implies that 

firms with more sophisticated IT infrastructure exhibit a stronger tax responsiveness of reported 

profits than firms without this infrastructure.  

Furthermore, we find that the found relation between IT sophistication and tax planning 

is even more pronounced for internationally dispersed firms. This finding makes sense as we 

expect those firms to be even more opaque. We also find a stronger relation for firms whose 

managers have accounting knowledge that helps them to exploit the provided information for 

international income relocation.  

To further strengthen our findings, we follow an alternative identification strategy and 

exploit quasi-random shocks to the income shifting incentive variable. As the income shifting 

incentive variable is a dynamic measure of the differential in corporate income tax rates a MNC 

faces in its jurisdictions of operations, we use this dynamic and look at large changes to the 

incentive variable caused by potentially exogenous corporate income tax rate changes. We 

expect that firms with a higher IT sophistication index are able to better observe the tax rate 

differentials and, thus, are more reactive to shocks in the incentive measure. Our results confirm 

this prediction. Furthermore, our results are robust across several specifications, such as 

controlling for firms’ usage of intellectual property, changing the structure of the income 



 4 

shifting incentive measure and analyzing different tax planning channels of multinational 

corporations.  

With this work, we contribute to the literature on the effects of information processing 

technologies on firm performance. Information and the ability to generate meaningful 

knowledge from data improve decision making and can be a key competitive advantage (Aral 

et al. 2012; Brynjolfsson et al. 2011; Grover et al. 2018; Hitt et al. 2002; Janssen et al. 2017). 

Our results indicate that digital technologies do not only affect core business functions but that 

they also improve the performance of supporting functions.  

To the best of our knowledge, our study is the first to focus on the technological abilities 

of multinational firms to monitor and manage internal processes of non-core business functions 

and to price internal transactions strategically. As Brynjolfsson and McElheran (2016) argue, 

firms with a more sophisticated digital infrastructure have more information to draw on, 

enabling a more holistic view of a group’s financial performance. Transferring this argument 

into the context of tax-related decision making, we agree with Scholes et al. (2016) that 

“effective tax planning requires the planner to consider the tax implications of a proposed 

transaction for all parties to the transaction. This is a global or multilateral, rather than a 

unilateral, approach”. Hence, digital infrastructure turns out to be a key enabler of effective tax 

planning decisions. In this vein, our analysis adds to the findings of Gallemore and Labro (2015) 

and McGuire et al. (2018), indicating that the income of firms with better information quality 

is more responsive to tax avoidance and income shifting. We go beyond what is known so far 

by investigating firms’ digital infrastructure as a crucial foundation for timely, data-driven 

decision making. Exemplarily, we evaluate the association between IT sophistication and 

improved decision making in tax planning decisions. According to Scholes et al. (2016), 

“effective tax planning involves considering the role of taxes when implementing the decision 

rule of maximizing after-tax returns.” In this regard, we evaluate the effectiveness of tax 
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planning decisions in terms of a firm’s ability to exploit income shifting incentives. Hence, we 

also contribute to the momentum gaining debate on the extent and determinants of tax-

motivated income shifting (Amberger and Osswald 2020; Blouin and Robinson 2019; Chen et 

al. 2019; De Simone et al. 2017; Markle 2016). 

The structure of our analysis is as follows. Chapter two provides the conceptual 

framework and develops our hypothesis. The third chapter lays out our data. Moreover, we 

develop an IT sophistication index and explain our methodological approach. In chapter four, 

we present our results and robustness tests. Chapter five concludes. 

2. Conceptual framework and hypothesis development 

Back in the day, firms’ internal digitalization began with the usage of telephones, which 

allowed firms to expand their business activities across multiple locations (Hardy 1980). Later, 

personal computers were available to firms that performed basic calculations and stored data. 

Nowadays, internal digitalization has become a key value driver. An extensive pool of IT3 is 

available to firms that, for example, automate operations, integrate and streamline processes or 

enable communication without borders and that reach from customer relationship management 

over production planning to forecasting financials. Simultaneously, the amount of available 

data that is available, both from internal processes and external stakeholders, and can be 

exploited by firms has outgrown any imaginable scale (McAfee and Brynjolfsson 2012). Thus, 

firms that promote internal digitalization and use the potential of IT should, ceteris paribus, be 

able to make better decisions, create a competitive advantage and ultimately increase firm 

value.  

Brynjolfsson et al. (2011) provide an overview of the theory of the relation between IT, 

better information and decision making. The authors demonstrate that the effective usage of IT 

                                                 

3 We follow Whisler & Leavitt, (1958) loosely and define IT as a system that rapidly processes large amounts of 

data and applies statistical and mathematical methods to support decision making. We also consider systems 

that enable the organization and communication of geographically dispersed groups of people as IT. 
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leads to better and more information that, in turn, allows for a more granular knowledge on the 

potential outcomes of decisions by reducing the noise between the potential results 

(Brynjolfsson et al. 2011). In addition, firms with sophisticated information processing 

techniques, such as digital infrastructure, are able to convert information into value at lower 

costs and with greater efficiency (Brynjolfsson et al. 2011; Galbraith 1974).  

Other research evaluates the effect of IT implementation on the performance of core 

business operations. Among others, Hitt et al. (2002) find a positive association between the 

adoption of an enterprise resource planning (ERP) system and profit margins, return on assets 

and other key performance indicators. The availability of an ERP system seems to be essential 

for improved decision making at the operational unit (Aral et al. 2012; McAfee 2002). 

Furthermore, prior literature shows that discovering valuable knowledge in databases, i.e., 

implementing big data analytics, can improve businesses’ efficiency, effectiveness, and 

productivity (Fayyad et al. 1996; Grover et al. 2018). Thereby, the positive impact of big data 

analytics on decision making quality depends on a firm’s capabilities to integrate big data 

analytics into the existing process, the existence of highly skilled employees to handle the data 

and technical systems to store and process the data (Janssen et al. 2017). A recent study of 814 

firms that use big data analytics indicates that the productivity of these firms is positively 

associated with their big data analytics capabilities (Müller et al. 2018). 

So far, research has provided evidence that the core business operations gain from the 

implementation of IT. However, it remains understudied whether the advantages also expand 

beyond firms’ core business operations. McAfee (2002) protocols, for example, that an ERP 

adoption at the operational level does not elicit major changes to a firm’s general technological 

infrastructure or business processes. However, since IT systems are often implemented as 



 7 

holistic solutions4 that connect operations with support functions, an increase in a firm’s IT 

sophistication should also improve decision making in support functions such as the tax 

department. Ultimately, the accuracy of this theory may be an empirical question.  

