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Summary

Comprehensive global decarbonization will require that transportation services cease to rely

on fossil fuels. Here we develop a generic life-cycle cost model to address two closely related

questions central to the emergence of sustainable transportation: (i) the utilization rates

(hours of operation) that rank-order alternative drivetrains in terms of their cost, and (ii)

the cost-efficient share of clean energy drivetrains in a vehicle fleet of competing drivetrains.

Calibrating our model framework in the context of urban transit buses, we examine how the

comparison between diesel and battery-electric buses varies with the specifics of the duty

cycle (route). We find that even for less favorable duty cycles, battery-electric buses will

entail lower life-cycle costs once utilization rates exceed 20% of the annual hours. Yet, the

current economics of that particular application still calls for a one-third share of diesel

drivetrains in a cost-efficient fleet.

Keywords: clean energy vehicles, transportation services, life-cycle cost, fleet optimization
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1 Introduction

The global quest for energy decarbonization is increasingly focused on the transportation

sector1–4. The impending climate crisis, in combination with concerns about local air pollu-

tion, provide a growing impetus to replace internal combustion engines with zero-emission

drivetrains5;6. The most economical transition to clean energy drivetrains, e.g., battery-

power or hydrogen, providing either passenger or cargo transportation services remains a

topic of intense debate7–9.

The central question addressed in this paper is how a fleet operator should combine

alternative drivetrains with different environmental and economic characteristics so as to

meet a given load profile of transportation services in a cost efficient manner. This question

has parallels to the task of efficiently combining alternative power generation technologies,

including fossil fuel-based and renewable power plants, to satisfy a given electricity load

profile10;11.

Our model framework for identifying cost-efficient vehicle fleets relies on a cost metric

called the Levelized Cost per X-mile (LCXM). It reflects the life-cycle cost per unit of a

transportation service, such as a ton- or passenger-mile delivered, and extends, as discussed

in detail in the next section, the Total Cost of Ownership (TCO), a metric that has been

widely used in transportation studies12–14. Our model is predicated on the notion that

operating costs are driven by the hours of vehicle operation. This time-based approach allows

a planner to capture not only distance traveled but also other duty cycle characteristics like

vehicle speed and stop frequency, all of which have differential cost implications15;16. The

LCXM metric is shown to yields the cut-off point in terms of annual operating hours that

make one drivetrain more economical than another. These cut-off points, in turn, provide

the decision criterion for choosing the cost efficient share of a particular drivetrain in a fleet

that is composed of multiple drivetrains and is to meet a given service load profile.

We calibrate and apply our model framework in the context of urban transit buses. Re-

lying on micro-data from Stanford University’s transportation department, we specifically

contrast the life-cycle cost of battery-electric buses with that of diesel buses. While the

former entail a substantially higher acquisition cost, they also result in a lower life-cycle cost

compared to diesel-powered buses, provided the annual utilization rate is at least 15% of

the available annual hours, with the exact cut-off depending on the characteristics of the

particular route served. As a reference point, the average annual utilization rate for transit
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buses in the U.S. is close to 30%17.

In the context of Stanford’s load profile for bus services, we find that currently the share

of electric vehicles in a cost-efficient bus fleet varies between one and two thirds, depending

on the routes to be served. The overall implication is that while ongoing trends favor

increasing reliance on electric buses within a fleet, conventional drivetrains remain part of

a cost-efficient fleet in the California environment for now. We conclude with a sensitivity

analysis that highlights the dependence of our findings on key model parameters pertaining

to public policy and general economic trends.

2 Cost-Efficient Vehicle Fleets

We begin with a unit cost measure that is a direct analogue of the familiar Levelized Cost

of Electricity (LCOE). This metric serves as the relevant benchmark for comparing the cost

of alternative power generation sources, such as natural gas versus solar PV. Expressed in

dollars per kilowatt hour (kWh), the LCOE is conceptualized as the average unit revenue

that an equity investor would require for all kilowatt hours produced to break-even on a

particular investment18. This unit revenue must cover all operating expenses, repay the

project debt, and attain an appropriate return for equity investors19;20.

For a generic transportation service that carries physical objects across locations, our

measure of output will generally be ‘X-miles’. In the context of cargo transports, this

measure frequently becomes ton-miles, i.e., if on average z tons of cargo are transported for

y miles, the vehicle delivers z · y ton-miles. Similarly, in the context of passenger travel,

the corresponding measure could be passenger-miles. For passenger cars, the appropriate

measure may simply be miles if the focus is on transporting only the driver of the vehicle.

Our model is predicated on the notion that the service delivered by the vehicle and the

operational costs incurred are driven by the total time the vehicle is in operation. For a

given T -year planning horizon, we denote by ~h ≡ (h1, ..., hT ) the usage profile of a vehicle,

where 0 ≤ hi ≤ 8, 760 is the utilization in hours of operation in year i (a list of symbols and

acronyms is provided in Supplementary Table 1). The number of miles traveled in year i is

then given by the average velocity in miles/hour, a(θ), multiplied with hi. Velocity depends

on the duty cycle, θ, a multi-dimensional parameter that captures the relevant performance

requirements in a specific transportation context. For transit buses, for instance, the duty

cycle reflects the specifics of the route, including the number of bus stops per mile, the
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ambient temperature, and the topography of the route.

The number of passengers or tons of cargo transported in any given year is also determined

by the utilization in that year. Allowing for the possibility of a non-linear relation, we let

the function bi(hi|θ) represent the average number of passengers or tons transported if the

vehicle travels a(θ) · hi miles in year i. The total number of X-miles then becomes:

Xi(hi|θ) = bi(hi|θ) · a(θ) · hi.

Turning to cost components, let v denote the initial acquisition expenditure for the vehicle.

At the end of its useful life, the vehicle may yield a salvage value λ · v, with 0 < λ < 1. In

terms of annual operating costs, we distinguish between variable and fixed costs in year i.

