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Abstract
Exemplar models are often used in research on multiple-cue judgments to describe the underlying process of participants’
responses. In these experiments, participants are repeatedly presented with the same exemplars (e.g., poisonous bugs) and
instructed to memorize these exemplars and their corresponding criterion values (e.g., the toxicity of a bug). We propose
that there are two possible outcomes when participants judge one of the already learned exemplars in some later block of
the experiment. They either have memorized the exemplar and their respective criterion value and are thus able to recall the
exact value, or they have not learned the exemplar and thus have to judge its criterion value, as if it was a new stimulus.
We argue that psychologically, the judgments of participants in a multiple-cue judgment experiment are a mixture of these
two qualitatively distinct cognitive processes: judgment and recall. However, the cognitive modeling procedure usually
applied does not make any distinction between these processes and the data generated by them. We investigated potential
effects of disregarding the distinction between these two processes on the parameter recovery and the model fit of one
exemplar model. We present results of a simulation as well as the reanalysis of five experimental data sets showing that the
current combination of experimental design and modeling procedure can bias parameter estimates, impair their validity, and
negatively affect the fit and predictive performance of the model. We also present a latent-mixture extension of the original
model as a possible solution to these issues.
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In their everyday lives, people have to make judgments of
different importance in a variety of domains and situations.
For instance, customers in a restaurant have to predict how
tasty a meal will be, doctors have to judge the severity
of a patient’s disease, and employers have to judge how
well a possible employee will perform in the future. Such
judgments require inferring a continuous criterion (e.g.,
tastiness) from a number of cues (e.g., is there cheese on it
or not) of a given judgment object.
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One process people may rely on to make these judgments
is based on previously encountered objects and their
criterion values stored in memory (Juslin, Olsson, & Olsson,
2003; Juslin, Karlsson, & Olsson, 2008). New objects are
then judged based on the similarity to these exemplars
(Juslin et al., 2003). For example, a diabetic person needs
to judge the amount of carbohydrates in a dish to estimate
the amount of insulin she has to apply. To do so when
confronted with a new meal, she might think of previous
meals (i.e., the memorized exemplars) and compare them
to the current meal. The amount of carbohydrates of the
new meal will then be judged according to the similarity of
this new meal to past meals in memory and their respective
amount of carbohydrates (i.e., the criterion value of the
exemplars), whereby more similar past meals will have a
stronger influence on the judgment than dissimilar ones.

Such a judgment strategy is usually described by
exemplar models (e.g., Juslin et al., 2003; von Helversen
& Rieskamp, 2008). Exemplar models have originally been
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used in many different domains such as memory (e.g.,
Hintzman, 1984) and categorization and classification (e.g.,
Medin & Schaffer, 1978; Nosofsky, 1984). One exemplar
model originally used for modeling stimulus categorization,
the Context Model (Medin & Schaffer, 1978), has been
extended to account for data of continuous judgments
from multiple cues (Juslin et al., 2003; Juslin & Persson,
2002). During the last two decades, this or related exemplar
models have been used to describe one possible cognitive
process in studies of multiple-cue judgments as an important
area in judgment and decision-making (JDM) research
(e.g., Bröder & Gräf, 2018; Hoffmann, von Helversen, &
Rieskamp, 2013; Juslin et al., 2003; Mata, von Helversen,
Karlsson, & Cüpper, 2012; Pachur & Olsson, 2012; Persson
& Rieskamp, 2009; von Helversen & Rieskamp, 2009).

In the current paper, we argue that the usual practice
of how these exemplar models are used in multiple-
cue judgment research in combination with the paradigm
commonly used in this field of research leads to biased
estimation and impaired validity of parameters. We claim
that the problems we tackle here are particularly pronounced
in the multiple-cue judgment literature as compared
to categorization research where the model and the
experimental paradigm originated (Juslin et al., 2003). We
highlight a severe problem of the application of these
exemplar models in JDM research in the following respects:
First, we will briefly describe the typical experimental
paradigm and modeling procedure used in multiple-cue
judgment studies and introduce the context model (Medin
& Schaffer, 1978) as an example for an exemplar-based
model how it is used in this line of research (e.g., Bröder &
Gräf, 2018; Juslin et al., 2003; von Helversen & Rieskamp,
2008; Wirebring, Stillesjö, Eriksson, Juslin, & Nyberg,
2018). We will then illustrate how this paradigm with the
currently applied specification of the exemplar model can
potentially distort parameter estimation. Second, we will
present simulation results demonstrating biased estimation
and impaired validity of parameters. In addition, since many
multiple-cue judgment studies use model-fit indices like
the RMSE to compare different judgment process models
(e.g., Hoffmann, von Helversen, & Rieskamp, 2014; Mata
et al., 2012; Wirebring et al., 2018) we will also look at the
model fit and predictive performance of the model. Third,
we will present the results of five reanalyzed experimental
data sets demonstrating that this problem also threatens the
interpretation of real data. As a remedy, we will present a
latent-mixture extension of the original model, as a possible
solution to these problems. Although the focus of this paper
lies on the multiple-cue judgment literature and how the
exemplar models are applied there, we will also discuss
if and how the results of this work might extend to other
research areas where these exemplar models are applied.

Typical design and estimation procedure
inmultiple-cue judgment studies

A typical experiment in the multiple-cue judgment literature
employing exemplar models consists of at least two phases:
a training phase and a testing phase. In the training phase,
participants have to learn the cues and the criterion values of
some stimuli (i.e., the exemplars), as well as the relationship
between the cues and the criterion. This is typically done
by repeatedly judging the criterion values of a sample of
objects and receiving trial-by-trial-feedback. Long training
phases, sometimes in combination with a learning criterion
or performance contingent payment, are used to ensure
intensive learning and memorization of the exemplars by
the participants (e.g., Bröder, Newell, & Platzer, 2010;
Hoffmann et al., 2013; Wirebring et al., 2018). In the
testing phase, participants then have to judge the criteria
of new stimuli and of already-learned exemplars. For
instance, in Study 2 of von Helversen and Rieskamp (2009),
participants had to evaluate the quality of job candidates
(i.e., the criterion) on a scale of 1 to 100. The fictitious
job candidates varied on six different cues (e.g., knowledge
of programming languages, C++ vs. Java, knowledge of
foreign languages, French vs. Turkish, etc.). The training
phase consisted of 20 blocks with eight trials each. In
each trial, participants had to judge one of the eight
job candidates (i.e., the exemplars). After each trial, the
participants received feedback about the number of points
this candidate should receive and how close their estimate
had been. In the testing phase, participants then had to judge
30 job candidates twice. From these 30 candidates, 22 were
new candidates and eight were exemplar candidates from
the training phase.

The parameters of the model of interest are often
estimated based on the data of the last training blocks
(e.g., Hoffmann et al., 2013; Juslin et al., 2008). These
estimated parameters are then used to predict the data of
each participant in the testing phase to avoid overfitting.
The goodness-of-fit is then determined, for instance, via
the root-mean-squared error (RMSE) between the model
prediction and the participants’ actual judgments or the
Bayesian Information Criterion (BIC, Schwartz, 1978). The
goodness-of-fit criteria are then often used together with
qualitative indices of extrapolation and interpolation (e.g.,
Bröder & Gräf, 2018; Juslin et al., 2003) to compare
the exemplar model with other possible judgment-process
models, such as a rule-based model (e.g., Juslin et al., 2003;
Hoffmann et al., 2013). Qualitative indices of extrapolation
and interpolation are a valuable addition to quantitative
goodness-of-fit measure, since exemplar models cannot
predict judgments for new objects that extend beyond
the range of learned criterion values, whereas rule-based
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models can. Hence, testing for extrapolation in human
judgments can help to distinguish the processes.