 One of the objectives of the tax department is to maximize firm value by exploiting tax 

planning opportunities (Robinson et al. 2010). Following Scholes et al. (2016), this “requires 

the planner to consider the tax implications of a proposed transaction for all parties to the 

transaction.” In multinational groups with global operations, this endeavor may be highly 

complex and opaque. IT usage could help reduce this complexity and make internal transfer 

prices, transactions, or capital flow better observable. In other words, and in line with 

Brynjolfsson et al. (2011), the usage of sophisticated IT might increase the information quality 

within the tax department5, improve processes between affiliated tax departments and, finally, 

lead to more successful decision making.  

Generally, in the context of business taxation, better decision making is associated with 

the maximization of after-tax profits (Robinson et al. 2010; Scholes et al. 2016). In order to 

analyze whether the usage of sophisticated IT leads to better decision making in the tax 

department, we measure better decision making in terms of a firm’s ability to exploit income 

shifting incentives by relocating income to tax-favored locations since this is directly linked to 

maximizing after-tax profits. This rationale leads to our first hypothesis:  

H1: Reported profits are more sensitive to an income shifting incentive for firms with a 

pronounced digital infrastructure than for firms without sophisticated IT. 

                                                 

4 For example, SAP, one of the leading information system providers, advertises its ERP system with the slogan: 

“Connect all departments and functions with a future-proof ERP system for resilience and operational 

excellence” https://www.sap.com/products/erp-financial-management.html (accessed: 07/28/20). 
5 In prior studies, McGuire et al. (2018) and Gallemore and Labro (2015) examine the relationship between the 

quality of internal information and tax planning. They find that higher internal information quality enables firms 

to engage in greater tax avoidance or shift more income. 
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Overall, internal digitalization enables a comprehensive view of the firm’s operations and 

business processes and allows to efficiently and effectively monitor and manage multinational 

groups. IT seems to have a positive impact on the decision making and performance of firms’ 

core operations. However, it is unclear whether the improved decision making capabilities also 

expand to support functions such as the tax department. To corroborate our first hypothesis and 

shed light on the effects of the digital transformation on business support functions, we test 

whether firms with detailed knowledge of their global activities react more directly to large 

shocks to the income shifting incentive measure.  

H2: In contrast to less digitalized firms, firms with sophisticated IT software directly 

adjust their reported profits in response to changes in the income shifting incentive. 

3. Identifying digital technology and estimation approach 

3.1. Data and sample 

We exploit the Aberdeen computer intelligence and technology database (CiTDB) to identify 

firms’ usage of sophisticated IT. The database comprises detailed survey data on the use of IT 

and covers establishments across twenty European countries. The Aberdeen group, which 

maintains the CiTDB mainly to support sales and marketing decisions of IT goods and services 

distributors, contacts more than 200.000 firms per year and questions high-level IT employees 

on the current status of a firm’s hardware and software usage. The CiTDB data is restricted to 

firms with at least 100 employees, which excludes newly founded firms and small firms. 

However, it is reasonable to assume that firms with at least 100 employees are the most relevant 

firms for our empirical analysis. The database has already been used in several empirical studies 

in the economics literature to measure different dimensions of digitalization at the micro-level 

(Bloom et al. 2012; 2014; 2016; Bresnahan et al. 2002; Brynjolfsson and Hitt 2003; Candel 

Haug et al. 2016; Forman et al. 2014; Mahr 2010; De Stefano et al. 2017). Yet, most of these 

prior studies use U.S. data that dates back at least ten years. Our European Aberdeen CiTDB 
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survey panel covers the years 2005 through 2016. To evaluate the relation of the firm’s 

digitalization degree and the performance of their non-core business functions, it is necessary 

to enhance the Aberdeen dataset with detailed financial information.   

We use unconsolidated financial data and ownership information from the Bureau van 

Dijk’s ORBIS database. All unconsolidated firm-level financial data for our sample from 2005 

to 2016 is subject to a basic cleaning procedure following Kalemli-Ozcan et al. (2015). We 

merge the Aberdeen CiTDB to the ORBIS database, based on unique firm names.6 As we want 

to investigate the cross-border activities of multinational firms, we keep only affiliates in our 

sample that belong to a MNC. We keep all firms of a MNC for which we find at least one 

affiliate with a concordance. We define MNCs as a group of affiliates with more than 50 percent 

ownership chains and at least one cross-border relation. We use this sample to calculate an 

intra-group income shifting incentive variable (C-Index) for each MNC’s affiliate.7 

The Aberdeen CiTDB contains survey responses for our variables of interest of up to 10 

percent of their address pool per year. Hence, after calculating the intra-group income shifting 

incentive for each affiliate, we only keep affiliates for which we observe a CiTDB survey 

response.8 We do so since anecdotal evidence suggests that the IT deployment can be very 

different between affiliates that belong to the same MNC.9 In line with our empirical 

specification, we exclude loss-making affiliates and exclude affiliates without sufficient data 

on our dependent variables. Our final sample consists of 144,796 firm-years, with 24,715 

unique firms that belong to 12,216 multinational groups. See Table 1 for an overview of the 

sample selection process and Table 2 for the geographic dispersion of our final sample. 

                                                 

6 A simple name matching procedure is the most appropriate method to link the CiTDB firms – due to a lack of a 

globally applicable identifier – to the ORBIS database. 
7 See chapter 3.3. for a detailed description of the calculation and meaning of the income shifting incentive variable 

(C-Index). 
8 If a firm is not part of the survey wave in a specific year, but the database provides information for preceding 

and subsequent years, we interpolate the available information. 
9 Our anecdotal evidence relies on consultation with SAP staff on the usage of SAP solutions within multinational 

groups. 
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Information on effective corporate income tax (CIT) rates are taken from the Taxation 

and Customs Union Directorate-General (TAXUD) database, the Oxford Center for Business 

Taxation (CBT) tax database and the EY’s Worldwide Corporate Tax Guides. Macro-level 

control data on the Gross Domestic Product (GDP), GDP per capita and unemployment rates 

are obtained from the World Bank’s World Development Indicators database.  

3.2. Measuring digitalization at the micro-level 

We develop a novel internal digitalization index – the IT sophistication index (IT index). Our 

IT index captures firms’ access to key software solutions. This stays in contrast to earlier studies 

that have only relied on the ratio of personal computers (PCs) to total employees as a measure 

of IT intensity (Bloom et al. 2012; Forman 2005; Hershbein and Kahn 2018).  

In light of the significant digital and technological developments over the last decade, the 

ratio of personal computers per employee no longer seems sufficient to measure firms’ degree 

of digitalization. The costs for personal computers have plummeted and the number of PCs at 

a site can easily outgrow the number of employees. To benefit from the era of digitalization, 

firms rather have to connect information, link processes and automate workflows. These 

capabilities require the usage of sophisticated software solutions. Recent studies have already 

tried to capture this dimension of digitalization by using the availability of different software 

types, provided by the CiTDB survey, as a proxy for the level of a firm’s degree of digitalization 

(Bloom et al. 2014; 2016; Candel Haug et al. 2016).  