The variable component, wi(hi|θ), varies with the hours of operation in year i. Fixed costs,

Fi(θ), are by definition usage-independent. Applicable examples for variable operating costs

include fuel, spare parts, and the prorated salary for the driver. In contrast, insurance,

registration, and certain maintenance activities reflect fixed costs.

Aggregation of the different cost components into a single unit cost number requires a

“levelization” factor given by the discounted number of X-miles that the vehicle travels over

its useful life. Let r denote the applicable cost of capital that investors require for a project,

with γ = 1
1+r

denoting the corresponding discount factor. We then define the levelization

factor in terms of discounted future X-miles as:

Y (~h|θ) =
T∑
i=1

Xi(hi|θ) · γi.

A final cost category stems from corporate income taxes and a depreciation tax shield

that a firm or individual may be subject to. As shown in Methods, this cost category can be

summarized, including the potential salvage value, in a factor ∆ that adjusts the acquisition

cost of the vehicle. Overall, the levelized cost per X-mile is then defined as the sum of three

components:

LCXM(~h|θ) = w(~h|θ) + f(~h|θ) + c(~h|θ) ·∆, (1)
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where:

c(~h|θ) ≡ v

Y (~h|θ)
, w(~h|θ) ≡

T∑
i=1

wi(hi|θ) · γi

Y (~h|θ)
, f(~h|θ) ≡

T∑
i=1

Fi · γi

Y (~h|θ)
. (2)

In Supplementary Information, we formally establish that the LCXM metric, as defined in

(1), does satisfy our break-even criterion that investment in a vehicle has zero net-present

value if the revenue per X-mile delivered is exactly equal to the LCXM.

Claim 1. For a given duty cycle θ and usage profile ~h, the LCXM(~h|θ) in (1) is the

break-even price per X-mile.

The LCXM metric yields an immediate cut-off point in terms of utilization that makes

one drivetrain preferable to another in terms of life-cycle cost. For simplicity, suppose that

the variable cost, wi(·), per hour of operation is constant such that w2 > w1. If drivetrain

1 involves a higher acquisition cost than drivetrain 2, we refer to the former as ‘baseload’

and the latter (drivetrain 2) as the ‘peaker’. The baseload drivetrain will then be more cost

effective if in each year i the utilization rate hi exceeds the cut-off utilization rate h∗, given

as the unique value that equates the two levelized cost curves, that is:

LCXM1(h
∗, ..., h∗|θ) = LCXM2(h

∗, ..., h∗|θ).

Conversely, the peaker drivetrain will dominate for consistently low utilization rates hi < h∗.

Depending on the specific cost parameters, it is, of course, possible that h∗ falls outside the

range [0, 8760], in which case the peaker entails lower life-cycle cost irrespective of the actual

utilization rates.

Consider now a service provider that chooses a vehicle fleet composed of multiple driv-

etrains. Initially, we suppose that L(t) represents the load profile of vehicles required to

operate during the t-th hour of every day of the year, in each of the next T years on the

same duty cycle θ. Suppose the service provider seeks to minimize the acquisition- and on-

going operating costs of two alternative drivetrains. Let ku denote the number of vehicles of

type u. It will be convenient to first ignore the integer constraint on vehicles. Suppose that

the maximum value of L(t) on [0, 24] is k+, and that L(·) can be uniformly approximated

by a polynomial function on the interval [0, 24] (Weierstrass Theorem). Thus k1 + k2 ≥ k+.

Finally, let D(k) denote the total amount of time in [0, 24] during which at least k vehicles
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must be in operation according to L(·). Formally,

D(k) ≡ ||{t ∈ [0, 24]|L(t) ≥ k}||, (3)

where || · || denotes the total length of the intervals for which L(t) ≥ k. Since L(·) can be

described by a polynomial, there are at most finitely many such intervals. By construction,

D(·) is continuous and decreasing in k. Furthermore, if L(·) attains its maximum at a unique

point in time, the function D(·) assumes all values between zero and 24. Consider two

drivetrains whose levelized cost curves, LCXM1(·) and LCXM2(·), intersect at (h∗, ..., h∗)

with h∗ ∈ [0, 8760].

Claim 2. Consider two drivetrains whose levelized cost curves, LCXM1(·) and LCXM2(·),

intersect at (h∗, ..., h∗) with h∗ ∈ [0, 8760]. Given the daily load profile L(t), the cost-

minimizing number of baseload drivetrains, k∗1, is given by:

365 ·D(k∗1) = h∗.

The intuition for this result (demonstrated in Supplementay Methods) is that in order for

the total cost associated with the fleet operation to be minimized, the “marginal” baseload

vehicle (drivetrain 1) must operate for exactly h∗

365
hours per day. Otherwise the total life-

cycle cost could be lowered by either replacing this last vehicle by a peaker or expanding

the number of baseload vehicles. Since k∗1 will generally not be an integer, the actual cost-

minimizing number of baseload drivetrains will be one of the two integers adjacent to the k∗1

identified in (??). Furthermore, the overall LCXM associated with the load profile L(·) is a

convex combination of the two individual LCXMs.

The preceding framework is readily extended to settings where each day has its own

distinct load profile Lj(·), with 1 ≤ j ≤ 365. We suppose each Lj(·) satisfies the same

technical conditions as L(·) above, and denote by Dj(·) the analogue of the function D(·) in

(3) corresponding to Lj(·). The cost-minimizing number of baseload drivetrains, k∗1, is then

given by (see Supplementary Inormation):

365∑
j=1

Dj(k
∗
1) = h∗.

Our unit cost concept of the LCXM is related to the Total Cost of Ownership (TCO).

5



The latter captures the total discounted cost of acquiring, operating, and selling a vehicle.

It thus corresponds to the numerator in expressions (1) and (2). TCO has been employed in

the literature to compare the overall cost of alternative drivetrains at the vehicle level12–14;21,

and in connection with fleets22–24, including specifically bus fleets8;9.