Exemplar model used inmultiple-cue judgment
research

The exemplar model we use as an example in this paper
is based on the context model of Medin and Schaffer
(1978) extended to account for the continuous criterion
in multiple-cue judgments (Juslin et al., 2003). This
and similar exemplar models have been used in many
studies of multiple-cue judgments, where it is assumed
that judgments are based on the memory of previously
encountered exemplars (e.g., Bröder & Gräf, 2018; Bröder,
Gräf, & Kieslich, 2017; Juslin et al., 2003; Hoffmann et al.,
2013; Hoffmann et al., 2014; Hoffmann, von Helversen,
Weilbächer, & Rieskamp, 2018; Karlsson et al., 2008;
Platzer & Bröder, 2013; von Helversen & Rieskamp, 2008;
von Helversen, Mata, & Olsson, 2010; Wirebring et al.,
2018). According to this model, when a judgment is made
about a probe (i.e., a stimulus that has to be judged), the
judge considers the similarity of the probe to all of the
previously encountered exemplars. Similarity then acts as
a weight on the stored criterion values. When applied to
a continuous criterion in a multiple-cue judgment task, the
stored criterion value of a similar exemplar in memory has
more influence on the judged criterion value of the probe,
whereas the criterion value of a dissimilar exemplar receives
less weight (Juslin et al., 2003). The similarity between a
probe and an exemplar is determined by feature overlap. An
exemplar with large feature overlap is more similar to the
probe and thus has more impact on the judgment.

Regarding the formal definition, the model is based on
the similarity S between a probe and the exemplars. It is
assumed that the probe serves as a retrieval cue, activating
previously encountered exemplars in memory. The probe �p
and each exemplar �ej are represented by vectors of D binary
cues ∈ {0, 1}. The similarity parameters si , i = 1, ..., D,
are the only free parameters in this model, defined on the
interval [0, 1]. They determine how strongly a mismatch of
objects on cue i influences the similarity S that can vary
between 0 and 1. For simplicity, we assume the si to be
constant across cues, that is, si = s, for all si (e.g., Bröder
& Gräf, 2018; Juslin & Persson, 2002; von Helversen &
Rieskamp, 2008).1 The similarity S( �p, �e) between �p and
one exemplar �ej is determined according to the similarity

1There is also empirical data showing that this simplified version also
outperforms the more complex model with a separate si parameter
for each cue i in predicting individuals behavior (von Helversen &
Rieskamp, 2008).

rule of the context model (Medin & Schaffer, 1978):

S( �p, �ej ) =
D∏

i=1

di with di =
{

1 if pi = ei

s if pi �= ei

(1)

where D is the number of cues of each object. For binary
cues this simplifies to:

S( �p, �ej ) = sD−m (2)

where m is the number of matching cues between �p and
�ej . The judged criterion value c′ of the probe �p is then
the average of all n exemplar criterion values �c in memory,
weighted by the similarity of the respective exemplar to the
probe:

c′ =
∑n

j=1 S( �p, �ej ) ∗ c( �ej )∑n
j=1 S( �p, �ej )

(3)

where c( �ej ) is the criterion value of exemplar j . Equation 3
is the extension of the context model (Medin & Schaffer,
1978) from binary to a continuous criterion as suggest
by Juslin et al. (2003; see also Elliot & Anderson, 1995;
Juslin & Persson, 2002). It involves many simplifying
assumptions, such as not directly modeling the exemplar
retrieval process (cf., the EBRW model of Nosofsky &
Palmeri, 1997), assuming that all exemplars are used
when making a judgment (cf., Nosofsky & Palmeri, 1997;
Albrecht, Hoffmann, Pleskac, Rieskamp, & von Helversen,
2019), and that all exemplars, their cues, and their criterion
values are remembered and recalled without error. However,
a detailed modeling of the recall and retrieval process is
not intended with this model as it is used in the multiple-
cue judgment literature, since it is mainly used as a tool to
classify rule- and exemplar-based processes of judgments.

The s parameter

The s parameter from the model above is often called
similarity parameter, since from an analytical point of
view, it controls the similarity between two exemplars
(Medin & Schaffer, 1978, see the example below).
Psychologically, the s parameter has been interpreted as
an attention parameter, since the perceived similarity of
two exemplars decreases, when more attention is paid
to potential cue mismatches (Medin & Schaffer, 1978;
see also Juslin et al., 2003; von Helversen & Rieskamp,
2009). However, the s parameter can also be seen as a
continuous measure of memory discriminability, where high
values indicate no discrimination between exemplars and
very small values indicate a perfect discrimination between
exemplars in memory. The memory discriminability of
exemplars increases when exemplars become well-learned
as their memory traces become more distinct, reducing the
perceived similarity (Shiffrin, Clark, & Ratcliff, 1990; Kılıç,
Criss, Malmberg, & Shiffrin, 2017). The results reported
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Fig. 1 The similarity between two stimuli for different numbers of
mismatching cues and different values of s according to the context
model (Medin & Schaffer, 1978)

in this article are relevant regardless of the preferred
interpretation of s as either a memory or as an attention
parameter.

To illustrate, Fig. 1 depicts the similarity between two
hypothetical stimuli �a and �b with four cues each, for
different numbers of mismatching cues (i.e., 0, 1, 2, 3,
or 4), plotted for different values of s. For s = .9 (i.e.,
low discriminability), the similarity decreases rather slowly.
However, for s = .1 (i.e., high discriminability), even a
mismatch of only one cue (e.g., �a = [1,1,1,1] and �b =
[0,1,1,1])) leads to a large decrease in similarity from 1
to 0.1. As more and more cues mismatch, the similarity
asymptotically approaches 0. Due to the multiplicative
combination of the mismatches (see Eq. 1), smaller values
of s lead to a much steeper decrease of similarity with
each mismatch and hence, much less influence of dissimilar
exemplars on the judgment of the probe. This also implies
that if s is equal, or very close to 0, only perfectly matching
or very similar exemplars (if existent) will determine the
judgment, otherwise, judgments are erratic. If s is equal,
or very close to 1, every exemplar has the same influence,
thus resulting in the prediction of the mean of the exemplar
criterion values for each and every probe.

The psychological misspecification of the exemplar
model in multiple-cue judgment research

The exemplar model as described above assumes that
judging the criterion value of a probe always involves
the reconstruction of the criterion value as a similarity-
weighted average of all stored exemplar criterion values.
This, however, seems psychologically implausible in
typical multiple-cue judgment tasks where participants are
repeatedly confronted with the same small set of judgment
objects during the training phase. In this situation, we

think that it is more realistic to assume that more and
more exemplars become well learned, and when a probe
is presented which is identical to one of the overlearned
exemplars in memory, the criterion value of this very
exemplar will be retrieved rather than building a similarity-
weighted average of all exemplars. Hence, we assume
that depending on the strength of an exemplar’s memory
representation, one of two qualitatively distinct processes
will take place: If a strongly represented exemplar is found
in memory which exactly matches the probe, the participant
will simply recall this single exemplar’s criterion value and
report it as their judgment. We will henceforth refer to
this process as “(direct) recall”. In the alternative case if
there is no strong representation of a perfectly matching
exemplar (the exemplar has not been overlearned, yet, or
the probe is new), the similarity-weighted reconstruction
as described in the original exemplar model takes place.
Hence, all exemplars are recalled (cf., Nosofsky & Palmeri,
1997; Albrecht et al., 2019), and the judgment is built
buy the similarity-weighted averaging process, for ease of
differentiation, we will henceforth simply call this second
process “judgment”. Of course, this judgment is also
based on the recall of the exemplars. But it entails the
additional process of a similarity-weighted integration of
their criterion values in contrast to the “direct recall”-
process mentioned above, which only entails the retrieval
of just this one specific well-learned exemplar and then
reproducing its retrieved criterion value. For ease of
presentation, we use the shortcut terms “judgment” for
the former integration process and “direct recall” for the
latter simple recall process involving only the identical
exemplar. Our conjecture is that lumping these qualitatively
different processes together into one may severely distort
the characterization of the process as well as the estimate of
the similarity parameter s.

The reason for this conjecture is that the exemplar model
can account for both types of processes (judgment and
direct recall). In the judgment process, the response is
a similarity-weighted average based on all exemplars. In
the direct-recall process, it is only the identical exemplar
that governs the response. Which of those two modes of
aggregation is used depends on the s parameter and how the
proposed psychological misspecification then might affect
the estimation of the s parameter can be demonstrated
with an example. Assume there are two exemplars and one
to-be-judged stimulus with two binary cues as shown in
Table 1. The to-be-judged stimulus is identical to Exemplar
1. Based on Eqs. 2 and 3, we can generate predictions for
the unknown criterion value of the to-be-judged stimulus for
a very high and a very low value of s. For s = 1 we get
a prediction of c′ = 5, which is the mean of the criterion
values of the two exemplars. For s = 0 we get c′ = 3,
which is the criterion value of Exemplar 1. This implies that
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Table 1 Cue and criterion values for two exemplars and one probe

Cue 1 Cue 2 Criterion

Exemplar 1 0 1 3

Exemplar 2 1 1 7

Probe 0 1 ?