We combine the CiTDB survey responses to the questions on the usage of three different 

key software solutions to measure a firm’s IT sophistication: The usage of an enterprise 

resource planning (ERP) system, a database management system (DBMS) and groupware 

software. These software solutions contribute to the internal digitalization of firms along 

different dimensions and are therefore well suited to be combined in a comprehensive index. 
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An ERP system is a software solution – or a combination of software solutions – that 

provides detailed information on a firm’s resources and activities. In general, ERP systems are 

adapted to the specific needs of a firm’s operations and designed to integrate, optimize and 

control different stages of a value creation process. Core features of the system usually help 

corporations to plan and monitor procurement, production, invoicing, human resources and 

financial reporting. ERP systems become increasingly important for all kinds of business 

models and are essential for the digitalization process of corporations (Haddara and Elragal 

2015; Hitt et al. 2002). In the last decade, ERP providers, such as SAP or Oracle, have 

developed applications that allow real-time analysis of processes and offer flexible solutions 

for small and large businesses.  

Database management systems provide access to databases. They enable the systematic 

storage of data, data maintenance and interaction with the data (Connolly and Begg 2014). A 

rigorous data management is essential for internal process evaluations and it is a critical 

infrastructure element to enable big data analytics (Grover et al. 2018). According to Grover et 

al. (2018), DBMS generate the principal value for big data analytics – that allows real-time 

business insights and the basis for well-reasoned decision making – by combining different 

existing and new data sources. A structured data collection and the pre-processing of data is 

also at the core of data mining processes (Fayyad et al. 1996; Hand et al. 2000).  

Groupware software enables close interaction and information exchange within an 

organization. Prior research has shown evidence on the reduced efficiency of indirect 

communication via digital channels compared to face-to-face interaction (Hightower and 

Sayeed 1995; McGrath and Hollingshead 1994; Shim et al. 2002). Yet, interactive groupware 

software, with communication tools such as videoconferencing, can create effective virtual 

teams that can process information fast and collaborate in a decision making process. Fast 

internet connections, mobile devices and social networks within firms can support the necessary 
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informal exchange via computer-mediated communication tools (Shim et al. 2002). Groupware 

software, such as Microsoft Teams, has shown to be a major facilitator of collaboration between 

dispersed team members in the 2020 Corona pandemic. 

We combine all survey responses on the availability of one of the three software 

categories to create an additive index that ranges from zero, no software is available at all in 

the firm, to three, the firm uses all software categories. Table 3 provides an overview of the 

dispersion of categories in our sample.10 A firm with no access to any of the software categories 

(indicator equals zero) is considered a non-digitalized corporation. Firms with an indicator 

value of three, i.e., using all software types, are classified as the most digitalized in our sample.  

3.3. Methodology  

To measure the impact of digitalization on improved decision making in a firm’s tax 

department, we employ the methodology of Hines and Rice (1994), later extended by Huizinga 

and Laeven (2008), which identifies MNCs’ profit shifting activities. The model assumes that 

the total income of an affiliate is the sum of true profits and shifted profits. While true profits 

are empirically impossible to observe, the model approximates the true income with the help of 

the traditional Cobb-Douglas production function as the return to invested capital, labor and 

productivity. This function is expanded by an income shifting incentive measure to estimate the 

responsiveness of the total income to shifting activities. The income shifting incentive measure 

is determined through the affiliate specific tax rate differential (Huizinga and Laeven 2008). 

Since digitalized firms can better monitor internal processes and communicate more 

productively, they should also better observe their available incentives to shift income for tax 

purposes. Hence, we analyze whether digitalized firms relocate income more efficiently. 

                                                 

10 We interpolate the IT sophistication index to account for years in which the firm was not part of the survey 

wave. Results remain robust if a non-interpolated IT sophistication index is used.  
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Exploiting this setting allows us to draw conclusions on whether digitalized firms make more 

tax-efficient decisions.  

The model is commonly applied in the profit shifting literature and extended by many 

authors to capture different profit shifting determinants (Amberger and Osswald 2020; Beer 

and Loeprick 2015; Chen et al. 2019; De Simone et al. 2017; Markle 2016). We follow this 

literature and enhance the model with a measure for firms’ level of IT sophistication:  

log(𝑃𝐿𝐵𝑇𝑖𝑡) = 𝛽1log⁡(𝑇𝐹𝐴𝑆)𝑖𝑡 + 𝛽2log⁡(𝑆𝑇𝐴𝐹)𝑖𝑡 + 𝛽3log⁡(𝑃𝑟𝑜𝑑)𝑖𝑡 + 𝛽4C𝑖𝑡 + 𝛽5D𝑖𝑡 +

𝛽6C𝑖𝑡 ∗ D𝑖𝑡 + 𝛽𝑗X𝑖𝑡 + 𝜂𝑡 + 𝜇𝑖𝑛𝑑 + 𝜗𝑐 + 𝜀𝑖𝑡 ,           (1) 

where i and t are indicators for the firm and year, respectively. The dependent variable is the 

natural logarithm of profit and loss before tax (PLBT) from unconsolidated financial accounts. 

In contrast to earnings before income and taxes (EBIT), PLBT captures profit shifting via 

transfer pricing and intracompany financing decisions. We do not limit our analysis to a specific 

profit shifting channel as a sophisticated digital infrastructure can increase firms’ abilities to 

relocate income in multiple dimensions.  

In line with prior literature, we use the natural logarithm of tangible fixed assets (TFAS) 

as a proxy for capital, the natural logarithm of employee compensation (STAF) as a proxy for 

labor and the median return on assets within industry, country and year as a proxy for 

productivity (Amberger and Osswald 2020; De Simone et al. 2017; Markle 2016).  

The variable C𝑖𝑡 is the income shifting incentive measure, as defined by Huizinga and Laeven 

(2008). The C-Index is the operating revenue (OPRE)-weighted average tax rate differential, of 

each firm to all other affiliates of a group, per year:  

   𝐶-𝐼𝑛𝑑𝑒𝑥𝑖 =
∑ 𝑂𝑃𝑅𝐸𝑘∗(𝐶𝐼𝑇𝑖−𝐶𝐼𝑇𝑘)
𝑛
𝑘≠𝑖

∑ 𝑂𝑃𝑅𝐸𝑘
𝑛
𝑘=1

,          (2) 

where i, k and n are indicators for a firm, related affiliates and the total number of affiliates per 

group and year, respectively. The variable OPRE is the operating revenue of the group’s 
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affiliates and 𝐶𝐼𝑇𝑖 (𝐶𝐼𝑇𝑘) is the effective corporate income tax rate applicable to a firm (related 

firms). A positive value of the C-Index indicates that a firm has incentives to relocate profits to 

other affiliates while a negative value indicates that an entity attracts profits of other group’s 

affiliates. By construction, the average C-Index of all affiliates of a MNC is zero. In robustness 

tests, we also use the CIT as an alternative income shifting incentive measure. 