Our conceptualization of the life cycle cost of transportation services is in the tradition

of time-driven activity based costing systems, a construct that has proven useful in multiple

industries, including energy systems and health care16;25. This time-driven approach enables

us to capture the multi-dimensional features of a particular duty cycle, including vehicle

speed, distance traveled and stop frequency. As shown in the next section, the combination

of these has first-order effects for the cost competitiveness of alternative drivetrains and

the composition of cost-effective vehicle fleets. Thus, the LCXM concept provides a unified

framework for examining the (i) cost competitiveness of individual vehicles, (ii) optimal mix

of alternative drivetrains in a fleet, (iii) efficient dispatch of alternative drivetrains, and (iv)

effect of multi-dimensionality of the duty cycle on cost-efficient vehicle fleets.

3 Application: Transit Bus Fleets

We now apply the preceding framework to Stanford University’s bus service known as Mar-

guerite. Like a municipal bus service, Marguerite interconnects the university campus and

the surrounding community via multiple routes, operating daily at varying levels of capacity

utilization with peaks during weekday mornings and afternoons. The majority of the service

is run with transit buses (see Supplementary Table 2). Beginning in 2014, the university has

gradually replaced diesel-powered with battery-electric buses.

To compare the life-cycle cost of the two drivetrains, our calculations focus on the duty

cycles of two distinct routes, referred to as Route A and B. They reflect opposite ends of

the range of duty cycles operated by Marguerite, with the number of bus stops per mile

as 1.1 and 2.7 and average velocity (in miles per hour) as 7.4 and 3.0 for Route A and

Route B, respectively. Since topography and ambient temperature of all campus routes are

virtually identical, Routes A and B generally yield corner solutions for all routes operated

by Marguerite.

Our analysis relies on the records of Stanford’s transportation department for recent cost

and operational data (details provided in Methods). Table 1 shows average values for the

main life-cycle cost components. The net acquisition cost represents the initial purchasing
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price minus the salvage value and, for electric buses, a capital incentive of $100,000 granted

by the California Air Resources Board26. The variable cost comprises fuel costs and variable

maintenance costs but excludes the salary of drivers, which is the same across drivetrains.

Table 1: Main cost parameters (in 2019 $US).

Diesel Electric

Variable cost per hour (Route A) $26.25 $2.02
Variable cost per hour (Route B) $16.79 $4.77
Fixed cost per year $5,054 $5,913
Net acquisition cost $425,189 $631,300
Useful lifetime 12 years 12 years
Cost of capital 5.00% 5.00%

Considering the variable costs in Table 1, one might expect that more stops per mile

(Route B) increases the variable cost of both drivetrains and especially that of diesel buses

whose fuel consumption is more sensitive to frequent stops. This intuition is, however,

misleading for diesel buses in the context of Marguerite. The increased fuel cost per mile of

diesel buses for Route B is outweighed by a lower average velocity such that the fuel cost

per hour of operation decreases. For electric buses, in contrast, this intuition is confirmed

in Table 1. Moving from Route A to B, the fuel cost per hour of operation decreases, yet

variable maintenance costs increase with the number of stops per mile for both drivetrains.

The latter effect is dominant for electric buses.

Figure 1 depicts the levelized cost curves per passenger-mile (LCPM) for both drivetrains

by route, where there is a unique critical utilization, h∗, beyond which electric buses entail

lower life cycle cost. These values amount to 996 hours for Route A and 2,006 hours for Route

B, marked by the solid vertical lines in Figure 1. The explanation for the counterintuitive

finding that the critical utilization rate is larger for Route B than for Route A is given by the

above observation: the variable cost per hour of diesel buses is lower for Route B, because

the buses travel fewer miles per hour when there are more stops per mile. The critical

utilization for the average duty cycle (number of stops per mile) of the entire Marguerite

system amounts to 1,329 hours; see Methods for details.

The operational records of Stanford University show that Route A is almost exclusively

served by electric buses, while the opposite holds for Route B. The average annual utilization

factors amount to 1,434 hours and 1,453 hours, respectively. For these utilization factors,

Figure 1 shows that the LCPM of electric buses is lower than that of diesel buses on Route
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Figure 1: Levelized cost per passenger-mile. a,b, This figure shows the levelized cost
per passenger-mile of diesel and electric transit buses for (a) Route A and (b) Route B.

A, while the opposite pattern applies on Route B. The university’s reliance on these two

drivetrains for the two routes thus appears consistent with the goal of minimizing the life-

cycle cost of transportation services provided. For further reference, the average annual

utilization of transit buses in the U.S. amounts to 2,508 hours17. Such high utilization rates

would give electric buses a cost advantage on both routes, as shown in Figure 1.

Figure 2 depicts the daily load profiles of buses operating on the Stanford campus. If

hypothetically all Marguerite buses were to run on Route A, the efficient number of diesel

and electric buses would amount to 7 and 22, respectively. The corresponding values for

Route B are 18 and 11. Since the functions Dj(·) are decreasing in k1, the efficient number

of electric buses for Route B is smaller than on Route A, as the corresponding critical

utilization factor h∗ is larger for Route B (see Figure 1). Though the proportion of the two

competing drivetrains within the fleet differ significantly for Routes A and B, diesel buses

will be dispatched only within the periods corresponding to peak demand.