Note. The probe is identical to the first exemplar

a very small s value leads to the prediction of the exact
criterion value of the matching exemplar (if existent). Thus,
when estimating the parameters from data by minimizing
the distance between observed data and model-implied
predictions, which can be seen as the reverse of prediction,
s has to be as small as possible if two conditions are met:
A probe is identical to one of the exemplars and the judged
criterion of the probe is equal to the true criterion value of
the matching exemplar. One instance where these conditions
apply is when a participant has learned an exemplar and its
respective criterion in an earlier stage of the experiment, and
then later, when presented with the same exemplar again,
recalls the learned criterion.

Therefore, we conjecture that the estimation of the s

parameter is biased towards 0 if the responses of participants
include direct recall of exemplars and their criterion values,
and if all data points are jointly used to estimate the
parameter. Furthermore, we predict that this problem is
aggravated with increasing numbers of recalled exemplars,
since there are more cases influencing the estimation of the
s parameter. In addition, the model should show decreased
model fit and make less accurate predictions when based on
these biased parameter estimates.

In the present work, we show that disregarding the
distinction between similarity-based judgment and direct
recall leads to large errors in the estimation and impaired
validity of model parameters. For this, we first present
results from a computer simulation testing these predictions,
showing bias in parameter estimation and how to avoid it.
Next, we reanalyze data from five experiments and show the
differences in parameter estimation and model fit between
the usual procedure and a redefined procedure.2

2All simulations and analyses were conducted using R (Version
4.0.2; R Core Team, 2020b) and the R-packages afex (Version
0.27.2; Singmann, Bolker, Westfall, Aust, & Ben-Shachar, 2020),
doSNOW (Version 1.0.18; Corporation & Weston, 2019), dplyr
(Version 1.0.0; Wickham, François, Henry, & Müller, 2020),
foreach (Version 1.5.0; Microsoft & Weston, 2020), foreign (Version
0.8.80; R Core Team, 2020a), ggplot2 (Version 3.3.2; Wickham,
2016), lsr (Version 0.5; Navarro, 2015), MCMCvis (Version 0.14.0;
Youngflesh, 2018), polspline (Version 1.1.19; Kooperberg, 2020),
psych (Version 1.9.12.31; Revelle, 2019), purrr (Version 0.3.4; Henry
& Wickham, 2020), Rcpp (Version 1.0.5; Eddelbuettel & François,
2011; Eddelbuettel & Balamuta, 2017), reshape2 (Version 1.4.4;
Wickham, 2007), runjags (Version 2.0.4.6; Denwood, 2016), tibble

Simulation

In this section, we show the severity of the problem and
address the adequacy of a solution by running a computer
simulation. The goal was to measure the bias in the
estimation of the s parameter, for different true values of
s and different recall probabilities Pr (i.e., the probability
that the criterion value of an exemplar is recalled correctly).
We compared three different ways for estimating the s

parameter of the exemplar model presented above.
First, we used the typical procedure of multiple-cue

judgment studies described above, which estimates the
model parameters of the original exemplar model based
on all data points regardless if it was a directly recalled
exemplar, a not recalled exemplar, or a new stimulus. Based
on the reasoning presented before, we expected that, when
this ŝorig parameter is estimated in this usual manner,
it is more biased towards 0, the more correctly recalled
exemplars there are in the data.

Second, since we propose that correctly recalled exem-
plars lead to a biased estimation of the s parameter, as
a simple proof-of-concept, we estimated two different s

parameters by splitting the data into two distinct sets of
stimuli: Recalled exemplars (i.e., the well-learned, very
distinct exemplars) versus not recalled exemplars and the
new stimuli (i.e., less well-learned and less discriminable
exemplars, as well as new stimuli). The ŝsplit parameter,
estimated only on the data set with not recalled exemplars
and the new stimuli, should then be an unbiased estimator
of s. However, this simple proof-of-concept is based on post
hoc evaluation of the data (i.e., the classification in correctly
recalled exemplar and other) and also reduces the amount of
data used for estimating the parameter, since only a subset
of the data is used. This method of splitting the data can be
used as a heuristic remedy to arrive at appropriate estimates
of s, however, if the extended model described next cannot
be applied.

As a more elegant solution, we also used an extended
version of the exemplar model which directly integrates
the assumption that there are two distinct processes at
work when people are confronted with already presented
stimuli.3 The graphical model is depicted in Fig. 2. This
latent-mixture model (Zeigenfuse & Lee, 2010) assumes
that the final response yt of a participant in a trial t is
generated by one of two possible processes, if the stimulus
in this trial was part of the training phase: A direct retrieval
of the learned criterion value of this trained exemplar ct

(= direct recall) or the similarity-weighted reconstruction

(Version 3.0.1; Müller & Wickham, 2020), and truncnorm (Version
1.0.8; Mersmann, Trautmann, Steuer, & Bornkamp, 2018). The entire
article was written with the papaja-package (Version 0.1.0.9997; Aust
& Barth, 2020)
3We thank an anonymous Reviewer for this suggestion.
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Fig. 2 Graphical model of the latent-mixture extension of the original exemplar model

as described in the original exemplar model yorigt (=
judgment). Which data generating process is used, given the
stimulus in this trial was a trained exemplar, is determined
by an indicator variable zt . If zt = 0 the data yt follow a
normal distribution with precision τ0 and centered around
the prediction of the original exemplar model yorigt , which
is based on the parameter s. If zt = 1 the data yt follow a
normal distribution with precision τ1 and centered around
the learned criterion value of this exemplar ct . The indicator
zt follows a Bernoulli distribution with parameter φ. This
parameter φ represents the latent memory probability;
this is the probability that a trained exemplar is directly
recalled and the corresponding criterion value reproduced.
To summarize, this extended latent-mixture model of the
original exemplar model integrates the assumption that
if a probe in a trial is a novel stimulus, the similarity-
weighted average response based on the original exemplar
model is used based on the parameter s. When the probe
is a trained exemplar, the response is the directly recalled
learned criterion value of this exemplar with probability
φ and the similarity-weighted average response based on
the original exemplar model with probability 1 − φ. The
estimated ŝint parameter should then also be unbiased, since
the possibility of direct retrieval is already integrated into
the model.

Procedure

In this simulation, we generated behavioral data by
manipulating two independent variables (the true value
of s and the probability that the criterion value of an
exemplar is recalled correctly) and investigated how these
variables influence the parameter estimation. A summary
of the simulation procedure is shown in Algorithm 1 in the
Appendix. In the first step of this simulation, we generated
the stimulus matrix, consisting of 32 stimuli that can be

created with five binary cues. The criterion values were
computed according to a linear additive rule:

c = w0 + cue1 × w1 + cue2 × w2 + cue3 × w3 + cue4

×w4 + cue5 × w5. (4)

where cuei represents the binary cues and wi the
corresponding cue weights. Of the 32 stimuli, 12 are
randomly selected as to-be-learned exemplars. In order to
create realistic stimulus material used in actual experiments
(e.g., Bröder et al., 2017; Bröder & Gräf, 2018), the four
most extreme stimuli (i.e., the two stimuli with the highest
and the two stimuli with the lowest criterion value) were
never selected as exemplars. In addition, there was also a
switch of criterion values between one pair of stimuli (i.e.,
if one stimulus a of this switch pair would have a criterion
value of 31 and stimulus b of the pair a value of 59 , the new
values after switching would be 59 for a and 31 for b). The
cue weights wi for cues i = 0, ..., 5 had to sum to 100 and
were randomly drawn from a truncated normal distribution
with μ = 20, σ = 10, an upper bound of 100, and a lower
bound of 0.

In the second step, we generated judgment data from
this stimulus matrix according to Juslin et al.’s. (2003)
version of the context model (Medin & Schaffer, 1978)
presented above. The true s parameter varied in 4 steps
from a very strict similarity criterion to a more lenient
criterion, s = .001, .01, .3 or .8. The recall probability
(Pr ) could either be .1, .5 or 1. This means that, for
instance for Pr = 0.5, there is a probability of .5 that an
exemplar and its corresponding criterion value is recalled
correctly and, therefore, there could be more or less than
50% of correctly recalled exemplars in a given iteration
of the simulation when Pr = .5. A value of Pr = 1
indicated that every exemplar (and its criterion value) is
recalled correctly and the judged criterion value of this
exemplar is therefore its exact criterion value. A value of
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Pr = .1 indicates that only very few exemplars are recalled
exactly.4 It should be noted that a recall probability of 1
is what most studies aim for when applying an extensive
training phase. Also, as most exemplar models are based on
the assumption that all exemplars and their corresponding
criterion values are remembered correctly and are all used in
the subsequent judgment process (cf., Nosofsky & Palmeri,
1997; Albrecht et al., 2019), participants should learn all
exemplars correctly. Note also that we added no additional
error to the generated judgment data, so in principle one
would expect perfect parameter recovery.