D𝑖𝑡 is the IT sophistication index. The variable can range from zero to three. This 

modification of the standard Huizinga and Laeven (2008) model allows us to evaluate the 

heterogeneity of profit shifting between firms with different degrees of digitalization. We 

expect 𝛽6, our coefficient of interest, to be negative. A significant coefficient on the interaction 

term C𝑖𝑡 ∗ D𝑖𝑡 provides evidence that firms with sophisticated software respond differently to 

the income shifting incentive measure than less digitalized firms. In additional analyses, we 

include firm- and manager-characteristics to provide evidence on cross-sectional variation in 

an alternative specification.  

X𝑖𝑡 is a vector of j firm-specific control variables. We control for the natural logarithm of 

GDP, the natural logarithm of GDP per capita and the unemployment rate in the affiliate’s host 

country. Our regression includes a number of fixed effects. We include individual industry fixed 

effects, 𝜇𝑖𝑛𝑑, to control for any unobservable systematic differences between different 

industries and we include year fixed effects, 𝜂𝑡, to eliminate general economic shocks or any 

other time-trends unrelated to our research question. This specification maintains cross-

sectional variation in our sample for firms whose IT sophistication index level does not change. 

Finally, 𝜀𝑖𝑡 is an error term.  

As an alternative identification approach, we exploit the changes in firms’ C-Index 

variable to analyze the reactiveness of firms with a digital infrastructure to altered income 

shifting incentives. We expect that a higher degree of IT sophistication enables firms to better 
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adjust their reported income towards new income shifting incentives, i.e., to appropriately 

change decisions in response to an altered situation. 

4. Results 

4.1. Descriptive results and graphical evidence 

Before providing the results of our regression approach, we analyze our sample descriptively, 

focusing on our IT sophistication index. Table 4 depicts the descriptive statistics of our sample. 

The average firm has total assets of more than 123 million euro and profits before tax of more 

than 8.6 million euro during the sample period. On average, firms do not have an incentive to 

shift profits in either direction (C-Index of -0.001). The median firm has access to two software 

categories. As outlined in Table 3, the IT index is zero for less than 20 percent of our sample 

and in more than 25 percent of the firm-years, the index has the highest value of three. 

Furthermore, we descriptively plot firms’ profits measured as return on assets against 

firms’ income shifting incentives to relocate income. We use return on assets rather than 

absolute PLBT values to increase the descriptive comparability of firms. Figure 1 depicts the 

binned scatter plot following Giroud and Mueller (2019). The binned scatter plot clusters firms 

along the range of possible C-Indices into 15 groups and plots the average return on assets per 

group. It is immediately visible that if firms have no incentive to relocate income – i.e., affiliates 

have a C-Index close to zero – the level of software sophistication is irrelevant for firms’ 

average return on assets. However, if firms have a high incentive to relocate income outwards 

(positive C-Index), firms with high software sophistication, indicated by the green and yellow 

dots, have a low average return on assets, comparatively. On the other hand, firms in low-tax 

jurisdictions, with negative C-Index values, have a comparatively high profitability ratio if they 

have access to sophisticated software. The scatter plot indicates a negative association between 

the income shifting incentive and firm profitability only for digitalized corporations. The 
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profitability of multinationals without sophisticated software seems relatively insensitive to the 

income shifting incentive measure.  

4.2. Baseline Results 

Before testing our hypothesis, we replicate the basic Huizinga and Laeven (2008) regression to 

provide evidence on the well-established income shifting incentive sensitivity of reported 

profits in our sample of multinational firms. We estimate a negative and statistically significant 

coefficient for the C-Index in Column 1 of Table 5, which indicates that multinational 

corporations relocate income to low-tax jurisdictions. In terms of magnitude, our estimate of -

0.516 is slightly below the consensus estimate of approximately -0.8, but in line with estimates 

using samples of more recent time periods (Dharmapala 2014; Heckemeyer and Overesch 

2017). As expected, we also show that the estimates of the Cobb-Douglas coefficients, capital, 

labor and productivity, have a positive and statistically significant effect on firms’ profitability. 

Our estimates on the country control variables are, in general, also in line with the expected 

direction.  

Column two to four in Table 5 provide the baseline results for our first hypothesis. The 

coefficient of interest is the interaction of our income shifting incentive measure, C-Index, and 

the IT sophistication index. We estimate an interaction coefficient of -0.240. The statistically 

significant coefficient implies that firms with more sophisticated IT infrastructure exhibit a 

stronger tax responsiveness of reported profits than firms without this infrastructure. Figure 2 

provides graphical evidence on the estimated profitability at different levels of IT 

sophistications for firms with different incentives to relocate income. The upper panel shows 

firms with no or only one software category available at the firm. The estimates indicate a 

moderate tax sensitivity of reported profits that is not statistically significant for firms without 

any sophisticated software. As depicted in the lower panel, the profits of firms with more than 

two software categories at their site are more sensitive to the income shifting incentive measure. 
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A negative slope indicates that firms relocate income towards low-tax jurisdictions, which is 

an outcome of effective tax planning decisions. The slope is steepest for firms with the highest 

value of our IT sophistication index.  

To disentangle the different levels of our IT sophistication index more formally, we 

interact each index level separately with the income shifting incentive measure. We find a 

negative interaction coefficient for all index levels. The results are depicted in Table 5 Column 

3. The inclusion of a categorical variable relaxes the functional form assumption and allows us 

to estimate the tax sensitivity of reported profits for each index level separately. We again find 

that the estimated tax sensitivity of reported profits is highest for firms with access to all three 

software solutions.   

Finally, we replace the IT sophistication measure with a dummy variable that indicates if 

a firm has access to any software category. Column 4 shows that firms with an IT sophistication 

level of more than one shift significantly more income. The estimate indicates a combined semi-

elasticity of -0.655 (0.154 + -0.809 = -0.655). This implies that if the income shifting incentive 

decreases by ten percentage points, e.g., from 0.2 to 0.1, the natural log of profit and loss before 

tax increases by 6.55 percent. At the mean PLBT, this corresponds in absolute terms to an 

increase of reported profits by more than 500 million euro (from 8.528 million to 9.087 million 

euro).  