If the number of stops per mile is taken to be the average of all routes served by Marguerite

and all buses were to serve that average route, the optimal number of diesel and electric

buses would be 11 and 18. For this scenario, electric buses would be operating as baseload

capacity for more than the respective h∗ hours per year, whereas each of the diesel buses

would be operating as peakers for less than that. An insight from our analytical framework
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Figure 2: Cost-efficient vehicle fleets. a,b, This figure shows the cost-efficient number of
diesel and electric transit buses for the hourly load profile of Marguerite in 2019 if hypothet-
ically all routes exhibited a duty cycle of either (a) Route A and (b) Route B. It also shows
the efficient dispatch sequence of the fleet, with diesel buses allocated to serving only within
the peak “rush-hour” demand periods, and electric buses serving the remainder. The load
profile depicted here is an overlay of the hourly profile for individual days in 2019. The more
the daily profiles overlap, the darker is the shade of gray. The upper twin peaks represent
load profiles on weekdays, while the lower twin peaks display the profile for weekend days.

is that it will generally be efficient to have a mix of baseload and peaker vehicles, unless the

underlying load profile assumes an ‘extreme’ shape. Specifically, even if all campus routes

were to correspond to the characteristics of Route B, which tends to favor diesel buses, a

planner would still want to procure 11 electric buses out of a total of 29. That share would,

of course, be even larger if the load profile in Figure 2 were to be less “peaky” and replaced

by a more uniform service schedule.

Our model of fleet optimization has ignored requirements for backup capacity due to the

need to accommodate irregular events on campus and the possibility of unscheduled vehicle

maintenance. In fact, Stanford University currently maintains 10 transit buses over and

above the annual peak demand of 29 scheduled buses. That observation is consistent with

the utilization rate on both routes being significantly below the U.S. average. At the same

time, given that the university had acquired 29 electric buses in 2019, it will be advantageous

to reduce reliance on diesel buses to the largest extent possible due to their higher operating

costs.
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4 Discussion

Since our numerical calibration of the life-cycle cost of transit buses is based on a single

university service operator, it is essential to check the sensitivity of our findings to changes

in the key input variables. Specifically, the graphs in Figure 3 focus on the sensitivity of

the critical utilization rate, i.e., h∗

8760
, as derived in Figure 1 and the efficient share of electric

buses, i.e.,
k∗1
29

, as derived in Figure 2. For consistency, the comparisons focus on the same

two routes so as to illustrate the impact of alternative duty cycles.

The purple lines in Figure 3 indicate that both dependent variables (h∗ and k∗1) are rela-

tively insensitive to changes in the variable cost of electric buses, as variable costs constitute

only a minor share of the overall life-cycle cost of electric buses. In contrast, the blue lines

in Figure 3 show that our dependent variables are sensitive to changes in the variable cost

of diesel buses, with diesel fuel constituting a significant share of that variable cost (see

Methods for details). The cost of diesel fuel is likely to vary over time and across geographic

regions, possibly because diesel fuel may become subject to CO2 emission charges in some

jurisdictions. Quantifying the overall effect, the blue lines in Figure 3 show that a 10%

increase in the variable cost of diesel buses will decrease the critical utilization rate by about

10-15%, depending on the route. The corresponding impact on the efficient share of electric

buses would be more pronounced on Route B, and result in an increase of k∗1 by about 10%.

One would expect any increases in the cost of capital to weaken the competitive position of

electric buses, that is h∗ to increase and k∗1 to decrease. While the LCPM of both drivetrains

will increase, a larger cost of capital should have a more pronounced effect on the more capital

intensive drivetrain, i.e., electric vehicles. A similar observation emerges in connection with

capital intensive renewable energy in comparison to fossil fuel power plants27. The yellow

lines in Figure 3 confirm this intuition, though the changes in the dependent variables turn

out to be relatively minor on both routes, and for both variables. Specifically, the critical

utilization rate increases almost linearly at the modest rate of 3% for every 10% increase in

the cost of capital.

Recent advances in lithium-ion battery technology have significantly lowered the price of

lithium-ion battery packs which, in turn, comprise a significant share of the net acquisition

cost of battery electric buses. Numerous recent studies point to sustained cost reductions in

the future along the trajectory of a classic learning curve3;28;29. An additional development

that is forecast to lower the net acquisition cost of battery electric buses is the emergence
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Figure 3: Sensitivity analysis. a,b,c,d This figure shows the sensitivity of the critical
utilization rate on (a) Route A and (b) Route B, as well as the sensitivity of the efficient
share of electric buses on (c) Route A and (d) Route B to four different input variables

of a market for “second-life” battery applications30;31, once the degradation of the battery

packs makes them no longer suitable for transportation services. In the context of our model

this would increase the salvage value with a corresponding decrease in the net acquisition

cost of electric buses. The green lines in Figure 3 confirm that the critical utilization rate is

highly sensitive to increases in the net acquisition cost of electric buses. On either route, a
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10% change in the net acquisition cost results in approximately a 30% change in h∗.

Naturally, the efficient share of electric vehicles is decreasing in the net acquisition cost

of electric vehicles. These decreases occur at a lower rate on Route A (Figure 3c) compared

to Route B (Figure 3d) which exhibits a larger difference in the hourly operating costs of

the two drivetrains. From a public policy perspective, we find that without the current

$100,000 capital subsidy made available to electric buses by the California Air Resource

Board (CARB), the efficient share of electric vehicles in the Stanford fleet would decrease

by about 25%. However, if the net acquisition cost of electric vehicles were to drop by 40%,

then on both routes an all electric bus fleet would be cost-minimizing. Based on current

price trajectories for lithium-ion battery packs28;29 and conservatively estimating that such

packs constitute 30% of the net acquisition cost, this scenario should emerge no later than

the year 2025.

5 Concluding Remarks

This paper has examined a time-driven life-cycle cost model for transportation services. Our

metric identifies the critical utilization rate that ranks alternative drivetrains in terms of

their life-cycle cost. This critical utilization rate is shown to provide the decision criterion

for the efficient mix of alternative drivetrains in a vehicle fleet. We calibrate this metric

in the context of Stanford University’s bus service as a case in point. While the current

numbers still point to a significant role for diesel buses, continued improvements in electric

drivetrains could change this conclusion within the next five years, consistent with the goals

articulated in SDG 13.