In the third step, we estimated the ŝ parameters with
JAGS (Plummer, 2003) interfaced with R using the runjags

package (Denwood, 2016), using each of the three methods.
The results are based on MCMC chains with 5000
samples from each of two independent chains collected
after 5000 burn-in samples were discarded, 5000 adaptive
iterations, and thinning by recording every 5th sample. The
convergence of the chains was checked by visual inspection
and the standard R̂ statistic (Brooks & Gelman, 1998).

In the final step, we computed the Bayes factors for
model comparison between the original exemplar model
(M0) and the latent-mixture model (M1). Since the original
exemplar model is nested within the latent-mixture model
when φ = 0, we computed the Bayes factor based on the
Savage–Dickey density ratio (Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010; Vandekerckhove et al., 2015):

BF10 = p(φ = 0|M1)

p(φ = 0|D,M1)
(5)

where p(φ = 0|M1) is the density of the prior distribution
of φ at 0 given M1, p(φ = 0|D,M1) is the density of the
posterior distribution of φ at 0 given M1, and BF10 is the
Bayes factor in favor of M1. The density of the posterior
distribution was computed with the dlogspline function
in the polspline package in R (Kooperberg, 2020). Since
we used a uniform (0,1)-prior for φ, the density p(φ =
x|M1) on any given point x is 1. The resulting Bayes
factor BF10 then indicates the evidence of M1 compared
to M0, or how much more probable the data are under
M1 compared to M0 (Kass & Raftery, 1995; Morey,
Romeijn, & Rouder, 2016; Vandekerckhove et al., 2015).
For instance, a Bayes factor of BF10=10 would indicate
that the data are 10 times more likely to occur under
M1 than under M0. In addition, we computed the root-
mean-squared-error (RMSE) between the actual data and
the median of the posterior predictive distribution in each

4We used a value of .1 instead of 0, as this made it easier to ensure
that there were at least two recalled exemplars, since it would lead to
some problems later in the simulation when there were no or only one
recalled exemplar when we estimated two separate s parameters on the
two distinct subsets of data.

trial of both models as an indicator for the prediction error
margin of each model and since the RMSE is often used
in multiple-cue judgment studies for model comparison
(e.g., Hoffmann et al., 2013; Wirebring et al., 2018; von
Helversen & Rieskamp, 2009).

All steps were repeated 200 times for each combination
of true s parameter and Pr value, which leads to 200 × 4 ×
3 = 2400 simulated data sets in total. For each simulated
data set, a new stimulus matrix, with different exemplars,
cue weights, and criterion values was generated as described
in the first step. The code of the simulation, the JAGS model
codes, example of MCMC chains and R̂ values of all three
estimation methods for a randomly selected iteration of the
simulation, and the results are available at the Open Science
Framework (https://osf.io/b69f3/).

Results

Recovery s

The results of the simulation are displayed in Fig. 3 and
Table 2. The first row in Fig. 3 shows that the recovered
parameter ŝorig of the original exemplar model was very
close to the true s values, when Pr was small. However, with
an increasing percentage of correctly recalled exemplars
(Pr ), ŝorig increasingly deviated from s, with larger
deviations for larger s values. For a high recall probability
of Pr = 1, ŝorig deviated strongly from the true s and
was severely biased downward towards 0. In addition, ŝorig

was never larger than .17 for s = .3 and .27 for s = .8
when Pr = 1, which is less than half as large as the
actual true value. Thus, the first row in Fig. 3 shows that
the estimated ŝorig parameter is a severely biased estimator
of s if judgment and direct recall (or the data generated
by these processes) are mixed. The bias of ŝorig increases,
when more exemplars are recalled directly. Yet, a good
memory performance is exactly the goal researchers try
to achieve, when they design their experiments with an
extensive learning phase.

The second row of Fig. 3 shows the estimated ŝsplit

parameter, the parameter that was estimated only on the
subset of the data without any directly recalled exemplars.
When the parameter is estimated based only on new stimuli
and criterion values that are not perfectly recalled, the
recovered ŝsplit values were identical to the true values, see
again Table 2 for the descriptive values. Although not shown
in Fig. 3, the estimated ŝsplit parameter values based on
the subset of only correctly recalled exemplars were mostly
estimated close to 0, as to be expected.

The third row of Fig. 3 shows the recovered ŝint

parameter values from the latent-mixture extension of the
original exemplar model. The results in Fig. 3 and displayed
in Table 2 show that the true s parameter values are
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Fig. 3 Estimated s values for different true s values and different Pr

for three different types of s parameter. The black solid lines represent
what would be expected for perfect parameter recovery. Red points
and dashed lines show and connect the means of 200 repetitions. ŝorig

is the estimated s parameter based on the original exemplar model.

ŝsplit is the estimated s parameter based on the original exemplar
model, when only the subset of the data without any recalled exem-
plars was used. ŝint is the estimated s parameter of the latent-mixture
extension of the original exemplar model

recovered very well by ŝint when the possibility of direct
recall of trained exemplar was integrated into the model.
In addition, we found that the φ parameter was very close
to Pr on average over all iterations, except for s = .001,
where the average φ was below .1, regardless of Pr (see
Table S1 in the online supplementary material). We assume

this is since the difference in criterion values between a
directly recalled exemplar and the predicted value based on
the exemplar model with s = .001 can be rather small (e.g.,
47 and 47.002, see Table S2 in the online supplement) and
the model then tends to classify directly recalled exemplars
as “not-recalled” (i.e., zt = 0).

Table 2 Means (and standard deviations) of the estimated s values for different true s values and different memory probabilities

true s

Pr type .001 .1 .3 .8

ŝorig .001 (.002) .092 (.008) .272 (.026) .696 (.096)

0.1 ŝsplit .001 (.002) .100 (.001) .300 (.002) .800 (.000)

ŝint .001 (.004) .100 (.002) .300 (.002) .800 (.000)

ŝorig .001 (.001) .069 (.012) .186 (.045) .439 (.121)

0.5 ŝsplit .001 (.002) .100 (.001) .300 (.002) .800 (.000)

ŝint .001 (.004) .100 (.001) .300 (.002) .800 (.000)

ŝorig .001 (.002) .042 (.013) .093 (.027) .169 (.044)

1.0 ŝsplit .002 (.005) .100 (.004) .300 (.003) .800 (.001)

ŝint .001 (.005) .100 (.004) .300 (.003) .800 (.001)

Note. Pr indicates the recall probability. Type indicates the type of s parameter: ŝorig is the estimated s parameter based on the original exemplar
model. ŝsplit is the estimated s parameter based on the original exemplar model, when only the subset of the data without any recalled exemplars
was used. ŝint is the estimated s parameter of the latent-mixture extension of the original exemplar model
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Table 3 Means (and standard deviations) of the log(BF10)

true s

Pr .001 .1 .3 .8

0.1 − 2.32 (3.11) 2.92 (2.13) 3.06 (1.86) 3.13 (1.82)

0.5 − 1.83 (4.29) 8.74 (1.94) 8.76 (1.91) 8.71 (1.79)

1.0 − 2.30 (3.03) 18.45 (1.6) 18.55 (1.55) 18.49 (0.68)

Note. Pr indicates the recall probability

Model comparison

The Bayes factors as a mean of model comparison
between the original exemplar model and the latent-mixture
extension are shown in Table 3. When the data-generating
s parameter was very small, the Bayes factor favors on
average the original exemplar model, indicated by the
negative log(BF10), regardless of Pr . This is because the
s parameter is with .001 already very close to 0, thus
there is not much room for the downward biasing effect of
correctly remembered exemplars and the Bayes factors then
favors the less complex original exemplar model with fewer
parameters. However, the average log(BF10) increasingly
favors the latent-mixture model with an increasing number
of correctly recalled criterion values, with values more or
less being constant for the different possible true s values.