Interpreting differences in the C-Index can be difficult because many factors can 

influence the C-Index (De Simone et al. 2017). Anything else equal, a tax rate reduction of 

more than ten percentage points – as in the United States after the 2017 Tax Cut and Jobs Act 

or in Germany after the 2008 tax reform – has a considerable effect on the tax variable and 

reduces the incentive to relocate income towards low tax jurisdictions. We exploit the quasi-

random changes in firms’ C-Index variable to analyze the reactiveness of firms with a digital 

infrastructure to altered income shifting incentives and test our second hypothesis. Our setting 
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of European affiliates is ideal for this approach as many European member states changed their 

statutory tax rates during our sample period. Thus, the relative tax attractiveness of affiliates is 

subject to several exogenous shocks. We focus in our analysis on affiliates that experience the 

largest downward and upward income shifting incentive shock.  

The income shifting incentive shock is measured as the annual change of the affiliate 

specific C-Index. Firms in the lowest decile of this measure experience a large downward 

change of the C-Index. Thus, the affiliate’s group has an incentive to shift income to the affiliate 

and we expect those with more IT sophistication to obtain more income. In contrast, firms in 

the highest decile experience a large upward change of the C-Index. Therefore, the affiliate’s 

group has an incentive to lower the reported income of the affiliate. We expect that firms with 

high IT sophistication can react to this change in income shifting incentives more efficiently. 

Our results are depicted in Table 6. The first column analyzes the firms in the lowest shock 

decile, i.e., firms with a negative C-Index change. We interact the dummy that identifies firm-

years with the largest negative C-Index changes with our IT sophistication dummy. The 

coefficient estimate implies that digital firms react more to the income shifting incentive change 

with an upward adjustment of their reported income. Column two analyzes the group of firms 

with the largest positive C-Index changes. We find a significant negative interaction coefficient, 

which is in line with our expectations. This provides evidence that the tax department of digital 

corporations can incorporate altered circumstances better than the one of non-digital firms.   

Our results provide evidence on the association between IT sophistication and decision 

making for tax planning decisions. Digital infrastructure shows to be a crucial foundation for 

timely, data-driven decision making that extends even beyond core business functions to 

support functions such as the tax department. 
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4.3. Cross-Sectional Analysis 

We conduct several cross-sectional tests to exploit different firm-characteristics and 

characteristics of firms’ managers. First, the advantages of a high IT sophistication may be 

proportional to the complexity of a firm’s structure. We proxy the complexity of a firm with its 

international dispersion, which we measure as the ratio of countries in which the group has 

affiliates over the group’s total number of affiliates. Table 7 depicts the results. We provide 

evidence that the association between the income shifting incentive measure and IT 

sophistication is more relevant for internationally dispersed firms. I.e., the higher the 

international dispersion and the higher the degree of IT sophistication, the more negative is the 

association between reported income and the income shifting incentive measure to relocate 

income from high- to low-tax jurisdictions.  

Second, we investigate if firms with dedicated accounting managers exploit the additional 

information from the sophisticated IT infrastructure better. We expect that firms with a specific 

accounting department can better process the obtained information and have better knowledge 

of how to relocate income in line with international regulations. We use information on 

managers from Orbis to identify if a firm has an accounting manager. Columns 3 and 4 of Table 

7 show the results of this analysis. As expected, firms with an accounting manager have a more 

negative tax sensitivity for their reported profits. This relation is even stronger if the firm has 

access to sophisticated IT infrastructure.  

4.4. Robustness tests 

In additional robustness tests, we use a non-interpolated IT sophistication index, include 

additional control variables, change our income shifting incentive measure and change the 

dependent variable.  

First, we replicate our main table with a non-interpolated index to control for any potential 

bias by our interpolation. The results are depicted in Table 8. Even if we include only firms for 
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which we exactly know their survey response, all inferences remain as in our main results. Yet, 

we lose some observations, which lowers our statistical power.  

Second, in Table 9, we include the logarithm of intangible assets as an additional control 

variable in our regression. Several studies show that intangible assets, patents or research and 

development activities provide an opportunity to relocate income (De Simone et al. 2016; 

Dischinger and Riedel 2011). Intangible assets are, in general, difficult to value for tax purposes 

and their relocation or extensive license payments provide a channel to shift profits. The first 

two columns of Table 9 show that keeping the level of intangibles constant, we still find a 

significant negative coefficient for the interaction of the income shifting incentive variable, C-

Index, and our IT sophistication index. This confirms our evidence that firms with a digital 

infrastructure – independent of their use of intangible assets – tend to relocate income more 

aggressively. 

Third, we replace the income shifting incentive variable. The C-Index, which is a 

weighted tax rate differential, can be affected by many different factors (De Simone et al. 2017). 

Hence, we use the corporate income tax rate as an easy to interpret income shifting incentive 

measure. Higher corporate income taxes should be associated with lower reported profits if the 

income-shifting hypothesis holds. Indeed, our estimation in column 3 and 4 of Table 9 indicates 

that firms without sophisticated digital infrastructure do not seem to react to the CIT incentive. 

In contrast, firms with an IT sophistication index value of one or three do react.  

Finally, we replace our dependent variable, the logarithm of PLBT, with the logarithm of 

earnings before interest and taxes. This measure neglects debt shifting as an income relocation 

channel. The results in columns 5 and 6 of Table 9 focus only on the transfer pricing profit-

shifting channel and indicate that firms with sophisticated IT relocate income via transfer 

prices. However, our income-shifting estimate is slightly smaller than in our main results, which 

implies that firms use both income-shifting channels. 
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5. Conclusion 

Our paper investigates whether highly digitalized firms make use of the abundance of data 

provided by the digital infrastructure to improve the performance of their tax function in the 

sense that they take more effective tax planning decisions. We see this as an exemplary study 

shedding light on how digital sourcing of intra-firm data affects decision making in integral 

parts of business functions. Our hypothesis is based on the commonly accepted objective of 

corporations to maximize after-tax returns. This involves effective tax planning decisions by 

the tax department to minimize the global tax burden. We expect that the use of sophisticated 

IT enables the tax department to monitor and manage global and complex value chains, business 

processes as well as internal capital markets more efficiently. Hence, we apply the well-known 

Huizinga and Leaven (2008) income shifting model to evaluate if reported profits of 

multinationals with sophisticated IT are more sensitive to an income shifting incentive measure.  

We first develop a novel dataset that combines survey data on IT usage in European 

affiliates over the period 2005 to 2016 with rich financial data from the BvD ORBIS database. 

Our IT sophistication index captures firms’ access to up to three key software solutions – that 

capture three relevant dimensions of digitalization – to digitally monitor and manage firm 

performance: ERP software, DBMS and groupware software.  