Our framework is applicable in future research for a range of transportation contexts,

including passenger and cargo transports by road, water and air. In the context of passenger

road vehicles, the recent advances in mobility-as-a-service suggest that the traditional own-

ership model will increasingly be replaced by fleet ownership32–34. End-users will then be

able to meet their transportation needs through spot market service arrangements with fleet

operators. This technological development and the wider adoption of clean energy vehicles

are likely to reinforce each other on account of higher utilization rates associated with vehicle

sharing and the comparatively lower operating costs of clean energy vehicles35–38.
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6 Supplementary Information

Economic Model. We first complete the description of the model and then validate the

formal claims in the main text. The tax factor, ∆, depends on both the applicable income

tax rate, denoted by α, as well as the allowable depreciation schedule for tax purposes. That

schedule is denoted by {dt}Tt=1, such that dt ≥ 0 and
∑

t dt = 1, and determines how the

initial investment is amortized for tax purposes over time. The overall effect of income taxes

can be summarized by:

∆ =

1− α ·

[
T∑
t=0

dt · γt
]

1− α
− λ · γT . (A4)

In case α = 0, as applicable for a non-profit organization like Stanford University, the tax

factor reduces to ∆ = 1− λ · γT .

Proof of Claim 1: Suppose every X-mile attains a revenue of p. For a given duty cycle θ and

usage profile ~h, we demonstrate that the investment breaks even whenever p = LCXM(~h|θ).
In year i, the operating revenue is given by:

Revi(hi) = Xi(hi|θ) · p = bi(hi|θ) · a(θ) · hi · p.

The overall pre-tax cash flow in year i will be represented by CFLo
i . It comprises operating

revenues and operating costs:

CFLo
i (hi|θ) = Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ).

The firm’s taxable income in year i is given by:

Ii(hi|θ) = Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ)− v · di.

The present value of all after-tax cash flows is therefore given by:

T∑
i=1

[CFLo
i (hi|θ)− α · Ii(hi|θ)] · γi − v + (1− α) · λ · v · γT . (A5)
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Direct substitution shows that the expression in (A5) is equal to zero if and only if:

(1− α)
T∑
i=1

CFLo
i (hi|θ) · γi + α ·

T∑
i=1

v · di · γi + (1− α) · λ · v · γT = 0. (A6)

Dividing by (1 − α) and recalling the definition of the tax factor, ∆, the equality in (A6)

reduces to:
T∑
i=1

[Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ)]γi = v ·∆. (A7)

By definition Y (~h|θ) =
T∑
i=1

Xi(hi|θ)·γi and therefore (A7) holds if and only if p = LCXM(~h|θ).

Proof of Claim 2: Given the load profile, L(·), the required total annual number of operating

hours becomes:

ĥ = 365 ·
∫ 24

0

L(t) dt.

For any feasible fleet composition, i.e., (k1, k2) such that k2 ≥ k+−k1, the fleet operator will

rely to the extent possible on the drivetrain with the lower unit operating cost. Specifically,

the number of daily operating hours of drivetrain 1 will be:

H(k1) ≡
∫ 24

0

min{L(t), k1} dt.

The overall cost minimization problem then is to choose k1 so as to minimize the break-even

price p per X-mile required to cover the fleet operator’s total life-cycle cost in meeting the

daily load profile L(·). In particular, p must satisfy the inequality:

T∑
i=1

p ·X(ĥ) · γi ≥ v1 · k1 + v2 · (k+ − k2) +
T∑
i=1

[
365 · (w1 ·H(k1) + w2 · (ĥ−H(k1))

+ F1 · k1 + F2 · (k+ − k1) + α · Ii(ĥ, k1, p)
]
· γi (A8)

− γT · (1− α) · λ · (v1 · k1 + v2 · (k+ − k2)).

Here Ii(ĥ, k1, p) denotes the taxable income in year i, that is:

Ii(ĥ, k1, p) ≡ p ·X(ĥ)− 365[(w1 ·H(k1) + w2 · (ĥ−H(k2))]

− F1 · k1 − F2 · (k+ − k1)− [v1 · k1 + v2 · (k+ − k1)] · di.
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Recalling the definition of ∆ and collecting terms, the above inequality reduces to:

p ≥ 1
T∑
i=1

X(ĥ) · γi

[
v1 ·∆ · k1 + v2 ·∆ · (k+ − k1) +

T∑
i=1

[
365 · (w1 ·H(k1) + w2 · (ĥ−H(k1))

+ F1 · k1 + F2 · (k+ − k1)
]
· γi
]
. (A9)

To minimize p, we differentiate the right-hand side of (A9) with respect to k1, noting that

H ′(k1) =

∫
{t∈[0,24]|L(t)≥k1}

dt ≡ D(k1).

This derivative is given by:

1
T∑
i=1

X(ĥ) · γi

[
v1 ·∆ +

T∑
i=1

[w1 · 365 ·D(k1) + F1] · γi − v2 ·∆−
T∑
i=1

[w2 · 365 ·D(k1) + F2] · γi
]
.

With the duty cycle θ held fixed, we simplify the notation for the levelized cost of passenger

miles by suppressing the dependence on θ. Also, on the domain of utilization profiles that

are constant across years, i.e., hi = h, we write LCXM(h) instead of LCXM(h, ..., h) .

Recalling the definition of the LCXM, the last expression for the derivative of the right-hand

side of (A9) is proportional to:

LCXM1(365 ·D(k1))− LCXM2(365 ·D(k1)). (A10)

For a cost minimum, k1 must be chosen so that the derivative expression in (A10) is zero,

which implies k1 = k∗1, since k∗1 is such that 365·D(k∗1) = h∗ and LCXM1(h
∗) = LCXM2(h

∗).

Furthermore, since w2 > w1 and D(·) is decreasing in k1, the objective function on the right

hand-side of (A9) is convex in k1. Thus the value of k1 that satisfies the first-order condition

corresponding to (A10) also yields the global cost minimum.