We can find a similar pattern for the RMSE shown in
Table 4. When the data were generated with a very small s

value, we get a similar average low RMSE for the original
exemplar model and its latent-mixture extension. However,
the RMSE of the original exemplar model increases the
larger the s parameter and the number of correctly recalled
exemplars become.

Discussion

We ran a simulation to investigate the potential bias in
the estimation of the s parameter, when one does not

differentiate between recalled exemplars and not recalled
exemplars as well as new stimuli.

The results suggest that the estimation of the s parameter
as well as predictions based on this estimation can be
inaccurate, when the distinction between directly recalled
exemplars and judgment is not taken into account. The
deviation of ŝorig from s was small when either the true
s parameter was small, or when Pr was small, that is,
when there were only very few directly recalled exemplars.
However, we found large biases in estimation as well as
in predictions when there was a medium to large recall
probability and true s value. The results show that the
estimated ŝorig is biased downwards, when the true s

parameter and the recall probability was large. However,
this large recall probability, as stated before, is exactly the
outcome many experimenters aim for when designing their
experiments with extensive learning phases: Many studies
implement a learning criterion that participants have to
reach to advance to the next phase of the experiment or
terminate the learning phase before the maximal number of
learning blocks (e.g., Bröder et al., 2010; Hoffmann et al.,
2013; Wirebring et al., 2018). In addition, the number of
learning blocks (i.e., the number of times an exemplar is
presented) can range from 4 (Pachur & Olsson, 2012) up to
40 blocks (Wirebring, Stillesjö, Eriksson, Juslin, & Nyberg,
2018), with most studies using 8–10 blocks. Participants
are instructed, and with these extensive learning phases also
able, to memorize these stimuli and their respective criterion

Table 4 Means (and standard deviations) of the RMSE of the original exemplar model (orig) and the latent-mixture extension with integrated
direct recall process (int)

true s

Pr Type .001 .1 .3 .8

0.1
RMSEM0 0.03 (0.17) 0.70 (0.44) 1.67 (0.92) 3.36 (1.7)

RMSEM1 0.03 (0.16) 0.04 (0.25) 0.02 (0.14) 0 (0.01)

0.5
RMSEM0 0.08 (0.35) 1.25 (0.33) 3.17 (0.75) 6.06 (1.29)

RMSEM1 0.08 (0.35) 0.02 (0.14) 0.01 (0.06) 0 (0.01)

1.0
RMSEM0 0.04 (0.22) 1.40 (0.36) 3.23 (0.68) 6.13 (1.17)

RMSEM1 0.04 (0.21) 0.04 (0.23) 0.02 (0.11) 0 (0.01)

Note. Pr indicates the recall probability. M0 is the original exemplar model and M1 the latent-mixture extension
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values. For instance, in Experiment 1B in Bröder, Gräf,
and Kieslich (2017) participants showed an average correct
recall rate (what we called here the recall probability Pr )
of .79 (SD = .23) and 46.67% had a correct recall rate
of .90 or more. Furthermore, it is not the recall probability
per se, but the relative number of correct exemplars to
all trials, that is, how many data points from all possible
trials are correctly recalled exemplars, which drives this
effect. The more recalled exemplars there are in the data,
the stronger ŝorig is biased towards 0. For instance, in our
simulation, with 32 stimuli, 12 exemplars, and Pr = 1,
there were 12

32 = 37.50% correctly remembered exemplars.
The fact that parameters are often estimated on the data of
the training blocks (e.g., Bröder & Gräf, 2018; Juslin et al.,
2003; von Helversen & Rieskamp, 2008), where all stimuli
are exemplars, makes this finding even more alarming.
These findings could in principle explain why many studies
find small ŝorig values, since based on the results of the
simulation, small ŝorig values can arise both, from small true
s values, but also from larger true s values, when combined
with the often-achieved high number of correctly recalled
exemplars in the data.

The results show that this bias in ŝorig is caused by
correctly remembered exemplars, this is instances where
the judgment of the criterion value of a trained exemplar is
identical to its true criterion value, since the bias disappears
when the ŝsplit was estimated only on the subset of the
data without any recalled exemplars. As a more elegant
solution, using the here presented latent-mixture extension
of the original exemplar model where the possibility of
correctly recalling a trained exemplar is integrated into
the model also lead to an unbiased estimation of the s

parameter. In fact, the few deviations of the estimated ŝint

from the underlying s parameter are probably due to the
random simulation procedure and instances of unfortunate
selections of exemplars and combinations of generated
criterion values, which would not be used in a real
experimental setting.

In the next section, we investigate if these effects reported
here are likely to be found in real experimental data as well,
by reanalyzing existing data from five different multiple-cue
judgment experiments.

Re-analysis

We reanalyzed data from five different experiments from
Bröder et al. (2017), Bröder and Gräf (2018), and one
unpublished data set from the same lab group. The aim was
to investigate if the effects found in the simulation extend
to empirical data as well. Before we describe our general
approach, we first outline the experimental procedure used
in one of the experiments. The material and procedure in

the other experiments were very similar to the one described
below and can be found in the corresponding papers, or, for
the unpublished data set, in the supplemental material. The
code and results are again available at the Open Science
Framework (https://osf.io/b69f3/).

Materials and procedure of the reanalyzed data sets

In Experiment 1A of Bröder et al. (2017), participants had to
judge stimuli on a scale from 0 to 100 based on a set of four
binary symptoms (e.g., fever vs. hypothermia), resulting in
16 different stimuli. They either had to judge the severity of
a patient’s disease or the toxicity of a bug. Since cue patterns
and criterion values of both stimulus sets were identical and
for reasons of simplicity, we will not make a distinction
between the content domain in the subsequent analysis.
The experiment itself consisted of three phases: a training
phase, a decision phase, and a final testing phase. In the
training phase, participants had to judge severity of illness
of eight patients or the toxicity of eight bugs (the exemplars)
and feedback about the actual criterion value was provided.
Participants were instructed to either use the feedback about
the correct criterion values to learn a mathematical rule
connecting cue and criterion values (rule condition) or to
memorize the objects and their values (exemplar condition).
The training phase consisted of eight blocks with eight
trials each (one for each exemplar). In the decision phase,
participants had to choose the stimulus with the higher
criterion value of 45 pairs of objects. These data, however,
are not important for the current project. In the testing
phase, participants had to judge the criterion values of all
16 stimuli (i.e., exemplars as well as new stimuli). They
were instructed to either apply the mathematical rule they
learned earlier (rule condition) or judge untrained objects
by their similarity to the memorized objects (exemplar
condition).

Method

Because of the often-documented “rule-bias” and since
we were interested in the exemplar model, we chose the
conditions of the five experiments in which exemplar-based
processing was expected (or shown) to be most prevalent.
We selected the data from the corresponding exemplar
condition from each experiment, where participants were
either directly instructed to use an exemplar-based approach
(e.g., Experiment 1A in Bröder et al., 2017), or where
an exemplar-based strategy was induced by experimental
design (e.g., Bröder and Gräf, 2018). For instance, in
Bröder and Gräf (2018), we only used the data from the
condition where a dimensional cue format was combined
with memory-based judgments, as more exemplar-based
reasoning has been observed under these conditions
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(Bröder, Newell, & Platzer, 2010; Platzer & Bröder, 2013).
See Table 5 for a short overview of all experiments and the
selected conditions.

We then again used JAGS (Plummer, 2003) to fit the
original exemplar model and the latent-mixture model
depicted in Fig. 2 to the data of the judgment phase of each
experiment. We ran two MCMC chains with 5000 samples
each with thinning by recording every 5th sample, after
15,000 burn-in samples and 15,000 adaptive iterations. The
convergence of the chains was checked by visual inspection
and the standard R̂ statistic (Brooks & Gelman, 1998).
We also computed Bayes factors for model comparison
between the original exemplar model (M0) and the latent-
mixture model (M1), using the Savage–Dickey density
ratio (Wagenmakers et al., 2010). In addition, we computed
the RMSE between the actual data and the median of the
posterior predictive distribution of each model.

Hypotheses

We had three predictions based on the simulation results
reported before. First, regarding the s parameter, we
expected to find higher values for ŝint than for ŝorig , since
ŝorig should be biased towards 0 when there are correctly
recalled exemplars in the data (H1). Second, since ŝorig

becomes smaller on average when there are more correctly
recalled exemplars, but ŝint does not depend on the number
of correctly recalled exemplars (see Fig. 3), we expected to
find a negative correlation between ŝorig and the number
of correctly recalled exemplars. We also expected to find
no such correlation with ŝint and the number of correctly

recalled exemplars (H2). Third, we expected to find that the
data are better predicted by the latent-mixture model than
by the original exemplar model, as indicated by a positive
log(BF10) (H3).