Next, we provide descriptive evidence that if firms have a high (low) incentive to relocate 

income outwards (C-Index positive (negative)), firms with high software sophistication have a 

relatively lower (higher) average return on assets. This initial evidence is consistent with our 

empirical analysis. We estimate an interaction coefficient of -0.240. The statistically significant 

coefficient implies that firms with more sophisticated IT infrastructure exhibit a stronger tax 

responsiveness of reported profits than firms without this infrastructure. Following an 

alternative identification strategy, we exploit the changes in the C-Index variable to show that 

firms with a higher IT sophistication index react more strongly to quasi-random shocks in tax 
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planning incentives. The results are robust across several specifications, e.g., controlling for 

firms’ usage of intellectual property or narrowing down the possible tax planning channels of 

multinational corporations. 

Overall, our results provide evidence on the association between IT sophistication and 

decision making in a firm’s tax departments. We find that firms that employ sophisticated IT 

infrastructure make more efficient tax planning decisions. Digital infrastructure shows to be a 

crucial foundation for timely, data-driven decision making that extends even beyond core 

business functions to support functions such as the tax department.  
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FIGURES 

Figure 1: Descriptive Evidence – Binned scatterplot 

 

Notes: This figure shows a binned scatterplot. Firms at each digitalization level are grouped into 15 equally sized 

bins along the range of the C-Index. The colored dots depict the average return on assets (in decimals) within each 

bin at the bin’s average C-Index value (in decimals). Each color represents a different degree of digitalization. The 

plotted lines provide an estimate of the linear relation between the C-Index and the return on assets. It controls for 

firm- and industry-fixed effects.  
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Figure 2: Tax sensitivity at different IT index levels 

 

Notes: The Figure depicts the predictive margins of the logarithm of PLBT over the C-Index range for different 

levels of the IT Index. The vertical lines represent the 95% confidence interval.  
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TABLES 

Table 1: Sample selection procedure 

Step Reduction Remaining 

observations 

Available firm-years in ORBIS (2005-2016)  44,766,410 

Basic cleaning according to Kalemli-Ozcan (2015) -296,607 44,469,803 

Groups without any affiliate that has a CiTDB to ORBIS 

concordance 
-37,396,192 7,073,611 

Domestic groups -3,752,434 3,321,177 

Firms without CiTDB survey response (IT Index missing) -3,105,675 215,502 

Firms with losses -49,178 166,324 

Firms without cost of employees -13,088 153,236 

Firms without C-Index -4,644 148,592 

Firms without other control variables -3,796 144,796 

Notes: The sample selection procedure starts with the complete set of available firm-years in the BvD ORBIS 

database and the column reduction depicts the number of firm-years that is lost in each step. The column 

remaining observations depicts the remaining firm-years after each step, respectively. 
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Table 2: Sample geographical dispersion 

Country firm-years in percent firms in percent 

Austria 10,324 7.13% 1,506 6.09% 

Belgium 11,130 7.69% 1,493 6.04% 

Czech Republic 6,118 4.23% 1,065 4.31% 

Denmark 4,709 3.25% 723 2.93% 

Finland 4,242 2.93% 645 2.61% 

France 18,973 13.10% 3,517 14.23% 

Germany 21,136 14.60% 3,775 15.27% 

Hungary 3,306 2.28% 421 1.70% 

Ireland 1,582 1.09% 328 1.33% 

Italy 15,621 10.79% 2,448 9.90% 

Luxembourg 929 0.64% 165 0.67% 

Netherlands 2,408 1.66% 664 2.69% 

Norway 2,769 1.91% 500 2.02% 

Poland 2,748 1.90% 682 2.76% 

Portugal 3,495 2.41% 586 2.37% 

Slovak Republic 1,896 1.31% 354 1.43% 

Spain 14,054 9.71% 2,197 8.89% 

Sweden 1,991 1.38% 397 1.61% 

Switzerland 100 0.07% 13 0.05% 

United Kingdom  17,264 11.92% 3,236 13.09% 

Total 144,795   24,715   

Notes: The table depicts the country dispersion.  

 

 

Table 3: Index composition 

IT Index level firm-years in percent 

0 28,455 19.65% 

1 28,290 19.54% 

2 51,093 35.29% 

3 36,957 25.52% 

Total  144,795   

      

 



 

3
3
 

 

Table 4: Descriptive Statistics 

Variable  n Mean SD Min p25 Median p75 Max 

EBIT 144,728 6,080 75,371 -11,928,418 526 1,566 4,372 8,055,006 

PLBT 144,795 8,528 79,016 0 540 1,646 4,765 9,200,259 

Total Assets 144,795 123,400 1,740,354 11 9,522 21,871 56,527 303,805,821 

Tangible Assets 144,795 17,239 138,141 0 533 2,469 8,689 10,899,548 

Employee Compensation 144,795 12,955 265,206 0 2,713 5,500 11,481 96,241,793 

Ln(EBIT) 138,823 7.416 1.600 -3.244 6.426 7.435 8.432 15.902 

Ln(PLBT) 144,795 7.350 1.764 -6.908 6.292 7.406 8.469 16.035 

Ln(Tangible Assets) 144,795 7.608 2.165 -6.908 6.279 7.812 9.070 16.204 

Ln(Employee Compensation) 144,795 8.622 1.200 -4.711 7.906 8.613 9.348 18.382 

Productivity 144,795 0.053 0.027 -0.428 0.037 0.052 0.068 0.578 

Log(GDP per Capita) 144,795 1.360 2.439 -8.075 0.459 1.663 2.552 25.163 

Log(GDP) 144,795 8.491 4.227 2.493 5.723 7.719 9.400 26.094 

Unemployment 144,795 1.728 12.847 -132.543 0.000 0.195 1.784 132.130 

IT Index  144,795 1.667 1.061 0.000 1.000 2.000 3.000 3.000 

C-Index 144,795 -0.001 0.047 -0.262 -0.010 0.000 0.017 0.294 

CIT 144,795 0.296 0.062 0.125 0.250 0.310 0.344 0.403 

Notes: The table depicts the descriptive statistics of all relevant variables. All absolute financial values are stated in TEUR and the logarithm of it. Unemployment 

is stated in percent. The C-Index and the CIT are stated in decimals.  
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Table 5: Baseline results 

Dependent Variable: Log(PLBT)        

Panel 2005-2016         

  Baseline 
Continuous 

interaction 

Categorical 

interaction 

Dummy 

interaction 

Variable (1) (2) (3) (4) 

C-Index -0.516*** -0.111 0.153 0.154 

  (0.177) (0.267) (0.298) (0.298) 

IT Index   -0.003     

    (0.007)     

IT Index = 1     -0.002   

      (0.018)   

IT Index = 2     0.004   

      (0.018)   

IT Index = 3     -0.010   

      (0.020)   