We note in passing that the levelized cost of the optimized fleet can be expressed as a

convex combination of the two component LCXM, with the respective weights given by the

respective operating hours of the two drivetrains. For simplicity, suppose that bi(hi) = b.

Referring back to (A9), it is then straightforward to verify that the LCXM of the optimized

15



fleet is equal to:

LCXM(365 · ĥ) =
365 ·H(k∗1)

ĥ
· LCXM1(365 ·H(k∗1))

+ (1− 365 ·H(k∗1)

ĥ
) · LCXM2(365 · (ĥ−H(k∗1))). (A11)

Claim 3. Under the conditions of Claim 2, suppose the daily load profiles are given by Lj(·).

The cost-minimizing number of baseload drivetrains, k∗1, is then given by:

365∑
j=1

Dj(k
∗
1) = h∗.

Proof: The proof of this claim mirrors that of Claim 2. The total number of vehicles acquired

now becomes k+ given by the maximum value across all Lj(·). With regard to the expression

in (A8), the only change is that the variable operating costs now become:

T∑
i=1

[w1 ·
365∑
j=1

Hj(k1) + w2 ·
365∑
j=1

(ĥj −Hj(k1))] · γi,

where

ĥj =

∫ 24

0

Lj(t) dt and Hj(k1) ≡
∫ 24

0

min{Lj(t), k1} dt.

The claim then follows by proceeding exactly as in the preceding proof.

Input Usage and Cost Data. The data on input usage and cost items are furnished by

various information systems at Stanford University related to energy- and fleet management.

Table 1 provides average values for route-invariant cost parameters for both diesel and electric

buses. The acquisition cost shown there for each bus type reflects the most recent purchase

price. If the purchase occurred before the year 2019, we adjusted the price for inflation with

an average annual inflation rate of 2.0%. The capital incentive for electric buses is a subsidy

granted by the California Air Resources Board under the Hybrid and Zero-Emission Truck

and Bus Voucher Incentive Program26. The salvage value for each drivetrain is based on an

estimate provided by Stanford. To assess fixed costs, we took the drivetrain-specific average

across transit buses in the Marguerite fleet of annual operations and maintenance costs for

the years 2017–2019. The annual fixed cost of each bus comprises the sum of registration
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fees, insurance cost, and components of maintenance costs that are usage-independent, as

shown in Supplementary Note 2. The labor cost per hour includes the cost of the driver per

hour of operation, composed of salary, benefits, and overhead. Our estimate of the fuel costs

is based on the average of diesel prices per gallon paid by Stanford in 2019.

Supplementary Table 1: Route-invariant cost parameters (in 2019 $US).

Diesel Electric

Acquisition cost $430,757 $750,000
Capital incentive – $100,000
Salvage value $10,000 $38,750
Fixed cost per year $5,054 $5,913
Labor cost per hour $71.00 $71.00
Fueling cost per gallon $3.40 –
Charging cost per kWh – $0.092
Useful lifetime 12 years 12 years
Cost of capital 5.00% 5.00%

The cost of electricity charging for EV buses deserves particular attention. Stanford pur-

chases electricity from a variety of sources each entailing a specific set of fixed, demand

and volumetric charges. The total of these electricity costs in 2019 normalized by the total

volume of electricity delivered (kWh) amounts to $0.092/kWh, which represents the aver-

age cost of electricity to the university on a volumetric basis. This cost figure is charged

to all administrative units within the university for the consumption of electricity. In ad-

dition, each unit is charged a markup for various overhead cost items, resulting in a total

of $0.152/kWh39. For the purpose of determining the life-cycle cost of EV buses, we only

impute the normalized volumetric rate, and exclude the university-wide overhead charge, as

this is the effective incremental cost per kWh to the university.

A time-invariant volumetric charge for electricity seems appropriate given the configura-

tion of Stanford’s energy system. While the campus as a whole is subject to demand charges

and time-of-use volumetric charges, these time-dependent costs are essentially not relevant to

the various operating units, including the bus depot, due to the dominance of the university’s

central energy facility. The facility manages the district heating and cooling for the entire

campus and is, therefore, by far the largest single source of electricity demand, dwarfing, in

particular, the incremental load associated with bus charging. The central energy facility has

effectively the ability to ramp the university’s demand for power in response to time-based
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price signals, thus enabling the campus to minimize both demand and time-of-use charges40.

We note that time-invariant volumetric charges for electric buses have also been imputed in

other settings applicable to university campuses and municipal bus fleets41.

The variable cost components include certain maintenance and energy costs, whereby the

latter is the product of the route-specific energy consumption and the fueling or charging

rate provided in Table 1. Our dataset includes the variable maintenance costs and energy

consumption per transit bus in the Marguerite fleet for the years 2017–2019 on the specific

days these costs were incurred. These variable cost components vary by route depending on

the number of stops per mile and the collection of routes served by a bus throughout the

year. The number of buses assigned to each route was assumed to be constant across the

years.

Table 2 provides average values for the variable cost for both drivetrains by route. Sup-

plementary Note 2 shows which categories of the maintenance cost are considered to be

usage-dependent for each drivetrain. For Route A, for instance, the average variable main-

tenance cost is calculated by taking the average across buses for which the annual average

number of bus stops per mile is equal to that of Route A.

Route-specific energy consumption for electric and diesel drivetrains are calculated ac-

cording to different methods which reflect differences in the availability of data. For electric

buses, we rely on daily total net energy consumption, total time in service, and total dis-

tance traveled as provided by the battery management system (BMS) for individual buses.