Results

H1. Differences in s Parameter

We conducted one-sided paired-samples t-tests for the
differences between ŝint and ŝorig for each experiment. The
results, together with the descriptive values, are shown in
Table 6. Overall, we found significant differences between
ŝint and ŝorig , with all ps < .001 and ds ≥ 1.02. The median
posterior estimates of ŝint and ŝorig for each person and each
experiment depicted in Fig. 4 show that as hypothesized ŝint

is larger than ŝorig for almost all participants. Indeed, there
is only one instance were ŝint (0.881) was smaller than ŝorig

(0.884) and this is for a participant who did not recall any
exemplar correctly (i.e., Pr = 0). In addition, there was a
very high correlation between the estimated latent memory
probability parameter φ of the latent-mixture model and the
empirical proportion of correctly recalled exemplars of each
participant (Table 6), which supports the validity of the φ

parameter.

H2. Correlations

To test our additional predictions we calculated the
correlation between ŝint as well as ŝorig and the number
of correctly recalled exemplars across participants and then

Table 5 Sample size, mean (and standard deviation) of proportion of correctly recalled exemplars, names and short description of the selected
condition of each experiment

Exp. Label n Pr Selected condition Short description of condition

Bröder et al. (2017) - 1A 171A 62 .43 (.32) Exemplar instruction Participants were instructed to
use an exemplar-based strategy.

Bröder et al. (2017) - 1B 171B 30 .85 (.15) Exemplar instruction Participants were instructed to
use an exemplar-based strategy.

Bröder et al. (2017) - 2 172 30 .69 (.31) With picture Each exemplar was always
accompanied by a picture of
a male person to facilitate
exemplar-based processing.

Bröder and Gräf (2018) 18 30 .78 (.28) Memory-based dimensions A dimensional cue format was
combined with memory-based
judgments, to facilitate more
exemplar-based reasoning.

Bröder and Gräf (unpublished) XX 35 .54 (.30) Long learning phase Participants had a longer train-
ing phase to facilitate exemplar
storage and thus exemplar-based
processing.

Note. Label indicates the respective abbreviations used in subsequent tables and figures

n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars
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Table 6 Means (and standard deviations) for different s parameters, test statistics and effect sizes of the difference between ŝint and ŝorig for five
data sets. Means (and standard deviations) of the latent memory parameter φ and its correlation with the empirical proportion of correctly recalled
exemplars

s parameters

Exp. n Pr φ rPr×φ ŝorig ŝint t df p d

171A 62 .43 (.32) .45 (.28) .93 [.88,.96] .34 (.23) .48 (.21) 8.00 61 < .001 1.02

171B 30 .85 (.15) .79 (.13) 1.00 [1.00,1.00] .23 (.13) .53 (.20) 12.88 29 < .001 2.35

172 30 .69 (.31) .66 (.26) 1.00 [1.00,1.00] .23 (.17) .41 (.18) 10.79 29 < .001 1.97

18 30 .78 (.28) .74 (.24) 1.00 [1.00,1.00] .24 (.16) .53 (.22) 9.36 29 < .001 1.71

XX 35 .54 (.30) .53 (.25) 1.00 [1.00,1.00] .36 (.24) .53 (.23) 8.33 34 < .001 1.41

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars

compared these two correlations with the test proposed by
Dunn and Clark for the difference between two overlapping
correlations based on dependent groups (Dunn & Clark,
1969; Hittner, May, & Silver, 2003). The results are shown
in Table 7. In every data set, we found a stronger negative
correlation of ŝorig (range: -.55 to -.75) with the number of
correctly recalled exemplars than for ŝint (range: -.12 to -
.47), with differences ranging from .20 to .48, ps ≤ .001.
Furthermore, as evident from Fig. 5, we found a similar
pattern as in the simulation where there seems to be an
upper bound for ŝorig for high numbers of correctly recalled
exemplars (see Fig. 3). Also evident from Fig. 5 is that, other
than expected, there were two instances where ŝint was still
significantly related to the number of recalled exemplars.

However, as these are only correlational findings, the
data from the unpublished experiment allowed us to address
this prediction (i.e., that the number of correctly recalled
exemplars affects ŝorig but not ŝint ) experimentally. This
experiment consisted of two conditions which only differed

in the length of the training phase (4 vs. 8 blocks, see
the supplemental material for a more detailed description).
This difference in length of the training phase should
lead to a lower number of correctly learned exemplars for
participants with a shorter training phase. This difference
in the number of correctly learned exemplars should then
lead to lower ŝorig values when participants had a longer
training phase and thus recalled more exemplars correctly,
but it should not affect ŝint . As expected, participants with
a shorter training phase recalled fewer exemplars in the
final testing phase correctly (M = 2.29, SD = 1.82) than
participants with a longer training phase (M = 4.29, SD =
2.38), t (63.66) = −3.94, p < .001, d = 0.94.

In addition, consistent with the previous results, the
difference between ŝorig and ŝint was larger for participants
with eight training blocks than for participants with only
four training blocks (F(1, 68) = 7.72, MSE = 0.01,
p = .007, η̂2

G = .006), as ŝorig was lower in the long
training condition (M = 0.36, SD = 0.24) than in the

Experiment: 171A Experiment: 171B Experiment: 172 Experiment: 18 Experiment: XX

sorig sint sorig sint sorig sint sorig sint sorig sint

0.00

0.25

0.50

0.75

1.00

s Parameter Type

E
s
ti
m
a
te
d
s
 V
a
lu
e

Fig. 4 Median posterior values of ŝint and ŝorig for each participant and for each data set. Black dots represent the means and the corresponding
standard errors
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Table 7 Correlations [and 95% CI] of ŝint and ŝorig with the number of correctly recalled exemplars and the test statistics regarding their
differences in each data set

r

Exp. n Pr ŝorig ŝint � t p

171A 62 .43 (.32) − .60 [− .74,− .41] − .15 [− .39,.10] .45 6.65 < .001

171B 30 .85 (.15) − .55 [− .76,− .23] − .12 [− .46,.25] .43 3.88 < .001

172 30 .69 (.31) − .75 [− .87,− .53] − .45 [− .70,− .10] .30 4.46 < .001

18 30 .78 (.28) − .68 [− .83,− .42] − .20 [− .52,.17] .48 3.58 < .001

XX 35 .54 (.30) − .68 [− .82,− .44] − .47 [− .70,− .17] .20 2.99 .001

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars. � represents the difference between
the correlations

short training condition (M = 0.45, SD = 0.24), but there
was no difference for ŝint (Mshort = 0.54, SD = 0.23,
Mlong = 0.53, SD = 0.23).

H3. Model comparison

As expected, the latent-mixture model was on average better
able to account for the data, as indicated by the high positive
log(BF10), ranging from Mlog(BF10) = 3.61 in Experiment
171A to in Experiment 171B Mlog(BF10) = 9.42, see Table 8
for the full results. As evident from Fig. 6, there is some
variation in the extent to which the latent-mixture model is
better able to account for the data of individual participants,
with even some instances where the original exemplar
model was better able to predict their data. However, Fig. 6
does also show that these differences are mostly due to the
difference in the proportion of correctly recalled exemplars
of the participants (rlog(BF10)×Pr

= .97, t (185) = 52.80,

p < .001). Furthermore, we found significant differences
between the RMSE of the both models, with the latent-
mixture model having a lower RMSE on average, ps ≤
.002, ds ≥ .56.. However, as evident from Table 8, although
we found the expected differences in all data sets, some
differences were rather small, for instance in Experiment 2
of Bröder et al. (2017).