IT available       -0.002 

        (0.017) 

C-Index x IT 3 Index   -0.240**     

    (0.119)     

C-Index x IT Index = 1     -0.976***   

      (0.343)   

C-Index x IT Index = 2     -0.564*   

      (0.323)   

C-Index x IT Index = 3     -1.023***   

      (0.364)   

C-Index x IT available       -0.809*** 

        (0.290) 

Log(Tangible Assets) 0.156*** 0.156*** 0.156*** 0.156*** 

  (0.006) (0.006) (0.006) (0.006) 

Log(Employee Compensation) 0.686*** 0.686*** 0.686*** 0.686*** 

  (0.011) (0.011) (0.011) (0.011) 

Productivity  4.468*** 4.455*** 4.448*** 4.450*** 

  (0.346) (0.346) (0.346) (0.346) 

Log(GDP per Capita) 0.089*** 0.090*** 0.089*** 0.090*** 

  (0.027) (0.027) (0.027) (0.027) 

Log(GDP) 0.007 0.007 0.007 0.006 

  (0.008) (0.009) (0.009) (0.008) 

Unemployment -0.006*** -0.006*** -0.006*** -0.006*** 

  (0.002) (0.002) (0.002) (0.002) 

Year Fixed Effects x x x x 

Industry Fixed Effects x x x x 

Observations 144,796 144,796 144,796 144,796 

Number of firms 24,715 24,715 24,715 24,715 

R2 (within) 0.349 0.349 0.349 0.349 
Notes: This table presents the regression results for the Huizinga and Leaven (2008) income-shifting model for 

144,769 firm-years of European affiliates of multinational corporations. Columns two to three include a novel 

measure for the digitalization of firms (IT Index). IT Index is determined as an additive index that captures if a 

firm has access to an ERP software, a database management system (DBMS) or groupware software. IT 

available is a dummy that indicates if a firm has access to any of the software categories. It is based on a yearly 

survey over the period 2005 to 2016.  The dependent variable is the logarithm of profits before tax. All 

continuous variables are winsorized at the 1 and 99 percentile. We report standard errors clustered by firm in 

parentheses. ***, **, * denote statistical significance at the 1 percent, 5 percent, and 10 percent level, 

respectively.   
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Table 6: Reactiveness of digitalized firms on income shifting incentive shock  

Dependent Variable: Log(PLBT)     

Panel 2005-2016     

  
Firm is in the lowest decile 

of C-Index changes 

Firm is in the highest decile 

of C-Index changes 

Variable (1) (2) 

Decile Dummy 0.01 0.15*** 

  (0.03) (0.03) 

IT Index -0.01 0.01 

  (0.02) (0.02) 

Decile Dummy x IT Index 0.09*** -0.07** 

  (0.03) (0.03) 

Log(Tangible Assets) 0.16*** 0.16*** 

  (0.01) (0.01) 

Log(Employee Compensation) 0.69*** 0.69*** 

  (0.01) (0.01) 

Productivity  4.64*** 4.74*** 

  (0.35) (0.35) 

Log(GDP per Capita) 0.08*** 0.08*** 

  (0.03) (0.03) 

Log(GDP) 0.00 0.00 

  (0.01) (0.01) 

Unemployment -0.01*** -0.01*** 

  (0.00) (0.00) 

Year Fixed Effects x x 

Industry Fixed Effects x x 

Observations 138,345 138,345 

Number of firms 24,125 24,125 

R2 (within) 0.350 0.350 
Notes: This table presents the results for the changes in firm profitability in response to income shifting 

incentive shocks for all 138,345 firm-years of European affiliates of multinational corporations that experience 

a C-Index shock. The first two columns include a dummy that takes the value of one if the affiliate experiences 

a negative C-Index shock that is in the lowest decile of C-Index changes and zero otherwise (Decile Dummy). 

Comparably, columns three and four include a dummy equal to one if the firm experiences a positive C-Index 

shock in the highest decile of C-Index changes and zero otherwise (Decile Dummy). Columns two and four 

include an interaction of the Decile Dummy with a dummy that indicates if a firm has access to a specific 

software category that comprises our novel measure for the digitalization of firms (IT Index). It is based on a 

yearly survey over the period 2005 to 2016. The dependent variable is the logarithm of profits before tax. All 

continuous variables are winsorized at the 1 and 99 percentile. We report standard errors clustered by firm in 

parentheses. ***, **, * denote statistical significance at the 1 percent, 5 percent, and 10 percent level, 

respectively.   
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Table 7: Cross-sectional analysis 

Dependent Variable: Log(PLBT) 

Panel 2005-2016         

  Country dispersion Accounting department 

Variable (1) (2) (3) (4) 

C-Index -0.105 -0.118 -0.139 -0.109 

  (0.258) (0.267) (0.239) (0.269) 

Characteristic -0.609***   0.048***   

  (0.031)   (0.017)   

C-Index x Characteristic -0.666   -0.743**   

  (0.774)   (0.323)   

IT Index   -0.002   -0.001 

    (0.007)   (0.007) 

C-Index x IT Index   -0.073   -0.108 

    (0.146)   (0.140) 

C-Index x IT Index x Characteristic   -0.750**   -0.275* 

    (0.381)   (0.152) 

Log(Tangible Assets) 0.161*** 0.156*** 0.156*** 0.156*** 

  (0.006) (0.006) (0.006) (0.006) 

Log(Employee Compensation) 0.663*** 0.686*** 0.686*** 0.687*** 

  (0.011) (0.011) (0.012) (0.012) 

Productivity  4.484*** 4.473*** 4.383*** 4.440*** 

  (0.344) (0.346) (0.350) (0.349) 

Log(GDP per Capita) 0.074*** 0.088*** 0.085*** 0.088*** 

  (0.027) (0.027) (0.027) (0.027) 

Log(GDP) -0.007 0.007 -0.002 0.004 

  (0.008) (0.009) (0.009) (0.009) 

Unemployment -0.005** -0.006*** -0.007*** -0.006*** 

  (0.002) (0.002) (0.002) (0.002) 

Year Fixed Effects x x x x 

Industry Fixed Effects x x x x 

Observations 144,796 144,796 142,945 142,945 

Number of firms 24,715 24,715 24,306 24,306 

R2 (within) 0.357 0.349 0.348 0.348 
Notes: This table presents the regression results for the Huizinga and Leaven (2008) income-shifting model for 

144,769 (142,945) firm-years of European affiliates of multinational corporations. Column one includes a 

measure for the country dispersion of firms. It is defined as the number of countries a firm is active in over the 

total affiliates of the group. Column three includes a dummy that determines if a firm has a dedicated accounting 

manager. In columns two and four, the firm-specific characteristics are interacted with a novel measure for the 

digitalization of firms (IT Index). IT Index is determined as an additive index that captures if a firm has access 

to ERP software, a database management system (DBMS) or groupware software. IT available is a dummy that 

indicates if a firm has access to any of the software categories. It is based on a yearly survey over the period 