Net energy consumption in this context refers to the total energy provided to the bus from

the battery minus the energy generated via regenerative braking. We gathered the three

categories of the BMS data for electric transit buses that operated on Route A and B most

frequently in 2019. To account for daily and seasonal variation, we attained for each bus a

complete BMS record for a randomly selected day in each month between January–August

2019. This produced 24 records (3 bus readings per month for 8 months) per route. The

figures shown in Table 2 for electric buses represent the route-specific average of the 24 mea-

sures. The time component of this measure accounts for the actual time a bus was servicing

a route. This includes in-service idling but not mid-day lulls when the bus was not in service.

As a point of reference, the energy consumption per hour presented in Table 2 corresponds

to a power consumption of 1.41 kWh/mi and 1.11 kWh/mi for Routes A and B, respectively.

For diesel buses, we calculate energy consumption per bus by dividing the total volume
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Supplementary Table 2: Route-specific cost parameters (in 2019 $US).

Route A Route B Average

Diesel
Variable maintenance cost per hour $5.09 $8.37 $7.04
Energy consumption per hour (in gallons) 6.23 2.48 4.44
Fueling cost per hour $21.16 $8.42 $15.07
Variable cost per hour $26.25 $16.79 $22.11
Electric
Variable maintenance cost per hour $1.18 $4.46 $3.13
Energy consumption per hour (in kWh) 9.13 3.34 9.01
Charging cost per hour $0.84 $0.31 $0.83
Variable cost per hour $2.02 $4.77 $3.96

(in gallons) dispensed during each refueling event to a specific bus by the total number

of in-service hours of the bus within the time interval since the last refueling event for all

refueling events recorded in 2019. The corresponding set of bus stops per mile for each bus is

calculated based on the duty cycles performed during the same in-service time intervals. The

figures in Table 2 result from taking the mean of the calculated per-bus energy consumption

measures corresponding to those buses that exhibited stops per mile measures similar to

Route A or Route B, windsorized at the 5.0% level. Since the refueling data includes the

entire year 2019, the average consumption values account for variations across days, seasons,

and vehicles. For reference, the energy consumption per hours given in Table 2 correspond

to a fuel economy of 5.26 miles per gallon and 2.61 miles per gallon for Routes A and B,

respectively. These values are relatively low because they account for fuel consumed during

in-service idling and unplanned maintenance that require idling for troubleshooting.

Route Information. Route data for Marguerite was provided by Stanford. Table 5 pro-

vides the main route characteristics for Route A and B, as well as the simple average for

these parameters across all routes in the system. Route data for all routes is provided in

Supplementary Note 1. The number of bus stops per mile is calculated by dividing the

total route distance by the number of bus stops. Finally, average velocity is determined by

dividing the total route distance by the expected completion time as provided by Stanford

Transportation.

In Table 5, the average number of passengers represents the number of passengers trans-

ported across the full distance of a route. This value is the average number of passengers per
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Supplementary Table 3: Route A, Route B and Marguerite average data.

Route A Route B Average

Number of bus stops per mile 1.1 2.7 1.9
Average velocity (in miles per hour) 7.4 3.0 8.7
Average number of passengers 3.2 9.4 6.9
Marguerite average utilization (in hours) 1,434 1,453 1,607

hour multiplied with the average passenger-miles per passenger and dividing this product by

the average velocity. The number of passengers per hour, in turn, is determined by dividing

the annual number of passengers that traveled a particular route by the annual total number

of hours that the route was serviced. The average passenger-miles per passenger is estimated

due to a lack of detailed on-boarding and off-boarding events per passenger as the expected

distance in miles that the average passenger would travel on a given route. This figure is

defined as the average distance between the two most popular bus stops on a route. The

term popular here refers to the bus stops on a route that have the highest total number of

passengers boarding over the course of a year. Given that bus routes are loops that begin

and end at the same location, the average distance can be conceptualized as the average

length of the two arcs that connect two points on a circle.

For the average utilization, we first calculate the operating hours of each bus in 2019 as

the product of the total number of loops per route that a bus accumulated in 2019 with the

expected completion time per route. Since we only have data on bus-route assignments for

the year 2019, we calculate the operating hours of each bus in 2017 and 2018 by scaling the

respective value for 2019 with the total miles that a bus traveled 2017 and 2018. The average

utilization per route shown in Table 5 is calculated as follows: for Route B, for instance,

one takes the average of all buses that have an average number of bus stops per mile equal

to that of Route B. For the system average, the average utilization is the average across all

transit buses.

The two routes A and B yield extreme findings for the range of routes operated by

Marguerite, because they entail the highest and lowest average fuel consumption per hour

observed for diesel buses in the data set. Other routes of the system entail values in between,

with the system average amounting to 4.44 gallons per hour. This can largely be attributed

to the observation that more bus stops per mile reduce the average miles per hour traveled

on a route. Route A exhibits one of the highest values for average velocity, while the opposite
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holds for Route B. In contrast to the relatively small energy cost of electric buses, the fuel

cost for diesel buses becomes the dominant factor in determining the critical utilization rate

and, by implication, the cost-minimizing composition of the bus fleet (see Figure 3).

Miles Traveled as the Output Measure. The application to transit buses in Section 4

focused on the output measure of passenger-miles for the transportation service in question.

Figure 4 shows the life-cycle cost curves for both electric and diesel buses on routes A and

B as a function of miles, rather than passenger-miles, traveled. We refer to this cost curve

as LCM(·). Since b(·|θ) > 1 for both routes, the generic expression for the levelized cost of

X-miles shows that the LCM(·) curve decreases more steeply than the LCPM(·) curve, i.e.,

|LCPM ′(h)| < |LCM ′(h)|, for all values of h.