Discussion

We reanalyzed data from five different experiments to
investigate if the effects found in the previous simulation
extend to empirical data as well. Results showed large
differences between ŝorig and ŝint in all five data sets:
ŝorig was estimated to be smaller than ŝint in each data
set, as was suggested by the simulation and theoretical
reasoning. It is also notable that the higher the proportion
of correctly recalled exemplars was, the larger was the
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Fig. 5 Median posterior values of ŝint (grey dots) and ŝorig (black triangles) by proportion of correctly recalled exemplars, for each participant
and for each data set. Lines and shaded areas represent the simple linear regression estimate and the 95% confidence interval
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Table 8 Means (and standard deviations) of the RMSE of the original exemplar model or the latent-mixture model with integrated recall, with the
corresponding test statistics and effect sizes of the difference between them, as well as the log(BF10), for five data sets

log(BF10) RMSE

Exp. n Pr M SD Min Max M0 M1 t df p d

171A 62 .43 (.32) 3.61 4.59 − 2.14 12.01 13.88 (3.61) 13.25 (3.59) 7.07 61 < .001 0.90

171B 30 .85 (.15) 9.42 1.58 6.99 12.91 11.62 (3.45) 10.40 (3.32) 5.51 29 < .001 1.01

172 30 .69 (.31) 7.30 3.84 − 2.12 12.04 12.56 (3.17) 12.19 (3.02) 3.08 29 .002 0.56

18 30 .78 (.28) 8.45 3.65 − 1.27 12.41 12.27 (3.30) 11.20 (3.23) 5.53 29 < .001 1.01

XX 35 .54 (.30) 5.63 4.20 − 2.17 10.92 13.73 (3.86) 12.86 (3.54) 4.99 34 < .001 0.84

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars. M0 is the original exemplar model
and M1 the latent-mixture extension

difference between ŝorig and ŝint . Furthermore, correlational
results on the participant level also showed that ŝorig highly
depends on the number of correctly recalled exemplars,
with participants who recalled more exemplars correctly
having lower ŝorig values. Although not always independent
from the number of recalled exemplars as originally
expected, ŝint was clearly less strongly correlated with the
number of recalled exemplars. These results were further
corroborated with experimental data of one data set showing
that participants with a longer training phase recalled
more exemplars correctly and had lower ŝorig values than
participants with a shorter training phase. Yet, there was no
difference in ŝint . One might argue that it is plausible that
participants who better learned the exemplars are better able
to differentiate between them, which in turn is captured by
lower s values in the model. Although this might be true,
we still would argue that the simulation results presented
before clearly show that the relationship between a higher
number of correctly recalled exemplars and lower ŝorig

values can be a pure methodological and technical artifact.
Taken together, these results would also suggest that the
difference between ŝorig and ŝint would be even larger when

parameters are estimated on data from the training phase (by
ŝorig becoming even smaller), since there are only trained
exemplars in the learning phase and thus, the bias of ŝorig

can be even greater.
Moreover, we found that overall and for most individual

participants, the latent-mixture model integrating a direct
recall process of trained exemplars is better able to account
for the data, where for participants with a very low number
of correctly recalled exemplars the original exemplar model
was preferred. However, although the Bayes factors give
strong to extreme (overall) evidence for the latent-mixture
model, the differences in RMSE of both models, which is
often used in multiple cue judgment studies as a goodness-
of-fit criterion, were rather small for some experiments,
although we found somewhat larger differences in the
simulation.

To further investigate this, we ran a simulation similar
to the one described before, but with settings based on
the experiments we reanalyzed. That is, we used the same
stimuli, exemplars, and criterion values as in the studies
we reanalyzed. In addition, in each of the 500 repetitions
of the simulation we drew the recall probability Pr and
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Fig. 6 The log(BF10) colored by the proportion of correctly recalled exemplars (Pr ) for each participant and for each data set. The red dots
represent the means and the corresponding standard errors
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Table 9 Means (and standard deviations) of parameter estimates, RMSE, and effect sizes, from simulated as well as empirical data

s parameters RMSE

Type ŝorig ŝint M0 M1 d log(BF10)

Empirical .28 (.19) .50 (.21) 12.81 (3.48) 11.98 (3.34) 0.86 (0.86) 6.88 (3.57)

Simulation .32 (.19) .52 (.20) 13.72 (4.62) 12.76 (4.82) 1.13 (0.27) 6.42 (3.45)

Note. d represents Cohen’s d for a paired-sample t test. M0 is the original exemplar model and M1 the latent-mixture extension

the true s value from beta distributions with similar means
and standard deviations as found in the experiments we
reanalyzed5. We then used these parameters and the stimuli
to generate judgment data in each repetition according to
the exemplar model presented in Eqs. 1 to 3 and then added
normal distributed error with μ = 0 and σ ∼ N(17, 6)6

with a lower bound of 0 and upper bound of 100. To be
clear, we only defined the stimuli, the criterion values, s,
and Pr , based on the data of the reanalyzed experiments.
However, we did not define or set any constraints on the
resulting RMSE. We then estimated the parameters and
assessed the RMSE as in the simulation reported above. The
results are shown in Table 9. As intended, the average s

parameters over all simulations were similar to the average
values found in the empirical experiments. Furthermore,
we found that although the overall RMSE was a little bit
higher in the simulation, the average effect sizes of the
RMSE difference between both models and the average
log(BF10) were similar to the ones found in the empirical
data sets. This suggests that the results we found regarding
the differences in RMSE and log(BF10) are somewhat
typical for the specific memory performance observed in the
studies and the specific stimuli and range of criterion values
used in the experiments we reanalyzed.

A limitation of the results presented here is that the
procedure of the experiments we reanalyzed were very
similar to one another. Also, despite having different content
domains, the stimuli used in all experiments (i.e., number
of cues, number of stimuli, exemplars, and criterion values)
were the same in all experiments. Therefore, it is still open
to which extent the results generalize to other experiments,
with different stimuli, cues, and exemplars.

General discussion

We proposed that in the typical experimental procedure
in the multiple-cue judgment literature, the responses of

5We used the means and standard deviations of the unbiased ŝint

estimates to define the distribution of true s values in this simulation.
6These values were chosen randomly and are not based on empirical
data.

participants are a mixture of two qualitatively distinct
cognitive processes (similarity-based judgments and direct
recall) and that disregarding this distinction can lead to
biased estimation and impaired validity of parameters. We
ran a simulation and reanalyzed data from five experiments
to investigate the properties and extents of this issue, as
well as the adequacy of a solution. Results of the simulation
and the reanalysis showed that the estimation of the s

parameter of the context model (Medin & Schaffer, 1978)
extended to account for the continuous criterion in multiple-
cue judgments (Juslin et al., 2003) can be severely biased
towards 0 and that the model fit decreases if one does not
differentiate between recalled exemplars and other stimuli,
especially for larger values of the underlying s parameter
and if more exemplars are recalled correctly. Furthermore,
we found that on an individual level, the usually estimated
ŝorig parameter was very strongly negatively correlated with
the number of correctly recalled exemplars in all five data
sets, whereas the redefined parameter ŝint showed a weaker
to no relationship. The simulation and the reanalyzed data
sets showed that the predictive performance of the exemplar
model is impaired when one does not differentiate between
recalled exemplars and other stimuli.

These findings have several implications. First, we
showed that the standard procedure for estimating the
s parameter can lead to biased parameter estimates and
impaired fit of the model. However, this is not a problem
with the model itself. The problem is rather the adaptation of
the experimental design from categorization research which
involves having few overlearned stimuli (e.g., Medin &
Schaffer, 1978; Nosofsky & Palmeri, 1998), to multiple-cue
judgment research, in order to apply the exemplar models
also to multiple-cue judgments (Juslin et al., 2003). The
important difference between categorization and judgment
is the scale of the criterion. In categorization research the
criterion is categorical, for instance, two categories A or B
(e.g., Medin & Schaffer, 1978; Juslin et al., 2003; Smith
& Minda, 1998). In this case, multiple exemplars share the
same criterion value, since there are several exemplars in
category A and several exemplars in category B. Thus, there
is no unique exemplar-criterion-value combination as in
the multiple-cue judgment literature, were most exemplars
have their unique criterion value. This combination of very
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few well learned exemplars with their unique criterion
values leads to the biased estimation of the s parameter we
presented here. We would thus propose that the bias of the
s parameter is less profound in a categorization experiment,
where multiple exemplars share the same criterion. In
addition, there are also other paradigms were the bias
of the s parameter should be not necessarily a problem.
For instance, if participants get no direct feedback about
the criterion value, they are not able to just learn and
recall the exact criterion value (e.g., Pachur & Olsson,
2012). Also, there are studies in the multiple-cue judgment
and in the categorization literature, were stimuli are often
defined by continuous dimensions such as length, size, and
brightness rather than by binary features (e.g., Brehmer,
1972; Nosofsky & Alfonso-Reese, 1999; Ratcliff & Rouder,
1998), which leads to a large set of unique stimuli and
exemplars, which also makes it harder for participants to
learn specific exemplars and their criterion values. However,
on a psychological level, the mixture between different
process still is a problem in these cases.