2005 to 2016.  The dependent variable is the logarithm of profits before tax. All continuous variables are 

winsorized at the 1 and 99 percentile. We report standard errors clustered by firm in parentheses. ***, **, * 

denote statistical significance at the 1 percent, 5 percent, and 10 percent level, respectively.   
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Table 8: Robustness I – Non-interpolated IT index 

Dependent Variable: Log(PLBT)      

Panel 2005-2016       

        

Variable (1) (2) (3) 

C-Index -0.276 0.024 0.026 

  (0.259) (0.295) (0.295) 

IT Index 0.002     

  (0.007)     

IT Index = 1   -0.018   

    (0.021)   

IT Index = 2   0.005   

    (0.018)   

IT Index = 3   -0.001   

    (0.020)   

IT available     -0.002 

      (0.017) 

C-Index x SW 3 Index -0.194*     

  (0.116)     

C-Index x IT Index = 1   -1.132***   

    (0.389)   

C-Index x IT Index = 2   -0.528   

    (0.322)   

C-Index x IT Index = 3   -0.889**   

    (0.359)   

C-Index x IT available      -0.775*** 

      (0.294) 

Log(Tangible Assets) 0.156*** 0.156*** 0.156*** 

  (0.006) (0.006) (0.006) 

Log(Employee Compensation) 0.684*** 0.684*** 0.684*** 

  (0.012) (0.012) (0.012) 

Productivity  4.565*** 4.556*** 4.557*** 

  (0.349) (0.349) (0.349) 

Log(GDP per Capita) 0.099*** 0.098*** 0.099*** 

  (0.027) (0.027) (0.027) 

Log(GDP) 0.003 0.003 0.003 

  (0.008) (0.008) (0.008) 

Unemployment -0.005** -0.005** -0.005** 

  (0.002) (0.002) (0.002) 

Year Fixed Effects x x x 

Industry Fixed Effects x x x 

Observations 121,385 121,385 121,385 

Number of firms 24,520 24,520 24,520 

R2 (within) 0.350 0.350 0.350 
Notes: This table presents the regression results for the Huizinga and Leaven (2008) income-shifting model 

for 121,385 firm-years of European affiliates of multinational corporations. It includes a novel measure for the 

digitalization of firms (IT Index). IT Index is determined as an additive index that captures if a firm has access 

to ERP software, a database management system (DBMS) or groupware software. IT available is a dummy 

that indicates if a firm has access to any of the software categories. It is based on a yearly survey over the 

period 2005 to 2016. Index values are not interpolated over time in this table. The dependent variable is the 

logarithm of profits before tax. All continuous variables are winsorized at the 1 and 99 percentile. We report 

standard errors clustered by firm in parentheses. ***, **, * denote statistical significance at the 1 percent, 5 

percent, and 10 percent level, respectively.    
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Table 9: Robustness II – Alternative control and dependent variables 

Panel 2005-2016             

  Controlling for intangibles 
CIT as income shifting 

incentive 
Log EBIT as dependent 

Variable (1) (2) (3) (4) (5) (6) 

Income shifting incentive 0.555* 0.908*** -1.186*** -0.830*** -0.268 -0.046 

  (0.312) (0.348) (0.221) (0.244) (0.248) (0.272) 

IT Index -0.016**   0.015   -0.009   

  (0.007)   (0.028)   (0.006)   

IT Index = 1   0.007   0.271***   0.004 

    (0.020)   (0.082)   (0.016) 

IT Index = 2   -0.006   0.121   -0.003 

    (0.020)   (0.078)   (0.016) 

IT Index = 3   -0.042*   0.135   -0.025 

    (0.022)   (0.088)   (0.018) 

Income shifting incentive x  

IT Index -0.270**   -0.059   -0.140   

  (0.135)   (0.089)   (0.108)   

Income shifting incentive x  

IT Index = 1   -1.118***   -0.898***   -0.724** 

    (0.402)   (0.258)   (0.315) 

Income shifting incentive x  

IT Index = 2   -0.827**   -0.371   -0.380 

    (0.375)   (0.244)   (0.295) 

Income shifting incentive x  

IT Index = 3   -1.101***   -0.459*   -0.656** 

    (0.416)   (0.276)   (0.331) 

Log(Intangible Assets) 0.055*** 0.055***         

  (0.004) (0.004)         

Log(Tangible Assets) 0.150*** 0.150*** 0.155*** 0.155*** 0.173*** 0.173*** 

  (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) 

Log(Employee Compensation) 0.690*** 0.691*** 0.689*** 0.689*** 0.687*** 0.688*** 

  (0.014) (0.014) (0.011) (0.011) (0.010) (0.010) 

Productivity  5.202*** 5.199*** 3.712*** 3.715*** 4.911*** 4.906*** 

  (0.379) (0.379) (0.346) (0.346) (0.312) (0.312) 

Log(GDP per Capita) -0.015 -0.016 0.101*** 0.101*** -0.044* -0.045* 

  (0.030) (0.030) (0.027) (0.027) (0.024) (0.024) 

Log(GDP) -0.016* -0.015 0.037*** 0.036*** 0.003 0.003 

  (0.009) (0.009) (0.010) (0.010) (0.008) (0.008) 

Unemployment -0.008*** -0.008*** 0.000 0.000 0.001 0.001 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

Year Fixed Effects x x x x x x 

Industry Fixed Effects x x x x x x 

Observations 108,738 108,738 149,279 149,279 145,611 145,611 

Number of firms 19,838 19,838 25,151 25,151 24,616 24,616 

R2 (within) 0.369 0.369 0.348 0.348 0.398 0.398 

Notes: This table presents the regression results for the Huizinga and Leaven (2008) income-shifting model for 

European affiliates of multinational corporations. The first two columns control for intangibles assets. Column 

three and four use the corporate income tax rate (CIT) as the income shifting incentive measure. Columns five 

and six use the logarithm of earnings before interest and taxes as the dependent variable. All columns include a 

novel measure for the digitalization of firms (IT Index). IT Index is determined as an additive index that captures 

if a firm has access to an ERP software, a database management system (DBMS) or groupware software. It is 

based on a yearly survey over the period 2005 to 2016.  The dependent variable in the first four columns is the 

logarithm of profits before tax. All continuous variables are winsorized at the 1 and 99 percentile. We report 

standard errors clustered by firm in parentheses. ***, **, * denote statistical significance at the 1 percent, 5 

percent, and 10 percent level, respectively.   
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