We recall from Figure 1 that the LCPM for both types of drivetrains decreases as one

switches from Route A to Route B. Yet, the opposite change is observed for LCPM in

Figure 4. This opposite movement reflects that there are on average 9.4 passengers who

complete Route B, while there are only 3.2 such passengers on Route A. Comparison of

Figure 1 and Figure 4 also illustrates that the critical utilization rate h∗ is invariant to the

measure of output. In general, we conclude that for any given drivetrain the magnitude and

shape of the levelized cost curve depends on the specific measure of X-miles. However, both

the life-cycle cost comparison across drivetrains, that is, the critical utilization rate h∗, and

the cost minimizing composition of the vehicle fleet are invariant to the actual measure of

X-miles.
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Supplementary Figure 4: Levelized cost per mile. a,b, This figure shows the levelized
cost per mile of diesel and electric transit buses for (a) Route A and (b) Route B.

Supplementary Table 4: General Specifications for the Examined Buses.

Specification Diesel Electric

Make Gillig MA BYD K9 Electric Bus

Vintage (year & number in fleet) 2003 (8) 2013 (1), 2014 (10), 2017 (18)

Gross Vehicle Weight [lbs] 39,600 40,786

Length [ft] 35 35.8

Passenger Capacity 32 34

Drivetrain Cummins ISB 5.9L I6; 235hp; AC synchronous motor; 80 kW,

460 lb-ft torque 350 kWh iron-phosphate battery
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Transit Bus System Route Data.

Route data for the Stanford Marguerite transit bus system examined, including system map

and bus stop locations is found at the Stanford Transportation website:

https://transportation.stanford.edu/marguerite/view-maps-and-schedule.

Route information, including the number of bus stops per mile, the average velocity, average

number of passengers per hour, and the average number of passenger-miles per passenger is

provided in Supplementary Table 5. Actual route names found on the Stanford Transporta-

tion site have been anonymized.

Supplementary Table 5: Stanford Transportation Transit Bus System Route Data.

Route Stops/mile Velocity [mph] Passenger/hour Passenger-mile/passenger

A 1.1 7.4 23 1.0

B 2.7 3.0 40 0.7

C 1.4 8.5 19 1.2

D 0.8 21.2 20 2.5

E 1.2 10.8 22 1.5

F 1.2 8.9 14 3

G 1.7 7.2 55 1.1

H 2.0 7.9 24 2.5

I 2.5 10.9 50 1.2

J 2.7 8.2 103 1

K 1.7 6.5 38 1.2

L 1.7 7.9 24 2.8

M 2.5 8.0 81 1.2

N 2.0 8.0 31 1.2

O 2.7 8.2 15 1.2

Components of Variable and Fixed Costs

Stanford Transportation provided detailed operational cost data. Variable operating and

fixed operating costs, are aggregations of cost subcategories provided in Supplementary Table

6. For each cost subcategory listed, its applicability is indicated per drivetrain, as well as to

which operational cost, variable or fixed, it belongs. The allocation of subcategory costs to

either variable or fixed was verified with respective experts at Stanford Transportation.
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Supplementary Table 6: Variable and Fixed Cost Categories per Drivetrain.

Cost category Diesel Electric Cost type

HVAC yes yes fixed

Air Intake System yes no fixed

Brakes yes yes variable

Cab-Sheet Metal yes yes fixed

Charging System yes yes fixed

Clean-up/ Detailing yes yes fixed

Cooling System yes yes variable

Cranking System yes yes variable

Diesel Exhaust Fluid yes no variable

Tires yes yes variable

Dry Freight Body yes yes fixed

Electric Prop. System no yes variable

Electrical Access. yes yes fixed

Exhaust System yes no variable

Expendables yes yes variable

Frame yes yes fixed

Front Axle-Susp-Brgs yes yes variable

Fuel System yes no variable

General Accessories yes yes variable

Horn-mounting yes yes fixed

Ignition System yes no fixed

Instruments yes yes fixed

Liftgate yes yes fixed

Lighting System yes yes fixed

Lines yes yes fixed

Main Auto Trans yes no variable

Mounted Equip Repair yes yes fixed

Oil yes no variable

Power Plant yes yes fixed

Radio yes yes fixed

Rear Axle-Susp-Brgs yes yes variable

Rear Door yes yes fixed

Refrig-Mechanical yes yes variable

Satellite/Veh Comm yes yes fixed

Special yes yes fixed

Steering yes yes variable

Suppl Info Devices yes yes fixed

Towing yes yes variable

Trim yes yes fixed

Valves yes yes variable

Wash yes no fixed

Wheels-Rims-Hubs yes yes variable
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Supplementary Table 7: List of Symbols and Acronyms.

Variable Unit Description

α % Corporate income tax rate

∆ – Tax factor

γ – Discount factor

λ % Share of acquisition expenditure yielding the salvage value

θ – Description of duty cycle

a(θ) miles/hour Average velocity

bi(h|θ) passengers or tons Number of passengers or mass transported in year i

BMS – Battery management system

c(h|θ) $/X-mile Levelized acquisition cost

CFLo
i $ Annual pre-tax cash flow in year i

dt – Depreciation Schedule

D(k) hours Total time during which at least k vehicles must be in operation

f(h|θ) $/X-mile Levelized fixed cost

Fi(θ $/year Fixed operating cost in year i

H(ki) hours Number of daily operating hours of a drivetrain i

hi hours Hours of operation in year i
−→
h hours Usage profile

Ii $/year Taxable income in year i

k – Number of vehicles

L(t) in k Load profile per hour t

LCM $/mile Levelized cost per mile

LCOE $/kWh Levelized cost of electricity

LCPM $/passenger-mile Levelized cost per passenger-mile

LCXM $/X-mile Levelized cost per X-mile

kWh – Kilowatt hour

p $/X-mile Revenue attained per X-mile

r % Interest rate

T years Useful lifetime of a given vehicle

TCO $ Total cost of ownership

v $ Acquisition expenditure of the transportation vehicle

wi(h|θ) $/year Variable operating cost in year i

w(h|θ) $/X-mile Levelized variable operating cost

Xi(
−→
h |θ) X-mile Output measure, where X depends on bi(h|θ) in year i

Y (
−→
h |θ) X-miles Levelization factor
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