Second, the findings presented in this work could explain
why previous studies found rather small values for the
s parameter of the exemplar model. For instance, von
Helversen and Rieskamp (2008) found average estimated
parameter values between .001 and .17 (according to von
Helversen & Rieskamp, 2009), Juslin, Karlsson, and Olsson
(2008) found average values from .14 to .36, and Bröder
and Gräf (2018) found an average s value of .11. As
evident from Fig. 3, when participants recalled most of
the exemplars the estimated parameter becomes rather
small, even when the true underlying s value was large.
In the simulation, there was an upper bound of .27 for the
estimated ŝorig parameter when s = .8 and when the recall
of exemplars was perfect.

Third, because of the biased estimation of the model
parameter, the goodness-of-fit and predictive performance
of the model are impaired. But having non-biased parameter
estimates becomes important since indices of model fit and
model comparison (e.g., RMSE, BIC, BF) are often used to
classify participants as users of a rule-based or an exemplar-
based process (e.g., Hoffmann et al., 2013; von Helversen &
Rieskamp, 2008; Wirebring et al., 2018). For example, von
Helversen and Rieskamp (2008) estimated the parameters
of different candidate models (e.g., the exemplar model
introduced here) by minimizing the RMSE for participants’
judgments in the last three blocks of the training phase. They
then compared the RMSE between the model predictions
and the actual data in the test phase to determine which
process participants relied on. The predictions for the test
phase were based on the estimated parameters of the
training phase. By neglecting the different retrieval-based
processes and estimating only one distorted s parameter,
the exemplar model may suffer an undeserved disadvantage

in the model comparisons which in the end could even
result in an overestimation of rule-based processes in
judgment. However, this problem may be less severe in
studies comparing rule-based and exemplar-based models
by qualitative indices of extrapolation and interpolation
(e.g., Bröder & Gräf, 2018; Juslin et al., 2003), which are
arguably less sensitive to the exact value of the s parameter
and thus less affected by the results reported in this work.

One possible solution, which we presented here in
the paper, is the latent-mixture extension of the original
exemplar model shown in Fig. 2. As demonstrated in
the simulation, the integration of the possibility of direct
recall of learned exemplars ensures a valid estimation
of the parameter of interest. Furthermore, this latent-
mixture model is generally preferred over the original
exemplar model, when participants remembered at least
some exemplars correctly. However, so far, the model
assumes a very simple and error-free direct retrieval process
of the criterion value of a learned exemplar in a trial, where
the corresponding criterion value of the exemplar is always
correctly remembered, for example, there is no confusion
between similar exemplars. In addition, there might be other
possible solutions, such as splitting the data into correctly
remembered exemplars and other stimuli, as demonstrated
in the simulation. Although this was our initial idea of fixing
this issue, this approach has several disadvantages over
the latent-mixture approach. For instance, the split-solution
is based on the post-hoc evaluation of the observed data,
where the data is divided into two different sets (recalled
exemplars vs. not recalled exemplars and new stimuli) and
model parameters are then estimated separately for each
set. In this dichotomization procedure, it would also be
an approximation to categorize all exactly remembered
exemplars in the set representing the pure recall process
and all other trials in the second set, and then estimating
one overall s parameter for each set. Furthermore, the
latent-mixture model models the underlying psychological
processed explicitly. Another possible solution would be
to either do not give participants feedback about the exact
criterion value (e.g., Pachur & Olsson, 2012) or to include
some exemplars in the training phase for which no feedback
about the criterion value is given, similar to Experiment 2 of
Bröder et al. (2017), and then estimate the s parameter only
on these exemplars.

Limitations

There are some limitations to this work. First, throughout
this article, we focused on Medin and Schaffer’s (1978)
context model extended to continuous judgment (Juslin
& Persson, 2002; Juslin et al., 2003) as an exemplar
model. However, several multiple-cue judgment studies
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(e.g., Hoffmann et al., 2014; Scheibehenne & Pachur, 2015;
Pachur & Olsson, 2012) use another exemplar model, the
GCM of Nosofsky (1984). We conjecture that the results
found here for the s parameter of the context model extend
to the sensitivity parameter c (also sometimes denoted as
h) of the GCM as well, since the context model (Medin &
Schaffer, 1978) is a special case of the generalized context
model (Nosofsky, 1984) and the s parameter of the context
model is related to the sensitivity parameter c through a
monotonic function (see the supplemental materials). A
second limitation is that for reasons of simplicity, we did
not manipulate or randomize some factors in the simulation
such as the general form of the criterion value function
(e.g., linear, cubic, exponential), the number of cues, or the
dimensionality of cues (binary vs. non-binary). However,
since the biased estimation of the s parameter is due to hav-
ing judgments of exemplars identical to the criterion value
of the exemplar, irrelevant of how the criterion value is
computed or how many cues there are, we expect the effects
would be the same. Third, the data sets we reanalyzed
originate from one lab-group and used similar materials
(i.e., cue patters, criterion value function, criterion values,

Appendix

and exemplars). Different experimental materials may differ
in the magnitude of effects we reported here. However, we
expect that since the effects stem from the combination of
the paradigm, the unmodified transfer of the model to this
paradigm, and the estimation procedure used in multiple-
cue judgment studies, and that we found the same effects
in the simulation which used somewhat different materials
(randomized criterion value functions, criterion values, and
exemplars), the results should generalize to other studies as
well.

Conclusions

We showed that the paradigm commonly used in multiple-
cue judgment research in combination with the way models
are fitted to the data can lead to biased estimates and
impaired validity of parameters, as well as negatively affect
the fit of the models. Researchers should be aware of the
different possible psychological processes underlying their
data and incorporate it in their analysis or experimental
design if necessary.
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Bröder, A., Newell, B. R., & Platzer, C. (2010). Cue integration
vs. exemplar-based reasoning in multi-attribute decisions from
memory: a matter of cue representation. Judgment and Decision
Making, 5(5), 326–338.

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring
convergence of iterative simulations. Journal of Computational
and Graphical Statistics, 7(4), 434–455.

Corporation, M., & Weston, S. (2019). doSNOW: foreach parallel
adaptor for the ‘snow’ package. R package version 1.0.18.
Retrieved from https://CRAN.R-project.org/package=doSNOW

Denwood, M. J. (2016). runjags: an R package providing interface util-
ities, model templates, parallel computing methods and additional

distributions for MCMC models in JAGS. Journal of Statistical
Software, 71(9), 1–25. https://doi.org/10.18637/jss.v071.i09

Dunn, O. J., & Clark, V. (1969). Correlation coefficients measured on
the same individuals. Journal of the American Statistical Associ-
ation, 64(325), 366–377. https://doi.org/10.1080/01621459.1969.
10500981

Eddelbuettel, D., & Balamuta, J. J. (2017). Extending extitR with
extitC++: a brief introduction to extitRcpp. PeerJ Preprints, 5,
e3188v1. https://doi.org/10.7287/peerj.preprints.3188v1

Eddelbuettel, D., & François, R. (2011). Rcpp: seamless R and
C++ integration. Journal of Statistical Software, 40(8), 1–18.
https://doi.org/10.18637/jss.v040.i08

Elliott, S. W., & Anderson, J. R. (1995). Effect of memory decay on
predictions from changing categories. Experimental Psychology:
Learning, Memory, and Cognition, 21(4), 815–836.

Henry, L., & Wickham, H. (2020). Purrr: functional programming
tools. R package version 0.3.4. Retrieved from https://CRAN.
R-project.org/package=purrr

Hintzman, D. L. (1984). MINERVA 2: a simulation model of
human memory. Behavior Research Methods, Instruments, and
Computers, 16(2), 96–101. https://doi.org/10.3758/BF03202365

Hittner, J. B., May, K., & Silver, N. C. (2003). A Monte
Carlo evaluation of tests for comparing dependent corre-
lations. Journal of General Psychology, 130(2), 149–168.
https://doi.org/10.1080/00221300309601282

Hoffmann, J. A., von Helversen, B., & Rieskamp, J. (2013).
Deliberation’s blindsight: how cognitive load can improve
judgments. Psychological Science, 24(6), 869–879.
https://doi.org/10.1177/0956797612463581

Hoffmann, J. A., von Helversen, B., Weilbächer, R. A., & Rieskamp, J.
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